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Abstract 

In this thesis, we study the existence of stationary solutions for two cases. One 

IS for random difference equations. For this, we prove the existence and uniqueness 

of the stationary solutions in a finite-dimensional Euclidean space lRd by applying the 

coupling method. The othcr one is for semi linear stochastic evolution equations. For 

this case, we follows Mohammed, Zhang and Zhao [25J's work. In an infinite-dimensional 

Hilbert space !HI, we release the Lipschitz constant restriction by using Arzela-Ascoli 

compactness argument. And we also weaken the globally bounded condition for F by 

applying forward and backward Gronwall inequality and coupling method. 

Keywords: stationary solution, random dynamical system, random difference 

equation, scmilinear stochastic evolution equation, coupling method, Gronwall inequal­

ity. 
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Chapter 1 

Introd uction 

Random dynamical systems arise in the modeling of many phenomena in physics, 

biology, climatology, economics, etc., when uncertainties or random influences, called 

noises, are taken into account. The need for studying random dynamical systems was 

presented by Ulam and von Neumann [37] in 1945. It has been pushed since the 1980s 

due to the discovery through the efforts that stochastic ordinary differential equations (' 

generate random dynamical systems, we refer the reader to [1], [17], [21], [22] and the i 
~ references therein. In deterministic and random dynamical systems, to find the exis- r. 

tence of stationary solutions and to construct local stable and unstable manifolds near 

a hyperbolic stationary point is a fundamental problem. In recent years, Mohammed 

and Scheutzow [24] has established that local stable and unstable manifolds exist for \ 

finite-dimensional stochastic ordinary differential equations. For semilinear stochastic 

evolution equations (see's) and stochastic partial differential eqations (spde's), Mo­

hammed, Zhang and Zhao [25] proved the existence of flows and co cycles and establish 

the existence of local stable and unstable manifolds near stationary solutions. However, 

in contrast to the deterministic dynamical systems, the existence of stationary solutions 

of stochastic dynamical systems generated e.g. by stochastic differential equations or 

stochastic partial differential equations, is a difficult and subtle problem. Actually, re­

searchers usually assume there is an invariant set or a stationary solution or a fixed 

point, often assumed to be 0, then prove invariant manifolds and stability results at a 

point of the invariant set ([1], [14], [15], [20]' [33]). In particular, for the existence of 

stationary solutions, results are only known in very few cases ([5], [10], [25], [34], [35], 

[39]). It is far from clear, in general. 

The main objective of this thesis is to find the stationary solution in two different 
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type equations. 

In chapter 2, we consider the following random difference equation in the finite­

dimensional Euclidean space lRd . 

Xn+l = A(enw)xn + F(enw, xn), 

where n E Z and 

F(w,O) = O. 

Here A is a random d x d invertible matrix with entry elements from n --> lR and F is a 

function which satisfies the Lipschitz condition. We introduce some basic concepts on 

random dynamical systems, stationary solution, invariant manifold and multiplicative 

ergodic theorem. In Sections 2.4 to 2.6, we establish the structure of stable and unstable 

manifold theorem for random dynamical systems. Coupling method is introduced in 

order to find the corresponding stationary solution. Section 2.7 gives the main theorem 

(Theorem 2.7.1) and the related proof in details follows. Two key lemmas (Lemmas 

2.6.1, 2.6.2) act as an important role in the proof. In Section 2.8, a gap condition prob­

lem will be mentioned and gives a possible method to solve it. Finally, we give some 

unsolved possible improvements and problems for the future research for this chapter 

in Section 2.9. 

In chapter 3, our problems are studied in an infinite-dimensional Hilbert space 

lHI. Under this space, we consider a semilinear stochastic evolution equation (semilinear 

see) with the additive noise of the form 

du(t) [-Au(t) + F(u(t))]dt + BodW(t), 

u(O) x E lHI, 

where A is a closed linear operator from 

D(A) c lHI --> lHI, 

Bo is a bounded linear operator from 

The function F is a nonlinear perturbation which satisfies the Lipschitz condition. On 

the Wiener space (0, F, (F')'20, P), W(t), t ?: 0 is a Brownian motion. In the back­

ground section, we introduce the basic structures of semilinear stochastic evolntion 
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equations, Oseledec-Ruelle version multiplicative ergodic thcorem and local invariant 

manifold theorem in infinite-dimensional space. Ivlohammed, Zhang and Zhao's exis­

tence results (Propositions 3.1.5, 3.1.6) for stationary solution are introduced and two 

problems about the results are mentioned. In Section 3.2, we release the Lipschitz 

constant restriction in Propositions 3.1.5 and 3.1.6 by using Arzela-Ascoli compactness 

argument. They are presented as Propositions 3.2.1 and 3.2.2. The cost for this is that 

we lost the uniqueness property. In Section 3.3, it is a complicated work to weaken 

the globally boundedness condition for F. We try to find a better condition for F to 

replace the previous one. For the key equation 

where 

Z(t) = 1~ Tt_,P+ Fn(z(s) + y,(s))ds 

-100 THP- Fn(z(s) + Y,(s))ris, 

Y,(t) = (w) loo THP+BoriW(s) - (w) 100 THP-BodW(s) 

for all z(e.w) E CB(T, 1Hl), allw E nand 

{ 
F, if 1 F 1:'0 71, 

Fn := 0, otherwise, 

is a cut off function, we consider this equation as two parts corresponding to positive 

and negative eigenvalues of the operator A. Vve firstly have 

z(t) (z+(t), z-(t)), 

Y,(t) .- (Y,+(t), Y,-(t)). 

Then 

and 

After a complicated form change, we have 

3 
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(Z-)2(t) < -2100 

e-(t-')2~m(z-(s), P- Fn(z+(s) + Y,+(s), Z-(8) 

+Y,-(s)))ds. 

Moreover, we follow the coupling method to consider the possible improvement. For­

ward and backward Gronwall inequalities are technically used in the proof in this sec­

tion. Two propositions (Propositions 3.3.1, 3.3.2) conclude this section. As a result, 

a new version local invariant manifold theorem (Theorem 3.4.1) will be presented in 

Section 3.4. 

4 



Chapter 2 

The Discrete Time RDS in a 

Finite-Dimensional Euclidean Space 
JRd 

§2.1 Basic Concepts 

In this section, we introduce some main basic concepts including random dynami. 

cal system, invariant measure, stationary solution and manifold before developing them 

in further research. 

Random Dynamical System (RDS) 

Let (n, F, ll') be a probability space. For a topological space E, B(E) denotes its 

Borel O'-algebra. We begin by giving the definition of dynamical systems, then extend 

to the random case. 

Definition 2.1.1 In general, a dynamical system (DS) is a tuple (T, M, rfi) where T 

is a time set, 111 is a state space, <p is a function 

<p : T x!v! ~ M, 

(t, x) f-> <p(t, x), 

with the following properties 

1. <p(0, x) = x, 

5 
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2. q,(t + s,x) = q,(t,q,(s,x)), 

for all t, s, t + SET, and the variable x E AI is the initial starting point of the dynam­

ical system. 

Remark 2.1.2 

l. Dynamical systems are usually generated from differential equations or difference 

equations. 'Vhen differential equations are employed, it is called continuous dy­

namical systems. When difference equations are employed, it is called discrete 

dynamical systenls. 

2. There are several choices for the time set T. When T is taken to be the reals T = JR, 

the dynamical system is called a flow. When T is restricted to the non-negative 

reals T = JR+, it is called a semi-flow. When T is taken to be the integers T = Z, 

it is a cascade or a map. \\'hen T is restricted to be the non-negative integers 

T = Z+, it is a semi-cascade. The set T is called two-sided time when it is taken 

JR or Z, and one-sided time for JR+ or Z+ 

From the Remark 2.l.2 (1), we can replace differential equations by stochastic differen­

tial equations. This process generates a flow from the solution to a stochastic differential 

equation. These flows are called random dynamical systems. We need a well-defined 

definition on their owns. 

Definition 2.1.3 Let (0, F, lP') be a probability space, the noise space. Let 

8:Txfl-tO 

be a measure preserving measurable dynamical system, i. e. we fix a time SET, the 

function 8,: 

is a measure-preser-ving measurable function which means 

for all E E F and sET and 8 also satisfies: 

1. 80 = idn the identity function on 0. 

6 
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2. et 0 e, = et+, faT all s, t, t + sET. 

Let (X, d) be a complete sepamble metric space, the phase space. A measumble mndom 

dynamical system <p over e is a function 

<p:TxOxX -> X 

(t,w,x) ...... <p(t,w,x) 

with the following prope,·ties: 

1. <p is a (B(T) <SI:F <SI B(X), B(X)) measumble function. 

2. <p satisfies the cocycle property: 

<pro, w) =idx , 

<p(t + s, w) <p(t, e,(w)) 0 <p(s, w) 

faT almost all w E 0. 

Note 0 means composition, i.e. (J 0 g)(x) = f(g(x)). 

Remark 2.1.4 

1. A measurable RDS <p over e is said to be continuous if the function for each w E 0 

<p(·,w,·):TxX -> X 

(t,x) ...... <p(t,w,x) 

is continuous on I. E T and x EX. 

2. When ROS <p is driven by a Wiener process W: TxO-> X, the function e, : 0-> 0 

given by 

e,(w)W(s,w) = W(t + s,w) - W(s,w) 

is a measure preserving dynamical system. 

3. For a given measurable RDS <p over e, we consider a new map which is defined for 

all t E T 

8(t) : 11 x X -; 0 x X 

(w,x) ...... (8(t)w,<p(t,w)x) 

7 
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We call this lllap the skew product of the metric DS (SI, T, 11', (f)(t))'ET) and the 

co cycle 'P( t, w) on X. It is easy to see e is a measurable DS from (T x SI x X) to 

(SI x X). Hence, all the RDS 'P can be consequently regarded as a DS on a higher 

dimensional state space. 

4. VVe present this definition as a figure. 

x x 

frs, w) 
(s,w) x 

x 

'I' (1+ ,w) 

o (s) w 

x 

'1'(1,0 (s) w) 

'1'(1,0 (s) w )(f(s, w)x) 

='1' (l+s, w)x 

0(1) o(s) W =0 (l+s) W 

Figure 2.1: A random dynamical system 

Invariant Measure 

In the theory of dynamical systems, invariant measure is an important concept. 

The existence of an invariant llleasure under some conditions is always a central prob­

lem in dynamical systems. We firstly give a concise introduction of invariant measure 

in dynamical systems, then extend it to random dynamical systems. 

Definition 2.1.5 In a DS (X, T, 4», X is a state space, T is a time set, the func­

tion 4> : T x X --> X is DS map, a measure /1 on X is said to be an invariant measure 

if and only if for each t E T 

4>, : X --> X, 

8 
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we have 

fl(.p,'(A)) = fl(A) 

for all A E B(X). 

Example 2.1.6 

In the one-dimensional real line !Ft, equipped with its Borel a-algebra, for a fixed con­

stant a E JR., we consider the map 

X 1-+ X + a. 

Then it is easy to see the one-dimensional Lebesgue nleasure ,\ is an invariant lueasure 

for map Alia. 

For RDS, we need to consider the random elements into this definition. In Re­

mark 2.1.4 (3), we notice any RDS 'P can be equivalent to consider as a OS, represented 

as a skew product 8. Hence, we define the invariant measure for RDS by applying this 

application here. 

Definition 2.1.7 For a measurable RDS'P over a dynamical system 8 of a probability 

space (11, F, lP'), define 

Po : 11 x X -; 11 

to be the projection onto 11. We say a probability measure fl on (11 x X,F®B(X)) to 

be an invariant meaSUTe ·if for all t E T 

1. 8(t)fl = /1, 

2. Pofl = lP'. 

Here 8 is the skew product corresponding to 'P. 

An invariant measure is a measure which is preserved by some functions. For a 

RDS, to find an invariant measure is not obvious. The difficulty is to lift the invariant 

property from an 8-invariant lP' on (0, F) to an 8(t)-invariant fl on (11 x X, F ® B(X)). 

Normally, the invariant measure only comes with a OS measure lP' on (11, F). For­

tunately, this part has been carefully introduced by Arnold [1]. We will not give a 

9 
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presentation for this part. 

Stationary Solution 

\Ve now introduce the concept of stationary points or stationary solutions in dy­

namical systems and random dynamical systems, respectively. How to find stationary 

solutions in different situations is the main task in this thesis. \Ve will discuss the cases 

due to finite-dimensional space and infinite-dimensional space. 

Definition 2.1.8 For' IL determ-in-istic DS (T, X, <p), 

<P : T x X ---; X, 

a stationary solution -is a fixed point a EX, such that 

<pt(a) = a 

for' all t E T. 

Example 2.1.9 

We consider a siIllple case. For a DS <Pt : lR ---; lR which IS generated by a liuear 

differential equation with initial starting point x E lR 

dy 
= dt 

-y, 

yo = x. 

It is easy to know that the solution is given by 

Obviously, zero is the stationary solution for <P since 

<PtO = O. 

Definition 2.1.10 For a measurable RDS'P on a state space (X,8(X)) over a metric 

DS (O,}", lP, 8(t)tET): 

'P : T x 0 x X ---; X, 

a stationar1J solution is an F -measurable random variable Y : 0 ---; X such that 

'P(t,w, Y(w)) = Y(8tw) 

10 
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for all t E T a.s. 

Example 2.1.11 

We consider a Ornstein-Uhlenbeck (OU) process y, by the following simple stochastic 

differential equation r 
dV, -y,dt + dW,(w), 

Yo = x, 

where W,(w) denotes the \Viener process. This can be considered as a random pertur­

bation in the dynamical system discussed in Example 2.1.9. Applying Its formula to 

e'y" we admit that the solution is given by 

y, = xe-' + l' e-('-')dW,(w). 

Assume 'P is the RDS generated by this stoehastic differential equation, thus y, IS 

replaced by 

",(t, w)x = xe-' + l' e-('-')dW,(w). 

Now, we consider the randOlll variable with 

Y(w) = 1: e'dW,(w). 

\Ve are going to see this Y(w) is a stationary solution. Hence, we need to check 

",(t, w)Y(w) and y(e,w). 

",(t, w)Y(w) = e-' 10 

e'dW,(w) + (' e-('-')dW,(w) 
-00 lo 

= 1'00 e-('-')dW,(w). 

By applying Remark 2.1.4 (2), we have 

W(s, e,(w)) = W(s + t, w) - W(t, w). 

Then 
. 0 

Y(B,w) 100 e'dW,(B,w) 

= 1: e'dW,+,(w) 

11 
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= 1~ e-(,-s)dWs(w). 

The last step is obtained by applying the change of variables s' = t+s. Thus, we finally 

have that Y (w) satisfies 

cp(t,w)Y(w) = Y(O,w). 

It is a stationary point. 

Invariant Manifolds 

!vlanifold is all important mathematical space. It describes a space model on 

a Euclidean space. Each point on a manifold has a neighborhood which resembles 

Euclidean space, but the global structure is more complicated. Some simple examples 

include lincs, two-dimensional planes, the surface of a sphere and so 011. 'Ne here 

introduce some basic concepts of related deterministic manifolds. Now consider a DS 

(X, T, </;), we have that an invariant manifold I'd is a manifold with the property that 

it is invariant under the flow such that for all t E T 

</;(t)M = M. 

If a is a stationary point of this DS, such that 

</;,(a) = a, 

the stable manifold of a is defined by 

flIS(</;,a) = {x EX: </;t(x) --+ a as t --+ DO} 

and the unstable manifold of a is defined by 

M U (</;, a) = {x EX: </;_,(x) --+ a as t --+ DO}. 

For the random case, researchers usually assume the fixed point to be zero. we consider 

a measurable R.DS cp on a state space (X,8(X)) over a metric DS (0, F, P, O(t)'ET). 

We call the set 

M+(w) = {x EX: cp(-t,w,x) --+ 0 as t --+ DO} 

unstable manifold. Similarly, we call the set 

flr(w) = {i EX: cp(t,w,x) --+ 0 as t --+ DO} 

stable manifold. In fact, in random dynamical systems, the existence of the fixed point 

is a more difficult problem than in dynamical systems. 

12 



Loughborough University Doctoral Thesis 

§2.2 Stationary Solution and Invariant Measure 

This section is devoted to discuss the relationship between invariant measures and 

stationary solutions. Both of them are the basic important concepts in DS and RDS. 

\Vc try to prove a stationary solution can give an invariant llleusure here. For a RDS tp 

over e, let J.t denote an invariant probability measure on (0 x X, F <2> B(X)). Consider 

the function 

J.t.(-) : 0 x B(X) --; [0,11, 

if for all A E F <2> B(X), we have 

or for all f E L' (J.t) 

,Ve call such a function Il.(-) a factorization of the invariant measure /L. For simplicity, 

we write 

J.t(dw, dx) = /Lw(dx)JI>(dw). (2.1) 

In Amokl [1], the existence and uniqueness for this kind of factorization of J.t have 

been presented. Since /' is an invariant measure for the RDS <p over e, we have by the 

definition for all t E T 

8(t)J.t(F x 8) = J.t(F x 8) (2.2) 

for any F x 8 E F <2> B(X). By applying the factorization v(-) of J.t for both sides of 

the equation 

J.t(8(W'(F x 8)) 

( J.tw(<p-l(t,w)8)JI>(dw) 
Je-'(t)F 

{ (<p(t, w)J.tw) (8)JI>(dw) 
Je-'(t)F 

and 

J.t(F x 8) = l J.tw(8)JI>(dw) 

13 
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l JLw(B)(8(t)IF')(dw) 

= ( JLo(t)w(B)IF'(dw). 
JO-'(t)F 

Hence, for any F E F and B E 8(X) 

{ (<p(t,w)JLw)(B)IF'(dw) = ( JLo(t)w(B)IF'(dw). 
JO-'(t)F JO-'(t)F 

This leads 

(<p(t, w)JLw)(B) = JLo(t)w(B) IF' - a.s. (2.3) 

for all B E 8(X). To reverse the above process, one can see if (2.3) holds for any 

B E 8(X), then JL(dw, dx) defined by (2.1) satisfied (2.2). That is to say JL is an 

invariant measure. Here conlCS the idea. "Ve now consider a special case, when the 

factorization of Ji. is a random Dirac measure i.e. for a randOlu variable Y: n ---j> X l it 

is defined by 

{ 
l;f 

Itw( 8) = 6~·(w) (8) = 0 if 
Y(w) E B 

Y(w) ~ B 

for B E 8(X). Then the above equation reads as 

<p(t, w)6Y(w) = 6y(o(t)w) IF' - a.s. 

However, for B E 8(X) 

<pr t, w )6y(w) (B) = 6Y(w)(<p-1(t, w)B) 

{ ~ if Y(w) E <p-1(t, w)B 
= 

if Y(w) ~ <p-1(t,w)B 

{ ~ if <p(t,w)Y(w) E B 

if <p(t,w)Y(w) ~ B 

61'(t,w)y(w)(B) IF' - a.s. 

Thus, 

6Y(O(t)w) = <l1'(t,w)Y(w) IF' - a.s. 

This leads 

Y(8(t)w) = <p(t,w)Y(w) IF' - a.s. 

Therefore, we can conclude that there exists a stationary point Y(w) if and only if we 

can construct an invariant Illcasure as a Dirac lueasure of Y (w) as a factorization of the 

14 
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invariant measure according to the stationary point and the lneasure can be expressed 

by 

/1(dx, dw) = OY(w) (dx)II'(dw). 

Normally, to find an invariant measure, we apply the Krylov-Bogolyubov procedure. 

\Ve can find related introductions in the OS or RDS books. In this thesis, we would like 

to point out that there have been extensive works on stability and invariant manifolds 

of random dynamical systerlls." Researchers usually assume there is an invariant set or 

a single point, a stationary solution or a fixed point, often assumed to be 0, then prove 

invariant manifolds and stability results at a point of the invariant set, see Amokl [1 J 

and references therein, Ruelle [32], [33J, Duan, Lu and Schaulllulfuss [14], [15]' Li and 

Lu [20]' Mohammed, Zhang and Zhao [25J. But the invariant manifolds theory gives 

neither the existence results of the invariaut set and the stationary solution nor a way 

to find them. In particular, for the existence of stationary solutions, results are only 

known in very few cases, see [5], [10], [25], [34], [35J and [39J. To find the stationary 

point, it is a different problem. Basically, the invariant measure does not necessarily 

give the stationary solution. In this thesis, we are concentrating on the existence of 

stationary points in different situations. 

§2.3 Multiplicative Ergodic Theorem (MET) 

This section is devoted to the presentation and discussion of Oseledets Multiplica­

tive Ergodic Theorem in a random manner, basically following Goldsheid and IVlargulis 

[12J. MET is the theoretical background to compute Lyapunov exponents and it is a 

key theorem to study the different type OS. Here, we present a deterministic definition 

for Lyapunov exponent firstly. 

Definition 2.3.1 In the d·dimens·ional Euclidean phase space ]Rd, <I'(t) is a linear DS 

generated by a linear differential (or difference) equat'ion 

For x E ]Rd, the Lyapunov exponent, for two-sided time t ET, is defined by 

. 1 
.\(x):= hmsuP -

1 
-I log 11 <I'(t)x 11· 

t-±oo t 

Here 11 . 11 defines the Euclidean nmw. 
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In the following MET, we will see a random Lyapunov exponent. Since this chap­

ter is for finite-dimensional space JRd, we are going to see the MET version adapted 

in a finite-dimensional space. For the infinite-dimensional Hilbert space 11 in the next 

chapter, we will introduce Oseledec-Ruelle version of 1',,!ET. 

Theorem 2.3.2 (Multiplicative Ergodic Theorem) 

From now on, we define q, to be a l'inear RDS over B, and 

is a d x d invertible random matrix with elements in JR. Suppose that, the following 

integrable conditions are satisfied with 

log+ 11 A(·} 11 E Ll(O, F, ll'), 

log+ 11 A-10 11 E Ll(O, F, ll'}, 

where log is a logarithm function. 

For a one-sided time T = N, and a linear random dynamical system 

q,(n,w} = An _ 1 (w)·· ·Ao(w}, 

there exists an invariant set 0 0 E F with full measure such that 

B(n, ·}(Oo) = 0 0 and 1l'(00} = 1 

for all n E N and for each w E 0 0 the limit 

1 
I]i(w} := lim (q,(n, w)"q,(n, w))'" 

n-oo 

exists. This I]i(w) is self-adjoint with a discrete spectrum 

Let Up(w)(w}, ... , U1(w} be the corresponding eigenvectors. Then we denote for i 

1, ... , p(w}, 

V;(w) := Up(w)(w} Ell··· Ell Ui(w}. 

These (\'i(W}}i~I, ... ,p(w) form a filtration for JRd such that 

Vp(w)(w) C ... C V;(w} C ... c V1(w) = lRd
, 

16 
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and di (w) = dim Ui (w). Moreover, the random Lyapunov exponent 

Ai(W) = lim log 11 <I>(n, w)x 11 
n-oo 

for x E V;(w) \ V;+I(W), and 

A(w)V;(w) = V;(8w) 

for all i E {I, ... ,p(w)}. 

For a two-sided time T 

by 

Z, and a linear random dynamical system <D defined 

I AW'~'w)·· A(w), n > 0, • 
<D(n,w) = I, n 0, 

A-'(onw)··· A- I(8- l w), n < 0, 

all the statements in the one-sided time T = N still hold. Moreover, there exists another 

spectrum 

and a backward filtmtion with 

1f.;(n,w):= <D(-n,w) 

over 8-1 and 

Here the following rdationship with the forward filtmtion holds 

I p(w) 

di(w) = 

Ai(W) 

for all i = 1, ... ,p(w). Denote 

p-(w) 

d;(w)+I_,(w) 

-A;(w)+I_i(W) 

Ei(W) := V;(w) n V;ZW)+I_,(W) 

for i = 1, ... ,p(w), then we have the Oseledets splitting 

17 
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Finally, the £yapunov exponent is 

. 1 
A;(W) = hm -log 11 <I>(n, w)x 11 

n-+±oo n 

for x E E;(w)\{O}. And the subspace Ei(W) is invariant under A, this is to say for all 

i E {I, ... ,p(w)} 

A(w)Ei(w) = Ei(eW). 

Remark 2.3.3 

1. For the continuous time case T = JR+ or JR, the MET still holds only with the two 

conditions log+ 11 AC) liE U(O,F,It') and log+ 11 A-1
(.) liE £1(O,F,II') changing 

to 

sup log+ 11 <I>(t, W)±1 liE £1(0, i, IP'). 
09::;1 

2. The functions A;(W), di(w), p(w), Ui(w), V;(w) and Ei(W) mentioned in the theorem 

are all measurable. 

3. The ergodic case in our theorem refers to the OS e on the probability space (0, F, It'). 

If the measurable set A E F is invariant i.e. etA) = A, then 

IP'(A) = 0 or 1. 

In this case, we have the functions p(.), di (.) and A;(·) are constants on 0 0 . The 

proof of this result was given by Krengel [19] and Steele [36]. 

4. From the theorem, we have the Oseledets splitting 

We call the set of the different A in each subs pace such that 

the spectrum of Lyapunov exponents. 

18 
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§2.4 Preparations 

In this section, we <tre going to do SOllle prep<trations for the structure of the 

inv<trimlt manifold. From the last section MET, for <t linear cocycle <I> with two-sided 

time over aDS (I1,F,P, (B(t))tET), we have 

lim .!.log 11 <I>(n,w)x 11= .\i(W) 
n--±oo n 

for x E Ei (w) \ {O}, i = 1, ... , p( w). We change another form for this limit. For arbitrary 

E > 0, 
1 

I-log 11 <I>(n,w)x II-.\i(w) 1< E 
n 

which lueans for CL given positive Ai(W) as n -t 00) <I>(n,w) is increasing exponentially 

fast. For CL given negative Ai(W) as n -t -00, q>(n,w) is increasing exponentially fast. 

This is not a concise view for further development since <I> under this norm may go 

to infinity. In order to control the non-uniformity in <1>(t, w) for the construction of 

invariant manifolds, wc Heed change the standard Eucliclean norrn in IRd to a new onc 

which does not change the Lyapunov spectrum. We consider this change by applying 

the above estimation. 

Definition 2.4.1 In the Enclidean space with Oseledets splitting 

<1> is a linear cocycle which satisfies the MET with two-sided time T, 110 is the invariant 

set in the M ET. For a fixed constant K, > ° and all w E 110 , we define the random scalar' 

prodnct in IRd by 
p 

(x,y)"w:= L(Xi,Yi)"W 
i=l 

where X,V E IRd
, ":i,Yi E Ei(w) and when T = 1R, 

whenT =:E, 

Then 
, P 

11 X 11"w= (x,x)~,w = (L 11 Xi 1I~,w)~, 
i=l 
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and when T = !R, 

when T = Z, 

1 
2 '" 11 <1>(n, w)x, 112 

1 x, 1I"w= ~ e2(A,n+,lnl) 
nEZ 

This defines the random nmm corresponding to (-, .) K,W' 

Remark 2.4.2 

1. The constant " III the definition is chosen in an arbitrary manner, then fixed. 

The subscript w of the norm describes a situation of the RDS. For example, the 

subscript ew under this norm 11 <1>(1, w)x Ikow means that we move the point from 

x to <1>(l,w)x, in the same time, w changes to ew. 

2. To see the control of non-uniformity, we can easily prove under this norm for x E 

E;(w) 

Next, by using the above well defined random norm, we construct some Banach 

spaces, which allow for the exponential growth rate of their elements, following \Vanner 

[38J. 

Definition 2.4.3 Under the space (!Rd, 11 'Ikw), fora,(3 > 0, w E 0 andT± = Tn!R±, 

set 

and 

Xf3+,w := {h: his rneasurable from T+ -+!Rd and 

11 h 1I/3+,w:= sup(3-t 11 h(t) IIK,o(t)w< (Xl}, 
t~O 

X,,-,w := {h: h is measurable from T- -+ !Rd and 

11 h II,,-,w:= supa-t 11 h(t) IIK,O(t)W< (Xl}, 
tS;O 

X o -,/3+,w:= { h: h is measurable from T -+!Rd and 

11 h lIo-,/3+,w:= sup(1I h(t) Ilo-,w, 11 h(t) 11/3+,w) < (Xl}, 
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Remark 2.4.4 

1. In the space Xj3+,w, the norm 11 h 11j3+,w describes the function h grows at most like 

(3t forward in time, Similarly, in space Xo-,w, the norm 11 h Ilo-,w describes the 

function h grows at most like at backward in time, These spaces provide us a kind 

of functions with a growth speed. 

2. The space Xo,w is also llonempty. Obviously, the zero function is in it. To see the 

other non-zero elements, we can consider the following method. "Vc firstly pick up 

the non-zero elements from the space h E Xo+,w and 9 E Xo-,w, then we can form 

the new function as the following 

f(t) = { h(t) 
g( t) 

t ~ 0, 

t :>0 0, 

It is trivial to check this function f is in Xo,w' In the later research, we are going 

to seek a stationary point in this space. 

3. It is easy to see the following facts: if Ci' :>0 a, 

and if (3 :>0 73, 
11 . 11)3+,w:>O 11 . 11j3+,w . 

As we mentioned, the new Banach space will allow for the exponential growth of 

their elements, we can sce this by setting 

for i = 1, ... , p. Here I< is a positive constant, which is chosen to be sufficiently small 

such that the intervals [A; - I<.A; + "j, i = 1,2, ... , p, do not overlap. Assume that 

the linear cocycle <P = diag(<p" ... , <Pp) is block-diagonal alld has a spectrum, Lhen 

applying Remark 2.4.2 (2) for the block <P; of the linear cocycle <P, 

11 <p;(t, w) Iko(t)w:>O (3i. t ~ 0, 

11 <p;(t,w) 1I.,o(t)w:>O aL t:>o 0. 
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vVe next introduce a constant 0 which plays an important role in the later parts 

of this chapter. \Ve choose this constant 0 by considering 

o . ('1-(32 Op-l-(3p op-O) ° < < mm 2 ' ... , 2 '--2- . 

By using this constant 0, we define the interval 

f, = [(3'+1 + 0, 0, - 0], i = 1, ... ,p 

the spectral gap between Ai+l and Ai. To have a visual feeling for this part, we describe 

these by Figure 2.2. 

o 

eAHI Q. 
iJHl 

f--...,---11 

Figure 2.2: Spectral Gap 

From this figure, we see, the constant I< and 0 need to be chosen small enough so that 

the intervals do not overlap. Normally, we select a small 1<, then fix it. However, 0 will 

need to fit some other conditions. 

For a given RDS 'P, we are always required to standardize it for deeper research. 

vVe call the RDS 'P after this procedure be prepared. This means a measurable 'P would 

be expressed by 

'P(t,w,x) = q,(t,w)x+1/J(t,w,x). 

In this form, q, denote the linear part of RDS with 

q,(t,w):= D'P(t,w,O) 
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where D means the derivative of <p at point ° and <Jl is assumed to be block diagonal 

with a spectral theory, 1/1 denotes the nonlinear part with 

1/1(t,w,x):= ~(t,w,x) - <Jl(t,w)x. 

In this chapter, we admit there is a one-to-one correspondence between the ran­

dom dynamical system <p and a random differential equation. This means for a given 

random differential equation 

x, = !(B,w, x,), 

there is a unique RDS 

t f-> <p(t,w)x 

which solves the random differential equation. This has been discussed in Chapter 2 

in Arnold [1] for local cases and global cases. In this part, we would like to consider a 

discrete tilne case, a random difference equation corresponding to a random dynamical 

system <p 

X,,+l = <p(B"w, x,,) = A(O"w)x" + F(O"w,x,,), (2.4) 

where n E Z and 

F(w,O) = O. 

A is a randOlll d x cl invertible lllutrix with elements from n --jo JR, cp is a measurable 

RDS which is assumed to be prepared. We denote <p(w) := <p(l,w). Then the random 

difference equation (2.4) is equivalent to 

<p(n,w,x) <Jl(n,w)x + 1/1(n,w,x), 

1/1(n, w, 0) = 0, 

where 

<Jl(n,w):= D<p(n,w,O) 

denotes a measurable linear RDS which satisfies the MET and A(w) := <Jl(1, w). We 

define 1/1 the nonlinear part by 

1/1(n,w,x):= <p(n,w,x) - <Jl(n,w)x 

and F(w,x) := 1/1(l,w,:I:). From MET, we know there exists a finite spectrum Al > 
... > Ap for this linear cocycle <Jl. We pick up a j with 1 :0; j :0; p and consider the 

linear part A to be block-diagonal with A = diag(A 1 , .•. , Ap) written as 

A= 
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where A+ = diag(A), ... , Aj) and A- = diag(Aj+1' ... , Ap), the blocks A;(n,w) are linear 

cocycles of one-point spectrum {(A;, d;)}. The nonlinear part is also considered as two 

parts 

F=(;:), 
where 

F.~(:)F~(Tl 
Thus, the random difference equation (2.4), by the above partition due to j, will also 

be decomposed to two parts respectively: 

{ 
~~+) : A:(O:w)x~ + F:(O> x:' ~~), 
"',,+) - A (0 w)xn +F (0 w,xn,xn ), 

(2.5) 

We call them unstable equation and stable equation. And the initial condition also 

changes to 

{ 
F+(w, 0, 0) = 0 

F-(w,O,O) = o. 
Since we choose a j and fix it, we will also assume 

This leads 

ex ,_ D:j = eAj-K, 

f3 f3 . - e"H'+' J+l - . 

11<!J+(n,w)IIK,enW ~ an, n ~ 0 

1I<!J-(n,w)II.,enw ~ f3n
, n;' O. 

Take & < Q;~. We say F satisfies the Lipschitz condition if 

§2.5 Invariant Manifold and Coupling Method 

In this section, we will introduce the invariant manifold theorem which is gener­

ated' by the raildom difference equation (2.4) 
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The coupling method is the main technical tool to prove this theorem. \Ve consider the 

RDS 'P with two-sided time on ad-dimensional Riemannian manifold 111 = lRd
, being 

differentiable from point to point. Define TIM to be ·the tangent space of M at the 

point x and 

for w EO. From the MET, we already have had an invariant property for a linear RDS 

<P generated by a linear random difference equation 

such that 

A(w)E;(w) = Ei(8w) 

for all .; = 1, ... , p(w). For simplicity, in this section, we denote by 0 the invariant 

set generated from MET with a full measure such that 11'(0) = 1. Our purpose here 

is to bend this invariant property from each Oseledets splitting subspace Ei to the 

submanifold M i . Define 

where AI, ... , A" are the corresponding Lyapunov exponents of the linear RDS <P. 

Choose any j with 1 ::; j ::; p, then we define 

In our system with M = lRd , we call the set 

unstable manifold corresponding to A + and the tangent space is 

Similarly, we call the set 

stable manifold corresponding to A-and the tangent space is 
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Here the constants a and b are from the spectral gap according to Aj by taking from 

the different intervals 

a E [tJj+l + 8, Qj - 8] =: r leIt 

bE [tJj + 8, Qj-l - 8] =: r eight 

where Q, tJ, 5 and r are defined in the section of preparations. Then, for the convenience 

of the future discussion, we put 

and 

We are now going to give the Global Invariant Manifold Theorem. For the deterministic 

case, Pesin [28] and [29] started this pioneering work. We can find the random case 

proof in Ruelle [32] and [33]. We will only emphasize on how the coupling method 

works on it. This theorem will be presented by two parts, unstable manifold and stable 

manifold, respectively. 

Theorem 2.5.1 (Global Invariant Manifold Theorem) 

For a two-sided discrete time case T = Z, the RDS <p is p"opared which is generated 

by the random difference eqlLation (2.4), where the function F satisfies the Lipschitz 

condition with 

11 F(w,x) - F(w,y) Ikow$ L 11 x - y IIK.w 

for all x, yE lRd, and the Lipschitz constant L.satisfies 

8 
o $ L < 2' 

Then, the lLnstILble manifold M+(w) according to /1.+ can be expressed by a graph in 

lRd = E+ Ell E-

where m+(w,x+) is lLniquely determined by the given initial value x+, and j\-J+(w) is 

<p-invariant such that 
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for all nE Z. 

The stable manifold AI - (w) according to A-can be expressed by a graph in lRd = 

E+ EB E-

where m-(w, x-) is uniquely determined by the given initial value x-, and M-(w) ,s 

rp-invariant such that 

rp(n,w)JW(w) = Ar(8"w) 

for all nE Z. We also have M+(w) and M-(w) do not intersect except at zero, such 

that 

Remark 2.5.2 

1. The key functions 

m+(w,x+) E E­

m-(w, x-) E E+ 

mentioned in the theorem are both measurable. 

2. For the continuous time case T = lR, all the results still hold such that for given 

initial values x+ and x-, there exist uniquely determined graphs flI+ and flI- which 

satisfy 

for all t E R 

rp(t, w)M+(w) = M+(8tw) 

rp(t,w)flr(w) = flr(8 tw) 

3. In the higher regularity case, we consider the Ck (k :::: 1) RDS 'P which means rp 

is k times differentiable with respect to x and the derivatives are continuous with 

respect to (t, x). In this situation, the theorem still holds with M+ and M- are 

Ck manifold. However, this requires to fit the additional Gap conditions. 'Ve will 

discuss this in a separate section. 

4. The Lipschitz constant £, satisfies the following restriction 

o 
0::;£<2' 
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This L Illay be taken slllall since this 0 is required to be slllall enough. But this is 

necessary for the proof of the contraction. In fact, under the Lipschitz condition, 

this randolll norlll 11 . Ikw is equivalent to the Euclidean norm. \Ve can deduce this 

by the definition of the norlll 11 . Ikw. 

5. To see the last. assertion, we present Figure 2.3. 

----------~=-_t-=~=------------I~ 
o 

Figure 2.3: Zero is the stationary point of this system 

To understand this theorelll, we study from the definition of unstable manifold, 

we recall a unstable manifold 11-[+ is 

according to the spectrum interval A + = {At > ... > Aj}. By the definition of the 

space Xa-,w, this is to say, there exists a random variable V(w) ::::: 0 such that for t ::::: 0 

11 <p(t, w, x) IIK.o(t)w:S V(w)a- t
" 

The purpose of invariant manifold theorem is to find such a function x f--> <p(t, w, x) to 

fit this inequality. We now decompose this RDS <p by two parts according to j which is 

taken from 1 :s j :s 1', then we have equation (2.5). We call the first equation of (2.5) 

the unstable equation and the second equation of (2.5) the stable equation. And the 
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finite-dimensional Euc1idean space is also decomposed to two parts 

To deal with thesc two equations, the coupling method plays an important role. The 

coupling mcthod generally works for a group of two different dual equations. In our 

unstable manifold case, we pick up an initial value point x+ E E+ and an arbitrary 

~-(w) E Xa-,w(E-). Put (x+,C(w)) into the unstable equation. For the initial value 

problem, the unstable equation has exactly one solution 

After inserting the couple (E+(w, x+), E-(w)) into the stable equation, we obtain another 

unique solution by the iterations 

The final technique is to prove the mapping 

is contracting. 

Then the graph 

Xa-,w(E-) --; Xa-,w(E-) 

C(w) t-> T,-(W,X+) 

This will lead to a fixed point, denote it as m+(w, x+) E Xa - w(E-). - , 

gives the unstable manifold. Similar technique can apply to the stable manifold case. 

This coupling method is extremely useful. It is also widely used to solve many infinite­

dimensional problems as well, see Bricmont,.Kupiainen and Lefevere [4], Li and Lu [20J 
and references therein. 

This theorem is based on an assumption that the RDS <p has a fixed point x = 0 

I.e. the random dynamical system is prepared. Of course, if one knows there is a 

stationary solution (random fixed point) for the random dynamical system, one can 

always change the random dynamical system to a prepared one. The point here we 

mentioned is how to find the stationary solution. Without knowing the stationary 

solution, one cannot define the prepared random dynamical system. To improve this, 

we are going to consider the non-linear part function of the r.d.e (2.4) with 

F(w,O) = c(l,w) 
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where c is a random variable. In this situation, zero is obviously not the stationary 

point of the system. The theorem does not work any more. Our problem is to find 

such a stationary' solution to fit this condition. The coupling method provides us a 

possibility to solve the intriguing problem. 

§2.6 Two Key Lemmas 

In the end of last section, we mentioned the problem we were going to devote. 

In this section, we present two key technical lemmas to help us reach our target: \Ve 

borrow them from Arnold [1 J and pick up some parts of the conclusions for the future 

use. vVe do a little form change so that we can understand them better. We will not 

give the proof for them. 

Lemma 2.6.1 Consider the random difference equation for a two-sided discrete time 

case T = Z 

X,,+l = A(O"w)xn + f(n, w, Xn) + fo(n + 1, w), (2.6) 

where A is a d x d invertible random matrix and is measurable, f and fo are measurable 

functions. Assume thut there e:List constunts (1 > 0 and L ;;, 0 such that for each fixed 

w, we have the following conditions 

[[A(w)II,.ow ~ (1, 

f(n,w,O) = 0, 

Ilf(n,w,x) - f(n,w,y)II,.on+'w ~ Lllx - yliw 

Now let I > (1 + L, suppose fo("w) E X"w, then there exists exactly one solution of 

(2.6) which ~(-,w) E X"w and ~(-,w) satisfies 

n 

~(n,w)= L <I>(n-i,Oiw)(f(i-1,w,W-1,w))+fo(i,w)), (2.7) 
i=-oo 

and 

(2.8) 

where <I> is the l'inear cocycle generated by A such that 

<I>(n,w) = A(on-1w) 0'" 0 A(w) 
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for n ::0: 1 and 0 means compos'ition. 

Lemma 2.6.2 Consider the random difference equation {2.6}. Suppose that the", exist 

constants a > 0 and L ;;:, 0 such that for each fixed w, 

IIA(w)-llkow 

f(n, w, 0) 

Ilf(n,w,x) - f(n,w,y)IIK.on+'w 

:S; 

= 

:S; 

-1 a , 

0, 

LII:r - Ylkw. 

Let 0 < "I < 0'- lo, assume fo{-,w) E X 1 ,w, then the", exists exactly one solution of 

{2.6} wh';ch E{-,w) E X 1 ,w and E{-,w) satisfies 

00 

E(n,w) = - L <I>(n - i,liw)(f(i -l,w,W -l,w)) + fo(i,w)), (2.9) 
i=n+l 

and 

"I 
IIE(·,w)II."w:S; 0'- (L + "I) Ilfo(-,w)II."w, (2.10) 

where <I> is the linear cocycle generated by A -1 such that 

fOT n:S -1. 

Remark 2.6.3 

1. For both lemmas, the existence of the solutions does not depend on the initial 

values. This is an extremely strongly result. This is made possible by working on 

the space X."w' 

2. We will apply these two lemmas in the coupling method to find a stationary solution. 

This requires the two conditions "I > {3 + Land 0 < "I < a - L are both satisfied. 

VVe will in the next section introduce a particularly choosing constant L to fit two 

conditions automatically. 

3. The random difference equation (2.6) in two lemmas acts in a different manner. In 

Lemma 2.6.1, since IIA(w)IIK,OW :S; {3, the equation works forward in time. In Lemma 

2.6.2, since IIA(w)-llkow :S; 0'-1, the equation follows the backward in time order. 
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§2.7 Main Results 

In this section, we introduce the main result of this chapter about the stationary 

solution for a random difference equation in the finite-dimensional Euclidean space 

IRd ,Ve firstly recall the random difference equation (2.4) which is mentioned in the 

preparation section 

where n E Z, 'P is the RDS generated by this equation. In this section, we change the 

condition for F as 

F(w,O) = c(I,w) 

where c is a random variable in ]Rd. \~re then denote 

{ A('·'w}·· A(w), n > 0· , 
<1>(n,w) = I, n = 0; , 

A-l(O"W)'" A-l(O-IW), n < 0, 

which is a linear measurable RDS satisfying the l\-lET. Comparing the definition of 

the prepared RDS, in our case, we notice that zero is not a stationary point. Other 

conditions in the prepared RDS are still needed. We hence also have the equivalent 

equation 

'P(n, w, x) = <1>(n, w)x + ..p(n, w, x), 

1/J(n,w,O) = c(n',w), 

where the nonlinear part is defined by 

1/J(n,w,x):= 'P(n,w,x) - <I>(n,w)x. 

According to the spectrum {AI > ... > .\1'}' we pick up a j with I :S j :S p. Then the 

space is splitting into two parts 

which is corresponding to the spectrum interval 

and 
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It is easy to see that the random difference equation (2.4) can be changed to the coupling 

unstable and stable equations (2.5) 

and the initial condition is 

{ 
F:(w,O,O):C:(I,w) 
F (w,O,O)-c (l,w) 

where c+ E E+ and c- E E- are random variables. One can do some linear transfor­

mations if necessary to device the coupling equations. We are now ready to state the 

theorem. 

Theorem 2.7.1 

Consider the random difference equation {2.4} for a two-sided discrete time case T = :l, 

the RDS'P satisfies the above conditions in this section. Assume the function F satisfies 

the Lipschitz cond-it'ion 

IIF(w, x) - F(w, y)lkew (; Lllx - yIIK.W' 

for all x, y E lRei. The constant L satisfies 

8 
0(; L < 2' 

Choose any j with I ::; j ::; p, and also choose one constant a in the spectral gap r 
defined by 

a := aj E r := [11 + 8, <> - 8], 

where 

and 
. (<>1-112 <>p-l-l1p <>p-o) 

8:0<8<mm 2 , ... , 2 '--2-' 

Then we have the expression {2.4} replaced by {2.5}. Assume the random variables 

c(·, w) E Xa,w, then there exists exactly a pair of solutions 
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and 

of a pair of unstable and stable equations (2.5) without any initial conditions and sat­

isfying for all n E Z 

00 

~:(n,w) = - L <1>+(n -i,eiw)(F+(i -l,w,~:(i -l,w),~:(i -l,w))) 
i=n+l 

and 
n 

~:(n,w) = L <1>-(n - i,eiw)(r(i -l,w,C(i - l,w),~:(i -l,w))). 
i=-oo 

Moreover, assume 

Y(w):= {(~:(O,w),~:(O,w))} 

in IRd , then Y (w) is the stationar1J point, such that 

<p(n,w, Y(w)) = Y(e"w) 

for' all n E Z. 

Proof. The main idea of the proof is to apply the coupling method. We divide the 

proof into four steps. 

Step 1. Stable Equation 

Given an arbitrary ~+(" w) E Xa.w(E+), we consider the stable equation 

In order to apply Lemma 2.6.1, we set 

and 

fo(n+l,w) F- (enw, ~+(n, w), 0) 

r (e"w, ~+(n, w), 0) - r(enw, 0, 0) + c- (n + l,w). (2.ll) 

Then, this stable equation is written as 

X;;+l = A-(8"w)x;; + f(n, w, x;;) + fo(n + l,w). 
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To check the conditions of Lemma 2.6.1, we have 

IW(w)II.,Bw :( f3 

and 

f(n,w,O) = o. 

To check the Lipschitz condition of f, we have 

f(n, w, y-)II.,Bn+l w 

11 p-(enw,~+(n,w),x-) - p-(e"w,~+(n,w),y-) 11.,Bn+lw 

:( Lllx- - y-IIK,W' 

.To check fo(·, w) E Xa,w(E-), multiplying a-(n+l) on both sides of (2.11), then 

-(,,+i)IIf, ( + 1 )11 / a-(n+l)[IIF-(e"w, c+(n,w),O) a 0 n ,w .,en+1w '" , 

Then, by the definition of 11 . Ila,w 

I M,w)lla,w:( !:11~+("w)lla,w + Ilc-(-,w)lla,w < 00, 
a 

(2.12) 

which means fo(" w) E X",w(E-). Hence, by Lemma 2.6.1, for this stable equation, 

there exists exactly one solution which has the property ~-(·,w) E X",w(E-) and by 

(2.7) and (2.8) wc have 

" 
nn,w) = L q,-(n - i, eiw)(J(i - 1,w,C(i - 1,w)) + fo(i,w)) 

i=-oo 
n 

L q,-(n - i,eiw)(p-(i -l,w,';+(i -l,w),C(i -l,w))), 
i=-co 

and 

a 
Iln·, w)lla,w :( a _ (f3 + L) IIM, w) Ila,w. (2.13) 

Substituting (2.12) into (2.13), we have 

IICC w)lla,w :( a _ (~+ L) II~+(" w)lla,w + a _ (; + L) Ilc(" w) 11a,w- (2.14) 
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Step 2. Unstable Equation 

For an arbitrary I;"+(·,w) E Xa,w(E+), we have a unique solution e(·,w) E Xa,w(E-) 

to fit the stable equation. Putting "solutions" (1;"+,1;"-) into the unstable equation, we 

now consider 

In order to apply Lemma 2.6.2, we set 

J(n,w,x+) := ° 
and 

Jo(n + 1,w) .- F+(enw,I;"+(n,w),C(n,w)) 

F+(enw, I;"+(n, w), C(n, w)) - F+(e"w, 0, 0) + c+(n + 1, w). 

Then, this unstable equation is written as the required form of Lemma 2.6.2 as follows: 

To check the conditions of Lemma 2.6.2, we have 

and 

J(n, w, 0) = 0. 

To check Jo(-, w) E Xa,w(E+), multiplying a-(n+l) both sides, then 

a-(n+l) IIJo(n + 1, w)IIK,en+,W :( a-(n+1) (1IF+(enw, I;"+(n, w), C(n, w)) 

-F+(enw, 0, O)IIK,en+,W + Ilc+(n + 1, w)IIK,en+'W) 
L 

:( -;;-a-n(III;"+(n,w)IIK,enW + IIC(n,w)IIK,enW) 

+a-(n+1) Ilc+(n + 1, w) IIK,enHW' 

Then, by the definition of 11 . Ila,w 

Ilfo(-,w)lla,w:( ~[III;"+(·,w)lla,w + IIct·,w)lla,w] + Ilc+(.,w)lla,w < 00. (2.15) 
a 

It follows that Jo(-,w) E Xa,w(E+). Hence, by Lemma 2.6.2, there is a unique solution 

1)+("w) E Xa,w(E+) to the unstable equation. By (2.9), (2.10) and J(n,w,O) = 0, then 

00 

1)+(n, w) = - L 1>+(n - i, eiw)(J(i - 1, w, 1)+(i - 1, w)) + Jo(i, w)) 
i=n+l 
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00 

= - L q,+(17 - i, eiw) (F+(i - 1, w, ~+(i - 1, w), e(i - l,w))), 
i=n+l 

and 

II,N,w)lla,w';; _a-Ilfo(-,w)lla,w-
a-a 

Substituting (2.15) into (2.16) 

-L-(II~+(-'w)lla,w + Iln',w)lla,w) 
a-a 

a 
+~llc(-'w)llaw' et-a ' 

(2.16) 

(2.17) 

Now, we can replace the term IIE-(', w)lla,w) by (2.14) in (2.17) to lead to the following 

inequality 

L(a-(3) + 
(a - a)(a -,6 - L) liE (·,w)lla,w 

a(a-,6) 
+ (a - a)(a -,6 - L) IIc(-,w)lla,w. (2.18) 

Step 3. Contraction 

From step 2, one can define an operator for each fixed w E \l 

Tw : Xa,w(E+) ---> Xa,w(E+), 

TwE+("w) 1)+("w). 

To see this operator is contracting, we consider ~i and Et in Xa,w(E+). Then from 

the stable equation, we can determine the unique solutions El and ~2 in Xa,w(E-) 

respectively, by the arguments in step 1. Let ( := G - ~l' Then this ( satisfies a stable 

equation 

In order to apply Lemma 2.6.1, we set 

and 
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Then, this stable equation is written in the following form 

\Ve now can apply the procedure in Step 1. In this case, we notice the random variables 

c(n,w) = O. By using Lemma 2.6.1 again, 

L 
11(lla,w = IIG - Glla,w ,,; a _ ((3 + L) IIEt - Eilla,w. (2.19) 

Now, denote 1Ji = TwEi, 11t = TwEt· The difference 1Ji - 1Ji E Xa,w (E+) which solves 

the unstable equation 

In order to apply Lemma 2.6.2, we set 

J(n, w, x+) := 0 

and 

Then, this unstable equation changes to 

We can apply the procedure in Step 2. Here also comes the random variable c( n, w) = O. 

According to Lemma 2.6.2, 

L M -1Jilla,w ,,; --(lIEt - Eilla,w + IIG - Ejlla,w)' a-a 

Hence, we substitute IIG - Ejlla,w by (2.19) into (2.20) 

11 + + L( a - (3) 11 + + 11 
'/2 -1J11Ia,w"; (a-a)(a-(3-L) E2 -E1 a,w· 

To see Tw is contracting, we require the constant 

L(a - (:I) < 1. 
(a- a)(a- (3- L) 

Since a E [(3 + 0, a - 0], we have 

L(a-(3) ,,; 
(a - a)(a- (3- L) 
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L 6 
~ 8-6--L 

L 

This means Tw is contracting when the Lipschitz constant L < ~. Therefore, by using 

the fixed point theorem for this contracting operator Tw , there exists a unique fixed 

point E;(-, w) E Xa,w(E+). We replace this fixed point from Step 1, then there exists 

exactly one corresponding E;(·,w) E Xa,w(E-) and the pair (E;,E;;) solves the pair 

equations (2.5) and satisfies 

00 

E;(n, w) = - L q,+(n - i, 8i w)(F+(i - 1, w, E;U - 1, w), E;U - 1, w))), 
i=n+l 

and 

n 

E;(n,w) = L q,-(n - i,8 i w)(F-U -l,w,E;U - 1,4!),E;(i -l,w))). 
i=-oo 

Step 4. Stationary Solution 

Denote Y(w) := {(E;(O,w),E;(O,w))} for all wE 0, to prove Y(w) is the stationary 

point, it is equivalent to prove that 

'P(n, w)Y(w) = Y(8nw). 

By the cocycle property, it is equivalent to prove 

'1'(1, w)Y(w) = Y(8w). 

Now, by the uniqueness of the solution Y(w) from the fixed point theorem, we have 

that the set 

M'(w) = {x E IRd : '1'(., w, x) E Xa,w} 

is a one point set and the unique point is 

x = Y(w) = {((;(O,w),(;(O,w))}. 
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According to M'(w), when the variable w is changed to ew, we define 

M'(ew) = {x E IRd 
: <p(', ew, x) E Xa•Bw }. 

This set is also a one point set with the only point y(ew). Now from the co cycle 

property, we have for x E M' (w) 

<p(n I l,w,x) = <p(n,ew,<p(l,w,x)). 

Since )O(·,w,x) E Xa,WJ we have 

It is easy to see 

sup a-(n+l) 11 <p(n+ l,w,x) 11< 00. 
n+l2,:O 

supa-n 11 <p(n,ew,<p(I,w,x)) 11< 00. 
n2:0 

By the definition of the space Xa,Bw, this leads to <p(·,ew,<p(I,w,x)) E Xa,Bw. Hence, 

<p(I, w, x) E M'(Ow). 

Similar argument, we pick one element x E M'(Ow), 

<p(I,w,x)-l E M'(w). 

This leads 

<p(I, w)M'(w) = M'(ew). 

Since M'(w) and M'(Ow) are both one-point sets, we have that y(w) also satisfies the 

invariant property 

<p(I,w)Y(w) = Y(Ow). 

So Y(w) is the stationary point. This completes the proof of the theorem. 

Remark 2.7.2 

l. For the coupling method, it is trivial to change the coupling order. In our proof, 

we deal with the stable equation firstly, then the unstable one. Actually, we can 

also consider the unstable equation then the stable one. By the uniqueness of the 

solutions, we have the two conclusions are coincident since they are under the same 

RDS <p. 
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2. The restriction for the Lipschitz constant L is 

o 
o ::; L < 2' 

'vVith this condition, the requirements of the two key lemmas are easily met. How­

ever, it is quite strong condition since L is required to be small enough. This is 

needed to make the map Tw a contraction. 

3. In our case, we assume the random variable c(·, w) E Xa,w and set the initial value 

F(w,O) = c(l, w). This is another restricted condition. Meanwhile, we can only 

choose to consider this situation, since the whole structure is under the space X a•w . 

This provides us a restricted RDS 'P. 

4. The pair solutions (E;:(n, w), E;(n, w)) will not be equal to zero if the random vari­

able c( n', w) is not identical to zero. This is easy to check from the construction of 

the solution in the proof of the theorem. 

5. In the theorem, we notice the coupling stable and unstable equations are dCCOlI)­

posed by j, 

For a special case when j = p, we will only consider the unstable equation 

t' 
> 

By applying Lemma 2.6.2, we can still obtain the stationary point. In this case, we 

can have restriction of the lipschitz condition reduced to 

o ::; L < er - a. 

This restriction is to fit Lemma 2.6.2. 

It is interesting to observe the relationship between the stationary solution and 

the invariant manifolds. For the structure of the manifolds, we follow Arnold's work. 

We still keep our settings at the beginning of this section. But now, we can define the 

linear cocycle l' by 

1'(n,w) = D'P(n,w, Y(w)). 

Different from the invariant manifold section, the fixed point now changes from zero to 

Y(w) . Firstly, for any j with 1 ::; j ::; p, to construct the invariant unstable manifold 

1\1+ (w) corresponding to the spectral interval 

41 



Loughborough U uiversity Doctoral Thesis 

we solve the unstable equation for the initial value x+ E E+ and given ~-(" w) E 

Xa-,w(E-) to have 

Then replace the pair solution (~+(" w, x+), C(', w)) into the stable equation to generate 

a unique solution 

After proving the operator 

Tw,x+ : Xa-,w(E-) ..... Xa-,w(E-) 

Tw,x+C(-,w) 1)-(',w,x+) 

is contracting, we have the unique point ~;(-,w,x+) E Xa-,w(E-). Therefore, for each 

given x+ E E+, 

is uniquely determined. Hence, M+ is defined as a graph in E+ Ell E-

Similarly, we obtain the invariant stable manifold 

corresponding to the complementary spectral interval 

Comparing with the proof of our theorem, we find the key difference is the choice of 

the initial value. The manifolds depend on the initial point. Due to this difference, 

we claim one theorem which shows the connection of the manifolds and the stationary 

solution. 

Theorem 2.7.3 

Assume all the conditions in Theorem 2.7.1 are satisfied, Y(w) is the stationary point 

. of this system constructed in Theorem 2.7.1. For any j with 1 ::; j ::; p, k[+(w) and 

M-(w) are the corresponding unstable and the stable manifold with respect to the dif­

ferent spectral intervals 11.+ and 11.-. Then, we have 

lVI+(w) n lVr(w) = {Y(w)} 
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for all WE O. 

Proof. The proof is simple. We only need to prove 

1. Y(w) E JVI+(w) 

2. Y(w) E M-(w). 

For (1), we can particular choose the initial value x+ = E:(O,w) which is in E+ part of 

Y(w). Thus for the fixed w, Y(w) E JVI+(w) by the structure of the unstable manifold. 

The claim (2) can be obtained by using a similar argument. From the structure of 

stable and unstable manifold, we know they have the only one intersection point Y(w). 

Hence the assertion of the theorem is satisfied. ~ 

Comparing with the invariant theorem, we have a familiar figure for this result. See 

Figure 2.4. 

----------~~--~-=~~-----------~ 
y (W) 

Figure 2.4: Y(w) is the stationary point of our system 

This theorem allows us to prove that Y (w) is the stationary point by a simple 

argument. We have JVI+(w) and M-(w) are both invariant sets. Since the interseetion 

of two invariant sets are invariant, {Y(w)} = JVI+(w) n M-(w) automatically is the 
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invariant one point set. And it is the only one by the uniqueness of Y(w). Recall 

the invariant manifold theorem, Theorem 2.5.1 and Theorem 2.7.3 describe the same 

situation. The intersection of stable and unstable manifolds is the stationary point. 

On the other hand, there is an interesting point as follows: For the stationary solution 

{Y(w)}:= {((;t-(O,w),(;(O,w))}, we can move points on M+(w) from time +00 back 

to time 0 by <pC, w) with the exponential rate at most -A;(W). This also implies the 

points on M-(w) can be moved to Y(w) from time -00 forward to time 0 by <p(·,w) 

with the exponential rate at most Aj+1(W). This explains why the manifolds are called 

unstable and stable. 

§2.8 Gap Conditions 

We found this gap condition problem in the higher regularity of invariant manifold 

theorem. Higher regularity here means the invariant manifolds are Ck if the RDS <p is. 

This happens when we consider a C k , (k 2: 1) RDS <p, some additional conditions are 

required to guarantee the spectral gap wide enough. However, the additional conditions 

are rigorous to satisfy in some ways. In this section, our purpose is to find a reasonable 

method to eliminate the influence of them. 

To see this gap condition problem, we firstly recall the definition of spectral gap. 

For example, we have a center manifold IvI;; according to the spectral interval for 

l~i,j~p 

Here the center manifold 111;; is a unstable manifold when i = 1 and is a stable manifold 

when j = p. Hence, this gap conditions will include the unstable case and the stable 

case. Assunle 

where K is sufficiently small to guarantee Cl; > (3;+1' And taking 

O 
' . (Cl1-(32 Clp-1-(3p Clp-O) < u < mIn 2 J ••• J ,--- • 

. 2 2 

Thus, define the spectral gap between AH1 and A; as 

r := [(3H1 + 5, Cl; - 51, i = 1, ... , p - 1. 

We see Figure 2.5 which will help us to have a clear picture for these notation. The gap 
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Figure 2.5: Spectral Gap 

conditions are introduced in Arnold [1 J to prove the higher regularity of the invariant 

manifolds. We specially pick up the conditions from the Theorem 7.3.19 in Arnold 

[lJ. For k ~ 2, ·for the center manifold Mij in lRd , the gap conditions are presented as 

follows. 

1. The spectral gap 

to the right of Aij is wide enough such that we can choose two numbers b, b E r right 

with b < b for which, moreover, also bq < b for every q = 2, ... , k. There is no 

condition for i = 1, i.e. for the unstable manifolds. 

2. The spectral gap 

to the left of Aij is wide enough such that we can choose two numbers a, CL E rleft 

with CL < a for which, moreover, also CL < aq for every q = 2, ... , k. There is no 

condition for j = p, i.e. for the stable manifolds. 

The gap conditions act an important role for the proof of this theorem in Arnold [lJ. 

Actually they are not always be possible to be satisfied. For example, we consider a 

simple situation 

and 

fright 

Q, < 1 < f3i 

[f3i + 8, Qi-l - 8], 

[f3i+l + 8, Qi - 8J. 

This will be impossible for either side. However, in some special cases, the gap condi­

tions are automatically satisfied. 
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Case 1 If fright n (0,11 # 0, we can choose b = 1 and b E (0,11. Then bq < b for all 

q;::: 2. 

Case 2 If f kft n [1,00) # 0, we can choose a = 1 and a E [1,00). Then a < "q for all 

q;::: 2. 

For a center manifold, we need to satisfy the two gap conditions in the same time. 

However, for the stable and unstable manifolds, we only need to satisfy Case 1 or Case 

2. Hence, this gives us an idea to eliminate the gap conditions for the stable case or 

the unstable case. 

We start with the beginning RDS 'P structure in the preparation section. For a 

given prepared C k RDS 'P over e in lRd , we have 

'P(n,w,x) = <P(n,w)x+..p(n,w,x), 

where 

<p(t,w):= D'P(t,w,O) 

defines a linear cocycle over e. And 

..p(t,w,x):= 'P(t,w,x) - <p(t,w)x 

is the Ilonlinear part with ..p(t,w,O) = 0, D..p(t,w,O) = 0 and ..p(O,w,x) = O. By the 

Theorem 7.3.19 in Arno1cl [1], we have if the corresponding manifold !\'!ij(W) is a C k 

manifold, it has to satisfy the gap conditions. Now, consider a unstable two-sided 

discrete time case, we need to consider the gap condition for f left . For the linear part 

<P of the RDS 'P, we have the corresponding Lyapunov exponents 

'Ve can obtain the unstable manifold M 1j by considering the corresponding spectrum 

interval 

Assume 
a = Aj + Aj+l 

2 . 

'Ve replace the Lyapunov exponents by putting 

Al - " > A2 - a > ... > Aj - a > 0 > Aj+! - a > ... > Ap - a. 
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Next we let ~, = A1 - a, ... , ~p = Ap - a. Then 

~, > ~2 > ... > ~j > 0 > ~j+1 > ... > ~p. 

This structure is meaningful. ,Ve may consider it from the beginning by setting 

<I>(n,w) = <I>(n,w)e-an . It is easy to see that <I>(n,w) is still a linear cocycle for x. 

By applying MET to <I>(n, w), we have 

1 ' 
lim - log 11 <1>( n, w)x 11 

1l-00 n 

= lim ~ log 11 <I>(n, w)e-anx 11 
n-oo n 

1 
lim -log I e-an III <I>(n, w)x 11 

n--.oo n 

= 
. 1 

lun -log 11 cjl(n,w)x II-a 
1l-00 n 
Ai - a 

Hence, wc have the initial R.DS change to 

Assume 

<I>(n,w) = e-an<l>(n,w), 

;j;(n,w,x) = e-an1j;(n,w,x). 

Thus, we can define a new R.DS 

<p(n,w,x) = <I>(n,w)x+;j;(n,w,x) 

such that if 'P is Ck
, so is <p. And the gap condition for this <p is exactly the same as 

the case 2 

['left n [1, (0) # 0, 

which is satisfied automatically. Then the corresponding unstable manifold is Ck. The 

stable case is in a similar manner, and the gap condition changes to [',;ght. We can deal 

with it by using a similar argument. 

§2.9 Further Research 

In the last, let us consider some possible further directions of the research. Firstly, 

in this chapter, we consider a finite-dimensional space lRd. Note Xa,w is a Banach space 
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defined on IRd From the structure of Xa,w, we know there are very limited elements in 

X a,w. Our stationary point is also generated in this space. It will be a challenge to build 

a new space which contains llluch 1110re common elements and all results in Theorenl 

2.7.1 still hold. 

Secondly, we recall the Lipschitz constant restrictions in Lemma 2.6.1, Lemma 

2.6.2 and Theorem 2.7.1 

'Y > {3 + lo, 

These restrictions are used to prove the contraction, then apply the Banach fixed point 

theorem. Actually, to prove the existence, we can also apply other fixed point theorem 

such as Schauder fixed point theorem. Hence the Lipschitz constant restriction may 

have a chance to be omitted. But we lose the uniqueness of the stationary solution. 

There are some difficulties. It is not clear now the technique would work without the 

uniqueness of the solution. 
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Chapter 3 

The Continuous Time RDS in an 

Infinite-Dimensional Hilbert Space 

1HI 

§3.1 Background 

In the first part of this chapter, we devote to introduce the background and to 

.set up of the main problellls which we arc interested in. 

§3.1.1 Semilinear Stochastic Evolution Equations 

'Ve start our work with a stochastic differential equation. Let IHl be a separable 

real Hilbert space. 'Ve consider the semilinear stochastic evolution equations (scmilinear 

see) with the additive noise of the form 

du(t) = [-Au(t) + F(u(t))]dt + BorlW(t), 

u(o) = x E 1Hl, 

(3.1) 

for t 2: O. In the above semi linear see (3.1), we denote A to be as a closed linear 

operator from 

D(A) c IHl -> 1Hl. 

Suppose -A generates a strongly continuous semigroup Tt of bounded linear operators 

from 

Tt : IHl ---; 1Hl, 

for t 2: O. Let E be another separable real Hilbert space. Suppose W(t), t 2: 0 is 

an E-valued Brownian motion which is defined on the canonical filtered Wiener space 
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(11, F, (Ft)t>o, 11') and with a separable Hilbert space K, where K c E is a Hilbert­

Schmidt embedding. In this structure, 11 is the space of all continuous paths with the 

mappmg 

such that w(O) = 0, F is its Borel er-field, Ft is the sub-er-field of F which is generated 

by all 

11 3 w I-> w(u) E E 

for u ::; t and 11' is \Niener llleasure on 11. The Brownian motiop is given by for all wEn 

and t E lR 

W(t, w) := w(t). 

Also it may be written as 

00 

W(t) = L Wk(t)fk' t E lR 
k=l 

where {Ik, k 2: I} is a complete orthonormal basis of K and (Wk, k 2: 1) are standard 

independent one-dimensional \Viener processes. In general, this series converges in E, 

not in [(. We refer it to readers for Chapter 4 of Da Prato and Zabczyk [6] for details. 

Next, wc denote by 

L2 (K, lHl) c L([(, lHl), 

be the Hilbert space of all Hilbert-Schmidt operators 

S:K-->lHl 

with the norm 
00 

11 S 112:= [L 1 S(Ik) 12]~ 
k=l 

where 1 . 1 is the norm on lHl, and L([(, 1HI) be the Banach space of all bounded linear 

operators from [( to 1HI with the uniform norm such that for any B E L( K, 1HI) and any 

v E [( 

11 B 11:= sup 1 B(v) 1 . 
Ivl9 

Suppose 

be a bounded linear operator. For this L2 ([(, 1HI) space, see Mohammed, Zhang and 

Zhao [25] for some other related discussions. Assume that the operator A in (3.1) also 
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has a complete orthonormal system of eigenvectors {en : n 2: I} with corresponding 

the eigenvalues {Iln : n 2: I}, such that 

for n 2: 1. The function 

F: IHl ---dlI 

defines a nonlinear perturbation which satisfies the Lipschitz condition with the constant 

L 

1 F(v,) --- F(V2) I:::: L 1 v, --- V2 I, 

for v" V2 E 1Hl. 

§3.1.2 Oseledec-Ruelle version MET 

From the finitc-dimensional space !Rd , we have already introduced MET. In this 

section, we present an intensive infinite-dimcnsional version MET. This work has been 

done by RueHe [33J. 

Theorem 3.1.1 (Oseledec-Ruelle MET) 

Let (0, F, Il') be a complete probability space. We define (T, (1) be a L(IHl)-vlLllled mea-

81lmble RDS. T is a fllnction 

T: !R+ x 0 --; L(IHl). 

And 11 is a grollp ofIl'-preserving ergodic tmnsforrnations on (0, F, Il') from 

!R x 0 --; 0. 

Sllppose that 

E sup log+ 11 T( t, .) IIL(II) + E sup log+ 11 T(l --- t, 11( t, .)) IIL(lll) < 00. 
09~1 O~t:Sl 

Then, there exists ILn invariant set 0 0 E F with fll11 meaSllre sllch that f07' all t E !R+ 

l1(t, .)(00) ~ 00 and Il'(00) = 1, 

and for each w E 0 0, the limit 

. I 

A(w) := lim (T(t,w)'T(t, w))21 
'-00 
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exists. Th'is i\(w) is self-adjoint, non-negative with a d'iscrete spectrum 

Let FI(w), F2(W), F3(W), 

that fori = 1,2"" 

be the span of corresponding eigenvectors. Then denote 

E,(w) IHI 

Ei(W) .- [EIlj:,IIFj(w)]J. 

for i > 1. When i = 00, set .Ai = -00 and 

Eoo := ker i\(w). 

Then (Ei(W))i~I,2, .. forms a filtmtion for IHI, such that 

and 

mi := dim Fi(W). 

Then the Lyapunov exponent will be expressed as 

. 1 
.Ai = hm -log 1 T(t, w)J: 1 

for J: E Ei(W) \ Ei+I(W), and 

i_co t 

. 1 
lnll - log 1 T( t, w)J: 1= -00 
t-oo t 

ifJ: E Eoo(w). The invariance p7'Operty is 

T(I"w)(Ei(w)) 5::: Ei(e(t,W)) 

for all t :2: 0, i :2: 1. 

Remark 3.1.2 

1. L(IHI) is the Banach space of bounded linear operator from 

with the uniform operator norm such that for B E L(IHI) 

for v E IHI. 

11 B IIL(IHl):= sup 1 B(v) 1 
IvlSl 
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2. Comparing with Theorem 2.3.2 and Remark 2.3.3, we have the two corresponding 

integrable conditions. They both require that the logarithm RDS is integrable in 

two-sided time. 

3. From this theorem, we obtain an orthogonal splitting of the infinite-dimensional 

space \HI by two parts. One is for the positive eigenvalues {>'1, A2, ... , Am}, the 

other one is for the negative eigenvalues {An : n 2': m}. And the space \HI can be 

written as 

vVe see from this, \HI+ IS a finite-dimensional subspace, and \HI- IS an infinite­

dimensional subspace. 

4. To well understand this theorem, we have a figure below. 

• 
E210 n. "'1/ .. , 

11 (t;, ) 

Figure 3.1: The Oseledec-Ruelle Theorem 
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§3.1.3 Infinite-Dimensional Local Invariant Manifold Theorem 

In this part. we arc going to introduce a beautiful work which will show us, in a 

random manner, the structure of the local invariant manifold in an infinite-dinlellsional 

space lHI. This work has been done by Mohammed, Zhang and Zhao [25]. Firstly, we 

give some notations as before. lHI is a separable Hilbert space. \Ve denote by B(x, p) the 

open ball in lHI. with radius p and center point x E lHI, B(x, p) denotes the corresponding 

closed ball. Normally, we say a stationary point is hyperbolic if the eigenvalues of the 

linearized system have nOll-zero real part. In our RDS (U, IJ), we say a stationary point 

Y (w) is hyperbolic if the corresponding linearized cocycle (DU (t, w, Y (w )), IJ( w)) has a 

nOIl-zero Lyaponov spectrum 

such that Ai of 0 for all i 2: l. And the stationary point satisfies 

10 log+ ooS;::I~oSa 11 DU(t2 ,IJ(t"w), Y(IJ(t"w))) liL(lHl) dlP'(w) < 00 

for a E (0,00). 

Theorem 3.1.3 (Local Invariant Manifold Theorem) 

For a sepamble Hilbert space lHI, let (U, 8) be a measumble RDS, where U is a measumble 

function defined from 

(0,00) x II x B(O, p) -> lHI, 

(t,w,x) f-> U(t,w,x). 

Let Y be a hyperbolic stationary point of the RDS (U, IJ) which satisfies the following 

condition 

10 log+ ooS;::l~oSa 11 U(t 2 ,8(t"w), Y(IJ(t"w))) IIL(IHl) dlP'(w) < 00 

for any fixed 0 < p, a < 00. Define the linearized RDS (DU(t,w, Y(w)),IJ(t,w),t 2: 0) 

admits the discrete Lyapunov spectrum 

... < Ai+' < Ai < ... < A2 < A,. 

We specially pick up 

Aio := max{Ai : Ai < O}. 
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If all finite Ai are positive, set Aio := -00. If all the Ai are negative, set Aio-1 := 00. 

We then choose and fix 

E, E (0, -Aio) and E2 E (0, Aio-'). 

Then, there exists an invariant set 0* E :F with full measure such that 

8(t, ·)(0*) = 0* and 1P'(0*) = 1 

for all t E lR. Assume the functions Pi, f3i are maps from 

0* -> (0,1), 

where f3i > 0, Pi > 0, i = 1,2 are random variables, such that for each w E 0*, we have 

the following: 

Stable case 

There is a sub manifold S(w) of B(Y(w),p,(w)). For Aio > -00, S(w) is the set of all 

x E B(Y(w),p,(w)) such that 

for all n =": 0. If Aio = -00, S(w) is the set of all x E B(Y(w), p,(w)) such that for all 

n=":O 

I U(n,w,x) - Y(8(n,w)) Is f3,(w)e>n 

where A E (-00, n). Furthermore, for all x E S(w), 

. 1 
Inn sup -log I U(t,w,x) - Y(8(t,w)) IS Aio· 

t-DO t 

For the linearized RDS (DU(t,w, Y(w)),8(w)), we define S(w) is the corresponding 

submanifold of it, then each S(w) is tangent to S(w) at the stationary point Y(w), such 

that 

And S(w) is local invariant such that there exists T,(W) =": ° with 

U(t,w)(S(w)) C;; S(8(t,w)) 

and 

DU(t,w)(S(w)) C;; S(8(t,w)) 
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for all t ::: Tl (w). 

Unstable case 

There is a submanifold U(w) of B(Y(w), P2(W)). For Aio-l < 00, U(w) is the set of all 

x E B(Y(w), P2(W)) with the property 

U(l,e(-n,w),y(-n,w)) = y(-(n-l),w) 

where the process y(., w) is defined from 

{-n: n ::: O} ---> 1HI 

and y(O, w) = x and 

1 y(-n,w) - y(e(-n,w)) I:::: !12(W)~-(A'o_,-,,)n 

for each n ::: 1. If Aio-l = 00, U(w) is the set of all x E B(Y(w), P2(W)) such that for 

alln2:0 

1 y(-n,w) - y(e(-n,w)) I:::: !12(w)e-An 

where A E (0,00). Furthermore, we have 

. 1 
hmsup-log 1 y(-t,w) - y(e(-t,w)) I:::: -Aio-l, 

t_oo t 

for all x E U(w). For the linearized RDS (DU(t,w,Y(w)),e(w)), we define U(w) to 

be the corresponding submanifold, then each U (w) is tangent to U (w) at the. stationary 

point Y(w), such that 

And U (w) is local invariant such that there exists T2 (w) 2: O' with 

U(w) <;;; U(t,e(-t,w))(U(e(-t,w))) 

and 

DU(t, e( -t, w))(U(e( -t, w))) = U(w) 

for all t ::: T2(W). 

Remark 3.1.4 
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1. As a result, the Hilbert space 1HI can be splitting by two tangent spaces according 

to the stable manifold S(w) and the unstable manifold U(w). Hence, we naturally 

have 

at the stationary point Y(w), where Ty(w)U(w), TY(w)S(w) are the tangent spaces 

of U(w) and S(w) at the point Y(w) respectively. 

2. The existence of the RDS (U, B) in the infinite-dimensional Hilbert space is a difficult 

problem. Fortunately, ~'Iohammed, Zhang and Zhao [25J has proved the existence of 

RDS corresponding a large class of the semilinear stochastic evolution equations and 

semilinear stochastic partial differential equations. This brings us a big convenience 

for further research. 

3. In the higher regularity case, we consider a Ck"(k 2: 1, E E (0,1]) type RDS (U, B). 

Under this situation, all the assertions of Theorem 3.1.3 still hold, and S(w) and 

U(w)' arc the corresponding Ck"(k 2: 1, E E (0,1]) manifolds. We note here that 

C k
" describe a set of functions of f with the following propert.ies. If E, N are real 

Banach space, we denote L(k)(E, N) be the Banach space of all k-multilincar maps 

such that 

with the uniform norm 

11 A 11:= sup{1 A(V"V2,'" ,vd I: Vi E E, 1 Vi 1:'0 l,i = 1, ... , k}. 

Suppose U <;; E is an open set, the map 

f:U-->N 

is said to be of class Ck
" if it is Ck and if 

is E- Holder continuous on bounded sets in U. 

4. If the RDS (U, B) is Coo, the local stable and unstable manifolds S (w), U (w) are 

Coo. 

5. From this theorem, we can essentially view the stable and unstable manifolds. For 

the stationary solution Y(w), we can move points on U(w) from time +00 back to 
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time 0 by U(, w) to Y(w) with the exponential rate at most .\;,-1' This also implies 

the points on S(w) can be moved from time -00 to time 0 by U(·,w) to Y(w) with 

the exponential rate at most - Ai,. 

6. 'Ne see a figure below. 

U (t •• ,(,J) 

o ( t· ) 
, . 

(.) H( t ,h)) 

Figure 3.2: Local Invariant Manifold Theorem 

§3.1.4 Mohammed, Zhang and Zhao's Results on the Existence of Station­

ary Solutions 

Mohammed, Zhang and Zhao's results are setting on an infinite-dimensional real 

sparable Hilbert space IHL We denote {en, 11 2: I} a basis for IHL Let A be a self-adjoint 

operator on 1Hl with a discrete non-vanishing spectrum {Iln, 11 2: I} which is bounded 

below. 'Ne have Aen = Ilnen for 11 2: 1. Denote Ilm the largest negative eigenvalue of A, 

and Ilm+l is its smallest positive eigenvalue. Hence, we obtain an orthogonal splitting 

of 1Hl by two parts. One is for the negative eigenvalues {Ill, 112, . " ,Ilm}. The other one 

is for the positive corresponding eigenvalues {Iln: 11 2: m + I}. And 1Hl can be written 
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as 

\Ve see, 1HI+ is an infinite-dimensional subspace, 1HI- is a finite-dimensional subspace. 

We also define the projections onto each subspace by 

p+ : 1HI -> 1HI+ 

P- : 1HI -> 1HI- . 

On the Wiener space (0, F, (Ft )t20, 11'), we denote W(t) be a Brownian motion. Let K 

be another separable Hilbert space, then assume Eo E L 2 (K, 1HI). 

"., -At 
1t = e 

is a strongly continuous semigroup generated by -A. Since 1HI- is finite-dimensional, 

we have Tt on 1HI- is invertible for each t ~ O. Therefore, we set T_t := [Tt]-l from 

1HI- -> 1HI- for each t ~ O. 

Now, we consider a semi linear stochastic evolution equation (selnilinear see) on 

1HI with the above structure 

du(t) 

u(O) 

[-Au(t) + F(u(t))]dt + EodW(t), 

x E 1HI. 

We assume F : 1HI -> 1HI satisfies a globally Lipschitz condition 

1 F(x) - F(y) 1:0: L 1 x - y I, 

for any x, y E 1HI, where L is a non-negative constant. Then, the semilinear see has a 

unique mild solution with the following form 

u(t,x) = Ttx + it Tt_,F(u(s,x))ds + 1'Tt-,EodW(S), 

for t ~ O. In their recent work, Mohammed, Zhang and Zhao [25] has proved the fol­

lowing results for the existence of the stationary solution for this semilinear see. We 

introduce here two propositions. 

Proposition 3.1.5 Assume the above conditions on A and Eo, F satisfies the glob­

ally bounded and globally Lipschitz conditions. The Lipschitz constant L is with the 

restriction 
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Then theTe is a unique :F -measurable map Y : 0 -+ 1HI satisfying 

Y(w) = J: T_,P+ F(Y(O(s,w)))ds - [" T_,P- F(Y(O(s,w)))ds 

+(w) fO T_,P+ BodW(s) -'- (w) tOO T_,P- BodW(s) 
-00 io 

for all wE O. 

Proposition 3.1.6 Assume all the conditions on A, Bo and F in Proposition 3.1.5. 

Then the semilinear see 

du(t) = [-Au(t) + F(u(t))ldt + BodW(t), 

u(O) = x E 1HI, 

has a unique stationary point Y : 0 -> 1HI, such that 

u(t, w, Y(w)) = Y(O,w) 

for all t :2: 0 and w EO, and Y (w) is given in Proposition 3.1.5. 

We see that proposition 3.1.5 provides us the structure of the stationary point. 

And proposition 3.l.6 proves it is a unique stationary point. The proofs of these two 

propositions are very valuable, see Mohammed, Zhang and Zhao [251 for details. Nor­

mally, the stationary point in a DS may be non-unique. To obtain the stationary solu­

tion in the case that there might be more than one stationary point, we need different 

techniques. 

§3.1.5 The Problems 

In this section, we introduce two unsolved problems arOlind the above'two propo­

sitions. 

Problem 1 In proposition 3.1.5, ,ve see that the Lipschitz constant L needs to satisfy 

the restriction. If we can release it, that will be a significant progress. Actually, it is 

reasonable since this condition was used by proving the Banach fixed point theorem. 

If we apply other fixed point theorem or related arguments, this condition may be 

omitted. 

Problem 2 Another one is the boundedness condition for the function F. Our purpose 

is to weaken it to a weaker condition. This will be quite challenging since this 
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condition acts an important role in the proof. We are trying to apply the coupling 

method to weaken such a condition. 

We notice, these two problems actually are based on the infinite-dimensional Hilbert 

space lHl. This leads to some trouble. In the next two sections, we will carefully choose 

the technique tools to deal with it. 

§3.2 Release Lipschitz Constant Restriction 

§3.2.1 Preparations 

As previous sections, we also assume IHI is a real separable infinite-dimensional 

Hilbert space. We denote {en: n ~ I} a basis for 1HI. A is a closed linear operator from 

D(A) c lHl ---> lHl 

with a discrete non-vanishing spectrum {ILn, n ~ I}. We have Aen = ILnen. we can 

also denote ILm the largest negative eigenvalue of A, and ILm+1 is its smallest positive 

eigenvalue. Hence, we obtain an orthogonal splitting of lHl by two parts. One is for 

the negative eigenvalues {ILl, IL2, ... ,ILm}. The other one is for the positive eigenvalues 

{J--lm+lJMm+2J" .}. And lHI can be written as 

We see this structure, 1HI- is a finite-dimensional subspace, and lHl+ is an infinite-, 
dimensional subspace. ,Ve also define the corresponding projections onto each subspace 

by 

and 

Let W(t), t ~ 0 be an lHI-valued Brownian motion which is defined on the canonical 

filtered Wiener space (0, F, (F,),,,o, Il') and with a separable Hilbert space K as men­

tioned as before. Suppose Bo E L2(K, lHl). Suppose -A generates a strongly continuous 

semigroup 
'T' -At 
1t = e . 

We now consider the semi linear see on lHl 

du(t) = I-Au(t) + F(u(t))]dt + BodW(t), 
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u(O) = x E !HI, 

where F : !HI -> !HI satisfies a globally Lipschitz condition 

1 F(x) - F(y) 1:0: L 1 x - y I, 

for any x, y E !HI, where L is a constant. Then, the semilinear see has a unique mild 

solution with the following form 

u(t, x) = Ttx + l' T,_,F(u(s, x))ds + l' Tt_,BodW(s) 

for t 2: O. We also recall an important definition here to help the proof in next subsec­

tion. 

Definition (Equicontinous) Let X be a metric space and G is a fam'ily of func­

tions on X. The family G is said to be equicontinuous at a point Xo E X -if for every 

E > 0, there exists a 5 > 0, such that 

d(g(xo),g(x)) < E 

for' all 9 E G and all x such that 

d(xo, x) < 0. 

The whole family is called equicontinuous if it is equicontinuous at each point of X. 

Next we introduce one famous theorem: Arzela-Ascoli theorem. 

Arzela-Ascoli Theorem 

If 8 is compact, then a set in C(8) is conditionally compact if and only if it is bounded 

and equicontinuous. 

Here conditionally compact means every infinite subset of C(8) has a limit point which 

is not necessary in C(8). Hence, when C(8) is closed, conditionally compact is equal 

. to compact. 

§3.2.2 Main Results 

In this part, we are trying to take off the restriction for the Lipschitz constant 

L. \Ve will see, to prove the results, Arzela-Ascoli compactness arguments plays an 
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important role. Firstly, we present a result based on proposition 3.1.5. 

Proposition 3.2.1 Assume the conditions on A, Bo a.s above section and P is glob­

ally bounded and locally Lipschitz. Then there exist at least one F -measurable map 

Y : 11 ....... 1HI satisfying 

Y(w) = 1: T_,P+P(Y(Ii(s,w)))ds- [' LsP-P(Y(Ii(s,w)))ds 

+(w)l° T_,P+BodW(s) - (w) (OO T_,P-BodW(s) (3.2) 
-00 la 

for all wE 11. 

Proof. Firstly, define the F-rneasurable map Y, : 11 ....... 1HI by 

Y,(w) = (w) 10 

L,P+ BodW(s) - (w) (OO T-sP- BodW(s). (3.3) 
-00 la 

Then we have 

(Ii,w) 1: T_,P+ BodW(s) - (Ii,w) 100 T_,P- BodW(s) 

(w) loo Tt-,P+ BodW(s) - (w) 100 Tt_,P- BudW(s). 

Secondly, we denote by C(T, 1HI) the Banach space of all bounded continuous maps from 

T to 1HI and for each w E 11 

CB(T,lHI) = {J E C(T, 1HI) and 11 f 1100:= sup I f(s) I::: B}, 
sET 

where B is a constant with 

1 1 
B :=11 F 1100 (- - -) 

J-lm+l I-lm 

and 

11 F 1100:= sup I P(v) I . 
VEil 

\Vith the above structure" we can consider (3.2) as two parts. \Ve now define Zo = 0, 

and consider 

zn+,(litw) = 1'00 Tt-. P+ F(zn(li,w) + Y,(Ii,w))ds 

-1+
00 

T,-,P- P(zn(Ii,w) + Y,(Ii,w))ds. 
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This structure provides us a possibility to solve the problem in an infinite-dimensional 

space. Our aim is to prove this sequence {zn(e.w)}~=o is equicontinuous. For our case, 

this means we need to prove z is uniformly continuous on t for all n. For this, taking 

any t
" 

t2 E (-00,+00) with t,::; t2 , we have 

I Zn+l(et, W) Zn+l(e'2W) I 

::; 11: T,,-,P+ F(z,,(e,w) + Y,(e,w))ds 

1'2 + 
- -00 T'2-'P F(zn(e,w) + Y,(e,w))ds I 

+ 11+00 
T,,-,P- F(zn(e,w) + Y,(e,w))ds 

" 
-1+

00 

T'2-'P- F(z,Je,w) + Y,(e,w))ds I . 
t, 

For the first term, we have the following estimate, 

-1': T'2_,P+F(zn(e,w) + Y,(e,w))ds I 

< 11': T,,-,P+ F(zn(e,w) + y1(e,w))ds 

-1': T,,_,P+F(zn(e,w) + Y,(e,w))ds I 

+ 11': T,,_,P+ F(zn(e,w) + Y,(e,w))ds 

-1': T,,_,P+ F(zn(e,w) + Y, (e,w))ds I 

11': (T,,-,P+ - T'2_,P+)F(zn(e,w) + Y,(e,w))ds I 

+ 1[2 T'2-,P+F(Zn(e,u.:) + Y,(e,w))ds I 

< !IF 1100 [1'2 11 T'2-'P+ 11 ds 

" 
1', + + 

+ -00 11 T" -,P - T'2-'P 11 ds] 

< !IF 1100 [1'2 11 T'2-'P+ 11 ds 
" 

+ 11 1- T"-,, p+ 111': 11 T,,-,P+ 11 ds] 
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:S !IF 1100 [l t2 
11 Tt,-sP+ 11 ds 

" 
+ 11 1- Tt2 -" p+ 111': e-(t, -'lI'm+'ds] 

< !IF 1100 [l t2 
11 Tt,-sP+ 11 ds 

t, 

+ 11 1- Tt2 -"P+ 11 _1_.], 
Jlm+l 

and by a similar argument to the second part, we have 

-1+
00 

Tt2 - sP- F(zn(lIsw) + YJ (lI,w))ds I 
t2 

1
+00 

< I Tt,_,P- F(zn(lI,w) + YJ(II,w))ds 
t, 

-1+
00 

Tt,_,P- F(zn(lIsw) + YJ(II,w))ds I 
t2 

+ 11+
00 

T,,_,P- F(zn(lIsw) + Yl(lIsw))ds 
t2 

-1+
00 

T,,_,rF(Zn(II,w) + YJ(II,w))ds I 
t, . 

= 11+
00

(Tt,_,P- - Tt2 - sP-)F(zn(II,w) + Yl(lIsw))ds I t2 
+ 11t2 Tt,_,P~ F(zn(lI,w) + Y1(II,w))ds I 

" 
< !IF 1100 [l t2 

11 Tt, -,P- 11 ds 
t, 

+ 1+
00 

11 T" -sP- - T,,_,P- 11 ds] 
t, 

< 11 F 1100 [l t2 
11 Tt, -,P- 11 ds 

t, 

1
+00 

+ 11 Tt,-t2 P- - I 11 11 Tt2 - sP- 11 ds] 
t2 

< !IF 1100 [l t2 
11 Tt, -,P- 11 ds 

t, 
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Therefore, by combining two parts, we have 

I zn+l(8"w) ZM1(8'2W) I 

< 11 F 1100 [I" 11 T'2-'P+ 11 ds + I" 11 T" -,P- 11 ds 
tt t1 

+_1_ 11 1- T"-,,P+ 11 -~ 11 T"_,,P- - [Ill 
I-Lm+l I-lm 

Note when tl :0: S :0: t2 as I'm < ° and J.!m+l > 0, 

11 T _ p+ 11< e'-(t2-,)"m+, < 1 t2 S _ _ , 

and 

\Ve also know that T, is a strongly continuous semigroup. Thus, from the above argu­

ments, wc can easily check Zn+l (8,w) is nniformly continuous on t for all n. Then we 

say the sequence {zn(e.w)}~=o is equicontinuous. Moreover, for the boundedness of this 

sequence, it is easy to sce that 

I zn+l(8,w) I < 11 F 1100 [/00 11 Tt-s P+ 11 ds + 1+00 
11 T,_,P- 11 ds] 

< 11 F 1100 [1' e-(t-')"m+'ds + 1+00 
e-('-')"mds] 

-00 , 

< 11 F 1100 (_1_ -~) 
fLm+l J.L m 

< 00. 

Hence, we can use the Arzela-Ascoli Theorem on the sequence {zn(e.w)}~=o' For arbi­

trarily large N > 0, we firstly have that the time set T = [-N, N] is a compact set. 

Then the set {z,,( 8.w )}~=o is conditionally compact. This means there exists at least 

one subsequence znk (8.w) snch that 

zn,(8,w) -> z(8,w) 

as k -> 00, for any t E ]-N, N]. Next, we need to lift the limit from T = I-N, N] to 

T = (-00, +00). For this, wc sce that 

Zn+l(W) = 1: T_,P+ F(zn(8,w) + Yl(8,w))ds 
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-1+
00 

T_,P-F(zn(e,w) + Y,(e,w))ds 

= ,1: L,P+F(Zn(e,w) + Y,(e,w))ds 

-iN L,P- F(zn(e,w) + Y,(e,w))ds 

+ 1: T_,P+F(zn(e,w) + Y,(e,w))ds 

1
+00 

- N T-sP- F(zn(esW) + Y,(e,w))ds, 

I Zn+'(W) - 1: T_,P+F(zn(e,w) + y,(esw))ds 

+ iN T_,P- F(zn(e,w) + Y,(e,w))ds I 

< 11: T_,P+F(z,,(e,w) + Y,(e,w))ds I 

+ I 1+00 

L,P-F(zn(e,w) + Y,(e,w))ds I 

< 11 F 1100 [1: 11 T_,P+ 11 ds + [00 11 T_,P-' 11 ds] 

1 1 < IIF 1100 ( __ e-~m+1N - _e"mN). 
f..-lm+l /-Lm 

For the above inequality, we firstly take the limit for the terms on the left side. when 

n ---j. 00, we have 

I z(w) - 1: T_,p+F(z(esw) + Y,(e,w))ds 

+ iN T_,rF(z(e,w) + Y,(e,w))ds I 
o , 

< 11 F 1100 (_l_e-~m+lN - 2.-e~mN). 
/lm+' /lm 

Then taking the limit N ...... 00, noticing z(e,w) is well defined for all sE (-00, +(0) 

since N can be arbitrarily big. Thus, 

Z(w) = 1: T_,p+F(z(e,w) + Y,(e,w))ds 

r+oo 

- lo T_,P- F(z(e,w) + Y,(e,w))ds. 
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Finally, we add Y, defined by the integral equation (3.3) to the above equation and also 

assUl11e 

Y(w) := z(w) + y,(w). 

Then we have the following expression 

Y(w) = fO T_,P+ F(Y(8(s,w)))ds - (OO T_,P- F(Y(8(s, w)))ds 
-00 la 

+(w) f: T_,P+ BodW(s) - (w) 100 T_,P- BodW(s) 

for all w E O. This is the elld of the proof. U 

Proposition 3.2.2 Assume all the conditions on A, Bo and F in Proposition 3.2.1. 

Then the semilinear' see 

du(t) = [-Au(t) + F(u(t))]dt + BodW(t), 

u(O) = x E 1HI, 

has at least one stationary point Y : 0 ---> 1HI, such that 

u(t,w, Y(w)) = Y(8tw) 

for all t :::: 0 and w EO. 

Proof. By the last proof, we have 

Y(8tw) = loo T,_,P+ F(y(e(s, w)))ds - 100 Tt-,P- F(Y(8(s, w)))ds 

+(w) loo T,_,P+ BodW(s) - (w) 100 Tt-,P- BodW(s) 

1: Tt_,P+ F(y(e(s, w)))ds -100 T,_,P- F(Y(8(s, w)))ds 

+(w) f: Tt-,P+ BodW(s) - (w) 100 THP- BodW(s) 

+ l' Tt-,P+ F(Y(8(s, w)))ds - [T,_,P- F(y(e(s,w)))ds 

+(w) l' Tt_,P+ BodW(s) - (w) 10 

THP- BodW(s) 

T,y(w) + l' T,_,F(Y(e,w))ds + (w) 1'T,_,BodW(S). 
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Therefore, Y(8tw), t ;:: 0, w E fl is a stationary solution with the starting point x = 

Y(w), since by the uniqueness of the solution, we have u(t,w, Y(w)) is also a solution 

and 

u(t,w, Y(w)) = Y(8tw) 

for all t ;:: ° and w E fl. This stationary point maybe non-unique. This is because 

in Proposition 3.2.1, the Arzela-Ascoli compactness argument can not guarantee the 

uniqueness. This finishes the proof. p 

§3.3 Weaken the Condition of F 

In l'dohauuned, Zhang and Zhao's paper [25], it is difficult to remove both the 

restriction of Lipschitz constant and the globally boundedness condition in the same 

time. Our purpose in this section is to push the results of last section further to find 

a weaker condition to replace the globally bounded condition for F. Now consider the 

following equation with a standard cut off function Fn , 

z(t) = loo Tt_,P+Fn(z(s) + Y1(s))ds 

-100 Tt_,F'-Fn(z(s) + Yl(s))ds 

for all z(8.w) E CB(T, 1HI) and all w Efl. Here 

F" := { 

And F is a function from 

F, if I F I:::; n, 

0, otherw·ise. 

1HI c-> 1HI. 

(3.4) 

Then we see that Fn is bounded whatever F is. By the previous proof, we have, as Fn 

is bounded, there exists at least one Z(t)tET' And the existence property depends on n, 

such that 

where Bn is the radius of a closed ball which depends on n and is dominated by Fn 

such that 
1 1 

Bn :=11 F" 1100 (- - -). 
/Lm+l Ij,m 

Here comes a new idea. If we can prove Z(t)tET exists and does not depend on n, such 

that 

11 z 1100:::; B'. 
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If such kind of B' exists, this is to say we can always choose n big enough to cover every 

F such that 

and the globally bounded condition for F will be possible to be omitted. This is the 

idea we are going to work out. Before we start our hard trip, it is necessary to enhance 

us with a powerful weapon. \Ne introduce next with the famous Gronwall inequality in 

forward form and backward form, respectively. 

§3.3.1 Gronwall Inequality 

Gronwall inequality is a famous tool in many fields of mathematics. Here we 

present a generalized one-dimensional form. We start with the one-dimensional ODE 

in the inholllOgeneous case) 

x' = "'f(t)x + f(t). 

To solve this ODE, we use the variation of constant method. See Hartman [13] for the 

elementary proof. The Gronwall inequality comes from this proof. Actually, fOl:' the 

inequality proof, we only Heed require x to be non-negative. Here comes the generalized 

Gronwall inequality. 

Forward Gronwall Inequality 

Let x(t) be a lR+ -valued function on la, b], {3(t) and "'f(t) are lR-valued functions, CY 'is a 

constant and if 

2;(t) :S CY + {3(t) + l' "'f(s)x(s)ds, 

for all a :S t :S b. Then we have 

x(t) :S [CY + {3(a)]eJ~1(')d' + l' {3'(s)eJ;1(r)dr ds, 
. a 

for all a :S t :S b. 

The proof is elementary, similar to the proof of finding ODE solution. We omit it 

here. For our research, we are also interesting in the backward type Gronwall inequal­

ity. \Ne next deduce it from the forward one. 

Backward Gronwall Inequality 
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Let x(t) be a IR+ -valued function on Ib, aL (3(t) and ,(t) are IR-valued functions, Cl: is a 

constant and if 

x(t) :::: Cl: + (3(t) + la ,(s)x(s)ds, 

for all b :::: t :::: a. Then we have 

for all b :::: t :::: a. 

Proof. We see tlmt the inequality is changed to 

x(t) :::: a + (3(t) + la ,(s)x(s)ds, 

for all t :::: a. Define 

x(t) = x(a - (a - t)) := z(a - t). 

Then 

z(t) = x(a - t) 

for t :::: O. Moreover, 

z(t) x(a - t) 

< Cl: + (3(a - t) + 1~, ,(s)x(s)ds. 

Changing variable by applying s = a - T, we then have 

z(t) < a + (3(a - t) + [,(a - T)x(a - T)d( -T) 

< a + (3(a - t) + [,(a - s)z(s)ds. 

So by forward Gronwall inequality 

z( t) :::: la + {3( a))eJ~ ,(a~')M + l' ~{3( a - s )eJ: ,(a-T)dT ds. 
. 0 ds 

Thus, 

x(t) = z(a - t) 
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[a + ,6(a)]ef;1(,,"(-') + l' [-,6'(r)]eC : 1(a-T)dT d( -r) 

[a + ,6( a)]ef: o(,)d, + la [-,6' (r )]ef; 1(T)dT dr 

[a + ,6( a) lef: 1(,)d, - l
a

,6' (s )ef: 1(T)dT ds 

This finishes the proof. p 

§3.3.2 Main Results 

In this part, our purpose is to find an alternative condition to replace the global 

boundedness condition for F. \Ve start by considering the structure of the infinite­

dimensional Hilbert space 

From (3.4), for z E IHl and a given Y\ E 1Hl, we have 

z(t) .- (z+(t), z-(t)), 

Y\(t) .- (Yt(t), Y,-(t)) 

where z+(t), Y+(t) E 1Hl+ and z-(t), Y-.(t) E 1Hl-. Then (3.4) can be expressed by two 

parts 

(3.5) 

and 

(3.6) 

Denote by {en, n 2': 1} a basis for 1Hl, by {/In, n 2': 1} the discrete non-vanishing spectrum 

of the operator -A. /lm is the largest negative eigenvalue and /lm+' is the smallest 

positive eigenvalue. Then assume 

zj(t) V(t), ed, 

z.,(t) (z-(t),e2), 

z;;.(t) V(t), em), 

z;;;+,(t) (z+(t), em+d, 

z;;;dt ) = (z+(t), em+2), 
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Consider the differential forms of (3.5) and (3.6) according to each eigenvalue of A, we 

have 

dZj (t) 
dt 

dZi(t) 
dt 

dz;;.(t) 

~/11Zj(t) + (Fn(z+(t) + Y1+(t), z-(t) + Y1-(t)), e1), 

= -/12zi(t) + (Fn(z+(t) + Y1+(t),Z-(t) + Y1-(t)),e2), 

-- = 
dt 

dZ;;;+l(t) 
dt 

dZ;;;+2(t) 
dt 

Multiplying with zj(t), zi(t),··· , z;;.(t), Z;;;+l(t), Z;;;+2(t)··· for each equation respec­

tively, we have 

1 d(z1l 2 (t) 
2 dt 
1 d(ZZ)2(t) 
2 dt 

1 d(z;;.j2(t) 
2 dt 

1 d(Z;;;+1)2(t) 
2 dt 

~ d(Z;;;+2)2(t) 
2 dt 

-/11(Z1l2(t) + zj(t)(Fn(z+(t) + Yt(t), z-(t) + Y1-(t)), ed, 

-/12(zi)2(t) + zi(t)(Fn(z+(t) + yt(t),z-(t) + Y1-(t)),e2), 

= -/1m+l (Z;;'+l?(t) + Z;;'+l (t)(Fn(z+(t) + Y1+(t), z-(t) 

+Y1-(t)),em +l) 

-/1mdZ;;;d2(t) + z;;;dt)(Fn(z+(t) + yt(t), z-(t) 

+Y1-(t)), em+2) 

Since the spectrum {,ld, d ;::: 1} is non-vanishing, this means 

/11 < /12 < ... < /1m < 0 < /1m+1 < /1m+2 < ... , 

we then have 

1 d(zj)2(t) > 
2 dt -/1m(z1l2(t) + zj(t)(Fn(z+(t) + Y1+(t), z-(t) + Y1-(t)), e1), 
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-Jlm+' (z;;;+, )2( t) + z;;;+, (t)( F" (z+ (t) + Y,+(t), z- (t) 

+Y,-(t)),em+l) 

! d(Z;;;+2)2(t) < 2 + 
2 dt -Jlm+,(Z;;;d (t) + z;;;dt)(F,,(z+(t) + Y, (t), z-(t) 

We consider the above differential inequalities according to the positive and negative 

eigenvalues. For the first m differential inequalities, we consider the backward integral 

equations. For the rest inequalities, we consider the forward integral equations. Then 

we have 

(Z))2(t) < ['" 2Itm(Z))2(S)ds -100 2z)(s)(F,,(z+(s) + Y,+(s), z-(s) 

+Y,-(s)),e,)ds, 

(Z;)2(t) < 100 2Jlm(Zi)2(s)ds -100 2z;(s)(F,,(z+(s) + Y,+(s), z-(s) 

+Y,-(s)),e2)ds, 

(z;;y(t) ['" 2Jlm(z;;y(s)ds -100 2z;;;(s)(F,,(z+(s) + Y,+(s), z-(s) 

+Y,-(s)), em)ds, 

(Z;;;+,)2(t) loo -2Jlm+l(z;;;+,)2(s)ds + loo 2z;;;+,(s)(F,,(z+(s) + Y,+(s), z-(s) 

+Y,-(s)), em+,)ds, 

(Z;;;+2?(t) < loo -2Jlm+' (Z;;;+2)2(s)ds + loo 2Z;;;+2(S)(Fn(z+(s) + Y,+(s),z-(s) 

+Y,-(s)), em+2)ds, 

Then applying the forward and backward Gronwall inequality for each differential in­

equality, we have 

(Z))2(t) ~. -2100 
e-(t-')2~mz)(s)(Fn(Z+(S) + Y,+(s),z-(s) + Y,-(s)),e,)ds, 
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(z;;y(t) -2 ['" e-('-,)2"m z,~,(s)(Fn(z+(s) + Y,+(s), z-(s) + Y1-(s)), em)ds, 

(Z;;'+1)2(t) = 21'"" e-(t-')2~m+'Z;;'+I(S)(Fn(Z+(S) + Y1+(s), z-(s) + Y1-(s)),em+dds, 

(Z;;'+2)2(t) < 2/"" e-('-,)2"m+, z;;'+2(s)(Fn(z+(s) + Y1+(s), z-(s) + Y1-(s)), em+2)ds, 

Now we combine them into two types by writing 

and 

(z+(s) p+ Fn(z+(s) + Y1+(s), z-(s) + Y1-(s))) 

= z;;'+I(s)(Fn(z+(s) + YI+(S),Z-(s) + Y1-(s)),em+d 

+z;;'+2(s)(Fn(z+(s) + Y1+(s), z-(s) + Y1-(s)), em+2) + ... , 

(Z-(8) P- Fn(z+(s) + Y1+(s), z-(s) + Y1-(s))) 

= zj(s)(Fn(z+(s) + YI+(S),Z-(s) + Y1-(s)),el) 

+z,,(s)(Fn(z+(s) + Y1+(s), z-(s) + Y1-(s)), e2) + ... 
+z;;;(s)(Fn(z+(s) + Y1+(s) , z-(s) + Y1-(s)), em). 

Then (3.5) and (3.6) change to 

(Z+)2(t) < 21'"" e-(H)2"m+' (z+(s), p+ Fn(z+(s) + Y1+(s), z-(s) 

+ Y1- (s)) )ds (3.7) 

and 

(Z-)2(t) < -21"" e-(H)2~m(z-(s), P- Fn(z+(s) + Y1+(s), z-(s) 

+Y1-(s)))ds. (3.8) 
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From the inequalities (3.7) and (3.8), we see a hope to weaken the condition for F. 

This will become a coupling problem if we can do a Monotone change for different part 

of Fn. Then, in the later discussion, we will assume the function Fn need to satisfy the 

conditions as follows. 

Assumption 1 

where 

(:c, (P+)Fn(x + a, y + b)) < LIX2 + Lzy2 + Al 

(y,(-P-)Fn(x+a,y+b)) < L3 X2 + L4y2+BI' 

L4 < -Pm, 

L2 L3 2: 0, 

and A I, B I 2: ° are constants. 

vVe notice that LI, £z, L3 , L4 and AI, Bl can be chosen to be independent on n 

since we can deduce this from F. Thus, we have (3.7) and (3.8) change to 

and 

This will lead to 

(3.9) 

and 

(3.10) 

In the next step we will apply the forward and backward Gronwall inequalities and 

coupling method. This leads to 
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+ loo [e,2"m+, (Z+)2(S )J2L1 ds. 

Then applying the forward Gronwall inequality to the above inequality, we immediately 

have 

e12"m+' (Z+)2(t) < 1~ e,2"m+'2L2(z-)2(s)e2L ,(t-')ds 

+ j' 2A 1e,2"m+'e2L'('-')ds. 
-00 

So it is trivial to see that 

From (3.10) we have 

e'2"m2L3(Z+)2(s)ds __ I e12"m 100 B 

t J1'Tn 

+ 100 [e'2"m (Z-)2(S)J2L4ds. 

Applying the backward Gronwall inequality, we have 

et2"m(z-)2(t) :c: 100 e'2"m2L3(z+)2(s)e2L,('-t)ds 

So it is trivial to see that 

(Z-)2(t) :c: 100 e('-t)2("m+L')2L3(z+)2(s)ds 

+2B
1 
100 e(,-t)2("m+L')ds 

< 2 e(,-')2("",+L4) L3(Z+)2(S)ds _ 1. 100 B 

, /Lm + L4 

Observing (3.11) and (3.12), we see that if we prove one of (z+)(t) and 

(3.11 ) 

(3.12) 

bounded, the other one can be deduced to be bounded automatically. Next, we substi­

tute the term (z-)2(s) in (3.11) by the inequality (3.12). Then we can use the change 

of integration order to get 

(Z+)2(t) :c: 21~ e('-')2(L,-"m+l)L2[21°O e('-')2("m+L')L3(z+)2(r)dr 
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B, A, 
--=-::-]ds + -_'---:­
Mm + L4 /-Lm+l - Ll 

< 41'00 e('-S)2(L,-"m+l)L21°° e(r-')2("m+L4)L3(z+)2(1')d1'ds + 111 

< 

4L2 L3 [1'00 1:00 e2(LI -"m+I)('-,)-2("m +L4)(,-r)ds(z+)2 (1' )d1' 

+ 100 11 e2(LI-"m+1 )(1-,)-2("m +L4)(,-r) ds(z+ f (1' )d1'] + M 
1 -00 

4L2 L3 [1'00 e2(L 1 -"m+d'+2("m+L4)r 

1~ e2("m+l- LI -"m-L4)'ds(z+)2(1' )d1' 

+ 100 e2(LI-"m+I)I+2("m+ L4)r 

1'00 e2(,'m+I-L 1-"m-L4)Sds(z+)2(1')d1'] + M 

2L2 L3 

Pm+1 - L, - Pm - L4 

[1' e2(LI-"m+l)1+2("m+L4)r+2("m+1 -L1-"m -L4)r (Z+)2( T)d1' 
-00 

+ 100 e2(LI-"m+d'+2("m+L4)r+2("m+I-L1-"m-L4)'(z+f(T)drj + M 

1 . 

)..[100 e2(LI -"m+d('-') (Z+)2( 5 )ds 

+ 100 e2("m+L4)('-I)(z+)2(s)ds] + M, (3.13) 

11'[ := __ A...:I,--;_ 
Pm+1 - L, 

)..:= 2L2 L3 
Pm+1 - L, - Pm - L4 

> O. 

Q := max{2(p,,;+1 - L,), -2(Pm + L4)}, 

f3:= min{2(pm+1 - L,), -2(Pm + L4)}. 

Then Q, f3 > 0, and 

(Z+)2(t) < M + )..(/00 e-!1(I-')(z+)2(s)ds 
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For the above inequality, we consider a variable change for term f,oo e-i3(s-t)(z+)2(s)ds, 

then 

Hence 

100 e-i3(S-')(z+)2(s)ds = 1: e-i3(-r-t)(z+)2( -T)dT 

1: e-i3(-s-t)(z+f( -s)ds. 

(Z+)2(t) < 1\1 + )..([00 e-i3('-s)(z+)2(s)ds 

+ 1: e-P(-s-t)(z+)2( -s)ds). 

Replacing t by -I. into (3.14), we have a new form 

(Z+)2( -t) ~ M + )..(1: e-i3(-t-s)(z+)2(s)ds 

+ itoo e-P(t-S)(z+)2( -s)ds). 

Adding (3.14) and (3.15) together, we have 

(Z+)2(t) + (Z+)2( -t) ~ 2!vJ + )..[[00 e-i3(t-s)((z+f(s) + (Z+)2( -s))ds 

+ 1: e-i3(-s-t)((z+f(s) + (z+f( -s))ds]. 

(3.14) 

(3.15) 

Observing the above inequality, we find that it becomes an induction problem. Let 

Then G'(t) :::: 0 and 

l' 1-t G'(t) ~ 2f'd +)..( -00 e-i3(t-S)G'(s)ds + -00 e-i3(-,-t)G'(s)ds). (3.16) 

For the estimation of this inequality, we use the induction method by assuming the 

starting point GW) ~ 2M, then 

G;(t) < 2/tI 

G;(t) ~ 2M +).. [00 e-)3(t-s) (2M)ds + )..1: e- i3(-H)(2M)ds 
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2,\ 
< 2M +2M(fj) 

< 2M +,\ jt e-f3(H)(2M + 2M(2'\))ds 
-00 ~ 

+,\ e-f3 (-'-t)(2M + 2M( - ))ds j
-t 2,\ 

-00 ~ 
2,\ 2,\ 

< 2M + 2M( fj) + 2M( fj)2 

We see from the induction, if C;"(t) has a uniform bound, we require 2; < l. This 

nleans we need 

And this leads to 

Hence, with this condition, we have that C;"(t) has a uniform bound which does not 

depend on 17,. This means (Z+)2(t) + (Z+)2( -t) is bounded uniformly in 17,. And since 

(Z+)2(t) and (z+)2( -t) must be non-negative, we have (Z+)2(t) has a uniform bound. 

Replacing this bound into (14), we obtain a bound for (Z-)2(t). Then we have a bound 

for 1 z(t) I, since 

And this bound completely does not depend on 17, of Fn. Hence, we can choose 17, big 

enough such that 

Then, the globally boundedness condition for F can be omitted now. Instead, the As­

sumption 1 changes to 

Assumption 2 

(x, (P+)F(x + a, y + b)) :s; L1X2 + L2y2 + A1 

(y, (-P-)F(x + a, y + b)) :s; L3X2 + L4y2 + B1 
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Ilm+l ) 

L3 2 0, 
1 
4(a+{3){3, 

and AI, B 1 2 0 are constants. 

To conclude, we have the following. 

Proposition 3.3.1 Assume conditions on A, Bo in Proposition 3.1.5 and locally Lip­

schitz with Assumption 2 for F. Then there exists at least one :F -measurable map 

Y : Il -+ IHI satisfying 

Y(w) = 1: T_,P+ F(Y(8(s, w)))ds - ['" T_,P- F(Y(8(s,w)))ds 

+(w) 1: T_,P+ BodW(s) - (w) ['" T_,P- BodW(s) 

for all wEll. 

Proof. This follows from the above arguments. ,Ve only need to change the As­

sumption 1 by Assumption 2 and F" by F from the beginning. U 

Proposition 3.3.2 Assume all the conditions on A, Bo and F in Proposition 3:3.1. 

Then the semihnear see 

du(t) = [-Au(t) + F(u(t))]dt + BodW(t), 

u(O) x E IHI, 

has at least one stat·ionar·y point Y : Il -+ IHI, such that 

u(t,w, Y(w)) = Y(8,w) 

for all t 2 0 and wEll. 

Proof. This is straightforward to follow the proof of Proposition 3.2.2. ~ 
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§3.4 Invariant Manifold 

In this section, we present an invariant manifold theorem according to the previous 

results. Here we recall the setting and hypotheses in Section 3.2.1. We will see the 

existence of local stable and unstable manifolds for the RDS which is generated by the 

mild solution of the semilinear see (3.1) of the form 

du(t) [-Au(t) + F(u(t))Jdt + BodW(t), 

u(O) x E lHl. 

Next, the theorem follows from the previous results. 

Theorem 3.4.1 (Invariant Manifold Theorem) 

Assume the hypotheses on the coefficients of the semilinear see (3.1) in Section 3.2.1. 

Assume that the stationary solution Y(w) obtained in Proposition 3.3.2 of the following 

RDS 
U : JR+ X rI x lHl ---> lHl 

generated by mild solutions of (3.1) is hyperbolic. Then the random dynamical system 

(U,8) has a local stable and unstable manifolds satisfying all the assertions of Theorem 

3.1.3 in an infinite-dimensional manner. 

Proof. To prove this, we need to check two points. 

1. The hyperbolic property of Y, such that 

Elog+ 1 Y 1< 00. 

2. The integrabilit.y condition of Theorem 3.1.3 which is 

for any 0 < p,a < 00. 

For (1), in Proposition 3.2.1, we have the facts 

for all p :::: 1, and 
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These lead to 

Y E £P(O, 1HI) 

for all p ;::: 1. Hence, assertion (1) is satisfied. For (2), we firstly have the hyperbolic 

stationary point Y is integrable. This has been shown above as 

YE £P(O, 1HI). 

In Mohammed, Zhang and Zhao [25], Theorem 1.2.6 has proved, in a semilinear see 

with a linear noise case, such kind of RDS (V, IJ) exists and be integrable in 1HI, such 

that 

El +{ [V(t2,IJ(tl,'),X) I} 
og sup < 00 

OSt,'!'';;a (1 + 1 x I) 
for all w E 0, all a > 0 and x E 1HI. Our case is the semilinear see with the additive noise. 

We can regard it as a special case. Then all the results in Theorem 1.2.6 of Mohammed, 

Zhang and Zhao [251 still hold. Therefore, the integrable condition is satisfied by the 

above inequality and the integrability of Y, and the conclusion of Theorem 3.4.1 follows 

immediately from Theorem 3.1.3. This finishes the proof. ti 

§3.5 Further Research 

In this chapter, we removed the Lipschitz constant restriction. However, for the 

global boundedness condition for F, it can be replaced by a weaker Assumption 2. 

Although they are weaker than the previous boundedness condition, we can not com­

pletely drop the constant restrictions for L1 , L2, L3 and L4 • Further research is needed 

to relax these restrictions for L 1 , [,2, L3 and L4 . One may find a weaker condition for 

F by using a different method. 

In this whole chapter, we consider the semilinear stochastic evolution equation 

with additive noise Actually, we may also possibly consider a semilinear see with the 

linear noise such as 

where 

du(t) 

u(O) 

[-Au(t) + F(u(t))ldt + Bu(t)dW(t), 

x E 1HI, 

B: 1HI -> L2(K,1HI) 
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is a bounded linear operator. In Mohammed, Zhang and Zhao [25], they proved the 

existence of flows of different type semilinear stochastic evolution equations (semilinear 

see's). In Zhang and Zhao [40]' they studied the non-linear noise case. With their 

work, it is possible to extend our work to different type of semilinear see's. Also, with 

great courage and hard work, it is reasonable to consider stochastic partial differential 

equations under our settings. This need more work. 
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