
 
 
 

 
This item was submitted to Loughborough’s Institutional Repository 

(https://dspace.lboro.ac.uk/) by the author and is made available under the 
following Creative Commons Licence conditions. 

 
 

  
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 



Invariant-geometry conditions for the rational

bi-quadratic Bézier surfaces
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Abstract

A generalization of Patterson’s work (Patterson, 1985), on the invariants of the
rational Bézier curves, to the case of surfaces is presented. An equation for the
determination of the invariants for surfaces of degree (n, n) is derived and solved for
the bi-quadratics – for which it is shown that seven independent, invariant functions
exist. Explicit forms of the invariants are derived and a number of applications are
presented.

1 Introduction and scope

Arbitrary transformations of the weights, ωi, of a Bézier curve are geome-
try modifying; but transformations satisfying certain known conditions pre-
serve the geometry and are equivalent to a re-parametrisation of the curve
by Möbius function. In particular Patterson showed that if the weight vec-
tor ω = (ω0, . . . , ωn) of a degree n Bézier rational path is transformed to
ω∗ = (ω∗

0, . . . , ω
∗
n), where ωi > 0 and ω∗

i > 0, then the shape of the path is
unchanged if:

ςi(ω
∗) = ςi(ω) for all 1 ≤ i ≤ n− 1

where ςi(ω) = ωi−1ωi+1

ω2
i

. The invariance of the n − 1 functions ςi therefore

provides invariant-geometry conditions for Bézier curves. Additionally the in-
variants ςi provide information about the curve type and enable normalized
weights to be computed (Farin, 1999). The invariants derived in this paper
play similar roles for the bi-quadratic Bézier surfaces.

Bézier representations have special properties in the case of all positive weights;
for this reason negative weights are often not considered. However in this paper
the only restriction on weight values is that they should be non-zero. Negative
weights are allowed here for a number of reasons including:
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• completeness and generality
• the difficulty of avoiding negative weights when attempting to parametrise

some surfaces, e.g., Dupin cyclides, with a small number of low-degree
patches.

Functional and tensor equations for invariant geometry are derived for the
rational Bézier surfaces, of degree (n, n). The general solution of the equations
is obtained in bi-quadratic case. It is shown that 6 independent, real-valued
invariant functions, denoted ̟1, . . . , ̟6, and a sign-pattern invariant, denoted,
sp, exist for these surfaces; and that if the weight vector ω of a bi-quadratic
surface is transformed to ω∗ then the shape of the patch is unchanged if and
only if:

̟i(ω
∗) = ̟i(ω), for 1 ≤ i ≤ 6, and sp(ω∗) = sp(ω).

Explicit forms for the ̟ invariants are derived and some applications are
discussed.

2 Mathematical preliminaries

2.1 Functional independence

If fi : R
q → R, for 1 ≤ i ≤ k, then the functions f ≡ (f1, . . . , fk) are

functionally dependent if:

F ◦ f = 0

for some F : R
k → R not identically zero. The functions are independent if

no such F exists. Equivalently, for dependence, we have (dF ◦ f)df = 0 or,
taking the transpose, the linear system:





















∂1f1 ∂1f2 . . . ∂1fk

∂2f1 ∂2f2 . . . ∂2fk

...
...

...
...

∂qf1 ∂qf2 . . . ∂qfk









































∂1F ◦ f
∂2F ◦ f

...

∂kF ◦ f





















= 0

where ∂i denotes partial derivative with respect to the ith variable. It follows
that if df is of maximal rank, then the only solution is F ≡ 0 and the functions
f1, . . . , fk are independent.

In this paper we say that the functions f1, . . . , fk are manifestly independent
if either:

2



(1) each fi is a function of a variable that does not occur in the other func-
tions, or

(2) all except one of f1, . . . , fk, is a function of a variable that does not occur
in the other functions, and the exceptional function does not depend on
any of the variables unique to the others.

For example, the pair fi : R
3 → R, for i = 1, 2, defined by:

f1(x, y, z) = x y, f2(x, y, z) = y z

is manifestly independent as, respectively, they have variables x and z that
do not occur in the other function. It follows that no F with F (f1, f2) = 0
can exist. Further, the triple (f1, f2, f3), where f3(x, y, z) = y, is manifestly
independent – as f3 is not a function of either x or z it cannot be expressed as
a function of f1 and f2. In cases of manifest independence it is not necessary
to determine the rank of df .

2.2 General observations on invariants

No unique set of invariants exists for a given problem, since further invari-
ants may always be determined as functions of a known set; i.e., if I1, . . . , Ik
are real-valued invariants and h is a real-valued function of k variables then
h(I1, . . . , Ik) is an invariant. The invariant problem is therefore one of deter-
mining a set of functionally independent invariants that is complete – in the
sense that all invariants not in the set may be expressed as a function of those
that are. The cardinality of two complete independent sets is the same (Olver,
1999).

A computational approach that produces, directly, a manifestly independent
set is of considerable benefit – enabling, for example, the cardinality of com-
plete independent sets to be established immediately. This is important in
cases where little is known, apriori, about the invariants sought.The meth-
ods used in this paper produce, directly, manifestly functionally independent
invariants.

2.3 Sign-pattern

Let A = {+,−} and A∗ be the set of all vectors of symbols from A. For α ∈ A∗

we define α′ to be the complement of α – i.e., the vector obtained by replacing
the +’s of α by −’s and the −’s by +’s. We say that two elements, α, β ∈ A∗

are equivalent (written α ∼ β), or have the same sign-pattern, if α = β or
α = β ′. For example (+,+,−,+,−) ∼ (−,−,+,−,+).
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The sign-pattern of a vector X = (x1, . . . , xm) ∈ R
m, with xi 6= 0, may defined

to be sp(X) = [(sign(x1), . . . , sign(xm))] ∈ A∗/ ∼.

2.4 Equivalent surface parametrisations

We denote by S, the set of, suitably defined, regular functions σ : I1 × I2 →
R

3, where I1 and I2 are intervals of R, that provide local parametrisations
of surfaces embedded in R

3. The general conditions under which functions
parametrise the same surface are as follows: functions σ1, σ2 on, respectively,
I1×I2 and I∗1 ×I∗2 parametrise the same surface if there is a sufficiently smooth
invertible function ψ : I1 × I2 → I∗1 × I∗2 such that σ1 = σ2 ◦ ψ.

3 An invariant-geometry functional equation for the Bézier sur-

faces of degree (n, n)

If bi(t) = (n
i )ti(1 − t)n−i then the rational Bernstein surfaces of degree (n, n)

take the form

σ[v, ω](t, s) =

∑n
i,j=0 bi(t)bj(s)v

∗
ij

∑n
i,j=0 bi(t)bj(s)ωij

.

on a set v = {v∗ij : 0 ≤ i, j ≤ n} of (n + 1)2 vectors and a vector ω =
(ω00, ω01, . . . , ω0n; ω10, ω11, . . . , ω1,n; . . . ; ωn0, . . . ωnn) of (n+1)2 ‘weights’. Ra-
tional Bézier surfaces of degree (n, n) are defined for the subset of the Bern-
stein surfaces for which all the weights are non-zero. In this case the vectors

vij =
v∗ij
ωij

are all well-defined and the surface may be written in the Bézier

form:

σB[v, ω](t, s) =

∑n
i,j=0 bi(t)bj(s)ωijvij
∑n

i,j=0 bi(t)bj(s)ωij

.

We have

σB : V × Ω → S
where V is the set of all (n+ 1)2-tuples of vectors in R

3 and Ω is the set of all
(n+ 1)2-tuples of non-zero real numbers.

Following a little algebra the Bézier surface function σB[v, ω] may be written
in the tensor-product form:

σB[v, ω](t, s) =
t ⊗ s(Bn ⊗Bn)Ωn v

t ⊗ s(Bn ⊗Bn)ω

where:
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• t ⊗ s ≡ [1, t, . . . , tn] ⊗ [1, s, . . . , sn] is the tensor-product basis of the space
of polynomials of degree n in two variables; t⊗ s is a 1× (n+ 1)2 vector of
polynomial functions which, for n = 2 is [1, s, s2, t, ts, ts2, t2, t2s, t2s2]

• Bn is the lower triangular change-of-basis matrix defined by:

[1, t, . . . , tn]Bn = [b0(t), b1(t), . . . , bn(t)]

and Bn ⊗Bn is the (n+1)2 × (n+1)2 tensor product matrix of Bn with Bn

• Ωn is the (n+ 1)2 invertible diagonal matrix:

Ωn = diag(ω00, ω01, . . . , ω0n; ω10, ω11, . . . , ω1,n; . . . ; ωn0, . . . ωnn)

• v = (v00, . . . , v0n; v10, . . . , v1n; . . . ; vn0, . . . , vnn)
T

• ω = (ω00, ω01, . . . , ω0n; ω10, ω11, . . . , ω1,n; . . . ; ωn0, . . . , ωnn)T .

From the general conditions of section 2.4, it follows that weight vectors
ω, ω∗ ∈ Ω determine surfaces with the same geometry, for all v ∈ V , if and
only if there exists a re-parametrisation function ψ such that

σB[v, ω] = σB[v, ω∗] ◦ ψ for all v ∈ V.

The invariant-geometry conditions for Bézier surfaces of degree (n, n) may be
obtained from the general solution of this functional equation – comprising ψ
solutions for all weight vector pairs ω, ω∗.

As re-parametrisation functions ψ may be written in the paired form

ψ(t, s) = (φ(t, s), µ(t, s))

the function σB[v, ω] ◦ ψ may be expressed as

σB[v, ω] ◦ ψ =
φ⊗ µ(Bn ⊗ Bn)Ωn v

φ⊗ µ(Bn ⊗ Bn)ω
,

where φ ⊗ µ = [1, . . . , φn] ⊗ [1, . . . , µn]. The invariant-geometry functional
equation for Bézier surfaces, of degree (n, n) may therefore be written:

φ⊗ µ(Bn ⊗ Bn)Ω∗
n v

φ⊗ µ(Bn ⊗ Bn)ω∗
=

t ⊗ s(Bn ⊗ Bn)Ωn v

t ⊗ s(Bn ⊗ Bn)ω
(1)

where Ω∗
n is the (n+ 1)2 × (n+ 1)2 diagonal matrix defined by:

Ω∗
n = diag(ω∗

00, ω
∗
01, . . . , ω

∗
0n; ω∗

10, ω
∗
11, . . . , ω

∗
1,n; . . . ;ω

∗
n0, . . . , ω

∗
nn).

and ω∗ is the (n+ 1)2 × 1 column vector

ω∗ = (ω∗
00, ω

∗
01, . . . , ω

∗
0n; ω∗

10, ω
∗
11, . . . , ω

∗
1,n; . . . ;ω

∗
n0, . . . , ω

∗
nn)

T .
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As relation 1 is required to hold for all v it reduces to:

φ⊗ µ(Bn ⊗ Bn)Ω∗
n

φ⊗ µ(Bn ⊗ Bn)ω∗
=

t ⊗ s(Bn ⊗ Bn)Ωn

t ⊗ s(Bn ⊗Bn)ω
. (2)

4 The bi-quadratic case

4.1 Functional solutions for bi-quadratic surfaces

In the remainder of the paper σB denotes the rational bi-quadratic Bézier
surface function. The ratios ωij

ω∗

ij
occur naturally in the solution of equation 2,

and are denoted henceforth by ρij . For the bi-quadratics equation 2 is:

φ⊗ µ(B2 ⊗ B2)Ω
∗
2

φ⊗ µ(B2 ⊗ B2)ω∗
=

t ⊗ s(B2 ⊗B2)Ω2

t ⊗ s(B2 ⊗B2)ω
. (3)

where

B2 ⊗ B2 =



































1 0 0 0 0 0 0 0 0

−2 2 0 0 0 0 0 0 0

1 −2 1 0 0 0 0 0 0

−2 0 0 2 0 0 0 0 0

4 −4 0 −4 4 0 0 0 0

−2 4 −2 2 −4 2 0 0 0

1 0 0 −2 0 0 1 0 0

−2 2 0 4 −4 0 −2 2 0

1 −2 1 −2 4 −2 1 −2 1



































and

Ω2 = diag(ω00, ω01, . . . , ω22), Ω∗
2 = diag(ω∗

00, ω
∗
01, . . . , ω

∗
22).

All the ψ ≡ (φ, ψ) solutions of equation (3) are required; while it is known
that pairs of Möbius functions (φ(t), µ(s)) = ( at

1+(a−1)t
, bs

1+(b−1)s
) are solutions,

the following Lemma establishes that there are no others.

Lemma 1. If ψ = (φ, µ) is invertible and satisfies equation (3), for the weight
vectors (ω, ω∗), then:

φ(t, s) =
ρ21t

ρ11 + (ρ21 − ρ11)t
, µ(t, s) =

ρ22s

ρ21 + (ρ22 − ρ21)s

and ρ11, ρ21 and ρ22 are all of the same sign.

Proof. Relation 3 is equivalent to:
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t ⊗ s(B2 ⊗ B2)ω φ ⊗ µ(B2 ⊗ B2)Ω
∗
2 = φ ⊗ µ(B2 ⊗ B2)ω

∗ t ⊗ s(B2 ⊗ B2)Ω2 (4)

Elements (1, 9) and (1, 8) of the array on each side of (4), above, give respec-
tively:

(t ⊗ s(B2 ⊗ B2)ω)φ2µ2ω∗
22 = (φ ⊗ µ(B2 ⊗ B2)ω

∗)t2s2ω22 (5)

(t ⊗ s(B2 ⊗ B2)ω)[φ2µ − φ2µ2]ω∗
21 = (φ ⊗ µ(B2 ⊗ B2)ω

∗)[t2s − t2s2]ω21 (6)

which are easily solved for µ, by considering the ratio (5)/(6), to give:

µ(s) =
ρ22s

ρ21 + (ρ22 − ρ21)s
.

The (1, 5) components of equation 4 give:

(t⊗s(B2⊗B2)ω)[φµ−φµ2−φ2µ+φ2µ2]ω∗
11 = (φ⊗µ(B2⊗B2)ω

∗)[ts−ts2−t2s+t2s2]ω11

which, together with the (1, 8) components and the solution for µ, may be
solved for φ as:

φ(t) =
ρ21t

ρ11 + (ρ21 − ρ11)t
i.e., the solutions for µ and φ are both Möbius functions of a single variable
with the constants identified above.

We have

φ′(t) =
ρ11ρ21

(ρ11 + (ρ21 − ρ11)t)2
and µ′(t) =

ρ22ρ21

(ρ21 + (ρ22 − ρ21)s)2
.

Invertbility of ψ is equivalent to non-vanishing Jacobian on [0, 1] × [0, 1]. We
have:

Jψ(t, s) = det







φ′(t) 0

0 µ′(s)






= φ′(t)µ′(s)

i.e., invertibility requires φ′(t) 6= 0 for all t ∈ [0, 1] and µ′(s) 6= 0 for all
s ∈ [0, 1] - equivalently that φ and µ are monotone. Hence φ : [0, 1] → [0, 1] is
strictly increasing – similarly µ. Hence:

• ρ11ρ21 > 0, equivalently ρ11 and ρ21 have the same sign
• ρ22ρ21 > 0, equivalently ρ21 and ρ22 have the same sign

i.e., ρ11, ρ21 and ρ22 all have the same sign.

4.2 Reduced invariant-geometry conditions

The following Lemma reduces the invariant-geometry condition (3) to two,
equivalent, simpler relations that yield the invariant functions directly.
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Lemma 2. The invariant-geometry condition for the bi-quadratics (3) is equiv-
alent to:

ω∗ = c (B−1
2 U−1

φ B2) ⊗ (B−1
2 U−1

µ B2) ω (7)

or

Ω∗
2 = c (B−1

2 U−1
φ B2) ⊗ (B−1

2 U−1
µ B2)Ω2 (8)

where c is an arbitrary non-zero multiplier,

Uφ =















ρ2
11 0 0

2ρ11(ρ21 − ρ11) ρ11ρ21 0

(ρ21 − ρ11)
2 ρ21(ρ21 − ρ11) ρ

2
21















and

Uµ =















ρ2
21 0 0

2ρ21(ρ22 − ρ21) ρ21ρ22 0

(ρ22 − ρ21)
2 ρ22(ρ22 − ρ21) ρ

2
22















.

Proof. As the general solutions to (3) for φ and µ are now known, (3) trans-
forms to a tensor relationship in s, t, ω and ω∗ with polynomial elements.
Writing

φ =
ρ21t

ρ11 + (ρ21 − ρ11)t
≡ φN

φD

and µ =
ρ22s

ρ21 + (ρ22 − ρ21)s
≡ µN

µD

it is easy to show that:

[φ2
D, φDφN , φ

2
N ] = [1, t, t2]Uφ and [µ2

D, µDµN , µ
2
N ] = [1, s, s2]Uµ

where Uφ and Uµ are specified in the statement of the Proposition. it follows
that:

[1, t, t2] ⊗ [1, s, s2](B2 ⊗ B2)Ω2

[1, t, t2] ⊗ [1, s, s2](B2 ⊗ B2)ω
=

[1, φ, φ2] ⊗ [1, µ, µ2](B2 ⊗ B2)Ω
∗
2

[1, φ, φ2] ⊗ [1, µ, µ2](B2 ⊗ B2)ω∗

=
[φ2

D, φDφN , φ
2
N ] ⊗ [µ2

D, µDµN , µ
2
N ](B2 ⊗ B2)Ω

∗
2

[φ2
D, φDφN , φ

2
N ] ⊗ [µ2

D, µDµN , µ
2
N ]ω∗

=
[1, t, t2] ⊗ [1, s, s2](Uφ ⊗ Uµ)(B2 ⊗B2)Ω

∗
2

[1, t, t2] ⊗ [1, s, s2](Uφ ⊗ Uµ)(B2 ⊗B2)ω∗
.
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As the above is required to hold for all (t, s) it follows that:

(B2 ⊗ B2)Ω2

(B2 ⊗ B2)ω
=

(Uφ ⊗ Uµ)(B2 ⊗ B2)Ω
∗
2

(Uφ ⊗ Uµ)(B2 ⊗ B2)ω∗
.

Hence for some arbitrary non-zero multiplier c we have:

(Uφ⊗Uµ)(B2⊗B2)ω
∗ = c (B2⊗B2)ω and (Uφ⊗Uµ)(B2⊗B2)Ω

∗
2 = c (B2⊗B2)Ω2,

or

ω∗ = c (B−1
2 U−1

φ B2) ⊗ (B−1
2 U−1

µ B2) ω (9)

Ω∗
2 = c (B−1

2 U−1
φ B2) ⊗ (B−1

2 U−1
µ B2)Ω2 (10)

The equivalence of these two relations follows from the diagonal nature of
B−1

2 U−1
φ B2 and B−1

2 U−1
µ B2. We have

B−1
2 U−1

φ B2 = diag

(

1

ρ2
11

,
1

ρ11ρ21

,
1

ρ21
2

)

and B−1
2 U−1

µ B2 = diag

(

1

ρ2
21

,
1

ρ21ρ22

,
1

ρ22
2

)

hence (B−1
2 U−1

φ B2)⊗ (B−1
2 U−1

µ B2) is diagonal. Trivially, if A is a diagonal ma-
trix and x a column vector then x∗ = Ax if and only if diag(x∗) = A diag(x);
hence (7) if and only if (8) and the proof is complete.

4.3 Invariant-geometry transformations and the invariant functions

From Lemma 2, (7) is a necessary and sufficient condition for invariant geom-
etry - similarly (8). Proposition 1 shows that (7) is a generalization, to the
case of mixed-sign weight vectors being allowed, of a known constant-geometry,
weight-transformation rule. Relation (8) leads directly to the determination of
the invariant functions of the transformations determined by (7) - see Propo-
sition 2.

Proposition 1. The invariant-geometry condition (7) is equivalent to the
following relationship between ω and ω∗:

ω∗ = ±eαdiag(1, eβ, e2β, eγ, eγ+β, eγ+2β , e2γ , e2γ+β, e2γ+2β) ω (11)

for α, β, γ ∈ R.

Proof. From the proof of Lemma 2 we have:
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(B−1

2
U−1

φ
B2) ⊗ (B−1

2
U−1

µ B2) =

diag

(

1

ρ2
11

ρ2
21

,
1

ρ2
11

ρ21ρ22

,
1

ρ2
11

ρ22
2
,

1

ρ11ρ3
21

,
1

ρ11ρ2
21

ρ22

,
1

ρ11ρ21ρ2
22

,
1

ρ21
4

,
1

ρ21
3ρ22

,
1

ρ21
2ρ2

22

)

.

Since ρ11, ρ21 and ρ22 are all of the same sign (Lemma 1), the elements of the
matrix (B−1

2 U−1
φ B2) ⊗ (B−1

2 U−1
µ B2) are all positive. We may therefore define

α, β and γ by:

eα =
|c|

ρ2
11ρ

2
21

eβ =
ρ21

ρ22
, eγ =

ρ11

ρ21
,

and re-write invariant-geometry condition (7), as:

ω∗ = ±eαdiag(1, eβ, e2β , eγ, eγ+β, eγ+2β , e2γ, e2γ+β , e2γ+2β) ω.

The transformations (11) of Proposition 1 determine a 3-parameter subgroup
of the general linear groupGL(9,R). They may be written as ω∗

ij = ±eα(eγ)i(eβ)j ωij

and amount to a generalization of the weight transformations implied by the
expression for re-parametrised Bézier surfaces (see Farin (1999) page 194), to
the case of mixed-sign weight vectors.

Proposition 2. The invariant-geometry condition (8) is equivalent to the
following on ω and ω∗:

(1) sp(ω∗) = sp(ω)

(2) ̟i(ω
∗) = ̟i(ω) for 1 ≤ i ≤ 6

where

̟1(ω) = ω01

ω00

(

ω21

ω22

)

, ̟2(ω) = ω02

ω00

(

ω2
21

ω2
22

)

, ̟3(ω) = ω10

ω00

(

ω11

ω21

)

,

̟4(ω) = ω11

ω00

(

ω11

ω22

)

, ̟5(ω) = ω12

ω00

(

ω11ω21

ω2
22

)

, ̟6(ω) = ω20

ω00

(

ω2
11

ω2
21

)

.

Proof. We have Ω∗
2 = c (B−1

2 U−1
φ B2) ⊗ (B−1

2 U−1
µ B2)Ω2 where the matrix

(B−1
2 U−1

φ B2) ⊗ (B−1
2 U−1

µ B2) has positive elements (proof of Proposition 1).
Given that c can take either sign, it follows that the signs of all the diagonal
elements of Ω∗

2 are the same as the signs of those of Ω2 or are all of opposite
sign. Hence sp(ω∗) = sp(ω) . Re-writing (8) as:

1

c
I9 = (B−1

2 U−1
φ B2) ⊗ (B−1

2 U−1
µ B2)Ω2Ω

∗
2
−1,

where I9 is the 9×9 identity matrix, and using the explicit form for (B−1
2 U−1

φ B2)⊗
(B−1

2 U−1
µ B2) and Ω2Ω

∗
2
−1 = diag(ρ00, . . . , ρ22) we obtain, following cancella-
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tions in three terms:

1

c
I9 = diag

(

ρ00

ρ2
11

ρ2
21

,
ρ01

ρ2
11

ρ21ρ22

,
ρ02

ρ2
11

ρ22
2
,

ρ10

ρ11ρ3
21

,
1

ρ2
21

ρ22

,
ρ12

ρ11ρ21ρ2
22

,
ρ20

ρ21
4

,
1

ρ21
2ρ22

,
1

ρ21
2ρ22

)

.

It follows that the elements along the diagonal of the matrix on the right-hand
side of the equation are all equal. This gives the equations:

ρ00

ρ2
11ρ

2
21

=
ρ01

ρ2
11ρ21ρ22

=
ρ02

ρ2
11ρ

2
22

=
ρ10

ρ11ρ
3
21

=
1

ρ2
21ρ22

=
ρ12

ρ11ρ21ρ
2
22

=
ρ20

ρ4
21

=
1

ρ2
21ρ22

=
1

ρ2
21ρ22

which reduce trivially, because the term 1
ρ2
21

ρ22
occurs three times, to the 6

equations:

ρ00

ρ2
11ρ

2
21

=
ρ01

ρ2
11ρ21ρ22

=
ρ02

ρ2
11ρ

2
22

=
ρ10

ρ11ρ3
21

=
1

ρ2
21ρ22

=
ρ12

ρ11ρ21ρ2
22

=
ρ20

ρ4
21

for the 9 unknowns ρ00, . . . , ρ22. The first equation is equivalent to ρ00ρ22

ρ21ρ01
=

1, or ̟1(ω
∗) = ̟1(ω). The remaining equations demonstrate the invariance

of ̟2, . . . , ̟6 in a similar way. As each step may be reversed the proof is
complete.

It should be noted that the conclusion sp(ω∗) = sp(ω) may also be drawn
directly from (7).

The following are immediate from Propositions 1 and 2 respectively. Corol-
lary 2 is the generalization of Patterson’s results for Bézier curves to the
bi-quadratic Bézier surfaces.

Corollary 1. Two bi-quadratic Bézier functions with weight vectors ω =
(ω00, . . . , ω22) and ω∗ = (ω∗

00, . . . , ω
∗
22) and identical vertex sets v, parametrise

the same region of a surface on the domain [0, 1]× [0, 1], for all v ∈ V , if and
only if there exist α, β, γ ∈ R such that:

ω∗ = ±eαdiag(1, eβ, e2β, eγ, eγ+β, eγ+2β , e2γ , e2γ+β, e2γ+2β) ω.

Corollary 2. Two bi-quadratic Bézier functions with weight vectors ω =
(ω00, . . . , ω22) and ω∗ = (ω∗

00, . . . , ω
∗
22) and identical vertex sets v, parametrise

the same region of a surface on the domain [0, 1]× [0, 1], for all v ∈ V , if and
only if:

sp(ω∗) = sp(ω) and ̟i(ω
∗) = ̟i(ω) for 1 ≤ i ≤ 6.
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4.4 Properties of the invariants

From the functional forms of the type ̟ invariants is clear that all except ̟4

is a function of a variable that does not occur in the others. For̟1 the variable
is ω01, for ̟2 it is ω02, for ̟3 it is ω10, for ̟5 it is ω12 and for ̟6 it is ω20;
further ̟4 is not a function of these variables. It follows that {̟1, . . . , ̟6} is
a manifestly functionally independent set.

The independence of the sign-pattern invariant, sp, from the type ̟ invariants
can be demonstrated as follows: define weight vectors ω and ω∗ by

ω = (ω00 , ω01 , ω02 , ω10 , ω11 , ω12 , ω20 , ω21 , ω22)

ω∗ = (ω00 , −ω01 , ω02 , −ω10 , ω11 , −ω12 , ω20 , −ω21 , ω22).

it is easy to check that ̟i(ω
∗) = ̟i(ω) for 1 ≤ i ≤ 6 but, clearly, sp(ω∗) 6=

sp(ω). Hence the invariance of sp is not not implied by the invariance of the
̟i functions. We have:

Proposition 3. (i) The functions {̟1, . . . , ̟6, sp} constitute a complete,
functionally independent set of invariants for the bi-quadratic Bézier sur-
faces. (ii) All complete, functionally independent sets of invariants for the
bi-quadratic Bézier surfaces have 7 elements.

Proof. By Proposition 1 a complete set of invariants has no more than seven
elements, but {̟1, . . . , ̟6, sp} are independent – hence (i). Invariance of car-
dinality (Olver, 1999) gives (ii).

4.5 Canonical-form invariants for bi-quadratic surfaces

In this section a complete, independent set of invariants, bearing a close re-
lationship to Patterson’s forms for Bézier curves, is shown to exist for the
bi-quadratic Bézier surfaces.

Proposition 4. The sign pattern invariant sp and the functions ̟∗
1, . . .̟

∗
6,

defined by,

̟∗
1(ω) = ω00ω20

ω2
10

, ̟∗
2(ω) = ω01ω21

ω2
11

, ̟∗
3(ω) = ω02ω22

ω2
12

,

̟∗
4(ω) = ω00ω02

ω2
01

, ̟∗
5(ω) = ω10ω12

ω2
11

, ̟∗
6(ω) = ω20ω22

ω2
21

,

comprise an alternative complete set of functionally independent invariants
for the bi-quadratic Bézier surfaces.

Proof. The properties of invariance and independence need to be established
for the functions {̟∗

1, . . . , ̟
∗
6}.
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(i) As shown earlier, the invariant-geometry transformations are:

g(α,β,γ) = ±eαdiag(1, eβ, e2β , eγ, eγ+β, eγ+2β , e2γ, e2γ+β , e2γ+2β).

It follows that ̟∗
1 transforms as:

̟∗
1(g(α,β,γ) ω)=

(±eα)ω00 (±eα)e2γω20

(±eα)2(eγ)2ω2
10

=
ω00ω20

ω2
10

=̟∗
1(ω).

Similar arguments hold for ̟∗
2, . . . , ̟

∗
6 to complete the proof of invariance.

(ii) The type ̟∗ invariants are not manifestly independent; the rank of the
matrix d̟∗ should therefore be determined. We have

d̟∗(ω) =











































ω02

ω2

10

0 0 ω02

ω2

01

0 0

0 ω21

ω2

11

0 −2ω00ω02

ω3

01

0 0

0 0 ω22

ω2

12

ω00

ω2

01

0 0

−2ω00ω20

ω3

10

0 0 0 ω12

ω2

11

0

0 −2ω01ω21

ω3

11

0 0 −2ω10ω12

ω3

11

0

0 0 −2ω02ω22

ω3

12

0 ω10

ω2

11

0

ω00

ω2

10

0 0 0 0 ω22

ω2

21

0 ω01

ω2

11

0 0 0 −2ω20ω22

ω3

21

0 0 ω02

ω2

12

0 0 ω20

ω2

21











































which is of full rank (i.e., 6). Hence ̟∗
1, . . . , ̟

∗
6 are functionally independent.

Finally the weight vectors:

ω = (ω00 , ω01 , ω02 , ω10 , ω11 , ω12 , ω20 , ω21 , ω22)

ω∗ = (−ω00 , ω01 , −ω02 , −ω10 , ω11 , −ω12 , −ω20 , −ω21 , −ω22)

are such that ̟∗
i (ω

∗) = ̟∗
i (ω) but sp(ω∗) 6= sp(ω). Hence the invariance of

sp is not implied by the type ̟∗ invariants.

The type ̟ and type ̟∗ invariants have complementary properties. The
canonical-form invariants have a clear geometric relationship with quadratic
curves in the surface – they correspond to curves along the vertical and hor-
izontal straight lines in Figure 1. The manifestly-independent invariants lead
rapidly to conclusions concerning analytic issues – such as the completeness
and cardinality of independent sets of invariants for the bi-quadratics – a
valuable property in the absence of apriori information of this type.
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� 0 0 � 0 1 � 0 2

� 2 0 � 2 1 � 2 2
� 1 0 � 1 1 � 1 2

Fig. 1. Weight array for bi-quadratic patches

5 Some applications

5.1 Patch equivalence

Alternative techniques for constructing rational parametrisations of specific
surfaces often produce parametrisations with identical vertex sets but dif-
ferent weight vectors. The invariants enable direct, efficient comparison of
parametrisations to be performed (Corollary 2).

Example 1. Consider the Dupin cyclide defined, in the usual notation (see
Foufou et al (2005)), by the parameters a = 6, c = 2 and µ = 3. The weights
of the patch on the cyclide bounded by θ0 = 2π

3
, θ1 = 4π

3
, φ0 = 5π

6
, φ1 = 3π

2
are

shown, by the author’s construction (Bez, 2007), to be:

ω = (6 −
√

3

2
, 3 −

√
3

2
, 6, 3 −

√
3,

3

2
−

√
3, 3, 6 −

√
3

2
, 3 −

√
3

2
, 6)

and by the methods of Foufou et al to be:

ω∗ = (1, 0.384, 1, 0.247, −0.042, 0.5, 1, 0.384, 1).

Clearly the sign patterns of ω and ω∗ are the same and it is easy to show that
̟i(ω) = ̟i(ω

∗) for 0 ≤ i ≤ 6. From Corollary 2 the parametrisations are
equivalent.

5.2 Standard parametrisations

The transformations (11) enable bi-quadratic patches with positive weights
to be re-parametrised with 3 weights taking the value +1. If some negative
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weights occur, the signs are retained and re-parametrisations having 3 weights
of absolute value 1 can be constructed. The constraints imposed by (11) do
not permit all combinations of weight triples to be transformed to ±1 – for
example the triple ω00, ω11, ω22 is impossible.

Assuming ω00 > 0, ω02 > 0 and ω20 > 0, a matrix, N , given by:

N = diag

(

1

ω00

,
1

(ω00ω02)
1

2

,
1

ω02

,
1

(ω00ω20)
1

2

,
1

(ω02ω20)1/2
,

1

ω02

(

ω00

ω20

) 1

2

,
1

ω20

,
1

ω20

(

ω00

ω02

) 1

2

,
ω00

ω02ω20

)

.

may be constructed, from (11), to determine ‘normalizations’ with ω00 = ω02 =
ω20 = 1. Signs may be adjusted, as required if ω00 > 0, ω02 > 0 and ω20 > 0 is
not true; e.g., if ω02 < 0 then ω02 should be replaced by |ω02| in N .

Alternatively, (11) permits weights ω00, ω01 and ω22 be transformed to unit
modulus. Choosing ω00 to transform to 1, the four distinct cases:

(1,±1, ω∗
02, ω

∗
10, ω

∗
11, ω

∗
12, ω

∗
20, ω

∗
21,±1)

can occur – depending on the signs of ω01 and ω22. The matrix for these
normalizations is:

diag

(

1

ω00

,
1

|ω01|
,

ω00

ω2
01

,
|ω01|

|ω22|
1

2 ω
3

2

00

,
1

ω
1

2

00
|ω22|

1

2

,
ω

1

2

00

|ω01||ω22|
1

2

,
ω2

01

ω2
00
|ω22|

,
|ω01|

ω00|ω22|
,

1

|ω22|

)

.

Example 2. Normalizing the author’s weights (see Example 1 for patch de-
tails) to the form ω00 = ω02 = ω20 = 1 – using the matrix N – we obtain, to
three decimal places:

(1, 0.384, 1, 0.247, −0.042, 0.5, 1, 0.384, 1)

which are identical to Foufou’s weights for the patch at this precision – see
Example 1.

6 Concluding observations

It is clear that the relationship between invariants and curves in the surface,
demonstrated to exist in the bi-quadratic case by the canonical invariants
derived in the paper, does not translate directly to Bézier surfaces of higher
degree. For example in the bi-cubic case it would produce 16 invariants –
providing no scope for weight normalization. However it is well-known that, for
surfaces of arbitrary degree, at least three weights may always be normalized to
unit modulus by Möbius transformation – suggesting no more than (n+1)2−3
invariants, of type ̟, for surfaces of degree (n, n) and (n+ 1)(m+ 1) − 3 for
degree (m,n). These general cases and a number of related topics are under
investigation by the author.
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