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Abstract   There has been an increasing interest in applying biotechnology in formulating 

and characterising new and innovative drug delivery methods, e.g., drug-loaded 

biodegradable microneedles within the area of transdermal delivery technology. Recently, 

microneedles have been proposed for use in pain management, e.g., post-operative pain 

management through delivery of a local anaesthetic, namely, lidocaine. Lidocaine is a fairly 

common, marketed prescription-based local anaesthetic pharmaceutical, applied for 

relieving localised pain and lidocaine-loaded microneedles have been explored. The purpose 

of this review is to evaluate the properties of biodegradable polymers that may allow the 

preparation of microneedle systems, methods of preparing them and pharmacokinetic 

conditions in considering the potential use of lidocaine for delivery through the skin. 
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Introduction 

There has been an increasing interest in applying biotechnology in formulating new and 

innovative drug delivery methods, including biodegradable microneedles within the area of 

transdermal drug delivery technology (Orive et al. 2003; Olatunji and Das 2010; Olatunji and 

Das 2011). Conventional hypodermic needle delivery causes pain and anxiety, and requires 

medical personnel for administration. In contrast, the biodegradable microneedle, a drug-

loaded vehicle moulded into an all-in-one drug formulated micro-structure constructed from 

either biopolymer or sugar excipients, can be used to deliver drug almost painlessly to 

humans (e.g., Donnelly et al. 2010; Lhernould and Delchambre 2011; Olatunji and Das 2011; 

Gittard et al. 2012). These microneedles are economical due to fairly cheap materials, 

reproducible and are generally safe if microneedle fragments break off after piercing the skin 

surface as compared to other microneedles made with glass or metal. 

Large molecular weight proteins such as bovine serum albumin (BSA), growth hormones 

and vaccines have been successfully loaded into biodegradable microneedles (Lee et al. 

2008; Lee et al. 2011a; Raphael et al. 2010). Recently, the microneedles have also been 

explored for use in post-operative pain management through delivery of a local anaesthetic, 

lidocaine. Lidocaine provides short duration, superficial anaesthesia, to the pain-affected 

area (Kissin 2012). Lidocaine (Fig. 1a) comprises of a polar tertiary amine and a 

hydrophobic aromatic group on the opposite ends of the acetamide bond (Costa et al. 2008). 

It is hydrophobic as the basic drug but it is soluble in water as the ionised form of lidocaine 

hydrochloride (Fig. 1b) in which the tertiary amine is protonated (Ullah et al. 2012; Rajabi et 

al. 2011; Shaikh et al. 2011). Therefore, lidocaine can be encapsulated or dispersed in a 

drug delivery vehicle which could be either hydrophobic or hydrophilic.  

 

 

 

 

Fig. 1 a 

Fig. 1 b 
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In the present context, a vehicle for drug delivery is taken as a support material for 

formulating drugs usually in liquid-based or a semi-solid form to remain on the skin surface 

and facilitate the conditions necessary for transdermal drug delivery (Allen et al. 2005; Djabri 

et al. 2012; Subedi et al. 2010). An ideal drug carrier system or vehicle is sought for 

identifying optimal conditions in controlled release and transdermal permeation kinetics of 

the drug lidocaine. The main objective of using a vehicle is either to allow for fast initial 

release or permeation in skin with consideration to the suitability of suturing a superficial cut 

or a slow initial release and longer  steady state conditions lasting several hours with an 

alternative consideration to suturing and treating multiple lacerations at the localised area. 

A formulation of lidocaine has been developed by Fiala et al. (2011) for EMLA (eutectic 

mixture of local anaesthetics) containing lidocaine and prilocaine in hydrofluoroalkane as a 

propellant enhancer spray. Kaewprapan et al. (2012) studied lidocaine-loaded nanoparticles 

of dextran decanoate esters with varying degrees of substitution for suspension in aqueous 

medium. Petrisor et al. (2012) mixed lidocaine with silicone elastomer and analysed the 

controlled release effects of modifiers such as poly(vinylpyrrodidone), PVP, and poly(vinyl 

alcohol), PVA. Compared with injectable and skin- surface drug applicants, microneedles are 

highly beneficial in terms of constant needle lengths being below the length causing 

epidermal pain stimulation during insertion (Banga 2009), while respectively described as 

minimally invasive in forming micro-spaces (Daugimont et al. 2010) in conjunction to 

enhancing the movement of the active compounds through the skin (Ameri et al. 2010; Chu 

et al. 2010). 

Besides the laboratory-based studies mentioned above, there are a number of proprietary 

transdermal delivery systems for lidocaine. These include proprietary medicines in solution, 

semi-solid and patch delivery system. For example, lidocaine in solution is combined with a 

bacterially-derived hyaluronic acid gel formula to minimise the discomfort of injection as a 

tissue filler in the cosmetics industry (Monhiet et al. 2009). The proprietary name of the 

formulation is Prevelle Silk (Mentor Pharmaceuticals, www.mentorcorp.com). Lidocaine 

solution is marketed under the proprietary name of Xylocaine and is also available in an 
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injectable format (www.astrazeneca.co.uk). Clinical research has shown that a 1% (w/v) 

lidocaine subcutaneously injected once into the location of a lacerated, injured or tumour-

affected hand allows for successful local anaesthesia followed by surgical treatment (Tzeng 

and Chen, 2012). A lidocaine patch for the application to skin is also marketed with the 

proprietary name Lidoderm (www.Lidoderm.com). A Lidoderm (5% w/v) patch has been 

applied for the treatment of postherpetic neuralgia (Katz et al. 2002) and in the reduction of 

pain during treatment of Dercum’s disease (Desai et al. 2008). 

Conceptually, microneedle technology provides an attractive method for delivering 

lidocaine. For example, it may be possible to apply the drug over a large surface area on the 

body with no or little pain in contrast to traditional hypodermic injections. With microneedles 

it may be possible to control the drug delivery rate as well besides reducing wastage of the 

drug. As far as we know, there is no commercially-based lidocaine microneedle product 

available from pharmacies. However, there seems to be some developmental research for 

lidocaine microneedles. Recently, the 3M group developed a lidocaine solution mixed with 

Dextran to uniformly coat medical-grade, liquid crystalline polymer (class VI) for pre-clinical 

in vivo studies using biopsy porcine skin of live pigs resulting in successful delivery of 

lidocaine at a faster time compared to eutectic mixture of local anaesthetics (EMLA) 

composed of lidocaine and prilocaine as a combined eutectic formulation (Zhang et al. 2012; 

Schreiber et al. 2013). A less recent but highly significant development was made by 

Theraject, Inc (Kwon. 2004) with regards to determining the permeation flux of lidocaine 

through the skin by testing a Theraject MAT dissolvable microneedle system. This vehicle 

comprised sodium carboxymethyl cellulose mixed with lidocaine and was cast, compressed 

and moulded to dryness with a subsequent diffusion characterisation that confirmed the 

permeation flux had increased up to 12-fold compared to 10% (w/v) lidocaine as control 

(Kwon 2004). The degree of subsitition, in terms of exchanged hydroxyl groups to 

carboxymethyl groups in sodium carboxymethyl cellulose, effected solubility, viscosity, gel 

strength and electro-analytical behaviour as an anionic polymer in solution requires further 

work in order to aim for a plastic material property (Kundu et al. 2011). 
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While the above studies show the potential for applying the principles of biotechnology for 

preparing lidocaine-loaded microneedles, there is a clear need to make further progress on 

the methods of preparation and characterisation of the microneedles for drug delivery. It may 

also be necessary to learn from what have been done elsewhere while loading and 

delivering other molecules (e.g., insulin) using biodegradable microneedles. To address 

these issues, this review paper aims to evaluate critically the current developments in 

biodegradable microneedle systems for possible applicability in transdermal lidocaine 

delivery. In particular, this paper reviews the methods of preparation and the properties of 

biodegradable polymers that may allow for the development of a desirable microneedle 

system for lidocaine delivery. It is expected this would be helpful in preparing biodegradable 

microneedle for lidocaine delivery. 

 

Preparation of biodegradable microneedles 

The first published paper on microneedles was in 1947 in which soft glass material (30 

microns tip diameter and 2.5 cm long) was an example of early microneedles in assisting the 

isolation of yeast ascospores (Thaysen and Morris 1947). Gerstel and Place (1976) were the 

first to obtain a patent for the architecture of microneedle arrays, outlining a drug solution 

reservoir to a flow-through hollow microneedle. In 1998, a paper on the fabrication of 

microneedles used silicon-layered chromium for ‘coat and poke’ delivery of drugs (Henry et 

al. 1998). The first published fabrication of biodegradable microneedles used 

micromachining technology to mould polycaprolactone polymer into microneedles (Armani 

and Chang 2000; Park et al. 2003). At the moment, there is clearly an increasing interest in 

preparing biodegradable microneedles for a variety of applications. 

Preparation and treatment of normal skin surface before the application of a microneedle 

has not been recommended. Most literature suggests that pathogenic infections are not 

caused by using microneedles (Arora et al. 2008; Donnelly et al. 2009; Han et al. 2012). The 

removal of microneedles leaves indents on the skin and the main factors, such as 

microneedle length, number in an array and microneedle cross-sectional area, effect the 



6 
 

time for natural skin resealing (Gupta et al. 2011). For example, Kalluri and Banga (2011) 

have characterised the micro-conduit channels caused by microneedles and pore re-sealing. 

They show that skin pores close partially in approx. 12 h and completely in approx. 15 h.  

 A direct thumb application for biodegradable microneedles allow the drugs encapsulated 

inside the microneedles to diffuse into the viable epidermis of the skin as outlined 

schematically in Fig. 2a (Shakeel et al. 2011; Kim et al. 2012a). However in the case of 

lidocaine, if the drug is concentrated in the middle to lower portion of the microneedle than 

the tip, the permeation is expected to be in the stratum corneum (SC) layer of the skin to 

anaesthetise a superficial cut.  

 

 

 

As such, one needs to consider where the drug is loaded in the microneedles. Compared 

with glass and metal microneedles, biodegradable microneedles have no or little safety 

concern if they break and embed in the skin as a foreign body (Park et al. 2007a). Also, the 

manufacturing process and reproducibility of biodegradable microneedles are economical 

compared with conventional micro-machining manufacture (Donnelly et al. 2010). Fig. 2b is 

an image of sodium carboxymethyl cellulose-biodegradable microneedles encapsulated with 

the drug sulforhodamine B and Fig. 2c is an SEM plan view of PLGA microneedles (Jeong et 

al. 2008; Park et al. 2007a). 

 

 

 

 

 

Fabrication of biodegradable microneedles from substrate masters. 

Biodegradable microneedles have been fabricated by a variety of means. For example, 

silicon master substrate is adapted in MEMS applications and less time consuming, mass 

Fig. 2 a 

Fig. 2 b 

Fig. 2 c 
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producing techniques were researched via operations from the microelectronics industry, 

known as microelectronic mechanical systems (MEMS) for the fabrication of a master 

microneedle array prior to micromoulding (Fujita 1997; Walraven 2003; Trautmann et al. 

2005). SU-8, 1-methoxy-2-propyl acetate, (Microchem Corp, MSDS) is a negative 

photoresist material mixed with a Sulfonium salt photoinitiator for inducing the mechanism of 

cationic polymerisation in epoxy groups of SU-8 monomers under UV (Zhang et al. 2001; 

Qvortrup et al. 2011). It is photosensitive to UV light and a special mask diffraction grating is 

required to direct a particular wavelength onto the SU-8 (Ami et al. 2011). SU-8 does not 

always provide accurate structures and cases of bending brought by high residual stress 

were observed when photoresist and substrate posses incompatible thermal expansion 

coefficients. As such, the UV exposure time and wavelength range need close monitoring to 

prevent the distorting structure (Safavieh et al. 2010; Del Campo and Greiner 2007). 

Marasso et al. (2011) implemented double spin coating with two different viscosities of SU-8 

and observed good adhesion properties between copper substrate and SU-8 in-conjunction 

to an aspect ratio of 7:1 without additional steps such as wafer removal and seed layer 

introduction, extending production period over 24 h. Also, the viscosity and set thickness of 

the SU-8 photoresist are dependent on the amount of γ-butyrolactone solvent dissolved in 

producing the solution (Lorenz et al. 1997). 

A recent starting material for production of master templates was reported by Viero et al. 

(2012). They used reactive-ion etching (RIE) on silicon based master for the construction of 

microneedles. Chen et al. (2008) also outlined a fabrication process which used silicon oxide 

layers on silicon followed by a positive photoresist treatment for pattern transfer onto the 

silicon oxide layer via RIE and finally producing microneedle tips using an isotropic RIE 

process. Lhernould and Delchambre (2011) arrived at a design fabrication process of 

implementing laser ablation to create microchannels in polycarbonate material. Matteucci et 

al. (2009) adapted the micro-fabrication process known in German as lithographie, 

galvanoformung, abformung (lithography, electroplating and molding) by Hruby (2001) which 

produced microneedles by double-exposure, deep X-ray lithography (Kim et al. 2004) using 
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microcrystalline silicon wafers surfaced with Cr/Au bilayer as a template. Even though 

complicated multi-step processes and specialist resources are required in the production of 

a large quantity of master microneedles, the production of a single master is economical and 

time saving when considering the transferability in creating an inverse micromould for 

biodegradable microneedles (Kim et al. 2009; Kim et al. 2012b). 

 

Fabrication of biodegradable microneedles from moulds 

Biodegradable microneedles have been manufactured from micromoulds that are non-

interconnecting micro-well structures (Ryu et al. 2007). There is a lack of publications which 

outline the micro-moulding fabrication processes methodically. However, the manufacturing 

processes of casting and hot embossing are common for biodegradable microneedles, 

which are discussed briefly. In the casting process, a master template is fabricated to 

develop a mould template for a molten drug formula to fill the mould contours, solidify via 

favourable temperature and pressure conditions and finally removal of the mould from the 

solidified drug formula (Bariya et al. 2011). Poly-dimethyl-siloxane (PDMS) is an ideal 

material for replica moulding of microneedles because of its non-toxicity, elastic properties 

and low cost (Saliterman 2006; Lee and Lee 2008) and as such, it has been used in many 

studies. Laser ablation by focusing a CO2 laser was used to create conical shaped voids in 

PDMS material moulds for vacuum setting sodium carboxymethylcellulose and 

polyacrylamide solution into solid microneedles (Kim et al. 2009). In another study, a pre-

fabricated PDMS mould was used to vacuum set PLGA microneedles containing hydrogels 

(Kim et al. 2012b). PLGA is composed of D,L-polylactic acid (PLA) and polyglycoloic acid 

(PGA) monomers (Gabor et al. 1999; Danhier et al. 2012). As a biocompatible polymer, 

PLGA is used in biotechnology for the goal of preparing biodegradable microneedles and 

scaffolds in tissue engineering (Lee et al. 2004). It has been argued that PLGA with low 

molecular weights of less than 50 kDa and D,L-lactide/GA ratio of 50:50 are the most 

suitable for controlled drug release with respect to faster degradation rates (Fredenberg et al. 
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2011; Mundargi et al. 2008). PLGA in the context of merchandise is commercially and 

readily available from many chemical suppliers. 

 Stages in a typical casting process (Fig. 3a, Chu et al. 2010) start with a PDMS mould 

(step 1), pre-fabricated from a PDMS male master coated with gold, and the mould is filled 

with sulforhodamine B (step 2). The residual drug solution is pipette extracted half-way to be 

reused later (step 3) and the remaining drug solution in the mould crevice is dried by 

centrifugation. The PVA/PVP blend devoid of drug is casted into the mould by vacuum 

pressure (step 4), the combined polymer is air dried or low speed centrifuged in drying (step 

5) and adhesive backing is used to prise the formed polymer microneedles from the PDMS 

mould (step 6). Another biodegradable polymer system, poly-lactide-co-glycolide (PLGA) 

fabricated by Park et al. (2003) (Fig. 3b) commenced with SU-8 substrate (step 1) by using 

the same PLGA polymer as a sacrificial filler on SU-8 (step 2) followed by copper-coating 

deposition and acid etching to cover the SU-8 epoxy cylinders as a pattern (step 3) with 

subsequent reactive ion etching (RIE) to asymmetrically etch the tips of epoxy cylinders 

(step 4) and an inverse PDMS mould was created (step 5) with the prior master structure 

from RIE method before casting new PLGA microneedles as the final product (step 6) (Park 

et al. 2003). 

 

 

 

 

 A more economical method using a natural clay, chinese purple ceramic  mould was formed 

by hydraulic pressing a bed of steel sticks into the soft pliable clay before furnace heating, 

slow cooling followed by pouring a mixture of PVA, dextran and carboxymethylcellulose 

polymers into the mould then vacuum setting, freeze thawing and finally drying into 

microneedles (Yang et al. 2012).  

A less common fabrication technique known as hot embossing requires the application of 

heat above the glass transition temperature of the polymer product in contact with the mould 

Fig. 3 a  

Fig. 3 b 
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followed by force to emboss the mould pattern to the polymer product and then cooling 

below the glass transition temperature before separation of mould and polymer product 

(Bodhale et al. 2009). Poly-L-lactic acid (PLLA) is commercially and readily available from 

many chemical suppliers, similar to PLGA. PLLA microneedles were fabricated by a hot 

embossing technique through a multi-step process via a PDMS replication and then heating 

and pressuring the PDMS mould and PLLA grains followed by unmoulding at room 

temperature to obtain the microneedles (Han et al. 2009). A more efficient process was 

studied by Youn et al. (2008) by fabricating silicon moulds using focused ion beam and then 

pressing the silicon mould in poly-methyl-methacrylate (PMMA) polymer under applied 

temperatures above the glass transition temperature of PMMA and pressure followed by 

slow cooling  resulted in good reproducibility of replicated structures (Youn et al. 2008). Hot 

embossing appears only suitable for high temperature stable drugs in a biodegradable 

polymer vehicle as temperatures of over 100°C are required. 

As a substantial number of biodegradable microneedles are classed polymers, a 

supposedly third fabrication technique called investment moulding has been used suitably 

for hollow non-biodegradable polymers in which a drug solution flows through the hollow part 

of the microneedles into the skin (Lippmann 2007; Lippmann and Pisano 2006). Melt 

injection processes in investment moulding are suitable for thermoplastics because in 

adaptation of micromoulding, very high shear is required to allow for lower viscous melt and 

low resistant flow but heat generation can cause degradation of the drug formulation (Zhao 

et al. 2003). 

As mentioned earlier, currently there seems to be no lidocaine loaded biodegradable 

microneedle polymer systems published at present. Table 1 outlines the dissolvable or 

biodegradable materials as a vehicle for the drug and the method and conditions in 

manufacturing in-conjunction to significant dissolution or permeation results. 

 

 

 

Table 1 
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Possible biomaterials for controlled lidocaine release from microneedles 

Lidocaine requires controlled release microneedles that allow for initial fast release into skin 

but reaches the desired plateau levels in which finite dosage is achieved. Therefore, the 

microneedles have to dissolve or disintegrate in the tissue fluids of physiological conditions 

at that site near the laceration before medics can treat the area by cleaning and suturing. 

Drug molecules directly suspended in a well-mixed polymer microneedle matrix contribute to 

faster recorded time release than those encapsulated in microparticles followed by 

suspension in a second matrix vehicle as it is a two stage release mechanism with outer 

matrix dissolving first. For example, the time of drug release has been reported as 4 h when 

calcein was released from PLGA (85/15) obtained commercially in solid state via pre-

processed moulded microneedles compared with the same drug encapsulated in NaCMC 

followed by PLGA in which the result was reported as 4 days (Garland et al. 2011; Park et al. 

2006). The polymer and co-polymer monomeric ratios are influential in degradation for drug 

release. For example, single carbohydrate polymer poly-L-lactic acid (PLLA) with intrinsic 

viscosity value 2.38 was acquired commercially as a solid and processed into films and the 

result showed significantly slower degradation by hydrolysis in the release of lidocaine 

compared with PLGA (80:20) films which controlled released over 60% of lidocaine in forty 

days (Loo et al. 2010).  PLGA 50:50 microparticles loaded with lidocaine resulted in much 

faster controlled release of over 50% in 10 days (Klose et al. 2010). Lidocaine loaded PLGA 

would be highly suitable for relieving long duration symptoms of skin irritation and discomfort 

caused by illnesses such as postherpetic neuralgia, previously mentioned for commercially 

available lidoderm. PLLA’s starting monomers, L-lactic acid (LLA), can be derived by 

carbohydrate fermentation methods with lactic acid bacteria depending on the strain of 

lactobacillus (Garlotta 2001; Roy et al. 1982). The distinct synthetic step in the production of 

PLLA is the condensation polymerisation of LLA in which ester linkages between LLA 

monomers are formed and water is the by product (Mehta et al. 2005; Garlotta 2001). PLGA 

is synthesized by the mechanism of structural ring opening polymerisation of D,L-lactide and 

glycolide by catalysis from stannous 2-ethyl hexanoate in conjunction with a molecular 
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weight- regulating additive, triphenylsilanol with the overall objective of consistent chain 

length and reduction of side branch chains (Ouyang et al. 2011; Mazarro et al. 2009). 

Biodegradation in the context for polymers is the breakdown of a high molecular weight 

molecule into smaller components of low molecular weight molecules caused by enzymes 

from microorganisms and/or environmental catalysts (Luckachan and Pillai 2011; Wang et al. 

2003). Table 2 provides a summary of biodegradable polymer systems with respect of 

morphological properties and biodegradation measurements while physiological conditions 

according to plasma fluid are kept constant. The overall trend from Table 2 shows that the 

degradation is faster for PLLA blends than PLLA itself. Also, it seems that PLGA 50:50 is 

much faster degrading than PLGA 75:25. 

 

 

 

Tensile properties of biodegradable microneedles 

Dissolvable/biodegradable microneedles require quality testing to determine the maximum 

direct force required on the base unit before fracturing or crumbling occurs from the tip to the 

body of the microneedles. Such a test can be done using an axial load testing station which 

relies on gradually moving the microneedles into a block of metals (e.g. aluminium) until 

needle breakages are evident (Bariya et al. 2011). A measured section of the metal block 

contains a pre-determined thickness of skin attached by dual sticky tape and the other 

section of the block is connected to a compression cell containing microneedles and 

motorised actuator. The actuator provides a method for constant speed of microneedles 

insertion into the skin with the output measurement as force (Khanna et al. 2010). A number 

of components have been used to control tensile strength of dissolving microneedles as 

shown in Table 3. 

 

 

Conclusions 

Table 3 

Table 2 
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Although a number of lidocaine based transdermal products can be found in the market 

there is a large gap for lidocaine microneedle products, especially biodegradable 

microneedles. This implies that considerable amount of new research is required at the 

developmental and pre-clinical setting in order to achieve the desired controlled release of 

lidocaine into skin and maintain a steady drug concentration for a short duration of time for 

the purpose of superficial suturing of a cut. A biodegradable lidocaine microneedle system 

formulated from carboxymethylcellulose demonstrated the increase in pharmacokinetic 

permeation flux, thus highlighting further interest in research of other biodegradable 

materials as drug vehicles for lidocaine with the aim of achieving faster permeation kinetics 

in skin with the general idea of a minimal delayed therapeutic action. Also, the development 

of lidocaine microneedles may provide a scope for a cheaper product as compared with 

current EMLA formulations containing lidocaine in which a second local anaesthetic, 

prilocaine add to the material costs.  

The manufacturing of biodegradable microneedles via a casting process with usage of 

SU-8 or PDMS moulds is economical mainly because these moulds can be re-used 

numerous times in mass production of biodegradable microneedles. The mechanical 

penetration strengths are a highly important physical challenge seen in biodegradable 

microneedles. Not only is a sharp tip of microneedle necessity in cutting through skin but the 

casted dissolvable material requires adequate resistant to compression forces that mimic 

finger or thumb pressures. Dissolvable materials with soft solid or brittle physical properties 

require mucoadhesive co-polymer agents such as PVA or PVP in the mixture to provide for 

mechanical strength. 
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Table 1 Fabricated microneedles according to manufacture, dissolution and permeation of 

drug 

Microneedle 

materials 

Methods of  

ma n u f a c t u r e 

Condi t ions of   

ma n u f a c t u r e  

Results of drug 

permeation or 

dissolution of vehicle 

PLA, PLGA (50/50) 

and PEG unmixed 

initially (Park et al. 

2007b) 

 

 

Casting with PDMS 

(Park et al. 2007b; 

Xiangdong et al, 2009) 

SU-81 photoresist 

master (Natarajan et 

al. 2008), gold coating 

o f  5 0 0 Ǻ . 

Ultrasound pulses to 

weld polymer 

microparticles within 

mould to create porous 

structure (Park et al. 

2007b). Vacuum 

pressure and oven 

heating for microneedle 

static shaping (Park et 

al. 2007b) 

No publication found 

Silk fibroin from B. 

mori c ocoons2 (You 

et al. 2011)  

Epoxy microneedle 

master from X-ray 

lithography to produce 

female PDMS3 mould 

(You et al. 2011). 

Molten fibroin drug set 

into PDMS and mould 

removed (You et al. 

2011) 

Oven drying and 

vacuum pressure for 

shaping and solidifying 

microneedles (You et al. 

2011) 

No publication found. 

Poly (methyl vinyl 

ether co-maleic acid) 

(Garland et al. 2012) 

Blulase  laser cutting 

for fabricated silicone 

elastomer moulds 

using Aluminium 

template (Garland et 

40°C heat for curing 

mould and centrifugation 

at 3500 g for 15 min and 

microneedles dried for 

24 h under ambient 

In vitro studies with 

Neonatal procine skin 

reported 59%, 39% 

and 23% cumulative 

release of caffeine, 
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al. 2012) temperature (Garland et 

al. 2012) 

lidocaine and 

metronidazole 

respectively for 

combined concoction 

microneedles were 

tested (Garland et al. 

2012) 

20% (w/w) aqueous 

blends of co-polymer 

Gantrez® AN-139 

(Donnelly et al. 2011) 

Galvanometer 

controlled Excimer 

laser for variable 

height and 

interspacing of 

microneedle mould 

setup (Donnelly et al. 

2011) 

 

Blulase  laser cutting 

for fabricated silicone 

elastomer moulds 

using Aluminium 

template (Donnelly et 

al. 2011) 

40°C heat for curing 

mould and centrifugation 

at 3500 g for 15 min and 

microneedles dried for 

24 h under ambient 

temperature (Donnelly 

et al. 2011) 

83% of the drug, 

theophylline, contained 

in microneedles, 

permeated past the 

skin compared to 5.5% 

with patch delivery 

over a 24 h period 

(Donnelly et al. 2011) 

The percentage is out 

of total drug loaded.  

Trehalose/mannitol  

(50:50 w/w), 

trehalose dihydrate/ 

sucrose (75:25 w/w), 

trehalose/sucrose 

(75:25 w/w) and 

trehalose/sucrose 

(50:50 w/w) (Martin 

PDMS3 mould created 

from wet etched silicon 

male master (Martin et 

al. 2012) 

1 h vacuum pressure of 

(100 mbar) at room 

temperature conditions 

followed by 48 h 

dehydration without 

vacuum (Martin et al. 

2012)  

Sugar glass 

microneedles 

containing 2% (w/w) 

methylene blue 

powder showed 

complete dissolution 

between 10 to 20 min 

after insertion into full 
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et al. 2012)  thickness human skin 

(Martin et al. 2012) 

Maltose 

monohydrate (1 g/ml) 

in deionised water 

(Lee et al. 2011b) 

Stainless steel pillars 

and syringe pump to 

directly draw molten 

maltose into conical 

microneedles (Lee et 

al. 2011b) 

Axial drawing at 400 

μm/s for 1 s at 100 °C 

then 400 μm/s for 3 s at 

96 °C, cooling to 60 °C 

and separation from 

attached support pillars 

at 700 μm/s (Lee et al.  

2011b) 

Optical micrography 

showed complete 

dissolution of maltose 

microneedle 

containing 

sulforhodamine B in 

guinea pig skin after 

20 min (Lee et al.  

2011b) 

Maltose (analytical 

grade) in water (Kolli 

and Banga 2008)  

Pre-fabricated inverse 

moulds formed by 

etching process 

(Texmac Inc) 

Direct pouring of molten 

maltose at 95 °C into 

mould within one min 

and gradual cooling to 

55 °C to prise out the 

mould from shaped 

microneedles (Kolli and 

Banga 2008; Miyano et 

al. 2005) 

Nicardipine- 

hydrochloride loaded 

maltose microneedles 

recorded a mean flux 

of 7.05 μg/ml/h 

compared with control 

value of 1.72 μg/ml/h 

(Kolli and Banga 2008) 

1 SU-8 is a high viscosity, negative based photo resist structure for moulding applications. 

2 B. mori cacoons are natural silk cocoon fibrons spun by the silkworm, Bombyx mori. 

3 PDMS is a silicone based inert polymer material, polydimethylsiloxane.   
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Table 2 Polymer biodegradation and morphology according to physiological plasma fluid 

conditions. 

Polymer Morphological properties Degradation studies in physiological1 

conditions 

Poly–Ɛ-caprolactone (PCL) Injection moulded matrix, 

films and sheets via 

temperature settings (Wahit 

et al. 2012) 

General long term degradation from 

weeks to months (Dash and 

Konkimalla 2012). In vivo 

degradation cannot occur readily 

due to unavailability of desired 

enzymes and surface erosion 

caused by hydrolysis is the primary 

mechanism and the main reason for 

slow degradation of PCL (Ginde and 

Gupta 1987; Woodruff and 

Hutmaker 2010)  

PLLA 200 micron and 20 micron 

films (Mattioli et al. 2012)  

5% weight loss by hydrolytic 

degradation after 49 days (Mattioli et 

al. 2012) 

Mixed mPEG5000–PSA2 

and mPEG2000–PLLA3 

(Lai et al. 2012) 

Spherical micelles with 

hydrophobic matrix and 

hydrophilic exterior layer (Lai 

et al. 2012). 

Degradation measured from 

calculation percentage release of 

curcumin in PBS4. Burst release of 

curcumin near to 40%. Maximum 

75% approximate release of 

curcumin on day 15 (Lai et al. 2012).  

P (LLA-co-ƐCL)5 and 

P(LLA-b-ƐCL)6 (Choi et al. 

2002). 

 

P(LLA-co-ƐCL) (90/10) 

(Kalpan et al. 2007) 

240 micron thick films (Choi 

et al. 2002) 

 

 

Smooth surface 

Microspheres (Kalpan et al. 

No degradation studies carried out 

at physiological conditions so far. 

 

 

60% decrease by hydrolytic 

degradation in molecular weight 
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PHCL-g-PLLA7 (Dai et al. 

2009) 

2007) 

 

Comb graft polymer films of 

110 -120 microns (Dai et al. 

2009) 

after 112 days (Kalpan et al. 2007) 

 

55% weight loss after 70 days (Dai 

et al. 2009)  

PLGA 

 

 

 

5600 micron diameter 

Sirolimus8 loaded films (Ro  

et al. 2012) 

25% weight loss after 13 days for 

Sirolimus loaded PLGA 50:50 (Ro et 

al. 2012). 

 

22% mass loss after 55 days for 

Sirolimus loaded PLGA 75/25 (Ro et 

al. 2012) 

1   Conditions refer to a plasma fluid of pH 7 and temperature of 37 °C. 

2 Methoxy poly(ethylene glycol) (mPEG), 5000 Daltons, Poly(sebacic anhydride) (PSA). 

3 Methoxy poly(ethylene glycol) (mPEG), 2000 Daltons. Poly-L-lactide (PLLA). 

4 Phosphate buffer solution, pH 7.4.  

5   P(LLA-b-_CL) is a diblock co-polymer with MW 15200 

6   P(LLA-co-_CL) is a random polymer with MW 51000  

7 PHCL-g-PLLA poly(4-hydroxyl-e-caprolactone-co-e-caprolactone)-g-poly(L-lactide) 

8 Sirolimus is an immunosuppressant drug 
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Table 3 Mechanical force properties of microneedle materials and force test results of the 

microneedle systems 

Microneedle system Component with external 

force tolerance 

Results of force tests  

Polylactic acid (PLA) (Wang 

and Jeng. 2009) 

Injection grade PLA (Wang 

and Jeng 2009) 

73.11% impact on structural due 

to melt temperature variable 

(Wang and Jeng 2009) 

NIPAAm1 based hydrogel 

loaded into Poly lactic-co-

glycolic acid (PLGA) (Kim et al. 

2012) 

Mainly PLGA (Kim et al. 

2012) 

PLGA microneedles with 18% v/v 

hydrogel deformed less than the 

31% v/v hydrogel ones (Kim et al. 

2012) 

Sugar glass disaccharide 

mixture of two sugar 

components except xylitol 

(Martin et al. 2012) 

Similar molecular weight of 

two specific disaccharides 

that formed solid sugar 

(Martin et al. 2012) 

Qualitative skin penetration tests 

showed most microneedles 

penetrated skin and complete 

dissolution in skin after 10 min 

(Martin et al. 2012) 

Polyvinylpyrrolidone (PVP), 

PLGA, PVA (Ke et al. 2012) 

PVP (10000 MW) (Ke et al. 

2012) 

Microneedles fabricated with 600 

mg/ml and 1000 mg/ml PVP were 

robust as confirmed from SEM 

images after insertion. The latter 

PVP concentration showed no 

geometric change (Ke et al. 2012) 

PVP, PVP-MAA2 poly(vinyl 

pyrrolidone-co-methacrylic 

acid (Sullivan et al. 2008) 

PVP (8970 MW), MAA 

(Sullivan et al. 2008) 

Displacement force tests proved 

that 1% MAA in PVP-MAA 

contributed to nearly double the 

strength of PVP alone (Sullivan et 

al. 2008) 

PVA/PVP blends (Chu et al. 

2010) 

PVA (2000 MW) (Chu et al. 

2010) 

Qualitative skin penetration tests 

showed 80% of microneedle tips 
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of length 450 μm dissolved in 

porcine skin after 2 min with bright 

field microscopy (Chu et al. 2010) 

1   N-isopropylacrylamide (NIPAAm)  

2  Poly (vinyl pyrrolidone-co-methacrylic) acid 
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Fig. 1 a The chemical structure of hydrophobic form of local anaesthetic lidocaine (Costa et 
al. 2008) 

 

Fig. 1 b The hydrophilic form of lidocaine known as lidocaine hydrochloride (Shaikh et al.  
2011). 
 
 
Fig. 2 a Schematic outline of a diffusing biodegradable microneedle after skin insertion. 

 

Fig. 2 b Pyramidal sodium carboxymethyl cellulose microneedles containing sulforhodamine 
B (Jeong et al. 2008) 

 

Fig. 2 c Scanning electron microscope image of conical PLGA microneedles (Park et al. 
2007) 

 

Fig. 3 a Stages in micromoulding of biodegradable PVP/PVA microneedles (Chu et al. 2010) 

 

Fig. 3 b Stages in micromoulding of biodegradable PLGA microneedles (Park et al. 2003) 
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Fig. 1 a 



35 
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