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ABSTRACT  

The sensitivity of low energy and passive solar buildings to their climatic context creates a requirement for 

accurate local climate data. This situation takes on increasing importance in the context of modelling Passivhaus 

buildings where the absence of conventional oversized heating and cooling systems implies a greater reliance 

upon fabric and system optimisation.  Conversely, future climatic changes may also pose serious implications for 

super insulated buildings with inadequate solar shading. Currently, many widely used building performance 

simulation (BPS) tools still rely on very limited sources of climate data.  

 

The following research examines the need for regional and, in some cases, micro-regional climatic data when 

designing ultra-low energy Passivhaus buildings in the UK. The paper proposes a new methodology for 

generating this data in PHPP format. The data generated is compared to alternative sources, and the implications 

discussed in the context of three case studies examining a certified Passivhaus dwelling in a mountainous region 

of Wales as well as two locations, in close proximity, within London. If correctly implemented the use of such 

data should provide a more robust basis for future cost and performance optimisation in low energy and passive 

building design.  
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1.0 INTRODUCTION 

Passivhaus Planning Package (PHPP12) is a simplified steady state building simulation tool that is primarily 

targeted at assisting architects and mechanical engineers in designing Passivhaus buildings [1]. According to the 

Passivhaus Institute (PHI) the verification of a Passivhaus design must be carried using the Passivhaus Planning 

Package (PHPP). As a result, this quasi-steady state software is the de facto software used for both the design 

and compliance predictions of Passivhaus buildings in the UK and around the world. PHPP has been validated 

using both dynamic thermal simulations using Dynbil [2] and empirical data from a large number of completed 

Passivhaus projects [3]. Dynamic simulation results predicted by Dynbil, have also been extensively compared 

to measured data for both dwellings and office buildings [4,5,6]. PHPP validation studies have generally shown 

good agreement between measured and predicted results including those derived from dynamic simulation [3]. 

The PHPP thermal model conforms to the calculation methods set out in EN ISO 13790 for determining heating 



demand according to annual or monthly methods, and contains additional algorithms to calculate peak heating 

and cooling loads and assess overheating risks.  

 

In addition to delivering design energy and peak load  predictions a validated PHPP worksheet is primarily used 

to demonstrate compliance with the Passivhaus certification criteria. The key criteria for Passivhaus certification 

are that the building must have a Specific Annual Heat Demand (qH) ≤ 15 kWh/m2.yr or a Specific Peak Load 

(pH) ≤ 10 W/m2, together with a Specific Primary Energy Demand (qp) ≤ 120 kWh/m2.yr relative to the Treated 

Floor Area (TFA). Where a cooling energy requirement exists this must also be (qc) ≤ 15 kWh/m2.yr. 

Like all building physics models the outputs from the PHPP model are predicated upon the use of appropriate 

boundary conditions. In the case of PHPP where, for certification purposes, the internal gains (residential, 2.1 

W/m2) and operative temperature (20°C) are assumed to remain constant; the key boundary conditions used to 

determine the annual heating demand, cooling demand and peak loads depend almost entirely on the external 

climate.   

 

In the context of a Passivhaus, where all of the supplementary heating may be provided solely via a small post-

air heater, the risk associated with uncertainty in the peak heating load calculations could have real 

consequences. Conversely, overheating risks are likely to increase with climate change and a better 

understanding of cooling loads and future overheating risk predictions is needed [7]. Hence, there is a need to 

understand the uncertainty associated with the climate files used in order to determine the sensitivity and 

reliability of any design or certification predictions.  Typical Meteorological Year (TMY) data sets in the USA, 

and Test Reference Year (TRY) data in Europe are some of the most commonly used formats of hourly weather 

data for Building Performance Simulation (BPS).  The principles behind the generation of these datasets are 

similar in that a typical weather year is compiled by selecting the mean monthly data from long-term historic 

data typically spanning a 20-year+ period. As such these data sets represent typical (historic) conditions and the 

U.S. National Renewable Energy Laboratory (NREL) states that ‘they are not suited for designing systems and 

their components to meet the worst-case conditions occurring at a location’ [8]. 

 

In the original PHPP models, (PHPP04 and PHPP07) climate data for the UK was derived from TRY datasets for 

half a dozen locations.  In most cases, this data was thought to be adequate for Passivhaus verification based on 

calculation of the mean annual heating demand. However, since it is possible to obtain Passivhaus certification 



based on peak loads, questions were raised about the appropriateness  of using only a single  UK climate data set 

(Manchester) as a proxy for calculations across the entire UK [9].  This situation has recently evolved with the 

production of 22 UK regional datasets developed using Meteonorm (MN) interpolation, which have been cross-

checked against EPW climate files and ratified by PHI [9]. 

 

This paper examines the limitations of the current system and presents a new method of obtaining much higher 

resolution climatic data for current and future probabilistic scenario modelling generated using the UKCP09 

Weather Generator [10]. The results are compared to both site specific and regional proxy data [11] based on 

Meteonorm software interpolation methods and existing TRY data (where available).  

 

2.0 METHODOLOGY 

2.1 Generating Climate Data in PHPP format 

The original climate data provided by the Passivhaus Institute (PHI) for design and certification in the UK was 

derived from TRY data [12].  Since many of the original PHPP data sets lacked the data necessary to carry out 

peak load evaluations, a reverse engineering process (involving multi-stage dynamic simulations) was developed 

by the PHI for the determination of peak load data [13].  Due to the lengthy processing time involved, complete 

PHPP datasets were only available for a limited number of locations 

 

More recently, interpolation software, such as Meteonorm 6, has made it possible to generate complete climate 

data sets for virtually any geographic location in the world.  Schneiders [14], however, cautions against the use 

of such software to derive peak load data since the reliability of the algorithms used to derive daily climate data 

from monthly data is not well established. Furthermore, Rawlins [15] proposed that site-specific daily irradiation 

is more accurately estimated from local sunshine observations than by interpolation from nearby radiometric 

stations, particularly where weather stations are located more than 20km away.  For the interpolation of monthly 

average irradiation Rawlins states that the critical distance becomes slightly greater, at approximately 30km. By 

contrast the use of daily sunshine hour recordings from a location 50km away would generate RMSEs typically 

in the range of 14% - 22% [15].   

 



2.1.1 Monthly climate data variables	

The primary inputs required by PHPP to calculate the annual specific heating demand (SHD) are based on  

monthly mean climatic variables, namely: mean ambient temperature, global horizontal irradiation and the 

vertical slope irradiation for the cardinal aspects. Additional values such as sky temperature and ground 

temperature are subsequently derived from these values. Unlike the weather file formats used in most dynamic 

simulation programmes PHPP requires that the monthly irradiation data is broken down into its cardinal slope 

irradiance components in the weather file (Figure 1).  

 

 

 

Figure 1 PHPP sample climate data (partial set/ left hand side) showing 6 months of heating demand data 

 

In addition to the monthly heating demand data (Figure 1 

 



 

Figure 1) the PHPP climate file also contains data for determining the peak loads at a daily time step.  

2.1.2 Peak load data and variables	

By definition the peak heating and cooling loads require design temperatures and irradiation calculations to be 

conducted at a much smaller time step than the monthly data allows.  Typically, these calculations are carried out 

at an hourly or sub hourly interval using a dynamic simulation. Historically the peak load slope irradiance data 

used by PHPP was derived using a process which involved changing the aperture area in a dynamic simulation 

reference model and recording the resultant impact upon monthly heating loads for each of the cardinal points 

[13, 16].  Such a method is robust in one sense since it begins by isolating the peak load and works backwards to 

derive the corresponding irradiation data. However, this approach is time consuming and necessitates a second 

(fully dynamic) model. The approach also entails a number of modelling uncertainties that are difficult to 

quantify, including the representivity of the TRY itself.  Until recently, a significant further limitation of this 

approach has been the limited availability of regional and micro-regional TRY files, which have only been 

available for a limited number of locations in the UK. 

 

In the case of Passivhaus buildings, which are characterised by high thermal inertia, it has been demonstrated 

that the peak load analysis can be carried out using data which is averaged over a longer time period than for 



conventional buildings [12, 17, 18].  Further discussion of this time constant follows in the Methodology section.  

Figure 2 illustrates the two periods Weather1 (W1) and Weather2 (W2) for which the peak heating load is 

assessed.  W1 corresponds to the coldest clear period, with relatively high daily irradiation but low ambient 

temperatures. W2 represents a prolonged cloudy winter period with very little irradiation but slightly milder 

temperatures [18].  These two discrete periods are entered in to the PHPP peak load calculation where the 

maximum load derived from either scenario becomes the peak load.  Historically the peak load climate data was 

isolated from a TRY data set, and this is still considered by the PHI as the preferred method [14]. Since a TRY is 

effectively a mean weather year designers need to be acutely aware of the limitations inherent in this approach 

with respect to peak load plant sizing. 

 

Figure 2 Peak load weather data showing key variables for the calculation of W1 and W2 

2.2 Generating regional climate data files for PHPP heating demand 

Obtaining mean monthly climatic data suitable for use in predicting the PHPP specific heating and cooling 

demand is relatively straightforward as there are now a number of possibilities for obtaining this data on a 

regional scale. Designers working with hourly or sub-hourly dynamic simulation tools in the UK can access 

high-resolution data via the PROMETHEUS web portal [19] which provides hourly EPW formatted climate files 

derived from the UKCP09 Weather Generator (WG). Worldwide it is possible for designers to generate future 

predictive data in a limited number of formats by using various tools such as the Meteonorm software.  Various 



data ‘morphing’ procedures have been elaborated by Belcher et al [20], Crawley [21] and Jentsch et al [22] who 

set out details for a series of shift and stretch functions which provide the underlying methods used to ‘morph’ 

existing TRY or baseline data sets in line with any given future climate change scenario. Crawley [21] provides 

further specific procedures for shifting the ambient temperature in Urban Heat Islands. Such methods are limited 

by the spatial distribution of the baseline TRY datasets and knowledge of the amplitude of the climate change 

input signals which were typically derived from 50km (or coarser) grid models. In addition to using a much 

higher  spatial resolution the more recent PROMETHEUS files include probabilistic prediction of the future 

wind speed and direction which was absent from many earlier climate generator models [23].  

2.3 Spatial resolution 

For individual design based predictions the finest spatial resolution data attainable is typically the most relevant, 

since this should include micro climatic influences. In the case of Passivhaus and ultra-low energy design 

concepts, this requirement is amplified by the fact that useful solar gains may be compensating up to one third of 

the total losses [24]. In a study comparing long term in-situ measured data on a Passivhaus project near Cork, 

Ireland with proxy regional TRY data (Dublin) and interpolated data Morehead [25] concluded that a variation in 

the predicted space heating demand exceeding 30% was possible contingent upon the source data chosen. With 

implications for build costs, running costs, plant sizing and thermal comfort predicated upon these calculations 

the need for more accurate climate data and an understanding of limitations and associated risk becomes 

apparent.  

 

Counter to this in the context of broader meta-studies, or for the purposes of standardised building certification, 

the use of a coarser resolution or even regional climate data may be warranted.  Currently Passivhaus 

certification in the UK is based upon a newly adopted system that uses 22 regional data sets (Figure 3) generated 

by the BRE [10] using Meteonorm interpolation methods cross-checked against ASHRAE EPW files.  Whilst 

the regional boundaries chosen reflect, in some cases, the administrative boundaries previously defined in the 

UK Standard Assessment Procedure (SAP) for overheating analysis there is no precise climatic basis for the 

boundaries used. 



 

Figure 3 22 UK climatic regions currently used for Passivhaus certification (BRE, 2011) 

 

An alternative source of regional data has been compiled by the Met Office Hadley Centre using 25km grid 

squares which reflect the Regional Climate Model (RCM) grid. This data is generated by averaging the 5km data 

sets that fall within these larger plots.  Regional data for 14 administrative regions and 23 river basins has also 

been produced based on long-term (1961-1990) averages for all of the key monthly climatic variables.  Such 

methods of producing representative regional data, which has been composited from finer grid resolutions, 

appears to offer a more robust basis for developing future regional datasets for Passivhaus certification.  The raw 

data produced by the UKCP09 WG is not directly available in PHPP format however. 

2.4 UKCP09 probabilistic data and Weather Generator 

The HadRM3 RCM was developed by the Met Office Hadley Centre in order to downscale the simulations 

provided by the Global Climate Model (GCM). The RCM operates at a 25km resolution, providing outputs on a 

scale that is useful for impact assessment in the built environment. This model creates 434 unique land based 

grid squares containing probabilistic climate projections for most of the UK. For each 25km grid location 10,000 

realisations (samples of the probability density function) have been generated for each decade and emissions 

scenario based on equi-probable changes in the underlying climatic variables.  

 



The Weather Generator (WG) is a climate model downscaling tool which was developed by the Hadley Centre in 

order to provide outputs at a higher resolution than the regional climate model. By mapping the unique climate 

signal contained within each 25km grid square on to a much finer 5km grid baseline (Figure 4) approximately 

11,000 viable grid data locations are produced covering the entire UK landmass.  Each 5km grid square thus 

contains a 30 year baseline dataset for the reference period 1961-1990, coupled with the possibility to sample 

future probabilistic scenarios at 10-year intervals from 2020 to 2080 [26].  

 

Figure 4 Showing UKCP09 5km and 25km grid resolutions for South Wales/ Severn region 

 

Three climate change scenario outputs are available from the Weather Generator based on the  

Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) climate 

principal scenarios: Low (A1F1), Medium (A1B) and High (B1).  Further information on the global economic 

scenarios defining the SRES scenarios can be found in IPCC [27]. Each WG run randomly samples from the 

10,000 change factors available to create a continuous thirty year time series based on the underlying baseline 

profile.  A minimum of 100 randomly chosen samples of the WG climate data are needed to compile a single 

statistically representative climate file. Each WG run therefore results in a minimum of 3000 equi-probable 

future weather years of data. The WG operates at a daily temporal scale from which hourly variables are 

subsequently extrapolated based on existing relationship patterns in the observed baseline data. 

Rainfall is the primary variable in the WG, and is estimated using the Neyman-Scott Rectangular Pulses (NSRP) 

model [28].  All of the other output variables are dependent upon the rainfall data. Inter variable relationships 

based on regression models developed from the measured daily station data are then used to predict mean daily 

temperatures, temperature range, vapour pressure and sunshine hours [27].  Further variables are subsequently 

calculated from the core variables using appropriate formulae. Hourly global solar irradiation, for example, is 



only recorded at approximately 90 Met-office sites around the UK using predominately CM11 pyranometers 

[29]. Additional algorithms based on the work of Cowley [30] and Muneer [31] were therefore  used to derive 

the global direct and diffuse irradiation components from the observed daily sunshine duration. 

 
Validation work carried out by the WG team, analysed later in this paper, shows good agreement between the 

modelled direct and diffuse irradiation predictions and measured data from selected reference sites [32].  This 

validation check of the WG meta-model data is important in the context of understanding the overall 

uncertainties in this research, where further downstream models are used to derive monthly and daily slope 

irradiation data for each scenario. 

2.4.1 Validation of UKCP Weather Generator source data 

Of particular relevance to the key climate data inputs required by PHPP is the method used by the WG to 

estimate direct and diffuse irradiation at daily and hourly levels. The use of algorithms based upon the daily 

hours of sunshine and day length at a given location has allowed the WG to estimate the diffuse and direct beam 

components of the Global Irradiation at grid locations which do not directly record solar radiation measurements. 

 

2.4.1.1 Daily irradiation 

For global irradiation an algorithm developed by Cowley [30] based on sunshine duration has been implemented 

in the WG. 

Cowley’s equation is given as: 

 

   (1) 

 

where G and E are the daily terrestrial and extra-terrestrial irradiation on a horizontal surface, n is the daily hours 

of sunshine and N is the day length. 

 d = 0 if n = 0, otherwise d = 1 if n > 0, and a’= average ratio of G/E for overcast days. The seasonal means for 

the coefficients a,  and b were taken from Appendix B1 in Muneer [31]. 

To estimate diffuse irradiation (D) Muneer recommends the following global model, which was established 

using regression curves to fit the relationship between the daily diffuse ratio ( ) and the clearness index ( ). 



The regression fit characterised by this model was based upon a number of global studies, including research 

carried out in the UK by Saluja and Muneer [32] 

 

 (2) 

 

     (3) 

 

      (4) 

 

where S is the sunshine hours. Muneer [31] demonstrates the validity of a global estimate for the relationship 

between D/G and KT. 

 

2.4.1.2 Hourly irradiance 

The hourly irradiance models in the WG use Muneer’s Meteorological Radiation Model (MRM) algorithm. 

MRM estimates the diffuse and direct components from ground based measurements: air temperature, wet bulb 

temperature and sunshine duration. The advantage of this approach is that such data is widely available world-

wide and does not require sophisticated instrumentation [33]. 

 

The diffuse irradiance model is given by: 

 

 (5) 

 

 

 (6) 

 

   (7) 

 



where  are atmospheric transmittances estimated by a set of equations using coefficients 

given in Muneer [30]  deemed suitable for UK/northern Europe, m is the relative air mass (m’ is adjusted for 

atmospheric pressure) obtained by Kasten’s [34] formula. 

 

The global irradiance is given by: 

 

   (8) 

 

where sr is the ground albedo, and  is the Rayleigh scattering computed at m 

= 1.66  and  is the attenuation of light through a medium calculated according to Beer’s law. 

 

A more detailed treatment of the above, including a detailed evaluation of the MRM algorithm for clear and over 

cast skies is provided in Muneer [31]. 

 

2.4.2. Validation results 

In order to test the accuracy of these algorithms, the Met Office WG team compiled daily and hourly radiation 

data recorded at three UK weather stations.  Hemsby (Norfolk), Finningley (South Yorkshire) and Stornoway 

(Western Isles) were the only UK stations at the time that recoded both daily and hourly irradiation plus the 

additional input variables needed for a weather generator run. A weather generator control run is a baseline (i.e. 

unperturbed) simulation run consisting of 100*30 year time periods, calibrated on the specific station data 

record. The half monthly means were calculated for the observed data (typically based on a 14-15 years of record 

data) and compared with those produced by the simulations. For hourly simulation of data, the method described 

above is employed, and the hourly figure is adjusted to equal to the daily total for consistency. Sample validation 

results for Hemsby (1982-1995) Finningley (1983-1995)  and Stornoway (1982-1995) daily diffuse and direct 

irradiation are given in Figures 5- 7. The standard deviations for the 100 runs are shown to indicate the 

variability inherent within a stochastic model. 



 

Figure 5. Compares the WG simulated diffuse and direct outputs with observed data for Hemsby (1982‐1995). Error bars 

indicate variability over 100 WG runs at +/‐ 2 Standard deviations.  (Data courtesy WG Team, Met Office) 

 



 

Figure 6. Compares the WG diffuse/direct output with observed data for Finningley, Doncaster (1983‐1995). Error bars 

indicate the variability over the 100 WG runs at +/‐ 2 standard deviations. (Data courtesy WG Team, Met Office) 

 

 



Figure 7. Compares the WG diffuse/direct output with observed data for Stornoway (1982‐1995). Error bars indicate the 

variability over the 100 WG runs at +/‐ 2 standard deviations. (Data courtesy WG Team, Met Office) 

 

The validation results suggest good agreement between the simulated and recorded data for 3 different sites 

across the UK. For the diffuse radiation the mean coefficient of determination (R2) across the 3 sites was 0.9774, 

whilst for the direct radiation the mean value was 0.9214.  

 

One of the strengths of using the WG model for generating the primary data for use in building simulation 

models is that the source model algorithms are independently validated. The current WG has undergone 

extensive field testing and further revisions have been made to the model as errors are reported or more accurate 

modelling procedures have become available [35].  

 

2.5 Preparing the WG output data for building simulation models  

Processing 3000 years of equally probable data sets per scenario for each location and time sequence is unwieldy 

from a building simulation perspective. In order to achieve representative building simulation weather files the 

WG data needs to be processed and additional variables added. In the UK the Chartered Institute of Building 

Services Engineers (CIBSE) has established a Test Reference Year (TRY) and Design Summer Year (DSY) 

formats for investigating both typical weather years and hotter than average summer years. TRYs are typically 

compiled from 20+ years of historical measured data (typically 1983 to 2004) which are then sorted by 

weighting key variables in order to create a composite year from the most typical individual months. The 

mathematical basis for this procedure can be found in Levermore and Parkinson [36]. When TRY weather files 

are produced they are compiled from representative months and the Finkelstein-Schafer (FS) statistic is 

commonly used to select the most average months.  This method is considered superior to using the mean month 

since it selects the months that have less extreme daily values and are closer to the long term daily mean [37]. 

The FS statistic works by summing the absolute difference between the cumulative distribution function (CDF) 

values recorded for a particular variable on each day in a given month and the overall cumulative distribution 

function for each month considered, using the following equation. 

 

 (9) 



 

The month in a given year with the lowest FS distribution is considered the most representative of all of the 

years for a given variable. In order to consider the most typical month where multiple variables are concerned a 

weighted index may be applied to each key variable.  Typically dry bulb temperature, global irradiation and wind 

speed are selected as the key variables in a TRY and are given an equal weighting [23].  By multiplying the 

weighting by the FS statistic for each variable and then summing the products the overall ‘typical’ month may be 

selected as the one with the lowest weighted FS, using the following equation. 

 

  (10) 

 

Use of the Finkelstein-Schafer statistic method effectively reduces the risk of extreme individual daily or 

monthly variability occurring in the creation of a TRY.  In the case of the data used by PHPP however this daily 

homogeneity is not a prerequisite since the model primarily relies on mean monthly inputs.  In the case of the 

PHPP peak load (W1 and W2) and cooling load data which are based on daily temperature and irradiation data 

homogeneity is perhaps helpful in establishing ‘representative’ peak loads for a given CDF. However, peak loads 

by definition occur under extreme conditions and it is important to realise that in reality a one in ten year season 

is likely to contain brief periods of far more extreme data.  It is also worthwhile considering the relevance of 

using historical baseline TRY data in the context of predicting the mean present day performance of a building. 

Whilst useful for illustrating the impacts of climate change the 1961-1990 (and even the 1983-2004) baseline 

periods are unlikely to accurately reflect the typical performance of buildings being designed today due to the 

rapid evolution of climate change.  

2.6 Methodology– preparing WG data for PHPP 

For the purpose of this study, in order to create statistically representative months keeping a consistent 

relationship between the mean dry bulb temperature and the global irradiation a CDF of these two even weighted 

variables was prepared from the 3000 years of source data.  By sorting the data into a CDF and selecting the 

actual month with the closest fit to a given percentile a range of statistically significant climate files may be 

prepared for a sample location.  

Whilst data from the 50th percentile can be seen as representative of the mean situation, (whereby it is as likely 

that the weighted temperature and irradiation will be greater as it will be lower for any given scenario); the entire 



range of probabilistic values can be interrogated at any given percentile. This allows for example consideration 

of a one-in-ten year weather event by selecting either the 10th or 90th percentile, as appropriate. Transposing this 

data into a format suitable for use in the PHPP model requires several additional steps.  

Monthly irradiation data (kWh/m2.month) is needed for both the horizontal global mean values and for each of 

the cardinal compass directions in PHPP in order to correctly assign direct beam and diffuse irradiation to the 

model. Once the daily outputs from the UKCP09 generator data had been sorted and compiled into monthly 

percentiles, the diffuse and global irradiation was entered into a monthly radiation slope model for the 

appropriate latitude in order to derive the mean global slope irradiation values for 90-degree surfaces in each 

percentile month.  The model used here was the Isotropic model developed by Muneer [31] as this model seemed 

to give the most reliable results when compared to outputs from the widely used Perez model (from files 

simulated using Meteonorm). In theory, an anisotropic slope model would improve the accuracy of the slope 

irradiation results in future refinements of this methodology as isotropic models are known to overestimate the 

irradiation on shaded surfaces [31].  

 

2.7  Methodology– preparing additional variables for PHPP 

 

Since ground temperatures are generated from formulae within the PHPP model itself, so to complete the 

monthly inputs the only additional values required are dew point and sky temperatures.  Sky temperature values 

are needed to calculate the long wave radiative heat transfer and external surface temperatures. A range of single 

variable and more complex three variable methods are available for computing sky temperature; the choice of 

appropriate model depends on the meteorological data available and also upon the limits of accuracy required. 

More detailed discussion of uncertainty in long wave flux and sky temperature models can be found in Aubinet 

[38] and Remund [39]. Since PHPP requires only monthly mean data a relatively straightforward three variable 

approach was applied here, using a combination of data available from the 5km and 25km grid models: ambient 

air temperature (Ta), relative humidity (RH) and cloud cover (C).   

The Swinbank formula [40] was used to calculate the downward long wave radiative flux (W/m2): 

 

      (11) 



A variation of the Stefan–Boltzmann law was then used to calculate the effective sky temperature (  ) based 

on the longwave radiation emitted from a grey body. 

 

    (12) 

 

Dew Point temperature ( ) was calculated by rearranging Magnus-Tetens formula for vapour pressure [41] to 

provide the following expression, which is valid for the range 0C < T < 60C, 0.01 < RH <1.00, 0C <Td <50C  

 

    (13) 

where: 

 = 17.27,  = 237.7 (C) 

and:    

   (14) 

Peak load data for periods W1 and W2 represent the mean data across the peak load period, the length of which 

is dependent upon the time constant of the building. The time constant in a Passivhaus is typically much longer 

than conventional dwellings due to the thermal inertia created by high thermal resistance of the envelope and low 

rate of energetically effective air changes. A simple equation is currently used to determine the approximate time 

constant used to isolate the appropriate peak loads used in the PHPP calculation: 

    (15) 

  

Where K is the total thermal capacity per unit treated floor area (Wh/K.m2) and  is the average area weighted U 

value of the thermal elements (W/m2K) 



Typical peak load time constants for Passivhaus dwellings are in the order of 3-7 days [12]. Use of a shorter peak 

load time constant inevitably results in more extreme design conditions being selected. In the study W1 was 

determined by creating a macro which isolated the lowest consecutive three day mean temperature and the 

corresponding irradiation from the appropriate percentile year.  In the case of W2 a macro was created to select 

the lowest consecutive three day mean daily irradiation readings and the corresponding temperature from the 

appropriate percentile.  

The three daily mean global horizontal irradiation levels for both W1 and W2 are entered in to an anisotropic 

daily slope irradiation model [31] and broken down into the principle cardinal aspects (N,E,S,W) for a 90 degree 

slope angle. Since the approach used here operates from daily global horizontal data the mean irradiation for E 

and W facing surfaces will be the same. A more accurate refinement, leading to slightly different aspect values 

for East and West facing surfaces would be to use an hourly slope model and then averaging the values over the 

duration of the peak load time constant.   

3.0 CASE STUDY 

The building chosen for the case study is the Larch House a 3bdm (87m2 TFA) detached Passivhaus dwelling in 

Ebbw Vale, Wales. Completed in July 2010, this is one of the first social Passivhaus projects in the UK and the 

first Code for Sustainable Homes (CSH) Level 6 ‘zero carbon’ Passivhaus in the UK [42]. The high surface 

area/volume (SA/V) characteristic of a small detached dwelling make this one of the most challenging typologies 

with which to achieve the Passivhaus standard.  In additional to typical Passivhaus components, the building has 

exceptionally low U- values (walls 0.095 W/m2K, roof 0.074 W/m2K and floor 0.076 W/m2K) as well as an 

exceptional airtightness of 0.197 ac/h @n50. It should be noted that the building uses external roller blinds to 

help prevent summer overheating and these have been assumed to be operational during the overheating 

analysis. 

 

Ebbw Vale is situated in a location where the affects of a maritime proximity combined with a mountain valley 

situation dominate the climate.  This situation is common to many of the old mining towns situated in the 

‘Valleys’ region north of Cardiff.  Much of this area suffers from severe social and economic deprivation and is 

receiving significant regeneration funding from the Welsh Government. In 2008 as many as 43% of Blaenau 



Gwent households were reported to be experiencing fuel poverty1 and it is likely this figure will have increased 

in recent years [43].  As a result, this area has become a focal point for the construction of social housing in the 

Passivhaus format.  

 

In total, three different sites are examined in order to demonstrate the initial findings of this research in 3 distinct 

climatic contexts. Case Study 1 examines the building’s original location, the Ebbw Vale site in a mountainous 

valley in Wales. Case study 2 and 3 examine the predicted variations existing between two 5km2 grid cell data 

sets in an urban context in central London.  All three locations share this common building model, based on the 

certified Welsh ‘Larch’ Passivhaus (Figure 8) for comparative purposes throughout. It is noteworthy that these 

three locations all lie within 0.24 of a degree of latitude of one another with case study 1 (Ebbw Vale) 51.76 

North, case study 2 (London CBD) 51.525 North and case study 3 (London Docklands) 51.523 North.  

 

For consistency, we assume in all three case studies that climate change progresses broadly in line with a 

‘Medium’ SRES scenario. The same approach may be used to examine any of the three principal (Low, Medium, 

High) IPCC SRES scenarios as well as to compare the historical baseline data for the 1961 -1990 period. 

                                                           

1 Households are considered by the UK Government to be in 'fuel poverty' if they would have to spend more than 10% of their household 

income on fuel to keep their home in a 'satisfactory' condition. This is usually defined as 21 degrees for the main living area, and 18 degrees 

for other occupied rooms [43] 



 

Figure 8 The ‘Larch’ Passivhaus  Ebbw Vale (Jefferson Smith) 

 

3.1 Case study 1 – Detached Passivhaus at Ebbw Vale, Wales (UKCP grid cell ref 3200210) 

In order to compare the influence of the climate data sets in context, the datasets were entered into the PHPP 

model of a certified Passivhaus at Ebbw Vale. Figure 12 shows the resultant annual space heating demands 

normalised to the TFA of the dwelling. A clear progression is seen from the historic baseline to future 

probabilistic levels for the 50th percentile year.  The current baseline appears to correspond well to the mean 

performance predicted by the Meteonorm software.  In contrast, use of the BRE Severn region data (even when 

corrected for altitude) would lead to a significant under estimation of the space heating demand, to a level that 

falls below even the 2080M 50th percentile prediction for this location.	

Consideration of the annual (space heating) energy demand and peak load are of considerable importance in the 

design of Passivhaus dwellings particularly where post air heating is used as the primary source of 

supplementary heat input.  



Case study 2 & 3 – Detached Passivhaus – London CBD and London Docklands (UKCP grid cell ref 

5350185 and 5450185) 

The following two case studies provide a contrasting view of the predicted implications for urban sites within 

greater London. Case study 2 examines the London CBD, a zone that is likely to see some of the most 

pronounced effects of climate change due to the Urban Heat Island (UHI) affect [44] Case Study 3 examines the 

predicted impacts in the Docklands zone located 5 km due East of the CBD (an area that is less affected by the  

current UHI). Both grid cells sit within the current Central London (BRE Region 1) climate dataset (Figure 9). 

 

Figure 9 Sub‐regional analysis London CBD (5350185) and Docklands (5450185) 5km2 grid squares compared to Central 

London (BRE Region 1)  

 

4.0 RESULTS 

4.1 Analysis of data generated 

Of the climate data required by the PHPP model, the two dominant variables affecting the specific heating 

demand are the mean ambient air temperature and the solar irradiation. Under the SRES Medium emission 

scenario for the Welsh valley location (Ebbw Vale) analysed here, it is likely that mean summer temperatures 

will rise by as much as 4.5°C and winter temperatures by approximately 4°C, by 2080 [7].  This evolution of 

temperatures is not constant however and within any given timeframe, notably the variation between the 10th 

and 90th percentile temperatures is significantly greater +/-7°C, and this remains relatively consistent over time. 



 

Figure 10. Monthly mean ambient temperature and Global Horizontal Irradiation, Ebbw Vale (3200210): Comparison of 

5km2 Baseline 50th percentile, 5km2 2020(M) 50th percentile, Meteonorm (MN) Ebbw Vale (site) and BRE Severn (region 

6) 

 

Comparison of ambient temperatures predicted by different climate data sets and across time periods shows that 

the Baseline (1961-1990) 50th percentile temperature is consistently lower than the 2020 50th percentile, as 

might be anticipated through climate change. Notably the Severn data (BRE region 6) , which represents the 

current regional data set for Passivhaus certification in the location of Ebbw Vale [10], is significantly warmer 

than the Met Office Baseline and exceeds even the 2020 50th percentile temperatures for much of the year. There 

is good agreement between the datasets for the global horizontal irradiation, with the exception of the 

Meteonorm site-specific data, which predicts significantly higher solar irradiation levels during the summer 

months (Figure 10). 



 

Figure 11. Global Horizontal Irradiation, Ebbw Vale (3200210): 90th, 50th and 10th percentiles showing 5km2 Baseline, 

5km2 2020M and 5km2 2080M evolution 

Global irradiation is not directly affected by Green House Gas (GHG) concentrations and therefore does not 

evolve in the same way over time as ambient temperatures [7]. Slightly higher levels of global irradiation are 

seen under the 2080(M) scenario particularly in the summer months however the winter months remain largely 

unchanged.  The changes seen in predicted global irradiation levels are most likely due to changes in the absolute 

amount of cloud cover and humidity levels.  Variation between the 50th and 90th percentile is greater than the 

variation between the 10th and 50th percentile and this range is more pronounced during the summer months 

(Figure 11).  This significant variation in irradiation levels occurring at different percentiles during the summer 

months is likely to have a significant impact on overheating risks when both temperature and irradiation 

distributions occur above the 50th percentile due to inter seasonal variability.   

 

4.2  Results of different case studies  

In order to compare the influence of the climate data sets in context, the datasets were entered into a common 

PHPP model of the certified ‘Larch’ Passivhaus at Ebbw Vale.  Figures 12-14 show the resultant annual space 

heating demand normalised to the treated floor area (qH) of the Passivhaus dwelling. A clear progression from 

the historic baseline to future probabilistic levels for the 50th percentile year can be seen.   



 

The current baseline appears to correspond well to the mean performance predicted by the Meteonorm software.  

By contrast, use of the BRE regional data would lead to a significant under estimation of the space heating 

demand, to a level that falls significantly below even the 2080M 50th percentile projection for the Ebbw Vale 

location.	

 

Figure 12 PHPP heating demand, Ebbw Vale: as predicted by 5km2 Baseline, 5km2 2020M, 5km2 2080M, Meteonorm 

(MN) Ebbw Vale (site), & BRE Severn (region 6) 

 

 

Figure 13.    PHPP Heating demand London CBD (5350185) : as predicted by 5km2 Baseline, 5km2 2020M, 5km2 

2080M, Meteonorm (MN) London CBD (site),  BRE Central London (region 1), PHI original London TRY  

 



 

Figure 14.  PHPP Heating demand London Docklands (5450185); as predicted by 5km2 Baseline, 5km2 2020M, 5km2 

2080M, Meteonorm (MN) London Dockland (site),  BRE Central London (Region 1) 

 

When comparing the results for both of the London locations for the predicted heating demand, it can be seen 

that there is a rapid evolution towards fewer heating degree hours. Consequently, it will become significantly 

easier to achieve the Passivhaus (qH) requirement in the future, in all of the regions assessed, particularly so in 

areas affected by the Urban Heat Island (UHI).  

 

Analysis of the range of performance predictions here suggests that the misapplication of regional data is likely 

to lead to highly inaccurate design predictions. This can be seen most noticeably in the case of the London 

Docklands (5450185) grid cell (Figure 14).  As a result of using the current BRE regional data set it appears 

likely that projects modelled outside the London CBD (but within Greater London) may be designed with 

significant under-prediction of the current day heating demand. In the Dockland region the UKCP data suggests 

that the current heating demand may be more than 100% higher than the BRE regional data suggests (Figure 14). 

In both London cases, Meteonorm (MN) site-specific interpolation leads to an even more pronounced under 

estimate of the heating demand than the BRE regional data. This is likely to be a result of the location used for 

the BRE Region 1 interpolation (Latitude 51.517° Longitude  -0.117°) [11]; which is 1.5 miles due west of the 

London CBD site specific interpolation point, and therefore further from the influence of the UHI.  



 

Figure 15 London CBD (5350185) comparison of peak loads showing ranges for  50th  percentiles, with error bars 

indicating 10th and 90th percentiles 

 

 

Figure 16 London CBD (5350185) transitional cooling loads and overheating risk 

 

Figure 15 and Figure 16 show the results for the peak loads for the two London locations. There is good 

agreement between the Central London regional data and the CBD 5km2 2020M data at the 50th percentile.  

However the Docklands 5km2 data shows that significantly higher peak loads are predicted just outside the CBD. 

This marked variance is likely to illustrate the localised influence of the of the UHI effect in the underlying 5km2 

baseline data.  Overall these results suggests that the current BRE Central London (Region 1) data  - appears to 

significantly underestimate present day peak loads in Greater London, even allowing for variability predicted 

between the 10th and 90th percentile ranges.  



 

Figure 17 London CBD (5350185) transitional cooling loads and overheating risk 

 

Figure 18 London Docklands (5450185) transitional cooling loads and overheating risk 

 

In Figure 17 and Figure 18 the overheating risk for London CBD and London Docklands is compared. It can be 

seen  that there is an earlier onset of overheating risk in the London CBD location, as might be anticipated by the 

more pronounced influence of the UHI. In terms of consistency between the data sets, the Central London (BRE 

Region 1) data seems to significantly overestimate the current day overheating risk when evaluated at the 50th 

percentile.  Overheating risk is however highly dependent upon which percentile the weather year is sampled 

from, and assessing future overheating risks on a probabilistic basis is an area for further research.  By 2080, 

during a typical 50th percentile year, even with external roller blinds in place and night purge ventilation 

operating the building modelled here is likely to overheat for 10% of the year in both of London locations 

studied.  This finding is significant since Rouvel [46] defines the exceedance of 25°C for greater than 10% of the 



year as the threshold at which active cooling is required. The same limiting standard is also applied in the 

German DIN standard 4108-2 (2003) [47]. Research by Voss et al [48], involving post-occupancy evaluation 

studies of low energy office buildings in Europe, suggests that the 10% threshold above 25°C represents the 

upper limit of acceptability.  Voss et al [48] recommend that a lower target of 5% overheating frequency should 

be the goal of building designers.     

 

Some caution is necessary with respect to the future changes predicted by the UKCP09 scenarios in dense urban 

areas. At the 25 km2 resolution of the HadRM3 model the largest urban areas can be seen to exert some influence 

on the local simulated climate [49].  Since an explicit representation of urban areas was not included in the 

HadRM3 model the UKCP09 projections cannot fully incorporate the transient effects of the urban areas in the 

probabilistic predictions [50].  Studies including those carried out by Watkins et al. [51] have shown that, on 

average, the Urban Heat Island (UHI) effect for London lies between about 2.5 - 3 °C in summer [51] and 1.0 - 

3.2°C during winter [53].  

 

However, according to the UKCP the projections of future climate available from the WG do include the current 

effects of urbanisation at the 5km2 scale.  It follows therefore that if the UHI effect does not change significantly 

in the future, it is reasonable to add the UKCP09 climate change projections to the observed urban climate in 

order to generate future urban climate predictions [54].  Conversely if future changes occur in the amount of 

energy dissipated in cities (e.g. cooling systems become widespread), or if the density of a city changes then 

these factors could alter the current UHI effect, and projecting future climates in cities will then require 

additional techniques to be employed [54].  

 

Comparative temperature measurements taken at an inner city location (St. James Park) and a suburban site in 

Surrey suggest that London’s nocturnal UHI has intensified by approximately 0.5°C on average since the 1960s 

[55], partly as a consequence of increased Human Energy Production (HEP), denser urbanisation, and the 

changing frequency of weather patterns.  It is likely that only a relatively small component of these evolutionary 

changes are missing from the 5km2 UKCP baseline data (which was based on data collated over the 1961-1990 

period). 

 



Whilst the mean monthly shifts induced by the UHI are reasonably well documented [50, 55] the local amplitude 

and temporal profile of the daily UHI effect during heat waves should be carefully evaluated by those attempting 

to accurately evaluate peak overheating risks under extreme conditions.  Data from Graves et al [56]  indicates 

that the intensity of the nocturnal UHI peak for Westminster, London has occasionally exceeded 7K during the 

summer months.  Since the most pronounced effects typically occur between 3am -9am [55] the timing of this 

phenomenon will substantially dampen the natural diurnal cooling range, with consequential impacts for 

buildings reliant on night purge cooling.  Generating an improved understanding of the future evolution of 

localised UHI’s is a complex and important area for building simulation, where significant further research is 

needed.  

 

5.0 CONCLUSIONS 

A new method for the generation of current and future probabilistic micro regional climatic data in Passivhaus 

design is proposed.  The approach is based on the use of data generated using the UKCP09 Weather Generator 

(version 2) which combines historic baseline recorded data with probabilistic outputs from the RCM. Using this 

methodology data can be generated on a 5km2 grid for the entire UK landmass, across 10-year time intervals 

spanning from the historic (1961-1990) baseline through to 2080 and for three distinct future climatic scenarios 

(SRES Low, Medium and High).  For each location and scenario, the data can be interrogated at any percentile 

of the CFD distribution, allowing the creation of both mean and extreme climate data sets. This approach 

provides designers with the high resolution data needed to optimise and future proof Passivhaus and low energy 

designs in a site-specific manner.  Furthermore the ability to group multiple 5km2 grid cells outputs from the WG 

creates the possibility to generate representative regional climate data sets underpinned by a common statistical 

model. 

 

The key outputs from the new methodology, when assessed at the 50th percentile, showed generally good 

agreement with other data sources. When evaluated in the PHPP building model the results showed good 

correlation with the Meteonorm interpolation software data generated for the same location.  When compared 

with the regional certification data currently used for both the Severn and Central London regions [10] a 

significant difference was observed in the predicted specific heating demand and peak loads.  These preliminary 

finding suggests that the use of proxy regional data could, in some instances, lead to a significant 

underestimation of the specific annual heat demand and peak loads. In one example, in the London Docklands 



region, the UKCP data indicates that the actual current heating demand may be more than 150% greater than the 

BRE regional data suggests (Figure 14).  These findings reiterate those of other studies, which have found 

significant differences between the use of local and regional default data in PHPP design predictions [16, 25]. 

Since the current method of deriving data for Passivhaus design is based on the use of TRY data (which is 

effectively an historic mean weather year) designers need to be acutely aware of the limitations inherent in this 

approach particularly with respect to peak loads. 

In the context of this study further research is needed in order to establish the robustness of the approach used in 

terms of predicting peak heating and cooling loads.  The approach used here is based on the use of a time 

constant [18] and the sensitivity associated with this approach may require further calibration against empirical 

studies and established uncertainty analysis methods [57]. Further parametric studies, including a detailed 

analysis of peak heating and cooling loads, are proposed in order to fine-tune and validate this new methodology.  
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NOMENCLATURE 

  cloud cover coefficient (0.0 = clear sky, 1.0 = totally overcast) 

CDFi,m,y  Cumulative Distribution Function of variable   i, in month m, year y 

 Finkelstein Schafer statistic month m, year y 

 Global irradiation on a horizontal plane (kwh/m2.month) 

  coefficient for cloud height (0.34 cloud  <2km, 0.18 for >2km<5km, 0.06 for > 5km) 

  percentage relative humidity 

  thermodynamic temperature (K) 

 ambient temperature (C) 



  calculated dew point temperature (C)  

  effective sky temperature in Kelvin, entered into the PHPP model in (C) 

 peak load climatic data during coldest clear winter design period 

 peak load climatic data during the cloudiest winter design period  

 wind speed 

  sky emissivity (approximated to 0.736, for dew point temperature range here) 

  downward longwave irradiation flux (W/m2) 

  Stefan-Boltzmann constant  (5.67*10-8 Wm-2K-4)       
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