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Artificial Neural Network (ANN) Modeling of Dynamic Effects on Two-
phase Flow in Homogeneous Porous Media 

 
Abstract 
A number of recent models that describe two-phase flow processes in porous domains under the 

assumption of dynamic flow condition are based on the use of a dynamic coefficient ( )τ . The 

dynamic coefficients determine the speed or ease with which flow equilibrium is attained and the 

dependence of capillary pressure on the time derivative of saturation ( )tS ∂∂ . It has been shown that 

τ  depends on a number of factors (e.g., applied boundary pressures, and media and fluid physical 

properties). However, varying these parameters to calculate τ  poses very significant constraints on 

time and computational costs. Consequently, there is an increasing interest on the development of 

reliable approaches for determining τ  which are easier to use. In addressing this issue, this paper 

aims to use artificial neural networks (ANN) techniques for predicting dynamic coefficient over a 

range of porous media and fluid physical parameters that can affect the multiphase flow behavior. 

The data employed for training the ANN algorithm has been acquired from computationally intensive 

flow physics based modeling studies undertaken previously. It is observed that the ANN modeling can 

appropriately characterize the relationship between the changes in the media and fluid properties, 

thereby ensuring a reliable prediction of the dynamic coefficient as a function of water saturation. Our 

results indicate that the two hidden layered ANN network may perform better in comparison to the 

single hidden layer ANN models for majority of the performance tests carried out in our study. 

However, the single hidden layered ANN model develops an inherent capability to reliably predict 

complex dynamic coefficient – water saturation relationships at high water saturation contents. In 

addition, the double hidden layered neural network models seem to perform well at low water 

saturation contents. In all the cases, the single and double hidden layer ANN models are better 

predictors in comparison to the regression models attempted in this work.  

 

Keywords: Artificial neural network (ANN), two phase flow, porous media, dynamic coefficient, 

regression models 

 

1 Introduction 

Determining flow and transport behavior of non-aqueous phase liquids (NAPLs) (e.g., 

tetrachloroethene (PCE), polychlorinated biphenyl (PCB) and trichloroethene (TCE), creosote, soltrol) 

are of enormous importance in solving many subsurface contamination problems. Characterization of 

the flow processes involving these chemicals depends upon the flow hydrodynamics (dynamic/static), 

capillary/viscous forces, mobility ratios, temperature, grain size distribution, fluid properties, length 



 

scales of observation, and others. In general, modelling the two-phase flow processes requires the 

solution of equations for conservation of mass and momentum in conjunction with constitutive 

equations for capillary pressure (Pc)-saturation (S)-relative permeability (Kr) relationships. An 

extended version of Darcy’s law is most commonly used as the governing equation of motion for the 

fluid phases. The conservation of mass in the two-phase system is described by an equation that 

ensures conservation of phase saturation which is the ratio of the volume of the fluid phase to the 

total pore volume in the domain. As the constitutive Pc-S relationship, models such as the Brooks-

Corey (Brooks and Corey, 1964) or van Genuchten model (van Genuchten, 1980) are frequently 

used. Similarly, other formulation such as Brooks-Corey-Burdine formula (Brooks and Corey, 1964) 

exists to calculate Kr-S relationship. 

 The current work is limited to the study of Pc-S relationship. Physically, this relationship 

represents curves which are determined by taking a porous medium sample initially saturated with a 

wetting fluid (e.g., water) and then letting it to gradually drain off by increasing the capillary pressure 

at the domain boundary and displacing the wetting fluid by a non-wetting fluid (e.g., air, oil).The main 

theoretical definition currently used to quantify the capillary pressure is an empirical relationship 

obtained under equilibrium conditions between individual phase pressures in the form of   

)S(f)S(PPP ww
c

wnw ==−                                              (1) 

Where Pnw and Pw are the average pressures of non-wetting and wetting phases respectively and Sw 

is the wetting phase saturation. 

 A number of recent studies (Das and Mirzaei, 2012; Hanspal and Das, 2012; Bottero et al., 

2011; Gray and Miller, 2011; Joekar-Nisar and Hassanizadeh, 2011; O'Carroll et al., 2010; Mirzaei 

and Das, 2007; Das et al., 2007; Das et al., 2006; Tsakiroglou et al., 2003) that describe two-phase 

flow processes in porous domains under the assumption of dynamic flow condition are based on the 

use of a dynamic coefficient ( )τ . These dynamic coefficients determine the speed or ease with which 

flow equilibrium is attained and the dependence of capillary pressure on the time derivative of 

saturation ( )tS ∂∂ . τ establishes the speed at which flow equilibrium (∂S/∂t = 0) is reached. If τ is 

small, the equivalence between Pc,dyn and Pc,equ is established quickly. On the other hand, the 

necessary time period to reach the equilibrium is high for larger τ values. Thus, the dynamic 

coefficient (τ) behaves as a capillary damping coefficient and indicates the dynamics of the two-phase 

flow system. Most of the experimental and computational flow physics based techniques for 

determining Pc-S relationships and the corresponding dynamic effects through dynamic coefficients 

(τ ) calculations, are very resource intensive and exceedingly time consuming for complex three-

dimensional flows in homogeneous or heterogeneous porous domains (Das and Mirzaei, 2012; 

Hanspal and Das, 2012; Mirzaei and Das, 2007; Das et al., 2007). In order to circumvent these 

difficulties, we present an artificial neural network (ANN) model that can be effectively used to 



 

determine the dynamic coefficients (τ ) for two-phase flow in porous media, which in this particular 

study is represented by PCE and water as the fluid components. The motivation to develop and apply 

an ANN model for two-phase flow computations results from the ability of the ANNs to impose fewer 

constraints on the functional form of the relationships between input and output variables, when the 

complexity of the systems is difficult to anticipate (Johnson and Rogers, 2000). In the following 

section we discuss the background of this paper in more detail. 

 

1.1 Artificial Neural Networks (ANNs) 

An artificial neural network (ANN) is a computational tool composed of simple elements operating in 

parallel (Demuth et al., 2008) commonly known as neurons that can simulate the working of the 

human brain and the nervous system learning to perform functions (an input/output map). The 

neurons are grouped into subsets (input, output and hidden layers) connected to one another having 

bias and transfer functions associated with them. Generally, networks with biases, a sigmoid layer, 

and a linear output layer are capable of approximating any function with a finite number of 

discontinuities. The weight and bias are adjustable scalar parameters of a neuron that are modified in 

a sequential mode, for the network to exhibit the desired behavior. The assigned weights in 

conjunction with the presence of hidden layers within the network help in determining complicated 

relationships between the input and output data.  

  A back-propagation algorithm is used in this work to reduce the observed error in the 

predicted output variables by modifying the connection weights. Standard back-propagation includes a 

gradient descent algorithm, like the Widrow-Hoff learning rule (Widrow, 1962) for the multiple-layer 

networks and nonlinear differentiable transfer functions, in which the network weights are moved along 

the negative of the gradient of the performance function (Khataee and Kasiri, 2010; Demuth et al., 

2008). When the error measure of the network is reduced below a user-defined minimum, the training 

is stopped, and the connection weights are recorded and used to perform computations. There are 

different architectures for neural networks which consequently require different types of algorithms, but 

despite an apparently complex system, a neural network is relatively simple serving two important 

functions: (1) pattern classifiers and (2) non-linear adaptive filters. The most commonly used ANN in 

engineering applications is the feed-forward network (Haykin, 1999).  

 The presence of multiple layers of neurons with non-linear transfer functions allows the 

network to learn non-linear relationships between input and output vectors.  

  In the context of flows within porous media ANN’s have been used for a variety of applications 

that include, e.g., prediction of gas diffusion layer properties within polymer electrolyte membrane 

(PEM) fuel cells (Lobato et al., 2010; Kumbur et al., 2008), prediction of dialysis performance in 

ultrafiltration (Godini et al., 2010), hygrothermal property characterization in porous soils (Coelho et al., 



 

2009), oil saturation and petrophysical property predictions in oilfield sands (Boadu 2001), 

groundwater contamination and pollutant infiltration forecasting (Tabach et al., 2007), simulating 

cross-flow filtration processes (Silva and Flauzino, 2008), optimization of groundwater remediation 

problems (Johnson and Rogers, 2000; Rogers and Dowla, 1994), large-scale water resource 

management (Yan and Minsker, 2006), permeability modeling in petroleum reservoir management 

(Karimpouli et al., 2010), water/wastewater treatment using various homogeneous and heterogeneous 

nano-catalytic processes (Khataee and Kasiri, 2010), determination of stress-strain characteristics in 

composites (Lefik et al., 2009) and characterization of outflow parameters influencing fractured 

aquifers outflows (Lallahem and Mania, 2003). For example, Rogers and Dowla (1994) proposed an 

ANN-based groundwater management model for optimizing aquifer remediation. The flow and 

transport model generated a set of sample data upon which the network could be trained. The study 

indicated that the ANN based management solutions were consistent with those resulting from a more 

conventional optimization technique, which combined solute transport modeling and non-linear 

programming.   

 It is apparent from the studies presented in the literature that although most of them signify 

the importance and reliability of ANN techniques for implementing porous flows for a variety of 

engineering problems, none of them directly concerns with the need for quantifying the dynamic 

effects and their influence on the flow of multiple phases. Therefore, in this work for the first time, we 

present an ANN based framework for handling complex three-dimensional two-phase flow 

computations of DNAPL displacements in the presence of dynamic effects in a robust, 

computationally economical and a reliable fashion in comparison to sophisticated numerical methods 

based CFD simulators which can be enormously time consuming for large scale recurring 

calculations. We also discuss the development and training strategies employed for a variety of single 

and two hidden layer network models. Finally, the best ANN and regression model architectures are 

identified for reliable dynamic coefficient predictions by evaluating the simulation results and the 

model performance on the basis of statistical performance parameters. 

 

2 Artificial Neural Network (ANN) Modeling and Implementation  

The input or the reference data used for the ANN model development and training result from the 

modeling studies conducted within three-dimensional cylindrical coarse and fine sand domains 

(Hanspal and Das, 2012; Hanspal and Das, 2009; Das et al., 2007; Mirzaei and Das, 2007) using 

immiscible DNAPL displacement experiments and quasi-static/dynamic ‘water-oil’ mode simulations 

handled via “Subsurface Transport Over Multiple Phases” model (STOMP) (http://stomp.pnl.gov/; 

White and Oostrom, 2006; Nichols et al., 1997). 

 The input data were collected from a number of previous studies (Hanspal and Das, 2012; 

http://stomp.pnl.gov/


 

Mirzaei and Das, 2007; Das et al., 2007), which indicated that these variables are important in 

determining the value of τ . Furthermore, expert judgments were used to choose these variables. As 

explained above, these data were obtained using numerical (finite volume method) simulations with 

the main purpose to report the significance of the dynamic effect. The data set included 

approximately 150 data points. The important statistics of the data sets are shown in Table 1.   

 

 

 

 

 In this work, a multilayer feed-forward network trained using back-propagation training 

algorithm was implemented with MATLAB’s ANN toolbox and used to model the complex non-linear 

relationship persistent amongst the dynamic coefficient and physical properties characterizing the 

DNAPL displacement in multiphase transport. The back-propagation algorithm used for training the 

feed-forward neural network problem (Demuth et al., 2008) was implemented in four sequential steps 

discussed in detail below: 

 

2.1 Data Assimilation 

The data described above were imported within MATLAB by using calling functions to ensure that 

whilst one independent variable was changed others remained constant resulting in variations in the 

dynamic coefficient values. This procedure was repeated to train the network on each of the 

independent variables so as to produce an output close enough to the target (dependent variable). 

The input (independent) variables are denoted by p whilst the output (dependent) variables are 

represented by the target t. 

 

2.2 Network Object Creation 

MATLAB’s ANN toolbox was utilized to create a feed-forward network requiring three arguments 

before returning the network object. The network object was created after providing the input and 

output parameters which then initialized the weight and bias values to determine the size of the 

output layer. In addition, the input data was segregated into three different sets namely the, training, 

validation and test data in a split of 60%, 20% and 20%, respectively.  

 Two-layer (single hidden) and three-layer (two hidden) feed-forward networks were developed 

and investigated in this study. The two-layer network has the typical format of the input variables, the 

target and the number of hidden neurons {p, t, 3} whilst the three-layer network is characterized by 

two sets of hidden layer neurons {p, t, [3 5]}. 

 

Table 1 



 

2.3 Network Training 

After the network weights and biases were initialized, the network was trained for function 

approximation (non-linear regression), pattern association and pattern classification. During training, 

the weights and biases of the network were adjusted iteratively to minimize the network performance 

function. The default performance function for the feed-forward networks is mean square error (mse) 

which is the average difference of the squared errors (Demuth et al., 2008) between the network (a) 

and the target outputs (t). The training was carried out in MATLAB by segregating the available data 

into three data sets: 60% for training, 20% for validation and 20% for testing respectively. Training 

was conducted multiple times in conjunction with using five-fold cross-validation to ensure each of the 

data-point in the 150 point data-set was a part of 60% test data-set. The network training data was 

then utilized for recognizing the behavioural patterns in the data, validation in order to assess the 

network generalization and testing to provide an independent evaluation of network generalization for 

new data that the network had never experienced previously.  

 The process parameters, goal and epoch were used to determine the stopping criteria 

for the network training. The training was stopped when the number of iterations exceeded the 

epochs or if the performance function dropped below the set tolerance value. The training was carried 

out until there was a continued reduction in the network's error on the validation vectors. After the 

network memorized the training set, training was terminated. Re-initialization of the network was 

pursued depending upon its accuracy. In MATLAB toolbox the initial weights of nodes are assigned 

randomly, so repeated training may result in different ANN performance. In this work, each ANN was 

trained multiple times. The number of hidden neurons was varied gradually, since large neuron 

numbers within the hidden layer gave the network more flexibility due to multiple parameter 

optimization. Under-characterization was tackled by instructing the network to optimize more 

parameters than the number of data vectors. 

Although, the training was carried out in MATLAB by segregating the available data randomly 

into three data sets (i.e. 60% for training, 20% for validation and 20% for testing respectively), a  well-

known measure (namely, stratified sampling) was applied to ensure that the statistics of the testing 

and training data are in close vicinity.  

 

2.4 Network Response Simulation 

After the network was trained, it was re-applied to the original vectors. Network outputs were 

produced by incorporating the network input and the network object, and finally applied to simulate 

dynamic coefficient values for a range of input parameters.  

 

3 Pre- and Post-Processing Procedures: ANN Model Training 



 

Specific pre- and post-processing steps discussed in the subsequent section were required to train the 

ANN model effectively:  

 

3.1  Pre-Processing Procedure 

When the network is created using MATLAB’s ANN toolbox, default processing functions are 

automatically assigned to the network inputs and outputs. These functions were over-ridden by 

adjusting the network parameters. User-defined functions were used to scale-up the network where 

the epoch limit was set to be 200 iterations. The {mapstd} function was utilized in the scale-up 

operation by normalizing the mean and standard deviation of the training set to be zero and one 

respectively. No other scaling functions or correction factors for the inputs and outputs were utilized in 

this work.  

 

It was also important that we do not use too much over-fitting of the data. This was ensured as follows. 

First of all, we used a relatively large data set as compared to the number of points needed to plot τ-S 

curve. In our case, the data set was about 30-35 times greater than the typical number of points (5-6 

points) one needs to plot a τ-S curve. Secondly, we used a relatively a simple ANN structure. This 

ensures that there is no artificial over-fitting of the data as may be observed in complex ANN 

structures. 

 

3.2 Post-Processing Analysis 

As an additional measure, regression analysis was carried out using the network outputs and the 

corresponding targets to validate the network performance.  

 

4 ANN Model Performance Testing and Calibration 

The performance of various ANN models developed in this work were analysed against standard 

performance parameters and criteria (Jain et al., 2001), described below. The performances were 

calculated using the entire dataset. 

 

4.1 Sum squared error (SSE) 

The summed square of residuals (SSE) represents the total deviation of the simulated values in 

comparison to the observed values. This is represented by equation (2) 

                                                      ( )∑
=

−=
N

i
calobs SSSSE

1

2                                           (2) 

where N = total number of data points predicted, obsS  = observed value of dynamic coefficient τ and 



 

calS  = calculated value of dynamic coefficient  τ . 

 

4.2 Average absolute relative error (AARE) 

The average of the relative errors (AARE) commonly expressed as a percentage were computed 

using equation (3). Lower values of AARE indicate better model performance.  

                                            1001
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N
AARE                                         (3) 

 

4.3 Nash-Sutcliffe efficiency coefficient (E) 

The Nash-Sutcliffe efficiency coefficient (E) was computed using equation (4). Values of E nearing 

1.0 depict perfect match between the observed data and outputs, signifying high model accuracy  
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SS

SS
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where obsS  =  average observed dynamic coefficient τ  

 

4.4 Pearson product moment coefficient of correlation (R) 

Pearson product moment coefficient (R), computed using equation (5), was used to characterize the 

strength of linear dependency in the relationship between simulated and observed data. Values of R 

nearing unity indicate a good model.  

                                     
( ) ( )
( ) ( )∑ ∑
∑
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−×−
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22
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where calS  = average calculated dynamic coefficient ( )τ  

 

4.5 Threshold statistics (TS) 

The threshold statistics for a level of absolute relative error (ARE) of %x  were computed using 

equation (6) to quantify the consistency in the prediction errors (Jain and Ormsbee, 2002). Large 

values of threshold statistics indicate better model performance.  

                                                           
N
N

TS x=                                                            (6) 

where xN = number of data points predicted for which the average relative error (ARE) is less 

than %x .  

 



 

5 Regression Modeling of Dynamic Coefficient 

Linear and non-linear regression models were also developed as a part of this study to make 

comparisons against the predictions obtained using the ANN model. MATLAB was utilized for all the 

regression modeling work carried out, which is described below. The regressions were calculated 

using the entire dataset. 

 

5.1 Linear multiple regression  

The dynamic coefficient τ  was regressed against the independent variables i.e. water saturation, 

viscosity ratio, density ratio, permeability and temperature using equation (7). 

             55443322110 xxxxx ββββββτ +++++=                                         (7) 

where τ  is the dynamic coefficient, 50 ββ →  are the regression coefficients to be estimated, and 

51 xx →  are the independent variables. 

 Since the resulting system of equations was over-determined (William, 2005). Left division 

method based on Gauss elimination and least square techniques were used for determining the 

matrix coefficients which best fit the data-sets. Using this technique, the data is arranged in a matrix 

represented using equation (8) 

                                                                        τβ =X                                                                       (8) 
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ii xx 51 →  and iτ  represent the data, i = 1, 2, 3…….N where N is the number of data points. The 

solution for the coefficients can be computed using equation (9) 

                                                                            τβ \X=                                                     (9)                                              

where \ represents a backslash operator which performs matrix left division. x minimizes ( )τβ −∗Xnorm  

the length of the vector τβ −X  (Demuth et al., 2008).  

 

5.2 Non-Linear Multiple Regression 

Using similar variables as in case of linear regression, polynomials of various orders (Jain and 

Indurthy, 2003) represented by equations (10)-(12) were used to regress the dynamic coefficient 

against water saturation, viscosity ratio, density ratio, permeability and temperature.           
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Function based on Gauss-Newton algorithm with Levenberg-Marquardt modifications for global 

convergence (Demuth et al., 2008) were used to determine the least-squares parameter estimates.  
 

6 Results and Discussions 

The reference data used in developing and training various neural network models for predictive 

modeling of dynamic coefficients through incorporation of dynamic effects can be referred to in the 

works of Hanspal and Das (2012), Das et al. (2007) and Mirzaei and  Das (2007). As described in the 

data assimilation section the data comprises of five independent and one dependent output 

parameter   

 

 6.1 Artificial Neural Network (ANN) Models 

Two different types of ANN models were developed in this work, which include: (1) single-hidden 

layer model (2) two-hidden layer model.  For each type of model the number of neurons in the input 

layer and the output layer were kept to be the same. The number of neurons in the hidden layer was 

determined using a trial-by-error procedure proposed by Jain and Indurthy (2003). The optimal model 

architecture was determined by varying the number of hidden neurons from 3 to 17 and performing a 

post-training analysis on each of the network models. As discussed before, the slope (m), correlation 

coefficient (r) and intercept (c) values in the proximity of unity and zero respectively, indicates an 

optimal model. The model training and post-training regression analysis plots for the best ANN 

networks developed in this work can be seen in Figures 1-4.   

 
   

  
 
 

 
 
 

 
 
 

 
 

The mean squared errors presented in Figures 1(a)-4(a) gradually decrease as the learning and the 

training process continues. The performance goal indicates that the convergence of the mean 

squared error training, validation and test plots was set to the default mode of zero. The number of 

Figure 1(a) Figure 1(b) 

Figure 2(a) Figure 2(b) 

Figure 3(a) Figure 3(b) 

Figure 4(a) Figure 4(b) 



 

iterations (epochs) were different in all the distinct models reported, since the validation test stops the 

network training, when the peak performance is attained. Figures 1(b)-4(b) represent the post-training 

regression analyses of the network models depicting the perfect line, outputs = targets (Y=T) and the 

best linear regression line for the data points. The best linear regression line is then used for 

evaluating the slope, correlation coefficient and the intercept. Table 2 presents the performance of 

the ANN models on the basis of post-training line regression plots used in the determination of the 

number of hidden neurons which produce the most accurate fit.  

 

   

 From the slopes and the correlation coefficients presented in Table 2, it is clearly observed 

that the network is best trained when there are 7 or 9 hidden neurons for the single hidden layer 

model structure and a combination of [9 11], [13 15] or [11 13] hidden neurons for the two hidden 

layer models. Only these models have their correlation coefficients and slopes above 0.9. In terms of 

the correlation coefficient, the two hidden layer structure ANN [11 13] performed best with a value of 

0.9632 whilst the ANN [13 15] model structure performed best with respect to the slope with a value 

of 0.9595. In comparison to the two-layer hidden networks the single-layer networks ANN [7] and 

ANN [9] models have correlation coefficient values of 0.9578 and 0.9439, respectively.  

 

6.2 Regression Models 

The values of the regression coefficients for the linear and non-linear regression models used in this 

work are presented in Table 3.  

 

 

The performances of the regression models were further evaluated and compared to the ANN model 

performances, enlisted in the subsequent section using the criteria described in sections (4.1)-(4.5).

   

6.3 Model performance Criteria Evaluation 

Model performance parameters (AARE, SSE, R, E and TS) were computed to determine the 

performance of the ANN and regression models.  

 Plots presented in Figures (5)-(8) provide a better means to evaluate and compare the 

performance of the ANN and regression models. 

 
 

 
 

 
 

Table 2 

Table 3 

Figure 5 Figure 6 

Figure 7 Figure 8 



 

From the absolute average relative error (AARE) tests, characterized using Figure 5 it can be 

depicted that the regression models performed badly with the linear regression model performing the 

worst. The best of the single-layer and two hidden layer structures performed almost identically.  

 Figure 6 illustrates the comparison of the sum squared errors (SSE) signifying that the 

regression models perform poorly with the non-linear regression model-2 performing the worst 

(7.13333). The ANN [7] and ANN [11 13] performed best with the latter having a better value of 

(0.7175).  

 Comparisons using efficiency (E) and correlation coefficient (R) presented in Figure 7 re-

illustrates the underperformance of regression models with the non-linear regression model-2 

performing the worst. The ANN [7] and ANN [11 13] models have the top-most performance with the 

efficiency (E) and correlation coefficient (R) for ANN [7] being 0.9171 and 0.9578. ANN [11 13] 

performed slightly better with values of 0.9272 for E and 0.9632 for R, respectively. 

 From the Threshold Statistics (TS) plot comparison using Figure 8 it is adjudged that the 

regression models again perform poorly with the non-linear regression model-2 having the lowest 

value for threshold statistic (TS-5). The ANN [7] model on the other hand performed best for TS-100 

with a value of 88.64 while the ANN [9 11] model performed best for TS-5 with a value of 65.91. 

 In general, it is concluded that the regression models generally perform deficiently in 

comparison to ANN models. The ANN [7] in the category of single hidden layer models and the ANN 

[11 13] within the class of two hidden layer models have the best performance levels. Two hidden 

layer network models performed slightly better in comparison to the single layer network models as 

they have better performance comparison in all the tests, except the threshold statistics, where they 

had lower values in comparison to the single layer network illustrated in Table 4. 

 

   

6.4 Model Simulations: Dynamic Coefficient-Water Saturation Relationship 

Typically the functional relationships between the dynamic coefficient and water saturation can be 

characterized by smooth curves which exemplify decreasing dynamic coefficients values for 

increasing water saturation. Dynamic coefficients values were obtained using the best ANN and 

regression models developed in this work and compared against the corresponding target values 

obtained using the reference data (Hanspal and Das 2012, Hanspal and Das 2009, Das et al. 2007, 

Das et al. 2006, Mirzaei and Das 2007). Dynamic coefficient versus water saturation plots presented 

in Figures (9)-(11) were developed using the simulated data resulting from single, double hidden 

layered ANN and regression model simulations. Comparisons have been made for determining the 

forecasting accuracy of the ANN and regression models with regards to a typical inverse relation 

between the dynamic coefficient and water saturation.  

Table 4 



 

 Figures 9(a) and 9(b) demonstrate the predictive capabilities of the linear and non-linear 

regression models which are deemed to be poor. The non-linear model performs better in 

comparison to the linear regression model but still fails to accurately represent the characteristic 

behavior of the reference data.  

  
  

Single layer ANN model predictions compare very well against the reference data illustrated in 

Figures 10(a) and 10(b) respectively. 

  

 
The network model with 7 hidden neurons, successfully simulates the dynamic coefficient values 

which fall in close proximity of the reference data with fewer errors in comparison to ANN model with 

9 neurons in the hidden layer. The simulations carried our using the two hidden layer ANN models are 

presented in Figures 11(a) and 11(b), respectively.  
 
 

 

The simulated data represents predictions of the dynamic coefficient values and characteristics of the 

inverse dynamic coefficient-water saturation relationship, which again compare well against the 

reference data. However, there are more wayward data points in comparison to the single hidden 

layer ANN model predictions. Simulations resulting from ANN [11 13] hidden neuron model structure 

compare much better in comparison to the ANN [9 11] model. Finally, the best performing single 

hidden layer ANN [7] and two hidden layer ANN [11 13] models from all the simulations and 

performance analysis are compared in Figure 12.     

 

   

Observing Figure 12, it can be concluded that the double layer hidden ANN [11 13] model contains 

more prediction errors in comparison to the single hidden layer ANN [7] model. Closer inspection 

reveals that the two hidden layer ANN network performs better for low water saturation values 

enabling prediction of high dynamic coefficient values which closely resemble the reference data 

determined by immiscible displacement experiments and complex three-dimensional flow physics 

based CFD computations (Hanspal and Das, 2012). As the water saturation starts increasing the 

single hidden layer ANN [7] model better predicts the dynamic coefficient variations in comparison to 

the double hidden layer ANN [11 13] model. The ANN [11 13] model had a lot of wayward values and 

this was the same for all the two hidden layer models. The network structure of the best performing 

models include: a) single layer ANN model containing 5 input, 7 hidden layer and 1 output neuron b) 

double layer ANN model containing 5 input, [11 13] hidden layer and 1 output neuron which can 

Figure 9(b) 

Figure 11(b) 

Figure 12 

Figure 9(a) Figure 9(b) 

Figure 9(a) 

Figure 11(a) 



 

reliably be used for predicting Dynamic Coefficient-Water Saturation relationships are presented in 

Figures 13 and 14. 
 

   

 

  

7 Conclusions 

In this work we demonstrate the successful application of ANN (single and multiple hidden layered) 

and regression modeling techniques (linear and non-linear) for determining complex relationships 

between the dynamic coefficient and the physical parameters characterizing the porous medium and 

the fluid properties. The data deployed for model development, network training, performance 

evaluation and subsequent analysis was acquired from computational physics based modeling studies 

(Hanspal and Das, 2012; Hanspal and Das, 2009; Mirzaei and Das, 2007). It is demonstrated that, 

significant computational savings can be attained using the ANN models (Figures 13-14) in 

comparison to the flow physics based CFD simulators. These cost savings are reflective of the 

reduced simulation time-scales required for determining the complex functional relationships for 

dynamic coefficient variations resulting from dynamic effects within multiphase flows. It was also 

ensured that there is not excessive over fitting of the data.  

  It is concluded that ANNs can model the behavioral relationship between the changes in the 

media and fluid properties, reliably predicting dynamic coefficients in comparison to regression 

models. From the performance statistics parameters which comprise of the average absolute relative 

error, sum squared errors and the efficiency, the two hidden layer ANN model seem to perform better 

in comparison to single hidden layer ANN model with similar threshold statistics in both the cases. 

However, from the simulation plots it was determined that single hidden layer ANN [7] model is a 

better predictor for high water saturation content in comparison to the double hidden layer ANN [11 13] 

model whilst at low water saturation ANN [11 13] performs more reliably. In most cases, however, the 

differences in the model predictions were small. Therefore, one could safely conclude that a well 

trained and validated single layered ANN structure should suffice for most practical work. 

  Results from this work are conclusive of the fact that ANN models operating within a hybrid 

framework of both single and double hidden layered neurons for different range of water saturation 

contents will further boost the methods for parameters estimation and the simulation characteristics.  
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Table 1. Important statistics of the variables used in this study 
 
  

Independent 
Variable 1: 
 
Water 
Saturation  
 
 
 
(Sw) 
 

 

Independent 
Variable 2: 
 
Viscosity 
Ratio  
 
 
 
(Vr = µnw/ µw) 

 

Independent 
Variable 3: 
 
Density Ratio 
 
 
 
 
(Dr = ρnw/ρw) 

 

Independen
t Variable 4: 
 
Permeabilit
y 
 
 
 
 
(K, m2-) 

 

Independent 
Variable 5: 
 
Temperature 
 
 
 
 
(T, 0C) 

 

Dependent 
Variable:  
 
Dynamic 
Coefficient 
 
 
( )τ  Pa.s  

Range 0.105 – 0.464 0.5 - 2 0.5 - 2 5.00E-11 -  
5.00E-09 
 

20 - 80 2.82E+5 – 
1.05E+11 

Arithmetic 
Average 
value 

0.257 0.946 1.39 3.43E-09 24.55 1.26E+10  

Standard 
Deviation 

0.091 0.32 0.47 2.31E-09 
 

13.89 2.69E+10 

 
 

 

 

 

 

 

 

 

 

 

 



 

Table 2: ANN model performance determined using post-training regression analysis 

 
 

Number of 
Hidden Layers 

 
Artificial Neural 
Network Model 

 

 
Correlation 
Coefficient 

(r) 
 

 
Slope 

(m) 
 

1 ANN (5-3-1) 0.8396 0.7363 

1 ANN (5-5-1) 0.8950 0.8359 

1 ANN (5-7-1) 0.9578 0.9183 

1 ANN (5-9-1) 0.9439 0.9056 

1 ANN (5-11-1) 0.8634 0.7134 

1 ANN (5-13-1) 0.8752 0.7715 

2 ANN (5-3-5-1) 0.9455 0.8705 

2 ANN (5-5-7-1) 0.9499 0.8786 

2 ANN (5-7-9-1) 0.9492 0.8722 

2 ANN  (5-9-11-1) 0.9489 0.9025 

2 ANN (5-11-13-1) 0.9632 0.9077 

2 ANN (5-13-15-1) 0.9243 0.9595 

2 ANN (5-15-17-1) 0.9248 0.8938 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 3: Linear and non-Linear regression coefficients 

 

Regression 
parameter 

Independent 
variable 

Linear Multiple 
Regression 
(LR) Model 

Non-linear Multiple Regression (NLR) 
Models 

Model 1 

(NLR 1) 

Model 2 

(NLR 2) 

Model 3 

(NLR 3) 

Model 4 

(NLR 4) 

0β  Constant 0.5223 9.1625 0.1785 -0.6614 6.9875 

1β  1x  -0.8281 -9.5799 -0.6248 1.4945 -4.1225 

2β  2x  -0.0983 -1.4919 0.0051 0.2166 -11.7713 

3β  3x  0.0791 0.5146 0.0930 -0.1092 0.8174 

4β  4x  -0.0009 -0.0248 0.0060 0.0044 -2.0980 

5β  5x  0.1610 1.2602 0.1471 -0.22358 1.1004 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 4: Model performance comparisons for ANN [7] and ANN [11 13], the best performing 

single and double hidden layered ANN structures  

 

MODEL R E SSE AARE TS-5 TS-10 TS-25 TS-50 TS-100 
ANN-7 0.9578 0.9171 0.7175 31.2250 57.58 63.65 76.52 84.85 88.64 

ANN-[11 13] 0.9632 0.9272 0.6306 27.4732 59.85 65.91 75.00 80.30 87.12 
 

 
 



 

Figure 1: Trained network and post-training regression analysis for [5-7-1] ANN Model. 
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Figure 2: Trained network and post-training regression analysis for [5-9-1] ANN model. 
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Figure 3: Trained network and post-training regression analysis for [5-9-11-1] ANN model. 

           

                  3(a)            3(b) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 4: Trained Network and Post-Training Regression Analysis for [5-11-13-1] ANN 

Model 
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Figure 5: Average absolute relative errors (AARE): comparison for various regression (linear 

(LR) and non-liner (NLR)) and ANN models 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 6: Sum squared errors (SSE): comparison for various regression (linear (LR) and 

non-liner (NLR)) and ANN models 
 

 

 
 

 

 

 

 

 

 



 

 1 

Figure 7: Efficiency (E) and Correlation Coefficient (R): comparison for various regression 2 

(linear (LR) and non-liner (NLR)) and ANN models 3 
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Figure 8: Threshold statistics (TS-5, TS-10, TS-25, TS-50 and TS-100): comparison for 10 

various regression (linear (LR) and non-liner (NLR)) and ANN models 11 
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Figure 9: Regression model performance for predicting dynamic coefficient-water saturation 28 

relationship.  29 

 30 
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 45 

Figure 10: Single hidden layer ANN model performance for predicting dynamic coefficient-46 

water saturation relationship. The ANN structure with [7] neurons in the hidden layer seem to 47 

perform better. 48 

 49 
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Figure 11: Double hidden layer ANN model performance for predicting dynamic coefficient-66 

water saturation relationship. The ANN structure with [11 13] neurons in the hidden layers 67 

seem to perform better.  68 

 69 
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 85 

Figure 12: Comparisons of the best performing single and double hidden layer ANN models 86 

for predicting dynamic coefficient-water saturation relationship simulations. The 87 

performances of the two structures seem to be similar suggesting that one may choose 88 

single hidden layer ANN model 89 

 90 

 91 
 92 

 93 

 94 

 95 

 96 

 97 

 98 

 99 



36 | P a g e  
 

 100 

 101 

 102 

Figure 13: Best performing single Layer ANN model containing 5 inputs, 7 hidden layers and 103 

1 output Neuron 104 

 105 

 106 

 107 

 108 

 109 

 110 
 111 
 112 
 113 
 114 
 115 
 116 
 117 
 118 
 119 
 120 
 121 
 122 
 123 
 124 
 125 
 126 
 127 
 128 
 129 

Hidden Layer Input Layer Output Layer 

Water saturation 

      Back-propagation 

Viscosity ratio 

Density 
ratio 

Permeability 

Temperature 

Water saturation Dynamic Coefficient 

         Propagation of Input Excitations 



37 | P a g e  
 

 130 
 131 
 132 
 133 
 134 
 135 

Figure 14: Best performing double Layer ANN Model containing 5 inputs, [11 13] hidden 136 

layer and 1 output Neuron 137 
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