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Nomenclature: 

 
a  : Acceleration 

ijC  : Constraint function 

E  : Young’s modulus of elasticity 
F  : Force 

ja
F  : Applied forces 

jq
F  : Generalised body forces 

g  : Gravitational acceleration 

G  : Universal gravitational constant 

h  : Conjunctional film thickness 

jq
I  : Mass moments of inertia 

 : Characteristic “size” of a system 
L  : Length of Eulerian beam 

k  : Stiffness 
K  : Kinetic energy 
m  : Mass of a material point 
M  : Mass of a source 
p  : Pressure 

P  : Momentum 
jq  : Generalised co-ordinates (usually Eulerian 3-1-3 body-centred  

  rotations) 
r  : Distance from a source or local position vector 
R  : Global position vector 
,u v  : Conjunctional velocities of flow 

U  : Potential energy 

t  : Time 

  *,T T   : Transformation matrices between sets of co-ordinates 

, ,x y z  : Cartesian co-ordinates 

  : Deflection/deformation 

q  : Small change in co-ordinate q  

  : “size” of a generic material point 

  : Potential 

  : Dynamic viscosity 

  : Lagrange multiplier 
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  : Density 
j  : Global co-ordinates in reduced configuration space 

, ,    : Euler angles 

 

 

Subscripts: 
ia  : Applied in the co-ordinate i 
jq  : Refers to a generalised co-ordinate 

 

Superscripts: 

, , ,i j k l : Refer to sets of co-ordinates 

T  : Transposed 

.  : First time derivative 

..  : Second time derivative 

 

Other symbols: 

  : Summation 

  : Vector dot product 

  : Inclusive of 

 
1.1- Introduction  
 
Dynamics and tribology, described in this book, may be regarded as subsets 
of physics of motion (in a multi-physics perspective). Dynamics is the study of 
motion of entities caused by the underlying forces. Historically, in the 
discipline of dynamics and within engineering these entities have been 
considered to be assembly of parts (a system), solid inertial elements (a 
component) and rigid particles. When the study of motion of a material point 
(a generic term used to describe these entities; a particle, a body: a 
conglomerate of such particles or a system: an assembly or cluster of bodies) 
is observation-based only (without regard to the underlying cause: force), then 
the field of investigation is referred to as kinematics. In the case of a multi-
body or a many-body system, kinematics refer to studies with no degrees of 
freedom; relative motions between their constituent material points (their 
motion is pre-specified).  
 
When a system undergoes no displacements with respect to a specified frame 
of reference (a co-ordinate set; t, x, y, z), then it is regarded to be static. The 
forces applied to such a system are said to be in a state of equilibrium (no net 
force). If a multitude of such equilibria can be assumed, then these various 
states of the system may be termed as quasi-static.  
 
Real systems are not rigid. An example is the power train system, subject of 
this book, where hollow driveshaft tubes undergo small amplitude elastic 
deformation under load, whilst they undertake much larger inertial motions 
(see chapter 30, explaining the clonk phenomenon). The same is true of all 
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material points, although in many cases, such as molecules, the deformation 
would be infinitesimal and thus almost insensible. Therefore, flexible systems 
are subject to elastodynamics. Since the deformation amplitudes are 
different in scale of measurement to the overall inertial displacements, the 
problem is multi-scale. If one disregards the larger scale and the study is 
confined to small amplitude oscillations, then the problem at hand is regarded 
as one of vibration. In general all real material points, being compliant, can 
assume many forms when vibrating. These forms are known as modes. For 
example, chapter 30 shows various modes of flexible driveshaft tubes. The 
same is true of very small material points such as electrons with their wavy 
motions with many spins. At the other end of scale, it is surmised that even 
heavenly bodies pulsate or quiver, spreading waves on the fabric of space, 
rather similar to the wave propagation on the surface of driveshaft tubes, 
explained in chapter 30. 
 
When undertaking study of a problem in dynamics, the boundary of the 
system must be defined, because there is no generic system. The interactions 
between the defined system and those material points extraneous to it are 
then ignored. This is a fundamental rule of experimentation. Thus, for 
example, in vehicle engineering, problems are defined as those of the power 
train system or vehicle-road interactions, and not a vehicle within the 
universe! With the system boundaries defined, interaction of key material 
points are considered. These interactions are simply forces acting between 
them, causing motions in a multitude of physical scales. Therefore, the 
interaction scale(s) of interest should also be determined. For example, power 
train dynamics problems may be in the scale of large displacements (inertial 
dynamics: shuffle, see chapters 21, 23 and 30) or structural response (modal 
behaviour of driveshaft tubes or the transmission case, see chapter 30) or 
noise propagation (acoustic response of thin walled structures). These may 
be regarded as wave motions from scales of metres to sub-millimetre and 
onto nanometres respectively, but they are all part of dynamics of a defined 
system (so are the usual micro-scale deflections of load bearing conjunctions 
in tribology, see chapters 4, 5 and 6). The environment outside the system 
boundary is considered to be rigid, to which a global frame of reference for 
measurement of multi-scale physics of motion is firmly attached (Rahnejat, 
1998). In reality the extraneous environment is not rigid, nor any place within 
the known or surmised universe. The experiment carried out in a laboratory 
within a defined system is positioned on Earth which moves around the Sun at 
66730 miles/hr (average), whilst the Solar system is dragged by the Sagitarius 
A* at the centre of the Galaxy at 45000 miles/hr towards the constellation of 
Hercules. However, one can consider the dominant forces in the experiment 
to be because of material points of the defined system and in some cases 
(bodies of significant size) due to the Earth gravitational pull only. Thus, in 
dynamics the motion of a material point is governed by all those within the 
same system. This is the essence of Mach’s principle and is fundamental to 
the subject of dynamics. Now with this philosophical basis and within any 
system of any conglomerate of material points i , any one such point has an 
acceleration due to its interactions with others as: 
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a i

i
          (1.1) 

 
This is Newton’s second law of motion, where m is the mass of any material 
point. Newton called this an axiom, because in his perspective it was a natural 
observation for which no proof was required at the time of his enunciation, 
same as Euclid’s geometrical axioms. The second law is the foundation upon 
which all the field of dynamics resides. Later a fundamental proof for this 
axiom is provided through energy consideration; Lagrange’s equation.            
 
The notion of material points is not confined to those of a solid nature, but all 
matter in any physical state including fluids. Thus, a system may be defined 
as a volume of fluid bounded by solid surfaces such as a river and its 
impervious banks. The volume of fluid may be considered as a series of 
elemental volumes progressing through the system in the same manner (but 
not exactly) as the deformation wavefronts progress in the hollow driveshaft 
tubes in chapter 30. The study is, therefore, one of continuous fluid flow due 
to a pressure gradient and velocity profile (both as a result of forces) through 
the assumed system. The subject is called hydrodynamics (see chapter 5). 
This is also a multi-scale problem, same as other forms of dynamics. For a 
large expanse of fluid, the elemental volumes may be considered large, but 
finite within which a state of equilibrium may be assumed relative to the 
interactions between any pair of such elements themselves. Large elemental 
volumes mean significant body forces (weight) and inertial forces. On the 
other hand, in tribological conjunctions, narrowness of gap between the 
boundary solids means small elemental volumes and their assumed uniform 
motion through the system (the conjunction). Thus, the problem simplifies to 
that of flow induced by changes in pressure gradient and any relative motion 
of bounding surfaces, forming a wedge effect (Gohar and Rahnejat, 2008, 
also see chapter 5). Therefore, the complex flow dynamics is reduced to a 
manageable problem in hydrodynamics, with a fundamental equation: 
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          (1.2) 

 
Reynolds obtained this equation by ignoring the effect of surface, body and 
inertial forces for small incremental elemental volumes of fluid, confined by a 
pair of close solid boundaries (chapter 5 describes the equation in detail). 
Therefore, as in the case of solids, a question of scale exists in the case of 
fluids as well. If the size of the system is reduced, the incremental 
computational volume must also decrease accordingly, where the conditions 
within such a volume may be considered to be in equilibrium. It is, therefore, 
clear that in the extreme cases (ultra-thin film tribology) with molecular 
interactions and surface energy effects no bulk properties such as a 
computational elemental volume may be assumed (see chapter 3).  
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Therefore, one may surmise that physical interactions regardless of the state 
of matter are functions of size of the assumed system and that of a material 

point considered, or the ratio: 
   (Rahnejat, 2008). It turns out that the nature 

of physical interactions (force) changes according to scale (the same ratio). 
However, the size of the material point   is explained by a host of physical 

attributes such as mass or charge and that of the system   by density, 

viscosity, permittivity, elasticity, coefficient of friction, etc. This means that 
forces other than gravity are related to kinematic quantities (displacement, 
velocity and acceleration) by physical properties of material points and the 
environment of the system. The introduction to chapter 3 describes the 
philosophical concern about the multiplicity of forces of Nature. This means 
the current knowledge is based on acceptance of a multi-physics character for 
interactions of material points at multi-scale within defined systems, thus the 
increasingly used phrase: multi-scale multi-physics analysis. Finally, this 
brief introduction has shown that both dynamics and tribology are subsets of 
physics of motion.             
 
 
1.2- Newtonian Mechanics 
 
Kinematics, being the study of motion without regard to the underlying cause 
(force), is one of the oldest sciences. Its roots can be traced back to the 
ancient studies of heavenly bodies, such as Homer’s Earth-centred Universe 
in the Iliad. As an observation-based science, kinematics is concerned with 
measurement of the state of motion of a material point (displacement, velocity 
and acceleration) with respect to a frame of reference. As already discussed, 
it is particularly convenient to firmly attach this frame of reference to a fixed 
(static) object. Therefore, it was particularly convenient to assume Earth to be 
the fixed central entity about which all the heavens would revolve (presumably 
in the adoration of humanity!). The heavenly bodies would then describe 
curvilinear paths whose slope at a given position yield their relative velocity 
with respect to the frame of measurement. Much later, Galileo understood that 
deviation from a straight line motion corresponded to non-uniform velocity and 
the curvature was due to accelerated motion. Therefore, kinematics is the 
study of curves; their local slope and curvature. By late 16th and early 17th 
centuries kinematics had finally attained the status only hitherto afforded to 
geometry as a fundamental science, because of the historical prominence of 
ancient and middle-ages’ geometers such as Homer, Pythagoras, 
Archimedes, Ptolemy, Khayam, Tusi and Copernicus, among others. Using 
astronomical observations and a cursory understanding of non-uniform 
motion, Galileo and Kepler put an end to the concept of Earth-centred 
Universe and obviously a sizeable dent in the human vanity! Kinematics had 
its greatest moment in history with the acceptance of the heliocentric 
system.  
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Using Kepler’s observations and his laws of motion, Newton explained the 
elliptical orbit of planets around the Sun by a central force due to gravitational 
attraction. The cause belying kinematics was found; force. In the case of 
planetary motions, the force of gravity caused the non-uniform accelerated 
motion; curvature of the path. The law of Universal Gravitation states: 
 

mg
r

GMm
F 

2
        (1.3) 

 
where G is the universal gravitational constant, M mass of a source (such 
as the Sun) and m that of a target body (such as Earth). Thus, the radius of 

curvature r at any position along the path is 
g

GM
r   for a 2-body system 

(Sun and Earth). Since the Earth’s path is elliptical (only slightly) on the 
Ecliptic plane, then r is not a constant, which means that g varies accordingly.  

 
The simple calculations here assumes a 2-body system, but path of a body 
within a system (Earth in the Solar system) is subject to all material points 
within it (other planets), remember the Mach’s principle. More comprehensive 
treatment of this problem is given by Chandrasekhar (1995).  
 
Newton then stated that in general equation (1.3) can be extended to his 
second axiom; equation (1.1). If there is no net force; 0F , a body at rest 

remains stationary, whilst one in motion pursues a straight line path; 
Newton’s first axiom. A straight line path is an extremal path (shortest path) 
due to uniform motion of a material point relative to an observer. One can 
surmise from equation (1.3) that attraction between two bodies necessitates 
equal and opposite forces. This is Newton’s third axiom; for every action 
there is an equal and opposite reaction.  
 
The assertion of these axioms by Newton, in addition to the law of universal 
gravitation, resulted in scientific disputes, some of which persisted beyond his 
lifetime. One concerned a fundamental proof for the second axiom, to render 
the same as a law of physics. An axiom is an assertion which appeals to all 
observers who would all agree on the cause of a phenomenon. This definition 
does not put the onus of acceptance on a mathematical proof; such as the 
existence of the Sun. Some have proposed intangible proofs for certain 
axiomatic concepts such as Descartes’ for “life”: I think, therefore, I am. 
Mathematical discourse has increasingly been viewed as a requirement for 
proof since the 17th century. In this respect, Lagrange’s equation is the proof 
of Newton’s second axiom as: 
 

jajj
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where K  is the kinetic energy (considered to be independent of displacement 
q  with the right choice of co-ordinate system), U is the potential energy and 

ja
F  the component of net applied force in the co-ordinate direction jq  (a 

generalised proof is given in section 1.3).  
 
In general a completely unconstrained material point in space has 6 degrees 

of freedom, therefore, the generalised co-ordinate set:  ,,,,, zyxq j  . The 

kinetic energy has, therefore, components: 
2

2

1 j

j qmK   for the translational 

degrees of freedom and 
2

2

1 j

qj qIK j   for rotational ones. Therefore, it can be 

seen that the first term on the left-hand side of Lagrange’s equation is the 

inertial force, for example for xq j  : 
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     (1.5) 

 
Now, the second term on the left-hand side of Lagrange’s equation is the 
Euler’s equation, simply stating that the rate of change of potential energy 
with respect to displacement is the body or restoring force: 
 

jq q

U
F j




           (1.6) 

 
Thus, a material point falling freely under the influence of gravity towards the 
centre of Earth from any height x , with the frame of reference q  aligned with 

the direction of motion has a body force: 
 

 
mg

x

mgx
Fx 




         (1.7) 

 
Using Lagrange’s equation and noting that there is no applied force (free fall); 

0axF , then: mgxmFax    ( gx  ), which is Newton’s second axiom. 

Therefore, Lagrange’s equation is essentially the determination of net force, 
causing an acceleration (same as equation (1.1)): 
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where: Im,  according to the degree of freedom (translational or 

rotational). Thus, if a potential   can be specified, then acceleration of all 
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material points within such a field can be determined. One can now revisit the 
same example of the falling matter above, this time attaching the frame of 

reference to the material point itself, falling within a field, where: 
x

GM
 . In 

this case, xq  , m , 0axF  as before and xaq
 , then: 

 

g
x

GM
x 

2
           (1.9) 

 
which yields the same results as previously. Two important observations 
should be made. Firstly, the potential used is due to gravitation, thus equation 
(1.3) is proven from first principles. If the field is due to Earth’s gravity then M 
represents its mass. x r H   is the distance to the centre of Earth, r  its 

radius and h the height of the falling matter above the Earth’s surface. Since 

usually: H r , g  hardly changes near the surface of Earth. This justifies the 

use of a constant value for g in engineering. Secondly, the above alternative 

analyses yield the same result, indicating the equivalence of the two systems; 
one in a gravitational field and the other falling uniformly with an equivalent 
inertial acceleration. This was noted by Einstein as the equivalence 
principle, the implication being that inertial acceleration produces 
gravitational action. There are many examples, such as a material point in 
curvilinear motion or planetary motion or a vehicle cornering. This means that 
motion on curves induces gravitational action. This became clear with 
Einstein’s general relativity; after all physics of motion in all its forms could be 
reduced to study of curves and motion of material points upon them. This 
appears to be true apart from various electromagnetic phenomena in the 
scale of minutiae as described in chapter 3. The problem is that general 
relativity is based on a theory for gravity (macroscopic material points), Thus, 
seemingly prevalent potentials at very small scale deviate from it. The next 
section discusses Lagrange’s equation. Readers should note that inertial and 
body forces which are dominant in the equation play an insignificant role in 
the scale of minutiae (see also chapter 3).           
 
1.3 – Lagrange’s Equation and Reduced Configuration Space 
 
The Lagrange’s equation (1.4) is for unconstrained systems, where any 
material point within the defined system enjoys 6 degrees of freedom as 
already indicated above. However, recall that acceleration of a material point 
within a defined system is due to all other such points present (Mach’s 
principle). Therefore, the defined system may be regarded as a reduced 
configuration space, where motion of material points are restricted by their 
interactions (constrained system dynamics).   
  
Newton’s second axiom in any co-ordinate direction q  may be presented in 

the form: 0 i

qq
qmF ii  . This form of equation simply states that any applied 
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external force on a material point iq
m must be balanced by its inertial 

response. This form of second axiom is known as the D’Alembert’s Principle 
(Rahnejat, 2008). Johannes Bernoulli extended D’Alembert’s Principle to the 
net virtual work done for an n  cluster of unconstrained material points, 

having n3  co-ordinates as: 0)(
3

1




n

i

i

i

qq
qqmF ii  .  If now there exists l  

constrained co-ordinates, then the reduced configuration space is: lnr  3 . 

A new set of co-ordinates  is chosen, last l  of which are constrained. Then, 

the holonomic constraints are:  
 

),( ,13,1 tfq rj
j

ni
i

    and 0),( 3,13,1   tqf ni
i

nrj
j    (1.10)   

 

Then, the infinitesimal change in a co-ordinate is: 
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replacing in the above expression for the virtual work done: 
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This can be written in the form:  
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Since the co-ordinates j , velocities j  and time are considered as 

independent variables, the first term can be written as: 
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and the second term as: 
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To simplify the above terms one needs the derivatives: 
dt

dqi

 and 
j

iq







. The 

latter is the same as 
j

iq




 and is substituted by it in the first term of (1.13). The 

former can be obtained from the constraints in (1.10). If the constraints are 
considered as time-dependent for an evolving system as would be the general 
case, then the absolute derivative (covariant vector for space-time) is: 
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These can all be substituted back into (1.13) and (1.14), completing equation 
(1.12). One additional clarification is for the second term in (1.13), where: 
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After all the indicated substitutions and some manipulation, equation (1.12) 
becomes:  
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          (1.16) 
 

Since, 0iq , then the term in the curly bracket must vanish. As kinetic 

energy  









i

i

q dt

qd
mK i



2

1
, then it is clear that the first term in the bracket is 

j

K




 and the second term is 

j

K




. Thus: 

 

0





















jjj

UKK

dt

d


       (1.17) 

 
This is a more general form of the Lagrange’s equation than (1.4). The time 
dependent holonomic constraints are taken into account, which means that for 
such a system the set of equations are for rj 1 . A solution for the defined 

system of n material points is thus obtained for this set of differential 

equations with the holonomic constraints 0),( 3,13,1   tqf ni
i

nrj
j  (as 

described above). As it can be seen, the holonomic constraints are 
relationships that forbid displacements along or about certain defined co-
ordinates. The derivation here assumes these constraints to be time 
dependent. In most engineering applications holonomic constraints are time 
independent. This means that the first term on the left-hand side of the 
velocity transform in (1.15) does not exist. This leads to a contravariant 
velocity vector.  
 
Constraints may be non-holonomic, such as velocity dependency of pairs of 
co-ordinate systems. Readers should refer to specialist texts on multi-body 
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dynamics (e.g. Rahnejat, 1998). If a co-ordinate system is fixed onto the 
ground in a gravitational field and another falls with respect to it, then the 
relationship between them can be described by non-holonomic constraints as 
co-ordinate functions of the gravitational field.  
 
The simple derivation of Lagrange’s equation here suffices, both for 
mathematical proof of Newton’s second axiom and for use in mechanical 
problems. Many other formulations of Lagrange’s equation can be arrived at, 
which suit particular systems or aid certain solution methods. Readers should 
refer to Orlandea (1999).  
 
Multi-body mechanical systems as assembly of parts are viewed as 
constrained system dynamics problems. Such systems comprise a number of 
components that, in general, are referred to as parts. Parts are joined together 
by constraint functions which provide relationships between co-ordinates 
attached to certain points on these neighbouring parts (similar relationships in 
equation (1.10)). These points are known as markers. In mechanical systems 
there are an assortment of joints, such as hinge/revolute, ball-in-
socket/spherical, hook/universal, cylindrical, translational, and more complex 
joints such as various constant velocity joints, clevis joint, to name but a few. 
An introduction to mechanical joints may be found in Rahnejat (1998), Hunt 
(1973) and Gilmartin (1978).                 
 
In general, each mechanical joint introduces a number of constraints (i.e. a 
series of relationships between co-ordinates attached to the aforementioned 
markers). These provide a number of algebraic equations which must be 
satisfied simultaneously with differential equations of motion of parts 
(application of Lagrange’s equation for various degrees of freedom of each 
part) within a multi-body system. Various solution methods for such sets of 
differential-algebraic equations in space-time exist. Again readers should refer 
to Rahnejat (1998) or Orlandea (2008).     
  
1.4- Multi-body Mechanical Systems           
 
1.4.1- Equations of Motion 
 
Mechanical systems, including engine and power train systems are 
constrained multi-body systems. At first sight many practical mechanical multi-
body systems appear to be quite complex when a dynamic model, comprising 
a differential-algebraic set of equations is to be made. However, this task is 
made quite simple by commercial software, many of which generate the set of 
equations for the user in an automatic manner. In order to achieve this, 
Lagrange’s equation for constrained systems may be stated in the form: 
 

iaq
m

i

kl
mii

F
q

C

q
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
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
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
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




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


         (1.18) 
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where the constraint functions nkCkl ,1,  and nl ,1  with lk  are functions of 

co-ordinates of markers on parts ( n,1 ) in the multi-body system and m are 

Lagrange multipliers for m constraints applied to a part, which are unknowns 

to be determined.  
 
To obtain the equation set, it is usual to define a fixed co-ordinate system with 
respect to which all translational and rotational motions of parts within a multi-
body system are measured. This fixed frame of reference is usually referred 
to as the global frame of reference. It is global in the sense that all the 
motions of other frames of reference attached to individual components of a 
multi-body system undergo transformations with respect to it. Recall, from 
previous discussion that a generic global frame of reference cannot be 
assumed anywhere, unless within an isolated suitably defined system of 
investigation. The co-ordinates fixed to each part of the system are referred to 
as local part frame of reference. If the parts are considered to be rigid and 
such frames of reference are attached suitably to their centres of mass/inertia, 

then the kinetic energy remains a function of iq only and the form of 

Lagrange’s equation (1.18) holds true for all parts in the multi-body system.  
 
Transformation between a triad of axes in a local part frame of reference 
(LPRF) and the global frame of reference (GRF) is required in order to 
determine the kinematic attributes of the part in an instantaneous manner (in 
other words the GRF is the frame of observation). The kinematic observation 

model is, therefore, ii qq ,  for all parts i , whilst the dynamics model includes 

the underlying causes (forces); inertial: 
dt

dPi  ( iP  being the momentum 

conjugate to the co-ordinate iq ), the generalised body/ restoring/resistive 

force: iq
F , the constraint reactions: 





m
i

kl
m

q

C
  and any applied forces. For 

known inertial properties and constraint functions (type of mechanical joints), 
the vector of unknowns in a multi-body mechanical dynamic system becomes: 

 T
jij

ii qq
,

,,


 . A noteworthy point is that whilst 
iq q

U
F i




 may be regarded as a 

restraint (a resistance), the term  



i

kl
i

q

C
  is a constraint (a rigid restraint) 

determining the reduced configuration space. Thus, in mechanical systems 

stored energy in a linear spring 2

2

1
k by virtue of its deflection  or that in a 

solid elastic sphere 2
5

5

2
k  (see chapter 4) account for resistance in certain 

co-ordinates, whilst constraints klC  define the limit of a dynamic system in 

relative motion of parts k and l. Constraints, therefore, remove the working 
space of mechanisms (a reduced configuration space).  
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Although constraints are often used in multi-body formulation, they represent 
rigidity that is idealistic. Recall that there exists no rigid location is space-time, 
to which one can attach a frame of reference. Constraints, therefore, have the 
dual purpose of problem simplification (when warranted) or to achieve 
kinematic conditions, where observation of articulation of a mechanism is 
deemed as a prelude to a later more detailed dynamic analysis (see Rahnejat, 
1998).   
 
To capture the position and orientation of an LPRF with respect to GRF it is 
usual to use roll-pitch-yaw transformations (common in aircraft and ship 
dynamics) or Euler’s body 3-1-3 frame of reference (successive rotations of 
the embedded LPRF, a generalised form extensively used since Euler).             
  
Now in a multi-body system the GRF is fixed on the ground, LPRFs are 
attached to the centres of mass/inertia of the moving bodies (the material 

points). The position vector of the origin of LPRFs  
nk

i iq
,1

6,1,


  with respect 

to the GRF  6,1, jj  are given as:      321

,1
3,1, 

T

k

j

nkk jR 
 .  

LPRFs assume varying orientations with respect to the GRF as system 
dynamics evolves in time. When the equations of motion are written for each 
part with respect to the respective embedded LPRF, it is necessary to have 
the Euler transformations from GRF to these: 
 

     Tj

k

Ti

k jTiq 3,1,3,1,         (1.19) 

  
where the Euler transformation matrix is: 
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
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T    (1.20) 

where: sincos,  SC . Also note:   654 ,,  are the Euler angles in 

the Euler body 3-1-3 frame of reference.  
 
The translational components of velocity of any part are given as: 
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In the Euler’s frame of reference rotations of an LPRF relative to the GRF are 

given as:    TTj j   ,,6,4,  . Rotational kinetic energy is obtained 

in terms of derivatives of LPRF co-ordinates: 6,4, iq i . These are 

transformed to the global frame of reference as:     TTi Tiq   ,,6,4, * , 
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where (Rahnejat, 1998):  


















01

0

0
*







C

SS

CSS

T  with co-directed 3 and 3q  

axes. Now simply replace iq  by j  in equation (1.18) to find 6 equations of 

motion for each part (in figure 1.1) in the reduced configuration space defined 
by any algebraic constraint functions that join the parts of the multi-body 
system in terms of the global co-ordinates; GRF.  
 
1.4.2- Constraint Functions 
 
The equations of motion for any constrained mechanical multi-body system 

require definition of the constraint functions klC  in terms of the co-ordinates 
j . Mechanical joints, such as those mentioned above compose of a number 

of basic algebraic functions, usually referred to as primitive constraints. 
Such constraints are usually imposed between two parts in a system at a 
specific geometric location, which is defined by points (markers) on a pair of 
assembled parts. Rahnejat (1998) provides detailed treatment of mechanical 
joints’ constraint formulation. Here a brief introduction to the subject is made. 
 
The most common primitive constraint function is the At-point or Point 
Coincident Constraint. If two markers on two parts k and l  are compelled to 
remain coincident at all times irrespective of the orientation of their attached 
triad of axes, then the constraint function can be stated as: 
 

    0 llkkkl rRrRC        (1.21) 

 
where R  is the global position vector of the centre of mass of the part upon 
which a marker is defined and r  is the local position vector of the marker from 
its centre of mass. Clearly, the global position vectors are function of the co-

ordinates j , whereas the local position vectors are functions of i

kq and need 

to be transformed to the former, using equation (1.19). Thus: 
 

       0
Tj

ll

j

kk

Tj

l

j

kkl TTC     for 3,1j     (1.22) 

 
This yields 3 constraint functions as indicated. Therefore, 3 degrees of 
freedom are removed. A spherical joint or a ball-in-socket joint are simply 
described by an at-point constraint.  
 
Some constraint functions are related to orientation of parts with respect to 
each other, such as co-directing the axes of two parts to form a hinge. If the 
nominated co-directed axes for a hinge primitive constraint on markers 

k and l of two parts are 3

kq  and 3

lq , then:  

 

013  lk qq  and 023  lk qq        (1.23) 
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where the dot product renders scalar constraint functions. Clearly, the co-

ordinates i

kq  and i

lq should be transformed to the global co-ordinates as 

before, thus an expression of the form     0 j

l

j

klkkl TTC  is obtained for both 

cases in (1.23), removing two degrees of freedom. The addition of the at-point 
and hinge primitive constraints at a location for markers k and l  results in a 
revolute joint. Therefore, a revolute joint introduces 5 constraints.  
 
In a mechanical multi-body system parts are joined together by various joints 
or couplers (these relate motion of two parts such as rack and pinion). Once 
the appropriate constraint functions are determined, the appropriate reactions;        






m
j

kl
m

C


 are obtained. Now a set of equations of motion are found. These 

need to be solved simultaneously with the constraint functions themselves as 
previously described in section 1.2. Thus, the differential-algebraic equation 
set is: 
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mjj
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d
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







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










   and 0)(  j

kl fC     (1.24) 

 
Rahnejat (1998) and Orlandea (1999, 2008) describe in detail the various 
methods of solution. However, a number of important points should be made 
since multi-body dynamic analysis codes are now readily available and 
increasingly used in industry and academe.  
 
Firstly, in a dynamic analysis only suitably small changes in co-ordinates are 
permitted within a time marching integration method with small time steps t . 

The solution is usually made by making substitutions: j

k

j

k   . Hence, the 

vector of unknowns to be determined is  Tm

j

k

j

k  ,,  . Often, users of multi-

body codes choose inappropriate time step size for their models’ simulation. 
As a rough guideline t is related to the rate of change of system variables 

(the required solution vector). Small time steps of few tenths of second suffice 
for large displacement rigid body dynamics, but not when impulsive loading or 
impact forces are involved. Impact durations are usually of the order of few 
tenths to several milli-seconds, requiring very small time steps. All contact 
dynamic problems usually require time steps of the order of micro-seconds. 
Secondly, time marching simulation studies are usually iterative, requiring 
convergence criteria set to be satisfied. Various chapters in this book describe 
choice of criteria and size of error tolerated for a sensible solution vector to be 
found. For detailed discussion of this point readers are referred to Rahnejat 
(1998). Finally, one should note that in practice rigid constraints do not exist 
and all real joints are subject to deformation under load. Only if the applied 
loads are insufficient, a rigid constraint may be assumed. Joints such as ball-
in-socket are also subject to friction, which is ignored when they are 
considered as rigid idealised constraints. The same is true of some couplers, 
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such as assumed gearing constraint, where a common velocity marker on a 
meshing pair is assumed. Meshing pairs are subject to contact loads as a 
function of their lubricated separation and friction due to viscous shear of a 
lubricant film and potential asperity interactions (see, for example, the 
appendices in this chapter and chapters 15, 20 and 29). Furthermore, a 
common velocity marker may only be assumed at the pitch point of a teeth 
pair contact, whilst elsewhere during meshing slide-roll motion occurs.  
 
Nevertheless, for particular types of analysis one may choose a combination 
of joints to either eliminate certain degrees of freedom or, for example, render 
a kinematic analysis (no degrees of freedom; mechanism follows a prescribed 
motion; note that a motion function introduces a constraint). Two other 
problems can occur with use of constraints in order to create a model, 
representative of a multi-body system. One is the use of what physically 
represents a practical joint in a closest manner. This can render an over-
constrained multi-body model. Note that rigid constraints do not exist in 
practical mechanisms, but are mathematically convenient. The other problem 
is to introduce in a model constraint functions which replicate one another 
(repeat constraints). If such constraint functions are parts of a defined joint 
(as in commercial software) repeat constraints lead to redundant equations 
which are then automatically removed. The ensuing analysis would now be 
different to that intended or expected.  
 
The method for representation of multi-body dynamics presented here is 
based on constrained Lagrangian dynamics, where a system is defined in 
a reduced configuration space with respect to a global frame of reference. An 
alternative and older method was developed by Euler, now referred to as the 
Newton-Euler method. This is based on direct application of Newton’s 
second axiom, as in equation (1.1). It is, therefore, clear that all the forces 

acting on an element (part) of a system in 
i

iF must be known apriori. The 

ingenious of Euler was to propose the use of free-body diagrams for 

constituent parts of a system, where reaction forces as in 
iq q

U
F i




  can be 

specified to ensure the continuity of the system as a whole (figure 1.2). A 
series of equations (as in (1.1)) result for all parts of the system in the Euler 
frame of reference (previously described). It is clear that only the 
unconstrained degrees of freedom need to be modelled in this case, thus a 
smaller set of equations than those in constrained Lagrangian dynamics 
would result. This is the advantage of the Newton-Euler method. Its main 
disadvantage is that the omission of any reaction/restoring force can lead to 
an incorrect outcome. Furthermore, it is often difficult to visualise the degrees 
of freedom of a complex mechanism, prior knowledge of which is not required 
in the Lagrangian approach. Therefore, the Newton-Euler method demands 
from users a greater understanding of dynamics. All other methods developed 
since Lagrange and Euler are variations of the same with different 
interpretations or for manipulation of larger degrees of freedom systems, as a 
sparse matrix tableaux (Orlandea, 1999, 2008).  
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Although the use of constrained Lagrangian dynamics in multi-body software 
packages has made dynamics more accessible to the novice and uninitiated, 
certain considerations are essential and care is required in the development 
of models. Firstly, the approach becomes more useful with larger systems, 
and particularly inefficient with simpler systems (where Newton-Euler 
approach should be preferred). Secondly, it is necessary to determine the 
degrees of freedom of the eventually constructed model to ensure: (i)- the 
model is not over-constrained, (ii)- no repeat/redundant constraints exist and 
(iii)- the remaining degrees of freedom can be identified and verified. The 
Gruebler-Kutzbach expression can be used to ascertain the degrees of 
freedom of a system model: 
 


m

CnnDOF )1(6        (1.25) 

where n  is the number of parts in a multi-body system including the ground 

(the assumed extraneous rigid environment), m is the number of constraint 

functions and C is the number of constraints introduced by each constraining 

function. For some standard mechanical joints, the number of constraints 
introduced are: spherical: 3, universal/hook: 4, revolute: 5, translational: 5 and 
cylindrical: 4. Each specified motion introduces a constraint, so do the 
couplers. Thus, systems which yield zero degrees of freedom with a or a 
number of specified motions are kinematic. In such cases no solution to 
equations of motion is required (the underlying cause; forces, are of no 
concern). Thus, the solution is obtained by simultaneous solution of constraint 

functions, 0)(  j

kl fC  , which includes the specified motion(s). 

   

For static analysis, let: 0j

k
  in equations (1.24). The solution vector 

 Tj

j

k  ,0,  corresponds to the equilibrium position, where 0
j

jF . If the 

solution vector has a unique solution, then static condition is obtained. A 
multitude of such solutions corresponds to a quasi-static analysis.  
 
1.5- Engine as a Multi-body System 
 
Perhaps the simplest multi-body model of an engine would be that of a single 
cylinder kinematic model. Such a model would be useful as a visualisation 
tool or simply to identify constraint functions required for a subsequent 
dynamics analysis. Figure 1.1 shows such a model. The parts in the engine 
are considered to be: flywheel, crankshaft, piston and connecting rod. The 
ground (the boundary of the system) is considered to be the cylinder block 
and beyond. The parts are numbered as 3,2,1k  and 99 respectively as 

shown in the figure. Therefore, in the Gruebler-Kutzbach expression 5n . 
The mechanical joints are so chosen in order to avoid repeat or redundant 
constraint functions. For example, the cylindrical joint, representing the big 
end bearing between the connecting rod and the crank-pin allows translation 
of crankshaft relative to the connecting rod. However, this is constrained by 
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the revolute joint between the crankshaft and the ground. The universal joint 
at the position of the small end bearing allows the articulation of the 
connecting rod relative to the piston. However, it also enables the piston to tilt 
back and forth (in and out of the plane of paper), which is constrained by the 
cylindrical joint between the piston and the ground. Thus, there are no 
repeat/redundant constraints. In practice, the motion of the crankshaft is 

specified by the combustion gas force as NtCCkl 2199  , N being the 

rotational speed in rev/sec. Using the Gruebler-Kutzbach expression:      
 

     02424)1141425161()15(6
Re

 
MotUniCylvFxd

XXXXXnDof , thus a 

kinematic model results, which follows the specified motion. 
 
Kinematic models, using other combination of constraints may also be found. 
For example, an alternative choice is a translational joint between the piston 
and the ground, a revolute joint between the piston and the connecting rod, 
representing the wrist-pin bearing, an in-line joint between the connecting rod 
crankshaft. The flywheel is considered fixed to the crankshaft. and the 
crankshaft has a revolute joint to the ground with the same specified motion 

as before. Thus:     01818)11215152()14(6
Re

 
MotInlTrav

XXXXnDof . 

Note that the in-line primitive constraint introduces 2 constraint functions 
as:  
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lll

Tj
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j

kk

Tj

l

j

kl
l

llkkkl TTTqrRrRC    

 
If k  represents a marker on the crank/flywheel assembly and l  the coincident 

marker on the connecting rod, then k  can translate with respect to l with all its 

rotational freedoms intact. However, the translational motion is constrained by 
the revolute joint to the ground.  
 
The motion constraint is in fact governed by the combustion process, with an 
initial condition, usually determined by the starter motor characteristics. 
Therefore, one can achieve a very basic dynamics model simply by removing 
the specified motion constraint and apply the gas force instead to the piston. 
A one degree of freedom system results, which couples the translational 
motion of the piston to rotation of the flywheel-crank assembly. Mass and 
inertial properties of the parts in the system should be specified. Choice of 
constraint functions in the assembly of parts can now be quite important, 
depending on the intended analysis. 
 
For basic tribological studies, suitable constraint functions must be chosen to 
allow motions that are constrained in the previous examples. For instance, 
piston has secondary motions as described in chapters 8, 10-15, involving 
piston lateral motion within the confine of its clearance with the cylinder liner 
or bore, as well as tilting motion about the axis of the wrist-pin bearing. 
Therefore, it is clear that choice of a translation joint between the piston and 



Rahnejat, H., “An introduction to multi-physics multi-scale approach”, in Rahnejat, H 

(Ed.), Tribology and dynamics of engine and power train, Woodhead Publishing, 

Cambridge, UK, 2010, ISBN: 978-1-84569-361-9  
 

 

the ground (the engine block) prohibits these motions. The same is true of an 
inline primitive constraint at the position of the big end bearing, constraining 
the lateral motions of crank-pin journal centre with respect to the 
bushing/sleeve fitted onto the connecting rod. The inline primitive constraint 
can be replaced by a planar constraint, which can best be described as a 
hockey puck sliding on ice. If the puck is regarded as part k and the ice 

surface as part l , then this joint primitive allows rotation with respect to their 

common orthogonal axis with no translation, whilst rotation about other axes 
are also constrained, so that contact is maintained at all times. These lateral 
axes of part k  can translate with those of part l  allowing sliding motion of the 

puck. Thus, 3 constraint function are introduced. If k  represents the 

crankshaft and l the connecting rod, then:      03  lllkkkl qrRrRC  and 

02,1

3  i

i

lk qq , which introduces 3 constraints, which can be transformed in 

terms of the co-ordinates j

k

j

l  , . To avoid repeat constraints, the revolute joint 

between crank/flywheel assembly is replaced by a cylindrical joint as the 
planar joint already inhibits motion along the crank axis. The revolute joint 
between the connecting rod and the piston is also replaced by a spherical 
joint as the rotations of the connecting rod other than that about the wrist-pin 
axis are already constrained by the planar constraint functions. The rotation of 
the crankshaft is determined by the combustion curve (gas force). Hence, the 
motion constraint remains, this time with an applied gas force on the piston. A 
two degrees-of-freedom dynamic model results which correspond to the 
lateral motions of the crank/flywheel assembly relative to the connecting rod 
(the motion of the crank-pin journal relative to the bushing/sleeve). To restrict 
these (restraints), journal bearing forces should be used, similar to those 
described in chapters 18-20 as functions of the eccentricity ratio. Hence: 
 

     21618)1131315141()14(6  
MotPlaSphTraCyl
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Part 2 = piston
Piston to cylinder 
contact as a 

translational joint

Wrist pin bearing 

as a spherical 

joint

Part 99 = ground

Part 3 = connecting rod

Universal joint

Part 1 = crank+flywheelRevolute joint

 
Figure 1.1: A kinematic model for a single cylinder engine  

 
Therefore, multi-body models with suitable constraints can be developed to 
enable description of load bearing conjunctions, where important tribological 
contributions to system dynamics can be included in the analysis.  
 
Most multi-body dynamic analyses, however, were initially performed for low 
frequency phenomena such as suspension analysis, ride comfort and vehicle 
handling responses. Rahnejat (1998) provides some basic examples. Larger 
detailed vehicle models are commonly used in industry as a part of vehicle 
development programmes. Representative literature include a series of 
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papers by Blundell (1999), Hegazy et al (2000) and Hussain et al (2007), 
which include tyre forces, aerodynamic forces and complex manoeuvres (see 
also chapter 23, using the Newton-Euler approach).  
 
Inclusion of component flexibility became possible later with integration of 
finite element techniques and multi-body methods through mode reduction 
and selection techniques such as component mode synthesis. This enabled 
representative analysis of systems as they are subject to deformation loads. A 
good example is the inclusion of anti-roll bars in vehicle models, where its 
structural compliance resists vehicle roll during cornering manoeuvres. 
Another example is the inclusion of structural resistive suspension elements 
such as leading or trailing arms, which restrict vehicle dive in braking or squat 
under sudden acceleration (see Azman et al, 2007). These phenomena are 
still low to medium frequency events, dominated by large displacement 
dynamics (that of the sprung or unsprung masses).             
  
In recent years multi-body dynamics approach has been used in conjunction 
with tribological studies (for example see Boysal and Rahnejat, 1997). Some 
detailed models, including component flexibility are presented by Kushwaha 
et al (2002) and Perera et al (2007) for engine and drivetrain dynamics with 
experimental validation. It is important to briefly describe the increasing need 
for inclusion of component flexibility in multi-body dynamics models, as well 
as different methods which can be employed to achieve this.          
    
1.6- Elasto-multi-body dynamics analysis 
 
Component flexibility plays an important role in dynamics of real systems. Its 
role has become more pronounced in recent years with increasing use of 
lighter components in an effort to reduce mechanical losses (mainly due to 
out-of-balances) and thus enhance fuel efficiency. However, lighter 
components, often made of materials of lower elastic modulus or with 
increasing use of hollow components are subject to elastic deformations and 
vibration. In the case of engines and power trains a plethora of noise and 
vibration concerns have emerged in the past two decades due to component 
flexibility as well as increased output power (for example higher torques in 
diesel engines). Some of these noise and vibration problems are discussed in 
this book, such as transmission rattle (see chapters 21, 26-29 and also the 
appendix in this chapter) and driveline clonk (see chapter 21 and 30). There 
are many other such NVH concerns, such as vehicle body boom (see chapter 
21), engine roughness (Rahnejat, 1998) and clutch in-cycle vibration or 
whoop (Kushwaha et al, 2002).  
 
Rahnejat (1998) describes some of the basic modelling approaches to include 
component flexibility. These include Transfer Matrix Method (TMM) and 
Dynamic Stiffness Matrix Method. Other advanced methods are described by 
Shabana (2005) and Nikravesh (2008). Here a number of basic approaches 
are highlighted.  
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A simple approach to represent flexibility is by Eulerian beams. Compliance 
functions relate 6 restrained (elastic) degrees of freedom motion of one end of 

the beam (e.g. , , , , ,iq x y z    ) with respect to the forces applied at the other 

(e.g. , , , , ,i x y z x y zaq
F F F F T T T ) (see figure 1.2). The mass of the flexible part is 

discretised into two masses concentrated at the either ends of the beam. 
Therefore, these masses act as parts and would require inertial properties. In 
multi-body terminology they are referred to as dummy parts, because often 
they are a specific component of a mechanical system. For example, 
crankshaft flexibility may be represented by crank-pins as Eulerian beams and 
crank-webs as the point masses, generally referred to as concentrated inertial 
elements. The beams act as restraining elements which introduce forces 
between the dummy parts or in the case of the crankshaft between the 
successive crank-webs as:      
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(1.26) 

 
where, these restraining/resistive forces are treated as applied forces. Note 

the longitudinal axis of the beam is designated as 1q in the stiffness matrix 

above.  D  is the damping matrix, elements of which are usually quite difficult 

to specify. A simple approach is to specify its elements as a percentage of the 
stiffness matrix (usually around 1% for lightly damped power train 
components). The restraining forces are then transformed to the co-ordinates 

j , using equation (1.19) for }{ iq for 3,2,1i  and for  6,5,4i  the Euler 

transformation matrix ][ *T  is used, as described in section 1.4.1. This is the 

basis of transfer matrix method (TMM) (see Rahnejat, 1998).  
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Figure 1.2: An Eulerian beam  
 
It is clear that if a crank-pin is considered as a single beam element, then 
many of its torsional-bending modes would be ignored. Thus, flexible parts 
may have to be discretised into more than a single beam interspersed with 
dummy parts between successive beams. The more flexible the structure or 
larger the deformation energy, a greater number of discretisations would be 
required (more mode shapes). This approach leads to ever smaller beams or 
in fact any regions, where certain stress-strain (load-deflection) relationships 
may be assumed. These regions are usually referred to as finite elements. 
Therefore, finite element analysis provides the right approach in determining 
the modal behaviour of flexible structures.  
 
Unlike the bodies which are considered to be rigid, the elastic bodies undergo 
deformation whilst in motion. Therefore, a flexible body may itself be regarded 
as a constrained configuration space described by a set of co-ordinates, 
referred to as elastic co-ordinates. Its inertial behaviour remains the same 
as before; described by the global position vector of a reference point on it 
(e.g. centre of mass) with respect to the global frame of reference as already 
described. Therefore, the elastic deformation of the body is described by the 
elastic co-ordinates of its many points with respect to the local part frame of 
reference at the nominated reference point and through transformation to the 
global frame of reference.   
 

0 0 ( )p p B p

k k k k k kR R u R f r             (1.27) 

where, the point B is an initial position of a point P prior to its deformation 
p

k in a small time step t . Clearly, the function ( )B p

k kf r  is a shape function, 

referred to as a mode shape or eigen-vector which should be determined. 
One general way of including this function in (1.27) is through finite element 
analysis. 
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As already described in FEA a continuous flexible body can be represented 
by a collection of interconnected elemental regions with specified constitutive 
(stress-strain) relations. The stiffness and mass matrices for the these 
elements can be obtained using assumed shape functions. This involves 
evaluation of mass and stiffness matrices to represent the elemental 
behaviour for given assumed shape functions as: 

   
T

qm T m T
        and    

T

qk T k T
           (1.28) 

In the same manner the corresponding resistive forces associated with points 

P (nodes in the finite elements), iaq
F can be transformed to the global co-

ordinates:  j i

T

aq
F T F

  . 

For Eulerian beams the localised stiffness martrix is given in (1.26) and the 

mass matrix in (1.28), m
    is termed the consistent mass matrix as it is 

obtained for the same shape functions assumed for the calculation of the 
stiffness matrix. Now equations of motion for a flexible part can be written, 
using the same approach as before. Furthermore, there would be no need to 
concentrate the mass of a flexible member in certain locations.  

However, with many finite elements a very large degree of freedom can result, 

corresponding to many mode shapes i , all of which would contribute to p

k  

as a linear combination in the local frame of reference kq :    

1

n
p i k

k i k

i

q q 


           (1.29) 

where n  is the number of mode shapes and k is the modal matrix for the 

body k. Equation (1.29) effectively transforms a larger set of physical 

coordinates p

k to a smaller set of modal coordinates kq . Depending on 

component geometry and physical state and nature of loading, the modal 
matrix can be very large indeed. Hollow thin walled tubes, for example (e.g. 
driveshaft tubes), have many coupled torsional-bending modes (see chapter 
30). These are usually represented by combination of circumferential and 
axial waves on the tubes, such as those shown in chapter 30. Such structures 
are said to have a high modal density. On the other hand, short and stubby 
solid structures made of materials of high elastic modulus can potentially only 
undergo rigid body motions, even when subjected to moderately high loads, 
such as machine tool spindles. Depending on loading and purpose of 
investigation a reduced order model may suffice, by considering certain 
modal responses to be constrained. A reduced order model can be achieved 
by solving only for m n  mode shapes, because of the modal superposition 

approach in (1.29). Therefore, mode shapes should be selected in a manner 
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that results in a good approximation for a pre-determined frequency band of 
interest. 

The basic technique used is component mode synthesis (Craig, 1995), 

where the physical co-ordinates p

k for a component k is divided into boundary 

components which are regarded as not being subject to modal superposition 

(elastically constrained, dependent DOFs), p

dk  and those which are subject to 

deformation (independent DOFs), p

ik .  Now if 0p

dk  because of the imposed 

constraints, then: 

       P P

ik ik ik ik ikm k f          (1.30) 

Combining this equation with (1.29) enables substitution for physical co-

ordinates p

ik  with the reduced number of modal co-ordinates  , using FEA. 

The detailed procedure is described in Gnanakumarr et al  (2005).  

With component flexibility included in a multi-body model other important 
features to be incorporated are usually contact/impact and frictional forces. 
This means that realistic models for all forms of machines and mechanisms 
can be constructed. Such models incorporate various physical characteristics; 
inertial, elasticity, tribological, etc; thus may be regarded as multi-physics. The 
also comprise  interactions at the various scales; large displacements, 
vibration and micro-scale tribology; thus multi-scale. The most appropriate 
way to demonstrate such an approach is through some examples. In the 
appendices to this chapter two of Loughborough’s researchers describe 
analysis of some of the most pertinent current concerns in the automobile 
industry.     

1.7- Appendix A1: Multi-physics analysis for investigation of manual 
transmission gear rattle: Drive/creep rattle 
 
M. De la Cruz, Wolfson School of Mechanical & Manufacturing Engineering, 
Loughborough University, Loughborough, UK  
 
Nomenclature: 

 
b  Minor semi-half-width of contact 

C  Backlash 

pC  Specific heat capacity 

c  Clearance between loose wheel and retaining shaft 
*E  Effective elastic modulus (see chapter 4) 

bF  Boundary friction 

vF  Viscous friction 

fwi jF ,  Flank friction per teeth pair 

piF  Petrof friction of loose wheels 
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h  Film thickness 

2I  Inertia of 2nd gear 

iI  Inertia of loose wheels 

osI  Inertia of output shaft 

7I  Inertia of reverse pinion 

tk  Thermal conductivity of transmission fluid 

l  Contact length 

brgl  Gear blank width 

m  Equivalent mass 

N  Relative rotation of loose wheel and retaining shaft in rev/s 

p  Pressure 

sQ  Side leakage flow 

brgiR  Radius of supporting shaft of loose wheel 

bpiR  Base radius of pinion 

bwiR  Base radius of wheel 

,xi jr  Equivalent radius of a teeth pair in x-z plane (see chapter 4) 

2DT  Resistive torque of differential referred to 2nd gear 

u  Speed of entraining motion (average speed of a meshing teeth pair) 
u  Sliding velocity (relative surface speed of a meshing teeth pair) 

brgu  Speed of entraining motion in the loose wheel-to-shaft conjunction 

ev  Coefficient of thermal expansion 

pv  Velocity of approach of contacting/impacting gear teeth pair 

xv  Surface velocity in the x-direction 

brgW  Hydrodynamic load in the loose wheel-to-shaft conjunction 

,i kW  Contact load per teeth pair 

α  Pressure-viscosity coefficient of the transmission fluid 
*α  Temperature dependant pressure-viscosity coefficient 

δ  Contact elastic deflection 

ε  Eccentricity ratio 

θ  Temperature 

iφ  Rotational displacement of wheel 

osφ  Angular displacement of output shaft 

pφ  Rotational displacement of pinion 

η  Effective dynamic viscosity at contact temperature 

oη  Dynamic viscosity at bulk oil temperature and atmospheric pressure 

ρ  Density 

ψ  Attitude angle in the wheel-to-shaft conjunction 

 
 
(a)- Mathematical Formulation 
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Gear teeth impacts (rattle) are induced due to oscillations of loose 
(unselected) gears within the confine of their clearances. These oscillations 
are caused by torsional fluctuations of the transmission input shaft caused by 
combination of engine inertial imbalance and combustion loading (referred to 
as engine order vibrations, see Rahnejat, 1998). These vibrations are 
particularly present in diesel engines output torque. Due to various driving 
conditions, different types of rattle have been defined; idle, drive, creep and 
over-run rattles (see chapters 21, 23-30). It is noteworthy, however, that rattle 
only originates within the unselected gear pairs.  The distinction described 
above only changes the gearbox’s input shaft excitations and the contribution 
of a given engaged gear to its counterparts. Figure A1-1 shows a 
diagrammatic representation of a 6 speed forward plus reverse manual 
gearbox used in this analysis (also see chapter 26).  
 

 
Figure A1.1: Front wheel drive, 6 speed + reverse gearbox  

under investigation 
 
In the multi-physics approach described in this chapter, the model comprises 
inertial dynamics and impact/contact tribological characteristics. There are a 
number of lubricated conjunctions, shown in figure A1.2.  
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Figure A1.2: Forcing elements in conjunctions of engaged and 

unengaged gear pairs 
 
For the loose rattling gear wheels, the regime of lubrication is assumed to be 
hydrodynamic (see chapter 5). This assumption is supported by the low loads, 
W and a relatively large film thickness, h . In the case of engaged gear pair, 

this assumption is no longer true as moderate to high loads lead to 
elastohydrodynamic regime of lubrication (EHL) (see chapter 6). These 
assumptions have been verified through use of a lubrication chart, such as 
that presented in Gohar and Rahnejat (2008). Typically, EHL conjunctions, 
have film thicknesses in the sub-micrometer region.  
 
Grubin (1949) provided the original analytical solution to the EHL problem. 
Equation A1.1 presents Grubin’s expression for film thickness: 
 

x

x x

E lrh αηu

r r W

   
    

  

8 1
11 11*

2.076        (A1.1) 

 
The contact load can be obtained through Hertzian analysis for an elastic line 
contact as: 
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         (A1.2) 

 
where, under a totally elastic impact, the deflection is found as (Gohar and 
Rahnejat, 2008): 
 



Rahnejat, H., “An introduction to multi-physics multi-scale approach”, in Rahnejat, H 

(Ed.), Tribology and dynamics of engine and power train, Woodhead Publishing, 

Cambridge, UK, 2010, ISBN: 978-1-84569-361-9  
 

 

p

l
mv

b
δ

πlE

   
   

   
 
 
  

1
2

22 1
2 ln

2

*
       (A1.3) 

 
With the aid of kinematics and Hertzian contact mechanics, all the parameters 
needed in equations (A1.3) are found (De la Cruz et al, 2008). 
 
Friction for thin EHL films in gear pair contacts is due to a combination of 
viscous shear and boundary interactions, thus: 
 

b vF F F          (A1.4) 

 
This is rather involved and readers should refer to Greenwood and Tripp 
(1967) model (see also chapter 3). 
 
Hydrodynamic reactions in loose gear teeth pairs are represented by the 
analytical relationship (Gohar and Rahnejat, 2008):  
 

3
22 3

2

x xbuηr rπbη h
W

h h t

 
   
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      (A1.5) 

The expressions are also based on contact geometry and operating 
conditions. A very important parameter is the squeeze film velocity in 

approach and separation of gear teeth pairs (see chapter 5); 
h

t




. A negative 

value corresponds to the approach of the contacting solids (increasing the 
contact load in (A1.5)). When a positive value is encountered, this is set to 
zero, i.e. entraining motion only, as the lubricant cannot sustain a tensile 
force.  
 
The film thickness value for use in equation (A1.5) is obtained as a function of 
gear pair dynamics (Tangasawi et al, 2007): 
 

 bwi i bpi pih C R φ R φ          (A1.6) 

 
As can be seen in figure A1.2, there are two distinct conjunctions in loose 
gear pairs. One conjunction corresponds to the impact/contact zones of gear 
teeth pairs, in which flank friction is generated due to viscous shear under 
hydrodynamic condition. A number of teeth pairs are usually in simultaneous 
action. The flank friction in each pair is a function of the contact sliding 
velocity, thus (Gohar, 2001):  
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The other conjunction is the conforming contact between the output shaft 
supporting the loose wheel and the wheels inner (bore) surface. This contact 
may be approximated by a journal bearing with no eccentricity. The viscous 
friction in this conjunction is given as (Gohar and Rahnejat, 2008): 
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where 0  , thus: 
2 brg brg brg

P

u R l
F

c


   

 
Having stated all the required forcing functions, based on the tribological 
contacts, the dynamics of the problem can now be introduced. This multi-body 
system is solved using equations of motion following the Newton-Euler 
approach. Hence, for the 7 degrees of freedom model presented in figure 
A1.1, the equations of motion can be divided into three groups: 
 
For the engaged pinion-wheel pair (in this case the 2nd gear): 

os k bw i j xi j k x k D

k n i j n k n

I I φ W R F r F r T
   

       2 2 2, 2 , , 2, 2, 2

1, ' 1,3,4,7 1, 1, '

( )  

(A1.9) 
 
For the loose unselected pinion-wheel pairs 3 6i  : 

i i i j bwi i j xi j pi brgi

j n j n

I φ W R F r F R
 

   , , ,

1, ' 1, '
    (A1.10) 

 
Finally, for the reverse pinion-wheel pair (loose wheel on the 2nd transmission 
output shaft, meshing with the reverse pinion mounted on the 1st output shaft): 

k bw k x k p brg

k m k m

I φ W R F r F R
 

   7 7 7, 7 7, 7, 7 7

1, ' 1, '

    (A1.11) 

 
Under the EHL regime of lubrication, lubricant viscosity is dependent upon 
both the generated conjunctional pressures and temperature. Pressure 
causes a rise in viscosity and responsible lubricants almost incompressible 
behaviour (chapters 5 and 6). Also, due to the viscous shear in the contact 
temperature rises, which in turn reduces the lubricant viscosity (see chapter 5) 
In moderate to highly loaded concentrated contacts the conditions are 
referred to as thermo-elastohydrodynamics (see chapter 6). Thus, together 
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with the dynamics, the model is multi-physics, multi-level approach, dealing 
with variables from sub-micrometers (film thickness) to those of large 
displacements. For very small micro-electromechanical gear pairs (MEMS), 
the physics of conjunctions are in nano-scale (see Gohar and Rahnejat, 2008 
and chapters 3 and 32). 
 
Thermal effects must be accommodated in two major conjunctions, flank 
interactions and those of loose wheels-to-the retaining shaft. When dealing 
with heat generation in contacting flank pairs, the energy equation can be 
solved analytically (see chapter 5). The energy equation is: 
 

2 2

2

compressive heating convection coolingviscous heating conduction cooling

x
e x x p c

vp θ θ
v v θ η ρv C k

x z x z

       
        

         
  (A1.12) 

 
For thin elastohydrodynamic films heat generation within the contact region is 
carried away by conduction through the contiguous surfaces. Thus, the 
convection cooling term may be ignored. Also, the compressive heating term 
is small compared with shear heating, particularly within the flat reion of the 
EHL film, thus an analytic solution is possible, where the temperature rise in 
the flat oil film is found as (Gohar and Rahnejat, 2008): 
 

t

η u
θ

k


 

22
         (A1.13) 

Under hydrodynamic conditions, relatively thicker films in the teeth flank 
conjunctions promote convection cooling and compressive heating can be 
ignored due to low pressures, thus:  
 

p
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For the conforming contact between the loose wheels and their retaining 
shafts, an analytic solution similar to that for a journal bearing may be used 
(see chapter 8 and Gohar and Rahnejat, 2008). Thus: 
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where: * s
s

Q
Q

NlRc
 , * R

c


   and 1

1

p

k
K

c
 , where 1 1k   indicates that not all 

the heat is carried away by convection. 
  
With   obtained for each conjunction and the inlet bulk oil temperature 

known (that of engine operating condition), the effective viscosity of the 
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lubricant in each conjunction can be evaluated using Houpert (1985) equation. 
This is given in chapter 5. Thus, an iterative procedure is used which includes 
tribology, thermal effects and system dynamics (De la Cruz et al, 2009a).  
 
(b)- Results and Discussion 
 
Figure A1.3 shows the predictions for partial loading creep rattle condition at 
the engine idling speed of  830 engine RPM with 2nd gear engaged. Two 
different cases are presented; one for low and the other for high bulk oil 
temperature. Previous studies have indicated that temperature plays a key 
role in transmission rattle (see Tangasawi et al, 2007 and chapter 26). It is 
suggested that at higher temperatures loose gear pairs are more prone to 
rattle due to reduction in resistive (drag) torque. It has also been shown that at 
some ideal temperature values gear rattle is attenuated. It may be surmised 
that lubricant viscosity variation in different conjunctions, described above, 
may be the cause of this. However, this variation is different for each single 
gear pair and hence a unique solution may be difficult to find.  
 

 
Figure A1.3: 2nd (engaged) gear plots for film thickness, mean pressure, 
friction and temperature change in a meshing cycle for a gear teeth pair 
 
The result in figure A1.3 relate to one meshing cycle, comprising 
simultaneous interactions of 2-3 gear teeth pairs of the selected 2nd gear pair. 
The variations are for one set of teeth in order to demonstrate the effect of 
temperature, often ignored in all such analyses. As expected, due to EHL 
conditions the film thickness in general is rather insensitive to load, but 
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profoundly sensitive to contact temperature and geometry. This affects the 
flank friction and thus the torque transmitted to the loose gear pairs, which 
themselves are affected by temperature as well.   
 
The changes as the result of meshing conditions in the engaged gear pair, 
together with engine order vibration transmitted to the loose unselected gear 
pairs induce transmission creep rattle in the case studied here. Further 
analysis of loose gear results, typically by fast Fourier analysis of their 
dynamic behaviour sheds light on their rattle behaviour. De la Cruz et al 
(2009b) used an impulsion ratio mI , to define rattle conditions:   

 

pet fdrive
m

drag pet

CT
I C

T h




          (A1.16) 

 
This attempts to predict conditions that induce propensity to rattle. The ratio 
takes into account the inertial torque, inducing motion (due to impact forces of 
simultaneous meshing pairs) and the resistive or drag torque (because of 
frictional losses ). A ratio of unity leads to uniform motion (no acceleration), 
whilst values exceeding unity indicate impulsive action and those below unity 
correspond to decaying oscillations.  
 

 
Figure 4 – Impulsion ratio time histories and FFT spectra for high (1st) and low 
inertia (5th) gears. (a) and (c) refer to 1st gear and (b) and (d) to 5th gear 
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It is noted that at a given temperature, high inertia gears show a lower energy 
content in their frequency spectrum, suggesting that rattle could be more 
noticeable in the low inertia gears. Even though the values of the impulsion 
ratio are higher for the first gear, it is the frequency at which the limiting value 
of unity is exceeded which fundamentally affects the rattle behaviour.  
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