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Abstract 

Building performance assessment is complex, as it has to respond to multiple criteria. 

Objectives originating from the demands that are put on energy consumption, acoustical 

performance, thermal occupant comfort, indoor air quality and many other issues must all be 

reconciled. An assessment requires the use of predictive models that involve numerous design 

and physical parameters as their inputs. Since these input parameters, as well as the models 

that operate on them, are not precisely known, it is imprudent to assume deterministic values for 

them. A more realistic approach is to introduce ranges of uncertainty in the parameters 

themselves, or in their derivation, from underlying approximations. In so doing, it is recognized 

that the outcome of a performance assessment is influenced by many sources of uncertainty.  

As a consequence of this approach the design process is informed by assessment outcomes 

that produce probability distributions of a target measure instead of its deterministic value. In 

practice this may lead to a “well informed” analysis but not necessarily to a straightforward, cost 

effective and efficient design process.  

This paper discusses how design decision making can be based on uncertainty assessments. A 

case study is described focusing on a discrete decision that involves a choice between two 

HVAC system designs. Analytical hierarchy process (AHP) including uncertainty information is 

used to arrive at a rational decision. In this approach, key performance indicators such as 

energy efficiency, thermal comfort and others are ranked according to their importance and 

preferences. This process enables a clear group consensus based choice of one of the two 

options. The research presents a viable means of collaboratively ranking complex design 

options based on stakeholder’s preferences and considering the uncertainty involved in the 

designs. In so doing it provides important feedback to the design team. 

 

Keywords: Building performance simulation, multi-criteria decision making, uncertainty analysis, 

detailed design 

1. Introduction 

From evidence gathered from previous research [1], interviews with leading building and system 

designers, and design team observation it can be concluded that high performance buildings 

require an integrated team approach. Architects, engineers, building physicists, client, and 

occupants should be involved from the outset. Over-restricted, and/or non-synchronized design 



teams run the risk of limiting themselves too early in the design evolution [1; 2; 3; 4]. However, 

even with well-coordinated partners, it can be difficult to find consensus on basic design 

concepts that lead to a design solution that all parties perceive as optimal. The main reason for 

this is the multitude of different perspectives, targets, criteria, vis-à-vis the preferences that are 

prioritised by each stakeholder. This situation begs for the adoption of rational decision making 

protocols by multi-stakeholder design teams as reported in [5; 3; 6].  

The implementation of decision making protocols in building performance is becoming more 

important and varies methods have been trialled in this regard [7;8;9]. For example, Attia et al, 

2012 [7] describe the implementation of a simulation-based decision support tool in the 

conceptual design of zero-energy buildings in order to assess thermal comfort and energy 

performance options. Elsewhere, Bayesian decision theory has been used to support multi-

criteria decision-making [8].  This has been applied in the context of variable air volume (VAV) 

and constant air volume (CAV) systems in the isolation rooms in hospitals.  

Most of the reported work does not deal with an important aspect of decision making: the role of 

uncertainty and the risk attitude of the stakeholders. We argue that uncertainty in performance 

predictions of competing options is rarely negligible and typically plays a major factor in the 

decision. At a certain level of granularity, design evolution can be viewed as a series of 

decisions under uncertainty. Every decision relies upon discrete design options that produce the 

most desirable outcomes, while accepting the associated risk that this option may also produce 

less favourable outcomes [10].  

This situation suggests that a computational approach may be helpful in supporting a 

client/design team to reach an optimal decision. Wherein such an approach informs the design 

team about the predicted building performance (whilst also revealing the risk of under-

performance) and forms the basis of a discussion about how to pinpoint the most favourable 

concept given the corresponding risk attitude of the stakeholders. 

2. The Decision making protocol  

Most decision making is prescriptive or normative. It is aimed at making the best decision 

without uncertainties arising. Decision makers should have the perfect insight and knowledge to 

take the most rational decision/ solution in the end. In the normative theory, a model is provided 

that allows a rational decision maker to keep his preference over certain attributes consistent in 

his task [11]. It enables the ranking of available options by decision maker’s preference [11]. 



The deterministic problem can be expressed in a (comparison) matrix format that is shown in 

equation (1), where the criteria C indicate the performance of the alternatives A.  
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A set of m alternatives mAAAA ,...,,, 321  is given, as well as a set of n decision criteria

nCCCC ,...,,, 321 . Furthermore, it is assumed that the decision maker has determined the 

performance value ija
 (for the 

thi  alternative and the 
thj  decision criterion) of each alternative; 

jw
as the weight of the 

thj  criterion and ix
 as the ranking value of the 

thi alternative of each 

alternative. 

The weighting jw
 defines the importance of the criteria/ alternatives that takes into 

consideration each decision makers preference and risk attitude when evaluating design options 

to different performance aspects.  

The Analytical Hierarchy Process (AHP) protocol (developed by Saaty in the 1970s) is one of 

the most widely applied and well-known techniques of Multi-criteria decision making (MCDM). 

AHP lets stakeholders rank the criteria by their importance in relation to the decision problem 

and in relation to each alternative through a pair-wise comparison [12].  

It is based on the assumption that decision problems can be hierarchically structured with a 

one-directional relation between the decision levels. To the author’s knowledge, there has been 

no research to date appraising methodological treatments of how and when design can be 

reduced to hierarchical decision making.   

Whilst it can be stated that there is a design process involved in the making of every building 

and that process typically follows a common sequence (i.e. conceptual to detailed design 

stages) there is no agreed design assessment template that leads stepwise through this 



process. The reality shows that there is no conventional procedure; and that it may even be 

impossible to apply one [13;1]. The authors however take up the position that, since the design 

process commonly aims to satisfy a given set of targets, it is possible to translate this process 

into a decision path. Consequently this paper explores a hierarchical approach that is valid 

where the decomposition of identifiable targets are possible.  

An important issue is the reciprocal consistency with respect the performance values in the 

comparison matrix, that involves the following hierarchical relationship: if then 

. Thus if i-th criterion dominates the j-th criterion, the j-th criterion cannot dominate the i-th 

criterion. 

All of the comparisons among the different criteria, i.e., performance aspects are elements of 

the pairwise comparison matrix (as shown in Eq 1).  The resulting weighting factors of the 

comparison matrix are all positive as they correspond to the relative ranking of the criteria. 

These weighting factors sum to unity as they are normalized.  Thus, the relative ranking follows 

a linear order.  

The decision making process involves ranking the alternatives and calculating a weighting 

factor.  It is very important to note that when a new design option is added to a decision 

problem, the ranking of previous alternatives must not change, in order for rank reversal not to 

occur. This is one limitation of the AHP process, this  is not discussed further however as it is 

assumed that all design options and alternatives have been agreed upon at the beginning of the 

decision making process by the different stakeholders.  
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design alternatives (A1, A2, …, Am) 

AHP is the most commonly applied technique in decision making in BPS. Chiang et al. [6] 

published a study on the comprehensive indicator of indoor environment assessment for 

occupants' health. Wong et al. [14] showed an application of the AHP in multi-criteria analysis of 

the selection of intelligent building systems. Kim et al. [15] developed a housing performance 

1  1



evaluation model for multi-family residential buildings considering criteria such as thermal 

comfort, indoor environmental quality, usability, and surroundings. In general it can be stated, 

that it is a very easy to implement approach, that is applicable for multiple stakeholders and 

multi-criteria decision problems. However, the classical AHP can be criticised because it lacks a 

firm theoretical basis, since uncertainties are not considered in the conventional MCDM 

approach.  

The following sections introduce the case study, the design options and a decision making 

protocol in order to demonstrate a computational approach that informs the design team about 

predicted building performance.  The treatment of the case follows mainstream rational decision 

theory [16] and hence assumes that the decision process is purely rational and that 

stakeholders pursue no other agenda then choosing the best performing design option, 

influenced only by the objective probabilistic predictions of the relevant performance measures, 

their (subjective) importance ranking and the risk attitude of each stakeholder. The decision 

problem thus falls into the category of MCDM under uncertainty [17]. It will be shown how this 

approach can be effectively applied to multi criteria and multi stakeholder decisions during 

design evolution.  

3. Case study 

“Het bouwhuis” is a building located in Zoetermeer, in the Netherlands between The Hague and 

Gouda, shown in Figure 1. It is the headquarters of Bouwend Nederland, the Dutch organisation 

of construction companies [18]. The building is an ideal case study because it combines 

flexibility and function. In addition the project’s early stage confronted the design team with a 

choice between two distinct design options, both of which were developed in great detail. 

The building process (from conceptual stage through to realisation of the building) took place 

from 2002 -2006. As mentioned earlier, two options were developed in great detail, i.e. both of 

them to production drawing stage. The first option represents a standard building services 

solution: using a conventional heating/cooling system. The second design option represents an 

innovative or potentially “risky” design, incorporating heating/cooling thermal storage in 

combination with a double façade. Both systems are described briefly below. 



3.1 The Design options 

Design option 1: Conventional heating/ cooling system 

Design option 1 uses conventional central heating and mechanical cooling; the building is 

conditioned by an air conditioning system with constant air volume (CAV) consisting of an air 

handling unit, supply and return fans, ducts and control units. Heating is provided by electrically 

driven radiators inside the room and an electric heater element in the air-handling unit (AHU). 

The system is regulated by air temperature control; during the office hours (8.00 am-8.00 pm, 5 

days per week) and is on night set back to standby mode the rest of the time. The AHU keeps 

the supply air temperature at 20°C when the incoming outside air temperature is below 16°C 

and can provide cooling, down to 27°C when the outside air temperature is above 40°C. The 

ventilation system provides fresh air with a supply fan (1000m³/h) and exhausts the air by an 

exhaust fan (1000m³/h). The air change rate is 0.5 per hour. There is no night cooling. 

Design option 2: Heating/ cooling storage 

The second option presents an option for a building with a high percentage of glazing ( i.e. 

predominantly transparent facades): from the second floor up to the eleventh floor the building is 

on the gable end of each of three wings provided with a double façade (see Figure 2 and Figure 

3). The outer skin of the double facade is built with one meter spacing from the internal façade 

of the building; thereby increasing the perimeter area of the building. 

In winter the ventilation air is drawn in via the double skin façade, where it is naturally pre-

heated, and then supplied as external air to the air handling unit. This method can be regarded 

as a heat-recovery system. In summer the double façade forms an extra barrier for solar 

radiation to enter the spaces as heat is removed from the façade air cavity through natural 

buoyancy driven ventilation to the outside. Another advantage is the increased noise attenuation 

performance of the double façade. The building is provided with a heat pump in combination 

with a heating-cooling storage system. Both systems (summer and winter) are demonstrated in 

Figure 4. The double glass façade is designed to have a positive influence on energy savings 

and to provide superior comfort. The material properties are identical for both options and 

therefore not explained in more detail. For more information please refer to [19]. 

Simulation setup 

For the dynamic simulation of both alternatives, the following model characteristics and 

conditions are chosen to be identical in both options:  



 Internal heat gains: equipments (20 W/m²); people (10 W/m²) and lighting (15 W/m²).  

 Zoning: the assessment is conducted for the standard floor level comprising two zones 

for design option 1 and 5 zones for design option 2 (see Figure 2 and Figure 3). 

 The assessment is based on the simulation of one room. All of the results presented 

relate to the smaller office room. The cavity between the glazing on the double skin is 

located at the south- facing surface of the building (see Figure 2 and Figure 3). 

 Set Points: The indoor set point in the office is 27°C for cooling and 21°C for heating. 

Both options are simulated in VA114. VA114 is a commercially available, industry strength, and 

extensively used BPS tool in The Netherlands. 

 

3.2 Design team and performance aspects 

The project design team consisted of the following members, amongst others: the architect [20], 

the building physics consultant and the building services/ systems engineer [21]. 

Three members of the design team were asked to make independent lists of the most important 

performance aspects of the building. Performance aspects such as initial costs, architectural 

layout, image/symbolism, energy consumption and thermal comfort were mentioned by all 

participants although with varying levels of significance and importance. Table 1 shows the 

(reduced set of) performance criteria that are the focus of the decision making process that is 

described in the next sections. 

3.3 The classical AHP 

In the classical AHP protocol the criteria have to be selected and ranked to each other by a pair-

wise comparison and assigning numbers from 1 as ‘equally important’ up to 9 for ‘extremely 

more important’ (see Table 2).  

The matrix in Eq. 3 shows the result of the ranking based on a consensus process involving the  

three stakeholders.  



(3) 

The result in Eq. 4 is the weighting factor based on normalizing all criteria after computing the 

Eigenvalue. As Saaty [22] has proven mathematically the Eigenvalue is a good solution for 

obtaining a set of priorities out of a pair-wise comparison matrix. Therefore, the matrix is 

multiplied with itself; the sum of the rows is built and normalized.  

The normalized weights correspond to the relative dominance, and importance of each criterion, 

showing that ‘Symbolism’ (J) has the highest priority followed equally by ‘Architectural form’ (I), 

and the two Comfort criterion (over-and underheating hours C and D).  

 (4) 

 

It can be noticed that the performance aspect A ‘initial costs’ is not included in Eq 4. Although it 

was stated that capital costs have an impact upon the final decision, the  decision makers 

requested that costs be excluded at the outset of the decision protocol  they  only become 
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relevant at  the end of the decision making process. The purpose is thus to show graphically the 

overall performance compared to an independent cost factor in the final evaluation. 

After calculating the weighting factor for the performance aspects B to K as shown in Eq. 3 and 

4, the two design options have to be compared to each other. For that reason they have to be 

assessed for every performance aspect separately. This is shown as an example for the 

‘architectural form’ (I) in Eq. 5 and for ‘symbolism’ (J) in Eq.6.  The perception for each option 

considering the criterion ‘architectural form’ (I) and ‘symbolism’ (J) is judged qualitatively by the 

stakeholders. As a result Design option 2 is considered to be (according to the stakeholders 

criteria weighting) “very strongly more important/ better” than Design option 1. This relation is 

expressed with a ranking of ‘7 (cf. Table 2). The decision matrix is as follows. 
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This matrix results in a final ranking of the design option 1 for architectural form equals to 0.12; 

whilst design option 2 equals 0.88.  

This approach is identical for the performance aspect symbolism. Design option 2 is “strongly 

more important/ better” compared to design option 1 and is assigned with a ranking of ‘5’. 
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This matrix results in a final ranking of the design option 1 for symbolism equals 0.17; whilst 

design option 2 equals 0.83.  

Instead of weighting all performance aspects contingent upon the stakeholders individual 

preferences; the impact of subjective, and thus uncertain, information is reduced by the use of a 

simple numeric representation. This is done by including the outcome of a building performance 



simulation tool. Results such as energy consumption and thermal comfort are therefore 

calculated and inserted into the AHP protocol.  

The approach is demonstrated in Table 3. The amount of weighted overheating hours for both 

options is inserted into the calculation and is further normalized. Hence, the weighting factor is 

based here on numerical performance data instead of users’ preference.  

The amount of weighted overheating hours for design option 1 calculated by the BPS tool is 17h 

per year, for design option 2 it is 4h per year. The italic part in Table 3 shows the calculation of 

the final rank for both options regarding the weighted overheating hours.  

In the final step, the outcomes are summarized into one matrix. Table 4 shows a combination of 

subjective data based on expert preferences, experience, and personal judgement and on 

objective data from the simulation results provided by a BPS tool. 

The values for performance aspects B, E, G, I, J, and K are achieved based on the preferences 

and attitudes of decision makers according to Eq. 5 and 6. C, D and H are calculated by the 

BPS tool and normalized according to Table 3. The final outcome -based on the classical AHP 

protocol but with the help of Building Performance Simulation (BPS)- is for design option 1 0.23 

and for design option 2 0.77.  This outcome shows that design option 2 is clearly more 

favourable than design option 1. 

3.4 The adapted AHP  

The traditional AHP protocol does not take into account that performance outcomes can be 

probabilistic variables. For the purpose of solving the application problem, we propose to extend 

the above method by adding uncertainty information. The goal is to include risk assessment in 

the conventional AHP protocol. Uncertainty analysis (UA) is applied to enable the designer to 

obtain an insight in to parameters chosen for each option. UA studies are conducted to show 

the variability in the output of a model that can be referred to different sources of variation in the 

input parameters. 

In this study the emphasis has been on uncertainty in physical parameters, mostly identifiable 

as the standard input parameters in energy or thermal comfort simulation. Approximately 80 

physical parameters have been considered in total. Assessments were made under fixed 

assumed use scenarios, which is common in uncertainty analyses. 



The most important parameter in design uncertainties is the room geometry. As the decision 

had to be made at a stage where the floor plan in either option was undefined, room geometry 

was entered into the uncertainty analysis. As an example, the outcome for annual heating is 

shown in Figure 5. The square shows the result of the first (deterministic) simulation – the result 

that is actually used in the conventional AHP protocol as shown above. The range gives an 

insight about the variability in outcome, i.e. how much impact uncertainties have on the 

simulation outcome after conducting 200 simulations. 

It is important to add at this point that due to the early design choices made in this case study, 

there is an abundance of uncertainties some of which are quite large. This is what leads to the 

large uncertainty ranges in the outcomes of the results in Figure 5.  

The conducted uncertainty analysis is studied quantitatively by assuming a normal distribution. 

The significance of this analysis in the informed use of BPS is therefore very high and could 

improve the decision process even though it might be argued that it is less credible to try to find 

an optimum when there are still so many open decisions with respect to design parameters . 

However, this is exactly the intention of this paper to find out whether this indeed leads to an 

outcome that has practical significance in some decision cases. The authors recommend that 

the inclusion of uncertainties is essential with respect to building simulation, performance, and 

design. The integration of uncertainties in BPS will provide an evidence based decision support 

process in design team meetings and dialogues with building partners. 

Due to the consideration of uncertainties in the parameters, the simulation results for energy 

and thermal comfort cover a range as shown in Figure 5. The boundaries of this range can be 

titled as worst and best performance values due to the consideration of uncertainties. The worst 

and best performance also affects the weighting factor calculated in Table 1. How much either 

of them, the uncertainty and the weighting, impact the result is demonstrated in Table 5. The 

table shows the typical AHP result (from the classical method), and additionally the best and 

worst performance for both options in relation to the entire design team and each design team 

member separately. The results achieved are comparable to the conventional method but with 

the difference that hereby the upper and lower confidence bound of the results are taken to 

show the best and worst performance for energy and thermal comfort separately.  

The percentage factor brings into relation the outcome of the simulation with the weighting 

calculated for energy and comfort. Due to the fact that the weighting differs for all three decision 

makers (A, B, and C) the percentage is also affected. The first columns ‘design option 1 and 2 



all’ show the consensus of all three decision makers based on the weighting factor. The 

differences in performance listed in Table 5 can be also shown graphically. In Figure 6 the 

performance value is compared to a cost factor. For this purpose, the performance factor [%] on 

the ordinate includes the calculated comfort from the simulation (weighted over-and 

underheating hours) and its confidence interval (due to the uncertainty range as seen in Figure 

5 and 8) plus the subjective impact of all other performance aspects (as seen in Table 1 and 

calculated in Eq. 5 and 6).  

Figure 6 shows the final output of the adapted AHP technique plus uncertainty protocol for 

comfort and energy factors. A performance value is then compared to a cost factor. The 

performance value includes all performance aspects considered except energy and costs. 

However, both, the energy consumption and the capital costs are excluded in this performance 

factor as they form part of the cost factor [%] on the abscissa. The range in the performance is 

due to uncertainty and the weighting factor in the comfort prediction. 

The cost factor is composed out of the capital costs for each building plus the running costs of 

energy consumption for each option over a chosen period of 5 years. Results are shown for all 

stakeholders separately in Figure 6. As it can be seen for all designers, design option 1 is the 

best performing alternative mainly because of its architectural form and its expected thermal 

comfort. However, design option 1 is also the more expensive solution due to its higher 

investment costs.  

The range in the cost factor arises as a result of the uncertainty and the weighting in the energy 

consumption.  The range in the performance is due to the uncertainty in the comfort criterion. By 

evaluating their impact on the final design- which is based on each decision maker individually- 

these factors are normalized.   

It is distinguishable (Figure 6) that there is a significant spread in the energy consumption whilst 

there is only a small spread in the cost factor. This is caused by the large difference in the initial 

costs (when the entire building costs are considered) which significantly outweigh the running 

costs (when compared over a 5 years term). Unless the building is only considered over a short 

lifespan, then the capital costs reflect only a minor percentage of the overall life costs and 

therefore play not a critical role in the overall assessment.  



The result is comparable to Figure 7. The difference is that instead of separating the outcomes 

based on the weighting of each decision maker, a consensus based on the weighting from 

Table 1 is built. 

The risk involved with each option, given by the uncertainty range is shown in Figure 8.  

The square in Figure 8 shows the results of the first simulation, the line with the barriers shows 

the results of the 200 simulations. The dashed line of the comfort criteria indicates whether the 

compliance with a certain requirement is exceeded. These thresholds are stated as expressions 

of minimally required performance for the weighted over- and underheating hours. 

The output shows that for the better performing design (option 2) the amount of weighted 

underheating hours extends beyond the upper confidence bound of 150h per year.  

In order to diminish the uncertainty range, two possibilities will be pointed out: (1) Decreasing 

the risk of the scenario uncertainties, e.g., infiltration rate, and (2) adapting the design of the 

case study. The results will be shown for both approaches briefly: 

(i) Limiting the risk by controlling the scenario uncertainties  

Uncertainties in scenario conditions are very different from physical and design uncertainties in 

the sense that they can change during the building’s life time [19]. Taking scenario uncertainties 

into account is relevant to design decision support, in particular when considering the design 

robustness and (future) adaptability of a building. These uncertainties originate from considering 

the wide range in the possible usage of a building typically referred to as usage scenarios. 

Scenarios encompass the influence of ventilation (the operation of window openings), climate 

change (for instance due to global warming), lighting control schemes, and other occupant 

related influences which result in unpredictable usage of the building.  

One possibility is limiting the risk in the scenario uncertainties which means setting fixed 

limitations to boundary conditions. An example is the consideration of different user behaviour 

patterns related to operable windows. Another example is the change in the infiltration rate, 

which is considered to be varied between 0 and 0.2 ACH. This variation is assumed to be 

feasible as it encompasses a range which might  be caused through bad workmanship or cracks 

in the façade. 

As an example, the risk limitation will be carried out for the infiltration rate which has a 

corresponding linear dependency on the weighted under- and overheating hours (or vice versa). 



This is shown with the help of scatter plots. The creation of scatter plots is one of the simplest 

sensitivity analysis techniques. This approach consists of generating plots of the points 

  ,,...,1,, miyx jij 
 for each independent variable Xi [23]. The purpose is to show the type of 

relationship or correlation that exists between two sets of data. The response variable is usually 

plotted on the vertical Y axis, whilst the input variable is plotted on the horizontal X axis.. 

Sometimes scatter plots completely reveal the relationship between model input and model 

predictions; this is often the case when there is only one or two monotonic inputs that dominate 

the outcome of the analysis [23], such as in the case of the relationship between thermal 

comfort and infiltration rate (see  Figure 9). 

The dashed line in Figure 9 indicates that limiting the infiltration rate to 0.8 ACH will guarantee 

that the underheating performance threshold of 150h per year is not exceeded. In this case, to 

eliminate the risk, the limitation of 0.8 ACH must be fulfilled in order to avoid exceeding the 

confidence bound. 

(ii) Adapting the room size  

Design variations that occur during the planning process fall into the category of uncertainties in 

design parameters. They can be either caused by a lack of knowledge on the part of the 

designer or they may arise due to changes or irregularities in the planning phase of the building.  

The weighted overheating hours are very sensitive to the geometry of the room. Nevertheless, 

there is no recognizable linear correlation to the weighted under- and overheating hours. For 

that reason, a new input file with different geometry data needs to be created and the 

uncertainty analysis needs to be conducted a second time. As a result a new simulation with a 

slightly decreased room size was initiated; the results are shown in Figure 10. 

The uncertainty range for design option 2 is shown for the original performance and the 

performance after the changed room size for weighted over- and underheating hours. The 

number of exceeding weighted underheating hours is scaled down. From this it can be seen that 

improving the range of the design parameters in one direction can downgrade the uncertainty of 

another aspect, a consequence of which, in this case, is a slightly increased amount of 

overheating hours. However, it can be verified that by iteratively adding more realistic 

constraints on the parameter ranges of the options, the resulting conditional probabilities 



strengthen one option into the best option. Provided that, one option is optimal if it does not lead 

to unacceptable risk of underperformance as defined by the confidence bounds.  

 

4. Discussion 

Any methodological treatment of how and when design can be reduced to hierarchical decision 

making is still lacking.  This paper positions itself that the design is satisfying a given set of 

targets, which is translated into a decision path. We used a hierarchical approach to explore its 

applicability to the group decision making under risk.  

Thus, a conventional AHP protocol has been extended by the use of BPS and the integration of 
uncertainty analysis. Both, the conventional and the adapted AHP protocol fuse evaluations 
from multiple decision-makers with inconsistent viewpoints. The approaches average the multi 
objective evaluations to obtain a single consistent outcome (by having multiple decision 
makers). For weighting criteria or performance aspects, the traditional AHP uses a qualitative 
ranking. The adapted AHP methodology used here fuses subjective and objective information 
via numerical weighting.  This approach allows balanced consideration of the following design 
criteria: 

(i) Subjective or qualitative performance aspects such as the architectural layout. 
(ii) Objective or quantitative performance aspects such as thermal comfort or energy 

consumption.  
 

To handle performance aspects such as energy consumption, in the adapted AHP the output of 

BPS is used to include validated results into the decision process. Furthermore, the adapted 

AHP supports uncertain information. The conventional AHP protocol that handles only 

deterministic information is enhanced by uncertain building performance data through the use of 

uncertainty analysis. The sensitivity analysis in the adapted protocol is used to identify the most 

sensitive parameters that have the highest influence on the performance to eventually diminish 

the risk. The integration of uncertainty analysis supports risk identification as part of the decision 

process. 

One drawback of the AHP protocol is with respect to rank reversal as mentioned in the 

beginning.  There is however no plausible explanation for some of the rank reversals in AHP 

that can occur when something unrelated is changed.  



5. Conclusion  

Current approaches in decision making for BPS do not integrate the combined use of simulation 

and uncertain information in the analysis of case study information. The adapted AHP protocol 

is used to expand current BPS capabilities to support the design team in making decisions. 

MCDM is herewith used to a lesser extent to indicate one solution as the best but to primarily 

show the impact on user preferences of a discrete set of options facing uncertainty. An 

advantage is that both subjective and objective evaluation measures are captured such as 

comfort, energy demand, and architectural layout.  

The integration of a decision making protocol with the extension of uncertainty analysis in BPS 

can support the design process and provide additional information. It will help the design team 

in several ways, as follows.  

(i) Support of the design team in the design process by providing a framework for 
communication. 

(ii) Support in the decision process by providing a methodology to compare different 
design options.  

(iii) Avoidance of pitfalls due to a lack of planning and a lack of a defined focus. 
(iv) Possibility to minimise risk related to different concepts with the help of UA/SA. 
(v) Understanding of how parameters are related to each other.  
(vi) Comprehension of how variations in the model input affect the output. 
(vii) Enhancement of the use of BPS by providing additional support, and therefore, 

leading to better guidance in the design process. 
 
 

The developed approach is meant to enhance the information flow in an iterative design process 

as it shows the impact of uncertainty analysis embedded in a decision process. It is shown that 

the inclusion of uncertainties in BPS is essential with respect to simulation and performance. 

The integration of uncertainties in building performance can i provide evidence based decision 

support in design team meetings, thereby enhancing dialogues with project partners. 
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Table 1 Listing of the performance aspects that are 

relevant in the decision making process. 

 

 

A  initial costs

B  indoor resultant temperature

C  overheating hours (weighted)

D  under‐heating hours (weighted)

E  individual control

F  floor area per person

G  space height

H  energy consumption

I  architectural form

J  symbolism (image /status)

K  changeability (flexibility)

 

 

Table 2 Illustration of the weighting in AHP (according to Saaty, 1980).  

 

Intensity of 

importance1  Definition  Explanation 

1  equally important  two elements have equal importance 

3  moderately more important 

experience or judgment slightly favors one 

element 

5  strongly more important 

experience or judgment strongly favors one 

element 

7 

very strongly more 

important  dominance of one element proved in practice 

9  extremely more important 

the highest order dominance of one element 

over another 
 

 

 

                                                            
1 Please note that if an performance aspect 1  has a number assigned to when compared to another performance 
aspect 2 , then 2 has the reciprocal value when compared with 1,  i.e.,  ai,j=1/aj,i so, for example if ai,j=3, then aj,i=

1/3 



Table 3 Demonstration of the calculation of the importance weighting of the 
performance aspect C: weighted overheating hours. 

C: weighted overheating hours          

     [h]          
design option 1   17   1‐(17/21)  0.19

design option 2    4    1‐(4/21)   0.81

 ∑  21    
 

Table 4 Ranking of both options for the performance aspects B to K. 

   B  C  D  E  F  G  H  I  J  K    Weighting factor

                                     

design 

option 1  0.50  0.19 0.19  0.50  0.25  0.50  0.42  0.13 0.17 0.25 

   

0.23 

design 

option 2  0.50  0.81 0.81  0.50  0.75  0.50  0.58  0.88 0.83 0.75 

   

0.77 
 

 

Table 5 Demonstration of the relation of the outcome energy and thermal 
comfort compared to the both options dependent on the user. 

 

      FS   [%] 

BP energy 

[%] 

WP energy 

[%] 

BP thermal 

comfort [%] 

WP thermal 

comfort [%] 

design 

option 1  all  23  23  23  25  21 

design 

option 2  all  77  77  77  75  79 

design 

option 1  A   25  25  25  26  24 

design 

option 2  A  75  75  75  74  76 

design 

option 1  B  36  35  35  37  34 

design 

option 2  B  64  65  65  63  66 

design 

option 1  C  24  24  24  26  23 

design 

option 2  C  76  76  76  74  77 

       

Legend   FS  first simulation  

  WP  worst performance  

  BP  best performance  

  A,B,C  Different users  
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