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Abstract: Since the traditional Maximum Likelihood (ML) based range domain Multiple 

Reference Consistency Check (MRCC) has limitations in satisfying the integrity requirement of 

CAT II/III for civil aviation, a Kalman filter based position domain method has been developed for 

fault detection and exclusion in Local Area Augmentation System (LAAS) MRCC process. The 

position domain approach developed in this paper seek to address the limitations of range domain 

based MRCC by focusing not only on improving the performance of the fault detection but also on 

the integrity risk requirement for MRCC. In addition, the issue of the stability of the Kalman filter 

in relation to the position domain approach is considered. GPS ranging corrections from multiple 

reference receivers are fused by the adaptive Kalman filter at the master station for detecting and 

excluding the single reference receiver’ failure. The performance of the developed Kalman filter 

based MRCC algorithm has been compared with the traditional ML based method using 

experimental data. The results reveal that the Vertical Protection Level (VPL) is slightly better in 

the ML based method compared to the developed Kalman filter based approach under the fault-

free case. However, the availability is better in the proposed method relative to the ML based 

approach under the single-fault case. In addition, a better fault-tolerant positioning result is 

obtained even if different fault types are considered under the single-fault case. In particular, the 

algorithm can be a candidate option as an augmentable complement for the traditional MRCC and 

can be implemented in a master station element of the LAAS integrity monitoring architecture. 
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1 Introduction 

Global Navigation Satellite System (GNSS) has been employed as a pioneer ubiquitous 

positioning technology for navigation of moving objects (Misra and Enge 2001). One of its 

applications is in the area of civil aviation in which GNSS provides navigational aids in different 

flight phases. As a safety-of-life (SoL) critical application, the accuracy, integrity, continuity and 

availability (also known as Required Navigation Performance, RNP) requirements for navigation 

in civil aviation is more stringent relative to other non-safety critical applications. Due to the 

inherent limitations, a standalone GNSS (such as GPS) cannot satisfy the required navigational 

performance with sufficient accuracy and reliability, especially during the precision approach and 

landing phases of a flight. As such, the integrity requirement, which is directly related to safety, 

cannot be satisfied. One of the solutions to overcome this problem has been the LAAS (Enge 

1999; Murphy and Imrich 2008; Walter et al. 2008). LAAS has been developed by the Federal 

Aviation Administration (FAA) in order to provide a high integrity positioning service for 

precision approach and landing operations of civil aviation. Each LAAS installation provides 

differential positioning services through a LAAS ground facility (LGF) which is located at the 

vicinity of the airport it serves and also includes multiple reference receivers, a master station 

facility and a very high frequency (VHF) data broadcast network. By monitoring the GPS signal-

in-space (SIS), LGF is able to detect and exclude faulty satellites while broadcasting high integrity 

range corrections within its service coverage (approximately a 20-30 mile). Civil aviation can use 

the broadcasted integrity information and pseudorange corrections to suppress the common errors 

between the LGF and a user. In the most stringent case (i.e. CAT II/III), it is necessary that the 

LAAS integrity monitoring architecture defined by the International Civil Aviation Organization 

(ICAO) should meet the following SIS requirements (ICAO SARPs 2007): 

 

1. Integrity risk of 910−  per approach with respect to a vertical alert limit (VAL) of 

approximately 5.3m and a time-to-alarm (TTA) of 1 to 2 sec.  

2. Continuity risk of 64 10−×  for any 15sec of the approach. 

 

Although the current integrity monitoring algorithms are striving to satisfy the RNP 

parameters at the CAT II/III precision approach, there are still a lack of widely acceptable and 

applicable methods.  One of the main reasons for this is that there are some potential sources of 

integrity threats that need to be re-considered, especially the faults in the reference receivers 

(Khanafseh and Pervan 2011). To detect and mitigate the faults associated with the reference 

receivers in LAAS, the minimum aviation system performance standards (MASPS) for LAAS, 

which is documented in the radio technical commission of aeronautics (RTCA-DO245A), 

recommend that the master station should employ the so-called B-value to detect and exclude the 

outliers associated with the range domain corrections from the multiple reference receivers (e.g. 

Liu 1998; Wen et al. 2004). This kind of monitoring process is known as the traditional MRCC 

and its primary focus is the detection and exclusion of the faults arising from the multiple 

reference receivers. The B-value is computed for the hypothesis that a given reference receiver is 
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faulty and fails to meet the required navigational performance. Hence the B-value expresses an 

estimation of the difference between the reference receivers for which it applies to and the 

consensus of the other reference receivers.  The reference receiver in question is marked for the 

exclusion under the single-fault hypothesis if this difference exceeds a threshold (Gleason and 

Gebre-Egziabher 2009).  The range domain based B-value fault detection scheme has however 

many disadvantages. For instance, the faults originating from either satellites or reference 

receivers could be responsible for an outlier in the B-value and be contributed to hazardous 

position error or misleading information. In addition to the faults in the satellites or reference 

receivers, there are other potential sources of faults (e.g. satellite clock-bias drift, satellite 

ephemeris type A and type B errors) (Tang et al. 2010) that may result in a conservative 

probability from which the detection threshold is normally being derived. Moreover, such faults 

could actually undermine the performance of traditional range domain MRCC.  Therefore, if all 

kinds of fault are considered together, then it would be difficult to accurately express the 

correlation among different sources of fault. This may cause the MRCC performance to be 

inadequate to satisfy the RNP of CAT II/III. As far as the fault detection threshold is concerned, 

one of the determining factors in fault detection is the overlap between the probability density 

curves under the fault-free hypothesis and different fault hypotheses (Gustafsson 2005). This is the 

correlation of the test statistics under different hypotheses. It is always challenging to express the 

cross-correlations in terms of noise variance of raw measurements (Khanafseh and Pervan 2011). 

The difficulty of formulating the correlation factor can also be a threat to LASS in terms of 

computation since the measurements from all reference receivers are coupled to each other in the 

range domain when processed in the master station (Khanafseh and Pervan 2011). This kind of 

threat can be simplified with the use of carrier phase based navigation because the noises 

contained in carrier phase measurements are much less. This will however be a problem for 

pseudorange based navigation as noises in pseudorange measurements are relatively large. 

Furthermore, Shively (1999) detailed and evaluated a series of range domain based MRCC 

methods with the conclusion that the performance of range domain based MRCC can be enhanced 

in terms of the trade-off between the integrity risk and continuity risk. Even the optimum B-value 

is derived from the minimum mean square error estimation criterion, the performance of such an 

optimum B-value based MRCC is almost the same as the traditional one (Kelly 2000).  

In order to eliminate some of the disadvantages associated with the range domain based 

MRCC, the position domain based MRCC can be utilized and it has been proved that a better 

availability level can also be achieved by implementing the integrity monitoring for LAAS in the 

position domain with the multiple hypotheses solution separation algorithm (Pervan et al. 1998). 

However, there would appear to be a dearth of research relating to the application of the position 

domain method for fault detection and exclusion for MRCC. Therefore, this paper develops a 

position domain based method aimed at improving the MRCC performance for LAAS. A Kalman 

filter with the fading factor is applied to obtain an optimal test statistic for better MRCC 

performance and to adjust the filtering convergence procedure. The fading factor is optimal and 

adaptive for minimizing the integrity risk. 
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The rest of paper is organized as follows. First, in section 2, ML based position domain 

MRCC is briefly introduced. Then the adaptive Kalman filter based MRCC is proposed and 

analyzed with the consideration of the stability of the Kalman filter and integrity risk.  Finally, 

the results and the conclusions achieved from our experiment are discussed in sections 3 and 4.  

2 Methods for the Position Domain Based MRCC  

A range of different estimation methods are available for MRCC. This includes ML (Liu 1998), B-

value Bayesian exclusion (Shively 1999) and minimum mean square error (Kelly 2000). Each of 

the methods has their own advantages and disadvantages. Among these methods, one of the widely 

used methods is the ML. Due to the inherent limitations of the ML method (as explained later in 

this section), this paper introduces a novel position domain based MRCC for LAAS using an 

adaptive Kalman filter. This is fully discussed in this section. For completeness, the ML method 

for the position domain based MRCC is briefly discussed at first. 

2.1 The ML based position domain MRCC 

The traditional B-value can be implemented in both the range domain and the position 

domain. The weaknesses of traditional range domain based B-value are detailed in Wang et al. 

(2009). The better performance of the position domain method is illustrated in Pervan et al. (1998). 

Therefore, the position domain based B-value is analyzed to express the significance of the 

estimation method for the performance of MRCC. 

Since the vertical performance is the primary concern in the precision approach of civil 

aviation, our work considers three pseudorange corrections associated with three sets of reference 

receivers that, when processed separately at the master station, generate three vertical position 

solution estimates defined as 1
ky , 2

ky , and 3
ky . k is the index for kth epoch. If these individual 

vertical position estimates are interpreted as individual “measurements” of position, their 

relationship to the true vertical position solution v,kx  can be given by: 
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where 
0vy  is the 3 1×  vector parameters. 

0vH  is the observation matrices. 
0vv  is the 

estimation error comprised of two random errors which come from master station and reference 

receivers. Subscript 0v  and vi ( 1,2,3i = ) represent the fault-free and single-fault hypotheses 

respectively. 

Since double reference receivers’ faults fail to simultaneously generate no redundancy for 

integrity monitoring of the proposed system model, the single-fault case is therefore considered in 

this study. Under the single-fault case: 
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where 
0

L
v ,ˆ kx  and L

v ,ˆ
i kx  are vertical position solutions from the Least Square (LS) estimation. 

0

L
v ,kx  and L

v ,i kx  represent the vertical estimation error under the fault-free and fault case 

respectively. According to the definition of B-value (Liu 1998), the position domain based B-value 

can be expressed as: 

 
3 3
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As seen from (4), the B-value is a ML estimation of positioning error from the applied reference 

receiver. One of the advantages of the ML based method is that it can be implemented with high 

computational effectiveness since a ML based method is actually a snapshot method. It has been 

proved that the ML based estimation accuracy is limited to the finite sample size used in the 

estimation process (Soong 2004), which means that more reference receivers were required to 

improve the ML based estimation accuracy. The data broadcasts rate has to be increased 

accordingly, and this will become a datalink bandwidth burden for the master station. The finite 

sample size demands a counterbalance between uncertainties in test statistics and susceptible of 

correlation coefficient between multiple reference receivers (Pervan and Sayim 2001). There are 

many candidate estimation methods that could deal with the sample size problem. One of the 

widely used methods is the Kalman filter that provides a better performance in the position domain 

(Khanafseh and Pervan  2011). In order to further investigate the weakness of the ML based 

values, the variance of and the covariance of B-value are given by: 
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where iσ  represents the standard deviation of vertical position error with the application of 

pseudorange corrections. From .(5), ( )v , v ,cov ,
i j

i j
k kB B ≠  indicates that correlation exists between 

the B-values from different reference receivers. It can therefore be concluded that the outlier of 
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one B-value would impose an impaction on the other B-values in the fault detection process. 

Equation (5) also implies that the position domain transformation is necessary but not sufficient 

for improving the performance of the traditional MRCC. We assume that the probability of false 

alarm for each reference receiver is the same, so the detection threshold can be calculated as 

follows: 

 ( ) ( )M M 2 2
fa 0 2 20

, ,

1 2 3 4P 2P v exp d d
3 B

T T

T x
i k i k

x y xy y x
πσ σ−

   = ⋅ ⋅ − ⋅ + +  
    

∫ ∫  (6) 

where faP  is the probability of false alarm. P(•) is the probability of the correspond case. MT  is 

the detection threshold for the ML based B-value. Eq. (6) implies that the correlation coefficient 

is one of the key factors to the system performance. Unfortunately the correlation is hard to 

appropriately express in terms of ramp errors contained in pseudorange corrections because a ML 

based method is independent of non-information priors. Furthermore, the effect of correlation 

between the fault-free hypothesis and fault hypothesis is another problem to be solved in order to 

improve the performance of the ML based MRCC.  

To address the limitations of the ML based B-value noted above, a novel approach based on 

the Kalman filter is developed to deal with the problems of finite sample size and the expression of 

the correlation between the test statistics under different hypotheses, with the aim of satisfying the 

high integrity requirement for civil aviation.  

2.2 An adaptive Kalman filter based MRCC 

Based on the above analysis and evaluation of the traditional ML based position domain B-

value, on one hand, the correlation between test statistics under different hypotheses should 

accurately be accounted for in enhancing the fault detection performance and on the other hand, 

the estimation criterion such as Kalman filter can be used to release the limitation induced by the 

ML based estimation method. 

2.2.1 Analysis of the Kalman filter based test statistics 

The Kalman filter based test statistic for MRCC can be defined as: 

 
0v , v , v ,i ik k k= − β x x  (7) 

 
0v , 0k ≡β  (8) 

where 
0v ,kx  and v ,i kx  are obtained from Kalman filter processing. It is obvious that the 

proposed test statistics vi
β  is the positioning deviation in the master station caused by the 

exclusion of the position error from the candidate reference receiver i. The variance for the test 

statistics vi
β  is as follows: 
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It is noted that Eq. (8) yields 
0,v , 0

i k ≡C , which means that the limitation of correlation 

between the fault-free hypothesis and fault hypothesis is liberated by the proposed test statistics. It 

has been proved that the cross-correlation 
0,v ,i kP  is quite challenging to obtain (Khanafseh and 

Pervan 2011). In the following analysis, it will be proved that the cross-correlation can be 

accurately expressed with the application of the new proposed vi
β . 

The initial condition and covariance for position solution estimation satisfy: 

 { }
0v ,0 v ,0 v,0 0ˆ ˆ E

i
= = =x x x x  (12) 

 
0 0,v ,0 v ,0 v ,0 0i i

= = =P P P P  (13) 

The estimation error under different hypotheses in the Kalman filtering process is given by: 

 ( )v , v, v , v , v , v , v ,v , 1ˆ
i i i i i iik k k k k k kk k−= − = − −x x x I K H x K v   (14) 

The following can be obtained by substituting Eq. (14) into Eq. (11) 
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The dynamic matrices 1k k−Φ  and v ,i kK  is known and already evaluated from master 

station’s Kalman filter update. 

According to the Kalman filter, the following can be obtained 

 ( )0 0 00 0

T
v , v , v , 1v , 1 v , 1k k k kk k k k−− −= +P W Φ P Φ Q  (16) 
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The mathematical induction method used to prove 
0, 0v , v ,i k k=P P  is presented in appendix A. 

By substituting 
0, 0v , v ,i l l=P P  into Eq. (9), the following equation emerges: 

 
0

T
v , v , v ,i ik k k= −C P P  (17) 

Since 
0v ,kP  and v ,i kP  can be available from the Kalman filtering processing, v ,i kC  can be 

easily calculated as the difference of the two variance matrices. This simplification yields 

considerable computation savings. Another particular significance is that the cross-correlation can 

be accurately expressed by the position domain based test statistics. 

The fault detection and exclusion process should be continued to complete the MRCC after 

choosing the test statics for the MRCC. 

2.2.2 Fault detection and exclusion 

After the analysis of the Kalman filter based test statistics, the fault detection and exclusion 

threshold would be another important factor for the performance of fault detection. Assuming that 

vi
β  follows a Gaussian distribution (The subscript k is not used in the following equations for 

clarity): 

 ( ) T 1
v v

v

1 1v exp
22i i

i

z if
π

− = − ⋅  
β z C z

C
 (18) 

As stated, the GPS based positioning errors do not always follow the Gaussian distribution 

perfectly (Misra and Enge 2001), the Gaussian distribution model may not be accurate enough to 

characterize the test statistics. However, the sigma inflation can be applied to overbound the 

Gaussian assumption. A reasonable sigma inflation factor iγ  is necessary to overbound the non-

Gaussian and non-zero mean deviation of vi
β  and satisfy the integrity risk requirement. 

It is noted that under the single-fault hypothesis, the fault detection threshold can also be the 

exclusion threshold because the individual residual method is used in this study. For convenient 

comparison, vi
β  is chosen to be compared with the detection and exclusion threshold K,iT . So 

the detection threshold under the single-fault hypothesis can be achieved by the following 

equation: 
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By comparing the resulting threshold K,iT  and the predefined test statistic vi
β , the 

detection and exclusion process can be implemented. 
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2.3 Limitations and Improvements for the Kalman filter based MRCC 

Although the proposed Kalman filter based test statistic can deal with the problem of 

correlation between the test statistics as well as the limitation of finite sample size, there are many 

underlying factors to be addressed to make the algorithm more suitable for implementation. 

2.3.1 The stability of the Kalman filter 

It is difficult to precisely characterize the correlation between test statistics under different 

hypotheses in the traditional MRCC, but the correlation can be correctly expressed in the proposed 

test statistic as seen from Eq. (17). However, the proposed fault detection may also induce the 

high probability of missed detection or false alarm. The reasons are divided into two types: 

(1) If the filter output is converged, it means that vi
ξ≤P  is satisfied for some 0ξ > . 

Then 
0v ξ≤P  is also satisfied according to Eq. (17). Given the ξ  is small enough, the 

convergence of vi
P  and 

0vP  lead filter output to rely on the prior measurements with much less 

weighting on the new input measurements, even if there is a fault contained in the measurements. 

This kind of convergence actually is pseudo-convergence and divergence of Kalman filter because 

the Kalman filter loses the ability of tracking new input measurements. This indicates that the 

pseudo-convergence of the Kalman filter will result in a high probability of missed detection. 

(2) Similarly, if the system model is mismatch with the new input measurements and cause 

vi
P  and 

0vP  are to diverge, the filtering divergence will lead to worse availability because the 

positioning estimation is misleading in this situation. 

It can be concluded that the probability of missed detection and false alarm is caused by the 

stability of the Kalman filter in essence. In the filtering process, the state estimation is a 

combination of the prior state estimate and the new input measurements through the Kalman 

filtering gain. The prior state estimation will dominate the state estimation if vi
ξ≤P  and ξ  is 

small enough, whereas the input measurements are underweighted in the filtering process. 

Therefore, the weighted fading factor can be applied to suppress the effect of Kalman filter 

stability on the fault detection as stated above. The adaptive Kalman filtering gain can be 

calculated as: 

 ( )T 1
v , v , v , v ,2

v ,

1 0,1,2,3
i i i i

i

k k k k
k

i
α

−= =K P H R  (20) 

where vi
α  is the fading factor for weighting the input measurements. It is obvious that the fading 

factor will not influence the Kalman filter based test statistics analysis. v 1
i

α ≤  need to be 

satisfied with the purpose of tracking the new input measurements by overweighting the effect of 

current measurements and underweighting the effect of prior measurements in the Kalman filtering 

process. If the system model mismatch with the new input measurements, the adaptive Kalman 

filter will track the new input measurements by adjusting the fading factor. In this way, the 



10 

developed adaptive Kalman filter achieves the better performance. It is noted that 
0,v i

P  and 
0vP  

can be weighted with the same factor 
0vα  as the benefit of the equality Eq. (17): 

 
0

0

2 2
T0

v v v2 2
v v

i i

i

iγ γ
α α

= −C P P  (21) 

It is noted that the pre-specified vi
C  for the determination of the fault detection threshold 

should be replaced with the weighted variance matrices vi
C . An improper fading factor will 

induce vi
C  lose the positive definite and impose a detrimental impact on the availability and the 

stability of the Kalman filter based MRCC algorithm. There are many candidate algorithms for 

selecting adaptive factors, the integrity performance however is the primary concern of the 

proposed Kalman filter based MRCC algorithm. Next the selecting of vi
α  will be analyzed with 

consideration of the integrity risk. 

2.3.2 Integrity risk 

Although the fading factor can deal with the filter stability problem, the introduction of such 

a factor will undoubtedly impose a threat to the availability of the proposed MRCC algorithm. The 

VPL can be expressed as follows: 

 ( )v , md v ,max
i ik k ki

VPL β κ= + C  (22) 

where mdκ  is the standard deviation corresponding to the probability of missed detection mdP . It 

can be seen from Eq. (22) that the availability level is degraded because v vi i
≥C C  is satisfied. 

To keep a balance between the ability of tracking new measurements and the integrity risk 

requirement of the LAAS, the pre-specified parameter vi
α  in the adaptive Kalman filter will be 

an important buffer in obtaining the optimal MRCC performance. 

According to the integrity risk concept (Braff 2001), the predefined integrity risk vI  can be 

calculated as follows: 

 ( ) ( ) ( )v

v v
v

ˆ VAL

v v v v v v vˆ VAL
ˆI P VAL d df f

∞ −

+ −∞
= − > = +∫ ∫   

x

x xx
x x x x x x  (23) 

where vx̂  is the arbitrary vertical position estimation with estimation error vx , which follows 

the Gaussian distribution of ( )
v vf x x . The integrity risk can be expressed under different 

hypotheses by using the Bayesian formula with consideration of the fading factor: 

 ( ) v

v

3 ˆ VAL2 2
v v v v v v v2 2ˆ VAL

0 v v

1 1ˆ ˆI P v N , d N , d
i i i i

i i

i i i
i

γ γ
α α

∞ −

+ −∞
=

    
= +            
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x

x xx
x P x x P x

 (24) 
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in which ( )P vi  is the predetermined probability of reference receiver i failure. The integrity risk 

requirement can be met and minimized by differentiating Eq. (24) with respect to vi
α . Setting 

the result equal to zero yields: 

 

( )
2 2

3
v v v v v v

0 v v v v

v v v v v v
2
v v v

VAL VALVALP v exp exp
2 2 2

VAL VAL1 erfc erfc 0
2 2 2

i i i i i i

i i i i

i i i i i i

i i i

i
i i i i

i i

α α β α α β

α γ π γ γ

α α β α α β
α γ γ

=

     + −     + +           
    + −     + =          

∑
P P P

P P

 (25) 

(for more details, see Appendix B) 

[ )v 1, 0
i

α ∈ −  can be induced from Eq.(25). There are many kinds of searching algorithms for the 

above equation such as simulated annealing and artificial neural network. But these methods are 

time-consuming and even are a potential threat to the TTA requirement. In this paper, we use a 

numerical simulation method to search for the optimum fading factor. 

3 Experiment and Discussion 

A MRCC test bed was constructed on a building roof at Loughborough University so as to 

perform a real-time test and verify the proposed algorithm. In this experiment, four GPS receivers 

were used to simultaneously provide pseudoranges, carrier phase and position solution with 1 Hz 

sample frequency. One of the receivers was considered as the master station (located at 

52°45'42.468315", -1°14'29.607147", 128.5545m) and the other three receivers treated as the 

reference receivers. The location of each of the reference receivers was precisely determined by 

performing carrier phase differential positioning. The configuration of the test bed is shown in Fig. 

1. The total duration of data collection was approximately 5,000s. 

A simulation was performed to assess the proposed adaptive Kalman filter based MRCC 

(AKFM). To investigate the performance of the developed algorithm, the traditional ML based 

MRCC (MLM) was also implemented in parallel. The smoothing time constants in the master 

station and reference receivers were set up to 100s. A position-velocity model is used as the state 

equation for the master station (Crassdis and Junkins 2004). The probability of the single-fault 

hypothesis ( )P vi  was set to 510− . mdκ  was 6.327 (fault-free) or 4.125 (single-fault), given the 

integrity risk requirement was 910− . The probability of fault-free alarm Pfa was set to 710− . The 

searching step length for the optimum fading factor was set up to 0.1 to release the computation 

burden. The performance of these two algorithms is compared with respect to the fault-free 

hypothesis and single-fault hypothesis. 
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3.1 Results and analysis: fault-free 

To obtain the sigma inflation factor for the non-perfect distribution of test statistics vi
β  

under the Gaussian assumption, the sigma inflation of vi
x  is applied because linear combination 

of vi
x  would guarantee a Gaussian distribution of vi

β . The Quantile-Quantile (QQ) plot of vi
x  

is presented in Fig. 2. This analysis is necessary since the Gaussian assumption was made for 

determining the detection and exclusion threshold. This result suggests that the distribution 

becomes more Gaussian-like as it gets closer to a straight line and a larger slope indicates a larger 

standard deviation. As seen in Fig. 2, the distribution of vi
x  is a combination of Gaussian-

mixture model, which includes the non-Gaussian and non-zero mean value other than the 

Gaussian. This may be caused by the low sample size (i.e. pseudorange and carrier phase 

measurements to get the position solution). Through the analysis of the distribution, the sigma 

inflation factors are as follows: 
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The VPL performance of MLM and AKFM is investigated to show the effect of the adaptive 

fading factor under the fault-free case. The VPL comparison under the fault-free condition is 

shown in Fig. 3, in which Fig. 3a shows the VPL scenario in the real-time test process, and Fig. 3b 

shows the distribution of VPLs from the two algorithms. It can be seen that MLM based VPL is 

smaller than that of AKFM, which means the developed AKFM comes with the cost of aggravated 

VPL. However the VPL loss from the AKFM is still acceptable (VAL is set up to 5.3m according 

to ICAO SARPs (2007)). Therefore the AKFM can be considered a good option to improve the 

performance of traditional MRCC. 

3.2 Results and analysis: single-fault 

In evaluating the proposed MRCC algorithm, the manual faults were injected into the 

pseudorange corrections achieved from the reference receivers. Through the post-processing of the 

collected data, the standard deviation σ of range domain based B-value is assumed as 2.5m. To 

ensure that the injected fault could cause the anomaly of pseudorange corrections, the peak 

amplitude of the input fault is set up to 2σ. Most of the existing MRCC studies focused on 

monitoring the step fault contained in the pseudorange corrections. However, some kind of error 

sources, such as satellite clock-bias drift, could induce ramp error in the pseudorange corrections, 

which is a threat to the traditional MRCC. In this study, different types of fault are generated to 

test the flexibility of the proposed algorithm such as the step fault, slow ramp fault and fast ramp 

fault. The details of generated fault are shown in Fig. 4.  

In order to demonstrate the necessity for introducing an adaptive Kalman filter for MRCC, 

the positioning error from using corrections from different reference receivers are shown in Fig. 5. 
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E4Rf1, E4Rf2 and E4Rf3 indicate the positioning error after pseudorange corrections 

corresponding to the three reference receivers. AKF and TKF represent the adaptive and 

traditional Kalman filters respectively. It can be seen that positioning error from the TKF cannot 

react accurately to the input faults, and actually is a kind of divergence. This may induce a higher 

probability of missed detection. The AKF could however track the anomaly of the input 

measurements because of the introduction of the adaptive fading factor. 

The MLM and AKFM based test statistics and threshold from the three reference receivers in 

the fault detection process is shown in Fig. 6a and Fig. 6b respectively. There are multiple 

solutions for K,iT  in the simulation. Here the solution that satisfies K, KiT T= ( 1,2,3i = ) is 

selected as the unique solution. 

As shown in Fig. 6, the MLM has a quicker response in detecting the step fault in the first 

few epochs, as the MLM is a snapshot method with no prior measurements. The AKFM, on the 

other hand, has a few seconds latency in detecting the input fault due to the weighting effect of 

prior measurements in the Kalman filter. This kind of latency should not be a problem because the 

fault detecting operation is carried out in 15s (per approach), which is long enough for the AKFM 

to response. However, the outlier of the MLM based test statistic will affect the others since the 

MLM based test statistics have a strong correlation. This kind of correlation is a threat to the 

individual residual based method if the correlation cannot be properly expressed. In comparison, 

the AKFM based test statistics presents a good performance for accurately addressing the 

correlation between different statistics. The AKFM can be anticipated to have a better fault 

detection process. It can therefore be concluded that the cross-correlation between the fault-free 

hypothesis and the fault hypothesis is more accurately expressed in the AKFM than that in MLM. 

To have further insight into the fault detection performance, the fault detection result is shown in 

Fig. 7 and Table 1.  

As can be seen in Fig.7 and Table 1, four cases (i.e. A, B, C and D) are considered. The 

developed AKFM has nearly the same performance with that of the MLM in the step fault and no 

fault situations. But when it involves the slow ramp fault and fast ramp fault, the AKFM offers a 

better fault detection performance than that of MLM. It is noted that both AKFM and MLM fail to 

detect small-bias faults at the beginning of the detecting process under the case of slow ramp fault. 

Neither MLM nor AKFM could detect a fault until the amplitude of the fault increases to 1.5m.  

The correct fault detection ratio between different fault types comparison are shown in Table 

2 in order to make a numerical comparison and express the superior performance of AKFM, 

From Table 2, it can be seen that the performance of correct fault detection from the AKFM 

and MLM is similar in the case of no fault. There are however marked differences in the 

performances of correct fault detections for all other cases. The correct fault detection rate is much 

higher (14% to 31%) in the AKFM relative to the MLM. It reveals that the AKFM could improve 

the performance of ML based MRCC, especially when dealing with ramp fault. It is because the 

cross-correlation can be expressed accurately by using AKFM that even the ramp fault may cause 

the cross-correlation to fluctuate. 

To further assess the effectiveness of AKFM in positioning, Fig. 8 shows the vertical 

positioning error and VPL after the fault detection and exclusion. Given the superior fault 
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detection and exclusion performance of the AKFM, the AKFM provides a smaller positioning 

error and a better VPL level. This is because the AKFM succeeds in excluding the higher number 

of faults therefore the positioning result can be fault-tolerant. Table 3 shows the CEP 95% of the 

vertical positioning results. As can be seen in Table 3, the positioning accuracies of AKFM are 

found to be 77% (no fault), 32% (step fault), 91% (slow ramp fault) and 52% (fast ramp fault) and 

these are smaller than those of MLM. This superior positioning performance benefits from the 

better fault detection performance of AKFM. 

Since the study tries to satisfy the integrity monitoring requirement of CAT П/III, availability 

results from AKFM and MLM are shown in Table 4. It is clear from Table 4 that MLM fails to 

satisfy the integrity requirement of CAT П/III, especially in the cases of ramp faults. Meanwhile, 

the availability enhances significantly in all cases when the AKFM is employed. This availability 

benefit is not only from the better fault detection performance, but also the appropriate account for 

the correlation efficient as shown in Eq. (17) and the adaptive fading factor for minimizing the 

integrity risk. The AKFM is however found not to be capable of satisfying the availability 

requirement of CAT П/III in the case of slow ramp fault. This is mainly due to the fact that AKFM 

is unable to detect faults related to small-bias. 

4 Conclusion 

An adaptive Kalman filter based position domain MRCC algorithm for fault detection and 

exclusion in LAAS has been developed, implemented and tested. The effect of the Kalman filter 

stability and integrity risk has been directly evaluated under the single-fault hypothesis. The 

developed adaptive Kalman filter based MRCC has been augmented with the optimal adaptive 

factor so as to minimize integrity risk. 

The results from the real-world MRCC experiment have indicated that the VPL of the 

proposed method under the fault-free case is worse, but the VPL from the developed method is 

still acceptable under the SIS requirement of ICAO. Furthermore, because the developed adaptive 

Kalman filter based position domain MRCC has a better fault detection performance than the ML 

based position domain MRCC, the former one could provide a more fault-tolerant vertical 

positioning result and a better availability that could satisfy the requirement of CAT II/III with the 

exception of the slow ramp fault case. Although the adaptive Kalman filter based MRCC has 

latency in detecting the ramp faults, this latency is tolerable under the current LAAS 

establishment. It can be concluded that the proposed MRCC algorithm can be a candidate option to 

improve the traditional MRCC methodology. 

In the future, sharper and more sensitive algorithms should be developed for dealing with 

detecting small-bias in the slow ramp fault, and offsetting the fault detecting delay. In addition, 

since our algorithm is based on single-fault detection and exclusion, it should be expanded to 

detect and exclude simultaneously multiple faults. 
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Appendix A 

The mathematical induction method is used to prove 
0, 0v , v ,i k k=P P . 

For 0k = , we have 
0, 0v ,0 v ,0 0i

= =P P P ,which is satisfied by Eq.(13). Equation Section (Next) 

Assume 
0, 0v , 1 v , 1i l l− −=P P  is true for some positive integer l. 

Then for k l= , we have 
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I K H Φ P Φ Q I K H

 (A-1) 

Substitute Eq. (16) and the predetermined assumption 
0, 0v , 1 v , 1i l l− −=P P  into Eq. (A-1), we 

have: 

 ( )0, 0 00

TT T
v , 1 v , v , v , v , v ,v , 1 v , 1i i i iil l l l l l ll l l l−− − + = −Ψ P Ψ W Q W P I K H  (A-2) 

According to the Kalman filter theory, the following can be obtained: 

 
0 0 0 0

T 1
v , v , v , v ,l l l l

−=K P H R  (A-3) 

and 
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0 0, 0 0 0 0, 0 0 0 0

0 0 0
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Substitute Eq. (A-4) and Eq. (A-2) into Eq. (15), we have 

( )0, 0 0 0

T T T
v , v , v , v , v , v , v , v ,i i i i il l l l l l l l= − + =P P I K H P H K P  

Hence 
0, 0v , v ,i l l=P P  is satisfied for k l= .  

Appendix B 

Begin with Eq. (24), 

( )

( )

v

v

3 ˆ VAL2 2v
v v v v v v2 2ˆ VAL

0v v v v

2 2
v v v v v v v v2 2VAL

v v v

d I d 1 1ˆ ˆP v N , d N , d
d d

d 1 1ˆ ˆ ˆ ˆ ˆP v N , d N ,
d

i i i i

i i i i

i i i i

i i i

i i i
i

i s i s is s

γ γ
α α α α

γ γ
α α α

∞ −

+ −∞
=

∞

       = +              

  
= − − + −    

  

∑ ∫ ∫

∫

 



x

x xx
x P x x P x

x x x x P x x P

( ) ( ) ( )

( ) ( ) ( )

v v

v v

3 VAL

0

3
2 2

v v v v v v vVAL VAL
0 v v

2 2
v v v v v v

VAL VAL
v

d

d 1P v N , d N , d
d

1P v 0 VAL N , 0 VAL N ,

i i i i i i i
i i

i i

i i i i i i
i i

i

i

i u i u i
i

i u i u i
u u

s

u s u u
α α

α α

α α β γ α β γ
α α

α β γ α β γ
α

−

−∞
=

∞ ∞

⋅ ⋅
=

= ⋅ = ⋅

         
   = ⋅ − +     

= − ⋅ − + − ⋅

∑ ∫

∑ ∫ ∫P P

P P

( ) ( )

( ) ( ) ( )

v v

v v

3

0

2 2
v v v v v v2 VAL VAL

v

3
2 2

v v v v v v
VAL VAL0 v

v v v
2
v v

1 N , d N , d

VALP v N , N ,

VAL1 erfc
2 2

i i i i i i
i i

i

i i i i i i
i i

i

i i i

i i

i

u i u i

i u i u i
u ui

i

u u
α α

α α

α β γ α β γ
α

α β γ α β γ
α

α α β
α γ

=

∞ ∞

⋅ ⋅

= ⋅ = ⋅=

   −   
 − +   

  = ⋅ − + +   

 +

 

∑

∫ ∫

∑

P P

P P

P
v v v

v

VAL
erfc

2

0

i i i

ii

α α β

γ

  −    +        
=

P

which is equal to Eq. (25). In which ( ) ( )21erfc exp d
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= −∫  can be easily implemented 

in Matlab. 
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Table 1  Explanation of four different scenarios 

 A B C D 

MLM success success failure failure 

AKFM success failure success failure 

 

Table 2  Comparison of correct fault detection ratio 

 No fault Step fault Slow ramp fault Fast ramp fault 

MLM 0.9705 0.6552 0.2524 0.4964 

AKFM 0.9818 0.7914 0.5641 0.7238 

 

Table 3 Positioning error after fault exclusion 

 CEP 95% vertical positioning error(m) 

 No fault Step fault Slow ramp fault Fast ramp fault 

MLM 0.7760 0.9445 2.5440 1.1543 

AKFM 0.1794 0.6443 0.2188 0.5579 

 

Table 4 Availability of each algorithm 

 Availability (%) 

 No fault Step fault Slow ramp fault Fast ramp fault 

MLM 92.55 90.88 52.40 73.92 

AKFM 99.80 99.10 97.54 99.41 

 

 

 

 

 

 

 

 

 

 

 

 

 



19 

 

 
Fig. 1  The configuration of the MRCC test bed 
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Fig. 2  The sigma inflation for the modeling errors 
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Fig. 3  a. VPL comparison between MLM and AKFM; b. VPL distribution from MLM and AKFM 
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Fig. 4  Input fault scenario during the MRCC process 
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Fig. 5  The vertical positioning error from AKF and TKF 
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Fig. 6  a. MLM fault detection process; b. AKFM fault detection process 
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Fig. 7  Comparison of fault detection performance  
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Fig. 8  a. Vertical position error after fault exclusion; b. VPL scenario after fault exclusion 
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