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Abstract

In this thesis, we study the existence of stationary solutions for two cases. One
is for random difference equations. For this, we prove the existence and uniqueness
of the stationary solutions in a finite-dimensional Euclidean space R¢ by applying the
coupling method. The other one is for semilinear stochastic evolution equations. For
this case, we follows Mohammed, Zhang and Zhao [25]’s work. In an infinite-dimensional
Hilbert space H, we release the Lipschitz constant restriction by using Arzela-Ascoli
compactness argument. And we also weaken the globally bounded condition for F' by

applying forward and backward Gronwall inequality and coupling method.

Keywords: stationary solution, random dynamical system, random difference
equation, semilinear stochastic evolution equation, coupling method, Gronwall inequal-

ity.
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Chapter 1
Introduction

Random dynamical systems arise in the modeling of many phenomena in physics,
biology, climatology, economics, etc., when uncertainties or random influences, called
noises, are taken into account. The need for studying random dynamical systems was
presented by Ulam and von Neumann [37] in 1945. It has been pushed since the 1980s
due to the discovery through the efforts that stochastic ordinary differential equations
generate random dynamical systems, we refer the reader to [1], [17], [21], [22] and the
references therein. In deterministic and random dynamical systems, to find the exis-
tence of stationary solutions and to construct local stable and unstable manifolds near
a hyperbolic stationary point is a fundamental problem. In recent years, Mohammed
and Scheutzow [24] has established that local stable and unstable manifolds exist for

finite-dimensional stochastic ordinary differential equations. For semilinear stochastic

T el T

evolution equations (see’s) and stochastic partial differential eqations (spde’s), Mo- )

hammed, Zhang and Zhao [25] proved the existence of flows and cocycles and establish
the existence of local stable and unstable manifolds near stationary solutions. However,
in contrast to the deterministic dynamical systems, the existence of stationary solutions
of stochastic dynamical systems generated e.g. by stochastic differential equations or
stochastic partial differential equations, is a difficult and subtle problem. Actually, re-
searchers usually assume there is an invariant set or a stationary solution or a fixed
poin.t, often assumed to be 0, then prove invariant manifolds and stability results at a
point of the invariant set ([1], [14], [15], [20], [33]). In particular, for the existence of
stationary solutions, results are only known in very few cases {[5], [10], [25], [34], [35],

139]). It is far from clear, in general.

The main objective of this thesis is to find the stationary solution in two different
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type equations.

In chapter 2, we consider the following random difference equation in the finite-

dimensional Euclidean space R?.
Tyl = A(0"W)Tn + F("w, z,),

where n € Z and

F(w,O)lz 0.

Here A is a random d x d invertible matrix with entry elements from 2 — Rand F is a
function which satisfies the Lipschitz condition. We introduce some basic concepts on
random dynamical systemns, stationary solution, invariant manifold and multiplicative
ergodic theorem. In Sections 2.4 to 2.6, we establish the structure of stable and unstable
manifold theorem for random dynamical systems. Coupling method is introduced in
order to find the corresponding stationary solution. Section 2.7 gives the main theorem
(Theorem 2.7.1) and the related proof in details follows. Two key lemmas (Lemmas
2.6.1, 2.6.2) act as an important role in the proof. In Section 2.8, a gap condition prob-
lem will be mentioned and gives a possible method to solve it. Finally, we give some
unsolved possible improvements and problems for the future research for this chapter

n Section 2.9.

In chapter 3, our problems are studied in an infinite-dimensional Hilbert space
H. Under this space, we consider a semilinear stochastic evolution equation (semilinear

see) with the additive noise of the form

2.
=
—_—
o
<
I

[—Ault) + F(u(t))]dt + BodW (1),
u{0) = =z eH,

where A is a closed linear operator from

D(A)CH - H,
DBy is a bounded linear operasor from

H — Ly(K,H).

The function F is a nonlinear perturbation which satisfies the Lipschitz condition. On
the Wiener space (0, F, (Fi)izo, ), W(t), ¢ > 0 is a Brownian motion. In the back-

ground section, we introduce the basic structures of semilinear stochastic evolution

2
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equations, Oseledec-Ruelle version multiplicative ergodic theorem and local invariang
manifold theorem in infinite-dimensional space. Mohammed, Zhang and Zhao's exis-
tence results (Propositions 3.1.5, 3.1.6) for stationary solution are introduced and two
problems about the results are mentioned. In Section 3.2, we release the Lipschitz
constant, restriction in Propositions 3.1.5 and 3.1.6 by using Arzela-Ascoli compactness
argument. They are presented as Propositions 3.2.1 and 3.2.2. The cost for this is that
we lost the uﬁiqueness property. In Section 3.3, it is a complicated work to weaken
the globally boundedness condition for F'. We try to find a better condition for F to

replace the previous one. For the key equation

() = /_L T s P F(2(s) + Yi(s))ds

o

_ / Ty P Fa(a(s) + Yi(s))ds,

where .

o= |

—o0

T, P+ BodW (s) — () / Thoy P BodW (s)
t

for all (0 w) € Cp(T,H), all w €  and

D | F|< 7,
t 0, otherwise,

is a cut off function, we consider this equation as two parts corresponding to positive

and negative eigenvalues of the operator A. We firstly have

2(t) = (), (1)),
Yi(t)y = (Vi) Y (1)

Then
zHt) = jt T s PEEL(2F(s) + VP (s), 27 (s) + Yy (s))ds
and
(1) = — —/too Tooo PTF (27 (s) + YT (s),27(s) + Yl'(s).)ds.
After a complicated form change, we have

(z1)(t) < th e~ U=NUmir(z¥(5), PTF, (2% (s) + Y{F(s), 27 (5)

—00
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+Y(s)))ds
and

(z7)%) < -2 [OE‘“'”)"’“m(z‘(s),P‘Fn(zfts)+Y1+<s),z-(s>

Yy (5))ds.

Moreover, we follow the coupling method to consider the possible improvement. For-
ward and backward Gronwall inequalities are technically used in the proof in this sec-
tion. Two propositions (Propositions 3.3.1, 3.3.2) conclude this section. As a result,
a new version local invariant manifold theorem {Theorem 3.4.1) will be presented in
Section 3.4,



Chapter 2

The Discrete Time RDS in a
Finite-Dimensional FEuclidean Space
Rd

§2.1 Basic Concepts

In this section, we introduce some main basic concepts including random dynami-
cal system, invariant measure, stationary solution and manifold before developing them

in further research.
Random Dynamical System (RDS)

Let (Q,F,P) be a probability space. For a topological space E, B(E) denotes its
Borel o-algebra. We begin by giving the definition of dynamical systems, then extend

to the random case.
Definition 2.1.1 In general, o dynamical system (DS) is a tuple (T, M,¢) where T

15 a time set, M is a state space, ¢ s e function

p:TxM — M,
(t,z) — ¢t z),

with the following properties

1 $(0,z) ==,
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2. ¢t + s,x) = (L, d{s, z)),

forallt, s, t+s € T, and the variable x € M is the initial starting point of the dynam-

ical system.

Remark 2.1.2

1. Dynamical systems are usually generated from differential equations or difference
equations. When differential equations are employed, it is called continuous dy-
namical systems. When difference equations are emploved, it is called discrete

dynamical systems.

2. There are several choices for the time set . When 7 is taken to be thereals T = R,
the dynamical system is called a flow. When T is restricted to the non-negative
reals T = R*, it is called a semi-flow. When 7 is taken to be the integers T' = Z,
it is a cascade or a map. When T is restricted to be the non-negative integers
T = Z%, it is a semi-cascade. The set T is called two-sided titne when it is taken

R or Z, and one-sided time for R* or Z*.

From the Remark 2.1.2 (1), we can replace differential equations by stochastic differen-
tial equations. This process generates a flow from the solution to a stochastic differential
equation. These flows are called random dynamical systemns. We need a well-defined

definition on their owns.

Definition 2.1.3 Let (2, F,P) be a probability space, the noise space. Let
8:Tx0—-0

be a measure preserving measurable dynamical system, re. we fiv a time s € T, the
function 0,:

Q- Q

is a measure-preserving measurable function which means
P(E) = P(6;'(E))
forall E € F and s € T and 8 also satisfies:

1. 8y = idq the identity function on (1.



Loughborough University Doctoral Thesis

2. 6808, =084, foralls, t,t+s5€T.

Let (X,d) be a complete separable metric space, the phase space. A measurable random

dynamical system @ over 8 is a function

pw:Tx0OxX — X
(tl w‘ :B) = (p(tluJ?m)

with the following properties:
1. pisa (BT ®@F@B(X),B(X)) measurable function.
2. © satisfies the cocycle property:

cp(O,w) = ’l:d‘\',
pt+s,w) = 9t 8,(w)) op(s w)
for almost all w € 1.

Note o means composition, i.e. (f o g){z) = f(g(z)}.

Remark 2.1.4
1. A measurable RDS ¢ over 8 is said to be continuous if the function for each w € Q
plw,):TxX — X
(t,z) — p(t,w,x)
is contimwous on Lt € T and ¢ € X.

2. When RDS ¢ is driven by a Wiener process W : T'x 8} — X, the function 8, : 2 — 2
given by
Be(w)W (s, w) = W(t+s,w) - W(s,w)

is a measure preserving dynamical system.

3. For a given measurable RDS ¢ over #, we consider a new map which is defined for
allteT

O): Ix X — QxX
(w,z2) — (O()w,p(t,w)z)

7
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We call this map the skew product of the metric DS (2, 7, P, (6(¢)):er) and the
cocycle p(f,w) on X. It is easy to see © is a measurable DS from (T x 2 x X) to
(2 x X). Hence, all the RDS ¢ can be consequently regarded as a DS on a higher

dimensional state space.

4. We present this definition as a figure.

$ (s, o) §() x«y(t, 6 {8) w)
Pt 6 (8) @)} (P(s, )x)
X 4 '=_«§’(t+s, m)x
P (t+5, )
w g (s) w a(t)o(s) w =g (t+s)

Figure 2.1: A random dynamical system

Invariant Measure
In the theory of dynamical systems, invariant measure is an important concept.
The existence of an invariant measure under some conditions is always a central prob-

lem in dynamical systems. We firstly give a concise introduction of invariant measure

in dynamical systems, then extend it to random dynamical systems.

Definition 2.1.5 In a DS (X,T,¢), X is a state space, T is a time set, the func-
tion ¢ : T x X — X is DS map, a measure pp on X is said to be an tnvariant measure
if end only if for eacht € T

b X — X,

8
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we have

for all A € B(X).

Example 2.1.6

In the one-dimensional real line R, equipped with its Borel o-algebra, for a fixed con-

stant ¢ € R, we consider the map

M, R — R

r = I-a.

Then it is easy to see the one-dimensional Lebesgue measure A is an invariant measure

for map M,.

For RDS, we need to consider the random elements into this definition. In Re-
mark 2.1.4 {3), we notice any RDS ¢ can be equivalent to consider as a DS, represented
as a skew product ©. Hence, we define the invariant measure for RDS by applying this

application here.

Definition 2.1.7 For a measurable RDS ¢ over a dynamical system 8 of ¢ probability
space (Q, F,P), define
PQ x X -0

to be the projection onto Q. We say a probability measure p on (1 x X, F @ B(X)) to

be an invariant measure if for allt € T
1. 0@ =pn,
Here © 15 the skew product corresponding to .
An invariant measure is a measure which is preserved by some functions. For a
RDS, to find an invariant measure is not obvious. The difficulty 1s to lift the invariant
property from an f-invariant P on (€2, F) to an @(¢)-invariant g on (2 x X, F @ B(X)).

Normally, the invariant measure only comes with a DS measure P on (2, F). For-

tunately, this part has been carefully introduced by Arnold [1]. We will not give a

9
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presentation for this part.
Stationary Solution

We now introduce the concept of stationary points or stationary solutions in dy-
namical systems and random dynamical systems, respectively. How to find stationary
solutions in different situations is the main task in this thesis. We will discuss the cases

due to finite-dimensional space and infinite-dimensional space.

Definition 2.1.8 For a deterministic DS (T, X, ¢),
P TxX— X,
a stationary sclution is o fized point a € X, such that

$rla) =a

forallteT.

Example 2.1.9

. We consider a simple case. For a DS ¢ : R — R which is generated by a linear

differential equation with initial starting point r € R
dy
dt
Yo = Z.

i

=Y,

It is easy to know that the solution is given by

dx = ze b,

Obviously, zero is the stationary solution for ¢ since
$:0=10.

Definition 2.1.10 For a measurable RDS ¢ on a state space (X, B(X)) over a metric
DS (Q, F,P,8(t),er):
w:TxOx X — X,

a stationary solution is an F-measurable random varieble Y : Q — X such that
el w, Y(w)) =Y (bw)

10
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forallt €T as.

Example 2.1.11
We consider a Ornstein-Uhlenbeck (OU} process y, by the following simple stochastic

differential equation f

dyy = —ydt + dWi(w),

{l

Yo z,

where Wy(w) denotes the Wiener process. This can be considered as a random pertur-
bation in the dynamical system discussed in Example 2.1.9. Applying [£6 formula to

e'y,, we admit that the solution is given by

L
Yo = ze b+ / e~ N gW, (w).
0

Assume ¢ is the RDS generated by this stochastic differential equation, thus y, is

replaced by

. t
o(t,w)r = ze™t + / e~ g, (w).
0

Now, we consider the random variable with
0
Y{(w) = f e dW(w).
-0

We are going to see this Y(w) is a stationary solution. Hence, we need to check
p(t,w)Y (w) and Y (f,w).

0 t
ot,w)Y(w) = e't/ e’dWs(w)+/ e~ =W, (w)
0

-0

2
= / e W, (w).

-0
By applying Remark 2.1.4 (2), we have
Wi(s, 8,(w))=W(s+t,w)—W(tw).
Then

0

)
Y(6w) = / e*dW, (B
f esdI'V3+t (W)

-0

11
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t
= f e W, (w).

o0
The last step is obtained by applying the change of variables s" = t+s. Thus, we finally
have that ¥ (w) satisfies

Pt )Y (W) = Y ().

It is a stationary point.
Invariant Manifolds

Manifold is an important mathematical space. It describes a space model on
a Fuclidean space. Each point on a manifold has a neighborhcod which resembles
Euclidean space, hut the global structure is more complicated. Some simple examples
include lines, two-dimensional planes, the surface of a sphere and so on. We here
introduce some basic concepts of related deterministic manifolds. Now consider a D§
(X,T,¢), we have that an invariant manifold M is a manifold with the property that

it is invariant under the flow such that for all t € T
d()M = M.
If a is a stationary point of this DS, such that
#fa) = a,
the stable manifold of ¢ is defined by
M3(p,a)={z € X : (z) = a as t— oo}
and the unstable manifold of a is defined by
MY(p,a)={z € X :¢_y(z) »a as t — oo}

For the random case, researchers usually assume the fixed point to be zero. we consider
a measurable RDS ¢ on a state space (X, B(X))} over a metric DS (Q, F, P, 8(t),.7)-
We call the set

MYw)={ze X :p(—twz)—0 as t — oo}
unstable manifold. Similarly, we call the set
M (w)={zxe X:p(t,w,z) =0 as t— oo}

stable manifold. In fact, in random dynamical systems, the existence of the fixed point

is a more difficult problem than in dynamical systems.

12
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§2.2 Stationary Solution and Invariant Measure

This section is devoted to discuss the relationship between invariant measures and
stationary solutions. Both of them are the basic important concepts in DS and RDS.
We try to prove a stationary solution can give an invariant measure here. For a RDS ¢
over 8, let i denote an invariant probability measure on (2 x X, F ® B(X))}. Consider
the function

() 1 Q % BX) = [0,1],
if for all A € F @ B(.X'), we have
A = [ [ 1) dnBa),

or for all f € L'(u)

Fdp = ] ( ] ) ()P o).

QxX

We call such a function p.(-) a factorization of the invariant measure p. For simplicity,

we write
pldw, dz) = p(dz)P(dw). (2.1)

In Arnold {1], the existence and uniqueness for this kind of factorization of p have
been presented. Since g is an invariant measure for the RDS ¢ over 8, we have by the
definition for allt € T

Ot)u(F x B) = u(F x B) (2.2)

for any F' x B € F @ B(X). By applying the factorization p.(-) of p for both sides of

the equation

(©Wu)(F x B) = u(O(t)™(F x B))

= [l ) BR)
#-LHF
- /8 (8, w)pa) (B)P(d)

and
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- [ 1o (B)(6(1)P) (dw)
= f to(ey ( BYP(dw).
-1 F

Hence, for any F' € F and B € B(X)
[ wm)BR) = [ o (BR),
o-1)F 9=1(t)F

This leads

(ot w)it)(B) = po@y.(B) P —as. (2.3)

for all B € B(X). To reverse the above process, one can see if {2.3) holds for any
B € B(X), then p(dw,dz) defined by (2.1} satisfied (2.2). That is to say p is an
invariant measure. Here comes the idea. We now consider a special case, when the
factorization of p. is a random Dirac measure i.e. for a random variable Y : 2 — X, it
is defined by

1 if Y(w)eB

0 if Yw¢hB

for B € B(X). Then the above equation reads as

tol B} = Sy wy(B) = {

(p(t,w)éy(w) = 5Y(B(t)w} P — a.s.

However, for B € B(X)

(t,w)byvw)(B) = Sywy(p ' (t,w)B)
1 if Y{w)€ e (t,w)B
) {0 if V() ¢ 07 (0)B
1 if o(t,w)Y{w)e B
B {0 if L)Y ()¢ B
= dppwyyw)(B) P—as.
Thus,
Oy (6wt = Op(tayy(w) P — @.s.
This leads
Y (8(6w) = plt,w)Y () B as.

Therefore, we can conclude that there exists a stationary point ¥{(w) if and only if we

can construct an invariant measure as a Dirac measure of Y (w) as a factorization of the

14
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invariant measure according to the stationary point and the measure can be expressed
by

p{dz, dw) = Sy () (dz)P(dw).
Normally, to find an invariant measure, we apply the Krylov-Bogolyubov procedure.
We can find related introductions in the DS or RDS books. In this thesis, we would like
- to point out that there have been extensive works on stability and invariant manifolds
of random dynamical systems." Researchers usually assume there is an invariant set or
a single point, a stationary solution or a fixed point, often assumed to be 0, then prove
invariant manifolds and stability results at a point of the invariant set, see Arnold [1]
and references therein, Ruelle {32], [33], Duan, Lu and Schaumulfuss [14], [15], Li and
Lu {20], Mohammed, Zhang and Zhao [25]. But the invariant manifolds theory gives
neither the existence results of the invariant set and the stationary solution nor a way
to find them. In particular, for the existence of stationary solutions, results are only
known in very few cases, see [5], [10], [25], [34], [35] and [39]. To find the stationary
point, it is a different problem. Basically, the invariant measure does not necessarily
give the stationary solution. In this thesis, we are concentrating on the existence of

stationary points in different situations.

§2.3 Multiplicative Ergodic Theorem (MET)

This section is devoted to the presentation and discussion of Oseledets Multiplica-
tive Ergodic Theorem in a random manner, basically following Goldsheid and Margulis
[12]. MET is the theoretical background to compute Lyapunov exponents and it is a
key theorem to study the different type DS. Here, we present a deterministic definition

for Lyapunov exponent firstly.

Definition 2.3.1 In the d-dimensional Euclidean phase space RY, ®(t) is a linear DS

generated by a linear differential (or difference) equation
te = A(t)ze (or Tnt1 = AnTn).
For z € R?, the Lyapunov exponent, for two-sided time t € T, is defined by
Mz) = limsup Llog || @)z || .
t—ico |t

Here || - || defines the Euclidean norm.
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In the following MET, we will see a random Lyapunov exponent. Since this chap-
ter is for finite-dimensional space R?, we are going to see the MET version adapted
in a finite-dimensional space. For the infinite-dimensional Hilbert space H in the next

chapter, we will introduce Oseledec-Ruelle version of MET.

Theorem 2.3.2 (Multiplicative Ergodic Theorem)

From now on, we define @ to be a linear RDS over 8, and
A:Q— R

is a d x d invertible random matriz with elements in R. Suppose that, the following

integrable conditions are satisfied with
log™ | AC) | € LY Q,F,P),
log* | AT} || € LYQLF,P),

where log is a logarithm function.

For a one-sided time T = N, and a linear random dynamical system
O(n,w) = Ani(w) - - - Ag(w),

there exists an invariant set g € F with full measure such that

B(n, )(Qo) = QD and IP(Q()) =1
for alln € N and for each w € Qg the lymat

U(w) = lim (@(n,w)*@(mw))ﬁ

n—oo

exists. This U(w) is self-adjoint with a discrete spectrum

) < gl :

Let Upy(w), ..., Ui(w) be the corresponding eigenvectors. Then we dencte for ¢ =
Lo plw),
Vi(w) == Up(w)(w) @ -8 Ui(w).

These (Vi(w))iz1, . pw) form a filtration for R such that

eaay

Vp(w)(u}) c .- C Vt(w) C---C V1(w) — Rd,

16
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and d;(w) = dim U;(w). Moreover, the random Lyapunov exponent
Ai{w) = lim log || &{n,w)z ||
e OO
for € Vi{w) \ Vi1 (w), and
Ai(w) = Vi(8w)

forallie {1,... p(w)}.

For a two-sided time T = Z, and a linear random dynamical system © defined

by

A W) - Alw), n > 0, .
d(n,w) =< I, n = 0
AT W) - AT W), n < 0,

all the statements in the one-sided time T = N still hold. Moreover, there erists ancther

spectrum,

e ;‘(w)(w) e e')‘l_(w)

and a backward filtration with

P(n,w}) = &(~n,w)

over 07! and
Vi) C--C Vi (w) = R¢.

Here the following relationship with the forward filtration holds

plw) = P‘- (w) ' !
dilw) = dj W)
Ailw) = —=Ayri-ilw)

foralli=1,... p(w). Denote
Biw) = Vi) N V)
fori=1,..., p(w) then we have the Oseledets splitting
RY= E\(w) & @ Ep{w).

17
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Finally, the Lyapunov exponent is
M) = lim log || ®(n,w) |
¢ - n—too N 08 !

for x € E;(w\{0}. And the subspace E;(w) is invariant under A, this is to say for all
ie{1,...,p(w}}
Alw) By(w) = E(6w).

Remark 2.3.3

1. For the continuous time case T = RT or R, the MET still holds only with the two
conditions logt || A() |l€ LYQ, F,P) and log™ || A71(") ||€ L'(2, F,P) changing
to

sup log™ || ®(t,w)*! ||l€ LY(Q, F,P).

1

0<t<

2. The functions \;(w), di(w), p(w), U{w), Vi(w) and E;{w) mentioned in the theorem

are all measurahle.

3. The ergodic case in our theorem refers to the DS 6 on the probability space (Q2, F, P).
If the measurable set A € F is invariant i.e. #(A) = A, then

P(A) =0 or 1.

In this case, we have the functions p(-), d;(-) and A\(-) are constants cn 2. The

proof of this result was given by Krengel [19] and Steele [36].
4. From the theorem, we have the Oseledets splitting
RY= B(w)® - @ Eyuy(w).
We call the set of the different A in each subspace such that
(O (@), (@), (@), o)), -+ (), )}, 1€ p<d

the spectrum of Lyapunov exponents,

18
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§2.4 Preparations

In this section, we are going to do some preparations for the structure of the
invariant manifold. From the last section MET, for a linear cocycle ® with two-sided
time over a DS (Q, 7, P, (8(t))ier), we have
.1
lim -~ log || &(n,w)z [|= Aw)

n—

forz € Bi(w\{0},7=1,...,p(w). We change another form for this imit. For arbitrary
€>0,
1
| S1og | @(m,w)e | M) 1< e

which means for a given positive A;(w) as n — 0o, ®(n,w) is increasing exponentially
fast. For a given negative A\;(w) as n — —oo, ®(n,w) is increasing exponentially fast.
This is not a concise view for further development since ® under this norm may go
to infinity. In order to control the non-uniformity in ®(¢,w) for the construction of
invariant manifolds, we need change the standard Euclidean norm in R to a new one
which does not change the Lyapunov spectrum. We consider this change by applying

the above estimation.

Definition 2.4.1 In the Euclidean space with Oseledets splitting
]Rd = ®?=1Ei(W),

® is a linear cocycle which satisfies the MET with two-sided time T, (g s the invariant
set in the MET. For a fired constant & > 0 and all w € Qy, we define the random scalar

product in R® by
P

(37: y)ﬂ,w = Z(-‘Bi) yi)n,w

i=l1

where z,y € RY, x;,y; € E(w) and when T = R,

% (D(t, w)zi, P, w)y:)
(Ii,yi>x,w =/ e2(ht+xt]) a,
—o0
when T = Z,
((I’ n W wt} (I)(ﬂ, w)y!)
(s, Yi) s Z e2(xin+xln|) ’
nez
Then

wl

1
| @ [|sw= (2, 2}iw = lewall )2,
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and when T =R,
00 2
” z; ”i,w:f ” @(t,w)zl ” dt,

e2(xt+Rlt)
when T = Z,
| @(n,w)z; |f?
Iz %, Z Tt

e2(.\.n+.~|n|)

This defines the random norm cw‘mspondmg to (-

)K'vw'

Remark 2.4.2

1. The constant « in the definition is chosen in an arbitrary manner, then fixed.

The subscript w of the norm describes a situation of the RDS. For example, the

subscript 6w under this norm || &(1,w)z ||, g, means that we move the point from

z to ®(1,w)z, in the same time, w changes to fw.

2. To see the control of non-uniformity, we can easily prove under this norm for x €

E,' (w)

MM 2 (law<l B, )2 xS X 2 lxw -

Next, by using the above well defined random norm, we construct some Banach

spaces, which allow for the exponential growth rate of their elements, following Wanner

(38].

Definition 2.4.3 Under the space (RY, || - lxw), fora, 8> 0, w € Q and T* =

set

Xgs o= {h: his measurable from Tt — R? and

I 7 llg+ wi= sup - 1A o< oo},

Xo- = {h: his measurable from T~ — R¢ and

” h ||or‘,w:= sup o™t ” h(t) "N,G(t)w< OO}:

t<0
Xo-pgtw: = { h: hismeasurable from T — R? and
I 72 lla- ¢ wi= sup(ll A(} lla-w, | R(2) [l3+.) < o0},

and
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Remark 2.4.4

1. In the space Xg+ , the norm || A ||+, describes the function i grows at most like
B* forward in time. Similarly, in space X,4-,, the norm || & ||,- . describes the
function h grows at most like a* backward in time. These spaces provide us a kind

of functions with a growth speed.

2. The space X, is also nonempty. Obviously, the zero function is in it. To see the
other non-zero elements, we can consider the following method. We firstly pick up
the non-zero elements from the space h € X+, and g € X,- ,, then we can form

the new function as the following

It is trivial to check this function f is in X,,. In the later research, we are going

to seek a stationary point in this space.
3. It is easy to see the following facts: if @ £ «,
I o =  lamws
and if 8 < 3,

I gt o <H Noveo -

As we mentioned, the new Banach space will allow for the exponential growth of

their elements, we can see this by setting

fori =1,...,p. Here s is a positive constant, which is chosen to be sufficiently small
such that the intervals [A; — k. N\ + &], ¢ = 1,2,...,p, do not overlap. Assume that
the linear cocycle ® = diag(®,,...,®;,) is block-diagonal and has a spectrum, then

applying Remark 2.4.2 (2) for the block &; of the linear cocycle ¥,
” (I)i(taw) ”n,ﬂ(t)us ﬁ:: t> 0;
| @:(t, @) llupens af £ <0

21



Loughborough University Doctoral Thesis

We next introduce a constant § which plays an important role in the later parts

of this chapter. We choose this constant § by considering

_ - -0
O<t5<min(0q2'62,...,6Ep 12 ﬁp,QPQ ).

By using this constant §, we define the interval
Fi = [ﬁi+1 +5:a1'_6]) t= 1:"':p

the spectral gap between Ay, and X;. To have a visual feeling for this part, we describe

these by Figure 2.2

e)\
MHUBL L a; et B
e 141 1 i
—
1 — L >
Biuitd ai-§ Bi¥d
Iy

Figure 2.2: Spectral Gap

From this figure, we see, the constant « and § need to be chosen small enoﬁgh s0 that
the intervals do not overlap, Normally, we select a small &, then fix it. However, § will
need to fit some other conditions.

For a given RDS ¢, we are always required to standardize it for deeper research.
We call the RDS ¢ after this procedure be prepared. This means a measurable ¢ would

be expressed by

ot w,z) = ®(t,w)r + P(t,w,z).
In this form, ¢ denote the linear part of RDS with
(1, w) = Dep(t,w,0)

22
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where D means the derivative of ¢ at point 0 and ¢ is assumed to be block diagonal

with a spectral theory, ¢ denotes the nonlinear part with
Bt w,z) 1= ot w, x) — B(t,w)z.

In this chapter, we admit there is a one-to-one correspondence between the ran-
dom dynamical system ¢ and a random differential equation. This means for a given

random differential equation
i = f(Bw, xy),

there is a unique RDS

t = p(t,w)z
which solves the random differential equation. This has been discussed in Chapter 2
in Arnold [1] for local cases and global cases. In this part, we would like to consider a
discrete time case, a random difference equation corresponding to a random dynamical
system ¢

T = (0w, x,) = A0 W)z, + F (8w, ), (2.4)

where n € Z and

F{w,0) = 0.
A is a random d x d invertible matrix with elements from © — R, ¢ is a measurable

RDS which is assumed to be prepared. We denote ¢{w) := ¢(1,w). Then the random

difference equation (2.4) is equivalent to
en,w,z) = Pnwlz+P(nw,z),
Pln,w,0) = 0,

where
B(n,w) := Dip(n,w,0)

denotes a measurable linear RDS which satisfies the MET and A(w) := ®(1,w). We

define 3 the nonlinear part by
qib(nl W, -7;) = Lp(n,w, I) - (13(?’.‘,, w)il’:

and F(w,z) = ¥(l,w,z). From MET, we know there exists a finite spectrum A; >
... > A, for this linear cocycle ®. We pick up a j with 1 £ j < p and consider the
linear part A to be block-diagonal with A = diag(A,, ..., A,) written as

A* 0
A= )
0 A-

23
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where AT = diag(Ai, ..., A;) and A~ = diag(A;44, ..., Ap), the blocks A;(n,w) are linear

cocycles of one-point spectrum {(\;, d;}}. The nonlinear part is also considered as two

parts
F""
F = ,
-
where
F Fin
FT= : T = :
FJ E,

Thus, the random difference equation (2.4), by the above partition due to j, will also

be decomposed to two parts respectively:

nn

Ty = AT {(W)z, + F~ (0w, x;),

n!vn

{ Ti, = AN w)at + FHe"w, z} z;)), 25)

We call them unstable equation and stable equation. And the initial condition also
changes to
FHw,0,0) =0
{ F~{w,0,0) =0.
Since we choose a 7 and fix it, we will also assume
= ;= etir
= By =t

This leads

T

||(I)+(n7w)”n,9“w L o, n
<

"(I)_(naw)“nﬂ“w ﬁn: n

WA

0
0.
Take 6 < # We say F' satisfies the Lipschitz condition if

||Fi(w,:1:) - Fi(‘*"ay)nﬂ.@w < L“‘E - y“n,w

§2.5 Invariant Manifold and Coupling Method

In this section, we will introduce the invariant manifold theorem which is gener-

ated by the random difference equation (2.4)
Tyl = A{f"wW)x, + F(6"w, x,).
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The coupling method is the main technical tool to prove this theorem. We consider the
RDS ¢ with two-sided time on a d-dimensional Riemannian manifold M = R¢, being

differentiable from point to point. Define T A to be the tangent space of M at the

point x and

T M =&l Efw, )

for w € 9. From the MET, we already have had an invariant property for a linear RDS

$ generated by a linear random difference equation
k3
Tpp1 = A(Fw)z,

such that
Alw)Ei(w) = E;(bw)

for all i« = 1,...,p(w). For simplicity, in this section, we denote by € the invariant
set generated from MET with a full measure such that P(Q2} = 1. Our purpose here
is to bend this invariant property from each Oseledets splitting subspace F; to the
submanifold A;. Define

A={A>... >0}

where A,..., A, are the corresponding Lyapunov exponents of the linear RDS &.

Choose any j with 1 < § < p, then we define
At = {/\1 - ’\j})

AT = {/\j+1 > ... > /\p}

In our system with M = R?, we call the set

M*(w) = My;(w) = {z € RY, @(-w,z) € Xy}
unstable manifold corresponding to A* and the tangent space is

TMj(w) = @ra<ig; Er(w).

Similarly, we call the set

M~ (w) = M(w) = {z € R?, ¢(-,w,1) € Xp-w}
stable manifold corresponding to A~ and the tangent space is

TMjp(w) = SpjrrcrgpEr(w)-
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Here the constants ¢ and b are from the spectral gap according to A; by taking from

the different. intervals

ae [ﬁj+] + 6, 0y — 6] = Fgeﬂ
b€ 8+ 0,051 — 8] =:Trign

where @, 3, 8 and I" are defined in the section of preparations. Then, for the convenience

of the future discussion, we put
+ . —
LT = By = ®ra<e<; By,

L7 = Ejp = Opjrr1<k<pln,

and

Ri=Ete E-.

We are now going to give the Global Invariant Manifold Theorem. For the deterministic
case, Pesin [28] and [29] started this pioneering work. We can find the random case
proof in Ruelle [32] and [33]. We will only emphasize on how the coupling method
works on it. This theorem will be presented by two parts, unstable manifold and stable

manifold, respectively.

Theorem 2.5.1 {(Global Invariant Manifold Theorem)
For a two-sided discrete time case T' = Z, the RDS ¢ is prepared which is generated
by the random difference equalion (2.4), where the function F' satisfies the Lipschitz

condition with
” F(w,:.v:) - F(wry) ”n,t?w.<_ L ” r—y ”n,w
for all z, y € R?, and the Lipschitz constant L-satisfies

]
0<L<-.
= <2

Then, the unstable manifold Mt (w) according to AT can be expressed by a graph in
Ri=E"@®E~
Mt (w) = {zt dm*(w,z") : 2™ € E*}
where m¥(w, %) is uniquely determined by the given inittal value %, and M™¥(w) is
w-invariant such that
e(n, w)M¥ (W) = M¥(0*w)
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foralln € Z.

The stable manifold M~(w) according to A~ can be expressed by a graph in R? =
Ete B
M (w)y={m (w,z7)®z 12~ € E7}
where m™(w,z7) 45 uniquely determined by the given initial value =, and M~(w) is
w-invarient such that
wn,w)M ™ (w) = M~ ("w)
for allmn € Z. We also have MH(w) and M~ (w) do not intersect except al zero, such
that
MY (w)n M~ (w) = {0}.

Remark 2.5.2

1. The key functions

mt(w,z%) € E-
m (w,z7) € ET
mentioned in the theorem are both measurable.

2. For the continuous time case T = R, all the results still hold such that for given
initial values ¥ and z~, there exist uniquely determined graphs A/* and M~ which

satisfy
wlt, )MT (W) = MT(0'w)

p(t,w)M ™ (w) = M~ (fw)

for allt € R,

3. In the higher regularity case, we consider the C* (k > 1) RDS (¢ which means ¢
is k times differentiable with respect to x and the derivatives are continuous with
respect to (¢,z). In this situation, the theorem still holds with A/¥ and A~ are
C* manifold. However, this requires to fit the additional Gap conditions. We will

discuss this in a separate section.

4. The Lipschitz constant L, satisfies the following restriction

g
0< <2
<L<g
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This L may be taken small since this § is required to be small enough. But this is
necessary for the proof of the contraction. In fact, under the Lipschitz condition,
this random norm || - ||,... is equivalent to the Euclidean norm. We can deduce this

by the definition of the norm | - |-

5. To see the last assertion, we present Figure 2.3.

M (w)

Figure 2.3: Zero is the stationary point of this system

To understand this theorem, we study from the definition of unstable manifold,

we recall a unstable manifold M* is
MY (W) = {zeRY ¢(,w,T) € Xo- o}

according to the spectrum interval A* = {A; > ... > A\;}. By the definition of the

space X,- ,, this is to say, there exists a random variable V{w) > 0 such that for ¢ > ¢

| ot w, &) ko< Viw)a™..

The purpose of invariant manifold theorem is to find such a function z — (¢, w, ) to
fit this inequality. We now decompose this RDS ¢ by two parts according to j which is
taken from 1 < j < p, then we have equation (2.5). We call the first equation of (2.5)
the unstable equation and the second equation of (2.5) the stable equation. And the
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finite-dimensional Euclidean space is also decomposed to two parts
R¢{=FEte E".

To deal with these two equations, the coupling method plays an important role. The
coupling method generally works for a group of two different dual equations. In our
unstable manifold case, we pick up an initial value point z* € E* and an arbitrary
£7(w) € Xo- ,(E7). Put (zt,£7(w)) into the unstable cquation. For the initial value

problem, the unstable equation has exactly one solution
£ (w,z7) € Xo- W(ET).

After inserting the couple (£¥(w, z*), £~ (w)) into the stable equation, we obtain another

unique solution by the iterations
7 (w,2") € Xa-w(E7).
The final technique is to prove the mapping

Xo-wlF7) — Xe-o(E7)

£ W) — 77 (wz7)

is contracting. This will lead to a fixed point, denote it as m*(w,z%) € X - L(E7).
Then the graph

{z*®mT(w,z7) 7 € E*}

gives the unstable manifold. Similar technique can apply to the stable manifold case.
This coupling method is extremely useful. It is also widely used to solve many infinite-
dimensional problems as well, see Bricmont, Kupiainen and Lefevere [4], Li and Lu {20]

and references therein.

This theorem is based on an assumption that the RDS ¢ has a fixed point x =0
l.e. the random dynamical system is prepared. Of course, if one knows there is a
stationary solution (random fixed point) for the random dynamical system, one can
always change the random dynamical system to a prepared one. The point here we
mentioned is how to find the stationary solution. Without knowing the stationary
solution, one cannot define the prepared random dynamical system. To improve this,

we are going to consider the non-linear part function of the r.d.e (2.4) with_
F{w,0) = ¢(1,w)
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wlere ¢ is a random variable. In this situation, zero is obviously not the stationary
point of the system. The theorem does not work any more. QOur problem is to find
such a stationary solution to fit this condition. The coupling method provides us a

possibility to solve the intriguing problem.

§2.6 Two Key Lemmas

In the end of last section, we mentioned the problem we were going to devote.
In this section, we present two key technical lemmas to help us reach our target. We
borrow them from Arnold [1] and pick up some parts of the conclusions for the future
use. We do a little form change so that we can understand them better. We will not

give the proof for them.

Lemma 2.6.1 Consider the random difference equation for a two-sided discrete time
case T = Z

Tpt1 = A(an):rn + f(n,w,a:n) + fO(n +1, w): (26)

where A is a d x d invertible random mairiz and is measurable, f and fo are measurable
Sfunctions. Assume thut there exist constants B >0 and L 2 0 such that for each fized

w, we have the following conditions

”A(w)”h',@w S ﬁ:
f(nrwn 0) = D:
If(n,w,2) = f(n,w, ylllwomsre € Lz ~ yllsw-

Now let v > B+ L, suppose fol,w) € X, ., then there exists exactly one solution of
(2.6) which £(-,w) € X, ., and &(-,w} satisfies

n

E(n,w) = _Z O(n— i, 0w)(f(i — Lw, & — Lw)) + foli,w)), (2.7)
and
v
16(, @)l < mﬂfo(‘sw)”m, (2.8)

where @ 15 the linear cocycle generated by A such that
P(n,w) = A" 'w)o -0 A(w)
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for n > 1 and o means composition.

Lemma 2.6.2 Consider the random difference equation (2.6). Suppose that there exist

constants o > 0 and L = O such that for each fized w,

A
=
L

| A() ™ Hln 00
fln,w,0) = 0,
||f(n,w, :1") - f(n:w:y)”rc,ﬂ"“w < L”'IE - y”h‘,w'

Let 0 < v < a = L, assume fo(-,w) € X,., then there ewists exactly one solution of
(2.6) which £(-,w) € X, and £(-,w) satisfies

Emw) == > B(n—4,0W)f(i — 1,w,E( - 1L,w)) + foli,w)), (2.9)
t=n-+1
and
~
“f(',w)||7,u £ m”fo(':w)”mw: (2.10)

where ® is the linear cocycle generated by A~! such that
P{n,w) = A(F"w) o -0 A(6 'w) !

forn < —1.

Remark 2.6.3

1. For both lemmas, the existence of the solutions does not depend on the initial
values. This is an extremely strongly result. This is made possible by working on

the space X, .

2. We will apply these two lemmas in the coupling method to find a stationary solution.
This requires the two conditions v > #+ L and 0 < v < a — L are both satisfied.
We will in the next section introduce a particularly choesing constant L to fit two

conditions autornatically.

3. The random difference equation {2.6) in two lemmas acts in a different manner. In
Lemma 2.6.1, since || A(w)||« 0. € B, the equation works forward in time. In Lemma

2.6.2, since ||A(w) ™ |xpw € @', the equation follows the backward in time order.
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§2.7 Main Results

In this section, we introduce the main result of this chapter about the stationary
solution for a random difference equation in the finite-dimensional Euclidean space
RY. We firstly recall the random difference equation (2.4) which is mentioned in the

preparation section
Tat1 = (0w, z,) = A(w)z, + F(0"w, z,),

where n. € Z, ¢ is the RDS generated by this equation. In this section, we change the

condition for F as
Flw,0) =¢(l,w)
where ¢ is a random variable in R%. We then denote
A 1w) - - Alw), n > 0
(I)(TL, w) = I, n

ATHEW) - AT W), o< 0,

which is a linear measurable RDS satisfying the MET. Comparing the definition of
the prepared RDS, in our case, we notice that zero is not a stationary point. Other
conditions in the prepared RDS are still needed. We hence also have the equivalent
equation

cp(n, w,z) = P(n,w)z + P(n,w, ),
Y(n,w,0) = c(n,w),

where the nonlinear part is defined by
P(n,w,z) 1= p(n,w,z) — ®(n,w)z.

According to the spectrum {A > -+ > A}, we pick up a j with 1 € 7 <p. Then the

space is splitting into two parts
R = E*(w) @ E™(w)
which is corresponding to the spectrum interval
AT={A>A> >N}

and
A_ = {/\j+l > > ’\p}
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It is easy to see that the random difference equation (2.4) can be changed to the coupling
unstable and stable equations (2.5)

et = AY(w)z) + FH (0w, z}, ),
T = AT (0")z, + F (6w, zf, x;),

n)n

and the initial condition is

Ft(w,0,0) = c¢t(1,w)
F~(w,0,0) = ¢ (1,w)

where ¢t € Et and ¢~ € E~ are random variables. One can do some linear transfor-

mations if necessary to device the coupling equations. We are now ready to state the

theorem.

Theorem 2.7.1

Consider the random difference equation (2.4) for a two-sided discrete time case T = Z,
the RDS @ satisfies the above conditions in this section. Assume the function I' satisfies

the Lipschitz condition

“F(LJ,SL) - F(w, y)“n,é?w < L“‘T - y”n,wa

for all z,y € RY. The constant L satisfies

5
0< L <
<3

Choose any § with 1 < 7 < p, and also choose one constanl a n the spectral gap T
defined by

a:=a; € :=[3+ 8 a4,

where
o= = eNTE,
8= By = et
and
5:0< 6 < min(™ “ﬁ“‘,...,ap-lg’" By “PQ‘O).

Then we have the expression (2.4) replaced by (2.5). Assume the random wvariables

e, w) € X, 0, then there exists exactly a pair of solutions
E:(':W) € Xa,w(E+)=
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and

£ (hw) € Xow(ET)

of a pair of unstoble and stable equations (2.5) without any initial conditions and sat-
isfying for alln € Z

oC

éj—(nvw) == Z (I)+(TL - 'i,Giw)(F+(i - lrwsgj(i - 1:“-)):‘5:(7; - 17“))))

i=n+1

and

E(nw)= Y & (n—1,0W)(F (i — 1w, & (i — Lw), & (i — T, w)))-

Moreover, assume
Y{w) = {(€X{0,w), £ (0,w))}
in RY, then Y (w) is the stationary point, such that

p(n,w, Y(w)) = Y(0"w)

foralln e Z.

Proof. The main idea of the proof is to apply the coupling method. We divide the

proof into four steps.
Step 1. Stable Equation
Given an arbitrary £¥(-,w) € X, ,(E™), we consider the stable equation
zh,, = AT (w)z;, + F (0w, £ (n,w), ;).
In order to apply Lemma 2.6.1, we set ‘
fn,w,z7) = F (8w, £ (nw),z7) — F~(#"w, £ (n,w),0)
and |

foln+1,w) = F (6w, £¥(n,w),0)
= F7("w, T (n,w),0) — F7(0"w,0,0) + ¢ (n + Lw). (2.11)

Then, this stable equation is written as
2, = AT (0"w)z, + f(nw,z;)} + foln+ 1,w).

L
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To check the conditions of Lemima 2.6.1, we have

HA™ (@l < 8

and

fln,w,0)=0.
To check the Lipschitz condition of f, we have
”f(ﬂ,, W, -'E_) - f(na W, y_)”rc,é?"‘“w

| F= (0w, 65 (n,w),a7) = F(0"w, 5 (n,w), y7) [lagmte
Lilz™ = 57 [lew-

i

VAN

To check fo(,w) € Xou{E™), multiplying a="*1) on both sides of {2.11), then

a” ") foln + L,w)|[jegnrry & @ PP F (8w, ¥ (n,w), 0)
—F7(6"w,0, O)“,‘{,en+1w +le” (n+ 1, W)l gn+1.)]

L _, B
< Ea (||£+(naw)nn.9“w + le (n"l'l’w)“mﬂ"“w)'

Then, by the definition of || - |4

L
[ fols o € —MIE7Cs ) llaw + 1le7 (s )llaw < 00, (2.12)

which means fo(-,w) € X, (F7). Hence, by Lemma 2.6.1, for this stable equation,
there exists exactly one solution which has the property {7(-,w) € X, o(E™) and by
{2.7) and (2.8} we have

£ (nw) = Z O (n ~1, 0 f(i — 1w, (i — Lw)) + foli,w))

- Z &7 (n—1i,0'w)(F~(i — Lw, & (i — 1,w), (i — L,w))),
and
€7 ¢ o < ——-—(~ﬁ~—+—m||fo( +0) [l | (2.13)
Substituting (2.12) into (2.13), we have
e~ (ol € —— € () o + —re— [le(-, ) (214)
3 a,w\a_(ﬁ+L) 3 aw G'"(ﬁ-{-L) 1 [/RBE
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Step 2. Unstable Equation
For an arbitrary £7(-,w) € X, ,(E™), we have a unique solution £~ (-,w) € X, (E~)
to fit the stable equation. Putting “solutions” (£%,£7) into the unstable equation, we
now consider
Tap = AT(O"W)z + FH (0w, 67 (n,w), £ (n, w))-
In order to apply Lemma 2.6.2, we set
fl,w,zt) =0
and
fO(n +1, w) = F+(8nw) E+(n:w)7€_(naw))
= FH(0"w, " (n,w), £ (n,w)) — FF(0"w,0,0) + c*(n+ 1, w).
Then, this unstable equation is written as the required form of Lemma 2.6.2 as follows:
ot = AT (0"w)z! + fn,w,2l) + foln + 1w).
To check the conditions of Lemma 2.6.2, we have
[A* (™ ) lpw < 07
and
f(n,w,0) = 0.
To check fo(:,w) € Xo0(ET), multiplying o~ ™+1) both sides, then

o~ foln+ Lw)|leontre < o TV(IFH (O, 4 (n,w), €7 (n,w))
—F*(0"w,0,0){lxgntr + lc"(n + 1, @)l gmr10)
L _, _

—a™([1€% (1, )l gm + 1€ (1) 1 0m)

+a_("+1)||c+(n + 1, 0) || x gn+ L

T/

Then, by the definition of || - ||aw

/o5 @M law < %[ll&*(ww)ﬂa,u HIETC whlaw] + e (5 w)llaw < o0 (2.15)

It follows that fo(-,w) € X, (E7). Hence, by Lemma 2.6.2, there is a unique solution

7t (-, w) € X, {E") to the unstable equation. By (2.9), (2.10) and f(n,w,0) = 0, then

n+(n:w) = - Z <I>+('n,—i,6""w)(f(i—l,w,rfr(z'—1,w))+f0(i,w))

i=n+l
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= = > DM — i, 0w (FTG—Lw, & — L,w), (i — Lw))),

i=n+1
and

@

7% )l <

Il fol-s ) llaw- (2.16)

a—a
Substituting (2.15) into (2.16)

L -
—— (", )law + €7 (> )lla)

a
o llels @)llaw: (2.17)

||7?+(‘7w)”a,w <

[0}

Now, we can replace the term [|£7(:, w)|lo0) by (2.14) in (2.17) to lead to the following

inequality

" Clllew < o 5)(?’&__[2 —gl€ el
+ (le _ Z;?a—_ﬁ) — L) HC(', w)“a,w- (2.18)

Step 3. Contraction

From step 2, one can define an operator for each fixed w € {2

Tw:Xa,w(E+) - Xa,w(E+)=
Tw£+('aw) = 7?+(‘=w)-

To see this operator is contracting, we consider £ and £ in X, {E*). Then from
the stable equation, we can determine the unique solutions & and &, in X, (E™)
respectively, by the arguments in step 1. Let ¢ := £, —&]. Then this ( satisfies a stable

equation
Yo = A7)y + F (0w, &5, +60) — F (0", &1 67)-
In order to apply Lemma 2.6.1, we set
Jnw,y™) = F~(0"w,6,57 + &) = F(0"w,& &)
and
Joln+1,0) = —F (6%, &, &) + F~ (6,5, €7).
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Then, this stable equation is written in the following form
Yna1 = AT (0" 0)yy + f(n,w,5,) + foln+ 1,w).

We now can apply the procedure in Step 1. In this case, we notice the random variables

e{n,w) = 0. By using Lemma 2.6.1 again,

L

—_— ||gF — £t
a — (JB+ L) ”62 ‘51 ”a,wA (219)

”C“a,w = HEQ_ - é.l_”a,w g

Now, denote o = T.&f, nf = T,&F. The difference n; —n € X, (E*) which solves

the unstable equation
Ty = AT (O"w)zy + FH (0w, 65, 67) — FH{8"w, &, €7)-
In order to apply Lemma 2.6.2, we set
f(n,w,zt) =0
and
foln+1,0) = FH(0"w, &, &) — FT (07w, &, &r).
Then, this unstable equation changes to
zi = AT (0"w)z) + f(nyw,z) + fo(n+ 1, w).

We can apply the procedure in Step 2. Here also comes the random variable ¢(n,w) = 0.

According to Lemma 2.6.2,

I B B .
||”7; - n;r”a,w g a—_a(llgg- - gi‘-”a,w + Hfz - 51 ”a,w)- (220)

Hence, we substitute ||§; — €] ||a by (2.19} into (2.20)

L{a - 5)
T+— +awg +_£+aw-
2" = n1 |la, (awa)(a—ﬁ—L)H52 ! e,
To see 1., is contracting, we require the constant
L{a = B)
< L
(@ —a)(a—f-L)

Since a € [3 + §, o — §], we have

La-8)  _ L (a=p)
(a—a)a—B-L) = &{a—p-1)
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L 6
_.:\: —
§6—L
L

§—L°

Thus,

L
”Tw‘s;— - ngf—”a,w S 5_—L”€2+ - gf”a,w-

This means T, is contracting when the Lipschitz constant [ < %. Therefore, by using
the fixed point theorem for this contracting operator T,,, there exists a unique fixed
point £f (-, w) € X, (E¥). We replace this fixed point from Step 1, then there exists
exactly one corresponding £7{-,w) € X,.(F~) and the pair (£},£) solves the pair

equations (2.5) and satisfies

g* n, w Z (I)+ ’n,—f, f'w )(F+(‘l— 11(“)5:(1_ 17‘*")15*_(1_ 1?“‘"))}7

i=n+l

and

€ (n,w) = 3 0 (n— i, 0w) (P~ (i = Lw, €4 (i - 1w), €7 (i — 1,w))

. i=—00

Step 4. Stationary Solution
Denote Y{w) := {{£€F(0,w), &, (0,w))} for all w € €, to prove Y(w) is the stationary

point, it is equwalent to prove that
w(n,w)Y (w) = Y(6"w).
By the cocycle property, it is equivalent to prove
e{l,w)Y (w) = Y{fw).

Now, by the uniqueness of the solution Y (w) from the fixed point theorem, we have
that the set

M w)={zeRY: o(,w,z) € Xou}
is a one point set and the unique point is

z =Y {w) = {{&(0,w), & (0,w))}.
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According to M*(w}, when the variable w is changed to fw, we define
M*(0w) = {z € R : ¢(-,0w,7) € Xapu}-

This set is also a one point set with the only point Y(fw). Now from the cocycle
property, we have for x € M*(w)

<,o(n I 1w, "T) = Sa(ni buw, p(1, w, .‘L‘))
Since ¢(-,w,x) € X, ., we have

sup a” D | p(n+ 1,w,2) ||< co.
n+120

It is easy to see

sup a™ || o, O, ¢(1,,2)) [|< 0.

n=0

By the definition of the space X, g., this leads to ¢(:, w, ©(1,w,x)) € X, 4, Hence,
'go(l,w,a:) € M*(6w).

Similar argument, we pick one element z € M*(fw),
o(l,w,2)™' € M*(w).

This leads
{1, w)M* (w) = M™(0w).
Since M*{(w) and M*(fw) are both one-point sets, we have that Y (w) also satisfies the

invariant property

w(l,w)Y(w) = Y(6w).

So Y{w) is the stationary point. This completes the proof of the theorem.

‘Remark 2.7.2

1. For the coupling method, it is trivial to change the coupling order. In our proof,
we deal with the stable equation firstly, then the unstable one. Actually, we can
also consider the unstable equation then the stable one. By the uniqueness of the

solutions, we have the two conclusions are coincident, since they are under the same
RDS ¢.
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2. The restriction for the Lipschitz constant L is
]
0<L <.
_ - 2
With this condition, the requirements of the two key lemmas are easily met. How-
ever, it is quite strong condition since I, is required to be small enough. This is

needed to make the map 7., a contraction.

3. In our case, we assume the random variable ¢(-,w) € X, and set the initial value
F{w,0) = ¢(1,w). This is another restricted condition. Meanwhile, we can only
choose to consider this situation, since the whole structure is under the space X, ..

This provides us a restricted RDS .

4. The pair solutions (£} (n,w), £, (n,w)) will not be equal to zero if the random vari-
able ¢(n,w) is not identical to zero. This is easy to check from the construction of

the solution in the proof of the theorem.

5. In the theorem, we notice the coupling stable and unstable equations are decom-
posed by 7,
l<j<p

e e T

For a special case when 7 = p, we will only consider the unstable equation
zh. = AY(0"w)z! + FH (8w, €1 (n,w)).

By applying Lemma 2.6.2, we can still obtain the sfationary point. In this case, we

can have restriction of the lipschitz condition reduced to
0<L<a-—a. ™~
This restriction is to fit Lemma 2.6.2.

It is interesting to observe the relatiohship between the stationary solution and
* the invariant manifolds. For the structure of the manifolds, we follow Arnold’s work.
We still keep our settings at the beginning of this section. But ﬁow, we can define the
linear cocycle ¢ by

&(n,w) = Do(n,w, Y (w)).

Different from the invariant manifold section, the fixed point now changes from zero to
Y(w) . Firstly, for any j with 1 < j < p, to construct the invariant unstable manifold

M (w) corresponding to the spectral interval
At ={A > ..o > N
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we solve the unstable equation for the initial value z+ € E* and given £ (-,w) €
Xa- w(E7) to have
EF(w,2") € X o(ET).

Then replace the pair solution (£*(-,w, ™), £7(-,w)) into the stable equation to generate
a unigue solution
0 (hwat) € Xo- J(E7).
After proving the operator
Topt : Xamw(BE7) = Xo-w(E7)
Lo+ (hw) = n7(hwz?)

is contracting, we have the unique point &, (,w,z%) € X,- ,(£7). Therefore, for each
given zT ¢ ET,
z” =mt(w,z%) =& (0w, z%) € Xo- (E7)

is uniquely determined. Hence, M™ is defined as a graph in E+ @ E~
M™(w) = {(z¥,m*(w,z*)) : st € E1}.
Similarly, we obtain the invariant stable manifold
M (w)y={(m (w,z7),z7) 2~ € E7}.
corresponding to the complementary spectral interval
AT ={ N> > AL

Comparing with the proof of our theorem, we find the key difference is the choice of
the initial value. The manifolds depend on the initial peint. Due to this difference,
we claim one theorem which shows the connection of the manifolds and the stationary

solution.

Theorem 2.7.3

Assume all the conditions in Theorem 2.7.1 are satisfied, Y (w) is the stationary poini
. of this system constructed in Theorem 2.7.1. For any j with 1 < j < p, M (w) and

M~(w) are the corresponding unstable and the stable manifold with respect to the dif-

ferent spectral intervals AY and A~. Then, we have
Mtw)N M (w) = {Y(w)}
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Jor allw € Q.

Proof. The proof is simple. We only need to prove
1. Y(w) € Mt(w)
2. Y(w)e M~ (w).

For (1), we can particular choose the initial value z+ = £f(0,w) which is in E* part, of
Y (w). Thus for the fixed w, Y (w) € M*(w) by the structure of the unstable manifold.
The claim {2) can be obtained by using a similar argument. From the structure of
stable and unstable manifold, we know they have the only one intersection point Y (w).

Hence the assertion of the theorem is satisfied. §

Comparing with the invariant theorem, we have a familiar figure for this result. See
Figure 2.4.

M~ (w)

Figure 2.4: Y{w) is the stationary point of our system

This theorem allows us to prove that ¥{w) is the stationary point by a simple
argument. We have M*(w) and M~ (w) are both invariant sets. Since the intersection

of two invariant sets are invariant, {Y(w)} = M*t(w}) N M~ (w) automatically is the
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invariant one point set. And it is the only one by the uniqueness of ¥ (w). Recall
the invariant manifold theorem, Theorem 2.5.1 and Theorem 2.7.3 describe the same
situation. The intersection of stable and unstable manifolds is the statiocnary point.
On the other hand, there is an interesting point as follows: For the stationary solution
{Y{w)} := {(](0,w),&, (O,w))}, we can move points on M " (w) from time +oco back
to time 0 by (-, w) with the exponential rate at most —A;{(w). This also implies the
points on M~ (w) can be moved to ¥ (w) from time —oo forward to time 0 by (-, w)
with the exponential rate at most A;i;(w). This explains why the manifolds are called

unstable and stable.

§2.8 Gap Conditions

We found this gap condition problem in the higher regularity of invariant manifold
theorem. Higher regularity here means the invariant manifolds are C* if the RDS ¢ is.
This happens when we consider a C*, (k > 1) RDS ¢, some additional conditions are
required to guarantee the spectral gap wide enough. However, the additional conditions
are rigorous to satisfy in some ways. In this section, our purpose is to find a reasonable

method to eliminate the influence of them.

To see this gap condition problem, we firstly recall the definition of speciral gap.
For example, we have a center manifold M;; according to the spectral interval for
1<4j<p
A=A > >

Here the center manifold M;; is a unstable manifold when ¢ = 1 and is a stable manifold
when § = p. Hence, this gap conditions will include the unstable case and the stable
case. Assume

i, Bi] = [M7F, M),
where % is sufficiently small to guarantee «; > &;41. And taking

al"‘ﬁ? ap—l_ﬁp ap_o)

0 < & < min( 5 o 5 =

Thus, define the spectral gap between A;y; and A; as
= [ﬁi+1 +(5,(_]{i —5], 1= 1,...,}0—- 1.
We see Figure 2.5 which will help us to have a clear picture for these notation. The gap
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iy Biy aj Bi
a5, -8 Byl |a-5 Bitd
r

Figure 2.5: Spectral Gap

conditions are introduced in Arnold [1] to prove the higher regularity of the invariant
manifolds. We specially pick up the conditions from the Theorem 7.3.19 in Arnold
[1]. For k > 2, for the center manifold M;; in R4, the gap conditions are presented as

follows.

1. The spectral gap
Lright = [ﬁi +6, 01 — 5]

to the right of A;; is wide enough such that we can choose two numbers b, be |
with b < b for which, moreover, also b7 < b for every ¢ = 2,...,%. There is no

condition for i = 1, i.e. for the unstable manifolds.

2. The spectral gap
Ciese := [Bj41 + 6,05 — 9]

to the left of A,; is wide enough such that we can choose two numbers a,@ € Uiepe
with @ < @ for which, moreover, also @ < a9 for every ¢ = 2,..., k. There is no

condition for 7 = p, i.e. for the stable manifolds.

The gap conditions act an important role for the proof of this theorem in Arnold 1].
Actually they are not always be possible to be satisfied. For example, we consider a

simple situation

a; < 1< 53

and

Prz’ght = [ﬁz -+ 5, oy — 5],
Liefe = [Biz1 + 8,04 — 6.

This will be impossible for either side. However, in some special cases, the gap condi-

tions are automatically satisfied.
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Case 1 If Ty N {0,1] # @, we can choose b =1 and b € (0,1]. Then & < b for all
q > 2.

Case 2 If 5 N {1,00) # @, we can choose @ = 1 and a € [1,00). Then @ < a? for all
¢ > 2.

For a center manifold, we need to satisfy the two gap conditions in the same time.
However, for the stable and unstable manifolds, we only need to satisfy Case 1 or Case
2. Hence, this gives us an idea to eliminate the gap conditions for the stable case or

the unstable case.

We start with the beginning RDS ¢ structure in the preparation section. For a

given prepared C* RDS ¢ over 8 in R¢, we have
w(n,w,z) = ®(n,w)r + P(n,w, ),
where
O(t,w) = Dyp(t,w,0)

defines a linear cocycle over §. And

Wt w,x) == p(t,w,z) — &(t,w)z

is the nonlinear part with ¢(t,w,0) = 0, D¢(t,w,0) = 0 and ¥(0,w,z) = 0. By the
Theorem 7.3.19 in Arnold [1], we have if the corresponding manifold AM;;(w) is a C*
manifold, it has to satisfy the gap conditions. Now, consider a unstable two-sided
discrete time case, we need to consider the gap condition for I'yef,. For the linear part

$ of the RDS ¢, we have the corresponding Lyapunov exponents
AL > A > >)\j >)\j+1 > 0> A

We can obtain the unstable manifold A,; by considering the corresponding spectrum
interval
Alj = {/\] > A > ... >)\J}
Assume Y
3 j+1
a=——"
2

We replace the Lyapunov exponents by putting

M—a>d—a>...>N—-a>0> Xy —a>...> ) —a
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Next we let :\1=/\.—a,...,;\p=/\p—a,. Then

- - -

A1>’\2>--->;\j>0>:\j+l>--->/\p-

This structure is meaningful. We may consider it from the beginning by setting
d(n,w) = ®(n,w)e™™. It is easy to see that ®(n,w) is still a linear cocycle for z.
By applying MET to (f>(n, w), we have
. 1 .
A = lim —log || ¢(n,w)z ||
n—o0 7

= lim %bg | (n,w)e™ "z ||
1
= Jm ~log | e [} #(n,w)a |

n—00

1
= lim - log || ®(n,w)z || —a

n—oo

= AN—ua
Hence, we have the initial RDS change to
T = e "0(n,w)xy + e (N, w, o).
Assume |

b(n,w) = e *d(n,w),
P(n,w,z) = e P(n,w,x).
Thus, we can define a new RDS

B(n,w, z) = d(n,w)z + Y(n,w,z)

such that if ¢ is C*, so is (. And the gap condition for this ¢ is exactly the same as
the case 2 '

F!eft N [1100) ?I: m:

which is satisfied automatically. Then the corresponding unstable manifold is C*. The
stable case is in a similar manner, and the gap condition changes to I'yign,. We can deal

with it by using a similar argument.

§2.9 Further Research

In the last, let us consider some possible further directions of the research. Firstly,

in this chapter, we consider a finite-dimensional space R*. Note X, is a Banach space
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defined on R¢. From the structure of Naw, we know there are very limited elements in
Xaw. Our stationary point is also generated in this space. It will be a challenge to butld

a new space which contains much more common elements and all results in Theorem
2.7.1 still hold.

Secondly, we recall the Lipschitz constant restrictions in Lemma 2.6.1, Lemma
2.6.2 and Theocrem 2.7.1

¥>0+L,

D<y<a—-1L,

¢
These restrictions are used to prove the contraction, then apply the Banach fixed point
theorem. Actually, to prove the existence, we can also apply other fixed point theorem
such as Schauder fixed point theorem. Hence the Lipschitz constant restriction may
have a chance to be omitted. But we lose the uniqueness of the stationary solution.
There are some difficulties. It is not clear now the technique would work without the

uniqueness of the solution.
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Chapter 3

The Continuous Time RDS in an

Infinite-Dimensional Hilbert Space
H

§3.1 Background

In the first part of this chapter, we devote to introduce the background and to

set up of the main problems which we are interested in.

§3.1.1 Semilinear Stochastic Evolution Equations

We start our work with a stochastic differential equation. Let H be a separable
real Hilbert space. We consider the semilinear stochastic evolution equations (semilinear

gee} with the additive noise of the form

a
£
—_
=
il

[—Au{t) + F(u(t))|dt + BodW (t), (3.1)
w(0) = zeH,

for t > 0. In the above semilinear see (3.1), we denote A to be as a closed linear

operator from

D(A)CH - H.

Suppose —A generates a strongly continuous semigroup 7; of bounded linear operators
from
T, H — H,

for £ > 0. Let E be another separable real Hilbert space. Suppose W(t), £ > 0 is

an E-valued Brownian motion which is defined on the canonical filtered Wiener space
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(0 F, (Fy)es0,P) and with a separable Hilbert space K, where K C E is a Hilbert-
Schmidt embedding. In this structure, 2 is the space of all continuous paths with the
mapping

w:R—- E

such that w(0) = 0, F is its Borel ¢-field, 7, is the sub-o-field of F which is generated
by all
Nowr w(u)e E
for u < t and P is Wiener measure onl 2. The Brownian motion is given by for all w € 2
and £ € R
Wit,w) = w(t).

Also it may be written as

[™]8
=
=
=
m
=

Wit) =
k=1
where {fi, k > 1} is a complete orthonormal basis of K and (I k> 1) are standard
independent one-dimensional Wiener processes. In general, this series converges in F,
not in /. We refer it to readers for Chapter 4 of Da Prato and Zabczyk [6] for details.
Next, we denote by

Ly (K, H) C LK, H),

be the Hilbert space of all Hilbert-Schmidt operators
S:K—-H

with the norm

IS llai= 0> | S(f) 121

where | - | is the norm on H, and L(K,H) be the Banach space of all bounded linear
operatots from K to H with the uniform norm such that for any B € L(K H) and any
veEK

| B ll:= sup | B(v) .

Jui<t
Suppose
By € LQ(K, H)

be a bounded linear operator. For this L.(K,H) space, see Mohammed, Zhang and

Zhao [25] for some other related discussions. Assume that the operator A in (3.1) also
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has a complete orthonormal system of eigenvectors {e, : n > 1} with corresponding

the eigenvalues {u, : n > 1}, such that
Ae, = HnCn

for n > 1. The function
F.: H—-H

defines a nonlinear perturbation which satisfies the Lipschitz condition with the constant

I
| F{v1}) = F(va) [ L |v1 — vy |,

for v, v € H.

§3.1.2 Oseledec-Ruelle version MET

From the finite-dimensional space R?, we have already introduced MET. In this
section, we present an intensive infinite-dimensional version MET. This work has been
done by Ruelle [33].

Theorem 3.1.1 (Oseledec-Ruelle MET)
Let (), F,P) be o complete probability space. We define (T,0) be a L(H)-valued mea-
surable RDS. T is ¢ function

T: R x Q — L{H).
And 6 is a group of P-preserving ergodic transformations on (2, F,P) from
RxQ—Q
Suppose that
Eozltllg)i log™ | T(¢, ) Neam +EO§_<L:1S)1 log™ || T(L — ¢t,8(¢, ) llean < oo
Then, there exists an invariant set Qy € F with full measure such that for all t € RT
8(t, }(Q) € Qo and P(Qp) = 1,
and for each w € Qp, the limnat
Alw) = Tim (T(t, w)*T(t, w)) =

L0
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exists. This A{w) is self-adjoint, non-negative with a discrete spectrum
eM>e>eM >

Let Fy\(w), F2(w), F3(w), --- be the span of corresponding eigenvectors. Then denote
that fori=1,2, -

Fw) = H
Eiw) = [®ZiFy{(w)"
fori> 1. Wheni= oo, set A\; = —oc0 and
Foo = ker A(w).

Then (Ei(w))i=10,.. forms a filtration for H, such that
EFo.C- - C E,-+1(w) C Et-(w) c---C El(w) = H,

and
m; = dim Fj{w).

Then the Lyapunov exponent will be ezpressed as

A= tlim %log | T(t, W)z |
for z € Ey(w)\ Eiy1(w), and

1

lim = log | T(t,w)z |= —c0

t—oo f
if v € E(w). The invariance property is

T{t,w)(Ei{w)) < E;(8(t,w))

Jorallt>0,i>1.

Remark 3.1.2
1. L(H) is the Banach space of bounded linear operator from
H—- H
with the uniform operator norm such that for B € L(H)
I B fleay:= sup | B(v) |
[vl=t
for v € H.
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2. Comparing with Theorem 2.3.2 and Remark 2.3.3, we have the two corresponding
integrable conditions. They both require that the logarithm RDS is integrable in

two-sided time.

3. From this theorem, we obtain an orthogonal splitting of the infinite-dimensional
space H by two parts. One is for the positive eigenvalues {A, Ag, -+, A}, the
other one is for the negative eigenvalues {), : n > m}. And the space H can be
written as

H:=H'@9oH" .

We see from this, H' is a finite-dimensional subspace, and H~ is an infinite-

dimensional subspace.

4. To well understand this theoremn, we have a figure below.

T(t,w)

Eaz{twp
i

Eied E20 (‘t,;m M
- ' |
I #{t:}) '
t i
H 1
W ot w)

Figure 3.1: The Oseledec-Ruelle Theorem
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§3.1.3 Infinite-Dimensional Local Invariant Manifold Theorem

In this part, we are going to introduce a beautiful work which will show us, in a
random manner, the structure of the local invariant manifold in an infinite-dimensional
space H. This work has been done hy Mohammed, Zhang and Zhao [25]. Firstly, we
give some notations as before. H is a separable Hilbert space. We denote by B(z, p) the
open ball in H, with radius p and center point = € H, B{z, p) denotes the corresponding
closed ball. Normally, we say a stationary point is hyperbolic if the eigenvalues of the
linearized system have non-zero real part. In our RDS (U, 6), we say a stationary point
Y (w) is hyperbolic if the corresponding linearized cocycle (DU(t, w, Y (w)),8(w)})} has a

non-zero Lyaponov spectrum
e < Al <A< <A<
such that X; 3£ 0 for all ¢ > 1. And the stationary point satisfies

/ﬂlog*' sup || DU(tg, 8(ty,w), Y (0(t,w))) llom dP(w) < oo

0<ty,t2<a

for a € (0, 00).

Theorem 3.1.3 (Local Invariant Manifold Theorem)

For a separable Hilbert space H, let (U, ) be a measurable RDS, where U is a measurable
Sfunction defined from

(0,00) x ¥ x B(0,p) — H,
(t,w,z} — U(t,w,m).‘

Let Y be a hyperbolic stationary point of the RDS (U, 0) which satisfies the following

condition

[ ogt  sup || Ulta, 0(t1, ), Y (0(tn,0))) [lugey dP(w) < o0
{2

05t .47<a

for any fized 0 < p, ¢ < 0o0. Define the linearized RDS (DU(t,w,Y(w)), 8(t,w),t > 0)
admits the discrete Lyapunov spectrum

...<)\;‘+1</\,’<"'</\2<A1.

We specially pick up
Aip :=max{}; : A; <0}
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If oll finite A; are positive, set Ay, 1= —oo. If all the A; are negalive, set A,_; = 00.

We then choose and fix
€1 € {0,—X;,) and €2 € (0, Ayy_y).
Then, there exists an invariant sef §* € F with full measure such that
g(t, ) = Q" and P(Q*) =1
for allt € R. Assume the functions p;, 3; are maps from
Q- (0,1),
where §; > 0, p; > 0, i = 1,2 are random variables, such that for each w € 0, we have

the following:

Stable case
There s a submanifold S(w) of B(Y (w), p1(w)). For Ay > —o0, S(w) s the set of all
z € B(Y{(w), p1(w)) such that

| Un,w,z) = Y(8(n,w)) |< ﬁ1(w)e(’\*0-+61)”

for all n > 0. If \;, = —oco, S(w) is the set of all z € B(Y (w), p1(w)) such that for all
n>0
|U(n,w,2) =Y (8(n,w)) [< Bi(w)e™

where A € (—oo,n). Furthermore, for all z € S(w),

timsup  log | U(t,w,7) — Y(8(t,0)) |< A

t—oa 2

For the linearized RDS (DU (t,w,Y (w)),8(w)), we define S(w) is the corresponding
submanifold of i, then each §(w} is tangent to S(w) at the stationary point Y (w), such
that

Ty Sw) = S(w).

And S(w) is local invariant such that there ewists 71 (w) > 0 with
U{t,w)(S(w)) € 8(8(t,w))

and
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for allt > m{w).

Unstable case
There is a submanifold U(w) of B(Y (w), po{w)}). For Miy_1 < oc, U{w) is the set of all
r € B(Y (w), pa(w)) with the property

U(1,8(-n,w),y(-n,w)) = y(~(n - 1),w)
where the process y(-,w) is defined from
{-n:n>0}—H
and y(0,w) = = and
| y(=n,0) = Y (B(=n,w)) |< Bafw)e”Pamrma"

for each n > 1. If A\, = oo, U(w) is the set of all © € B(Y (w), pa{w)) such that for
alln>0 '

Ly(—n,w) = Y{8(—n,w)) |< ﬁz(w)e—/\n

where A € (0,00). Furthermore, we have

1
limsup =~ log | y(—t,w) — Y (8(—t,w)) |< —Aiy-1,

t—o0 t

for all z € U(w). For the linearized RDS (DU(t,w,Y (w)),#(w)), we define U(w) to
be the corresponding submanifold, then each ﬁ(w) is tangent to U{w) at the stationary
point Y (w), such that

Ty(w)U(w) = l}(w)
And U(w) is local invariant such that there exists To(w) > 0 with
and
DU, 8(—t, w U O(—t, ) = U{w)
for all t > 1 (w).

Remark 3.1.4
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1. As a result, the Hilbert space H can be splitting by two tangent spaces according
to the stable manifold S(w) and the unstable manifold 24(w). Hence, we naturally

have
H= Ty(w)b{(w) 82] Ty(U)S(w)
at the stationary point Y{w), where Ty (U (w), Ty(.)S(w) are the tangent spaces

of U{w) and S(w) at the point Y (w) respectively.

2. The existence of the RDS (U, #) in the infinite-dimensional Hilbert space is a difficult
problem. Fortunately, Mohammed, Zhang and Zhao [25] has proved the existence of
RDS corresponding a large class of the semilinear stochastic evolution equations and
semilinear stochastic partial differential equations. This brings us a big convenience

for further research.

3. In the higher regularity case, we consider a C*¢(k > 1,¢ € (0,1]) type RDS (U, 8).
Under this situation, all the assertions of Theorem 3.1.3 still hold, and S{w) and
U(w) are the corresponding C*<(k > 1,¢ € (0,1]) manifolds. We note here that
CF< describe a set of functions of f with the following properties. If I, N are real
Banach space, we denote L**)(E, N) be the Banach space of all k-multilinear maps

such that
A E¥Y =S N

with the uniform norm
| All:=sup{| Alv1 v, - ,ux) | € E, | v [€1,i=1,...,k}
Suppose U/ C F is an open set, the map
f:U—=N
is said to be of class C*< if it is C* and if
DWW . - L™(E N)
is e-Holder continuous on bounded sets in U.

4. If the RDS (U, 8} is C™, the local stable and unstable manifolds S(w), U (w) are
C™.

5. From this theorem, we can essentially view the stable and unstable manifolds. For

the stationary solution Y{(w), we can move points on U(w} from time +co back to
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time 0 by U(:,w) to ¥ (w) with the exponential rate at most A;,_;. This also implies
the points on S{w) can be moved from time —oo to time 0 by U(-,w} to ¥{w)} with
the exponential rate at most —A

ig"

6. We see a figure below.

U (., ,0)

U (e

: — ([} { ! 0“»“})

S0 (1))
|

1)

.
(
o
G ('t _,m)

Figure 3.2: Local Invariant Manifold Theorem

§3.1.4 Mohammed, Zhang and Zhao’s Results on the Existence of Station-

ary Solutions

Mohammed, Zhang and Zhao's results are setting on an infinite-dimensional real
sparable Hilbert space H. We denote {e,, n > 1} a basis for H. Let A be a self-adjoint
operator on H with a discrete non-vanishing spectrum {u,,, n > 1} which is bounded
below. We have Ae, = u,e, for n > 1. Denote u,, the largest negative eigenvalue of A,
and fi,4 is its smallest positive eigenvalue. Hence, we obtain an orthogonal splitting
of H by two parts. One is for the negative eigenvalues {p1, 2, . .., ftm }. The other one

is for the positive corresponding eigenvalues {z, : n =2 m+ 1}. And H can be written
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as
H:=H"®H".
We see, H* is an infinite-dimensional subspace, H~ is a finite-dimensional subspace.

We also define the projections onto each subspace by
Pt :H-—-Ht
Fr-H-H".

On the Wiener space (Q, F, (F¢)i>0, P), we denote W (¢) be a Brownian motion. Let K
be another separable Hilbert space, then assume By € Lo( K, H).

’I‘t — e—At,

is a strongly continuous semigroup generated by —A. Since H~ is finite-dimensional,
we have T, on H~ is invertible for each ¢ > 0. Therefore, we set T4 := [T}]~! from
H- — H~ for each t > 0.

Now, we consider a semilinear stochastic evolution equation (semilinear see) on -

H with the above structure
du(t) = [—Ault) + F(u(t))]dt+ BodW(ﬁ),
u(0) = zeH.
We assume F . H — H satisﬁes a globally Lipschitz condition
| Fla) - Fy) IS Llz—yl,

for any x,y € H, where L is a non-negative constant. Then, the semilinear see has a

unique mild solution with the following form

£ £
u(to) =Tw+ [ T Pluls,))is + [ TiouBodW(s),
0 0

for t > 0. In their recent work, Mohammed, Zhang and Zhao [25] has proved the fol-
lowing results for the existence of the stationary solution for this semilinear see. We

introduce here two propositions.

Proposition 3.1.5 Assume the above conditions on A and By, F satisfies the glob-

ally bounded and globally Lipschitz conditions. The Lipschitz constant L is with the

restriction

Llpmir — '] < 1.
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Then there is a unique F-measurable map Y : @ — H safisfying

Y (w) = / T_ P+ F(Y(8(s,w)))ds — f T T PR (0(s,w0)))ds

—00 0

+(w) f D TP BydW(s) - () fo ST P BodW (s)

—0g

Jor allw e Q.

Proposition 3.1.6 Assume all the conditions on A, By and F in Proposition 5.1.5.

Then the semilinear see

du(t) = [—Au(t) + Fu(t))|dt + BodW (1),
w(0) = ze€H,

has a unique stationary po:mt Y : O — H, such that
uft,w, Y(w)) = Y{0w)

forallt > 0 andw € Q, and Y{w) s given in Proposition 5.1.5.

We see that proposition 3.1.5 provides us the structure of the stationary point.
And proposition 3.1.6 proves it is a unique stationary point. The proofs of these two
propositions are very valuable, see Mohammed, Zhang and Zhao [25] for details. Nor-
mally, the stationary point in a DS may be non-unique. To obtain the stationary solu-
tion in the case that there might be more than one stationary point, we need different

techniques.

£3.1.5 The Problems

In this section, we introduce two unsolved problems around the above two propo-

sitions.

Problem 1 In proposition 3.1.5, we see that the Lipschitz constant L needs to satisfy
the restriction. If we can release it, that will be a significant progress. Actually, it is
reasonable since this condition was used by proving the Banach fixed point theorem.
If we apply other fixed point theorem or related arguments, this condition may be
omitted.

Problem 2 Another one is the boundedness condition for the function F. Our purpose

is to weaken it to a weaker condition. This will be quite challenging since this
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condition acts an important role in the proof. We are trying to apply the coupling

method to weaken such a condition.

We notice, these two problems actually are based on the infinite-dimensional Hilbert
space H. This leads to some trouble. In the next two sections, we will carefully choose

the technique tools to deal with it.

§3.2 Release Lipschitz Constant Restriction

§3.2.1 Preparations

As previous sections, we also assume H is a real separable infinite-dimensional

Hilbert space. We denote {e,, : n > 1} a basis for H. A is a closed linear operator from
D(A)CH—H

with a discrete non-vanishing spectrum {g,, n > 1}. We have Ae, = p,e,. we can
also denote p1,, the largest negative eigenvalue of A, and p,,,; is its smallest positive
eigenvalue. Hence, we obtain an orthogonal splitting of H by two parts. One is for
the negative eigenvalues {{1, pi2, - .., ftm }. The other one is for the positive eigenvalues

{ttm+15 Pm+2, - .-} And H can be written as
H:=H*oH .

We see this structure, H™ is a finite-dimensional subspace, and H* is an infinite-
dimensional subspace. We also define the corresponding projections onto each subspace
by

Pt H-H'
and

P H-—-H".
Let W(t), t > 0 be an H-valued Brownian motion which is defined on the canonical
filtered Wiener space (Q, F, (Fi}i»0, P) and with a separable Hilbert space K as men-
tioned as before. Suppose By € Lo(K, H). Suppose —A generates a strongly continuous

semigroup

n —_ e—At‘

We now consider the semilinear see on H
du(t) = [—Au(t) + F(u(t))|dt + BodW (t),
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uw(0) = z€H,
where F': H — H satisfies a globally Lipschitz condition
| Flz) - F) IS L|z-yl,

for any x,y € H, where L is a constant. Then, the semilinear see has a unique mild

solution with the following form

t i
u(t, x) mTta:—l-f ﬂsF(u(s,m))ds+] T s BodW (s)

0 0
for t > 0. We also recall an important definition here to help the proof in next subsec-

tion.

Definition (Equicontinous) Let X be a metric space and G s o family of func-
tions on X. The family G is said to be equicontinuous at a point xo € X if for every
€ > 0, there exists a & > 0, such that

d(g(zo0), 9{x)) < €
for all g € G and all x such that
d(zo, ) < 6.

The whole family is called equicontinuous if it is equicontinuous at each point of X.
Next we introduce one famous theorem: Arzela-Ascoli theorem.

Arzela-Ascoli Theorem

If S is compact, then a set in C(S) is conditionally compact if and only if it s bounded

and equicontinuous.

Here conditionally compact means every infinite subset of C'(S) has a limit point which
is not necessary in C(S). Hence, when C(S) is closed, conditionally compact is equal

. to compact.

£3.2.2 Main Results

In this part, we are trying to take off the restriction for the Lipschitz constant

L. We will see, to prove the results, Arzela-Ascoli compactness arguments plays an
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important role. Firstly, we present a result based on proposition 3.1.5.

Proposition 3.2.1 Assume the conditions on A, By as above section and F' is glob-

ally bounded and locally Lipschitz. Then there exist at least one F-measurable map

Y : Q — H satisfying
Y(w) = f Y L PYR(Y(6(s,0)))ds — / T P (Y (8(s,w)))ds
+w) ] Y TP BydW(s) — () f P BodW (s)
1}

—oC

for allw € Q.

Proof. Firstly, define the F-measurable map Y) : 2 — H by

Yi(w) = () / U TP BodW () — () ] T P BydW (s).

—o 0

Then we have

Yl (91&))

- W) /_ P BodW (5) — () /t P BodW (s).

(s8]

0 o]
(Btw)-/ T_PtBydW(s) — (Btw)/ T_ P~ BodW(5)
—o0 0

(3.3)

Secondly, we denote by C(T', H) the Banach space of all bounded continuous maps from

T to H and for each w € §2
CalTJH) = {f € C(T, ) and || lwi= sup | /() |< B},

where B is a constant with

1 __1_)

m+1 Hm

B :=|F

o

and
| F lloo:=sup | F(v) |.
veH

With the above structure, we can consider (3.2) as two parts. We now define zp = 0,

and consider

¢
Znp1{fiw) = / Ty s P F(2,(0,w) + Yi(8w))ds

[ o]

+oe
- / Ty P~ P(2(80) + Y (6505))ds.
t
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This structure provides us a possibility to solve the problem in an infinite-dimensional
space. Our aim is to prove this sequence {z,(6.w)}°2, is equicontinuous. For our case,
this means we need to prove z is uniformly continucus on ¢ for all n. For this, taking
any ty, ta € (~00, +o0) with ¢ < ¢y, we have

| 20s1(00w) —  Zns1(0w) |
1

< | Ty, -« PTF(2,(0,w) + Y1(0.w))ds

—00

t2
—f Tyy s PTF(2n(0u0) + Y1 (8s))ds |

+oo
+ | Ty, _oe P™F{z,(0,w) + Y71 (8sw))ds

t1

+o0
_ f T P F(2a(040) + Y1(650))ds | -
t

2

For the first term, we have the following estimate,

t1
| / Ty PTF(zn(8) + Yi(6ow))ds

t2
—f T, s PTF{2,(0w0) + Yi(0,w))ds |

o

< | f P (a(000) + Va(0s))ds
Q/“nﬂWF%@m+m@wMﬂ
iy / Pt F(on(0uw) + Yi(Bu))ds
o
~ [ TP P00+ i )|

ty
_ ] (Thy P — Ty s PYYF (2n(B) + Yi(,))ds |

t2
b f Ty, P (2 (00) + Yi(Bo))ds |
iy ‘

ta
< NPl / | TP || ds
t1
i
+/Hﬂﬂw>ﬂmwnm
)
<

ta
||F||m[f | Toaos P | ds
iy
t1 .
P T =Ty P | f | Ty oP* | ds]
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<

<

-+ ” I_th—hp+ ”

to
| F o | f | Toaeo P || ds
i1

t1
=T P [ ermmmanay
-0

tn
| Flle | ] | Thpea P | ds
ty
1
-1,

Hm+1

and by a similar argument to the second part, we have

+o0

| T s P F(z(0,w) + Yi(8,w))ds

ty

A

IA

IA

IA

_ / O P~ F(on(6s0) = Vi (Bu))ds |

t2

+00
| / Thy o P~ F{2n(65w) -+ Yi(8y))ds
(3]

+oo
- f Ty P~ F(za(0s) + Y1 (6s))ds |
iz

+o0

+ | Tt1—sP_F(zn(gsw) + YI (Gsw))ds

[

+oo
_ f Ty o P~ F(zn(05) + Yi(uw))ds |
to R

“+o0
| f (TP~ — Ty s P™)F(2n(000) + ¥ (90)) s |
|2

%)
+ | T o P7F {2 (05w) + Y1 (8w ))ds |

t1

t2
| F oo | f | TooeaP™ | ds
1

+oo
+ f | ToysP~ — Tpe P || ds)

to

to
||F1|m[/ | Ths P | ds
t
! +o0
1l TP~ — 1 | f | Thae P || ds]
153

iz
| F o | ] I TP || ds
t

+00
| TacP™ =T [ etemdimay

t2
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tz
< N F ol [ | TouooP™ | ds
t1

- 1
+ “ T'tl—f.zp -1 ” (__)]
Therefore, by combining two parts, we have
| Za1(uw) = znga(Ow) |
{o to
< NPl N TameP™ s [N TP
i 31
1

1 _
“ I_T12—£1P+ “ - ” Tfrl—tQP — I “]

Hm+1 ™m

Note when {; < 5 < {5 as ity < 0and gy >0,

+

|| ﬂg—sp-i- "S e'_(tz_‘g)»unﬂ—l S 1,

and
| o P | e lrmokem < 1,

We also know that T, is a strongly continuous semigroup. Thus, from the above argu-
nients, we can easily check z,.)(fw) is uniformly continuous on ¢ for all n. Then we
say the sequence {z,(#.w)}32, is equicontinuous. Moreover, for the boundedness of this

sequence, it is easy to see that

t +oo
| 2a(6) ] < I F llo | / | Toea P | ds + [ | TP | ds]
-0 t

t +oc
< | F |l [f e~ #mt1gg +/ e~ (=8um 5]
t

-G
1 1
< | F loo ( -—
Hm+1 Hm
< 00

Hence, we can use the Arzela-Ascoli Theorem on the sequence {z,(6.w)}5%,. For arbi-
trarily large N > 0, we firstly have that the time set T = [-N, N] is a compact set.
Then the set {2,(f.w)}>, is conditionally compact. This means there exists at least

one subsequence z,, (f.w) such that
Zn, (Biw) — 2(6w)
as k — oo, for any ¢t € [N, N]. Next, we need to lift the limit from 7" = [-N, N} to

T = (—o0, +00). For this, we see that

Zpp(w) = /0 T_oPTF(2,(0,w) + Y1 (B,w))ds

—00
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~ [T 1P PG + it
0
_ fo T, PV F(za(6) + Yi(0.w))ds
N
/ P F(n(60) + Vi (6u0))ds
’ —-N
-i—/ T_oPTF(2,(8,w) + Y;i(f,w))ds
/ P F(n(6u0) + Y, ().
N
So
0
| Zip1(w) — / T_s PTF (2, (0w} + Yy(6,w))ds
_N

N
+/ T_ P F(z.(0w) + Y1(B,w))ds |
0

(A

| / N T_ PYF(z,(8sw) + Y1(0sw))ds |
-
+ | f T_ P™F(z,(8,w) + Y {Bsw))ds |

+oo
< |F||m[] |T_3P+||ds+/ | T_uP~ | ds]

1 e—bmit N _ ieMmN).
Hm+1 Hm

< | F leo €

For the above inequality, we firstly take the limit for the terms on the left side. when

1 — 00, we have
0
| 2{w) - f T . PTF(z{fw) + Y1(B.w))ds
-N

b [ TP P00 4 Vi 00s]
0 .

1 e hmilN _ ie#mN).
m+1 Hm

< oo €

Then taking the limit N — oo, noticing z(f,w) is well defined for all s € (—o0, +00)
since NV can be arbitrarily big. Thus,

2(w) = /0 T s PTF(2(f,w) + Y1(0,w))ds

—0g

- f+°° T ,PTF(2(8sw) + Y1(0,w))ds.
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Finally, we add Y, defined by the integral equation (3.3) to the above equation and also

assume
Y(w) = z(w) + Yi(w).

Then we have the following expression

Y{w) = /0 T PYE(Y(6(s,w)))ds — /0‘00 T_,PTF(Y(8(s,w)))ds

—00

+(w) fo T_s Pt BydW (s) — (w) /000 T_, P~ BodW (s)

-0

for all w &€ Q. This is the end of the proof.

Proposition 3.2.2 Assume all the conditions on A, By and F in Proposition 3.2.1.

Then the semilinear see

du(t) = [~Au(t) + F(u(t))]dt + BedW (t),
w(0) = zeH,

has at least one stationary point Y : Q@ — H, such that
u(t,w, Y {(w)) = Y(fw)
Jorallt >0 and w € 1.
Proof. By the last proof, we have
t o o]
Y(fw) = ] T PTF(Y (0(s5,w)))ds — ] Ti—s P F(Y(0(s,w)))ds
—oo t
2 o0
+(w)/ Ty-s P BodW (s) — (w)/ Ti_o P~ BodW (s)
-0 t
1] o0
- f ooy PHF(Y (8(s, w)))ds ~ / T, P~ F(Y (0(s,w)))ds
0

—00

+w) f TP BadW(s) — () [ T, P BodW(s)
. —00 . 00
t—s ,w))ds — i PTF(Y(8(s,w)))d
+/0 Tl P+ R(Y (0(s, w)))d /tOT P=F(Y(8(s,w)))ds
+w) / Ty P* BodW (s) — (w) / Ty P~ BodW (s)
- TY(W)+ [ T (Y (800))ds + () f T BodW (s).
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Therefore, Y{fw), t > 0, w € Q is a stationary solution with the starting point z =
Y {w), since by the uniqueness of the solution, we have u(t,w, Y{w)) is also a solution

and
u(t,w,Y{w)) = Y{6w)

forall £ > 0 and w € Q. This stationary point maybe non-unique. This is because
in Proposition 3.2.1, the Arzela-Ascoli compactness argument can not guarantee the

uniqueness. This finishes the proof. §

§3.3 Weaken the Condition of F

In Mohammed, Zhang and Zhao’s paper [25], it is difficult to remove both the
restriction of Lipschitz constant and the globally boundedness condition in the same
time. Our purpose in this section is to push the results of last section further to find
a weaker condition to replace the globally bounded condition for F. Now consider the
following equation with a standard cut off function F,,,

2t) = [ Ty P+ Fo(2(s) + Yi(s))ds

- f To o P~ Fa(z(s) + Yi(s))ds (3.4)
t
for all z(8w) € Cg(T,H) and all w € 2. Here
g { B IFIS,
0, otherwise.

And F is a function from
H — H.

Then we see that F), is bounded whatever F is. By the previous proof, we have, as F),
is bounded, there exists at least one z{t),.;. And the existence property depends on n,
such that _

| % llo< Bu,

where B, is the radius of a closed ball which depends on n and is dominated by F,

such that

1 1
B = By lloo (—— = —).

Hmil Hm
Here comes a new idea. If we can prove z(t},., exists and does not depend on n, such

that
|z < B'.
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If such kind of B’ exists, this is to say we can always choose n big enough to cover every
F such that

F|n=F:

and the globally bounded condition for F' will be possible to be omitted. This is the
idea we are going to work out. Before we start our hard trip, it is necessary to enhance
us with a powerful weapon. We introduce next with the famous Gronwall inequality in

forward form and backward form, respectively.

§3.3.1 Gronwall Inequality

Gronwall inequality is a famous tool in many fields of mathematics. Here we
present a generalized one-dimensional form. We start with the one-dimensional ODE

in the inhomogeneous case,

' = vz + f(¢).

To solve this ODE, we use the variation of constant method. See Hartman [13] for the
elementary proof. The Gronwall inequality comes from this proof. Actually, for the
inequality proof, we only need require x to be non-negative. Here comes the generalized

Gronwall inequality.

Forward Gronwall Inequality

Let z(t) be a RY -valued function on [a,b], 8(t) and v(t) are R-valued functions, v s a

constant and if
t
z(t) L a+ [(t) +f v(s)x(s)ds,
foralla <t <b. Then we have
t
J:(t) < [a - ﬁ(a)]ef:T(S)ds +/ ﬁ’(s)efs 7(r)drd8,

foralla <t <b.

The proof is elementary, similar to the proof of finding ODE solution. We omit it
here. For our research, we are also interesting in the backward type Gronwall inequal-
ity. We next decduce it from the forward one.

Backward Gronwall Inequality
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Let z(t) be a RY -valued function on |b,a), B(t) and v(t) are R-valued functions, « is a

constant and if
o) < @t B0+ | A(s)ats)ds,
t

for allb <t < a. Then we have
o) < o Bl 7O — [ g (s)eli 00
t

forallb<t < a.

Proof. We see that the inequality is changed to

() < o+ 9+ [ A(o)a(s)ds.

for all t < a. Define
z(t) =z{a—(a—1t)) :=z(a —t).

Then
z2(t) = z(a — t)

for £ > 0. Moreover,

Z(t) = z(a=—1t)
< a+pBla—t)+ /_t’y(s)a:(s)ds.

Changing variable by applying s = ¢ — 7, we then have
0
i) < a+fla—t)+ / v(a — 1)x{a — T)d(-7)
t
t
< a+ fBla—t) +/ v{a — s)z(s)ds.
0
So by forward Gronwall inequality
t . t d 4
2(t) < [a + Bla)]efo Viamo)de 4 f PG s)els a=mdr g
- 0 S

Thus,

;l:(t) z(a - f,)
a—t »
[ + ﬁ(a)]e-’r;‘ Ya=sjds / %ﬁ(a — S)ef: yla—7)dr g

0

IA
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t
= [+ B(a)]efs 1=2) +f (=B (r)]ele=y Ha=rhe gy
= o+ Bla)]e e / "= (el e g
t
= [a+ Ba)]el 7 — /ﬂ B'(s)ek 1 g
. i

This finishes the proof. j

£§3.3.2 Main Results

In this part, our purpose is to find an alternative condition to replace the global
boundedness condition- for F'. We start by considering the structure of the infinite-

dimensional Hilbert space
H=H"aoH" .
From (3.4), for z € H and a given Y; € H, we have

2(t) = (Z7(1), 27 (1),
(Y77 (t), Y (1))

s
—_
T
=
Il

where 27 (t), Y*(t) € H and 27 (£),Y (t) € H™. Then (3.4) can be expressed by two
parts

0= [ TR+ V()70 + V(s (35)
and
2 (t) = — /oo T s P F. (27 () + YT (s), 27 (s) + Y (5))ds. (3.6)

Denote by {e,,n > 1} a basis for H, by {gn,n > 1} the discrete non-vanishing spectrum
of the operator —A. p,, is the largest negative eigenvalue and p,,+; is the smallest

positive eigenvalue. Then assume

z (t)
z3 (t)

(z7(2), e1),
(z7(t), e2),

(8 = (27(t), em),
21-;4»1("‘) = (z+(t):6m+l):

Zho(t) = (27(1), emea),
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Consider the differential forms of (3.5) and (3.6) according to each eigenvalue of A, we

have
—dz;t(t) = ez (t) + (Fu{zT (1) + YN, 27 (8) + Y (8)), e1),
—dzf;t(t) = —piazy () + (Fp(zt () + Y7H(t), 27 (t) + Y7 (£)), ea),
dzg‘ft) = —pmzn(8) + (Fa(T () + YT (), 27 (1) + Y77 (1), em),
dzt
m(;tl(t) - _M"LHZ:”S““) + (Fu(z" () + Y7 (8), 27 () + Y (8)), eme),
Z+
d mgtz(t) — g2z o (8) 4 (Fu(2t (@) + Y7 (), 27 () + Y (1), emea),
Multiplying with 27 (t), 25 (¢),- -+ , 2, (), 2541 (t), 2754 (t) - - - for each equation respec-

tively, we have

VDO o) + 27 (O (0) + Vit (0, 2(0) + Y (1)) en),

2 dt

LUETO _ a0 + 5 O (0 + Y0, 20+ Y7 (), ),

PG 0 + 5O FE 0+ Y0, 20+ Y 0), ),
%% =~ (Zgg1) (1) + 2 (O (Fr (27 () + YT (1), 27 ()

ld(z:wz)z(t} .
2 dt = “Hm+2

(

t)) €m+1
(2

Y (¢)

(
)

Zha2) (8) + 2 (O (Falz () + Y17 (1), 27 (1)
)

) Em-2

Since the spectrum {1y, d > 1} is non-vanishing, this means

pr < pip <o < g <O < g1 < frmyr <0 c

we then have

%%%@ > ()28 + 21 (B)(Fu(2* (6) + Y17 (1), 27 () + Y1 (1), 1),
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SR s (0 + OO + V0,270 + Vi (0), )
VSO )+ P 0+ V0,20 + 0, ),
%w = “‘.um+1(3$+1)2(t) + 2:;+1 (t)(F,,(z'*’(t)_+ Y1+(t)= z7 (t)
+Y77(t), em+1)
a0 0+ RO+ Y0, 20

+Y77 (1)), em2)

We consider the above differential inequalities according to the positive and negative
eigenvalues. For the first m differential inequalities, we consider the backward integral
equations. For the rest inequalities, we consider the forward integral equations. Then

we have

GO < [ 2 s = [ 2R+ V(9,570
+Y7(5)), &1)ds,

PO < [ 2 - [ 2 OEE e+ v,
+Y[(s)), e2)ds,

(P = [m2ﬂm(z;)2(s)ds— ff = () (Fale () + Vit (s), 27(s)

LY (), em)ds,

Gl O = [ Ui POs+ [ 2GR+ VG
PV (5)) emer)ds,

G ® S [ Pt O+ [ 2O FEE) W05

—o0 —00

+Y17 (S)): em+2)d5)

Then applying the forward and backward Gronwall inequality for each differential in-

equality, we have
D)) < —Qf e~ l2em o () (Fo(2 (s) + YT (5), 27(8) + Y (8)), e1)ds,
, .
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o0

(z)2(t) < =2 e Mmap () (Fa(2t(s) + Y (), 27(s) + Y[ (5)), ea)ds,

(z)’(1) = -2 / T e o () (T (24 (5) + Vit (s), 27 () + Y (5)), em)ds,

(zha)'(t) = /_ et o () (Fal2® () + Y1 (5), 27 (5) + Y17 (5)), emyn)ds,

—
I
g+

+
bo
—
[V
-
[
S
A

2 [ el () FAT(5) 4 Y (), () + Y (), emsalds,

Now we combine them into two types by writing

()2 = (gha)2 () + ()P () + -

2 = (PO + (22)%() + -+ (2)2(8)
and
(z7(s) , PYR(7(s)+ Yi(s), 27 (s) + Y (s)))

= 2 () (Fa(2t(s) + Yi(s),27(s) + Y77 (5)), emia)
2z 2 (Y Fu(2H () + V)7 (5), 27(8) + Y (8)) emua) +

(z7(s) + PR (s) +Y{"(s), 27 (s) + Y7 ()

= 21 (s)(Fa(z*(s) + Y{" (s), 27 () + Y1 (), €1)
+2y (8)(Falz¥(5) + Y17(5), 27 (5) + Y[ (s)), e2) +
2 (8)(Ful27(s) + Y17 (5), 27 (5) + Y (), €m).

Then (3.5) and (3.6) change to
4
(7)) < 2 f e~ Umi (2F(5) PTE, (27 (s) + YT (s), 27 (s)
Y, (s)))ds 3.7
and

P < =2 [ (), PR () + V(9,57 ()
LY (s)))ds. (3.8)



Loughborough University Doctoral Thesis

From the inequalities (3.7) and (3.8), we see a hope to weaken the condition for F.
This will become a coupling problem if we can do a Monocteone change for different part
of F,,. Then, in the later discussion, we will assume the function F;, need to satisfy the

conditions as follows.

Assumption 1

(, (PR (z+a,y+b) < Liz*+ Ly + A
(y: (—P_)Fn(,’ﬂ +a:y + b)) < L3$2 + L4y2 + Bl:

where
Ll < Bl
Ltl < —fm;
Ly , L3290,

and A;, By > 0 are constants.

We notice that L, Ly, Li, Ly and A;, B; can be chosen to be independent on n
since we can deduce this from F'. Thus, we have (3.7) and (3.8) change to
£
(zP)*(1) < 2f e~ W M2maa L PV () + La(27)2(s) + Allds

—00

and
COROEEN " e (L ()2 (s) + La(zV(s) + Bulds.

This will lead to

erose [ ; e mes {1, (4 (s) + La(z )2 (s))ds + #f;] (39)
and
(27)2(1) < 2 /z " e [ GHVs) & La(z)2(s)]ds — %. (3.10)

In the next step we will apply the forward and backward Gronwall inequalities and
coupling method. This leads to

t A
et2#m+1(z+)2(t) < f 632#m+12L2(z“)2(S)ds+ 1 et2.um+1
—o0 Hm+1
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+ f (e 2ime1 (Y2 (s)|2 L ds.

—0
Then applying the forward Gronwall inequality to the above inequality, we immediately
have

L
e£2;1m+1 (Z+)2(t) S f es?;tm+12L2(z—)2(s)82L1(t—8}d8

—o0

t
—i—/ 2A, e 2mer g2lnli=s) g

oo

So it is trivial to see that

t .
PO < [ et ps)ds

oo

t
+2A1/ (=1L~ 1) g

-

t
A
< Qf e(t"sml“_“"'+1)L2(z_)2(s)ds a1 (3.11)

00 fmr — L1
From (3.10} we have

) < [ ALy P (s)ds = hen

[2 fn
(e8]
-’r-/ [€°2#m (27Y2(8)])2 L4ds.
t
Applying the backward Gronwall inequality, we have

(s
e£2,um (z_)Q(t) < f 632"‘"‘2L3(Z+)2 (8)62154 (s—t)ds
3

o0
+f 2B, e*%mg2lals=t) gg.
£
So it is trivial to see that

o0
(z")z(t) < f e(s—t)2(pm+L4)2L3(z+)2(S)ds

t

2

&0 B
< 9 / (=02 +L0) [ (Y2 (5)ds — — Db (3.12)

- o + Lo
Observing (3.11) and (3.12), we see that if we prove one of (z*)(¢) and (z7)(t) is
bounded, the other one can be deduced to be bounded automatically. Next, we substi-
tute the term (27)2(s) in (3.11) by the inequality (3.12). Then we can use the change
of integration order to get

t
) < 2 f (=2 Limtims) [ 1o /me(f‘s’z‘f*m“ﬂLS(z+)2(7—)dr

—50 3
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Ay
Hm+1 — Ll

t 00
4 f el —pmar) [, f elr=a)2um+ L) Ly (202 (r)drds + M
—0Q

3

Hm + Ld

lds +

IA

t r
= 4L2 Lg [/ f e?(Ll —.um+1)(t—3)—2(ﬁam+L4)(3—T)ds(z+)2(r)dT
—o0 J =00
oo £
¢ —00
t
= 4]42 Lg [[ ez(Ll—#m+l)t+2(Fm+L4)r
—oa

/‘1‘ 62(#m+1—LJ—#m—L4)SdS(Z+)2(T)dT

oo

o0
+ / 62(LI —pmt 1 6+ 2 m + L)
t

t
/ Hmir=La—pm=Ls 4o V() dr] + M
—00

20,614
Mmar — Ly — pm — Ly

IA

t
[/ e2(1‘_.1 =t B 2(m +La)r+2(pm+1— L1 —ptm — La )7 (z+ )2 (7')(17‘

=00

o0
_+_/ e?(L]—,(Lm+;)t+2(um+L4)T+2(;tm+1—L]_—,(Lm—L4)£(z+)2(T)dT]+ M
£

. .
= A[f er"(L‘_“'“+‘)(t_"’)(z+)2(s)(£s
—00
o0

+ f elbm L)~ (12 (5)ds] + M, (3.13)
t
where y
1B
M = L _ Laus > 0,
Pmy1 — Ly (pmgr = Lo} (it + La) '
and
A= 2oLy > (.
Hmst — Ll - Hm = L4

Denote

o = max{2(mis1 — L1), ~2{um + L1)},
B = min{2(um41 — L1}, = 2(ptm + La) }-
Then @, 8 > 0, and

(zH)2(t) < M+ X( /t =P (Y2 (5)ds

-0
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+ f T B0 () ds).

For the above inequality, we consider a variable change for term ffo e P (z%)2(s)ds,
then

f T B0 (P s)ds = f T A0 (Y (r)ar

(s8]

= [Cemernetpsas

o0

Hence

+ [ B e (2 (—5)ds). (3.14)

Replacing ¢t by —f into (3.14), we have a new form

(zF)2(-t) < M+/\(/_te‘ﬁ(""")(ﬁ)?(s)ds

—00

+/t e~PU=9)(2%)2(—5)ds). (3.15)

—00
Adding (3.14} and (3.15) together, we have

t

PO+ < 2men |

—00

e ()2 (s) + (2%)(—9))ds

b [ e+ (A s)isl

o0

Observing the above inequality, we find that it becomes an induction problem. Let
G'(t) = (z)°(6) + (z")* (=),

Then G'(t) > 0 and

t -t

A (s + [ e HrIG ()s). (316)

—00

G'(t) < 2M + )\(/

—oC
For the estimation of this inequality, we use the induction method by assuming the
starting point G (£} < 2M, then

Gl < oM
t —t
GLt) < 2M + A f =P (201 )ds + A f e=B5=0(2 01 )ds

—00 —0o
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oM + QM(%)

A

t
Wt < 2M + ,\f e Pt=9) (oM + 2M(?§))ds
—00

g
T p—emt) 2\
tAL e (2M + QM(E))d,s
2A 2
< M 4 2M(=) +2M(=)°
B B
2X
Gr(t) < 2M + 21\4(2;) + 21\4(%)2 bt QM(F)m_l

We see from the induction, if G),(t) has a uniform bound, we require % < 1. This

means we need

2LoLg
bmt+1—Ly—pm—La _ 4L2L3 < 1
p (@+8)6

And this leads to

Lols < i(a + ﬁ)ﬂ

Hence, with this condition, we have that G, (f} has a uniform bound which does not
depend on n. This means (z7)2(¢) + (2¥)?(—t) is bounded uniformly in n. And since
(z7)2(t) and {z")2(—¢) must be non-negative, we have (z1)(t) has a uniform bound.
Replacing this bound into (14), we obtain a bound for {27)%(t). Then we have a bound

for | z(t) |, since
| 2(t) |= (2" ()" + (7 (£)")*.

And this bound completely does not depend on n of F,,. Hence, we can choose n big

enough such that
F,=F

Then, the globally boundedness condition for ' can be omitted now. Instead, the As-
sumption 1 changes to

Assumption 2

(z,(PY)F(z+a,y+b)) < Li2® + Lay® + A
(y,(~P7)F(z+a,y+b)) < Lyz’ + Loy’ + By
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where

Ll < Hm+1,
L4 < —Hm;
LZ 1 L3 Z O:

LaLy < i(a'i'ﬁ)ﬁ,

and Ay, B, > 0 are constants.
To conclude, we have the following.

Proposition 3.3.1 Assume conditions on A, By in Proposition 3.1.5 and locally Lip-
schitz with Assumption 2 for F'. Then there exists at least one F-measurable map

Y : Q@ — H satisfying

0 00
Y(w) = [ T P E(Y (85, 0)))ds — fo T_ P~ F(Y (6(s,w)))ds

— 00

+(w) f_ ’ T o P* BodW (s) — (w) /O T P BedW (s)

for allw e Q.

Proof. This follows from the above arguments. We only need to change the As-

sumption 1 by Assumption 2 and F,, by F from the beginning. 4

Proposition 3.3.2 Assume all the conditions on A, By and F' in Proposition 3.3.1.

Then the semilincar see

&
£
=
"

(—Au(t) + F(u(t))]dt + BodW (t),
u(0) = zeH,

has at least one stationary point Y : Q0 — H, such that
u(t,w, Y(w)) = Y (0w)

forallt > 0 andw € Q.

Proof. This is straightforward to follow the proof of Proposition 3.2.2. §
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§3.4 Invariant Manifold

In this section, we present an invariant manifold theorem according to the previous
results. Here we recall the setting and hypotheses in Section 3.2.1. We will see the
existence of local stable and unstable manifolds for the RDS which is generated by the

mild solution of the semilinear see (3.1} of the form

du(ty = [—Au(t) + Flu{t))|dt + BydW (1),
u(0) = zeH.

Next, the theorem follows from the previous results.

Theorem 3.4.1 (Invariant Manifold Theorem)
Assume the hypotheses on the coefficients of the semilinear see (3.1) in Section 8.2.1.

Assume that the stationary solution Y (w) obtained in Proposition 3.8.2 of the following
RDS

U:R*xQxH—H
generated by mild solutions of (8.1) is hyperbolic. Then the random dynamical system
(U, 8) has a local stable and unstable manifolds satisfying all the assertions of Theorem
8.1.8 in an infinite-dimensional manner.

Proof. To prove this, we need to check two points.

1. The hyperbolic property of ¥, such that

Elog™ | Y |< o0.

2. The integrability condition of Theorem 3.1.3 which is

108t sup_ 11Ut 6(0,), Y (06, 0)) | dP(w) < o0
Q 0&t1,t25a

forany 0 < p, 0 < oo,
For (1), in Proposition 3.2.1, we have the facts

Y, € LP(Q, H)

for all p > 1, and
Z € LOO(Q,H)
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These lead to
Y € LP(Q, H)

for all p > 1. Hence, assertion (1) is satisfied. For (2}, we firstly have the hyperbolic
stationary point Y is integrable. This has been shown above as

Y € LP(Q, H)..

In Mohammed, Zhang and Zhao [25], Theorem 1.2.6 has proved, in a semilinear see

with a linear noise case, such kind of RDS (U, §) exists and be integrable in H, such
that

U(fg g(tl ) SL‘) i
Elog™{ su | A AL
5 {OStl,tIz)Sa (1+]z]) J

forallw € 2, alie > 0 and z € H. Qur case is the semilinear see with the additive noise,

< 00

We can regard it as a special case. Then all the results in Theorem 1.2.6 of Mchammed,
Zhang and Zhao [25] still hold. Therefore, the integrable condition is satisfied by the
above inequality and the integrability of ¥, and the conclusion of Theorem 3.4.1 follows

immediately from Theorem 3.1.3. This finishes the proof. §

§3.5 Further Research

In this chapter, we remnoved the Lipschitz constant restriction. However, for the
global boundedness condition for F, it can be replaced by a weaker Assumption 2.
Although they are weaker than the previous boundedness condition, we can not com-
pletely drop the constant restrictions for Ly, L, Lz and L4, Further research is needed
to relax these restrictions for Ly, Lo, L3 and L;. One may find a weaker condition for

F' by using a different method.

In this whole chapter, we consider the semilinear stochastic evolution equation
with additive noise Actually, we may also possibly consider a semilinear see with the

linear noise such as

du(t) = [—Au(t) + F(u(t))ldt + Bu(t)dW(t),
u(0) = z€H,

where

B:H — L(K,H)
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is a bounded linear operator. In Mohammed, Zhang and Zhao [25], they proved the
existence of flows of different type semilinear stochastic evolution equations (semilinear
see’s). In Zhang and Zhao [40], they studied the non-linear noise case. With their
work, it is possible to extend our work to different type of semilinear see’s. Also, with
great courage and hard work, it is reasonable to consider stochastic partial differential

equations under our settings. This need more work.
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