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Abstract 

 

 

There is a widespread belief among elite level athletes and their coaches that 

adequate sleep is pre-requisite for those seeking to achieve optimum performance. 

Despite the prevalence of this belief, combined with the common occurance of sleep 

complaints among athletes, there has been surprisingly little empirical investigation 

of sleep in this population; the vast majority of sleep research takes place in ‘normal’ 

populations, and employs methods of sleep disturbance that are not relevant to elite 

level athletes. When athletes have been studied, investigations thus far have failed 

to measure sleep objectively during the competitive season, and have relied on 

subjective and retrospective self-report. 

The aim of this thesis has been to examine the prevalence of sleep 

disturbance among elite level athletes, and to investigate the impact that sleep can 

have on subsequent performance both in training for competition and in competition 

itself. The impact that training and competing in elite level sport could have on sleep 

was also investigated, as were a number of other factors related to elite level 

competition.  

A total of 68 elite level athletes, both male and female, from 3 different sports 

(football, basketball, swimming), volunteered to have their sleep measured by wrist 

actigraphy for a period of at least 2 weeks. Twenty-seven age-matched sedentary 

participants were similarly recruited to act as a control group. Thirty-three 

professional football players, playing in either an England and Wales Premiership or 
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Championship football club continued to have their sleep measured by wrist 

actigraphy for a period of eight weeks of the regular competitive season, during 

which their on-pitch performance was measured by means of the ProZone® player 

tracking system, and their performance in training was measured by the Catapult 

X3® GPS system. Both measures are widely used currently to measure performance 

in professional football, ensuring that performance was measured as it occurred 

naturally instead of in a contrived setting. Wrist actigraphy was similarly chosen 

since it allows for long term objective measurement of sleep.  

In agreement with anecdotal reports and previous research, evidence of a 

significant level of sleep disturbance was found among all the types of elite athletes 

studied. A number of stressors associated with elite competition also demonstrated a 

significant impact on sleep, particularly to sleep timing following matches, and more 

generally as a consequence of physical activity during evening matches. Sleep did 

not have a statistically significant impact on subsequent performance during matches, 

although, given the narrow margins between success and failure involved in 

competing at such a high level, the size of the effect in evidence may still have 

important implications for athletes and coaches. Sleep also demonstrated a 

significant impact on performance during training.  

The evidence of significant sleep disturbance has serious implications for elite 

level athletes; on its own the level of sleep disturbance has a number of potentially 

adverse consequences, such as increased risk of infection and illness, compromised 

metabolism, and sub-optimal recovery from training, potentially serious factors for 

those training for optimal performance. In addition, the consequences that poor sleep 

has on training could hamper efforts to prepare properly for elite athletic competition, 

as well as having a marginal impact on performance itself.   
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1.1 - Prelude to Thesis 

 

 The notion that obtaining adequate sleep is an important consideration for 

athletes aiming to achieve optimal performance is often thought to be axiomatic, and 

is supported by a great deal of anecdotal evidence. A number of athletes competing 

at the very highest levels of sport such as the Olympic Games have suggested in 

interviews that they felt they “couldn’t close an eye during the night” and that they 

were “still tired in the morning” (Erlacher, Ehrlenspiel, Adegbesan & El-Din, 2011). 

Many athletes and coaches report the belief that sufficient sleep is pre-requisite for 

achieving their best performance, and experience feelings of anxiety or uneasiness if 

they do not feel that have had enough sleep before competitions (Atkinson, Buckley, 

Edwards, Reilly & Waterhouse, 2001; Savis, 1994). While a great deal of research 

effort has been applied to investigating the impact that nutrition, physiology, 

biomechanics, equipment and psychology can have on elite athletic endeavour, and 

while many professional and national Olympic teams will employ dedicated support 

staff from these disciplines (Reilly, Morris & Whyte, 2009; Thatcher, Thatcher, Portas 

& Hood, 2009), there has been relatively little application of sleep research to the 

elite athletic context, despite its apparent importance.  

 A recent, large scale epidemiological investigation into the sleep complaints of 

elite level athletes conducted by Erlacher et al. (2011) serves to highlight the 

widespread nature of the issue, with two thirds of 632 athletes reporting that they 

have experienced poor sleep before competitions. While most athletes (57%) felt 

that their disturbed sleep did not have any impact on their subsequent performance, 

many reported negative effects such as bad mood and increased daytime sleepiness, 
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with 13% reporting a reduction in their level of performance the subsequent day. The 

authors also highlighted that few athletes had any effective strategies to help them 

sleep when they were having difficulty. They also highlight that despite the apparent 

need for research into sleep in athletes, most existing studies do not include athletic 

performance as an outcome measure of disturbed sleep, and that there is a need for 

objective measurement of sleep in this population, due to the oft found discrepancy 

between objective measures of sleep, such as polysonmography and actigraphy, 

and subjective reports.  

 The aim of the current thesis is, therefore, to thoroughly and objectively 

investigate the sleeping behaviours of professional and elite level athletes, in order 

to properly establish the level of sleep disturbance in this population. In addition, the 

current work will seek to explore the impact that sleep may have on elite athletes 

performance, both during competitive events and during training. This exploration will 

focus not only on competitive performance, but also on their training and the 

implications for athletes’ general well-being, since the importance of proper training 

and maintaining a good level of general health are unarguably a vital component in 

achieving peak performance.  
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1.2 – Function of Sleep 

 

 ‘Sleep’ is not simply a single easily definable state, but is in fact “a complex 

amalgam of physiologic and behavioural process.” (Carskadon & Dement, 2005, p. 

13). However, according to the quoted authors it can be (very) broadly defined 

according to a simple behavioural definition as a ‘reversible behavioural state of 

perceptual disengagement from and unresponsiveness to the environment.’ It is also 

commonly accompanied by features such as postural recumbence, behavioural 

quiescence, closed eyes and dreaming, although in some unusual cases other 

behaviours can occur, such as sleepwalking, sleeptalking, tooth grinding and a host 

of other physical activities. While sleep is commonly discussed as a single entity, 

and most people will immediately recognise it as the activity that they spend 

approximately one third of their lives doing, it should not strictly be thought of as one 

end of a dichotomy with wakefulness, but should instead be considered as part of a 

continuum of consciousness. It is also important to note that, despite its 

pervasiveness, answering the simple question ‘why we sleep’ remains a stubbornly 

difficult question to answer with any degree of confidence, and has in fact been 

regarded by some (e.g. Krueger & Obál, 2002) as ‘one of the most important 

unanswered questions in biology.’ 

 Historically, one of the greatest difficulties facing those that seek to investigate 

sleep in any context, is that there has been (and in many ways continues to be) a 

great deal of debate regarding the exact function of sleep. Sleep as a behaviour is 

widely observed throughout the natural world, and even many species of plants 

display a daily cycle of rhythm, furling their leaves at night and unfurling them during 

the day (even in the absence of daylight; Dement, 2005). The widespread nature of 
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sleep highly suggests that it must serve some sort of useful evolutionary function- 

during sleep, animals are less aware of their surroundings and less able to respond 

immediately to danger, a situation that one would normally consider as being highly 

disadvantageous to a creature’s survivability, yet sleep remains. However, this key 

defining feature of sleep (certainly as it applies to non-aquatic mammals) also serves 

to make investigating sleep as a behaviour most difficult. Sleep is unlike the vast 

majority of other behaviours in that, while sleeping, organisms display no overt 

behaviour which could indicate an intent or purpose to their action (Lima & 

Rattenborg, 2007). Consequently, one of the principle methods used to investigate 

sleep has been to deprive both humans and animals of sleep, and to examine the 

consequences on whatever biological or psychological construct that is of interest to 

the researcher.  

 Allan Rechtschaffen conducted a large amount of the early research into the 

function of sleep using the deprivation paradigm to investigate the physiological 

consequences of extended periods without any sleep in animals. Perhaps one of the 

most widely known of these studies is the study of total sleep deprivation in rats 

(Rechtschaffen, Gilliland, Bergmann & Winter, 1983) which aimed to control for the 

fact that, while human participants can be asked to remain awake voluntarily, 

animals must be coerced into extended periods of wakefulness, which also tends to 

place a great deal of stress on the creature. Rechtschaffen et al. employed a design 

in which one rat was subject to total sleep deprivation, by means of the circular disk 

that it was placed upon rotating above a water pan whenever the rat fell asleep, 

which would compel the animal to remain awake in order to avoid getting wet. A 

yoked control animal was kept in an adjacent cage above a water pan, but would 

only be compelled to move when the experimental creature fell asleep, and was 
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therefore able to largely get as much as sleep as it desired. During the course of the 

study, the experimental animals lost about 92% of their sleep, while the controls only 

lost about 26%. The consequences of this drastic reduction in sleep were severe. 

Both the control and experimental animals ate much more food during the course of 

the procedure, but still lost weight. This effect was, however, far more marked in the 

experimental animals, and the investigators estimated that the total energy intake of 

the experimental animals increased by 2.5 times, compared to 1.7 in the control 

animals, which largely seemed to be to fuel a large rise in metabolic rate. While all of 

the control animals survived the experience, eventually all of the experimental 

animals died after (at most) 21 days. The authors also stress that while significant, 

the weight loss seemed unlikely to be the cause of death: experimental animals 

weighed about 80% of their starting weight, and they demonstrated that non-sleep 

deprived rats could survive after losing 70% of their bodyweight. Examinations were 

carried out on both experimental and control animals and, surprisingly, there were no 

identifiable differences between the brain, liver, spleen, lungs and stomach in the two 

animals (the pathologists conducting the examinations were blind to the 

experimental condition, and were unable to identify which group any specific animal 

belonged to). While the precise cause of death was not entirely certain, Rechtshaffen 

et al. suggested that the prolonged sleep deprivation resulted in a decreased ability 

of the experimental animals to regulate their body heat. During their last days, a 

marked decrease in the experimental animals’ body temperature was noted, which 

was not replicated in the control animals. The authors suggested (and others have 

since agreed e.g. Horne, 1988a) that, soon after the onset of sleep deprivation, the 

animals quickly began to lose body heat, which they tried to compensate for by a 

voracious increase in food intake, which proved to be inadequate (since they also 
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lost a significant portion of their initial bodyweight). Initially, the use of existing energy 

stores, combined with the increased intake, is sufficient to meet the increased 

metabolic demands apparently placed on the creature. After approximately two 

weeks there follows a deterioration and heat loss begins to outstrip heat production, 

at which point body temperature starts to fall, and the animal dies a few days 

afterwards.  

 With the results of these early studies, and much similar evidence since then, 

the function of sleep in small mammals has been suggested to be as an energy 

conserver (Siegal, 2005), or as Horne (2006) refers to it “the great immobiliser.” (p. 

7). Due to their small size, rodents and other small mammals lose a large amount of 

body heat through their skin, since their surface area is much larger relative to their 

body size (compared to larger mammals like humans). Consequently, while they are 

active, small mammals must eat continuously in order to maintain their body heat. 

Sleep therefore acts to reduce the metabolic demand and offers a rare opportunity 

for physical rest. In humans and other large animals however, this biological need 

that every waking moment be spent maintaining a sufficient food intake in order to 

maintain a stable body temperature does not apply. Due to the larger size of our 

bodies (and therefore reduced relative surface area through which heat can escape), 

humans are able to survive up to several days without eating, whilst smaller rodents 

will survive only a day or so. Because of this, there is no time for rodents to just sit 

and relax, although it is noteworthy that they could not do so even if there were no 

need for them to be constantly seeking food, since they do not have a highly 

developed enough brain. Horne (2006) speculates that the development of the more 

complex parts of the brains of larger mammals which allow this ability to exist in a 
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state of ‘relaxed wakefulness’ could have been partly facilitated by not needing to 

spend such an inordinate amount of their waking hours looking for and eating food.  

 This ability for us to relax during wakefulness negates the idea of sleep as an 

energy conserver or immobiliser. Sleep no longer provides us with significant energy 

savings compared to being physically relaxed but still awake, yet still sleep remains. 

The brain restitution hypothesis, originally proposed by Jim Horne (Horne, 1980; 

Horne, 2006; Horne & Minard, 1985), proposes that the same advancement of the 

brain (specifically the cortex) that allows humans and other larger mammals to 

maintain a state of relaxed wakefulness, places such a demand on the brain that it 

cannot truly disengage from the environment during wakefulness, even when it is 

seemingly not involved in any active way, and can place an even greater level of 

‘strain’ on the cortex then apparently more thoughtful activities such as reading, 

since it requires the attention of a larger proportion of the cortex, “watching, listening 

to, and otherwise sensing something in the wider environment” (Horne, 2006, p. 16) 

while more directed activities only ‘strain’ relatively small areas of the cortex. 

Consequently, the only time our cortex can recover is during sleep, which is 

suggested as the reason that sleep mostly effects our cortex and cognitive faculties, 

whilst having little or no significant impact on our physical abilities (which will be 

discussed in much greater detail later). A restorative function of sleep is also 

indicated by the fact that the most advanced region of the brain, the pre-frontal 

cortex (PFC), which is by far the most active part of the brain during wakefulness, 

also displays the greatest decrease in activity during sleep (Anderson, 2003).  

 Even so, the question of the function of sleep is further complicated by the 

fact that, as has been mentioned previously, sleep is not a single homogenous state, 

and actually consists of a number of distinct stages, which were initially defined and 
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continue to be investigated by measuring the electrical activity of the cortex (this 

being the region of the brain that demonstrates the most marked response to sleep) 

by the use of electrodes placed on the scalp- the electroencephalogram (EEG). The 

original identification and classification of these various stages of sleep was 

conducted by Rechtschaffen and Kales (1968), and continues to be the standard 

criteria used to measure sleep using the EEG.  

 According to these criteria, sleep can be broadly divided into two distinct 

states; rapid eye movement (REM) sleep and non-rapid eye movement sleep 

(nREM). REM sleep is characterised by EEG activation (to a level which is often 

almost indistinguishable from the electrical activity seen during a waking EEG), lack 

of muscle tone and bursts of episodic bursts of rapid eye movements under the 

closed eyelids (Carskadon & Dement, 2005). Although it was not clear just how 

active the cortex was during REM sleep until the use of the EEG, this distinct state of 

sleep was first identified as early as 1953 by Aserinsky and Kleitman when they 

noted the rapid movement of sleepers’ eyes, suggesting that sleep was not simply a 

unitary state of inactivity, but that bursts of activity of some description were 

occurring at regular intervals. It was also at this time that the connection between 

REM sleep and dreaming was first made. Aserinsky and Kleitman (1953; 1955) 

noted that participants roused during REM sleep were far more likely to report that 

they had been dreaming than those roused during nREM sleep.  

 In contrast, nREM sleep is characterised by a reduction in electrical output 

from the cortex relative to waking, and a reduction, but not a total absence, of 

muscle tone in the voluntary muscles. nREM is conventionally divided into four 

stages, which draw a rough parallel with depth of sleep on a continuum, with stage 1 

sleep being the stage that is closest to wakefulness and has a much lower threshold 
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for arousal, whilst stage four sleep is marked by a significant reduction in cortical 

activity, with a concomitantly higher arousal threshold, and arousal from this stage is 

often accompanied with feelings of grogginess. While these sleep stages are 

commonly divided into discrete categories, it is generally accepted that they 

represent a continuous scale of sleep depth rather than a series of distinct non-

overlapping stages. For example, K complexes (‘negative sharp waves on an EEG, 

followed immediately by a slower positive component’; Carskadon & Rechtschaffen, 

2005), which are one of the defining features of stage two sleep, but may also be 

present during stage three sleep (Susmakova, 2004). With this in mind, the stages of 

sleep that have been the subject of most attention in discussions of the specific 

functions served by various functions of sleep are REM and the combination of 

stages three and four (stages 3 and 4 are commonly combined and referred to 

collectively as deep sleep or slow wave sleep (SWS), since they are defined by a 

significant decrease in the frequency of the electrical activity of the cortex).  

 REM sleep has historically been particularly linked with memory consolidation, 

perhaps due in some part to the fact that the brain is unusually active during this 

phase of sleep, and the frequency with which the content of dreams is reported as 

having some sort of relevance with a person’s waking experience during the 

preceding day or two. Studies utilizing positron emission tomography (PET) to 

investigate neural activation during sleep following a procedural learning task in 

which participants must respond to a sequence of flashing lights which contains an 

embedded pattern which is gradually learned, have demonstrated that the specific 

regions of the brain that are most highly activated during the learning of the task, are 

reactivated during REM sleep after the task (Maquet, Laureys, Peigneux, Fuchs, 

Petiau, Phillips et al. 2000). However, such reactivation is not unique to REM sleep, 
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and have also been noted in SWS (Huber, Ghilardi Massimini & Tononi, 2004) and 

memory consolidation has been demonstrated as being dependent on both stage 

two sleep and SWS, in addition to REM sleep (Plihal & Born, 1997; Clemens, Fabo & 

Halasz, 2005; Schabus, Gruber, Parapatics, Sauter, Klösch, Anderer et al. 2004; 

Walker, Brakefield, Morgan, Hobson & Stickgold, 2002). In contrast, more recent 

investigations have cast much doubt on the supposed role of REM sleep serving a 

crucial role in memory consolidation (for a review see Siegal, 2001), and there is 

compelling evidence to suggest that REM serves a much simpler function.  

 The first key piece of evidence for this argument is based on the timing and 

apparent relative ‘importance’ of different stages of sleep. In healthy young adults, 

the vast majority of sleep is made up of stage two sleep (45-55% of sleep), SWS 

accounts for approximately 15-25% of sleep, REM sleep 20-25% of sleep, with the 

remaining ~5% being stage one sleep (Carskadon & Dement, 2005). This 

breakdown of the various sleep stages is, however, not spread evenly throughout the 

typical 7-8 hours of sleep, with SWS predominating during the first third of the night, 

and REM sleep predominating more during the final third of sleep. A number of 

authors (e.g. Anderson, 2003; Horne, 2006) have argued that this suggests that 

there is an immediate need for SWS since it is satisfied as soon as possible. When 

one compares the sleep architecture of short sleepers (both in habitually short 

sleepers; Webb & Agnew, 1971; and by experimentally reducing sleep time; Johnson 

& MacLeod, 1973), while the reduction in total sleep time from 7.5 hours to 4 hours 

significantly reduces the amount of both REM sleep and stage two sleep, the 

absolute amount of SWS remains largely unchanged. Further evidence suggesting 

the specific need for SWS comes from studies investigating the relative levels of 

‘rebound’ following TSD. Horne (1985), found that after a single night’s sleep 
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deprivation, only about 30% of the lost sleep time is recovered. However, only about 

half the absolute amount of REM sleep is recovered during this recovery sleep, while 

nearly all of the lost SWS is recovered, further suggesting that SWS is the vital 

component of sleep. It is also important to note that REM sleep can be significantly 

suppressed by various drugs, particularly anti-depressant drugs (both tri-cyclic and 

selective serotonin re-uptake inhibitors; SSRI’s) which are taken by millions of 

patients worldwide, and there appears to be no evidence to suggest a negative 

impact of this often long term absence of REM sleep (Horne, 2006). While there is a 

small rebound in REM sleep following the cessation of antidepressant treatment, it 

only represents a small fraction of the total amount of REM sleep that has been lost.  

 Another important clue as to the function of REM sleep comes from the 

changing proportion of time that humans spend in REM sleep throughout the lifespan 

(and even before birth). While in the uterus, the human foetus experiences REM 

sleep to a significant degree (as much as 8-10 hours per day), but the predominance 

of REM sleep as a proportion of overall sleep diminishes drastically during the early 

years of life, dropping to around five hours per day after the first year of life, and 

continuing to decline throughout life (albeit the rate of decline slows after 

adolescence). This observation also stands against the idea of a role for REM sleep 

in the consolidation of memories, since right at the moment when a new born babies 

brain is being bombarded by novel stimuli and learning, REM sleep shows a marked 

decline.  

 In light of this weight of evidence, it is instead proposed that REM sleep 

serves as a source of ‘pseudo-stimulation’ to the developing brain while in the 

uterus- stimulation that the developing brain would otherwise be deprived in the dark 

environment. After birth, the environment provides ample stimulation to the brain, 
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hence REM sleep declines. Horne (2006) argues that REM sleep remains to serve a 

similar function during adulthood- chiefly as a means keeping the brain stimulated 

during periods of sleep in such as a way as to prevent the individual from waking, 

which would serve to fragment and break up the meaningful SWS that is the primary 

purpose of sleep. Horne argues that rather than thinking of the appearance of REM 

sleep as the build-up of some kind of ‘REM sleep pressure’, it actually exists due to 

the periodic cessation of nREM sleep, which perhaps, cannot be sustained for 

periods longer than the typical 90-100 minute length of the normal human sleep 

cycle. Rather than having to wake up every time nREM sleep ceases, Horne 

proposes that REM sleep serves as a ‘fall-back state’, allowing sleep to continue 

uninterrupted.  

 

1.3 – Impact of Sleep Deprivation 

 

 As has been commented previously, the function of sleep is most commonly 

studied by depriving research participants of sleep for a specified period of time, and 

then assessing the impact that the lack of sleep has on a given domain of functioning 

or performance.  A summary of this research into the consequences of sleep 

deprivation on the domains that are likely to have a significant impact upon elite level 

athletes will now be addressed.  
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1.3.1 – Impact of Sleep Deprivation on Physical Performance 

 

 Existing research into the effect that sleep deprivation has tended to employ a 

‘total sleep deprivation’ (TSD) paradigm, using an acute period of extended 

wakefulness to investigate the deleterious effect it has on simple (usually lab-based) 

performance measures, such as time to exhaustion at a specific intensity of aerobic 

exercise or muscular strength. Early studies of this type such as Horne and Pettitt 

(1984) and Martin (1981) have investigated the impact of 72 hours and 36 hours 

(respectively) on aerobic performance during a cycling task at 50% of VO2max (Horne 

& Pettitt, 1984) and during a treadmill running task until exhaustion at 70% of VO2max 

(Martin, 1981). In both studies it was discovered that there was in fact an overall 

reduction in physical work rate in both sleep deprivation conditions. There was 

however, no evidence that this decline in the amount of work that participants did 

could be accounted for by a decline in the body’s capacity to perform that work; 

physiological responses to exercise such as perspiration, breathing and heart rate 

were not significantly different following sleep deprivation. 

 Martin (1981) noted a particularly curious pattern (or lack thereof) in the 

physical performance of the participants in his study. Concurrent with the overall 

decrease in time to exhaustion following sleep deprivation, most participants also 

reported an increased perception of effort on the task following sleep deprivation (the 

intensity of work was in fact held constant for both trials). Two participants however 

reported that they perceived the work to be easier following sleep deprivation, while 

two different participants actually showed an increased performance following sleep 

deprivation. Martin therefore concluded that since the decline in performance 
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showed no apparent dependence on physical factors, and the high level of variability 

in individual participants’ performance following sleep deprivation, that the decline in 

performance was best explained by psychological factors, most importantly 

motivation.  

 The importance of proper motivation is further highlighted by Rodgers, 

Paterson, Cunningham, Noble, Pettigrew, Myles and Taylor (1995), in a study of the 

impact of 48 hours of continuous sleep deprivation on a variety of physical (and 

cognitive, which will be addressed shortly) tasks. The aim of the study was 

particularly aimed towards the military context, so most of the tasks were chosen for 

being similar to tasks that are common in that situation, such as the number of 

sandbags carried over a five metre distance during a 30-minute period or the 

distance walked with a 12 kg rucksack. These military style exercises were 

performed without any external guidance or encouragement at a pace chosen by the 

participant. For each of these exercises, the amount of work completed showed a 

significant decline following sleep deprivation. One task also explicitly required 

participants to rate the difficulty of the physical work, and to choose for themselves 

the intensity at which their next bout of exercise would be. Not only did participants 

again perceive work to be harder following sleep deprivation, when given a chance 

they also tended to choose an easier level of work. There was one task however 

where the rate of work was decided for the participants, and they had to adhere to 

the workload decided for them. This ‘forced-pace’ exercise failed to demonstrate a 

significant decline after sleep deprivation. This further adds to the idea that while 

sleep deprivation does tend to demonstrate a significant deleterious effect on 

exercise, this is not due to a physiological effect, but is largely due to a decline in the 

level of participants’ motivation. It is also important to note that this pattern has been 



16 
 

replicated in studies employing a partial sleep deprivation (PSD) paradigm rather 

than TSD. Reilly and Deykin (1983) restricted sleep to only 2.5 hours per day, and 

found no significant effect on the lung function and capacity to run on a treadmill, 

even after up to three consecutive days of this significantly reduced sleep.  

 The lack of an impact of sleep deprivation has also been applied to anaerobic 

work capacity in addition to aerobic work. Reilly and Deykin (1983) found that one 

night’s partial sleep deprivation (PSD) to 2.5 hours of sleep per day also 

demonstrated no significant impact on grip strength. In contrast, Reilly and Piercy 

(1994) found that performance on a more complex and repetitive weightlifting task, 

requiring the application of proper technique, did decline following PSD, especially 

after three days of consecutive PSD. This was attributed to the greater complexity of 

the task compared to a simple grip strength measure, and demonstrated a significant 

time on task trend, with performance showing a decline as the time on task 

increased, and participants reported that they experienced difficulty in maintaining 

their performance on the complex task over time. It could be argued that this is 

suggestive of the observed performance decrement being due to the psychological 

decrements associated with sleep deprivation (in this case, the difficulty in 

maintaining attention on a task while sleepy), rather than being the result of a 

reduced capacity to perform physical work.  

 More recent work into the impact of sleep deprivation on anaerobic 

performance has further highlighted the lack of an impact on physical performance, 

while suggesting that cognitive factors are responsible for declining performance. 

Souissi, Sesboüé, Gauthier, Larue & Davenne (2003) employed a TSD paradigm for 

one night, and again found no adverse physical consequence of sleep deprivation 

that could account for a drop in performance. Finally, a novel study conducted by 
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Bambaeichi, Reilly, Cable & Giacomoni (2005) sought to remove cognitive factors 

entirely, by electrically stimulating the muscles of participants after a single night of 

PSD consisting of 2.5 hours sleep. Once again no significant impact of this sleep 

restriction could be demonstrated, which again suggests that the physical capacity to 

perform work does not appear to suffer following sleep deprivation.  

 In fact, the existing literature is largely consistent in finding no significant 

impact of acute sleep deprivation protocols on physical performance, and one is 

forced to look towards studies involving extreme levels of sleep deprivation before 

any evidence of performance decrements can be observed. One such study involved 

the monitoring of players in a charity 5-a-side football match, which aimed to reach 

100 hours of continuous play (Reilly & Walsh, 1981). A simple measure of grip 

strength was measured at regular intervals throughout the match, and demonstrated 

a deterioration towards the end up the study (which was terminated after 91 hours 

and 45 minutes), in addition to a general trend towards lower engagement and 

participation in the match after the second day. While it could be argued that the 

competitive nature of the activity could act as a source of motivation, in reality the 

charitable nature of the competition, combined with the reported decrease in 

engagement with competition on any serious level suggests that this decline was 

likely to be in line with the previously observed decline in self-paced activity level. 

This explanation is unlikely to extend to the simplistic measure of grip strength, 

which we have seen has previously demonstrated a remarkable resistance to shorter 

periods of sleep restriction.  

A similar study reported by Lucas, Anson, Palmer, Hellemans & Cotter (2009), 

studied the cognitive and physical impact of participation in the 2003 ‘Southern 

Traverse Adventure Race’ in New Zealand which requires participants to navigate a 
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411 km course through stages of jogging, trekking, kayaking and mountain biking for 

approximately 100 hours, during which participants slept for about 90 minutes per 

day. At the end of the study there was a small but significant overall decrease in 

performance on a number of physical tasks such as vertical jump height and peak 

power output. While there is, of course, the rather large confound of the strenuous 

activity between the baseline and experimental measures, there was never-the-less 

a large amount of variation in physical performance between participants, with 10 

participants actually demonstrating an increase in peak power output after the race, 

compared to 17 who showed a decrease. This variability again highlights that even 

extended periods of extreme sleep deprivation do not appear to consistently 

demonstrate an adverse effect on purely physical measures of performance. Another 

particularly stark comparison is between the relatively modest impact of extended 

TSD on physical performance in Reilly and Walsh’s (1981) study with the impact that 

this extended period of wakefulness had on the psychology of participants, which 

included auditory hallucinations during the second night of continuous waking in two 

out of ten participants, which extended to both auditory and visual hallucinations in 

all ten participants by the third night.  

 The overall conclusion of the existing research seems to demonstrate that 

while sleep deprivation can have a deleterious effect on performance on physical 

tasks, this is not due to a reduced capacity to work, but is instead due to 

psychological factors such as motivation and attention. This presents a significant 

problem when attempting to apply the findings from these kinds of research studies 

to the elite athletic context. Compared to a real life athletic performance, in which the 

participant will have a large personal interest in performing to their very best, lab 

based measures of simple components of performance of the type reported above 
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will simply not inspire the same level of motivation and interest in the task. In addition, 

the level of complexity involved in performing a grip strength or running to exhaustion 

task pales in comparison to the complex nature of real life athletic competition with 

all the motivational factors involved. Even studies employing a drill aimed at 

simulating an aspect of a sport (Cook, Crewther, Kilduff, Drawer & Gaviglio, 2011) do 

not place a similar level of strain on participants as a “performance”, the outcome of 

which could have serious consequences for athletes (e.g. financial). It is therefore 

vital that any attempt to study the relationship between sleep and performance in 

elite level athletes should employ a performance measure which engenders an 

equally high level of motivation and interest in the outcome as a real life performance 

(preferably by measuring athletes’ performance during actual competitions, rather 

than in contrived laboratory settings).  

 

1.3.2 – Impact of Sleep Deprivation on Cognitive Performance 

 

 In comparison to the impact that inadequate sleep has on physical 

performance, the importance of sleep to cognitive and psychological factors is very 

well established. As discussed earlier, the restitution of the brain appears to be 

perhaps the most important function of sleep itself. It is however important to note 

that the brain cannot be treated as a single entity, but can be divided into numerous 

different areas and regions, and different areas of the brain contribute to different 

components of cognitive functioning. Brain imaging studies (e.g. Braun, Baulkin, 

Wesenten, Carson, Varga, Baldwin et al. 1997) have demonstrated that the area of 

the brain most active during the day is the pre-frontal cortex (PFC). Given that SWS 
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in particular is thought to represent a state of recovery for the cortex, it is perhaps 

not surprising that it is also this area of the brain that shows the greatest decrease in 

activity during SWS (Maquet, 1999, 2000; Hofle, Paus, Reutens, Fiest, Gotman, 

Evans et al. 1997). It is also a reasonably logical step to suspect that sleep 

deprivation will have a disproportionately large effect on aspects of cognitive 

performance that depend on the PFC (Anderson, 2003). 

 The PFC is involved in a large number of functions, the exact number of 

which is still unknown (Anderson, 2003), but seems to largely be responsible for the 

‘higher cognitive functions’ such as the maintenance of wakefulness (Fuster, 1989); 

decision making (Harrison & Horne, 2000); divergent or flexible thinking (Harrison & 

Horne, 1999), sustained attention (Kamder, Kaplan, Kezirian & Dement, 2004; May 

& Hasher, 1998) and planning, maintenance and direction of behaviours (Horne, 

1993). While studies investigating the function of various brain regions often come 

from studying the impact of lesions caused by injury, tumours or surgery, 

performance decrements in higher cognitive functions are also evident in cases of 

both acute total sleep deprivation and longer-term partial sleep deprivation. It is 

particularly crucial to consider the effect that sleep deprivation has on mood and 

motivation, given that they seem to be at least partly responsible for the detrimental 

impact that sleep restriction can have on physical performance. It is perhaps not 

surprising that a person’s mood would decline in situations of restricted sleep, and 

indeed this appears to be the case as has been demonstrated a number of times 

using the Profile of Mood States questionnaire (POMS; McNair et al., 1971), together 

with a concurrent drop in motivation (Dinges, Pack, Williams, Gillen, Powell, Ott et al. 

1997; Johnson & MacLeod, 1973, Durmer & Dinges, 2005).  
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 As is the case with physical performance, the influence of motivation is as 

crucial to understanding the impact of sleep deprivation on cognitive performance. 

The negative impact of prolonged wakefulness on cognitive performance is not a 

simple matter a linear decrease in performance as wakefulness continues, but it has 

long been demonstrated that even in cases of 114 hours of continuous wakefulness, 

sleep deprived individuals are still able to transiently perform cognitive tasks as 

proficiently as they were able to compared to baseline (Kleitman, 1923; Lee & 

Kleitman, 1923). Rather than a general decline, under conditions of sleep deprivation 

cognitive performance tends to demonstrate an ‘instability’ in performance, where at 

times the individual is able to resist the effect of the increased sleepiness and 

perform at or near their best, and at other times the drive for sleep results in a very 

large reduction in performance. Very often this also takes the form of a ‘lapse’ in 

which the individual apparently succumbs to the need for sleep and fails to perform 

at all (errors of omission), as well as instances in which people respond incorrectly 

(errors of commission). Doran, van Dongen and Dinges (2001) proposed the ‘state 

instability hypothesis’ as an explanation for this variation in performance during sleep 

deprivation. They suggest wake-state instability occurs when the mechanisms 

responsible for the initiation of sleep repeatedly interfere with wakefulness, which 

results in the increasingly variable pattern of performance (depending on 

compensatory mechanisms; Dorrian, Rogers & Dinges, 2005; Rogers, Dorrian & 

Dinges, 2003). When properly motivated, it is possibly for the sleep-deprived 

individual to successfully compensate for the effects of prolonged wakefulness for a 

time (Horne & Pettitt, 1984), ultimately it becomes impossible to prevent intrusions of 

sleep into wakefulness, to the extent that there have been reports of otherwise 
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healthy people falling asleep while walking under conditions of sleep deprivation 

(Nansen, 1999).  

 One of the problems associated with studying the impact of sleep deprivation 

on cognitive performance, as noted by the state instability hypothesis, is that the high 

level of variability in performance during periods of sleep deprivation (which are 

evident inter-individually due to different people’s ability to compensate for sleep 

deprivation, as well as intra-individually) can mask the impact of sleep deprivation 

when performance measures are used that are not sufficiently sensitive. As a 

consequence, Durmer and Dinges (2005) highlight that much of the research that 

has been conducted has utilised measures that rely on sustained attention and 

vigilance, since they are PFC domains that appear to most sensitive to sleep loss. 

The psychomotor vigilance task (PVT; Dinges & Powell, 1985) requires continuous 

attention in order to respond to a randomly occurring stimulus. There are two main 

types of errors that occur on this task during prolonged wakefulness. Initially there is 

a rise in the number of errors of commission, in which participants incorrectly make a 

response in the absence of the stimulus. Dorian et al. (2005) proposes that these 

errors represent unsuccessful attempts to compensate for the reduction in 

performance that participants become aware of when they feel sleepy. As the length 

of wakefulness increases, an increase in errors of omission are observed, in which 

participants experience a ‘microsleep’ intrusion into wakefulness, and fail to respond 

to the presence of the stimulus at all.  

 In addition to the impact of sleep deprivation on ‘simple’ attentional tasks, it 

can also have an impact upon more complex cognitive tasks, particularly where they 

require the use of multiple skills in combination. Harrison and Horne (2000), in a 

review of the literature highlight that while performance on some types of 
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neurocognitive tasks such as logic-based tasks are relatively robust when sleep 

deprived, tasks that require multitasking or flexible thinking are affected. For instance 

when tasks require participants to identify and update existing strategies when 

presented with new information or to think laterally, a strong effect of sleep 

deprivation is observed. Durmer and Dinges (2005) suggest that, once again, this 

can be explained as being a consequence of the inordinate effect that sleep 

deprivation has on the PFC. In addition to the higher order cognitive functions that 

have been discussed previously, another of the PFC’s primary functions is the 

‘central executive’ which is responsible for ‘the ability to plan and co-ordinate wilful 

action in the face of alternatives…’ (Jones & Harrison, 2001), and ‘working memory’ 

which is required to hold and manipulate information. Deficits in these two systems 

have been demonstrated to result in a deleterious effect on tasks in the presence of 

changing or distracting data (Wimmer, Hoffmann, Bonato & Moffitt, 1992; Horne, 

1988b; Blagrove, Alexander & Horne, 1995), remaining focused on relevant cues 

(Blagrove, Alexander & Horne, 1995; Harrison & Horne, 1999; Blagrove, 1996), 

thinking flexibly (Harrison & Horne, 1999; May & Kline, 1987), having insight into the 

reasons for poor performance (Harrison & Horne, 2000; Dinges & Kribbs, 1991), and 

modifying strategies based on new information (Banderet, Stokes, Francesconi, 

Kowal & Naitoh, 1981; Harrison & Horne, 1999; Herscovitch, Stuss & Broughton, 

1980).  

 The reason that it is so important to consider the impact that sleep deprivation 

has on cognitive functions is that, while it may be tempting to think of sports 

performance as mostly dependent on physical exertion, it is vital not to 

underestimate the heavy cognitive loads that high level sports performance demands 

of the athlete (Reilly & Edwards, 2007). Even relatively ‘simple’ sports such as 
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running and track cycling still require the mastery of complex physical techniques, in 

addition to a strong awareness of one’s current physiological state and the tactical 

situation of the race. Track cycling in particular provides a very good example of this. 

While events such as the team pursuit and sprint require an ‘all-out’ level of physical 

exertion, there is still the requirement for athletes to be able to pace themselves 

adequately and remain an efficient part of the team, riding in very close proximity to 

others at very high speeds. In the sprint, even a momentary lapse can lead to an 

accident and the athlete suffering, both in terms of their performance outcomes and 

in many cases, physical injury. Where more complex large team invasion games 

such as football, basketball and rugby are concerned, the level of cognitive demand 

is increased further still, as athletes must be continuously assessing not only their 

own immediate situation, but also the position and movements of both team mates 

and opposing players, while trying to achieve their own tactical and performance 

outcomes. Even the simple act of passing in football requires a great degree of 

spatial awareness, in addition to an appreciation of threats to both themselves and 

their intended target from nearby opposing players. Attention, concentration and 

reaction time are also heavily depended upon, both in striking games (e.g. cricket, 

baseball) and racquet games (e.g. tennis, badminton). Such sports often require 

extraordinary reaction times (e.g. a tennis serve hit at 130 mph will take 

approximately 0.45 seconds to travel the 23.74 metres of a tennis court (International 

Tennis Federation, 2011), and a 90 mph cricket fast bowl will take approximately 0.5 

seconds to travel the 20.12 metres between the stumps (English Cricket Board, 

2011). According to Moran (2008) there has been a recent surge in the number of 

studies investigating the role of cognitive processes in sports performance, in 

addition to the established research concerning factors like training and nutrition. 
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Existing research clearly demonstrates the degree to which sleep can influence 

cognitive performance, but there is a need to examine the implications of current 

research for the athletic context.  

 

1.3.3 – Sleep and General Health and Well-being 

 

 The potential effect that sleep can have upon general health has been the 

subject of much discussion in the general sleep literature, and any effect that it could 

have would be of high importance to athletes, whose livelihood depends on 

maintaining peak physical condition for long periods of time. It is also at this point 

that the literature takes an unusual departure from the usual sleep-deprivation 

paradigm, although the reasons for this departure are actually quite informative. 

While even small amounts of extended wakefulness show such strong effects on 

cognitive performance, the risk to participants’ general health as indicated by these 

studies is negligible. The best example showing the lack of a negative impact of 

short-term sleep loss on general health is the widely reported (Horne, 1988a; 

Gulevich, Dement & Johnson, 1966; Ross, 1965; Johnson, Slye & Dement, 1965) 

case of Randy Gardner who successfully stayed awake for 11 days (264 hours) 

continuously in an attempt to beat that world record (which Randy Gardner still holds 

to this day).  

 During this attempt, while his cognitive faculties demonstrated the familiar 

level of decline (including mood changes, speech difficulty, memory impairment and 

blurred vision), there were no indications that his health was in any danger. During 

the final twelve hours of the record attempt, a full medical examination was carried 
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out- blood pressure and pulse were both found to be within normal limits, and his 

core body temperature showed a slight decline of 1oC compared to norms. The only 

indications of any adverse health consequences were a slight heart murmur and 

some congestion of the airways. Blood and urine tests also showed no indications of 

illness. Following the end of the successful record attempt, recovery was remarkably 

rapid, considering the length of sleep deprivation and, after three nights of longer 

than normal sleep, Randy’s level of functioning had largely returned to normal, and 

nocturnal sleep length returned to more usual levels by the fourth night. A battery of 

neurological tests were carried out 10 days after the attempt (having first been 

conducted during the final 12 hours), demonstrating that neurological functioning had 

returned to normal and was generally unremarkable.  

 Given the lack of any serious negative health consequences of acute sleep 

deprivation, the focus for research into a relationship between sleep and health has 

been focused on investigating the consequences of insufficient sleep for long periods 

of time. Discussions surrounding the idea of ‘chronic sleep debt’ are hardly unusual. 

For example a number of large-scale studies have demonstrated that a sizeable 

minority (15-20%) of otherwise healthy American adults report sleeping less than 6.5 

hours per night (Kripke, Garfinkel, Wingard, Klaube & Marler, 2002; National Sleep 

Foundation, 2002). One of the key difficulties when discussing the idea of chronic 

sleep debt is that there is as yet no clear consensus on what constitutes the 

minimum quantity of sleep that is required. One perspective is the notion of ‘basal 

sleep need’ which is based on the habitual duration of sleep, which appears to be 

between seven and eight hours in healthy adults (Dement & Vaughan, 1999; Wehr, 

Moul, Barbato, Giesen, Seidal, Barker & Bender, 1993; Van Dongen, Maislin, 

Mullington & Dinges, 2003). In contrast, Horne (1985, 1988a) proposes the core vs 
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optional sleep hypothesis, based on the fact that sleep architecture is not uniform, 

with the largest portion of SWS, responsible for “repairing the effects of waking wear 

and tear on the cerebrum” (Horne, 1988a, p.57) occurring during the first 4-5 hours 

of sleep (referred to as ‘core sleep’) while the later hours of sleep served to “fill the 

tedious hours of darkness until sunrise” (p. 57). This hypothesis was supported by 

evidence suggesting that neurological functions are primarily restored during SWS 

(Folkard & Akerstedt, 1992; Akerstedt & Folkard, 1997). Other research has (e.g. 

Wehr, Moul, Barbato, Giesen, Seidel, Barker & Bender, 1993; Van Dongen, Maislin, 

Mullington & Dinges, 2003), however, presented a difficulty, finding that restriction to 

6 hours sleep per night, which the core/optional hypothesis suggests should not 

demonstrate adverse consequences, produces cognitive performance declines 

compared to baseline 8 hours sleep per night.  

 The key determining factor in people’s ability to adapt to chronic reductions in 

sleep length appears to depend on the abruptness of the curtailment. Experimental 

studies have demonstrated that when the reduction in sleep length is less severe (as 

in Horne & Wilkinson, 1985; Johnson & MacLeod, 1973) the resulting consequences 

were also less severe and more tolerable. In addition, longer-term investigations 

have suggested that while there may be an initial period of increased sleepiness 

when sleep is restricted to six or even four hours of sleep, adaptation occurs which 

prevents further decline in neurocognitive functions or allows them to return to 

baseline levels (Friedman, Globus, Huntley, Mullaney, Naitoh & Johnson, 1977; 

Belenky, Wesensten, Thorne, Thomas, Sing, Redmond et al., 2003). A number of 

physiological findings have also contributed to the idea that long-term sleep 

restriction could have a negative influence on health. Spiegel, Leproult and Van 

Cauter (1999) for example, found that, compared to extending daily sleep to 12 
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hours per day for six days, those restricted to only four hours of sleep per night 

demonstrated altered levels of the hormone cortisol, as well as a reduced level of 

glucose tolerance. Spiegel, Leproult, Tasali, Penev and Van Cauter (2003) also 

found that six days of sleep restricted to four hours led to alterations in levels of 

leptin which in turn led to alterations in the regulation of hunger and appetite, which 

the authors suggest could have consequences regarding weight gain.  

 There is a difficulty however with extending the findings from experimental 

studies into chronic sleep deprivation since, due to a number of constraints (e.g. 

financial or ethical), such studies are rarely able to artificially induce a period of sleep 

restriction that lasts longer than two or three weeks. As a consequence, much of the 

research that has been conducted in this area has taken an epidemiological 

approach by investigating the health of groups of people who regularly get less sleep 

than is normal for the general population, in an attempt to establish if a habitually low 

level of sleep is associated with poor health. Populations that are regularly studied in 

this way include those who have been diagnosed with a recognised sleep disorder 

such as insomnia or sleep apnoea, and shift workers (which can include those on 

permanent night or evening shifts), in addition to those employed on a ‘rotating shift’ 

basis where their hours of work are constantly changing.  

 Patterns of work in the European Union suggest that approximately 20% of 

employees work outside normal daytime hours (Frost, Kolstad & Bonde, 2009; 0600-

1800) and is suggested as being a risk factor for a number of health issues.  Bøggild, 

Suadicani, Hein & Gyntelberg (1999) provide a review of the many possible causal 

mechanisms that could be responsible for this, a list which includes factors such as 

social disruption and behavioural changes as well as the alterations to shift workers’ 

circadian rhythms and reduction in sleep quantity. It is also important to stress that 
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there are a number of other factors important to health which are related to shift work 

that may also be exerting a negative influence on health, such as smoking, poor diet 

and over-consumption of alcohol, in addition to the basic fact that those employed in 

shift work tend to be of a lower socio-economic status and tend, therefore, to have 

worse health generally (Frost et al., 2009). Bearing in mind these caveats, there is a 

large body of evidence that shift work is associated with an increased risk for a 

number of health issues including; cardiovascular disease, gastrointestinal 

complaints, cancer, fatigue, myocardial infarction, ischemic stroke, coronary ‘events’, 

absenteeism and overall physical and mental health (Merkus, van Drongelen, Holte, 

Labriola, Lund, van Mechelen & van der Beek, 2012 ; Jansen, van Amelsvoort, 

Kristensen, van den Brandt & Kant, 2003; van der Hulst, 2003; Harrington, 1994; 

Knutssen & Bøggild, 2010; Pesch, Harth, Rabsten, Baish, Schiffermann, Pallapies et 

al., 2010; Vyas, Garg, Iansavichus, Costella, Donnerm Laugsan et al., 2012; Saksvik, 

Bjorvatn, Hetland, Sandal & Pallesen, 2011).  

 Another common way of measuring the relationship between sleep and health 

is to study the health of people who suffer from sleep apnoea, a condition in which 

there is a periodic lack of sufficient oxygen reaching the lungs during sleep. This can 

either be caused centrally (Central Sleep Apnoea, CSA), in which normal breathing 

ceases during sleep, or can be a consequence of a physical obstruction of the 

airway (Obstructive Sleep Apnoea, OSA). While the experience of those with sleep 

apnoea is unlikely to be directly applicable to elite level athletes, it does serve as a 

very useful model for the kind of sleep disturbance that athletes are likely to 

experience (Davenne, 2009), which manifests as a fragmentation of sleep, 

characterised by frequent brief arousals at regular intervals during sleep. These 

micro-arousals are so brief in fact (of the order of a few seconds) that are not usually 
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remembered by the individual, who are usually referred for medical examination 

based on the testimony of a bed partner (American Academy of Sleep Medicine, 

2006; Kales, Cadieux, Bixler, Soldatos, Vela-Bueno, Misoul & Locke, 1985; Maislin, 

Pack, Kribbs, Smith, Schwartz, Schwab & Dinges, 1995). In the most severe cases 

of sleep apnoea, the frequency of arousals can be as often as every minute (60 per 

hour) and this is associated with significant adverse effects (Stepanski, 2002; 

Filteness, 2011).  

There has been some debate in the literature as to whether the repeated 

arousals and frequent awakenings during sleep or the episodes of hypoxemia are 

responsible, since it is quite difficult to separate these effects due to their high level 

of co-occurrence. Roehrs, Zorick, Wittig, Conway and Roth (1989) however 

demonstrated through the use of multiple regression that the number and frequency 

of arousals were significantly associated with the adverse effects noted in those with 

sleep apnoea, while levels of hypoxemia were not. Colt, Haas, and Rich (1991) also 

failed to re-produce these negative effects by experimentally inducing hypoxemia in 

a group of sleep apnoea patients, while experimentally induced micro-arousals did 

have negative consequences. Perhaps the most convincing evidence comes from 

studies which have experimentally re-produced the adverse consequences 

associated with sleep apnoea by fragmenting sleep, usually by means of a loud tone 

on a fixed schedule (ranging from every minute to every 10 minutes) in order to 

disrupt sleep without the concomitant hypoxemia that is observed in sleep apnoea 

(e.g. Bonnet, 1985; Bonnet, 1986; Downey & Bonnet, 1987; Levine, Roehrs, 

Stepanski, Zorick & Roth, 1987; Magee, Harsh & Badia, 1987; Roehrs, Merlotti, 

Petrucelli, Stepanski & Roth, 1994).  
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The functional impact that this sleep fragmentation has on daytime 

performance compared to sleep deprivation will be discussed at length in section 1.4, 

however, it is important to note the negative consequences that this type of sleep 

disturbance can have on health is well documented. For example OSA has been 

associated with a greater risk of all-cause mortality, diabetes, hypertension, coronary 

heart disease and stroke, and those with OSA are twice as likely overall to use 

health care services compared to controls (Ronald, Delaive, Roos, Manfreda, 

Bahammam & Kryger, 1999). While there is once again the possibility that a spurious 

third factor is the cause of these effects (which is particularly relevant in OSA, which 

is most common in the overweight, which is itself a significant health risk). Punjabi & 

Beamer (2005) suggest that there is compelling evidence to suggest that sleep 

apnoea could be a plausible causal factor for metabolic dysfunction, which in turn 

can lead to outcomes such as glucose intolerance (which should be of concern to 

athletes given the importance of optimal nutrition) and type 2 diabetes. They point to 

evidence which prospectively links sleep apnoea with glucose metabolism 

independently of other factors such as body mass index, smoking and physical 

activity (Al-Delaimy, Manson, Willet, Stampfer & Hu, 2002; Enright, Newman, Wahl, 

Manolio, Haponik & Boyle, 1996; Grunstein, Stenlof, Hedner & Sjostrom, 1995; 

Jennum, Schultz-Larsen & Christensen, 1993). Support for a causal relationship 

between sleep apnoea and glucose intolerance is also provided by studies 

demonstrating that the successful treatment of sleep apnoea (for instance with 

CPAP; continuous positive airway pressure which keeps the trachea open with 

pressurized oxygen) also has a positive effect on participants’ glucose metabolism 

(Brooks, Cistulli, Borkman, Ross, McGhee, Grunstein et al., 1994; Harsch, Schahin, 

Radespiel-Tröger, Weintz, Jahreiss, Fuchs et al., 2003).  
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 Even where there is not an identifiable sleep disorder or behavioural cause for 

chronically reduced sleep, a number of large scale epidemiological studies have 

demonstrated that among those with a self-reported sleep duration of less than 

seven hours per night, there was an increased overall risk of all-cause mortality and 

cardiovascular ‘events’ (such as myocardial infarction or cardiovascular disease; 

Kripke et al., 2002; Ayas, White, Manson, Stampfer, Speizer, Malhotra & Hu, 2003; 

Eaker, Pinsky & Castelli, 1992; Newman, Spiekerman, Enright, Lefkowitz, Manolio, 

Raynolds & Robbins, 2000; Schwartz, Cornoni-Huntley, Cole, Hays, Blazer & 

Schocken, 1998). Even when one bears in mind the possible spurious effects that 

could also be influencing the incidence of these negative health outcomes, it does 

not seem unreasonable to consider the possibility of poor sleep representing a 

serious concern to athletes, given that even a relatively minor health problem is likely 

to have grave consequences for an athletes’ training and competitive performance.  

 

1.3.4 – Sleep and Immune Function 

 

 While it is widely recognised that cognitive performance is the domain which 

is most dependent upon attaining adequate sleep, there is a growing body of 

evidence suggesting that poor sleep can also have deleterious effects on immune 

system function. (Besedovsky, Lange & Born, 2012). As with the vast majority of 

biological systems, the immune system demonstrates a significant circadian rhythm, 

but there is also evidence to suggest that sleep itself (once separated from circadian 

factors) has a significant relationship with the human system. It is important to note 

that this relationship is ‘basically bi-directional’ (Besedovsky et al., 2012), meaning 
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that the functioning of the immune system can exert an influence on sleep in addition 

to its’ being affected by sleep. However, for the purpose of the current discussion, 

the focus will remain on the ways in which inadequate sleep deprivation can have a 

(usually deleterious) impact on immune system functioning.  

 Early interest in the association between sleep and immune functioning 

possibly arose based on the findings from early sleep research conducted on 

animals, such as Licklider and Bunch (1946) and a series of studies conducted by 

Rechtschaffen and colleagues (Rechtshaffen at al., 1983; Everson, Bergmann, Fang, 

Leitch, Obermeyer, Refetoff et al., 1986; Bergmann, Fang, Kushida, Everson & 

Rechtscahaffen, 1986; Gilliland, Bergmann & Rechtschaffen, 1986) on rats under 

conditions of total sleep deprivation. During the course of these studies, death was 

the final outcome for animals subject to total sleep deprivation, occurring after 14 to 

21 days. More recent studies have replicated many of these findings (e.g. Koban & 

Swinson, 2005; Jaiswal & Mallick, 2009; Everson & Toth, 2000) and have suggested 

that the cause of death could be attributed to ‘general health deterioration from 

generalized infections without exposure to pathogens, which Gomez-Gonzalez, 

Dominguez-Salazar, Hurtado-Alvarado, Esqueda-Leon, Santana-Miranda, Rojas-

Zamorano and Velázquez-Moctezuma (2012) suggest is indicative that sleep has a 

role to play in the functioning of the immune system.  

 While it is clearly impractical to attempt to replicate these experiments in 

humans, there is a growing body of evidence to suggest that sleep also has a role to 

play in the functioning of the human immune system. Epidemiological and meta-

analytic investigations (e.g. Scheer, Hilton, Mantzoros & Shea, 2009; Knutsson, 

2003; Cappuccio, D’Elia, Strazzullo & Miller, 2010; Heslop, Smith, Metcalfe, Macleod 

& Hart, 2002; Ferrie, Shipley, Cappuccio, Brunner, Miller, Kumari & Marmot, 2007) 
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have suggested that those with disturbed or short sleep are also more likely to 

exhibit a wide variety of negative health outcomes, such as diabetes, hypertension, 

cardiovascular disease, obesity and overall mortality. While the high level of co-

occurnace between sleep and ill health is highly indicative of an association, the 

correlational nature of research such as this, not to mention the myriad of 

confounding factors, mandates the use of experimental research to investigate the 

possibility of a direct causal relationship.  

 A number of studies have attempted to measure this relationship by 

examining participants’ immune systems following a period of either total or partial 

sleep deprivation. For example Shearer, Reuben, Mullington, Price, Lee, Smith et al. 

(2001) measured the immune system following four days of total sleep deprivation, 

while Meier-Ewert, Risker, Rifai, Regan, Price, Dinges and Mullington (2004) and 

Haack, Pollmächer and Mullington (2004) subjected participants to 10 days of partial 

sleep deprivation, by limiting sleep to only four hours per night. In both of these 

cases, investigators found evidence to suggest that these acute periods of sleep 

restriction had an adverse impact on immune system functioning. Faraut, Boudjeltia, 

Dyzma, Rousseau, David, Stenuit et al. (2011) also suggests that the immune 

system does not immediately return to pre-sleep restriction levels of functioning once 

normal sleep duration is resumed, suggesting that even short periods of sleep 

restriction can have negative consequences for longer periods of time. Evidence also 

exists suggesting that sleep restriction can have an adverse influence on the levels 

of circulating white blood cells (Irwin, McClintick, Costlow, Fortner, White & Gillin, 

1996; Heiser, Dickhaus, Schreiber, Clement, Hasse, Heenig et al., 2000; Born, 

Lange, Hansen, Molle & Fehm, 1997; Ruiz, Andersen, Martins, Zager, Lopes & Tufik, 

2012).  
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The practical consequences of an impaired immune resulting from restricted 

sleep have also been studied directly in cases of ‘genuine immune response’ such 

as following exposure to vaccinations. Lange, Perras, Fehm, and Born, (2003) for 

example totally deprived a group from sleeping the night after receiving a vaccine for 

Hepatitis A. Compared to a control group who slept normally, the sleep-deprived 

group had half the number of hepatitis antibodies four weeks later. Spiegel, Sheridan 

and Van Cauter (2002) demonstrated a similar reduction in the strength of the 

immune response to a vaccine for influenza. Lange, Dimitriv, Bollinger, Diekelmann 

& Born (2011) even demonstrated that the reduction in immune response was still 

evident a year after exposure. Even without submitting to experimental sleep 

restriction, Cohen, Doyle, Alper, Janicki, Deverts & Turner (2009) demonstrated an 

increased risk of infection among short or disturbed sleepers. Following a two week 

sleep measurement period, participants were exposed to the common cold virus, 

with those reporting short or disturbed sleep showing an increased likelihood of 

being infected.  

 While it is important to note that the adverse consequences of short or 

disturbed sleep on the immune system tend to be small, a number of researchers 

have suggested that poor sleep has an accumulative and long term negative impact 

on the immune system in humans, which results in an increased susceptibility to 

infections (Besedovksy et al., 2012; Faraut et al., 2012; Gomez-Gonzalez et al., 

2012). The significance of this to athletes is due to the negative impact that 

contracting such infections can have on their long term training and athletic 

performance. Since professional athletes depend on being healthy and able to train 

in order to sustain and improve their athletic performance in order to make a living, if 

they are exposing themselves to a greater risk of illness or infection due to 
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inadequate sleep then addressing this is likely to be an important consideration for 

them.  

 

1.4 – Sleep Deprivation vs Sleep Fragmentation 

 

 One of the defining features of a great deal of existing sleep research is the 

method that is used. Many of the original inquiries into sleep were aimed at 

addressing the question of the function of sleep. Other behaviours in humans are 

much easier to investigate because they often have a clearly defined objective, and 

investigators are simply able to speak to people to find out the reasons they have for 

whatever it is they are doing. Sleep on the other is hand unusual on account of the 

fact there are few overt signs of intention during sleep, and other than suggesting 

that they sleep ‘because they feel sleepy’, people tend not to have much insight into 

the reasons for engaging in this behaviour. As a consequence, research has tended 

to study the consequences associated with not getting enough sleep, on the basis 

that if a component of functioning is negatively affected following a reduction in sleep 

then that area has some sort of dependence on attaining adequate sleep, while if an 

area is unaffected it suggests that it does not depend on how much sleep a person 

gets. It is on this basic principle that past research has demonstrated that higher 

cognitive functions are hugely dependent on sleep (since these functions 

demonstrate considerable decline following reduced sleep), while the capacity to 

perform physical work does not depend so much on sleep (this capacity remaining 

largely unchanged following reduced sleep).  
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 In reality, however, it is fairly uncommon for sleep disturbance to be 

manifested as an acute period of reduced sleep duration, but is more likely to be the 

result of a shift in the timing of sleep (such as with jet-lag or shift work), or as a 

persistent discontinuity during sleep itself as is present in a number of sleep 

disorders such as sleep apnoea and periodic limb movements during sleep (Bonnet 

& Arand, 2003). The importance of factors such as jet-lag in athletes will be 

addressed presently; however the impact of such discontinuous sleep, usually 

referred to as sleep fragmentation (in order to distinguish it from sleep deprivation) is 

an important factor when considering the impact of sleep disturbance outside a 

laboratory setting.  

A number of experiments have been conducted with the aim of investigating 

the impact that such continuous sleep fragmentation can have on subsequent 

performance (e.g. Bonnet, 1985; Bonnet, 1986; Bonnet, 1987; Downey & Bonnet, 

1987; Levine et al., 1987; Magee, Harsh & Badia, 1987; Roehrs et al., 1994) using a 

variety of different protocols for fragmenting sleep, either by varying the frequency of 

arousals (ranging from 6 per hour to as often as 60 per hour), or by varying the 

‘arousal criteria.’ For example initial studies required that participants signal their 

arousal by a behavioural task of some description, such as pressing a button or 

verbally alerting a researcher that they were awake. Later studies have used more 

subtle criteria for arousal, often not even requiring a conscious signal from 

participants, but only presenting a stimulus sufficient to alter the electrical output of 

the brain as measured by EEG. Even when the level of arousal required from 

participants was at this low level, there was still evidence of a significant deleterious 

impact on daytime functioning as a consequence of disturbed sleep, provided that 

the arousals were frequent enough (the required frequency of disturbance has been 
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suggested by many as being every 10 minutes, since arousal frequencies below 6 

per hour have tended not to demonstrate an effect on subsequent functioning, 

although this has been disputed; Stepanski, 2002).  

 The sanguine findings from studies such as these to the present discussion 

are the fact that sleep fragmentation can have as debilitating an effect on 

subsequent performance as total sleep deprivation. It is also important to note that 

the functional domains that are most affected by sleep fragmentation (the higher 

cognitive functions such as vigilance, critical thinking, decision making, sustained 

attention etc.) are the very same that are adversely affected by sleep deprivation. In 

addition there has been much discussion as to the mechanism responsible for the 

adverse consequences on subsequent functioning. Some have argued that changes 

to the relative amounts of various sleep stages (usually referred to as sleep 

architecture) is responsible. While the fragmentation procedures described above do 

not usually result in a marked reduction in total sleep time (approximately one hour 

at most), there tend to be significant alterations to sleep architecture, with significant 

reductions in SWS and REM sleep, compensated for by an increase in stage one 

sleep. It has been argued that the reduction in SWS, as the most restorative portion 

of sleep as has been discussed previously, is the cause of the observed negative 

consequences. Other evidence however has cast doubt on this; Stepanski, 

Lamphere, Roehrs, Zorick and Roth (1987) and Downey and Bonnet (1987) sought 

to fragment sleep in such a way as to preserve the overall quantity of SWS and 

retain the relative quantities of each sleep stage during the sleep fragmentation 

procedure. There appeared to be no difference in the level of subsequent impairment 

compared to sleep fragmentation procedures which did not preserve sleep 

architecture, which has led to the suggestion that “fragmented sleep does not have 
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the same restorative value as uninterrupted sleep” (p. 274, Stepanski, 2002), or the 

‘sleep continuity hypothesis’ (Bonnet, 1986). The most important consideration for 

the current discussion is that fragmented sleep, which has been suggested by some 

as being the kind of sleep disturbance most likely to be experienced by elite level 

athletes (for a variety of reasons; Davenne, 2009; Erlacher et al., 2011; Leeder et al., 

2012) can have just as a significant negative impact on daytime functioning as sleep 

deprivation, even when the level of arousal is subtle enough that it goes unreported 

by the sleeper.  

 

1.5 – Factors Relevant to Sleep in Elite-Level Athletes 

1.5.1 – Anxiety and Sleep 

 

 Anxiety is one of the most measured constructs in sport psychology (Cox et 

al., 2003), and it is not unusual for people both in athletic and non-athletic situations 

to experience ‘pre-performance’ or ‘anticipatory anxiety’ before an event that an 

individual considers important (Erlcaher et al., 2011; Savis, 1994; Langendörfer, 

Hodapp, Kreutz & Bongard, 2006), and evidence suggests that athletes worry about 

the effects of inadequate sleep on performance (Leger, Metlaine & Choudat, 2005). 

Anxiety in athletes is not merely confined to periods of competition however, as they 

will frequently experience other numerous sources of stress such as coping with 

injury, competing within their team for selection, concern during periods of poor 

performance and juggling training with other aspects of life, to name just a few 

(Davenne, 2009). This is salient because there is a great deal of evidence to suggest 
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that anxiety also plays a significant role in sleep, and has a great capacity to disturb 

sleep as Spielman, Yang and Glovinsky (2005) succinctly highlighted, “The buzz of 

an overactive mind can interfere with falling asleep, and it can interrupt and awaken 

the sleeper (p. 1404).  

 The hypothesised relationship between anxiety and sleep most likely arises 

due to the extraordinarily high levels of co-morbidity between these two complaints; 

Mellinger, Balter and Uhlenhuth (1985) report that 42% of people reporting sleep 

disturbance also report elevated levels of anxiety, and Taylor, Lichstein, Durrence, 

Reidal and Bush (2005) found that those with sleep difficulties are 17 times more 

likely to have clinically significant anxiety compared to those not reporting sleep 

difficulties. There is also a high rate of sleep complaints among those with 

recognised anxiety disorders, such as generalized anxiety disorder (Ohayon, Caulet 

& Lemoine, 1998; Monti & Monti, 2000), post-traumatic stress disorder (Neylan, 

Marmar, Metzler, Weiss, Zatzick, Delucchi, Wu & Schoenfeld, 1998; Lamarche & De 

Koninck, 2007) and panic disorder (Arriaga, Lara, Matos-Oires, Cavaglia & Bastos, 

1995; Overbeek, van Diest, Schruers, Kruizinga & Griez, 2005), in as well as among 

those in a sub-clinical community sample (Ramsawh, Stein, Belik, Jacobi & Sareen, 

2009).  

There has been much discussion regarding the causal direction of this 

relationship, since it is entirely plausible that a reduction of or disturbance to sleep 

could result in an increase in anxiety, just as it is reasonable to imagine that an 

elevated level of anxiety could interfere with a person sleeping. Indeed there is 

experimental evidence to support both directions; Kahn-Greene, Killgore, Kamimori, 

Balkin and Killgore (2007) for instance noted a significant increase in symptoms of 

anxiety among participants following extended periods of sleep deprivation, while 
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others have demonstrated that experimentally-induced anxiety has a negative effect 

on subsequent sleep (Wicklow & Espie, 2000; Gross & Borkovec, 1981). This has 

led to the suggestion (e.g. Udhe, Cortese & Vedeniapin, 2009) that the relationship 

between anxiety and sleep is essentially bi-directional, a suggestion which is evident 

in the cognitive model of insomnia proposed by Harvey (2002).   

 This model proposes that faulty beliefs about how much sleep is required to 

function adequately the next day and how much sleep they themselves get lead to 

individuals with primary insomnia to hold ‘negatively toned cognitive activity’ during 

the immediate pre-sleep period. These anxieties about the need for adequate sleep 

and the perception that they are not achieving this result in distress and physiological 

arousal, which in turns results in the individual selectively focusing on this arousal, 

further feeding into the distorted perception that they are not getting enough sleep. 

This process can continue to run in a cyclical manner, whereby these distorted 

perceptions further lead to negative cognitions about the need for sleep, while the 

increasing levels of cognitive and physiological arousal continuously make sleep 

ever more elusive.  

 While Harvey’s (2002) model was devised in to describe a cognitive 

mechanism offering an explanation into insomnia, it seems reasonable to suppose 

that it could be equally applicable to elite athletes experiencing anxiety, such as in 

the build-up to an important competition or during an important selection period in 

training, for instance. Harvey’s original model proposes that the ‘starting point’ of the 

process leading into sleep disturbance arises from an unrealistic belief about how 

much sleep is required, and it seems likely that athletes could be equally prone to 

such a belief. We have previously discussed evidence suggesting that the belief that 

adequate sleep is a requirement for achieving optimal athletic performance (Leger et 
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al., 2005) and that reports of sleep disturbance are very common among competitive 

athletes (Erlacher et al., 2011). It also seems perfectly possible that, even if an 

athlete does not hold unrealistic beliefs about the need for adequate sleep and the 

consequences of not getting enough sleep, a generalised anxiety (of which there are 

countless possible causes) could result in a heightened level of cognitive and 

physiological arousal, which could then result in sleep disturbance. Given the 

potential ubiquitous and persistent sources of anxiety for elite level athletes, anxiety 

could be a frequent pressure causing sleep disturbance, most importantly during 

periods of competition perhaps, but there is certainly good reason to believe that it 

could be a more persistent factor.   

 

1.5.2 – The Impact of Exercise on Sleep 

 

 Exercise is commonly thought to have a generally positive impact on sleep. 

Vuori, Urponen, Hasan and Partinen (1988) found support for this contention from 

both large-scale epidemiological surveys and from subjective reports that regular 

exercise tends to be associated with improved self-reported sleep. Exercise is also 

encouraged by the American Sleep Disorders Association (Hauri, 1993; Lavie, 1996; 

Taylor 2001) and the American Academy of Sleep Medicine (2006) as a non-

pharmacological intervention to improve sleep. Despite this ‘common-sense’ appeal 

however, there is a great deal of variability when it comes to empirical evidence.  

Meta-analyses (e.g. Youngstedt, O’Connor & Dishman, 1997; Kubitz, Landers, 

Petruzzello & Han, 1996) find, at best, small effect sizes, and a high degree of 
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variability of findings which is usually attributed to the heterogeneity of ‘exercise.’ 

There are also a wide variety of potentially confounding factors and moderating 

variables which must be considered. The above meta-analyses found that the 

duration of exercise and the time of day at which it takes place to be the most 

important factors contributing to an effect of exercise on sleep. The mechanism 

responsible is also not clear, and there are a number of other factors that could be 

contributing to this effect. Exposure to bright light for example, when it is 

appropriately timed, has demonstrated significant positive effects on sleep 

(Guilleminault, Clerk, Black, Labanowski, Pelayo & Claman, 1995; Campbell, 

Dawson & Anderson, 1993), and this is likely to be an important factor when exercise 

takes place outdoors. It is also possible that the general health benefits associated 

with regular exercise are responsible for the observed improvements in sleep, rather 

than as a direct consequence of exercise itself.  

One of the great difficulties with this line of research has been as a 

consequence of the high level of variability between different types of exercise, 

which has resulted in an overall picture of equivocal findings. A number of authors 

(e.g. Driver & Taylor, 2000; Youngstedt & Freelove-Charton, 2005; Dunn, Trivedi, 

Kampert, Clark & Cambliss, 2005; Myllmaki, Kyröläinen, Savolainen, Hokka, 

Jakonen, Juuti et al., 2011) have arrived at the conclusion that exercise does not 

have an impact on sleep, whilst a number of others e.g. (Brand, Gerber, Beck, 

Hatzinger, Pühse & Holsboer-Trachsler, 2010; Sherrill, Kotchou & Quan, 1998; 

Souissi, Chtourou, Zrane, Cheikh, Dogui, Tabka & Souissi, 2012) have 

demonstrated an impact of exercise on subsequent sleep. It is also important to 

consider, that while the majority of experimental findings are regarded as 

demonstrating an improvement in sleep (usually on account of increased total sleep 
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time, increased slow-wave sleep and reduced sleep onset latency; Taylor, 2001), 

Souissi et al. (2012) found that exercise had a negative impact on subsequent sleep, 

demonstrating the need to consider of the role that moderator variables play in 

determining how sleep may be affected by exercise, if at all.  

 There appear to be two key factors which determine the impact that exercise 

has on sleep, the first being the intensity and duration of exercise, and the second 

being the time day at which exercise takes place. A number of studies have 

demonstrated that of exercise be sufficiently intense (at least 50% of VO2max) and  

last for a considerable length of time (at least 80 minutes) in order to have a 

measurable impact on subsequent sleep (such as increased SWS and reduced SOL, 

Horne & Staff, 1983; Trinder, Montgomery & Paxton, 1988; Horne, 1988a), exercise 

at lower intensities (below 40% VO2max) does not impact upon sleep even when the 

duration of exercise is prolonged (Paxton, Montgomery, Trinder, Newman & Bowling, 

1982). In contrast, where ‘extreme’ levels of exercise of both very high intensity and 

duration occur, such as in marathon-length events, Taylor (2001) suggest that sleep 

is likely to be disrupted by increased levels of movement and awakenings rather than 

improved. The role of time of day in determining the sort of impact that exercise has 

upon sleep is consistently shown as being the most important (Taylor, 2001; 

Youngstedt et al., 1997; Kubitz et al., 1996). The importance of time of day is most 

frequently hypothesised as being the result of the core body temperature increase 

associated with exercise; the subsequent thermoregulatory response is suggested to 

improve sleep (Horne & Staff, 1983; Trinder et al, 1988; Horne & Moore, 1985). The  

exercise needs to take place close enough to sleep in order for the thermoregulatory 

response to have an effect, but not so close that it has an alerting effect (Driver & 

Taylor, 1996). While the suggestion that late night vigorous activity is likely to have a 
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detrimental impact on sleep (a view supported by the American Academy of Sleep 

Medicine, 2001), the experimental evidence is still equivocal. For example Myllmaki 

et al. 2011) found that while late night exercise produced a marked increase in heart 

rate during the first three hours of sleep, there was not a concomitant disturbance to 

sleep. In contrast, Souissi et al. (2012) did find evidence of sleep disturbance. Both 

studies used a maximal aerobic exercise paradigm; the only significant difference 

appears to be a slight difference in timing. The exercise in the Myllmaki study ended 

approximately two hours before participants retired to sleep, while exercise ended 

approximately one hour before bed time in the Souissi study, highlighting the subtle 

nature of the impact of time of day.  

It is also important to note that while the thermoregulatory hypothesis is the 

most popular explanation, recent evidence has also suggested that exercise can 

also exert an influence on circadian rhythms, much the same as exposure to bright 

light (Yamanaka, Hasimoto, Tanahashi, Nishide, Honma, & Honma, 2010), which 

suggest another plausible mechanism for exercise having an impact on sleep. The 

human circadian rhythm plays a large part in determining our levels of sleepiness 

(Horne, 2006), and follows a very distinct pattern throughout a normal day, with the 

natural ‘trough’ occurring in the early hours of the morning (at approximately 0400 – 

0600 hours) and the peak occurring in the early evening (at approximately 1800 – 

2000 hours). It has long been known that, in the absence of external time cues 

(usually called zeitgebers- literally time-givers in German), the human circadian clock 

‘free runs’ with a length of approximately 24.5 hours per day (Kleitman 1963). In the 

absence of any zeitgebers the circadian clock naturally tends to extend each day, it 

is only kept in synchrony with the length of the solar day by these external time cues. 

Bright light is the strongest of these cues (Czeisler, Buxton & Khalsa, 2005) but its 
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influence depends strongly on the time of day. Bright light exposure shortly after the 

natural trough or shortly before the natural peak have a phase advancing effect, in 

that they bring the time of the evening peak (and morning trough) forward, while 

exposure after the evening peak have the opposite effect, delaying the trough in the 

early morning. In practice, exposure to bright light late in the evening tends to make 

sleep more difficult, while bright light exposure in the morning and early evening is 

conducive to sleep (as well as a number of other factors such as mood; lack of light 

exposure during the winter months is the primary cause of seasonal affective 

disorder; Khalsa, Jewett, Cajochen & Czeisler, 2003; Czeisler, Kronauer, Allan, Duffy, 

Jewett, Brown & Ronda, 1989; Lam & Levitan, 2000). If exercise has a similar 

capacity to influence the circadian clock, as is suggested by Yamanaka et al. (2010), 

it would be expected that regular physical activity during the daylight hours could 

have a positive impact on sleep, while late night exercise may be expected to have a 

harmful effect.  

 Unfortunately, the timing of both training and competitive times of elite level 

athletic competitions is often dictated by factors other than achieving optimal sleep. 

Many competitions take place in the evening due to the commercial demands that 

high-profile sporting events take place during television ‘prime time’ in order to 

maximise audiences and revenues. The demands of many sports such as swimming, 

rowing and running also require athletes to train more than once a day. In order to 

allow for adequate physiological recovery between training sessions, this often 

mandates that training sessions take place both early in the morning and again well 

into the evening. The training involved at such an elite level is also likely to be 

sufficiently intense and of sufficient duration to have a detrimental impact on 
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subsequent sleep, all of which suggests that exercise is likely to be exerting a 

negative influence on sleep in elite level athletes.  

 

1.5.3 – Sleep Hygiene 

 

 The term ‘sleep hygiene’ was first used by Peter Hauri as a description for a 

set of behaviours aimed at improving sleep in insomniacs (Hauri, 1977). It generally 

refers to a set of ‘rules’ of behavioural and environmental factors that are considered 

to be conducive to good sleep. The original list of rules includes a number of general 

health practices such as a healthy balanced diet, regular exercise and not over-using 

substances such as alcohol or caffeine, environmental factors associated with sleep 

such as the absence of light or noise and a comfortable temperature, and specific 

sleep related behavioural practices such as consistency in sleeping times from day 

to day and not engaging in arousing activities in the immediate period preceding 

sleep. A number of additions have since been made to the original list of suggested 

practices, including never making a conscious effort to sleep, getting out of bed if 

one fails to start sleeping within 15 minutes, eliminating the bedroom clock and 

avoiding the use of hypnotics (Hauri 1992). Engaging in these behaviours is thought 

to have a negative impact on subsequent and indeed long term sleep (in the case of 

more persistent factors like erratic sleep scheduling, habitual overuse of alcohol or 

caffeine or an excessively stimulating bedroom environment).  

 Although ‘inadequate sleep hygiene’ has its own diagnostic criteria in both the 

International Classification of Sleep Disorder (American Academy of Sleep Medicine, 

2006) and in the Internal Classification of Diseases (World Health Organisation, 
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2010), most authors seem to concur that poor sleep hygiene is unlikely to be a cause 

of primary insomnia in most cases (Morin, 2005; Stepanski & Wyatt, 2003; Yang, Lin, 

Hsu & Cheng, 2010). It is none-the-less considered to be a factor that can contribute 

to the continuation of insomnia symptoms, and as such is included as a component 

in the vast majority of cognitive behavioural therapy based treatments for insomnia 

(Stepanski & Wyatt, 2003; Edinger, Wohlgemuth, Radtke, Marsh & Quilian, 2001). It 

is also important to note that while poor sleep hygiene is generally regarded as a 

contributory rather than a causal factor in insomnia, in sub-clinical and otherwise 

‘normal’ sleepers, knowledge and adherence to recommended sleep hygiene 

practices has been shown to be positively associated with good sleep (Brown, 

Buboltz & Soper, 2002; Yang et al., 2010; Gallasch & Gradisar, 2007; Mastin, Bryson 

& Corwyn, 2006) and experimental evidence has suggested that a failure to follow 

sleep hygiene recommendations can disturb sleep (Stepanski & Wyatt, 2003; Riedel, 

2000).  

 This is likely to be a relevant consideration in elite level athletes since there 

are a number of factors that could contribute to athletes transgressing sleep hygiene 

recommendations, for reasons that are both within and beyond their control. Halson 

(2008) points out that ‘hyperhydration’ following training sessions is a reasonably 

common occurrence among elite level athletes, which will disrupt sleep on account 

of the need to frequently urinate. A number of other areas of sleep hygiene may find 

themselves under strain in this population; for example it is recommended that 

people should not actively ‘try’ to sleep and that they should try not to worry before 

sleep. Due to the heightened demands and concurrent level of anxiety, this may not 

always be possible for elite level athletes. In addition, the scheduling of athletes’ 

sleep will tend to depend on a variety of factors that they are unable to influence, 
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such as competition times (with major events often taking place well into the evening 

to satisfy commercial demands) and training times, which are often based on 

considerations other than achieving optimal sleep such as the need for multiple 

training sessions per day, mandating training both in the early hours of the morning 

and again well into the evening in order to allow for adequate physiological recovery 

between training sessions.  

 The regularity of sleep scheduling in particular can have a profound impact 

upon sleep, and was found (alongside alcohol and smoking avoidance) to be one of 

the most important components of good sleep hygiene. This is likely due to the 

impact that it can have on the two processes which combine to determine sleep (the 

two process model; Feinberg, 1974; Borbély, 1982; Horne, 2006), namely the 

homeostatic sleep drive and the endogenous circadian pacemaker. The effect that 

erratic sleep scheduling has on homeostatic sleep drive is quite simple to understand, 

since this increases in a generally linear manner as time awake increases. If for 

example, an individual sleeps for longer than usual for a ‘lie-in’ (for example at the 

weekend, or following a match or particularly strenuous training session), then their 

drive to sleep at their normally scheduled sleeping time the following night will be 

reduced, making sleep more difficult. Conversely, attempts to retire to bed earlier 

than usual, perhaps in anticipation of important events occurring the following day 

which require additional sleep, are likely to be counter-productive since the reduced 

homeostatic need makes sleep more difficult. A chaotic sleep schedule due to 

external demands such as the timing of training and competition can also exert an 

influence on the circadian pacemaker. Stepanski & Wyatt (2003) suggest that 

changes to sleep scheduling can alter the times at which a person is exposed to 

bright light. As has been discussed previously, bright light has been demonstrated as 
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being the strongest zeitgeber, so altering one’s exposure to it by sleeping in a dark 

room when one is accustomed to being active and outdoors could plausibly have a 

phase-shifting effect, similar to jet-lag. Strogatz, Kronauer and Czeisler (1987) and 

Czeisler, Allan, Strogatz, Rhonda, Sanchez, Rios et al. (1986) suggest that sleep 

initiated earlier than a person is used to are characterised by extended latencies to 

sleep onset as the circadian pacemaker is still promoting wakefulness. Conversely, 

sleep initiated later than is customary is characterised by an increase in intrusions of 

wakefulness as the circadian pacemaker is again promoting wakefulness in line with 

the established routine. Chaotic or erratic sleep scheduling as a result of competitive 

or training commitments are therefore a highly likely and plausible source of sleep 

disturbance in elite level athletes.  

 

1.5.4 – Jet-Lag 

 

 ‘Jet-lag’ is a reasonably well known phenomena which describes the adverse 

consequences associated with rapid trans-meridian travel across multiple time zones. 

Such adverse consequences include disorientation, light headedness, impatience, 

lack of energy, general discomfort, mood disturbance and sleep disturbance (Jean-

Louis, Kripke & Ancoli-Israel, 2000; Cole, Kripke, Gruen, Mullaney & Gillin, 1992; 

Reilly & Edwards, 2007), all of which could result in impaired athletic performance 

(Smith, Efron, Mah & Malhotra, 2013; Richmond, Dawson, Hillman & Eastwood, 

2004). Trans-meridian travel is also a fact of life for many elite level athletes, whether 

it be for specific events such as Olympic Games, or a regular occurrence for 
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example in professional teams in the USA or Australia where even domestic 

competitions can involve significant trans-meridian travel.  

 The mechanism responsible for the negative effects of jet-lag are well 

understood as resulting from the sudden de-synchrony between the human body’s 

endogenous pacemaker, which follows a relatively stable pattern of variation during 

the course of the day, and the external environment. Generally speaking the external 

time cues of a person’s environment help to maintain the stability of their circadian 

rhythms, which actually tend towards a slightly longer period of 24.5-25 hours per 

day (Kleitman 1963). When these two systems are suddenly jolted out of phase with 

each other and the external time cues of the individual’s new environment are in 

stark disagreement with their own ‘internal’ pacemaker, these biological systems 

start to show signs of sub-optimal functioning. While the sleep-wake cycle is perhaps 

the most easily identifiable behavioural result of the endogenous pacemaker, most 

biological systems demonstrate a profound circadian rhythm, including core-body 

temperature, muscle strength, flexibility, self-chosen work rate and arousal (Atkinson 

& Reilly, 1996).  

 In contrast to the lack of evidence regarding the negative consequences on  

athletic performance as a result of sleep deprivation discussed earlier, athletic 

performance has been demonstrated as displaying a significant reliance on circadian 

factors. Reilly and Walsh (1981), for instance, found that during a nearly 100-hour 

period of continued wakefulness, physiological performance did not decline in a 

linear fashion as the length of wakefulness increased but instead, continued to 

fluctuate on a daily basis according to the pattern of core-body temperature, with a 

peak in performance during the early evening, and the lowest levels of performance 

observed during the early hours of the morning. In addition, psychological functioning 
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simultaneously showed evidence of circadian rhythmicity in performance, with a 

gradual decline as the period of wakefulness continued. A number of studies have 

confirmed that both cognitive and physical performance shows a marked circadian 

rhythm, for example in swimming (Baxter & Reilly, 1983; Reilly & Marshall, 1991) 

and cycling time-trials (Atkinson, Todd, Reilly & Waterhouse, 2005), in anaerobic 

performance (Reilly, Atkinson, Gregson, Drust, Forsyth, Edwards & Waterhouse, 

2006), lactate threshold during exercise (Forsyth & Reilly, 2004) and self-chosen 

work rate (Coldwells, 1994).  

 With regards to real world performance, there is a great deal of evidence to 

suggest that athletic performance of both teams and individuals is impaired following 

trans-meridian travel (Jehue, Street & Huizenga, 1993; Recht, Lew & Schwartz, 1995; 

Steenland & Deddens, 1997; Worthen & Wade, 1999), particularly when travel is an 

eastward direction (in accordance with findings from jet-lag research generally). 

While the impact of travelling across only one or two time-zones would generally only 

be expected to be relatively small, findings from the above studies have 

demonstrated significant reductions in points scored in professional baseball and 

Aussie rules teams following eastward trans-meridian travel, as well as the finding 

that eastward travelling American Football teams are simply more likely to lose a 

game than a westward travelling team, all of which suggests that disruption to 

athletes’ circadian rhythms can and does have significant impact upon both the 

performance of individual players, and the overall outcome of a competition.  

 Based on existing research on the role of circadian rhythms in jet-lag, Reilly & 

Edwards (2007) have compiled a list of recommendations for athletes travelling long 

distances for competitions. They consider a number of potentially useful 

interventions, ranging from pharmacological to behavioural. Hypnotics may have 
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some utility in helping individuals to sleep at times when their circadian pacemaker is 

trying to keep them awake, although Reilly, Atkinson and Budgett (2001) failed to 

demonstrate the effectiveness of temazepam in reducing the severity of jet-lag 

symptoms in British athletes travelling to the USA, and it is also stressed that 

hypnotics can have adverse side-effects which may be of significant concern to 

athletes shortly before competition. Some have suggested that the melatonin may 

have some utility. Melatonin is a natural substance excreted by the pineal gland, and 

ingestion of melatonin can have both a hypnotic effect (regardless of the time of day 

at which it is taken) as well as exhibiting a chronobiotic effect if administered at the 

correct time; ingestion a few hours before the ‘trough’ in core body temperature 

produces a phase-advancing effect, while use in the hours following the trough in 

core body temperature produces a phase-delaying effect. This highlights the 

importance of timing when it comes to the use of melatonin, so its use should be 

treated carefully. Research has also suggested that while melatonin can be useful 

for ‘mild’ jet-lag, both Edwards, Atkinson, Waterhouse, Reilly, Godfrey and Budgett 

(2000) and Richmond et al. (2004) failed to demonstrate it has being useful in jet-lag 

following a time-zone shift of 12 hours (such as the time difference between the UK 

and Australia). Conversely stimulants may also be useful in preventing sleep at a 

time that would not be conducive to adaptation to the new time-zone, although once 

again caution must be exercised. For instance Modafinil has been revealed as a 

substance of abuse among some sprinters (Reilly, Waterhouse & Edwards, 2005), 

and caffeine is in fact a ‘specified substance’ according to the World Anti-Doping 

Agency (WADA), meaning that the allowable quantities in some sports are subject to 

restrictions (World Anti-Doping Agency, 2013).  
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 Given the difficulty and potential hazards associated with pharmacological 

interventions, Reilly & Edwards (2007) also suggest some useful behavioural 

practices that may reduce the severity of jet-lag symptoms and/or speed op the re-

entrainment of athletes’ circadian rhythms to the new environment. Atkinson and 

Speirs (1998) and more recently Yamanaka et al. (2010) suggest that physical 

activity can have a chronobiotic effect, and if appropriately times can play a role in 

speeding up circadian adjustment. Reilly and Edwards (2007) suggest that if training 

for competition is the primary goal, training times should be arranged so as to occur 

when the peaks in core body temperature of the individual and the new environment 

coincide in order to maximise the benefit of each particular training session. Exercise 

can also be timed in much the same way as exposure to bright light to produce the 

desired direction of circadian shift; exercise shortly before the peak in core body 

temperature can effect a phase delay (Yamanka et al. 2010) which may be desirable 

following westward travel for example. They also suggest that napping during the 

daytime in the destination time-zone should be discouraged, since it will tend to 

coincide with the established circadian rhythm in the departure time-zone, rather 

than the intended rhythm to match up to the new time-zone (Reilly & Edwards 2007).  
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1.5.5 – Exercise and Immune Function 

 

 The impact that physical exercise can have on a person’s immune system is 

an important question, particularly in elite level athletes whose livelihood depends on 

their ability to sustain intense training and competition for extended periods. Any 

depression in the immune system could make athletes more susceptible to infections 

which could result in a significant decline in exercise performance and the ability to 

sustain heavy training (Roberts, 1986). While there is evidence to suggest moderate 

levels of exercise are beneficial to general health and the immune system (e.g. 

Matthews, Ockene, Freedson, Rosal, Merriam & Herbert, 2002), in elite level 

athletes where training loads are extreme and long-term, the opposite effect has also 

been suggested; Gleeson (2007) and Nieman (1994) model the relationship as a ‘J’ 

shaped curve, where moderate exercise improves immune functioning, while 

vigorous exercise results in a decline in immune functioning below the level 

observed in sedentary persons.  

 A number of studies have observed a transient depression in the functioning 

of the immune system in the period immediately following prolonged strenuous 

exercise (Gleeson, 2007; Pedersen & Bruunsgard, 1995; Pyne, 1994; Ronsen, 

Pedersen, Oritsland, Bahr & Kjeldsen-Kragh, 2001) and this short-term depression 

has been reported to last from anywhere between 3 hours and 24 hours (Gleeson, 

2007), so it seems perfectly plausible that an athlete’s immune system may not have 

recovered fully between multiple sessions taking place on the same day, and 

perhaps even between days. A number of potential mechanisms have been 

implicated to explain this observation, such as increased levels of stress hormones 
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during exercise (Moynihan, Callahan, Kelley & Campbell, 1998), a fall in levels of 

blood glutamine (Gleeson, 2005), excessive levels of free radicals during exercise 

(Niess, Dickhuth, Northoff & Fehrenbach, 1999) and even simple causes such as an 

increased potential for exposure to pathogens as a consequence of the increased 

depth and rate of breathing (Gleeson, 2007). A number of markers of immune 

system functioning have shown evidence of depression following acute periods of 

high intensity exercise (Yamauchi, Shimizu, Kimura, Takemura, Suzuki, Akama et al., 

2011), and epidemiological studies have demonstrated that athletes are at a 

significantly higher risk of developing infections, particularly upper respiratory tract 

infections, than those who exercise moderately or not at all (Bishop, 2005; Fahlman 

& Engels, 2005; Nieman, 1994; Nieman, Miller, Henson, Warren, Gusewitch, 

Johnson et al., 1994) and evidence also demonstrates that athletes are at a greater 

risk during periods of high intensity training (Yamauchi et al., 2011) and in the weeks 

immediately following ultra-endurance marathon events (Nieman, Johanssen, Lee & 

Arabatzis, 1990; Peters, Goetzsche, Grobbelaar & Noakes, 1993).  

 Due to the serious consequences associated with infection for elite level 

athletes, the feasibility of countermeasures has also been studied. Fahlman & 

Engles (2005) suggested that supplementation with Vitamin C and Vitamin E 

attenuated (but did not eliminate) the depression in immune function among 

American football players, and both Nehlsen-Cannarella, Fagoaga, Nieman, Henson, 

Butterworth, Schmitt et al. (1997) and Nieman (1998) suggest that sufficient intakes 

of carbohydrates can also mitigate somewhat the negative impact on immune 

functioning. It does not appear that the role that sleep plays in immune system 

functioning has been widely considered but, given the evidence discussed previously, 

there is a possibility that sleep could play a contributory role towards a depression in 
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immune system functioning in elite level athletes. If this were to be the case, 

interventions aimed at improving sleep could prove to a fruitful avenue of 

investigation in helping to overcome the increased risk of infection in athletes.  

 

1.5.6 – The Role of Sleep in Learning 

 

 The idea that sleep has a role to play in facilitating learning and the formation 

of memories is not a new one (e.g. Newman & Evans, 1965; Gaarder, 1966), and it 

has been noted by Stickgold (2005) that the idea can be traced back as far as 

Roman thinkers in the first century. The importance of learning to elite level athletes 

is crucial (Moran, 2008). Athletes are required to master complex skills and 

strategies, and be able to recall and implement them in periods of high stress in the 

presence of a wide variety of potentially distracting stimuli, and the importance of 

cognition in elite athletic endeavour is currently receiving a proliferation of interest 

(Moran, 2008).  

 Much of the initial interest centred around the role that REM sleep was 

thought to play in helping to cement the formation of new memories. Evidence from 

both animal and human studies has demonstrated that the amount of REM in the 

sleep period following a contrived learning scenario increased (e.g. Zimmerman, 

Stoyva & Metcalf, 1970), although others have failed to replicate this effect, 

particularly in humans (Allen, Oswald, Lewis & Tagney, 1972; Zimmerman, Stoyva & 

Martin, 1978; Horne & McGrath, 1984). The notion that REM sleep plays a distinct 

role in memory formation has now been comprehensively weakened by a several 

authors (e.g. Siegal, 2001) who point to a number of flaws. In the case of animal 
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studies for instance, Gonzalez, Debilly, Valatz and Jouvet (1995) and Rampin, 

Cespuglio, Chastrette and Jouvet (1991) have suggested that it is the stress that 

animals experience during experimental learning situations rather than the learning 

itself which results in an increase in REM sleep, having demonstrated an increase in 

REM sleep after applying moderate stress in the absence of any learning. In addition, 

evidence in humans also casts doubt on the idea that REM sleep is crucial for 

memory formation. Drugs used in the treatment of depression, such as monoamine 

oxidase inhibitors (MAO’s), have demonstrated the ability to completely suppress 

any REM sleep. Siegal (2001) notes that despite the millions of people who have 

taken these drugs in sufficient quantities to completely suppress REM sleep, there 

has not been any evidence to suggest memory impairment as a consequence. 

Experimental studies such as Diekelmann, Büchel, Born and Rasch (2011) have 

also demonstrated the non-significance of REM sleep by terminating the sleep of 

participants following a learning task before the onset of the first period of REM sleep, 

with no apparent negative impact on learning.  

 Despite the apparent lack of impact that this specific stage has on learning, 

the fact that sleep itself plays a role in memory formation appears not be in serious 

doubt. Several reviews have arrived at the conclusion that sleep plays ‘a crucial role’ 

in learning (e.g. Smith, 1995; Walker, 2004). This evidence is based on a large 

number of experimental studies in which participants are required to learn something, 

and they are then tested several hours later, with the intervening period either 

containing sleep or not, with the vast majority of studies finding that performance 

following a period of sleep is significantly improved compared to an equivalent period 

of wakefulness (e.g. Walker, Brakefield, Morgan, Hobson & Stickgold, 2002; 

Diekelmann et al., 2011; Brawn, Fenn, Nusbaum & Margoliash, 2010; Stickgold, 
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Whidbee, Schirmer, Patel & Hobson, 2000a; Stickgold, James & Hobson, 2000b; 

Walker et al., 2002; Fischer, Hallschmid, Elsner & Born, 2002; Huber et al., 2004). 

This apparent improvement in learning during sleep has been replicated for a variety 

of different types of task, including visual discrimination (Karni, Tanne, Rubenstein, 

Askenasy & Sagi, 2004) auditory (Atienza, Cantero & Stickgold, 2004) and motor 

tasks (Robertson, Pascual-Leone & Press, 2004). Kuriyama, Stickgold and Walker 

(2004) also suggest that complex skills (such as those that might be more relevant to 

athletes) show a greater positive impact as a consequence of consolidation during 

sleep than simple tasks, and Stickgold (2005) and Lu and Göder (2012) suggest that 

shortened sleep, or even sleep fragmented to no greater degree than that indicated 

by transient EEG arousals is sufficient to impair the normal overnight learning. Taken 

together, this seems to suggest that a sleep disturbed athlete may find it harder to 

learn and master the complex skills on which they depend in order to achieve 

optimal performance.  

 

1.6 – Summary 

 

• The importance of sleep for attaining optimal athletic performance is often 

assumed by coaches and athletes, however there is a lack of specific 

evidence to justify this.  

• The primary purpose of sleep is for brain restitution.  

• Optimal athletic performance requires optimal brain functioning, both in order 

to facilitate cognitive elements of performance, and physical performance as 
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influenced by mood and motivation decrements associated with sub-optimal 

sleep.  

• Inadequate sleep also has a number of negative consequences that could 

have serious implications on athletes such as negative health consequences 

and the risk of infections jeopardising both their training and competition 

performance.  

• There are numerous potential sources of sleep disturbance among elite level 

athletes. 

• Lab based studies have demonstrated adverse performance consequences 

following inadequate or disturbed sleep, but to date no research has 

attempted to study the influence of sleep on performance in a real-life setting 

outside the laboratory.   

 

1.7 - Aims 

 

 The aim of this thesis is to investigate the relationship between sleep and 

performance in elite level athletes. This work will initially attempt to ascertain the  

a) presence and  

b) extent of sleep disturbance among athletes.  

Current research suggests that evidence of such disturbance is likely to be found, 

however existing evidence is based only on very small sample sizes (Sargent et al., 

2012), on athletes out of the competitive season (Leeder et al., 2012), or based on 

subjective retrospective reports (Erlacher et al., 2011).  
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 This work then aims to investigate the relationship between sleep and athletic 

performance in a real-life situation, rather than on elements of performance in a 

laboratory. Many researchers have commented that the negative impact associated 

with inadequate sleep can be mitigated or eliminated entirely if participants are 

sufficiently motivated. Given the obvious differences in terms of motivational climate 

between research conducted in a lab, compared to a real performance in which the 

athlete has a highly personal stake, existing lab-based research cannot be assumed 

to be relevant to athletes. A number of other factors will also be considered, such as 

comparing athletes’ sleep before competitions and their habitual sleep, to examine 

the role of anticipatory anxiety on sleep in this population, and to investigate 

differences in sleep before games taking place ‘at home’ compared to those taking 

place ‘away from home’ which mandates sleeping in a hotel before a competition.  

 Finally, the current work will also aim to ascertain the importance that sleep 

may have to an athlete’s day-to-day training during the competitive season, as well 

as studying the impact that strenuous training can have on subsequent sleep.  

 The current work will not attempt to investigate the myriad of potential causes 

of sleep disturbance among athletes. Given the relatively novel nature of the area of 

investigation, it seems prudent to first establish that inadequate sleep is associated 

with significant negative outcomes in the population in question in order to ensure 

that attempts to understand and rectify inadequate sleep will be fruitful and even 

necessary.  
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Chapter 2 

 

 

Methods 
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2.1 – Sleep Measurement 

 

 The measurement of sleep has presented a cause of methodological difficulty 

in the field of sleep research, primarily because, during sleep unlike during other 

activities, organisms display no overt behaviour indicating an intent or purpose 

behind their actions (Lima & Rattenbourg, 2007). Since research participants are 

unable to provide any feedback to investigators during sleep, alternative means to 

measure sleep have been required, the gold-standard measure of which is generally 

accepted as being the EEG (McCall & McCall, 2012; Ancoli-Israel, 2003; Collop, 

2006). This method measures the electrical activity of the brain during periods of 

sleep by means of a number of electrodes attached directly to the scalp of research 

participants. While this method provides objective and quantifiable information 

regarding brain activity during sleep, it is both expensive and laborious; therefore, 

sleep diaries have historically been used as they allow the collection of large 

quantities of data and are much cheaper than EEG. There are, however, a number 

of difficulties associated with using sleep-diaries, primarily that they rely upon the 

retrospective recall of events. As a result sleep-diaries do not tend to enjoy a great 

deal agreement with the established gold-standard of EEG (McCall & McCall, 2012; 

Westermeyer, Sutherland, Freerks, Martin, Thuras, Johnson et al., 2007; Lockley, 

Skene & Arendt, 1999), and the familiar difficulties associated with questionnaires 

exist,such as poor compliance, both in terms of actually completing sleep diaries at 

all, and faithfully completing them each morning immediately after sleep. It is not 

uncommon, even in clinical settings, for sleep diaries to be completed one week at a 

time, en masse before they are returned (Ancoli-Israel, Cole, Alessi, Chambers, 

Moorcroft & Pollak, 2003; Spielman, Yang & Glovinsky, 2005).  
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 In contrast, the use of wrist actigraphy as a cost-effective and objective 

measure of sleep has become much more widespread in recent years, with the rate 

of increase in published research using this method increasing as a much faster rate 

than published studies using EEG (Sadeh, 2011). In contrast to sleep diaries, 

actigraphy provides an objective and reliable method of measuring sleep, that 

demonstrates a very high level of agreement with the established gold-standard 

measure of EEG (McCall & McCall, 2012; Sadeh, 2011; Cole, Kripke, Gruen, 

Mullaney & Gillin, 1992; Sadeh, Sharkey & Carskadon, 1994; Ancoli-Israel, Cole, 

Alessi, Chambers, Moorcroft & Pollak, 2003; Jean-Louise, von Gizycki, Zizi, Fookson, 

Speilman, Nunes et al., 1996) in a wide variety of populations, and is an approved 

measure of sleep in both healthy and clinical populations according to the American 

Academy of Sleep Medicine (Morgenthaler, Alessi, Firedman, Owens, Kapur, 

Boehlecke et al., 2007). In addition to providing an objective, valid and reliable 

measure of sleep, actigraphy also benefits from being far less invasive than EEG 

recording (and usually does not exhibit a first-night effect, unlike EEG; Agnew, Webb 

& Williams, 1966), as well as allowing the collection of data for weeks or even 

months without needing to be reset by the investigator, while EEG must be reset on 

a daily basis. Due to the increased convenience and reduced invasiveness of sleep 

measurement using wrist actigraphy, a number of researchers have specifically 

recommended actigraphy as an ideal measurement tool in elite level athletes 

(Leeder, Glaister, Pizzoferro, Dawson & Pedlar, 2012; Leeder, Gardner, Foley, van 

Someran & Pedlar, 2009; Richmond, Dawson, Hillman, & Eastwood, 2004).  

 Accordingly, sleep in the current study was measured using wrist actigraphy. 

While an in-depth discussion with each research participant took place both before 

and after measurement of their sleep, in order to properly explain to participants how 
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the actigraphy worked, and also to clarify any points of confusion that arose on the 

actigraphy, the primary method of determining the timing, length and quality of 

participants’ sleep was based on actigraphy. The specific actiwatch that was used 

during this thesis was the Actiwatch AW4™ model, produced by CamNTech 

(CamNTech, Cambridge, UK). This device measures movement by means of a 

piezo-electric accelerometer that records the intensity, duration and amount of 

movement in all directions. Data are sampled at a rate of 32Hz and the device 

detects all movement it is subjected to above an acceleration force of 0.05g. The 

captured data are then logged into 30-second epochs for analysis. These actigraphs 

also feature an ‘event marker’ which participants can use to signify specific events 

taking place during the period of recording, depending on the needs of the individual 

study. In this case, participants were asked to press the event marker at ‘bed time’ 

(defined as the time at which participants are in bed with the intention of sleeping) 

and again at ‘get up time’ each morning (defined as the time at which they are 

consciously awake and are no longer intent on sleeping). Given this information, an 

automated algorithm (CamNTech, 2008) then determines, on an epoch-by-epoch 

basis, when participants were asleep or awake based on the level of activity. This 

automated algorithm has been demonstrated as having a high level of agreement 

with EEG methods of distinguishing sleep and wakefulness (e.g. McCall & McCall, 

2012), although it cannot provide any data regarding which stage of sleep there 

wearer is in, unlike an EEG.  

 Based in this automated algorithm, the proprietary software that accompanies 

the Actiwatch AW4 provides a number of output parameters of the wearer’s sleep, 

but, for the sake of simplicity, the current work uses only 7 of the more common 
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sleep parameters that are used in existing sleep research, which provide data 

regarding the timing, duration and quality of sleep. These are defined as follows: 

  

Timing; 

• Bed Time- time (to the nearest minute) at which participants indicate 

they are in bed with the intention of sleeping, as indicated by pressing 

the event marker. 

• Get Up Time- time (to the nearest minute) at which participants indicate 

they are no longer in bed with the intention to sleep, as indicated by 

pressing the event marker.  

Duration; 

• Total Sleep Time- the total period of time that elapses between the 

start of sleep and the end of sleep, as defined by the automated 

algorithm.  

Quality; 

• Wakefulness After Sleep Onset- the total amount of time spent awake 

after the start of sleep.  

• Sleep Efficiency- the proportion of time spent asleep relative to the total 

period of time spent in bed (expressed as a percentage).  

• Sleep Onset Latency- the period of time which elapses between 

participant identified bed time, and the onset of sleep identified by the 

automated algorithm.  



67 
 

• Movements per Hour- the total number of discreet periods of 

movement detected by the Actiwatch, divided by the total sleep time.  

While there a wide variety of actimeters made by different manufacturers, each with 

their own subtle variations in the above sleep parameters, these are the 

measurements as they are defined by the manufacturer of the Actiwatch AW4® 

(CamNTech, Cambridge, UK) used in the present study, and these definitions have 

been recently validated against EEG (McCall & McCall, 2012).  

While it is usually considered desirable for participants to wear the Actiwatch 

as much as possible, this was simply not practical in the current study. The 

equipment is both delicate and not entirely waterproof, so in the interests of 

preserving the equipment it was not thought prudent to ask athletes to wear 

Actiwatches constantly, largely since this would put the equipment at risk of damage. 

Also for a number of the athletes there are rules prohibiting the wearing of 

‘unnecessary’ equipment during competition, which precludes the wearing of 

anything on the wrists. For this reason the vast majority of participants only put their 

Actiwatches on during the evening and removed them in the morning, so only 

nocturnal periods of sleep were captured in most cases.  
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2.2 – Match Based Performance Analysis 

 

 One of the major difficulties that exists when attempting to apply the findings 

from existing sleep research to elite-level athletes arises from the laboratory based 

nature of much of that research. While experimental designs have proven to be 

particularly useful in terms of standardising the experience of each participant and in 

providing control of extraneous variables, they have also tended to feature rather 

simplistic and narrow measures of performance. This is especially problematic not 

only because of the importance of the motivational climate in determining how well 

people can cope with inadequate sleep, but also the fact that lab based performance 

measures will never be able to approximate the motivational climate that exists in 

competitive performance. There is the additional problem that the performances 

required in elite level athletic competition entail a much greater level of complexity 

than, for instance, running to exhaustion on a treadmill.  

 As a consequence, the current research has aimed to measure performance 

in a more meaningful and applicable manner, which will have real significance to 

research participants and their coaches. Fortunately in professional football, 

objective and reliable performance measurement is already a widespread practice 

among teams, and it is these measures of performance that have been used when 

measuring the performance of participants during competitive matches. The 

ProZone® (ProZone®, Leeds, England) image-based tracking system is widely used 

among Premiership and Championship division sides in England and Wales, and 

indeed throughout Europe. This semi-automated system uses eight cameras placed 

strategically around football stadia that capture the position of all players on the pitch 
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at a sampling rate of 10Hz. These series of discreet positional data points are then 

used to compute the velocity of each individual player during each and every 0.5-

second portions of the game using Pythagoras’ Theorem. This method of player 

tracking has been demonstrated as being extremely reliable in determining both the 

exact position of players at any given moment, as well as their direction and speed of 

movement (Di Salvo et al., 2009; Di Salvo, Collins, MacNeill & Cardinale, 2006). This 

data was already being collected by participating teams, and was made available for 

the current study with the permission of the players and teams involved.  

 While the ProZone analysis system computes a number of output variables, in 

keeping with the aim of the current analysis to use measures of performance that are 

most useful to football players and coaches, only the total amount of distance 

covered during the match and the distance covered at ‘high-intensity’ were analysed 

in terms of the impact that prior sleep had on each of them. Discussions with the 

sports science support staff at the football clubs of participants revealed that these 

two measures were the ones that they themselves most widely used when reviewing 

the match performance of their players. Total distance covered is defined as the total 

distance covered at any speed, regardless of whether a player was on or off the ball, 

during the entire match (including ‘injury time’). High intensity distance is defined as 

occurring when a players average speed for a 0.5-second period is in excess of 19.8 

km/h, with the total distance covered being the aggregate distance covered during all 

0.5-second epochs above this threshold.  

 In terms of the importance of these measures, high-intensity distance in 

particular has been highlighted as being ‘a crucial element of football performance’ 

(Mohr, Krustrup & Bangsbo, 2003). Di Salvo, Gregson, Atkinson, Tordoff & Drust 

(2009) suggest that “high intensity efforts are critical to the outcome of matches as 
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they relate to activities that are key to the final match result…” (p. 205). It has also 

been demonstrated as being able to differentiate between levels of play in both 

female and male football players (Krustrup, Mohr, Ellingsgaard, Bangsbo, 2005; 

Mohr, Krustrup & Bangsbo, 2003), as well as being sensitive to the physiological 

changes associated with training (Krustrup & Bangsbo, 2001). Analysis of the levels 

of high-intensity distance covered by all 20 teams in the English and Welsh 

Premiership division suggests that high intensity distance covered is related to the 

overall success of teams during the course of a season (Di Salvo et al., 2009). In 

addition to the fact that it was considered to be an important factor by coaches, and 

despite the fact that the total amount of distance covered by players is a rather 

simplistic measure of performance, Boyd (2011) suggests that it is still an important 

measure to consider since it has a strong relationship with the total amount of work 

undertaken by players during competition. An additional consideration is that, while 

sprinting and high intensity activity tends to occur during crucial moments of matches, 

they still only account for at most 12% of distance covered during a match, 

accounting for at most 3% of playing time (Andrzejewski, Chmura, Pluta, Strzelczyk 

& Kasprzak 2013). Any analysis which omits the total distance covered would 

therefore confine itself to only measuring a small percentage of the activity that takes 

place during matches.  
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2.3 – Training Based Performance Measurement 

 

 Similar to the measures used to assess performance during matches, the 

current investigations have aimed to assess performance during training in a manner 

which is consistent with measures already widely used by football clubs, and that is 

as naturalistic as possible, as opposed to using contrived measures of performance 

as has been used in previous research (e.g. Martin, 1981; Horne & Pettitt, 1974; 

Bambaeichi et al., 2005). It is fortunate that most professional football clubs already 

engage in extensive analysis of performance during training, just as they do in 

matches, so valid and applicable measures of performance were already being 

collected on all of the football players participating in the current study (a factor 

which played a part in the decision to proceed with studying football players). 

 The tracking system that was used to assess training performance data was 

the Catapult® X3 Athlete Monitoring System (Catapult, London). This system uses a 

small remote unit that is worn by players during all training sessions, and uses a 

combination of GPS satellite tracking and a local base station to provide accurate 

location data for each player, at a sampling rate of 5Hz. These location data are 

used in a similar manner to the raw data from the ProZone® tracking system to 

calculate the speed and distance travelled during training sessions. In addition the 

Catapult system employs a tri-axial accelerometer, sampling at 100Hz, to measure 

impact forces (such as those occurring when the foot strikes the ground, during 

sudden changes of direction, or the forces occurring during a tackle). The use of 

these devices during training has become increasingly popular in field sports such as 

football (Kelly, Coughlan, Green & Caulfield, 2012; Montgomery, Pyne & Minahan, 
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2010) and can be used to calculate an overall level of physical exertion that the 

wearer has given during a specified period of time (PlayerLoad; Boyd, 2011). It is 

widely used to measure the physical demands in field sports (Montgomery et al., 

2010; Boyd, 2011; Young, Hepner & Robbins, 2012), and has been demonstrated as 

being a reasonably valid measure of force (e.g. Wundersitz, Netto, Aisbett & Gastin, 

2013), and has also demonstrated as having a significant relationship with indicators 

of muscle damage (Young et al., 2012; Wudnersitz et al 2013), suggesting that it is 

indeed a valid measure of overall exertion. In addition, immediately after each 

training session players were asked to provide a rating of perceived exertion (RPE) 

on a scale from 1-10, of how much effort they feel they had applied.  

 To maintain consistency with the measures used when assessing match 

performance, and again following discussion as to which measures would be most 

useful to the sports science support staff at participating clubs, total distance covered 

during training and high intensity distance covered were again used as measures of 

physical performance, in addition to the PlayerLoad measurement taken from 

accelerometer data and the RPE scores provided by players immediately following 

each training session. Due to the fact that the length of training sessions varies much 

more considerably than the length of matches, all measures of performance were 

divided by the length of the training session, with the exception of RPE scores, which 

were instead divided by the total distance covered, as it seemed like a more 

important factor in determining how much effort players would exert than would 

training time. In fact the total amount of distance covered would likely be a better 

controlling factor, but the other performance measures used directly depend (to 

varying degrees) on total distance covered anyway, so it would be illogical to control 

for that factor in these measurement. Where physical activity was to be used as a 
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predictor (rather than an outcome) for subsequent sleep, the above measures were 

used in their raw (i.e. not controlled for time or distance) form to assess the total 

level of physical effort that had been applied in that day’s training. In addition, the 

raw number of accelerations was used as a predictor to assess the level of physical 

effort. Again this was on the advice of sports science support staff; since harder 

‘interval’ type sessions invariably feature a greater number of accelerations than 

more ‘steady-state’ training sessions. While the number of accelerations will 

contribute towards the player’s PlayerLoad value obtained from accelerometer data, 

the raw number itself is never-the-less used by the sports science support staff as a 

measure of physical exertion in their players.   
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Chapter 3 

 

 

Sleep in Elite Level Athletes 
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3.1 – Introduction 

 

 Both anecdotal and more recently research evidence (Savis, 1994; Erlacher 

et al., 2011; Leeder et al., 2012; Sargent et al., 2012) has laid credence to the notion 

that sleep disturbance is a common difficulty faced by elite athletes. There are 

countless potential sources of sleep disturbance among athletes, for example as a 

consequence of anxiety about an upcoming performance, unusual scheduling of 

sleep due to competitive timetables, jet-lag and/or sleeping in a novel environment 

Davenne, 2009). Even though the impact that the above factors can have on sleep 

has been reasonably well documented in the mainstream sleep literature (e.g. 

Dinges et al., 1997; Sagaspe, Sanchez-Ortuno, Charles, Taillard, Valtat, Bioulac & 

Philip, 2006; Yang et al., 2010; Stepanski & Wyatt, 2003; Arendt, Stone & Skene, 

2005), it is not a question, however, that has received much direct attention in sport 

psychology. While even on its own the lack of data addressing this question would 

be of concern, it is also important to remember that athletes are an especially 

heterogeneous group. There are many factors which could feasibly have a differing 

impact on athletes’ sleep based upon the nature of that sport, such as; whether it is a 

team or individual sport (competitors of individual sports have been reported as 

experiencing higher levels of anxiety compared to competitors of team sports, which 

is likely to have an impact upon sleep; Martens, Burton, Vealey, Bump & Smith, 

1990); or if it takes place indoors or outdoors (due to the differing levels of exposure 

to bright light, which is usually thought to be the strongest cue reinforcing circadian 

rhythms, which play a large role in sleep regulation; Khalsa et al., 2003; Czeisler et 

al., 1989). In attempting to understand the nature of sleep in elite level athletes it is 

important to measure sleep during the competitive season (when the above sleep 
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pressures are most relevant, and where their consequences are most important), 

and to obtain data from competitors from different sports, which place (potentially) 

sleep related pressures on competitors in different ways.  

 Another difficulty in applying the results from mainstream sleep literature to 

athletes, particularly when one considers the widely cited belief that poor sleep has a 

negative impact upon performance (Erlacher et al., 2011; Savis, 1994; Leeder et al., 

2012; Sargent et al., 2012) arises from the fact that such research has tended to 

adopt an experimental approach. Using a total or partial sleep-deprivation paradigm, 

and measuring the impact that an acute period of sleep deprivation has on 

performance at a task performed immediately afterwards, has problems. Such 

studies not only restrict sleep in a manner inconsistent with the sleep pressures face 

by athletes, but also measure performance in an unrealistic manner using simple 

lab-based measures of components of performance, such as reaction time or 

exercise-to-exhaustion. Initial research (e.g. Martin, 1981; Horne & Pettitt, 1974; 

Robert & Hockey, 1997) has highlighted the important role that mood and motivation 

plays in the relationship between sleep and performance (both physical and 

cognitive). The motivational climate in any lab-based performance measure will 

never replicate the climate found in a real performance.  

 Despite the apparently widespread belief that adequate sleep is a pre-

requisite for achieving peak performance (Mah, Mah, Kezirian & Dement, 2011; 

Reilly & Edwards, 2007; Robson-Ansley, Gleeson & Ansley, 2009; Samuels, 2008), 

there has been very little research measuring sleep in elite and higher performance 

athletes. Presently, only three published studies have addressed this question; 

Erlacher et al. (2011) retrospectively surveyed 632 international, national and 

university-level German athletes, finding that two-thirds reported experiencing 
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difficulties sleeping the night before important competitions; Leeder et al. (2012) 

measured the sleep of a variety of international-level athletes using wrist actigraphy, 

finding evidence of significant sleep disturbance among athletes compared to 

controls; and Sargent et al (2012) again used wrist actigraphy to measure sleep of 7 

international-level swimmers during an intensive two-week training camp, finding 

similar evidence of significant sleep disturbance (although the sleep of their athlete 

sample was not compared directly against a control group). While these studies 

suggest that athletes are at risk of poor sleep, there are limitations of each. 

Retrospective recall, particularly recall of sleep which is difficult even under normal 

circumstances (Morgenthaler et al., 2007; Sadeh, 2011; McCall & McCall, 2012) is 

fraught with difficulty. Where objective measurement has been used, Leeder et al. 

2012 only recorded sleep for four nights (falling short of the seven nights 

recommended by the American Academy of Sleep Medicine; Morgenthaler et al., 

2007), and took place during the off-season, where pressures such as pre-

performance anxiety and training schedules are likely to be less severe. Finally 

Sargent et al. (2012) measured sleep during a period of intense training during a 

two-week ‘training camp.’ While doubtless interesting, the sleep patterns observed 

are also unlikely to be representative of the pressures faced by athletes on a daily 

basis.  
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3.2 – Aims 

 

 While there is a small but growing body of evidence to suggest that elite-level 

athletes are prone to poor sleep, current research has suffered from either subjective 

and unreliable sleep measurement, insufficient duration of sleep measurement, 

relatively low sample sizes or a lack of evidence based on sleep during the regular 

competitive season. The current study aims to address these limitations, by 

measuring sleep objectively during the regular competitive season of elite-level 

athletes for an extended period of time. Competitors from a number of different 

sports will be compared against each other as well as against an age-matched group 

of non-athletic control participants. Both male and female participants will be 

recruited, so gender will also be included as a factor.  

 

Research Questions 

 

• Is there a significant difference between the sleep characteristics of elite level 

athletes and controls? 

• Do male and female athletes differ in their sleep, compared to male and 

female controls? 

• If such differences do exist, are they stable throughout the night or do they 

vary according to length of sleep? 
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3.3 – Method 

3.3.1 – Participants 

 

A total of 95 participants were recruited with an age range of 18 to 35 (mean age 

23.17 years, standard deviation 4.00 years). No participants reported any evidence 

of a pre-existing sleep disorder, and none were excessive users of caffeine or 

alcohol. 27 participants were recruited to act as sedentary controls, defined as self-

reported exercise levels below the recommended public health dose of 150 minutes 

moderate intensity exercise per week (National Health Service, 2013; Centres for 

Disease Control, 2013). All remaining participants were elite-level athletes from a 

total of 6 different teams representing 3 different sports. All athletic participants 

trained on a daily basis, and competed at a national and/or international level. The 

professional football group contained athletes from 3 different professional football 

clubs competing in the England and Wales football league (2 Premiership Division 

teams, 1 Championship Division Team). The university football group and the 

basketball group were each made up of a single team, while the swimming group 

was made up of individual athletes recruited from one of British Swimming’s National 

Performance Centres. A summary of all participant groups is available in table 3.1. 
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  n  Age (years)  Gender 

Group      

 Professional Football  33  25.0 (3.7)  Male 

 University Football 12  20.2 (1.0)  Female 

 Swimmers 13  20.4 (1.7)  Mixed (7 male, 6 female) 

 Basketball 10  20.20 (0.6)  Male 

 Control 27  24.6 (4.6)  Mixed (19 male, 8 female) 

Table 3.1. Summary of participants included in the present analysis. Age is presented as mean 
average (standard deviation).  

 

3.3.2 – Sleep Recording 

 

 Participants wore an Actiwatch AW4® activity monitor on their non-dominant 

wrist for a period of two weeks (33 participants from professional football clubs wore 

Actiwatches for as long as 60 days continuously as part of other investigations, 

within this thesis). In these cases, two weeks of sleep data from each individual was 

randomly selected and the analysis repeated. This made no significant difference to 

any results, so results presented are from all available data). Participants were 

asked to wear their activity monitor all day; however practical expediencies relating 

to the fact that the devices were not waterproof and had to be removed for 

competition and training (in athletic participants), dictated that the majority of 

participants did not wear the activity monitor during the middle of the day. 

Participants were also asked to use the event marker to aid sleep identification and 

measurement; instructions were for a single button press at ‘bed time’ (explained to 

participants as being when they were in bed with the intention of sleeping, and to 
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exclude situations such as reading in bed before trying to sleep), and another single 

press in the morning to indicate ‘get up time’ (defined as the point at which 

participants get out of bed, or are no longer intending to sleep). When bed time and 

get up time are specified by the participant, the proprietary sleep identification 

algorithm then identifies the beginning and end of sleep automatically using 

standardised criteria, as well as the parameters of sleep described in section 2.1. 

Following the period of sleep measurement, participants were given feedback about 

their sleep, and any points of confusion that arose in their data were discussed and 

clarified.  

Raw data was analysed using proprietary Actiwatch Sleep Analysis Software 

7 (Cambridge Neurotechnology), using the medium sensitivity for wake/sleep 

identification (CamNTech, Cambridge, UK). Data were collected in 30-second 

epochs. Analysis was conducted on the timing (bed time, get up time), length (total 

sleep time, TST) and quality of sleep (sleep efficiency, SE; sleep onset latency, SOL; 

wakefulness after sleep onset, WASO; and movement onsets per hour during sleep, 

movements/hour). The term ‘sleep quality’ refers to variables which relate to the 

restfulness and continuity of sleep, based on (e.g.) the contention of Akerstedt, 

Hume, Minors and Waterhouse (1997) that sleep quality is thought of as being good 

when it is easy to fall asleep and when sleep is continuous. Details of how these 

variables are measured using actigraphy are provided in chapter 2.   
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3.3.3 – Analyses 

 

 Statistical analysis was conducted using SPSS (Version 20, IBM 2011) and R 

(Version 2.15, R Core Development Team, 2012). A full list of the specific packages 

attached to R for the analysis is listed in Appendix A.  

Since all the statistical analyses conducted rely on the premise that scores 

are independent, each individual participants observed values for the measured 

outcomes were averaged for the analysis period. These averages form the basis of 

the statistical analysis, therefore each participant contributed only a single score on 

each measured variable for analysis, to comply with the assumption of 

independence of measures. 

 Initial analysis was conducted using MANOVA to examine differences in sleep 

between individual groups based on activity type (Sedentary, Football, Swimming 

and Basketball), and due to gender. Follow-up analysis was conducted using 

univariate ANOVA (in the case of differences between athlete groups) and 

independent samples t-test (to test for gender differences), with the Bonferroni 

adjustment applied to control for increased family-wise error, according to Field 

(2009) and Field, Miles and Field (2012). Significance was set at 5% (two-tailed) in 

all cases.  
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3.4 – Results 

 

 A comparison of the results are presented in the arrays in figures 3.1 and 3.2 

showing the differences in sleeping behaviour based on the activity type of the 

participants and gender, respectively. Examination of these results would seem to 

suggest that the type of activity did have a significant impact on sleep (figure 3.1), 

since, in all cases, there is evidence of significant differences between groups and, 

in many cases, group averages show a difference greater than one standard 

deviation from each other. In contrast gender (figure 3.2) did not seem to have a 

significant impact upon sleep. Results from the omnibus MANOVA confirm this, 

demonstrating that the main effect of gender did not have a statistically significant 

effect on the measured sleep parameters (V = 0.147, F7,82 = 2.02, p > 0.0005), while 

the main effect of activity type did (V = 1.084, F21,252 = 6.79, p < 0.0005). There was 

also evidence of a significant interaction effect between gender and activity type. (V 

= 0.341, F14,166 = 2.44, p < 0.0005).  
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Figure 3.1. Comparison of sleep 
measures for the main effect of 
activity type. Bars represent mean 
averages; error bars show 1 
standard deviation of the mean 
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Figure 3.2. Comparison of 
sleep measures for the main 
effect of gender. Bars represent 
mean averages; error bars 
show 1 standard deviation of 
the mean. 
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Follow up analysis conducted for the main effect of exercise type 

demonstrated a significant effect for all measured sleep parameters, so further post-

hoc testing by using Tukey’s HSD for pairwise comparisons was conducted to 

establish precisely where significant differences exist between groups. Groups are 

compared graphically in figure 3.1, and the results of these pairwise comparisons are 

detailed in table 3.1 in Appendix B. There are a number of significant differences 

between the groups. Two distinct groups emerged for the timing of sleep, with 

basketball players retiring to bed significantly later than all other groups. The 

remaining groups appear to form a broad continuum, with football players going to 

bed the earliest (and significantly earlier than the sedentary group), with the 

swimming group going to bed at a non-significant interval between these two groups. 

Participants are also split broadly into two groups based in length of sleep, with 

football players sleeping for approximately one hour longer than all other participants. 

Pairwise comparisons also demonstrate several significant differences between 

groups on measures of sleep quality. The control participants as a group exhibited 

the most restful sleep, taking the shortest time to get to sleep after bed time, less 

wakefulness after sleep onset, increased sleep efficiency and fewer movements 

during sleep than all other groups. In particular all athlete groups exhibited a similarly 

significant excess of movement during sleep compared to sedentary controls. It is 

not clear if this increased level of movement is a consistent feature of sleep in 

athletic participants or if it is confined to a specific part of sleep (for example Football 

players tended to sleep for longer so an increase in movement levels would be 

expected towards the end of sleep where SWS is less prevalent and lighter stage 

one and two sleep predominates). Figure 3.3 provides an example Actiwatch output 

comparing a male football player to a male sedentary control, which demonstrates 
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the significantly increased level of movement in the football player is a consistent 

feature during the entire sleep period. Figure 3.4 represents the combination of sleep 

data for each athlete group in comparison to sedentary controls, which also serves to 

highlight the apparent consistency of increased movement levels throughout sleep 

and not limited to any particular period during sleep, suggesting a consistent pattern 

of increased movement during sleep.  
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Figure 3.3. Example Actiwatch output comparing a 24 year old male sedentary control (above) to a 
24 year old male professional football player. Vertical black lines signify movement, with the height of 
the bar based on the intensity of movement. The beginning and end of the sleep period is marked by 
vertical pink lines below the movement trace. Red and white coloured areas correspond to 
sleep/wake identification (based on comparison to EEG), with red areas corresponding to periods of 
wakefulness.  

 

Returning to the significant interaction effect from the omnibus MANOVA, 

post-hoc univariate ANOVA’s revealed that were significant interaction effects 

between gender and activity type on the timing of sleep (both bed time and get up 

time). There were no significant interaction effects on the length of sleep or on any 

measure relating to sleep quality. Excluding basketball players (because there were 

no female basketball players included in the sample, figures 3.5 and 3.6 demonstrate 

the source of the interaction effect: while male football players go to bed and got up 

earlier than their female counterparts, this observation is reversed in swimmers and 

sedentary controls.
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Figure 3.4. Movements level throughout sleep. Measured 30 second epochs are condensed into 15 minute bins, with each point showing the percentage of 
epochs in each bin containing movement.
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3.5 – Discussion 

3.5.1 – Evidence of Sleep Disturbance in Elite Level Athletes 

 

 The main findings of this study are to reinforce what has been discovered 

previously, (Erlacher et al., 2011; Leeder et al., 2012; Sargent et al., 2012) by 

demonstrating that there are significant differences in sleep between elite level 

athletes and sedentary control participants. The current study also extends the 

findings of existing work, representing the largest sample of objectively measured 

sleep in elite-level athletes, and is also the first to objectively measure the sleep of 

these participants during the regular competitive season, and not during the off-

Figure 3.5. The interaction 
effect between gender and 
activity type on bed time 

Figure 3.6. The interaction effect 
between genders and activity type 
on get up time.  
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season or during a period of higher than usual intensity training. The comparison 

between several different sports is also informative, as the varying characteristics of 

each distinct sub-group offers insight and explanation for some of the differences in 

sleep observed here. The differences in the timing of sleep represent a useful 

example. Among the data presented here, swimmers of both genders and male 

footballers retired to bed significantly earlier than other athletic groups. This is likely 

a direct consequence of the timing of training sessions in these groups, both of 

which regularly reported to training early in the day, and in the case of swimming 

often trained a second time in the late afternoon/evening. This disparity between 

male and female football players is likely a consequence of the fact that the female 

football players in this sample were based in a university team (and consequently 

trained in the afternoon or evening), while the professional male footballers would 

start training early in the morning. In contrast, early training sessions are almost 

ubiquitous among elite-level swimmers, regardless of whether they are university-

based or not. This is a consequence of the demands of swimming being a sport that 

largely depends upon physical conditioning, which mandates multiple training 

sessions per day. In order to allow for adequate recovery between sessions, the first 

training session usually takes place very early in the day. This serves to highlight the 

heterogeneity between the sleep pressures that athletes face, not just for athletes in 

different sports, but also between athletes in the same sport but train in different 

contexts.  
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3.5.2 – Possible Contributory Factors to Poor Sleep in Athletes 

 

 There are a number of factors which could cause or at least contribute 

towards the disturbance of sleep found in these data, as has been discussed in 

chapter one of this thesis. There are however a number of further considerations to 

bear in mind in the light of the data presented here.  

 Regarding the impact that anxiety can have on sleep in elite-level athletes, for 

instance, is most often considered in terms of the impact that pre-performance 

anticipatory anxiety can have on the period of sleep immediately preceding a 

competition (e.g. Savis, 1994; Davenne, 2009). The results presented here however 

make it clear that sleep disturbance is consistently in evidence in athletes for a 

protracted period of time, and does not appear to depend significantly on proximity to 

a competition. This is particularly demonstrated by the swimmers in the sample, who, 

unlike the football players and basketball players, had no competitions during the 

study period. If it is indeed the case that anxiety is one of the contributory factors to 

poor sleep in athletes, this strongly suggests that it is not limited to specific periods 

of anxiety, but is a more chronic feature of athletes’ sleep. As has been previously 

noted, anxiety in elite-level athletes is not limited just to periods immediately before 

competitions, but is also likely to brought about due to other factors, such as the fact 

that not only are athletes competing against opposition teams, they are also 

competing with other members of their own team for inclusion in upcoming 

competitions. All the football teams in the sample above for instance maintained a 

‘front bench’ team of at least twenty players, but only eleven to fifteen players will 

play in any given match. Being persistently left out of the match squad will have a 
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detrimental impact on a players future career, and so the constant need to impress 

the management and coaching staff at their team to ensure selection will be a 

constant source of stress for players.  

  Another factor which could conceivably be contributing towards poor sleep in 

athletes stems from the level of physical exercise that is predominate feature of 

athletes day-to-day lives, both in the form of competitions and training. While 

epidemiological evidence suggests that the widely held belief is that exercise has a 

positive impact on sleep (Youngstedt & Kline, 2006; Sherrill et al., 1998; Vuori et al., 

1988), empirical evidence for this belief is fairly scarce, in addition to depending on 

studying the impact of recreational levels of exercise on good sleepers (Driver & 

Taylor, 2000). Neither of these conditions could reasonably be said to apply to elite-

level athletes. In contrast, evidence from the study of ‘extreme’ levels of exercise 

(marathon type distances and above; Baekland & Lasky, 1966; Shapiro, Bortz, 

Mitchell, Bartel & Jooste, 1981; Taylor, 2001), suggests that this level of activity 

tends to have a deleterious impact on subsequent sleep. Another factor to consider 

when thinking about the impact that exercise can have on sleep is the time of day at 

which that exercise takes place. Yamanaka et al., (2010) demonstrated that exercise 

can exert an influence on circadian rhythms even over an acute period. Considering 

that the timing of competitions is not particularly stable, large changes to the 

scheduling of sleep could be exerting a continuously deleterious impact on sleep as 

a consequence. This is particularly true among the professional football players in 

this sample could vary on a weekly basis between a ‘kick-off’ time at 1300 hours in 

the afternoon to 2000 hours in the evening. In combination with matches taking place 

away from home, this contributes in many cases to a large degree of variability in the 

sleeping schedules of football players, which is a significant cause for concern from 
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the perspective of sleep hygiene (Wang, Yang & Tsai, 2005; Hauri, 1977; 1992). The 

impact that physical activity taking place during training and matches can have on 

sleep, in addition to the impact that the timing of matches can have on sleep will form 

a part of the remaining investigations in this thesis.  

 

3.6 – Conclusions 

 

 The data presented here have largely backed the conclusion that has been 

reached by previous studies and anecdotal reports, that sleep disturbance is 

common among elite athletes. The current work is distinct from existing research by 

being the first to objectively verify the presence of significant sleep disturbance 

during the competitive season, rather than during the off-season (Leeder et al., 2012) 

or during periods of unusually intensive training (Sargant et al., 2012). In terms of 

sample size this is also the largest study to objectively measure sleep in elite level 

athletes.  

 The presence of significant and enduring sleep disturbance among elite level 

athletes raises a number of questions which will now be addressed during the 

remainder of this thesis. First and foremost, the impact that sleep can have on 

performance will be investigated, both during training and during competitive 

matches in professional football players. In addition the impact that participating in 

elite-level sport can have on sleep will be examined, including the impact that 

engaging in regular strenuous activity can have on sleep, as well as other factors 

such as the organisational stressors associated with competition.  
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3.7 – Summary 

 

• Elite level athletes demonstrate markedly different sleep to sedentary controls, 

particularly a significantly lower sleep quality, in agreement with previous 

research.  

• This disturbance is apparently relatively stable during the competitive season, 

and not confined to pre-competition periods.  

• This disturbance is also present throughout the sleep period, and is not 

confined to any specific portion of sleep.  

• There are also specific differences in sleep between groups of athletes (e.g. 

the timing of sleep in professional athletes compared to student athletes).  

• There are a wide variety of factors which may be contributing to sleep 

disturbance, and existing research suggests that such disturbance would be 

expected to have a number of negative effects on athletes.  
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Chapter 4 

 

 

Sleep and Match Performance in Professional Football Players  
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4.1 - Introduction 

 

 While the contention that adequate sleep is an important factor for athletes 

seeking to achieve maximum performance is a popular one among athletes and their 

coaches (Erlacher et al., 2011; Savis, 1994), empirical data supporting this notion is 

difficult to come by, and even more difficult to apply to actual performances of real 

athletes. All the of the existing research presented thus far has tended to research 

the impact of acute periods of severe sleep restriction, on laboratory based 

measures of performance, in ‘normal’ or otherwise non-elite athletic participants. 

While it has been acknowledged several times the importance of the role that 

participants’ motivation to perform under conditions of inadequate sleep (Martin, 

1981; Souissi et al., 2003; Rodgers et al., 1995; Bambaechi et al., 2005), there has 

yet to be any research studying athletic performance in a motivationally relevant 

environment.  

 This lack of research is likely due in no small part to the practical difficulties 

associated with the methods most commonly adopted by the sleep research 

community of total or partial sleep deprivation. It seems highly unlikely that an athlete 

or coach of an elite athlete would be willing to subject themselves to reduced sleep 

before an appropriately important competition, in the way that a sleep researcher 

may wish to subject someone to such an ordeal; because of the suspicion that a 

decrement in performance would be the result. An alternative method to investigate 

the relationship between sleep and performance is therefore necessary. A number of 

recent studies have advocated the use of wrist actimetry as being particularly 

suitable to the study of sleep in athletes (Erlacher et al., 2011; Leeder et al., 2012; 
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Sargent et al., 2012) since it allows objective recording of sleep for a protracted 

period of time, with minimal interference to sleep itself. Such a method would entail 

measurement of sleep for a period of time sufficient for natural variations in sleep to 

occur, and simultaneously observing the performance of athletes over the same time 

period to enable the relationship between sleep and subsequent performance to be 

investigated and modelled.  

 An additional benefit of employing such a model is that it would enable a 

number of further questions to be investigated. Previous literature has highlighted, 

for example, that a majority of athletes have reported specific problems with sleep 

before competitions (Erlacher et al., 2011). The collection of objective sleep data for 

a protracted period would enable a comparison between the sleep that athletes get 

habitually throughout the season, compared to sleep the night before competitions. 

Another useful comparison would be to compare sleep before home games to sleep 

before away games. While sleep the night before a home game may be easier and 

more routine, since athletes are able to sleep in their own beds near to the place of 

competition, sleep before away games will often necessitate sleeping in a hotel the 

night before (which had been demonstrated as having a negative impact on sleep; 

Davenne, 2009) or travelling long distances on the day of competition, which could 

place a constraint on an athletes’ normal sleeping time. In addition the concept of a 

‘home-field advantage’ is a well-established phenomenon in the Sport Psychology 

literature, having been observed in a number of sports (Bray & Widmeyer, 2000; 

Waters & Lovell, 2002; Anderson, Wolfson, Neave & Moss, 2012). A number of 

contributory factors have been considered, such as crowd behaviour, venue 

familiarity, referee bias and territoriality. While travel fatigue and routine disruption 

have been considered as potentially explanatory factors (for away team impairment 
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rather than home team improvement), it does not appear that the specific role of 

sleep has been studied itself. Collection of sleep data over a long period will afford 

such an opportunity.  

 Finally, just as sleep is thought to be an important factor in influencing 

subsequent performance, it is also supposed that exercise will exert a reciprocal 

effect on sleep (Sherrill et al., 1998; Vuori et al., 1988). There is however, a 

disagreement in the direction of this supposed influence, with some suggesting a 

positive influence (Brand et al., 2010; Youngstedt & Kline, 2006) and others finding a 

negative influence (particularly when the exercise is intense and sufficiently close to 

bed time; e.g. Souissi et al., 2012). Long-term objective sleep data will also enable a 

comparison to be made between athletes’ habitual sleep and their sleep following 

competitions in order to examine the validity of these suppositions during the 

competitive season, and without artificially influencing the sleep of the participants 

involved.  

 Clearly such a study would also require the use of a valid and reliable 

measure of performance to compare against the sleep data obtained from 

participants. The difficulties of performance measurement are perhaps another 

reason why sleep research has historically taken place in laboratories; the controlled 

environment allows specific aspects or components of performance (such as 

reaction time, decision making etc.) to be isolated and studied in a reliable (if not 

ecologically valid) way. Given the importance of the motivational climate in which a 

performance takes place, a ‘real-life’ measure of performance is required. 

Fortunatley professional football clubs already assess match performance objectively 

using the Prozone® system, which provides an accurate player-tracking capability 

during competitive matches. Sports scientists embedded within professional football 
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teams have been making use of the data this system provides for a number of years 

to gather objective information regarding the performance of both individual players 

and teams.  

 

4.2 – Aims 

 

 While it seems to be a rather widely held view that adequate restful sleep is at 

the very least an important factor contributing towards achieving optimal athletic 

performance, this proposition has been troublesome to examine properly due to a 

number of methodological and practical difficulties. The current study aims to 

investigate some of the more commonly asked questions, without experimentally 

manipulating sleep and by measuring performance as it occurs naturally, rather than 

in a contrived environment, due to the evidence highlighting the import role that the 

motivational climate has in determining how people cope with sleepiness. Due to the 

difficulties associated with trying to manufacture sleep deprivation in the more 

‘traditional’ manner in elite-level athletes, sleep will instead be measured for an 

extended period of time in order for natural variations in sleep to occur. The impact 

that these variations have on subsequent performance will then be investigated. A 

number of comparisons will also be made between how the sleep of athletes in 

specific situations, namely comparing athletes’ habitual sleep to their immediate pre-

performance sleep, and their sleep before home competitions compared to before 

away competitions. Conversely, the potential impact that competing can have on 

subsequent sleep will also be investigated, by investigating the relationship between 
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the levels of physical activity during competitions with subsequent sleep, and also 

comparing sleep after competitions with habitual sleep.  

 The athletes that will be investigated in the current study will be professional 

footballers, since there are a number of advantages with this population. Primarily 

the structure of competition is such that during the competitive season matches take 

place on a weekly basis, with players’ usually playing at least once (and often twice) 

per week, providing ample opportunity for the collection of performance data from 

matches. The existence and widespread use of the objective Prozone® match 

analysis software is another large advantage, since it will enable the collection of 

validated performance data, which is already used by professional teams, so any 

results will be immediately understandable and useful to the participants themselves. 

Finally, the fact that performance measurement is so widespread in this population 

should mean that participants will be accustomed to being scrutinised in this way, 

resulting in a minimum level of disruption to their daily routine.  

 

Research Questions 

 

• Is there a relationship between sleep and performance in professional football 

players? 

• Is there any change in sleep before competitions, and does this vary 

depending on the location and/or time of competition (i.e. home or away, 

afternoon or evening)? 
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• Does the strenuous activity involved in elite level competition have a direct 

impact on subsequent sleep, and does this vary according to location and/or 

time of competition? 

 

4.3 – Method 

4.3.1 – Participants 

 

 A total of 26 professional football players currently playing for 2 professional 

football clubs in the English and Welsh Football league (1 team competing the in the 

Premiership division; n = 9 players, the other in the Championship division; n = 17 

players), were recruited for the study, with an average age of 25.4 years (SD 4.0 

years). At the beginning of the study all participants were considered by their club as 

belonging to the ‘first team’, and were training on a daily basis and competing on a 

weekly basis. Participants reported no evidence of pre-existing sleep disorders, and 

were not excessive users of caffeine or alcohol. Participants were approached 

through their club, and were told of the study’s aims and methods before consenting 

to participate.  
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4.3.2 – Sleep Recording 

 

 Sleep data were recorded from participants for a period of 2 months during 

the regular competitive season, using an Actiwatch AW4® (CamNTech, Cambridge, 

UK), during which time participants were asked to wear the device continuously, 

except for bathing, training and competing (to prevent damage to the monitors, and 

because rules prevent players from wearing any ‘superfluous’ items on their person 

during competition). This yielded a total of 661 nights of sleep data from all 26 

participants, considerably less than the maximum amount of data. This is attributable 

to mid-season transfers resulting in participants leaving the club, players’ omitting to 

wear the monitor during periods of injury, and simple forgetfulness. A total of 20 

players contributed at least three nights of pre-match sleep data, totalling 81 nights 

where match data was also available (12.3%; approximately what would be expected 

for players competing on average, once per week- 14.3%). Participants were 

instructed to use the event marker of the Actiwatches to indicate ‘bed time’ and ‘get 

up time’, as described in section 3.3.2.  

 Sleep data was analysed using the proprietary Actiwatch Sleep Analysis 

Software 7 (CamNTech, Cambridge, UK). Data was collected in 30-second epochs, 

and the medium sensitivity setting was used for sleep/wake identification. Analysis 

was conducted examining the timing (bed time, get up time), duration (total sleep 

time; TST), and quality of sleep (sleep efficiency, SE; sleep onset latency, SOL; 

wakefulness after sleep onset, WASO; and movements per hour during sleep, 

movements/hour). Details of how these variables are measured using wrist 

actigraphy are discussed in section 2.1.  
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4.3.3 – Match Performance 

 

 Match performance was measured using the ProZone® image-based player 

tracking system (ProZone, Leeds, England). An array of 8 video cameras installed in 

football stadia accurately track all 22 players during the course of a football game, 

with a measurement frequency of 10Hz. Pythagoras’ Theorem is then used on this 

raw data to calculate the direction and speed of each player during 0.5 second 

epochs. This tracking system was already being widely used by the sports science 

staff at the clubs of participants, who were consequently familiar with the output from 

the system as it was used by them on a daily basis to accurately and objectively 

measure the performance of players during competitive matches. Discussions with 

the sports science support staff led to the decision to focus on the total distance 

covered (since it has a strong relationship with a players total workload; Boyd, 2011), 

and the amount of distance covered at high intensity, defined as average speed 

during a 0.5 second epoch above 19.8 km/h (due to the importance of such activity 

in determining the outcome of matches; Mohr, Krustrup & Bangsbo, 2003; Di Salvo 

et al., 2009). In order to examine the impact of physical activity on subsequent sleep, 

the above measures were used as predictors as well as the total playing time and 

the number of accelerations identified by the ProZone® system. Due to the rules of 

the English and Welsh Football Association prohibiting the wearing of superfluous 

items during competition, players are not allowed to wear accelerometers or heart 

rate measuring devices as they do in training, so these four measures are those 

commonly used by the support staff to estimate the amount of physical effort applied 

by players during matches (although it is worth noting that such strict rules are not in 
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force in a number of European domestic leagues, where the use of wearable 

tracking technology is permitted).  

 The collection of these performance measures was already being conducted 

by the teams of players, and was made available for the present analysis with the 

permission of the teams and individual players in question.  

 

4.3.4 – Analyses 

 

Statistical analysis was conducted using R (Version 2.15; R Core 

Development Team, 2012). A list of the attached packages used is available in 

Appendix A. Comparisons of sleep in different circumstances (e.g. pre-match sleep 

vs habitual sleep) were analysed initially by repeated measures t-tests, with the 

Bonferroni adjustment applied (Field, Miles & Field, 2012). While a MANOVA would 

generally be preferable in situations with multiple outcome measures, this test 

assumes that multiple measurements on the same individual take place at regular 

intervals (Field, 2009; Field, Miles & Field, 2012). Each individual’s pre-match sleep 

and non-pre-match sleep must be averaged so that each individual contributes only 

one measure for pre-match sleep and one for non-pre-match sleep for each outcome 

measure. This would violate the assumption of equally spaced measurements for a 

MANOVA analysis. The only alternative to using average scores in this instance 

would be to trim the data set to only use data from dates that all participants have in 

common, which would be impractical and not leave sufficient data for a meaningful 

test. Paired t-tests on each outcome were therefore used, with the Bonferroni 
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adjustment to control for the inflated familywise error rate associated with multiple 

comparisons. Significance was set at 5% (two-tailed) in all cases.  

To examine the relationship between sleep and subsequent performance, and 

the relationship between levels of physical activity and subsequent sleep, multilevel 

modelling was conducted. The seven sleep parameters were each assessed for the 

extent to which they predict performance, which was itself measured using the ‘total 

metres’ and ‘high intensity distance’ measurements taken by the Prozone® player 

tracking system, which the sports science support staff at the participating football 

clubs indicated were the two most important and reliable measurements that were 

used within the team. Both predictor and outcome variables were standardised by 

means of a z-transformation according to each individual’s average and standard 

deviation. This standardisation serves a number of purposes. Primarily, it places 

each individuals’ measured scores on the same scale making them directly 

comparable in a way they would not be if measured using raw scores (e.g. a bed 

time of 2300 hours might be an early night by one person’s standards, and a late 

night by another’s, while a bed time z-score of zero would indicate a bed time 

consistent with a person’s average bed time for all participants).  Z-scoring is also 

serves to ‘group-mean centre’ the data, which has a number of statistical advantages 

according to Field, Miles and Field (2012), such as improving the stability of 

predictors and increasing the independence of estimates which is beneficial when 

comparing different models. Finally, having scores which centre around zero 

simplifies the examination of non-linear relationships between predictors and 

outcomes (where they may occur).  

Initial exploration was conducted using the ‘all possible subsets’ analysis 

contained within the ‘leaps’ (Lumley & Miller, 2009), package attached to R, which 



109 
 

computes the model fit using all possible combinations of predictors. Using this to 

inform a starting point, predictors were then inserted and removed from the model 

systematically to find the most parsimonious model. Both linear and polynomial non-

linear relationships between predictor variables and outcome variables were 

considered. Model fit was analysed using the ‘anova’ function in the ‘stats’ package 

(R Core Development Team, 2012).  

 

4.4 – Results 

4.4.1 – Pre-Match Sleep 

 

 Recorded nights of sleep were classified based on whether they immediately 

preceded a match in which the individual was competing or not. Each individual’s 

measured sleep for each of the seven output parameters was averaged for both ‘pre-

match sleeps’ and ‘non-pre-match sleeps’. These data are presented in figure 4.1. 

Average scores were then analysed by repeated measures t-tests corrected with the 

Bonferroni adjustment, the results of these tests are summarised in table 4.1 

(Appendix C), showing the mean for each sleep parameter for both conditions, and 

the results of the paired samples t-tests. There was a tendency for players to retire to 

bed significantly earlier (mean difference 37 minutes, t19 = 3.554, p = 0.002, two-

tailed) and sleep for longer (mean difference 44 minutes, t19 = 3.887, p = 0.001, two-

tailed) the night before matches, however while all measures of sleep efficiency 

demonstrated a slight decline the night before matches (increased WASO, SOL, 

onsets/hour, and reduced SE), these differences were not statistically significant.  
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Figure 4.1. Differences in sleep 
taking place the night before 
matches compared to sleep not 
taking place before matches. 
Bars represent mean averages; 
error bars represent 1 standard 
deviation.  
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4.4.2 – Pre-Home Match Sleep Compared to Pre-Away Match Sleep 

 

 Selecting only nights of sleep taking place before matches, data were split 

into those which occurred the night before a game played at home and those taking 

place before games played away from home, as shown in figure 4.2, which seem to 

suggest that there were no significant differences in sleep in these circumstances.  

This was confirmed by paired samples t-tests, with the Bonferroni adjustment applied, 

the results of which are summarised in table 4.2 (Appendix C).  
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Figure 4.2. Differences in sleep 
taking place the night before home 
matches compared to sleep taking 
place the night before away 
matches. Bars represent mean 
averages; error bars represent 1 
standard deviation.  
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4.4.3 – Sleep Before Afternoon Matches Compared to Sleep Before Evening 

Matches 

 

 Again selecting nights of sleep taking place before matches, data was split 

into those nights before an afternoon match compared to nights before an evening 

match. Afternoon matches had a ‘kick-off’ time of between 1300 and 1500 hours, 

while evening matches had a ‘kick-off’ time of between 1915 and 2030 hours. These 

data are presented in figure 4.3. There appears to be no significant differences in the 

length and quality of sleep in these two situations, although a difference may exist in 

the timing of sleep. Statistical analysis by paired samples t-test confirms this, with 

evidence that players’ arose significantly earlier before evening matches than before 

afternoon matches (mean difference 48 minutes, t19 = 2.475, p = 0.043, two-tailed) 

matched by a trend (albeit a non-significant one, mean difference 49 minutes) for 

players to retire to bed earlier before evening matches than before afternoon 

matches. A summary of this analysis is presented in table 4.3 (Appendix C). 
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Figure 4.3. Differences in sleep 
taking place the night before 
afternoon matches compared to 
sleep taking place the night 
before evening matches. Bars 
represent mean averages’ error 
bars represent 1 standard 
deviation.  
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4.4.4 – The Relationship Between Sleep and Subsequent Performance 

 

 For each of the outcome variables, each z-scored predictor was entered 

individually into the multi-level model, once as linear factor and again as a second 

order (ie parabolic) polynomial. In all cases, attempting to model predictors as having 

a parabolic rather than a linear relationship with the outcome measures did not 

significantly enhance the fit of the model, so for the sake of parsimony, a non-linear 

relationship was discarded in favour of the simpler linear relationship. All of the 

models presented here take the form of a 2-level multi-level model, where each 

individual measurement of sleep and subsequent performance constitutes the first 

level, with each individual’s measurements being grouped according to the individual 

as the second level. The use of a players’ on-pitch playing position (ie, goalkeeper, 

defender, midfielder, striker) and the team to which players belong (since two teams 

are included in the analysis) were considered as higher level groupings above the 

second level grouping. Two 3-level (one with playing position, the other with team 

entered as groupings above the second level) models and single 4-level (with both 

higher level groupings) were considered, but in all cases these higher level models 

did not significantly improve model fit, while increasing the level of complexity, and 

were thus discarded in favour of the more parsimonious 2-level models.  

 A summary of the results of the 2-level modelling attempting to predict 

variation in the outcome variables based on each predictor, entered independently of 

all other predictors, is presented in table 4.4 (Appendix C). While the overall trend 

seems to be that indicators of good sleep have a beneficial impact on subsequent 

performance (e.g. a negative relationship between bed time and performance, 
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positive relationships between sleep quality measures and performance), none of the 

specified predictors demonstrated a significant relationship with performance. In 

addition, in the majority of cases (with the exception of the Z-score of total metres 

covered), the standard error of the regression coefficients crossed zero suggesting 

there is some uncertainty even as to the direction of the relationship.  

 Further analysis was conducted to examine the feasibility that models 

including multiple predictors in combination could provide a more detailed fit to the 

data. An ‘all-possible subsets’ analysis was conducted to aid in guiding the direction 

of this investigation and provide a starting point for more detailed model building, 

which was then explored manually by adding and removing predictors to investigate 

the impact upon model fit. While for both outcome measures the fit of the model to 

the data was improved by the inclusion of multiple predictors, statistical comparison 

of the model fit using the log-likelihood method (Field, Miles & Field, 2012; Pinhiero 

& Bates, 2000) demonstrated that the improvement to model fit was not significant. 

This is most likely a result of collinearity among predictors, so that any attempts to 

include multiple predictors, while increasing the relative complexity of the model, 

does not offer a large increase in explanatory power as the inclusion of additional 

predictors does not further account for variation of the outcomes, as it is essentially 

the same variation that has (largely) already been accounted for.   
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4.4.5 – Post-match Sleep 

 

 Sleep data was classified as either occurring the night after a match, or as 

‘habitual’ sleep nights, defined as nights of sleep not taking place the night following 

a match, nor immediately preceding a match. These data are presented in figure 4.5 

and appear to demonstrate a later bed time the night following a match, as well as a 

shorter total period of sleep. Data were analysed by repeated measures t-tests with 

the Bonferroni correction applied. Results a summarised in table 4.5 (Appendix C). 

Players went to bed significantly later the night after a match than they otherwise 

normally would (mean difference 83 minutes, t19 = 6.183, p < 0.0005, two-tailed) and 

tended to get significantly less sleep after matches than they normally would (mean 

difference 73 minutes, t19 = 4.509, p < 0.0005, two-tailed), with no significant 

difference in the time at which players arose from bed the following morning. While 

all four measures of sleep quality demonstrated a decline the night following 

matches, these declines were not statistically significant. 
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Figure 4.5. Differences in sleep 
taking place the night after 
matches compared to normal 
habitual sleep. Bars represent 
mean averages; error bars 
represent 1 standard deviation. 
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4.4.6 – Sleep Following Afternoon Matches Compared to Sleep Following 

Evening Matches 

 

 Data was categorised as either sleep occurring the immediately following an 

afternoon match, or immediately following an evening match. Afternoon and evening 

matches are defined in the same way as in section 4.3.3, and are presented in figure 

4.6, appearing to show no significant differences in sleep following afternoon 

matches compared to sleep following evening matches. This was confirmed by 

repeated measures t-tests with the applied Bonferroni correction, the results of which 

are summarised in table 4.6 (Appendix C).  
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Figure 4.6. Differences in sleep 
taking place the night after 
afternoon matches compared to 
sleep taking place the night after 
evening matches. Bars represent 
mean averages; error bars 
represent 1 standard deviation. 
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4.4.7 – Relationship Between Physical Activity During Matches and 

Subsequent Sleep 

 

 Data was standardised and used to assess whether the amount of physical 

work undertaken during a match had an impact on subsequent sleep. Predictors 

used in this analysis were; time spent on the pitch, total distance covered, distance 

covered at high intensity speed, and the number of accelerations during the match, 

as recommended by sports science support staff. As in section 4.3.4, both linear and 

parabolic relationships were considered and both 3 and 4-level models were 

considered in addition to the more simplistic 2-level models. Both parabolic 

modelling and the use of higher level groupings did not add significantly to the 

explanatory power of the models presented (and in some cases reduced it), and so 

once again were discarded in favour of the more parsimonious 2-level linear models.  

 Models were first constructed for all available post-match sleep data, and then 

a further two times, once with data only from sleep following an afternoon game and 

again for sleep following an evening game (afternoon and evening games are again 

defined in the manner as in section 4.3.3) since previous literature has highlighted 

the importance of time of day on the matter of the impact that exercise has on 

subsequent sleep. Predictors were first assessed for their individual relationship with 

the 7 outcome sleep measures, the results of which are presented in table 4.7 

(Appendix C). More complex modelling was then attempted, guided by the all-

possible subsets analysis in order to determine if a number of predictors entered 

simultaneously could offer a better fit to the data than the simple single predictor 

models. Both for the impact that match performance had on subsequent sleep in all 
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cases, and when data was separated into ‘post-afternoon’ and ‘post-evening 

matches’, while a number of more complex models simultaneously using several 

predictors did indeed improve the overall fit of the model, this improvement was not 

statistically significant (as indicated by a statistically non-significant change in the 

log-likelihood measure of model fit). 

 

4.5 – Discussion 

4.5.1 – Pre-Match Sleep 

 

 It may come as no surprise given the apparently widespread belief that sleep 

has a role to play in attaining maximal performance that there was evidence to 

suggest that football players tend to go to bed earlier than normal the night before a 

match, and also tend to sleep longer. These increases were not only statistically 

significant, but are also very likely to be scientifically significant as well; on average 

players retired to bed 37 minutes earlier and slept for 44 minutes longer the night 

before a match than they otherwise normally would. Experimental has demonstrated 

that sleep extension of 90 minutes can have a positive impact on subsequent 

physical and cognitive performance (Mah et al., 2011), which suggests that sleep 

extension is beneficial to athletic performance . By contrast the variability in bed time 

between nights is perhaps more a cause for concern. Consistency in the timing of 

sleep (sleep scheduling) has been a consistent feature in general sleep hygiene 

recommendations since its inception (Mastin et al., 2006; Hauri, 1977; 1992), 

although it is difficult to come across specific recommendations for how much 
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variation in sleep scheduling is too much and what point it starts having a deleterious 

effect. It is also difficult to examine the impact that such acute ‘night-by-night’ 

variations in sleep scheduling can have on performance, since the expected 

negative impact relates more to the relationship between a constantly shifting 

schedule of sleep and a person’s circadian rhythms which will manifest over a longer 

time-scale.  

 One of the possible impacts that an earlier than usual night of sleep might be 

expected to have is a negative impact on sleep quality, due to the reduced level of 

sleep drive one is likely to have. As has been highlighted previously, one of the key 

processes that determines sleep is the ‘simple’ linear process of sleep drive (Horne, 

2006; 1988a), which broadly suggests that the drive to sleep increases as the length 

of continued wakefulness increases. If someone goes to bed earlier one night than 

they have done for previous nights it is reasonable to expect that their level of sleep 

drive would be reduced, due to the simple fact that they have not been awake as 

long as usual. This in turn might reasonably be expected to have consequences for 

the period of sleep that follows.  

 With regards to sleep quality the night before matches, it could be considered 

surprising that there were no statistically significant differences between any sleep 

measure quality the night before matches, compared to the sleep quality of players 

generally, although it should be noted that there was a trend for sleep quality to be 

worse before matches. This is in stark contrast to the epidemiological evidence 

collected by Erlacher et al. (2011) which suggests that we should expect poor sleep 

the night before matches. It should be noted that in terms of statistical effect size, the 

current study is, out of necessity, studying sleep as it naturally occurs rather than by 

directly manipulating it. As a consequence, the size of any differences between the 
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two conditions is highly likely to be quite small. Despite the sample in the current 

study being probably the first and certainly the largest attempting to address these 

questions, it may be that there is simply not enough data to properly examine these 

differences. There is the possibility of another complication due to the fact that, as 

was discovered in Chapter 3 of this thesis, the population that is being studied have 

markedly worse sleep than would be expected from an age-matched control. One of 

the criticisms often levelled at previous work in the sleep research field is that ‘good 

sleepers’ are often recruited for studies, making any sleep improvements difficult to 

come by due to a ‘ceiling effect’; their sleep is already close to being as good as it 

can be and cannot be improved much further. In studying the current population the 

reverse problem may have occurred; there may be a ‘floor effect’, in which players 

habitual sleep quality (more akin to disordered sleep in extreme cases) is at such a 

level that any further reduction is difficult to detect.  

 Besides statistical and measurement difficulties, there is another potential 

explanation for the disagreement with what might be expected based on what 

research there is available. While a majority of high performance athletes reported 

difficulty sleeping the night before competitions, Erlacher et al. (2011) recruited for 

their study a very wide variety of different athletes from different sports. One of the 

defining features of the competitive scheduling of professional football in England 

and Wales is the structure of the season, with matches taking place on a weekly 

basis during the competitive season (in contrast to many other sports where 

competitions are relatively infrequent, with extended periods of training between 

them). One of the consequences of this is that players within a team are constantly 

competing with each other to earn a place on the team for the next match, and 

players are exposed to this pressure every single time they train as well as when 
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they actually compete in matches. If anticipatory anxiety is one of the main driving 

factors behind the expected sleep difficulty occurring before matches, it may simply 

be the case that significant levels of anxiety are present more constantly in this 

population, and there is not in fact a significant increase in levels of anxiety before 

matches compared to the level of anxiety players experience on a daily basis. If this 

were to be the case, the lack of a significant decline in sleep quality the night before 

matches may not be considered so surprising.  

 

4.5.2 - Pre-Home Match Sleep Compared to Pre-Away Match Sleep 

 

 The basis for the formation of the idea that sleep in athletes might be 

expected to be worse (or at least different) the night before an away match 

compared to sleep the night before a home match arises from existing research 

highlighting the impact that a number of related behavioural stressors can have on 

sleep. The two most obvious in this case being the organisational stress and long-

distance travel that is much more a feature of away matches than it is home matches, 

and the need to sleep in a hotel before an away game. Both of these organisational 

factors have been associated with a negative impact on sleep in the mainstream 

literature (Davenne, 2009; Reilly & Edwards, 2007). 

 While the impact that long-distance travel can have on sleep is largely 

confined to discussions regarding trans-meridian travel and jet-lag, there is also 

reason to suspect that long distance travel more generally can exhibit deleterious 

effects on sleep. Such long-distance travel usually involves prolonged periods of 
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sitting down, often in fairly cramped conditions which could potentially cause 

discomfort, and has even been associated with factors as serious as ischemia 

(Crowe, 2004). Long-distance travel may also be expected to impact on the timing 

and organisation of people’s sleep, contrary to sleep hygiene recommendations. This 

does not appear to have been the case among the professional football players 

studied here. It may be the case that the factors responsible for the negative impact 

thought to be associated with long-distance travel are mitigated or eliminated in this 

population. Evidence from other domains highlights, for example, that athletes in 

team sports experience lower levels of anxiety than those in individual sports 

because their travel and organisation is arranged for them by team management, 

and as such is not a cause of concern for them (Martens et al., 1990). In addition, 

the earliest kick-off times in domestic competition take place well into the afternoon, 

so there is by no means a large degree of time pressure, allowing players a long 

period of time in which to sleep (and which players tend to take advantage of, as was 

demonstrated in section 4.3.1).  

 As far as the negative impact that sleeping in a hotel bedroom can have on 

sleep, this phenomenon is largely ascribed to the ‘first-night effect’ in which people 

tend to sleep less well in an unfamiliar environment (Davenne, 2009). Given the 

importance of the novelty of the sleeping environment in the first night effect, and the 

fact that as the current population are likely to be more accustomed than most to 

sleeping in hotels, since they do so on a weekly basis and will likely have done so for 

the length of their career. It seems plausible that professional football players 

becoming accustomed to the changes in their sleeping environment associated with 

sleeping in a hotel, and would therefore not display a marked deterioration in sleep 

as a consequence. There appears to have been little research directed at 
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investigating the extent to which people who often sleep in unfamiliar environments 

could rapidly adjust to a new environment to the extent that it does not significantly 

alter their sleep.  

 

4.5.3 - Sleep Before Afternoon Matches Compared to Sleep Before Evening 

Matches 

 

 It may be surprising to discover that players got up the morning before an 

evening match significantly earlier than they did before home matches, matched by a 

definite trend (although not statistically significant) towards going to bed earlier 

before evening matches. Since the grouping of nights of sleep data into ‘afternoon’ 

and ‘evening’ includes both home and away matches, it seems unlikely that 

organisational factors (e.g. travelling to an away game) would be responsible. One 

plausible possibility is that players could be making time for a daytime nap before 

evening matches. Conversations with participants highlighted the fact that many 

players reported that they would often take an extended nap during the day before 

an evening match. Unfortunately due to the need to remove Actiwatches for bathing 

and competitions, most participants did not continue to wear them beyond the 

nocturnal sleep period, so daytime napping was not measured accurately.  

 Previous research has highlighted the potential benefits that can occur 

following a short daytime nap such as increased levels of alertness, and even naps 

as short as 20 minutes have demonstrated an ability to return one’s performance 

following an acute period of sleep deprivation to baseline ‘non-sleep deprived’ levels 
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(e.g. Horne & Reyner, 1996). It may also be worthwhile to consider that the training 

times of all the professional football players in the present study were invariably in 

the morning, starting between 0900 and 1000, and not finishing any later than 1400 

in the afternoon. Consequently it seems likely that these participants are on a 

circadian rhythm that places more favour on activity during the morning than in the 

evening (Horne & Ostberg, 1976; Taillard et al., 1999). Given the late hour that 

evening matches tend to begin and end, a lunchtime nap or ‘siesta’ of the type 

common in some countries may be a prudent way of preparing oneself for optimal 

performance in the evening when one is accustomed to being physically active in the 

morning. Of course it is also worth considering the converse; that in most cases 

young healthy people should not feel that they need to nap during the day if they are 

getting sufficient nocturnal sleep (Horne, 2006). Given the findings from section 3, 

this cannot necessarily be taken for granted however. Perhaps if the sleep of 

professional footballers could be improved to the extent that it was equivalent to the 

level that would be expected, they would not feel the need to nap during the day in 

order to feel sufficiently rested and prepared before matches.  

 

4.5.4 - The Relationship Between Sleep and Subsequent Performance 

 

 There were no statistically significant relationships between football players’ 

sleep the night before matches and their subsequent performance during the match. 

This result can be thought of as being rather neatly aligned with the results of 

existing lab-based studies (e.g. Martin, 1981; Horne & Pettitt, 1974; Bambaeichi et 

al., 2005), where the capacity to perform physical work was not significantly affected 



134 
 

by sleep deprivation when participants were adequately motivated. It also seems 

reasonable to imagine that, if research participants in a lab-based setting can be 

‘adequately motivated’ to overcome a level of sleep disturbance far greater than the 

naturally occurring variations in sleep that are present in the current study, then a 

real-life performance in which participants have a deep personal interest taking place 

in front of ~20,000 fans would also provide adequate motivation to perform.  

 It is however interesting to note the difference in the strength of the 

relationship between sleep and the two different measures of physical performance. 

While the results for high-intensity distance covered during matches appears to show 

little or no dependence on preceding sleep (with most predictors, the margins of one 

standard error of the regression coefficient cross zero so even the direction of the 

relationship is not entirely certain). In contrast, the results for total distance covered 

are far less uncertain, suggesting that that the relationship between sleep and the 

total distance covered during matches was much more uniform. Once again there 

are interesting parallels to be made with existing sleep research, specifically the 

research relating to the differing impact of sleep deprivation on self-paced compared 

to forced-pace physical activity (Rodgers et al., 1995). If we consider that, as was 

discussed earlier in chapter 2, high intensity activity is most associated with 

predicting the outcome of matches (Mohr et al., 2003; Di Salvo, 2009) since it tends 

to occur when an individual is directly involved in the state of play, this is similar to 

the ‘forced-pace’ activity from existing work in that players’ activity is forced upon 

them by competitive circumstances. This type of activity only accounts for a fraction 

of the total activity players engage in during a match (Andrzejewski et al. 2013), with 

the rest taking place when a player is perhaps not so directly involved. This is the 

activity that is accounted for by the total distance covered measurement. Players 
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should generally not be static in these situations (with the possible exception of the 

goalkeeper) and should still be tracking the run of play up and down the field, and 

responding to the movements of opposition players. While such ‘off-the-ball’ 

activities are undoubtedly important, since players are not directly involved they may 

feel that the spotlight is not focused on themselves so much, making this type of 

activity more akin to the ‘self-paced’ activity from previous research, this may explain 

the somewhat greater impact that reduced or disturbed sleep the previous night 

appears to have.  

 

4.5.5 – Post-match Sleep 

 

 The finding that football players tend to go to bed later following a match than 

they otherwise normally would is perhaps not entirely surprising, especially when 

one considers that this will include away matches as well as evening matches, which 

will often finish later than 2200 hours, even before players have travelled home 

before going to bed. An organisational cause seems to the most plausible and likely 

scenario. The more surprising element that appears to be apparent in sleep following 

matches is that players seem to approximately maintain their normal get up time in 

the morning, a consequence of which is a significant reduction in their overall sleep 

time. This is unlikely to be the result of an organisational demand for players to be up 

at the same time as usual, since in the vast majority of cases players do not train the 

day following a match.  
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 The results also demonstrated a uniform although statistically non-significant 

trend for sleep quality to be lower the night following a match. It has been suggested 

by previous researchers that extreme levels of exercise could exert a negative 

influence on subsequent sleep as a consequence of the associated elevated levels 

of muscular soreness and discomfort that is common after such exercise 

(Youngstedt et al., 1997; Taylor, Rogers & Driver, 1997). It may be plausible that the 

slight reduction in sleep quality that is evident the night following matches could be 

responsible for making players being more susceptible to external factors such as 

light and noise that could in turn result in making them easier to wake in the morning, 

as a possible explanation for the reduction in sleep time (Youngstedt et al., 1997) -

although it could equally be a deliberate choice on the part of the players themselves.  

 

4.5.6 - Sleep Following Afternoon Matches Compared to Sleep Following 

Evening Matches 

 

 Given previous research suggesting that the time of day at which exercise 

occurs plays a crucial role in determining if that exercise has an impact on 

subsequent sleep, it is surprising to find that there did not appear to be any 

significant differences in sleep following afternoon matches compared to sleep 

following evening matches. There are some important considerations and limitations 

as to how this difference was addressed in the present research that could be 

corrected in future.  
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 The first important factor is that a simple afternoon/evening comparison 

conflates the issue of home matches compared to away matches, and the 

organisational differences between an evening home match compared to an evening 

away match are considerable. While it was usual practice for the teams involved to 

stay in a hotel the night before away matches, they would not normally stay in the 

hotel again after the match, preferring instead to travel ‘home’ immediately after the 

match. Given the national nature of the competition at this level, such travel could 

often be of the order of 3-5 hours in total, with the consequence that following an 

evening away match (finishing at approximately 2200 hours), bed time could be 

delayed until as late as 0300-0400 in the morning, whilst following an evening match 

played at home could involve less than one hours travel, allowing a bed time of 

2300-0000 hours, which would not be much later than normal. Ideally, future 

research would address this question in a fully factorial manner, separating post-

match sleep data into 4 groups (afternoon home match, evening home match, 

afternoon away match and evening away match). Unfortunately, due to the high level 

of missing data due to injuries, transfers and player forgetfulness there was not 

sufficient data in the current study for such an analysis to yield a meaningful result.  

 An additional caveat to this analysis is due to the findings of previous 

research that exercise needs to have taken place close enough to bed time in order 

for the alerting effect of exercise to still be exerting a physiological impact on the 

sleeper. However, even following an evening match played at home, it is likely that 

once the match has finished, players have bathed, been debriefed following the 

match and travelled home, one hour could have easily passed between the end of 

exercise and sleep. Following an evening match played away from home allows 

even more time between the cessation of exercise and the onset of the main period 
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of sleep (as players reportedly often nap on the return journey). It may the case that, 

even after matches finishing at ~2200 hours, this is still too long before bed time to 

have a significantly deleterious impact on sleep.  

 

4.5.7 - Relationship Between Physical Activity During Matches and Subsequent 

Sleep 

 

 While it may appear to be difficult to reconcile with the results presented in 

4.3.6, showing that there appears to be no significant difference in sleep following an 

afternoon match compared to sleep following an evening match, the most startling 

finding exists when one examines the relationship between how much physical work 

players undertake during a match and their subsequent sleep, which suggests that a 

direct relationship is much more likely following an evening match than following an 

afternoon match. However upon consideration it most likely offers some explanation 

as to why there was no overall difference between sleep following afternoon matches 

compared to sleep following evening matches, since a strong relationship between 

the amount of physical work undertaken during evening matches and subsequent 

sleep suggests that sleep is only negatively affected when a certain quantity of work 

has been completed, and, if this amount of work and not been completed, it does not 

have a significant negative impact on sleep. It seems that the impact that exercise 

has on subsequent sleep depends just as much on the intensity of the exercise as it 

does on the timing.  
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 Of course the fact that there is reasonable evidence for a link between the 

amount of physical work undertaken during evening matches and subsequent sleep 

calls into question somewhat the suggestion from the previous section and other 

existing research that, in order for exercise to exert an influence on sleep, it needs to 

take place sufficiently close to bed time. There has been some debate in previous 

research (Myllmkai et al., 2011; Dworak, Wiater, Alfer, Stephen, Hollman & Struder, 

2008; Souissi et al., 2012) as to what exactly constitutes ‘sufficiently close’, with 

some evidence pointing to a time as high as four hours and others suggesting a 

much closer period of one hour. In the present study, exercise for the most point 

ceased 1-2 hours before bed time. It may be important to consider that this previous 

research has tended to focus on the impact that recreational levels of exercise have 

on sleep, rather than the extreme levels of exercise studied here. In addition, these 

studies have tended to focus more on sleep quality (particularly SOL) while in this 

case, excepting a reduction in wakefulness after sleep onset, there is not a 

convincing relationship between exercise levels and sleep quality, even though there 

is certainly evidence of a reduction in overall sleep time where levels of physical 

activity are highest. It may be worth considering the results not in the light of the 

thermogenic hypothesis on which existing work is based (which posits that the 

positive impact of exercise on sleep is a consequence of the body heating effect of 

exercise) but instead by considering the influence that exercise can have on 

circadian factors. In this context, it is not so surprising that exercise (just like light 

exposure) during the middle portion of the day (i.e. during afternoon matches) exerts 

no significant impact on sleep, while exercise in the vicinity of the natural circadian 

peak that occurs during evening matches could have an impact on circadian factors 
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(in this case a phase delaying effect that is absent from an afternoon match) which 

could be conspiring to produce an effect on sleep.  

 

4.6 – Conclusions 

 

 The aim of this section was to investigate some of the ways in which sleep 

can affect, and be affected by, participation in elite-level athletic competitions. 

Reports from athletes have suggested that a majority of them believe that their sleep 

can be impaired on the night before competitions (Erlacher et al., 2011; Savis, 1994) 

and that sleep is an important requirement in achieving peak performance. This 

belief appears to be widespread despite the lack of convincing and objective real-

world evidence of either a relationship between sleep and performance outside lab-

based performance measures following artificial sleep manipulation, or that sleep is 

impaired the night before competitions as a result of anticipatory anxiety, 

organisational stressors or any other factors. Another common notion that has been 

examined in this section is the impact that exercise may exert on subsequent sleep. 

Existing literature tends to be based on the idea that exercise has a positive effect on 

sleep, although some have also suggested that strenuous exercise taking place 

close to bed time can have an alerting effect, and thus negatively impact upon sleep.  

 The findings certainly seem to demonstrate that football players seem to value 

the need for sleep before matches, considering the fact that there is a tendency for 

them to go to bed significantly earlier and sleep for significantly longer before 

matches. There does not appear to be any statistically significant reduction in sleep 

quality on these occasions, although these results do all show a trend in the direction 
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for a slight reduction in sleep quality. This slight reduction may be a consequence of 

pre-competitive anticipatory anxiety, or may simply be due to the reduced sleep drive 

that will likely exist when one tries to go to bed at an earlier time than they are 

accustomed to (Horne, 2006). The results from the comparison of sleep before home 

and away competitions seem to suggest that differing organisational factors 

associated with playing away from home do not appear to exert a significant 

influence on sleep in this population. This is perhaps not so surprising in a 

professional team sport, where transport and accommodation arrangements are 

made for the players by the team management. This may not necessarily be 

representative of other sports, particularly semi-professional sports in which athletes 

also work, and so travel and accommodation to and from competitions is likely to be 

more problematic. The study of a wider variety of elite athletes would be a fruitful 

area for future research, as the possibility that such factors are responsible could 

easily be distinguished by studying the similarities and differences between pre-

competitive sleep in sports with different characteristics (e.g. team vs individual, 

professional vs ‘amateur’, frequent ‘seasonal’ competition vs infrequent ‘training 

block’ sports).  

 Perhaps the most salient research question that was addressed was the 

investigation to the impact that sleep can have on subsequent performance during 

competitions. Although there was no statistically significant evidence to suggest such 

a relationship, there were trends in that direction, and it is important to consider the 

distinction between a statistically significant relationship and a relationship that may 

still be meaningful in the context of elite athletic competition, given that the margins 

between success and failure are so fine. It is also noteworthy that trends towards an 

impaired performance following modest declines in sleep occurred, despite the 
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performance measures in this study being largely physical, circumstances where 

previous research had demonstrated tended not to be negatively influenced by poor 

sleep when the performers are adequately motivated (which in the current study it 

seems reasonable to conclude was the case). 

The final broad area of investigation was to examine the ways in which 

participation in elite athletic competition could exert an influence on sleep. In this 

regard, there are certainly organisational stressors that appear to exert an influence 

in shortening sleep after matches, and for sleep to start at a later time. Once again, 

and contrary to what may be expected based on the majority of the literature, there 

was also a trend towards a lower quality of sleep following matches. While the vast 

majority of research effort has been directed towards the potential benefits of 

exercise towards sleep, this finding appears to support the less pervasive argument 

that ‘extreme’ levels of exercise can be detrimental to sleep. The definition of 

‘extreme’ has been thus far been taken to mean events which are ‘marathon like’ in 

terms of duration (i.e of the order of at least 2 hours and above; Taylor, 2001; 

Baekland & Lasky, 1966; Shapiro et al., 1981), the current study perhaps 

demonstrates that this negative effect could be extended to shorter duration activities 

which feature periods of high-intensity effort (such as in professional football), 

compared to the relatively continuous effort level required for long-distance running. 

One feature of the existing research literature that was broadly supported was the 

greater ability of exercise to exert an influence on sleep when it occurs later in the 

day and closer to bed time, a finding which is largely in line with what would be 

expected based on existing knowledge.  
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4.7 – Summary 

 

• Professional football players appear to show some appreciation for the 

importance of sleep before matches, since they consistently go to bed earlier 

and sleep for longer than normal.  

• There appears to be no significant of match venue on pre-competition sleep.  

• Sleep does not demonstrate a statistically significant relationship with 

subsequent performance, in agreement with existing research on the 

resilience of performance to sleep disturbance when adequately motivated.  

• Given the narrow margins that prevail in elite level sport, the impact that sleep 

can have on subsequent performance may still have practical relevance to 

athletes.  

• Pressures associated with competition demonstrate an ability to influence 

subsequent sleep, such as the timing of sleep following competition.  

• There was no convincing overall pattern for, and influence of, the level of 

physical activity on subsequent sleep, although the relationship was stronger 

in evening matches, despite a likely conflation between time of exercise and 

the venue of matches.  
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Chapter 5 

 

 

Sleep and Training in Professional Football Players  
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5.1 – Introduction 

 

 In addition to the important role that sleep may have in contributing towards 

achieving elite athletic performance, it is also important to consider the role that it 

may have on training for athletic performance. While actual competitive events are 

certainly the most visible (at least from an external observer’s perspective) aspect of 

elite athletes, there is a vast amount of training that occurs in order to prepare and 

maintain athletes’ levels of fitness and skill that enables them to perform at the very 

highest levels. This necessitates athletes being able to maintain good health and 

adequate motivation to continue training for extended periods of time, and 

maintenance of adequate levels of sleep may help to keep athletes fit and healthy for 

the duration of the competitive season.  

 Unfortunately, while competitive events certainly place some very specific 

sleep pressures on competitors, there are number of factors which one could 

reasonable expect would also have a negative impact on sleep in the longer term. 

Factors such as anxiety, for instance, are likely to remain a persistent factor that 

could have a deleterious impact on athletes throughout the season. In the vast 

majority of team sports there are (out of necessity in order to cover for periods of 

injury etc.) many more available players than there are ‘spaces’ available for them in 

competition (an entire ‘first team’ in football will consist of at least 20 players, while 

matches require no more than 15). Players are therefore in a position of constant 

competition with their team-mates, battling for selection in upcoming matches. Other 

pressures could also exert a negative impact on players’ sleep, such as periods of 

injury or familial pressures. While the kind of extreme organisational pressure placed 
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upon athletes during competition such as travel and accommodation may be less 

severe during periods of training compared to the period immediately before 

matches, there is still plenty of scope for them to impair sleep, such as by not 

permitting the establishment of a consistent schedule of sleep and waking. A number 

of sports that require multiple training sessions per day generally demand both very 

early starts in the morning and very late nights, placing yet more pressure on 

athletes’ sleep.  

 As has been highlighted previously, chronically poor sleep could have a 

number of potentially deleterious impacts on an athlete, which could in turn go on to 

have an adverse impact on their ability to train consistently and, indeed, their ability 

to derive the greatest possible benefit from the training that they perform. Factors 

such as reduced efficacy of the immune system (Lange et al., 2003; Scheer, Hilton, 

Mantzoros & Shea, 2009; Knutsson, 2003; Heslop et al., 2002; Ferrie et al., 2007), 

and reduced glucose tolerance (Spiegel et al., 1999; Spiegel et al., 2003) could 

inhibit an athlete’s ability to train due to periods of illness or reduce capacity to 

adequately perform during training sessions as a consequence of having insufficient 

energy. Research has also highlighted that protein synthesis can and does occur 

during sleep following training (Res, Groen, Pennings, Beelen, Wallis, Gijsen et al., 

2012) and, further, that poor sleep can disrupt the biological systems responsible for 

appetite (Pejovic, Vgontzas, Basta, Tsaoussoglou, Zoumakis, Vgontzas et al., 2010; 

Spiegel, Tasali, Penev & Van Cauter 2004; Vgontzas, Pejovic, Zoumakis, Lin, Bixler, 

Basta et al., 2007). Given the almost ubiquitously acknowledged importance of 

proper nutrition to training for elite level competition, a chronic disturbance to 

appetite regulation as a result of sub-optimal sleep could have troubling implications 

for athletic training. Another consideration is the importance of training intensity in 
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making the very most out of the time available for training. Experimental studies 

have clearly demonstrated the importance of high-intensity training in maximising the 

physiological impact of training (e.g. Wang et al., 2012; Laursen & Jenkins, 2002). 

Suffice to say, training at such intensities requires a not insubstantial degree of 

motivation to push oneself to the limits of one’s physical capacity on a daily basis. 

While research (including the previous section of the current work) has highlighted 

that, when adequately motivated, people are capable of overcoming the negative 

impact that sleep disturbance has on motivation, it remains to be determined if this 

‘immunity’ that seems to present (at least to a degree) in competitive matches can be 

replicated in training, which is most certainly an entirely different motivational climate. 

A final note to consider concerns the role that sleep had been demonstrated to play 

in the consolidation of memories and its role in enhancing skill acquisition taking 

place after a period of learning (Stickgold, 2005; Siegal, 2001; Walker, 2004). The 

particular dependence of motor skill learning on post-learning skill acquisition is likely 

to be especially consequential in the context of elite-athletic endeavour (Moran, 

2008). Achieving adequate sleep clearly impacts on a number of areas which are 

important to athletes training and preparing for competition.  
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5.2 – Aims 

 

 While the question of whether poor sleep negatively impacts upon the 

performance of elite-level athletes during competitions is one that is often asked, it is 

arguably even more important to consider the impact that poor sleep could have on 

athletes during training. Inadequate or impaired sleep could reduce the amount of 

work that athletes feel they are able to exert during training sessions, and could 

hamper their recovery post-training, reducing the amount of physiological and skill-

based adaptation that can take place following training. The importance of adequate 

sleep in maintaining optimal functioning of the immune and dietary systems are also 

a primary concern of athletes preparing for high-level competition.  

 The present section will investigate if there are fluctuations in the sleep of 

professional football players during the course of the competitive season, comparing 

sleep that takes place before training sessions, after training sessions and sleep that 

neither directly precedes or follows training sessions, in order to assess the ‘stability’ 

of poor sleep that was evident in section 3 of this thesis. Essentially this will 

investigate whether the poor sleep (relative to age-matched controls) is a persistent 

feature in this population during the competitive season, or of it depends more 

directly on a specific set of circumstances (e.g. is poor sleep more evident following 

strenuous training sessions?). Additionally the relationship between sleep and 

subsequent performance during training will be assessed, and the results compared 

to those contained in section 4. Previous literature suggests that these different 

performance climates could elicit a different relationship, due to the difference in the 

motivational climate that will inevitably exist between fully competitive matches and 

day-to-day training. Finally, the impact that the type of training and subsequent sleep 
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that takes place in this population will be investigated, in order to determine the role 

that exercise duration and intensity may play in the poor quality of sleep that has 

been observed in this population.  

 

Research Questions 

 

• Are there significant differences in the sleep of players the day before and 

after training, compared to their ‘normal’ sleep? 

• Is there a significant relationship between sleep and subsequent performance 

during training? 

• Does the duration and intensity of training have a direct relationship with 

subsequent sleep? 
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5.3 – Method 

5.3.1 – Participants 

 

 A total of 26 professional football players currently playing for 2 professional 

football clubs in the English and Welsh Football league (1 team competing the in the 

Premiership division; n = 9 players, the other in the Championship division; n = 17 

players) were recruited for the study, with an average age of 25.4 years (SD 4.0 

years). At the beginning of the study all participants were considered by their club as 

belonging to the ‘first team’, and were training on a daily basis and competing on a 

weekly basis. Participants reported no evidence of pre-existing sleep disorders, and 

were not excessive users of caffeine or alcohol. Participants were approached 

through their club, and were told of the study’s aims and methods before consenting 

to participate. 

 

5.3.2 – Sleep Recording 

 

 Sleep data was recorded from participants for a period of 2 months during the 

regular competitive season, using an Actiwatch AW4® (CamNTech, Cambridge, UK), 

during which time participants were asked to wear the device continuously, except 

for bathing, training and competing (to prevent damage to the monitors). Participants 

were instructed to use the event marker of the Actiwatches to indicate ‘bed time’ and 

‘get up time’, as described in section 3.3.2. This yielded a total of 661 nights of sleep 

data, considerably less than the maximum amount of data. This is attributable to 
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mid-season transfers resulting in participants leaving the club, players omitting to 

wear the monitor during periods of injury, and simple forgetfulness. A total of 162 

nights of sleep took place immediately prior to training sessions, 136 nights of ‘post-

training’ sleep were available, and 313 nights of sleep data occurred neither 

immediately before nor immediately after training sessions (or matches).  

Sleep data was analysed using the proprietary Actiwatch Sleep Analysis 

Software 7 (CamNTech, Cambridge, UK). Data was collected in 30-second epochs, 

and the medium sensitivity setting was used for sleep/wake identification. Analysis 

was conducted examining the timing (bed time, get up time), duration (total sleep 

time; TST), and quality of sleep (sleep efficiency, SE; sleep onset latency, SOL; 

wakefulness after sleep onset, WASO; and movements per hour during sleep, 

onsets/hour). Details of how these variables are measured using wrist actigraphy are 

discussed in chapter 2. 

 

5.3.3 – Measurement of Training Performance 

 

 Performance of players during training sessions was measured objectively 

using the Catapult® X3 Athlete Monitoring System (Catapult, London). A small 

remote unit is worn by players during training sessions which accurately tracks the 

two-dimensional location of players using a combination of GPS satellite tracking 

and a local radio base station (to improve measurement resolution) at a sampling 

frequency of 5Hz. Raw data is then used to calculate the direction and speed of 

players during 0.5-second epochs, providing data on the total distance covered 

during each training session, as well as the distance covered at high intensity, in a 
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similar manner to the ProZone system used in the previous section. In addition, a tri-

axial accelerometer, sampling at 100 Hz, measures the impact forces experienced 

by players during training and calculates an overall measure of physical exertion that 

a player has applied (PlayerLoad; Boyd, 2011). Finally, immediately following each 

training session, players were asked to provide an RPE score on a scale from 1-10 

to indicate how much effort they felt they had applied during the session. Due to the 

fact that training sessions are not uniform in length, measures were divided by the 

total length of time spent training (for measures where distance covered is a direct 

contributory factor; total distance covered, high intensity distance covered and 

PlayerLoad) and by the total distance covered (for player provided RPE scores).  

 For the analysis of the impact of training on subsequent sleep, the above 

measures were used in their raw form (i.e. not corrected for training time or distance 

covered) as measures of how much physical work players had done during the 

session. In addition to these measures, the total period of time spent training was 

assessed for the predictive relationship it had with subsequent sleep, as was the 

total number of acceleration efforts players had produced, for the same reasons as 

described in the previous section on match performance 

 Measurement of these performance variables was already being conducted 

on a day-to-day basis by sports science staff at the participants’ clubs, and was 

regularly used by support staff to measure the performance and physical exertion 

applied by their players during training. Data were made available for the present 

analysis with the permission of the players and staff at the clubs in question, yielding 

a total of 162 training instances that were paired with immediately preceding sleep 

data, in addition 132 instances of training took place prior to a matched set of sleep 

data from the subsequent evening.  
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5.3.4 – Analyses 

 

 Statistical analysis was conducted using R (Version 2.15; R Core 

Development Team, 2012). A list of the attaches packages is available in Appendix 

A. Comparisons of sleep taking place the night before, the night after and ‘habitual’ 

sleep that did not occur immediately before or after training sessions were analysed 

by means of the repeated measures t-test. As in section 4, situations in which 

multiple outcome measures are being simultaneously tested are generally analysed 

by means of a MANOVA, however this assumes that multiple measurements of the 

same individual take place at regular time intervals. Once again each individual’s 

measured sleep under each circumstance was averaged to ensure that each 

participant contributed only a single score for each situation, in order to satisfy the 

assumption of the independence of measures. Bonferroni adjustments to correct for 

inflated family-wise error rates were therefore applied to the repeated measures t-

tests in all situations. Significant was set at 5% (two-tailed) in all cases.  

 Examination of the relationships between sleep and subsequent performance, 

and between exercise and subsequent sleep, was conducted using multilevel 

modelling. The seven sleep parameters examined in previous sections were each 

analysed independently to determine the extent to which they relate to measures of 

performance, which were measured by the ‘total distance’ and ‘high intensity’ 

distance variables measured using the Catapult tracking system. Since there is 

naturally much greater variation in the overall length of training sessions compared 

to the length of competitive matches (which are invariably 90 minutes plus at most 6 

minutes, since there is no possibility of extra time in domestic league competitions), 
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these measures were divided by the total length of time for each training session, in 

order to account for the fact that a longer training session will almost inevitably entail 

a greater distance covered, regardless of the amount of effort that is applied. In 

addition, immediately following each training session players, were asked to rate 

their level of perceived exertion (Rating of Perceived Exertion; RPE) during the 

session on a scale from 1-10. Finally, the distance players covered during each 

session was divided by their reported RPE score, in order to establish if the 

relationship between the amount of physical work completed and players 

corresponding RPE score was influenced by sleep. In the case of modelling the 

impact that training had on subsequent sleep, the seven sleep parameters used 

earlier were measured as they took place following training sessions and were used 

as outcome measures. The total time spent training, as well as the total distance and 

high intensity distance covered were used as predictors, as well as the total number 

of accelerations that occurred during the training session (since interval type training, 

characterised by frequent bursts of higher intensity activity are generally more 

stressful than ‘steady-state’ training). These were the performance measures most 

relied upon by the sports science support staff at the clubs in question to determine 

the intensity of training sessions.  

 In all cases, both predictor and outcome measures were standardised using a 

z-transformation, based on each individual’s average measurement on each variable 

throughout the entire measurement period. As in the previous section, this 

standardisation serves to place all variables on the same measurement scale, and 

enables the direct comparison between participants, in addition to acting as a 

method of ‘group-mean centring’ the data (as detailed in Field, Miles & Field, 2012). 

Centring of scores around zero also simplifies the examination of non-linear 
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relationships. Initial exploration was conducted using the ‘all possible subsets’ 

function contained within the ‘leaps’ packages (Lumley & Miller, 2009) to establish a 

useful starting point, and predictors were then systematically added and removed 

from the overall model to find the most parsimonious model offering the best 

explanatory fit to the data. Both linear and polynomial non-linear relationships 

between predictor and outcome measures were considered. Model fit was analysed 

using the ‘anova’ command in the ‘stats’ package (R Core Development Team, 

2012).  

 

5.4 – Results 

5.4.1 – Variability in Sleep During Periods of Training 

 

 Recorded nights of sleep were classified into groups based on whether they 

took place the night before a training session, the night following a training session, 

or nights which did not take place either before or after a training session or 

competitive match. Each player’s measured scores on the output criteria were 

averaged in each category, and both ‘pre-training’ and ‘post-training’ averaged 

scores were compared to the player’s averaged ‘habitual’ sleeping behaviour by 

means of a repeated measures t-test, corrected for inflated family-wise error rate by 

applying the Bonferroni adjustment for multiple comparisons. A summary of the 

results for the difference between pre-training sleep and habitual sleep, and the 

differences between post-training sleep and habitual sleep, is presented in figures 

5.1a and 5.1b respectively (N.B. Some participants did not contribute sufficient ‘pre-

training’ data for a meaningful analysis, while simultaneously providing adequate 
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‘post-training’ sleep data, resulting in some participants being excluded from one 

analysis but not the other. This accounts for the slight difference in habitual average 

measures). There were no statistically significant differences observed between 

players’ sleep directly before or after training sessions, compared to their habitual 

sleep during the competitive season. A summary of all these results is available in 

table 5.1a and table 5.1b in Appendix D.  
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Figure 5.1a. Differences in sleep 
taking place before training 
sessions compared to normal 
‘habitual’ sleep. Bars represent 
mean averages’ error bars 
represent 1 standard deviation.  
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Figure 5.1b. Differences in sleep 
taking place after training 
sessions compared to normal 
‘habitual’ sleep. Bars represent 
mean averages’, error bars 
represent 1 standard deviation.  
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5.4.2 – Relationship Between Sleep and Training Performance 

 

 For each outcome variable, predictors (having been z-transformed) were 

entered individually into the multi-level model, once as a linear function and again as 

a second order polynomial function. In all cases model fit was not significantly 

enhanced by fitting predictors as a parabolic rather than a linear factor, and so non-

linear relationships only were considered further for the sake of parsimony.  

 A summary of the results for the relationship between each predictor and 

each outcome measure is presented in table 5.2 (Appendix D). While there appears 

to be no significant relationship between sleep quality and performance during 

training sessions, there was a consistent trend towards reduced performance 

following an unusually late bed time, with evidence for a reduction in terms of 

distance covered during training sessions (both overall average distance and high 

intensity distance), as well as a reduction in the effort being applied by players’ as 

measured by the PlayerLoad measure. There was also a significant trend for higher 

RPE scores (controlled for by distance covered during the training session) following 

an unusually late bed time. Similarly significant trends were in evidence for duration 

of sleep, with longer periods of sleep being associated with an increase in the 

distances covered (both overall and high intensity) as well as PlayerLoad, although 

there was no association between sleep duration and self-rated RPE scores. More 

complex multilevel models were constructed which utilized several predictors 

simultaneously to attempt to model variation in each outcome measure. The starting 

point was informed by an all possible subsets analysis, after which predictors were 

entered and removed from the overall model in an iterative fashion manually, to 
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determine which combination of predictors offered the best overall fit of the model to 

the data. While these more complex models did indeed tend to improve the overall fit 

of the model to the data, the increase in model fit was not statistically significant (as 

determined by the change in the log-likelihood measure of model fit). 

 

5.4.3 – Relationship Between Physical Activity During Training and 

Subsequent Sleep 

 

 For each outcome variable, predictors (having been z-transformed) were 

entered individually into the multi-level model, once as a linear function and again as 

a second order polynomial function. In all cases model fit was not significantly 

enhanced by fitting predictors as a parabolic rather than a linear factor, and so non-

linear relationships only were considered further for the sake of parsimony.  

 A summary of the results for the relationship between each predictor and 

each outcome measure is presented in table 5.3 (Appendix D). While a number of 

interesting trends are in evidence, the strongest relationship between physical work 

and subsequent sleep appears to depend on the amount of ‘high-intensity’ activity 

that players experience. Increasing the amount of high-intensity distance covered 

during training sessions were associated with a significantly earlier bed time, as well 

as a tendency towards a significantly longer period of total sleep. There was also a 

trend towards higher levels of high-intensity activity being associated with a 

reduction in sleep quality, as evidenced by the trend towards an increase in 

wakefulness after sleep onset and sleep onset latency. A number of similar findings 
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from other predictors were also in evidence, such as increasing levels of total 

distance covered and increased effort levels as measured by PlayerLoad were also 

associated with a significant increase in the overall length of the subsequent sleep 

period. All possible subsets analysis was used to inform the starting point of more 

complex building employing multiple predictors simultaneously. Predictors were then 

added and removed manually in an iterative fashion to determine the best set of 

predictors. While the inclusion of multiple predictors invariably improved the overall 

fit of the model to the data, this improvement was not statistically significant, as 

determined by the relatively low amount of improvement of model fit as measured by 

the log-likelihood statistic.  

 

5.5 – Discussion 

5.5.1 – Variability in Sleep During Periods of Training 

 

 These results have demonstrated that there appears to no significant 

alterations in the sleep of professional football players during the course of a regular 

competitive season as a function of physical training. The most obvious conclusion 

seems to be that whatever factors are involved contributing to the unusually poor 

sleep that was observed in section 3 are reasonably persistent throughout the 

course of a season, and do not fluctuate enough (at least, not significantly) on a day-

to-day basis. Certainly factors such as anxiety could reasonably be thought to be 

fairly consistent, since, as has been discussed previously, players are in a constant 

state of intra-team competition with their team-mates, battling for inclusion in the 
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starting team for upcoming matches. It should also be noted that the organisational 

stressors against sleep, such as maintaining a consistent schedule, are still present, 

since matches were taking place throughout the period of analysis. While the current 

analysis excluded nights of sleep data that took place immediately following a match, 

the impact of an unusually late night following a match is likely to cause a phase-

delay in the individuals’ circadian phase, which could continue to exert a negative 

influence on sleep for several days (as anyone who has experienced forced de-

synchrony will testify- one does not tend to recover from jet-lag after a single night’s 

sleep; Horne, 2006; Reilly & Edwards, 2007; Reilly et al., 2005).   

 Another factor that may be in evidence here, as discussed earlier in section 4, 

is the idea that a ‘floor-effect’ may be preventing any further significant degradation 

of sleep. As was highlighted in chapter 3, the quality of sleep in this population is 

already significantly worse than would be expected for otherwise healthy adults of 

the same age, and more closely resembles the sleep of those with diagnosed sleep 

disorders more than healthy sleep in many cases. Although admittedly a rather bleak 

assessment, it may simply be the case that their sleep simply cannot (easily) get any 

worse. Another likely factor to consider once again is that the current study is aiming 

to uncover a relatively small effect in terms of the impact that training has on sleep, 

due to the necessity of studying naturally occurring variations in sleep, since 

experimental manipulation would not be easy to accomplish in the population of 

interest. It is also certainly the case that the physical training is only one of the 

factors that could conceivably be exerting an influence on players’ sleep. Naturally 

there are countless others, and it would be simply implausible to attempt to account 

for every single one of them in the scope of the present study. Assuming that 

physical training does exert a (small) influence on sleep, it may be the case that the 
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effect it has is being ‘swamped’ by any number of these myriad factors. A relatively 

simple comparison of mean sleep measures may simply not be sensitive enough to 

identify a small effect when it is drowned out by a number of confounding factors. A 

direct assessment of the relationship between physical exercise and subsequent 

sleep would perhaps be more able to ‘tease out’ these differences, an approach 

which was carried out using the same data, and the results of which will be 

discussed presently.  

 The overriding finding however is that there appears to have been little 

variation in professional football players’ sleep depending on their physical training 

during the course of the competitive season. This suggests that the factors which 

contribute towards the poor sleep seen generally in this population are relatively 

durable and stable during this extended period of time.  

   

5.5.2 – Relationship Between Sleep and Training Performance 

 

 In contrast with the findings from section 4, these results demonstrate that the 

timing and duration of sleep appears to exert a significant influence over the amount 

of physical work that professional players complete during regular training sessions, 

in addition to increasing the perception of effort. Considered in the light of existing 

research which highlights the importance of the prevailing motivational climate 

(Martin, 1981; Horne & Pettitt, 1974; Bambaeichi et al., 2005) in determining the 

consequences of inadequate sleep on physical effort, there is a large degree of 

agreement. In contrast to the data obtained from the inarguably more motivationally 
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stimulating environment of a competitive match, these results demonstrate that, in 

the absence of such an immediate and salient source of motivation, the extent to 

which poor sleep can adversely affect both the perception of physical effort and the 

actual amount of physical work undertaken is far greater.  

 The consequences associated with a reduced level of effort being applied 

during training sessions in concordance with fluctuations in the timing and duration of 

sleep are likely to be just as serious a concern to athletes and coaches as the 

possibility that poor sleep could have adverse consequences on match performance. 

The level of training that is necessary to reach and sustain performance at an elite 

competitive level requires that athletes ‘over-reach.’ That is to say, athletes are 

required to push themselves up to and in fact a little beyond their current physical 

limits (Hug, Mullis, Vogt, Ventura & Hoppeler, 2003; Coutts, Slattery & Wallace, 

2007). An adequate period of recovery is then required, during which time 

physiological adaptation is allowed to take place and the specific system that was 

placed under strain becomes stronger. These results suggest that sleep has a 

significant role to play in determining how much effort athletes are likely to exert 

during training sessions, which previous research suggests is likely to be a 

consequence of the increased perception of effort following inadequate sleep, rather 

than a direct impact on the body’s capacity to perform physical work. If sleep is 

chronically disrupted (as we have seen earlier in section 3), this suggests that 

throughout the course of the competitive season, professional footballers are 

frequently not expending as much effort during day-to-day training as they would 

perhaps be able to if their sleep was improved.  

 As in all studies, there are a number of important caveats to consider, the first 

and perhaps most important is the difficulty associated with attributing causation. 
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While measurements were taken such that sleep immediately before training 

sessions was modelled against the amount of physical work, and the perception of 

effort of that physical work that took place following each period of sleep, there are a 

number of potentially confounding factors that could be contributing towards both. 

For instance, the sports science staff at one club suggested that, when the team did 

not have a mid-week fixture, a ‘match-replacement’ training session was almost 

ubiquitously scheduled on the Tuesday of that week (the day on which mid-week 

fixtures generally take place), which featured more match-like exercises and was 

generally harder than a normal training session. When considered alongside the fact 

that such unusually strenuous training session tended to be preceded by a rest day, 

this may offer another explanation for the relationship between sleep and 

performance the following day, since a rest day may offer players a greater 

opportunity to plan an adequate period of sleep and go to bed earlier. It should also 

be pointed out that this potentially spurious effect does not offer a good explanation 

for the increased perception of effort following poor sleep, when RPE is controlled for 

by distance covered. One way that future research could attempt to examine this in 

more detail would be to split training sessions according to how strenuous they are, 

and examine separately the relationship that prior sleep has on the amount of 

physical work conducted during training. For example, training could be split into 

‘match-replacement’ training sessions and ‘post-match recovery’ sessions. The 

objectives of each type of session are very different, and a different level of physical 

activity would be expected in each case. It may be possible that the impact that 

sleep has on training depends on the difficulty of the specific training, and influences 

one kind of training session more than the other. Of course it may also be the case 

that the relationship between sleep and training performance is relatively robust. 
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Unfortunately there was insufficient data available in the present investigation to 

undertake such a differential analysis. Such a method would likely require collecting 

sleep and training data from an entire football club for an entire season in order to 

yield sufficient data for such an analysis.  

 

5.5.3 – Relationship Between Physical Activity During Training and 

Subsequent Sleep 

 

  Predicting the outcome of this data based on the existing literature would be 

difficult due to the varying hypotheses describing this relationship. Since both of the 

current prevailing hypotheses about a relationship between exercise and subsequent 

sleep suggest that activity taking place during the mid-morning to approximately 

midday should have little impact on subsequent sleep, it might be most expected that 

there not be a significant relationship between the amount of physical exercise 

undertaken during training and subsequent sleep in this study. The thermogenic 

hypothesis (Horne & Staff, 1983; Trinder et al., 1988; Horne & Moore, 1985) would 

suggest the lack of a relationship, since training sessions would typically end no later 

than 1300 hours, too far away from bed time for any impact as a consequence of 

body heating and the subsequently sharper decline in temperature that supposedly 

accounts for improved sleep. The hypothesis that exercise can exert a circadian 

effect would also suggest that exercise, like light exposure, taking place during the 

middle portion of the day would not exert a significant circadian effect (Yamanaka et 

al., 2010), although training sessions starting at 0900 hours may exert a very slight 

phase advance due to the early start. There is also uncertainty as to the direction of 
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any effect that may exist; most existing research suggests that exercise would be 

expected to make a positive contribution to sleep, but there are instances of ‘extreme’ 

levels of exercise having a detrimental impact.  

 The physical factor that demonstrates the most consistent relationship with 

subsequent sleep in this case is the amount of distance players cover at high 

intensity, with increases in the level of high intensity exercise being associated with 

significantly earlier bed times and significantly longer periods of sleep immediately 

afterwards. There were also trends for increasing levels of high-intensity distance 

during training to exert a negative impact on sleep quality, with statistically non-

significant trends towards increased wakefulness after sleep onset and a longer 

latency period before sleep onset. More generally, there was evidence to suggest 

that more strenuous training sessions, as measured by the total distance covered, 

the amount of distance covered at high intensity and the level of stress according to 

the PlayerLoad measurement, tended to be followed by significantly longer periods 

of sleep.  

 The fact that increasing levels of physical activity were found to exert a 

significant impact upon sleep is not entirely surprising, but it would not have been 

expected for such an effect to be in evidence when the physical activity in this case 

was taking place during the middle of the day, too far away from bed time for the 

thermogenic hypothesis to offer a reasonable explanation. The best alternative 

explanation therefore rests on the notion that exercise exerts an influence over 

circadian rhythms, suggesting exercise of sufficient intensity taking place during the 

morning has the capacity to advance the circadian phase of the exerciser, which 

would explain the association between increasing levels of exercise and earlier bed 

times, with the exerciser feeling sleepy earlier as a consequence, as well as a 
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potential explanation for the associated increase in total sleep time, as an expression 

of the increased drive for sleep. Such a hypothesis has little to offer as an 

explanation for the trends towards a decrease in sleep quality however. The third 

explanation arises from the possibility of effects of confounding factors- for example, 

the possibility that harder training sessions (such as the match replacement sessions) 

are more likely than others to be followed by a rest day with an absence of training, 

which would easily account for the increase in sleep time, as players allow 

themselves a ‘lie-in’ following such unusually strenuous training sessions.   

 

5.6 – Conclusions 

 

 The findings presented here have the potential to have a number of important 

practical considerations. The finding that the amount of effort that professional 

football players exert during training sessions displays a significant dependence on 

their sleep the previous night could be highly interesting to athletes and coaches in 

particular. Taken in concert with the findings presented in section 3 of this thesis, 

which highlight the generally poor sleep practices of athletes, there could potentially 

be a great deal of scope for improvement in the sleep of athletes which, based on 

these findings, could reasonably be expected to be associated with a concurrent 

increase in the levels of physical work during training. In addition to the possibility 

that improvements to sleep could have a beneficial impact upon performance during 

training, previous research has also suggested that athletes adaptation to training 

would be likely to exhibit an improvement as a consequence of the beneficial impact 

that sleep has on protein and carbohydrate metabolism (e.g. Harsch, Schahin, 
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Radespiel-Tröger, Weintz, Jahreiss, Fuchs et al., 2003; Res et al., 2012). Based on 

the findings presented here, sleep improvement could prove to be a relatively simple 

strategy which contributes towards significant enhancements to training.  

 

5.7 – Summary 

 

• There appear to be no systematic differences in sleep taking place before or 

after training sessions, relative to habitual norms.  

• Sleep does display a significant impact upon subsequent performance during 

training, with increases in the physical activity levels and a reduced 

perception of effort following earlier and longer periods of sleep.  

• Physical activity levels also demonstrated an impact on subsequent sleep, in 

particular increasing levels of high-intensity activity during training were 

associated with earlier and longer periods of subsequent sleep, in addition to 

trends towards a reduction in sleep quality.  
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Chapter 6 

 

 

General Discussion 
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6.1 – Overview of the Investigations Undertaken 

 

 This thesis has aimed to examine the sleep of elite-level athletes, and to 

determine if a relationship exists between sleep and performance in elite athletes 

during competitions and training. The first study of this thesis demonstrated the 

extent of sleep disturbance among elite athletes, confirming a common belief among 

athletes and coaches that difficulty sleeping is a common experience among athletes 

(Erlacher et al., 2011; Atkinson et al., 2001; Savis, 1994). This study has also 

extended the knowledge of this phenomena to sleep difficulty among elite athletes 

during the competitive season, while empirical research to date has been limited to 

investigations of poor sleep during the off-season (Leeder et al., 2012) and during a 

particularly intensive period of training (Sargent et al., 2012). This study is also the 

largest study of objectively measured sleep in elite-level athletes that has been 

conducted to date. The discovery that sleep disturbance seems to be a rather 

persistent feature of athletes during an extended period of the season is likely to 

have serious practical implications; the negative consequences associated with 

disturbed sleep in the general population are well documented (e.g. Kripke et al., 

2002; Merkus et al., 2012; Jansen et al., 2003; Besedovsky et al., 2012) and the 

knowledge that athletes, whose success depends on gaining every conceivable 

advantage over their opponents, may be being chronically impaired by sub-optimal 

sleep, is likely to be an important consideration for athletes and coaches in the future.  

 The second study aimed to examine a number of questions relating to the 

possibility of a bi-directional relationship between sleep and elite athletic competition. 

Concerning the specific question of whether sleep immediately prior to a competition 
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can exert an influence on sleep, existing research has tended to suggest that, in the 

absence of adequate motivation, sleep can have an impact on cognitive aspects of 

performance, as well as an impact on physical measures due to the effect that 

inadequate or sub-optimal sleep has on mood and motivation. The major difficulty 

with the extension of this existing research to the current context is that it has 

artificially manipulated a reduction in overall sleep length, and has measured 

performance in a way that is not representative of an elite athletic competition. Given 

the importance of motivation in determining the impact that sleep has on 

performance, the current study aimed to investigate how variations in sleep were 

associated with variations in subsequent performances, so that both sleep 

disturbance and measured performance was entirely natural. In fact, the findings 

from this investigation demonstrated a remarkable level of consistency with the 

existing body of research, in that physical measures of performance were generally 

quite resilient to reductions in sleep, although there was a trend towards a reduction 

in ‘self-paced’ activity (also in agreement with existing research; Rodgers et al., 

1995). It was also noted however that the margin of difference that is commonly 

accepted among scientific communities may not be in agreement with the margins 

that exist in elite athletic spheres, where even small negative impacts on 

performance are a serious cause for concern, and the margin between success and 

failure are so narrow. Given this, the impact that sleep could exert on performance 

may still have serious practical consequences.  

 The second component of this study was to investigate the ways in which the 

pressures associated with competing in elite athletic competition can have an impact 

upon sleep. Once again, while there is an existing body of research investigating the 

ways in which exercise can have on subsequent sleep, such investigations have 
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tended to recruit conspicuously ‘ordinary’ research participants, a label which is 

certainly not attributable to elite-level athletes themselves, as well as the stark 

contrast in the level of physical exertion that is required of a physical exercise type 

level of activity compared to the exertion required during elite athletic competition. 

Perhaps a reflection of the apparent importance that is placed upon attaining 

adequate sleep, alterations in the sleeping behaviour of professional footballers were 

in evidence, particularly in terms of players retiring to bed earlier than they normally 

would and subsequently sleeping longer the night before matches. There was also 

evidence of alteration to sleep following matches, with players retiring to bed 

significantly later than their normal time. What was perhaps surprising was that this 

later bed time did not appear to be dependent on the timing of matches. Where the 

time of competition was influential, however, was in the direct relationship between 

the level of physical activity and subsequent sleep. While increasing levels of 

physical activity during afternoon matches did not display a marked impact on 

subsequent sleep, physical activity during evening matches did.  

 The third and final study aimed to investigate the relationship between sleep 

and performance during training for elite athletic competition. While performance 

during competitions is likely to be the most salient and visibly important time for 

athletes to achieve peak performance, the importance of adequate training is a vital 

component of such attainment. The possibility that sub-optimal sleep could have a 

deleterious impact on athletes training could be just as important as the impact it has 

on performance during matches. It is also important to consider once again the role 

that motivation has on determining how well physical performance will be maintained 

following poor sleep, and while performance during matches demonstrated a degree 

of resilience to sub-optimal sleep, the motivational climate that prevails during 
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training is unlikely to be quite so stimulating. Accordingly, and once again in overall 

agreement with existing research (Robert & Hockey, 1997), training sessions 

preceded by earlier and longer periods of sleep demonstrated a greater level of 

physical work completed by players, in addition to a reduction in the perceived level 

of effort reported by players, suggesting that improved sleep has a beneficial effect 

on training.  

 

6.2 – Practical Implications 

6.2.1 – Sleep Disturbance in Athletes 

 

 Perhaps the most startling and important finding presented within this thesis is 

the evidence of substantial and apparently pervasive presence of sleep disturbance 

among elite-level athletes. While this has been hinted at by previous investigations, 

this is the first that has objectively verified poor sleep in this population throughout 

the competitive season. In addition, contrary to the suggestion of Erlacher et al. 

(2011). it also appears that this sleep disturbance is not just limited to period of sleep 

immediately before competitions, but appears to be a longer-term problem.  
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6.2.1.1 – Existing Research on Sleep Disturbance 

 

 In order to understand what the consequences are likely to be we must turn 

our attention to the literature examining the impact of sleep fragmentation on daytime 

functioning. As was highlighted in chapter one, this is distinct from the traditionally 

studied sleep deprivation in that sleep fragmentation involves continuously provoking 

sleeping participants into brief periods of arousal during sleep, rather than a simple 

reduction (or total curtailment) of sleep. The best example of this pattern of sleep 

fragmentation occurring naturally arises due to sleep apnoea, in which a person 

ceases to breathe when they fall asleep. The oxygen deficit this causes in very short 

order results in the person briefly awakening frequently during sleep in order to 

breathe. These arousal are so brief (less than 10 seconds in most cases) that they 

are usually not noticed or even remembered by the sleeper the following day, and 

only 18% to 31% of sleep apnoea patients actually report the choking that interrupts 

sleep (Kales et al., 1985; Maislin et al., 1995; Coverdale, Read, Woolcock & 

Schoeffel, 1980) and the diagnosis of sleep apnoea often relies on reports by a bed 

partner (American  Academy of Sleep Medicine, 2006; Guilleminault & Bassiri 2005).   

 Sleep apnoea is associated with a number of negative consequences on 

daytime functioning, although there has been some discussion as to whether it is the 

discontinuity of sleep cause by frequent brief arousals or the hypoxemia during sleep 

that is the cause of these negative consequences. There have been two lines of 

research which seek to clarify matters. The first approach is to attempt to separate 

the effect of frequent arousals during sleep and measures of hypoxemia during sleep. 

Using multiple regression Roehrs et al. (1989) found that, while the frequency of 

arousals during sleep significantly predicted subsequent daytime sleepiness in sleep 
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apnoea patients, hypoxemia did not. Another study (Colt et al., 1991) experimentally 

induced episodes of hypoxemia in patients with sleep apnoea by exposing them to 

nitrogen during treatment using continuous positive airway pressure (CPAP), 

compared to a group only exposed to the usual 100% oxygen CPAP that is often 

used to treat sleep apnoea. The increased hypoxemia did not lead to any detrimental 

impact upon subsequent sleepiness the next day, leading to the suggestion that it is 

indeed the fragmentation of sleep, and not hypoxemia that is responsible for the 

negative daytime consequences associated with sleep apnoea.  

 The second approach to determining the role of frequent arousals on 

subsequent functioning has been to experimentally replicate the sleep fragmentation 

present during sleep. Michael Bonnet conducted much of the early research in this 

area, the first study being published in 1985, in which participants slept whilst being 

monitored by EEG. After participants demonstrated one minute of sleep, they were 

awoken by a loud tone, at which point they had to confirm that they had been 

awoken, after which they were allowed to return to sleep for one more minute. It was 

reported that once participants were used to the method of confirming their arousal, 

it only took a matter of seconds for participants to indicate that they were awake and 

return to sleep.  

 While this procedure only resulted in a reduction to total sleep time of one 

hour, there was a significant alteration in the sleep architecture of participants, who 

experienced significant declines in SWS and REM sleep. In terms of how this sleep 

fragmentation affected participants the following day, scores on the Clyde Mood 

Scale (Clyde, 1950), Stanford Sleepiness Scale (Hoddes, Zarcone, Smythe, Phillips 

& Dement, 1973) and performance on a simple reaction time task and a digit symbol 

substitution task demonstrated a level of decrement which was equivalent to a period 
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of total sleep deprivation of 40-64 hours. The basic paradigm has been replicated a 

number of times, using a variety of intervals between arousals (Bonnet, 1986; Levine 

et al., 1987), from every minute up to every 10 minutes, comparing continuous 

regular arousals to clustered arousals (Martin, Brander, Deary & Douglas, 1999) and 

comparing the effects of different arousal criteria on subsequent performance, 

ranging from requiring a behavioural response from participants such as pressing a 

button or speaking to a researcher (Bonnet, 1985; 1986; Downey & Bonnet, 1987) to 

an EEG defined ‘arousal’ which did not require a behavioural response from 

participants, but a stimuli was presented such that it disturbed the EEG pattern of the 

sleeper. This arousal criteria is intended to be a more realistic representation of 

sleep fragmentation as it appears in sleep apnoeacs and other sleep disorders such 

as periodic leg movements during sleep.  

 The findings of such studies have been thoroughly reviewed by Stepanski 

(2002). The implications which have the greatest relevance to the current discussion 

are that even arousals only requiring a transient change in the EEG stage of 

participants lasting as little as three seconds is sufficient to have a detrimental 

impact on subsequent daytime performance. This is vital because as has been 

discussed previously the sleep/wake identification used by the Actiwatches in this 

study have been validated against EEG, suggesting that the level of sleep 

fragmentation which is evident among the athletes studied here is at a level which is 

sufficient to have an impact on performance as has been noted in previous studies. 

The second key factor stemming from experimental sleep fragmentation studies is 

relationship between the intervals between arousals and subsequent performance. 

In his review, Stepanski notes that arousals which occur more frequently than once 

every 10 minutes (or 6 per hour) during sleep cause significant performance 
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decrements the following day, whereas arousal frequencies lower than 6 per hour 

have been reported not to increase sleepiness relative to normal uninterrupted sleep. 

This is especially significant in light of the results presented in chapter 3, which 

indicate that, while sedentary participants exhibit slightly over 6 movements per hour 

(while bearing in mind that not all movements indicate arousal), all the athletes 

demonstrated much higher levels of movement per hour, which take them beyond 

the 6 per hour threshold. All of this suggests that the level of sleep disturbance which 

is evident here could be having negative consequences in line with those that have 

been discovered in existing research.  

 In addition to the concern that the level of sleep disturbance evident amongst 

the high-performance athletes presented here could be having an adverse effect 

upon their athletic performances, concern should also be raised regarding the 

potential long-term consequences of such sleep. While the importance of factors 

such as proper nutrition and training techniques are almost universally regarded as 

being self-evident among athletes and their coaches (as is evidenced by the amount 

of resources dedicated towards the application of these disciplines in professional 

sports teams), the presence of enduring and pervasive poor sleep among athletes 

should also be of concern to athletes and coaches hoping to achieve peak 

performance.  
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6.2.1.2 – Consequences for General Health 

 

Chronically poor sleep has been associated with a number of negative 

consequences in addition to decrements in mood and performance that are evident 

even after relatively modest periods of sleep disturbance. While experimental 

inquiries into chronic sleep restriction have taken place (e.g Belenky et al., 2003; 

Herscovitch & Broughton, 1981), the practical difficulties associated with trying to 

experimentally induce sleep restriction over extended periods has mandated that the 

majority of insight regarding the longer-term effects of reduced or disturbed sleep 

has come from studies investigating the prevalence of adverse consequences in 

populations which already experience such sleep, such as shift workers, sleep 

apnoeacs and insomniacs.  

 Particular attention has been paid in these populations to a number of 

adverse health consequences that are unusually prevalent that seem to be 

associated with the reduced volume and/or quality of sleep. Rogers and Dinges 

(2001) note the higher level of medical disorders in shift works, and similar 

observations have been made in insomniacs (Bonnet & Arand, 2003) and sleep 

apnoeacs (Punjabi & Beamer, 2005). In addition epidemiological studies have 

demonstrated that among those who report habitually sleeping less than seven 

hours per night, there is a small but significant increase in all-cause mortality (Kripke 

et al., 2002; Ayas et al., 2003). Chronically poor sleep has also been associated with 

an increased incidence of sick leave from work with a variety of complaints (Merkus 

et al., 2012). While it seems likely that elite-level athletes should not be concerned 

with the sort of detrimental effect that fragmented sleep can have on health when 
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one considers that their overall level of health is vastly superior to the general 

population, they should perhaps be concerned of the metabolic consequences that 

can arise as a result of chronically fragmented sleep. Punjabi and Beamer (2005) 

note that there is credible evidence of a causal relationship between sleep apnoea 

and an increased resistance to insulin. Given the widely acknowledged importance 

of nutrition to both elite athletic performance and the crucial role it plays in recovering 

from and adapting to training, the possibility of long term metabolic dysfunction 

harming an athletes’ ability to get the full gain from training could be a serious 

concern.  

 

6.2.1.3 – Consequences for Immune Functioning 

 

 Another long-term consideration of potential importance is the role that both 

strenuous training and poor sleep can have on the functioning of the immune system. 

Even acute periods of sleep deprivation can have long-lasting effects on the 

functioning of the immune system. Lange et al. (2003) for example found that a 

single night of sleep deprivation following the administration of a hepatitis vaccination 

halved the number of antibodies in patients four weeks later, compared to a group 

who had slept normally. Similar findings have been reported by Spiegel et al. (2002) 

in response to an influenza vaccine, but disturbed sleep using sleep fragmentation 

rather than sleep deprivation. In the long term, Faraut et al. (2012) suggest that small 

amounts of sleep disturbance, built up over a period of time, could have a gradual 

and cumulative deleterious effect on health. Epidemiological studies of shift workers 



183 
 

add weight to the contention that the immune system is hampered by inadequate 

sleep (Scheer et al., 2009; Knutsson, 2003; Heslop et al., 2002; Ferrie et al., 2007).  

 This is of particular concern to the current population because strenuous 

exercise has also been linked to decrements in the functioning of the immune 

system (Gleeson, Bishop, Oliveira, McCauley & Tauler, 2011; Gleeson, 2007). This 

seems likely to be responsible for the reported increase in susceptibility to infections 

among athletes during periods of heavy training and competition (Fahlman & Engels, 

2005; Gleeson et al., 2011; Nieman et al., 1990; Peters & Bateman, 1983), with 

upper respiratory tract infections being the most commonly reported illness among 

elite-level athletes (Mackinnon, 2000; Page & Diehl, 2007; Peters & Bateman, 1983), 

particularly during periods of intense training (Yamaucgi et al., 2011). It does not 

appear that any of the above quoted studies attempted to properly measure sleep in 

order to establish if it contributed to the negative immune system outcomes that have 

been observed in athletes, but it is perhaps a fruitful area for further research to 

consider since a greater susceptibility to illness over the long term is likely to have 

adverse consequences on an athlete’s training schedule and, if the reasons for this 

can be better understood, it may be possible to mitigate this susceptibility by 

improving sleep.  
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6.2.1.4 – Possible Contributory Factors to Sleep Disturbance in Athletes 

 

 It is perhaps surprising that there appears to be such a consistently poor 

quality of sleep evident among athletes when one considers the ‘common sense’ 

appeal of the idea that a ‘good tiredness’ (such as from physical activity) leads to a 

‘good sleep’ (Davenne, 2009). Such is the appeal of this notion that exercise is 

endorsed by the American Sleep Disorders Association as being useful to those with 

disordered sleep, and is often regarded as a non-pharmacological intervention in 

sleep hygiene discussions (Hauri, 1993; Lavie, 1996). Survey studies have also 

suggested that the general public seem to regard exercise as having a positive 

influence on sleep (Youngstedt & Kline, 2006; Sherrill et al. 1998; Vuori et al. 1988). 

Empirical evidence has however been less than compelling, which Driver and Taylor 

(2000) in their review of this area attribute to factors such as variation in 

methodology, a predominance of testing good sleepers (and research that has not 

recruited good sleepers tend to find a more positive influence of exercise e.g. 

Youngstedt et al., 1997), and the impetus of such research being to test theories 

regarding the function of sleep. Most importantly however is the focus on 

recreational levels of exercise, which are of course not representative of the type of 

exercise experienced by elite-level athletes.  

 While light and medium intensities of exercise have been demonstrated by 

some studies as having an impact on subsequent sleep in the form of an increase in 

SWS (Bunnell et al., 1983; Horne & Staff, 1983; Trinder et al., 1988), very high levels 

of exercise such as marathon or ultra-marathon events tend to show the opposite 

effect (Baekeland & Lasky, 1966; Shapiro et al., 1981, Taylor, 2001). It has been 
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suggested that the time of day at which exercise takes place is also of critical 

importance in determining any effect that it is likely to have on subsequent sleep, 

with the suggestion that high intensity exercise taking place less than 3 hours before 

sleep tends to have an alerting effect which is responsible for increasing sleep onset 

latencies and levels of movement during sleep (Driver & Taylor, 1996), although 

experimental evidence in this regard is also equivocal (e.g. Myllmaki et al., 2011). It 

is also possible that the time of day of exercise could influence sleep through a 

circadian mechanism; Yamanaka et al. (2010) and Waterhouse et al. (2002) 

demonstrated that exercise can exhibit a phase-shifting effect almost as strong as 

bright light. Given that, it would be expected that exercise taking place after the early 

evening circadian peak would have a negative impact on sleep due to a phase-

delaying effect, exercise during the morning would have a phase-advancing effect, 

which could increase sleepiness during the evening, while exercise during the middle 

portion of the day would not have a large effect in any direction.  

 With the current set of data in mind, it is difficult to imagine that the ‘extreme’ 

levels of physical activity are solely responsible for the level of sleep disturbance in 

evidence. This is particularly evident from the professional footballers included in the 

sample since their disturbed sleep persists even in the absence of any training on a 

given day. In addition, their day-to-day training takes place during the morning, 

between 9 o’clock in the morning and, at the latest, 2 o’clock in the afternoon, which 

would be expected to have only a minimal impact upon players’ circadian pacemaker. 

Similarly in the swimming sample, training usually takes place very early in the 

morning and again in the late afternoon/early evening, which would be expected to 

have a phase-advancing effect, increasing sleepiness towards the end of the day, 

but they too demonstrated significant sleep disturbance.  
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One area where circadian factors may have a role to play is as a result of a 

continuously changing pattern of sleep scheduling, which is again most evident 

among the professional footballers. As a consequence of the demands of their sport, 

these athletes often have an unusually late bed time forced upon them, such as 

following a mid-week match away from home. Since mid-week matches tend not to 

start until well into the evening, by the time the match has finished and the team 

travelled home it is not unusual for players to be retiring to bed as late as 3 or 4 

o’clock in the morning. Assuming an 8 or 9 hour sleep that night, this will have the 

effect of altering the players’ circadian phase relative to the external environment in 

just the same way (albeit not as drastically) as trans-meridian travel does in jet-lag 

(the effects of which upon performance, both ‘mainstream’ and athletic, have been 

well documented e.g. Monk, Buysse, Reynolds, Berga, Jarrett, Begley & Kupfer, 

1997; Waterhouse, Edwards, Carvalho-Bos, Buckley & Reilly, 2002).  Consistency in 

the timing of sleep is also recognised as an important factor in sleep hygiene 

discussions, and has been thought of as a factor which contributes to the 

continuation of poor sleep among those with sleep disorders such as primary 

insomnia (Wang et al. 2005). Since professional footballers compete on a weekly 

basis throughout the competitive season, they have a manifestly ‘chaotic’ schedule 

of sleep and wake, with sleep times varying on an almost daily basis. Combined with 

sporadic periods of international travel (for players competing for their national team 

in addition to their club) this continual variation in circadian synchrony could be a 

plausible contributory factor to players’ persistent poor sleep. There is difficulty 

however in extending this conjecture, particularly to the swimmers in the current 

study, since there were no competitions during the study period, and their patterns of 

sleep and wake scheduling were far more consistent but still demonstrated a similar 



187 
 

level of sleep disturbance. The only significant differences between the swimmers 

and footballers related to sleep timing and sleep length, which is likely a reflection of 

the differing demands of their sport, which requires swimmers to arise for training 

significantly earlier than professional footballers so that a second training session 

following adequate recovery can take place later in the day.  

 Another likely contributory factor to poor sleep in athletes is anxiety (Davenne, 

2009). It seems likely that athletes will be exposed to heightened levels of anxiety, 

particularly during times of competition, which perhaps explains why anxiety is one of 

the most measured constructs in sport psychology (Cox et al., 2003). There are 

countless potential sources of anxiety for those competing in athletic events, such as 

fear of failure, negative evaluation from others and not performing at one’s best, as 

well as factors depending upon one’s performance such as the financial burden or 

implications of a negative performance (Scanlan, Sten & Ravizza, 1991; Weiss, 

Wiese & Klint, 1989; Gould, Horn & Spreeman, 1983). Both the basketball players 

and football players in the current study were competing on a weekly basis during 

the study period, and were also part of a larger team between matches during which 

they will have been competing for selection within that team for inclusion in 

upcoming matches. While it is understood that anxiety is not necessarily deleterious 

to athletic performance, the impact that anxiety has depends largely on how it is 

appraised by the individual (Weinberg & Gould, 2007). The relationship between 

anxiety and sleep is well understood in the mainstream sleep literature, given the 

high co-morbidity between anxiety disorders and sleep (Stein & Mellman, 2005), as 

well as acute sleep complaints before important events (e.g. Langendörfer et al., 

2006; Silva, Queiroz, Winckler, Vital, Sousa, Fagundes et al., 2012). A plausible 

mechanism explaining how competitive anxiety could lead to poor sleep among 
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athletes exists, based on Harvey’s (2002) cognitive model of insomnia. This model is 

intended to describe how primary insomnia occurs as a result of negatively-toned 

cognitive activity about the need for adequate sleep and the consequences 

associated with insufficient during the immediate pre-sleep period, and that this 

anxiety gives rise to arousal and distress, making sleep more elusive which then 

feeds back into further negative cognitive activity. It seems eminently plausible 

however, that an elite level athlete, anxious about an upcoming competition or 

worried about the security of their place, could experience a similar process leading 

to disturbed sleep.  

  

6.2.2 – Implications for Athletic Performance 

 

While the results of the analysis into the relationship between sleep and 

subsequent performance in competitive situations were not statistically significant, 

these data could still be of considerable interest. At least for total distance covered 

during matches, the direction of the relationship between sleep and distance covered 

was in the direction that may be expected, suggesting a positive impact of sleep. 

Earlier bed times, longer sleep times and greater sleep efficiency were associated 

with an increase in distance covered on-pitch, while reduced sleep quality (i.e as 

measured by WASO, SOL and onsets/hour) were associated with decreases in 

distance covered. In contrast, and in particular for measures of sleep quality, the 

relationship between sleep and high intensity distance covered was far lower. During 

a football match, there are inevitably periods of play where a specific individual is 

more directly involved with the game at some points than at others, for example 
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when a player is in possession of the ball, or perhaps trying to win possession from 

an opposition player. In contrast, there will be periods when players are not directly 

involved in the game, such as defenders when their own team has possession deep 

in the opposing team’s territory. In such a situation the defensive players must 

remain largely to the rear of their team, in order to be available to cover any sudden 

change in circumstances. Players not directly involved with a specific passage of 

play are less likely to have a need to move at ‘high-intensity’ speed than players who 

are directly involved, and are perhaps more likely to need to respond quickly to 

changing circumstances. This draws some useful parallels with lab-based research 

highlighting the differing effects of sleep deprivation of forced-pace physical work 

compared to self-chosen pace (Rodgers et al., 1995). In this context, even when 

players’ are ‘off the ball’ and not directly involved in a particular passage of play, they 

should not generally be static (the goalkeeper being an obvious exception). 

Defending players should still be mobile, tracking the run of play forwards and 

backwards, as well as lateral movement side-to-side in order to be optimally placed 

to respond quickly if necessary. It does not seem entirely unreasonable to suggest 

that this bears some resemblance to the ‘self-chosen pace’ physical activity work 

that is used in lab-based studies, in which there is a less immediate motivation to 

work. Such a possibility may offer an explanation for the greater relationship with 

poor sleep, just as is in ‘classical’ sleep-deprivation studies. By comparison, if we 

accept that high-intensity work tends to take place more when there is an immediate 

need for the player to do so, this may explain how the increased importance and 

concurrent motivational immediacy render such movement levels more resistant to 

previous poor sleep.  
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 Despite the lack of a significant relationship between sleep and performance, 

it is important to bear in mind the context in which this research takes place, and 

remember the importance that small differences can have in elite athletic competition 

(the philosophy of ‘aggregation of marginal gains’ discussed previously). It is not 

easy to quantify in football, but for example in sprinting, the difference between the 

gold medal winning time at the London 2012 Olympic Games (9.63 seconds) and 

fourth position (9.80 seconds) amounts to only a 1.77%, and the difference to the 

lowest placed (uninjured) finisher amounts to only 3.6% (London 2012 Organising 

Committee, 2012). To take an example from the current study, if one takes the 

results for the relationship between bed time and total metres covered, the results 

suggest that going to bed 1 standard deviation earlier than normal is associated with 

an increase in total distance covered of 0.391 standard deviations. Taking the 

averages of each individual player, this equates to an earlier bed time of 73 minutes 

being associated with, on average, an increase in distance covered during matches 

of 820 metres. Given that the average distance covered by all players in all matches 

studied was 8,435 metres, this equates to an increase of 9.7% following an earlier 

bed time (a full set of examples can be found in Appendix E). This makes clear the 

stark contrast between the margins required for statistical significance and the 

margins that decide the difference between winning and losing in elite sport. Margins 

as tight as this are common in the world of elite sport, and while the effectiveness of 

certain strategies or tactics may not be large enough to reach statistical significance, 

they may never-the-less be an important consideration for players and coaches.  

 Another important factor to consider with these results is the fact that the best 

models for the relationship between sleep and subsequent performance were 

invariably simple linear relationships. Some evidence (e.g. Van Dongen & Dinges, 
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2003) has suggested that this relationship should be considered as non-linear (which 

provided the impetus for non-linear modelling of predictors in the current study). 

While it became apparent that non-linear modelling was not providing sufficient 

additional explanation of the variance in this case, it should be noted that the 

increasing level of complexity involved in modelling relationships of this sort 

generally requires a substantial increase in the quantity of data before such 

relationships are identifiable. Another important consideration in this regard relies on 

the fact that the sleep data is unusually constrained due to the circumstances in 

which the data were gathered. In a lab-based study, the timing or length (or even the 

quality of sleep, as manipulated in sleep fragmentation studies) can be extensively 

manipulated, either to produce an increase or decrease in sleep time, or an earlier or 

later bed time. The present study however resolved to measure sleep as it naturally 

occurs, since manipulated sleep is an unrealistic likelihood in the vast majority of 

cases. As was noted earlier, there was a significant trend for athletes to go to bed 

significantly earlier before matches. This effectively constrains players bed times 

(expressed as z-scores) to within -1 to 0 (ie 1 standard deviation earlier than normal) 

of when they would normally go to bed, with very few instances of a positive z-score 

of sleep time. As such, if the relationship were U shaped, with the centre of the curve 

approximately around a bed time of 0, the present study only captures one half of the 

possible data, which on its own would certainly be more likely to resemble a 

straightforward linear relationship. Since the results of the current study cannot be 

extrapolated beyond the range of the data present, a future study capturing a wider 

range of sleep data may very well find that the relationship between sleep and 

subsequent performance is non-linear.  
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A final consideration to note is the type of performance measures used in the 

present study. While the distance players cover during a football match can be 

affected by factors known to depend heavily on adequate sleep (namely motivation), 

it is certainly plausible that such factors are responsible for the disparity in the 

strength of the relationship between sleep and performance as measured by total 

distance covered and distance covered at high intensity. These measures remain 

primarily a measure of the amount of physical work completed by players during 

matches. One of the clearest findings of the work that currently exists is that the 

capacity to perform physical work is quite robust to decrements in the quantity or 

quality of sleep. It is cognitive performance that really declines seriously when sleep 

is inadequate. While how much distance a player covers during a match does 

depend to an extent on such cognitive factors, a performance measure examining a 

purely cognitive factor would be more likely to elicit a significant result as a 

consequence of poor sleep. Future research may wish to consider studying other 

sports which might allow measures of cognitive performance to be measured more 

easily in a real-life competitive situation. For future research in professional football 

players, it would be worthwhile to consider the work currently being undertaken by 

Peter O’Donoghue and Martin Lames (O’Donoghue, 2012; Lames, 2012), who are 

using data from the Prozone® tracking system to measure and analyse tactical 

factors in professional football, such as team cohesion and defensive cover, which 

may be more sensitive to poor sleep. Unfortunately this type of analysis requires 

access to the raw Prozone® tracking data, rather than just the summary information 

provided to football clubs, which was not available for the current investigation.  

 

  



193 
 

6.2.3 – Implications for Improved Training 

 

 The findings of this thesis which are of perhaps of primary importance to 

athletes and teams relate to the impact that poor sleep can have on subsequent 

performance during training, since it suggests that, if sleep could be improved upon, 

athletes may find that they are able to train harder and receive greater benefits of 

adaptation to training. Previous research has extended (to 10 hours per night) the 

amount of sleep that university-level basketball players attained on a daily basis, and 

observed a significant improvement in these participants on a number of laboratory-

style performance measures (Mah et al., 2011). This study extends the implications 

of this study to performance during real-life training sessions in professional 

footballers. While the authors cited above point out that in many cases it may be 

organisationally impractical for athletes to arrange to be asleep for 10 hours per day, 

this is unlikely to be an insurmountable challenge for professional footballers. During 

the season these athletes are training only once per day, and their status as 

professionals means that they are not required to seek outside employment to 

support themselves, as is often the case in other elite-level sports. If even this 

relatively straightforward intervention can be effective in improving performance 

during training sessions, there is great potential that other sleep improvement 

interventions could prove to be a useful way to improve the effectiveness of training 

in elite-level athletes. Erratic scheduling of sleep has been demonstrated to be a 

significant factor in a number of the athletes studied throughout this thesis and, while 

it has not yet been demonstrated in athletes, education about sleep hygiene routinely 

features as a component of cognitive-behavioural therapies aimed at improving 

sleep in both clinical and sub-clinical insomnia (Hauri, 1977; 1992; Stepanski & 
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Wyatt, 2003). A number of other strategies have also been demonstrated as having 

a positive influence in sleep, such as body-heating close to bed time in order to 

exaggerate the circadian drop in core-body temperature, and deep tissue massage 

to provide relaxation before bed has been suggested as being an effective sleep-

improvement intervention (Horne, 2006; Kalichman, 2010; Field, 1998), although 

once again these strategies have yet to be tested in elite-level athletes. Above all, 

the findings from section 3 indicate that there is potential for improvement to athletes’ 

sleep, which combined with the findings presented here, also suggest that significant 

performance gains during training could also be made as a result.  

 It is also important to note that improvements to sleep would have a number 

of secondary benefits that are likely to be beneficial to athletes training for elite-level 

performance. The positive impact that sleep has been found to have on general 

health and well-being and the functioning of the immune system is likely to have a 

positive impact on athletes during training. In the light of the evidence presented 

here it may now be possible for those in the sleep-research community to more 

confidently suggest that good sleep is an important component for athletes striving to 

attain maximum performance and, given the raft of potential benefits that could be 

expected if sleep could be improved, that there could be a considerable desire in 

sports teams to investigate ways in which sleep could be improved in their athletes 

(a subject about which there has, thus far, been scant research). Thus, they might 

more closely monitor the sleep of their athletes as part of the regular monitoring that 

professional teams already engage in.   

 An additional implication that may have bearing on improvements that could 

be made to training is the concept of time-of-day specific training. Recent research 

conducted by Sedliak, Finni, Peltonen and Häkkinen (2008) has suggested that 
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adaptation to training relies significantly on circadian processes, and those athletes 

who train early in the mornings subsequently show greater performance gains when 

measured in the morning than they do when measured in the evenings, and vice 

versa. Given that the earliest kick-off times in professional football don’t take place 

until well into the afternoon (approximately 1500 hours), it may be of concern that 

players universally train in the mornings, which may have the effect of blunting the 

performance gains that have been made during training when it comes to 

performance during matches. It may be a fruitful area for future research to consider 

the role that a mismatch between the time of day of training and performance could 

have, and could also form the basis of an intervention, by moving the time of training 

to be more in line to the time at which matches take place. Such an intervention may 

also prove to have beneficial consequences for players’ sleep. Our current 

understanding of the contribution of circadian factors to sleep regulation highlights 

the importance of a regular pattern of activity. In addition to having positive 

consequences in terms of adaptation to training, altering the time of day at which 

training occurs to be more in line with the time at which competitions take place may 

also have a stabilising effect on the circadian rhythms of players, reducing the level 

of day-to-day variability in their sleep and activity schedules. This would be expected 

to have a positive impact on their sleep generally, which in turn would be expected to 

result in a number of other associated benefits, both in terms of their training as was 

demonstrated in the section 5.3.2, and also more generally in terms of improvements 

to factors such as mood and general health and well-being, as has been highlighted 

by the existing sleep literature.   
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6.3 – Methodological Considerations 

6.3.1 – Sleep Measurement 

 

 Following the suggestion of the few authors that have investigated sleep 

directly in elite-level athletes, wrist actigraphy was chosen as the principal method of 

sleep measurement throughout this thesis. While the validity and reliability of this 

measurement in determining the sleep or wakefulness of participants has 

consistently been shown to be favourable compared to the established ‘gold-

standard’ measure of EEG (as discussed previously in chapter two of this thesis), 

there are still a number of limitations associated with this technology. The primary 

disadvantage of actimetry compared to EEG is the lack of any useful information 

regarding sleep stages.  

 While actigraphy presents a number of distinct advantages over EEG in this 

population (extended measurement period, minimally disruptive, easily 

transportable), and is certainly preferable to subjective reports, it does not allow for 

the proper measurement of sleep depth. As was discussed in the first chapter of this 

thesis, it is clear that not all stages of sleep are equally important, and while 

excessive movement has been associated with disturbed and fragmented sleep, as 

well as being an indicator of transition between stages (Carskadon & Dement, 2005), 

it is not possible to determine if this movement results in a significant reduction in 

vital SWS, or a reduction in another sleep stage. It is also difficult to establish with 

any degree of certainty the extent to which the continuity of sleep is being disturbed 

without using an EEG. There is some existing work which has studied the EEG 

consequences associated with various types of exercise in non-elite athletes 
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(Dworak et al., 2008; Myllmaki et al., 2011; Souissi et al., 2012), which suggests that 

exercise can exert an influence on sleep stages, such as alterations to the quantity 

of SWS and REM sleep, increasing sleep onset latency, increasing the number of 

awakenings during the night and increasing the latency to REM sleep. This also 

depends on the time of day at which exercise takes place, with intense exercise 

taking place in the evening having a particularly disruptive impact on subsequent 

sleep (Souissi et al., 2012).  

 While the use of EEG to measure sleep would clearly have been impractical 

in the studies presented here, which purposefully sought to measure sleep as it 

occurs naturally for a protracted period rather than in an artificial setting for a short 

period, such an investigation would never-the-less be a highly informative exercise. 

While it may be difficult to recruit elite level athletes to volunteer to have their sleep 

measured by an EEG the night before competitions due to the level of invasiveness 

and potential disruption that could result, it would still be an informative exercise to 

measure the sleep of athletes using an EEG periods of training. Since the sleep 

disturbance that has been revealed earlier in this thesis appears to be a relatively 

consistent feature of athletes sleep throughout the season, the use of EEG at any 

point during the competitive season is likely to yield useful data.   
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6.3.2 – Performance Measurement 

 

 The methods of performance measurement used during this thesis were 

largely guided by the views and input of the sports science support staff at 

participating football clubs. This was primarily to ensure that any impact of sleep on 

these measures of performance would be immediately appreciable to the target 

audience (which is the same sports science support staff, as well as their athletes 

and coaches). The limitation of the measures that are widely used in the context of 

the current study is that they are first and foremost measures of physical, rather than 

cognitive performance. As was discussed at some length in the first chapter of this 

thesis, physical performance has consistently demonstrated a remarkable level of 

resilience under conditions of sleep deprivation, and any decline in physical 

performance is a ‘by-product’ of a decline in cognitive performance (specifically 

mood and motivation). The negative consequences of sleep deprivation on cognitive 

performance have been consistently demonstrated to be severe, even where sleep 

restriction is modest. While there has been some measurement of cognitive factors, 

such as ‘self-paced’ activity levels contributing towards the total distance covered by 

players during matches and training, and ratings of perceived exertion provided by 

players following training sessions, a true measure of in-game cognitive performance 

would be a much more useful measure. While those deprived of sleep have 

demonstrated an ability to maintain their performance when adequately motivated, 

the same cannot be said of cognitive performance (Robert & Hockey, 1997; Horne & 

Reyner, 1995; Reilly & Walsh, 1981; Durmer & Dinges, 2005).  

 Any future research undertaken in this area would benefit greatly from 

measuring cognitive performance as it occurs naturally in elite athletic competition, in 
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addition to the more physical performance measurements that are presented here. A 

number of performance analysts (e.g. O’Donoghue, 2012; Lames, 2012) have been 

making progress using the data from the ProZone system to assess tactical 

performance of individuals, teams and sub-groups within football teams (e.g. the 

defensive four). Such tactical performance will depend to a much greater extent on 

cognitive factors, since the proper implementation of tactics in a complex large team 

game like football requires the use of skills such as selective and sustained attention, 

decision making, rapid reaction to stimuli and flexible thinking, all factors which have 

been previously demonstrated as depending on the PFC that is adversely affected 

so disproportionately by inadequate sleep. Although such detailed tactical analysis 

does not appear to be widely used among professional football clubs, where the 

importance of the ‘tacit’ knowledge of coaches and players is favoured, such an 

analysis would arguably be even more useful than the relationship between sleep 

and (physical) performance that is evident in the current work, and further highlight 

the importance of sleep to athletes who are striving for peak performance.  

  

6.3.3 – Sample Size 

 

 One of the more persistent difficulties that has presented itself during the 

investigations presented here has been the problem of obtaining an adequate 

sample size. While a reasonable number of individual football players were recruited 

and both sleep and performance measures were collected on a daily basis, it may 

seem that collecting an adequate quantity of data would be a minor concern. The 

nature of elite-level competition however conspires against this. While the 
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forgetfulness of participants is perhaps to be expected and interferes with the 

collection of sleep data (which certainly played a part in the current investigations), a 

number of other factors also served to reduce the total amount of data collected. For 

example, shortly after the beginning of the study, one of the participating players was 

transferred to another club, entirely depriving the analysis of almost all of his data. 

Periods of injury are also a common feature of elite athletes, which also led to 

extended periods of time where players were not contributing match or training 

performance data to complement their sleep data. Players being called up for 

‘international duty’ was another source of completely losing data for players for a two 

or three week period, in addition to players simply being de-selected from the match 

squad.  

 The difficulty due to data loss was compounded by the complexity of the 

statistical analysis that was conducted in the current investigations. It was clear that 

a lot of data would be required since the effect-size associated with the impact of 

natural variations on subsequent performance will naturally be smaller than in a 

study experimentally reducing sleep more drastically. That is, a larger sample size is 

necessary to properly investigate the significance of any effect. Further necessitating 

the need for a large amount of data is that due to the relative novelty of multi-level 

modelling as an analysis tool, it is very difficult to prospectively determine the 

required sample size (Field, Miles & Field, 2012). While the sample size in the 

current investigations met the ‘minimum requirements’ as suggested by Field, Miles 

and Field (2012) of having at least 20 ‘contexts’ (in this case context would refer to 

players, the second level in the model), due to the relatively modest effect size a 

larger sample size may have been required to properly assess the significance of the 

findings. There were also difficulties presented in the more straightforward analyses 
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of difference due to a lack of data. For example the impact that exercise during 

matches had on sleep was separated into comparing the impact of exercise during 

home matches compared to away matches, and the impact of exercise during 

afternoon matches compared to evening matches. A thorough analysis would have 

called for those levels to have been fully factored (to compare evening home 

matches to evening away matches and afternoon away matches to evening away 

matches for instance). These factors were analysed to assess the impact that the 

timing of matches and the differing organisational stressors that result from away 

matches can have on subsequent sleep, but a fully factorial analysis could have 

assessed these factors in combination, but there was not enough data available to 

conduct such an analysis.  

The practical upshot of the combination of a high attrition rate that is prevalent 

among elite level athletes and the complex nature of the analysis that is required 

when naturally observing variations in sleep and performance rather than 

experimentally inducing variation is that a great deal of data will be required, and 

researchers should expect to lose a lot of data along the way. Any future research 

conducted in a similar vein to the investigations presented here should seek to 

recruit an entire team of players to minimise the impact of attrition and ensure that 

there is sufficient data to properly investigate what are likely to be small effects 

taking place in a set of complex and varied circumstances.   
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6.4 – Future Research 

 

 There are a number of possible directions that future research into this area 

could take. One of the primary areas that future research should address is the lack 

of cognitive measures of performance that are present in this thesis. As discussed 

previously, the importance of the study of the cognitive consequences of inadequate 

sleep are especially salient given that most sports include a large cognitive 

component, and cognitive factors are especially susceptible to poor sleep. This could 

be accomplished by future work either by a more advanced use of ProZone to 

assess tactical performance during football matches (O’Donoghue, 2012; Lames, 

2012), or by studying different sports which place a much more overt focus on 

cognitive factors. Sports requiring fine motor control such as archery, shooting and 

golf are sports with a far greater emphasis on cognitive performance, and may be 

more amenable to measurement during performance (this is perhaps particularly true 

of archery and shooting, where the conditions during competition are heavily 

standardized, which would allow for greater confidence in the reliability of 

measurement).  

 Another key target for future research should be to determine how stable the 

pattern of poor sleep is among elite athletes. While poor sleep out of season has 

been objectively confirmed by Leeder et al. (2012), participants were only measured 

for four days, which is short of the suggested minimum requirement of five to seven 

days recommended (Rowe, McCrae, Campbell, Horne, Tiegs, Lehman & Cheng, 

2008; Sadeh, 2011; Acebo, Sadeh, Seifer, Tzischinsky, Wolfson, Hafer & Carskadon, 

1999; Sadeh, 1996) to get a sufficiently detailed picture of sleep. Future research 
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should also seek to measure the sleep of the same athletes during both the off-

season and the in-season in order to establish the differences in sleeping behaviour 

during these two periods. When one is considering possible causes for the type of 

sleep disturbance that has been so clearly in evidence in the present investigations, 

likely factors are pre-competition anticipatory anxiety, strenuous physical activity and 

the constantly shifting sleep schedules that are associated with late night competition. 

During the off-season these factors will certainly be mitigated, and for a time many 

will cease to exist entirely (e.g. competition and the accompanying anxiety). If it 

transpires that the sleep of athletes continues to show significant signs of 

disturbance, it could be concluded that these factors are not in fact a primary cause 

of sleep disturbance. Conversely, in the event that sleep does show an improvement 

when these factors are removed, it could be concluded that these factors do in fact 

make a significant contribution towards the poor sleep that is observed, and the 

possibility of interventions aimed at reducing the impact that such factors have on 

sleep could then be investigated, with the aim of improving performance. A further 

consideration would be to establish if there are any differences to the pattern of 

sleep disturbance during the ‘pre-season’ period. This period is again distinct and is 

characterised by a lack of competitive matches (save for the occasional friendly 

match) and a markedly higher level of training load than exists during the competitive 

season. This would be a particularly important period for investigation to help 

determine the extent to which high levels of strenuous activity can impact upon sleep. 

Taken together a comparative approach examining variations in sleep that may take 

place as the demands of a specific sport could help to elucidate some of the causes 

for the sleep disturbance that has been revealed here.  
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The expansion of research participants to include athletes from a wider variety 

of sports would also be a highly informative exercise. ‘Elite-level athletes’ are not a 

homogenous group, and different sports place different types of stress on people. 

Sampling from a wider variety of sports would enable a number of potential factors 

relating to sleep in elite level athletes to be investigated by means of a comparative 

analysis comparing the various organisational and athletic stressors which are 

peculiar to individual sports. One especially salient example comes from the 

scheduling of competition during the season; the present study exclusively studied 

the performance of professional football players, which features a strongly 

demarcated competitive season with matches taking place on a weekly basis. Due to 

the need for adequate recovery following matches, the type of training that 

dominates for the majority of the season is highly orientated towards maintenance of 

fitness rather than more taxing training aimed at improving physical fitness. In 

contrast, sports which are much more dependent on physical conditioning than on 

tactical factors (e.g. racing sports such as swimming, rowing, distance running) 

feature extended periods of higher intensity training taking place in ‘blocks’ in-

between periods of competition which occur less frequently. As a consequence of 

the more physical nature, athletes in these sports are usually required to train 

multiple times each day, which in turn requires training both early in the morning and 

late at night, in order to allow for adequate recovery between sessions. In contrast to 

the competitive and training schedule of the athletes whose performance was 

studied here, the combination of very early and very late training sessions would 

place an entirely difference set of stressors on such athletes than existed in the 

current thesis.  
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Another useful area of interest that could be better addressed by studying the 

relationship that sleep has with performance in a variety of sports is the impact that 

circadian factors has on sleep in athletes. In addition to the differing circadian 

pressures that will be placed on athletes as a consequence of their sport (such as 

the frequently changing schedules observed in professional football players, or the 

very early morning training is observed in swimmers), the impact that light exposure 

can have needs to be considered. Since exposure to bright light is the single 

strongest factor which influences circadian rhythms (Czeisler et al., 2005; Czeisler 

1995; Khalsa et al., 2003), the differences in levels of exposure to light experienced 

by athletes in sports where training and competition takes place indoors compared to 

those training and competing outdoors could prove to a useful comparison when 

considering the role of circadian factors and their contribution to sleep disturbance in 

athletes.  

 A final consideration that must be made on the subject of the evidence of 

sleep disturbance among elite level athletes that has been discussed throughout this 

thesis is the matter of exactly why athletes seem to exhibit such a markedly lower 

quality of sleep than age-matched controls. This thesis established in chapter 3 that 

athletes from 3 different sports all consistently displayed elevated levels of sleep 

disturbance than would be expected from a group of otherwise normal and healthy 

individuals. Since the primary purpose of this thesis has been to examine the ways in 

which sleep can impact upon performance, it has simply not been possible to also 

conduct a thorough investigation of the precise causes and mechanisms that are 

responsible for this sleep disturbance. While the fourth and fifth chapters if this thesis 

did seek to investigate some of the sport-related factors which could be contributing 

to this phenomena, such as the timing and intensity of physical activity, as well as 
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organisational stressors brought on by factors such as matches played away from 

home, there are a myriad of other factors which are also likely to be contributing to 

sleep disturbance. Having established that changing circumstances arising from 

competitive demands can exert an influence on sleep, future research should seek to 

examine some of the other factors differentiating athletes from sedentary controls to 

try and establish some of the other contributory factors; competitive anxiety in 

particular could prove to be a fruitful area of research, but other factors that 

distinguish athletes from non-athletic contemporaries such as dietary, and even 

caffeine consumption, could all play a role.  

Regarding the impact that sleep can have on performance, another key area 

for future research to consider is the impact that sleep can have on metabolism. 

While the majority of the existing research into the function of sleep has arrived at 

the conclusion that the primary purpose of sleep is for restitution of the brain, 

discounting the impact it may have on the rest of human physiology. While the 

evidence that brain restitution most certainly is the primary function of sleep, more 

recent evidence has suggested that metabolism can be negatively affected by 

inadequate sleep (Harsch, et al., 2003; Res et al., 2012, Al-Delaimy et al., 2002). 

The possibility that the poor sleep that has been observed here could be exerting a 

negative influence on athletes’ metabolism will have serious implications in terms of 

performance; the importance of proper nutrition to those seeking to attain peak 

performance is well founded, and evidence that this aim is being undermined due to 

inadequate sleep will serve to further highlight the importance of sleep to elite level 

athletes.  

 Finally, and perhaps most importantly, future research should aim to 

investigate the efficacy of sleep-improvement interventions in elite-level athletes, and 
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determine the extent to which such interventions (should they prove to be effective) 

can contribute towards improvements in performance. The improvement of 

performance is without a doubt the single most important consideration for elite 

athletes and their coaches, since it is upon this that their livelihood rests. It would 

probably be wise to avoid the use of hypnotics; athletes may be especially averse to 

the associated side effects and, as Horne (2006) points out, there is the risk that 

people will become dependent upon them in order to get a proper night’s sleep. 

Discussions with both players and their coaches throughout the course of these 

investigations does suggest that even slight behavioural modifications could be a 

fruitful direction in which to aim sleep improvement interventions in this population. 

While sleep hygiene is rarely indicated as a efficacious treatment on its own for poor 

sleep in clinical populations, it has not yet been tested in elite-level athletes, who 

certainly do not follow many of the ‘rules’ that are present in most sleep-hygiene 

education programmes. Factors such as inconsistency in the timing of sleep and 

over-stimulating bedroom environments could be contributing to poor sleep. Another 

possible intervention could be the mattresses that players themselves sleep on; a 

strategy which is reportedly followed by the British Cycling Team and the Sky 

Procycling professional team is for individual athletes’ bedding to accompany them 

wherever they go in attempt to ensure a measure of consistency to their sleeping 

environment. While objective evidence for the effectiveness of this strategy is 

presently unavailable, it is certainly a strategy worthy of further consideration 

(particularly in a sport like professional cycling where athletes’ sleeping 

environments changes on a daily basis during races). The efficacy of napping during 

the daytime before competitions is also worthy of exploration; a number of athletes 

studied throughout this thesis reported napping during the daytime as part of their 
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preparation competition. Existing research suggests that even a short nap can have 

a beneficial impact on performance (e.g. Horne & Reyner, 1996). There are likely to 

be difficulties with naps longer than 20 minutes, which allow for a full sleep cycle with 

the accompanying ‘grogginess’ on waking (Horne, 2006), but they could prove to be 

a useful strategy where nocturnal sleep is inadequate.  

   

6.5 – Summary 

 

 This thesis has offered evidence for the presence of significant sleep 

disturbance among elite level athletes, supporting the widely reported view of 

athletes and coaches. This thesis has also been the first to attempt to assess the 

relationship between sleep and performance as it occurs naturally in elite-level 

athletes, as opposed to the existing body of literature that has manipulated sleep in 

an experimental setting and measured the subsequent performance consequences 

in a manner which is not necessarily representative of performance in elite athletes. 

The outcomes of this research are directly applicable to athletes. This thesis has 

also aimed to investigate the contribution that training for, and competing in, elite-

level sport can have on sleep. The benefits of this research are primarily to highlight 

to athletes and coaches that obtaining adequate sleep is a difficulty that many 

athletes face, and has demonstrated ways in which this difficulty with sleep could be 

negatively impacting on their performance. It has also highlighted that sleep 

improvement could turn out to be a fruitful area of interest for performance 

enhancement in the future; since the evidence suggests that sleep disturbance 

seems to be a fairly common phenomena among elite-level athletes, there may be a 
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great deal of room for improvement. It was demonstrated in chapter four that even as 

simple an intervention as an adjustment to the timing of sleep was associated with 

an increase in levels of activity during competitive football matches. In addition to the 

direct performance gains that may result from an improvement to sleep, a number of 

beneficial secondary effects could result, such as better training, better adaptation to 

that training and a reduction in the risk of illness which could negatively impact on 

athletes’ preparedness for competition. In terms of the philosophy of ‘the aggregation 

of marginal gains’, the potential attached to sleep improvements are clearly worthy of 

further consideration.  
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Appendix A- List of R Packages Attached During Analyses 
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Analysis. New York: Springer.  
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Bliese, P. (2012). multilevel: Multilevel functions. R package 



261 
 

 

nortest 

 

plyr 

 

psych 

 

 

stats 

version 2.4.  

Gross, J. & Ligges, U. (2012). nortest: Tests for Normality. R 

Package version 1.0-2.  
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Appendix B- Chapter 3 Results Summary 

 

 

  Group 1 - 

Sedentary 

 Group 2 - 

Football 

 Group 3 - 

Basketball 

 Group 4 - 

Swimming 

Sleep Parameter        

 Bed Time (time) 00:12 (01:20)2,3  23:24 

(00:55)1,3 

 01:33 (01:13)1,2,4  23:39 (00:52)3 

 Get Up (time) 08:10 (01:08)3  08:34 

(00:43)3,4 

 09:25 (01:07)1,2,4  07:39 (00:46)2,3 

 TST (hh:mm) 07:39 (00:51)2  08:34 

(00:37)1,3,4 

 07:33 (00:23)2  07:43 (00:32)2 

 WASO (minutes) 40 (15)2  68  (23)1  58 (16)  54 (18) 

 SE (%) 88.79 (4.32)2,3  81.12 (4.73)1  83.63 (6.45)1  85.0 (4.72) 

 SOL (minutes) 10.1 (10.38)2  27.1 

(16.58)1,4 

 17.6 (21.65)  14.4 (8.2)2 

 Movements / hour 6.37 (1.69)2,3,4  8.70 (1.54)1  8.83 (2.15)1  9.55 (1.54)1 

Table 3.1. Pairwise comparisons between groups based on activity type. Annotations indicate a 
significant (p < 0.05) difference between the named group and the corresponding numbered group 
(e.g. the sedentary group displayed a significantly different bed time to the football and basketball 
group, but not the swimming group. The basketball group had a significantly different bed time to all 
other groups). Measures of central tendency are displayed as mean (standard deviation).  
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Appendix C- Chapter 4 Results Summaries 

 

 

 Table 4.1. Comparison of sleep parameters the night before matches compared to otherwise ‘normal’ 
sleep. Measures of central tendency are presented as mean (standard deviation).  

  Pre-home-

match Average 

Pre-away-match 

Average 

t-value Significance 

(p) 

Sleep Parameter     

 Bed Time (time) 22:57 (01:05) 22:41 (01:13) 0.573 0.578 

 Get Up (time) 08:46 (00:45) 08:43 (00:47 0.151 0.883 

 TST (hh:mm) 09:23 (01:17) 09:31 (01:22) 0.218 0.831 

 WASO (minutes) 87 (42) 70 (26) 1.251 0.240 

 SE (%) 79.4 (6.2) 76.4 (8.4) 1.515 0.160 

 SOL (minutes) 25.2 (15.6) 24.4 (37) 0.088 0.932 

 Movements / hour 9.37 (2.0) 9.24 (1.80) 0.292 0.776 

Table 4.2. Comparison of sleep parameters the night before home matches compared to sleep the 
night before away matches. Measures of central tendency are presented as mean (standard 
deviation).  

  Pre-match 

Average 

Non-pre-match 

Average 

t-value Significance 

(p) 

Sleep Parameter     

 Bed Time (time) 22:46 (00:51) 23:23 (00:47) 3.554 0.002 

 Get Up (time) 08:40 (00:38) 08:29 (00:41) 1.155 0.263 

 TST (hh:mm) 09:19 (00:54) 08:35 (00:43) 3.887 0.001 

 WASO (minutes) 61 (34) 67 (22) 1.259 0.223 

 SE (%) 79.5 (8.4) 80.6 (4.9) 0.932 0.363 

 SOL (minutes) 28.8 (29.8) 24.5 (14.7) 0.829 0.417 

 Movements / hour 9.2 (1.7) 8.8 (1.4) 1.200 0.245 
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Table 4.3. Comparison of sleep parameters the night before afternoon matches compared to sleep 
the night before evening matches. Measures of central tendency are presented as mean (standard 
deviation).  

 

 

  

  Pre-afternoon 

match Average 

Pre-evening 

match Average 

t-value Significance 

(p) 

Sleep Parameter     

 Bed Time (time) 23:19 (01:10) 22:30 (00:49) 1.976 0.089 

 Get Up (time) 09:11 (00:55) 08:23 (00:33) 2.475 0.0425 

 TST (hh:mm) 09:25 (00:49) 09:28 (00:41) 0.068 0.948 

 WASO (minutes) 73 (44) 61 (39) 0.091 0.930 

 SE (%) 81.7 (7.9) 80.6 (5.8) 1.437 0.194 

 SOL (minutes) 23.3 (14.8) 19.8 (15.6) 0.538 0.608 

 Movements / hour 8.71 (2.02) 8.77 (1.62) 1.116 0.301 
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Table 4.4. Regression coefficients, standard error and significance of the relationship between z-scored sleep parameters and subsequent z-scored 
performance measures during competitive matches. Interpretation is similar to a ‘standard’ linear regression in that regression coefficients presented here 
represent direction and magnitude of the impact that a unit change in each predictor has on the outcome variable. e.g. a higher (i.e. later) bed time of 1 
standard deviation is associated with an average decrease in total metres covered in a match of 0.391 standard deviations. 

  Total Metres (Z)  High Intensity Metres (Z) 

  Regression 

Coefficient (β) 

Standard 

Error (β) 

Significance 

(p) 

 Regression 

Coefficient (β) 

Standard 

Error (β) 

Significance 

(p) 

Predictors        

 Bed Time -0.391 0.268 0.157  -0.331 0.232 0.167 

 Get Up Time 0.337 0.246 0.182  0.291 0.254 0.264 

 TST 0.211 0.201 0.303  0.165 0.175 0.356 

 WASO -0.220 0.183 0.239  -0.052 0.171 0.765 

 SE 0.308 0.203 0.140  0.042 0.191 0.826 

 SOL -0.232 0.214 0.287  0.055 0.183 0.764 

 Onsets/hour -0.168 0.211 0.434  0.079 0.176 0.656 
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Table 4.5. Comparison of sleep parameters the night following matches compared to normal ‘habitual’ 
sleep. Measures of central tendency are presented as mean (standard deviation).  

 

Table 4.6. Comparison of sleep parameters the night following afternoon matches compared to sleep 
following evening matches. Measures of central tendency are presented as mean (standard deviation). 

  Post-match 

Average 

Habitual 

Average 

t-value Significance 

(p) 

Sleep Parameter     

 Bed Time (time) 00:33 (00:56) 23:10 (00:52) 6.183 <0.0005 

 Get Up (time) 08:46 (01:10) 08:30 (00:43) 0.977 0.345 

 TST (hh:mm) 07:40 (01:04) 08:53 (00:42) 4.529 <0.0005 

 WASO (hh:mm) 01:11 (00:24) 01:02 (00:29) 1.356 0.197 

 SE (%) 79.1 (5.1) 81.1 (4.3) 1.454 0.168 

 SOL (minutes) 27.3 (22.5) 20.2 (20.5) 1.769 0.099 

 Movements / hour 9.23 (1.57) 8.62 (1.13) 1.505 0.153 

  Post-afternoon 

Match Average 

Post-evening 

Match Average 

t-value Significance 

(p) 

Sleep Parameter     

 Bed Time (time) 23:57 (00:48) 00:08 (01:12) 0.105 0.696 

 Get Up (time) 08:39 (00:57) 08:16 (01:36) 1.357 0.212 

 TST (hh:mm) 08:05 (00:46) 07:29 (01:40) 1.280 0.236 

 WASO (hh:mm) 01:19 (00:28) 01:09 (00:28) 0.823 0.435 

 SE (%) 78.3 (4.5) 77.6 (5.8) 0.288 0.781 

 SOL (minutes) 33.8 (19.3) 31.9 (22.2) 0.170 0.870 

 Movements / hour 9.32 (1.95) 8.95 (1.89) 0.669 0.522 
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   Bed Time  Get Up Time  Total Sleep Time 

   Regression 

Coefficient 

(β) 

Standard 

Error (β) 

Significance 

(p) 

 Regression 

Coefficient 

(β) 

Standard 

Error (β) 

Significance 

(p) 

 Regression 

Coefficient 

(β) 

Standard 

Error (β) 

Significance 

(p) 

Predictors            
 Playing Time            

  All Post Match 
Post Afternoon Match 
Post Evening Match 

0.223 

0.292 

0.118 

0.163 

0.175 

0.292 

0.185 

0.140 

0.700 

 -0.106 

0.534 

-0.587 

0.199 

0.209 

0.232 

0.599 

0.038 

0.045 

 -0.316 

0.013 

-0.570 

0.201 

0.161 

0.229 

0.133 

0.939 

0.047 

 Total Metres Covered             

  All Post Match 
Post Afternoon Match 
Post Evening Match 

0.257 

0.058 

0.336 

0.149 

0.227 

0.321 

0.102 

0.805 

0.344 

 -0.077 

0.576 

-0.425 

0.156 

0.340 

0.200 

0.629 

0.134 

0.087 

 -0.317 

0.129 

-0.515 

0.138 

0.166 

0.256 

0.033 

0.463 

0.100 

 High Intensity Metres             

  All Post Match 
Post Afternoon Match 
Post Evening Match 

0.008 

-0.119 

0.619 

0.207 

0.222 

0.387 

0.970 

0.607 

0.171 

 -0.170 

0.164 

-0.628 

0.177 

0.185 

0.232 

0.351 

0.406 

0.043 

 -0.432 

0.119 

-0.809 

0.160 

0.185 

0.214 

0.014 

0.541 

0.013 

 Number of Accelerations             

  All Post Match 
Post Afternoon Match 
Post Evening Match 

-1.222 

-4.012 

-0.231 

0.369 

2.922 

0.576 

0.748 

0.303 

0.708 

 -0.283 

-1.140 

-0.557 

0.188 

1.737 

0.356 

0.149 

0.579 

0.193 

 -0.438 

-0.316 

-0.512 

0.227 

0.539 

0.216 

0.083 

0.617 

0.077 
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    Wakefulness After Sleep Onset  Sleep Efficiency 

   Regression 

Coefficient (β) 

Standard 

Error (β) 

Significance 

(p) 

 Regression 

Coefficient (β) 

Standard 

Error (β) 

Significance 

(p) 

Predictors        
 Playing Time        

  All Post Match 
Post Afternoon Match 
Post Evening Match 

-0.220 

-0.015 

-0.401 

0.143 

0.212 

0.190 

0.139 

0.945 

0.079 

 0.066 

-0.058 

0.191 

0.159 

0.246 

0.254 

0.624 

0.821 

0.480 

 Total Metres Covered         

  All Post Match 
Post Afternoon Match 
Post Evening Match 

-0.137 

0.355 

-0.446 

0.130 

0.267 

0.183 

0.304 

0.225 

0.059 

 -0.086 

-0.179 

0.173 

0.155 

0.264 

0.288 

0.584 

0.520 

0.575 

 High Intensity Metres         

  All Post Match 
Post Afternoon Match 
Post Evening Match 

-0.032 

0.398 

-0.275 

0.158 

0.273 

0.233 

0.843 

0.188 

0.291 

 -0.190 

-0.672 

-0.028 

0.182 

0.356 

0.243 

0.312 

0.101 

0.914 

 Number of Accelerations         

  All Post Match 
Post Afternoon Match 
Post Evening Match 

0.169 

0.752 

-0.261 

0.265 

0.542 

0.319 

0.539 

0.230 

0.460 

 -0.634 

-1.631 

0.190 

0.558 

0.481 

0.444 

0.282 

0.077 

0.690 
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    Sleep Onset Latency  Movements / hour 

   Regression 

Coefficient (β) 

Standard 

Error (β) 

Significance 

(p) 

 Regression 

Coefficient (β) 

Standard 

Error (β) 

Significance 

(p) 

Predictors        
 Playing Time        

  All Post Match 
Post Afternoon Match 
Post Evening Match 

0.156 

0.270 

0.108 

0.171 

0.222 

0.254 

0.374 

0.264 

0.686 

 0.092 

-0.211 

0.192 

0.198 

0.416 

0.254 

0.647 

0.627 

0.479 

 Total Metres Covered         

  All Post Match 
Post Afternoon Match 
Post Evening Match 

0.218 

0.353 

0.008 

0.176 

0.347 

0.313 

0.232 

0.196 

0.980 

 0.090 

-0.186 

-0.071 

0.194 

0.388 

0.215 

0.648 

0.648 

0.754 

 High Intensity Metres         

  All Post Match 
Post Afternoon Match 
Post Evening Match 

0.112 

0.428 

-0.185 

0.202 

0.267 

0.288 

0.586 

0.153 

0.549 

 0.290 

-0.502 

0.055 

0.221 

0.542 

0.272 

0.205 

0.385 

0.849 

 Number of Accelerations         

  All Post Match 
Post Afternoon Match 
Post Evening Match 

0.428 

1.321 

-0.260 

0.415 

0.579 

0.839 

0.327 

0.150 

0.654 

 0.263 

0.348 

0.140 

0.408 

0.978 

0.317 

0.534 

0.756 

0.682 

Table 4.7. Beta coefficients, standard error and significance of the relationship between individually z-scored measures of physical work performed during 
matches and subsequent sleep. Interpretation is similar to a standard linear regression; coefficients represent the impact of a unit change in the predictor on 
the outcome (e.g. an increase in playing time of 1 standard deviation relative to a players normal playing time results in an increase in bed time of 0.223 
standard deviations).  
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Appendix D- Chapter 5 Results Summaries 

 

 

  Pre-training 

Average 

Habitual 

Average 

t-value Significance 

(p) 

Sleep Parameter     

 Bed Time (time) 23:10 (00:52) 23:19 (01:04) 0.575 0.573 

 Get Up (time) 08:23 (00:44) 08:28 (01:01) 0.435 0.669 

 TST (hh:mm) 08:43 (00:50) 08:35 (01:19) 0.593 0.561 

 WASO (hh:mm) 62 (29) 76 (33) 1.292 0.214 

 SE (%) 80.9 (5.7) 79.2 (7.1) 1.222 0.239 

 SOL (minutes) 21.1 (18.7) 25.7 (18.6) 1.200 0.247 

 Movements / hour 8.9 (1.5) 8.9 (1.4) 0.218 0.830 

Table 5.1a. Comparison of sleep parameters the night before training sessions compared to habitual 
sleep. Measures of central tendency are presented as mean (standard deviation).  

 

  Post-training 

Average 

Habitual 

Average 

t-value Significance 

(p) 

Sleep Parameter     

 Bed Time (time) 23:00 (00:49) 23:10 (01:12) 0.842 0.411 

 Get Up (time) 08:38 (00:50) 08:27 (00:59) 1.228 0.235 

 TST (hh:mm) 09:06 (00:54) 08:40 (01:20) 1.913 0.072 

 WASO (hh:mm) 65 (25) 77 (32) 1.279 0.217 

 SE (%) 80.5 (5.2) 79.0 (6.9) 1.045 0.310 

 SOL (minutes) 25.0 (18.8) 28.5 (21.8) 0.774 0.449 

 Movements / hour 9.1 (1.1) 8.8 (1.4) 0.726 0.477 

Table 5.1b. Comparison of sleep parameters the night following training sessions compared to 
habitual sleep. Measures of central tendency are presented as mean (standard deviation). 
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  Total Metres/minute  High-Intensity Distance/minute 

  Regression 

Coefficient (β) 

Standard 

Error (β) 

Significance 

(p) 

 Regression 

Coefficient (β) 

Standard 

Error (β) 

Significance 

(p) 

Predictors        

 Bed Time -0.217 0.097 0.030  -0.180 0.078 0.026 

 Get Up Time 0.050 0.143 0.728  0.065 0.095 0.501 

 TST 0.355 0.112 0.003  0.218 0.096 0.027 

 WASO 0.117 0.092 0.207  0.104 0.073 0.162 

 SE 0.022 0.081 0.784  -0.061 0.063 0.333 

 SOL 0.126 0.104 0.232  0.125 0.074 0.099 

 Onsets/hour 0.074 0.082 0.370  0.071 0.073 0.338 
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  PlayerLoad/minute  RPE/metre 

  Regression 

Coefficient (β) 

Standard 

Error (β) 

Significance 

(p) 

 Regression 

Coefficient (β) 

Standard 

Error (β) 

Significance 

(p) 

Predictors        

 Bed Time -0.316 0.133 0.024  0.380 0.179 0.042 

 Get Up Time 0.064 0.135 0.640  0.092 0.156 0.560 

 TST 0.398 0.145 0.010  -0.327 0.204 0.119 

 WASO 0.151 0.113 0.190  -0.327 0.180 0.079 

 SE -0.053 0.101 0.606  0.207 0.164 0.217 

 SOL 0.233 0.120 0.061  0.358 0.213 0.103 

 Movements/hour 0.074 0.082 0.127  0.103 0.127 0.103 

Table 5.2. Beta coefficients, standard error and significance of the relationship between z-scored sleep parameters and subsequent z-scored performance 
measures during training sessions. Interpretation of regression coefficients is similar to interpretation of ‘standard’ regression, in that coefficients represent the 
direction and magnitude of the impact that a unit change in a predictor has on an outcome variable e.g. a later bed time by 1 standard deviation reduces the 
total distance covered per minute by (on average) 0.217 standard deviations.  
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  Bed Time  Get Up Time  Total Sleep Time 

  Regression 

Coefficient 

(β) 

Standard 

Error (β) 

Significance 

(p) 

 Regression 

Coefficient 

(β) 

Standard 

Error (β) 

Significance 

(p) 

 Regression 

Coefficient 

(β) 

Standard 

Error (β) 

Significance 

(p) 

Predictors            

 Training Time 

 

-0.118 0.119 0.328  0.051 0.129 0.694  0.137 0.096 0.159 

 Total Distance  

 

-0.168 0.213 0.433  0.156 0.219 0.480  0.342 0.144 0.022 

 High Intensity 

Distance 

-0.526 0.233 0.028  0.173 0.245 0.483  0.516 0.185 0.007 

 Number of 

Accelerations 

0.142 0.136 0.303  0.152 0.105 0.155  -0.071 0.106 0.505 

 RPE 

 

0.035 0.118 0.771  0.328 0.131 0.018  0.151 0.103 0.151 

 Player Load 

 

-0.368 0.208 0.087  0.354 0.261 0.185  0.505 0.180 0.009 
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  Wakefulness After Sleep Onset  Sleep Efficiency 

  Regression 

Coefficient (β) 

Standard 

Error (β) 

Significance 

(p) 

 Regression 

Coefficient (β) 

Standard 

Error (β) 

Significance 

(p) 

Predictors        

 Training Time 

 

-0.187 0.125 0.141  0.296 0.148 0.050 

 Total Distance  

 

0.070 0.189 0.714  0.343 0.213 0.114 

 High Intensity 

Distance 

0.427 0.254 0.100  -0.154 0.303 0.612 

 Number of 

Accelerations 

-0.144 0.159 0.368  0.112 0.176 0.526 

 RPE 

 

-0.205 0.146 0.168  0.282 0.167 0.102 

 Player Load 

 

0.084 0.262 0.750  0.157 0.315 0.622 
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  Sleep Onset Latency  Movements/hour 

  Regression 

Coefficient (β) 

Standard 

Error (β) 

Significance 

(p) 

 Regression 

Coefficient (β) 

Standard 

Error (β) 

Significance 

(p) 

Predictors        

 Training Time 

 

0.120 0.127 0.350  -0.095 0.151 0.532 

 Total Distance  

 

0.148 0.212 0.489  0.072 0.215 0.737 

 High Intensity 

Distance 

0.402 0.241 0.101  0.419 0.305 0.175 

 Number of 

Accelerations 

0.043 0.139 0.760  -0.071 0.172 0.682 

 RPE 

 

0.352 0.128 0.001  -0.113 0.206 0.588 

 Player Load 

 

0.384 0.243 0.124  0.143 0.340 0.678 

Table 5.3. Beta coefficients, standard error and significance of the relationship between z-scored measures of physical activity during training and 
subsequent z-scored sleep parameters.  

 



276 
 

Apendix E- Chapter 4 Unstandardized Effects 

  Standardised 

Effect Size (β) 

 Predictor  Outcome   Percentage 

Change* 

   Mean SD  Mean SD   

Total Distance          

 Bed Time (hh:mm) -0.391  23:17 01:13  8435 2098  -9.73% 

 Get Up Time (hh:mm) 0.337  08:31 01:00  8435 2098  8.38% 

 TST (hh:mm) 0.211  08:42 01:18  8435 2098  5.25% 

 WASO (minutes) -0.220  01:08 00:35  8435 2098  -5.47% 

 SE (%) 0.308  80.4 6.5  8435 2098  7.66% 

 SOL (minutes) -0.232  25.1 21.8  8435 2098  -5.77% 

 Movements/hour -0.168  8.95 1.39  8435 2098  -4.18% 
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Table 6.1. Data for unstandardized effect sizes for the impact of sleep on subsequent match performance, showing the impact on the outcome variables 
that is associated with a change of a single standard deviation of each predictor, and the magnitude of change expressed as a percentage 

*Percentage change associated with an increase in the predictor of one standard deviation.

  Standardised 

Effect Size (β) 

 Predictor  Outcome   Percentage 

Change* 

   Mean SD  Mean SD   

HI Distance          

 Bed Time (hh:mm) -0.331  23.17 01:13  950 362  -12.61% 

 Get Up Time (hh:mm) 0.291  08:31 01:00  950 362  11.09% 

 TST (hh:mm) 0.165  08:42 01:18  950 362  6.29% 

 WASO (minutes) -0.052  01:08 00:35  950 362  -1.98% 

 SE (%) 0.042  80.4 6.5  950 362  1.60% 

 SOL (minutes) 0.055  25.1 21.8  950 362  2.10% 

 Movements/hour 0.079  8.95 1.39  950 362  3.01% 
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