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Abstract 

There are two key issues in assuring the accuracy of estimates of performance 

obtained from a simulation model.  The first is the removal of any initialisation bias, 

the second is ensuring that enough output data is produced to obtain an accurate 

estimate of performance.  This paper is concerned with the first issue, and more 

specifically warm-up estimation.  Our aim is to produce an automated procedure, for 

inclusion into commercial simulation software, for estimating the length of warm-up 

and hence removing initialisation bias from simulation output data.  This paper 

describes the extensive literature search that was carried out in order to find and 

assess the various existing warm-up methods, the process of short-listing and testing 

of candidate methods.  In particular it details the extensive testing of the warm-up 

MSER-5 method. 
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1 INTRODUCTION 

Initialisation bias occurs when a model is started in an ‘unrealistic’ state.  The output 

data collected during the warming-up period of a simulation can be misleading and 

bias the estimated response measure.  The removal of initialisation bias is, therefore, 

important for obtaining accurate estimates of model performance.   
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There are five main methods for dealing with initialisation bias (Robinson, 2004): 

1.  Run-in model for a warm-up period until it reaches a realistic condition (steady-

state for non-terminating simulations) and delete data collected from the warm-up 

period. 

2. Set initial conditions in the model so that the simulation starts in a realistic 

condition. 

3. Set partial initial conditions then warm-up the model and delete warm-up data. 

4. Run the model for a very long time making the bias effect negligible. 

5. Estimate the steady-state parameters from a short transient simulation run (Sheth-

Voss et al., 2005). 

 

This paper is concerned with the first method; deletion of the data with initial bias by 

specifying a warm-up period (or truncation point).  The overall aim of the work is to 

create an automated procedure for determining an appropriate warm-up period that 

could be used by non (statistically)-expert users and could be included in commercial 

simulation software.  Section 2 describes the extensive literature review that was 

carried out to find the various warm-up methods in existence.  The next section 

describes the short-listing procedure used to assess these warm-up methods and the 

results. Section 4 describes the preliminary testing of the short-listed methods.  A 

brief description of the successful short-listed candidate method, MSER-5, can be 

found in Section 5.  Section 6 describes the extensive testing of this method and 

section 7 provides the conclusions of the work. 

 

2 LITERATURE REVIEW 

An extensive literature review of warm-up methods was carried out in order to collect 

as many published methods and reviews of such methods as possible.   Through the 

literature search we found 44 warm-up methods. Each method was categorised into 

one of 5 main types of procedure as described by Robinson (2004):  

  

1. Graphical methods – Truncation methods that involve visual inspection of the 

time-series output and human judgement. 
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2. Heuristic approaches – Truncation methods that provide (simple) rules for 

determining when to truncate the data series, with few underlying 

assumptions. 

3. Statistical methods – Truncation methods that are based upon statistical 

principles. 

4. Initialisation bias tests – Tests for whether there is any initialisation bias in the 

data.  They are therefore not strictly methods for obtaining the truncation point 

but they can be adapted to do so in an iterative manner. 

5. Hybrid methods – A combination of initialisation bias tests with truncation 

methods in order to determine the warm-up period. 
 

A list of these methods and relevant references is provided in Table 1.  More detailed 

information and a summary of each method can be found at the project website: 

<www.wbs.ac.uk/go/autosimoa/warmup/> 

    

< Table 1 about here> 

3 SHORT LISTING WARM-UP METHODS FOR AUTOMATION 

The ultimate aim was to find a method that could automatically detect the warm-up 

period with minimum user intervention and so would be suitable for automation.  Due 

to the large number of methods found it was not feasible to test them all ourselves.  It 

was therefore necessary to whittle down the number of methods to a short list of likely 

candidates that could then proceed to testing.   

3.1 Short Listing Methodology 

We decided to grade all the methods, based on what was reported in the literature 

about each approach, using 4 main criteria: 

 Accuracy and robustness of the method - i.e. how well the method truncates 

allowing accurate estimation of the true mean. 

 ‘Ease’ of automation potential – e.g. methods requiring significant user 

interaction / judgment are not easily automatable; a large number of 

parameters to estimate could also hinder the applicability of a method for 

automation.   

http://www2.warwick.ac.uk/fac/soc/wbs/projects/autosimoa/warmup/
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 Generality - i.e. does a method work well with a large range of initial bias and 

data output types. 

 Computer time taken - Ideally we want the analysis method running time to be 

negligible compared with the running time of the simulation. 

 

In order to arrive at a shortlist, we first rejected methods that failed the ‘ease of 

automation’ criterion as this was seen as most important for our purposes.  From the 

methods left we rejected those that had poor reported accuracy and robustness.  We 

then rejected further methods on the grounds of non-generality and excessive 

computer time taken. We also rejected ‘first draft’ methods that had been 

subsequently usurped by improved versions (e.g. MCR by MSER-5).   

 

The remaining methods could then be tested by ourselves and rejected or not rejected 

accordingly.  The aim was to end up with one or more methods that function well 

according to all our criteria. 

3.2 Results of Short Listing 

 

All of the methods have shortcomings and suffer from a lack of consistent, 

comparable testing across the literature.  Key problems are overestimation and 

underestimation of the truncation point, reliance on restrictive assumptions and the 

requirement to estimation of a large number of parameters.  A graphical summary of 

the results of this short listing procedure for graphical, statistical and heuristic 

approaches can be seen in figure 1.   The 6 warm-up methods successfully short-listed 

to go forward to further testing are listed in table 2. 

 

< Figure 1 about here> 

 

The graphical methods were rejected mainly on grounds of ease of automation (since 

they require user intervention) and accuracy.  For instance, Welch’s method, one of 

the more popular warm-up methods, (Law, 1983) requires a user to judge the 

smoothness and flatness of a moving average plot; this would be difficult to automate.  

Furthermore, many graphical methods use cumulative statistics which react slowly to 

changes in system status.  Cumulative averages tend to converge more slowly to a 
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steady-state than do ensemble averages (Wilson and Pritsker 1978a) which frequently 

leads to overestimation of the truncation point.   

 

The majority of statistical methods were rejected on grounds of ease of automation, 

generality or accuracy.  For instance, the Kelton and Law regression method is 

criticised in the literature for being complex to code (Kimbler and Knight 1987).  This 

is partially due to the large number of parameters that require estimation.  

 

The majority of heuristic methods were rejected on the grounds of accuracy, 

generality and ease of automation.  For example, the crossing-of-the-mean rule 

(Fishman 1973, Wilson and Pritsker 1978a, 1978b) was heavily criticised in the 

literature for being extremely sensitive to the selection of its main parameter, which 

was system-dependent, and misspecification of which caused significant over or 

under-estimation of the warm-up length (Pawlikowski 1990).  This method was 

therefore rejected on ease of automation and accuracy grounds.   
 

The initialisation bias tests were considered separately.  It was found that when used 

iteratively in an automated fashion they gave inconsistent and confusing results, i.e. 

they would switch from detecting bias to not detecting bias multiple times.  This was 

not at all desirable or helpful in an automated system aimed at non-expert users.  

Therefore, we rejected the 9 initialisation bias tests and the 2 hybrid methods that 

incorporated them.  These were therefore not included in the shortlisting in figure 1. 

 

< Table 2 about here> 
 

4. PRELIMINARY TESTING OF SHORT LISTED METHODS 

 

The short-listed methods were tested using artificial data.  The benefits of using 

artificial data are that they are completely controllable with known testable 

characteristics such as the mean and L (point at which the initial bias ends).  The 

methods were tested on simple data sets first, i.e. little to no auto-correlation, normal 

errors, a bias length of between 10% to 50% of the total data length n and a mean-

shift or linear shaped bias (table 4).  The bias was made severe enough to be easily 
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identifiable by eye.  If a method failed to provide adequate results for these very 

simple data sets then testing was stopped and the method rejected.   

 

4.3  Results of preliminary testing 

 

The ASD and ADD methods required a very large number of replications which was 

deemed unsatisfactory for our purposes.  Both the goodness-of-fit method and 

Kimbler’s double exponential smoothing method consistently and severely 

underestimated the truncation point (see table 3) and were therefore rejected.  The 

Euclidean distance method failed to return any result on the majority of occasions and 

was therefore rejected also.  MSER-5 gave the most accurate estimates of the true 

truncation point L without requiring excessive amounts of data (see table 3).   

 

In general the sequential methods assume a monotonic decreasing or increasing bias 

function and therefore do not cope with the mean shift bias.  Methods that analyse all 

the data given (in one go), using all the information that all the data provides, seem 

more able to cope with a larger variety of bias types and seem more suited to 

automation.  From the preliminary results obtained, the MSER-5 truncation method 

performed the best and the most consistently.  The MSER-5 method was therefore 

considered a promising, indeed the only, candidate for automation and further 

rigorous testing of this method was carried out. 

 

< Table 3 about here> 

5 THE MSER-5 WARM-UP METHOD 

In the paper that first introduces the MSER (or MCR) method, White (1997) explains 

the method as follows:  “Instead of selecting a truncation point to minimise the MSE, 

we propose to select a truncation point that minimises the width of the CI about the 

truncated sample mean …Thus we will seek to mitigate bias by removing initial 

observations that are far from the sample mean, but only to the extent this distance is 

sufficient to compensate for the resulting reduction in sample size in the calculation of 

the confidence interval half width.”    

 



 7 

Formally, given a finite stochastic sequence of output i of replication j {Yi(j): 

i=1,2,…,n}, the optimal truncation point for this data series is defined as (Linton and 

Harmonosky, 2002; White Jnr, 1997): 
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where zα/2 is the value of the N(0,1) distribution associated with a 100(1-α)% 

confidence interval and s(d(j)) is the sample standard deviation of the reserved 

sequence (i.e. of all data following d(j), where d(j) is all possible truncation points for 

replication j), and n(j) is the total number of observations in replication j.  Since the 

confidence level α is fixed, zα/2 is a constant and can therefore be set arbitrarily to 1, as 

the purpose of using the above equation is only to compare all data points to find the 

minimum. 

 

The expression for the optimal truncation point can therefore be written explicitly in 

terms of the output data points: 
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MSER-m (unlike MCR or MSER) applies equation (1) to a series of  m
nb =   batch 

averages instead of to the raw output data series.  MSER-5 is therefore the MSER-m 

method using batches of 5 data points.  Figure 2 shows a working example of the 

MSER-5 method. 

 

< Figure 2 about here> 

 

From herein the truncation point returned by MSER-5 will be referred to as the Lsol 

value.  Any Lsol value > n/2 is rejected, as in these cases it is possible that the method 

has not been provided with enough data to produce a valid result. This would occur if 

the transient period extends into the 2nd half of the data, the data has not reached 

steady-state or more data is required because of the high auto-correlation of the data.  
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In practice, if this occurs, more data could be produced and MSER-5 run again with 

the extended data set until a valid Lsol value was returned.   

 

MSER-5 can sometimes erroneously report a truncation point towards the end of the 

data series (from here on referred to as an ‘end point’ Lsol value).  This is because the 

method can be overly sensitive to observations at the end of the data series that are 

close in value (Delaney 1995, Spratt 1998).  This is an artefact of the point at which 

the simulation is terminated (Spratt 1998).  This can be avoided most of the time by 

not allowing the algorithm to consider the standard errors calculated from the last few 

data points, (we have chosen a default value of 5 points), although this does not 

completely eradicate the problem.  If, however, we reject any truncation point that 

falls into the second half of the data and simply rerun the algorithm with more data, 

this almost completely eliminates this problem. 

 

6 FURTHER TESTING OF MSER-5 

MSER-5 was tested further on a larger range of artificial data sets and the results 

analysed by graphical and statistical methods. 

 

6.1 Creation of the artificial data sets. 

 

The artificial data sets were created in two parts: the initial bias functions, at, and the 

steady-state functions Xt (where t = time).  These two parts were then combined by 

superposition (Spratt 1998). 

 

We had previously created a representative and sufficient set of model output data by 

analysing over 50 ‘real’ models / output and identifying a set of important 

characteristics (for full details see Hoad, Robinson & Davies 2006 at 

http://www2.warwick.ac.uk/fac/soc/wbs/projects/autosimoa).  By studying the initial 

transients and steady-state data in this collection and reviewing the literature we 

decided upon four criteria that would completely specify the bias function at: length, 

severity, shape and orientation; and three criteria to define our steady-state functions: 

the variance, error terms and the type of auto-correlation of the data. 
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The bias function, at, criteria were: 

 The length of the initial bias, L, is described in terms of the percentage of the 

total data length, n.  The total data length, n, was set at 1000. 

 The severity of the initial bias is described by its maximum value.  In order to 

control the severity we let Max | at | t ≤ L (the maximum value that the bias 

function, at, can take) = M × Q.  M is the relative maximum bias value set by 

us. Q is the difference between the steady-state mean and the 1st (if bias 

function is positive) or 99th (if bias function is negative) percentile of the 

steady-state data.  If M is set to be greater than 1 then we would expect the 

bias to be significantly separate from the steady-state data and therefore easier 

to detect.  Likewise, if M is set to a value less than 1 we would expect the bias 

to be absorbed into the steady-state data and therefore be far harder to detect.   

 The shapes of the bias functions were taken from the literature (Cash et al. 

1992, Spratt 1998, White et al. 2000) and knowledge of ‘real model’ warm-up 

periods.  The 7 main shapes used are shown in Table 4 along with their 

respective mathematical functions.   

 There are two possible bias directions: a positive bias is where the biased data 

starts above the steady-state mean and a negative bias is where the biased data 

starts below the steady-state mean.  

The steady-state function criteria were: 

 As these were steady-state data that we were creating the variance was kept 

constant.    

 The error terms, εt, are either normally or non-normally (exponentially) 

distributed.  The L’Ecuyer Random Number Generator (L’Ecuyer 1999, Law 

2007) is used to generate all the random numbers required.   

 The steady-state functions either have no auto-correlation in which case the 

steady-state data are simply made up by the error term, or have varying 

complexity of auto-correlation.  The actual autoregressive or moving average 

functions and parameter values were chosen in order to give a varying degree 

and complexity of correlation with a range of oscillatory/decay behaviour 

(Box et al. 1994).    The equations and parameter values used to create the 12 

different steady-state functions are shown in table 5.   As desired, it is possible 
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to mathematically calculate the true mean values for each of the steady-state 

functions.  The equations used are shown in table 6. 

 

The bias functions were incorporated into the steady-state functions by superposition 

(Spratt 1998).  This adds the bias function onto the end of the steady-state function, 

Xt, to produce the finished data Yt.  For example, for the AR(1) function with 

parameterφ : 

...

1

etc
aXY

XX

ttt

ttt

+=
+= − εφ

 

There is therefore no ‘run-in’ period and no lag between the end of the bias function 

and the start of the steady-state period.  Hence we know precisely the true truncation 

point and have complete control over the shape and severity of the bias. 

 

< Table 4 about here> 

< Table 5 about here> 

< Table 6 about here> 

 

6.2       Experimental design 

 

The data sets were either created using single runs or by averaging over 5 replications 

in order to test the benefit of the smoothing effect of multiple replications. Therefore, 

in summary, we used 7 parameters to create our artificial data: bias length, severity, 

shape and orientation, error type, auto-correlation type and single run or replications.  

It was thought that some or all these parameters would impact on the warm-up 

method’s effectiveness.  The levels at which we set the 7 parameters are detailed in 

table 7.  A full factorial design was used leading to 2016 separate sets of artificial 

data.  Further to this we produced another 1032 data sets with no bias or 100% bias in 

order to test the ability of MSER-5 to correctly identify these circumstances.     

 

6.3 Performance Criteria 

 

What we want to know is whether the warm-up method, MSER-5, is effective.  But, 

what do we mean by effective? And, can we judge this accurately?  Existing literature 
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predominantly uses performance measures that fall into two categories:  accuracy of 

mean measures and accuracy of L measures.  Using the literature as a guide (Kelton 

and Law 1983, Robinson 2005, Spratt 1998) we selected / created the following 

performance criteria to assess the effectiveness of the chosen warm-up method, 

MSER-5. The method was run with each type of artificial data set 100 times to allow 

for the statistical analysis of the results.   

  

1. Coverage of the true mean:  Ideally, the true mean should fall within the 

confidence interval around the average of the truncated means.  This criterion 

was also calculated for the data series without truncation for comparison 

purposes.   

2. Closeness of estimated truncation point (Lsol) to actual L.  This indicates 

consistent underestimation or overestimation of the true end of the initial bias.   

 

< Table 7 about here> 

 

Because of the different shapes and severity of the initial bias functions used 

in testing, truncating all the functions at some point x prior to the correct value 

of L would eradicate different amounts of bias from the data sets. It is 

therefore unclear from just the Lsol values how effective MSER-5 has been at 

removing the initial bias in each case.  We therefore decided to calculate the 

amount of bias that would be removed by truncating each data set at its Lsol 

value. 

3. Percentage bias removed by truncation:  As explained above, the different 

shapes and severity of the initial bias functions used in testing, causes different 

amounts of bias to be removed from the data when truncating at the same 

point. A calculation of the percentage of bias that would be removed by 

truncating each data set at its Lsol value would therefore give a clearer idea of 

how effective MSER-5 is at identifying initial bias.  It is desirable that the 

method removes a high percentage, ideally 100% without removing much (if 

any) steady-state data (i.e. Lsol > L).   

 

We calculated the percentage bias removed by determining the area under the 

bias function that would be deleted by truncating at Lsol and comparing this 
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with the whole area under the bias function.  For example, data set ‘X’ with 

data x1, x2, x3, …, xn, is made from adding the bias function data b1, b2, …, bn to 

the steady-state data c1, c2, …, cn by superposition. (The bias data is different 

for each data set used in testing.)  The true bias truncation point is known to be 

at xL (0< L< n/2) and the MSER-5 method determined a truncation point of xLsol 

(Lsol ≤ n/2).  Therefore the percentage bias removed by truncating data set ‘X’ at 

Lsol is: 
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All cases where Lsol > L will be said to fall into the ‘100+’ category, for the 

purposes of discussion and analysis. 

4. Analysis of the pattern and frequency of rejections of the estimated truncation 

point, Lsol, due to insufficient data:  Lsol was not accepted if it fell into the 

second half of the data, (i.e. Lsol > n/2), as this was assumed to indicate that 

there were insufficient data for the method to provide a robust estimate of L 

(see section 5 for full explanation).   

 

It was also presumed that the various parameters used to create the artificial test data 

would affect the functioning of the warm-up method.  We therefore analyse the effect 

of each parameter separately, as well as the interaction effects between the 7 

parameters, upon the performance of the warm-up method as reflected by the 

performance criteria.  Both graphical analysis and chi-squared testing of results were 

employed.  Because the algorithm was run only once rather than in an iterative 

fashion, all results quoted, unless specifically identified otherwise, refer only to the 

valid runs i.e. Lsol values returned in the first half of the data.  Section 6.5 details the 

results regarding the rejected Lsol values with a discussion on when, and possible 

reasons why, this occurs. 
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6.4 Results of testing the MSER-5 heuristic 

 

6.4.1   Coverage of the true mean 

 

The reason for truncating and thus eradicating any initial bias is to provide a non-

biased estimate of the true mean of the data.  Therefore one way to judge how well 

MSER-5 is working is to calculate the mean (with 95% confidence intervals) of all 

data series (where MSER-5 returned a Lsol value in the first half of the data) after 

they have been truncated at their respective Lsol values.  The test criterion is then 

whether or not the true known mean of the data falls within these confidence intervals.  

Due to the nature of the artificial data it is also important to check whether the true 

mean falls into the equivalent confidence intervals for the non-truncated data.   There 

are therefore 4 possible combinations of results as shown in table 8.   

 

The results in table 8 do not include the averaged ARMA(5,5) data with exponential 

error as these data sets, when truncated at correct L, did not include the true mean 

within their confidence intervals and were therefore deemed not to be a fair test of 

MSER-5.  Because of the high auto-correlation of this data type it would be necessary 

to have more data than only n=1000, in order to achieve a representative estimate of 

the true mean.   

 

< Table 8 about here> 

 

These coverage results appear to be very good with approximately 80% of the test 

data covering the true mean after truncation.  Of course, as the impact of residual bias 

is dependent on the run-length of the data beyond the truncation point, all the data sets 

could be made to fall into this category by running more data after truncation.    

 

6.4.2    L versus Lsol 

 

For each true truncation point L, MSER-5 gave a wide range of Lsol values (see 

figure 3 for examples of 2 data sets).  It was noted that as the severity of decline in the 

bias increases the number and severity of underestimations of the warm-up period 

increases, e.g. the most underestimation occurs in data with exponentially declining 
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bias.  However, judging MSER-5 on Lsol values alone is misleading.  For example, 

table 9 shows the mean Lsol values with 95% confidence intervals for the two data 

sets featured in figure 3.   Both confidence intervals do not include the true value of L 

(100) for those sets, and therefore this criterion alone suggests that the MSER-5 

method is performing poorly.    But for the mean-shift bias data, MSER-5 accurately 

estimated L on 72% of the runs and only overestimated L to a maximum of 45 

(average of 14) data points on the remaining 28% of runs.   It would therefore appear 

that MSER-5 was actually quite accurate in estimating the true warm-up period for 

this data.  The quadratic bias example shows a general underestimation of true L due 

to the declining nature of the initial bias, but it is unclear how detrimental this 

underestimation is.  The percentage of bias removed by truncation is seen as a more 

useful measure of the effectiveness of a truncation method (especially regarding 

underestimation of the truncation point). 

 

< Figure 3 about here> 

< Table 9 about here> 

 

6.4.3   Percentage bias removed by truncation 

 

It can be seen in figure 4 that in over 64% of valid runs, (92.6% of the total 201,600 

runs were deemed valid), the MSER-5 method removed at least 95% of the bias from 

the data, and in over 77% of valid runs it removed at least 90% of the bias. 

 

< Figure 4 about here> 

 

Further analysis was then performed to understand the effect of the various 

parameters used to create the artificial data sets on the functioning of MSER-5.  We 

analysed the main effect of each parameter and any interaction effects between the 7 

parameters.  Looking at the percentage bias removed results (excluding those for L = 

0% and 100%) in more detail, the following observations can be made. 

 

Error type 
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The type of error (normal or exponential) did not significantly affect the percentage of 

bias removed. A chi-squared test of the two percentage bias removed distributions 

gave a p-value of 0.85 indicating no significant difference at the 95% level. 

 

Auto-correlation function type 

 

The stronger the auto-correlation in the data the more difficulty MSER-5 had in 

accurately removing initial bias.  Figure 5 shows the cumulative percentage bias 

removed for each autocorrelation data type.  The closer the cumulative line is to the 

right of the graph, the better the performance.  A chi-squared test of these 

distributions gave a p-value of 0.000 indicating a significant difference at the 95% 

level.  Three quarters of the cases where less than 40% of the bias was removed were 

from data sets with very high auto-correlation.  This effect was greatly reduced by 

using averaged data rather than single run data.  Figure 5 clearly shows the difference 

between the ARMA(5,5) results and the rest.  The underlying equations help to 

explain these differences.  ARMA(5,5) in particular has an extremely long lag in the 

auto-correlation with the influence of the first value becoming non significant (at the 

5% significance level) at around the 30th value.  AR(1) performs nearly as poorly.  

Because of its large parameter value (0.9) the influence of the first value only 

becomes non significant at around the 15th value.  It should also be noted of the 

ARMA(5,5) data that due to its high auto-correlation a data length of 1000 data 

points, even for non-biased data, is generally not enough to produce an accurate 

estimate of the true mean.  Hence asking MSER-5 to find a truncation point for the 

ARMA(5,5) data sets with 1000 data points is an extremely difficult if not ‘unfair’ 

request, but an interesting exercise to see how well the method copes. 

 

< Figure 5 about here> 

 

Averaged replications or single run 

 

MSER-5 removed a greater percentage of bias from data produced by averaging over 

5 replications, than for data from a single run (see figure 6).  In 76% of valid runs 

using the averaged data, the MSER-5 method removed at least 95% of the bias from 

the data, and in 88% of valid runs it removed at least 90% of bias.  This is in contrast 
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with 52% and 67% respectively when single run data were used.  A chi-squared test 

of these 2 distributions gave a p-value of 0.000 indicating a significant difference at 

the 95% level.  This is logical, as averaging over replications reduces variation in the 

data producing a clearer difference between any initial bias and the steady-state data.  

 

< Figure 6 about here> 

 

Bias shape 

 

The more sharply the initial bias declines, the more likely MSER-5 is to 

underestimate the warm-up period and to remove increasingly less bias.  Removal of 

mean-shift bias was very successfully achieved, with over 98% of cases having over 

99% of the bias removed.  This was as expected due to the non-declining nature of 

this bias. When bias declines sharply, a large amount of the bias is at a relatively low 

severity and effectively ‘hidden’ by the variation in the data. Thus, as shown in figure 

7, the amount of bias that is removed reduces in direct proportion with the sharpness 

of decline of the bias function; in descending order: mean-shift, linear, oscillating 

linear, quadratic, oscillating quadratic, exponential, oscillating exponential.  Again, a 

chi-squared test of these 7 distributions of percentage bias removed produced a p-

value of 0.000 indicating a significant difference at the 95% level. 

 

< Figure 7 about here> 

 

Direction of bias 

 

The orientation of the bias (positive or negative) does not significantly affect the 

ability of MSER-5 to remove bias.  This is not unexpected due to the nature of the 

MSER-5 heuristic. 

 

Bias severity 

 

As the severity increases, MSER-5 removes an increasingly higher percentage of the 

bias (see figure 8).  A chi-squared test of these 3 distributions of percentage bias 

removed gave a p-value of 0.000 indicating a significant difference at the 95% level.  
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This is not surprising, since we would expect that it is easier to detect the bias when it 

is more severe. 

 

< Figure 8 about here> 

 

Bias length   

 

The longer bias was removed slightly more efficiently by MSER-5 than the shorter 

bias.  The shorter bias had a higher percentage of overestimations but this was partly 

due to overestimations in the longer bias being more likely to fall into the 2nd half of 

the data and therefore be categorised as Lsol rejections. In order to take this artefact of 

the method in to account figure 9 shows the percentage bias results for the data with a 

bias length of 10% versus data with 40% bias, including the percentage of cases that 

were rejections. 

 

< Figure 9 about here> 

 

 

6.5      Truncation estimates (Lsol) that fall into the second half of the data. 

 

It has been suggested that the MSER method can be sensitive to outliers in the steady-

state data (Sandikci and Sabuncuoglu 2006).  We too have observed this phenomenon, 

but mainly where these ‘outliers’ occur just after the true truncation point.  However, 

this is partially alleviated by using averaged replication data rather than single runs 

and by the fact that MSER-5 batches the data into batches of 5 data points hence 

further smoothing the data.  We have also observed that it can struggle to function 

properly when faced with highly auto-correlated data. This issue is not isolated to just 

the MSER-5 method and can be partially alleviated by providing the method with 

more data. We have also observed ‘end-point’ Lsol values (see section 5). 

 

In order to avoid an ‘end-point’ Lsol value, possible ‘outlier’ effects and the effect of 

high auto-correlation, MSER-5 rejects an Lsol value if it falls in the second half of the 

data (i.e. Lsol > n/2).  This occurred in only 7.4% of the total 201600 runs and over 

88% of these were from the highly auto-correlated ARMA(5,5) data sets.   Figure 10 
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shows the distribution of Lsol rejections over the test data sets and illustrates the large 

contribution from ARMA(5,5) and to a lesser extent AR(1).  It is not surprising that 

the two highest auto-correlated sets should cause this phenomenon. 

 

There were also higher numbers of rejections from the data sets with L = 400 than L = 

100 as would be expected, since if Lsol is an overestimate it is more likely to fall into 

the second half of the data.   Using averaged data rather than single run data slightly 

increases the probability of getting an ‘end point’ Lsol value but also increases the 

probability of procuring a more accurate estimate of L.   

 

< Figure 10 about here> 

 

It was hypothesised that giving more data to the MSER-5 method in an iterative 

fashion would eventually produce a valid Lsol value where previously the Lsol value 

had been rejected.  To check this each data set with a rejected Lsol value was given 

more data (successively 100 more data points) and the method re-run.  It was found 

that for all of the data sets a valid Lsol value (i.e. Lsol ≤ n/2)  was returned by the time 

the data length was doubled (i.e. n = 2000).  See figure 11 for examples of the 

relatively small amounts of extra data needed to achieve this in the ARMA(5,5) data.   

The ARMA(5,5) data required the most extra data, whereas for the other data types a 

further 100 or 200 data points would suffice.  In the case of ‘end point’ rejections it 

was found that often just adding one more batch of data would suffice. 

 

< Figure 11 about here> 

 

6.6      Testing MSER-5 with data that has no initial bias. 

 

The bias length parameter was set at 0 effectively producing data that had no initial 

bias.  The only parameters now valid were the auto-correlation, error type and single 

run or averaged data type.  These parameters were varied over the same levels as 

before. 
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If there is no initial bias in a data set it is hoped that a ‘good’ warm-up method would 

return a truncation point of zero or, failing that, truncate a very small amount of the 

data.   It was found that MSER-5 returned a zero truncation value approximately 71% 

of the time (see table 10).  The Lsol values of greater than 50 data points were mainly 

due to the highly auto-correlated AR(1) and ARMA(5,5) data sets.    

 

Only 135 (5.6%) of the total 2400 Lsol values produced were rejected because they 

fell into the second half of the data.  Of these 126 (93%) were from the highly auto-

correlated ARMA(5,5) data. 

 

< Table 10 about here> 

 

6.7      Testing MSER-5 with data sets that have 100% initial bias. 

 

The bias length parameter was set at 100% producing data that had not yet reached 

steady-state.  The other 6 parameters were varied over the same levels as before. 

 

Ideally we would like to see a 100% rejection rate (i.e. Lsol > n/2) as none of these 

data sets had finished warming-up.  However, the value of the Lsol returned was 

highly dependent on how severe the bias was, how sharply the bias declined and how 

highly auto-correlated the data were.  For data with 100% mean shift bias it was 

impossible to tell that these data were biased and therefore MSER-5 returned mainly 

zero Lsol values.  The following results do not therefore includes the mean-shift bias 

values.  The total percentage of Lsol rejections was 61%.   

 

Figure 12 illustrates that the less severe the bias the more likely MSER-5 was to 

return a valid Lsol value rather than rejecting it.  It also shows a difference between 

using averaged and single run data.  Using averaged data produced more Lsol 

rejections than single run data due to its reduced variation.  Also, the more highly 

auto-correlated the data, the more likely MSER-5 was to return a valid Lsol value 

rather than to reject it. The only exception to this being the ARMA(5,5) data that due 

to its very high auto-correlation and too short a run length always produced a very 

high number of rejections.   The shape of the bias had the most impact.  The 
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oscillating exponential and exponential bias decline so rapidly that MSER-5 returned 

valid Lsol values nearly 65% and 90% of the time respectively (see figure 13). 

 

< Figure 12 about here> 

< Figure 13 about here> 

 

7.  CONCLUSION 

All of the warm-up methods found have shortcomings and suffer from a lack of 

consistent, comparable testing across the literature. Key problems are overestimation 

and underestimation of the truncation point, relying on restrictive assumptions and 

requiring estimation of a large number of parameters.  Requiring that a method be 

easily automatable is a further restriction.  If you were to relax this requirement, 

methods that were rejected by us at the short-listing stage become viable.  We rejected 

all the graphical methods due to the need for user intervention and judgement, but it is  

 

possible that some of these methods could feasibly be adapted for automation.  

Welch’s method for example would require a reliable method to ascertain when the 

data becomes smooth and flat.  The authors have seen examples where using MSER-5 

on data smoothed by Welch’s method can reliably give estimated truncation points 

that could be seen by eye as likely points where the data flattens out. 

 

MSER-5 is not model or data type specific and is therefore a very general method.  It 

does not require estimation of any parameters and can function adequately without 

user intervention.  It has been shown to perform robustly and effectively for the 

majority of data sets tested.  It is quick to run and fairly simple to understand.  It is 

therefore an ideal candidate for automation and inclusion into an automated analysis 

system.   

 

The testing approach used in this paper was found to be robust, comprehensive and 

simple to carry out.  It is the authors’ intention that it could be usefully utilized by 

readers for testing any warm-up method. 
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The next stage of work is to create a heuristic framework around MSER-5 to facilitate 

its incorporation into an automated analyser for implementation into simulation 

software.  This framework needs to include a ‘failsafe’ mechanism and an iterative 

procedure for procuring more data when required.  
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Figure 1: Summary of short listing results – reasons for rejection. 
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Figure 2: Example of the MSER-5 method at work. 
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Figure 3:  Lsol – L values for the positive quadratic and mean-shift bias functions used on 

single run data, with Normal(1,1) errors and MA(2) auto-correlation, a bias severity value of 

2 and true L = 100. 
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Figure 4: This graph shows the distribution of the percentage of bias removed from each data 

set where a valid Lsol value was returned.  ‘100+’ indicates that 100% of the bias was 

removed by truncation, but there was also over estimation of L so more data was removed 

than required. 
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Figure 5:  The cumulative percentage of bias removed by truncation, for each different 

autocorrelation type. 
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Figure 6:  The cumulative percentage of bias removed by truncation, for each ‘averaged’ and 

‘single’ data set where a valid Lsol value was returned. 
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Figure 7:  The cumulative percentage of bias removed by truncation, for each different bias 

shape. 

 
 

0

50

100

0-
40

40
-5

0

50
-6

0

60
-7

0

70
-8

0

80
-9

0

90
-9

5

95
-9

9

99
-1

00

10
0+

% of bias removed

cu
m

ul
at

iv
e 

%
 o

f v
al

id
 c

as
es

M1

M2

M4

 
Figure 8:  The cumulative percentage of bias removed by truncation, for each data set with 

varying severity of bias where a valid Lsol value was returned. 
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Figure 9:  The cumulative percentage of bias removed by truncation, for each data set with 

10% bias and 40% bias. 
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Figure 10:  Distribution of Lsol rejections over the test data sets with respect to the different 

auto-correlation types. 
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Figure 11:  The number of Lsol rejections for differing amounts of data given to MSER-5, 

with respect to the differing bias shapes (using N(1,1) M2 L40 ARMA(5,5) positively biased 

averaged data). 
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Figure 12:  Percentage of Lsol rejections for data with 100% bias, divided into single run or 

averaged data and bias severity value (M) (excludes mean-shift bias). 
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Figure 13:  Percentage of Lsol rejections for data with 100% bias, described by their bias 

shape (excludes mean-shift bias). 
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TABLES 

 
Table 1.  Methods for determining the warm-up period. 

Method 
Type Method References 

Graphical Simple Time Series Inspection Gordon (1969) 
 Ensemble (Batch) Average Plots Banks et al. (2001) 
 Cumulative-Mean Rule Gordon (1969), Wilson and Pritsker (1978a), Gafarian 

et al. (1978), Nelson (1992), Roth and Josephy (1993), 
Roth (1994), Banks et al. (2001), Fishman (2001), 
Bause and Eickhoff (2003), Sandikci and Sabuncuoglu 
(2006) 

 Deleting-The-Cumulative-Mean 
Rule 

Roth and Josephy (1993), Roth (1994) 

 CUSUM Plots Nelson (1992) 
 Welch's Method Law (1983), Pawlikowski (1990), Alexopoulos and 

Seila (1998), Law and Kelton (2000), Banks et al. 
(2001), Linton and Harmonosky (2002), Bause and 
Eickhoff (2003), Mahajan and Ingalls (2004), Sandikci 
and Sabuncuoglu (2006) 

 Variance Plots (or Gordon Rule) Gordon (1969), Wilson and Pritsker (1978a), Gafarian 
et al. (1978), Pawlikowski (1990) 

 Exponentially Weighted Moving 
Average Control Charts 

Rossetti et al. (2005) 

 Statistical Process Control  
Method (SPC) 

Law and Kelton (2000), Mahajan and Ingalls (2004), 
Robinson (2005) 

   
Heuristic Ensemble (Batch) Average Plots 

with Schribner's Rule 
Wilson and Pritsker (1978a), Wilson and Pritsker 
(1978b), Pawlikowski (1990) 

 Conway Rule or Forward Data-
Interval Rule 

Conway (1963), Fishman (1973), Wilson and Pritsker 
(1978b), Gafarian et al. (1978), Wilson and Pritsker 
(1978a), Bratley et al. (1987), Pawlikowski (1990), 
Yucesan (1993), White (1997), Mahajan and Ingalls 
(2004) 

 Modified Conway Rule or 
Backward Data-Interval Rule 

Wilson and Pritsker (1978a), Gafarian et al. (1978), 
White (1997), Lee et al. (1997) 

 Crossing-Of-The-Mean Rule Wilson and Pritsker (1978a), Gafarian et al. (1978), 
Wilson and Pritsker (1978b), Pawlikowski (1990), 
White (1997), Lee et al. (1997), Mahajan and Ingalls 
(2004) 

 Autocorrelation Estimator Rule Fishman (1971), Wilson and Pritsker (1978a), 
Pawlikowski (1990) 

 Marginal Confidence Rule or 
Marginal Standard Error Rules 
(MSER) 

White (1997), White et al. (2000), Linton and 
Harmonosky (2002) 

 Marginal Standard Error Rule m, 
(e.g. m=5, MSER-5) 

White et al. (2000), Mahajan and Ingalls (2004), 
Sandikci and Sabuncuoglu (2006) 

 Telephone Network Rule Zobel and White (1999) 
 Relaxation Heuristics Kimbler and Knight (1987), Pawlikowski (1990), Roth 

and Josephy (1993), Roth (1994), Linton and 
Harmonosky (2002)  

 Beck's Approach for Cyclic  
Output 

Beck (2004) 

 Tocher's Cycle Rule Pawlikowski (1990) 
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 Kimbler's Double Exponential 
Smoothing Method 

Kimbler and Knight (1987) 

 Euclidean Distance (ED) Method Lee et al. (1997) 
 Neural Networks (NN) Method Lee et al. (1997) 
   
Statistical Goodness-Of-Fit Test Pawlikowski (1990) 
 Algorithm for a Static Dataset 

(ASD) 
Bause and Eickhoff (2003) 

 Algorithm for a Dynamic  
Dataset (ADD) 

Bause and Eickhoff (2003) 

 Kelton and Law Regression 
Method 

Kelton and Law (1983), Law (1983), Kimbler and 
Knight (1987), Pawlikowski (1990), Roth and Josephy 
(1993), Roth (1994), Gallagher et al. (1996), Law and 
Kelton (2000), Linton and Harmonosky (2002) 

 Glynn & Iglehart Bias Deletion 
Rule 

Glynn and Iglehart (1987) 

 Wavelet-Based Spectral Method 
(WASSP) 

Lada et al. (2003), Lada et al. (2004), Lada and Wilson 
(2006) 

 Queueing Approximations  
Method (MSEASVT) 

Rossetti and Delaney (1995) 

 Chaos Theory Methods  
(methods M1 and M2) 

Lee and Oh (1994) 

 Kalman Filter Method Gallagher et al. (1996), Law and Kelton (2000)  
 Randomisation Tests for 

Initialisation Bias 
Yucesan (1993), Mahajan and Ingalls (2004) 

   
Initialisation 
bias tests  

Schruben's Maximum Test (STS) Schruben (1982), Law (1983), Schruben et al. (1983), 
Yucesan (1993), Ockerman and Goldsman (1999), 
Law and Kelton (2000) 

 Schruben's Modified Test Schruben (1982), Nelson (1992), Law (1983), White et 
al.(2000), Law and Kelton (2000) 

 Optimal Test (Brownian bridge 
process) 

Schruben et al. (1983), Kimbler and Knight (1987), 
Pawlikowski (1990), Ma and Kochhar (1993), Law 
and Kelton (2000) 

 Rank Test Vassilacopoulos (1989), Ma and Kochhar (1993), Law 
and Kelton (2000) 

 Batch Means Based Tests –  
Max Test 

Cash et al (1992), Lee and Oh (1994), Goldsman et al. 
(1994), Law and Kelton (2000), White et al. (2000) 

 Batch Means Based Tests –  
Batch Means Test 

Cash et al. (1992), Goldsman et al (1994), Ockerman 
and Goldsman (1999), White et al. (2000), Law and 
Kelton (2000) 

 Batch Means Based Tests –  
Area Test 

Cash et al. (1992), Goldsman et al (1994), Ockerman 
and Goldsman (1999), Law and Kelton (2000) 

 Ockerman & Goldsman Students  
t-tests Method 

Ockerman and Goldsman (1999) 

 Ockerman & Goldsman (t-test) 
Compound Tests 

Ockerman and Goldsman (1999) 

   
Hybrid Pawlikowski's Sequential 

Method 
Pawlikowski (1990) 

 Scale Invariant Truncation Point 
Method (SIT) 

Jackway and deSilva (1992) 
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Table 2: six warm-up methods short-listed to be taken forward to further testing: 

Statistical methods Heuristics 
Goodness-of-Fit (GoF) test 
   (Pawlikowski, 1990) 

MSER-5 
   (White, 1997; White et al., 2000) 

Algorithm for a Static Data Set (ASD) 
(Bause and Eickhoff, 2003) 

Kimbler’s Double Exponential Smoothing 
(Kimbler and Knight, 1987) 

Algorithm for a Dynamic Data Set 
(ADD) (Bause and Eickhoff, 2003) 

Euclidean Distance Method (ED)           
(Lee et al., 1997) 

 
 
Table 3: Results of preliminary testing for goodness-of-fit, Kimbler’s double 

exponential smoothing, MSER-5 and Euclidean distance methods 

 Mean-shift bias, N(1,1) data. 
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Linear bias, N(1,1) data. 
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True L = 400 

Goodness-of-Fit n = 1000 
Mean estimated L & (range): 1.5  (2) 1  (0) 
Kimbler’s D.Exp.S method n = 1000 
Mean estimated L & (range): 17 (34) 33.7 (74) 
MSER-5 n = 1000 to 1005 
Mean estimated L & (range): 407 (45) 381.5 (20) 
ED n = 1000 to 3300 
Mean estimated L & (range): No results given No results given 
The data length, n, was initially set at 1000 data points and increased incrementally if a method was unable 
to supply an estimate of L for a specific data set with that number of data.   
 
Table 4: The 5 main bias shapes and their functions. 
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3. Quadratic: 
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4. Exponential: 
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Where k = 0.005, is the value of a(t) at t = L.   

5. Oscillating (decreasing): 
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Where f is the frequency of oscillation for the Sin function.  The number of cycles in 
the oscillating bias a(t), t = 1,…,L, was set at 10, hence 10Lf = .   Ψ is either a linear, 
quadratic or exponentially decreasing function: 
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Exponentially decreasing function: 
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Table 5: Equations and parameter values of the steady-state functions. 

Auto-
correlation 

type 

Equation Parameter values 

AR(1) ttt XX εφ += −
)1()1(
11  9.01 =φ  

AR(2) tttt XXX εφφ ++= −−
)2()2()2(
2312  5.0  ,25.0 32 =−= φφ  

AR(4) tttttt XXXXX εφφφφ ++++= −−−−
)3()3()3()3()3(
47362514  

1.0  ,2.0
  ,3.0  ,45.0

76

54

==
=−=

φφ
φφ

 

MA(2)   2918
)4(

−− ++= ttttX εφεφε  5.0  ,25.0 98 == φφ  
ARMA(5,5)   ( )∑

=
−− 



 +++=

5

1

)5()5(

2
11

i
itititt XX εε  

 

No auto-
correlation  

ttX ε=)6(   

Where εt are random variates drawn from the Exp(1) or N(1,1) distributions. 
 
Table 6:  True mean calculations for each steady-state model.   

Auto-correlation type Equation of the mean, µ 
AR(q),  where q = 1, 2, 4   

∑
=

−
= q

i
i

1
1 φ

µ
µ ε

 

MA(q), where q = 2 








+= ∑

=

q

i
i

1
1 φµµ ε  

ARMA(5,5)     6332 εµµ +=  
where µε is the mean of the error function. 
 
Table 7: Factorial design of 7 factors with varying numbers of levels, with n = 1000 

Error M L Auto-
Correlation 

Bias 
direction 

Bias Shape Data type 

N(1,1) 1 0  
(0% of n) 

None + (positive) Mean-shift Single run 

Exp(1) 2 100  
(10% of n) 

AR(1) - (negative) Linear trend 

 4 400  
(40% of n) 

AR(2)  Quadratic trend 

  1000  
(100% of n) 

AR(4)  Exponential trend Data averaged 
over 5 
replications    MA(2)  Oscillating (linearly 

decreasing) 
   ARMA(5,5)  Oscillating (quadratically 

decreasing) 
     Oscillating (exponentially 

decreasing) 
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Does true mean fall within the 95% CI 
around the estimated mean? 

Truncated data 

No Yes 
N

on
-tr

un
ca

te
d 

da
ta

 

No 19.8% 72.5% 

Yes 0% 7.7% 

 Total 19.8% 80.2% 
Table 8:  The percentage of cases that fall into the 4 possible combinations of coverage 

results. 

 
 
Bias shape mean-shift quadratic 
Mean Lsol 103.95 ± 1.75 62.55 ± 2.83 
(Minimum, Maximum) Lsol value (100, 145) (40, 130) 

Table 9:  Mean Lsol values with 95% CIs for the data seen in figure 3. 

 
 
  Normal errors Exponential errors 
Single run data Lsol = 0 72.8% 75.2% 
 Lsol ≤ 50 96.1% 91.3% 
Averaged data Lsol = 0 66.7% 70.1% 
 Lsol ≤ 50 93.8% 91.9% 
Table 10:  Percentage of cases where MSER-5 returned Lsol values of zero and less than 50, 

for single run and averaged data with normal and exponential errors. 
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Figure Captions 

 

Figure 1: Summary of short listing results – reasons for rejection. 

Figure 2: Example of the MSER-5 method at work. 

Figure 3:  Lsol – L values for the positive quadratic and mean-shift bias functions used on 

single run data, with Normal(1,1) errors and MA(2) auto-correlation, a bias severity value of 

2 and true L = 100. 

Figure 4: This graph shows the distribution of the percentage of bias removed from each data 

set where a valid Lsol value was returned.  ‘100+’ indicates that 100% of the bias was 

removed by truncation, but there was also over estimation of L so more data was removed 

than required. 

Figure 5:  The cumulative percentage of bias removed by truncation, for each different 

autocorrelation type. 

Figure 6:  The cumulative percentage of bias removed by truncation, for each ‘averaged’ and 

‘single’ data set where a valid Lsol value was returned. 

Figure 7:  The cumulative percentage of bias removed by truncation, for each different bias 

shape. 

Figure 8:  The cumulative percentage of bias removed by truncation, for each data set with 

varying severity of bias where a valid Lsol value was returned. 

Figure 9:  The cumulative percentage of bias removed by truncation, for each data set with 

10% bias and 40% bias. 

Figure 10:  Distribution of Lsol rejections over the test data sets with respect to the different 

auto-correlation types. 

Figure 11:  The number of Lsol rejections for differing amounts of data given to MSER-5, 

with respect to the differing bias shapes (using N(1,1) M2 L40 ARMA(5,5) positively biased 

averaged data). 

Figure 12:  Percentage of Lsol rejections for data with 100% bias, divided into single run or 

averaged data and bias severity value (M) (excludes mean-shift bias). 

Figure 13:  Percentage of Lsol rejections for data with 100% bias, described by their bias 

shape (excludes mean-shift bias). 

 

 

Table Captions 

 

Table 1.  Methods for determining the warm-up period. 

Table 2: six warm-up methods short-listed to be taken forward to further testing: 
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Table 3: Results of preliminary testing for goodness-of-fit, Kimbler’s double 

exponential smoothing, MSER-5 and Euclidean distance methods 

Table 4: The 5 main bias shapes and their functions. 

Table 5: Equations and parameter values of the steady-state functions. 

Table 6:  True mean calculations for each steady-state model.   

Table 7: Factorial design of 7 factors with varying numbers of levels, with n = 1000 

Table 8:  The percentage of cases that fall into the 4 possible combinations of coverage 

results. 

Table 9:  Mean Lsol values with 95% CIs for the data seen in figure 3. 

Table 10:  Percentage of cases where MSER-5 returned Lsol values of zero and less than 50, 

for single run and averaged data with normal and exponential errors. 
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