

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

A Novel Platform Incorporating

Multiple Forms of Communication

to Support Applications in a Mobile

Environment

by

James Elton

A Doctoral Thesis

Submitted in partial fulfillment of the requirements

for the award of

Doctor of Philosophy of Loughborough University

February 2014

© by James Elton, 2014

i

Abstract

This thesis discusses the creation of a novel platform that incorporates multiple

communication methods, including SMS, email and web-based technologies, for

interacting with users of mobile communication devices. The platform utilises people

in a mobile environment to solve a range of different application problems, where

each problem is a separate and distinct scenario type with unique objectives.

There are existing applications available that interact with users of mobile

communication devices to provide a service, such as regular weather updates to the

users. Other applications have been designed to manage and coordinate the users to

perform tasks within a mobile environment, such as performing field studies for

scientific purposes. However, the existing applications are designed for only one

specific scenario, with the design and implementation solely focused on solving the

objectives of that scenario. Each component of these applications needs to be

developed from scratch in order to cater for the application’s requirements.

There is currently no integrated communications platform that offers a framework for

supporting a range of different scenario types. The new platform, entitled the

Connected-Mobile Platform, aims to support the rapid development and

implementation of new scenarios. This platform is composed of a framework of

generic components that enable the active running of multiple scenarios concurrently,

with the ability to tailor to the requirements of new scenarios as they arise via a

structured process. The platform facilitates a means to coordinate its users in order to

tackle the objectives of a scenario.

The thesis investigates several system architectures to determine an appropriate

architectural design for constructing the proposed platform. The platform has a

generic framework, based on a client-server architecture, to facilitate the inclusion of

a multitude of scenarios. A scenario represents a problem or an event, whereby the

platform can utilise and interact with users of mobile communication devices to

attempt to solve the objectives of the scenario. Three mobile communication methods

are supported; the Short Message Service, electronic mail and web-forms via the

mobile internet. Users are able to select and switch between the different methods.

The thesis describes the platform’s tailored communication structure for scenarios

and autonomous analysis of messages.

ii

The thesis discusses case studies of two different scenarios to evaluate the platform’s

facilities for rapid scenario development. The Diet Diary scenario, which is for

individual users, aims to manage a user’s daily calorie intake to help them reach their

desired weight goal. The focus is on the platform’s functionality for analysing and

responding to messages autonomously. The Missing Persons scenario, which utilises

multiple users, involves tracking and locating people who have been reported

missing. The focus is on the platform’s functionality for coordinating the multiple

users, through the creation of assignments, in order to distribute the scenario

objectives. The thesis concludes by highlighting the novel features of the platform

and identifying opportunities for future work.

Keywords: generic framework; mobile communication; mobile society; client-server

architecture; data analysis; email; short message service.

iii

Acknowledgements

Firstly, I would like to thank my supervisor, Professor Paul Chung, for the

supervision and guidance he has provided throughout my PhD research. He has

motivated me to stay focused at each stage of my thesis, been very supportive of my

work and provided me with valuable research skills.

I would like to thank my second supervisor, Dr Andrew May, for reading through my

thesis and the feedback he has provided on my work.

I would also like to thank Dr Lin Guan and Professor David Parish for their help and

advice in the early years of my research.

I would like to express my gratitude to the staff of the Computer Science department

for their help and assistance over my time researching and working at Loughborough

University, especially Christine Bagley, Pamela Taylor, Jo McOuat, Judith Poulton

and Gurbinder Singh Samra. I would also like to thank the research students of the

Computer Science department for their support and providing a friendly environment

in the office.

I am grateful to Loughborough University for funding this work.

I would like to give a special thanks to my family. My parents have been very

encouraging, especially through the tough times of my work. I would not have arrived

at this stage without their tremendous love and support.

iv

Abbreviations

ADO : ActiveX Data Objects

ASP : Active Server Pages

BMI : Body Mass Index

CPU : Central Processing Unit

DER : Distributed Energy Resource

Email : Electronic Mail

GB : Gigabyte

GHz : Gigahertz

GPRS : General Packet Radio Service

GPS : Global Positioning Satellite

GSM : Global System for Mobile Communication

GUI : Graphical User Interface

HTML : HyperText Markup Language

HTTP : Hypertext Transfer Protocol

IDAPS : Intelligent Distributed Autonomous Power System

IDE : Integrated Development Environment

JPEG : Joint Photographic Experts Group

LAN : Local Area Network

MET : Metabolic Equivalent of Task

MMS : Multimedia Messaging Service

MPSS : Mobile Pharmacy Service System

P2P : Peer-to-Peer

v

RDA : Recommended Daily Allowance

SETI : Search for Extra-Terrestrial Intelligence

SMS : Short Message Service

SMSC : Short Message Service Centre

SMTP : Simple Mail Transfer Protocol

SNS : Social Networking Site

SOA : Service-Oriented Architecture

SOAP : Simple Object Access Protocol

SQL : Structured Query Language

RAM : Random Access Memory

RDBMS : Relational Database Management System

TAU : Template Analysis Unit

UDDI : Universal Description Discovery and Integration

URI : Uniform Resource Identifier

WMRS : Web-based Manufacturing Resource Service

WSDL : Web Services Description Language

vi

Table of Contents

1 Introduction .. 1

1.1 Background ... 1

1.2 Aim and objectives ... 3

1.3 Project overview ... 5

1.4 Research methodology .. 7

1.5 Structure of the thesis ... 9

2 Communication Methods and Devices Operating in a Mobile Society 10

2.1 Introduction ... 10

2.2 Communication methods .. 10

2.2.1 Short Message Service .. 10

2.2.2 Multimedia Messaging Service ... 14

2.2.3 Electronic mail ... 15

2.2.4 SMS web services .. 17

2.2.5 Summary and conclusions ... 19

2.3 Devices and technology .. 20

2.3.1 Mobile phones ... 20

2.3.2 Smartphones .. 22

2.3.3 Tablet computers ... 25

2.3.4 Integration of a digital camera ... 26

2.3.5 Location-based services ... 27

2.3.6 Summary and conclusions ... 30

2.4 Conclusions .. 30

3 Review of Communication-Based Applications that Interact with Multiple

 Users ... 32

3.1 Introduction ... 32

3.2 Applications utilising a mobile society ... 33

3.2.1 Pharmaceutical Care application .. 33

3.2.2 Attendance Improvement applications ... 34

3.2.3 Interactive Learning application ... 35

3.2.4 Smoking Cessation application .. 38

3.2.5 Telemedicine Monitor application ... 39

3.2.6 Road Safety Alert application .. 42

vii

3.2.7 UbiquitousSurvey system .. 43

3.3 Non-mobile applications ... 45

3.3.1 HELP system ... 45

3.3.2 Remote Experimentation system ... 46

3.3.3 Perfect Diet Tracker application ... 48

3.4 Social networking sites ... 51

3.5 Conclusions ... 56

3.5.1 Communication methods and devices ... 56

3.5.2 Application features ... 58

3.5.3 Necessity to combine features into a generic platform 61

4 System Architectures ... 63

4.1 Introduction ... 63

4.2 Client-server architecture .. 63

4.3 Peer-to-peer architecture ... 68

4.4 Multi-agent architecture .. 72

4.5 Service-oriented architecture .. 75

4.6 Conclusions ... 82

5 Design and Implementation ... 85

5.1 Introduction ... 85

5.2 Design of the Connected-Mobile Platform ... 86

5.2.1 The platform’s client-server architecture .. 86

5.2.2 Integrated architecture to support multiple communication methods ... 88

5.2.3 Generic framework to manage multiple scenarios 91

5.2.4 Implementation of templates for autonomous operations 93

5.2.5 User preferences .. 95

5.2.6 Assignments for collective intelligence ... 97

5.2.7 Roles of the operator and scenario builder .. 99

5.2.8 Message entity ... 101

5.2.9 News entity .. 102

5.2.10 Data layer of the platform .. 103

5.3 Data analysis process .. 105

5.3.1 MailHandler class ... 106

5.3.2 RequestHandler class .. 110

viii

5.3.3 TemplateHandler class .. 112

5.3.4 AnswerHandler and TriggerHandler classes 113

5.3.5 DatabaseHandler class .. 115

5.3.6 ActionHandler class ... 117

5.3.7 DataOutHandler class ... 121

5.4 Developing a scenario application .. 122

5.4.1 Stage 1: Creating the scenario’s database ... 122

5.4.2 Stage 2: Template and analysis criteria ... 123

5.4.3 Stage 3: Application module development .. 124

5.5 Development environment and software tools ... 125

5.6 Experimental setup for operating scenarios in the case studies 127

5.7 Conclusions ... 131

6 Case Study 1: Diet Diary Scenario .. 134

6.1 Introduction ... 134

6.2 Details of the scenario ... 135

6.3 Implementation of the scenario ... 137

6.3.1 Database entities .. 137

6.3.2 Template and analysis criteria ... 139

6.3.3 Application module development .. 147

6.4 Development time comparison for the Diet Diary scenario 149

6.5 Running a Diet Diary instance .. 152

6.6 Conclusions ... 171

7 Case Study 2: Missing Persons Scenario ... 174

7.1 Introduction ... 174

7.2 Details of the scenario ... 175

7.3 Implementation of the scenario ... 177

7.3.1 Database entities .. 177

7.3.2 Template and analysis criteria ... 179

7.3.3 Development of new modules ... 185

7.4 Development time comparison for the Missing Persons scenario 186

7.5 Running a Missing Person instance .. 192

7.6 Scalability test to assess the performance of the platform 207

7.7 Conclusions ... 218

ix

8 Conclusions and Future Work .. 221

8.1 Conclusions ... 221

8.1.1 Support of multiple communication methods 222

8.1.2 Features of the novel framework ... 224

8.1.3 Autonomous functionality for real-time responses 225

8.1.4 Assignment functionality for coordination of users 227

8.1.5 Rapid scenario development process ... 228

8.1.6 Summary of contributions ... 230

8.2 Future work ... 233

8.2.1 Improvements to the platform’s functionality 233

8.2.2 Ideas for future areas of research ... 238

References ... 245

Appendices .. 264

A1 Algorithms for the Diet Diary Scenario ... 264

A2 Published Work ... 267

1

1 Introduction

1.1 Background

People in today’s society commonly use mobile communication devices to perform a

variety of tasks, which includes communicating with other people, interacting with an

array of services and accessing the internet. The users of mobile communication

devices are free to work on the tasks while they are on the move [1]. The rise in

popularity of mobile phones has enabled people in society to communicate with each

other from almost any location and at any time [2]. The user may either be at a fixed

location such as their home or on the move, whilst in the process of the interaction.

Therefore, the ability for a user to interact with an application via a mobile

communication device from any location is referred to, in this thesis, as interacting in

a mobile environment. There has been a rapid growth in one particular type of device,

the mobile phone, with subscriptions worldwide growing by approximately 45% per

year since 2006 [3]. Mobile phones have become a must-have technology that a large

number of people would always have close to them [4].

Mobile phones support multiple methods of communication in order for the user to

interact with other device users. These methods of communication range from the

standard voice communication to the Short Message Service (SMS) protocol, which

is used for the communication of short text messages between mobile phones [5].

SMS has become a popular communication method for mobile phone users [6] with

the majority of mobile phones adopting SMS as the default method for sending and

receiving messages between devices [7, 8]. The introduction and advancement of

mobile internet technology has enabled a large number of mobile phones to now

include integrated electronic mail (email) functionality [9]. Therefore, these devices

can take advantage of the advanced features available via email communication. For

example, the images that are captured on camera-integrated devices can be sent

immediately, as an attachment, in an email [10].

Originally, the purpose of SMS was for person-person messaging, whereby two

subscribers could exchange messages between each other [6]. However, it has

become an increasingly common practice for organisations to communicate with

numerous mobile phone users in order to supply information and gather data from the

2

users in a process known as machine-person messaging. This process has been used

for information services, whereby a mobile phone user may subscribe to the service in

order to receive regular message updates on topics of interest. The messages are

automatically created by these information services, which are then sent to the

subscriber’s device. An example information service is an SMS weather service that

sends users daily updates on the weather in the user’s current location [11].

People are now able to communicate with others and utilise a vast range of

information services from almost any geographical location, leading to the society we

are living in becoming increasingly more mobile. This new type of mobile society

that has developed in recent years has enabled increasingly complex services and

applications to be developed, which provide a more interactive scope for mobile

phone users. The users of these applications are able to interact via mobile

communication methods. For example, a Pharmaceutical Care application [12] has

been developed and implemented in a hospital in China to provide individual care to

outpatients by the use of SMS communication. The application focuses on tailored

SMS communication, generating and sending individualised text messages to

outpatients that provide alerts specifically related to the attributes of these users. The

application would also receive messages from a user in order to be kept up-to-date

with their condition. The UbiquitousSurvey system [13] facilitates field studies to

observe population characteristics of animals. The application focuses on managing

users as data gatherers, whereby their mobile communication devices are used to

collect the data from the field. This data is then sent to a central server for analysis

using a data communication method over the mobile internet.

These bespoke systems can take a considerable amount of effort and time to create,

whereby each component has to be developed and tested from scratch. This may

include designing a component for sending and receiving messages and another

component for the analysis of received messages. The design elements, within these

components, could overlap considerably between different systems. However, the

framework for each system is only created for a specific focal problem. To cater for a

new problem would require large changes in the system design. To create a

communication system that is generic to support multiple scenarios would reduce the

3

development effort for the individual scenarios, making the system far more robust in

an ever changing and dynamic world.

1.2 Aim and objectives

The aim of this project is to design and create a new platform, with multiple sources

of input and output, to support the development and implementation of scenario

applications that would run in a mobile environment. Existing applications that

interact with users in a mobile environment are only designed for a specific focal

problem, whereby each component of an application must be developed from scratch

to resolve that problem. The proposed platform would consist of a novel framework

of generic components to enable new types of scenario applications to be rapidly

integrated for active use via a structured process. This would include support for

scenario applications that provide a direct service to individual users of mobile

communication devices via tailored interactions. The platform would also support

scenario applications that focus on managing and coordinating multiple users to solve

tasks in a dynamic and changing environment.

The novel platform would primarily act as the communications handler for each

scenario application. The key functions of the platform would be to receive

communicated messages, extract and analyse the message data, store the data in

meaningful locations and perform appropriate actions in response to the data. These

functions would be dependent on the scenario application that the communicated data

is regarding. The entire interaction process, from the platform initially receiving new

information to performing appropriate actions in response, would need to be

completed within a short timeframe with the appropriate threshold determined by the

scenario application. This is to ensure that the platform can react to time-relevant data

swiftly, allowing users to receive updates or further instructions without a long delay.

This requirement is referred to as the platform’s ability to process message data in

real-time.

The platform would interact with people in our mobile society, who are the users of

mobile communication devices. The platform would utilise these people to negotiate

through and solve the objectives of each scenario application. The participating users

could be requested to undertake application-specific tasks or gather field data to assist

in the running of the application. Through the research of current communication

4

techniques this project should consider the means to effectively stay in contact with

the users of the platform at all times, regardless of their geographical location. This

research explores the methods that would ensure as many potential users of mobile

communication devices as possible can interact with the platform. The platform

should then be able to coordinate multiple users in order to solve objectives that arise

in the running of a scenario application. Multiple methods of communication should

be available within the platform to cover the wide range of devices, as well as benefit

from the different features and properties that each method offers. This would provide

a means to establish an effective communications structure to maintain a dialogue

with each user in order that they can participate in an application.

The platform requires a novel framework design to support the development and

integration of a range of different applications. This should be based on a suitable

system architecture to ensure an efficient method is formulated for handling system

data and communicating with users of mobile communication devices. Each

application would represent a problem scenario with specific requirements, which

would require fulfilling by the platform. The platform’s framework would have

generic properties to provide the necessary functionality to run each application.

A proof of concept prototype of the platform is to be developed, based on the selected

system architecture. A survey of current applications that utilise people in a mobile

society is needed to be able to identify functionality for implementation in the

platform. The platform needs to include a straightforward development process for

integrating each scenario application in order to facilitate an application’s rapid

implementation. Each of these factors should help contribute to a large reduction in

the time and effort required to build each application, as the underlying components

of the platform would be re-usable for each application. Therefore, a new application

would not need to be built from scratch each time.

Case studies are to be performed for evaluating the feasibility and effectiveness of the

platform by running example scenario applications that test the different aspects and

functionality of the platform. The platform’s development process would need to be

compared to the implementation of each application from scratch in order to

demonstrate the amount of time and effort saved by using the platform. Once the

scenario application is ready for use within the platform, an experiment is required to

5

assess the real-time running of the application from the users’ points of view.

Furthermore, a scalability test is required to assess the performance of the platform

when a large quantity of users are registered and interacting in the relevant scenario

application. This would highlight the limitations of the platform by discovering the

maximum amount of users that can interact simultaneously with the platform, without

sacrificing the platform’s capability to respond in real-time. This evaluation would

help discover areas of improvement that can be made to enhance the platform.

1.3 Project overview

An integrated communications platform, entitled the Connected-Mobile Platform, has

been developed to support three different types of mobile communication methods;

SMS, email and data input via a web-based user interface. Each communication

method has unique properties that the platform is able to utilise. SMS is ubiquitous

for the sending and receiving of short text messages between mobile phones. Other

types of internet-enabled communication devices can use email and the web-based

user interface to interact with the platform. These internet-based methods offer

additional functionality, including the transmission of multimedia messages and a

more user-friendly interface respectively. By incorporating support of the three

communication methods, the platform is able to interact with a broad range of mobile

communication devices. The users choose their preferred method of communication

for the sending and receiving of messages, which the server would then utilise to

interact with them. This preference is automatically updated whenever the user

switches to an alternative communication method, enabling the user to select the most

effective and convenient communication method each time they initiate the

interaction process.

The platform has a framework of generic components to facilitate the inclusion of a

range of different scenario applications, whereby each scenario represents a specific

type of problem. Each occurrence of a scenario is defined as an instance of the

scenario. The framework is designed based on a client-server architecture where

operations are split between two types of components; a server and client devices

[14]. The server is a computing device that houses the core application of the

platform and the databases for data storage, containing the necessary hardware and

software to run the platform. Each user in the field is a client with their mobile

6

communication device being a client device. The users perform tasks and gather field

data, which is then sent to and analysed by the server. The platform design is based

on three separate layers; a presentation, logic and data layer. These layers have been

designed using the foundation of a tiered communication model, which has been

implemented within the Remote Experimentation system [15]. This provides a

structure for the communication between the server and its clients.

The core functionality of the platform covers a wide range of features that can be

utilised by each scenario, which includes the underlying communication process for

interacting with the users. A template mechanism has been implemented, whereby

each message exchanged between the server and its users is based on a pre-defined

template structure. The template mechanism supports all three communication

methods, enabling a simplified process of data extraction by the server and an

effective means for users to send field data.

The platform’s middleware, entitled the Template Analysis Unit (TAU), handles the

analysis of field data extracted from a user’s message. The TAU utilises both

template criteria and analysis entities that have been pre-defined and tailored to the

requirements of the scenario. The purpose of the TAU is to autonomously process

user messages. Therefore, actions and responses can be achieved in real-time, based

on the results of analysis on the field data sent from a user. Additionally, each

scenario can have its own application module integrated within the platform for

scenario specific functionality and analysis.

There is a Principal database to store data on the core entities of the platform. These

include scenarios, users, messages, templates and the criteria for data analysis

procedures. Additionally, each scenario has its own specific database to store

collected field data relating to the scenario.

The platform incorporates assignment functionality and location-based technology to

manage and coordinate users in multi-user scenarios. New assignments are

dynamically generated during the active running of an instance, whereby each

assignment is created for a user to resolve a specific objective of the instance. An

assignment that is location-dependent would be efficiently allocated to a user based

on the closest user’s geographical proximity to the assignment’s location.

7

The platform enables a smooth and rapid integration of scenario applications, which

is based on a three-stage scenario development process. It is the role of the scenario

builder to develop each scenario. This process involves the design of the scenario’s

database, creation of the template and analysis criteria and the programming of the

application module.

There are two different scenarios that are designed to test and evaluate the platform’s

functionality. The first scenario, entitled the Diet Diary scenario, tracks the daily food

consumption and activities performed by a subscribed user. This is a basic scenario as

only one user is assigned to each instance. Its purpose is to evaluate the

communication process between the server and a user, as well as the TAU’s ability to

process field data. The second scenario, entitled the Missing Persons scenario,

investigates the platform’s ability to handle and coordinate multiple users. The aim of

this scenario is to track and locate people who have been reported missing.

Assignments can be generated for this scenario to provide specific tasks to each user,

making it possible for the platform to coordinate the tasks being performed by the

multiple users. During the investigation of these scenarios the development time and

effort is analysed to determine the platform’s ability to support a rapid

implementation of future scenarios.

1.4 Research methodology

This project has been carried out based on a five-stage research methodology. The

initial stage of the project involves undertaking a requirements analysis to build a

functional specification of the features to be incorporated in the proposed platform.

The requirements analysis starts with a review of current mobile communication

technology. This review is performed to identify both the communication methods

and hardware (mobile communication devices and their integrated components) that

the platform would need to support.

The requirements analysis also consists of a review of existing applications that

interact with their users via the researched mobile communication methods. This

would include an investigation into applications that provide a tailored one-to-one

service to each of its users and applications that interact with multiple users to resolve

a specific problem. This review is performed to identify the procedures used to

interact with and manage the application users within a mobile environment as well

8

as to explore the practical features that have been implemented to resolve the

objectives of the applications. Furthermore, it is important to determine missing

functionality that would provide improvements to the operations of these

applications. Conclusions from this review would determine the necessary

functionality to include in the platform.

The next stage is to select a suitable systems architecture for the design of the

platform. It is important to investigate multiple system architectures, examining

applications that use each architecture to assess their benefits and drawbacks for use

in a mobile environment.

The gathered requirements within the functional specification need to be translated

into a design specification for the platform. The platform would be split into several

components, each tasked with supporting one or more of the required features

initially outlined in the functional specification. Using the design specification a

prototype of the platform can be developed and implemented within a programming

environment. This involves selecting a suitable programming language and data

storage solution to ensure that the platform is able to operate and support the

identified feature-set.

Once the platform has been implemented it is important to observe its functionality in

supporting active scenarios. This is achieved by performing experimental case studies

to test the different types of scenarios that the platform is required to support. This

stage involves running the structured development process for each scenario type,

where the speed and ease of integrating new scenarios into the platform is assessed.

The experiments also include testing the platform’s functionality in running instances

of each scenario and supporting multiple users simultaneously.

The final stage of the research methodology is to evaluate the platform’s feasibility in

achieving the aim and objectives that were initially identified and defined, using the

resultant data from the two case studies. The conclusions are used to determine the

contributions of the thesis to knowledge, as well as to identify areas of improvement

to advance the scope of the platform and its wider applicability to resolve practical

problems.

9

1.5 Structure of the thesis

Chapter 2 reviews the different technologies that are currently available for

facilitating communication in a mobile society. This includes the investigation of

communication methods, such as SMS and email, which transmit information

between two different devices. The devices that provide a means for people to

communicate with each other, such as mobile phones, are also investigated.

Chapter 3 investigates applications that have utilised current mobile communication

technologies to achieve a particular goal and explores the successes and shortcomings

of these applications. Features of each application are identified to establish the

functionality that should be implemented into the proposed platform, which aims to

support a range of different applications. Other applications are also investigated that

include functionality which may be advantageous to the platform.

Chapter 4 investigates three different system architectures to determine the most

appropriate type for the proposed platform. The investigated types are the client-

server, peer-to-peer and multi-agent architectures. Current systems that utilise each

architecture are examined to identify their benefits and drawbacks.

Chapter 5 discusses the novel design and implementation elements of the new

platform, detailing how the platform’s generic framework is created together with the

design elements for integrating scenario applications. The stages of the data analysis

process performed on user messages are described in this chapter. This is followed by

the details of the scenario development process required for each scenario to be

integrated into the platform.

Chapters 6 and 7 examine case studies of different scenarios used to evaluate the

platform’s functionality. These scenarios are the Diet Diary scenario (Chapter 6) and

the Missing Persons scenario (Chapter 7). The design elements of each scenario and

the way in which these scenarios utilise functionality from the platform’s generic

framework are discussed. The scenario development process is examined for these

scenarios, focusing on the implementation of functionality specific to each scenario.

Chapter 8 presents a summary of the project and highlights the ways that the aim and

objectives of the project have been met. This chapter also discusses the contributions

of the project and identifies future work that is required.

10

2 Communication Methods and Devices Operating in a

Mobile Society

2.1 Introduction

This chapter investigates the current techniques that are employed for mobile

communication. The review surveys the communication methods and devices that are

currently available, exploring their use in a mobile environment. These methods and

devices are explored to view how they can assist services that interact with people in

a mobile society, where these people need to be contacted from various locations. In

recent years the popularity and continuous development of mobile phones has

provided flexible means of communication in a mobile society. This development has

been both on the hardware side of mobile phones and the available methods of

communication.

2.2 Communication methods

This section focuses on communication methods that can be utilised for

communicating in a mobile environment. When mobile communication devices first

came to the market, voice communication was the only available method. Over the

last few decades a range of new communication methods have been developed [2].

These new methods have allowed for a variety of different ways to communicate in a

mobile society, which started with simple text-based communication. This has

progressed to more advanced methods, which allow for communicating with

multimedia and more flexible methods to transmit data, such as the internet.

2.2.1 Short Message Service

Short Message Service (SMS) is a mobile communication method, whereby mobile

phone users can communicate through the sending and receiving of short text

messages [5]. There has been a rapid growth in this communication method since the

first text message was sent in the early 1990s [6, 16]. Figure 2.1 illustrates the early

growth of SMS within the UK, showing the rise in the number of text messages sent

each month between the years of 2000 and 2005. Figure 2.2 illustrates the continued

growth worldwide to the year 2010. These charts show that there has been a steady

and consistent increase in messages sent, which were still increasing by over 40% in

2010. There have been two key reasons for this growth. The majority of mobile

11

phones are compatible with SMS and provide straightforward ways of using this

method to send and receive messages. Secondly, sending a text message is a less

expensive option, provided by the mobile networks, to that of a voice call [7, 5].

These attributes have helped to make sending SMS messages a ubiquitous method of

communication [8].

Figure 2.1: Initial growth of SMS in the UK from 2000-2005 (adapted from [17])

12

Figure 2.2: Continued growth of SMS messages sent worldwide from 2007-2010

(adapted from [18])

Originally, the purpose of SMS was for person-person messaging, whereby two

human subscribers could exchange messages between each other [6]. Messages are

sent over the mobile network infrastructure and received by the receiver when their

device is ready to accept incoming data. If the receiver’s device is switched on and

can obtain a network signal then a message is usually received within seconds.

However, the store-and-forward specification of SMS means it is not necessary for

the receiver to have their device on when the message is sent [19]. If the receiver’s

device cannot obtain a network signal then the message would be stored in an SMS

centre, an intermediary location held by the network, until the message is successfully

delivered, as illustrated in Figure 2.3. SMS does not require users to be available in

real-time, as opposed to voice calls. The receiver can then choose to respond to the

sender at a convenient time [20]. This factor has helped make SMS a popular method

of communication for the younger generation [2, 21]. It is an accessible way for

students and young adults to keep in touch with friends [22]. Each user can regularly

send messages throughout the day, providing a continuous channel of communication

between the two parties without the need to send a reply immediately [23].

Furthermore, SMS messages can be sent from any location where the sending device

can obtain a network signal, which provides the ability to communicate anywhere and

at any time.

13

Figure 2.3: Store-and-forward procedure for sending messages via SMS (adapted

from [19])

A further use for SMS is for machine-person messaging, whereby communication

occurs between a person and a computer in order to achieve a particular objective [6].

An example of the usage of machine-person messaging is through information

services. These are services which mobile phone users may subscribe to for the

purpose of receiving message updates on topics of interest (Figure 2.4). Such

examples include weather, traffic and news information services [11]. Over two

million mobile phone users utilise SMS weather services on a daily basis in the USA

in order to obtain details concerning the weather [24]. Messages are automatically

created by these information service providers, which are then sent to the subscriber’s

device. The reverse process of person-machine messaging also exists. An example of

this is where television viewers can participate by sending messages on some reality

television shows. This includes sharing their views on the subject being discussed in a

talk show or providing a vote for contestants in a competition [22]. These are

examples of either utilising people in society or providing a service to the users,

regardless of their physical location.

14

Figure 2.4: News (left) and weather (right) notifications sent from an information

service provider to subscriber devices (retrieved from [25])

2.2.2 Multimedia Messaging Service

Multimedia Messaging Service (MMS) enables complex information to be sent over

mobile networks. This is an enhancement over SMS and is conventionally utilised to

send multimedia files as an attachment alongside a text message [26, 6]. SMS limits

the user to only a small quantity of text per message. MMS ranges from basic text

messages, where the text can be formatted in a variety of ways, to the inclusion of

image, video and audio files (Figure 2.5). These extra features provide more

interaction and control over the content that is included in the message [27]. MMS

technology offers the ability to send an image immediately, which has just been

captured, to another device. For example, whilst shopping it is possible to take a

picture of an item and send the image file to a friend to find out their opinion on

whether it would be a worthwhile purchase [28].

Figure 2.5: An MMS message sent to a mobile phone, containing an image and text

(retrieved from [29])

15

MMS has not been as successful as SMS, which is partly due to MMS not being as

ubiquitous [30]. Fewer mobile phones support MMS and those that do usually require

the user to configure the service themselves. Additionally, the fees for sending a

message via MMS can be up to five times greater compared to SMS, depending on

the network provider [31].

2.2.3 Electronic mail

Electronic mail (email) is an electronic communication method which started prior to

SMS. In a fixed location, such as the work office or at home, it has been the most

accepted method of communication since the adoption of the internet by society [32,

33]. With the introduction of wireless and mobile internet technology, mobile devices

have been able to effectively include email facilities into the mobile environment.

One such example is the Blackberry mobile phone range. Blackberry devices have

seamlessly integrated email functionality (Figure 2.6) into a mobile environment

through the use of a software application installed on the device that facilitates the

sending, collection and organisation of messages on the device [9]. Emails are

automatically and persistently forwarded when they are received from a server to the

device, via the always-connected mobile internet [34].

Figure 2.6: An example email application running on a Blackberry device (retrieved

from [35])

An advantage for a mobile device to communicate via email as opposed to SMS or

MMS is that this method is free for sending messages [36]. In the case of a

framework where a system is communicating to many devices, the system can always

be connected to the internet. This would make it far cheaper to regularly send

messages as there is no subsequent cost per message since the only cost is the running

16

of an internet connection. However, the costs of using the mobile internet can vary for

a mobile user who would require internet allowance in their mobile phone contract to

benefit.

In comparison to SMS, the sender of an email message has the ability to be more

descriptive when creating the message, without the word limits or restrictions

imposed by SMS [37, 38]. The email functionality allows any type of media file to be

included as an attachment. Images, audio and video can be sent via email at no extra

cost [39]. Figure 2.7 illustrates an email message containing an attachment being sent

to multiple recipients. This message has also exceeded the character count of a

standard SMS message, whereby in the case of SMS there would be a further cost

incurred.

Figure 2.7: An email message being sent to multiple recipients, containing an

attachment

People are increasingly purchasing more than one mobile device to use. SMS

messages are only stored locally on one device. Since the user’s complete email

collection is stored on the servers that provide the email address the user is not locked

into using only one device. The user can access their messages from any device,

which has the necessary mobile internet and email functionality [40].

Mobile users tend to both check and respond quickly to text messages received,

whereas emails are usually checked in less regular intervals [41]. For time-sensitive

information this could be a crucial factor in deciding which communication method to

use in order for the user to receive the relevant information. SMS is still a more

universal method of sending and receiving messages over mobile phones since it is

available on all devices, does not require access to the mobile internet and is

standardised in the mobile environment [39].

17

2.2.4 SMS web services

There are numerous online services that provide the facility for communicating via

SMS from a fixed server to a mobile phone, by use of the internet. TextLocal [42] and

BulkSMS [43] are examples of websites that offer this type of service. An SMS web

service offers companies a generic method for sending and receiving messages

to/from their customers. Purchasing bulk credits of SMS from the web service can

reduce the cost of messaging in this way compared to individually sending messages

from a mobile phone.

The different SMS web services have similar features to each other. They each allow

their clients to bulk send a message to numerous recipients simultaneously. This is

practical for broadcasting the same information to many people, for example sending

alert notifications and advertising information to the client’s customers, referred to as

the users. Figure 2.8 illustrates a client interface for sending messages to their users,

where in this example all the users would receive an advertising message. The SMS

web service provides various methods for its clients to send and receive messages.

One method for sending a message is the Hypertext Transfer Protocol (HTTP) Post

method. The client makes a request via the HTTP protocol over the internet to send a

message, providing the message details in defined parameter positions of the HTTP

request. Another method is for the client to send an email of the message to the SMS

web service, which then converts and sends it as a text message to the users. The text

messages sent from the users are converted by the SMS web service and then sent as

email messages to the client. An automated programme can exploit these methods to

control the communication to and from mobile phones, without the need for human

involvement.

18

Figure 2.8: TextLocal provides ability to send a bulk text to a group of users

(retrieved from [42])

TextLocal [42] has the capability to send MMS messages in addition to SMS. In

Figure 2.9 an image, audio or a video file can be uploaded and sent as an MMS

message to multiple contacts. This means that multimedia files can be sent out as part

of the message where textual information is not as satisfactory in describing a

situation.

Figure 2.9: TextLocal webpage for sending an MMS message (retrieved from [42])

SMS web services can be effective generic systems that provide a means of

communication for many situations and scenarios. Nonetheless they are limited due to

being designed only as a facilitator for communication; with limited management of

19

the communication beyond ensuring messages arrive at their destination. There is no

analysis of data within received messages or means to use a predefined template for a

message. This handling and analysis of the communication would have to be

controlled manually or by the client’s own software system. However, signing up to

an SMS web service makes the communication component of a system simpler and

more efficient at working. This is due to the system being already in place and a

tested method of communication, thereby providing a straightforward process of the

exchange of messages between a client and its users.

2.2.5 Summary and conclusions

The available methods that facilitate communication between mobile devices are

being improved on a regular basis [44]. SMS, MMS and email have been selected for

investigation in this chapter as each method has unique properties when utilised by

users of mobile communication devices. The use of SMS is suited for simple text-

based messages. SMS continues to be the most universal method of messaging over

mobile phones since it is available across all levels of this device type [36] and is

standardised in the mobile environment [39]. MMS supports enhanced features over

SMS, including the sending and receiving of multimedia messages. However, it is not

as ubiquitous as SMS and can be far more expensive when sending a large number of

messages.

Communication via email is an effective method for users since it is a zero-cost

solution to sending descriptive messages with multimedia attachments. Furthermore,

the email communication method enables interactions between other types of mobile

communication devices, such as tablet computers which are discussed in the next

section. However, email is not universally accessible to all users of mobile phones

and communication via this method requires the user to have a mobile internet data

plan.

Each of the communication methods offer different benefits and drawbacks in

relation to both the users and applications that are involved in the communication

process. Therefore, when looking at person-machine messaging there is a need for a

harmonious integration between the different communication methods. Each person

may have a different communication preference or alternatively a user’s preference

may change at different times, which could depend on the information they want to

20

present in the message. Multimedia content could be more preferable to be sent by

email. There are other factors, such as the capabilities of the device currently being

used by a person, which would help determine their communication preference. A

basic approach of communication for users is to offer only one option, for example

email-to-email or SMS-to-SMS. In these cases the user is locked into just one method

of communication. Integration between multiple methods of communication could

include allowing the user to send information by the different methods with the

system responding by one pre-set method of reply. In this example, a user may be

able to send a message by either SMS or email but all the system’s responses would

be sent back to the user via email. The most complete integration of the multiple

communication methods would be to allow the sending and receiving of each method,

whereby the user determines their preference. For example, if the user sends a

message via SMS future messages would be sent back to the user via SMS. If the user

switches to email the system would follow suit. In this way greater flexibility is

provided to the user as they are able to choose the most convenient method of

communication.

2.3 Devices and technology

In today’s society many people now use mobile communication devices to perform an

array of tasks. These tasks range from accessing the internet in a mobile environment

to communicating via numerous methods to other mobile users. Unlike personal

computers, mobile communication devices allow the user to work on tasks from any

location [1]. Mobile phones and tablet computers are two such mobile devices. In

comparison to fixed computer systems these mobile devices operate on cut-down

operating systems. However, with the rapid progress in technology these devices are

becoming both faster and more usable [45].

2.3.1 Mobile phones

The device that has seen the largest rise in popularity in recent years is the mobile

phone. The first generation mobile phone was introduced into the market in the

1980’s [46]. Initially these were not easily portable as they were large bulky devices,

illustrated by the device on the far-left in Figure 2.10. Mobile phones were expensive

to purchase and access to the voice communication service was not ubiquitous as

21

there was no universal standard [6]. These factors contributed to the device not being

widespread in popularity.

Figure 2.10: Evolution of the mobile phone from left to right (retrieved from [47])

The last two decades has seen tremendous growth in the mobile phone market with

these devices being a must-have technology that the majority of the population now

carries around with them at all times [2,4]. The newer models of mobile phones

utilise a universal communication service, called the Global System for Mobile

Communication (GSM). GSM provides a higher quality service for voice

communication than earlier services had previously offered [48]. Additionally, new

features have become available for mobile phones, including text messaging and

internet access. This has allowed a global wide-reaching access to this new market,

thus enabling the mobile phone to become a ubiquitous tool for communication [6].

During this time manufacturers were continuously improving the devices by

decreasing the size and weight, whilst increasing battery life [2]. The size deduction

is shown by the devices towards the right in Figure 2.10. Mobile phones have

therefore been transformed into small multi-purpose gadgets which can easily fit into

a user’s pockets. The rapid growth in mobile phone subscriptions has continued

yearly, as shown by the chart in Figure 2.11, growing by approximately 45% each

year since 2006 [3]. The chart also illustrates that there are significantly more mobile

phone subscriptions than in other available forms of communication, including fixed

telephone lines.

22

Figure 2.11: The rise of mobile phone subscribers worldwide from 2006-2011 and

comparison with other forms of communication (adapted from [3])

There are limitations with the functionality of mobile phones due to their design for

mobile use. The input capabilities are not as comprehensive as those of larger fixed

devices, such as personal computers. Mobile phones lack a full-size keyboard and

mouse, with many requiring input via a numerical keypad. It is necessary to

frequently press the same key in order to input the correct character [49].

Furthermore, the small screen limits the amount of information that can be displayed,

which could make it difficult for users to clearly read the information.

2.3.2 Smartphones

The development of the smartphone has helped to resolve the issues arising from

standard mobile phones. A smartphone is a mobile communication device that

includes an advanced operating system and superior computing functionality in

comparison to a standard mobile phone [50, 51]. Figure 2.12 illustrates a comparison

between a smartphone and a standard mobile phone. There are many applications

available to install on smartphones in order to benefit the user [52]. An example of

this is satellite navigation software, which is a popular type of application that is

available for smartphones [53]. This software enables users to obtain details of their

current geographical position and also receive directions to locations of their

choosing.

23

Figure 2.12: Comparison between a smartphone (left) (retrieved from [54]) and a

standard keypad-style mobile phone (right) (retrieved from [55])

The usability of mobile devices has increased as a result of the advancements in the

smartphone technology. Touchscreen interfaces allow the screen to be utilised as an

input device by the touch of a finger. Larger and higher-resolution screens display a

greater amount of information, as well as presenting this information in a clear way

[56]. The Apple iPhone (left device in Figure 2.12) has received considerable praise

amongst critics for its innovative display and easy to use touchscreen interface [57].

This has brought about a revolution in handset designs, facilitating a greater degree of

interaction than previously possible [58]. An alternative device, the Blackberry

smartphone, has a small QWERTY keyboard and trackpad integrated into the device

[9, 59]. These are input components, analogous to a computer keyboard and mouse

[60], to simplify the process of viewing and replying to email messages by offering

quick navigation and input of text (Figure 2.13).

24

Figure 2.13: Blackberry device with an integrated QWERTY keyboard and trackpad

(retrieved from [61])

A large number of mobile phones today have the hardware for accessing mobile

internet services together with the appropriate software for specialised email facilities

[59, 56]. The advancements in communication technologies together with the

continuous improvements on processing speed have allowed mobile phones to access

the internet at an acceptable speed and in a convenient way [45], as illustrated in

Figure 2.14. These features are enabling people to be connected with each other,

quickly and easily, wherever they are situated [62].

Figure 2.14: iPhone accessing a website on the internet with the ability to zoom in on

parts of the content (retrieved from [63])

25

2.3.3 Tablet computers

In the past few years tablet computers have become very popular devices for

consumers to own and use at a time and place convenient to them [64]. Figure 2.15

shows an image of Apple’s iPad, which was the tablet computer that started the

success of this new market [65]. Tablets are flat panel devices that combine the

computing capabilities of a smartphone but with a larger touchscreen, which would

usually be between 7-10 inches in size [66, 67]. The touchscreen is the input device

with a large onscreen keyboard that can be easily hidden from view [68].

Figure 2.15: Apple iPad tablet computer (retrieved from [65])

A tablet can provide functionality more akin to a laptop, which includes a greater

focus on content creation [69]. There are many applications available to install on

tablets, which include writing word documents, creating presentations and editing

images [70, 71]. These types of content creation are far more appropriate on a tablet

than a smartphone due to the larger screen size and strong battery life of up to 10

hours of constant use [68]. The advancement in the availability of wireless

connectivity for accessing the internet has also helped tablets to become a user-

friendly method for social interaction activities amongst users [72]. Users are able to

communicate with other people face-to-face, by voice or text and with the benefit of a

built-in camera there are a range of communication applications available to the

device [66]. All these factors have helped the tablet computer to become an attractive

device for a consumer to use when they are both at a fixed location and on the move.

26

2.3.4 Integration of a digital camera

An integrated digital camera is now commonly found on mobile phones. This

component allows the user to spontaneously take photographs of people, sites and

other objects of interest that they experience in their daily lives [10], as shown in

Figure 2.16. The first camera phones released in 2002 were of a low quality and

insufficient for taking reasonable photographs when compared to standalone cameras.

However, improvements in mobile technology have allowed camera phones to

compete in quality. Many mobile phones now offer the same functionality as

standalone cameras to take good quality photographs, such as autofocus, optical

image stabilisation and a high resolution lens [73].

Figure 2.16: Mobile phone being used to take a photograph of the landscape

(retrieved from [74])

Whereas digital cameras brought the ability to instantaneously view captured images

on the devices’ screen, camera phones facilitate the possibility of being able to send

the images to virtually anyone regardless of where they are situated [28]. Once an

image is captured it is saved in the device’s memory as a JPEG file, a compression

technique to keep the file size small [75, 76] making it faster to send the file to a

recipient. Information and events can be difficult or inappropriate to express vocally,

due to having unique visual features. However, a camera phone is a device that allows

not just the communication of information verbally but also visually. This facilitates

the possibility of sharing visual events that the user considers to be of general interest

or importance [31].

The integration into mobile phones of a good quality digital camera has had the effect

that many people use these devices as a replacement to standalone compact cameras.

27

Mobile phones allow users to capture spontaneous events virtually anywhere in the

world giving rise to new opportunities, such as amateur photojournalism. This is in

contrast to standalone cameras, which a user would normally only have with them for

specific purposes [10]. People with mobile phones have the ability to record anything

they consider newsworthy, which can then be sent to friends or even news companies

they believe would find the information of interest [10]. This has provided other uses

where members of society can assist in the public interest, such as law enforcement.

An example of this is where a shop owner in Sweden took a photograph with a

mobile phone of someone shoplifting from their store. This photograph was supplied

to the police and used to identify and find the criminal [28].

2.3.5 Location-based services

Global Positioning Satellite (GPS) technology is a method that can locate users with

high accuracy, which is now integrated into high-specification mobile phones. This is

a navigational technology that utilises orbiting satellites (Figure 2.17) in order to

locate the receiver device, which is based on its longitude and latitude positions [77,

78]. The user can be located with an accuracy of a few metres via GPS technology.

Additionally, as the GPS hardware is integrated within the mobile phone, the location

data of the device is computed and stored internally [79]. The position data can then

be retrieved by navigation software that is installed on the device. This makes it

possible for a mobile phone user to key in a particular address, for example a friend’s

house, and be returned with instructions on the route to travel based on their current

location, as shown in Figure 2.18 [80]. Since a mobile phone is a small portable

device that can easily be carried around by a user, it is an ideal piece of hardware to

utilise GPS functionality [81].

28

Figure 2.17: GPS technology uses multiple satellites to accurately track an object’s

position (adapted from [82])

Figure 2.18: Mobile phone navigation software providing directions to reach a

destination using GPS technology (retrieved from [83])

Mobile phones can now be localised using GPS technology making it possible for a

centralised system to track the user’s location. This allows the opportunity for

location-based services, which provide information to a mobile phone user that is

associated with their current geographical location [84]. These services have

generated a large amount of interest recently due to both the increased number of

29

mobile phones on the market and the decreased cost of GPS-enabled phones. For

example, a user can use a location-based service to find details of the closest hotel,

cinema or restaurant, including the distance from their current position and the map

location. AroundMe [85] is a mobile phone application, shown in Figure 2.19, which

provides location-based services to help users find local businesses that are close to

their current location. These services can also be used to obtain reports on weather or

traffic at or near the user’s current location [86]. Some GPS-enabled devices have the

ability to send location data to any device it connects to. In the USA, when a call is

made to the emergency services the location of the device is then sent to help locate

the user quickly and direct the calls to the necessary site [78].

Figure 2.19: AroundMe application for mobile phones (retrieved from [87])

There have been experiments to investigate the collaborative use of mobile phone

localisation, whereby more than one device is used for localisation to provide the

possibility of cooperation between mobile users. An example system is where there is

a central server that holds details of the current and likely future locations of various

people, using their mobile devices and previous tracking data of their daily lives [81].

This system assigns users into groups of those most likely to be near each other,

based on their expected location models at particular times. This information could

then be used to coordinate and mobilise the users in a more efficient manner in order

to tackle tasks. An example of this is where the system autonomously books a work

meeting where the people who need to attend, according to their location models,

should all be in the same building at the set time of the meeting.

30

2.3.6 Summary and conclusions

Mobile phones and the various other mobile communication devices have helped to

facilitate a new type of social interaction. People can now communicate “anytime,

anywhere and for whatever reason” [2] allowing the possibility to interact and

socialise with one’s friends virtually everywhere [4]. In comparison to other

computing devices, such as desktops and laptops, it is common for one of these

mobile devices to always be with the user in a ready to use mode [44]. Thus, with the

capability to instantly connect this technology, people in a mobile society can take

advantage of 24/7 access that was never previously possible. The result is a social

network that is more connected worldwide than ever before [2]. Users can now carry

multiple devices at any given time, each for a different purpose, with the choice of

options ranging from a basic mobile phone to a tablet computer. In person-machine

messaging it is a useful attribute for the system which provides services to a user to

be able to cater for each device, in the most efficient manner, in order that the user

can maintain communication at all times. This efficiency could include the cost of

communicating or the functionality available to be able to send and receive

information in the most practical way.

2.4 Conclusions

The mobile phone has moved beyond a system of basic communication functionality

into a multimedia and mobile computing device. These advancements in technology

allow for possibilities far beyond the device’s original intent, giving the user the

opportunity to partake in a variety of media interactions in a mobile environment.

When users are looking to purchase a new mobile phone they now consider not only

the selection of devices for voice calling but additionally whether the device has

audio and video capabilities, internet technology and GPS functionality [4]. In

addition to this, there are now other mobile devices and methods available to achieve

communication and social interaction in the mobile environment, such as the tablet

computer.

SMS has been found to be an effective and inexpensive method of communication

that allows clear and concise information to be sent to users quickly, regardless of

their whereabouts. However, only a limited amount of textual information can be sent

to a receiver using this approach. An SMS web service can be used to handle the

31

transfer of messages between the system and its users. This service covers the SMS

method and has the appropriate protocol in place for a client to send and receive

messages. Through the use of MMS and email there are additional mediums of

communication, such as photo and video facilities, which can be implemented into

the communication process. These mediums can offer more informative content to the

user than by text alone. For example, sending a photograph of a particular person to a

user would make it easier for the user to identify them. Furthermore, a user out in the

field could take a photograph of an item instead of describing it, providing enhanced

details on the item.

A system that utilises people in a mobile society should integrate a wide range of

communication methods in order to cover the different types of mobile

communication devices. This would enable the users to interact with the system

through the device they are currently using, via their own preferred method.

32

3 Review of Communication-Based Applications that

Interact with Multiple Users

3.1 Introduction

The purpose of this chapter is to investigate applications that have been developed to

utilise people in order to solve a specific task. The main focus is on applications that

utilise mobile communication methods, whereby it is possible to achieve an anytime

and anywhere communication capability within a mobile society. There are a wide

range of applications in circulation that utilise members of a mobile society for

various purposes. In competitive reality television shows such as The X Factor, the

general public are able to vote for their favourite contestant by sending in a text

message during each stage of the competition [88]. Television and radio chat shows,

including The Wright Stuff [89], allow their viewers to make comments or ask

questions by sending in a text message concerning the current topic [22]. In this way

it is possible to allow the general public to participate and contribute to the show.

News websites, such as BBC News [90], encourage members of the public to send in

photographs and videos taken on their camera phone regarding interesting news

events [10]. Allowing members of society to participate in this way offers the news

company the ability to find information from a wider range of resources, direct from

people who have had first-hand experience of a news event. Groups in society have

been able to utilise mobile communication methods to lobby governments for specific

issues. The Indian government was forced to reopen a murder case due to activists

organising an SMS petition, whereby the public sent text messages as a form of

protest [91].

Several more advanced applications are discussed in this chapter that incorporate

mobile communication methods for the purpose of utilising people in a mobile

society. This is followed by applications which users interact with in a non-mobile

environment but have valuable features and characteristics that can be included for

applications that focus on a mobile environment. Therefore, both the technologies

employed and the features contains within each application are identified and

examined to determine their effectiveness in supporting users in a mobile society.

33

3.2 Applications utilising a mobile society

The applications discussed below operate in a mobile environment. These

applications are surveyed to determine both the practical features that have been

implemented and functionality that could be included to expand the applications.

3.2.1 Pharmaceutical Care application

In China an experimental scheme was established for using an SMS-based application

to provide pharmaceutical care to patients [12]. According to patients there are often

concerns regarding the usage of medication away from the hospital and it has been

discovered that between 20-50% of the patients do not take their prescribed

medication. This study looked at developing an application, entitled the Mobile

Pharmacy Service System (MPSS), to provide individual care to patients using SMS

with the aim of increasing the use of medicine whilst ensuring it is taken safely. The

SMS-based application sends and receives text messages to provide a service for

communication with patients. The application is linked to a database, which stores

details of the patients’ medication and the data regarding the various medicines.

There is a user interface where the pharmacist is able to update the medication data.

The application uses this data to generate individualised messages for patients, which

are then sent using specialised SMS equipment. Messages are sent to patients each

day consisting of a reminder to take their medication, advice on the correct methods

of usage and warnings of adverse effects from prolonged usage. Patients have the

ability to respond back to the application, allowing them to report on their current

status or ask the pharmacist for guidance. The pharmacist has to manually reply using

the application’s interface. This flow of communication is shown in Figure 3.1.

Figure 3.1: MPSS flow of communication (adapted from [12])

This experiment was found to be successful amongst patients. The usage of mobile

devices allowed patients to “review and remember guidance more clearly”, providing

34

the patients better knowledge with regard to their medication. The majority of

patients were satisfied with the application, deeming that it provided a “closer link

with their pharmacist”.

An issue of concern with this application is that very few elderly patients were able to

participate. Poor eyesight prevented these users from reading the text messages

clearly. A possible way to resolve this issue would be to provide alternative mediums

of communication to allow the application to cover more people, such as picture and

video messaging. Additionally, information supplied to the patient in other

multimedia forms could be more effective at describing the situation. For example, a

video or slideshow of the correct method of medicine usage could be more helpful to

a patient than solely through text-based instructions.

3.2.2 Attendance Improvement applications

An SMS-based application [92] was developed in Malaysia to investigate whether

sending message reminders improves attendance rates in primary care. There are

patients who regularly do not attend their appointments, disrupting their treatment and

preventing other patients being able to book an earlier appointment. The wastage in

time lowers the efficiency of the practice, thereby raising costs. A survey found that

non-attendance was generally due to the patient forgetting or mixing up their

appointment time. Therefore, the importance of this application was to provide

reminders, containing the appointment details, to the patients before their

appointment. This action was achieved by an employee at the practice manually

sending text messages to patients 24-48 hours before their due appointment. The

benefit of sending a text message is the convenience it provides to the user, whereby

the user would receive the text message almost immediately. An experiment was

performed with two groups of patients, where only one group received SMS

reminders from the application. The results of this experiment showed that there was

significantly more attendance to appointments by those using the application. The

application was shown to be effective by raising the probability that each patient

attended their correct appointment.

An advantage of using an application based on sending text messages is that it is

possible to construct a computerised process whereby text messages are sent

automatically, at a predefined time, before the appointment. This process has not been

35

carried out in the Attendance Improvement application, with the text messages

manually sent by an employee of the practice. An automatic process would lessen the

workload of the employee reducing the required manpower. Additionally, there is a

higher chance of mistakes occurring in applications that are reliant on human input

than that of an autonomous computerised system. A further advantage would be to

combine this automatic process with a feedback mechanism as text reminders can be

re-sent automatically to a patient if, after a predefined length of time, no confirmation

message has been received from the patient.

Computerised functionality was utilised in a second application, applied in a

Melbourne hospital, to investigate whether sending SMS reminders improved

outpatient attendance [93, 94]. The hospital’s Outpatient Clinic Scheduling System

contained the necessary data for the reminders which was uploaded and stored into a

database. The database could then be queried by the SMS application’s interface

(Figure 3.2) to generate a personalised reminder message. The data was appropriately

placed in an SMS template. On a daily basis a batch of messages would

autonomously be sent to patients who have appointments due in three days. This time

period, whilst helping to lower the chances of patients forgetting their appointment,

gave a necessary period of time to re-fill appointments in the case of cancellations.

Results showed the application was effective in increasing attendance rates to

appointments.

Figure 3.2: Telstar Mobile Online SMS System used to generate personalised

messages (retrieved from [94])

3.2.3 Interactive Learning application

A college in Dublin has experimented with an SMS-based application [95, 96] in

order to improve interactivity during lectures. Increased interaction during a lecture

36

between students and the lecturer has reportedly led to a more active learning

environment. This has helped to motivate the students, developing a community

atmosphere and supplying lecturers with valuable feedback. With the ability to

generate fast and concise messages an SMS-based application was utilised to allow

students to send messages from a mobile phone, in real-time, during their lectures.

Students would have the ability to anonymously send a text message to a device held

by the lecturer to ask questions or request the lecturer to clarify points. Figure 3.3

illustrates the process where a message, containing a question, is sent by the student

and received by a Nokia Card Phone attached to a computer. The message is then

converted to a text file for the lecturer to view it and provide answers to the entire

class.

Figure 3.3: Process of receiving the question from students (adapted from [95])

This is an application where only a limited amount of financial and technical support

is required, since the majority of students already possess a mobile phone along with

the knowledge to be able to operate the device. Additionally, the small size of the

device means it is unobtrusive in the environment. The originators of the messages

are not shown to the lecturer. Normally, 38% of students never make interactions

within a lecture. Providing anonymity should reduce this number, as those students

who are usually too shy or fear asking questions would now have the opportunity to

interact with the lecturer. This application could be utilised anywhere by the students,

as the mobile phones can be carried and used outside of the lecture to send a question

from any location. During lectures the lecturer can directly provide the answer whilst

outside of lectures answers would be provided via the application’s website. A

student is then able to access the website to obtain the answer and submit a response

or ask a further question. Figure 3.4 illustrates the communication process for this

application outside of lectures.

37

Figure 3.4: Message loop between a student and lecturer outside of lectures (adapted

from [95])

The results for the application showed that 47% of the participants sent messages

during lectures. The students found that the application effectively offered the chance

to interact and raise issues without disrupting the lectures. This allowed the lecturers

to solve the issues at the appropriate time.

All the students who took part in the experiment had a mobile phone. However, this

did not necessarily mean that the students took the devices into each lecture or had

any available credit on their device, which are both essential requirements for the

participants to interact in this way. If either of these requirements were not met by a

student it would limit their capability within the lecture. Furthermore, even if the

students had sufficient credit to send messages there is still a cost for each sent

message, which could have an effect on the decision to use this method of interaction.

This application would benefit from multiple communication methods being available

during a lecture. Smartphones can utilise other methods of communication, such as

email. It would further help the student if the college had a wireless internet

connection available as email messages sent would be free for the student with no

credit required on their device.

Another issue with this application is the time it would take to create a message. A

large number of low-cost mobile phones have a keypad where at least three characters

have to be shared over each button. This can result in the time taken to create a

message being too long, especially for the inexperienced user. The result is that it is a

38

distraction from the tuition in the classroom. The introduction of new technology,

such as touchscreen smartphones, should help to reduce the time spent texting since

these allow full QWERTY keyboards to be displayed on the screen.

3.2.4 Smoking Cessation application

There are currently smoking cessation services available to help smokers stop or

reduce the amount they smoke [97]. However, these services are not utilised enough

by the younger generation. An SMS-based cessation service would provide a

relatively inexpensive method to a significant number of the population, especially

the younger population where the vast majority own a mobile phone [98] and

communicate via SMS [21]. In New Zealand a trial was conducted on two groups of

smokers, where only the first group received an SMS-based cessation service. The

second group could receive any other type of cessation services.

Users in the first group would receive text messages providing advice on the ways to

stop smoking, support on coping with withdrawal symptoms and a range of interests

to offer as a distraction. This was achieved using an algorithm that sent appropriate

messages from a database that stored over a thousand messages, based on the

person’s characteristics. The application sent out the text messages by having

functionality in place to query the database for generating the content of a message.

This set-up reduced both the manpower required and chance of human error. For the

first six weeks the smoker would receive regular text messages daily to help them

stop smoking, then after that period the messages would slowly be reduced to keep up

the cessation. Over the first 6 weeks it was found that over double the participants

stopped smoking in the group that received the SMS service in comparison to the

other group.

An advantage of this application is that it can reach areas of society that are hard to

physically communicate with, such as people in rural areas or with disabilities. This

has been made possible since mobile network services are available over a large

geographical area and mobile phones are usually within the vicinity of the owner. The

current geographical location of the user’s mobile phone is insignificant as long as the

device can obtain network signal.

39

This service could be improved by utilising the new features of mobile phones, such

as their multimedia capabilities. Using video and audio files can provide more

effective and informative content to the user. However, this type of service could

restrict certain parts of societies, for example those who can only afford an

inexpensive mobile phone that is just equipped with basic functionality.

3.2.5 Telemedicine Monitor application

An application to provide management for people suffering from the condition of

diabetes [99] was developed at Oxford University. This application manages the

condition, with the use of mobile phones that incorporate General Packet Radio

Service (GPRS) technology, by sending and receiving data in real-time to a secure

central server at the clinic. A meter device for measuring a patient’s blood glucose

level is connected to their mobile phone. A java applet on the mobile phone then

takes these readings and sends them via GPRS to the server. This method enables the

patient to send regular meter readings to the server daily and receive back the

required continual adjustments needed for optimal support, whilst away from the

clinician. Figure 3.5 illustrates the process of this communication, whereby the server

provides feedback to the patient’s mobile phone and an internet webpage for the user

to view. With the use of the java applet, the phone has a screen suitable for displaying

graphical data which is sent back from the server. One such example is a histogram

that displays data on the blood glucose levels over the last day or week in graphical

format. The mobile phone’s colour screen is utilised with a colour-coded histogram to

show the patient where the level is too low or high, as illustrated in Figure 3.6. This is

to provide the necessary help to make adjustments and keep the level within the

required limits. Additionally, it is possible to contact the nurse via SMS to ask

questions and receive daily reminders to perform this procedure.

40

Figure 3.5: Process of communication between a patient and the application’s server

(adapted from [99])

Figure 3.6: Feedback histogram on display (retrieved from [99])

41

Results from an experiment showed that there was a substantial improvement in

maintaining the correct blood glucose levels with patients using the application in

comparison to those in the control group. This application has several advantages

over the previous SMS-based applications. The collected data was recorded directly

from a meter device (Figure 3.7), instead of being manually inputted by the patient

where there is risk of erroneous data being inserted. Using GPRS means the

connection to the server is always active. Consequently, the data is provided in real-

time and not intermittently, resulting in the feedback from the server being relevant at

the time received. Furthermore, there is the possibility of the server accessing and

analysing the data almost immediately after the reading has taken place. These

features make the application more effective at maintaining a patient’s blood glucose

levels in comparison to a manual process of inputting the data.

Figure 3.7: Patient’s mobile phone linked to a meter device (retrieved from [99])

This scheme is only available to mobile phone users who have GPRS-enabled devices

with the capability to run java software. Therefore, it has the potential of cutting off

segments of society where people either have not upgraded their phones for a

considerable time or can only afford an inexpensive device. There could be an

alternative option to manually send the meter readings via SMS in order to allow

patients with basic mobile phones to be included in the scheme.

The ability to display graphical data on a mobile screen can be a useful approach for

patients to monitor their conditions. However, people with impaired eyesight, such as

the older generation may struggle to see the charts clearly. Having a webpage

42

dedicated to each patient’s recorded information aids this issue as results can be

viewed on a larger screen.

3.2.6 Road Safety Alert application

A Road Safety Alert application [100] has been developed at Missouri University.

This application is designed both to detect a possible hazardous environment from

man-made infrastructure and the natural environment, such as high-levels of water

leading to a flood. Devices, called SmartBricks, are installed in these locations. This

is a low-powered device that measures various properties of the locations, working

autonomously, based on timers within the circuit board. All these devices are

connected wirelessly to a remote server. Mobile phone users can subscribe to the

safety alert service to receive SMS alerts of potential hazardous situations in locations

that they request. The user initially subscribes via their computer over the internet,

providing their mobile number to the application’s server. The user’s mobile number

is stored in a database on the server. Each SmartBrick device periodically downloads

measurement data to its on-board memory. For each property, safety threshold values

are defined with the device raising an alert if these values are breached. The data

relating to a threshold breach is wirelessly sent to the remote server, which

subsequently sends SMS alert messages to the users based on the location of the

SmartBrick device. These messages provide the users with the necessary warning

details when an alert has been triggered. This process is illustrated in Figure 3.8.

Figure 3.8: Process of the Road Safety Alert service (adapted from [100])

43

The location-based features of this service mean that users are only updated about

hazards that occur in locations meaningful to them. By providing this early alert to

users they can be prepared for the hazard by either delaying or cancelling their

journey or taking an alternative route to reach their destination. This service not only

supplies the user with valuable information but also reduces the possibility of

incidents occurring at the location, easing the disaster management procedure due to

the hazard. These alerts are provided in close to real-time with the data sent from the

SmartBrick device to the remote server immediately after a threshold has been

breached. Sending the text messages should then occur within two minutes. The

majority of mobile phone users keep their device close to them [44], thereby not

making their current location an important factor when receiving alert messages.

Additionally, this application can be very useful in remote and rural locations where

suitable services for dealing with hazards are lacking. This is due to the devices being

inexpensive to set up and to contact travellers, as well as the autonomy of the

application. The SmartBrick devices can be left to run independently for long periods

of time.

This type of application could be of further benefit if new functionality was integrated

for two-way communication between the application’s server and the users. The users

could then work together with the application by reporting current or potential

hazards. These reports could then be assessed by the application, with alerts sent to

other users if necessary.

The users are only able to subscribe to this service over the internet. If the user

decides to travel via a location that they have not subscribed for updates then they

would be unaware of any current hazards in this location. The user would have to

wait until they have an internet connection to add this location to their subscribed list.

To resolve this issue a method for adding new locations to a user’s subscribed list via

SMS could be implemented. Users with any type of mobile phone would then be able

to update their subscribed list when they are on the move.

3.2.7 UbiquitousSurvey system

UbiquitousSurvey [13] is a system that enables its users to perform field studies by

observing the population characteristics of various animals. The UbiquitousSurvey

system makes use of mobile devices, such as smartphones, to gather this data from

44

the field. Each user out in the field is labelled a surveyor. There is a central server,

which uses either a wireless connection or the mobile internet for communicating to

each user’s device in the field. The field data that is collected from the user’s device

is sent to the server and stored in its database. Figure 3.9 shows an example of field

data being gathered by the mobile device.

Figure 3.9: Data being gathered by mobile device (retrieved from [13])

Due to the extensive geographical coverage of the mobile internet it is possible for

these mobile devices to be used in areas that are vast distances from the server.

Additionally, the mobile devices have software installed to perform some of the basic

analysis of the field data when a connection to the server is not available. For

example, this software can find the mean, minimum or maximum value from a set of

collected numerical data. These features facilitate an anywhere and anytime access

ability.

Another role in this application is the advisor, who sets up assignments and generates

electronic forms for data entry by using a standard computing device, such as a

laptop. These assignments can help the advisor when coordinating the different users

by providing each user with a different role to collect the field data efficiently. Part of

the advisor’s role is to manually analyse the uploaded field data in the database and

make judgements on how the project is progressing, identifying where any alterations

are necessary.

The users in the field remotely access the server to receive their assignments, via their

mobile devices. The data gathered from the field can be inserted immediately into

electronic forms via a web application. This data is then submitted to the server to be

45

stored in the database. The device can also be used to communicate with the advisor,

if issues arise.

The UbiquitousSurvey system requires each user’s mobile device to have specific

software installed in order to communicate with the server. This has the advantage of

allowing the software to handle the electronic forms to send data to the server,

simplifying the process for the user. However, it is necessary to invest in the mobile

devices that have the correct hardware. A potential user who has a mobile device with

basic communication functionality and non-compatible hardware may therefore be

prevented from accessing this type of application.

3.3 Non-mobile applications

The applications discussed below operate in a non-mobile environment. The

functionality of each application is explored to identify features that can be beneficial

for implementation into a platform, which utilises people in a mobile environment.

3.3.1 HELP system

The HELP system [101] is used in health care to assist clinicians in patient support

and decision making, through the management of patient data. Patient data is

collected by nurses and physicians, referred to as the users, and inputted into client

computers located throughout the hospital. This is achieved by software installed on

the client computers that provide electronic forms for the users to input the data,

which is then sent to the HELP system’s server for storage in its database. The patient

data can later be retrieved back by a user to perform data analysis, presented by the

software’s graphical user interface.

The software installed on the client computers is composed of three separate layers; a

presentation, business and data layer. The presentation layer controls the graphical

user interface. This is where data is gathered from users, as well as displaying data

back to them. The business layer contains the logic and rules for the application to run

and process the received data. Finally the communication layer is where the client

computer sends requests to the server. This layer handles the sending of data to and

the retrieval of data from the database.

The system’s server also consists of three layers. The communication layer is the

counterpart to that of a client computer’s communication layer, handling user requests

46

via communication protocols such as TCP/IP. The business layer holds the logic for

the application and code to interact with the database. The database layer is composed

of the data files for the database along with an interface to facilitate interactions with

the database.

The HELP system’s structure enables each client computer to perform its own tasks,

with the main purpose of the server being to both hold and control the access to the

system’s database. This allows many client computers to simultaneously access the

database in order to retrieve data or update/insert new records. Since the database is

in one central location any updates are automatically reflected to all client computers.

Incorporating an interface to control access to the database should reduce the chance

of erroneous data being inserted, as users have to proceed through a structured

process.

3.3.2 Remote Experimentation system

A Remote Experimentation system has been discussed in [15] where students are able

to remotely connect, from a distant location, to workstations in a laboratory to run

experiments. The students achieve this remote access using their own computers,

usually at their home. The laboratory workstations have the appropriate software and

hardware components to control each experiment. A server controls the

communication between student computers and workstations. The workstations are

connected to the application’s server via a wired LAN connection. Each student

computer has the remote experimentation software installed to generate commands

for the experiments. This software enables remote access to the experiments by

sending web service requests, via the internet, to the server. Figure 3.10 illustrates the

communication process for a student to remotely control an experiment.

47

Figure 3.10: Process for remote access to experiments (adapted from [15])

The system design consists of four layers; a presentation, data, business and physical

layer. The presentation layer contains the applications that allow the students to

interact with the system. This layer includes the Diesel client application, which

contains the graphical user interface for remotely performing and controlling

experiments. Figure 3.11 shows the user interface of the Diesel application for

selecting an experiment to perform. Additionally, students are able to remotely

submit booking times to perform an experiment via a web application. The submitted

data is sent via the internet to the server’s booking system.

Figure 3.11: User Interface of the Diesel client application (retrieved from [15])

48

The data layer is where the system’s server resides. The server consists of a web

service handler, booking system, and the database. Updates to the database are

achieved via the web service handler and the booking system. The server application,

for interacting with workstations, resides on the business layer. This application

processes commands that have been sent from student computers, as web service

requests. The application then sends the appropriate commands to the hardware for

experimental procedures to be carried out, as instructed by the student. All of the

hardware components that are required to perform the experimental procedures reside

on the physical layer.

The advantages of this set-up are that the server facilitates long distance access and

takes away from the student’s computer much of the processing tasks. A student is

able to connect to a workstation, for the purpose of working on an experiment, from

any computer that has the required software installed. This can be achieved from any

location where there is an internet connection. This removes the need for students to

have to physically come into the laboratory, thereby making the experimentation

process more hassle-free for the students. A student’s computer only needs the

processing power to send out experimentation commands, with the experiment being

carried out via the server and separate workstations. This means that only the server-

side components need the required hardware to run the application, whilst the student

computers can be composed of basic hardware.

3.3.3 Perfect Diet Tracker application

The Perfect Diet Tracker [102] is a software application designed to monitor the daily

intake of food consumed and the daily exercises performed by a user. This is to assist

the user in managing their weight change to meet a goal weight. The application

calculates the necessary daily calorie intake target values, based on the target weight

provided by the user.

Initially, the user inputs basic information concerning their current and target weight.

The application then takes the user to the main screen (Figure 3.12), which shows a

list of food products consumed and exercises performed on the current day. This

screen also provides information about the calorie target for the day, including the

user’s remaining calorie allowance. On the diet side of the application, the user is able

49

to keep track of various nutritional information. This includes the carbohydrates,

proteins and fats of the products that the user consume.

Figure 3.12: Main screen of Perfect Diet Tracker showing nutritional information for

the current day (retrieved from [102])

When the user consumes a food product they have two ways of inputting the

product’s nutritional data. The first method involves searching through the

application’s database to find out if the application already contains data on that

particular product. The database contains data on numerous food products. Figure

3.13 illustrates the user searching for a specific product in the database. Once the

product has been located the user inputs the quantity eaten either by weight or units

consumed, for example a quantity of sandwiches. If the user is unable to find the food

product on the application then the second method is to manually create a new food

product and input the product’s nutritional values, in addition to the quantity

consumed. Each food product is then placed on the current day’s diet list along with

their nutritional values. The user is able to regularly check their remaining calorie

intake allowance for the current day in order to stay on track with the set target. The

daily calorie intake data is updated on each occasion a new product is added to the

day’s list.

50

Figure 3.13: User searching for a “Beef Burger” food product (retrieved from

[102])

To support the application’s goal of managing the user’s weight, it is also possible for

the user to input data on exercises performed throughout the day. Exercises range

from running and cycling to other sports, such as tennis. As with food products, the

input of data can be achieved manually or by searching the list of exercises stored in

the application’s database. When choosing to search through the exercise list, the user

selects the correct exercise and then inputs the time taken and distance covered, if

these values are required. The application uses this data to calculate the calorie burn

value and update the daily total, allowing the user to view the number of calories

burned and their remaining calorie allowance for the day.

The application’s database stores the user’s food and exercise data for each day,

providing a record-keeping service that takes away the need for the user to store any

data by their own means. This application provides real-time updates to the user by

automatically analysing the data that has been inputted. This feature combined with

the ability to set alert levels if the user breaches daily targets provides the user with a

high level of interaction with the application to help achieve their targets. Figure 3.14

demonstrates the application’s behaviour if the user exceeds their daily calorie target,

whereby the calorie information is highlighted in red to notify the user of this breach.

51

Figure 3.14: Main screen highlighting a breach in the daily calorie target (retrieved

from [102])

The identified features could be implemented into a similar application where users

communicate in a mobile environment via mobile communication methods. The user

would communicate with a server to update their daily diet diary, whereby the server

would consist of the database and analysis modules. In this way, the server would be

able to store historical data on the user’s diet diary and autonomously analyse new

diet data that has recently been sent from the user. After receiving new food and

exercise items, feedback messages could be sent to the user providing details of their

updated daily calorie totals. Additionally, an alert message could be sent to the user

whenever the server has calculated that a calorie target has been breached. Therefore,

the user would be able to update their diet diary whilst they are mobile.

3.4 Social networking sites

A social networking site (SNS) is an online service which allows people to sign up as

users and create their own public profile [103]. Through this profile the user can

connect and interact with other users of the website or express their own views in an

online community [104]. Interaction can consist of direct communication with other

users, uploading content to the site in order to share information/ideas or

collaboration between users in order to achieve a specific goal [105,106]. A user’s

social network may consist of people they know in the real world, such as friends and

family. Alternatively, the user’s social network can include people they have

connected to online, who may share common interests with the user [107]. These

52

services have taken advantage of mobile communication methods, such as SMS and

the mobile internet, to provide ways for users to connect to their social network and

upload content while on the move.

Facebook [108] is an SNS with one of the highest number of registered users [109].

Each user profile contains attributes on the user, for example their location,

workplace and birthday. Users can enlarge their social network by requesting

friendships with other users of Facebook [110]. Each profile has an interactive wall,

where people in a user’s social network are able to post comments and share content

[106]. Facebook has been integrated into a mobile society by the development of its

mobile application on smartphones, providing functionality for uploading content

while on the move. The mobile application can utilise a phone’s GPS hardware with

its “Check-In” feature [111]. This feature enables a user to share details of locations

they are currently visiting. Furthermore, Facebook can offer deals and rewards to the

user based on their current location. Figure 3.15 shows a deal that has been provided

to a mobile phone user who has updated their current location to a particular coffee

shop.

Figure 3.15: Facebook Deal made available on a mobile device (retrieved from

[112])

Users can collaborate and coordinate with each other through the Groups and Events

features of Facebook. Facebook Groups allow users to discuss ideas and share

content with people who have similar interests. A Group may be themed on a

particular interest, activity or organisation [113]. Facebook Events provide facilities

53

for organising events, which could include meetings, parties or even protests [114].

Figure 3.16 shows the web-form for creating a new Facebook Event. These features

have been utilised in a mobile society to help organise movements. An example of

this was the Arab Springs in 2011 where Facebook allowed a method of notifying

people of protest locations and times, as well as sharing ideas about the countries with

other people from afar [106].

Figure 3.16: Create Event web-form on Facebook (retrieved from [108])

SNSs share some characteristics with communication methods, such as email [115].

Facebook’s private messaging system enables users to send private messages to their

peers [116]. Users tend to send messages via email for both social and formal

situations, where a message may be part of a longer conversation or a single message

with no continuation from the receiver [115]. However, the purpose of

communication within SNSs can be substantially different to email. SNSs require the

user to construct and manage a social network consisting of both peers and people

with similar interests, making these services more utilised for social communication

purposes [117]. SNSs also offer alternative ways for users to connect with their

network of peers [105]. As previously discussed, this could involve public

discussions within Facebook Groups [113]. Additionally, if a user writes a wall-post

publicly on another user’s interactive wall, other users that are within the social

network of the receiver could continue the communication by posting further

comments. These comments would be displayed directly below the original wall-post.

In this way SNSs support communication that is both one-to-one and one-to-many

amongst the peers of a social network, enabling both private and public means of

communication [117].

54

There are many other examples of SNSs where people in society can interact with

each other on an online environment. Twitter [118] is a microblogging SNS where

users can post messages, known as tweets, on any topic of interest to them [119]. For

example, a user can tweet about their daily activities or share their views on an issue

which is important to them [120]. Other users of Twitter can choose to follow them,

receiving tweets when they are posted to the site. Camera technology in mobile

phones has enabled users to capture high quality photographs. Instagram [121] is a

photo-sharing SNS that takes advantage of this component [122]. Once a photograph

is taken with a mobile phone users can upload the image file to their Instagram

profile, sharing the image in an online gallery where connected users can view and

comment on the content [123].

The SNSs discussed provide mobile applications for smartphones, offering a facility

for users to stay connected with their social network whilst mobile. Some SNSs also

provide features for mobile phones that do not have internet or other advanced

capabilities. Users can also be alerted of new events on their online profile via

multiple means. For example, a Facebook user can request to receive email messages

for new notifications regarding their profile. An email notification can inform a user

when a comment has been posted by another user on their interactive wall or on a

Group page that they have joined [124]. A user may also receive a notification if a

new person has requested to join their social network or a private message has been

sent to them [116]. There are many different types of email notifications that a user

can choose to opt in to receiving. Twitter users are able to register their mobile

number to their Twitter account. These users can then send and receive tweets on

their mobile phone via SMS. When new tweets are posted by other people that the

user is following they would be sent a text message of the tweet immediately [125].

SMS is also a practical method for the user to post new tweets as each tweet can only

be a maximum of 140 characters, which is less than the size of an SMS message

[126]. It is now possible for people to share information, which they find

newsworthy, from any location and via a vast array of communication devices, as

well as interact and collaborate with other people in a mobile society through these

online social networks.

Table 3.1: Communication and technology usage list

Table 3.2: Feature usage list

56

3.5 Conclusions

3.5.1 Communication methods and devices

Table 3.1 details the list of both the communication methods accessible to each

application that has been discussed and the mobile communication devices that each

application is suited to. The applications that have been implemented for a mobile

environment focus mainly on providing support for one specific communication

method. For example, the Pharmaceutical Care application [12] can only handle the

exchange of messages via SMS. In Chapter 2 it was discussed that all modern mobile

phones have the functionality to utilise SMS for the sending and receiving of

messages. Therefore, it is only necessary for a user to own a basic mobile phone in

order for them to be able to take advantage of this communication method. The

ubiquity of SMS, together with the high popularity of mobile phone usage, makes the

applications that are dependent on SMS highly accessible to any potential users in a

mobile environment. However, a major downside of these applications is the

limitations imposed by the SMS method, with the constraint of only being able to

exchange information in a basic text format.

The Telemedicine Monitor application [99] helps to remove these limitations with the

use of GPRS connectivity and a java applet on the user’s device. These features

provide a higher degree of functionality in the communication process, including a

constant connection between the device and the application’s server for real-time

updates from both sides. The additional features of this type of application require

mobile communication devices to support particular hardware and software

functionality. A potential user whose device does not support these features would be

prevented from accessing this type of application. Furthermore, this approach could

become expensive for users who do not have a data allowance included in their

mobile phone plan for using the mobile internet/GPRS. None of the applications have

implemented functionality for communicating via MMS, which is possibly due to

MMS not being as ubiquitous as SMS and email [30], in addition to the high expense

incurred for sending a multimedia message.

SNSs, such as Facebook [108], go a step further by providing mobile web-forms for

uploading text and multimedia content. These web-forms are tailored to request

specific information, providing appropriate positions within the displayed form to

57

input the information. For example, a textbox can be selected at various positions on a

web-form, where the user is requested to input text. Touchscreen devices would

benefit from communicating via web-forms, as the user can select the appropriate

textbox by touching it. This results in the touch keyboard appearing for the user to

input the text. Figure 3.17 illustrates the use of a web-form on Facebook for inputting

data, taking the Create Event web-form previously shown in Figure 3.16. In Figure

3.17 the user has selected the Event Name textbox and inputted the text “Team

Meeting”. This process makes the input of data a simpler process than having to

create a text message from scratch or edit details from a template. However, this

communication method would not be practical for low-cost or older devices where

there are limited or no internet capabilities or the processing of web-pages is slow.

Users of basic mobile phones could utilise functionality provided by SNSs, which

enables data to be exchanged between the service and a device via mobile

communication methods. For example, Twitter users have the option of sending and

receiving tweets via SMS [125,126]. Although limited in functionality, SMS could be

a more convenient method for supplying an application with data in a mobile

environment due to the basic requirements of this method.

Figure 3.17: User inputting data into a Facebook web-form (retrieved from [108])

The Road Safety Alert [100] and Interactive Learning [95] applications both enable

the user to interact via multiple methods of communication. However, these

interactions are limited depending on the circumstances. In the Road Safety Alert

58

application users can only update their subscribed list of hazard locations over the

internet. SMS communication is limited to only receiving alerts. The Interactive

Learning application requires communication via SMS during lectures, which can be

an expensive method for the user. Whereas outside of lectures a user can send and

receive messages via the application’s website.

These issues demonstrate the need for an application that brings together the various

methods of mobile communication with the intention of accommodating a wide range

of potential users within a mobile environment. In addition, it is important for the user

to have the choice of the communication method to be used for both the sending and

receiving of messages. The implementation of multiple methods of communication,

with the preference chosen by the user, would increase the flexibility in the way users

can interact with an application. Therefore, such an application could utilise the

additional functionality available in superior devices, to provide extra benefit to both

the application and the user. At the same time, mobile phone users who own a less

equipped device could choose a simpler communication method and thus still be able

to interact with the application.

3.5.2 Application features

Table 3.2 details a list of features that have been identified from the investigations of

the applications in this chapter. The majority of the applications provide two-way

communication in order that each user can send messages as well as receive messages

from an application’s server. Two key reasons have been identified for allowing users

to send messages; the first reason is for providing the application with feedback on

instructions previously received by the user and the second reason is for the user to

provide field data to an application. The Pharmaceutical Care application [12]

focuses on enabling its users to provide feedback on medication instructions that they

have received by sending messages for further advice. Alternatively, the

UbiquitousSurvey system [13] focuses on employing its users to collect and send field

data. This application provides instructions to its users in order for them to gather the

appropriate data when out in the field. The data are then sent to the application’s

server for analysis. This approach facilitates a higher level of interaction between an

application and its users, as the users play an active role in assisting the application to

reach its objectives.

59

The applications that receive field data from a user’s mobile device include

procedures for analysing the data, which are to either respond to the user or provide

updates on the issues of the application. In the UbiquitousSurvey system,

functionality is installed on each device to enable users to analyse their collected field

data. However, there is limited autonomous analysis and no decision making

capabilities. This application relies on a human operator (the advisor) to decide future

actions, based on the supplied field data. The Telemedicine Monitor [99] is another

application that requires each user’s device to send in their field data. This application

differs from the UbiquitousSurvey system through the implementation of autonomous

analysis functionality. This functionality enables the application to process the

received data immediately resulting in the updates being provided to the user in real-

time. Updates sent to the user provide them with feedback, which could include

instructions to make adjustments to their medication intake. This improves the

efficiency of an application since it does not wait for a human operator to perform the

process. Therefore, users can receive and respond to updates quicker in comparison to

a process lacking in autonomous analysis capabilities. Furthermore, assuming the

algorithms implemented for analysis are accurate, this approach would eliminate the

possibility of human error from an operator who would be manually processing the

received data. Providing functionality to analyse user data is an important factor in

achieving an effective two-way communication structure. This functionality gives a

greater degree of focus on user replies, enabling the user to effectively interact and

assist with the objectives of an application through the sending and receiving of data

in real-time.

The applications have shown that an effective method of storing communication data

is by incorporating a database into the framework. For example, the HELP system

[101] provides an interface for users to insert information on patients, which is then

stored in the database. This database can be used by the application for the purposes

of manipulating and analysing the data or to enable other users to access the data.

Alternatively, the data stored in a database can be used by an application to

autonomously send messages to users in a mobile environment. This is demonstrated

by the Smoking Cessation application [97], whereby the application’s database is

composed of a table to store the textual content of numerous predefined messages.

There is also an additional table to store data on each user’s characteristics. The

60

application analyses a user’s characteristics to determine and select a meaningful

message to send to that particular user. The Attendance Improvement applications

[93, 94] further develop this ability by focusing on sending personalised messages to

their users. This feature relies on message templates, which are stored in the

application’s database, in order to provide a content structure for sending appointment

reminders to users. The appointment data, also stored in the database, is inserted into

the appropriate template creating a new message that is personalised to each user.

This feature of merging a template with the relevant data allows a single type of

message, such as an appointment reminder, to be sent on a frequent basis to numerous

individuals with data unique to each person.

The Perfect Diet Tracker application [102] uses its database to provide functionality

for sending alerts and reminders to users. When a user supplies data on a new food

product consumed, the application processes this data to calculate the user’s new

daily calorie intake. Through this approach, alerts are autonomously generated if the

current intake is greater than the target intake. The application combines autonomous

analysis with the storage of historical data in a database to provide real-time alerts on

a user’s current diet status.

A feature that is found only in the Interactive Learning application [95] is the ability

for a user to supply data anonymously. This feature is practical in situations where

sensitive data is being transmitted or a user may not wish to be identified. Anonymity

can encourage more people to be involved in issues, as shown by the results of the

Interactive Learning application.

In the UbiquitousSurvey system [13] an advisor coordinates users in the field,

providing each user with a different role in order that they can work towards the

application’s goal of observing population characteristics of various animals.

UbiquitousSurvey utilises the collective intelligence of the user group, whereby

grouping together a collection of users on a shared goal should result in faster or

higher quality solutions than would be expected if only a single person was working

towards the goal [127]. Therefore, implementing collective intelligence functionality

is valuable for an application to incorporate in a mobile environment as the internet

and mobile devices have made it straightforward for users to connect and network

across large distances.

61

The geographical location of users can be utilised to efficiently employ people. In the

Road Safety Alert application [100] users only receive warnings on locations that are

relevant to them. If an application has up-date location data on its users then this

feature could be extended to provide tasks to users that are relevant to their location.

For example, a combination of location-based technology and the use of collective

intelligence can enable the coordination of multiple users in solving a shared issue

that is spread across a range of locations. An application that employs both these

features can alert each user to the location of other users. Tasks could also be

allocated in an efficient manner, which would be based on each user’s proximity from

the required areas.

Each application that has been investigated in this chapter is lacking in some of the

features shown in Table 3.2. There is no application currently available that includes

functionality to support all of these features. Creating an application that takes

advantage of all the features could provide superior performance as the application

would have a greater amount of options at its disposal to tackle its objectives. SNSs,

such as Facebook, are better equipped with the functionality to use many of the

discussed features. The Arab Spring example where Facebook users organised

protests at a range of locations demonstrated how the combination of location and

collective intelligence features were put to effective use. However, SNSs depend

more on the intuition and direction of each user. There would need to be more focus

in facilitating the application to direct users on a particular issue to achieve a desired

result.

3.5.3 Necessity to combine features into a generic platform

The focus for existing work is only on individual applications, where the frameworks

within the applications are created only for a specific focal problem. The design and

architecture for each application is therefore developed solely for that problem. For

example, the Pharmaceutical Care application [12] focuses only on communication

with outpatients to increase their medication usage. Many of the existing applications

utilise similar types of components, for example a communications component to

interact with users and a database to store the exchanged messages. However, the

existing applications would require large changes in their design and framework to

provide an effective solution to a new problem since they are developed solely for the

62

situation at hand, with any platform that is available to the developer. There is

currently no integrated communications platform available for these types of

applications to be rapidly developed and implemented for use in a mobile

environment. Creating a new platform that has a framework of generic components to

support multiple scenario applications would reduce the development effort for each

new type of scenario.

The features that are listed in Table 3.2 could be incorporated into this new type of

integrated communications platform to ensure there is a high degree of functionality

for supporting different scenario applications. Additionally, implementing the

capability to communicate through a multitude of mobile communication methods

would allow the platform to cater for the various mobile communication devices that

users may own. Each scenario application may have specific feature requirements.

One application may require a small subset of the features, whilst another may require

a different subset. For example, an application that focuses on managing multiple

users to resolve an objective may require assignment functionality and location-based

features. However, a different application that focuses on one-to-one interactions with

individual users may only require functionality to send and receive basic text

messages and a suitable template mechanism to personalise the messages.

A generic platform would attempt to cater for various different types of scenario

applications. Therefore, it is important to consider the efficiency of the platform in

handling each application type, both in the speed and ease of development and

successful implementation. This involves ensuring the platform has expandable

components to fulfil new types of requirements from application problems that arise

in the future. A platform that has a framework of generic and expandable

components, to support the features required by a scenario application, would be far

more robust in reacting to new developments and issues arising in an ever changing

world where new mobile devices and ways of users interacting with mobile services

are emerging.

63

4 System Architectures

4.1 Introduction

Chapter 3 was concluded by discussing the need for a platform that could facilitate

the running of multiple scenario applications. It is necessary for such a platform to be

built based on an appropriate architectural design that can provide efficient

functionality for the list of features identified in Chapter 3.

In this chapter there are four different types of system architectures being investigated

for their practicality of utilising a multitude of mobile communication devices. The

investigated types are the client-server, peer-to-peer, multi-agent and service-oriented

architectures. There are many architectural types available that could be used to

construct the platform. However, the four types that have been reviewed provide

distinct attributes for enabling a platform to interact with users in a mobile and

distributed environment, which are described in the following sections. The strengths

and weaknesses of each type of architecture are discussed and used to determine

which would be the most suitable for the proposed platform.

4.2 Client-server architecture

In a client-server architecture the operations are split between two types of

components, client devices and a server [14]. Client devices are operated by users for

sending requests to the server to perform specified tasks [128]. On the client device

there is usually software installed that provides the user interface for interacting with

the server [129]. The server consists of the necessary hardware and software to

perform each task requested by a client device [130]. The server manages access to

the various resources in the system, such as a database for data storage [131,132].

Figure 4.1 illustrates the interaction between the client devices and a server in a

client-server architecture. Communication protocols are implemented in a client-

server architecture to enable the sending of data between these two components

(Figure 4.2). The Remote Experimentation system [15] is designed based on a client-

server architecture. In this system a client device interfaces with the web server by

sending HTTP requests in order to execute the requested functions. The server can

send results to the client devices based on the consequences of a requested action via

an agreed communication protocol [130].

64

Figure 4.1: Components of a client-server architecture (adapted from [131])

Figure 4.2: An example communication process between the client and server

(adapted from [130])

Systems that utilise wide area networks and the internet for communication can

include client devices that are a large geographical distance away from the server,

with the only criteria being that the device is able to connect to the network. The

65

UbiquitousSurvey system [13] takes advantage of this aspect as client devices can

collect field data in any location and send the data immediately to the server for

storage and analysis. Removing the geographical limitations from a system’s

framework opens the way for more client devices to connect to a server.

Some systems implement a tiered communication model to facilitate the flow of data

between the different components of the client-server architecture. Chapter 3 stated

that the Remote Experimentation system [15] is composed of four layers; a

presentation, business, data and physical layer. Figure 4.3 illustrates the way these

layers interact with each other. The user interacts through a client application on the

presentation layer, with protocols in place to connect each layer. There is a business

layer to process requests that are received from users. In this way the server is

performing the intensive processing of tasks, while the client device has a basic role

of simply supplying data or requests to the server. The HELP system [101]

implements a similar communication model. The data layer of the HELP system

consists of both the system’s database and the modules required to access the data-

tables. In both of these systems the layers work together through a structured process

to enable a seamless experience for the user, whether it is accessing and manipulating

a database or configuring an experiment remotely. The end result is that the user can

operate or take advantage of functionality that is not available on their own device.

Server-side components are required to efficiently handle the intensive processing of

requested tasks. However, the client devices can be composed of hardware that is

relatively basic and inexpensive in comparison.

66

Figure 4.3: Layers of the Remote Experimentation System (adapted from [15])

The intensive processing that is performed on the server-side can involve the

autonomous analysis of received data as with the Telemedicine Monitor application

[99], whereby the application provides methods over GPRS for client devices to send

collected data to the server. The server responds autonomously, based on the analysis

results to alert users if any changes in their medication are required. This example

illustrates how a client-server architecture can include the analysis and alert features

that were discussed in Chapter 3.

An outcome of having a centralised server is that all the access abilities and data

storage is controlled from one central location [133]. Multiple client devices can

simultaneously access and query a server’s database from any location making the

client-server architecture a useful method for collecting field data from a large user

group [132]. For example, the HELP system [99] has client computers installed at

various locations where nurses and other users can access the system to add new

patient data. As larger quantities of data are required to be stored only the server

would need to be upgraded to handle the increased demand, which would not affect

the client computers [14]. In the case of the HELP system, the database would be

continuously expanding as new patient data is received from users. This may require

67

changes on the server-side to ensure there is no performance degradation in the

querying of data in the database. However, this is not necessary on the client

computer, as once the collected data is sent it does not need to be stored on the

computer [134].

Implementing a centralised server also provides a central point to manage the

coordination of multiple users [135]. The UbiquitousSurvey system [13] organises

roles for each user and sends instructions for these roles to their client devices, as

illustrated in Figure 4.4. Each client can be deployed efficiently in situations where

the group of clients are required to work together to achieve a shared goal, utilising

the collective intelligence of the group [127]. For example, an application on the

server can ensure that each client has different tasks in order that they are not

needlessly performed more than once. Furthermore, algorithms could be implemented

on the server to allocate tasks based on specific requirements, such as selecting a user

who is geographically closest to the task location.

Figure 4.4: UbiquitousSurvey process of assigning data collection roles between the

clients (adapted from [13])

However, there are a few drawbacks with implementing a client-server architecture.

As the server is the central point of this architecture, it has to be operational at all

times. A failure in the server would disrupt the entire network since all

communication and requests are processed by the server [132]. Additionally, having

all network traffic directed to one location can result in a congested network if clients

make more requests than can be handled by the server [133]. This can then result in a

delayed response time from the server.

68

4.3 Peer-to-peer architecture

A peer-to-peer (P2P) architecture moves away from a centralised framework by

having a group of user computers, known as peers, connected together over a globally

distributed network. Each peer acts as both server and client, sharing responsibilities

and resources in the network [136]. Peers provide resources to the network, such as

their computational power or file storage capacity. Other peers can utilise these

resources for the processing or storage of data. Therefore, each peer shares in the cost

of running the architecture and is required to collaborate with the others to access

their resources for performing tasks [137]. Communication between peers is achieved

by sending messages over the internet, whereby the peers can provide resources to

each other [138]. Figure 4.5 illustrates the interactions between peers in a P2P

architecture, where each peer can act as both a task requester and a task processor.

Figure 4.5: Components of a P2P architecture (adapted from [139])

The architecture is highly scalable as each time a new peer joins the network their

resources are added to the network’s pool of resources [137]. This results in an

increase in the processing and memory capabilities of the network. The global reach

of the internet has provided a way for countless computers to be connected, which is

beneficial to the P2P architecture with the potential for near limitless resources.

69

The decentralised nature of a P2P architecture, with each peer acting as both client

and server, prevents there being a single point of failure [140]. Each peer shares the

cost of ownership within the network. Furthermore, this provides a more equal

distribution of the network traffic as instead of a central server resolving all queries

each peer helps towards the work.

SETI@Home [141] is an application that takes advantage of P2P principles to benefit

from distributed processing of data. SETI@Home utilises the combined processing

power of numerous computers to analyse radio telescope data in a search for extra-

terrestrial life [142], as illustrated in Figure 4.6. The computers that participate in the

distributed processing of data are the commonly used internet connected devices,

such as personal computers, owned by users who have signed up to the project. A

radio telescope is used to receive and convert radio signals into data items. The data is

sent to the SETI@Home data server, where it is split into small segments. Each

segment is sent over the internet to different participating peer computer devices to be

processed and analysed. SETI@Home creates a virtual supercomputer over the

internet that can process data faster than a physical supercomputer, by processing

millions of small segments in parallel [143]. This application shows the high

scalability of the P2P principles as each time a new user joins the network, their

computer’s processing power can be added to the total available.

Figure 4.6: Framework of the SETI@Home Application (adapted from [143])

70

Peers can join or leave a P2P network at will, meaning that a peer’s lifetime on the

network could be very brief [139]. This issue can result in a constant change to the

network’s topology. The unreliable nature of peers can cause resources to become

unavailable at any given time, leading to delays in the processing of data or in

response to a request made [140]. Furthermore, peers tend to have a best-interest

nature in this type of architecture, whereby they make the most out of the network for

their own benefit whilst only providing the minimum required level of resources in

return [137]. Data redundancy can help resolve these issues through both the

duplication of data stored and processes performed on multiple peers within the

network. SETI@Home provides the same data processing task to multiple users and if

a user leaves the network it re-issues the task to another user, ensuring that the task is

completed [141]. In situations regarding data storage, duplication of data would

increase the difficulty of maintaining data integrity within the network. Updates to a

specific data item would have to be reflected across all peers who store that respective

data item [138].

The SETI@Home application still relies on a central server to collect and distribute

the radio telescope data and amalgamate analysis results. In a true P2P architecture,

there is no central server to organise the network’s peers [136]. This means that a list

of the connecting peers, together with their current processes and data storage details,

cannot be stored and maintained centrally. To locate resources from an unknown

location a peer is required to broadcast a query to their neighbouring peers. These

peers pass on the query until the peer with the requested resource is found [138]. Only

once the peer with the required resource is found can the originating peer directly

communicate with them. This routing discovery process is illustrated in Figure 4.7.

Broadcasting queries through this approach could create a substantial volume of

traffic that is inefficient, since it can slow down the network [136]. Alternatively,

each peer could hold metadata to help point to the correct locations [138]. However,

this solution has the same unreliability issue as discussed earlier, as peers may join

and leave the network regularly. These issues that arise from decentralised control

make it difficult to incorporate data management in a P2P architecture. This includes

the areas of both the peers knowing where to make data access requests and ensuring

that the distributed datasets remain accurate and online within the network.

71

Figure 4.7: Peer broadcasting a query to locate another peer (adapted from [138])

However, since no centralised server keeps a record of each peer, a P2P architecture

provides a higher degree of anonymity in comparison to a client-server architecture.

Freenet [144] is an example of a P2P application that provides anonymity amongst its

peers. It is a file-sharing application, whereby the peers are able to share files with

each other. Requests between peers are encrypted to help prevent determining the

originator [143]. In addition, the files are encrypted locally at peer devices to provide

further anonymity.

File-sharing applications have been very successful in utilising a P2P architecture.

One of the most popular file-sharing applications is BitTorrent [145], which focuses

on the storage and transfer of multimedia content amongst its users. Multimedia

content, such as video files, can typically be large in size. BitTorrent utilises a large

number of users, connected over the internet, in the exchange of these files [146].

There are three types of peers in this application, leechers, seeders and trackers [147].

Leechers make requests to download files. Each seeder acts as a server, storing a

complete version of the requested file for sharing with others. Downloading a file is

achieved by breaking down the file into multiple small segments, with each segment

downloaded from a different seeder. A tracker contains the list of seeders that contain

the requested file. As files are not distributed from a single central server, this process

removes the bandwidth issues that would arise from sharing numerous large files

across just one network channel. Once a leecher has downloaded the whole file it

72

becomes a seeder. This makes the application robust as there are constant

replacements for the seeders that drop out. Additionally, data integrity is less of an

issue with the sharing of multimedia content, where if errors are found in a file

segment then the content can be downloaded again [148].

4.4 Multi-agent architecture

Agents are computational devices that are equipped with sensors and actuators to

autonomously perceive and act on their environment [149]. Figure 4.8 illustrates an

agent acting on their environment and perceiving the effects of these actions. An

agent can plan, make decisions and learn in order to achieve a desired objective [150].

A multi-agent architecture consists of numerous agents that interact with each other in

a dynamic environment, whereby the behaviour and actions of each agent has an

effect on the environment [151]. The agents can cooperate with each other or work in

parallel to achieve common objectives [152]. This is possible through communication

between agents, as well as agents observing the behaviour of other agents and the

changes caused to the environment. An example of a system that incorporates a multi-

agent architecture is the Intelligent Distributed Autonomous Power System (IDAPS)

[153]. The agents in this system run autonomously and cooperate together to manage

the operations of electricity distribution grids. Each agent runs its operations

autonomously to detect and respond to grid outages and faults.

Figure 4.8: Computer agent acting and perceiving on their environment (adapted

from [154])

A multi-agent architecture shares a number of the advantages of a P2P architecture as

both utilise computational devices that are distributed globally. A system utilising this

architecture can benefit from a high quantity of computational power through the

interaction and cooperation of multiple agents [155]. This architecture is also highly

robust as each agent is able to share their expertise and data with other agents [156].

73

The agents, individually, may have an incomplete view of the environment [157].

However, by drawing on a pool of knowledge within the group of agents, it gives the

opportunity for the group to reach a more complete view [158]. This cooperation

between multiple agents is illustrated in Figure 4.9. Therefore, the process of

interaction enables the agents to coordinate their actions and combine their resources

to achieve their desired goal [159].

Figure 4.9: Cooperation between agents in a multi-agent environment (adapted from

[158])

In the IDAPS system each agent is provided with different roles [153]. A Control

agent assigns responsibilities to the other agent types; a Database agent stores and

controls access to the system data; a User agent provides access to the grid for

customers and a DER (Distributed Energy Resource) agent’s responsibilities includes

monitoring power levels. The agents only have knowledge of the areas that have been

assigned to them. However, through their interactions and collaboration they can

achieve together the shared goal of ensuring critical loads are secured in the event of

an outage. In this way the agents are providing a level of intelligence to the grid that

74

would not be available without effective collaboration. Figure 4.10 illustrates the

interactions between the agents in the IDAPS systems.

Figure 4.10: IDAPS agent interaction (adapted from [153])

In a multi-agent architecture, agents can be designed to learn new behaviours as they

operate in their environment [151]. Each time an action is performed that causes a

change in the environment’s state, the agent would receive feedback via its sensors.

This feedback can be used by the agent to help make future decisions. The agents in

the IDAPS system could use historical data from previous faults to assist in deciding

the correct action to perform when new faults occur. Therefore, the agents become

more efficient at performing their actions as time progresses.

However, it is not a simple task to ensure that agents can react to their environment

autonomously. An issue with implementing a multi-agent architecture in a real-world

application is the difficulty of ensuring an agent can reason effectively and know the

necessary requirement for each eventuality [154]. Agents also often have a self-

interested nature due to their own goals which may not be in line with the collective

goals [150]. This can create conflicts, preventing a successful cooperation between

agents when they are running autonomously with no central controller.

Furthermore, the computational devices that act as the agents would be required to

have specific components in order to perform their role adequately. For example, in

the IDAPS system, the Database agent is required to have sufficient memory to store

75

the system data and also contain specific software in order to manage access of the

data by other agents. The DER agent requires suitable software to monitor the grid’s

power levels. Therefore, this type of architecture may not be suitable in a platform

that utilises mobile communication devices. As discussed in Chapter 2, mobile

communication devices could range from consisting of high-end to basic components.

The basic devices may not have the adequate hardware or be capable of running the

required software to operate as effective computational agents in a multi-agent

architecture. Therefore, a platform that utilises this type of architecture would be

unable to include users of these basic devices.

4.5 Service-oriented architecture

A service-oriented architecture (SOA) is an architectural design for building software

systems that utilise distributed services for the running of business processes [160].

The business logic of the system is decomposed into units of varying granularity that

are encapsulated by services. Each service is an independent and self-contained

software entity that executes a specific and meaningful function for a calling

application [161, 162], as illustrated by Figure 4.11. A service is implemented with a

well-defined published interface that can be invoked by either the end-user

application or another service, exposing the functions of the service to external

consumption [163]. A collection of services can be invoked in a particular sequence,

whereby the services would interact with each other to provide an entire business

process to the calling application [164]. The service performing the requested

function is referred to as a service provider and the calling service or application is

referred to as the service consumer [165].

76

Figure 4.11: Varying units of logic within the business process are encapsulated by

services (adapted from [162])

There are four general component types to a system that uses SOA principles; the

services, the application front-end, a service bus and a service repository [166]. The

application front-end provides the end-user with an interface to invoke the required

services they need to run, together with the capabilities to view the results from the

execution of the services. The service bus provides a link between the services and

the application front-end. The service repository enables each service to be

discovered by either the end-user or other services through storing and sharing service

contracts of all the system’s services [166, 167]. Each service contract contains data

on the associated service to enable a service consumer to send a message and invoke

the service at runtime [161].

The interface provides a description that details the purpose and behaviour of the

service in an easy to understand format for all parties participating in the process

[160, 165]. The interface description is available in the contract held by the service

repository. This description includes a service signature containing the input

parameters and the output result types, together with usage requirements and

constraints of the service [164]. Therefore, services are able to establish a distinct

relationship and connect with other services, which need to use them, through their

interface description [162]. Services can then interact through the exchange of

messages, containing the necessary input or output data. This process is illustrated in

Figure 4.12.

77

Figure 4.12: Input and output messages between service consumer and service

provider containing parameters and results respectively (adapted from [168])

Each service is independent and running as a black box, whereby the procedures for

performing the required function are unknown to the service consumer [164].

Therefore, in the message sent to the service provider there are no instructions on

how to perform the procedures to resolve the service consumer’s request [165]. This

results in a loosely coupled relationship between the services of a system. A service

consumer is only required to have knowledge of the name and interface of a service

provider in order to invoke it [161]. Subsequently, the internal workings of a service

can be modified without affecting the operations of other services or the means by

which the service is invoked [164]. This results in a low complexity system in

comparison to an integrated system, where changes in one module could have

unexpected operational consequences in other areas of the system [169].

Loose coupling enables services to be easily added or removed from systems [164].

Existing services can then discover and establish relationships with the new services

by the exchange of messages. This is demonstrated by the Train Car Management

system [170] that employs an SOA to control the operations of a train. There is a

service coordination platform that maintains the connection between all the system’s

services and the train crew, the users of the system, who invoke services to operate

each device on the train. This architecture enables a straightforward process of

78

attaching new devices together with the services to operate them, as well as detaching

redundant devices. The application front-end discovers the interface of the service

and is then able to invoke it, allowing users to control new devices without any

changes to the remaining areas of the system. This results in a system that can easily

adapt to future functional requirements and facilitates for incremental development of

features through the continuing interchange of services. The framework of the Train

Car Management system is illustrated in Figure 4.13.

Figure 4.13: Framework of the Train Car Management system using SOA principles

(adapted from [170])

Zimmermann et al. [168] discusses a project to upgrade the order management system

of a telecommunications wholesaler to an SOA. The wholesaler provides telephone

services to a wide range of companies. The order management system is required to

provide two different methods of interaction, a web browser interface for small scale

customers and autonomous processing and responses of web requests from the

automated systems of larger scale customers. An SOA enables the re-use of services

for different methods since front-end requests from either method would result in the

same back-end functionality being performed [171]. In the upgrade to an SOA the

order management system has deployed a Channel Controller Layer that acts as the

connection between the methods in the front-end and service providers in the back-

end of the system. Therefore, the implementation of the logic is unique within each

service, where the services perform the same procedures regardless of the input

method and do not have the knowledge of which method will receive their output

results [168].

79

Services can be exposed by their interfaces over large networks to enable a wide

distribution of services, where the service consumer can be a considerable

geographical distance from the service provider [172]. Web services are services that

can be invoked over the internet, which are simply located by a Uniform Resource

Identifier (URI) [173]. Web services have extra constraints compared to normal

services, using open internet standard for the communication between the service

consumer and service provider [165, 167]. Applying open standards results in a web

service being platform-independent, offering the ability for any remote web-

connected application to invoke the web service [174]. There are three open standards

that work in conjunction to offer web services over the internet, illustrated in Figure

4.14. Simple Object Access Protocol (SOAP) is the communication protocol that is

used by applications to interact with a web service, defining how each message is

constructed [160, 165]. Web Services Description Language (WSDL) is an interface

standard used to define the interface description of a web service, whereby developers

of a service consumer would utilise this open and machine-understandable interface

format to invoke the web service [175]. Web services are registered into a Universal

Description Discovery and Integration (UDDI) registry, which follows a universal set

of rules to enable web services to be registered and retrieved in a well-defined process

[176]. The UDDI registry is a service repository that enables applications to easily

search for registered web services and inspect their interface descriptions [167].

Figure 4.14: Use of open and universal standards in web service interactions

(adapted from [176, 177])

80

Web-based Manufacturing Resource Service (WMRS) [167] is a service discovery

application that enables manufacturing companies to collaborate in the sharing of web

services to provide interoperability between companies and networked product

development. The web services are distributed across multiple manufacturing

websites. Users of WMRS can search through their portal to locate and use the web

services. These users are able to integrate the web services into their existing systems,

leveraging the assets of third party business logic, as illustrated in Figure 4.15.

Figure 4.15: Interoperability between different companies via their registered web

services (adapted from [178])

An example use of WMRS is in the construction of car tyre moulds, where the

manufacturers can utilise web services through WMRS to integrate external

resources. These services include software for computer aided engineering analysis,

process design and workflow monitoring. The services can then be configured to

meet the needs of the consumer’s system. The wide distribution of external web

services provides the consumer, in this example a manufacturer, with a high degree of

flexibility in extending their system to meet its requirements, where it is possible to

invoke a service regardless of location. This increases the agility of the system’s

framework through having the technology at their disposal to respond to new

requirements rapidly [169].

The infrastructure of WMRS, together with the open and universal standards that

define web services, results in the opportunity for services to be re-used by multiple

separate entities for different situations [171]. The benefits from the re-use of web

services include decreased development efforts and costs due to a reduced amount of

business logic being coded internally [179]. Furthermore, utilising third party services

helps to reduce the complexity of a company’s own product, resulting in less

maintenance required after the product’s release.

81

There are drawbacks to implementing a system with an SOA. A distributed system

that relies on services over a wide geographical network would have a higher latency

in the communication compared to an integrated and centralised system [180]. This is

due to the increased time taken to transfer packets of input and output data between

the locations of the service consumer and the service provider. A local function call is

considerably faster, taking a few nanoseconds to reach the required function in the

code library [181]. Applications that implement a graphical user interface (GUI)

would not be suited to high latency in the communication process with an external

service provider. GUIs tend to demand high levels of data exchange, whilst also

requiring rapid responses to ensure the user perceives instant responses from their

actions [182].

The web services that are offered to systems, such as the manufacturing services for

the WMRS application, would need to manage concurrent invocations from multiple

different service consumers [180]. This can be difficult to manage in a large

distributed environment where numerous requests may pile up, causing the

connection to the service provider to reach its limits [181]. This could delay or

prevent subsequent request messages from being received by the service provider.

The service provider must also ensure that each request is handled in an appropriate

order to prevent conflicts, particularly in the cases where a service consumer is

sending more than one request or multiple consumers are collaborating, for example

in networked product development. Therefore, the service providers need to be

designed to handle concurrent requests sufficiently, where time delays are limited and

conflicts in data are prevented.

Reliability can be an issue for a distributed system since there can be a large number

of potential points of failure. Each service, router and other connected devices within

the network may fail, thereby disrupting the entire running of the system [181].

Furthermore, it can be difficult to ascertain the reason behind the failure of a system

process, whether it is the fault of a remote service provider or the network connection.

A software bug may negatively impact both the service consumer and service

provider. Dropped network connections would interrupt the communication process

between the two parties. The components of a system need to be developed in a way

82

that the points of failure would be correctly handled at runtime to ensure the system

can respond appropriately and continue running [180].

4.6 Conclusions

The system architectures discussed in this chapter each provide desirable attributes

depending on the situation that they are applied to. In a client-server architecture the

central server controls and organises the components of the system. This architecture

is beneficial in organising the coordination of a group of client devices, as illustrated

by the UbiquitousSurvey system [13]. The clients operating in the field can be

provided with different tasks, whereby the field data that each of them collects is sent

to be processed in a central location. Additionally, data management is handled from

this central location. This is illustrated by the functionality of the HELP system [101],

whereby users input data into client computers which then send the data to the server

for storage.

A P2P architecture utilises the free processing and storage resources of connected

user devices to accomplish tasks. This architecture has been shown to be effective in

applications that focus on content sharing, especially that of large multimedia files.

The BitTorrent [145] application enables peers to download small segments of these

files from multiple seeders simultaneously, thus dividing the work effort amongst the

connected devices. However, it is harder to achieve coordination between peers

compared to a client-server architecture since there is no central coordinator in place.

A multi-agent architecture focuses on either having agents working together or

reacting to the actions of other agents in a shared environment, thereby making this

architecture beneficial for collaboration between devices. In the IDAPS system [153]

each agent is provided with different responsibilities, where the agents work together

to achieve their shared objective. Furthermore, agents can learn from the results of

previous actions in their dynamic environment. However, as agents are running

autonomously there is difficulty in ensuring that agents react correctly to the

information they receive and have successful interactions with other agents.

Both these decentralised architectures require the participating devices to consist of

adequate hardware to perform their processing tasks. This can be problematic when

utilising mobile communication devices, such as those listed in Table 3.1 of Chapter

83

3. A basic mobile phone may not have the ability to perform tasks other than that of

sending and receiving communicated data. Additionally, peers can join or leave a

network whenever they desire.

An SOA enables systems to utilise independent and autonomous services to perform

their business logic. The loosely coupled relationship between different services in a

system allows new services to be easily added and old services removed, with

minimal change to the rest of the system. The open standards that define web services

offer a straightforward method for systems to leverage existing services from external

third parties, thereby reducing the development effort of the system. However, the

distributed nature of an SOA can result in performance and reliability issues. High

latency in the communication between services increases the time taken to perform

business processes. Each server running a service, as well as the network connections

between the servers, are potential points of failure that can disrupt the running of a

system.

Further to the discussion of developing a new platform at the conclusion of Chapter 3,

this chapter has shown that a client-server architecture would be a suitable framework

for developing the platform as it supports the list of features in Table 3.2. The only

difficulty arising would be that of user anonymity. This feature would need to be

factored into the development of the platform to enable the inclusion of potential

clients who wish to remain anonymous. However, a central location for processing

and data management is ideal to ensure the other elements are correctly handled.

Central coordination ensures that each client is provided with the correct tasks,

enabling objectives to be met by each user.

Designing the platform based on a client-server architecture would take the

processing and data storage requirements away from the user, thereby removing the

barriers to entry for client devices to join the platform. Client devices are not required

to have specific hardware to assist in these areas. The Remote Experimentation

system [15] illustrates how a client-server architecture is effective in this type of

situation. The server handles the functionality to control the experiments. Client

devices only require an interface to interact with the server.

84

Furthermore, an SOA facilitates a different way of looking at the composition of a

system’s components, whereby its principles can be applied to systems that are based

on an alternative architecture, such as the client-server architecture. The platform

should apply particular principles of an SOA. A loosely coupled relationship between

the different components of the platform would facilitate a rapid integration of new

components as further requirements are identified. External web services could be

utilised for various aspects of the platform, including the use of SMS web services

that were described in Chapter 2. The platform should be designed with unique and

distinct business logic in each component, whereby there is minimal duplication of

code, in order to reduce the complexity and simplify the maintenance required.

85

5 Design and Implementation

5.1 Introduction

The previous chapters have identified requirements for the development of a new

integrated communications platform that can support both interaction via multiple

mobile communication methods and the integration of a range of different scenario

applications. A client-server architecture has been selected as this enables the

platform to effectively interact with users in a mobile environment.

In order to be able to operate a range of scenario applications the proposed platform

needs to be developed with a framework of generic components that support the

feature-set which was identified in Table 3.2 (Chapter 3). This includes the need for a

communication component that supports two-way communication between multiple

users and the platform. The communication component is required to support the

exchange of pictorial content and have the capability for users to send messages

anonymously. Messages that are sent by either the platform or users are to be based

on a template layout. This is to provide a content structure for each message that can

then be individualised for the situation at hand by adding relevant field data to the

template.

The platform should employ a versatile analysis component that can efficiently

process and react to received messages autonomously and in real-time. A database is

required to handle the storage of the communicated data and record the responses

performed by the platform. The analysis component and database should collaborate

to provide functionality for sending alerts and reminders to users based on previously

received and processed information. The platform needs to incorporate assignment

allocation procedures to handle scenario applications that require multiple users

operating concurrently, in order to coordinate the users effectively. Location-based

functionality needs to be implemented into the platform, whereby up-to-date location

data can be recorded on each user to be used for assignment allocations based on their

location.

This chapter discusses the design and construction of the new platform, labelled the

Connected-Mobile Platform, which is developed based on the requirements that are

detailed above. The first section discusses the high level design elements of the

86

platform’s framework. This includes the components of the client-server architecture,

the different methods of communication available to the platform and the

implementation of the features described in Table 3.2.

The next section describes the procedure to analyse and respond to user

communication. The platform is designed to have a high level of autonomy, whereby

the server has the ability to automatically communicate with each user as well as

process information received without the need for human intervention, by an

operator.

The process of integrating new applications is discussed. The platform has a

framework of generic components to facilitate the development of a range of different

types of application problems in a structured process. Each application is labelled as a

scenario and the platform is designed to support a range of scenarios. The

implementation of the platform and its experimental setup for running case studies of

different scenarios are then described in detail.

5.2 Design of the Connected-Mobile Platform

5.2.1 The platform’s client-server architecture

The platform’s design is based on a client-server architecture, which is illustrated in

the overview layout of the platform in Figure 5.1. The central server is a fixed

computing device that houses the core application of the platform and the databases

for data storage. The core application handles the flow of communication between the

server and its clients, as well as the analysis of the data collected within the received

messages.

87

Figure 5.1: Overview of the platform’s client-server architecture

There are three types of clients within the architecture; a scenario builder, an operator

and users of mobile communication devices. The scenario builder’s role is to create

each scenario and define their analysis criteria. This is carried out prior to a scenario’s

initialisation. The purpose of the operator is to supervise each scenario whilst it is

active, administering to issues that arise. Each user in the field is a client with their

mobile communication device being a client device utilised to interact with the

server.

As identified in Chapter 4, applying a client-server architecture to the design of this

platform enables the server to solely handle the intensive processing tasks [99]. The

only requirement of a user’s mobile communication device is to send messages

containing field data and to receive messages containing instructions or other relevant

information. Therefore, no additional hardware or software is required to be installed

on their device. For each scenario all communication is controlled from the server,

sending commands and updates out to users. This means the management and

coordination of users can be handled from one location [13]. The anytime, anywhere

characteristics of mobile phones mean that the location of the server is irrelevant, as

88

long as there is a stable connection to the internet [132]. Data storage is also

controlled from this central location. The data sent from a user’s mobile device is

retrieved and then stored on the database. The client device is not required to store

any data once it has been sent to the server. As large quantities of data may need to be

stored, only the server would require maintenance and changes to handle storing this

data [134].

The platform is split into three separate layers; a presentation layer, a logic layer and

a data layer, as illustrated in Figure 5.1. These three layers were decided based on the

investigation of the Remote Experimentation [15] and Help systems [101] in Chapters

3 and 4. The three layers have been implemented to provide a structure for the

communication between the server and its clients. The presentation layer, discussed

in further detail in Section 5.2.7, houses the web-based user interface. This is where

the operator and scenario builder can interact with the server to manipulate scenarios.

The logic layer houses the Template Analysis Unit (TAU) where the processing and

analysis of field data, received from users, is carried out. The logic layer controls the

collection and sorting of the collected data and autonomous actions in response. The

data analysis process performed in the logic layer is presented in detail in Section 5.3.

The data layer, described in Section 5.2.10, is composed of a set of tools to

effectively store, retrieve and update data within the platform’s databases. There is a

database, labelled as the Principal database, to store data associated with the core

entities of the platform; including scenarios, messages and users of the platform. For

each scenario there is an additional database to store data, which is only associated

with that individual scenario.

5.2.2 Integrated architecture to support multiple communication methods

Each user’s mobile communication device interfaces with the server by sending or

receiving messages wirelessly. The server utilises communication methods available

over the mobile networks and the internet to communicate with users’ mobile

devices. Users can send messages either via SMS, email or using a web-form within

the web-based user interface. These three communication methods have been chosen

for the platform due to each method having distinct benefits that have been

highlighted in Chapters 2 and 3. SMS is a ubiquitous mobile communication method

that is supported by all mobile phones and therefore enables the platform to be

89

inclusive to all types of users. Email and web-based means of communication are also

supported as they offer further features in the communication process including the

exchange of pictorial content and the support of new types of portable devices, such

as tablet computers. Enabling a user to choose between these three communication

methods allows the platform to interact with a wide range of mobile communication

devices. Therefore, the preferred communication method is chosen by the user based

on their own preferences and the capabilities of their mobile device. Users are able to

communicate with the server from any location where a network reception or wireless

internet connection is available. Figure 5.2 illustrates the communication methods

that allow a user to interact with the server.

Figure 5.2: Interactions between the server and a user

For SMS messaging the user’s device does not require specialised components as

virtually all current mobile phones support communication via SMS. Therefore, any

potential user owning a mobile phone would be able to interact with the server via

this method. For this reason SMS has been chosen as the primary communication

method within the platform. SMS communication is achieved indirectly via TextLocal

[42], a third party SMS web service. The web service relays messages to and from the

server and its users. The server sends the message as an HTTP command to the web

service, which forwards the contained data as an SMS message to the user. SMS

messages sent from the user are relayed by the web service as an email message and

sent to the server. Microsoft Outlook, an email client, has been integrated into the

90

platform to receive email messages from the web service. These messages are stored

in the Outlook Inbox folder until the server retrieves them for processing.

Communication via email is accessible to users with internet-enabled devices, thereby

benefiting from the added features of this method, as discussed in Chapter 2. This

includes sending messages at no cost and the ability to attach multimedia files to a

message. The server can forward these multimedia files to other users whose devices

also have email capabilities, enabling the exchange of pictorial information between

the server and its users. Communication via email is achieved directly between the

server and the user via Simple Mail Transfer Protocol (SMTP) commands over the

internet. Email messages sent from a user are also collected and stored in the Inbox

folder.

Chapter 4 discussed the benefits of leveraging external services provided by third

party companies in a service-oriented architecture. Although the platform has been

designed based on a client-server architecture, both TextLocal and Microsoft Outlook

are external services utilised by the platform. These services are employed to reduce

the time and effort in developing the platform since additional components would

otherwise have to be constructed to perform the same functionality.

The users of smartphones and tablets can utilise the web-based user interface to send

and receive messages. Each user is provided with a unique PersonID attribute to

access the website. The user then has the ability to send a message from the

UserMessageSend web-form and view previous messages, both sent and received,

from the UserMessageView web-form. User messages sent via this method are

instantly received by the server, bypassing the need for the server to interface with an

SMS web service or an email client. Messages that initiate from the server are created

and stored in the Principal database. When the user requests to view the message the

web-based user interface collects and displays the message data from the Principal

database.

Message interfacing between the server and its users consists of two stages: output

and input. Output consists of messages sent from the server to users. This enables the

server to provide new instructions or tasks to a user, respond with feedback on an

earlier message or provide an update concerning a situation. Output can either be

91

achieved autonomously via the TAU or manually by the operator. Input to the server

consists of messages sent by the user after a task is fulfilled with the data gathered in

the field. Alternatively, the input message could be a request for further information

or instructions. The server has the ability to receive numerous messages

simultaneously, whereby each message would then be processed individually.

Additionally, messages can be sent from the server to multiple users simultaneously

to enable multiple users to interface concurrently with the platform.

5.2.3 Generic framework to manage multiple scenarios

The platform’s architecture has been designed based on a generic framework to

facilitate a smooth integration process with different types of scenarios. The

platform’s core functionality covers the features required for the running of each

scenario. This includes the ability to send messages to users and algorithms for

handling and processing received messages from users. The platform contains

modules for the management and storage of the various shared entities and their

attributes. These entities include the scenarios, users and messages exchanged

between the server and its users. Each occurrence of a scenario is defined as an

instance. When a scenario is requested to be run for a particular problem, an instance

of the scenario is created. Each instance relates to a unique problem, as illustrated in

Figure 5.3. It is possible for a scenario to have many separate instances running

concurrently.

Figure 5.3: A scenario with two active instances

92

The platform provides tailored functionality for each scenario in order that the

specialised characteristics of a scenario can be supported, which is achieved via a

custom-made template mechanism. A template contains a pre-defined layout of text

which is used to create a particular message. Its purpose is to provide a structure for

the information exchanged between the server and its users. Each message is created,

for both input and output, based on a pre-defined template where each template is

exclusively associated to one scenario. However, there can be numerous templates

created for a scenario, enabling the communication structure of each scenario to be

unique and specifically devised to meet the scenario’s objectives. A template has

associated rules, constraints and response actions to aid the platform’s analysis

process and enable instances of the associated scenario to run autonomously.

Each scenario may have dissimilar attributes and characteristics due to their differing

purposes and objectives. Therefore, the core functionality may not be sufficient for

some aspects of a scenario. To handle data heterogeneity between scenarios, the

platform has been developed to provide each scenario with its own unique database to

store the field data gathered by users. Field data is only relevant for the parent

scenario of the instance it concerns. Therefore, providing a database specifically

designed for each scenario means that the data items can be stored in appropriate

locations within the database. Additionally, each scenario has a bespoke application

module integrated into the platform’s logic layer to run data analysis that is specific to

the scenario. This application module has the ability to retrieve and manipulate the

gathered field data in the associated scenario’s database.

This design enables the platform to support a range of scenarios at any given time, as

well as being easily expandable to cover the unique functionality required for new

scenarios as they arise as only minimal changes are needed for the main elements of

the platform. A scenario could focus on its users individually with a separate instance

for each user and no association between users. This type of scenario would have a

heavy emphasis on one-to-one communication. A different scenario may require

multiple users per instance, with the coordination of users from the central location of

the server necessary to fulfil tasks. This type of scenario could also incorporate

broadcast communication to provide updates to groups of users as an instance

progresses. The platform is designed to handle each type of scenario with the same

93

underlying communication and data analysis structure. Figure 5.4 illustrates the

expandable structure of the platform’s generic framework.

Figure 5.4: The platform’s generic and expandable framework

5.2.4 Implementation of templates for autonomous operations

Pre-defined Outgoing templates are used by the server to autonomously create and

send messages to users. Incoming templates are designed for users’ responses to the

server, allowing users to provide instance updates or make new requests. Outgoing

and Incoming templates are designed to work with each other to facilitate the flow of

communication. Output messages based on Outgoing templates are sent by the server

as a response to analysis performed on the data of a received input message. The

Outgoing templates can then be associated with a new Incoming template. This

Incoming template would be supplied to the user alongside the output message to

assist their response. To create a new input message to be sent to the server, the user

would only be required to insert field data into the supplied Incoming template.

A parameter is a pre-defined position in a template that has been created to facilitate

the input of field data. An Incoming template can have multiple parameters defined

within its textual structure, with each parameter uniquely defined by its position in the

template. When the server provides the relevant Incoming template to the user it is

sent unchanged as a text message. The user’s role is to insert field data into the

parameter positions of the supplied Incoming template, transforming a template text

into an informative message concerning the matter at hand. The user would then send

this new message to the server.

94

The predefined format of Incoming templates enables the TAU to extract the field

data once the input message is received, providing the method for autonomous

analysis and processing of each message. This communication process is illustrated in

Figure 5.5. A Parameter entity has attributes for the position number within the

template and the expected data type of the inserted field data. These attributes are

designed to assist the TAU in analysing the field data.

Figure 5.5: Server and user exchange of communication via templates

Parameters are also available for Outgoing templates. Autonomous functionality in

the TAU generates new output messages from an Outgoing template. Data from the

Principal database or a scenario’s database is inserted into each specified parameter

position.

For the purpose of SMS and email messages, within the template text of an

unmodified Incoming template, each parameter position consists of temporary data

enclosed between two asterisks that separate the parameter from the rest of the

message. Temporary data is provided in the parameter positions of Incoming

templates to assist the user in supplying the correct field data. This temporary data

could be a list of data items, whereby the user is instructed to retain only the required

item and delete the remaining items. Alternatively, the temporary data could specify

95

the name, description or format of the field data that is required to be inserted. For

example, if a date is requested then the supplied temporary information would be

“dd/mm/yyyy” to guide the user to insert the data in the correct format. The user can

then replace the temporary data, enclosed between the two asterisks, with the

requested field data. Using asterisks to contain data items enables the analysis process

to identify where a data item commences and finishes within a message to easily

extract it. The unmodified Incoming template in Figure 5.5 contains temporary data in

the parameter positions.

A Request template is a further type of template available for communication. This

type of template is a fixed template implemented within the platform independent of

any scenario. A Request template provides a method for users to request updates that

are unrelated to a particular scenario or make general requests concerning the entities

in the Principal database. There are various Request templates available for the user

to either request a list of scenarios, a list of templates associated with a scenario or the

actual text of a specific Incoming template. In addition, users can provide updates to

their personal details via a Request template.

5.2.5 User preferences

Each user is represented by a Person entity with their attributes stored in a Person

record within the Principal database. This record includes details of the user’s mobile

number and email address for contacting the user via SMS and email respectively.

The record contains a unique identifier attribute, the PersonID, which is also the

user’s login identifier for accessing the web-based user interface to communicate via

its web-forms. There is a location attribute for each user in their Person record,

utilised by scenarios that have location-dependent characteristics. Details of a user’s

location can be regularly updated by the use of the “Member Update” Request

template.

There are some user preferences stored in the Person record. Each user can choose

their preferred method of communication. This preference is automatically updated

whenever the user changes the method used to interact with the server. For example,

if the server emails an instruction to the user and the user responds with an SMS

message this would then result in future communication being sent via SMS, until the

user changes to another method. This feature, illustrated in Figure 5.6, provides

96

flexibility as the user can simply switch between the available communication

methods and the server will match the user’s choice, maintaining a continuous flow of

information exchange.

Figure 5.6: Communication process for changing preferred method from email to

SMS

The only exception is when multimedia files are attached to a message. Under these

circumstances when the user’s preference is SMS the server would send the message

as an email to include the multimedia file since this is not possible via SMS.

However, the user will be notified by SMS regarding this occurrence. Future

correspondences would depend on the user’s method of response to this

communication. Users who have their preferred method set to SMS are able to send

multimedia files via email without altering this preference.

When a user initially joins the platform it is possible for them to choose the amount of

personal data that is stored relating to them. This is to enable the user to remain

anonymous, if so desired. Figure 5.7a shows the attributes stored in the Person table

of the Principal database. If a user does not request to remain anonymous then all the

attributes of this table are utilised to store information on the user. However, it would

still be the user’s choice to decide whether or not they would wish to share their

location.

97

Alternatively, the user can select between two levels of anonymity. The first level is

Part Anonymity, whereby the user only supplies the server with their contact details.

In this case the user’s name and any other details are not requested by the server.

However, the user is still recorded as an individual record in the Principal database,

which contains their email address and/or mobile number. This option allows the

server to continue a conversation with the user, whilst their personal details remain

anonymous. Figure 5.7b shows the attributes of the Person table which are used in

this situation.

The second level is Full Anonymity, whereby the server does not keep any

information on the user. In this case if a user submits field data concerning an

instance of a scenario, only the field data they have supplied for that particular

instance is stored. This would be linked to a default record in the Person table, which

is utilised for all users who request to remain fully anonymous (Figure 5.7c). This

feature allows for greater flexibility on the user-side since the user can easily choose

the amount of information the platform stores regarding them, whilst still being able

to participate in scenarios.

Figure 5.7: Person table- a: (left-side) Record with all user’s attributes; b: (centre)

Record for Part Anonymity with only the user’s contact details; c: (right-side) Default

record for Full Anonymity with no personal details of a user stored

5.2.6 Assignments for collective intelligence

Assignment entities enable the platform to keep track of the current task a user is

performing for an instance. Each task supplied to a user is considered as an

assignment. There are two types of assignments; standard and location-dependent

assignments. Each assignment that is available to a scenario is stored as a record in

98

the Assignment table of the Principal database. An Assignment record holds attributes

for the name, description and, if required, the location of an assignment.

A location-dependent assignment relies on the Location attribute to select users close

to the specified location to be allocated to the assignment. The location of each user

may need to be regularly updated in order to effectively provide them with

assignments in the correct area. Users who do not share their location will not be able

to participate in location-dependent assignments.

Each assignment is associated with a scenario, where the scenario may have many

assignments linked to it. An instance uses the standard assignments of its parent

scenario. However, location-dependent assignments are replicated when needed by an

instance. This allows the location data to be added to the new assignment, which is

then linked only to the instance that created it.

The key reason for implementing assignments is to facilitate coordination between

users when there is a range of different tasks available for an instance. The purpose of

this feature is to utilise the collective intelligence of the user group through effective

coordination of the users in order to take advantage of their combined skill and

abilities in tackling a shared issue. Each user can contribute field data regarding

different aspects of the instance. This offers the opportunity for other users to be

updated with new relevant information and the provision of tasks to the most suitable

users. The platform can keep track of the tasks performed and currently being carried

out by each user for a particular instance. Having the option of location-dependent

assignments enables the provision of assignments to users in an efficient manner,

based on their close proximity to the issues of the assignment. Therefore, the platform

can take advantage of the number of users available for working on the issues of an

instance as well as the different locations of each user. Figure 5.8 shows the structure

of how a scenario and its instances utilise assignments.

99

Figure 5.8: Provision of assignments in scenarios and instances

5.2.7 Roles of the operator and scenario builder

Figure 5.9 illustrates the various entity modules that the operator and scenario builder

have control over via the web-based user interface. This interface is accessible from

standard web browsers making access possible from any modern computer with an

internet connection. The role of the operator is to maintain each scenario

implemented on the platform and supervise the progress of active instances. News

records enable the operator to follow the progress of an instance from initialisation to

its current status, providing them with up-to-date information on the instance. These

News records, created by the TAU, become available as users provide field data on an

instance, which are then stored in the Principal database.

100

Figure 5.9: The web-based user interface is split into two parts, providing access for

the operator and scenario builder

The operator can manage the users assigned to an instance by providing them with

assignments, updating their details or removing them from the instance. The operator

has the ability to keep track of the progress of each user’s assignment. This enables

the operator to identify any potential issues that may arise and resolve them by

intervening with the instance. For example, the operator can manually send a message

to a user or update the user’s requirements for a specific assignment. The web-based

user interface provides the facility for the operator to view the dialogue of

conversation between the server and each user, as well as for sending further

messages.

Although the platform is designed to be autonomous in the communication process,

the operator may be required to manually resolve issues that arise as errors could

occur in the analysis of extracted message data. Some errors can be handled by the

TAU and others would result in sending a notification to the user, requesting them to

resend the data correctly. However, a template’s criteria can also be to place an alert

101

value on a Message record if there are errors in the extracted message data. This

provides a way of notifying the operator to investigate the matter further.

Prior to the initialisation of a scenario the builder defines the necessary procedures

and criteria for the scenario’s unique autonomous operations. As the flow of

information is controlled by the use of templates, it is the builder’s responsibility to

create each Incoming and Outgoing template. Furthermore, the builder constructs

appropriate rules and constraints for each template. Trigger and Answer entities

define these rules and constraints. The TAU uses these entities to analyse the field

data within an input message that is based on an Incoming template. The builder also

defines each action that the TAU can perform, based on the analysis decisions made.

For example, an action could be to instruct the TAU to reply to a user using a specific

Outgoing template. These entities need to be created by the builder and tailored to the

requirements of a scenario in order for the scenario to be active and ready for use in

the platform.

5.2.8 Message entity

Each message is stored as a record in the Message table of the Principal database.

Attributes of a message stored in this record include the sender, title and text of the

message. The title contains key information regarding the message, such as the

template and instance it refers to. The rest of the message contains the main text

constructed from a specified template with inserted field data. If a multimedia file is

attached to the message then this file is saved to the server. The Message record

stores the filename and the location of the folder in which the attachment has been

saved. Each Message record can have various alert statuses to illustrate their

importance. The purpose of these indicators is to notify the operator of an issue if it is

required to be manually resolved. Figure 5.10 shows the Message table containing

each of these attributes.

102

Figure 5.10: Message table and its attributes

5.2.9 News entity

Messages sent from a user may trigger a significant event or status change for the

associated instance. Should this occur, the TAU is able to create a News record to

provide details of the issue. News templates are utilised by the TAU to create News

records autonomously. The News record is created by merging a News template’s text

with existing data regarding the instance. This is carried out in the same format as the

creation of output messages from an Outgoing template. The inserted data can either

be current field data from the received message or prior data relating to the instance,

which is stored in the scenario’s database. Alternatively, the operator has the ability

to manually create News records for an instance. For example, a received message

may be flagged by the TAU to be manually resolved. Once the operator has resolved

the issue they can create a News record to explain the consequences of the data. Each

News record is stored in the News table of the Principal database. The purpose of

these News records is to enable the operator to easily follow the progress of an

instance from its start point to the current situation, providing up-to-date information

on the instance. News records could also be used to broadcast updates to users as an

instance progresses. Figure 5.11 illustrates the procedure for creating a News record

when a message is analysed by the TAU.

103

Figure 5.11: Process of creating a News record

5.2.10 Data layer of the platform

The data layer (Figure 5.12) consists of modules that interface with the platform’s

databases to facilitate the storage and retrieval of data, as well as performing updates

and alterations. The Principal database is designed to store data on core entities of the

platform, necessary to operate each scenario. This database, illustrated in Figure 5.13,

is split into two sections. The right-side of the Principal database represents the tables

used by the operator for the management of users and scenarios. There is a table to

store records of each scenario and others to store records of a scenario’s active

instances and assignments. Additionally, there are tables to store records of the

registered users and the messages that have been exchanged between the server and

its users. The left-side of the Principal database represents the tables used by the

TAU for the analysis procedures. These tables hold the data on entities which are

defined by the scenario builder. This includes tables for the Incoming and Outgoing

templates, the template parameters and the analysis entities, such as the Trigger,

Answer and Action entities.

Figure 5.12: Design of the data layer

104

Figure 5.13: Tables of the Principal database

There is an entity module for each table within the Principal database. These have

attributes to reflect the fields in the associated table, therefore all the data from one

record in the table can be transferred to an entity module. This functionality enables

the data to be manipulated and modified with ease by processes on all the platform’s

layers. An entity’s values can then be saved back to the same record in the Principal

database, updating its data.

Query modules provide functionality for the modification or collection of data across

multiple fields within a record, multiple records in a table or data from multiple

tables. The algorithms in these modules can be accessed from all layers of the

platform for straightforward interactions with the Principal database.

Table modules are utilised to populate a table of data within the web-based user

interface. For each table in the Principal database where there is a web-form in the

web-based user interface that displays a list of records in that table, there is a table

module to retrieve the stored data. This functionality allows the operator to view

multiple records at once, with the ability to filter and sort the records. For example,

the operator can view a list of messages in the server’s Inbox and then filter the

messages based on a specified instance.

The data layer provides access to the Principal database and each scenario’s database.

A scenario’s database is designed and configured uniquely for its respective scenario,

storing field data that is gathered by users or resultant from analysis of data

previously collected. Scenario modules in the data layer have the functionality to

105

collect and store data in these databases. As the platform is designed with a generic

framework it follows that these modules need to cater for each possible type of

scenario database. On each occasion that access to a scenario’s database is required,

the database, table and field names are collected by procedures in the logic layer.

These values are passed to the data layer, with a tailored query generated to

successfully access and manipulate a scenario’s database. The records in a scenario’s

database are linked to their associated instance by the instance’s identifier attribute

(Figure 5.14). Additionally, the name of the associated database is stored in each

Scenario record in the Principal database, ensuring that a connection is established

with the correct scenario’s database.

Figure 5.14: Relationship between the Principal database and each scenario’s

database

5.3 Data analysis process

The processing and analysis of a message is performed over a number of stages in the

TAU. Each stage is split into a class, which is a construct that stores the methods and

variables needed to effectively perform the operations of the analysis stage [183]. The

programming language used to develop each class is C#, which is discussed in further

detail in Section 5.5. Initially, messages are collected in batches at a regular time

interval and then processed individually. Attributes of the message are retrieved and

106

the field data contained within the message text is extracted. The field data is tested

against criteria defined in the associated Trigger and Answer entities of the template

that the message is based on. Finally, a number of actions are performed based on this

analysis, using Action entities. Figure 5.15 illustrates each of the stages performed

within the TAU. Each class has algorithms and routines which are independent of the

individual scenarios. The purpose of the TAU is to enable the server to communicate

with users in real-time and update the progress of each instance with minimal human

involvement.

Figure 5.15: Message analysis stages of the Template Analysis Unit

5.3.1 MailHandler class

Microsoft Outlook, the email client installed on the server, retrieves email and SMS

messages sent from the users. The MailHandler class interacts with Outlook to collect

each message from the Inbox folder. Whether a message originates as an email or an

SMS message it is received to this Inbox folder in the email format. Messages are

collected from the Inbox folder at regular intervals. The message’s attributes are

gathered and saved as a new Message record in the Principal database. This includes

the title, text, sender, timestamp and the method used to send the message.

Determining the method of communication is achieved by examining the sender

107

address. Email messages contain a separate attribute for the title, whereas for SMS

messages the message body contains the title and text of the message. Therefore, in

SMS messages the title is identified by being between two “--” strings to separate it

from the message text. Additionally, an SMS message begins with the word

“Mobserv”, which instructs the SMS web service to forward the message to the

platform’s email client. The MailHandler class checks each of these factors to

distinguish the originating message type. An example of an SMS message sent from a

mobile phone is shown in Figure 5.16.

Figure 5.16: An example SMS message sent by a user

In the case of an SMS message, which has been forwarded by the SMS web service

as an email message, the email address that has been provided contains the

originator’s mobile number. This number is extracted and used to find the record of

the user who has sent the message.

108

When a user sends a message via the web-based user interface this automatically

triggers the MailHandler class to process the message. The message attributes are

similarly stored in a new Message record. However, the process of determining the

communication method is skipped.

The key information contained within the title is designed to aid the MailHandler

class in identifying how to proceed with the message analysis. Initially, it

distinguishes whether the message is based on a Request or Incoming template; these

are the two types of messages that can be analysed by the TAU. If a message is not

based on either of these types of templates then it needs to be handled manually by

the operator. In the case of Request templates the title begins with “Req:”, followed

by the name of the request. The data within the message text is passed to the

RequestHandler class for analysis based on the request name. The RequestHandler

class is the final stage for Request messages, resolving the request.

Incoming templates are utilised by the TAU in the analysis of messages associated

with an instance of a scenario. Each message based on an Incoming template contains

key identifiers within the title. These identifiers are pointers to entity records within

the Principal database that the message relates to. The two main entities are the

originating template and the associated instance of the message. Providing these

identifiers enables the MailHandler class to find the correct entities. These identifiers

are extracted from the message and saved as the TemplateID and InstanceID

attributes within the new message’s record. These identifiers would have been

prefilled into the title by the TAU when the template text was initially sent to the

user. This would only occur for an instance if either the message is sent as a response

to a previous message concerning that particular instance or the user is already

assigned to that instance. Therefore, the user can reply with the correct information

pre-inserted into the message. The user is then only required to insert the necessary

field data in the body of the message. However, if the instance is unknown, then the

user would be required to add this information manually.

The MailHandler class passes each of the key items within the title through error

checking algorithms to ensure they are valid keys that exist within the Principal

database and do not conflict with each other. For example, the InstanceID and

TemplateID must be associated with the same scenario. Two further checks are

109

performed to ensure the actual message text is based on the TemplateID provided.

The first check tests if the beginning text in the message, before the first parameter

position, matches that of the original template text. The second check tests if the total

count of parameters in the message match the count of the originating template. The

parameter count is calculated based on the amount of asterisks in the message. Once

these error checks have passed successfully the TAU can continue processing the

message’s text. If the MailHandler class picks up any errors, a message is sent back

to the user detailing the errors and an alert status is set to notify the operator. Figure

5.17 illustrates the main operations of the MailHandler class.

The MailHandler class acts as an intermediary between the remainder of the logic

layer and the communication methods that interact with the user, whether this is via

SMS, email or the web-based user interface. The functionality contained within the

rest of the TAU is performed without knowledge of the front-end communication

method used, applying the principles employed by the telecommunications order

management system [168] discussed in Chapter 4. This is to ensure there is no

duplication of code within the class methods that would otherwise perform the same

business process.

110

Figure 5.17: Operations of the MailHandler class

5.3.2 RequestHandler class

An example of the use of Request templates is for the joining of new users to the

platform. If a message is received from a new user then a reply is sent to the user

containing the “Member Update” Request template. This template contains parameter

positions for the user to provide their personal details. Once the user replies with this

information the RequestHandler class extracts the data from the new message to

111

create a record of the user. The “Member Update” Request template is also used by

current members to update their details. This process does not apply for users who

have requested Full Anonymity. These users are required to type the phrase “Mobserv

Anon” at the beginning of each message that is sent to the server in order to bypass

the requirement of providing their details.

Some Request templates are designed to enable a dialogue between the server and a

user. The user can make a request to the server for a list of scenarios. The server

would then reply by sending a message containing the name and unique identifier of

each active scenario. Additionally, the user would receive the “Select Scenario”

Request template, which would allow them to request starting a new instance of one

of these scenarios. The user is only required to provide the selected scenario’s

identifier in their response. Each scenario can only have one template for starting a

new instance, referred to as an InstanceCreator template. This template is used to

create a new instance of a scenario and requires the user to fill in key information

concerning this new instance. Therefore, in addition to the operator manually creating

new instances, InstanceCreator templates provide extra flexibility in allowing users

to initiate instances.

Users can also request to join currently active instances. The outcome of this request

may depend on the user meeting particular requirements of the scenario. For example,

the user may be required to be currently in a particular location. Once a user joins an

instance they can make a request for a list of available Incoming templates associated

with the instance’s scenario. The server sends a response containing the name and

identifier of each Incoming template. Using this information the user can make a

request for a specific template, whereby the server would send the unmodified

template text. This is illustrated in Figure 5.18 by an example of a Request message

sent by a user with a response from the server. The user would then only need to

insert the requested field data in the parameter positions of the received Incoming

template. Alternatively, the user can request for a list of assignments for an instance

they are joined to, followed by a request to be allocated to a particular assignment.

112

Figure 5.18: Request message sent from a user, followed by the reply from the server

5.3.3 TemplateHandler class

The next step is to obtain the field data from the message. In order that the

appropriate actions are taken when a message is received it is necessary for the TAU

to individually analyse each data item provided in the message body. The first stage

of this process is to extract each data item from the parameter positions defined

within the original template. The TemplateHandler class searches through the

message text to find the data items. This process relies on locating each pair of

asterisks in which a data item is enclosed between, enabling the TemplateHandler

class to determine where each data item commences and finishes within the message

text.

The DataIn table in the Principal database stores every data item retrieved from the

users. Each string, representing a data item, is extracted from the message and saved

to a new record in this table. The DataIn record contains attributes on the data item,

this includes the data text; the identifier of the message and the parameter position

within the template where it was extracted. These data items are the only parts of the

message text that are required for analysis. The remainder of the message is

constructed from a template to help the user insert field data accurately. Therefore,

extracting and storing these data items separately enables them to be processed in a

straightforward manner, along with the simplicity of locating the data items for future

analysis tasks. Figure 5.19 illustrates the main operations of the TemplateHandler

class.

113

Figure 5.19: Operations of the TemplateHandler class

5.3.4 AnswerHandler and TriggerHandler classes

Once the data items are extracted from the message they are processed by the

AnswerHandler and TriggerHandler classes. These two classes perform the core data

analysis for all types of scenarios. The AnswerHandler class uses Answer entities to

analyse individual data items from a message. Each Answer entity is associated with

one parameter position of a template and it contains criteria which the data item in the

corresponding parameter position is required to fulfil.

There are various types of criteria that could be defined, each being tested on the data

item. It may be necessary for the data item to be of a particular data-type, such as a

boolean, integer, string or date. All data items are stored as strings in the DataIn

table. Therefore, in this situation an attempt would be made to convert the data item

to the specified type. This conversion attempt must be successful to meet the data-

type criteria.

114

The data item could be required to either match or not match a specified answer. If

the data item is a string there is an option to test whether the data item contains the

text of a supplied answer. Alternatively, the data item could be checked against

multiple answer strings where it only has to match one of the answers.

For numerical data there can be criteria for the data item to be greater or less than a

value or lie within a set range from a value. In these situations the answer could be a

fixed value. Alternatively, the answer could be a pointer to an attribute of the

instance, person or message or to a field in the scenario’s database. If any of these

conditions are set by an Answer entity then the associated data item is tested to

observe whether it passes or fails.

There could be more than one possible Answer entity for each data position in a

message. A Trigger entity is used to determine which Answer entities the message’s

data items are examined with. A Trigger entity groups a set of Answer entities

together. There must be at least one Answer entity corresponding to each parameter

position of the originating template. Each Trigger entity is related to an Incoming

template, with one of its attributes being the template’s identifier. It may be possible

for users to respond with differing field data that has the same meaning. There can be

multiple Answer entities for a data item to assist in covering each possible type of the

same response. If there is more than one Answer entity in the group for a particular

parameter then each Answer entity is examined until the data item successfully meets

one of their criteria.

If a template has more than one Trigger entity then each one is given an order of

priority. The TriggerHandler class works through the answer set of each Trigger

entity, starting with the highest priority. This continues until a Trigger entity is found

in which the message’s data items have met all the criteria of its answer set. This

Trigger entity is passed to the ActionHandler class for the final stage of determining

actions to perform. This process is designed in order that the TAU can perform

different responses depending on the field data provided. Figure 5.20 illustrates the

main operations of the TriggerHandler class.

115

Figure 5.20: Operations of the TriggerHandler class

As each scenario is different it may need extra functionality that is not covered by the

core analysis functionality. As previously mentioned, each scenario has its own

application module for analysis of data specific to that scenario. The message’s data

items may be passed to this module for additional analysis of data prior to the TAU

performing actions. The application module can alter the final responses to be carried

out and utilise further error handling algorithms to ensure a message’s data is

accurate.

5.3.5 DatabaseHandler class

Before the TAU performs any actions a message’s extracted data items are saved to

meaningful locations in the scenario’s database. The TAU would then be able to

access this data during the analysis of future communications. The scenario builder

selects each data item based on its parameter position and specifies the table and

column of the scenario’s database to insert the data. A record in the DataSave table of

116

the Principal database stores these details. It is possible for the DatabaseHandler

class to either insert a new record into a table or update a current record. This depends

on whether the table allows more than one record per instance and whether any

records for the instance currently exist in the table. Some tables in a scenario’s

database would only have a maximum of one record for each instance. In this

situation a check is made on whether there is a record in place yet for the instance.

Where no record is found a new record, containing the field data, would be inserted

into the table. Otherwise the record is updated with the new field data in the relevant

columns.

Other tables in the scenario’s database may be able to hold multiple records for each

instance. In normal circumstances, a new record would be created to store the new

field data for these tables. However, there are certain actions that may require a user

to update the details of a record over multiple messages; if this is the case the

DatabaseHandler creates a new Pending entity. A Pending entity enables multiple

messages, which are exchanged between the server and a user, to be associated

together. This feature allows the DatabaseHandler class to update a record in one of

the tables of the scenario’s database, where multiple records may exist for a particular

instance. The TableID and TableName attributes of the Pending entity are used to

locate the specified record, effectively allowing the Pending entity to point to any

record in the scenario’s database. Therefore, the field data of any future messages

linked to the Pending entity can be used to update the specified record of the

scenario’s database. Figure 5.21 illustrates the process where the DatabaseHandler

class creates and updates these records within a scenario’s database.

117

 Figure 5.21: Process of the DatabaseHandler class for handling tables that contain

multiple records associated to one instance

5.3.6 ActionHandler class

An Action entity defines a specific action that can be performed by the ActionHandler

class. The Trigger entity, which is passed to the ActionHandler class, points to a set

of one or more Action entities that have been defined by the scenario builder. When a

trigger’s criteria are matched by all the data items within a message then each of the

actions are carried out. There are a variety of action types available to the TAU.

Figure 5.22 illustrates the process where the ActionHandler class performs actions;

both for replying to users and updating the Principal database.

118

Figure 5.22: Operations of the ActionHandler class

The Reply action is used for sending a reply message to the user. This action makes it

possible to request new data from the user, provide instructions on a new task or

update the user on changes in the instance’s status based on the information that they

have supplied. The significance of this action is that it enables the server to maintain a

dialogue with the user without the involvement of the operator. When the action is

initially created the scenario builder is required to choose an Outgoing template for

the response. The text in this template is used to create the new output message. A

title is generated to provide key information concerning the message, including the

template and instance identifiers associated with the message. To facilitate a

continued dialogue, the TAU may also send an Incoming template to the user

alongside the reply. The purpose of this Incoming template is to enable the user to

provide a further response back to the server in the correct format. The user can then

simply insert any newly requested field data into this Incoming template and send it

as a new input message to the server.

119

The MessageSend action works on the same basis as the Reply action but is used to

send a new message to other users participating in the same instance. Furthermore, a

message can be sent to groups of users in the same instance. These response groups

include all users participating in the instance and users either on or off assignments.

This helps the server to broadcast messages out to potentially many users. For

example, the server could broadcast an update to all the users participating in an

instance when the instance’s status is changed due to the analysis results of a received

message. Alternatively, this technique could be used to ask multiple users to carry out

the same data collection task.

The Forward action forwards the user’s message to other users in an instance. This

action uses the same broadcast feature of sending a message to multiple users.

However, with this action it is just the original message from the user that is sent to

other users. This action is used to update other users with the data that a user has

provided, notifying them of the discovery and providing helpful details.

A Notification action is available to send a confirmation message back to the user.

This is a form of providing feedback to the user regarding their recently sent message.

The user is informed that the message has been received and successfully processed

without errors. A Notification action does not require an Outgoing template. It is

created based on a fixed message template and the title of the received message.

An InstanceNew action is triggered when a user sends a message based on an

InstanceCreator template, initiating a new instance of the scenario. A scenario may

define an optional restraint on the user’s ability to initiate an instance. If this is the

case then the new instance is initially placed on a Preliminary status. The operator

would be required to confirm the instance in order to make it active. The reason for

this would be to prevent erroneous instances being created, using up the server’s

resources. The scenario builder could prevent users from initiating an instance of a

particular scenario by not defining an InstanceCreator template.

Users can manually request to join an instance via a Request template. Alternatively,

the TAU could automatically add a new user to an instance with the UserAdd action.

This would occur if the new user has been referred to by another user of the instance.

The TAU could also select users based on a specified location to add to an instance.

120

In the situations where the TAU adds a user to an instance, the user would be notified

but remain inactive until they reply with a confirmation message. This provides

flexibility by enabling both users and the server to add more users to an instance. This

action can also add new users to the platform if their details are not currently stored,

kick-starting the exchange of messages to retrieve a new user’s details.

A StatusChange action updates the instance to a new status. Each possible status an

instance goes through is defined by the scenario builder during the implementation of

the scenario. Updating an instance to a new status is a way of the instance

progressing, whilst showing its current circumstances. This can result in users being

provided with new assignments and old assignments ending early if they no longer

need to be fulfilled.

The analysis of a message may raise a new issue regarding the associated instance. In

this case the AssignAdd action can create assignments and place users, who are

currently joined to the instance, on the new assignment to resolve the issue. In a

dynamic scenario where new assignments are continuously arising, the AssignAdd

action helps to progress the instance by efficiently allocating the users. This can be

achieved by selecting the closest user to the location of an assignment, if it is

location-dependent. This action could be used in combination with the MessageSend

action to provide the user with details of the new assignment they have been allocated

to. Alternatively, once a user has finished providing useful information for a

particular assignment or achieved the assignment’s objectives they can be removed

from it. The AssignRemove action is utilised to remove users from assignments. An

automatic notification message can be sent to the user to notify them of this change.

There could be certain messages of high importance that require an operator to view

and then decide how to proceed. Alternatively, it may only be necessary that the

operator is aware of a new situation. Alert actions flag messages for these situations.

There are two types of alerts, whereby the alert attribute in the message entity

indicates the type that applies. An Alert action places the received message on an alert

status of HighPriority, which notifies the operator of its importance, allowing them to

easily find the message. They could then manually perform any actions that are

necessary. There is also an ErrorDetected alert status that a message is set to if the

TAU detects erroneous data in the analysis stage.

121

Each instance has a list of News records to enable the operator to keep track of the

progress. The platform is designed for News records to be created when a user reports

back significant events occurring out in the field. If a user’s message meets the

specified criteria then a NewsInsert action would be used to create a News records.

This action requires a News template to obtain the text for the News record. If there

are any parameter positions within the template these are updated with the relevant

data, depending on the message received and the instance. In addition, data from the

News record can be sent out as a message to the original user or a group of users to

keep them up-to-date with the instance’s progress.

The TemplateList action instructs the ActionHandler class to send a list of available

Incoming templates to a specified response group. This action can be used to supply

the list to a user after the setup data of a new instance has been collected or to send to

users who have recently been added to an existing instance.

5.3.7 DataOutHandler class

Outgoing templates used for actions may have parameter positions that need to be

filled in with the appropriate data. This is achieved by the DataOutHandler class.

Each action that requires an Outgoing template points to a list of DataOut entities,

one for each parameter position within the template. A DataOut entity instructs the

DataOutHandler class on which data item is to be inserted into its corresponding

position in the template. This could be a fixed string provided by the DataOut record,

in this case the string is inserted into the text location of the parameter position.

There are other locations where the appropriate data can be obtained. The DataOut

record may point to the original message’s text, with its FieldID attribute indicating

the parameter position to extract the data from this text. The DataOut record could

also point to an attribute of the Message entity, Person entity (the sender of the

original message) or the Instance entity. For example, the DateSent attribute of the

message entity may be selected in this way.

A further location that is used to retrieve data is the scenario’s database. In this

situation, the DataOut record would point to a field in the database, based on the table

and column names provided. The scenario builder would have defined these details in

the DataOut record.

122

The range of locations in which the DataOut class is able to retrieve data enables the

TAU to be flexible and accurate in providing details to a response. Figure 5.23

illustrates the operations performed by the DataOutHandler class.

Figure 5.23: Operations of the DataOutHandler class

5.4 Developing a scenario application

The implementation of a new scenario involves a three-stage scenario development

process. Once these stages have been completed by the scenario builder the new

scenario is ready to be run by the platform.

5.4.1 Stage 1: Creating the scenario’s database

The first stage involves developing the scenario’s database. The builder constructs the

database using Microsoft SQL Server Management Studio [184], a software

application for designing and managing relational databases. The builder is initially

required to determine and lay out the components of the scenario. These components

are defined as entities of the scenario. A table is required in the scenario’s database

for each entity, to store data on the entity’s attributes. A new record needs to be

created in the Scenario table of the Principal database. This record provides a pointer

to the scenario’s database as well as the name and description of the scenario.

123

5.4.2 Stage 2: Template and analysis criteria

In the second stage, the builder creates the Incoming and Outgoing templates that will

be used in the communication structure of the scenario. This may include an

InstanceCreator template, which would enable users to initiate a new instance. Figure

5.24 illustrates the Template web-form of the web-based user interface. On this web-

form the builder is able to create new Incoming and Outgoing templates for a

scenario. The builder inputs the name and the text of the template, as well as defining

other attributes such as declaring whether the template is an InstanceCreator

template. For each template that is created the parameters are automatically defined

based on the locations of the template text that are enclosed by two asterisks. The

builder can provide a name and alter the temporary text of each parameter afterwards.

The name is used to easily identify the parameter when creating the analysis entities,

such as an Answer entity.

Figure 5.24: Template web-form within the web-based user interface

At least one Trigger entity is required to be associated with each Incoming template.

The first Trigger entity is created automatically and set as the default trigger. The

124

builder constructs an Answer entity for each parameter position, requiring analysis, in

the Incoming template. An Answer entity is created in the Answer web-form, where

the builder defines the required data type and value criteria that the data item would

be checked against. If an answer value is not fixed the builder would define a pointer

to a database or entity location where the value is stored. In the DataSave web-form

the builder defines the location, within the scenario’s database, to save each data item

of a message based on the template.

The Action web-form is where the builder defines the response actions for each

trigger. Each action is created by defining the action type. Actions that involve

sending a message require the builder to specify the response group and the Outgoing

template to use. The other action types have alternative selections to choose from, for

example the alert action requests the builder to select the appropriate alert type. For

actions that require an Outgoing template the builder would define the fixed string or

a data location to use as input for each parameter position of the template. A new

DataOut entity would then be created for each one.

5.4.3 Stage 3: Application module development

Finally, the builder creates a bespoke application module if additional analysis is

required for the scenario. The application module interacts with the TriggerHandler

class by a defined set of input parameters and a returned output variable. This module

has a loosely coupled relationship with the classes of the TAU, whereby only the

input and output data is known by these classes. No internal workings need to be

established with the classes of the TAU, ensuring that the application module can be

easily integrated into the platform.

When a message has fulfilled the criteria of a Trigger entity then the trigger’s

identifier value is sent to the application module as an input parameter to check if

there are additional calculations or analysis to be performed. Additional input

parameters include the associated Message and Person entities. The builder is

required to link each method in the application module to a Trigger entity associated

with the scenario. The method can then use and manipulate the message’s data. The

application module has access to the core entities of the Principal database and the

scenario’s database tables via the modules of the data layer. As output, the method

would return a value to the TAU to indicate the trigger identifier. Therefore, the

125

method has the ability to keep the same trigger as before or instruct the TAU to

perform the actions associated with another trigger. Once the application module has

been developed and integrated into the platform’s logic layer, the scenario is ready for

active use. The operator is then able to take over the running of the scenario and each

of its instances.

5.5 Development environment and software tools

The Connected-Mobile Platform has been developed in the Microsoft Visual Studio

integrated development environment (IDE) [185]. This is a software application that

provides a vast array of tools, which are contained within a library of classes known

as the .NET framework, for developing new applications that run on Microsoft

Windows operating systems. Within the Visual Studio IDE the platform’s presentation

layer utilises ASP.NET (Active Server Pages), a server-side framework for web

applications [186], in order to create and display the web-based user interface. Each

element of the web-based user interface has been designed using the HyperText

Markup Language (HTML) to display the content in a client’s web browser, which

includes the web-forms for the operator, scenario builder and users of the platform.

The ASP.NET framework contains a set of graphical tools to assist in constructing the

HTML content of each web-form. The platform utilises the class libraries available

from the ASP.NET framework to collect data sent from a client device via the web-

forms for processing in the logic layer. The ASP.NET framework is also used to

collect and display processed data on the web-forms on client device.

C#, an object-oriented programming language, is used to code the business logic and

rules of the platform. Each component of the platform’s logic layer is coded into a C#

class within the Visual Studio IDE. These classes are the blueprints that store the

methods, event procedures and variables necessary to perform the application

processes [183]. There is also a C# code-behind class for each ASP.NET web-form

that holds the server-side code for reacting to user events during interactions with the

web-based user interface.

The C# classes in the platform’s data layer utilise the set of ADO.NET (ActiveX Data

Objects) classes within the .NET framework. The functionality provided by the

ADO.NET classes enables the data layer to access the platform’s databases for the

storage and manipulation of data [187]. Additional requests are made to the databases

126

for the retrieval of data which would then be stored in ADO.NET objects, such as

data-row and data-table objects.

The classes in each layer of the platform interact with each other to pass data along.

For example, information received from a user in the web-based user interface would

be passed to the classes of the TAU in the logic layer for processing. Results would

be passed to the data layer for storage. Also, additional data may be retrieved from a

database to assist in processing a message. Analysis results would also be passed to

the presentation layer to be displayed to the user.

The platform’s databases are stored and handled by Microsoft SQL Server, a

relational database management system (RDBMS) that structures data into database

tables consisting of fields and rows [188]. Data requests to a SQL Server database are

performed via SQL queries. Each time a class within the platform’s data layer needs

to interact with a database an ADO.NET object is created, containing the appropriate

SQL query to make the required data request. The design of each database has been

achieved using Microsoft SQL Server Management Studio [184], which provides a

user interface for developers to construct and maintain SQL Server databases. Figure

5.25 illustrates the development environment and software tools used to develop the

platform.

127

Figure 5.25: Development environment and software tools for developing the

platform

5.6 Experimental setup for operating scenarios in the case studies

Chapters 6 and 7 discuss case studies of two different types of scenarios.

Experimental runs of each scenario were performed with the experimental setup

described below. The Connected-Mobile Platform that has been described in this

chapter was installed on a computer that had Microsoft Windows Server 2008 running

as the server operating system. The computer’s hardware consisted of a 3.2 gigahertz

(GHz) dual-core central processing unit (CPU) and a 4 gigabyte (GB) unit of random-

access memory (RAM). This computer acted as the server for the experiments and

had the .NET framework and Microsoft SQL Server installed to facilitate the running

of the platform in order to handle the application processes and maintain the

databases respectively. The server operated continuously to maintain the running of

the modules in each layer of the platform in order that clients could interact with the

server and newly received data could be processed without interruption.

128

The scenario builder had direct access to the server to create the databases and

develop the application modules for each new scenario, utilising SQL Server

Management Studio and the Visual Studio IDE respectively. Defining template

content and analysis criteria for each scenario was achieved either directly on the

server or on a separate client computer connected via the server’s local area network

(LAN). The operator used the same LAN connection to maintain scenarios. Both of

these roles rely on interacting with the server via the web-based user interface. The

web-based user interface was only accessible via this LAN connection for the purpose

of the experiment on the prototype of the platform. However, the web-based user

interface would be published to a website that is accessible from any location for real-

world use.

Microsoft Outlook runs concurrently on the server and is configured to receive all

emails from the platform’s email account, which is mobservs@googlemail.com. A

“Send/Receive” request, within Outlook, is set to run automatically every minute to

retrieve new email messages from Google’s email server. These messages may either

be sent directly from a user’s device via email or an indirect SMS message that has

been converted to email via TextLocal [42], the SMS web service. A C# Timer object,

within the platform’s core application, automatically runs to check Outlook every

minute for new messages that need processing.

The collaboration between the platform and Outlook has been established for the

experiments to ensure messages sent by a user either via email or SMS are retrieved

within a short timeframe in order that the server can respond in real-time. This has

been tested within the experiments by observing the average length of time it took for

a user to receive a reply from the server after they had sent a message and whether

there was a substantial delay if multiple users send messages to the server

simultaneously.

The users, within the experiments, interact with the server via three different device

types; basic mobile phones, smartphones and tablet computers. All SMS messages are

sent by a user operating either a basic mobile phone or a smartphone. The server’s

responses are received by the same user device that sends an SMS message. All

screenshots for SMS messages were taken from smartphones as this facility was not

possible from the basic mobile phones used.

129

Users operated both smartphones and tablets for sending and receiving email

messages. Server replies via email are stored by an email server that holds the user’s

email account. Therefore, email messages were accessible by any internet-enabled

device the user owned during the experiments. Tablet computers were used to

demonstrate the user interactions via the web-based user interface (using the LAN

connection). Each user would have a unique login identifier that enabled them to view

all previously exchanged messages and send new messages on any internet-enabled

device. Each device type was included in the experiments to make it possible to

assess how user-friendly the interaction process is between a user and the server in

terms of receiving the relevant information and inputting field data into templates to

create new messages. Figure 5.26 illustrates the experimental setup for the case

studies.

Figure 5.26: Experimental setup of the platform

131

5.7 Conclusions

The aim of the research was to investigate how people in a mobile society could be

utilised for different scenario problems, by including multiple methods of interaction.

The proposed platform and functionalities address the identified requirements by

incorporating multiple methods of communication in order to support numerous

scenarios, whilst offering a guided development process for the fast implementation

of each scenario.

The usage of mobile communication methods in the communication process between

the server and users has allowed the platform to employ users in any location and to

contact them at any time, enabling scenarios to be tackled in a mobile environment.

Text messaging via SMS is the prime technique utilised for server and user

interactions. Additionally, email technology has been accommodated to handle the

exchange of multimedia files and a web-based user interface with data entry via a

web-form provides a user-friendly method of supplying data for smartphones and

other internet connected devices. The user is able to choose their preferred method of

communication. The user can switch at any time to another method of

communication. The server would then respond via this new method, thereby

continually meeting the user’s choice in the communication process.

The platform has been developed based on a novel framework that is built on a client-

server architecture. This novel framework has generic properties in order that it can

support a range of different scenarios. The core functionality covers the features

required for each scenario to facilitate the sending of messages to users and the

processing of received messages. The key to this is the template mechanism that

defines the structure of each message exchanged between the server and its users. The

template mechanism enables messages to be uniquely tailored to each scenario in an

ordered process. The Principal database provides a central location where data can be

stored that relates to the core components of the platform such as the registered users,

the exchanged messages and details of each template.

The template analysis process performed by the TAU has been designed to be flexible

and robust in responding to field data. The template mechanism enables the TAU to

operate on messages for each scenario. The TAU is composed of generic

functionality, designed to work regardless of the scenario. However, a template’s

132

associated analysis can again be tailored to meet the requirements of an individual

scenario. The features provided by Trigger and Answer entities enable the scenario

builder to choose from a wide range of variables in deciding the results of data

processing, with many different types of results possible due to the limitless number

of triggers for each template. These features have been put in place to provide the

platform with an effective analysis component.

Action entities have provided the ability for a wide array of responses. One important

facility that the Action entities offer is to enable the server to engage in a dialogue

with its users, without the need for operator intervention. This can provide an

efficient mechanism of supplying users with instructions, as well as reacting to

collected field data in a timely manner. Each user can be allocated to different

assignments, which can interlink with assignments provided to other users. This

assignment allocation can be based on user location if the assignment is location-

dependent, providing a means for the effective coordination of users. Therefore, a

user can cooperate with other users to help progress and tackle issues and objectives

within a scenario. At the same time the users can be informed of the progress of other

users via the broadcast of updates. The responses made available by Action entities

can provide details in great length to the users with the ability of response templates

to re-use data from previous messages. Actions also enable users to initiate operations

by offering the users the opportunity to request the creation of new scenario instances.

The core functionality implemented within the platform has been designed as a

framework for developing societal systems that have the ability to mobilise a

potentially large workforce scattered widely in a surrounding area of a location. It is

important to evaluate the platform’s ability to handle different scenarios. Two

important factors to consider include the simplicity and speed of constructing a new

scenario and the effectiveness of the platform once a scenario is active with

participating users. This chapter detailed the three-stage process for developing new

scenarios into the platform. This process is in place to simplify the integration of each

scenario. The generic functionality of the platform is designed to support the

requirements of the different scenarios whilst they are running with active instances.

The next two chapters consider the actual implementation of two different types of

133

scenarios, each with unique characteristics and requirements, by applying the three-

stage scenario development process.

134

6 Case Study 1: Diet Diary Scenario

6.1 Introduction

To evaluate the functionality of the Connected-Mobile Platform, two scenarios

having different requirements and differing objectives have been developed. The first

scenario, entitled the Diet Diary scenario, tracks both the daily food consumption and

the activities performed by a subscribed user. The purpose of the scenario is to

manage a user’s daily calorie intake in order to help the user reach a desired goal

weight over a specific period of time. This scenario has only a single user assigned to

each instance, with a focus on one-to-one communication between the server and the

specified user. This makes it possible to concentrate on demonstrating the platform’s

effectiveness in receiving messages, processing the field data and performing the

appropriate responses.

The Diet Diary scenario utilises the core components of the platform, including the

communication functionality to interact with users and the Principal database for

storing messages. This scenario makes use of a number of the features that have been

discussed in Chapter 3 and has subsequently been incorporated into the platform in

Chapter 5. These features include the platform’s ability to analyse field data and the

use of templates to control the communication structure. The employment of these

features into the Diet Diary scenario is described in this chapter.

It is important for the platform to enable the scenario to be developed simply and

smoothly. Part of this process is the building of a database to cater for the scenario’s

unique attributes. This database contains tables unique to the Diet Diary scenario,

which enables the platform to hold data efficiently on each user’s Diet Diary instance.

There is also a separate application module, specific to this scenario, which is easily

integrated with the platform for analysis and calculations. These components are part

of the three-stage scenario development process being used to implement the Diet

Diary scenario, which is described in this chapter. This is followed by a discussion of

the time savings attained from applying the scenario development process, whereby

the Diet Diary scenario’s development time is compared to creating an application

from scratch.

135

This chapter investigates a running instance of the scenario from the user’s point of

view to demonstrate the platform’s ability to support an active scenario and provide a

user-friendly approach with its clients’ interactions.

6.2 Details of the scenario

The Diet Diary scenario in this chapter aims to include features similar to those

implemented within the Perfect Diet Tracker application [102], which was discussed

in Chapter 3. In this case it is not necessary to develop the functionality from scratch

as the scenario takes advantage of the platform’s components to provide for its

features. Each Diet Diary instance enables one user to monitor their daily calorie

intake based on food and drink consumption and calorie burn rate from performing

strenuous activities. This information can be used for weight management, whereby

the user can provide a weight loss or gain goal over a timeframe. A Diet Diary

instance would provide daily calorie intake and burn targets to assist the user in

meeting their desired overall weight goal. User data on food and activity items would

be analysed by the Template Analysis Unit (TAU) to observe whether the user is

meeting their respective daily quotas.

The Diet Diary scenario has been chosen since it requires many of the features

discussed in Chapter 3, which the platform aimed to provide support for in Chapter 5.

The scenario focuses on data entry, enabling the user to regularly inform the server of

new food and activity items. For example, each time the user consumes a food item

this process can be performed by providing the item’s details. The user is able to

input all the details of the item manually, including the quantity consumed and the

calories of the item. Alternatively, the user can choose to select from a list of items

stored by the scenario. This feature is in place to simplify the input process as the user

would only be required to provide the quantity consumed.

The scenario utilises the platform’s autonomous data analysis components to

determine the user’s chosen method and subsequently calculates the calorie intake

from the food item. Data analysis is also performed to update the daily values of the

user’s Diet Diary instance. This information is sent to the user as feedback, notifying

them on the amounts required to meet their daily targets. There is an alert feature in

this scenario, which notifies the user if their daily calorie intake or burn targets are

breached when new food or activity items have been sent to the server. An alert limit

136

can also be set when the user is nearing a calorie target value. This feature enables the

user to be informed and then react to the situation. The autonomous analysis

component is used to identify these target breaches on each occasion that the user’s

daily calorie values are updated.

The template mechanism that was discussed in Chapter 5, is utilised for each of these

features. Template messages are created in the scenario’s development process to

cover each type of interaction between the server and the user. Incoming templates

provide a means for data entry by the user, which includes providing initial diet

details to update an instance when the user consumes a food item or performs an

activity. From the server aspect, there are Outgoing templates to provide the

necessary feedback to the user, either to simply confirm the successful entry of the

user’s message or to provide alerts on the nutritional values for the day. Feedback and

alert messages sent to users are based on Outgoing templates which have been

individualised with the relevant data, meaningful to the user. The scenario has a

database developed and tailored directly to meet its characteristics. This database

provides record-keeping of each user assigned to an instance, storing the data on food

and activity items, weight goals, calorie targets and daily summaries. The TAU

transfers the field data supplied by the user into the scenario’s database.

The scenario has been designed to utilise the core components of the platform in

order to provide the features discussed. The communication components implemented

within the platform handles the interactions between the server and users assigned to

Diet Diary instances. This has the effect that the user can communicate via SMS,

email and the web-based user interface and switch easily between these three

methods. The platform controls the sending out of messages from the server,

determining the appropriate communication method to use. The platform also handles

the retrieval of user messages, regardless of the communication method employed.

There is no need to develop specific new communication handling components for

the scenario.

The platform’s template mechanism is utilised by the scenario builder to create each

Incoming and Outgoing template message that is to be used as part of the

communication structure of the scenario. The builder defines the text and rules for

each template tailoring them to the requirements of the scenario, via the web-based

137

user interface. The TAU analyses each input message, based on an Incoming

template, which is sent from a user. This analysis is based on the template rules that

have been defined by the builder. The data layer provides access to the Principal

database for storage and retrieval of the scenario’s templates, as well as users and

messages for each instance.

6.3 Implementation of the scenario

6.3.1 Database entities

There are several components to the Diet Diary scenario. Following the three-stage

scenario development process each of these components is defined as an entity of the

scenario, whereby the scenario’s database has been developed with a table to

represent and store data for each entity. Figure 6.1 illustrates the scenario’s database,

signifying the relationships between the scenario’s entities.

Figure 6.1: Entities of the scenario’s database

The Person entity of each Diet Diary instance represents the user for whom an

instance is created. There is a Person table within the scenario’s database where there

is a record for each user assigned to an instance, which stores details on a user’s

current attributes such as their height, weight and gender. Additionally, objective data

are held within this table, which includes the daily calorie burn and intake targets, the

138

user’s weight goal and the specified period of time to achieve this goal. Each Person

record is linked to the Instance record within the Instance table of the Principal

database, via the Instance identifier.

The FoodUser table is where details for each food item consumed by a user is stored,

marked by the date and time of consumption. This table includes fields to store the

data on a food item’s nutritional values including the portion size, calorie intake and

whether the item is a fruit or vegetable.

The scenario stores a list of food items in the FoodList table. The user is able to select

from one of the items stored in this table. Each record holds nutritional data for a

default amount of the item and defines the portion type. A portion of a food item

could be measured by the weight or the quantity. These two types are referred to as

portion weight and portion unit respectively. When the user selects the correct item

they then provide the amount consumed. The consumed amount is used with the

calorie per default amount to calculate the total calorie intake of the consumed item.

The FoodList table is also expandable. In situations where the user inputs a new food

item manually the details of the food item are then stored in the FoodList table for

future occurrences.

The same process is used for providing details of activities performed. The

ActivityUser table stores a record for each activity performed by the user, including

data on the calories burned, total time and length of the activity, as well as the date

and time it was performed. The TotalTime attribute in the ActivityUser table is used to

calculate the total daily time. In addition to the daily calorie burn target the user can

choose to have a daily activity time target. The user can choose from a list of

activities contained in the ActivityList table. There is an attribute for the activity’s

Metabolic Equivalent of Task value (MET). This value is used to measure the

strenuous factor of the activity in order to calculate the calories burned [189]. Some

activities, such as running, have different calorie burn rates depending on the speed

that the person is travelling [190]. Therefore, the user can select between different

speed rates for these types of activities.

139

Food and activity items are both assigned to a category. The Category table stores the

list of available categories for each type. When searching for their desired item,

categories provide a means for the user to filter the results.

Details of the total daily nutritional and activity data on a user are stored in the

DayTotal table. The current day’s record is updated when new food and activity items

are supplied by the user, storing the total calorie intake and burn values, the total

activity time and the fruit and vegetable count for the day. The user is also able to

update their daily weight with the new weight stored in the current day’s record. The

data within this record are used to assist the user in reaching their daily targets and

show the weight movement from the instance’s initialisation to the current time.

The tables within the scenario’s database have been designed in order that the field

data received from a user and the calculations from this data are stored in meaningful

locations. The builder defines the location to store the data. The TAU can then utilise

the data at a later stage for further calculations and for analysis checks when new

field data is received.

6.3.2 Template and analysis criteria

The next stage involves the creation of the scenario’s templates together with the

analysis criteria for parameter positions within the templates. In each phase of a Diet

Diary instance the user is required to use an Incoming template to supply field data to

the server. Therefore, the builder needs to create each Incoming template. Figure 6.2

illustrates the Template web-form of the web-based user interface being used to create

an Incoming template. In this situation the template being created would request the

user to input basic details for setting up their Diet Diary instance.

140

Figure 6.2: Incoming template being created in the Template web-form

Templates are provided with a meaningful name in order for them to be identified.

This enables the builder to link templates, within the communication structure, with

the appropriate response templates. Users are able to request templates to provide

further details once an instance has completed its initial setup stages. Therefore, a

meaningful template name helps the user to locate simply the correct template for any

data entry procedures. The builder inputs the text of the template in the “Template

Structure” textbox, which is sent to users as the main body text. This includes

declaring the template’s parameter positions, with temporary data placed between the

two asterisks.

The category of the template is selected for Incoming templates. Incoming templates

are split into three sub-types, InstanceCreator, Setup and Available templates. Each

scenario may have one InstanceCreator template to enable the user to request the

creation of a new instance. Available templates are for the user to be able to request at

141

any stage of an instance. The server utilises Setup templates to request information

from the user, however these types cannot be requested by the user.

Once the template is saved the parameter data of the template is passed to the

Parameter-Input web-form. This web-form, illustrated in Figure 6.3, takes the builder

through each of the declared parameters, where it is possible to alter the temporary

data, provide a meaningful name for the parameter and an expected data-type for the

returned data from a user. The parameter name is used by the builder to locate the

correct parameter when defining analysis criteria and actions in the Answer and

DataOut entities respectively. The procedure for creating Outgoing templates is

similar; however the template type does not need to be defined. Additionally, for

Outgoing templates there is an option to provide a response template, which is

selected from the list of Incoming templates. This would then be sent alongside the

Outgoing template whenever it is sent to a user, supplying the user with the template

structure for sending a reply back to the server. Figure 6.4 illustrates the view of the

Template web-form for creating an Outgoing template.

Figure 6.3: Parameter-Input web-form

142

Figure 6.4: Template web-form for creating an Outgoing template

Once this process has been completed the builder is able to define analysis criteria

and create response actions for Incoming templates. Selecting the “Create/Edit

Triggers” link takes the builder to the Trigger web-form. Figure 6.5 illustrates the

Trigger web-form for the “Input Diet Details” Incoming template. In this situation

two Trigger entities have been defined. The first trigger is activated if the user

manually requests to provide their own targets. The second trigger is activated if the

user chooses to have targets automatically generated.

143

Figure 6.5: Trigger web-form

 Answer entities are used to determine the correct trigger based on user data. Figure

6.6 illustrates the Answer web-form, where these Answer entities are created. The

builder is able to select the comparison type and provide the expected answer. In this

case the Answer entity would instruct the TAU to check if the data item contains the

word “manual” within its textual structure. Each data item can be converted to a new

value for data storage. The builder then defines the location in the scenario’s database

to store each data item via the DataSave web-form. Figure 6.7 illustrates the

DataSave web-form, whereby the builder has created a DataSave entity for each

parameter position of the “Input Diet Details” Incoming template to update the

Person table with a record for the new user.

144

Figure 6.6: Answer web-form

145

Figure 6.7: DataSave web-form

Figure 6.8 illustrates the Action web-form where the builder creates Action entities.

These entities are used by the ActionHandler class to enable the TAU to respond to

user messages. The list of items displayed by the “Action Type” dropdown-list

illustrates the different possible action types available to the builder. Depending on

the action type chosen the builder is required to provide extra attribute details for the

Action entity. The Action entity created in Figure 6.9 is a Reply action, which would

instruct the ActionHandler class to send a reply message to the user. The appropriate

Outgoing template is selected for the Reply action. In this example the Outgoing

template, which was shown in Figure 6.4, is selected.

146

Figure 6.8: “Action Type” dropdown-list in Action web-form displaying a list of

available Actions

Figure 6.9: Reply Action entity created in the Action web-form

Finally, the builder assigns the data that is provided in the parameter positions of the

Outgoing template. Figure 6.10 illustrates the DataOut web-form. The column BMI

of the Person table has been selected for the first parameter position.

147

Figure 6.10: DataSave web-form

The remaining Incoming templates and their analysis entities are created using the

same steps in the web-based user interface. This process demonstrates that the

template creation and the defining of analysis criteria and response actions is

achieved declaratively, without any programming effort required by the builder.

6.3.3 Application module development

The Diet Diary scenario’s application module contains the algorithms to calculate

various values throughout the operations of an instance. The builder defines and

places each algorithm within the methods of the module. The method that is run

depends on the Trigger entity that has been activated by the TAU on the analysis of

an Incoming template. The Trigger identifier is passed to the module and used as the

key parameter of a switch case statement to determine the correct method, within the

module, to run. The module has access to the scenario’s database to make any

necessary updates to records.

The builder has developed an algorithm to calculate the Body Mass Index (BMI) of

the user, which is a measure of their body fat based on the weight and height from

148

their initial setup details [191]. There are four categories within the BMI index;

underweight, normal, overweight and obese. The calculated value is tested against the

boundary limits of each of these categories to determine the matching category. The

BMI value and the user’s category are stored in the Person record of the scenario’s

database. These values can then be inserted into the parameter positions of the

Outgoing template that is sent as feedback to the user.

There is an algorithm to calculate the daily calorie targets of a user based on the

weight goal that the user is aiming to achieve. This algorithm uses the default overall

calorie loss amount needed to lose one kilogram of weight weekly [192]. Then

together with the Recommended Daily Allowance (RDA) [193] of calorie intake for a

typical person and the timeframe to reach the new weight the algorithm calculates

both the calorie intake and burn targets required daily.

A food item that a user selects from the list of items stored in the FoodList table has a

default calorie value, which is either measured by a portion unit of one or a portion

weight of 100 grams. When the user provides data on the portion size consumed, this

value is then used to calculate the total calorie intake of the food item. Similarly for

activities, the user is only required to provide the time spent if the activity is selected

from the scenario’s activity list. Each activity has a unique MET value which is then

used to calculate the calories burned in the activity. For both food and activities

where items have been provided manually by the user, the module has algorithms to

calculate the default calorie or MET values respectively. These calculated values are

based on the total calorie values provided by the user. For each of these algorithms

the calculated values are stored in the FoodList/ActivityList tables that are accessible

by either the TAU or the application module during a later phase of the active

instance.

Daily summary details are calculated each time a new food or activity item is added.

The calorie value and other attributes including whether a food item is a fruit or

vegetable, as well as the time taken for an activity item are all passed to the

DaySummary algorithm. The current daily calorie intake and burn values are updated

in this algorithm. Furthermore, to assist with providing alerts to users the span

between the calorie intake and alert limit (IntakeToAlert field) is updated. Using the

calculated IntakeToAlert value each time a user adds a new food item an Answer

149

entity checks that the calorie intake from the item would not push their daily calorie

intake over the alert limit. A similar method is used for activities, with the updated

value stored in the BurnToAlert field of the DayTotal record.

Figure 6.11 illustrates the “Daily Summary” Outgoing template, which utilises these

values. Using DataOut entities, the builder associates each parameter position with

the correct database location in the DayTotal table. Whenever the user requests the

daily summary, these values are sent to them in a readable format.

Figure 6.11: “Daily Summary” Outgoing template

These situations show that the application module is connected with the TAU, via the

scenario’s database, to enable calculated data to be utilised by the core components of

the platform. The programming effort for the application module is minimal as the

builder is only required to develop algorithms for the calculations of a Diet Diary

instance. Each algorithm is described in further detail in Appendix A1.

6.4 Development time comparison for the Diet Diary scenario

Following the three-stage scenario development process, the Diet Diary scenario was

designed and implemented in 3 days. Half a day was required for designing and

assembling the tables of the scenario’s database in Microsoft SQL Server

Management Studio. Another half day consisted of defining the template content and

analysis criteria for the scenario. In this case study only the development of the

application module had a larger timeframe to complete, where 2 days of coding were

required. The platform’s TAU does not contain the functionality to support the

algorithms that are required to perform the calculations of the Diet Diary scenario.

The application module consists of a C# class that was developed in the Microsoft

150

Visual Studio IDE, which stores the methods for running each algorithm. After

completing these three stages the platform was ready to generate and run new

instances of the Diet Diary scenario.

Creating an application from scratch that would achieve the same functionality as the

Diet Diary scenario involves a far longer development time. The timeframes

summarised below for developing each component of this mock-up application are

estimates based on a design specification of the application that outlines the classes

and methods required to meet its objectives. The next case study in Chapter 7

(Section 7.4) contains extended details on the comparisons between producing a

scenario via the platform and developing a new mock-up application to fulfil the

same objectives.

A communication component would need to be designed uniquely for this new

application in order to handle the sending and receiving of messages. This component

would require 3 days of development. A web-based user interface would need to be

included for operator maintenance and user communication via this means, taking

approximately 6 days to develop. A message analysis component would take an

estimated 7 days to design and implement into the application, with a further 2 days

for structuring and defining the template content. Finally, a database would be created

to store data regarding all the entities of application, including each user’s diet diary,

template content and the messages sent between the application and its users. The

design of the database and coding of the application’s data layer for accessing this

database would take 4 days to complete.

Overall, it would take an estimated 22 days to complete the development of a new

application with equivalent functionality to the Diet Diary scenario. This emphasises

that the platform facilitates a much faster timeframe for producing new types of

applications due to the framework of ready to use generic components at its disposal.

Only the application module required more than a day to develop, however this was

minimal in comparison to the overall completion time for a new application. Figure

6.12 illustrates the comparison between completion times for implementing the Diet

Diary scenario and developing a new application from scratch.

Figure 6.12: Comparison of timeframes between developing the Diet Diary scenario using the platform (top) and developing a new application

from scratch (bottom)

152

6.5 Running a Diet Diary instance

The flow diagram in Figure 6.13 demonstrates an example of the sequence of events

performed throughout an active Diet Diary instance. A user of the platform can

request to initiate an instance of the Diet Diary scenario, as illustrated by the second

message in Figure 6.14. The third message in Figure 6.14 shows the server response,

which contains the scenario’s InstanceCreator template. This is followed by the user

replying with a message based on the InstanceCreator template to confirm that they

want to start a Diet Diary instance. The TAU responds by creating the new instance.

Figure 6.13: Sequence of events performed throughout an active Diet Diary instance

153

Figure 6.14: SMS message exchange to start a new Diet Diary instance (For SMS:

Server messages begin with “Mobserv”, User messages begin with “Me”)

A feedback message, illustrated in Figure 6.15, is sent from the server to

acknowledge that the new Diet Diary instance has been created. This message uses an

Outgoing template specific to the Diet Diary scenario. The TAU can simply switch

between sending messages that are based on platform-wide Request templates and

scenario-specific Outgoing templates, depending on the data received from the user.

Figure 6.15: Feedback message sent from the server to confirm a new instance has

been created

The TAU guides the user through a number of steps to gather the necessary details for

their Diet Diary instance by using a combination of Outgoing and Incoming

templates. This starts with obtaining personal details about the user. Figure 6.16

shows the Incoming template supplied to the user to collect their personal details. The

Template and Instance identifiers are prefilled by the TAU to simplify the input

requirements. The user is only required to replace the temporary data between each

154

set of asterisks of a parameter position with the field data. The temporary data is

provided to assist the user in their response. An example of this is where the user can

select their lifestyle in the last parameter position of the template. This is the user’s

normal activity level for the day, which can range from a low level sedentary to a

high level active lifestyle [194]. Each level has an associated calorie burn value that

acts as the baseline burn value each day. An explanation is provided for each possible

choice, which is displayed below the Lifestyle parameter position. The user can delete

the items that do not match their lifestyle, leaving the valid answer. Figure 6.17

illustrates the input message sent by the user that is based on this Incoming template,

where each parameter position has been filled in with the user’s personal details.

Figure 6.16: Incoming template message provided by the server for the user to enter

their personal details

Figure 6.17: Input message sent by the user to provide their personal details

155

Within this template the user is given a choice of the method to determine their daily

calorie intake and burn targets. These can either be inputted manually by the user or

calculated by the TAU based on the user’s desired weight goal and timeframe. Figure

6.18 shows the Incoming template message sent to the user if recommended daily

calorie targets (calculated by the TAU) have been selected, followed by the user’s

reply containing their weight goal. Alternatively, if the user chooses to manually

input their own daily targets then the TAU responds with the Incoming template in

which the user can provide these targets.

Figure 6.18: Incoming template message to provide a weight goal and timeframe,

followed by the user’s input message based on this template

The scenario’s application module contains the algorithm to calculate the daily

calorie intake and daily calorie burn targets, using the current and target weight data

that has been sent by the user over the previous few messages. After the application

module has completed its processes the TAU retakes control of the message analysis

and sends a reply message to the user as feedback (Figure 6.19). The

DataOutHandler class of the TAU uses the data provided by the application module

for responding to the user, filling in the parameter positions of the message.

156

Figure 6.19: Feedback message sent to the user to provide details of their daily

calorie targets

The TAU updates the Diet Diary instance on each occasion that a user adds details of

a food item consumed or an activity performed. The message sent from the server,

illustrated in Figure 6.20, displays a list of the available templates that would enable

the user to provide these details. The user has two choices when they provide details

of each food item that they have consumed, manually providing the item’s details or

selecting from a list of available items in the FoodList table. During the scenario’s

development process the builder inserts multiple records into the FoodList table for a

range of food items. Each record contains attributes to hold nutritional data on an

item, including the calories contained within a standard portion size and the item’s

relevant food category.

Figure 6.20: List of Incoming templates available for a user to request

157

The user can select a food item by requesting the “Auto Food Search” Incoming

template in Figure 6.21. In this template the user is given the choice of requesting a

list of categories, food items within one of the categories or directly searching for a

food item by its name or record identifier. This template provides an example of the

TAU performing a different response, depending on the data provided by the user.

The user is able to maintain a dialogue with the server by drilling down to a particular

item, starting from a list of the categories.

Figure 6.21: Incoming template to search for a food item from the FoodList table

Figure 6.22 shows the message returned to the user if items from the “Meat” category

have been requested, followed by the user’s reply with their selection. Once the user

selects a food item, the server sends a feedback message confirming the chosen item.

The server also sends an Incoming template to enable the user to send back data on

the quantity consumed and the time of occurrence. Both these messages are illustrated

in Figure 6.23, where the user has selected the food item “Beef Steak”. Data within

this message is related to the food item selected during the previous exchange of

messages. To keep track of this relationship a Pending entity is created. Once the

“Auto Food Search” Incoming template in Figure 6.22 has been filled in by the user

and sent back to the server, a new record is created in the FoodUser table of the

scenario’s database to store the details of the food item. The Pending entity collects

the identifier information of this record to enable future updates. These steps are

carried out based on the rules created by the builder when defining the DataSave

entities of the “Auto Food Search” Incoming template (Figure 6.24). The follow-up

message sent to the user contains the Pending entity’s identifier in the message’s title.

Therefore, the user can send multiple messages to the server, regarding different food

items, with each message assigned to the correct food item based on the Pending

158

identifier supplied. When all the details of a consumed food item have been provided

they are then passed to the application module, which calculates the calorie intake of

the item and updates the user’s total daily calorie intake. The recently created record

in the FoodUser table is located using the data within the Pending entity. This record

is then updated with the calorie intake value.

Figure 6.22: Output message from the server providing a list of food items in the

chosen category, followed by the user’s reply with “Auto Food Search” Incoming

template

159

Figure 6.23: Output message from the server to confirm the chosen food item,

followed by Incoming template for the user to provide the relevant data on the item

Figure 6.24: DataSave entity that instructs DatabaseHandler class to create a new

Pending entity

A user is required to fill out the “Manual Food Entry” Incoming template in Figure

6.25 if they choose to manually supply details of a food item. This template requests

all the necessary data concerning the food item, including its nutritional data and the

amount consumed. The user is also provided with the option of saving the food item

for future use by providing the relevant food category. This demonstrates an example

of where the user can directly contribute to the data held on a scenario, with the

FoodItem table expanding its contents as each new item is added.

160

Figure 6.25: Input message based on Incoming template to manually provide data on

a new food item

The user performs a similar procedure when adding new activity items to their Diet

Diary instance. They are offered the choice of selecting an activity from the list of

items available within the ActivityList table or adding a new activity manually. Figure

6.26 illustrates the user selecting one of the activities that has been returned from a

search of the ActivityList table. This is followed by the details, sent from the user, of

the time spent and length travelled in Figure 6.27. This data enables the application

module to calculate the calories burned during the activity and then update the user’s

total daily calorie burn.

161

Figure 6.26: Message exchange to search for an activity

Figure 6.27: Input message based on Incoming template to provide data on the

activity performed

On each occasion that users enter details of a new food item consumed or activity

performed, feedback is provided on the user’s current daily total and their distance to

the daily target. Figure 6.28 shows an example feedback message sent from the server

after the user has performed an activity.

162

Figure 6.28: Feedback message to update the user on their daily calorie burn value.

The user may request the “Set Alert Limit” Incoming template to set new alert limits,

permitting the server to warn the user before a daily target is breached. The user can

set an alert limit for both their calorie intake and calorie burn values, as illustrated in

the message in Figure 6.29. In Figure 6.30 the server responds with details of the

actual calorie values that need to be breached for a warning message to be generated,

which is calculated using the daily target data.

Figure 6.29: Input message based on Incoming template to provide alert limits

Figure 6.30: Feedback message detailing the new alert limit(s)

163

Figure 6.31 illustrates a process that would result in the user receiving a warning

message to inform them that an alert limit has been breached. In this example the user

has provided details of a new food item that they have consumed. The calories from

this item have pushed the user over the alert limit that was previously set. The

warning message instructs the user that this limit has been breached and informs them

on how near the current calorie intake is to the daily target. Each time a new food or

activity item is added, the AnswerHandler class determines whether an alert should

be triggered. The builder creates an Answer entity (Figure 6.32) to calculate whether

consumption of the new food item takes the user’s daily calorie intake value over the

defined limit. This entity instructs the AnswerHandler class to collect the

IntakeToAlert value and compare it to the new food item’s calorie value to determine

the result. This process shows how the TAU can be utilised to provide alerts and

reminders to users of the platform.

Figure 6.31: Message exchange that results in the server sending an alert to the user

164

Figure 6.32: Answer entity to calculate if a new food item has breached the alert

limit

The user can retrieve daily summaries at any time. This is achieved by sending the

“Request Day Summary” Incoming template in Figure 6.33. The server responds with

a message containing the daily summary (Figure 6.34), providing detailed

information on the user’s calorie intake and burn amounts thus far. The daily

information is updated and stored in the DayTotal table with a record for each day,

which allows the user to also view a summary of previous days. The fields in this

table are associated with parameter positions of the Outgoing template that the

message is based on, with the use of DataOut entities. To generate the message, the

DataOutHandler of the TAU collects the data from the DayTotal record.

Figure 6.33: Input message based on Incoming template to request a summary of the

current day

165

Figure 6.34: Output message sent to the user containing the requested day’s

summary information

The process of switching between communication methods is initiated by the user. In

Figure 6.35 the user is requesting an Incoming template to provide their updated

weight. In this example, the user has switched communication methods, choosing to

send the message via email. When the message is processed by the TAU it changes

the user’s preference to email. This would ensure that any future messages from the

server would be sent via this new communication method, which would apply until

the user changes to another method. An example of this is illustrated in Figure 6.36

where the server has sent the requested Incoming template via email.

Figure 6.35: New message sent from the user via email to request the “Update

Weight” Incoming template

166

Figure 6.36: Email response by the server matching the user’s communication

method

The UserMessageView web-form of the web-based user interface enables a user to

view each message that they have sent or received, regardless of the communication

method. This is illustrated in Figure 6.37, where the user is viewing the message that

had just been sent from the server (via email in Figure 6.36) containing the “Update

Weight” Incoming template. The user can move back and forth between messages,

using the “Previous” and “Next” links. Clicking on the “Template Response” link

takes the user to the UserMessageSend web-form, illustrated in Figure 6.38. The

“Title” and “Text” textboxes have been prefilled with the relevant data, based on the

“Update Weight” Incoming template and the current instance. The user is only

required to edit the text of the message through inserting their new weight in the

parameter position. When the user clicks on the “Send Message” link this results in

the TAU processing the message and then performing any necessary actions.

167

Figure 6.37: UserMessageView web-form displaying a message the user has recently

received

Figure 6.38: UserMessageSend web-form enabling the user to send a new message

based on the “Update Weight” Incoming template

The user is returned to the UserMessageView web-form, where they can view any

new messages that the server has sent, as illustrated in Figure 6.39. Selecting the

“Send New” link takes the user to the UserMessageSend web-form. In this situation,

the user is able to manually select the instance and Incoming template for sending a

168

new message. Figure 6.40 illustrates the UserMessageSend web-form, whereby the

user is selecting a template from the list of Available templates for the Diet Diary

scenario. Once the template has been selected, the message’s title and text are

generated and inserted into the “Title” and “Text” textboxes respectively. Messages

sent via the UserMessageSend web-form result in replies that are only viewable via

web-based user interface. It is the user each time who determines the method of

communication, whether it is via SMS, email or the web-based user interface.

Figure 6.39: UserMessageView web-form displays the new message sent from the

server

169

Figure 6.40: The user is able to select the appropriate Incoming template when

sending new messages in the UserMessageSend web-form

Table 6.1: Diet Diary scenario – Features supported by the Platform

171

6.6 Conclusions

The important factors in developing the Diet Diary scenario have been to illustrate

and describe how the platform operates. This includes demonstrating the platform’s

functionality in supporting both the rapid development of a typical scenario and the

running of an active instance. This instance is run to test the interactions between the

platform and a single user, who is able to communicate via multiple communication

methods. The Diet Diary scenario utilises a large number of the features that were

identified and discussed in Chapter 3 and then incorporated into the design and

implementation of the proposed platform in Chapter 5. Table 6.1 summarises the list

of features, detailing their use within the scenario and the extent to which the generic

functionality of the platform supports each feature.

The scenario focuses on one-to-one communication between the server and a user in

order to demonstrate the communication structure between both parties. The

communication component together with the template mechanism were effective in

providing the means for the server to interact with a user. Incoming templates guide

the user to insert the proper data in the correct locations, making it straightforward for

the user to send the required field data at each stage of an instance. This is shown by

the steps of adding a food item from the scenario’s list, whereby the user is provided

with instructions at each step within the Incoming templates. The server’s feedback

messages, created from Outgoing templates, offer meaningful information based on

the user’s actions. This is shown by the output messages from the server once a food

or activity item has been added and also on occasions where the user requests the

daily summary of their diet diary.

All three communication methods were tested in the example run of this scenario,

with the switching between the methods being seamless. The user controls the

method of communication, with the server updating the user’s preference and

matching their method each time a message is received. The functionality within the

MailHandler and TemplateHandler classes is able to efficiently collect messages,

with the extraction of the message details and field data, which have been sent from a

user. The messages are processed, with their details saved to the correct location

within the Principal database without any specific scenario functionality required.

172

The analysis components of the TAU for some aspects of the scenario were

successful whilst for others they were of limited use. The user is provided with

options in a variety of Incoming templates, whereby different actions that the user

choose would result in different outcomes within the scenario. An example of which,

is opting between providing manual weight goals or automatically generated goals.

The TAU would respond appropriately based on the method requested by the user,

with the template’s Trigger and Answer entities working together to determine the

correct responses. Therefore, the TAU is able to adapt and respond appropriately to

user requests and the field data that they have provided.

This scenario showed that providing functionality for mathematical calculations

within the TAU’s generic structure would be beneficial. The scenario’s application

module is relied upon for most calculations, with the exception of testing one value

against another. For example, methods in the application module computed the

calorie intake from consumed food items and the calories burned from an activity

performed. If the TAU included a calculation stage, this would reduce the reliance on

the application module for many of the basic calculations that were required for this

scenario and thus reduce the scenario’s development time. Furthermore, the

calculated data could then be utilised by the TAU’s analysis components instead of

the application module being required to perform further analysis on the current

message.

The TAU interactions with the data layer, both for the Principal database and the

scenario’s database, worked together successfully. Field data is initially extracted and

stored in the Principal database. The DatabaseHandler class utilised each DataSave

entity to insert and update records in the scenario’s database with the user’s field data.

The TAU could then use the data again for sending back responses to the user and for

analysis of future messages. This enabled the TAU to provide accurate and detailed

feedback to the user based on the stored data, as shown by the example where a

warning message is sent if the user breaches an alert limit. The user’s field data is

analysed by using previously received data that is stored in the scenario’s database,

which determines whether a breach has occurred. The DataOutHandler class

retrieves the stored data in order to generate the warning message.

173

Overall, the running of the Diet Diary scenario has shown that the platform provides

an effective infrastructure and the functionality to support a typical scenario that

focuses on one user. The builder can easily implement scenarios, which have similar

feature requirements, into the platform by utilising the web-based user interface. The

three-stage scenario development process considerably reduces the time required to

develop the scenario in comparison to creating an application from scratch. Only the

calculations within the application module require any programming effort. The first

two stages enable the builder to create content declaratively following a simple

procedure. The communication structure is tailored to the scenario’s requirements to

efficiently collect and process received messages together with providing feedback

messages and instructions to the user. These operations are achieved in real-time with

no assistance required from the operator.

174

7 Case Study 2: Missing Persons Scenario

7.1 Introduction

The previous chapter discussed a scenario that only required one user for each

instance. In this chapter a more advanced scenario, entitled the Missing Persons

scenario, is discussed. This scenario focuses on utilising multiple users of mobile

communication devices in order to locate people that have been reported missing.

Each instance of a scenario represents a Missing Persons case, whereby the users

involved with helping to locate the person are assigned to the respective instance.

Subsequently, there can be numerous users assigned to each instance.

The Missing Persons scenario utilises the platform’s communication component to

interact with each user assigned to an instance. In addition to one-to-one

communication the scenario looks at the communication with multiple users, whereby

each interaction with one user can result in further interactions with other users. This

can be via broadcast communication for disseminating updates to multiple users as an

instance progresses. Alternatively, the field data received from one user could be used

to provide instructions and tasks for other users.

There are some features, previously identified in Chapter 3, that are not required by

the Diet Diary scenario. Such features include the coordination of multiple users,

location-dependent assignments, multimedia messaging and the ability for users to

request anonymity. These features are employed by the Missing Persons scenario,

with the scenario implementation section of the chapter detailing their inclusion. In

the scenario’s development process, a scenario database and application module are

created to hold tables for the scenario’s entities and provide algorithms for unique

analysis requirements respectively.

A comparison has been undertaken between using the platform to integrate the

Missing Persons scenario and developing an application from scratch that achieves

the same objectives. This comparison highlights the time and effort savings when

applying the platform’s scenario development process.

The running of an active instance is investigated, whereby the use of the new features

are discussed together with the platform’s ability to handle multiple users. This is

175

followed by a discussion on a scalability test that assesses the performance of the

platform when operating with large user groups. This test has been carried out using

numerous instances of the Missing Persons scenario.

7.2 Details of the scenario

The aim of the Missing Persons scenario is to track and locate people, who have been

reported missing, by managing and coordinating multiple users. In the UK there are

numerous reports of missing persons every day [195]. Many cases have a short

duration as the missing person reappears soon afterwards unharmed [196]. However,

there are some cases where the missing person is the victim of a crime or in possible

danger. The longer a person is missing the higher the probability that it is one of these

cases. For this reason it is important to determine the risk at an early stage of a case,

to make appeals to the public and to carry out searches swiftly in an attempt to find

the person before any harmful encounters [197].

Similar to the Diet Diary scenario, the Missing Persons scenario relies on the

platform’s communication components and template mechanism to handle its

communication structure, together with the procedures of the Template Analysis Unit

(TAU) to analyse each input message. However, this scenario has been chosen due to

its particular requirements and objectives. One of the platform’s key goals is the

generic framework and functionality for supporting a range of diverse issues.

Therefore, it is important to observe how the platform handles different types of

scenarios. The Missing Persons scenario focuses on applying the methods which are

currently in place by the police [197], for reacting to a report of a missing person, into

an environment where the general public can actively interact and aid the search

process. Each time a missing person has been reported, the current procedure

undertaken by the police is to provide a unique case identification number [198]. In

the Missing Persons scenario each case is represented by an instance and uniquely

identified by the Instance identifier.

An instance of the scenario consists of three phases that are necessary in order to

follow the procedure instructions from police practices. The first phase starts when a

user reports a new missing person. The initial response involves gathering details

concerning a missing person from the reporter, which includes requesting a physical

description and recent photograph to assist in finding the person [197]. Sharing a

176

photograph of the missing person has been made easier by the number of mobile

phones that now have an integrated camera, as described in Chapter 2. The

photograph can then be utilised by other users at a later date in the search as it

provides an accurate representation of the missing person. This takes advantage of the

platform’s ability to send, receive and store multimedia files, which are important

features identified during the research and development of the platform.

It is important to identify the risk status of the missing person in order to determine

the response level required [199]. This is based on whether there is a high possibility

of danger from factors such as physical assault and the natural environment [200].

Risk assessment details are requested from the initial reporter to assess the missing

person’s vulnerability and possible circumstances behind the disappearance.

The second phase involves actively searching for the missing person by involving and

coordinating a group of people who are willing to be involved. The platform can

appeal for help from people who are associated with the missing person. This is

achieved by the initial reporter supplying contact details of these people. People

willing to assist are added as new users to an instance, making it possible for multiple

users to join any given instance. These users can then supply additional information

on the case and help recruit more users. New users are provided with the option of

remaining anonymous, whereby a user can choose for only their contact details to be

stored by the server or for no details to be stored at all. In this way a user is able to

provide information to assist the case in the knowledge that their identities will

remain hidden, if they so desire.

A user is able to report details of locations important to the case, for example the

missing person’s home and workplace. Suspicious sightings and vehicles can also be

reported. Each location or sighting reported is to be searched by one of the users

participating in the instance, who then updates the server with their findings to further

the investigation. Each new search is classified as an assignment. The scenario

coordinates the users of an instance by ensuring that only users currently not on

assignments are requested to start a new assignment and that the users are allocated to

assignments in an efficient manner. The location-dependent assignment functionality

of the platform is employed to allocate these searches, with the aim being to designate

each assignment to the user who is geographically closest to the location. The server

177

is able to start a new dialogue with one user based on information received from

communication with another user. For example, field data received from the first user

could be used to provide assignment instructions to the second user. A user who is

placed on an assignment is sent the instructions to be performed and the Incoming

template for returning field data from their findings.

The third and final phase of an instance occurs once the missing person has been

found. In this phase the server uses broadcast communication to relay the update to

all the users of the instance. Therefore, in this scenario feedback from the server is

not only for the purpose of the initial user but also to inform other users of new

information.

7.3 Implementation of the scenario

7.3.1 Database entities

The scenario builder would work closely with the police to set up each component,

template and the analysis criteria of the Missing Persons scenario. The components of

the Missing Persons scenario are represented by the tables of the scenario’s database,

as illustrated in Figure 7.1. The scenario’s database has been created to support each

area of the scenario, which ranges from reporting details of a missing person to

identifying people and locations for an assignment.

Figure 7.1: Entities of the scenario’s database

178

Central to the scenario is the MissingPerson table with each record representing the

missing person of an instance. A MissingPerson record stores details of the case,

including the date reported, the risk status, instance phase and person’s name. Similar

to a Diet Diary instance, this central record contains the Instance identifier to

associate the records within the scenario’s database to the appropriate instance in the

Principal database.

Data relating to the physical appearance of the missing person is stored in the

PersonDescription table, including the gender, age, physical build and complexion.

There is also a PhotoLocation field which points to the file location on the server

where a photograph of the missing person has been saved. This field is used to locate

the file when it needs to be sent to users joining the instance. Logging a photograph

and description of the missing person is important to aid the instance’s users in

searching for the missing person.

The risk assessment data sent back from the user in the initial phase of the instance

are recorded into the RiskAssessment table, where there is a field for each criteria

category. Such criteria includes the missing person’s mental health, physical

disabilities, drug addictions, possibility of self-harm and history of abuse. In each

field the user provides a yes or no answer to indicate whether there is an issue.

Furthermore, the user can provide a more detailed description of the issue. These

categories identify possible vulnerabilities, which are used to determine the risk status

of the missing person.

The PeopleInvolved table stores records on people who are associated with the

missing person, along with their reason for association. Where a person may be

suspiciously involved a report would be flagged for further investigation by the

operator. Alternatively, a person may be recommended by one of the users to assist

with the case. Their connection to the missing person would be logged in the record.

Each report of a frequented location or sighting of the missing person is stored in a

record in the Locations table along with the user who reported the findings. In the

case of frequented locations the user can supply information on the location-type, for

example whether it’s the missing person’s home or work location. If an assignment

179

has been created to investigate the location or sighting then the Assignment identifier

is logged together with the results reported back from the user.

Suspicious vehicles are logged into the Vehicles table which has fields for the owner,

make and model, as well as the last date sighted and the location. Users are able to

supply a photograph of the car with the file location on the server stored in this

record.

G. Newiss [197] describes how a key element of police policies in handling a missing

person’s case is to ensure that there is comprehensive documentation of all reported

information and actions undertaken, with a timestamp and details of the occurrence.

The scenario’s database enables effective documentation with each discovery by a

user recorded in the appropriate table. In addition to supporting a current missing

person’s case, this data could then be utilised for future cases and repeat

disappearances.

7.3.2 Template and analysis criteria

In the Missing Persons scenario the template and criteria creation follows the same

process as the Diet Diary scenario, whereby the builder interacts with the web-based

user interface to define each step of the scenario. However, this stage also provides a

framework for the use of the new features required by the Missing Persons scenario.

The builder is able to specify the messages that a user can attach a multimedia file, by

defining the AttachAllow attribute of the associated Incoming template. The Template

web-form, illustrated in Figure 7.2, provides the option of choosing this feature and

selecting a field in the scenario’s database to log the location of received files. Each

image file associated with the Missing Persons scenario is saved to a location on the

server. The file is categorised based on the scenario and contains the Instance and

Message identifiers in the file name to simplify locating the file at a later stage. For

each new message, the filename and path is logged to the specified database location.

180

Figure 7.2: Incoming template with settings for a message attachment in the

Template web-form

The Template web-form also enables the builder to select the Outgoing templates that

can include attachments. Each occasion where a new message is to be generated the

AttachAllow attribute of the Outgoing template entity is checked. If this attribute is set

to True then the specified location in the scenario’s database is checked to detect if a

multimedia file exists. This multimedia file would then be sent as an attachment. This

process enables the builder to define which messages can be sent with an attachment

both on the user and server side, as well as a universal method of storage and retrieval

for all scenarios.

The UserAdd action provides the functionality for new users to be added to the

instance, based on field data from an input message that has been sent from a current

user. The “People Involved” Incoming template allows a user to supply details of a

person who is associated or who could be of help with searching for the missing

person. Figure 7.3 illustrates the Action web-form, where the UserAdd action is

created. The builder provides pointers to the parameter positions in the template

where the user can insert the person’s name and contact details. These details are used

to create a Person record in the Principal database in order for the TAU to be able to

contact the new user.

181

Figure 7.3: UserAdd action created in the Action web-form

The builder defines an AssignAdd action in the Action web-form for responding to the

“Important Locations” and “Sightings” Incoming templates. These two assignment

types are defined in the Assignment web-form (Figure 7.4) and saved as Assignment

entities. The builder defines the user selection criteria of an assignment during the

creation of an AssignAdd action. The “User Selection” dropdown-list in Figure 7.5

illustrates that the user to be selected could either be the message sender, a user near

the assignment location or randomly selected from the available users. Selecting the

Location option as shown ensures the assignment is a location-dependent assignment

type.

182

Figure 7.4: Assignment web-form

Figure 7.5: AssignAdd action created in the Action web-form

There are specific situations during an instance where the TAU is required to update

the operator on a situation in order for there to be further investigation into the matter.

183

An example of this is where a suspicious person is reported by a user. As discussed in

Chapter 5, the implementation of News records provide these informative updates.

News records are generated based on a News template structure within the Template

web-form, as illustrated in Figure 7.6. A NewsInsert action would create a News

record based on the template. Figure 7.7 illustrates the properties provided by the

Action web-form for defining the NewsInsert action. In this example, a News record

would be created to inform the operator of a suspicious person reported by one of the

instance’s users.

Figure 7.6: News template created in the Template web-form

184

Figure 7.7: NewsInsert action created in the Action web-form

The platform supports broadcast communication for scenarios that incorporate

multiple users via the MessageSend action. Figure 7.8 illustrates a MessageSend

action being created in the Action web-form. The “Response Group” dropdown-list is

where the builder chooses which user(s) a response is sent to. In the Diet Diary

scenario there was only one user assigned to each instance, therefore this value

defaulted to the sender of the originating message. The options available in the

Missing Persons scenario also include users on and off assignments, as well as all

users participating in the instance. The example in Figure 7.8 illustrates that the

builder has set the appropriate Outgoing template to generate the message and

declared that the response group includes all the users of the instance. This action

would result in a broadcast response.

185

Figure 7.8: MessageSend action created, where the response group has been set to

all users of the instance

The TAU’s Template and Action entities provide the functionality for the new

features detailed in this section. Each Action entity is declaratively created by the

builder with no additional programming required, highlighting the versatility of the

response stage of the platform’s framework. The correct actions can be selected in a

straightforward process by the builder in order for the TAU to react accordingly to

user messages.

7.3.3 Development of new modules

Analysis of the risk assessment data, received from a user, is performed by the

scenario’s application module. The user’s response to each attribute within the risk

assessment form is analysed to determine the risk status of the missing person. This

analysis is based on a police report [199] which states that persons containing certain

characteristics, disabilities or historical issues may be more exposed to dangerous

elements than others. For example, someone with a physical or mental illness is

considered to be in greater danger from the natural environment [200,197]. A person

186

that has a drug dependency and has intentionally run away could become potentially

involved with dangerous strangers, in order to obtain assistance with their addictions.

The RiskStatus algorithm uses the yes or no response to each risk attribute sent back

from the user to calculate the risk status. There are three levels to the risk status; low,

medium and high [200]. The default risk status is set to the low level due to the

research indicating that the majority of cases result in the missing person returning

safely [196]. If the missing person is affected by certain attributes, including mental

or physical illness and drug dependency then the status is set to the high level. Other

issues such as the incident being out of character would set the status to the medium

level. The risk status is used by the operator to decide whether it is necessary to

request other users of the platform to participate in the instance.

A new module, the LocationHandler, has been developed within the TAU to support

the efficient distribution of assignments. This module is used if the response action

from a message is to create a new assignment. Users are instructed to supply the street

name and the name of the town/city of reported locations and sightings. This location

data are established as the location of the new assignment and passed to the

LocationHandler module. The list of available users is scanned by the module to find

a user who is close to the location. This is achieved by comparing the most up-to-date

location of each user to the assignment’s location. If a user is found matching both the

street and town/city then their details are passed back to the ActionHandler class,

which in turn sends a request to the user to perform the assignment. However, in

situations where no user matches both parameters, then the method would search for

users that only match the town/city of the assignment. The details of the first user

found is passed back to the ActionHandler class. If no user is found in both searches

then the method selects an available user randomly for the assignment. Unlike the

scenario’s application module, the LocationHandler module has not been specifically

created for this scenario. The LocationHandler module has been designed to handle

location-based assignments for any scenario.

7.4 Development time comparison for the Missing Persons scenario

The Missing Persons scenario required a timeframe of 2 days to design and

implement into the platform. This scenario followed the three-stage scenario

development process. Designing the new database, in the first stage, with tables

187

relevant to the Missing Persons scenario required half a day. A further half day

consisted of constructing each template and defining the scenario’s analysis criteria

for the second stage. The Missing Persons scenario had a reduced emphasis on

mathematical calculations in comparison to the Diet Diary scenario, with the majority

of analysis depending on a decision-tree structure for determining appropriate

responses. Therefore, the generic analysis stages of the TAU could handle most of the

analysis for this scenario. The new application module, a C# class developed in the

Microsoft Visual Studio IDE, required just 140 lines of code for the RiskStatus

algorithm. This module, developed in the third stage, required 1 day to code and

integrate into the platform.

The LocationHandler module was developed alongside the Missing Persons scenario,

taking an additional day to develop. However, this module is not included in the total

development time due to being integrated as a generic component of the platform,

which is reusable for future multi-user scenarios. The Missing Persons scenario was

ready to run on the platform once the scenario development process and the new

LocationHandler module were completed.

In order to determine the amount of time and effort saved by using the platform to

implement a scenario, a mock-up application has also been designed to achieve the

same objectives as the Missing Persons scenario. This application would be

developed from scratch, without relying on an integrated communications platform. A

design specification of the mock-up application has been constructed, specifying the

layout of the C# classes and their methods in order to develop each component. The

timeframes have been calculated from estimating the programming time of the classes

within each component, which are outlined in the design specification. These

timeframes are derived based on the researcher’s own experience in software

development and in consultation with another professional in computing.

This application would be developed using the same programming environment as

the platform, with the code written in C# classes within the Visual Studio IDE and

using a SQL Server database. Therefore, the application is able to utilise the same set

of class libraries within the .NET framework in order to assist in the development of

each component.

188

The application would need a user interface for the operator to maintain each missing

person’s case that is running. Following the same route as the Connected-Mobile

Platform, developing a website for the user interface would also enable users to both

retrieve messages stored by the application and send new messages. The website is

similarly developed within the Visual Studio IDE, using the graphically tools

available from the ASP.NET framework to design the layout of each web-form. This

website is not as extensive in functionality as the web-based user interface developed

for the platform as it would only be focused on one type of application. The

application would not need to include functionality to support new application

problems. Therefore, there would be no need for the web-forms and entities that

relate to the scenario builder. However, the total time to implement the website is 7

days, where 2 days are required for designing the website’s elements and 5 days for

development.

Users would need to communicate with the application in order to send information

on a missing person’s case or to receive updates and instructions. This requires the

development of a communication component for the application to be able to

exchange messages with the users. This component requires a total of 4 days to

implement, consisting of 1 day for the design and 3 days for the coding of the

functionality within logic classes. This includes the functionality to send messages via

SMS and email over the internet and receive new messages from Microsoft Outlook.

User messages sent via the website would also trigger an event in this component to

handle the processing and storage of the message.

Defining the content of each template message sent to and received from users

requires a detailed design and layout to ensure the communication process flows

smoothly for each missing person’s case run by the application. It takes 2 days to

design the template entities and construct each type of Incoming/Outgoing template

that is to be used in the communication process. The website does not include web-

forms for adding new templates, since this is a one-off event for the application.

Therefore, it would save time to not include this functionality. The templates are

added to the database using SQL Server Management Studio. This is a complicated

process for template creation as each record is manually inserted into a Templates

table with the template parameters inserted into a Parameters table. In comparison,

189

the platform already offers a straightforward process for defining template content via

template mechanism and web-based user interface.

The message analysis component requires 13 days to implement into the application.

Designing each stage of this component takes 3 days, based on following the same

analysis stages as the platform. Developing the C# logic classes for data extraction,

analysis, calculations and storing the received/calculated data requires 5 days of

programming. A further 5 days are required for developing the extensive action

modules that this type of application problem demands. This includes providing

functionality for the different response types, as well as generating assignments and

location-based technology.

Assuming all the requirements for the application are known at design time, there is

no need for defining analysis criteria in the future. Therefore, the analysis criteria is

all hard-coded into C# classes as opposed to the platform’s approach of using

database entities and the web-based user interface to define new analysis criteria. This

approach allows for a more efficient means to generate analysis functionality in

comparison to adding new scenarios to a generic platform. The methods of each class

can be designed specifically for the application’s objectives, unlike a generic platform

where the methods need to focus on handling a wide range of application types.

Therefore, the code can be fine-tuned to ensure the application can perform its tasks

effectively. However, the platform enables the inclusion of a plug-in application

module which helps to overcome this issue by allowing the scenario builder to code

new and precise functionality exclusively for the Missing Persons scenario.

A single database is created to store all the data of the mock-up application. This

database needs to store data on entities such as the templates, messages and users

from the platform’s Principal database. Additionally, the database stores data on the

entities that directly relate to the Missing Persons scenario in this case study. The

design and construction of the database is achieved in 2 days. A further 3 days are

required to develop the data layer of the application to access the database. The data

layer includes entity classes in order to handle individual records in each table. Other

classes are required to populate the HTML tables on the website and manipulate data

across multiple tables. Each of these classes within the data layer utilise the set of

ADO.NET classes within the .NET framework in order to access the database.

190

The total time to develop and implement an application that achieves the same

objectives as the Missing Persons scenario is 31 days. This is a substantially longer

timeframe than the 2 day period for integrating the scenario into the platform. The

reason for the longer timeframe in creating the new application is that every aspect of

functionality has to be individually designed and developed, as discussed above. In

comparison, the scenario builder is only required to design a new scenario’s entities,

the structure of the communication process and the new functionality for the

application module in order for the scenario to be implemented into the platform. The

functionality for interacting with the clients, defining message structures, analysing

messages and handling application data are already provided by the platform’s

framework of generic components. Therefore, only a limited amount of development

is carried out to implement a new scenario. Figure 7.9 illustrates the large difference

in timeframes between implementing the Missing Persons scenario using the

platform’s scenario development process and creating the mock-up application from

scratch.

During the development of the separate application it would also have to be

rigorously tested to remove software bugs and ensure that each component operates

and interacts with other components as expected. This testing process would add

additional time to the implementation of the application.

Furthermore, some elements including the creation of template content and analysis

criteria require a more complicated process, either through developing new hard-

coded modules or manually inputting content into the database. The platform’s web-

based user interface provides a straightforward means to achieve this by

automatically linking associated entities in the database and preventing the risk of

input errors with error checking routines at each stage of data input. Therefore,

content can be quickly tailored to the requirements of a new scenario. The drawback

of not being able to develop code exclusively for one application type is overcome by

the platform’s inclusion of plug-in modules for new scenarios. The platform’s dual

approach of offering the dynamic creation of analysis criteria via the web-based user

interface and permitting the integration of an application module that has specific

hard-coded functionality for the Missing Persons scenario enable the objectives of

this scenario problem to be covered efficiently.

Figure 7.9: Comparison of timeframes between developing the Missing Persons scenario using the platform (top) and developing a new

application from scratch (bottom)

192

7.5 Running a Missing Person instance

The flow diagram in Figure 7.10 demonstrates an example of the sequence of events

performed throughout an active Missing Person instance, beginning from the

initialisation and ending when the missing person is found. A Missing Person

instance can be initiated either by the operator or a user. A user would request the

scenario’s InstanceCreator template, illustrated in Figure 7.11, to supply the relevant

information to start a new instance. The user starting this instance is referred to as

User1, who could be a family member or close friend of the reported missing person.

Figure 7.10: Sequence of events performed throughout an active Missing Person

instance

193

Figure 7.11: SMS message exchange to commence a new Missing Person instance

(For SMS: Server messages begin with “Mobserv”, User messages begin with “Me”)

Once the instance has been created User1 is requested to send a physical description

of the missing person within a supplied Incoming template. This template also

informs User1 that they should attach an image file containing a photograph, if

available, of the missing person. If the user’s preferred communication method is not

set to email, then any Incoming templates that facilitate the inclusion of an attachment

are sent via both the users preferred method and email. The user is then able to

respond via either their preferred method without including an attachment or email

with the requested image file attached. Figure 7.12 illustrates the message sent by

User1 to provide the physical description with an attached photograph of the missing

person. In this example, the user has sent the message via email to include the

attached image file. When processed by the TAU, the image file is saved to the

server. The field data and the location of the saved image file are stored in a new

record in the PersonDescription table.

194

Figure 7.12: User1 sends email message based on an Incoming template to provide a

physical description (left) and attached photograph (right) of the missing person

The final step of setting up the instance involves the risk assessment form. Figure

7.13 illustrates the Incoming template sent to User1 to provide the risk assessment

data. The user can give a yes or no answer for each risk attribute and then provide

further details on an attribute if they deem it necessary. The yes/no answers are used

by the application module to calculate the risk status of the missing person. The extra

details are for the attention of the operator. A record is created in the RiskAssessment

table to store the risk assessment data and the calculated risk status. User1 is also

notified of the risk status, as illustrated by the server’s response in Figure 7.14.

195

Figure 7.13: “Risk Assessment” Incoming template for User1 to complete

Figure 7.14: Feedback message sent to User1 containing the risk status

Once the setup phase of the instance has been completed the user is able to report on

the four elements that are involved in the search phase of the instance. These

elements include important locations relevant to the missing person, sightings of the

missing person, other people involved and any suspicious vehicles that could be

associated with the case. The template list sent by the server (Figure 7.15) provides

the user with the choice of requesting the Incoming template for each of these

elements.

196

Figure 7.15: List of Incoming templates available for a user to request

Users may report on another person associated with the missing person using the

“People Involved” Incoming template, as illustrated in Figure 7.16. The TAU’s

AnswerHandler class analyses the field data to determine the correct actions to

perform. Initially, a record of the reported person is created in the PersonInvolved

table of the scenario’s database. If User1 reports that the person could be helpful then

the server would attempt to recruit the reported person to assist with the instance. The

UserAdd action creates a new Person record in the Principal database. This record

allows the reported person to be a temporary user of the platform, storing the name

and contact details of the reported person that were extracted from User1’s message

(Figure 7.17).

Figure 7.16: “People Involved” Incoming template sent to User1

197

Figure 7.17: Input message sent from User1 reporting a person involved together

with their contact details

The server then attempts to contact the new user, referred to as User2, by sending a

message describing the instance (Figure 7.18) together with an Incoming template to

enable User2 to accept or decline the request for assistance (Figure 7.19). SMS is the

default method for sending a message to a new user. However, in this example the

messages have been sent via email since the only contact details provided was

User2’s email address. If User2 accepts the request then they would become a full

member of the platform. User2 is also provided with the option of remaining

anonymous. They can choose to have either no personal details stored or only their

contact details stored. In both these cases the PeopleInvolved record in the scenario’s

database is updated to hide personal information. Declining the request for assistance

would result in the deletion of the Person record relating to User2 in the Principal

database, ensuring there is no further contact with User2.

198

Figure 7.18: Email message sent from the server to User2 requesting their assistance

Figure 7.19: Incoming template sent to User2 to join the platform

The server sends details of the physical description together with the saved

photograph of the missing person to new users joining the instance. This is illustrated

in Figure 7.20 where the attachment previously received from User1 can now be sent

to other users, taking advantage of the platform’s support of multimedia files. New

users can update their personal details using the “Update Member” Request template

199

in Figure 7.21. This includes the option for the user to provide a mobile number in

case they want to switch to SMS messaging at a later date.

Figure 7.20: Description of missing person (left) and photograph (right) sent to

User2

Figure 7.21: “Member Update” Request template for User2 to provide their personal

details

200

In this scenario an anonymous user is able to assist an instance by sending reports on

the various elements, such as a suspicious vehicle. However, the TAU does not

allocate anonymous users to assignments. Fully anonymous users, where the platform

does not store any contact details, are required to include the phrase “Mobserv Anon”

at the start of each input message. This phrase ensures the server is aware that the

message sender has requested to remain anonymous, thus enabling the server to

maintain a dialogue without recording their contact details.

All new users are provided with the scenario’s template list to send reports on the

various elements. Anonymous users are able to request Incoming templates from the

server, which follows the same procedure as non-anonymous users. Figure 7.22

illustrates the “Suspicious Vehicle” Incoming template that would be sent to an

anonymous user, referred to as User3, for reporting a vehicle involved in the instance.

Inserting the appropriate field data and returning the message to the server, as

illustrated in Figure 7.23, would result in the analysis of the data and a response by

the server.

Figure 7.22: “Suspicious Vehicle” Incoming template sent to User3 (anonymous

user)

201

Figure 7.23: User3 sends a vehicle report to the server based on the “Suspicious

Vehicle” Incoming template

The contact details of User3 are temporarily stored in the Full Anonymity record

within the Person table of the Principal database. Once all the actions have been

performed then these contact details are deleted, ensuring User3 remains anonymous.

Figure 7.24 illustrates the response message from the server to User3.

Figure 7.24: Feedback message sent to User3 confirming the vehicle has been logged

In situations where suspicious vehicles are reported a broadcast message is sent to

other users involved in the instance. An example of this message is illustrated in

Figure 7.25, where details of the vehicle are described to User1 and User2 via their

preferred communication method. The details included in this message have been

taken from the User3’s message reporting the vehicle. This demonstrates how the

platform can readily update other users on newly received field data in real-time.

202

Figure 7.25: Broadcast message sent to User1 (left) and User2 (right) regarding the

reported vehicle

It is important for the platform to coordinate the provision of assignments for each

instance and react appropriately based on the outcome of each assignment. An

example of this is where multiple relevant locations or sightings of the missing person

have been reported. As previously mentioned, users are allocated to these

assignments by seeking the current location of each available user. Figure 7.26

illustrates an example of a relevant location being reported by User1, followed by a

notification by the server.

Figure 7.26: A location report sent from User1 based on the “Important Locations”

Incoming template, followed by a feedback message returned from the server

203

An assignment is generated for the purposes of searching the location to determine if

the missing person is in that location or whether there are any further leads. The

LocationHandler module processes the address of the location, provided by User1, to

find the closest user. User2 is selected by the LocationHandler module to perform the

assignment since their current location matches the reported location in this example.

A message is sent to User2 via their preferred communication method describing the

objectives of the assignment and requesting their cooperation, as illustrated in Figure

7.27. User2 is also provided with the Incoming template (Figure 7.28) to report back

and provide data on their observations.

Figure 7.27: User2 receives instructions from the server on the newly generated

assignment

204

Figure 7.28: Incoming template sent to User2 regarding the completion of the new

assignment

The TAU analyses the returned field data from an assignment to determine whether

User2 has found the missing person. Trigger entities are used to determine the correct

outcome from the user’s message relating to an assignment. The actions associated

with a trigger are only carried out if the field data retrieved from the user passes the

criteria of the associated Answer entities. If the user did not find the missing person at

the location then the NotFound trigger would be activated. The TAU’s responses

from this trigger are to remove User2 from the assignment and to notify them of this

action (Figure 7.29). This assignment has demonstrated that a user can be selected

based on their current location. The user is taken through the steps of the assignment

with the use of Outgoing and Incoming templates, enabling them to communicate

with the server and successfully fulfil the assignment’s objectives.

205

Figure 7.29: Feedback message sent to User2 notifying of their removal from the

assignment

Reported sightings of the missing person also generate new assignments. The

message in Figure 7.30 illustrates an example whereby User2 has sent details of a

new sighting to the server. As with the previous assignment the LocationHandler

module selects the user deemed to be closest to the location of the sighting, which in

this example is User1 who is located in the same city. The server sends a message to

User1 describing the sighting and their new assignment, as illustrated in Figure 7.31.

Figure 7.30: User2 sends a sighting report based on the “Sightings” Incoming

template

206

Figure 7.31: User1 receives instructions from the server on the new assignment

The user also receives an Incoming template to respond with their findings. Figure

7.32 illustrates the message that is sent from User1 after they are successful in finding

the missing person in the assignment’s location. Similar to the first assignment, the

field data is analysed by the AnswerHandler class. The Answer entities, defined by

the builder, enable the TAU to make accurate decisions after a user has reported back

from an assignment. The FoundPerson trigger is activated with the TAU performing

the appropriate responses, based on its associated Action entities. These actions

include the removal of active users from their assignments and sending a broadcast

message to all the users of the instance, notifying them that the missing person has

been found. Figure 7.33 illustrates the broadcast message, as received by User2.

Additionally, the instance’s status would be set to its last phase and a News record

would be generated for the operator to be updated with the progression. The operator

can then report the details of the missing person’s location to the police and close the

instance. These examples illustrate the way users are employed within an instance,

with the actions of one user having an effect on others and the ability for the TAU to

coordinate multiple users via assignments.

207

Figure 7.32: Input message sent from User1 informing the server that the missing

person has been located

Figure 7.33: Broadcast message sent from the server updating the other users on the

findings of the assignment

7.6 Scalability test to assess the performance of the platform

In the two case studies, thus far, running instances of the scenarios have only been

performed with up to three users. The key purposes of these demonstrations were to

highlight the feature-set of the platform and how the generic components can be

successfully tailored to a specific scenario. However, the platform is designed to

support a wide range of scenarios concurrently, where each instance of a scenario

may require numerous users to be deployed in a mobile environment. Subsequently,

the platform needs to be able to handle a large user group without a sacrifice in

performance. In certain scenario types, such as the Missing Persons scenario, users

would send in time-sensitive data that needs to be processed and acted upon in real-

time. Therefore, the platform’s central server needs to collect and analyse each input

208

message in a short timeframe after they have been received, without delaying

subsequent messages or affecting the performance in other areas of the platform.

A scalability test has been designed and performed on the platform in order to assess

its performance whilst supporting a large user group. The first stage of this test was to

observe the platform’s ability to handle 20 active users, where the focus was on

multiple Missing Person instances running concurrently with more than one user in

each instance. The users interacted via all three available communication methods,

SMS, email and the web-based user interface.

The main occasion when the platform would be put under strain is at the time that the

central server receives new messages, due to the extensive procedures carried out by

the TAU for analysing and responding to each message. Therefore, to measure how

long it takes for the platform to be responsive again for new user interactions, 20

messages were received simultaneously with one from each of the active users. This

is a worst-case scenario for the platform to handle, where it is assumed that every user

would be sending a message to the central server simultaneously. The platform has

only one main thread running, which results in only one message being processed at a

time from the batch of retrieved messages. This is based on the order of the date and

time that the message is received. Furthermore, all the messages need to be processed

before a check can be made for new messages in the Microsoft Outlook Inbox folder.

A C# Timer object would call the MailHandler class every 20 seconds to check the

Inbox folder. If there are messages waiting in the Inbox folder then the Timer object is

paused throughout the duration of the TAU stages. There is an automatic check for

new messages once the TAU stages have been completed. The Timer object is only

reset to check at regular intervals once no messages have been found in the Inbox

folder.

The complexity of the analysis performed on a message can vary and depends on the

volume of Trigger and Answer entities created for the associated Incoming template

and whether additional calculations need to be performed by the application module.

This complexity would largely determine the length of time between retrieving a

message and performing a response. Additionally, the type of actions that would be

performed in response to the message is an important factor. The scalability test was

performed on a wide range of message types associated with the Missing Persons

209

scenario to ascertain the time taken to process a batch of messages at different levels

of analysis complexity.

A message sent by a user requesting for a specific Incoming template is a basic type

of message for the TAU to process. It would take SMS and email messages on

average 12 and 10 seconds respectively to be received by the email server that

operates the platform’s email account. The time taken to then process 20 of these

messages, each sent from a different user and using a mixture of SMS and email, was

on average 15.2 seconds. Once all the messages were processed, the Timer object was

able to check immediately for new messages. The users then received the responses

from the central server, with mobile phones taking on average 13 seconds to receive

an SMS message, whereas email messages took on average 9 seconds to be received

and viewable on a user’s email account. These results demonstrated that the platform

was able to provide a rapid transaction time for a basic task when handling messages

from 20 users.

To resolve a batch of 20 messages with higher analysis complexity the platform took

up to 45 seconds for the analysis process. The longest response time was found to be

analysing input messages based on the “Risk Assessment” Incoming template. There

were 20 risk assessment messages received from different users, each being

associated with a unique and separate Missing Person instance. The TAU was

required to extract the risk assessment data, ensure the data was valid according to

Answer entities and calculate the associated missing person’s risk status within the

application module. The entire process, for the batch of 20 messages, took 44.6

seconds to resolve. This is approximately three times longer than a basic template

request.

The total time to process messages based on the distinct features of the platform was

also tested for batches of 20 messages. In comparison to text-only messages

processing a batch of email messages containing image files did not have a large

effect on the performance of the platform. These multimedia messages took on

average 30 seconds to resolve, which included extracting and storing the image files.

Sending out image files took slightly longer, taking 37.4 seconds to send out email

messages to 20 different users. This is due to the platform’s central server being

210

required to contact the email server when sending out messages, whereas Outlook

handles this step for the retrieval of messages.

An important aspect of the Missing Persons scenario is the ability for one user to

request the addition of new users. In order to assess the performance of the platform

in relation to adding new users to instances of the Missing Persons scenario, two sub-

tests were carried out. In the first sub-test 20 users on separate instances sent input

messages, based on the “People Involved” Incoming template, to recommend a new

person to assist in the instance. The total time to resolve the 20 messages and send

new messages to the newly added users was 42.4 seconds. The second sub-test

involved one user sending 20 requests on a single Missing Person instance to add 20

new users. The second sub-test was slightly quicker at 39.3 seconds. Overall, the

average time to add new users was 40.9 seconds. This is an acceptable timeframe as

new users can be notified within real-time and subsequently the central server would

be ready to accept a new batch of messages, before Outlook’s next “Send/Receive”

request to the email server.

The Missing Persons scenario requires all users assigned to an instance to be notified

of new updates, such as suspicious vehicles being reported or the missing person

being found. After receiving a message from one user reporting a suspicious vehicle,

the central server took 4.8 seconds to send out a broadcast message to the 19 other

users assigned to the same instance. Processing a batch of 20 messages, in which each

message required the central server to broadcast updates to all 19 other users, took

37.6 seconds. This amounted to the central server sending 380 messages out in a short

timeframe, where all the messages were then received by the users’ mobile devices in

less than 20 seconds. The majority of the work was achieved by either the relevant

external email servers that deliver email messages to user email accounts or the SMS

web service that forwards text messages to mobile phones. Both of these information

services were able to handle and forward the large quantity of data rapidly and with

limited performance degradation, as shown by the similar timeframe to the other

complex message types that have been tested.

Evaluating the platform’s performance at creating and allocating multiple new

assignments was achieved from 20 users, on the same Missing Person instance,

sending input messages based on either the “Important Locations” or “Sightings”

211

Incoming templates. During the analysis stages of each message the TAU created a

new assignment to assign an available user to investigate the respective location or

sighting, based on their relative geographical position. The platform was effective at

generating and allocating the 20 new assignments, amongst the group of users added

to the instance, with an average time of 43.4 seconds to prepare all the assignments

and inform the relevant users. Each assignment was created correctly, only being

assigned to a user who was not currently on another assignment and who matched the

assignment’s location. The only exceptions occurred in circumstances where no

match was found, whereby a random available user was allocated to the assignment.

The results from this stage of the scalability test illustrate that processing messages

from 20 concurrent users took between 15-45 seconds depending on the analysis

complexity of each message. Even for the most complex message type, in this case

being the risk assessment messages, the central server would still be ready for the

next batch of messages that are received by Outlook. This was due to the minimum

configurable time of once per minute for Outlook to make a “Send/Receive” request

to check for new messages from the email server. Consequently, the total timeframe

for this user group would be under two minutes, which includes the time for users to

send the original message, Outlook to retrieve each message from the email server

and the users to receive the responses. This is an acceptable timeframe, resulting in

users being able to receive rapid responses to inform them of instance updates or new

assignment instructions.

This stage of the scalability test was performed with users interacting via a

combination of SMS and email messages. The time differences between these two

communication methods were minimal. Email was on average 2 seconds faster than

SMS for the central server to receive input messages and 4 seconds faster for the

users to receive output messages. Selected message types for the Diet Diary scenario

were tested in the same way. The timeframe for processing a batch of these messages

from 20 users was between 17-39 seconds depending on the analysis complexity,

where calculating the calorie targets took the longest processing time. Table 7.1

shows the average timeframes for each message type tested in both the Missing

Persons and Diet Diary scenarios.

212

Table 7.1: Timeframes for processing a batch of 20 messages on the Missing Persons

scenario (top) and Diet Diary scenario (bottom)

The performance of the platform’s presentation layer is evaluated in the second stage

of the scalability test. The presentation layer runs separately from the logic layer,

enabling multiple users to access the web-based user interface concurrently for

interactions with the central server. Calculating the processing time for messages sent

via the web-based user interface was achieved separately to SMS and email

messages. A request would be sent to the TAU to process a web-based message as

soon as the user has submitted the data in the UserMessageSend web-form.

Therefore, in order to calculate the time taken for multiple messages to be processed,

a test script was developed to automatically send 20 duplicate messages via the web-

based user interface when a user submitted a single message.

Response times for bulk sending web-based messages were considerably faster than

via SMS or email, where the time to process all 20 messages ranged from 7-22

seconds depending on the complexity of analysis required. These faster results were

due to both removing the need to retrieve messages from the Inbox folder and the

time required to construct an email message or HTTP request, to the SMS web

service, for a response.

Furthermore, the messages were processed immediately since there was no delay for

the Timer object or Outlook to make a “Send/Receive” request to the email server.

Once a response had been generated by the TAU it was saved to the Principal

database. The user could immediately view any replies in the UserMessageView web-

form. The web-based user interface automatically redirected the user to this web-

form, which took a negligible amount of time to load on the web browser. The chart

in Figure 7.34 illustrates the average differences in time taken for both a user sending

a message and the central server sending a response via all three communication

213

methods. For both SMS and email, on average, it would take 30 seconds for Outlook

to retrieve a new message from the email server via a “Send/Receive” request. This is

added to the time taken for a user’s message to be initially received by the email

server. Figure 7.34 shows that communication via the web-based user interface is

considerable faster for a user, in both directions, than by the other two available

methods.

Figure 7.34: Comparison time taken between the three communication methods for a

user to both send a message to the central server and to receive a response

However, a few limitations were found whilst using the web-based user interface. The

tables in the Principal database were inaccessible whenever they were being updated

with new data, due to the current process placing a write-lock on the table. This

denied access to the respective table for other processes. The TAU often required

access to the Message table, in order to store received and newly created messages.

This resulted in occasions where a user was delayed when attempting to view their

previous communications with the central server via the UserMessageView web-

form, with the web request not being resolved until the previous process was

completed. Additionally, users would be delayed when submitting a message in the

UserMessageSend web-form if the TAU was currently running through a batch of

messages that had been retrieved via alternative communication methods.

214

Consequently, these circumstances resulted in reduced performance of the web-based

user interface for users.

The third stage of the scalability test involved evaluating the rate of performance

degradation of the platform when deployed with a considerably larger user group. In

its final deployment the platform would be expected to support an ever increasing

number of users as new multi-user scenarios are introduced with concurrently running

instances. Therefore, it was necessary to find the current limitations of the platform in

relation to the number of users that can be simultaneously handled in order to identify

whether functional improvements would be required.

The same 20 users were employed for this stage of the scalability test, with the users

being assigned to a variety of newly created instances of both the Diet Diary and

Missing Persons scenarios. Initially, 50 input messages were constructed on the user

side based on a range of different Incoming templates, which ensured the TAU would

be resolving messages with different analysis complexities. The Timer object was

disabled for this stage to ensure all messages would be in the Inbox folder before the

TAU started to retrieve messages. This enabled a simulated experience for operating

with 50 users. The total processing time for these 50 messages was 1 minute 13

seconds.

This test was then repeated by the platform for the retrieval of 100, 250 and 500

messages in order for the platform to simulate running user groups of these sizes

respectively. The processing time for these batches of messages increased to 2

minutes 32 seconds for 100 messages, 6 minutes 27 seconds for 250 messages and 13

minutes 12 seconds for 500 messages. The chart in Figure 7.35 illustrates the rising

timeframe for processing messages as the user group grows in size. During these

periods the TAU was unable to perform any other operations, including not being

able to retrieve subsequent messages from the Inbox folder. The total processing time

for 100 messages was acceptable since the central server could respond to all the user

messages in under 3 minutes, allowing users to receive further instructions or updates

fast enough for proceeding with their roles in the active instances. However,

depending on the scenario a delay of over 6 minutes for a user group of 250 users

may not be acceptable since the users could be looking for a rapid response to receive

further instructions. The processing time of over 13 minutes for 500 messages for

215

time-sensitive communication is excessive since it prevents a real-time response from

the platform.

Figure 7.35: Timeframes to process a batch of messages from an expanding user

group

Ensuring the platform’s response time does not become too high is essential. The

third stage of the scalability test illustrated that the platform started to lose its ability

for real-time responses when supporting user groups in excess of 100 in size. As new

scenarios are integrated into the platform the user-base will grow in order to assist

new instances of these scenarios. This would then entail that the larger user group

sizes, simulated in this test, would eventually need to be supported. Additionally, it is

necessary to ensure the waiting time for user requests via the web-based user

interface are kept to a minimum. Data requests from other processes to the Principal

database have shown to result in an impact on the performance of the web-based user

interface in supporting user interactions.

The performance of the platform could be improved by introducing functionality for

parallel processing into the application code. With several processes running in

parallel the analysis of multiple input messages could be handled concurrently, thus

reducing the time to respond to each message. Further details of this solution are

discussed in the scale-up study in Chapter 8 (Section 8.2.2.1).

Nonetheless, the prototype in this project has been developed to provide a novel

integrated communications platform that enables rapid development of new scenarios

216

and a generic feature-set that can be tailored to each scenario. The prototype can still

provide fast responses when supporting a user group of 100 users, whereby users

would be sent a response in under 3 minutes, in the worst case, after the central server

has retrieved messages from the Outlook Inbox folder. Furthermore, operating the

platform with 20 users showed that the platform could support users assigned to

numerous instances in real-time and perform the distinct features, such as assignment

allocation, broadcast and multimedia messaging, with minimal performance

degradation at this level.

Table 7.2: Missing Persons scenario – Features Supported by the Platform

218

7.7 Conclusions

The Missing Persons scenario has been developed to evaluate the platform’s ability to

support a scenario with substantially different requirements and objectives to that of

the Diet Diary scenario. This makes it possible to investigate the platform’s

effectiveness at handling a range of diverse application problems. The Missing

Persons scenario focuses on interactions with multiple users to coordinate them in

order to search for people who have been reported missing. This scenario also enables

the testing of the platform’s features that are not required by the Diet Diary scenario.

Table 7.2 summarises the list of features, detailing their use within the scenario and

the extent to which the generic functionality of the platform supports each feature.

The communication component works together with the template mechanism to

facilitate communication between the server and each user of an instance. This is

achieved through the use of the underlying TAU classes and the declarative creation

of template criteria by the builder. The declarative creation of templates utilises the

same procedures that were discussed for the Diet Diary scenario in Chapter 6, which

are achieved via the builder’s interactions with the web-based user interface. A major

difference with the Missing Persons scenario in comparison with the Diet Diary

scenario is the response possibilities available to the server. Processing an input

message could now result in a reply to the same user, a new message sent to another

user or a broadcast update to many users participating in the same instance. The

stages and outcomes are all handled by the TAU and Action entities predefined for

each template. Additionally, the Template entities include attributes that facilitate the

storage and retrieval of multimedia files for both input and output messages that

contain attachments. The platform is able to receive an image file containing a

photograph of the missing person and then distribute the file to other users who are

participating in the same instance. There is no extra programming required for these

new components as the bulk of the scenario is created with the necessary

functionality provided by the platform, enabling a rapid development and

implementation process.

The ActionHandler class together with the Action entities has a versatile range of

attributes that support the new features required for the operations of the Missing

Persons scenario. There is only a minimal need for more modules to run the scenario.

219

The risk assessment calculation is the only aspect of this scenario that requires

analysis functionality not supported by the TAU or reusable for other scenarios. The

remainder of the scenario is handled by the TAU functionality. The LocationHandler

module has been developed in parallel with the Missing Persons scenario. However,

this module has been designed to be reusable for future scenarios that feature

location-dependent assignments. Moreover, this means that the LocationHandler

module can receive updates at a later date, benefiting all scenarios that utilise this

module. Therefore, the emphasis of each scenario is to utilise current functionality as

opposed to new hard-coded modules, thus reducing the complexity of designing a

scenario.

Implementing assignment functionality has provided a practical method of

coordinating the multiple users participating in an instance. The TAU can rapidly

respond to message reports from one user by creating a new assignment and

allocating another user to this assignment. Therefore, the interactions from one user

influences the actions that are to be performed by another user, whereby the

LocationHandler module dynamically selects this new user based on their location.

This scenario demonstrates that broadcast communication can be used alongside the

assignment functionality to update all users on the results of an assignment, making it

possible for the other users to keep track as the instance progresses.

Furthermore, the inclusion of the anonymous user feature offers the opportunity for

users to report helpful information safe in the knowledge that their personal details

would not be stored by the server. This feature could encourage more users to become

involved, in a similar way to the Interactive Learning application [95] that was

investigated in Chapter 3. The information gathered by these anonymous users can be

processed by the TAU to generate assignments and notify other users of new events.

These new features work together to provide a framework for the platform to instruct

and coordinate groups of users, enabling these users to solve issues of an instance as

they arise.

The scenario’s database is mainly designed for the purpose of record-keeping, with

field data received from each new user report being stored in a record in the correct

table. The scenario’s database operates by the same procedures as the database that

was developed for the Diet Diary scenario. The extracted field data taken from input

220

messages is collected by the DatabaseHandler class, which uses DataSave entities to

insert and update database records. The reported data can then be accessed at a later

stage of the instance for the sending of output messages to users or for assisting the

operator. The expansion of new users demonstrates the way that the scenario’s

database collaborates effectively with the Principal database. The details of each new

reported person are stored in a record within the scenario’s database. The contact

details can then be transferred to the Person record in the Principal database, creating

a new user.

The scalability test demonstrated that the prototype of the platform is able to support

a user group of up to 100 users and provide real-time responses to each user

participating in instances of the Missing Persons scenario. In order to support larger

user groups new techniques for processing and handling data need to be applied to the

platform, such as parallel processing.

The two scenarios that have been described in Chapters 6 and 7 have both

demonstrated the functionality of the platform and the generic framework that enables

the support of scenarios with differing objectives. The underlying components of the

platform provide the infrastructure to create scenarios in a primarily declarative and

rapid process through the use of the three-stage scenario development process. This

development process has been shown to reduce the time taken to implement the

Missing Persons scenario from 31 days to only 3 days, which includes 1 day for the

LocationHandler module. Furthermore, the platform’s web-based user interface

provides a simplified approach for defining the analysis criteria of a scenario in

comparison to hard-coding classes for a new application.

The Missing Persons scenario reveals that as new scenarios are developed the

platform can also be expanded to support further modules when new requirements are

identified. This is demonstrated by the inclusion of the LocationHandler module.

Subsequently, as the platform is updated and expanded the complexity of

incorporating new scenarios should be reduced and the speed of implementation

increased, resulting in an ever more efficient and resourceful infrastructure.

221

8 Conclusions and Future Work

This chapter highlights the contributions that have been brought to the field by the

development of the Connected-Mobile Platform. This includes discussing the benefits

of the platform’s novel framework, whereby its generic properties and features are

examined to evaluate their effectiveness in facilitating the platform to support and run

a multitude of scenario types in a mobile environment. This is achieved by

investigating the running of the two scenarios that were developed; the Diet Diary

and Missing Persons scenarios. The development process of both scenarios is

discussed to determine if the platform meets its objective of ensuring that new

scenarios are incorporated in a structured approach, with minimal time and effort

required for implementation. Issues that have been identified with the running of the

platform are discussed, with new solutions and ideas brought forward in the future

work section.

8.1 Conclusions

The Connected-Mobile Platform has been developed, which is based on a client-

server architecture. The Remote Experimentation system [15] and HELP system [101]

used this type of architecture to ensure the intensive processes and data storage

requirements were withdrawn from the user and performed from a central location.

These ideas were built on and improved in the Connected-Mobile Platform, where

there is a focus on the autonomous analysis and response from user messages by the

server. Unlike the UbiquitousSurvey system [13], the Connected-Mobile Platform

reduces the role of a human operator. The server has the ability to handle the flow of

communication with each user, progress instances of scenarios using the results of

field data analysis and coordinate multiple users to resolve objectives.

The users of the platform are able to participate in active instances of a scenario,

where their only requirement is to own a basic communication device that supports

the sending and receiving of text messages over mobile networks or the internet. Field

data extraction and analysis is performed by the server as soon as messages are

received, enabling each of these steps to be achieved in real-time. The analysis and

storage of field data is managed by the server. The server responds to the user with

the results and feedback that have been generated from this data analysis. The

location of each user and the capabilities of their devices do not have any bearing for

222

the purposes of supplying field data to the server or receiving messages in response to

the data analysis.

The beneficiaries of the platform changes for each scenario that is developed. For the

Diet Diary scenario, the beneficiaries would be the individual users who request to

start new Diet Diary instances. The communicated data for each Diet Diary instance

would only be relevant and applicable for the associated user. The user would be the

anticipated beneficiary for other types of scenarios that focus on single-user instances.

In the case of the Missing Persons scenario the main beneficiary would be the police.

The scenario builder would collaborate with the police in the development of this

scenario. The operator would then cooperate with the police during the running of

each Missing Person instance.

8.1.1 Support of multiple communication methods

An objective of the platform has been to enable interaction with end users by

incorporating multiple sources of input and output. The server is able to communicate

with as many potential users as possible and remain in contact at all times in order to

support each user that is assigned to an active instance. The platform has been created

to support communication with users via communication methods that are practical

for use in a mobile environment. The majority of people would have a mobile phone

or another type of mobile communication device with them at all times in a ready to

use mode [44]. Therefore, incorporating mobile communication methods into the

platform provides flexibility to the users as they are able to interact with the server at

any time, regardless of the user’s geographical location [8, 4].

Chapter 2 discussed how the SMS communication method is the standardised method

of text messaging in the mobile environment [39]. However, communication via

email enables a device to make use of advanced features, which include the ability to

send and receive multimedia files [10]. The research undertaken in Chapter 2

illustrated that it is advantageous to utilise multiple communication methods, as each

individual mobile communication device could be more suited to one particular

method.

The platform has been designed to utilise three different communication methods to

cater for as many device types as possible and also to offer flexibility in the way that

223

the users can interact with the server. The three communication methods that have

been incorporated into the platform are SMS, email and web-forms via a web-based

user interface. To interact with the server a user’s mobile device only requires the

capability to communicate via one of the supported communication methods. The

user can take advantage of the different benefits each communication method

offers by interchanging between the methods, which would then update their

preferred choice for the server’s method of sending a message. Therefore, it is the

user who determines the communication method for both the sending and receiving of

messages in the client-server architecture of the platform.

The Diet Diary scenario demonstrated the ease with which a user switches between

the communication methods, whereby the server would update the user’s preference

on each occasion the user sends a message via an alternate method. In this scenario

the web-based user interface provided the user with a more user-friendly approach to

interacting with the server, where the user could navigate between previous messages

and directly select Incoming templates for the sending of new input messages.

The Missing Persons scenario showed that for a multi-user instance the server would

respond separately to each user, based on the user’s preferred communication

method. This scenario also highlighted the platform’s ability to handle the exchange

and storage of image files. The platform enables users of camera-integrated devices to

share visual events through the use of email [10]. In a Missing Person instance users

are able to send and receive photographs of a missing person to help identify and

locate the person. Each of these features is effectively handled by the platform’s

communication component to provide a diverse range of options for users to

communicate with the server.

The users are also able to participate and assist anonymously in active multi-user

instances. This feature utilises the principles of the Interactive Learning application

[95] to encourage people, who may not wish to be identified, to assist in an active

instance of a scenario. In an instance of the Missing Persons scenario, a user is able to

request anonymity and then send in message reports to assist in the finding of the

missing person. This was demonstrated in Chapter 7 with an anonymous user

reporting a suspicious vehicle. Details of this vehicle were then broadcast to the other

users participating in the instance to notify them of the situation.

224

8.1.2 Features of the novel framework

The Connected-Mobile Platform has been developed using a novel framework that

has generic properties to support the running of a range of different scenario types

and to provide a structured development process for the incorporation of each

scenario. This has been achieved by identifying the necessary functionality to include

in the platform and then designing the platform’s components so that this

functionality could be tailored to meet the requirements of each new scenario.

In Chapter 3 a range of applications were researched to identify the functionality that

would need to be included in the platform to support a range of scenario types. Key to

this was the need for the platform to effectively communicate with users via a

structured process. The template mechanism enables the exchange of messages

between the server and its users. Chapter 3 discussed how the Attendance

Improvement applications [93, 94] sent personalised messages to their users for

appointment reminders, applying a template content structure. The Connected-Mobile

Platform provides a more comprehensive template mechanism as the template layouts

are built for both input and output messages. Users are supplied with a structured

message layout, through the use of Incoming templates, for supplying field data to the

server. The scenario builder is able to design each template to meet the requirements

of its associated scenario. This makes it possible for field data that is sent from a user

to be extracted and processed by the platform. Outgoing templates can then be

utilised by the server to autonomously generate and send responses.

The Incoming and Outgoing templates work together to facilitate the flow of

information. In the Diet Diary scenario a user employs Incoming templates to provide

updates on food items consumed, through the input of data relating to a food item.

Outgoing templates are used to help the user search through the food categories for a

specific item. Each time the server receives details of a new food item, feedback

regarding the user’s daily diet targets can be sent within a personalised message to the

user.

In the Missing Persons scenario users are able to provide reports on the missing

person, including risk assessment details and sightings, through the use of Incoming

templates. Outgoing templates enable the server to notify users of updates to a

Missing Person instance as new information is received. Both of these scenarios have

225

demonstrated how the template mechanism provides an effective approach for

designing and tailoring a communication structure to different scenario types.

The platform includes a multifaceted and adaptable data layer to meet the need of

storing the field data received from user templates. Chapter 3 discussed various

applications that utilised a database for the storage and retrieval of data. For example,

the UbiquitousSurvey system [13] would store the data from user messages in a

database for later use by an advisor. The Connected-Mobile Platform attempts to

offer a multi-layered approach to data storage. The Principal database provides a

standardised approach for the storage of data relating to users of the platform,

exchanged messages, Incoming/Outgoing templates and analysis criteria. Each

scenario then has its own dedicated database, which is linked to the Principal

database. A scenario database can be individually designed to focus on the

requirements of its associated scenario. The scenario databases, together with the

methods of the DatabaseHandler class, enable collected field data and analysis

results to be stored in records that are unique to the associated scenario.

This is demonstrated in the Missing Persons scenario, where there are data-tables for

each type of issue that a user can report information on concerning a missing person

case. This enables the platform to follow the correct procedures for a missing person

case [197], by both keeping records of new information and results from assignments

in appropriate locations. Each record in the scenario’s database would be linked to

both the instance and the corresponding messages via the Instance identifier in the

Principal database. Therefore, the Template Analysis Unit (TAU) can readily locate

the field data for either further analysis or to send this data to a user of the associated

instance at a later time.

8.1.3 Autonomous functionality for real-time responses

The platform set out to incorporate autonomous analysis functionality within its

generic framework. Providing a comprehensive analysis component enables an

application to interact and respond to data received from users in real-time. The

Telemedicine Monitor application [99] implemented autonomous functionality on the

server-side to analyse blood glucose measurements, which are received from a user’s

device. However, the platform’s TAU is far more extensive as it is equipped with a

broad range of analysis and response functionality to cover the processing of user

226

messages and analysis of field data for each type of scenario. This is achieved

through the use of Answer and Trigger entities, whereby the scenario builder tailor-

makes analysis criteria for each specific scenario. Received field data is then tested

against a range of defined criteria.

The Diet Diary scenario demonstrated how the TAU, through the analysis of received

field data from a user, can be effectively used for autonomous decision making. For

example, the TAU is able to send a warning message to users when they are

approaching a calorie target value by observing whether a new food or activity item

would breach a pre-defined alert limit. However, this scenario also highlighted the

lack of the TAU’s ability to perform mathematical calculations. The calculation

algorithms for this scenario had to be created from scratch, within the scenario’s

application module. This increased the development time of the scenario and

highlighted the need of a generic calculations module within the TAU.

The TAU’s final stage involves performing actions that are based on the analysis

results of field data. The Missing Persons scenario demonstrated the variety of

actions that are at the TAU’s disposal. This ranges from sending simple replies to the

message sender to the broadcasting of updates to all the users participating in an

instance. Other types of actions include the ability to add a new user to the instance

and generate News records to update the operator on significant events that have

occurred. For the Missing Persons scenario the TAU’s ActionHandler class and

Action entities have been able to offer a versatile range of attributes to support each

type of action. The TAU reacts appropriately in real-time to each message received

from a user, thereby meeting the platform’s objective of performing actions swiftly

based on the analysis of received data.

The platform is able to support a user group size of 20 users providing fast responses

to received messages, including occasions when all the users send a message

simultaneously. Response times for resolving a batch of 20 messages are between 15-

45 seconds. This means that a user can expect to receive a reply within one minute of

the central server receiving their message. The response time increases as more users

join the platform, with users having to wait for up to 3 minutes where the user group

size is 100. This should still be an acceptable timeframe for the majority of users.

However, a user group of 500 would result in a response time of around 13 minutes.

227

Scenarios that involve the exchange of time-sensitive data may need a response time

faster than 13 minutes. In these circumstance the platform’s requirement of providing

real-time responses would not be achieved. This would be an important performance

issue to resolve prior to the deployment of the platform for real-world use since the

user group would be expected to expand as more scenarios are integrated into the

platform. Techniques to improve the performance of the platform are discussed in the

scale-up study in Section 8.2.2.1.

8.1.4 Assignment functionality for coordination of users

One key action type that is available to multi-user scenarios is the ability to generate

location-dependent assignments and allocate users to these assignments. The decision

to implement these features into the platform was based on the research of the

UbiquitousSurvey and Road Safety Alert systems. In the UbiquitousSurvey system

[13] human advisors are able to assign tasks to the users in the field, enabling these

users to work together in order to tackle a common goal. The Road Safety Alert

application [100] uses location data of the locations travelled by subscribed motorists

in order to inform them of arising hazards in those locations.

The Connected-Mobile Platform has aimed to combine the two features of location-

based technology and assignment functionality to make efficient use of the collective

intelligence of the user group. The TAU’s LocationHandler module handles the

allocation of users to assignments. This module determines the most suitable user to

be allocated to a location-dependent assignment, based on the location data stored on

each user’s most recently updated geographical location. Therefore, assignments can

be distributed in an efficient manner in active instances of scenarios where the

platform can make use of the different locations of each user.

The use of these features has been demonstrated in the Missing Persons scenario,

where assignments are generated and users allocated to these assignments each time a

new location or sighting is reported. Allocating a user to an assignment who is closest

to its reported location means that it is more likely for a quicker search and response

occurring than through selecting a random user, who could be at a considerable

distance to that location. The template mechanism works in conjunction with this

assignment functionality to offer a means for the server to provide users with

instructions on new assignments and for the user to report back on their findings from

228

the missing person searches. One of the platform’s objectives was to deploy its users

to negotiate and solve issues of an active instance of a scenario. During an active

Missing Person instance the assignment functionality offers a practical method for the

coordination of multiple users in order to achieve this objective. In its current stage,

the LocationHandler module only offers a basic method for selecting users in a close

proximity to an assignment’s location. This module could be updated to include a

more comprehensive method that does not only rely on matching exact location data.

8.1.5 Rapid scenario development process

The integration of multiple scenarios has been made possible by the three-stage

scenario development process that has been defined for the platform. This process

was employed for the development of both the Diet Diary and Missing Persons

scenarios, with the aim of reducing the time and effort required for implementing

each scenario. To help reduce the amount of additional development requirements for

any particular scenario each component of the platform has been designed to be

generic in supporting the running of different scenario types.

The Diet Diary scenario takes 3 days to complete the development; 1 day is required

to build the scenario’s database and for the declaration of tailored template criteria,

with a further 2 days required for the programming of the application module. The

scenario builder’s use of the web-based user interface emphasised the ease with

which the Template, Analysis and Action entities could be created. There is no

requirement for programming new modules in this aspect, with the builder

declaratively defining each entity. The builder navigates and submits data in the web-

based user interface to tailor new entities to the requirements of the Diet Diary

scenario.

The creation of the application module has highlighted a drawback of the current

platform as all the algorithms for calculations in the scenario had to be developed

from scratch. This application module contains 560 lines of code, consisting of the

methods that run these algorithms. Nonetheless, this is still a considerable reduction

in lines of code required in comparison to developing an entire diet diary application

from scratch. Furthermore, the time required to develop a new application that

performs the same functionality is estimated at 22 days. This is over 7 times longer

than the development time for the Diet Diary scenario, highlighting the benefit of the

229

platform’s rapid scenario development process. The reason for the reduced

development time is due to the platform’s framework of generic components

removing the need to develop additional modules. These components have been put

in place to provide a communication structure, template mechanism, data analysis and

response procedures for the processing of field data and handling of active instances.

The demonstration of an active instance has shown that the Diet Diary scenario is

supported by the functionality offered from this framework of components.

The Missing Persons scenario required a timeframe of 2 days to develop and

implement into the platform, with an extra day for the LocationHandler module. In

comparison to the Diet Diary scenario, a shorter time was required for the

development of the Missing Persons scenario’s application module. The Missing

Persons scenario has a reduced emphasis on mathematical calculations, where most

of the analysis is capably managed by the generic analysis stages of the TAU. This

scenario’s application module only required 140 lines of code for the RiskStatus

algorithm. Instead, an extra day’s development was focused on integrating the new

LocationHandler module. This is more practical than the development of the Diet

Diary’s application module as the LocationHandler module has been designed to be

reusable for future scenarios. Consequently, this module has not been included as part

of the scenario’s total development time.

The development of LocationHandler module in the Missing Persons scenario has

also demonstrated how the middleware of the platform is expandable for the inclusion

of features that may be identified in the future. The ability to include new modules is

an important factor for the platform since practical features that are of benefit to

multiple scenarios may be identified during the development of a future scenario.

Also, introducing reusable modules would help to reduce the development time for

new scenarios through eliminating the duplicate programming of algorithms.

Developing an application from scratch to achieve the same objectives as the Missing

Persons scenario takes 31 days, which is over 15 times longer than the development

time taken by following the platform’s scenario development process. Furthermore,

the guided process of defining template, analysis and action content via the web-

based user interface is not available for the development of this separate application.

Subsequently, this increases the complexity of creating the application as the

230

developer is required to construct new programming modules for each component

and manually add message templates to the database. The components of the

application need to be rigorously tested to ensure that there are no bugs or faults in

the software. In comparison, the testing requirements are minimal for adding new

scenarios to the platform since the platform’s generic components have already been

through testing. These points clarify the rapid and straightforward process offered by

the platform to implement new scenarios.

8.1.6 Summary of contributions

The aim of this project has been to create an integrated communications platform that

supports the development and implementation of a vast array of scenario applications,

whereby people in a mobile environment can be utilised to tackle the issues of the

scenarios via multiple communication methods. Figure 8.1 illustrates the significant

contributions and features of the Connected-Mobile Platform.

Figure 8.1: Contributions of the Connected-Mobile Platform

231

Prior to the Connected-Mobile Platform it was necessary for developers to create

applications from scratch when attempting to push information to or collect data from

users to solve a particular issue in a mobile environment. The platform makes a

significant contribution to knowledge since there is no other type of integrated

communications platform currently available that facilitates this rapid development of

complex mobile scenario applications. The comparisons between utilising the

platform’s scenario development process and developing applications without this

foundation, detailed in the case studies of Chapters 6 and 7, have demonstrated the

considerable savings in time and effort that have been made available by the platform.

The scenario development process is able to be applied to both the Diet Diary and

Missing Persons scenarios, even though they have different requirements and feature

usage. Existing works on developing applications for interacting with users in a

mobile environment only focus on a specific focal problem, whereas the Connected-

Mobile Platform is composed of a framework of generic components to fulfil the

requirements of different scenario types. These components provide a comprehensive

and expandable feature-set that can be tailored to resolve the objectives of each new

scenario.

The platform set out to meet the project’s objective of providing a foundation to

support the running of each new scenario. The case studies of the Diet Diary and

Missing Persons scenarios have established that this objective was achieved. The

running instances of both these scenario types have illustrated the way different

scenarios could be operated under this single platform. This is a key contribution of

the project since the platform is able to support a multitude of different scenario

types, whether they require a single user or multiple users.

The design of the template mechanism and TAU are further contributions provided by

the development of the Connected-Mobile Platform. By providing a complex

communication structure the template mechanism improved on previous applications

that utilised templates to communicate with their users. The template mechanism

allows a scenario builder to construct the framework of each type of message,

facilitating two-way communication between the server and its users. Through this

feature messages can be individualised and field data extracted by the server in a

straightforward process. The Principal database operates in conjunction with each

232

scenario’s database for the TAU to effectively analyse the field data and progress a

scenario’s instance, based on the analysis results. The TAU enables the server to

respond autonomously to each user’s message, catering for different types of

scenarios through a process of defining individual analysis criteria for each scenario.

These features bring the advantage of fast responses and an adaptable approach to

tailor the communication structure and the analysis procedures.

The platform provides the means for users to interact via multiple communication

methods. Therefore, the server is able to communicate with a broad range of mobile

communication devices, whilst at the same time supporting the additional features

offered by particular communication methods. SMS offers a simple means for users

to communicate with the server using any mobile phone. On the other hand,

communicating via email and the web-based user interface offers new features, such

as multimedia messaging. The user has a high degree of flexibility in being able to

choose the most convenient method of communication each time they interact with

the server. Through these interactions, each component of the platform is utilised to

provide constructive information to users in all types of scenarios.

The platform can autonomously provide users with tasks, through the use of

assignment functionality to coordinate multi-user instances from a central location.

This enables the platform to take advantage of the collective intelligence of the user

group, in a mobile environment, in order to dynamically resolve problems that arise

within each instance. The capabilities of the platform’s assignment functionality are

extended through the implementation of location-based technology. This is achieved

by offering the ability to allocate a user to an assignment, based on each user’s

geographical proximity to an assignment’s location.

All of these contributions have demonstrated that the platform meets the aim and

objectives that were initially set out in Chapter 1, enabling the platform to effectively

support a vast array of different scenarios. By following a three-stage scenario

development process, new scenarios can be rapidly developed and implemented into

the platform for use in a mobile society. These scenarios can range from basic one-to-

one situations, where the platform is only engaged with one user, to complex

scenarios that involve the cooperation of numerous users. Furthermore, the

expandable nature of the platform, where it can support new modules to extend its

233

functionalities, would provide the platform with a more comprehensive feature-set as

new scenario types are identified, developed and implemented.

8.2 Future work

The Connected-Mobile Platform has been proposed as a means to provide a

framework for the rapid development and implementation of scenario applications in

a mobile environment. A prototype of the platform has been implemented to

demonstrate these proposed ideas, with the Diet Diary and Missing Persons scenarios

being developed to assist in evaluating the prototype and to determine its

effectiveness in achieving the objectives of the project. Several areas have been

identified where the prototype functionality can be expanded and improved. In this

section, new features are discussed that could enhance the usability and scope of the

platform with ideas for further research also being presented.

8.2.1 Improvements to the platform’s functionality

8.2.1.1 Development of utility modules

A large application module was created for the Diet Diary scenario in order to

perform the multitude of mathematical calculations required for the running of each

instance. Similar to the LocationHandler module, a new Calculations module could

be developed within the TAU to perform these calculations. Research into regular

types of calculations, which may be encountered by future scenarios, could be

undertaken to determine the algorithms to be included in this module. The key aim of

implementing a Calculations module would be to move to a more declaratively based

creation of content when defining calculations to perform on scenario field data. This

would be achieved by the design of new web-forms for the web-based user interface.

The scenario builder would use these web-forms to define new Calculation entities

for each scenario, which would be a similar procedure to the current method of

creating templates.

One such scenario could be a sports betting application, whereby users would be able

to interact with a bookmaker via the platform in order to make bets on sporting events

and track their performance. New algorithms would be required to calculate the return

value of each bet made by a user and to update their balance as bets are won or loss.

If each type of calculation was available in a generic Calculations module then it

234

would reduce the programming effort by the scenario builder in developing the new

scenario.

A Calculations module is one type of feature that has been identified for inclusion

into the platform. To increase the scope of the platform’s generic framework it would

be necessary to research new scenarios and their requirements in order to identify

other features that could be implemented into the platform. The purpose of this new

research is to develop a host of utility modules that would be designed to work with

any scenario that requires their functionality. This would lead to an expanding

feature-set for the platform, resulting in the platform’s functionality being more

comprehensive for the coverage of future scenarios.

The LocationHandler module currently employs a basic method for determining the

closest user to an assignment’s location. Chapter 2 investigated the use of Global

Positioning Satellite (GPS) technology to track mobile communication devices. Many

devices, especially high-specification smartphones, have integrated GPS hardware for

this purpose [79]. Currently, a user is required to manually inform the platform if

their geographical location changes. The Missing Persons scenario has demonstrated

that if the location details are not updated it could result in the user being given an

assignment in a distant location to their current whereabouts. GPS technology could

provide accurate and real-time data on a user’s geographical location, to within a few

metres, with the location data being stored internally on the user’s device [78]. An

application could be developed for GPS supported devices to continually send

updates to the server as the user’s location changes.

Furthermore, the server could utilise readily available web services, such as Google

Maps [201], whereby the LocationHandler module measures the precise distance of

each user from the location of an assignment. The AroundMe application [85] that is

available for smartphones helps users to locate close businesses, based on their GPS

calculated location. The platform would utilise a similar feature to the AroundMe

application. However, calculations would be performed on the server-side to

accurately determine the closest mobile device, based on an assignment’s location.

This functionality would ensure a more efficient method of assignment allocation

than the procedure that is currently in place.

235

The error handling and security elements of the platform would need to be enhanced

to support a large user group. In its current iteration the TAU includes limited

functionality to check the validity of data from input messages. A new module would

need to be developed to focus on rigorous testing of field data. This would help to

prevent erroneous data interfering with the progress of an instance. Additionally,

users should only have access to the necessary elements of the web-based user

interface for the purpose of completing their tasks. Each user can be provided with a

password for logging into the web-based user interface, where transmission of this

password is encrypted to prevent unauthorised access and data entry from another

user. This would ensure that only the authorised user on the receiving device can

submit field data and receive messages from the server, which have been sent to their

user profile.

8.2.1.2 New approaches to the user-interface

The template mechanism has provided a simplified process for the TAU to extract

field data supplied within input messages. However, throughout the running of the

two scenarios the communication process on the user-side has at times been difficult

to operate. This can be a cumbersome process for users since they are required to

navigate through a pre-defined Incoming template, locate each parameter position,

remove the temporary data and finally insert the field data. Devices with small

screens and reduced navigational means, such as the old style keypad mobile phones,

can make this process even more difficult for a user. The interface scheme for the

SMS and email methods could be redesigned by removing the need to insert data

between two asterisks. Instead of this, a template could provide a phrase to instruct

the user on the information that is required which would then be followed by a

separator, such as a colon. The field data would then be inserted after the colon,

where a new line would mark the end of the data item.

There is a higher degree of functionality available for facilitating data input via a

web-based user interface. Social networking sites, such as Facebook [108], have

individual textboxes for each data item that is requested in a web-form. This approach

simplifies the process of data entry, especially for touchscreen devices where the user

only has to touch the screen location of a textbox to then be able to insert field data.

Therefore, users of devices that can support this communication method would be

236

able to take advantage of a more user-friendly approach than is currently available for

the platform.

In utilising the web-based user interface it is possible for the platform to limit or

remove the need for data entry on the user’s side of the communication process. The

current situation for parameter positions in Incoming templates, where the user

chooses one item from a finite list of items, requires the user to manually delete the

unwanted items. The template mechanism could include tailored response

functionality, whereby for parameter positions in an Incoming template a user would

only need to select the desired item from the available options. This feature could also

be used for other data entry points, such as selecting a date. Employing tailored

response functionality should result in increased accuracy of field data that is

transmitted from the user.

There is a vast array of mobile communication devices currently available in the

market. These devices differ in screen size, input capabilities and the installed

operating system [202]. The differing characteristics of these mobile devices have

resulted in usability challenges [203] where one static user interface may not be

appropriate to ensure a user-friendly interaction process for all types of devices [204,

205]. This issue could be solved by creating an adaptable user interface, whereby

aspects of the user interface are altered to meet the needs of the user [206]. The

information on display and the way it is presented could be adapted depending on

various characteristics of the user’s device. For example, a large touchscreen mobile

phone with a high resolution display could present a larger amount of information

than an old style keypad device. The server could request details of a user’s device,

each time a new interaction occurs, obtaining data such as the screen size and

resolution [204]. Alternatively, the Principal database could store details on a list of

devices, so only the device name would be requested from the user’s device. Based

on this data, the user would be presented with an appropriate layout of the

information that is suited for interaction and navigation on their device.

An adaptable user interface could also be utilised to examine each device’s main

input scheme whether it is via a touchscreen, a QWERTY keyboard or an old style

keypad [204]. The interaction process, in which the user inputs data, could then adapt

depending on these capabilities. For example, the tailored response templates that

237

were previously mentioned would be more suited to a touchscreen interface, whereas

the platform’s original method of data input could be used for devices with QWERTY

keyboards. Figure 8.2 illustrates how the server would generate adaptable user

interfaces for each type of mobile communication device. Implementing an adaptable

user interface would enable the platform to cater for the various types of mobile

communication devices and consequently improve the user interaction process.

Figure 8.2: Implementing an adaptable user interface into the platform

8.2.1.3 New methods of communication

Additional communication methods would need to be investigated to include in the

platform in order to offer further features for data input and increase the flexibility in

the way users can interact with the server. The platform currently only supports the

sending and receiving of multimedia files via email. This imposes restrictions on the

way that users can interact with the server. If a user’s desired communication method

is SMS then that user would have to switch back and forth between the alternative

methods of communication. Chapter 2 investigated the Multimedia Messaging

Service (MMS) as a means to transmit multimedia files over the mobile networks [5].

However, the MMS method has not been implemented into the platform. MMS is not

as ubiquitous and popular as the communication methods employed, such as SMS

238

and email. There has also been a difficulty in finding a web service to facilitate

sending and receiving MMS messages at a low cost.

New methods of communication have recently been developed for smartphones to

provide a zero cost solution to transmitting messages to other supported devices. One

example is the WhatsApp Messenger application [207], which is available for

smartphones running on popular mobile operating systems, such as Apple’s iOS and

Google’s Android platforms [208]. WhatsApp Messenger uses the mobile internet to

transmit messages from one device to another, where both devices are required to

install the application in order to communicate via this method. WhatsApp messages

can contain text, images and other file types free of charge to either the sender or

recipient as long as they have an inclusive internet data allowance [209]. Therefore,

the platform could make use of WhatsApp Messenger to offer a further means of

communication with its users, which would also support the sending and receiving of

multimedia files.

Furthermore, WhatsApp Messenger includes a feature that allows users to create

groups, in which each member can participate in an active conversation and view the

sent messages of the other members of the group [208]. The platform could utilise

this feature to coordinate a group of users that are participating in an instance. For

example, multiple users could cooperate to solve an assignment, with each member of

a WhatsApp group alerting the other members of the group of their actions and

findings. This would enhance the coordination between users by enabling them to

communicate with each other, which should lead to a more effective use of the

collective intelligence of the user group. This would, in all probability, result in

superior solutions being obtained for issues that arise in the scenarios [127].

8.2.2 Ideas for future areas of research

8.2.2.1 Scale-up study

The platform is able to handle a multitude of scenario instances with a small user

group. However, the platform encounters performance issues when supporting over

100 users. These issues include long response times when processing multiple

messages concurrently and slow speeds on the web-based user interface due to data-

tables being used and locked by the TAU. As the platform is designed to run

239

instances of multiple scenarios concurrently, it would be necessary to manage a large

user group with minimal performance degradation.

The current procedure for handling received messages involves processing each

message in turn, whereby messages are placed in a queue until they can be processed.

If a large quantity of messages are received in a short period of time this could result

in a backlog. As a result, the platform may not be meeting its objective of providing

updates in real-time if there is a large batch of messages to process. This performance

issue could be resolved by improved by incorporating parallel processing

functionality into the application code. The platform has been developed based on

object-oriented design principles. Each time a class in the TAU is called upon for data

analysis procedures it is an object of the class that processes a user’s message.

Therefore, it would be possible to have multiple objects running concurrently, with

each object processing a different received message.

Implementing parallel processing techniques would enable the platform to process

multiple messages concurrently, which would reduce the possibility of a backlog,

thereby providing faster updates to users. For example, enabling six processes to run

concurrently should reduce the waiting time for a group of users to approximately a

sixth of the original time. Multiple messages from the same user would also need to

be handled orderly, according to the date received, to prevent conflicts in the resulting

analysis. A single handler class could be responsible for distributing the input

messages to multiple objects that are concurrently running on separate processes. The

handler class would manage the communication between each process and the data

layer when database access is required to ensure there are no conflicts in analysis

between related messages that need to be handled orderly.

The performance of the platform could also be improved by upgrading the hardware

capabilities of the server. The server utilised in the experiments of Chapters 6 and 7

had a 3.2 gigahertz (GHz) dual-core central processing unit (CPU) and a 4 gigabyte

(GB) unit of random-access memory (RAM). Upgrading the server to a faster six-

core CPU means it could run all the processes without slowing down, whereby each

thread would be run on a separate core of the CPU. Upgrading the RAM would also

be required to ensure there is an adequate amount of memory to hold the data

attributes for each object in use.

240

When storing a large amount of data it is necessary to ensure the databases run

optimally. The databases need to be able to handle queries on large tables with swift

results in order for the platform to effectively analyse and respond to inbound field

data. The current setup of the database has been shown to reduce the performance of

the web-based user interface when multiple users are concurrently interacting with

the web-forms or the TAU is processing messages at the same time. The user would

be delayed, until the required table within the database is free to access, before they

can submit data or view previous messages.

A solution to manage a large database would be to divide the tables into smaller

fragments in a process known as horizontal partitioning [210]. The rows of a table are

segmented into multiple partitioned datasets, resulting in each partition still retaining

all the columns but containing a smaller quantity of rows [211]. Partitioning is

recommended for tables that are larger than 2 GB in size [212]. The rows are usually

segmented based on certain criteria, for example databases that store historical data

could have tables split based on the year or month a row was inserted [213]. This

process has been shown to reduce query execution time by vast amounts as only the

required partitions are examined [212]. R. Schumacher [210] discusses the query

execution times regarding a database that has 8 million rows for data spread over 10

years. A query is performed on the database that only requires to read records in one

particular year. The query took 38 seconds to execute on a non-partitioned table.

However, this time was reduced to 4 seconds when the query was run on a partitioned

table where each partition stored a year’s worth of records.

Horizontal partitioning could be applied to tables in the Principal database in order to

increase the speed of database queries. The Message and DataIn tables would be

expected to grow at a faster rate than the other tables due to row insertions being

performed at each occurrence of a new message. Partitioning these tables, based on

the Scenario identifier, would enable faster data analysis queries to be executed.

Figure 8.3 illustrates the partitioned Message table. Additionally, the other tables

could be monitored as new scenarios are implemented and partitioned based on this

criteria when they reach the 2 GB size limit.

241

Figure 8.3: Horizontal partitioning of the Message table with each partition holding

records for a single scenario (adapted from [213])

Partitioning also provides benefits to the parallel processing operations. Currently, if

one of the Principal database’s tables is being queried then that table would be locked

out until the query has been completed. In a partitioned database the partitions not

required by the executed query would still be available [212]. Therefore, it would be

possible to perform parallel operations on a single partitioned table, preventing a

slowdown in the processes. This would boost the performance of the web-based user

interface when multiple users are submitting web requests.

The implementation of these features would improve the scalability of the platform to

support both the integration of future scenarios and an ever increasing number of

users, whilst still providing responses in real-time.

8.2.2.2 Setting up an experimental scheme

A number of the applications that were discussed in Chapter 3 have benefited from

the feedback of experiments run on user groups. For example, an experiment was

undertaken for the Pharmaceutical Care application [12] to determine if patients’

interaction with the application increased their usage of prescribed medication. The

experiments performed thus far on the platform have only been on a limited number

of users in a closed environment. In Chapters 6 and 7 each scenario was tested with 1-

3 users to demonstrate their use of the platform’s functionality with the scalability test

extending this to 20 users in order to assess the performance of the platform. Both

these experiment types have only been carried out within a narrow scope to evaluate

distinct aspects of the platform.

242

An experimental scheme could be applied to the platform, whereby individual

experiments are undertaken to assess the running of each scenario in real-world use.

In the case of the Diet Diary scenario a group of users could be provided with

individual Diet Diary instances, where these instances are active for an extensive

period of time. The results of the user data over this time period could be examined to

determine the effectiveness of the various components of the platform, the

acceptability of the concept and the usability of the implementation. This would

include observing the TAU’s functionality in analysing data and the template

mechanism’s capability to provide a communication structure for the scenario. The

web-based user interface is currently only accessible via the local area network of the

platform’s central server. The real-world experiment would require the web-based

user interface to be published to a website available over the internet in order to be

accessible by users from any location. The website could then be tested to assess its

performance and operation with users in an active mobile environment.

An experiment could also be run using active instances of the Missing Persons

scenario. Initially, the experiment would use a test subject simulating a missing

person. This experiment would be of importance in testing the platform’s ability to

coordinate a large user group over an extended period of time. Additionally,

experiments using both scenarios concurrently need to be carried out to assess the

platform’s performance in coping with high user demand after the scale-up upgrades

have been implemented.

The users would be required to provide feedback at the end of the experiments. The

feedback gathered would be of value in identifying issues that were encountered by

the users when they interacted with the server during the experiment. This would

include the users’ opinions on the accessibility and ease of the interaction process via

each communication method, comments on aspects of the experiment where the

platform did not perform as expected and suggestions for new features to be

implemented. The observation data and feedback could then be utilised to further

improve the platform, with both altering the platform’s hardware capabilities and

increasing the scope of its functionality.

243

8.2.2.3 Facilitating emergency services

A new direction for the platform would be to expand the communication

infrastructure to contact departments in the emergency services. The Missing Persons

scenario has highlighted the need to implement this feature, where currently any

communication with the emergency services is performed manually by the operator.

The Principal database could be extended to support this new feature with a new

table to store records of emergency service departments and links to associate each

scenario with the relevant department. The TAU’s action list would be increased to

generate and send news reports to the associated department whenever a significant

event occurs in an active instance. Therefore, the respective department would be

kept informed in real-time with the details of user reports and the results of

assignments. For example, in a Missing Person instance each occurrence of a

suspicious person reported by a user would generate a news report to the police.

Figure 8.4 illustrates the role of an emergency services department in the client-server

architecture of the platform.

244

Figure 8.4: The platform’s client-server architecture incorporating emergency

services during active instances of a scenario

This feature, of the emergency services being kept informed in real-time, could be

used alongside GPS technology to support new scenarios in areas such as disaster

management. D. Ashbrook and T. Starner [81] discuss a system that processes the

past locations of users throughout the day in order to generate location models of their

current and probable future locations. The platform could utilise this technique to

coordinate and mobilise groups of users for enhanced cooperation in disaster

management scenarios. The platform would need to have a two-way communication

structure with emergency service departments. The police could then work in

conjunction with the platform to generate assignment data for a disaster management

instance. The platform would utilise this data to distribute the assignments amongst

individual users, based on their location models. This concept illustrates a new course

for the platform, accentuating its future potential to solve issues that continuously

arise in a mobile environment.

245

References

[1] S. Hamm, The Race for Perfect: Inside the Quest to Design the Ultimate

Portable Computer, New York, NY: McGraw-Hill, 2008.

[2] R. Ling, The Mobile Connection: The Cell Phone’s Impact on Society, 3rd ed.,

San Francisco, CA: Morgan Kaufmann, 2004.

[3] International Telecommunication Union (2011). “The World in 2011: ICT Facts

and Figures,” ITU [Online]. Available: http://www.itu.int/ITU-

D/ict/facts/2011/material/ICTFactsFigures2011.pdf [Accessed: Jul. 23, 2013].

[4] J. Hanson, 24/7: How Cell Phones and the Internet Change the Way We Live,

Work and Play, Westport, CT: Praeger, 2007.

[5] R. Dettmer, “Short message gets longer [GSM],” IEE Review, vol. 43(3), p.104,

1997.

[6] G. L. Bodic, Mobile Messaging Technologies and Services: SMS, EMS and

MMS, 2nd ed., Chichester: Wiley-Blackwell, 2005.

[7] N. S. Baron, Always On: Language in an Online and Mobile World, New York,

NY: Oxford University Press, 2008.

[8] Y. How and M.Y. Kan, “Optimizing predictive text entry for short message

service on mobile phones,” in Proceedings of the Human Computer Interfaces

International, Las Vegas, NV, USA, 2005.

[9] BlackBerry. “BlackBerry Bold 9790,” uk.blackberry.com [Online]. Available:

http://uk.blackberry.com/smartphones/blackberry-bold-9790.html [Accessed:

Jul. 23, 2013].

[10] D. Okabe, “Emergent Social Practices, Situations and Relations through

Everyday Camera Phone Use,” in Proceedings of the International Conference

on Mobile Communication and Social Change, Seoul, Korea, 2004, pp.1-19.

[11] A. Smith, Text Messaging as a Breaking News Information Source and

University Journal Accent Section Portfolio, PhD dissertation, Communication

Dept., Southern Utah University, Cedar City, UT, USA, 2009.

[12] Y. Mao et al., “Mobile phone text messaging for pharmaceutical care in a

hospital in China,” Journal of Telemedicine and Telecare, vol. 14(8), pp410-

414, 2008.

246

[13] L. Zhu et al., “UbiquitousSurvey: a framework supporting mobile field survey

data collection and analysis,” in Proceedings of the 43rd Annual Southeast

Regional Conference, Kennesaw, GA, USA, 2005, pp.70-74.

[14] Oracle. “Anatomy of the Client/Server Model”, docs.oracle.com [Online].

Available: http://docs.oracle.com/cd/E13203_01/tuxedo/tux80/atmi/intbas3.htm

[Accessed: Jul. 23, 2013].

[15] M. J. Callaghan et al., “Client-Server Architecture for Remote Experimentation

for Embedded Systems,” International Journal of online Engineering, vol. 2(4),

pp.1-6, 2006.

[16] X. Faulkner and F. Culwin, “When fingers do the talking: a study of text

messaging,” Interacting with Computers, vol. 17(2), pp.167-185, 2005.

[17] The Scottish Government (2005). “Technical Evaluation of Digital Interactive

Television Pilot,” scotland.gov.uk [Online]. Available:

http://www.scotland.gov.uk/Publications/2006/01/12104731/7 [Accessed: Jul.

23, 2013] (Image Retrieved).

[18] International Telecommunication Union (2010). “The World in 2010: ICT Facts

and Figures,” ITU [Online]. Available: http://www.itu.int/ITU-

D/ict/material/FactsFigures2010.pdf [Accessed: Jul. 23, 2013] (Image

Retrieved).

[19] McTel, “First Delivery Attempt (Direct Messaging),” mctel.net [Online].

Available: http://www.mctel.net/art.php/en/ar42/first-delivery-attempt.html

[Accessed: Jul. 23, 2013].

[20] K. Holley, “The GSM short message service,” in IEE Colloquium on GSM and

PCN Enhanced Mobile Services, London, England, 1991.

[21] L. Leung, “Unwillingness-to-communicate and college students’ motives in

SMS mobile messaging,” Telematics and Informatics, vol. 24(2), pp.115-129,

2007.

[22] M. Divitini et al., “Improving communication through mobile technologies:

which possibilities?” in Proceedings of the IEEE International Workshop on

Wireless and Mobile Technologies in Education, Vaxjo, Sweden, 2002, pp.86-

90.

[23] C. Thurlow and A. Brown, “Generation Txt? The sociolinguistics of young

people's text-messaging,” Discourse Analysis Online, vol. 1(1), 2003. [Online].

247

Available:

http://faculty.washington.edu/thurlow/research/papers/Thurlow&Brown(2003).

htm [Accessed: Jul. 23, 2013].

[24] M. Rockwell (2007), “Cold, Hard Facts Straight From the Cellphone,”

Broadcasting & Cable [Online]. Available:

http://www.broadcastingcable.com/article/107837-

Cold_Hard_Facts_Straight_From_the_Cellphone.php [Accessed: Jul. 23, 2013].

[25] Delaware Online, “Delaware Online Text Alerts,” delawareonline.com

[Online]. Available:

http://www.delawareonline.com/section/MOBILE/DelawareOnline-Text-Alerts

[Accessed: Apr. 05, 2012] (Image Retrieved).

[26] M. Ghaderi and S. Keshav, “Multimedia messaging service: system description

and performance analysis,” in Proceedings of the First International

Conference on Wireless Internet, 2005, pp. 198-205.

[27] G. L. Bodic, Multimedia Messaging Service: An Engineering Approach to

MMS, Chichester: Wiley-Blackwell, 2003.

[28] J. Moore and J. Blecher, How to Do Everything with Your Camera Phone,

Emeryville, CA: McGraw-Hill, 2004.

[29] J. Chen (2009), “AT&T’s iPhone MM Carrier Update,” Gizmodo [Online].

Available: http://gizmodo.com/5367894/atts-iphone-mms-carrier-update-is-live

[Accessed: Jul. 23, 2013] (Image Retrieved).

[30] J. Delaney, “MMS five years on,” Journal of Telecommunications

Management, vol. 1(1), pp.69-78, 2008.

[31] T. Kindberg et al., “The ubiquitous camera: an in-depth study of camera phone

use,” Pervasive Computing, vol. 4(2), pp.42-50, 2005.

[32] J. Freeman, The Tyranny of E-mail: The Four-Thousand-Year Journey to Your

Inbox, New York, NY: Scribner, 2009.

[33] C. Partridge, “The technical development of internet email,” Annals of the

History of Computing, vol. 30(2), pp.3-29, 2008.

[34] M. A. Mazmanian et al., “CrackBerries: the social implications of ubiquitous

wireless e-mail devices,” in Designing Ubiquitous Information Environments:

Socio-Technical Issues and Challenges, C. Sorenson et al., Springer, 2005,

pp.337-343.

248

[35] Addictive Tips (2009), “Google Apps Connector for BlackBerry,”

addictivetips.com [Online]. Available: http://www.addictivetips.com/internet-

tips/google-apps-connector-for-blackberry-available-now [Accessed: Jul. 23,

2013] (Image Retrieved).

[36] J. Pablo (2007), “SMS vs Email – The Moot Point,” Ezine Articles [Online].

Available: http://ezinearticles.com/?SMS-Vs-Email---The-Moot-

Point\&id=632879 [Accessed: Jul. 23, 2013].

[37] A. R. Hickey (2006), “SMS vs. mobile email: Which is the ‘killer app’?” Tech

Target [Online]. Available:

http://searchmobilecomputing.techtarget.com/news/1193310/SMS-vs-mobile-

email-Which-is-the-killer-app [Accessed: Jul. 23, 2013].

[38] C. A. Middleton and W. Cukier, “Is mobile email functional or dysfunctional?

Two perspectives on mobile email usage,” European Journal of Information

Systems, vol. 15(3), pp.252-260, 2006.

[39] I. Faletski (2007), “SMS vs E-mail: Competitors or Co-workers?” Mobile Muse

[Online]. Available: http://www.mobilemuse.ca/news/igor-faletski/sms-vs-e-

mail-competitors-or-co-workers [Accessed: Jul. 23, 2013].

[40] M. Mehra (2008), “Mobile Email Versus SMS,” Ezine Articles [Online].

Available: http://ezinearticles.com/?Mobile-Email-Versus-SMS\&id=1116476

[Accessed: Jul. 23, 2013].

[41] A. Tailor (2009), “Mobile Email vs. SMS-based Mobile Marketing,” Mobile

Financial [Online]. Available: http://mobile-financial.com/blogs/mobile-email-

vs-sms-based-mobile-marketing [Accessed: Jul. 23, 2013].

[42] Text Local [Online] Available: http://www.textlocal.com [Accessed: Jul. 23,

2013].

[43] Bulk SMS [Online] Available: http://www.bulksms.com [Accessed: Jul. 23,

2013].

[44] S. L. Jarvenpaa and K. R. Lang, “Managing the paradoxes of mobile

technology,” Information Systems Management, vol. 22(4), pp.7-23, 2005.

[45] T. Cochrane and R. Bateman, “Smartphones give you wings: Pedagogical

affordances of mobile Web 2.0,” Australian Journal of Educational

Technology, vol. 26(1), pp.1-14, 2010.

249

[46] A. Pocovnicu, “Biometric security for cell phones,” Informatica Economica,

vol. 13(1), pp.57-63, 2009.

[47] Digizmo, “How Mobile Phones Influences Mobile Internet Growth,”

digizmo.com [Online]. Available: http://digizmo.com/2010/07/14/how-mobile-

phones-influence-mobile-internet-growth [Accessed: Jul. 23, 2013] (Image

Retrieved).

[48] M. Mouly and M. B. Pautet, The GSM System for Mobile Communications,

Telecom Publishing, 1992.

[49] W. Shudong and M. Higgins, “Limitations of mobile phone learning,” in

Proceedings of the IEEE International Workshop on Wireless and Mobile

Technologies in Education, Washington, DC, USA, 2005, pp.179-181.

[50] M. N. Boulos et al., “How smartphones are changing the face of mobile and

participatory healthcare: an overview, with example from eCAALYX,”

Biomedical engineering online, vol. 10(24), 2011. [Online]. Available:

http://www.biomedical-engineering-online.com/content/10/1/24 [Accessed: Jul.

23, 2013].

[51] E. Becker, “Using smartphones and Facebook in a major assessment: the

student experience,” E-journal of Business Education & Scholarship of

Teaching, vol. 4(1), pp.19-31, 2010.

[52] M. Kenney and B. Pon, “Structuring the smartphone industry: Is the mobile

internet OS platform the key?” Journal of Industry, Competition and Trade,

vol. 11(3), pp.239-261, 2011.

[53] H. Verkasalo, “Analysis of smartphone behaviour,” in Proceedings of the 9th

International Conference on Mobile Business and the 9th Global Mobility

Roundtable, Athens, Greece, 2010, pp. 258-263.

[54] Apple iPhone [Online]. Available: http://www.electricpig.co.uk/wp-

content/uploads/2009/03/iphone-sms.jpg [Accessed: Apr. 05, 2012] (Image

Retrieved).

[55] Sony Ericson k750i [Online]. Available: http://andacellular.com/?wpsc-

product=sony-ericson-k750i [Accessed: Apr. 05, 2012] (Image Retrieved).

[56] J. West and M. Mace, “Browsing as the killer app: Explaining the rapid success

of Apple's iPhone,” Telecommuncations Policy, vol. 34(5), pp.270-286, 2010.

250

[57] J. West et al., “Value creation in the mobile internet: The impact of Apple’s

iPhone,” 2008.

[58] P. Buckley, The Rough Guide to the iPhone, 3rd ed., London: Rough Guides,

2010.

[59] A. Charlesworth, “The ascent of smartphone,” Engineering & Technology, vol.

4(3), pp.32-33, 2009.

[60] S. Allen et al., “BlackBerry HTML UI,” in Pro Smartphone Cross-Platform

Development, S. Allen et al., Apress, 2010, pp.235-245.

[61] BlackBerry smartphone [Online]. Available:

http://www.bccthis.com/blackberry.php [Accessed: Apr. 05, 2012] (Image

Retrieved).

[62] W. Webb, “Being mobile: smartphone revolution,” Engineering & Technology,

vol. 5(15), pp.64-65, 2010.

[63] Smartphone internet access [Online]. Available:

http://gallery.techarena.in/showphoto.php/photo/11507 [Accessed: Jul. 23,

2013] (Image Retrieved).

[64] R. K. Miller et al., “Rethinking reference and instruction with tablets,” Library

Technology Reports, vol. 48(8), pp.4-9, 2012.

[65] Apple iPad [Online]. Available: http://www.apple.com/ipad/specs [Accessed:

Jul. 23, 2013].

[66] N. Singai and N. Rajan (2012), “Tablets Vs Phones Vs Ultrabooks: Pros &

Cons,” Business Today [Online]. Available:

http://businesstoday.intoday.in/story/pros-and-cons-of-buying-a-tablet-

smartphone-or-ultrabook/1/188057.html [Accessed: Jul. 23, 2013].

[67] A. Mitchell et al., “The tablet revolution and what it means for the future of

news,” Pew Research Center, 2011.

[68] K. Pratt, “Netbook, eReader, or iPad? – that is the question,” Computers in New

Zealand Schools, vol. 22(2), 2010.

[69] N. Eichenlaub et al., “Project iPad: Investigating tablet integration in learning

and libraries at Ryerson University,” Librarian and Staff Publications: Ryerson

University, 2011.

[70] J. Ballew, How to Do Everything iPad 2, Mcgraw-Hill, 2011.

251

[71] S. Kaur, “The revolution of tablet computers and apps: A look at emerging

trends,” Consumer Electronics Magazine, vol. 2(1), pp.36-41, 2013.

[72] R. Budiu and J. Nielsen, iPad App and Website Usability,2nd ed., Fremont, CA:

Nielsen Norman Group, 2011.

[73] A. I. Shaik, “5 of the Biggest Improvements in Mobile Camera Technology,”

Gear Burn [Online]. Available: http://gearburn.com/2013/06/5-of-the-best-

improvements-in-mobile-camera-technology [Accessed: Jul. 23, 2013].

[74] Mobile phone image capture [Online]. Available:

http://areacellphone.com/2009/05/how-to-take-good-quality-pictures-with-low-

quality-cell-phone-camera [Accessed: Jul. 23, 2013] (Image Retrieved).

[75] J. D. Murray and W. vanRyper, Encyclopedia of Graphics File Formats, 2nd

ed., O’Reilly Media, 1996.

[76] G. K. Wallace, “The JPEG still picture compression standard,”

Communications of the ACM, vol. 34(4), pp.30-44, 1991.

[77] M. Hazas et al., “Location-aware computing comes of age,” Computer

(Invisible Computing), vol. 37(2), pp.95-97, 2004.

[78] Y. Zhao, “Mobile phone location determination and its impact on intelligent

transportation systems,” Intelligent Transportation Systems, vol. 1(1), pp.55-64,

2000.

[79] N. D. Lane et al., “A survey of mobile phone sensing,” IEEE Communications

Magazine, vol. 48(9), pp.140-150, 2010.

[80] J. McNamara, GPS For Dummies, 2nd ed., Indianapolis, IN: Wiley, 2008.

[81] D. Ashbrook and T. Starner, “Using GPS to learn significant locations and

predict movement across multiple users,” Personal and Ubiquitous Computing,

vol. 7(5), pp.275-286, 2003.

[82] R. Bajaj et al., “GPS: Location-tracking technology,” Computer, vol. 35(4),

pp.92-94, 2002 (Image Retrieved).

[83] Mobile phone navigation software [Online]. Available:

http://www.kokeytechnology.com/gadgets/cell-phonesmobile-phones/t-mobile-

garminfone-android-phone-specs-price-release-date-in-the-us [Accessed: Jul.

23, 2013] (Image Retrieved).

252

[84] I. A. Junglas and R. T. Watson, “Location-based services: Evaluating user

perceptions of location-tracking and location-awareness services,”

Communications of the ACM, vol. 51(3), pp.65-69, 2008.

[85] AroundMe smartphone application [Online]. Available:

http://www.aroundmeapp.com [Accessed: Jul. 23, 2013].

[86] V. Astarita and M. Florian, “The use of mobile phones in traffic management

and control,” in Proceedings of the IEEE Intelligent Transportation Systems,

Oakland, CA, USA, 2001, pp.10-15.

[87] AroundMe smartphone application [Online]. Available:

http://skytechgeek.com/2012/02/top-10-iphone-apps-you-shouldnt-be-without

[Accessed: Jul. 23, 2013] (Image Retrieved).

[88] ITV, “The X-Factor Text Voting FAQs”, itv.com [Online]. Available:

http://www.itv.com/termsandconditions/thexfactortextvotingfaqs/default.html

[Accessed: Apr. 05, 2012].

[89] The Wright Stuff [Online]. Available: http://www.channel5.com/shows/the-

wright-stuff [Accessed: Jul. 23, 2013].

[90] BBC, “Send us your pictures,” news.bbc.co.uk [Online]. Available:

http://news.bbc.co.uk/mobile/bbc_news/weekinpictures/yourpics/index.shtml?c

ontext=cps_ukfs [Accessed: Jul. 23, 2013].

[91] A. Fernando, “If you text it, they may come: talkers give way to texters as

technology turns lowly cell phones into multidimensional communication

tools,” Communication World, 2007.

[92] K. C. Leong et al., “The use of text messaging to improve attendance in primary

care: A randomized controlled trial,” Family Practice, vol. 23(6), pp.699-705,

2006.

[93] S. R. Downer et al., “Use of SMS text messaging to improve outpatient

attendance,” Medical Journal of Australia, vol. 183(7), pp.366-368, 2005.

[94] S. R. Downer et al., “SMS text messaging improves outpatient attendance,”

Australian Health Review, vol. 30(3), pp.389-396, 2006.

[95] C. Markett et al., “Using short message service to encourage interactivity in the

classroom,” Computers & Education, vol. 46(3), pp.280-293, 2006.

[96] C. Markett et al., “ ‘PLS Turn UR Mobile on’: Short message service (SMS)

supporting interactivity in the classroom,” in Proceeding of the International

253

Conference on Cognition and Exploratory Learning in the Digital Age, Lisbon,

Portugal, 2004, pp.491-494.

[97] A. Rodgers et al., “Do u smoke after txt? Results of a randomised trial of

smoking cessation using mobile phone text messaging,” Tobacco Control, vol.

14(4), pp.255-261, 2005.

[98] N. Cavus and D. Ibrahim, “m-Learning: An experiment in using SMS to

support learning new English language words,” British Journal of Educational

Technology, vol. 40(1), pp.78-91, 2009.

[99] A. Farmer et al., “A real-time, mobile phone-based telemedicine system to

support young adults with type 1 diabetes,” Informatics in Primary Care, vol.

13(3), pp.171-178, 2005.

[100] B. Banks et al., “A low-cost wireless system for autonomous generation of road

safety alerts,” in Proceedings of the 16th International Symposium on Smart

Structures and Materials & Nondestructive Evaluation and Health Monitoring,

San Diego, CA, USA, 2009.

[101] S. M. Huff et al., “HELP the next generation: a new client-server architecture,”

in Proceedings of the Annual Symposium on Computer Application in Medical

Care, Washington, DC, USA, 1994, pp.271-275.

[102] Perfect Diet Tracker [Online]. Available: http://www.perfect-diet-tracker.com

[Accessed: Jul. 23, 2013].

[103] A. Hewitt and A. Forte, “Crossing boundaries: Identity management and

student/faculty relationships on the Facebook”, Poster presented at Computer

Supported Cooperative Work, Alberta, Canada, 2006.

[104] A. Acquisti and R. Gross, “Imagined communities: Awareness, information

sharing, and privacy on the Facebook,” in Privacy Enhancing Technologies: 6th

International Workshop, Cambridge, England, 2006, pp.36-58.

[105] A. N. Joinson, “Looking at, looking up or keeping up with people?: Motives

and use of Facebook,” in Proceedings of the SIGCHI conference on Human

Factors in Computer Systems, Florence, Italy, 2008, pp. 1027-1036.

[106] C. Abram, Facebook for Dummies, 4th ed., Hoboken, NJ: Wiley, 2012.

[107] N. B. Ellison et al., “The benefits of Facebook “Friends:” Social capital and

college students’ use of online social network sites,” Journal of Computer-

Mediated Communication, vol. 12(4), pp.1143-1168, 2007.

254

[108] Facebook [Online]. Available: https://www.facebook.com [Accessed: Jul. 23,

2013].

[109] M. Gjoka et al., “Walking in Facebook: A case study of unbiased sampling of

OSNs,” in Proceedings of the IEEE Conference on Computer Communications

(INFOCOM), San Diego, CA, USA, 2010, pp.1-9.

[110] S. T. Tong et al., “Too much of a good thing? The relationship between number

of friends and interpersonal impressions on Facebook,” Journal of Computer-

Mediated Communication, vol. 13(3), pp.531-549, 2008.

[111] B. E. Smith, Sams Teach Yourself Facebook for Business in 10 Minutes, Sams

Publishing, 2011.

[112] Facebook Check-In Deal [Online]. Available: http://allfacebook.com/facebook-

small-businesses_b64117 [Accessed: Jul. 23, 2013] (Image Retrieved).

[113] N. Park et al., “Being immersed in social networking environment: Facebook

groups, uses and gratifications, and social outcomes,” CyberPsychology &

Behavior, vol. 12(6), pp.729-733, 2009.

[114] C. M. Paris et al., “The role of social media in promoting special events:

Acceptance of Facebook 'Events',” in Proceedings of the International

Conference on Information and Communication Technologies in Tourism,

Lugano, Switzerland, 2010, pp.531-541.

[115] T. Judd, “Facebook versus email,” British Journal of Educational Technology,

vol. 41(5), pp.E101-E103, 2010.

[116] B. J. Fogg and D. Iizawa, “Online persuasion in Facebook and Mixi: A cross-

cultural comparison,” in Proceedings of the 3rd International Conference on

Persuasive Technology, Oulu, Finland, 2008, pp. 35-46.

[117] J. B. Caruso and G. Salaway, “The ECAR Study of Undergraduate Students and

Information Technology, 2008.” Educause Center for Applied Research, 2008.

[118] Twitter [Online]. Available: https://twitter.com [Accessed: Jul. 23, 2013].

[119] H. Kwak et al., “What is Twitter, a social network or a news media?” in

Proceedings of the 19th International Conference on World Wide Web, Raleigh,

NC, USA, 2010, pp.591-600.

[120] A. Java et al., “Why we twitter: understanding microblogging usage and

communities,” in Proceedings of the 9th WebKDD and 1st SNA-KDD 2007

255

Workshop on WebMining and Social Network Analysis, San Jose, CA, USA,

2007, pp.56-65.

[121] Instagram [Online]. Available: http://instagram.com [Accessed: Jul. 23, 2013].

[122] C. Watkins, Instagram: Why Does My Business Need It?, Euless, TX:

TokaySEO, 2012.

[123] A. Macarthy, How to Use Instagram For Business, 2012.

[124] G. Blattner and M. Fiori, “Facebook in the language classroom: Promises and

possibilities,” International Journal of Instructional Technology and Distance

Learning, vol. 6(1), pp.17-28, 2009.

[125] G. Grosseck and C. Holotescu, “Can we use Twitter for educational activities,”

presented at the 4th International Scientific Conference on eLearning and

Software for Education, Bucharest, Romania, 2008.

[126] F. D. L. Wigand, “Twitter in government: Building relationships one Tweet at a

time,” in Proceedings of the 7th International Conference on Information

Technology: New Generations, Las Vegas, NV, USA, 2010, pp.563-567.

[127] S. Georgi and R. Jung, “Collective intelligence model: How to describe

collective intelligence,” in Advances in Intelligent and Soft Computing:

Advances in Collective Intelligence 2011, J. Altmann et al., Springer, 2012,

pp.53-64.

[128] Micro Focus, “Developing Client/Server Applications,” support.micofocus.com

[Online]. Available:

http://support.microfocus.com/documentation/books/nx30books/sgdevt.htm

[Accessed: Jul. 23, 2013].

[129] D. Harkey, Client/Server Survival Guide, 3rd ed., Wiley, 1999.

[130] H. Schuster et al., “A client/server architecture for distributed workflow

management systems,” in Proceedings of the 3rd International Conference on

Parallel and Distributed Systems, Hsinchu, Taiwan, 1994, pp.253-256.

[131] Oracle. “Oracle Database Concepts: Application and Networking

Architecture,” docs.oracle.com [Online]. Available:

http://docs.oracle.com/cd/E11882_01/server.112/e16508/dist_pro.htm

[Accessed: Jul. 23, 2013].

256

[132] R. Winkelman, “What is a Network Operating System?” Florida Center for

Instructional Technology [Online]. Available:

http://fcit.usf.edu/network/chap6/chap6.htm [Accessed: Jul. 23, 2013].

[133] UNM CIRT: Network Group (1997), “Computing Architecture,” University of

New Mexico [Online]. Available:

http://www.unm.edu/~network/presentations/course/appendix/appendix_k/sld00

1.htm [Accessed: Jul. 23, 2013].

[134] Microsoft, “Client/Server Architecture,” technet.microsoft.com [Online].

Available: http://technet.microsoft.com/en-us/library/cc917543.aspx [Accessed:

Jul. 23, 2013].

[135] R. Sripriya, “Pros and Cons of Client/Server Computing,” Exforsys [Online].

Available: http://www.exforsys.com/tutorials/programming-concepts/pros-and-

cons-of-client-server-computing.html [Accessed: Jul. 23, 2013].

[136] P. Pankaj et al., “P2P business applications: Future and directions,”

Communications and Network, vol. 4(3), pp.248-260, 2012.

[137] J. Buford et al., P2P Networking and Applications, Burlington, MA: Morgan

Kaufmann, 2009.

[138] Q. H. Vu et al., Peer-to-Peer Computing: Principles and Applications,

Heidelberg: Springer, 2010.

[139] J. Dubey and V. Tokekar, “Identification of efficient peers in P2P computing

system for real time applications,” preprint arXiv:1212.3074, Cornell

University Library, 2012.

[140] R. Steinmetz and K. Wehrle, Peer-to-Peer Systems and Applications,

Heidelberg: Springer, 2005.

[141] D. P. Anderson et al., “The Science of SETI@home,” SETI@home [Online].

Available: http://setiathome.berkeley.edu/sah_about.php [Accessed: Jul. 23,

2013].

[142] G. J. Fakas and B. Karakostas, “A peer to peer (P2P) architecture for dynamic

workflow management,” Information and Software Technology, vol. 46(6),

pp.423-431, 2004.

[143] D. S. Milojicic et al., “Peer-to-peer computing,” Technical Report HPL-2002-

57R1, HP Laboratories, 2003.

257

[144] Freenet: The Free Network [Online]. Available: https://freenetproject.org

[Accessed: Jul. 23, 2013].

[145] BitTorrent [Online]. Available: http://www.bittorrent.com [Accessed: Jul. 23,

2013].

[146] Y. Liu and J. Pan, “The impact of NAT on BitTorrent-like P2P systems,” in

Proceedings of the IEEE 9th International Conference on Peer-to-Peer

Computing, Seattle, WA, USA, 2009, pp.242-251.

[147] L. Zhong et al., “Topological model and analysis of the P2P BitTorrent

protocol,” International Journal of System Control and Information Processing,

vol. 1(1), pp.54-70, 2012.

[148] A. Mislove et al., “Experiences in building and operating ePOST, a reliable

peer-to-peer application,” ACM SIGOPS Operating Systems Review, vol. 40(4),

pp.147-159, 2006.

[149] R. Olfati-Saber et al., “Consensus and cooperation in networked multi-agent

systems,” Proceedings of the IEEE, vol. 95(1), pp.215-233, 2007.

[150] M. Wooldridge, An Introduction to MultiAgent Systems, Chichester: Wiley,

2009.

[151] L. Busoniu et al., “A comprehensive survey of multiagent reinforcement

learning,” IEEE Transactions on Systems, Man, and Cybernetics, Part C:

Applications and Reviews, vol. 38(2), pp.156-172, 2008.

[152] M. N. Huhns and L. M. Stephens, Multiagent Systems and Societies of Agents,

MIT Press, 2008.

[153] M. Pipattanasomporn et al., “Multi-agent systems in a distributed smart grid:

Design and implementation,” in Proceedings IEEE Power Systems Conference

and Exposition, Seattle, WA, USA, 2009, pp.1-8.

[154] G. Weiss, Multiagent Systems: A Modern Approach to Distributed Artificial

Intelligence, MIT Press, 2000.

[155] L. Padgham and M. Winikoff, Developing Intelligent Agent Systems: A

Practical Guide, Chichester: Wiley, 2004.

[156] E. Mangina et al., Agent-Based Ubiquitous Computing, Paris: Atlantis Press,

2009.

258

[157] CMU Robotics Institute, “Multi-Agent Systems,” ri.cmu.edu [Online].

Available: http://www.ri.cmu.edu/research_guide/multi_agent_systems.html

[Accessed: Jul. 23, 2013].

[158] F. Zambonelli et al., “Organisational abstractions for the analysis and design of

multi-agent systems,” in Agent-Oriented Software Engineering, M. Wooldridge

et al., Heidelberg: Springer, 2001, pp.235-251.

[159] A. Moreno (2010), “Introduction To Agents And Multi-Agent Systems

Presentation,” University Rovira I Virgili [Online]. Available:

http://www.slideshare.net/ToniMorenoURV/introduction-to-agents-and-

multiagent-systems\#btnNext [Accessed: Jul. 23, 2013].

[160] M. P. Papazoglou and D. Georgakopoulos, “Service-oriented computing,”

Communications of the ACM, vol. 46(10), pp.25-28, 2003.

[161] M. A. Babar (2010), “Service-Oriented Architecture,” IT University of

Copenhagen [Online]. Available: https://blog.itu.dk/MSAR-

E2010/files/2010/11/lect_w10_soa.pdf [Accessed: Feb. 03, 2014].

[162] T. Erl, Service-Oriented Architecture: Concepts, Technology, and Design,

Boston, MA: Prentice Hall, 2005.

[163] F. Kart et al., “A distributed e-healthcare system based on the service oriented

architecture,” in Proceedings of the IEEE International Conference on Services

Computing, Salt Lake City, UT, USA, 2007, pp.652-659.

[164] K. Channabasavaiah et al., “Migrating to a service-oriented architecture,” IBM

DeveloperWorks, vol. 16, pp.1-22 2004.

[165] H. He (2003), “What is Service-Oriented Architecture,” O’Reilly

webservices.xml.com [Online]. Available:

http://www.xml.com/pub/a/ws/2003/09/30/soa.html [Accessed: Feb. 03, 2014].

[166] D. Krafzig et al., Enterprise SOA: Service-Oriented Architecture Best

Practices, Upper Saddle River, NJ: Prentice Hall, 2004.

[167] B. Dong et al., “Web service-oriented manufacturing resource applications for

networked product development,” Advanced Engineering Informatics, vol.

22(3), pp.282-295, 2008.

[168] O. Zimmermann et al., “Service-oriented architecture and business process

choreography in an order management scenario: Rationale, concepts, lessons

learned,” in Companion to the 20th Annual ACM SIGPLAN Conference on

259

Object-Oriented Programming, Systems, Languages, and Applications, San

Diego, CA, USA, 2005, pp.301-312.

[169] Accenture, “Service-Oriented Architecture: Business Benefits,” accenture.com

[Online]. Available: http://www.accenture.com/us-en/Pages/service-soa-

business-benefits.aspx [Accessed: Feb. 03, 2014].

[170] N. Komoda, “Service oriented architecture (SOA) in industrial systems,” in

Proceedings of the IEEE International Conference on Industrial Informatics,

Singapore, 2006, pp.1-5.

[171] Y. V. Natis (2003), “Service-Oriented Architecture Scenario,” Gartner

Research, Stamford, CT [Online]. Available:

http://www.gartner.com/resources/114300/114358/114358.pdf [Accessed: Feb.

03, 2014].

[172] A. Brown et al., Using Service-Oriented Architecture and Component-Based

Development to Build Web Service Applications, Santa Clara, CA: Rational

Software Corporation, 2002.

[173] EU-Orchestra (2007), “Introduction to Service Oriented Architectures (SOA),”

eu-orchestra.org [Online]. Available: http://www.eu-

orchestra.org/TUs/SOA/en/text/SOA.pdf [Accessed: Feb. 03, 2014].

[174] A. Paul (2011), “Service Oriented Architecture (SOA) and its Advantages and

Disadvantages,” Techyv [Online]. Available:

http://www.techyv.com/article/service-oriented-architecture-soa [Accessed:

Feb. 03, 2014].

[175] H. Haas and A. Brown (2004), “Web Services Glossary,” World Wide Web

Consortium [Online]. Available: http://www.w3.org/TR/ws-gloss [Accessed:

Feb. 03, 2014].

[176] A. Dubey (2011), “Service-Oriented Architecture,” University of Wisconsin-

Platteville [Online]. Available:

http://www.uwplatt.edu/csse/courses/prev/csse411-

materials/s11/dubeya_Service%20Oriented%20Architecture.pptm [Accessed:

Feb. 03, 2014].

[177] S. Gupta (2003), “How to Use Novell Nsure UDDI Command Beans in Building

Web Services-Enabled Applications,” Novell [Online]. Available:

260

http://support.novell.com/techcenter/articles/dnd20030304.html [Accessed:

Feb. 03, 2014] (Image Retrieved).

[178] J. Myerson (2005), “Tame Sabarnes-Oxley Act with IBM Tivoli Storage

Manager for Data Retention, Web Services and other Compliance Tools,” IBM

[Online]. Available: http://www.ibm.com/developerworks/tivoli/library/t-

tamesox [Accessed: Feb. 03, 2014] (Image Retrieved).

[179] The Open Group, “Service Oriented Architecture: SOA Features and Benefits,”

opengroup.org [Online]. Available: http://www.opengroup.org/soa/source-

book/soa/soa_features.htm [Accessed: Feb. 03, 2014].

[180] D. Hunt (2011), “Limitations of SOA,” IEEE University of Greenwich [Online].

Available: http://ieeegreen.org/web/images/soa.pdf [Accessed: Feb. 03, 2014].

[181] P. V. Cravan (2011), “The Dark Side of SOA,” Simpson College, Indianola

[Online]. Available: http://cs.simpson.edu/files/DAMA_Presentation.pdf

[Accessed: Feb. 03, 2014].

[182] Exforsys Inc. (2007), “SOA Disadvantages,” exforsys.com [Online]. Available:

http://www.exforsys.com/tutorials/soa/soa-disadvantages.html [Accessed: Feb.

03, 2014].

[183] Microsoft (2013), “Classes (C# Programming Guide),” microsoft.com [Online].

Available: http://msdn.microsoft.com/en-us/library/x9afc042.aspx [Accessed:

Feb. 03, 2014].

[184] Microsoft SQL Server Management Studio [Online]. Available:

http://www.microsoft.com/en-gb/download/details.aspx?id=7593 [Accessed:

Feb. 03, 2014].

[185] Microsoft Visual Studio [Online]. Available: http://www.visualstudio.com

[Accessed: Feb. 03, 2014].

[186] ASP.NET [Online]. Available: http://www.asp.net [Accessed: Feb. 03, 2014].

[187] Microsoft, “Microsoft ActiveX Data Objects (ADO),” microsoft.com [Online].

Available: http://msdn.microsoft.com/en-

us/library/windows/desktop/ms675532(v=vs.85).aspx [Accessed: Feb. 03,

2014].

[188] Database Dir, “What is RDBMS?” databasedir.com [Online]. Available:

http://www.databasedir.com/what-is-rdbms [Accessed: Feb. 03, 2014].

261

[189] K. Amrein et al., “Sclerostin and its association with physical activity, age,

gender, body composition, and bone mineral content in healthy adults,” Journal

of Clinical Endocrinology & Metabolism, vol. 97(1), pp.148-154, 2012.

[190] M. Jette et al., “Metabolic equivalents (METS) in exercise testing, exercise

prescription, and evaluation of functional capacity,” Clinical Cardiology, vol.

13(8), pp.555-565, 1990.

[191] National Institute of Health, “Calculate Your Body Mass Index,” nhlbi.nih.gov

[Online]. Available:

http://www.nhlbi.nih.gov/guidelines/obesity/BMI/bmicalc.htm [Accessed: Jul.

23, 2013].

[192] Calories per Hour, “What it Takes to Lose a Pound,” caloriesperhour.com

[Online]. Available: http://www.caloriesperhour.com/tutorial_pound.php

[Accessed: Jul. 23, 2013].

[193] Food Counts, “Recommended Daily Allowances & Dietary Reference Intakes,”

foodcounts.com [Online]. Available:

http://www.foodcounts.com/recommended-daily-allowances/default.htm

[Accessed: Jul. 23, 2013].

[194] FitDay, “My Fitness Log: Lifestyle Activity Level,” fitday.com [Online].

Available: http://www.fitday.com/fitness/Profile.html [Accessed: Jul. 23, 2013].

[195] N. Biehal et al., Lost From View: Missing Persons in the UK, Bristol: The

Policy Press, 2003.

[196] G. Newiss, “A study of the characteristics of outstanding missing persons:

Implications for the development of police risk assessment,” Policing and

Society, vol. 15(2), pp.212-225, 2005.

[197] G. Newiss, “Missing presumed...?: The police response to missing persons,”

Police Research Series, Home Office, London, vol. 114, 1999.

[198] L. Diez, “The use of call grading: How calls to the police are graded and

resourced,” Police Research Series, Home Office, London, vol. 13, 1995.

[199] C. Hedges, “Missing you already: A guide to the investigation of missing

persons,” Home Office, London, 2002.

[200] National Policing Improvement Agency, “Guidance on the Management,

Recording and Investigation of Missing Persons,” 2nd ed., Practice

Improvements, NPIA, London, 2010.

262

[201] Google Maps [Online]. Available: https://www.google.co.uk/maps [Accessed:

Jul. 23, 2013].

[202] N. Mitrovic et al., “Adaptive interfaces in mobile environments - An approach

based on mobile agents,” in Handbook of Research on User Interface Design

and Evaluation for Mobile Technology, 2007.

[203] R. Harrison et al., “Usability of mobile applications: Literature review and

rationale for a new usability model,” Journal of Interaction Science, vol. 1(1),

pp.1-16, 2013.

[204] K. Walczak et al., “Adaptable mobile user interfaces for e-learning

repositories,” in IADIS International Conference on Mobile Learning, Avila,

Spain, 2011, pp.52-61.

[205] M. Kenteris et al., “Electronic mobile guides: A survey,” Personal and

Ubiquitous Computing, vol. 15(1), pp.97-111, 2011.

[206] J. L. Wesson et al., “Can adaptive interfaces improve the usability of mobile

applications?” Human-Computer Interaction, IFIP Advances in Information

and Communication Technology, vol. 332, pp.187-198, 2010.

[207] WhatsApp Messenger smartphone application [Online]. Available:

http://www.whatsapp.com [Accessed: Jul. 23, 2013].

[208] R. Y. M. Li, “Construction safety mobile knowledge sharing among generation

y,” Romanian Review of Social Sciences, vol. 3, pp.3-12, 2012.

[209] K. Church and R. D. Oliveira, “What’s up with WhatsApp? Comparing mobile

instant messaging behaviors with traditional SMS,” to be presented at

MobileHCI, Munich, Germany, August 27-30, 2013.

[210] R. Schumacher, “Improving database performance with partitioning,” MySQL

[Online]. Available: http://dev.mysql.com/tech-

resources/articles/partitioning.html [Accessed: Aug. 07, 2013].

[211] Microsoft, “Partitioning: Horizontal Partitioning,” technet.microsoft.com

[Online]. Available: http://technet.microsoft.com/en-

gb/library/ms178148(v=sql.105).aspx [Accessed: Aug. 07, 2013].

[212] Oracle, “Partitioning concepts,” docs.oracle.com [Online]. Available:

http://docs.oracle.com/cd/B28359_01/server.111/b32024/partition.htm

[Accessed: Aug. 07, 2013].

263

[213] RelationalDBDesign, “Extended Database Features,” relationaldbdesign.com

[Online]. Available: http://www.relationaldbdesign.com/extended-database-

features/module2/database-partitioning-advantages.php [Accessed: Aug. 07,

2013].

[214] A. Smith, “How to Calculate Calories Burned,” Live Strong [Online].

Available: http://www.livestrong.com/article/18303-calculate-calories-burned

[Accessed: Aug. 07, 2013].

264

Appendices

A1 Algorithms for the Diet Diary Scenario

Listed here are calculations and algorithms that have been programmed into the

application module for the Diet Diary scenario.

A1.1 Body Mass Index

The Body Mass Index (BMI) of a user is calculated using the formula [163]:

𝐵𝑀𝐼 =
𝑘𝑔

𝑚2

The calculated value is used to place the user into one of four BMI categories:

Underweight: =<18.5

Normal: 18.5 – 24.9

Overweight: 25 – 29.9

Obese: 30+

A1.2 Daily calorie targets

Below is the algorithm for calculating the daily calorie intake and burn targets to

reach a set weight goal:

//Calculates total weight change from user’s current weight to their goal weight

Set WeightTotalChange to Person.Get(WeightCurrent) – Person.Get(WeightGoal)

//1102.3 is the daily amount of calories that need to be burned to lose a kilogram of body fat

in a week [164]

Set CalBase to 1102.3

//RDACal is the recommended daily allowance of calories to intake [165]

Set CalEatDaily to Person.Get(RDACal)

//Losing weight to reach lower weight goal

IF WeightTotalChange > 0 THEN

Set WeightWeekChange = WeightTotalChange / Person.Get(WeeksToTarget)

 Set CalBurnDaily = (CalBase * WeightWeekChange) + CalEat

//Gaining weight to reach higher weight goal

ELSE IF WeightTotalChange > 0 THEN

 Set CalBurnDaily to CalEatDaily

 Set WeightWeekChange = -(WeightTotalChange) / Person.Get(WeeksToTarget)

 Set CalEatDaily = (CalBase * WeightWeekChange) + CalEat

265

//No Change in weight

ELSE

 CalBurnDaily = CalEatDaily

A1.3 Food item calorie intake

Food items can be measured by either portion size or portion weight.

CalDefault represents the calorie value for a default quantity of a food item.

CalDefault stores value for a portion size of 1 or portion weight of 100.

For a food item selected from the scenario’s available list, the total calorie intake of a

food item is calculated by the following algorithm:

Set FoodQuantity to FoodUser.Get(Quantity)

Set CalDefault to FoodList.Get(CalDefault)

//Calculation for food items measured by weight

IF FoodList.Get(PortionType) = PortionType.Weight

 Set CalIntake to CalDefault * (FoodQuantity / 100)

//Calculation for food items measured by size

ELSE

 Set CalIntake to CalDefault * FoodQuantity

//Updating the daily calorie intake value

Set CalIntakeTotal to DayTotal.Get(CalIntakeTotal) + CalIntake

//Update the IntakeToAlert value to ascertain the distance to the user’s preset alert limit

//This value is used by the AnswerHandler class to trigger an alert if necessary

Set IntakeToAlert to DayTotal.Get(IntakeToAlert) – CalIntake

For a food item that has been manually supplied by a user the calorie intake value for

a default quantity is calculated for storage and future use of the food item:

Set FoodQuantity to FoodUser.Get(Quantity)

Set CalIntake to FoodUser.Get(CalIntake)

IF FoodList.Get(PortionType) = PortionType.Weight

 Set CalDefault to (CalIntake / FoodQuantity) * 100

ELSE

 Set CalDefault to CalIntake / FoodQuantity

266

A1.4 Activity item calorie burn

Each activity has a unique Metabolic Equivalent of Task (MET) value to measure the

strenuous factor of the activity [161]. The MET value is then used in the below

formula to calculate the calorie burn value for an activity [214]:

𝐶𝑎𝑙𝐵𝑢𝑟𝑛 =
𝑀𝐸𝑇 ×3.5 ×𝑊𝑒𝑖𝑔ℎ𝑡(𝑘𝑔)

200
 × 𝑇𝑖𝑚𝑒𝑆𝑝𝑒𝑛𝑡(𝑚𝑖𝑛𝑠)

For an activity item selected from the scenario’s available list the calorie burn value is

calculated by the following algorithm:

Set MET to ActivityList.Get(MET)

Set Weight to Person.Get(WeightCurrent)

Set TimeSpent to ActivityUser.Get(TimeSpent)

//Calculation for calorie burn value of the activity

Set CalBurn to (MET * 3.5 * Weight * TimeSpent) / 200

Set CalBurnTotal to DayTotal.Get(CalBurnTotal) + CalBurn

For an activity item that has been manually supplied by a user the MET value is

calculated for storage and future use of the activity item:

Set CalBurn to ActivityUser.Get(CalBurn)

Set Weight to Person.Get(WeightCurrent)

Set TimeSpent to ActivityUser.Get(TimeSpent)

//Calcualtion for the MET value of the activity item

Set MET to (CalBurn * 200) / (3.5 * Weight * TimeSpent)

267

A2 Published Work

The work carried out in this thesis has resulted in two publications.

Conference paper published and presented on 28 September 2012:

J. Elton and P. W. H. Chung, “A Novel Server System to Support Different Types of Communication

Services for Applications,” in Proceedings of the 15th International Conference on Network-Based

Information Systems, Melbourne, Australia, 2012, pp.477-482.

This conference paper discusses the design elements of the platform, describing the

client-server architecture and the interaction process for each type of client. The paper

investigates the implementation of the Diet Diary scenario.

Journal article accepted and awaiting publication:

J. Elton and P. W. H. Chung, “An integrated communications platform incorporating SMS and e-mail

to support mobile applications,” International Journal of High Performance Computing and

Networking.

This journal article goes into further detail regarding the design and implementation

of the platform. There is an explanation of the data analysis process performed by the

Template Analysis Unit. The article investigates the implementation of the Missing

Persons scenario and concludes by suggesting some areas of future work.

