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ABSTRACT 

Traditionally, surface topography measurement was in the domain of quality control 

of engineering parts. With the advancement of manufacturing technology and affordable 

computational costs, different types of surfaces are produced with varied shapes and surface 

textures. These pose significant measurement problems, therefore, surface topography 

research is gaining momentum to achieve a better control of the surface. Coherence scanning 

interferometry (CSI) is one of the most common techniques used for measurement of surface 

topography. It is preferred over tactile and other non-contact techniques since it provides fast 

and accurate measurement with high vertical (      ) and lateral (     ) resolutions over 

larger areas without any damage to the surface. Essentially, CSI is treated as one dimensional 

(1D) superposition of the light waves from an object and a reference that generates a three 

dimensional (3D) interferogram. Secondly, despite the advantages, there is no standard 

configuration of CSI that can provide absolute surface topography measurement of an 

engineering part with multiple materials. An effective solution to this problem will be 

particularly useful in the field of semiconductor and bio-related industries where chips and 

instruments are made of many materials.  

In this Thesis, first, the CSI technique is analysed in terms of a wider theoretical 

framework of 3D linear filtering technique which shows the similarities among other 

seemingly disparate techniques such as confocal and optical coherence tomography. Due 

consideration to the spectral characteristic of the source and the effect of numerical aperture 

are given and important parameters such as vertical and lateral resolutions are computed to 

compare this theory with standard analysis methods. Additionally, it is shown that the 3D 

fringe pattern can be considered to be a superposition of a reference field and the scattered 

field from the top “foil-like” layer on the top the object. The scattered field from this “foil” 

object is dependent on the normal Fresnel reflection coefficients. Therefore, it explains the 

phase offset and the proportional height offset introduced by different materials, especially, 

metals. In an object, where multiple materials are present, each material introduces different 

phase to the fringe pattern and therefore, the surface topography of the entire object is altered.  

To overcome this problem, the optical polarising properties of the material are 

exploited. A novel configuration of polarisation sensitive CSI is presented where 
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interferograms with orthogonal circular polarisations are recorded and analysed. The 

configuration, initially, needs to be calibrated with a material and after that at each point on 

the object, the refractive index and height offset can be calculated. Therefore, it can be dually 

used to identify unknown materials present on the object and also to compensate for the 

height offset introduced by each material to produce absolute surface topography of the entire 

object. The configuration provides good agreement with ellipsometric results for metals. 

Additionally, it retains the advantages of high vertical and lateral resolution same as other 

standard coherence scanning interferometers. 
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NOMENCLATURE 

     Number of lens elements within Mirau objective  

     Amplitude of the illuminating field in microellipsometry for   

                                    horizontal polarisation 

      Amplitude of the illuminating field in microellipsometry for  

vertical polarisation 

A   Analyser 

 ( )   Total foil area 

      The phase gap 

      Field average of the phase gap 

c   Speed of the light in vacuum 

 (   )   DC term in intensity equation of microellipsometry 

𝑐    Constant for the block case 

𝑐    Constant for the pass case 

D   Photodetector 

D1 and D2  Diffusers  

D1´ and D2´  Images of D1 of D2 at the back focal plane 

     Illuminating field in ellipsometry 

  
 (   )   p –component of the incident field in the back-focal-plane  

  
 (   )  s – component of the incident field in the back-focal-plane 

  (   )  p –component of the reflected fields  

  (   )  s – component of the reflected fields  
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  (   )         Reflected field that is parallel to the incident field (microellipsometry) 

   (   )   Reflected field for the case of vertical polarisation (microellipsometry) 

 ( ⃗)    Complex amplitude of a monochromatic electric field complex (3
rd

  

chapter) 

  ( ⃗)   Reference field 

  ( ⃗)   Scattered field coming from the object 

 ̃ ( ⃗⃗)   Scattered field in the spatial frequency domain 

 (  ⃗⃗⃗⃗ )    The field propagating from the source 

 ̃     ( ⃗⃗)  Ideal reconstructed field in the spatial frequency domain 

  ( ⃗)   The transmitted field 

     
    The scattered field due to foil area 

     
    The measured field due to foil area 

 ⃗⃗    The field of the block case (5
th

 Chapter) 

|  
 ⃗⃗ ⃗⃗ ⃗|                             The amplitude of the final field components passing through the  

                                    analyser after it reflects from object 

|  
 ⃗⃗⃗⃗⃗⃗⃗|                           The polarised field component reflected from Mirau reflector 

f                                   Focal distance 

 (     )              The surface profile of foil 

FR1, FR2  Fresnel rhombs 

 ( ⃗   ⃗ )  Green’s function 

 ̃( ⃗⃗)   Green’s function in the spatial frequency domain 
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 ̃     ( ⃗⃗)                     ̃( ⃗⃗) at a point of measurement close to the source 

 (  ⃗⃗⃗⃗     ⃗)  The Green’s function that describes the field at boundary 

 ̃  ( ⃗⃗)  The measurement of the transfer function when the illumination is over  

                                    the spatial frequency domain restricted by the aperture 

   ( ⃗⃗ )  The measurement of transfer function over a single point at the edge of  

the back-focal-plane 

   ( ⃗)   The field propagated when the illumination is restricted by the aperture  

 (   )   Local height on the sample surface with respect to the base plane (z=0)  

  
    ( ⃗)   Propagating field for i

th
 illumination wave due to restricted aperture 

 ̃ 
    ( ⃗⃗)     

    ( ⃗) due to restricted aperture in k-space 

    
    

( ⃗   )  Point spread function (PSF) with broadband source 

   
    ( ⃗)  Point spread function (PSF) with monochromatic source 

     ( )   PSF due to the foil model 

     
 ( ⃗)                     Intensity for monochromatic illumination with restricted aperture 

     Background intensity due to the DC term 

Iout   The light intensity at point P(x,y) 

IS   The light intensitiy at point P of the wave reflected on the sample  

   ( )    Intensity term 

  
    ( ⃗)  The overall intensity due to reconstruction for the i

th
 wave 

     
 ( ⃗   )  Intensity for polychromatic illumination with restricted aperture 

 ̃(   )   Intensity field in the spatial domain (microellipsometry) 

   (      )  The peak of the envelope for the surface topography for vertical  
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                                    polarisation  

     Complex analytic function of the block case 

     Complex analytic function of the pass case 

  ̃( )   Frequency domain and the filtered intensity signal 

  ( )   Noise free fringe signal (analytic function) 

    Spatial frequency  

k0   Spatial frequency 

δk0   Total k range 

 ̅   Spatial frequency of effective wavelength  

       Maximum spatial frequency 

δkz   Axial resolution of the optical system 

δkx/y              Lateral resolution of the optical system 

 ⃗⃗      A particular spatial frequency at the measurement point 

   and      Amplitude brightness values of two LEDs.  

L1 and L2  Collimating lenses 

𝑀    Characteristic constant for the instrument termed as multiplicative  

                                    constant 

 ( ⃗)   Complex refractive index of the medium 

 ̂   The direction of outward normal 

        Refractive index of incident media 

     Refractive index of transmitted media 

n1, n2   Refractive indices in different mediums 
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     Numerical aperture of Zygo NewView CSI 

 ( ⃗)   Object function 

P, P1 and P2  Polarisers (collimated beams are passing through this)   

 ( )   Frequency spectrum 

P(x,y)   The point at the output of a two-beam interferometer 

Q   Quarter wave plate 

    The radial distance from the origin of the back-focal-plane 

      Fresnel’s reflection co-efficient for the p polarised light 

      Fresnel’s reflection co-efficient for the s polarised light 

     Phase offset in Ellipsometry 

Ra   Average surface roughness 

𝑹    
          The ratio of the block to pass analytic functions 

𝑅    
      The ratio of illumination constants of the block and the pass  

𝑹    
    

    The ratio of the complex constants of the block and the pass 

𝑹    
         The ratio of the complex constants of the Mirau objective of the block  

 (  )   The spectral variation of the source  

S   An imaginary spherical boundary  

   ⃗⃗⃗⃗     Radius at far field around the point source  

     The distance of point P from the origin 

P   Point at which reconstructed field has been measured  

t   The Fresnel amplitude transmission coefficient at normal incidence  

     Fresnel’s transmission co-efficient for the p polarised light 
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     Fresnel’s transmission co-efficient for the s polarised light 

  ( ⃗)   Reference field modified by the source terms 

 ̃ ( ⃗⃗)     ( ⃗) in spatial domain 

  (   ⃗   ⃗⃗⃗⃗ )  The reconstructed field 

 ( ⃗)    The source that is non-zero in the region of inhomogeneity  

V    An imaginary volume at far-field (Chapter 3) 

    Fringe visibility (Chapter 2) 

 (     )  Window function 

 ̂ and  ̂  The unit vectors along   and   direction  

X   Magnification 

z   Base plane 

  
    Constant for the Mirau objective for the block case  

  
    Constant for the Mirau objective for the pass case  

     Dimensionless constant 

    Dielectric constant 

    Ratio of the reflection coefficients in Ellipsometry 

    The phase difference between the light intensities at P (Chapter 2)  

    (     )  The difference of phase changes on reflection at points P´ and P´´  

(Chapter 2)  

     Ellipsometric parameter, relative phase change (Chapter 4) 

    Refractive index contrast (Chapter 3) 

     ( )  The computed surface or the ‘foil’ model of the surface  
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     Ellipsometric parameters, relative amplitude change (Chapter 4) 

     Wavelength of the light (Chapter 3) 

     Wavelength of incident light  

 ̅   Effective wavelength 

          Minimum wavelength and maximum wavelength 

      Wavelength of the grating 

     The effective wavelength for CSI with an oblique illumination  

   (Chapter 4) 

     Spectral width 

θxy              The phase of the fringes at a height of      

      Incidence angle 

      Transmission angle 

ν0   Frequency of the light 

 ( ⃗)    The 3D Dirac delta function 

δx, δy, δz   Resolutions in     and   directions (Chapter 3) 

      Elemental aperture area of block in the back-focal-plane          
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ABBREVIATIONS 

AFM   Atomic force microscope 

BFP   Back focal plane 

BS   Beam splitter 

CCD   Charge coupled device 

CCI   Coherence correlation interferometry 

CCSM   Chromatic scanning confocal microscopy 

CPM   Coherence probe microscope 

CR   Coherence radar 

CMOS   Complementary metal oxide semiconductor 

CSI   Coherence scanning interferometry 

CSM   Confocal scanning microscopy 

D   Aperture stop 

D´   Image of D 

EM   Electron microscopy 

FDA   Frequency domain analysis 

FFT   Fast Fourier Transform  

FPGA   Field programmable gate array 

FR   Fresnel rhomb 

FV   Focus variation 

GDP   Gross domestic product 

HIS   Height scanning interferometer 

IFT   Inverse Fourier Transform 
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IM   Interference microscope 

IR   Infra-red 

LCI   Low coherence interferometry 

LCP   Left circularly polarised 

LCSM   Laser scanning confocal microscopy 

LED   Light emitting diode 

M   Mirror 

MCM   Mirau correlation microscope 

ME   Microellipsometry 

MEMS   Micro-electro-mechanical system 

MOEMS  Micro-opto-electro-mechanical system 

NEMS   Nano-electro-mechanical system 

NPL   National physical laboratory 

NSOM   Near-field scanning optical microscope 

OPD   Optical path difference 

OCT   Optical coherence tomography 

PBS   Pellicle beam splitter 

PS-CSI  Polarisation sensitive coherence scanning interferometer 

PSI   Phase shifting interferometry 

PSF   Point spread function 

PUPS   Pupil plane scanning white light interferometer 

RCP   Right circularly polarised 

SEM   Scanning electron microscope 
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SNR   Signal to noise ratio 

SPM   Scanning probe microscope 

SRWLI  Spectrally resolved white light interferometry  

STM   Scanning tunnelling microscope 

TEM   Transmission electron microscope 

TF   Transfer function 

UV   Ultra violet 

VSI   Vertical scanning interferometry 

WLI   White light interferometry 

WLPSI  White light phase stepping interferometry 

WLSI   White light scanning interferometry 

WSI   Wavelength scanning interferometry 

XRT   X-ray topography 

2D   Two dimensional 

3D   Three dimensional 

4D   Four dimensional 
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In the existing literature, Coherence scanning interferometry (CSI) is mostly treated as a one 

dimensional (1D) superposition of a reference wave coming from the reference reflector and 

test wave coming from the object. Ideally, the interference fringes formed due to this 

superposition are three dimensional (3D) and in this thesis, CSI is treated in terms of a 3D 

linear filtering technique within the bounds of scalar diffraction theory. Essential parameters 

such as point spread function and effective wavelengths are measured from this technique to 

compare these with existing analysis methods.  

In the later part of this thesis, the problem of height offsets arising out of the presence of 

dissimilar materials within an object under test is taken up and a novel rotationally symmetric 

polarisation sensitive CSI (PS-CSI) set-up is proposed. This can measure correct surface 

topography together with refractive index at each point on the object, which, essentially, 

enables the interferometer with a capability of an ellipsometer. We believe that the method of 

correct surface topography measurement using PS-CSI and the analytical treatment of the 

method is a first. Additionally, it retains the high vertical and lateral resolution capabilities of 

a CSI.  
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CHAPTER 1 :  INTRODUCTION  AND 

OVERVIEW OF COHERENCE 

SCANNING INTERFEROME TRY 

(CSI)  

1.1 BACKGROUND  

Measurement of different geometrical features of the surface in terms of variation of 

height with respect to a plane, are measured in surface metrology [1]. Surface finish of 

engineering parts remains an important aspect of quality control of different manufacturing 

processes such as, milling, turning and polishing. Friction can be controlled by surface finish 

resulting in reduction of wear and tear of the components [2, 3]. This principle is applied to 

different industries such as the optical industry (the surface quality of the optical 

components) and the automobile industry (the engine components have controlled surface 

texture for better performance), etc.  

Advances in the manufacturing technology and the introduction of digital methods 

have prompted the need for better control of surface texture. Micro-electro-mechanical 

systems (MEMS) and nano-electro-mechanical system (NEMS) that are increasingly used in 

day-to-day applications need controlled surface topography. In the semi-conductor industry, 

surface topography is also of critical importance to increase the number of components, such 

as diodes and transistors, on a single chip. Next generation ultra-precision engineering and 

net-shape manufacturing techniques are now producing simple geometrical surfaces to 

complex free-form surfaces [4].  

It has been proved that surface topography can be directly linked to the surface 

parameters such as, adhesion, gloss and biocompatibility [5, 6]. This has huge implications in 

the applications using biomaterials and nano-composites. In both of these cases, complex 

surfaces interact with each other and in certain cases, instead of a smooth surface; a specific 

surface texture is found to yield better results. For example, the surface texture of orthopaedic 

implants is found to have significant effects on the growth of cells [7]. Therefore, the 
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importance of surface metrology is growing in different domains of research and industry, but 

each application needs specific metrological solutions.  

1.2 CLASSIFICATION OF SURFACE METROLOGICAL 

TECHNIQUES 

Techniques used in surface metrology can broadly be classified used into two 

categories, contact and non-contact. Non-contact techniques can be again sub-divided into 

non-optical and optical categories depending upon the method of instrumentation, as 

illustrated in Figure 1.1. 

 

 

Figure 1.1 Classifications of surface metrological techniques 

 

1.2.1 CONTACT MEASUREMENT TECHNIQUES 

Traditionally, contact instruments such as the stylus, are widely used for surface 

metrological purposes. Recent developments of scanning probe microscopes (SPM) have 

increased the resolution of contact metrology to a high degree. The basic technique applied in 

the case of contact measurement is that a tip of a probe travels over the surface and the 

surface profile is measured from the displacement of the tip at each point from a reference. 

The movement of the tip is converted into an electrical signal by a transducer. The signal is 

amplified to a useful level and the data is recorded by an automated recorder or a computer. 

A modern stylus has lateral and vertical resolutions of the order of      and     , 

respectively (for a chisel head stylus lateral resolution ~        ). The measurement process 

is simple but suffers from the fact that there are chances of damage of the critically important 
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surface since the tip stays in contact. More importantly, it measures a one dimensional (1D) 

surface profile, which is time-consuming, if surface height maps need to be recorded [6, 8].  

In 1982, with the invention of scanning tunnelling microscope (STM) by Binnig and 

Rohrer, the era of the scanning probe microscope (SPM) began [9]. In the case of SPM, a tiny 

probe (of tip radius          ) moves relative to the surface staying very close to it [9]. 

During this movement, interaction between the probe and the surface is recorded and 

analysed to generate the profile. The form of the interaction can be varied and the most 

common of them are electrical, attractive and repulsive forces, optical, etc. [8]. STM uses a 

sharp conducting tip of gold or tungsten to pick up the electrical interaction with the surface 

once a bias voltage is applied between them [9]. The tip and the surface remain in close 

proximity as the tip traverses the sample and electrons from the surface tunnel through to the 

tip, according to the phenomenon known as quantum mechanical tunnelling. This technique 

generates a surface profile with excellent vertical resolution but the range of scan is limited to 

hundreds of microns. Therefore, high quality surface maps of relatively small areas of the 

surface can be reproduced.  

In the case of the atomic force microscope (AFM), the interaction is via attractive and 

repulsive forces acting between the probe and the surface [10]. Vertical resolution can be less 

than a nanometre and different types of probes are used depending upon the measurement 

needs.  

Emission of light very close to the surface is measured in the case of near-field 

scanning optical microscopes (NSOM) [11]. It requires a very small tip, such as a tapered 

ended fibre (end diameter of the order of tens of nanometre) through which the surface is 

illuminated and the scattered light from the surface is collected. The distance between the tip 

and the surface must remain less than the tip diameter to obtain images of the surface with 

sub-wavelength resolution.  

1.2.2 NON-CONTACT MEASUREMENT TECHNIQUES 

For a non-contact measurement technique, the surface is irradiated by an 

electromagnetic wave (such as light or X-ray) and the response is gathered by a detector 

system at a distance from the surface. Instead of measuring pure geometric path, these 

techniques measure the electromagnetic path. They can measure surface topography of an 
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area of the specimen quickly but are limited by diffraction. Non-contact measurement can 

further be sub-classified into two categories; non-optical and optical. Under the non-optical 

category, two techniques, electron microscopy (EM) and X-ray topography (XRT) are 

discussed.  

Electron microscopy can be classified by two categories, scanning electron 

microscope (SEM) and transmission electron microscope (TEM). In case of the surface 

measurement, mostly SEM is used. A beam of high energy electrons is incident on the 

surface and the secondary electrons emitted are focussed onto a detector to form an image of 

the surface. The vertical resolution of the technique is of the order of      [12]. 

Recently, X-rays have been used to measure surface topography (XRT) [13]. A 

collimated beam of X-rays is incident on the surface and generates different diffracted 

patterns depending upon the surface microstructure of it. From these patterns surface 

topography is computed that works best for simple structures. It is an emerging field and the 

main advantage is potentially high resolution 3D images.  

1.2.3 OPTICAL MEASUREMENT TECHNIQUES 

Different optical measurement techniques such as focus variation (FV), confocal 

scanning microscopy (CSM), phase shifting interferometry (PSI), wavelength scanning 

interferometry (WSI) and coherence scanning interferometry (CSI) are used for surface 

topography. In all of these cases, either near monochromatic sources such as lasers or 

broadband sources such as LED are used for illumination. These techniques employ, in 

general, imaging and interferometric systems for recording a video of the surface. After that 

different computation algorithms are applied to the video frames to extract different 

parameters related to surface metrology. Hillman first reported that surface roughness 

measurements can differ significantly for optical techniques and stylus measurements [14]. 

Comparison of optical techniques with contact techniques is difficult due to the difference in 

the way of interaction of light with the surface.  

Focus variation instruments measure the best focus position around the depth of 

focus. In this case, the sample surface is vertically scanned through the focus and a video is 

recorded for the entire field of view. The best focus position can be computed by finding the 

highest value of the standard deviation of the grey-scales for each frame of the video. The 
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focus variation instruments can measure high slopes of the objects but need a certain 

roughness of the surface to operate. It has a resolution dependent on the numerical aperture of 

the objective and sampling length of the filter used which provides, typically, a lateral 

resolution is of the order of      and a vertical resolution of the order of       [15, 64]. 

Confocal scanning microscopy (CSM) does not need any roughness and provides 

slightly better vertical resolution of the order of      . In case of laser CSM (LCSM), 

placing a pin-hole before the detector ensures that the light from the parts of object other than 

the focused plane is blocked. Therefore, finding the peak of the response along the vertical 

axis for a particular pixel provides the image plane. For building a map of the surface, a 

lateral scan has to be performed since in this case only a point is imaged at a time [16]. 

Another variant of CSM that uses a broadband light-emitting source and an objective as a 

chromatic probe is known as Chromatic CSM (CCSM). This probe uses chromatic aberration 

of the probe to focus different wavelengths at different positions on the surface e.g. blue 

wavelength (      ) will be focused closer to the probe compared to the red wavelength 

(      ). Due to the presence of a pin-hole before the detector, the surface is exactly 

focussed for a particular wavelength. This wavelength produces maximum response recorded 

in a spectrometer. Therefore, by finding the peak of the intensity curve for each wavelength 

for a particular pixel, the surface height can be measured. Again, to build a height map the 

surface needs to be scanned laterally. CCSM is specifically used for surface topography and 

texture measurements with vertical resolution of the order of       [17].  

Interferometric profilers claim a vertical resolution less than a nanometre [18]. Phase-

shifting interferometers (PSI) can be used to obtain fast, three-dimensional profiles of 

surfaces with vertical resolutions of the order of a nanometre and the lateral resolution of the 

order of      . Determining phase in PSI typically involves sequential shifting of the optical 

path of the one arm (reference arm) of the interferometer relative to the other arm (test arm) 

by known distances. By measuring the resulting interference pattern a wrapped phase-map 

can be obtained. Applying a phase unwrapping method, absolute phase over the surface can 

be measured, but the common phase unwrapping methods presume a smooth continuous 

surface. This instrument is, therefore, typically limited to measurements of smooth, polished, 

homogeneous surfaces. Surfaces which introduce a phase shift of    between adjacent 

measurements result in phase ambiguity errors. When rougher surfaces or surfaces with 

dissimilar optical properties are measured, severe errors can arise [19-21].  
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These limitations can be overcome by using a wavelength scanning interferometer 

(WSI). In this case, a tunable laser source is used for illuminating the sample with multiple 

wavelengths together with a reference mirror so that an interference pattern for each 

wavelength is recorded in the CCD detector. By measuring the change of phase with respect 

to wave number (inverse of wavelength) the surface height for each pixel can be calculated. 

Another advantage of WSI is that the sample need not be mechanically moved for scanning 

and the height-resolution depends on the usable source bandwidth. With increase in the 

bandwidth higher accuracy can be obtained though, there are not many laser sources available 

which produce almost uniform power over a suitable wavelength range. Yamaguchi et al 

reported vertical resolution of the order of micrometres for step height measurements and 

they also reported measurement of diffused objects by this technique [22]. WSI is sometimes 

referred to as spectrally resolved white light interferometry which has also been reported as a 

profilometric tool [23]. 

With the brief descriptions of the above competing techniques, CSI, the focus of this 

thesis, will be described now. First there is a brief discussion of the history of CSI then the 

technique will be described in detail. The principles of white light interferometry are 

fundamental concepts of optics and have been known for many years. Michelson first used 

white light fringes for measuring the size of a series of step-shaped etalons in 1893, which 

was later compared to the wavelength of light with the international prototype meter [24]. 

With the advancement of electronic equipment and modern digital processing techniques, 

CSI is recently developed as an automated instrument using this principle.  

1.3 COHERENCE SCANNING INTERFEROMETRY (CSI) 

CSI is an interferometric measurement technique which provides both high vertical 

and lateral resolution. The heart of the optical profilometers based on CSI is the interference 

microscope and these types of automated profilometers began to develop much later, from the 

mid-1980s, after the introduction of PSI. Then, during 1987–1994, several researchers 

developed similar CSI instruments by incorporating a broadband source with the interference 

microscope but presented their techniques with different names such as,  

CPM – coherence probe microscope 

CSI – coherence scanning interferometry  
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CSM – coherence scanning microscope 

CR-coherence radar 

CCI – coherence correlation interferometry 

MCM – Mirau correlation microscope 

WLI – white light interferometry 

WLSI – white light scanning interferometry 

VSI – vertical scanning interferometry 

HSI – height scanning interferometer [25-33], etc. 

CSI has several advantages over previous approaches to profilometry. Its range is 

theoretically unlimited, with practical ranges easily exceeding hundreds of micrometres. It 

scans over the entire field rather than point to point and with stitching techniques topography 

of even bigger areas can be measured. The rigid design of CSI provides insulation to 

vibration and resonant frequencies, especially required in factory environments. The vertical 

resolution for CSI is of the order of      and lateral resolution depends on numerical 

aperture of the microscope but it can reach less than a micrometre (for example, for 100X 

Nikon CF IC Epi Plan DI Interferometry Objective with       , the lateral resolution is 

       [34]). With such high resolution and without the phase ambiguity of PSI, CSI is 

ideally suited for surface profiling.  

CSI is essentially a low-coherence interferometer, which combines a low coherent 

source such as LED with an interference microscope. As the surface is vertically scanned 

through the focus of the interference microscope, the part of the surface in focus is 

superposed with the fringe pattern, which is recorded in a video. Due to the low coherence 

source, the fringes are localised close to the surface. In general, the maximum of the fringe 

intensity function closest to the surface provides the surface topography for each pixel. A 

detailed discussion of the working principle and theory of CSI will be presented in Chapter 2. 
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1.3.1 APPLICATIONS 

CSI is predominantly used to measure surface profile, surface roughness and 

microstructures of the engineering parts [25-33], etc. In the last few years, new capabilities of 

CSI have been developed ranging from vibration and transient measurements to the 

performance testing of micro-electro-mechanical systems (MEMS) [35-37]. In addition, a 

few important emerging areas of measurement are discussed as follows. 

1.3.1.1 THICKNESS MEASUREMENT 

 CSI measurements of surface topography together with coated layers of metallic and 

dielectric materials on different substrates are becoming popular. Kim et al proposed 

transparent film thickness measurement with topography where the multiple reflections from 

the upper and lower surfaces of the film were separated from the surface height using non-

linear least square fitting together with frequency domain analysis [38]. Later, a spectrally 

resolved white light interferometer was used to measure topography with thickness of thin-

layer structures with nanometre vertical resolution [39]. By using a CSI technique, employing 

a source in the IR region (       , bandwidth      ) even the thickness of an oil-film over 

water can be measured with micrometre per step resolution [40]. 

The pupil plane scanning white light interferometric method (PUPS) designed by 

Zygo Corp. evaluates the thickness of the object by measuring the variation of amplitude and 

phase of the reflected wave from the surface at the back-focal-plane [41]. These are 

converted to ellipsometric parameters   and   as a function of wavelength and incidence 

angle from which the thicknesses of mono or multi-layer stacks can be computed. The 

modifications to the usual CSI configuration are the replacement of the tube lens by a relay 

lens focused on the back-focal-plane and the addition of two polarizers before and after the 

interference microscope objective. For silicon substrates with oxide and nitride coatings, the 

measurement uncertainty remains around one nanometre for different thicknesses.  

1.3.1.2 MEASUREMENT OF BIO-STRUCTURES 

An interesting application of CSI is the measurement of the structures of complex 

biological tissue. In general measurement of bio-objects requires staining or other labelling 

techniques which can change the form of the substance, but CSI eliminates the need of that. 
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En face tomography, essentially a CSI technique, can be applied to the characterization of 

live cells and to measure their behaviours under stress [42].  

1.3.1.3 TOPOGRAPHY OF SEMICONDUCTORS 

A predominant use of CSI is in topography measurements in the semiconductor 

industries, where at every stage of manufacturing, shape and roughness measurements are 

required. Specifically, crystal defects and roughness of the epitaxial layers has to be 

monitored at all times [43-45].  Blunt reported the suitability of CSI for the roughness 

measurement of semiconductor wafers and showed that the CSI measurements can be 

compared well with AFM [43].  

1.3.1.4 MEASUREMENT OF HIGH-ASPECT RATIO STRUCTURES 

High aspect ratio structures, in engineering, generally refer to shapes with greater 

depth compared to width, such as steep V-grooves or deep trenches. Measurements of these 

structures pose challenges to both contact and non-contact metrological techniques. 

Specifically, these structures arise in case of MEMS where the dimensions of different 

patterns continue to scale down due to increase in wafer size and integration of new 

materials. This is really an extension of semiconductor topography measurements and many 

ex situ and in situ methods are currently being examined. The CSI technique, being non-

contact with high vertical and lateral resolution, is one of the most useful techniques to 

measure these structures.  

Mahony et al have outlined a number of areas in MEMS characterisation where 

measurement with CSI proves to be useful, such as structural analysis and deflection curve 

verification. The paper also illustrates that CSI can produce better trench profiles and 

eliminates the need to destroy a sample from the batch for investigation under SEM [46].  

Montgomery et al have investigated the use of CSI in MOEMS structures containing 

deep trenches with micrometre precision, though the presence of “ghost fringes” affects the 

results. They have introduced certain modifications such as changing the objective from 

Mirau to Linnik to reduce the errors [37, 47]. Research on better post-processing algorithms 

are also going on in tandem. Chim et al have published about the pattern recognition 

techniques for deep trench arrays from the recordings made by CSM and CSI [48].  
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1.3.1.5 CHARACTERISATION OF MATERIALS 

Traditionally, the method of ellipsometry is used to characterise the optical properties 

of materials [49, 50]. At present, in order to measure absolute surface topography of an object 

by CSI technique a-priori knowledge of the materials is required [51]. Without a-priori 

knowledge, surface topography of an object made of single material can be obtained but for 

an object with multiple materials topography is altered. In examining objects with multiple 

materials, specifically for metals, the brightest fringe closest to the surface will shift 

differently after reflection for each material resulting in surface offsets up to about       

[52]. This is discussed in detail in Section 1.3.2.3. 

The effect of dispersion on this phase introduction or in other words, phase change 

with wavelength is reported by Harasaki et al [53]. Dubois et al presented a study that shows 

that phase change on reflection is also affected a little (      ) by numerical aperture [54].  

Park et al presented a method for compensating the phase change on reflection for 

measuring step heights with the step and base made of separate metals by CSI technique. 

Essentially, after the phases from upper and bottom side of the steps are measured in quasi-

monochromatic mode at two wavelengths, height compensations for each of the metals are 

computed [55]. This cannot be used, however, for an object where the multiple materials are 

distributed randomly.  

1.3.2 LIMITATIONS  

Despite its widespread use due to convenience and superior results over other 

methods of profilometry, CSI suffers a few limitations. These limitations arise out of the way 

light interacts with the surface or due to the way the surface topography is computed from the 

fringe video. Apart from the “ghost steps” that are erroneous steps of the order of half the 

mean wavelength generated from measuring flat objects, most of the errors due to limitations 

visible in objects with higher surface gradient [56]. In some of these limitation areas, active 

research is being pursued.  
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1.3.2.1 FRINGE ORDER ERRORS 

Fringe order errors, more commonly, known as   -jumps are sudden jumps of the 

order of half the wavelength in topography [57]. The topography determined from CSI is 

proportional to the measured phase of the brightest fringe closest to the surface. Due to the 

inherent cyclic nature of the phase measurement, there is a fringe order ambiguity of     , 

where   is any integer. In certain cases, the computation of the surface topography from 

fringe data fails to recognise the nature of this ambiguity, which might happen due to steep 

surface gradient, sharp edges or dispersion mismatch within optical component in the set-up 

[58]. For example, these errors are due to field dependent dispersion in the CSI optical set-up, 

especially, in case of Mirau and Linnik objectives or due to an object with higher surface 

gradient (tilt-dependent) such as sinusoidal gratings [1, 56, 57].  

A similar phase jump, known as a “batwing”, can be observed in the cases of sharp 

edges of step heights and square gratings [1]. This is generally thought to be caused by 

interference between waves coming from the top and the bottom surfaces of the objects 

mentioned. Sometimes, errors similar to batwings can be caused by both field-dependent and 

tilt-dependent errors as mentioned earlier [59]. 

1.3.2.2 MULTIPLE SCATTERING  

For objects such as V-grooves or deep trenches (high aspect ratio structures), the 

incident light is scattered multiple times due to the geometry of the object instead of coming 

back to the objective after a single scattering event. This causes erroneous geometries to be 

predicted for these sorts of objects, since in these cases surfaces are assumed to be weakly 

scattering (Born approximation) and multiple scattering is not considered [50]. This 

assumption holds true only for slowly varying surfaces but can hardly be justified in cases of 

steep surface gradients. For example, measurement of a silicon V-groove with Zygo 

NewView CSI with         , computes a clear peak instead of a groove at the apex of the 

V-groove [60]. Lobera et al theoretically predicted the effect of multiple scattering for 

different types of artefacts such as V-grooves and step heights using 3D theory of CSI [61]. 

From the above articles, it is observed that multiple scattering causes an 

overestimation of the actual surface height. Rough surfaces can be thought of to be comprised 

of small V-grooves, each of which will be overestimated resulting in a significant change in 
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the actual topography [60, 61]. Therefore, great care should be taken while measuring high 

aspect ratio structures as they are prone to multiple scattering problems. In an industrial 

environment, scratches, digs and re-entrant features affect the measurement of surface 

topography as they cause multiple scattering [1].  

1.3.2.3 DISSIMILAR MATERIALS 

 As discussed in section 1.3.1.5, examining dissimilar materials creates problems in 

the measurement of surface topography. Metallic surfaces introduce errors owing to their 

complex refractive index which shifts the brightest fringe closest to the surface [50]. For a 

surface made of a single material, the entire topography will shift vertically. On the other 

hand, for multiple materials, each material introduces different phases leading to significant 

errors in the measurement of topography [1, 53]. For example, an object with a chrome line 

deposited on glass was measured at National Physical Laboratory by both contact probe 

(NanoSurf IV) and by CSI. The contact probe measurement showed a height of 60.8 nm 

whereas, the CSI measurement consistently showed         [1]. Here, the chrome 

introduces a phase error which affects the topography by        . From the theoretical 

computation of the phase change, the expected height offset was about        , which 

agrees well with the measurement data, within experimental limits.  

 Lega et al reported that dissimilar materials in a single object can be measured with 

the PUPS techniques [41], discussed already. In this technique instead of imaging the focused 

plane of the objective, the back-focal-plane is imaged onto the CCD. Therefore, measuring 

surface topography together with material characterisation would be a two-step process, first 

by acquiring fringe patterns from the surface and second by acquiring the pattern in the back-

focal-plane and then processing.  

Rogala et al developed a PSI interferometer within a Twyman-Green set-up where 

using a polarisation pupil mask, selective transmission (vertical or horizontal) from the 

sample is modified. Using phase shifting technique phases are calculated for a “single” point 

on the sample from the fringe patterns generated by orthogonal polarisation (vertical or 

horizontal). Then evaluation of real part and imaginary part of refractive index together with 

surface height is done by using maximum likelihood technique. Results provide good 

estimates of the refractive index and surface topography [65]. 
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 Leonhardt et al published a two-part journal paper explaining a method with CSI, 

which they call as “interferometry for ellipso-height-topometry”. In this technique, a point in 

the back-focal-plane is illuminated by linearly polarised light so that an oblique parallel beam 

illuminates the object [62, 63]. The problem with this set-up is if the sample is tilted away 

from the objective (beyond maximum aperture), then a significant amount of light will be lost 

for rough surfaces and for smooth surfaces there won’t be any light coming back to the 

objective. Therefore, this set-up has limited usage and the user has to be careful about the tilt 

setting of this variant of CSI. This will be discussed in detail in Chapter 4 and subsequent 

chapters.  

1.4 RESEARCH OBJECTIVE AND ORGANISATION OF THE 

CHAPTERS 

In the previous section, the effect of dissimilar materials on CSI topography 

measurements has been presented. Although some attempts have been made to develop a 

solution, but they either need a-priori knowledge of the sample or there are restrictions on the 

object orientation and optical set-up. Therefore, there is a need for an instrument which can 

create a true surface height map of a composite sample (an object with dissimilar materials). 

For this purpose complex refractive index has to be calculated at each point on the surface. 

A novel rotationally symmetric polarisation sensitive CSI set-up is proposed here, 

which can measure surface topography together with complex refractive index at each point 

on the sample. There is no restriction on the orientation of the sample or the need for specific 

directional illumination in this case. This set-up uses orthogonal circular polarised 

illumination and measures the change in amplitude and phase in the reflected fringe pattern 

from the sample to obtain the necessary information. This effectively combines an 

interferometer with the capabilities of an ellipsometer and this, we believe, is a first of its 

kind. The lateral and vertical resolution achieved in this set-up is of the order of      and 

    , respectively. It is used not only to generate the material information of the sample but 

to compensate for the height offset made to represent true surface topography.  

In the next chapter (Chapter 2), a brief introduction to the theory of CSI that is 

prevalent in the literature will be discussed. An overview of the CSI set-up and different 

techniques of surface topography computation will be discussed. In Chapter 3, CSI will be 
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described in terms of three dimensional imaging starting from Helmholtz equation assuming 

a weakly scattering approximation. A brief theory of behaviour of the smoothly varying 

surface will also be discussed, which is termed as “foil model”. In Chapter 4, the concept of 

height offset for metallic surfaces is introduced. A polarisation sensitive microellipsometry 

set-up together with its results will then be presented. Next, a CSI configuration with an 

oblique illumination set-up is described where a gold coated sample on a glass substrate is 

examined and height offset for gold is measured. In Chapter 5, the theory and experiment of 

the polarisation sensitive CSI set-up is described. In this case with two different composite 

objects, the surface topography with height offset and height compensation will be presented. 

Finally, Chapter 6 concludes by summarising the findings of the project and describes the key 

features of the entire project.  

1.5 PUBLICATIONS FROM THE WORK IN THIS THESIS  

 

JOURNAL PAPER 

Jeremy Coupland, Rahul Mandal, Kanik Palodhi, and Richard Leach, "Coherence scanning 

interferometry: linear theory of surface measurement," Appl. Opt. 52, (2013)  

http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-16-3662 

Part of the thesis is being considered for a patent and therefore, it is yet to be published.  

 

 INTERNATIONAL CONFERENCE PROCEEDINGS: 

1.      K. Palodhi, J. M. Coupland, R. K. Leach, “A linear model of fringe generation and 

analysis in coherence scanning interferometry”, Precision Interferometric Metrology, ASPE, 

North Carolina, US, Jun 2010. 

 

2.      K. Palodhi, J. M. Coupland, R. K. Leach, “Experimental determination of the point 

spread function and its effect in coherence scanning interferometry”, PHOTON 10, 

Southampton, UK, Aug 2010. 

 

3.      K. Palodhi, J. M. Coupland, R. K. Leach, “Measurement of complex refractive index 

using micro-ellipsometry and its relevance to surface measurement using coherence scanning 

interferometry”, Met&Props, National Physical Laboratory, UK, Apr 2011. 

 

4.      K. Palodhi, J. M. Coupland, R. K. Leach, “Determination of the point spread function 

http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-16-3662
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of a coherence scanning interferometer”, Met&Props, National Physical Laboratory, UK, Apr 

2011. 

 

5.      K. Palodhi, J. M. Coupland, R. K. Leach, “Absolute surface topography measurement 

of composite structures using coherence scanning interferometry”, Como, Italy, EUSPEN, 

May 2011 (poster).  

 

6.      R. Mandal, K. Palodhi, J. M. Coupland, R. K. Leach, “Measurement of the point spread 

function in coherence scanning interferometry”, ICONTOP, Kolkata, India, Dec 2011.  

 

 

7.      R. Mandal, K. Palodhi, J. M. Coupland, R. K. Leach, “Application of linear systems 

theory to characterize coherence scanning interferometry”, SPIE Photonics Europe, Brussels, 

Apr, 2012. 

 

The conference proceeding in PHOTON 10, 2010 (No. 2) is not included in the thesis since 

the work of experimental determination of PSF was later not continued by me and is taken up 

by Rahul Mandal, another member of our group. The proceedings presented the initial results 

of PSF measurement using Ruby balls used in Coordinate measuring machines (CMM). 

The proceeding presented in Met&Props, 2011 (No. 4), primarily discussed the theoretical 

treatment of 3D linear filtering technique used for CSI and also presents some of the 

experimental results. The proceeding presented in ICONTOP, 2011 (No. 6) is on the other 

hand is predominantly based on the experimental results.  
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CHAPTER 2 :  CSI  –  THEORY AND 

FRINGE ANALYSIS  TECH NIQUES 

INTRODUCTION 

CSI systems are actually part of a broader range of instruments that can be termed as 

low-coherence interferometry (LCI). The essential idea of low-coherence interferometry is 

that the reference surface within an interference microscope (IM) operated with a broadband 

light source generates a localised fringe pattern. This fringe pattern is superposed with the 

image of the object, which in turn, enables the localization of that surface that is identified 

with a particular depth range.  

In this Chapter, the physical construction and the working principle of CSI is going to 

be discussed. CSI instrumentation is similar to a microscope set-up with the normal objective 

replaced by a compact interferometer, known as the interferometric objective. This is the 

heart of CSI instrumentation, from which both the object and the reference beams are 

derived. A video of the image of the sample superposed with the fringe pattern is acquired via 

a camera, as the sample is scanned through the focus. Later, the video is processed digitally 

to produce the surface map, details of which are presented in section 2.3.  

2.1 CSI: PHYSICAL CONSTRUCTION 

CSI combines vertical scanning techniques with 2D optical interferometry to achieve 

a three-dimensional (3D) surface measurement. It uses a source with broadband spectrum that 

is sometimes referred to as “white light source”, such as an LED or a tungsten lamp. This 

forms a part of an illumination arrangement followed by the interferometric objective (Mirau) 

through which the sample is illuminated as shown in Figure 2.1. By amplitude division of the 

incident light beam with a beam splitter within the Mirau objective, an object beam and a 

reference beam are generated. The reflected beams from both the object and a reference 

mirror recombine to produce an interference pattern, as the objective is focused onto the 

sample. This interference pattern (interferogram) is typically recorded with a CCD camera. A 

measurement, typically, consists of recording the fringe pattern generated at various heights. 

With the movement of a vertical stage, the sample is scanned through the focus of the 

interferometric objective (interferometer), as shown in Figure 2.1. The relative difference of 
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the position between the reference inside the interferometric objective and the object 

generates an optical path difference (OPD). Essentially, a set of 3D interferograms taken over 

a range of OPD between the object and reference light beams are acquired over the entire 

field of view during the vertical scan [1-9]. 

 

 

Figure 2.1 CSI instrumentation with Mirau objective 

 

Depending upon the surface topography of the object, various parts of the object come 

to focus at different points of the scan. From the OPD and the positions of the focus, 

representative points of surface topography can be computed using various fringe pattern 

demodulation techniques. Next, the most important constituents of CSI, the sources, the 

objectives and the camera, will be discussed.  

2.1.1 LIGHT SOURCES 

For CSI measurements, the main idea is to use a low coherence source so that the 

interference fringes are localised very close to the focus of the objective. The choice of the 
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light source is guided by its central wavelength, its coherence length, the light power needed, 

and in certain cases, its pulsing capabilities. Generally, visible light sources are used, 

although interference microscopy in the deep-UV range was demonstrated recently [10, 11]. 

However, highly coherent laser sources are often avoided, as they tend to generate speckle 

and parasitic fringes, which degrade the measurements. Typically, a tungsten halogen white 

light source with band-pass-filter is the most common choice, but LEDs with broad spectrum 

(       –        ) are an interesting alternative. LEDs are now available at low cost with 

various wavelengths in the UV-visible-near-infrared range. In addition, they can easily be 

pulsed and have a low response time (  –      )  that is suitable for stroboscopic 

measurements [12, 13].  

Generally speaking, as the signal-to-noise ratio of many optical detectors is 

proportional to the square root of light intensity, the highest possible light power must be 

used. With these sources, the coherence lengths are of the order of      which is suitable for 

most smooth surfaces with average surface roughness 𝑅       , such as polished optical 

surfaces measured. For rough surfaces or surfaces with higher slope angles such as engine 

parts or unpolished engineering parts (𝑅        ), the coherence length of the source 

needs to be increased. This can be achieved by a narrow-band optical filter (      ) 

inserted in front of the source or by using a narrow-band LED, which increases the coherence 

length up to       [13].  

2.1.2. INTERFEROMETRIC OBJECTIVE 

Several types of interferometric objectives have been developed based on the 

configurations of Michelson, Mirau and Linnik interferometers. Interferometric objectives are 

generally composed of a microscope objective and a miniaturized interferometer placed 

within the objective to minimize the optical paths in the interferometer arms and obtain a 

high lateral resolution (    ) . The sample acts as the second surface of a two-beam 

interferometer so that the interference between two waves can take place. In this way, their 

spatial coherence properties can be maintained and for this reason sometimes an IM is also 

called a coherence microscope [9].  

Michelson-type interferometric objectives as shown in Figure 2.1(a) are of low 

magnifications (≤ 5X) and an optional compensator plate is used in the reference arm. The 

objective needs to be corrected for optical aberrations related to plate insertion. Mirau-type 
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interferometric objectives, as shown in Figure 2.2(b), are preferred for intermediate 

magnifications (10X–50X) because they are very compact. The disadvantage of Mirau 

objective is that the reference mirror is in the path of the image.  

 

             

Figure 2.2 Different types of objectives (a) Michelson, (b) Mirau and (c) Linnik 

 

Linnik interferometers, as shown in Figure 2.2(c), are based on two objectives used 

for the reference and the test arms with matched wave fronts and chromatic aberrations. Due 
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to the stringent requirements, they are more expensive. They are also quite difficult to align 

and tend to be heavier. The advantages are that they provide high magnifications (100X–

200X) with the highest lateral resolution and the largest working distance.  

One of the main requirements of an interferometric objective is that it should be 

compensated for dispersion for the two arms [14]. In Mirau and Linnik (two identical 

objectives) interferometers, the same objective is traversed by the object and reference beam, 

so chromatic aberrations and spherical aberrations of the objective have a small effect on the 

interference pattern [13, 15]. Michelson and Mirau objectives are less sensitive to external 

disturbances than Linnik interferometers, because they have short optical paths and are 

lighter. Michelson, Mirau, and Linnik interferometers can be used with both coherent and 

low-coherence illumination.  

2.1.3 CAMERA 

In general, a charged coupled device (CCD) is used for recording the data, which 

lends itself easily to digital computation. There are different resolutions of settings depending 

upon the mode used starting from 160 X 120 up to megapixels of array size. For higher 

resolutions, more pixels (320 X 240, 640 X 480, etc.) have to be used but that would also 

increase the processing time. Therefore, knowledge about the sample would aid the selection 

of the mode [13]. Essentially, the pixel size acts as a spatial sampling device and this sets a 

limit of two pixels per fringe on the screen.  

2.2 FRINGE FORMATION 

Surface profile of the object is calculated from the recorded interference fringes 

formed during a vertical scan. Figure 2.3 shows a typical cross-section along vertical 

direction (Z-X) taken from the scan of a flat polished artefact. The interference fringes are 

created from the interaction of the field scattered from the object and the reflected from the 

reference surface. The sample is scanned relative to the reference surface and the analysis of 

the data can be considered on a pixel to pixel basis, from intensity changes stored in the 

computer memory for each pixel on a plane by plane basis, as shown in Figure 2.3.  
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Figure 2.3 A typical vertical cross-section of white light fringe pattern 

 

The conditions for interference require that the object and reference fields must have a 

degree of mutual coherence. Use of a white light (broadband and distributed) source limits 

the coherence length, and therefore, the path difference between the object and the reference 

has to be closely matched to obtain a fringe pattern. The envelope of the interference fringes 

can be thought of as a measure of the mutual coherence of the fields in the direction of the 

scan. The recorded intensity pattern or the interference pattern is due to the superposition of 

the scattered and the reference beams in all angles and all wavelengths. A basic 

interferometer is illustrated in Figure 2.4 which is used to develop the basic theory of CSI.  

 

 

Figure 2.4 A basic interferometric set-up 
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The light intensity      at point P(x,y), as shown in Figure 2.4, at the output of a two-

beam interferometer with a monochromatic light source of wavelength   is given by the 

following well-known equation, 

             √                                              (2.1) 

Where    and    are the light intensities at point P of the waves reflected on the reference 

mirror and on the sample, respectively, and   is their phase difference. By considering 

propagation and reflection of these waves (Figure 2.4), it can be easily found that, the phase 

difference between these two waves at point P(x,y) is given by, 

 (       )     [ (   )   ]      (     )                                    (2.2) 

where,  (   )  is the local height on the sample surface with respect to the base plane        

(   )      (     )        is the difference of the phase changes on reflection at 

points P´ and P´´ and       is the wavenumber.  

By combining these equations, 

    (       )    (     )[   ( )    {   ( (   )   )      (     )}]   (2.3)                                                                   

where,          is the background intensity and   
 √    

     
 is known as fringe 

visibility which depends on the intensities of the two components and the degree of 

coherence. 

When a two-beam interferometer is illuminated by a broadband light source, 

equations 2.1 – 2.3 must be modified to account for partial temporal coherence of the light 

source [14, 16, 17]. The intensity at the output of the interferometer can generally be put in 

the following form,   

 (     )  ∫    ( )  [      [   (   )      ]   
 

  
               (2.4) 

where,  ( ) is the spectrum of the illumination source with respect to the wavenumber. In 

general, the integral (equation 2.4) is strictly true for low numerical apertures and has to be 

solved numerically. If  ( ) is assumed to be of Gaussian form (i.e. the illumination spectrum 

is Gaussian) then the second part of the integral will be a cosinusoidal variation multiplied by 

a Gaussian. This acts as an envelope of the fringe pattern and termed as the envelope 

function. It is maximum when the optical path difference is zero (i.e. [ (   )   ]     ) and 
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decreases from both sides of the maximum. This is illustrated in Figure 2.5 for a simulated 

interferogram      with a white light source with Gaussian spectrum centred at        with 

bandwidth of       . The coherence length is of the order of       . Considering Figure 

2.5, if the total unwrapped phase difference is     and the scan movement within fringe 

visibility is    then Sandoz et al suggested a measure of the effective wavenumber  ̅ given 

by [16], 

 ̅  
 

  

   

  
                    (2.5) 

From equation 2.5, considering the values of the above example, as expected an effective 

wavelength can be found out to be  ̅  
 

 ̅
       , which is approximately twice the length 

of the central fringe as shown in Figure 2.5.  

 
 

Figure 2.5 Simulated interferometric signal with Gaussian illumination spectrum centred at 

500 nm and a bandwidth of 100 nm for a low-numerical-aperture objective 

   

In the absence of dispersion the strongest interference is observed when the path 

length difference is zero and consequently, the modulation envelope provides an estimate of 

the position of the object surface. While the modulation envelope provides a broad estimate 

of the position of the object surface, the relatively high spatial frequencies within the fringe 

modulation provide a better measure. For this reason most CSI instrumentation uses the 

modulation envelope to estimate fringe order and subsequently, the object surface is deduced 

from the phase of the underlying fringe pattern. The different techniques are discussed in 
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Section 2.3. In these cases, the inherent assumption is that each pixel is independent of each 

other and data processing techniques are applied on interferometric signals along z-direction 

(Figure 2.5) separated out for each pixel. This is a simplification to the real situation and 

interference patterns, generally, have a coupling effect in adjacent pixels. 

For more accurate modelling of fringe formation, dispersion of the system must be 

considered since it can change     (     ) in equation 2.2. Even if the dispersion of the 

Mirau objective is compensated, a dispersive object can change     (     ). This induces a 

shift to the coherence envelope and an additional phase shift of the position of the 

interference fringes within the coherence envelope [18-20].  

2.3 FRINGE ANALYSIS  

There are several ways to extract surface topography data from a CSI signal, but the 

most popular methods are detection of the modulation envelope, phase estimation or a 

combination of these. The fringe pattern intensity is given by equation 2.4. It is worth noting 

that real fringe data is likely to deviate from this ideal form for reasons including aberrations 

and dispersion introduced by the objective lens, surface tilt, roughness, multiple scattering 

effects and the noise introduced during the measurement process.  

2.3.1 ENVELOPE DETECTION 

Envelope detection is one of the most popular methods for the generation of surface 

topography and is deduced by calculating the modulation envelope in equation 2.4 [3, 7, 9]. 

The envelope term can be extracted in several ways that in essence demodulate the signal 

around the fringe frequency  . In general, envelope detection is made more robust (less noise 

prone) by fitting a curve to the envelope function or by calculating a centroid rather than to 

rely on its peak value [21]. Later, in Section 2.3.3, it will be discussed that centroid 

calculation is prone to noise, as well.  

Caber has adapted digital filter concepts from communication theory to recover fringe 

contrast envelopes to produce fast and noncontact profiles of a wide range of surface 

roughness [3]. The modulation function is extracted from the fringe signal and its peak is 

detected. The relative surface height at that point can be measured by amplitude 

demodulation using high-speed digital hardware comprising a square law detector and filters.  
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Lee et al showed the coherence function is given by the envelope of the fringes. The 

fringes can be demodulated to find the peak amplitude of the envelope and the scan location   

of the peak [9]. The method performed over all points provides a high lateral resolution 

image of the object. The increased lateral resolution results also from reduced crosstalk 

between laterally adjacent points due to the spatial incoherence of the illumination and the 

coherence detection scheme.  

The method by Dresel et al is in a certain sense, a combination of time of flight and 

interferometry [7]. Instead of measuring the phase, they measured only the occurrence of 

interference. Because of the short coherence length, interference occurs only within those 

speckles that correspond to the surface elements close to the plane of the sample. These 

regions are detected and stored, while the object is moved slowly along the   axis.  

2.3.2 PHASE ESTIMATION 

The phase of the fringes depends on the path difference in two arms of the 

interferometer as well as the complex refractive index of the surface (equation 2.2). 

Generally, a phase estimation method is commonly used in the profilers who use spectrally 

resolved WLI methods, but there are other application areas [11, 22-28]. 

Since phase can only be determined unambiguously over the interval     , the 

method can only be used in isolation, if the surface deviation is less than half the mean 

effective wavelength (
 ̅

 
). Phase unwrapping methods can be used for continuous surfaces for 

surface deviations more than 
 ̅

 
 (equivalently, phases more than   ). The envelope detection 

is used to identify the zero order fringe and for the ideal case with no dispersion, the zero 

order fringe is the central bright fringe that corresponds to equal object and reference paths.  

Bhushan et al have shown that phase measurement can be done by a method known 

as the integrating bucket method, where the relative phase between the test arm and the 

reference arm is varied at a constant rate rather than discrete steps resulting in less vibration 

related errors similar to PSI [22]. A similar system based on interference microscopy by 

Montgomery et al used phase stepping for automatic fringe analysis [27, 28]. The resolution 

obtained with this technique (      ) was better than the predecessors of this working area. 
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A spectrally resolved white light interferometry (SRWLI) technique by Calatroni et al 

analyses the light spectrum of the recorded interference pattern from CSI and the surface 

profile along a line [23]. The set-up consists of a Mirau objective and a spectrometer before 

CCD, which separates out fringe patterns for different wavelengths from white light fringes. 

For this technique first the phase is estimated from the cosine (according to equation 2.4) and 

a linear fitting to the phase is done. In a second stage, the surface profile is computed since 

the phase is only     times the profile and then the order of the fringes are matched with the 

profile to produce more accurate estimation (     ) of surface profile. The paper reported 

by Schwider et al [24] introduces a similar method where interferometric profiler is based on 

a Fizeau interferometer. The method used here is termed as four step grating evaluation 

method where the phases of the fringe pattern (equation 2.2) are obtained by a Fast Fourier 

Transform (FFT) algorithm with appropriate filtering. 

Hariharan et al proposed a method where a phase shifting technique is applied to 

overcome the error generated due to non-uniform contrast or modulation generated by 

moving the reference mirror for varying optical path [25]. Here, additional phase shifts are 

introduced in   with the use of an arrangement of quarter-wave plates and half-wave plates, 

which works as an achromatic phase shifter to always maintain the central fringe as dark. 

They have also used this technique to overcome the problem of “batwings” or spurious 

diffraction errors [29]. 

Using a dispersive white-light interferometer, Schnell et al propose a similar phase 

estimation technique with linear fitting for measurement of absolute distance (essentially, the 

surface profile) together with the thicknesses of dielectric multilayer systems on the target 

[26]. Here, according to equation 2.2, they take into account that      is a nonlinear 

function of the surface profile, thicknesses of the layers and known refractive indices of the 

dielectric materials for the measurement of phase  . The measurement with this technique is 

compared with “mechanically measured” distances and thicknesses for one and two layers of 

photoresist and SiO2 upon silicon including the effects of thin films deposited upon the target 

and they conform within       accuracy.  

2.3.3 ENVELOPE DETECTION WITH PHASE ESTIMATION 

Most of the above techniques achieve a vertical resolution of the order of tens of 

nanometres but due to the phase ambiguities there is a need to combine phase estimation with 
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envelope detection. In all of the above techniques, the concern is to find the surface closest to 

the coherence peak from the discrete intensity data points so that the scanning-step distance 

(       ) does not limit the height resolution [3, 6, 30-32].  

In 1995, further improvement of the height resolution (    )  was proposed by 

Hariharan et al with a technique that uses the PSI algorithms in white light interferometry, 

known as white light phase stepping interferometry (WLPSI) [33, 34]. The technique uses an 

achromatic phase shifter to shift (for four different phases) the white light fringe pattern or 

the correlogram at the best focus, the highest-contrast position during axial-scanning. Using a 

four point algorithm from the corresponding phases, known as the fractional phase, the 

overall phase information can be estimated. This technique significantly reduces computation 

need. The constraints on this technique are that the mechanical resolution of the steps needs 

to be better than the mean wavelength,  ̅ and phase information computed is sensitive to the 

precision of the step rather than coherence-peak-sensing techniques. Secondly, the phase 

unwrapping procedure is required for the measured fractional phase from the best-focus to 

retrieve height information [30, 31, 33, 34].   

Larkin in his seminal paper proposed a non-linear five-point algorithm, which is able 

to efficiently compute surface profile from the correlogram [30]. He introduced the idea of 

measuring coherence envelope peak together with computing the fractional phase to evaluate 

surface profile. Sandoz et al proposed an improvement in height-resolution (     )  by 

introducing a seven-point algorithm with identification of the fractional fringe order in 

WLPSI [16]. In this way, they were able to remove the 2π-ambiguities that showed well-

separated values for different fringe orders in the case of low noise. The main assumption in 

this case is that the coherence envelope of the object is varying smoothly so that locally it can 

be considered as linear [31]. 

Instead of using WLPSI, the coherence-peak position between frames from the 

recorded discrete correlogram can be found by two methods. The first one is a least- squares 

fitting method for the coherence envelope from the source distribution [3, 31]. Kino et al 

proposed the other method of calculating the centroid from the correlogram for each pixel 

that yielded identical results for low noise [8, 35, 36]. However, Larkin and Harasaki argue 

that the centroid of the correlogram recorded for each pixel is not the best estimate of the 

focus due to noise. The centroid could deviate from the actual envelope peak at positions on 

or close to a discontinuity and then the fractional phase obtained from it would contain false 
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information. As a result, the phase measurement should be taken from the actual coherence-

peak position rather than from the centroid position [30, 37, 38]. 

A less computationally intensive but powerful WLPSI technique by Harasaki et al is 

used for removal of ghost steps and fringe order identification errors [38]. In this paper an 

intuitive way to correct 2π ambiguities is proposed by finding the coherence-peak using 

linear fitting and then, evaluating the profile. A second profile is obtained by measuring the 

phase near zero phase condition using a five point algorithm. The ambiguity in the profile is 

removed by comparing the profiles obtained in these two cases assuring the differences 

between them is kept below    .  

The basic idea of all of these reports is that envelope detection can be combined with 

phase estimation using different computational techniques. The modulation envelope is used 

as the means to identify the fringe order with the phase analysis providing more accurate 

information of surface height. For mathematical formalism, let us suppose two sets of data, a) 

surface height estimate     obtained from measuring the modulation envelope and b)     is 

the phase of the fringes at a height of      It is usual to define the phase gap,    , as the 

differences, 

                                                                             (2.6) 

The two sets of data may be combined to produce a map of surface elevation     given by, 

    
   

   
 

 

 
     (

    〈 〉

  
)                                                         (2.7) 

In this expression     is the field average of the phase gap    , and the function      () 

denotes the nearest integer value [13]. With the help of modern computers, this technique can 

provide nanometric resolution with less computational time. 

2.3.4 FREQUENCY DOMAIN ANALYSIS (FDA) 

Any source with a large, continuous range of frequencies can be loosely described as 

a white light source. Such a source is also said to have a broadband spectrum, composed of a 

continuous band of colours or wavelengths. In the case of white light interferograms, 

therefore, a whole range of sinusoidal patterns are superimposed on each other. It is still 

possible to extract phases for the individual frequencies contributing to the interference 
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effect. This is done by means of a Fourier Transform or more specifically, by the 

computationally efficient Fast Fourier Transform [39-41]. The phase can be described as a 

linear function of spatial frequency   and from the slope the surface height can be calculated 

as described later. A series of interference phase values for each of the spatial frequencies is 

needed to estimate the linear fit. Otherwise, there would be an ambiguity in uniquely defining 

the slope due to insufficiency of data [5, 6, 41, 42]. For a suitable dataset, there would be 

only one possible line in the frequency domain graph as shown in Figure 2.6. 

 

Figure 2.6 Linear fitting to phase in FDA analysis for unambiguous height detection [43] 

 

Danielson et al have described a simple technique with a fibre Michelson low 

coherence interferometer and the ranging information is obtained by a Fourier transform 

method [4]. The authors suggest that if there is dispersion then the best possible way to 

analyse fringe data is by FDA. This information may be extracted from the intensity of a 

pixel    ( ) through the normalized Fourier transform  

 ( )  ∫    ( )    (      )   
 

  
                                       (2.8) 

The desired phase evaluation is then given by, 

 ( )     [
  { ( )}

  { ( )}
]                                               (2.9) 
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Note that the phase gap    , previously identified when calculating optical phase, is 

simply the axis intercept of the best fit line. Therefore, the optical phase is given by,  

                                                                            (2.10) 

where,     is the gradient of the optical phase.  

If this function is plotted against a range of white light frequencies  , then an estimate 

of the surface height at a pixel     can be deduced from the gradient of the line best fit, as 

shown in Figure 2.6. From equation 2.10, for the effective wavenumber  ̅, this can be written 

as, 

          
      ̅      

   ̅
                                                             (2.11) 

The Fourier transform of each individual interference pattern results in a sequence of 

phase values that can be used to determine the local surface height. The high frequency 

content of the signal can be directly analysed using Fast Fourier transform (FFT) since an 

FFT of the intensity term    ( ) generates the frequency spectrum  ( ). In principle, the 

measurement of surface topography without relying on fringe contrast is possible with FDA, 

because the analysis takes place entirely in the spatial frequency domain where the fringe 

contrast is never calculated [41-43]. The vertical resolution obtained is of the order of a 

nanometre [43]. 

CONCLUSION 

In this chapter, the present state-of-the-art design and physical principles of CSI were 

discussed in detail. Interference fringes superimposed with image-stacks are recorded during 

vertical scan and computation techniques are applied for calculating surface topography. In 

all of the cases, it is assumed that the object is smoothly varying, therefore, higher slopes and 

sudden discontinuities are neglected. The second assumption is that the correlogram at each 

pixel does not perturb the correlogram at a neighbouring pixel. Depending upon the 

computation technique, the vertical resolution of the CSI is determined. On the other hand, 

the lateral resolution of the CSI is determined by the numerical aperture of the interferometric 

objective. In the next chapter, our analysis of CSI will be in terms 3D imaging theory. 
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CHAPTER 3 :  THREE 

DIMENSIONAL LINEAR 

FILTERING THEORY  OF CSI  

INTRODUCTION  

In the previous chapter the theory of CSI was based on a one dimensional (1D) 

treatment of optical imaging in the spatial domain. In this case the interference fringe pattern 

recorded was considered as the superposition of the scattered field from the object and a 

reference field at each vertical step as the object was scanned through the focus of the Mirau 

objective. This essentially constituted a stack of images which contained both amplitude and 

phase information about the scattered field. Different techniques to find the surface 

topography were also discussed. In all of these techniques, the combined effect of spectral 

variation of the source and illumination variation due to    over the envelope function are 

not taken into account. This can be viewed, however, as a three dimensional (3D) imaging 

problem to include all of the above effects. Essentially, in that case a coherent response is 

measured by the instrument once an optical radiation is incident on an object. The measured 

response for a point-like object would be the 3D point-spread-function (PSF) in the spatial 

domain, or equivalently, the transfer function (TF) in the spatial frequency domain. The 

response measured in spatial frequency domain can be obtained by a 3D Fourier transform 

technique. 

In this chapter it will be shown that the 3D TF can be computed by a simple 

geometric construction related to the Ewald sphere in X-ray crystallography assuming 

electric fields to be scalar. The TF thus considered provides important parameters such as, the 

vertical and lateral resolutions and is a useful demonstration of the illumination and 

observation processes in CSI. This theoretical framework is also valid for other 3D imaging 

techniques such as, holography, confocal imaging and optical coherence tomography and CSI 

can be compared to these techniques in this way. [1-7].  
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3.1 THREE DIMENSIONAL LINEAR IMAGING  

Here, starting from scalar diffraction theory CSI is described as a 3D linear imaging 

technique which is a simplification of the actual physical problem yet maintains the rigour 

and generality. Figure 3.1 shows a schematic diagram of the Mirau objective, which is at the 

heart of CSI. The light that illuminates the object forms the reference field (  ( ⃗)) (the field 

when object is absent) which is mixed with the scattered field (  ( ⃗)) coming from the 

object. The reference field (  ( ⃗)) is inverted to consider the reflection from the Mirau 

reflector (   ( ⃗)). If the wavelength of the light is given by    then wavenumber is defined 

as    
 

  
  

  

 
 where,   is the refractive index of the medium,     is the frequency of the 

light and 𝑐 is the speed of light in vacuum. The incident light rays on the object are from all 

possible angles within    of the Mirau objective and the scattered rays collected by the 

objective are restricted by   . 

 

 

Figure 3.1 Schematic diagram of CSI 

3.1.1 SCALAR DIFFRACTION THEORY 

CSI provides a measure of the time-independent macroscopic properties of the object 

such as, dielectric constant or complex refractive index. Assuming scalar diffraction theory, 

the 3D point spread function (PSF) of CSI is calculated using of 3D linear filtering, here. At 

first a guide to the essential steps is provided with short descriptions of the tasks.   

Assuming scalar diffraction theory, the 3D point spread function (PSF) of CSI is 

calculated using 3D linear filtering, here. At first a guide to the essential steps is provided 

with short descriptions of the tasks.   
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1. Assuming these macroscopic parameters (e.g. refractive index) vary slowly over a 

wavelength interval, one can arrive at the time-independent wave equation known 

as Helmholtz equation [8], which is central to the scalar diffraction theory. The 

Helmholtz equation, is solved in its integral form using the Green’s function 

( ( ⃗)). 

2. From the Born approximation, the scattered field (  ( ⃗)) is expressed in terms of 

a convolution of Green’s function with the field arising from the source.  

3. The reconstructed field from the field measured at the boundary is then shown to 

be equivalent to a further linear filtering operation. 

4. The restrictive nature of the aperture of Mirau objective is considered afterwards 

and from that the real measured field   ( ⃗) is computed. 

5. The 3D fringe pattern generated by CSI is the measured field superposed by all 

possible plane waves coming from different points on the aperture which is 

obtained by integrating (for all possible plane waves) the interference pattern due 

to one plane wave. Separating the term due to the object, namely, refractive index 

contrast  ,  a 3D PSF can be computed for monochromatic back-scattered case.  

6. Further consideration of bandwidth of the illumination provides an expression for 

3D PSF for CSI for the polychromatic case.  

A monochromatic electric field with complex amplitude  ( ⃗) propagating within a 

medium with complex refractive index  ( ⃗) satisfies the Helmholtz equation given by, 

   ( ⃗)    
   ( ⃗) ( ⃗)           (3.1) 

The total field at any point  ( ⃗) can be expressed as superposition of the reference 

field (  ( ⃗)), the illumination that would be present without the object and the scattered field 

(  ( ⃗)) due to the object such that,  

  ( ⃗)     ( ⃗)     ( ⃗)         (3.2) 

The object, a region of inhomogeneity, encountered by   ( ⃗)  is defined by the 

refractive index contrast which is given by,  

    
(      ( ⃗))

 
          (3.3) 
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An important point to be noted here that is assuming the light outside the region of 

inhomogeneity is travelling through vacuum,   would be zero outside. The reference field 

  ( ⃗) must satisfy Helmholtz equation, 

 (     
 )  ( ⃗)            (3.4) 

Substituting equation 3.2 and equation 3.3 into equation 3.1 gives, 

(     
 )  ( ⃗)      

  ( ⃗)(  ( ⃗)     ( ⃗))   ( ⃗)                         (3.5) 

where,  ( ⃗) defines the source that is non-zero in the region of inhomogeneity. The Green’s 

function  ( ⃗   ⃗ ) for the Helmholtz equation is by definition the solution of the equation,   

(     
 ) ( ⃗   ⃗ )    ( ⃗   ⃗ )       (3.6) 

where,  ( ⃗) is the 3D Dirac delta function and the negative sign in front is by convention. 

Using equation 3.6,   ( ⃗) can be written in an integral form as [8],  

   ( ⃗)  ∫  ( ⃗   ⃗ ) ( ⃗ )   ⃗   ( ⃗)   ( ⃗)
 

  
      (3.7) 

where,   denotes 3D convolution.  

Until now the form of the Green’s function was not specified. The Green’s function in 

the spatial frequency domain (henceforth called as k-space) can be derived from equation 3.6 

and be written as [9],  

  ̃( ⃗⃗)  
 

| ⃗⃗|
 
    

  
          (3.8) 

where,  ⃗⃗ is the variable spatial frequency in k-space and     denotes Fourier transform. From 

equation 3.8 by Fourier transformation the Green’s function in the spatial domain can be 

expressed as [9],   

 ( ⃗)  
        ⃗⃗⃗ 

    ⃗ 
         (3.9) 

This is a well-known form that defines the outgoing free-space Green’s function for a 

point-source as shown in Figure 3.2(a) calculated with  ̅            ̅     ̅ .  ̃( ⃗⃗)  is 

shown in Figure 3.2(b) with the same wavelength. The Born approximation or more strictly 

the first order Born approximation neglects the effect of multiple scattering and assumes that 
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the scattered field due to the region of inhomogeneity modifies the reference field but only 

slightly so that it can be viewed as weakly scattering. This can simply be achieved if the 

scattered field   ( ⃗) is removed from the right hand side in equation 3.5 such that, 

    ( ⃗)       
  ( ⃗)  ( ⃗)         (3.10) 

  ( ⃗) contains only reference field modified by source terms. Substituting equation 3.10 into 

equation 3.7 the scattered field is given by the convolution, 

  ( ⃗)   ( ⃗)    ( ⃗)                                      (3.11) 

This can be equivalently represented in k-space representation given by, 

  ̃ ( ⃗⃗)   ̃( ⃗⃗)  ̃ ( ⃗⃗)                             (3.12) 

where,  ̃ ( ⃗⃗) is the 3D spectral distribution of the source and  ̃( ⃗⃗) is simply a thin spherical 

shell of radius    as shown in Figure 3.2(b). The corresponding free space Green’s function 

in the spatial domain  ( ⃗) is illustrated in Figure 3.2(a).  Therefore,   ( ⃗) is simply a 3D 

linear filtering operation applied to the source terms.  

 

 

     (a)        (b) 

Figure 3.2 The Green’s function in  a) spatial domain (real) & b) k-space (absolute) 

 

In practice the scattered field is only measured at a distant boundary. In the next 

section, a reconstruction of the scattered field from measurements at a distant spherical 
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boundary is computed. According to the Born Approximation, the field due to an arbitrary 

object can be considered as a linear supposition of fields due to suitably placed point sources. 

Therefore, a form of  ̃( ⃗⃗), termed as  ̃     ( ⃗⃗) will be derived at a point of measurement 

close to the source for the ideal case of a point source (the region of inhomogeneity). The 

reconstructed field due to an extended source can be computed from  ̃     ( ⃗⃗). From that the 

scattered field for an extended source, termed the measured field, can be expressed in terms 

of the reconstructed field and reference field from equation 3.12.  

3.1.2 RECONSTRUCTION OF THE MEASURED FIELD DUE TO A POINT 

SOURCE 

For computation of the reconstructed field from the field measured at the far-field in 

the ideal case of a point source the integral theorem of Helmholtz and Kirchoff is going to be 

used.  In that case, an imaginary spherical boundary (S) with volume V in the far-field with 

radius    ⃗⃗⃗⃗  (   ⃗⃗⃗⃗     ) around the point source is considered without the loss of generality, as 

shown in Figure 3.3. Therefore, from the measured field at a point P´ on S (at far-field) due to 

the point-source, the field will be reconstructed at point P (close to the point-source) within 

V. The Cartesian co-ordinate system is suitably chosen so as to place P on the Z-axis. The 

distance of P from the origin is     ⃗ and        and the angle of   ⃗⃗⃗⃗  w.r.t. Z-axis is   [9]. 

From the result of the integral theorem of Helmholtz and Kirchoff the reconstructed field 

  (   ⃗   ⃗⃗⃗⃗ ) at P can be calculated by,  

   (   ⃗   ⃗⃗⃗⃗ )  ∬ ( 
  

  
  

  

  
)

 
                           (3.13) 

Let us consider a point source is placed at the origin. The field propagating from that 

source can be considered to be a spherical wave  (  ⃗⃗⃗⃗ ) and can be written as, 

 (  ⃗⃗⃗⃗ )  
        

    
                (3.14) 

Differentiating equation 3.14, 

 
  (  ⃗⃗ ⃗⃗ ⃗)

  
 (          ⁄ ) (  ⃗⃗⃗⃗ )        

 

 



44 

 

For   >> ,  

 
  (  ⃗⃗ ⃗⃗ ⃗)

  
       (  ⃗⃗⃗⃗ )                                    (3.15) 

 

Figure 3.3 The reconstructed field due to a point source within a boundary at far-field 

 

The Green’s function that describes the propagation of the field from the boundary to 

P can be written as   (  ⃗⃗⃗⃗     ⃗) and is given by,    

  (  ⃗⃗⃗⃗     ⃗)  
       |  ⃗⃗⃗⃗⃗⃗     ⃗⃗|

     ⃗⃗ ⃗⃗ ⃗    ⃗ 
                (3.16) 

If      , then    ⃗⃗⃗⃗     ⃗       ⃗⃗⃗⃗     ⃗   , substituting into eqn. (3.16), 

  (  ⃗⃗⃗⃗     ⃗)  
         

     ⃗⃗ ⃗⃗ ⃗ 
         ⃗⃗ ⃗⃗ ⃗    ⃗                            (3.17) 

and the normal derivative is given by, 

   
   (  ⃗⃗ ⃗⃗ ⃗    ⃗)

  
        

 (  ⃗⃗⃗⃗     ⃗)        (3.18) 

Substituting equations 3.14 – 3.18 into equation 3.13   

      (   ⃗   ⃗⃗⃗⃗ )  ∬ (        
 (  ⃗⃗⃗⃗     ⃗)  (  ⃗⃗⃗⃗ ))
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      ∬ (
        

     ⃗⃗⃗⃗  
 
         

     ⃗⃗⃗⃗  
  

     
  ⃗⃗ ⃗⃗ ⃗
  

    ⃗)
 

   

   (   ⃗   ⃗⃗⃗⃗ )  
   

     ⃗⃗ ⃗⃗ ⃗  
∬ ( 

     
  ⃗⃗⃗⃗⃗⃗

  
    ⃗

)
 

          (3.19) 

Now to consider the field contribution only due to the boundary S, equation 3.19 the area 

element can be written as,     (    )  . Here, due to radial symmetry the coordinate 

system is converted from Cartesian to spherical polar to evaluate the integral in equation 

3.19. Therefore, equation 3.19 can be rewritten as, 

  (   ⃗   ⃗⃗⃗⃗ )  
   

     ⃗⃗ ⃗⃗ ⃗  
∭  (     

) ( 
     

  ⃗⃗⃗⃗⃗⃗

  
    ⃗

)                 

and according to spherical polar co-ordinate from Figure 3.3, 
  ⃗⃗ ⃗⃗ ⃗

  
    ⃗     𝑐   , and it is 

found that, 

  (   ⃗   ⃗⃗⃗⃗ )  
   

     ⃗⃗ ⃗⃗ ⃗  
∫  (    ) 

 

  
      ∫              (𝑐   )

 

  
∫   

  

 
        (3.20) 

Solving and putting all the limits the above integral can be written as,  

   (   ⃗)      
    (      )

(      )
  

Therefore the above can be written as,    

             (  )          (      )                                (3.21) 

Since the system is spherically symmetric,    can be replaced with general notation of 

  and the reconstructed field in the spatial domain can be written as,  

  ( )          (     )                (3.22) 

From equation 3.21, it can be clearly seen that even if the entire boundary values of 

the scattered field are measured at the far-field, the reconstruction of the field is a linear 

filtering process applied to the source distribution. In this case the PSF is a sinc function 

obtained from a delta function. 
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Note, here, Fourier transform (FT) is defined as,  ̃( ⃗⃗)  ∭  ( ⃗)      ⃗⃗  ⃗   
 

 
               

and the inverse Fourier transform (IFT) as,  ( ⃗)  ∭  ̃( ⃗⃗)     ⃗⃗  ⃗   
 

 
.            

Taking FT of both sides of equation 3.22 and using the integral of  -function from equation 

3.20, FT of the reconstructed field can be written as, 

 ̃ ( ⃗⃗)  
 

    
 (| ⃗⃗|    )                                                                       (3.23) 

For the ideal case of a point source for which the whole of the scattered field components 

over the far-field boundary is measured, the transfer function   ̃     ( ⃗⃗) is given by, 

 ̃     ( ⃗⃗)   ̃ ( ⃗⃗)  
 

    
 (| ⃗⃗|    )                         (3.24) 

For the source distribution given by equation 3.10, the 3D source spectrum  ̃ ( ⃗⃗) can be 

written as,  

 ̃ ( ⃗⃗)  ∫    
  ( ⃗)  ( ⃗)      ⃗⃗  ⃗    

  

 
               (3.25) 

One can think of the source distribution as being comprised of an ensemble of point 

sources and therefore, from equation 3.12 the reconstructed field, which will henceforth be 

called as the ideal reconstructed field for ideal spherical boundary,  ̃     ( ⃗⃗) is given by, 

 ̃     ( ⃗⃗)   ̃     ( ⃗⃗) ̃ ( ⃗⃗)               (3.26) 

  

Figure 3.4 Ewald sphere and TF due to restricted NA 
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From Figure 3.4, it can be seen that  ̃     ( ⃗⃗), the thin spherical shell covers all 

possible spatial frequencies with radius    i.e. for a particular wavelength   . As in the case 

of holography, this thin spherical shell is termed the Ewald sphere in accordance to X-ray 

diffraction theory [7]. Optical instruments cannot measure field over the entire spatial 

frequency domain, however, due to the restriction of NA. The TF due to this restricted NA is 

termed as  ̃  ( ⃗⃗) and it is only a part of the Ewald sphere as shown in Figure 3.4. A 

theoretical expression for  ̃  ( ⃗⃗) can be written as [7],  

 ̃  ( ⃗⃗)    
 

    
 (| ⃗⃗|    )     (

| ⃗⃗|

  
   √    

  )            (3.27) 

In the spatial domain, this can be expressed as,  

   ( ⃗)  
 

    
∫  (| ⃗⃗|    )     (

| ⃗⃗|

  
   √    

  )        ⃗⃗  ⃗   

  
              (3.28) 

No closed form of solution of the above integral is available but some insight can be 

gained considering the direct representations of the axial and lateral resolutions of optical 

systems from the bandwidth of  ̃  ( ⃗⃗) in the axial (   ) and lateral directions  (     ), 

respectively. From Figure 3.4, the expressions for resolutions in different directions in terms 

of bandwidths in different directions can be expressed as, 

   
 

   
    

  

   

   
 

   
    

  

   

   
 

   
    

  

(  √    
  )}

 
 

 
 

       (3.29) 

Therefore, the maximum resolution in lateral directions would be half of the 

wavelength of the beam used for reconstruction considering   
     , whereas, in axial 

direction it is   . The general measured field with a restricted aperture can be expressed as 

(from equation 3.26),  

     ̃ ( ⃗⃗)   ̃  ( ⃗⃗) ̃ ( ⃗⃗)         (3.30) 

In the spatial domain equation 3.30 can be written as,  

  ( ⃗)     ( ⃗)    ( ⃗)                           (3.31) 
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and the integral form of the measured field   ( ⃗)  from equation 3.27 and 3.30 can be 

expressed as, 

  ( ⃗)  
 

    
∫  (| ⃗⃗|    )     (

| ⃗⃗|

  
   √    

  )  ̃ ( ⃗⃗)      ⃗⃗  ⃗   

  
     (3.32) 

As before   ( ⃗), the measured field due to the source spectrum distribution  ̃ ( ⃗⃗) 

for an optical system with restricted aperture can be expressed in terms of a 3D linear 

filtering process. 

3.1.3 THREE DIMENSIONAL POINT SPREAD FUNCTION FOR CSI 

For a monochromatic illumination equation 3.32 can be written in an integral form as,  

  ( ⃗)      
 ∫    ( ⃗    ⃗⃗ ⃗) (  ⃗⃗ ⃗)  (  ⃗⃗ ⃗)    

  

  
              (3.33) 

In the case of CSI (from Figure 3.1) the recorded intensity (fringe pattern superposed 

with the object) at the CCD is due to the superposition of the reference field    ( ⃗) and the 

measured field   ( ⃗). Since the measured field itself is a filtered version of the scattered 

field, CSI recordings are 3D linear filtering operations.  

In 3D, the fringe pattern can be expressed as,  

 ( ⃗)     ( ⃗)     ( ⃗)            

 For a monochromatic illumination with a particular plane wave (i
th

 wave)        

  ( ⃗)        ⃗⃗ ⃗⃗   ⃗, the above equation can be written as,  

  ( ⃗)   ( ⃗)       ( ⃗)   (   ( ⃗)       ⃗⃗ ⃗⃗   ⃗⏟        
                   

    ( ⃗)       ⃗⃗ ⃗⃗   ⃗)           (3.34) 

In the case of CSI the intensity is comprised of these reconstruction terms for all 

possible plane waves with different spatial frequencies within the NA of the Mirau objective. 

The overall intensity due to reconstruction for the i
th

 wave is given by substituting the 

expression of   ( ⃗) from equation 3.33 into the reconstruction term in equation 3.34.  

  
    ( ⃗)      

 ∫    ( ⃗    ⃗⃗ ⃗)      ⃗⃗ ⃗⃗  ( ⃗   ⃗⃗⃗⃗ )
⏟              

   

 (  ⃗⃗ ⃗)⏟  
      

    
  

  
            (3.35) 
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The term within the under-bracket as CSI is the convolution with refractive index 

contrast and this is similar to all optical instruments that follow back-scatter geometry. This is 

similar to the Green’s function in case of the derivation of the scattered field as in equation 

3.7.  

For the i
th

 illumination wave, this can be expressed as,  

  
    ( ⃗)     

    ( ⃗)      ⃗⃗ ⃗⃗  ( ⃗)               (3.36) 

In the frequency domain, equation 3.36 can be written as,  

 ̃ 
    ( ⃗⃗)     

  ̃   ( ⃗⃗    
⃗⃗⃗⃗ )               (3.37) 

In equation 3.36, the exponential term refers to different plane wave illuminations (i
th

 

wave) with spatial frequency   . As with the observations, these plane waves are restricted 

within the aperture defined by the NA and are given by  ̃  ( ⃗⃗) as shown in Figure 3.4. 

Therefore, the exponential term (the plane waves) integrated over all possible spatial 

frequencies in backscatter is the same as  ̃  ( ⃗⃗).  

For all possible illumination spatial frequencies over an Ewald sphere with radius    

equation 3.37 can be written as [7], 

 ̃  
    ( ⃗⃗)  ∫    

  ̃   ( ⃗⃗    
⃗⃗⃗⃗ ) ̃  ( ⃗⃗)     

 

  
    

   ̃  ( ⃗⃗)   ̃  ( ⃗⃗)       (3.38) 

This is the transfer function (TF) of CSI if monochromatic illumination is used as 

shown in Figure 3.4. From equation 3.38 it can be seen that in the frequency domain  ̃  ( ⃗⃗) 

is convolved with itself assuming there is no change in aperture in illumination side and 

recording side [7]. By writing this expression in the spatial domain one obtains an expression 

for the point spread function (PSF) which is the square of    ( ⃗) given by,  

   
    ( ⃗)     

    
 ( ⃗)                (3.39) 

In this case it can be seen that now the filtering is over the refractive index contrast 

rather than on the source terms and therefore, from equation 3.35 and 3.38, it can be written 

as,  

  
    ( ⃗)   ∫    

    ( ⃗    ⃗⃗ ⃗) ⏟          
   

 (  ⃗⃗ ⃗)⏟  
      

    
  

  
              (3.40) 
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CSI uses polychromatic light by employing a broadband source and records fringe 

patterns simultaneously for all wavelengths with all possible spatial frequencies within NA. 

Therefore, considering the spectral width of the source to be  (  ), the PSF can be expressed 

as,  

    
    ( ⃗)   ∫  (  )   

    
 ( ⃗    ⃗⃗ ⃗)       

  

  
                         (3.41) 

In the frequency domain the TF this can be expressed as,  

 ̃   
    

( ⃗⃗)   ∫  (  )   
 [  ̃  

( ⃗⃗)   ̃  
( ⃗⃗)]         

  

  
                       (3.42) 

From Figure 3.5, the diagram of  ̃   
    

( ⃗⃗)  can be seen. Considering          

 

        
, the expressions for resolutions in different directions in terms of bandwidths in 

different directions is expressed in equation 3.43.  

   
 

   
    

    

   

   
 

   
    

    

   

   
 

      
    

 

  
 

    
 

   

         }
 
 

 
 

      (3.43) 

 

 

Figure 3.5 Transfer function of CSI 
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The spectrum    is small (      )  for LED illumination used for experiments 

performed later. Therefore, the vertical resolution    for the set-up used is predominantly 

dependant on the    dependent term.  

It is noted that the effective wavenumber  ̅ , defined in Section 2.2, is the z-

component of the centroid of the TF given by, 

 ̅  
 

 
 
∫| ⃗⃗|  ̃   

    
( ⃗⃗)    

∫  ̃   
    

( ⃗⃗)    
|
 

                (3.44) 

Finally, the fringe patterns or the intensity recorded for CSI with multiple 

wavelengths in terms of PSF can be written as, 

     
 ( ⃗)   ∫     

    
( ⃗    ⃗⃗ ⃗) (  ⃗⃗ ⃗)    

  

  
                         (3.45) 

Figure 3.6 presents a vertical cross-section through the PSF of an aberration free CSI 

instrument of          with a Gaussian spectral density with the central wavelength 

       and the bandwidth approximately        (at     ). 

 

Figure 3.6 Real part of the point spread function 

 

Until now the linear theory of CSI was described with the main focus on the 

instrument and its behaviour with a restricted aperture and a simplified model of weak 

scattering considering the Born approximation. The next section shows, however, that under 

certain conditions, a linear model of the object (refractive index contrast of the object) can be 

formulated without the Born approximation [11]. 
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3.1.4 FOIL MODEL 

For general inhomogeneous 3D objects, weak scattering can rarely be justified. This is 

because the wavelength of the field within an inhomogeneous bulk material generally varies 

significantly and after a propagation of just a few wavelengths the phase of the internal field 

will depart significantly from the illuminating field. In the case of CSI however, the situation 

is significantly different since the general concern is with the scattering from the surface of a 

homogeneous media. In this case, the assumption of weak scattering implies that the 

illuminating field at the surface is that which would be present in the absence of the object. In 

effect this means that the scattered field propagates from the surface via a single scattering 

event. Multiple scattering will occur predominantly when attempting to measure rough or 

high aspect ratio surfaces [10] but, it can often be neglected. 

For surface scattering it is intuitive to consider only a thin “foil-like” layer on top of 

the object surface. Indeed, for the case of a metal object, the illuminating field is rapidly 

attenuated. The field is only of significance within the skin depth [8] and the remainder of the 

object has no measurable effect. If the metal is a perfect conductor then the skin depth is 

infinitesimally small while the complex refractive index contrast is infinitely large and the 

scattered field will be exactly that which would be scattered from a thin foil with the same 

profile. 

In the following an object function defined by the convolution of the PSF and a 

refractive index contrast for this thin foil considering a near normal incident field for a 

smoothly varying object is presented. Consider a plane wave (as shown in Figure 3.7) to be 

an illumination field or reference field    ( ⃗) from a distant source that is incident on a 

surface (S). The scattered field   ( ⃗) reflects back towards the source, while the transmitted 

field   ( ⃗) propagates into the bulk of the material of complex refractive index  ( ⃗). The 

field at any point above S can be calculated by application of Kirchhoff’s theorem and proper 

selection of Green’s function. The outward normal direction is denoted by  ̂.  

The boundary conditions in this case are,  

        

 (     )

  
  

   

  

}                    (3.46) 

From the Helmholtz equation it can be stated that,  
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(       

 )  ( ⃗)   

(     
 ) ( ⃗   ⃗ )   

}          (3.47) 

Multiplying first of equation 3.47 with  ( ⃗   ⃗ ) and second of equation 3.47 with 

  ( ⃗) and simplifying,  

     ( ⃗   ⃗ )  ( ⃗)   
 

  
 (    )

(  ( ⃗)   ( ⃗   ⃗ )   ( ⃗   ⃗ )    ( ⃗))  (3.48) 

From equation 3.33 and the first boundary condition (equation 3.46) the scattered 

field in this case can be expressed as, 

  ( ⃗)      
 ∫  ( ⃗    ⃗⃗ ⃗) (  ⃗⃗ ⃗)  (  ⃗⃗ ⃗)    

  

  
             (3.49) 

  

 

Figure 3.7 Foil surface with reference, scattered and transmitted field  

 

Now, the contribution of the transmitted field is within the object volume. With the help of 

equation 3.48 and  (  ⃗⃗ ⃗)  
    ( ⃗)

 
 this can be again written as,  

  ( ⃗)    ∫ (  ( ⃗) 
  ( ⃗   ⃗ )   ( ⃗   ⃗ )    ( ⃗)) 

   
 

 
           (3.50) 

By applying Green’s theorem to equation 3.50,  

  ( ⃗)    ∫ ( 
   

  
     

  
)   

 

 
               (3.51) 
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This shows that the scattered field from a homogeneous medium can be written purely 

in terms of the field at the boundary. Since here the reference field is assumed to have near 

normal incidence (  
⃗⃗⃗⃗⃗  ̂     ), the variation with respect to the surface normal for the 

fields considered can then be simplified as,  

 
   

  
         

    
  

  
                                 (3.52) 

The Fresnel amplitude transmission coefficient at normal incidence, considering the volume 

outside the object to be vacuum, is given by, 

   
 

   
                        (3.53)  

where   is refractive index of the transmitted medium. 

The transmitted field can, therefore, be expressed as,  

    
   

   
                                                                   (3.54) 

Substituting equation 3.54 and 3.56 to equation 3.53 

  ( ⃗)  ∫   ( ⃗) {     (
   

   
)}

 
 ( ⃗   ⃗ )                                   (3.55) 

The main interest lies in finding the scattered field due to the uppermost layer of the 

material, the thin “foil”-like surface in the case of CSI. Therefore, the surface S in the Figure 

3.7 can be thought of as an area under observation. At each point of observation on this area 

the foil is infinitesimally thin and the total area has a finite length in X and Y direction. This 

can be written as a window function  (     ) providing the finite width in lateral direction 

and with the delta function along Z direction for the infinitesimal thickness,  

    ( )   (     ) (    (     ))       (3.56) 

where,  (     ) describes the surface profile.  

From equation 3.56 the elemental surface area    can be written as,  

   ∫  (     ) (    (     ))
 

  
                 (3.57) 

Finally, the scattered field due to the “foil” area is given by, 
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 ( ⃗)  {     (

   

   
)} ∫   ( ⃗) ( ⃗   ⃗ ) {∫  (     ) (    (     ))

 

  
   } 

     

        (3.58)         

The field contribution due to the entire bulk of the material is due to the top-layer of 

the surface, in this case the foil area. The refractive index contrast is zero outside this region 

of interest and therefore, no contribution to the scattered field would come from outside. The 

limits of integration can, therefore, be extended to infinity in each lateral direction. From 

equation 3.58, in analogy with the measured field from equation 3.33, for the scattered field 

due to the foil can be expressed as,   

     
 ( ⃗   )     ∫    ( ⃗    ⃗⃗⃗⃗ )     ( 

 )
  

  
 (  ⃗⃗⃗⃗ )                                    (3.59) 

where      ( ) is the computed surface or the ‘foil’ model of the surface and it is defined as,  

     ( )      (
   

   
)⏟  

        
          

            

 (     ) (    (     ))                                   (3.60) 

The computed surface clearly shows terms containing Fresnel reflection coefficient for 

normal incidence, which would in turn modify the measured field.  

For the foil model therefore, the PSF can be expressed from equation 3.59 in analogy to 

equation 3.41 as,  

     ( ⃗)   ∫    (  )   
 ( ⃗)

  

  
                                    (3.61) 

In the case of CSI, therefore, the PSF from equation 3.61 together with the foil surface 

defined from equation 3.60 generates fringe formation for different profiles (equation 3.45) 

given by,  

 ( ⃗)  ∫      ( ⃗   ⃗ )     (  ) 
   

 

  
              (3.62) 

This is the expression for the simulated fringe pattern (interferograms) for CSI or in other 

words, the output of CSI.  

In the case of a perfect conductor the reflection coefficient is unity and does not 

change with angle. In the case of a real metal, however, the inhomogeneous field within the 

skin depth affects the phase and amplitude of the scattered field. This results in a variation of 
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the reflection coefficient with the angle of incidence making it polarization dependent [8]. 

For the case of CSI, however, the variation is small for the range of angles accepted by the 

numerical aperture of a typical instrument and the phase change results in an apparent 

movement of the object surface in an axial direction. For the case of a dielectric surface, the 

situation is similar however, there is no phase change and although the magnitude of 

reflection coefficient is quite small it is reasonably constant over the range of angles accepted 

by the NA of the instrument. Consequently, providing that there is no multiple scattering from 

internal surfaces (such as thick films), scattering from dielectric and metal surfaces will 

closely resemble that from a perfect conductor and the foil model will remain valid. 

3.1.4.1 APPLICATION OF THE FOIL MODEL WITH SINUSOIDAL PROFILE 

For comparison with real-life measurement applications, the foil model is considered 

for a sinusoidal surface. In Figure 3.8 an experimental measurement with CSI of a metallic 

sinusoidal grating with     pitch,        amplitude (pk-pk) is presented. The ideal form is 

shown by the dashed line and measurement profile with shown with continuous line. It 

clearly shows a fringe order errors of        whenever higher gradient is encountered. 

 
 

Figure 3.8 A CSI measurement of sinusoidal grating 8m pitch and 466nm amplitude (pk-pk) 

 

A sinusoidal surface is considered to illustrate the fringe generation process and the 

effect of the PSF when it is investigated using an ideal CSI instrument that is free from 

aberration. The sinusoidal profile is modelled as the foil defined by the profile,  

 (     )       (
    

  
)                (3.63)   

where,    and    are the amplitude and wavelength of the grating respectively. In this work 

the 3D convolution of equation 3.62 was evaluated numerically using an FFT algorithm 

implemented in MATLAB software.   
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Figure 3.9 shows the interferogram generated by the foil model of CSI for the case of 

an ideal system mentioned in Section 3.1.3 (Figure 3.6) when the instrument is used to 

measure a grating with the same pitch and amplitude as that illustrated in Figure 3.8. The 

white dotted line, shown in Figure 3.9 shows the surface profile that is obtained by finding 

the peak in the fringe envelope. It can be seen that ideal optics should be capable of 

identifying the correct fringe and consequently, should provide a good measurement of the 

surface profile as shown in Figure 3.9. It can be seen that near the higher gradient areas it 

tends to be less accurate [11].  

 

Figure 3.9 Interferogram generated by the foil model for sinusoidal grating 8 m pitch, 466 

nm amplitude (pk-pk) 

 

The effect of the PSF becomes more noticeable as the surface gradient increases. For 

example if the pitch of the sinusoidal profile is decreased to        the foil model with ideal 

PSF generates the fringe pattern shown in Figure 3.10. Fringe order errors similar to that 

shown in Figure 3.8 are now apparent at points where the gradient is steep. 

 

Figure 3.10 Interferogram generated by the foil model for sinusoidal grating 3.3 m pitch, 466 

nm amplitude (pk-pk) 
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The pitch of the grating in Figure 3.8 and Figure 3.10 are not the same, therefore, it 

was just used to illustrate the match between a real-life measurement and a simulation. It 

seems that the jumps are opposite in polarity which was not recognised before. At this 

moment, this cannot be explained and further work is required to understand this.  

CONCLUSION 

In this chapter a linear theory of CSI instrumentation, in which the system response 

can be characterised by its 3D point spread function (PSF), was considered. This is 

appropriate to surface profilometry providing that multiple scattering effects are negligible. In 

this case the scattering from the object surface is equivalent to that from a foil-like object 

with the same surface profile. The application of the linear theory to an analogous foil-like 

surface is termed as “the foil model of CSI”. From the 3D linear imaging technique different 

parameters of CSI can be easily obtained. Fringe patterns due to different object geometries 

can also be generated and examined. Another important aspect is that the refractive index 

contrast of the foil surface is dependent on the complex Fresnel reflection coefficient of the 

object material (especially, metal). In the case of metals, the reflection coefficient will 

introduce additional phase to the interference pattern which will shift the fringes.  These 

effects will be discussed in detail for the next two chapters.   
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CHAPTER 4 :  MEASUREME NT OF 

SURFACE HEIGHT OFFSE T FOR AN 

OBJECT WITH MULTIPLE  

MATERIALS  

 INTRODUCTION  

In the previous chapter CSI was described as a 3D linear imaging method with the 

object defined as a foil-like surface and the fringe pattern produced as the convolution of this 

foil with a 3D PSF. In the foil-model, it was mentioned that the fringe pattern changes for 

metallic objects when measured under CSI due to the complex refractive indices. This results 

in a surface height offset and there is an apparent shift of surface topography in the axial 

direction. For a homogeneous object, i.e., an object made of a single material, the entire 

profile is shifted axially with no change in the profile whereas for an inhomogeneous object 

made of a number of materials, each material introduces different height offset and therefore, 

an inaccurate surface profile will be measured. The measurement of this phase offset by 

different materials with a CSI using modified optical configuration will be explored in this 

and the subsequent chapters.  

First, ellipsometry which is widely used for the measurement of complex refractive 

index will be discussed [1, 2]. The same information, however, can be obtained in the back-

focal-plane of an objective by the method known as microellipsometry (ME) described by 

See et al [3] and there are other variant techniques reported based on similar concepts [4-6]. 

In this chapter, a microellipsometry set-up will be described for a single-point measurement 

of the phase offset from which complex refractive index of the material can be calculated. 

Ellipsometry and ME already exist in literature and were done to prepare the basis for whole-

field polarisation sensitive CSI. Later, a new polarisation-sensitive CSI configuration 

enabling whole-field measurement of phase offset and surface topography will be discussed. 

4.1 ELLIPSOMETRY 

Ellipsometry, invented by Drude in 1887, is one of the most popular and high-

precision techniques for measurement of a variety of optical parameters and material 
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properties such as, complex refractive index  , dielectric constant   , etc. In ellipsometry, a 

surface is illuminated with polarised light and from the change of polarisation in the reflected 

light the properties mentioned above are computed. There are variants of ellipsometric 

techniques, such as the spectroscopic ellipsometer, the real-time spectroscopic ellipsometer 

and the real-time spectroscopic ellipsometer with photodetector array [7-11]. The following 

section introduces the fundamental physics that governs reflection from a planar surface and 

the ellipsometric technique.   

4.1.1 FRESNEL EQUATIONS 

When a light beam (plane wave) is incident on the interface of two isotropic media, 

part of the beam reflects back to the medium of refractive index    from which the light is 

coming and the other part will be transmitted into the second medium of refractive index    

as shown in Figure 4.1 [12]. 

 

Figure 4.1 Light beam incident on the interface of two isotropic media  

 

The light beams can be represented with a combination of orthogonal components. As 

shown in Figure 4.1, the component with its electric vector contained within the plane of 

incidence is known the p – polarised component (shown with an arrow) and the other with its 

electric vector perpendicular to the plane of incidence (shown with an annular circle) is 

known as the s – polarised component [13]. The superscripts “i”, “r” and “t” in Figure 4.1 

denote the incident, reflected and transmitted field, respectively. The fractions of light 

amplitude reflected or transmitted for these two components are determined by the well-

known Fresnel equations and the amplitude reflection coefficients and the amplitude 

transmission coefficients are given by,  
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where,    is incidence angle,    is the transmission angle given by,         ( 
       

  
) and 

        and         are the reflection and transmission coefficients for p – and s – polarised  

light, respectively. The refractive indices of the two media are, in general, complex quantities 

and can be written as        , where, the refractive index is denoted as       . The 

complex part is known as extinction coefficient which measures the amount of absorption by 

the material. For dielectrics, the reflection and transmission coefficients are real-valued but, 

in general, they are complex.  

4.1.2 NULL ELLIPSOMETRY 

In general, when a linearly polarised light beam reflects from a metal surface, it 

produces an elliptically polarised reflected beam. In ellipsometry this change of the 

polarisation is measured in terms of the relative amplitude change  , and the relative phase 

change  , which are known as the ellipsometric parameters. The ratio of the Fresnel 

reflection coefficients can be written directly in terms of ellipsometric parameters [1, 2, 13] 

such that, 

  
  

  
        (  )         (4.5) 

where,   the ratio of the reflection coefficients, a complex constant that depends on the 

incidence angle. For ellipsometric consideration the relative phase is conventionally written 

as           (
  

  
) where    ( ) means argument of a complex number   [13]. 
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Figure 4.2 Null ellipsometry with single wavelength  

 

In null ellipsometry, as shown in Figure 4.2, a laser source illuminates a sample with 

plane polarised light after it passes through the polariser (P). In general, a reflected beam 

would be elliptically polarised and the quarter wave plate Q is rotated so that this elliptically 

polarised beam becomes plane-polarised. Finally, the beam passes through a linear polariser 

called an analyser (A), which is rotated to register a null intensity at the photodetector D.  

From the rotation angles of P, Q and A,   and   can be computed to produce  . The 

refractive index of the sample surface can then be calculated by the expression [13],  

   (  
       [   (

   

   
)
 

      ])
   

       (4.6) 

In ellipsometry, the incident beam illuminates an area of the sample depending on the 

laser beam diameter and therefore, the results obtained are averaged over this illumination 

area with low spatial resolution of the order of      . The same information, however, can 

be retrieved from the back-focal-plane of a microscope objective used to focus and acquire 

reflected light from the object. This technique, known as microellipsometry, has a much 

higher spatial resolution compared to the ellipsometer of the order of      . 

4.2 MICROELLIPSOMETRY 

Single point measurement of ellipsometric parameters using microellipsometry was 

first proposed by See et al and later a modified version of that was reported by Feke et al [3, 

4]. A generic configuration capable of microellipsometry is shown in Figure 4.3. In this set-

up a plane polarised beam is brought to focus by a microscope objective on the surface of an 

object.  

Laser

 

P

 

Q

 

A

 

D 

Sample 
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In this way the object is simultaneously illuminated by a field containing all plane 

wave components that propagate through the numerical aperture of the objective as shown in 

Figure 4.3. If it is assumed that the surface normal is parallel to the optical axis, the angle of 

incidence (and also reflection) of each plane wave component is uniquely defined by position 

in the back focal plane of the objective. By measuring the phase and amplitude changes 

between the field at one or more points in the back focal plane, when the source polarisation 

is rotated by     , the ellipsometric parameters can be deduced. More generally, if the local 

surface gradient is known, the incidence angle can be deduced and a similar analysis provides 

the ellipsometric parameters.  

 

 

Figure 4.3 Geometry of the p – and s – component [15] 

 

With reference to Figure 4.3 an expression for the phase and amplitude of the 

component of the reflected field in the back focal plane can be derived as follows. Consider a 

laser source that provides plane polarised, plane wave illumination in the back focal plane of 

the objective through the polariser, such that it is focused to a point on the flat metal coated 

sample as shown in Figure 4.3.  It is noted that the p – and s – components are aligned in the 

radial and transverse directions in the back-focal-plane. Here,   is the radial distance and the 

angle measured from X-axis in the back-focal-plane is given by azimuth  . A particular ray 
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passing through the edge of the aperture of the objective reflects from the sample and upon 

reflection a phase change between the p – and s – components causes the polarisation state to 

become elliptical, as shown in Figure 4.3. In this way each point in the back focal plane 

corresponds to a plane wave component in the sample illumination. 

The horizontal and vertical polarisation can be described as polarisations in azimuth 

     and       direction, respectively. The phase change upon reflection due to the 

orthogonal polarisations mentioned above is measured at a point at the edge of the aperture 

on X-axis i.e. at     . The phase offset is calculated from the difference in phase for each 

orthogonal polarisation and the expressions of these phase changes will be derived in the 

following. 

 

Figure 4.4 The p – and s – components of the reflected beam 

 

Consider first the case of illumination with amplitude       
  (   ), in the back-

focal-plane with the plane of polarisation in      direction as shown in Figure 4.4 where 

the phase term  (   ) is introduced due to all aberrations in the optical system. The p – and 

s – components of the incident field in the back-focal-plane are   
 (   )  and   

 (   ) , 

respectively, and they are given by,  

  
  

 (   )     
      

  
 (   )     

      
}                   (4.7) 

The angle of incidence in this case is         (
 

 
) where,   is the focal length of the 

objective (Figure 4.3). The p – and s – components of the reflected fields   (   ) and 

  (   ), respectively, in the back focal plane can be written as, 
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 (   )       

      

  
 (   )        

      
}                  (4.8) 

where,       are the amplitude reflection coefficients.  

From Figure 4.4 the component of the reflected field   (   ) that is parallel to the 

incident field is expressed as, 

  (   )      
  (               )               (4.9) 

Similarly, the reflected field    (   ), for the case of field normal to the incident field, can 

be written as, 

               (   )       
  (               )            (4.10) 

where, the incident field is        
  . 

 

 

Figure 4.5 The reflected field    (horizontal polarisation) in the back-focal-plane of the 

objective for gold sample; (a) amplitude variation and (b) phase variation 

 

The phase error due to aberration    (   ) is assumed to be same for both    and    . 

In Figure 4.5(a) and 4.5(b), the amplitude and phase variations of the reflected field    due to 

a gold object are shown, respectively. The complex refractive index of the gold object is 

             measured by an ellipsometer. From equation 4.9, it is noted that the 

reflected field   (    )     
  (   )   and   (     )      

  (   )  , or in other words, 

the horizontal polarisation along      provides a completely p-polarised illumination 
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whereas, at      , it becomes completely s-polarised as shown in Figure 4.5. In this way, 

the amplitude and phase variation for     are simply the respective patterns for   , rotated 

    around the azimuth  .  

From equation 4.9 and 4.10, the ratio of the fields can be written as,  

  (   )

   (   )
 

  

   
 
               

               
               (4.11) 

Since,                and               , 

  (   )   

   (   )    
 

(     ) (     )      

(     ) (     )      
                                                           (4.12) 

By elementary manipulation above, a ratio can be written as, 

  (   )       (   )    

  (   )       (   )    
 

(     )       

(     )
              (4.13)  

The real, imaginary, magnitude and phase-maps obtained from equation 4.13, in the 

back-focal-plane (  
       )  are shown in Figure 4.6(a), 4.6(b), 4.6(c) and 4.6(d), 

respectively. The real and imaginary images show a two-cycle variation, whereas, the 

magnitude (absolute) image shows a four-cycle variation. Interestingly, the phase-map 

variation is a square wave variation around azimuth   between      to     as shown in 

Figure 4.6(d). 

For high    objectives, aberrations can cause significant phase error, which affects 

the refractive index and subsequent phase offset measurement. Therefore, measurement of 

both the reflected fields    and     is advantageous, so that an equation of the form of the 

ratio of the two can be obtained. The phase error  (   ) due to aberrations is cancelled in 

equation 4.13 and effectively the ratio gives a result free from the phase errors due to 

aberrations of the optical system.  
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Figure 4.6 Variation of the ratio in equation 4.13 around the back-focal-plane for gold with an 

objective of         (a) real, (b) imaginary, (c) absolute and (d) phase  

 

From the ratio in equation 4.13 in the Fourier domain the second cycle can be 

separated from the real and imaginary part to reduce the noise. After that at the perimeter of 

the back-focal-plane for      and        equation 4.13 reduces to 

  (       )       (       )(   )    

  (       )       (       )    
 

  (       )   (       ) 

  (       )   (       )
      

It is clear that at the perimeter,   (       )    (  
   ) and   (       )    (  

   ) and 

therefore, the above ratio can be written as, 

  (       )   (       ) 

  (       )   (       )
 

  (  
   )   (  

   ) 

  (  
   )   (  

   )
               (4.14) 

From the value of the complex number  , the ratio of the reflection coefficients   is 

calculated as, 

   

   
 

  

  
                         (4.15) 



69 

 

From equation 4.15, after obtaining the ratio of the reflection coefficients  , the complex 

refractive index   can be calculated by equation 4.6. 

The variations of the real and imaginary part of the ratio in equations 4.13 at the 

perimeter of the back-focal-plane is shown in Figure 4.7 for gold, silver and aluminium. 

Clearly, the real part of the ratio of silver is much less compared to the other metals, whereas, 

the imaginary part of the ratio according to descending order of values are, gold, silver and 

aluminium. 

 

Figure 4.7 Real and imaginary part of the ratio of equation 4.13  at the extreme of the aperture 

for NA = 0.85 with refractive indices obtained from ellipsometer 

4.2.1 MICROELLIPSOMETRY SET-UP 

The microellipsometry set-up with a He-Ne laser (wavelength            ) is 

shown in Figure 4.8 [15]. The polariser P was used to control the illumination level of the 

laser and by rotating the half-wave plate (λ/2) the orientation of the plane of polarisation can 

be rotated. After the plane polarised light passes through the beam expander, lens L1 

collimates the beam and the plate beam-splitter (BS) divides the wavefront into two plane 

waves, one towards the reference mirror (M) and the other towards the objective. The 

objective (from Comar Optics – catalogue no. 60 OA 85, standard achromat corrected for 

spherical aberration in green (       )) has high         with low focal length 
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(       ).  The linearly polarised collimated light, therefore, gets focused on the metal 

coated sample placed at the focus of the objective.  

 

Figure 4.8 Microellipsometry set-up  

 

The lens L2 is focused at the back-focal-plane (BFP); therefore, in the CCD an 

interference pattern between the reference wave from M and the reflected field at the back-

focal-plane is recorded. Circular fringes formed, initially, are used to align the optical axis. A 

tilt is given to the mirror to produce carrier modulated fringes as shown in Figure 4.9 and this 

interferogram is analysed to obtain the field measured at the back-focal-plane. From two 

interferograms in orthogonal polarisation, the ellipsometric parameters can be computed by 

measuring these fields (   and    ). The analysis method will be discussed below [14].  

 

 

  

 

 

 

 

Figure 4.9 Interferogram modulated with carrier fringe for gold coated sample  

50 100 150 200 250 300

50

100

150

200

𝑋 (𝑝𝑖𝑥𝑒𝑙𝑠) 

  

𝑌
 (
𝑝
𝑖𝑥
𝑒𝑙
𝑠)

 



71 

 

By providing a tilt in the reference mirror, a titled plane wave is generated, which 

superposes with the wave coming from the back-focal-plane. Let us denote the field due to 

orthogonal polarisation (   and    ) as   (   ) and the reference beam with tilt as   (   ). 

If the intensity of the interferogram is  (   ) then it can be written as,  

 (   )  |  (   )|
 
    (   )     (   )   

 (   )    
 (   )   (   ) 

 Similar to the fringe pattern shown in Figure 4.10, without loss of generality, it can be 

assumed that the carrier fringes are along X-axis with a plane wave of carrier frequency    

where the field of the titled reference wave is given by   (   )         . Therefore, the 

above equation can be written as, 

     (   )   (   )    (   )           
 (   )                   (4.16) 

where,  (   )  |  (   )|
 
    (   )   is the dc term. By taking the Fourier 

transform along X-axis in both sides of the equation 4.16, the intensity in the spatial 

frequency domain  ̃(   )  ∫  (   )        
 

  
, can be expressed as, 

    ̃(   )   ̃(   )   ̃ (      )   ̃ 
 (      )            (4.17) 

where,    denotes the Fourier transform of the corresponding terms in spatial domain. 

Equation 4.17 is illustrated with Figure 4.10 when   ̃(   )    ̃(    )  for a fixed y-

coordinate    i.e. In Figure 4.10 therefore, y-coordinate is not mentioned explicitly.   

 

Figure 4.10 Fourier domain representation of the interferogram for fixed y -coordinate 

 

The carrier frequency    due to the tilt of the reference wave needs to be more than 

the spatial bandwidth of   (   )  so that  ̃( ),  ̃ (    ) and  ̃ 
 (    ) are separated 
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along the u-axis which is ensured by providing a large tilt. Using a bandpass filter  ̃ (  

    )  can then be selected and the inverse Fourier transform of that produces the 

demodulated field with carrier fringes   (   )        . The demodulated field   (   ) is 

obtained both in magnitude and phase taking off the carrier fringes by multiplying it with 

        for orthogonal polarisation (   and    ). By applying equation 4.14, the ratio of the 

reflection coefficients ( )  is calculated from which by applying equation 4.6 and the 

refractive indices of the metal coated samples are computed. 

4.2.2 RESULTS AND DISCUSSION  

From the demodulated fields in orthogonal polarisation    and      obtained from the 

carrier fringe analysis, first the amplitude of the demodulated fields were calculated over the 

image,  

   ∑ ∑   (   )    
   

    
                       (4.18) 

    ∑ ∑    (   )    
   

    
                       (4.19) 

where,          ,          . 

After obtaining the amplitudes of the demodulated fields, the ratio 

  
  

   
   
   

  
  

   
   
   

 was 

computed.  The real, imaginary, absolute and phase patterns of the ratio for gold sample are 

shown in Figure 4.11, which can be compared to the similar simulated patterns of Figure 4.6. 

For the real and imaginary part, a two-cycle variation with respect to the azimuth is 

evident, though due to small values the real part is affected by noise much more compared to 

the imaginary part. The absolute part of the ratio shows a four cycle variation whereas phase 

shows a square wave variation with respect to azimuth  . The variations become prominent 

as the radial co-ordinate increases which is consistent with the microellipsometry theory 

described in Section 4.2.  
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Figure 4.11 Experimental results of the variation of the ratio in equation 4.13 around the 

back-focal-plane for gold sample (a) real, (b) imaginary, (c) absolute and (d) phase  

 

The demodulated real part and imaginary part of the ratio were then converted to 

polar coordinates to obtain the variations over the entire azimuth (         ) and a 

third order polynomial was fitted to the radial dependence in the back focal plane. Since a 

two-cycle pattern over the azimuth is expected, these polar patterns are also filtered in the 

Fourier domain for the second cycle to remove noise. The filtering is done by 1D “fft” along 

azimuth ( ) direction and selecting out the 2
nd

 cycle. 

The polar real and imaginary part of the ratio for gold, calculated in this manner is 

shown in Figure 4.12(a) and 4.12(b), respectively. Figure 4.12(c) shows the plots of the same 

at the extreme of the aperture, which correspond to the maximum radius of Figure 4.12(a) 

and 4.12(b) (bottommost line) for all the samples i.e. gold, silver and aluminium. These plots 

can be compared to the similar phase difference plots derived from measurements of the 

refractive index from the ellipsometer in Figure 4.7.  
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Figure 4.12 Polar images of the experimental results of the ratio in equation 4.13 for the gold 

sample, (a) the real part and (b) the imaginary part.  (c) The real and imaginary parts of the 

ratio of equation 4.13 at the extreme of the aperture with refractive indices values obtained 

from microellipsometry 

 

It can be seen that the phase values measured from microellipsometry experiments 

follow the correct trend but are consistently smaller than those predicted by the theory. The 

real and imaginary parts increase sharply with incidence angle and it is thought that the full 

NA of the objective may not have been properly filled with the incident light. The 

experimental results fit well with the theory at         . Secondly, due to the inaccuracies 

of the half-wave plate and polarizer, the starting of the periods of the plots in Figure 4.12(c) 

are not exactly multiples of    .  

Table 4.1 shows the comparison of the complex refractive indices and phase offsets 

for all the samples calculated from microellipsometry experiments and from the ellipsometric 
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measurements [15]. The phase offset can be approximated to be the phase of the reflection 

coefficient at normal incidence for           given by [4], 

    
   

   
                  (4.20) 

In Table 4.1, the phase of    is given by    (  ) in degrees. 

Table 4.1. Comparison of complex refractive indices by microellipsometry and ellipsometry  

Sample 

surface 

materials 

Refractive index 

measured by micro-

ellipsometry for    633 

nm 

Refractive index 

by ellipsometry 

measured for    633 

nm 

Phase offset 

from micro-

ellipsometry 

(°) 

Phase offset 

from 

ellipsometry 

(°) 

Au 0.51 + 3.01j 0.27 + 3.01j 35.9 36.5 

Ag 1.62 + 3.60j 0.09 + 3.88j 26.3 28.9 

Al 2.27 + 4.58j 0.74 + 4.76j 20.0 23.2 

 

Though good agreement can be seen for the imaginary part of the refractive index 

from both measurements, some discrepancy is observed in the real part. This is due to the 

amplitude noise generated from the reference wave coming from the mirror and this 

introduces errors in the calculation of    and     in equation 4.18 and 4.19. This affects the 

real part of the refractive index more than the imaginary part. Despite this variation in real 

part, the imaginary part is close to the ellipsometric value. The phase offsets for both 

measurements show good agreement with     phase variation for each of the samples, which 

corresponds to       height variation from the predicted height offset. Therefore, the 

measured phase offset obtained from microellipsometry experiments remains accurate within 

experimental limit. To find out the reasons for this, one needs to simplify the normal 

reflection coefficient. The phase obtained from perpendicular reflection coefficient from 

complex refractive index after rationalisation can be written as, 

   
   

   
 (

      

      
)  

       

(   )      
  

(   )                   (4.21) 

where,   and   are the real part and imaginary part of the refractive index, respectively. The 

real part   is much smaller than the imaginary part   for metals.  
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Therefore the phase obtained from equation 4.21 can be written as,  

         

    
                 (4.22) 

This shows that phase is not dependent on the real part. Therefore, even if the real part is not 

accurate still the phase remains sufficiently accurate to estimate height.  

Though microellipsometry offers high spatial resolution and accurate measurement of 

surface height offset, it suffers from the fact that it is a single point technique. In this case, the 

surface needs to be laterally scanned to build a map of the phase offset and true topography 

of the surface cannot be measured from this technique. Next, the ways to extend 

microellipsometry to whole-field measurement will be explored. If the measurement of the 

refractive index can be used to calculate the phase change observed while measuring the 

topography of metallic surfaces by CSI, then whole-field measurement of absolute surface 

profile for a composite surface is possible. 

4.3 WHOLE-FIELD MEASUREMENT TECHNIQUE OF 

PHASE OFFSET BY OBLIQUE ILLUMINATION  

From the above results, it is clear that the transverse modulation at large angles of 

incidence is estimated from the change in phase at a single point in the back focal plane for 

orthogonal polarisation. Here, transverse modulation refers to the variation of phase with 

respect to azimuth  . The measurement is termed as the single point measurement and the 

entire back-focal-plane is illuminated with a collimated beam as shown in Figure 4.13(a). 

Exactly the same information can be retrieved, however, if the sample is illuminated by an 

oblique plane wave and the phase and amplitude of the scattered field is measured at all 

points in the back focal plane as illustrated in Figure 4.13(b). This reverse configuration has 

the advantage that the point of interest can be selected by multiplying the measurements by 

an appropriate phase mask and integrating. The reverse configuration is, therefore, a whole-

field implementation of microellipsometry.  

CSI can be considered to be a holographic method that records an interferogram that 

is a combination of holographic recordings made with plane wave illumination at different 

angles of incidence and different wavelengths as described in Chapter 3 [16]. Unfortunately, 

it is not generally possible to separate individual holographic recordings from a CSI 
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interferogram unless either the spatial frequency content of the illumination field or the 

measured field is modified.  

 

  (a)      (b) 

Figure 4.13 Simplified configurations; (a) single-point, (b) whole-field [15] 

 

A configuration similar to CSI capable of the measurement task performed by 

microellipsometry is shown in Figure 4.13(b). The configuration retains the focused 

illumination that defines the point of interest on the sample but only the phase of a single, 

oblique plane wave component of the scattered field is measured. In this way, a CSI 

instrument would scan the sample through the focus of a conventional Mirau objective for 

orthogonal polarisation and from the phase difference of the fringe pattern generated in 

horizontal and vertical polarisations, the phase offset could be computed. Leonhardt et al 

have presented a similar technique with a different analysis method [17, 18]. 

4.3.1 MODIFIED CSI WITH LASER ILLUMINATION 

The modified CSI set-up with a He-Ne laser source is shown in Figure 4.14. The 

polariser (P) was used to control the illumination and the half-wave plate (λ/2) rotates the 

plane of polarization, in a similar way to the microellipsometry set-up. The beam expander 

collimates the laser beam and the lens (L) is used to focus the beam on the edge of the back-

focal plane of the Mirau objective of           
        (the Mirau objective is a finite 

conjugate). 

f 
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Figure 4.14 Modified CSI system with laser illumination 

 

The light focused in the back focal plane of the Mirau objective formed an oblique 

plane wave and was used to illuminate a gold coated glass sample. The reference beam 

coming from the reflector within the Mirau objective and the reflected light from the sample 

of the object interfere and the resultant fringe pattern was projected onto a CCD. The sample 

was moved vertically by a piezo-stage to scan it through the focus of the Mirau objective 

rendering a video interferogram. Two videos were recorded for orthogonal polarisation with 

the same start and end-height and analysed to find out the surface topography and the phase 

offset. 

4.3.1.1 RESULT AND DISCUSSION 

The video is a 3D matrix of stacks of interferograms for a particular polarisation 

produced by the scan along the vertical direction, considered as the Z-axis with reference to 

Figure 4.15. If the unit vector along the Z-axis is  ̂ and the wavelength of the He-Ne source is 

   
 

  
         , then the spatial frequency of the oblique plane wave is     ⃗⃗   ̂  

       
          . The effective wavelength of the reference wave along Z-axis, 

therefore, is given by    
 

  
 

  

    
         .  
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Figure 4.15 The spatial frequency of the oblique plane wave  

 

The reflected wave from the flat sample, after superposition with the reference wave, 

will be the recorded interference pattern  (     ), which for a particular pixel (     ) is 

shown in Figure 4.16(a) along Z-axis. The steps of the vertical stage of resolution        are 

effectively sampling the fringe data of fringe frequency of  
  

 
 along Z-axis. The scanning 

speed was adjusted such that at least 3 frames per cycle is obtained to meet the Nyquist 

requirement. If the reference field is given by a plane wave       ⃗⃗   ⃗, emanating from the 

reflector of the Mirau objective in a similar manner to equation 4.16, the intensity  (     ) 

can be expressed as,  

 (     )   (     )    (     )      ⃗⃗   ⃗    
 (     )     ⃗⃗   ⃗                       (4.23) 

where,  (     ) is the dc term and   (     ) is the reflected field for orthogonal 

polarisation. By taking the Fourier transform of  (     ), in the spatial frequency domain the 

intensity  ̃(        ) can be expressed as,  

 ̃(        )   ̃(        )   ̃ (           )   ̃ 
 (           )         (4.24) 

where,          (   
 

  
 etc) are spatial frequencies along X, Y and Z-axis, respectively. 

Since the modified CSI is illuminated by a He-Ne laser,  ̃(        ) is modulated in 

the  -direction by a carrier frequency       as shown in Figure 4.16(a) and 4.16(b). After 

selecting the plane      , the field can be written as  ̃ (        ). The carrier frequency 

   is a constant; therefore, according to the shift theorem, inverse Fourier transform of 

 ̃ (        ) produces a 3D interference pattern   (   )      ⃗⃗   ⃗ [12]. Here, the reflected 

field   (   )  is modulated in Z-axis by a sinusoid       ⃗⃗   ⃗ . From this 3D interference 
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pattern, a particular frame at       (30
th

 frame) is selected along Z-axis (selected for 

relatively low noise surface height maps) and at this frame the field is given by 

  (   )         . The factor           adds a constant phase to   (   )  and the field 

  (   ) that retains the phase and amplitude information can be estimated. This operation is 

performed for both horizontal and vertical polarisations and the respective reflected field are 

denoted as   
 (   ) and   

 (   ). The phase of the fields for each polarisation are obtained 

just by taking the argument of   
 (   ) and   

 (   ), respectively. 

 

(a)          (b) 

Figure 4.16 (a) Intensity along z-direction for a particular pixel and (b) absolute value of 

intensity along    (peak at 16
th

 plane,      ); both diagrams are for horizontal polarisations 

The phase map for   
 (   ) is converted in terms of height variation by multiplying 

the phase map with the proportionality constant 
  

  
 as shown in Figure 4.17. This height 

variation map is not surface topography since it has an arbitrary phase factor added to it. The 

presence of high frequency ripples is quite evident in Figure 4.17, especially on the glass 

surface. This is due to the high coherence length of the He-Ne laser source, which causes 

back reflection from the glass surfaces.  

In figure 4.18, the polarisation of the beam in the back focal plane of the Mirau 

objective is presented schematically. Clearly, if the incident field amplitude for both the 

polarisations is given by    then, the reflected fields   
 (   ) and   

 (   ) can be written as,  

  
 (   )         

        

   
 (   )         

        
}               (4.25) 

including the constant phase factor within the expressions.  
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Figure 4.17 Height variations in horizontal polarisation of gold interface 

 

For illumination with the horizontal polarisation the orientation is along the p – 

component whereas for the vertical polarisation, it is along the s – component. The reflected 

beams for both of these cases are, therefore, linearly polarised. Two sets of the phase maps 

for   
 (   ) and   

 (   )were generated both of which have same phase factor. Therefore, 

subtracting the two phase maps will produce the phase difference of complex reflection 

coefficients    and    which at an incidence angle     is about      . The phase factor being 

same for both the cases, does not affect the phase difference. Compared to the phase 

difference for a gold surface, the phase shift from glass is theoretically zero.  

 

Figure 4.18 The orientations of the incident polarisations in the back-focal-plane 
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Figure 4.19 Relative height difference between gold and glass surface  

 

The relative phase difference can again be converted to height difference by 

multiplying 
  

  
 and for gold it is about         corresponding to a phase difference of 10.7°. 

Figure 4.19 shows this relative height difference for the gold interface. The height difference 

varies between             and it is not clear enough throughout the gold surface. This 

discrepancy is due to the ripples, which contribute to the phase noise that makes part of the 

glass surface to appear higher than expected. In the next section the same set-up was built 

with an LED source (broad-band light) and better results were obtained due to the absence of 

the ripples.  

4.3.2 MODIFIED CSI WITH INCOHERENT ILLUMINATION  

In Section 4.3.1, a whole-field method using a Mirau objective with an oblique 

illumination set-up with He-Ne laser was discussed in detail. The phase maps, obtained from 

orthogonal polarisations, had multiple ripples and the phase offset map was not constant over 

the entire metal surface. These ripples were caused by interference between back-reflected 

waves from glass surfaces due to the high coherence length of the He-Ne laser source. Use of 

a low coherent source reduces this noise and provides a much better surface profile. The 

previous set-up though provides the phase offset of the metal surface, but the true surface 

topography cannot be obtained from the result. Therefore, a similar experimental set-up with 
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an LED source is now discussed. Leonhardt et al also published two similar papers on this 

topic already mentioned [17, 18], which came to my notice after the initial experimental 

results were obtained.  

The experimental set-up of this modified CSI is similar to the whole-field with 

oblique illumination set-up (Figure 4.14) but with an LED source with central wavelength 

          with a spectral width of         . Since, in this case        is not very 

high, from Section 2.2, the central wavelength is assumed to be the effective wavelength  ̅. 

Here, a flat sample is illuminated by an oblique plane wave from the back-focal-plane and 

two interferograms are recorded for orthogonal polarisations. The intensity recorded  (     ) 

can be thought of as superposition of the reflected field from the object comprised of a gold-

glass interface   (     )  and from the reference field from the reflector of the Mirau 

objective          ⃗⃗   ⃗ , which is just an oblique plane wave. Therefore, the intensity 

 (     ) is given by, 

 (     )   (     )  ∫  (  )  (     )      ⃗⃗   ⃗   

 

  

 

  ∫  (  )  
 (     )     ⃗⃗   ⃗   

 

  
                          (4.26) 

where,  (     ) is the dc term and  (  ) is the spectral variation of the LED source 

in general can be considered to be Gaussian function w.r.t the spatial frequency.  

From equation 4.26, it is evident that for the case of broad-band LED illumination, the 

interferogram is a simultaneous superposition of the object wave and the reference wave in 

all wavelengths. After the usual frequency domain filtering as described in Section 4.3.2, the 

complex interference term ∫  (  )  (     )           
 

  
 was obtained. This is plotted in 

magnitude, an envelope and phase, a ramp between   to   , for a particular pixel along Z-

axis in Figure 4.20. The position of the peak magnitudes closest to zero phase positions for all 

pixels are computed to get the surface topography as discussed in Section 2.3.3.  In this case 

for horizontal polarisation the position is at Z-frame       , where the phase is 

           and the envelope for horizontal polarisation is given by, 

    (       )  |∫  (  )  (       ) 
          

 

  
|                        (4.27) 
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Figure 4.20 Magnitude and phase pattern of the interferogram along z -direction for a pixel 

 

In this way, the surface topography map of the gold interface for horizontal 

polarisation is shown in Figure 4.21. Unlike the interferogram obtained by whole-field 

method with laser illumination, in this case with broadband, finding the peak of the envelope 

provides an accurate measurement of the surface profile. According to the Figure 4.21, the 

gold surface is about 300 nm above the glass surface and the presence of ripples is 

significantly reduced. Therefore, the phase noise is less in the topography measurement in 

Figure 4.21, as expected. 
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Figure 4.21 Surface height map of gold interface 

 

In a similar manner, the surface topography for vertical polarisation where the peak of 

the envelope termed as,    (      ), can be computed. Subtracting these two topographies 

one can obtain the relative height difference of gold surface assuming negligible height 

change in the dielectric glass surface. As discussed in Section 4.3.1.1 from the phase 

difference of    and   , theoretically expected height difference for gold is        . About 

           of height difference is obtained with this experiment as shown in Figure 

4.22.  

 

Figure 4.22 Relative height difference between gold and glass surface  
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Though this matches within experimental error, the result is still not uniform over the 

entire gold surface.  This is due to the fact that sample scan due to orthogonal polarisations 

are taken separately (with the same start and end position) and potentially vibration and scan 

movement related errors affect the interferograms separately, resulting in a non-uniformity of 

phase errors. 

CONCLUSION 

This chapter discusses the measurement of phase offset due to metallic surface by 

microellipsometry. Microellipsometry being a single-point technique builds the phase map of 

a surface by means of lateral scan. A whole-field method with oblique laser illumination from 

back-focal-plane with polarisation sensitivity was discussed extending the concept of 

microellipsometry. Both of these techniques can only measure the relative phase difference 

between orthogonal polarisations. The system with laser illumination suffers from phase 

noise errors or ripples due to interference between back-reflected glass surfaces. An LED 

source was later used to determine the true surface topography since that would generate a 

localised fringe pattern close to the surface. This broadband illumination would also reduce 

the phase noise. The new set-up is called as polarisation sensitive modified CSI with 

incoherent illumination that has the capability to measure the surface topography of 

composite surfaces together with relative phase difference. This new set-up was affected by 

vibration and mechanical errors due to scan movement. In the next chapter, therefore, a 

rotationally symmetric polarisation sensitive CSI system with orthogonal circular 

polarisations set-up is proposed that will reduce all of these errors and a quantitative 

measurement of the phase offset over the entire object surface with multiple materials will be 

possible.  
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CHAPTER 5 :  POLARISAT ION 

SENSITIVE COHERENCE 

SCANNING INTERFEROME TRY  

INTRODUCTION  

In the previous chapter the experimental set-ups presented used linearly polarised 

light to obtain the phase introduced on reflection from metallic samples. Both the single-point 

technique of microellipsometry and a whole-field CSI configuration with oblique 

illumination were examined. The disadvantage of microellipsometry was the need for lateral 

scanning of the sample to build the height map. For the case of CSI with oblique illumination 

tilt of the sample can result in reflected light not reaching the detector and no measurement 

will be obtained. Therefore, a new configuration of CSI, called polarisation sensitive 

coherence scanning interferometry (PS-CSI) was investigated. PS-CSI uses circular 

polarisation which has the advantage of being rotationally symmetric and consequently, it 

eliminates the need of oblique illumination from a point at the back focal plane of the Mirau 

objective. The configuration is quite straight forward to achieve in practice. 

This set-up contains two configurations of orthogonal polarisations. In the first, the 

sample is effectively kept within crossed circular polarisers and this is referred to as the 

“block” case. Circular polarisers are kept in uncrossed position for the second configuration 

and this is referred to as the “pass” case. This configuration has been used in a polarisation 

microscope known as Pol-scope by Inoue, Shribak and Oldenbourge, used a similar crossed 

circular polarisation to measure birefringence of biological tissues and to identify grain 

boundaries of metals in an alloy [1-3]. The interferograms are recorded at each height step of 

the sample as the sample is scanned sequentially between these two configurations. 

Comparing these two cases first refractive indices, and subsequently, the phase offset 

introduced upon reflection at each point on the object can be calculated and. The phase offset 

will be compensated to provide the true surface topography.  
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5.1 EXPERIMENTAL SET-UP  

The experimental PS-CSI set-up is shown in Figure 5.1. Two LED sources (details 

given in Appendix) with the same spectral characteristics – a central wavelength at        

with a bandwidth of        are used. Light from both LEDs pass through diffusers (D1 and 

D2) and the beams are collimated by collimating lenses (L1 and L2). The collimated beams 

pass through the polarisers (P1 and P2) and are incident on the pellicle beam splitter BS1. 

The beams pass through the quarter wave plate, a Fresnel Rhomb (FR1) in this case, and are 

incident on the second pellicle beam splitter (BS2). Köhler illumination is used for the set-up 

and consequently, the diffusers are imaged (D1´ and D2´) at the back focal plane. Each point 

in the back focal plane acts as an incoherent source and the sample is illuminated with all 

possible plane waves within the numerical aperture of the Mirau objective. The reflected 

plane waves from the sample within the objective passes through the BS2 and second Fresnel 

Rhomb (FR2) to render the fringe modulated image (component details in Appendix).  

 

Figure 5.1 Polarisation sensitive coherence scanning interferometer (PS-CSI) 
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The polarisation states for metallic samples at the centre and at the edge of the 

aperture, for both block and pass configuration are illustrated in Figure 5.2 and Figure 5.3, 

respectively. The illumination arm containing LED1 is linearly polarised at       (Figure 

5.2) by polariser P1. After passing through the FR1, it becomes right circularly polarised 

(RCP) due to phase introduced to the p-component. The RCP beam becomes left circularly 

polarised (LCP) by reflection from BS2 and is focussed at the back-focal-plane of the Mirau 

objective. At each point in the back focal plane, incident circularly polarised light ensures the 

rotational symmetry of the set-up. For normal incidence the reflected beam from both metals 

and dielectrics becomes RCP, therefore, the reflected beam at the centre becomes RCP 

whereas the reflected beams for all other angles become right elliptically polarised (REP). 

The ellipticity of the polarisation increases with increase in angle of reflection, which means 

that the ellipticity is more at the edge of the beam cross-section [4, 5]. The combination of 

quarter-wave plate (FR2) followed by the linear polariser (P) at 45° blocks any RCP passing 

through it and lets LCP through. Therefore, the central part of the reflected beam (RCP) 

would be blocked from CCD but REP beam from the edge of the aperture passes through 

forming the image superposed with the fringe pattern on the CCD. The image brightness will 

be low since a significant central part of the light is blocked.  

 

 

Figure 5.2 polarisation states at different positions for the block case 

 

 

Figure 5.3 polarisation states at different positions for the pass case 
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The Mirau objective consists of a reflector made of an unknown material and a beam 

splitter (MBS) as shown in Figure 5.1. For LED1 illumination arm, the polarisation state 

following reflection from the Mirau reflector will be similar to 5.2. The back focal plane 

viewed after FR2 and P(   ) with reflection only from Mirau reflector, produces an annular 

pattern as shown in Figure 5.4(a). A similar pattern is expected, if the light only from the 

sample is viewed after the FR2 and P(   ) combination. Therefore, for the first illumination 

arm containing LED1, the object superposed with fringe pattern due to two annular reflected 

beams coming from Mirau and from the sample is recorded by the CCD. This case is referred 

to as the “block” configuration from the fact that the central portion of the light is blocked.  

 

           

       (a)       (b) 

Figure 5.4 (a) Image of the reflected beam after FR2 and P combination for LED1 arm and (b) 

image of the reflected beam after FR2 and P combination for LED2 arm  

 

For the illumination arm of the set-up containing LED2, the polarisation states at 

different components are illustrated in Figure 5.3.  The light reflected from the sample, in this 

case, is LCP for normal incidence (central part) and with increase in angle of reflection again 

the polarisation becomes more and more elliptic as shown in Figure 5.3. Since the FR2 and P 

combination lets through LCP, the central portion in this case will be transmitted. The 

intensity of the beam, due to departure from ideal LCP at the edge of the aperture, reduces the 

intensity slightly as shown in Figure 5.4(b). This case is referred to as the “pass” 

configuration. 
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5.2 THEORY OF PS-CSI 

In this section the expressions for intensities of the block and the pass cases are 

deduced from the electric field components according to Fresnel equations. Consider the two 

LEDs have amplitudes    and    per unit solid angle, respectively. The unit vectors along   

and   in the plane perpendicular to light propagation (considered as   direction) are given as 

 ̂ and  ̂. Here, the polarisation of light at each stage will be described. After the collimating 

lenses L1 and L2 a plane parallel beam will propagate towards the sample and a plane 

parallel beam can be described by 

 ⃗⃗   ⃗⃗    (         )                   (5.1) 

where,  ⃗⃗   is the light amplitude,       is the wave-number,  ⃗ is position vector, 

  is angular frequency of the light and   is the time. The phase term (         ) will be 

the same for all of the polarisation states and can be dropped, leaving, 

 ⃗⃗   ⃗⃗       ̂       ̂                   (5.2) 

where,       directions are considered to coincide with       directions, respectively.  

5.2.1 ANALYSIS OF THE BLOCK CASE  

In the block case the field after the light passes through P1 (– 45°) is given by  

 ⃗⃗    (  ) (       ̂        ̂)                                      

      ⃗⃗    (   √ ) (  ̂   ̂)                                                 (5.3) 

The transmission coefficient and reflection coefficient of the identical pellicle beam-

splitters BS1 and BS2 are given by   and   over the operating wavelength range (       

       ). After transmission through BS1 no change of polarisation state occurs and the 

field    ⃗⃗   is given by, 

 ⃗⃗    (    √ ) (  ̂   ̂)                                         (5.4) 

After FR1 where linear polarised light becomes RCP, the field    ⃗⃗   is given by, 

             ⃗⃗    (    √ ) (  ̂     (
  

 
)   ̂)                            (5.5) 
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After reflection from BS2 the direction of propagation changes and a relative phase 

change of   is added to the orthogonal components that changes the polarisation to LCP, 

which is given by  ⃗⃗  , 

 ⃗⃗    (    √ ) (  ̂   (  )   ̂ (  ))      

 ⃗⃗    (     √ ) (  ̂    ̂)                                        (5.6) 

The negative sign for the   – component is due to the fact that in reflection light 

returns to the same medium and accordingly, the electric field vector in this case, is expressed 

by a negative sign [4, 5]. At the back-focal-plane of the Mirau objective the light is LCP after 

reflection from the object under observation and changes polarisation such that,  

 ⃗⃗    (     √ ) (  ̂   (   
 )    ̂ (   

 ))      

 ⃗⃗    (     √ ) (  ̂     
    ̂   

 )                                      (5.7) 

where,   
  and   

  are the Fresnel coefficients for the object which are function of the 

incidence angle and   
     

 ( )    
     

 ( ) ,   is incidence angle. After reflection the 

beams passes through PBS2 with no polarisation change and the field   ⃗⃗   is given by, 

 ⃗⃗    (   
   √ ) (  ̂     

    ̂   
 )                                      (5.8) 

Passing through FR2 a reflective phase change of 
 

 
 is added and the field    ⃗⃗   is 

given by,  

 ⃗⃗    (   
   √ ) (  ̂     

      (
  

 
)    ̂   

 )  

    ⃗⃗    (   
   √ ) ( ̂   

    ̂   
 )                                                             (5.9) 

Now, the analyser (P) after FR2 is oriented 45° to block the light coming from normal 

incidence. Assuming a unit vector  ⃗⃗ along 45°  

  ⃗⃗  (      ̂        ̂)  (  √ ) ( ̂   ̂)                                   (5.10) 

The electric field component at the CCD plane will therefore, be given by, 

   
      ⃗⃗     ⃗⃗   (

     

 
)  (  

 ( )    
 ( ))                                  
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     (  

 ( )    
 ( ))                                             (5.11) 

where,    (   
    )  and   

   is the final electric field component that returns from the 

object at the image plane for object in the block case. Here, the dependence of the reflection 

coefficients on the incidence angle is written explicitly. Simultaneously, the component 

reflected from the Mirau reflector is,  

  
     (  

 ( )    
 ( ))                                                                       (5.12) 

where,   
  is the final electric field component for the Mirau reflector. It can be seen that for 

normal incidence, where   (  )      (  ), the component   
  for the block case becomes 

null. With increase in incidence angle, for components propagating further away from the 

centre of the objective aperture the field will become more and more elliptic and light will 

start to pass through the FR2 and P combination, as shown in Figure 5.4(a).   

Each object point corresponds to an image point (pixel) on the CCD and all possible 

rays within the maximum aperture angle      contribute to this image point. This is 

illustrated in Figure 5.5(a) with a conventional microscope for simplicity.  

 

Figure 5.5 (a) Interferogram recording in PS-CSI; (b) Resultant polarisation due to elemental 

area    
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Rays at different incidence angles are shown to form the image O´ for an object point 

O. With change in incidence angles, the polarisations of the rays are changed and for the 

object point O, the resultant effect due to the rays within the entire aperture is recorded in O´. 

In reality, each ray is representative of interference occurring between rays coming from 

sample and Mirau reflector. To compute the resultant effect, therefore, the interference for 

each ray needs to be integrated over the entire aperture. Consider a set of rays coming from O 

at radius  , inclination angle   and azimuth   that form an elemental area    at the back 

focal plane as shown in Figure 5.5(b). The set of rays from the elemental area    meet at O´ 

as shown in Figure 5.5(b). For this elemental area, the resultant interference at O´ is 

  
   

  
  . Therefore, in analogy to equation 3.34 in Chapter 3, a complex analytic function 

𝑰  due to the fringe pattern measured at the CCD for the entire object can be written as,  

𝑰     ∬   
   

  
  

        
 ,                (5.13) 

where,            is the elemental aperture area at back-focal-plane and   is the focal 

length (remains constant). The elemental aperture area in the back-focal-plane can be written 

as,  

                              (5.14) 

Substituting values for the field components and elemental area,  

𝑰        ∬ (  
    

 ) (  
    

 )
 
𝑤( )    

               

         

 

     ∫ (  
    

 ) (  
    

 )
 
𝑤( )  

       

   
∫   

  

 
   

    𝑰     ∫ (  
    

 ) (  
    

 )
 
𝑤( )  

       

   
     (5.15) 

where,  including    within the constant,  

       (
     

√ 
)
 

                        (5.16) 

and,  𝑤( )            .                                             (5.17) 



96 

 

Equation 5.15 represents the complex analytic fucntion of the block case and it 

depends on the sum of the reflection coefficients. It is complex due to the presence of the 

complex reflection coefficients   
  and   

 .  

5.2.2 ANALYSIS OF THE PASS CASE  

The mathematical formulation for this case is similar to the previous case, only the 

polarisation states at different positions of the set-up are different. The electric field 

components for different incidence angle at the image plane are expressed separately for the 

object and Mirau reflector with quantities are subscripted with “p” to refer to the pass case 

and they can be written as, 

  
     (  

    
 )                 (5.18) 

 &         
     (  

    
 )                                      (5.19) 

where,   
     

 √ 
  . 

Change in the expression of   compared to   is due to the fact that for the pass case a) 

the illumination is from source LED2 and b) the light is transmitted once and reflected twice 

from the pellicle beam-splitters (For the block case the light is transmitted twice and reflected 

once). Again, for another complex analytic function 𝑰  for the pass case for a pixel is given 

by the integrated effect due to all the incidence angles and therefore, can be written similar to 

equation 5.13, 

𝑰     ∬   
   

    
        

 ,                           (5.20) 

where,    refers to the elemental aperture area (shown in Figure 5.5(b)). Again, the integrand 

does not depend on   and substituting all the quantities, the complex analytic function for the 

pass case can be expressed as,  

𝑰       ∫ (  
    

 ) (  
    

 )
 
𝑤( )  

       

   
 ,            (5.21) 

where,  

       (
     

√ 
 )

 

.                                                            (5.22) 



97 

 

Equation 5.21 is the representative equation of the interference pattern incident on the 

CCD for the pass case which depends on difference of the reflection coefficients. The pass 

case is similar to an ordinary CSI with circularly polarised source and in this case, the phase 

introduced due to polarisation is much less compared to the block case.  

5.2.3 EVALUATION OF THE RATIO OF THE COMPLEX ANALYTIC 

FUNCTIONS DUE TO BLOCK AND PASS CASES 

            Let us consider the phase and amplitude plots of polarisation components   
    

  and 

  
    

 , (equation 5.11 and 5.18) of the block case and the pass case with respect to the 

incidence angle. Figure 5.6 to 5.9 show the plots up to the maximum aperture angle for 

       (         ) for glass, gold, silver and aluminium. 

 

 

 

Figure 5.6 Amplitude plot w.r.t incidence angle for   
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Figure 5.7 Phase plot w.r.t incidence angle for   
    

  

 

 

 

Figure 5.8 Amplitude plot w.r.t incidence angle for   
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Figure 5.9 Phase plot w.r.t incidence angle for   
    

  

 

It can be seen from Figure 5.7 that the phase of glass (and all dielectric materials) 

remains constant at      throughout the angular range for the block case. For the metals, it 

varies very slightly (within   ) and could be assumed to be constant within the angular range 

for all practical purposes. Similarly, for the pass case the phases of different materials can be 

assumed to be constant with the variation remaining within    (Figure 5.9). The 

representative phase values for all the materials for both the block and the pass cases are 

taken to be the values at        as described in Table 5.1. The reason for this choice will 

be explained later in Section 5.2.4. The corresponding change in height is also presented in 

Table 5.1. The height is calculated using an effective wavelength  ̅ which is calculated as 

discussed in section 5.3.2.2 for this set up.   

Table 5.1 Phase values over the aperture for the block and the pass cases 

Materials 

Phase of the block case at        

(  
    

 )  

Phase of the pass case at         

(  
    

 ) 

(      ) (  ) (      ) (  ) 

Gold 130.1° 117.2 37.6° 33.9 

Silver 120.5° 108.5 29.2° 26.3 

Aluminium 122.2° 110.1 23.4° 21.1 

Glass 180° 162.1 0° 0 
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The amplitude plots of the block case (Figure 5.6) and the pass case (Figure 5.8) 

reveal that the plots of the materials are of the same nature. The sum and the differences of 

reflection coefficients (  
    

 )  and (  
    

 )  for gold, silver and aluminium can be 

expressed as complex constants multiplied by the sum and the differences of reflection 

coefficients for glass (  
     

   
     

)  and (  
     

   
     

) , respectively, over the 

aperture. Therefore, the ratio of the sum and the difference of the reflection coefficients for 

different materials to that of glass are two complex constants that are to a good 

approximation constant for all incidence angle and they are given by,  

  
  

(  
    

 )
        

(  
    

 )
                      (5.23) 

  
  

(  
    

 )
        

(  
    

 )
                      (5.24) 

A similar set of constants,   
  and   

   are assumed for the Mirau objective.  

  
  

(  
    

 )
        

(  
    

 )
                      (5.25) 

  
  

(  
    

 )
        

(  
    

 )
                      (5.26) 

An interesting point to be noted here is that these two complex constants have fixed 

phase difference that is the same as the average phase difference between the block and the 

pass cases. Consequently, the integral equations from 5.15 and 5.21 for block and pass cases 

can be re-written as,  

𝑰           
    

  
∫ |  

     
( )    

     
( )|

 
𝑤( )  

     

   
 ,           (5.27) 

𝑰           
    

  
∫ |  

     
( )    

     
( )|

 
𝑤( )  

     

   
 ,           (5.28) 

Equation 5.27 and 5.28 are the forward model of this experimental set-up. From the 

interferograms recorded during the experiments these complex analytic functions can be 

computed. In interferometric techniques, it is always better to measure the amplitude ratio 

and phase difference rather than absolute amplitude and phase since it would cancel out the 
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common mode errors. Accordingly, the ratio of the block and pass analytic functions for each 

pixel obtained from the experiments can be expressed as, 

 
𝑰 

𝑰 
|
    

 
   

   
 
  
 

  
  

  
  

  
   

∫ |  
     

   
     

|
 
 ( )   

     
   

∫ |  
     

   
     

|
 
 ( )  

     
   

 𝑹    
                  (5.29) 

where, 𝑹    
         is the ratio due to the experiments for different materials mentioned above. 

Equation 5.29 can be expressed in terms of four ratios as shown below.  

𝑹    
         𝑅    

  𝑹    
    

𝑹    
      𝑅    

     
                                (5.30) 

where, each of the ratios are given as, 

 𝑅    
   

   

   
 , the ratio of illumination constants of the block and the pass (equation  

                      5.16 and 5.22), 

𝑹    
    

 
  
 

  
  , the ratio of the complex constants of the object of the block and the pass, 

                    (equation 5.23 and 5.24) 

𝑹    
       

  
  

  
   , the ratio of the complex constants of the Mirau objective of the block  

and the pass (equation 5.25 and 5.26) and 

𝑅    
     

 
∫ |  

     
   

     
|
 
 ( )   

     
   

∫ |  
     

   
     

|
 
 ( )  

     
   

 , the ratio of the integral of the glass parameters.  

The suffix 𝑐  𝑐 suggests quantities to be calculated and      suggests quantities to be 

obtained experimentally. In equation 5.30, the ratios 𝑅    
   and  𝑹    

       are unknown since a) 

the exact illumination level of only the sample cannot be measured due to the presence of the 

Mirau reflector and Mirau beam splitter and b) there is no data available about the material of 

the Mirau reflector and the coating layers of the Mirau beam-splitter. Depending on the 

Mirau reflector and beam-splitter coating material, additional phase and amplitude can be 

added to the overall phase and amplitude of 𝑹    
         These ratios, thus, needs to be 

determined experimentally to evaluate 𝑹    
        . From experimental measurements by an 

ellipsometer at National Physical Laboratory, UK (Variable angle spectroscopic 

ellipsometer, J. A. Woollam Co.), the refractive indices of the gold, silver and aluminium 
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coated samples are known. From that by calculating the Fresnel coefficients, the complex 

constants from equation 5.23 and 5.24 can be evaluated. From these calculations the 

following ratio can be calculated. 

𝑹    
         𝑹    

    
𝑅    

     
 

  
 

  
  

∫ |  
     

   
     

|
 
 ( )   

     
   

∫ |  
     

   
     

|
 
 ( )  

     
   

            (5.31) 

Theoretical values of 𝑹    
         for gold, silver, aluminium and glass are presented in 

Table 5.2. In this table the magnitude and phase of this ratio are mentioned separately for 

comparison. The equivalent height for the phase calculated for the equivalent wavelength 

 ̅          , obtained from Section 5.3.2.2, is provided once again. 

Table 5.2 The theoretical values of the ratio of block and pass analytic functions for different 

materials 

Materials 

Refractive 

indices 

measured by 

ellipsometer 

𝑹    
         

Amplitude of  

𝑹    
         

(  ) 

Phase of 𝑹    
         

(       ) (  ) 

Gold 0.13 + 2.96j -0.0018+0.0429j 0.0429 92.4 83.2 

Silver 0.09 + 3.88j -0.0007+0.0322j 0.0322 91.3 82.2 

Aluminium 0.74 + 4.76j -0.0039+0.0257j 0.0260 98.7 88.9 

Glass 1.517 0.0905 0.0905 180 162.1 

 

From Table 5.2, it can be seen that this ratio is greatest for glass. Comparing the 

metals, gold has the biggest amplitude, then silver and then aluminium. The phases of 

𝑹    
         essentially represent the phase differences between the complex constants   

  and 

  
  from equation 5.31. In other words, it is the phase difference between the block and the 

pass case (equation 5.23 and 5.24), if the complex constants for the Mirau objective   
  and 

  
  are real values i.e. the Mirau reflector is dielectric. The phases of 𝑹    

         for the metals 

are close to quarter of a fringe (   ) but for dielectric it is     . To illustrate the effect, a 

diagram in Figure 5.10(a) is presented that shows the actual surface and the positions of the 

respective surfaces due to the pass and block cases for a single material. For metals, there 

would be a near quarter wave fringe shift (     ) between these two fringes e.g. for gold this 

fringe shift is equivalent to a phase shift of        (from Table 5.2). For dielectric, this is a 



103 

 

half a fringe shift or      phase change but if the reflector of the Mirau objective is 

dielectric, then      phase change is introduced again and there won’t be any shift. Again, 

equivalent heights calculated from Table 5.1 and 5.2 for the block and the pass cases can be 

shown as a deviation from the actual surface. Figure 5.10(b) presents these deviated surfaces 

for gold, silver, aluminium and glass.  

 

(a) 

 

(b) 

Figure 5.10 (a) The position of the actual surface, the pass surface and the block surface with 

respect to the white light fringe pattern along vertical axis through a pixel; (b) d eviation of the 

surfaces for the pass and the block cases from the actual positions of surfaces for different 

materials (values are in nanometres) 
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To determine the ratios 𝑅    
   and  𝑹    

      one has to assume a reference material. 

Experimentally, 𝑰  and 𝑰  can be obtained from the interferogram of a material and their ratio 

will provide 𝑹    
         but these two unknown ratios will remain within it. In principle, if the 

sample provides no significant change in fringe pattern or in other words, the phase shift of 

the fringe pattern then the ratios 𝑅    
   and  𝑹    

      can be computed if 𝑹    
         is known. 

For this case, gold is chosen as the reference material since it is stable and does not oxidise in 

the atmosphere. Here, the assumption is that the refractive index obtained from the 

ellipsometer in NPL for gold is correct.  

The values of 𝑹    
    

 is already known and 𝑹    
    

 can be obtained from experiment, 

therefore, the product of the unknown ratios can be computed as shown below. 

𝑅    
  𝑹    

       
  

  
 
  
  

  
  |

      

 
𝑹    

    

𝑹    
                           (5.32) 

Once the unknown ratios are determined from equation 5.32, the ratio of the complex 

constants 𝑹    
    

 
  
 

  
  for the other materials can be determined using equation 5.31 such that, 

𝑹    
    

 
  
 

  
  

𝑹    
        

     
  𝑹    

           
                     (5.33) 

For a particular material, say, for silver, this is given by,  

𝑹    
        

  
      

  
       

𝑹    
      

     
  𝑹    

           
                     (5.34) 

Substituting the calculation for the unknown ratios in equation 5.34, 

  
      

  
       

𝑹    
      

(
𝑹    
    

𝑹
    
    )      

     

                                        (5.35) 

This means the ratio of the complex constants for different materials can be calculated 

and the corresponding refractive indices can be calculated as shown in Section 5.2.4. 
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5.2.4 CALCULATION OF THE REFRACTIVE INDICES 

To calculate refractive indices for different materials, the ratio of the complex constants (
  
 

  
 ) 

is reused. If equation 5.35 is written explicitly then,  

 𝑹    
    

 
  
 

  
  

(  
    

 )
        

(  
    

 )
      

(  
    

 )
        

(  
    

 )
            (5.36) 

         Manipulating equation 5.36 the following can be derived. 

(  
    

 )
        

(  
    

 )
         

  
 

  
  

(  
    

 )
     

(  
    

 )
      𝑹    

   
 𝑅         (5.37) 

         where,  𝑅   
(  

    
 )

     

(  
    

 )
     |

      

 and  From equation 5.37, the ratio of the reflection 

coefficients can be written as,  

  

  
|
        

  
𝑹    

   
 𝑅    

𝑹    
   

 𝑅    
  (      ) 

                                                (5.38) 

In this case,   is calculated at       , the angle at which the phases of the block 

and the pass are evaluated (Table 5.1). In a similar manner to the derivation presented in 

Chapter 4, the complex refractive index can be calculated using equation 5.39 (from equation 

4.6) since the complex refractive index is given by,   

  (  
       [   (

   

   
)
 

      ])
   

              (5.39) 

where,         are the refractive index and incidence angle for the medium from 

which light is incident [6].  

To compute the complex refractive index, the incidence angle    should be the same 

as        . After computing the refractive indices for each material,   (  ) and   (  ) 

are calculated (equation 4.1 and 4.3) at       . The phase due to the pass case can be 

computed from the sum of the two i.e. (  (  )    (  )). From the topography of the pass 

case, therefore, at each pixel the equivalent height offset of the phase introduced due to the 

polarisation needs to be taken off. This means that from the “pass” surface in Figure 5.10(a) 
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the height compensation will generate the actual surface. The phase offset and the 

corresponding height offset calculated using the effective wavelength of LED  ̅  (Section 

5.3.2.2) that needs to be taken off is given by,   

       (  (  )    (  ))
 

 𝛥   
 ̅

  
   

}               (5.40) 

5.3 EXPERIMENTAL RESULTS 

In this section only smooth surfaces are considered and coated samples are used. To 

create a composite object with two different materials, glass slides were coated with two 

different metals. For our purpose samples of a) gold – silver and b) gold – aluminium are 

investigated. A cleaned glass slide is also measured separately to compare the results of 

metals with dielectric.  

Before going to the details of the experiment a step by step guide is provided below to 

understand the process of experimentation, data processing and obtaining absolute surface 

topography for a composite material. 

i. Simultaneous data acquisition of both the block and the pass fringe patterns in the same 

interferogram using PS-CSI set-up is described in Figure 5.1. 

ii. Fringe patterns for the block and the pass case are separated. 

iii. These interferograms of the block and the pass are filtered to remove noise and to 

obtain complex analytic functions for the block 𝑰  (equation 5.13) and the pass 𝑰  

(equation 5.20). 

iv. The effective wavelength is obtained by measuring the length of the central fringe from 

𝑰  (analytic function obtained from experimental fringe pattern) and doubling it. 

v. The uncompensated surface height map from the pass analytic function using envelope 

detection with phase estimation (Section 2.3.3) for each pixel is calculated. 

vi. At each pixel, the phase difference between the pass and the block cases, where the 

pass is at the peak position of the envelope, is calculated from step v. 

vii. The product of 𝑅    
  𝑹    

      (equation 5.32) (gold used as reference material) is 

calculated. 
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viii. The complex data representing 𝑹    
         |

    
 i.e. amplitude and phase of the block to 

pass ratio at the peak (equation 5.41) using the data obtained from step v – step vii is 

calculated. 

ix. 𝑹     
        |

 
 i.e. the product of the 𝑅    

   and 𝑹    
      corrected for polarisation variation 

over the aperture from theory (equation 5.45 and Section 5.3.4) is calculated. 

x. The ratio (
  

  
) for each material from the above data (step viii – step ix) using equation 

5.48 is calculated. 

xi. The complex refractive index (equation 5.39) for each material at each point on the 

object is calculated and refractive indices maps for the samples (gold – silver and gold 

– aluminium interface, Figure 5.15) are computed.  

xii. The height offset 𝛥   in the surface height maps is calculated and compensated to 

obtain absolute surface topography.  

5.3.1 DETAILS OF THE EXPERIMENT 

Two samples (gold – silver and gold – aluminium) have coating thicknesses of the 

order of few micrometres. Therefore, they can be considered to be thick as assumed in the 

theoretical computations. Considering any one sample, the interface between the two 

materials are imaged simultaneously. Fringe data were acquired by the CCD with vertical 

stage moving upwards and each scan length was about       (total     frames per scan). 

5.3.1.1 SYNCHRONOUS SOURCE AND VERTICAL STAGE 

LED1 and LED2 were adjusted to glow with the same square wave (       ) with 

opposite phases (i.e. LED1 was bright when LED2 was dark) with a frequency of 

         and this was synchronised with the steps of the vertical stage. The frequency of 

         was chosen because a) it is a direct even multiple of the frame rate of the CCD 

which is        and b) the relay system used for this purpose could not be adjusted for more 

than     . With this frequency 4 frames of data are recorded at a particular vertical stage 

position for each of the LEDs. Therefore, for a complete square wave consisting of a) bright 

LED1 with dark LED2 for the positive half of the square wave and b) dark LED1 with bright 

LED2, the vertical stage would be at the same position. 
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5.3.1.2 SAMPLING RATE AND LED WAVELENGTH 

The sampling rate in the vertical direction was another consideration for choosing the 

LED wavelength to be                    . Each step in the vertical direction is 

       and therefore, to be on the safe side three points per cycle is needed to reconstruct the 

wave.  

5.3.2 CALCULATION OF SURFACE HEIGHT AND PHASE DUE TO 

POLARISATION 

The steps required to calculate the absolute surface height are described in the 

following. The signal processing starts after separating out the data recorded by the 

synchronised source and vertical stage.  

5.3.2.1 SEPARATION OF THE INTERFEROGRAMS OF THE BLOCK AND THE PASS 

With the total frames captured considering each eight frames (at a time 8, 16, 24 , 

etc.): the first four belonged to the pass case and second four to the block case as shown in 

Figure 5.11(a). In general, the block case has less intensity compared to the pass case. Among 

the frames captured for each step for the block and the pass the middle frames (2
nd

 and 3
rd

 

within 4 frames) are separated to produce separate block and pass data sets. These points are 

shown as dots in Figure 5.11(a). Figure 5.11(b) shows an actual intensity recorded along a 

pixel and the block and the pass produce different intensities at each step. Figure 5.11(c) 

shows the separated data which clearly looks like interference fringe data along Z. The 

intensity of the block case is less compared to the pass case and the fringes spread out a little 

more compared to the pass. 

To illustrate this method let us consider the first eight frames first four belong to pass 

and second four to block. Among these four frames the first and last (i.e. 1
st
 and 4

th
 for pass) 

are not taken since then the LED or the stage are changing state and 2
nd

 or 3
rd

 frame is taken 

for pass and 6
th

 or 7
th

 frame is taken for block and this continues for all other steps. 

Therefore, method of separation of block and pass fringes is asynchronous. 
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      (a)  

 

(b) 

 

(c) 

Figure 5.11 (a) Recording of intensity with each vertical step height increase for pass and 

block, (b) total set of data for a pixel; four consecutive steps for b lock and the next four for 

pass and (c) after separating out block and pass data by choosing points from the total set 

mentioned above; top – pass and bottom – block  
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5.3.2.2 PROCESSING OF THE INTERFEROGRAMS FOR THE BLOCK AND THE PASS  

After the entire data volume is obtained, it is subjected to frequency domain filtering 

to reduce noise as explained in section 4.2.1, equation 4.17. Figure 5.12 shows the filtered 

complex analytic function 𝑰 (     ) for both the pass and the block cases. The signal has 

improved if one compares to Figure 5.11 (c) and the vertical resolution is        for this 

case. 

 

 

Figure 5.12 Real and absolute value of 𝑰 (     ) for a pixel for both the pass (with higher 

peak) and the block 

From the complex analytic function 𝑰 (     ) of both block and pass data for each 

pixel, the coherence envelope functions can be computed as shown in Figure 5.12. In a 

similar manner to that determined in Section 2.3.3 (envelope detection with phase estimation, 

equation 2.5 and 2.6), the surface height is computed from the pass interferogram 𝑰  (     ), 

for each pixel (say (   )). It has to be noted that this surface height contains the phase due to 

the polarisation (phase due to   
    

  given in Table 5.1 and Figure 5.10). For the same pixel 

at the same vertical height, the coherence peak is obtained for the block interferogram 
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𝑰  (     ) and the phase difference between the block to the pass is calculated. In general, 

the envelope peak of the block should in the same position as shown in Figure 5.13 but the 

phase will be different due to polarisation. For metals this phase difference is close to     as 

shown in Table 5.2.  

From Section 2.2, it is known that the effective wavelength can be calculated by 

doubling the measured length of the central fringe. Therefore, in this case, the effective 

wavelength  ̅ is measured to be          as shown in Figure 5.12.  

The following data sets are obtained from the pass and block interferograms. 

a) Uncompensated surface height by calculating envelope peak with phase 

estimation of pass data as explained in Section 2.3.3, 

b) complex data representing 𝑹    
         i.e. amplitude and phase of the block to pass 

ratio at the peak (equation 5.30) for both materials and  

c) the effective wavelength  ̅          . 

5.3.3 INITIAL RESULTS: METALLIC OBJECTS 

First, the ratio 𝑹    
         for gold (𝑹    

    
) is computed and from Table 5.2 𝑹    

    
 is 

obtained. The product of the unknown ratios due to illumination and Mirau objectives 

(𝑅    
  𝑹    

      )  can then be calculated from 𝑹    
    

 and 𝑹    
    

 using equation 5.32. From 

equation 5.31 and Table 5.2 theoretical values of 𝑹    
          can be obtained. The same ratio, 

however, can also be obtained from the experimental values of 𝑹    
          and then ratios can 

be compared for the materials used. Let us call this new ratio as 𝑹    
         |

    
 given by, 

𝑹    
         |

    
  

𝑹    
        

     
  𝑹    

                              (5.41) 

A representative region of gold from the gold – silver interface, shown in Figure 5.13, 

is chosen by taking average of 16 pixels near the middle region of coated gold area. The ratio 

𝑹    
    

        (  
    

   
)  is calculated and divided with 𝑹    

    
          ( 

     

   
) 

from Table 5.2. Therefore, the product of the unknown ratios can be computed as, 

𝑅    
  𝑹    

               ( 
      

   
)               (5.42) 
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(a)      (b) 

Figure 5.13 Experiment results of the ratio 𝑹    
         for gold and silver sample (gold left and 

silver right) the magnitude (a.u.) and (b) the phase values (degrees) 

 

The results of this calculation are shown Table 5.3. Clearly, for metals and glass the 

phase angles do not match. In fact for glass (dielectric), the phase should be zero. The 

amplitude values match their theoretical values better but the discrepancy remains significant. 

The reason for this is discussed in the following section (Section 5.3.4).  

 

Table 5.3 Results of comparison of experimental and theoretical block to pass ratios 

(presented in polar form)  

 

 

 

Materials  

Experiment Theory 

𝑹    
          

𝑹    
         |

    
  

(
𝑹    

        

     
  𝑹    

       )   

𝑹     
          

(from Table 5.2) 

Silver        (  
    

   
)            ( 

     

   
)        e  ( 

     

   
) 

Aluminium        (  
    

   
)            ( 

     

   
)           ( 

     

   
)  

Glass 0.16          (  
      

   
)          
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5.3.4 CORRECTIONS FOR THE CHANGE IN POLARISATION AT THE EDGE OF THE 

APERTURE OF MIRAU OBJECTIVE 

According to the theory, the amplitude of the glass ratio (𝑹    
     

) is expected to be 

more than the amplitude of the ratio of the metals (𝑹    
     )  but the experimental 

measurements do not show this. This result indicates that the polarisation state of the beam is 

altered in some way during transmission. To test the polarisation state of the beam coming 

out of the Mirau objective an experiment was performed as shown in Figure 5.14. The 

polarisation states of the central beam and the beams observed at the edge are shown in the 

figure. 

 

Figure 5.14 Experiment to check the polarisation state of the beam coming out from Mirau  

 

In this experiment, a circularly polarised beam was incident on the Mirau objective 

and the beam coming out was passed through a linear horizontal polariser. The beam after the 

polariser was found to be darker towards the edge compared to the central region. As shown 

in polarisation states just after the Mirau objective, around the edge the horizontal sides are 

brighter compared to the vertical sides. This can only happen, if during the passage of the 

beam through the Mirau objective, the circular polarisation is changed. It is postulated that 

the presence of multiple lenses and the beam-splitter inside the Mirau, changes the 

polarisation of the rays that are transmitted as a function of incident angles. The effect is 

predominant at the edge of the aperture since the Fresnel transmission coefficients for glass 

and coating materials reduce with increase in incidence angle and towards the edge the beam 
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linear polarisation increased. Therefore, a correction factor needs to be introduced for 

obtaining the right 𝑹    
         , now termed as 𝑹     

        |
 
. 

Consider equation 5.29 – 5.31 ( 𝑹    
         and 𝑹    

         ) where the polarisation 

change is not considered during light transmission through the Mirau objective. Fresnel 

transmission coefficients (     )  for glass need to be incorporated to these equations to 

include this effect. Let us consider that a number   signifies number of lens elements within 

the Mirau and each of the rays is assumed to traverse twice through the Mirau, once during 

illumination and second after reflection. Therefore, the final electric components for both the 

block and pass cases considering the transmission coefficients of the glass can be written as,  

  
       (  

 ( )   
     

 ( )   
  )

  
 |

 
    (  

 ( )   
     

 ( )   
  )

  }                                              (5.43) 

Subsequently, following the same procedure as before (equation 5.13 -5.30) the ratio 

of the block and pass analytic functions 𝑹     
         and the corrected 𝑹     

         newly termed 

as, 𝑹     
        |

 
 could be written as, 

 𝑹     
          

     
    

  
∫ |  

     
   

     
     

   
  |

 
 ( )  

     
   

     
    

  
∫ |  

     
   

     
     

   
  |
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 and                      (5.44) 

𝑹     
        |

 
    

  
 ∫ |  

     
   

     
     

   
  |

 
 ( )  

     
   

  
 ∫ |  

     
   

     
     

   
  |

 
 ( )  

     
   

                    (5.45) 

It should be noted here, the experimental values of 𝑹     
         obtained from the block 

and the pass interferogram remain unchanged.  

Equation 5.30 and 5.31 for 𝑹     
         are now substituted by equation 5.44 and 5.45. 

Again, first the block to pass ratio 𝑹     
         with correction factor 𝑹     

        |
 
 is calculated 

using equation 5.44 assuming    , which means that there are four lens elements within 

the Mirau objective. This assumption is based on the phase measurement obtained from the 

experimental ratio 𝑹    
         (Table 5.3 and Table 5.4). Using equation 5.41, it is compared to 

the same ratio 𝑹     
        |

    
 calculated from 𝑹     

         (computed from the interferogram). 

For gold the theoretical ratio is calculated to be 𝑹    
    

|
 
          (  

    

   
)  and the 
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experimental ratio 𝑹    
    

        (  
    

   
) obtained from averaging 16 pixels of the gold 

surface. Therefore, the product of the unknown ratios 𝑅    
  𝑹    

       is calculated to be 

𝑅    
  𝑹    

             (  
   

   
)               (5.46) 

From these values the block to pass ratios for silver, aluminium and glass with the 

correction factors are compared again in the Table 5.4 similar to Table 5.3.  

 

Table 5.4: Results of comparison of experimental and theoretical block to pass ratios after 

corrections 

 

From Table 5.4 it is seen that the phase and the amplitude values match quite well for 

all the materials. Differences between the experimental and theoretical values are within 

     for the phase are and within     for the amplitude. Importantly, this model and the 

assumption of     (i.e. four lens elements) explains why the ratio for the glass is much 

smaller than previously expected.  

5.3.5 CORRECTED REFRACTIVE INDEX CALCULATION AND SURFACE HEIGHT 

COMPENSATION 

Since the results of the experimental and theoretical ratios now show good agreement, 

the refractive indices and subsequently, the compensated phases can be computed. To 

Materials 

Experiments  Theory 

𝑹    
          

(same as Table 5.3) 

𝑹    
         |

    
  

(
𝑹    

        

     
  𝑹    

       )   

𝑹     
        |

 
  

 

Silver         (  
    

   
)            (  

    

   
)         e  (  

    

   
)  

Aluminium        (  
    

   
)            (  

    

   
)            (  

    

   
)  

Glass 0.16                 
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calculate the refractive indices first the complex constants for all the materials, needs to be 

determined again. The complex constants can be written as,  

  
 

  
  

(  
    

     
    

  )
        

(  
    

     
    

  )
         

(  
    

     
    

  )
     

(  
    

     
    

  )
                              (5.47) 

From equation 5.47 and substituting 
  
 

  
  𝑹    

   
 from equation 5.30, 

 (
  

  
)
        

 ( 
𝑹    

   
    

   

𝑹
    
   

    
   

)  (
  
       

  
        )                      (5.48) 

where, 𝑅  
   

(  
    

     
    

  )
     

(  
    

     
    

  )
     |

      

 

Equation 5.48 can be compared to the equivalent equation of 5.38. In equation 

correction factor due to the transmission within Mirau objective is introduced. For each pixel 

after calculating   evaluated at       from equation 5.48, equation 5.39 is used to 

calculate refractive indices ( ) for different materials. From the refractive index values for 

each pixel the exact phase for normal incidence can be calculated and that phase is 

compensated for each pixel (equation 5.40). In the Table 5.5, the refractive indices and the 

height compensation details are given (averaged over 100 pixels). The comparison is between 

the results obtained from ellipsometry and PS-CSI experiment and the variance of real (  
 ) 

and imaginary parts (  
 )are also given.  

Table 5.5 Comparison of Refractive index 

Material 
Refractive index measured by 

ellipsometry 

Average refractive index 

measured from PS-CSI 

experiment 

Gold 0.13 + 2.96j 
0.31+2.89j 

(  
         

      ) 

Silver 0.09 + 3.88j 
0.88+3.88j 

(  
         

      ) 

Aluminium 0.74 + 4.76j 
1.55+4.78j 

(  
         

      ) 
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From Table 5.5, it can be seen that the imaginary parts of the refractive indices are 

very closely matched and the maximum error in imaginary part, seen for gold, is of the order 

of         For real parts, the errors are significantly high with maximum error seen for silver 

where the real part obtained from the experiment is approximately 10 times higher. This 

phenomenon is again similar to microellipsometry shown in Table 4.1 where the 

measurements by microellipsometry show more closely matched imaginary parts compared 

to the real parts. As noted in Section 4.2.2, however, it is the imaginary values that are critical 

to the phase offset measurements and height offset measurements.  

Figure 5.15(a) and 5.15(b) show the real and the imaginary parts of the refractive 

indices map, respectively, for the gold – silver sample. Similarly, Figure 5.15(c) and Figure 

5.15(d) show the real and the imaginary parts of the refractive indices map, respectively, for 

the gold – aluminium sample. In both the real and imaginary maps the samples are separated 

clearly.  

 

 

 

 

 

(a)         (b) 

 

 

 

 

 

 

 

 

 

   (c)        (d) 

Figure 5.15 (a) Real part of the refractive indices and (b) imaginary part of refractive indices 

of gold – silver sample (gold on the left);(c) Real part of the refractive indices and (d) 

imaginary part of refractive indices of gold – aluminium (gold right) sample (theoretical 

values measured by ellipsometry from Table are 5.5 shown) 
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As far as the amplitude part is concerned, the non-uniformity of the LED light over 

the entire aperture and the change introduced in the reference beam caused by the unknown 

reflectivity of the Mirau reflector and beam-splitter can generate amplitude noise.  This can 

be seen in Figure 5.15. The real part is susceptible more to the amplitude noise since for 

metals, it is significantly less than the imaginary part. This is similar to the discussion of the 

results from microellipsometry in Section 4.2.2 where it is shown that the deviation in the 

real part of the refractive index does not affect the phase appreciably.  

Finally, as discussed in Section 5.2.4 (equation 5.40) the surface height offset needs to 

be compensated to obtain true surface topography. The surface height maps are calculated 

with respect to the computation of peak of the envelope obtained from the intensity of the 

pass case (𝑰 ). After the corrections are made, the new phase offset and corresponding height 

offsets considering  ̅           (Section 5.3.2.2) for the pass case can be written as,  

       (  
 (  )   

     
 (  )   

  )
 

 𝛥   
 ̅

  
   

}              (5.49) 

A comparison is presented in Table 5.6 where height offset before correction 

(equation 5.40, Table 5.1), height offset due to normal incidence and height offset after 

correction factors incorporated (equation 5.49) are shown.  

Table 5.6 Total height compensation for different materials  

Material 

Height compensation due to 

offset obtained from the pass 

case without correction 

(equation 5.40,  

Table 5.1) (  ) 

Height offset obtained 

from  

PS-CSI with 

corrections  𝛥   

(equation 5.49) 

(  ) 

Gold 33.9 37.3 

Silver 26.3 27.2 

Aluminium 21.1 21.2 

 

Therefore, for each pixel after calculating the complex refractive indices, equation 

5.49 is evaluated at       . The offset 𝛥  introduced due to the pass intensity is 
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calculated for each material and that is taken off from the height obtained from each pixel. 

Figure 5.16(a) and 5.16(b) show uncompensated and compensated surface height maps, 

respectively. By uncompensated height map, it is meant that the surface height is computed 

by the envelope detection with phase estimation method on the pass intensity.  Looking at the 

two different surfaces on average about        surface height difference can be seen (gold 

is higher). Figure 5.16(c) shows only the compensated height for the entire surface.  

 

 

Figure 5.16 For gold-silver sample, (a) uncompensated height map, (b) compensated height 

map and (c) only height offset from the difference of the uncompensated and compensated 

height maps 
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The values are compared to the height offset 𝛥    The height difference between the 

compensated and uncompensated one clearly shows that for gold there compensation is more 

compared to silver as shown in Table 5.6. This is consistent with the experiment since gold 

was coated on the silver surface. Similarly for gold – aluminium surface clearly it can be seen 

that there is a diagonal variation of height as shown in Figure 5.17(a) and 5.17(b). The height 

offset obtained from equation 5.49 and compensated for to obtain true surface topography is 

shown in 5.17(c).  

 

Figure 5.17 For gold-aluminium sample, (a) uncompensated height map, (b) compensated 

height map and (c) only height offset from the difference of the uncompensated and 

compensated height maps 
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It seems that the surface has a tilt along the primary diagonal of the frame. The gold 

surface is about        higher compared to aluminium. This is consistent with the 

experiment since the gold was coated over the aluminium surface.  

CONCLUSION 

In this chapter a novel optical profilometer is proposed and developed which can 

identify the different materials contained within a single object. Circular polarised incident 

light within crossed circular polarisers is used to obtain the phase information of two 

composite objects. The surface height ambiguity due to the different phases introduced by the 

presence of different materials is calculated, compensated and an absolute surface topography 

is obtained. The results show good agreement between the theory and experiment and the 

method can be applied to solve different industrial and research problems.  
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CHAPTER 6 :  CONCLUSIO NS AND 

FUTURE WORK  

INTRODUCTION 

In this thesis a novel method based on CSI with polarisation sensitivity was 

introduced and demonstrated as a means to determine the refractive index and compensate for 

the height offset introduced by multiple materials within a single object. In this configuration, 

orthogonal circularly polarised light states are sequentially incident on a composite object 

through an interferometric objective. An analyser in the observation path is used to block one 

of these states upon (normal) reflection. An interferogram is recorded as the object is swept 

through focus. With a change in polarisation, the phase difference between the interferograms 

is used to calculate the local refractive index and an estimate of the height offset can be 

measured and subsequently compensated. The technique is rotationally symmetric and 

termed polarisation sensitive CSI (PS-CSI).  

6.1 DISCUSSION OF KEY FINDINGS 

This thesis can be separated into two parts. The first part (Chapter 1 – 3) of the thesis 

discusses the configuration and theory of CSI instrumentation, while the second part (Chapter 

4 and 5) discusses the problem of measuring complex refractive index and obtaining absolute 

surface topography in the case of a composite object.  

Chapter 3 presents a new 3D theory of CSI that casts the technique as a 3D linear 

filtering process that is characterised by the 3D point spread function (PSF) in the space 

domain or equivalently the transfer function in the frequency domain or  -space. From this 

theory, the 3D PSF was computed for an ideal system. It was shown that a smoothly varying 

object could be considered to be a “foil – like” surface and the 3D PSF convolved with this 

surface would replicate 3D fringe pattern. Reflection from the foil surface depended on 

Fresnel reflection coefficient and for each material a particular phase would be introduced in 

the interference fringe pattern. Therefore, a material dependent height offset is observed 

while measuring surface topography with CSI. 
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In Chapters 4&5 the polarising properties of the sample surfaces are investigated to 

determine the height offset introduced by different materials. Microellipsometry and CSI 

configurations based on microellipsometry with laser and LED illuminations were described. 

In both of these techniques, the phase difference between the illuminations with orthogonal 

linear polarisation states was measured. It was shown that the measured height offset is 

within experimental noise (of the order of     ) when compared to ellipsometric 

measurement of the same surfaces. Microellipsometry is a single point technique and to build 

an absolute surface topography, lateral scanning of the entire surface is required. The titled 

illumination CSI configuration provides a whole-field method of height offset measurement. 

The surface tilt, however, can affect the measurement since, for a tilted surface light may not 

be collected by the objective. 

A new configuration overcomes these difficulties. In Chapter 5, a novel method of 

polarisation sensitive CSI (PS-CSI) set-up with rotationally symmetric orthogonal circular 

polarised LED light was described. A detailed analysis of the height offset measurement and 

compensation was also presented. Here, two samples, each containing two different materials 

were investigated. Four different materials were investigated with three metals gold, silver 

and aluminium and a dielectric, glass. The complex refractive indices of these materials are 

measured by this technique and subsequently, the height offsets are computed, both of which 

were found to closely match ellipsometric measurements. As discussed in Section 4.2.2, the 

discrepancy in real part of the refractive index did not affect the height compensation since 

the predominant contribution in the height offset results from the imaginary part of the 

refractive index.  

The new PS-CSI configuration retains the attractive features of high vertical and 

lateral resolutions of the CSI set-up and compared to previous tilted illumination CSI set-ups 

in Chapter 4, has high SNR. It was noted in this work that for systems of large numerical 

aperture the polarisation state is significantly altered by transmission through the objective 

and the effect of the lens must be calibrated using an object of known refractive index. In 

Chapter 5, a method to do this is explained and subsequently, PS-CSI can be used to map the 

refractive indices of unknown surfaces and to compensate for associated height offset without 

a-priori knowledge of the refractive indices of the materials within sample.  
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Although the potential of PS-CSI has been demonstrated for a limited number of 

planar samples there are a number of areas that require further attention, which are discussed 

in the following section. 

6.2 FUTURE WORK 

The future works proposed on these measurement techniques are subdivided into two 

parts. The first part (section 6.2.1 – 6.2.3) discusses improvements to the existing technique 

while the second part (section 6.2.4) discusses an exciting application of PS-CSI.  

6.2.1 THE EFFECT OF SAMPLE TILT 

Although it was stated that a significant advantage of the PS-CSI method over the 

tilted illumination technique originally proposed by Leonhardt et al was its ability to measure 

the refractive index of tilted surfaces, due to time constraints the author was unable to 

demonstrate or put this into practice [1, 2]. The results presented are strictly only true for a 

surface whose normal is co-linear with the optical axis of the objective. In this case all of the 

illuminating rays are collected by the objective and the resultant phase change is the weighted 

sum of all the various contributions across the whole aperture as discussed in Chapter 4. If 

the sample is tilted however, only a portion of the illuminating rays are collected by the 

objective as illustrated in Figure 6.1. 

 

Figure 6.1 Shift of light cone for a t ilt in the sample at the back focal plane  
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Here the spatial frequencies that define the illuminating rays in the back focal plane of 

the objective lie within the bounds of the blue circle, while those that define the scattered rays 

lie within the green circle. It is noted that only those rays that lie within the intersection of 

these rays go on to form the interference image. It is clear that a weighting function that is 

applied to the spatial frequencies and hence the phase difference between the block and the 

pass cases depends on the surface tilt. With the assumption that the phase change due to the 

material properties is less than that due to changes in surface height, the local gradient can be 

found and in principle, the height can be compensated accordingly. 

The process of tilt compensation is quite complex however. Care must be taken to 

include both the geometric weighting shown in Figure 6.1 and the effects of transmission 

through the objective that was found to significantly change the polarisation state of the 

marginal rays (at the edge of the aperture) as described in Chapter 6. Since the latter depends 

on the (unknown) geometry of the objective, it is proposed that the combined effect is 

calibrated using a known metallic sample such as a sphere.         

6.2.2 LATERAL RESOLUTION 

Chapter 3 presented a 3D linear model of CSI in which the method was treated as a 

linear filtering operation applied to the “foil model” of the surface. The filter was 

characterised by the PSF in the space domain or equivalently by the TF in the frequency 

domain. The foundation of this theory is the scalar diffraction theory defined by the 

Helmholtz equation. It was shown that an ideal CSI where the full aperture of the objective is 

exploited for illumination and observation results in a PSF that resembles a cigar shaped 

packet of fringes (Figure 3.6 in Chapter 3). The lateral dimensions of the PSF effectively 

define the lateral resolution while the axial resolution is set by the fringe spacing (half the 

effective wavelength) together with the phase discrimination of the system.  

It is clear however, that the PS-CSI method does not generally exploit the full 

aperture of the objective as shown in figures 5.4(a) and 5.4(b). For the pass case there is a 

small role off of the response at the edge of the aperture, however, this is not expected to 

affect the resolution significantly. For the block case the centre of the aperture does not 

contribute to the measurement and the resolution is expected to be reduced accordingly. Once 

again, time constraints prevented a full vector analysis of the PS-CSI configuration and it 

remains as an objective for further work. Once again it is noted that in order to calculate this, 



127 

 

however, the polarising characteristics of the objective must be taken into account and some 

sort of calibration method (for example a metallic sphere measurement) should be undertaken 

for this purpose. 

6.2.3 MULTIPLE SCATTERING 

Gao et al in their conference proceedings show with a simple ray trace analysis using 

a silicon V-groove that CSI tends to overestimate the surface roughness [3, 4]. To illustrate 

the point, a ray-trace incident on a V-groove and the topography estimated is shown in Figure 

6.1. It can be seen that an inverted “V” is measured at the bottom of the groove. Since dents 

or scratches surfaces are likely to take the form of small grooves as shown in Figure 6.2, this 

type of error would result in an overestimate of surface height. 

 

 

 

 

 

Figure 6.2 Actual V-groove (solid) with overestimated V-groove (dashed) 

 

With PS-CSI the polarisation state must be considered. It is clear that with each 

reflection the phase and height offset will increase. Furthermore, it is noted that with each 

reflection the polarity of the polarisation would change (i.e. right handed becomes left 

handed) and this will have a profound effect on the ratio of block to pass analytic functions 

(𝑹    
         in Section 5.2.3). With an even number of reflections the polarity of the circular 

polarisation would change but with odd number of reflection, polarisation would remain the 

same, but in both cases surfaces will be overestimated due to multiple scattering. This will 

change the intensity and phase resulting in a measurement with significant error. 

To remove this error one needs to first carry out estimates (simulations) of topography 

errors possible due to simple structures such as V-grooves (as shown in Figure 6.2) or 

trenches. Secondly, these areas with dents or scratches need to be separated out as “regions of 

Objective 
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interest” and with the knowledge of their height difference, quantitatively, the structure of 

defect areas can be identified. With the structure, a ray-trace model can be created from 

which the number of scattering events can be computed. At each scattering point on the metal 

surface, a phase offset will be introduced and their sum provides the total phase to be 

compensated. In this way a surface model can be built to explain the PS-CSI measurements. 

6.2.4 GRAIN ORIENTATION MEASUREMENT 

Crystalline materials such as metal alloys form a certain lattice structure such as bcc 

or fcc and their grain boundary orientation and uniformity provide valuable information about 

the structural integrity of the parts made with them. Different methods such as orientation 

imaging microscopy and polarisation microscopes have been applied to image individual 

grains and grain boundaries [5, 6]. As mentioned in Chapter 5, the polarisation microscope 

developed by Inoué, Shribak and Oldenbourg has a crossed circular polariser configuration 

that is similar to PS-CSI [7].  Operating in a reflective mode, this technique can detect the 

grain structure with appropriate grain boundaries with a lateral resolution of the order of 

micrometre of anodised aluminium by measuring birefringence using a circularly polarised 

light [7]. With PS-CSI similar methodology is used to unravel the height offset. In principle, 

therefore, it should be able to detect the grain structures and measure the surface height of a 

particular grain. It is proposed that this information could be used to investigate deformation 

of ductile metals. 
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APPENDIX 

LED 

Details of the LED are copied from Thorlabs catalogue.  
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MIRAU OBJECTIVE 

The Mirau objective (100X Nikon CF IC Epi Plan DI Interferometry Objective) details are obtained from 

Edmund optics website. (http://www.edmundoptics.com/microscopy/infinity-corrected-objectives/nikon-

interferometry-objectives/2797) 

Magnification 100x 

Numerical Aperture NA 0.7 

Working Distance (mm) 2 

Focal Length FL (mm) 2 

Resolving Power (μm) 0.4 

Depth of Focus (μm) 0.56 

Field of View, 25 Diameter Field Eyepiece (mm) 0.25 

Field of View, 20 Diameter Field Eyepiece (mm) 0.2 

Field of View, 2/3" Sensor (mm) 0.011 x 0.08 

Field of View, 1/2" Sensor (mm) 0.08 x 0.06 

Mount C-Mount 

Mounting Threads RMS 

Weight (g) 200 

RoHS Compliant 

FRESNEL RHOMB 

Details obtained from Comar Optics catalogue. 
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