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Abstract 

Development and optimisation of a robust energy yield prediction methodology is the 

ultimate aim of this research. 

Outdoor performance of the PV module is determined by the influences of a variety 

of interlinked factors related to the environment and device technologies. There are 

two basic measurement data sets required for any energy yield prediction model. 

Firstly, characterisation of specific PV module technology under different operating 

conditions and secondly site specific meteorological data. Based on these two 

datasets a calculation procedure is required in any specific location energy yield 

estimation. 

This research established a matrix based multi-dimensional measurement set points 

for module characterisation which is independent of PV technologies. This novel 

approach has been established by demonstrating an extended correlation of different 

environmental factors (irradiance, temperature and spectral irradiance) and their 

influences on the commercial PV device technologies. Utilisation of the site specific 

meteorological data is the common approach applied in this yield prediction method. 

A series of modelling approach, including a tri-linear interpolation method is then 

applied for energy yield calculation.  

A novel Monte Carlo simulation is demonstrated for uncertainty analysis of irradiance 

(pyranometer CM 11) & temperature (PT 1000) measurements and ultimately the 

yield prediction of c-Si and CIGS modules. The degree of uncertainties of irradiance 

is varies from ±2% to ±6.2% depending on the level of monthly irradiation. The 

temperature measurement uncertainty is calculated in the range of ±0.18°C to 

±0.46%°C in different months of the year. The calculated uncertainty of the energy 

yield prediction of c-Si and CIGS module are ±2.78% and ±15.45%.  

This research validated different irradiance translation models to identify the best 

matched model for UK climate for horizontal to in-plane irradiance. Ultimately, the 

validation results of the proposed Fast Energy Yield Calculation (FEnYCs), shows a 

good agreement against measured values i.e. 5.48%, 6.97% and 3.1% for c-Si, a-Si 

and CIGS module respectively. 
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1 Introduction 

Currently, comparison between different solar module technologies is primarily 

based on the power rating under Standard Test Conditions (STC) [i.e. irradiance  at 

1000 W/m2, normal angle of incidence, standard spectrum with AM1.5G distribution 

and 25ºC module temperature] [1-2]. The price of PV modules is principally dictated 

by the rated power and PV modules are sold based on cost/watts peak (Wp) at STC 

conditions. In reality PV modules or systems rarely operate at the STC conditions, as 

the parameters of the STC conditions change over the time period. So rated power 

(Wp) alone does not provide sufficient information to users about the performance of 

a PV module or system under many different environmental conditions, which largely 

affect the conversion efficiency.  

On the other side, electricity cost dictates in terms of cost/kWh. So it is the energy 

generation of a PV system over a given timespan that determines revenue.  As a 

result the estimated energy generation is required to make a true cost analysis of the 

system in order to estimate the internal rate of return (IRR) or payback period of any 

investment. As a result, a shift towards energy yield prediction is becoming 

necessary for end users and also for the system designers to optimise the system 

design appropriately as per the climatic conditions of the operational site.  

Outdoor performance of the PV modules is determined by the influences of a variety 

of interlinked factors related to the environment and module technologies, which is 

explained in Chapter 2. Module performance largely depends on the effects of 

irradiance, temperature, spectral variation and the angle of incidence variation. In 

general, energy generation of all PV technologies increases with increasing 

irradiance. But the performance variation against temperature for different PV 

technologies is different. With increasing temperature, performance of thin film 

technologies decrease at lower rate compared with crystalline silicon (c-Si) modules. 

Also the spectral response of PV modules varies with different material technologies. 

Common requirements for energy prediction of PV module are described in Figure 1. 
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Figure 1: Components of energy prediction method 

 

Chapter 3 explains the number of current energy prediction methods available by 

other research groups in various institutions [3-9]. The limiting factors in the existing 

prediction methods are illustrated here; a number of methods only taken into account 

the effects of global irradiance and temperature without considering spectral and 

angular dependency and also limited to c-Si technologies. Considering the growth of 

thin film PV modules in the market, it is essential to look at the performance of thin 

film module at different spectrum, as thin film modules are spectrally sensitive 

compare to the c-Si technology.  

Existing energy prediction methods are based on either outdoor or indoor 

measurements to characterise PV modules to generate module input data for 

prediction model. Both indoor and outdoor module characterisation process has 

limitations. It is difficult to achieve high accuracy from the indoor based module 

characterisation measurement methods.  This is due to the limitation in the 

availability of indoor measurement system which can generate compatible outdoor 

operating conditions that a PV module can see in real operations. Module 

characterisation can also be done in outdoor operating conditions. In outdoor based 

energy prediction methods, long term exposure of PV devices is required to get the 

performance data of PV module at wide range of climatic condition for a specific site. 

This can provide higher accuracy but this process is very time consuming, as it 

requires long term exposure (at least a year) of PV modules to measure the 

performance of that PV module at wide range of climatic condition for a specific site. 
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So the major problem with the existing energy prediction methods is lack of fast and 

accurate prediction method for emerging new module technologies in the PV market.  

Energy yield prediction method can be called Energy Rating method if the procedure 

follows the standardised method which includes standardised meteorological 

datasets and standardised PV module measurements. The international standard 

body, IEC - International Electrotechnical Commission - is working on a standard for 

energy rating of different PV technologies counting different climatic conditions 

through the specification of environmental data for a number of reference days (IEC 

61853) [14-17]. The aim of this proposed test standard is to assess PV module 

performance in terms of both peak power (Wp) and energy production (kWh) and to 

characterize the response parameters of the module. Details of this proposed 

standard is described in Chapter 3.  

First phase of this research is validated the proposed IEC 61853 energy rating 

method, considering the measured module characterisation parameters including 

wide range of environmental aspects such as different components of irradiance 

(direct and diffuse irradiance) with angular variation, temperature as a function of 

irradiance, ambient temperature and wind speed, effects of spectral irradiance from 

the long term outdoor measurements. This method can separate out the 

performance of different PV technologies currently available in the marketplace, as 

the response of different PV modules varies with the variable environmental 

conditions. The spectral response and temperature effect also varies with different 

PV technologies and these effects are addressed by this IEC method.  

Chapter 4 explains the modelling the IEC energy rating algorithm and the uncertainty 

analysis of the environmental parameter measurement. This includes the modelling 

and validation of the irradiance and temperature translation methods and identified 

the best suited irradiance translation model for the UK climate. This chapter also 

analysed the uncertainty analysis of the irradiance and temperature measurements 

as environmental input data for prediction model. A robust uncertainty analysis 

model is established which is then validated in the UK climate which can also be 

utilised in other location. Finally the uncertainties of the energy yield prediction of 

different PV modules are explained, which can significantly facilitate the financial 

evaluation more accurately of any investment on PV systems.  
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The ultimate aim of this study is to develop and optimise a cost effective robust 

methodology for Fast Energy Yield Calculations – FEnYCs (pronounced ‘phoenix’) 

for Photovoltaic Modules of different technologies, considering the influence of all 

relevant environmental factors generally experienced outdoors. The development of 

the FEnYCs method is illustrated in Chapter 5 by analysing the range of different 

operating environmental conditions in the UK climate.  

The objective of the FEnYCs method is to address the limitation of the module 

characterisation by developing a time saving and cost effective accurate 

methodology for energy yield prediction. Specifically, the challenge is to minimize the 

required experimental dataset from months of outdoor measurements to at most a 

few hours in the laboratory, while maintaining high accuracy by generating 

compatible outdoor weather conditions. Minimising the experimental time can also 

minimise the measurement cost significantly. This will represent a significant 

improvement on current indoor-based methodologies and help the prediction 

process become cost effective.  

The novelty of this project is to establish the FEnYCs methodology by developing a 

multi-dimensional matrix as a function of different weather conditions for 

characterisation of PV modules. This method will allow characterising any module 

technology available in the marketplace. Multi-dimensional power matrix generates 

wide range of irradiance and temperature with varying spectrum. Uncertainties in the 

energy rating method including measurements and modelling uncertainties one of 

the major objectives of this research work, explained in chapter 5. 

Validation of FEnYCs methodology against the real outdoor measurement is been 

performed in this thesis and illustrated in the Chapter 5. Three commercial PV 

module types are installed and measured over annual period of time at CREST 

Outdoor Measurement System (COMS). An uncertainties flow of the FEnYCs 

methodology is demonstrated including previously estimated environmental 

parameters uncertainty and modelling uncertainty.  

In conclusion, the ultimate aim of this research is to develop a new assessment 

method for fast energy yield prediction which should be independent of the PV 

module technologies. This has been established by making a multi-dimensional 

performance matrix of specific performance parameters of PV modules. This thesis 
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optimises the number of measurement points of each parameter in the multi-

dimensional performance matrix for module characterisation indoor, which is 

compatible with real outdoor operation. A research to establish an accurate and time 

saving robust energy yield prediction method for PV modules under variable 

environmental conditions is demonstrated in this thesis. 
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2 Environnemental Influences on PV Module 

Performance. 

 

2.1 Introduction 

The performance of overall PV systems depends on various factors such as 

performance of the PV modules, inverter (for on-grid system), battery (for off-grid 

system), mounting mechanism, wiring etc. This research focuses on the study of 

module performance only, which may then be fed in to a system-level model.  

This chapter describes the fundamentals of solar PV module behaviour. It explains 

different electrical parameters of a solar PV module and the influence of variable 

environmental factors on the performance characteristics of different PV devices. 

Proper understanding of the PV module behaviour against variable environmental 

conditions is essential for energy yield prediction of PV devices.  

Firstly, the chapter explains the principal PV module characteristic parameters i.e. 

short-circuit current (Isc), open-circuit voltage (Voc), maximum power (Pmax), fill factor 

(FF), conversion efficiency (η) and parasitic resistances (RS, RSH) [18-19]. This is 

followed by a description of the changes in the current-voltage (I-V) characteristic 

and the above parameters at non-STC conditions of irradiance and temperature.  

The influencing environmental parameters i.e. irradiance, temperature, spectrum and 

angle of incidence on the performance of different PV modules are also explained 

later in this chapter. The chapter concludes with critical findings and how these are 

applicable to the rest of the work of this thesis. 

 

2.2 PV Module Performance Parameters 

The performance of PV modules here is assessed with respect to the I-V 

characteristics of the module. First the electrical parameters (Isc, Voc, Pmax etc) within 
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the I-V characteristics are defined below and then their changes with changing 

environmental parameters are explained, under which the PV module operates in 

real operation.  

 

A two diode model of a solar cell is shown in Figure 2. The electrical parameters of 

the I-V curve of a crystalline silicon PV module are shown in Figure 3, which includes 

also the power-voltage curve. 

       Rs  

 
              Io1          Io2                      I            
 

IL      ▼     ▼     Rsh    V 
 

 

 

Figure 2: Two diode model of solar cell 

 

Figure 3: I-V and power characteristics of a 
PV module  

 

Current output under illumination/sunlight from the two diode model of a solar cell ( 

Figure 2) is given by equation (1) [18]. 
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Where IL = light generated current (A) 

 I01 = the diffusion diode current (A) 

I02 = the recombination diode current (A) 

n1 & n2 = diode ideality factor 
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Short-circuit Current (Isc): The short-circuit current is the current output of a 

photovoltaic cell or module under illumination when the voltage is zero (Figure 3) 

[19]. For an ideal solar cell at most moderate resistive loss mechanisms, the short-

circuit current (ISC) and the light-generated current (IL) are identical. Therefore, the 

short-circuit current is the largest current which may be drawn from the solar cell or 

module. 

Open Circuit voltage (Voc): This is the maximum voltage across a photovoltaic cell 

or module when no current is flowing.  

Maximum Power (Pmax): A solar cell or module operates over a wide range of 

voltage (V) and current (I) under different environmental conditions. The maximum 

power point (mpp) is the point occurs at the knee (Figure 3) of the I-V curve at a 

particular load for which the module can deliver maximum electrical power (equation           

(2)). At maximum power, the voltage and current are called voltage at maximum 

power point (Vmpp) and current at maximum power point (Impp), respectively. At short 

circuit and open circuit conditions the output power is zero. 

mppmpp IVP *max              (2) 

 

Fill Factor: The fill factor (FF) is defined as the ratio of maximum power 

(Pmax=Impp*Vmpp) to the product of the short-circuit current (Isc) and the open-circuit 

voltage (Voc) (Figure 4). The Fill Factor is another indicator sometimes used for 

evaluating the performance of PV modules in real operating conditions [20].  
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Figure 4: I-V curve and Fill Factor of PV module. 
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Conversion Efficiency: Efficiency is the most commonly used parameter to 

describe device quality and for comparison between different solar cells or modules. 

The efficiency of a PV device is defined as the ratio of the maximum power (Pmax) to 

the product of irradiance (G) and surface area (Ac) of the device. 
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         (4) 
                      

 

Parasitic Resistances: The performance of a PV device is reduced by loss 

mechanisms represented as internal resistances. These are classified as series (RS) 

and shunt (RSH) resistance (Figure 5). In an ideal device, RSH would be infinite to 

avoid the path for current to leak and RS would be zero to prevent any voltage drop 

between the junction and device terminals [19, 21]. 
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      Rs     I 

  

                              I0                     ISH               Is 

 IL    ▼  RSH                    V 

 

 

Figure 5: Parasitic series and shunt resistances in a solar cell circuit. 

 

With the presence of series (RS) and shunt (RSH) resistances in the PV device the 

equation for current output is modified from (1) to (5).  
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Series resistance basically comes from resistance in the semiconductor layer, 

contact resistance between metallic contacts with silicon and imperfect connections 

at the top and rear contacts of the module (Figure 6) [21]. Series resistance has no 

effect on VOC but near the maximum power point with relatively high current flow, the 

I-V curve is strongly affected which affects the maximum power (Pmax) and ultimately 

the energy yield values over the time period. 

Shunt resistance represents impurities near junctions which cause leakage of 

current near the edges of PV cells [21]. Low shunt resistance causes power losses in 

solar module by providing an alternate current path for the light-generated current 

which decreases the current flow to the output terminals of the PV device. The effect 

of shunt resistance is significant particularly at low irradiance levels, as the leakage 

current becomes significant relative to the small light-generated current (Figure 7). 

Both series and shunt resistance reduce the power at maximum power point (Pmax) 

of the I-V curve [21]. 
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Figure 6: Effect of series resistance  

 

Figure 7: Effect of shunt resistance 
 

 

2.3 Environmental Effects on PV Module Performance 

All the above PV performance parameters vary with different environmental 

conditions, especially to variable irradiance and temperature in different locations. An 

increase in the irradiance increases the light-generated current (IL) of the PV module 

and thus increases the total current, which leads to logarithmic increase of the 

voltage as per equation (2). As a result, both the power output and efficiency 

increase. 

Varying the total irradiance on the PV modules affects all PV parameters, including 

the short-circuit current, open-circuit voltage, FF, efficiency and the impact of series 

and shunt resistances. Higher irradiance influences all the above parameters in the 

positive direction. Isc increases linearly against irradiance and VOC increases 

logarithmically with increased sunlight as per the equation (6) [19]. 
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An increase in temperature decreases the band gap, the gap between valance band 

and conduction band of the semiconductor material, which increases the dark 

current. The reduced band gap also increases the light-generated current which 

increases Isc modestly but the increasing dark current reduces voltage faster than 

photocurrent increases, hence decreases the output power of the module (Figure 8).  
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Effects of irradiance and temperature on the I-V characteristics of PV devices are 

plotted in Figure 8 and Figure 9 [22]. 

 

Figure 8: Effect of temperature on the I-V characteristics of a PV module 

 

Figure 9: Effect of irradiance on the I-V characteristics of a PV module. 
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Sensitivity to environmental drivers varies with different material technologies 

commercially available in the marketplace such as crystalline silicon (c-Si), 

amorphous silicon (a-Si), Copper Indium Gallium Selenide (CIGS), etc, which 

explains below. 

 

2.3.1 Irradiance Effects 

Irradiance is one of the most influencing environmental parameters that affect the 

performance of any PV module technologies. Total solar irradiance is composed of 

direct and diffuse components of sunlight [18]. Direct irradiance is defined as the 

solar radiation received on the PV module from the sun’s disk directly and diffuse 

irradiance is defined as the solar radiation received from sun after scattering by the 

atmosphere, from the remainder of the sky dome. Direct irradiance is the major 

fraction of total solar radiation in outdoor clear sky conditions. Increasing cloud cover 

increases the ratio of diffuse to total irradiance in any location. The effects of total 

irradiance on different PV module technologies (c-Si, a-Si and CIGS) are described 

here. The change of power generation at different irradiance levels of three module 

technologies is shown in Figure 10. The maximum power (Pmax) of all three modules 

at different irradiance values have been normalised to their respective Pmax at STC 

(equation (7)). 

                   
                          

        
 

 

      (7) 

The power generation of all three technologies shows a similar trend against 

irradiance.  
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Figure 10: Normalised power of c-Si, a-Si and CIGS modules as a function of 

irradiance. 

Figure 10 indicates that the power of all three modules examined within the scope of 

this work shown a linear in nature against irradiance. But it should also be noted that 

this linearity characteristics are mostly occurs at higher irradiance level. The non-

linear nature of power of all the above modules at lower irradiance is not quite visible 

in the bigger range of irradiance scale in Figure 10. These non-linear characteristics 

are explained in the later chapter.  

 

2.3.2 Temperature Effects 

Another influencing environmental parameter that has an influence on the 

performance of PV module is site specific ambient temperature (Tamb). The module 

temperature (Tmod) can be estimated as a function of incident solar irradiance on the 

module as well as ambient air temperature, thermal properties of module 

encapsulation and the thermal effects of the mounting structure, also wind speed.  

A temperature coefficient describes the relative change of any voltage, current or 

power with change in temperature. Temperature coefficients are expressed as 

percentage change per unit of temperature. The temperature coefficients of different 
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performance parameters are different for different PV modules. The performance of 

different PV modules has been measured at different temperatures and the results of 

the normalised power variation are shown in Figure 11. 

 

Figure 11: Normalised power of c-Si, a-Si and CIGS modules as a function of 

module temperature. 

 

It is visible from Figure 11 that the rate of decrease in power for the crystalline silicon 

(c-Si) module is higher compared to other modules at increasing temperature [23]. 

The amorphous silicon (a-Si) module exhibits the lowest relative temperature 

coefficient [24-28] of the PV modules analysed in this thesis. The procedures to 

determine the temperature coefficients are described in the standard IEC 

60891:1987 [29], IEC 61215 & IEC 61646. 

K. Nishioka et al. [30] describes the strong effect of temperature on the conversion 

efficiency when the module temperature is higher. They claim that a 0.1%/°C 

improvement in the temperature coefficients can increase the annual energy of PV 

module near 1%. A large temperature coefficient will result in a decrease of the 

annual output energy of PV system on a larger scale compared to lower temperature 

coefficients. 
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2.3.3 Spectral Effects 

Performance of PV modules at STC is reported with respect to an air mass 1.5 (AM 

1.5) standard spectrum which explains in IEC60904-3. Air mass refers to the relative 

path length of the direct solar beam through the atmosphere. When the sun is at 

zenith, the path length is 1.0 (AM1.0) as in Figure 12. AM 1.0 does not necessarily 

mean that it will occur at solar noon because the sun is usually not overhead at solar 

noon in most seasons and locations [31]. Increasing the angle of the sun from zenith, 

the air mass increases as per equation (8). The air mass value is a calculated 

geometrical quantity influenced only by location, date and time. It is the prime 

influencer for the direct irradiance spectrum. 

 

Figure 12 : Solar zenith angle (θz) and tilt angle of PV module (β)  
 

ZAM cos1  (8) 

Where θZ is the solar zenith angle as shown in Figure 12. 

The effect of spectral variations in the irradiance is becoming significant, considering 

the availability and the commercial success of new generation PV module 

technologies; this is because the spectral responses of different devices are 

different, leading to a variety of sensitivity for different technologies. The spectral 

variation of solar irradiance can have a significant influence on the current 

generation of some device technologies in real operating conditions [32].  
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Short-circuit current generation of a device in outdoor operation is a product of 

variable spectral irradiance and spectral response of the device, as shown in 

equation (9).  Figure 13 illustrates the spectral response of three different devices 

with the spectral irradiance at AM 1.5 standard spectrum. 

 

    ∫  ( )    ( )  
 

 

 
             (9) 

  

  ∫  ( )  
 

 

 
             (10) 

 

Where E is spectral irradiance (W/m2/nm), SR is spectral response (A/W), G is 

irradiance (W/m2) and for terrestrial applications the integration limits a & b are 

300nm and 1400nm respectively.  

 

 

Figure 13: Spectral response of c-Si, a-Si and CIGS module and the spectral 

irradiance of the AM 1.5 standard spectrum. 
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The spectrally sensitive band of the c-Si module is approximately 300nm to 1150nm 

and the upper wavelength limit is slightly higher for the CIGS module. For other thin 

film devices, Cadmium Telluride (CdTe) lies between 350nm to 900nm and the 

upper wavelength limit for a-Si is limited to 780nm. Above difference in spectral 

sensitivity of different PV technologies are due to their different band gap properties.  

Sensitivity of power at different AM spectrum is analysed for all three PV modules. In 

Figure 14 is it shown that the highest performance of the a-Si module occurs at low 

air mass conditions, which means around noon time. But c-Si shows best 

performance in early morning and late afternoon when the air mass value is higher 

(Figure 14). If the spectral response at shorter wavelengths (blue response) is low 

and the longer wavelengths (red response) is high, then generation of short-circuit 

current (Isc) (as per the equation (9)) is higher at medium air mass. Generation of 

current (Isc) for the a-Si module decreases with increasing air mass because of the 

narrow spectral response band - 350nm to 780nm (Figure 13). Generation of Isc 

changes with the changing solar spectrum during the day and year as the spectrum 

changes with the distance that light has to travel through the atmosphere.  

 

Figure 14: Normalised power of c-Si, a-Si and CIGS modules as a function of air 

mass. 
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Spectral distribution is the secondary driver (after irradiance and temperature) for 

maximisation of current generation. Multi-junction solar cells are promising to 

maximum utilisation of solar irradiance at different spectra, hence maximisation of 

PV system energy output. Minemoto et al [33] describes the effects of spectral 

irradiance distribution in outdoor performance of amorphous Si//thin-film crystalline 

Si (a-Si//μc-Si) stacked PV devices. The top surface of the module consists of a 

hydrogenated a-Si solar cell and bottom surface of μc-Si solar cell with a monolithic 

series-connected tandem structure.  

These multi-junction cells have advantages over conventional crystalline silicon 

modules, because of an improvement in spectral response at different wavelength 

ranges and better utilisation of the solar spectrum. The top cell (a-Si) absorbs shorter 

wavelength light and the bottom cell (μc-Si) absorbs longer ones, as a result 

increase the overall voltage because of the two series connected cells.  

Few energy prediction methods not included the spectral correction of irradiance at 

AM 1.5 spectrum. The impact of spectral variation on the annual energy yield of PV 

modules are important in order to achieve better estimation accuracy, especially for 

thin film PV devices. 

 

2.3.4 Angle of Incidence Effects 

Angle of incidence of sunlight is one of the parameters of the standard test 

conditions. It has an important influence on the power output of the PV devices and 

hence the energy yield. This angle is defined as the angle between the normal to the 

module plane and the sun, as seen in Figure 15. 

 

Figure 15: Angle of incidence (θ) and tilt angle (β) of the module 
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The conventional method to calculate angle of incidence is given in the equation 

(11).  

    

SZZ CosSinSinCosCosCos ***1
 (11) 

Where θ = angle of incidence 

θz = zenith angle  

β = tilt angle 

S = solar azimuth angle: angle between due south and the position of the Sun 

  = azimuth angle of module 

 

Optical losses, reflection and transmission, occur due to the variation of the incident 

light angle on the PV module.  

 

 

 

   

 
 
Figure 16: Optical losses in a PV module 
 

Optical losses can be minimised by using an anti-reflection coating (ARC) on the top 

surface and reflector on the back surface. Texturing the front surface of the glass 

can also reduce the reflection losses. Transmission of solar radiation through to the 

solar cell is affected by the incidence angle; Figure 17 shows the tracing of a ray 

through the solar cell. 
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Figure 17: Tracing of ray incident on a typical module encapsulation [34]. 
 

Due to the optical properties of the top glass cover, high angles of incidence usually 

lead to more reflection losses on the surface of the module than low angles do, so 

variable AOI also affects the annual output of the PV module. 

2.4 Distribution of Realistic Environmental Conditions and Their Impact on 

the Distribution of Energy 

To date, all manufacturers describe the performance of their PV modules under STC 

conditions [i.e. irradiance at 1000 W/m2, normal angle of incidence, standard 

spectrum with AM1.5G distribution and 25ºC module temperature]. But the 

operational performance is largely explained by the local weather conditions in the 

specific operating location.  

The annual distributions of the realistic environmental parameters in maritime climate 

are illustrated in this chapter. The annual irradiance, temperature, angle of incidence 

and air mass data has been taken from the CREST outdoor monitoring system. 

Distributions of annual environmental data and the energy distribution against those 

parameters in Loughborough are shown in Figure 18 to Figure 25. 

Reflection 

Reflection 
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Figure 18: Distributions of irradiance 

measurement  

Figure 19: Distributions of energy of a c-

Si module against irradiance  

 

Figure 20: Distributions of temperature 

measurement  

 

 

Figure 21: Distributions of energy of a c-

Si module against temperature  

 

Figure 22: Distributions of angle of 

incidence measurement 

 

 

Figure 23: Distributions of energy of a c-

Si module against angle of incidence  
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Figure 24: Distributions of air mass 

measurement 

 

Figure 25: Distributions of energy of a c-

Si module against air mass 

 

Annual measured data of the above four environmental parameters are binned. The 

chosen bin sizes for irradiance, temperature, angle of incidence and air mass are 

100 W/m2, 5°C, 10° and 0.5, respectively. This gives the distributions of each 

parameter at Loughborough and demonstrates what a PV module will encounter in 

real operation. It is clearly visible from Figure 18 to Figure 24 that the availability of 

STC conditions is very rare in real operation at Loughborough. Annual STC 

irradiance and temperature availability at Loughborough are 2.57% and 16.59%, 

respectively. The availability of all four STC parameters at the same time is close to 

zero. These values are site specific and one can see different figures in different 

locations. But the availability of a larger proportion of STC conditions in any location 

is near to impossible. As a result, there is a requirement of a reliable performance 

indicator at realistic operating conditions, which should count the influence of 

different environmental conditions on the PV modules. The effects of different 

weather conditions on different PV module technologies are illustrated below. 

 

2.5 Conclusions 

This chapter illustrated the electrical performance parameters of PV devices and the 

distributions of the available environmental parameters at Loughborough, UK. A 
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annual energy production are identified. Each irradiance bin (at 100W/m2 bin width) 

represents up to 11% contribution towards annual energy generation in 

Loughborough, UK. STC temperature and Standard spectrum contributes just under 

20% and 35% of the annual energy generation respectively. Whereas Normal 

incidence angle contribution for the non-tracking PV system is negligible. It should 

also be noted that the above values is site dependent. Availability of non-STC 

conditions leads to the need of an energy based estimation method for better 

understanding of PV performance in real operation. 

In UK climate at Loughborough, about 30% of total electrical energy is generated at 

irradiances below 300W/m2. This leads to the need for an energy yield prediction 

methodology with good low-light characterisation and modelling considerations, 

specially commercial PV market in the UK is very promising and the irradiance 

profile in the UK and in Germany is not very dissimilar, which is the biggest solar PV 

market so far. 

This chapter also analyses the sensitivity of the environmental parameters for 

different PV module types. Better understanding of the performance variation of 

different PV module technologies in relation to the variable environmental conditions, 

help establishing a required robust energy yield prediction method. Technology inter-

comparison against temperature shown that the power loss of c-Si module is 1-2% 

/degree centigrade compare to a-Si device. Also a required robust energy yield 

prediction methodology should include the technology independent spectral 

irradiance factor, as a-Si module shows better performance at 1.5AM and c-Si 

module shows its best AM response spectrum is at 4AM. 

Existing energy yield prediction methods are introduced in the next chapter in order 

to compare the current methods and a proposed robust yield prediction method. An 

accurate prediction method not only assists to estimate financial return of investment 

more accurately, it also generates confidence within the whole PV community. 
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3 Energy Yield Prediction Methodologies and Modelling 

for Energy Rating  

 

3.1 Introduction 

Accurate energy yield prediction is an essential requirement for the Photovoltaic (PV) 

community. This should include better understanding of the behaviour of different PV 

module performance parameters against different climatic conditions and good 

quality weather data. 

PV modules are typically rated at Standard Test Conditions (STC†) [35-36]. This 

STC rating is basically a rating of power output of module which does not provide 

relevant information about the performance of different PV modules in different 

weather conditions. STC rating provides only a snapshot of performance under a 

favourable (laboratory based) but rarely-seen-in-practice set of conditions. When 

looking at long term energy output, it is not helpful since the power output and the 

efficiency varies depending on the conditions.  

It is also necessary to mention that the scope of this thesis analyses the DC energy 

prediction of the system without including AC part of the system. 

These days, large scale PV systems are being commissioning in different locations 

supported by financial organizations and they are interested to know their payback 

period or internal rate of return (IRR) of their investment more accurately. In this 

context, cost per kWh production of PV systems has become the most important 

factor for the PV community. Hence, the prediction of energy yield of a proposed PV 

system is directly relevant to the income generation.  

 

 

† Irradiance 1000 W/m2, Module Temperature 25 °C, Angle of Incidence 0°, 

Spectrum AM1.5G  
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Prediction of energy yield and the energy rating is two different measures of a 

system. Energy yield prediction is a site specific quantify, whereas energy rating can 

be defined as the prediction of energy by means of a standardised methodology in 

relation to a standardised weather dataset.  

To describe the energy yield prediction of PV modules, it is necessary to introduce 

the different elements involved in the process. An energy prediction method 

includes: 

 PV module characterisation data as module input  

 Meteorological datasets as site input 

 Energy prediction methodology.  

  

Research on energy yield prediction is an on-going topic within the PV research 

communities and there are several energy prediction methods available by different 

research groups [37-49] and those methods are similar to a certain extent. But 

presently, there is no standard available which describes an energy yield prediction 

method in a standardised way with a standardised weather dataset – energy rating. 

International standardisation body - International Electrotechnical Commission (IEC) 

has proposed an energy rating method – IEC 61853. 

This chapter describes the state-of-the-art in-present energy yield prediction 

methods and then describe the evaluation effort of the energy rating method as a 

scope of this thesis to identify the scale of influencing weather parameters on the 

performance of PV module. 

 

3.2 Existing Energy Yield Prediction Methods 

Some of the current energy prediction methods are outlined below. They attempt to 

account for the varying outdoor operating conditions that PV systems encounter in 

operation. As explained above that any energy yield prediction would require two 

sets of input data and a calculation method.  
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To get the PV module characterisation data as a module input into the prediction 

model, one of two methods is generally applied.  

 Firstly, some prediction model considers the module efficiency (η) as a 

function of irradiance (G) and module temperature at 25oC, i.e. η (25oC, G). 

This method also requires the temperature coefficients at the specified 

irradiance.  

 The second method is a matrix method, where modules are characterise in 

terms of power (Pmax) or efficiency as a function of wide range of irradiance 

(G) and temperature (T), i.e. P (G, T) or η (G, T). 

The method developed by CEA (Caderache, France) is called Meteorological, 

Optical and Thermal Histories for Energy Rating in Photovoltaics (MOTHERPV) [38]. 

This method gives the prediction of the performance ratio (PR) - the ratio of actual 

energy yield to the theoretical generation based on the power rating and incident 

solar irradiation - for sites with a good knowledge of the frequency distribution of the 

incoming energy (as a function of irradiance) and the module temperature. This 

prediction method requires a short measurement campaign at a given site with 

number of irradiance and temperature levels. The irradiance value is calculated by 

dividing the short circuit current of the module by its short circuit current at STC. 

Then the non-linearity coefficient of power ( rel ) of a module as a function of the 

irradiance is calculated using equation (12). 

 

GPTGP STCModrel */),(  (12) 

 

Where, 

P (G, TMod) is the power at the module when the G is irradiance and TMod is module 

temperature.  

PSTC is the power at the module at Standard Test Conditions 

G is the target irradiance  
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Then the relative module efficiency is calculated as a function of irradiance and 

measured module temperature using equation   (13).  

 

)}]()({*)(*1[*)()( modmod GTGTGGG refref       (13) 

 

Where η (Gref) is the conversion efficiency of the module at reference irradiance Gref 

and reference module temperature Tmod ref. η (G) is the targeted efficiency at targeted 

G and Tmod. α is the irradiance-dependent temperature coefficient of the module 

efficiency. 

This method considered the effects of irradiance, temperature and Air Mass (AM) 

spectrum on the performance of a PV module. But it is difficult to achieve a wide 

range of PV operating conditions within the short measurement time period in other 

location. 

The energy prediction methodology developed by ECN, Netherlands [37, 38] is 

called Yield Simulator which is similar to the MOTHERPV method. Yield Simulator 

measures the efficiency as a function of ambient temperature and in-plane irradiance 

considering direct and diffuse components of irradiance. The temperature 

coefficients of the module are calculated as a function of irradiance within the range 

250 W/m2 to 1000 W/m2 at intervals of 250 W/m2.  

Bucher el. at. developed a method, called Realistic Reporting Conditions (RRC) [41]. 

This method uses indoor measurements of module characteristics and hourly 

tabulated weather data to calculate the hourly efficiency of a PV module. Williams el 

at. developed the Site Specific Conditions (SSC) model based on the RRC method 

to predict the energy yield of different PV modules [37]. The flow diagram of the RRC 

method is shown in Figure 26. The required inputs for module characterisation data 

are irradiance, module temperature and spectral response of the individual module. 

Thus the I-V characteristics and temperature coefficients of a module are obtained.  

This model described the effect of the site-specific meteorological parameters - the 

global irradiance (G), its spectral distribution (E (λ)) and the cell temperature (T) - on 

the deviation of the module efficiency (η) from the STC efficiency (ηSTC).  
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They are defined as follows: 

G-effect:   rG = ηG/ηSTC   influence of G on η 

T-effect:   rT= ηG,T / ηG   influence of T on η 

E(λ)-effect:   rE = ηG,E / ηG   influence of E(λ) on η 

RRC-effect:   rRRC = ηRRC/ ηSTC  influence of G, T and E (λ) on η 

Realistic module efficiency is then estimated using hourly tabulated weather 

conditions.  

 

 

 

 

Figure 26: Flow diagram of RRC energy prediction method 

 

Indoor module characterisation method of the RRC model offers wide range of 

irradiance, temperature and spectrum data in a controlled environment within a short 

period of time. But mismatch of the representation of the outdoor data in the indoor 

measurement data point cannot be ignored, which can increase the error in the yield 

prediction. 

ESTI-JRC, ISPRA developed [43] another energy prediction method. For PV module 

input data this method employs a power matrix as a function of irradiance and 

ambient temperature, P (G, Tamb). Another matrix of weather data as a function of 

total irradiance and ambient temperature, N (G, Ta) for a site is also used in this 

method. Correlating these two matrices the energy yield is then estimated. This 

method characterises the module indoors under a wide range of irradiance and 

temperature and transforms the indoor measured power matrix in respect of module 

temperature into ambient temperature. The ESTI-JRC energy yield prediction 

method is illustrated in Figure 27.    

 

Module data: 
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temperature 
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Figure 27: Flow chart of ESTI-JRC energy yield prediction method 

The ESTI-JRC matrix method is validated based on irradiance and temperature only, 

without taking into account the effects of different Air Mass (AM) spectrum, or angles 

of incidence (AoI). This makes the prediction model simplified but the possible error 

can come from other environmental parameters. Especially, irradiance spectrum at 

different Air mass is a key environmental parameter when one considers spectrally 

sensitive thin film modules. 

Another performance model developed by SUPSI, Switzerland is called the Matrix 

method [49] and is similar the ESTI-JRC method. In this Matrix method, modules are 

characterised in order to generate a power matrix as a function of in-plane irradiance 

(G) and back of module temperature (Tmod), P (G, Tmod) and correlates with 

irradiance and the ambient temperature (Tamb) of the specific location. To make a link 

between module data and environmental data, the measured module power matrix is 

converted from P (G, Tmod) to P (G, Tamb) using equation (14). 

ambTGNOCTT  800/*)20( 0

mod  
(14) 

NOCT is the nominal operating cell temperature which is defined based on the 

mounting structure of the module, irradiance at 800 W/m2 and 20°C ambient 

temperature.  

Energy predictions methods are explained above have limitations in different ways. 

Some models only considered irradiance and temperature effects without 

considering the spectral and angular affects, which potentially increase the level of 

PV Module input data Weather input data 

P (G, Tamb) N (G, Tamb) 

Prediction method 

Pmax 

Pmax * Time= Energy 
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prediction error. Also, some methods are limited to a particular module technology. 

Outdoor based module characterisation methods generally required a long time 

exposure of PV modules to cover a reasonable amount of data for energy 

predictions, which is a time consuming effort (at least a year). But it gives better 

accuracy in the prediction as this method considers all influencing weather 

parameters in the module characterisation method.     

Indoor based module characterisation methods generally limited to irradiance and 

temperature and this is largely due to the limitation of the availability of the 

measurement equipment. But this method can allow getting module characterisation 

data in a wide range of irradiance and temperature conditions; hence an energy yield 

prediction could be quicker. Strength and limitations of the above methods are 

tabulated below: 

Method Strengths Limitations 
MOTHERPV 
and YIELD 
SIMULATOR 

 Outdoors fast module characterisation 

 Spectral effects included  

 Short measurement period 

will not be representative to 

cover full range of weather 

conditions in other location 
RRC and 
SSC 

 Indoors fast module characterisation 

 Spectral mismatch correction included 

 Potential error from 

spectral mismatch 

corrections 
MATRIX 
METHOD 

 Simple indoors fast module 

characterisation 

 Spectral effects not included 

 Spectral mismatch error 

Table 1: Strength and limitations of the existing energy yield prediction methods 

 

To address some of these issues, the International Electrotechnical Commission 

(IEC) has proposed an energy rating standard for PV modules, which considers all 

major parameters that affect the performance of PV modules. A detailed description 

of the modelling efforts of the proposed standard is explained and the evaluation in 

the next sections. 

 

3.3 IEC Energy Rating Standard 

The aim of this proposed energy rating standard is to establish a reliable and 

accurate energy rating method for evaluating the performance of different PV 

technologies in real operating conditions. This standard aims to address the 
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following issues, which is similar to the requirement of other energy yield predictions 

described above: 

 Establish a direction for mapping the module performance over a wide range 

of temperature and irradiance conditions.  

 Establish the test method to find out spectral response of different modules at 

variable spectrum, 

 Effects of incidence angle of the irradiance,  

 Estimate the module operating temperature as a function of ambient 

temperature, irradiance and wind speed, 

 Establish a prediction model that should apply to any module technology 

under different climatic conditions worldwide. 

Information on this proposed standard is published elsewhere [50]. This chapter 

describes the modelling aspects and the issue arises during evaluation. The IEC 

energy rating standard is modelled and first time validated during the course of this 

work. The execution of a detailed evaluation and the validation of this proposed 

standard include the impact analysis of different environmental parameters - 

including spectral effect - on the energy generation of PV module technologies. 

Dependency of energy production on spectral response of different PV module 

technologies is included in this standard. The validation results and uncertainty 

analysis are revealed in chapter 4.  

The proposed standard - IEC 61853, is divided in different parts, are described 

below. 

Part 1 [51] indicates the requirement for evaluating PV module performance in terms 

of power rating over a wide range of irradiance and module temperature. This gives 

a full set of characterization data at different irradiance and module temperature in a 

matrix form. Part 2 [52] explains the measurement and analytical approach used to 

incorporate the effects of angle of incidence (AOI), spectral response and the 

estimation of module operating temperature from more usually available weather 

data. Part 3 [53] consists of the calculation of energy rating procedures based on 

measured and modelled values of parts 1 and 2 by implementing some reference 

weather data profiles which are yet to be finalised (and were previously to be 
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described in so-called part 4 [54] of the proposed draft standard). Detailed 

description of the individual parts is given below. 

 

3.3.1 Part 1: Measurement Method 

This part explains the measurement requirement for the evaluation of the effects of 

irradiance and temperature on PV module power output. This is carried out by taking 

I-V measurements at a number of different irradiances at AM1.5G spectrum and 

different module temperatures. The experimental procedure can be performed using 

the following ways to create the performance matrix as shown in Table 2 and these 

measurements can be performed in an indoor or outdoor based measurement 

system. 

I. Dependency of the parameters, Isc, Voc, Imax, Vmax and Pmax at a range of 

irradiance (100 to1100 W/m2) and at a range of module temperature (150C to 

750C) at fixed module temperature. 

 Irradiance (W/m2) 
Temperature (°C) 1100 1000 800 600 400 200 100 

15      NA   
          

25   
            

50   
          

    NA 

75   
      

    NA     NA     NA 

Table 2: Performance matrix of PV module as a function of irradiance at AM1.5G 
and temperature 
 

Temperature coefficients of Isc, Voc, Imax, Vmax and Pmax can be extracted from the 

matrix as functions of irradiance. Spectral and angular measurements are 

undertaken in part 2. The above module characterisation measurements are done 

indoors in a controlled environment under a short measurement campaign. 

 

3.3.2 Part 2: Measurement Method 

Part 2 describes the measurements of spectral response, angle of incidence (AoI) 

and module operating temperature.  
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The angle of incidence dictates the fraction of direct beam irradiance available for 

the conversion of electrical energy of the PV module. The test method of AoI 

response characterisation is based on measuring the Isc of the test module over a 

range of incidence angles. The method prescribed to change the angle between 

module normal and light incidence (on the module) from -80o to +80o at 10° intervals 

both for azimuth and tilt direction [52]. For each AoI, at least three readings of short-

circuit current and module temperature are taken, at different irradiances. The 

relative light transmission is calculated using equation (15): 

 

   0
* SC

SC I
Cos

I


   
(15) 

 

Where θ is the angle of incidence angle with respect to the module normal. 

 

Module operating temperature: In real operating conditions, the temperature of a PV 

module (Tmod) is primarily a function of the ambient air temperature (Tamb), total solar 

irradiance (G) and the wind speed on the active surface of the module. The 

temperature difference, (Tmod - Tamb), largely depends on ambient temperature. The 

pyranometer, irradiance measurement sensor, or PV reference device is 

recommended to be mounted in the same plane as the test module to measure the 

total irradiance. The wind speed measuring instrument is required to be installed at 

0.7m above the top of the test module and at 1.2m to the east or west of the module. 

An ambient air temperature sensor also needs to be installed near the wind sensor in 

a shaded enclosure with good ventilation. Module temperature can be taken by 

averaging the values of four back contact temperature sensors.  A data set is then 

prepared in the form of Tamb, Tmod, wind speed and G and that are grouped based on 

different wind speed ranges as follows, 

Wind speed group wind speed range 

1 <1 m/s 

2 <1 m/s to <2 m/s 

3 <2 m/s to <3 m/s 

4 <3 m/s to <5 m/s 
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5 <5 m/s to <7 m/s 

6 <7 m/s to <9 m/s 

Table 3: IEC 61853 wind speed range 

 

Plotting the difference between module and ambient temperature (Tmod - Tamb) 

against G at various wind speed groups, the thermal coefficients ‘a’ and ‘b’ can be 

estimated. The module operating temperature can be calculated then using equation 

(16). 

aGbTT amb  *mod  

            

 (16) 

 

3.3.3 Part 3: Energy Rating Calculations  

This section describes the modelling part of energy prediction algorithm. The energy 

rating calculation procedure is illustrated in Figure 28. The left column demonstrates 

the input parameters measured in part 1 and part 2 as module input data. The right 

column describes the environmental input parameters, while the centre column lays 

out the calculation methodology. The primary input parameters that influence the 

energy rating calculation are outlined below; those have been described above in 

part 1 and part 2. 

 Relative light transmittance into the module 

 Thermal coefficients ‘a’ and ‘b’ describing module operating temperature 

 Spectral response of the module 

 Matrix of Pmax vs. irradiance (at AM 1.5G) and module temperature 

The input weather data for energy rating calculation includes the direct and diffuse 

irradiance with respect to module incidence angle to get the available irradiation into 

the module. The incident spectrum, wind speed and ambient temperature are the 

other environmental parameters considered in this model. The detailed overview of 

the proposed energy rating procedure is outlined in Figure 28. 
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Figure 28: Overview of Energy Rating Procedure. 

 

3.3.4 Reference Dataset 

The original IEC draft standard presented six reference days [54] to cover extreme 

combinations of ambient temperature and irradiance to estimate the energy yield of 

the module. It is also worth mentioning that at the current state of this standard, 

identification of another dataset is ongoing. But at the time of this study, the old 

dataset (that has six reference days) are tabulated with irradiance, ambient 

temperature, wind speed, angle of incidence and spectral distribution over each day, 

with the cases labelled as: 
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 HIHT (High irradiance, high temperature) 

 HILT (High irradiance, low temperature) 

 MIMT (Medium irradiance, medium temperature) 

 MIHT (Medium irradiance, high temperature) 

 LILT (Low irradiance, low temperature) 

 NICE (Normal Irradiance, cool environment) 

The above reference days are distinguished in Figure 29 for a typical crystalline 

silicon device with different module temperatures (Tmod) and incident irradiance on 

the module (Gmod). Tmod is calculated according to the IEC algorithm, considering the 

effects of irradiance and wind speed with the given ambient temperature. Gmod is 

calculated considering the given beam and diffuse irradiance components of the 

different reference days and the transmittance values with the different angle of 

incidence (AOI), measured for the module. Reference day conditions are tabulated 

at hourly intervals in the figure below, each point is one of these entries. For HIHT, 

there are two different irradiance values are calculated at 50°C Tmod, which raise an 

quality issue of the available reference days. 

 

Figure 29: Characteristics of a c-Si module on each of the six standard reference 

days with different irradiance and temperature levels. 

Sun spectra of six reference days are analysed and very different incidence 

spectrum variations are noticed as shown in Figure 30. 
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Figure 30-a: Spectral irradiance of six 
reference days at 8am 

 
Figure 30-b: Spectral irradiance of six 
reference days at 10am 

 
Figure 30-c: Spectral irradiance of six 
reference days at 12Noon 

 
Figure 30-d: Spectral irradiance of six 
reference days at 13pm 

 
Figure 30-e: Spectral irradiance of six 
reference days at 15pm 

 
Figure 30-f: Spectral irradiance of six 
reference days at 17pm 

 
Figure 30 (a-f): Spectral irradiance of six reference days. 
  

It should be noted that there is no data available at 8am and all spectra irradiance 

data are available  up to 1200nm for MIMT. Above graphs shows a difference in 

spectral irradiance for both high irradiance days. 
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3.4 Modelling of IEC Energy Rating  

Weather data as an input into the energy rating model, were available from the 

proposed draft standard, including the following environmental conditions of the time 

period (standard days: time of the day, season, and year),   

 Irradiance reaching the module 

 Spectral irradiance  

 Ambient temperature and wind speed 

The following input module characterisation data were measured at AIT Vienna, 

Austria and JRC, ISPRA, Italy, 

 Relative light transmission into the module 

 Spectral response of the module 

 Matrix of Pmax vs irradiance at AM1.5G and module temperature (Figure 4). 

Three PV modules are investigated as shown in Table 4,  small crystalline silicon (c-

Si), amorphous silicon (a-Si) and copper indium gallium selenide (CIGS) modules 

described in [55]. 

PV Module Area [m2] Isc [A] Voc [V] Pmax [W] 

c-Si 0.144 0.66 21.41 10.42 

a-Si 0.123 0.28 39.6 6.07 

CIGS 0.067 0.39 23.67 5.2 

Table 4: Set 1 module parameters at STC 

Modelling of input weather data: To get total irradiance penetrating into the solar 

module, direct and diffuse irradiance is combined in relation with module angle of 

incidence (AOI). Then the spectral correction is applied in terms of the spectral 

response of the module and the spectrum of the irradiance. Module operating 

temperature is estimated as a function of irradiance and ambient temperature 

considering the module thermal coefficients in different wind speed groups.   
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3.4.1 Irradiance Modelling  

Transmittance values of the modules are measured at 10° Angle of incidence (AOI) 

intervals (0°, 10°, 20°, ……85°) and at 90°AOI the transmittance value have been 

calculated by linear extrapolation from the measurement points at 80° and 85° AOI. 

The diffuse fraction of the solar irradiance is also measured at 10o steps, which is 

interpolated to 1o AOI step. Module transmittance is then estimated to the required 

angles between measured points by linear interpolation. Diffuse irradiance then 

calculated by the equation (17).  

     

0

0

90

0

mod, cos  diffdiff GG  
(17) 

Where, θ = Angle of incidence with respect to module normal 

  Gdiff(θ)= Angular distribution of diffuse light  

    = relative light transmittance into the modules at AOI θ 

 

 

 

 

 

 

Figure 31: Modelling flow chart of diffuse irradiance calculation 
 

The amount of direct irradiance entering into the module is calculated by the 

equation below, in which reflection is taken into account. 

    cosmod, dirG  (18) 

The total irradiance entering into the module is simply the sum after considering the 

diffuse and direct components, 

Load diffuse fraction of solar 

irradiance corresponding with AOI 

Load transmittance values 

corresponding with AOI  

Linear interpolation of 

transmittance at required AOI 

Interpolate Gdiff to 1°AOI steps 

Integral of diffuse irradiance 

     

0

0

90

0

mod, cos  diffdiff GG  
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mod,mod,mod diffdir GGG     (19) 

  

3.4.2 Spectral Correction 

The spectral resolution of the AM1.5G standard spectrum is given in 0.5 nm steps; 

spectral irradiance in the standard days is given in 10 nm steps. All the spectral 

response and spectrum data have been interpolated to 1 nm wavelength intervals 

and the AM1.5G standard spectrum at 1 nm resolution has been used in the 

procedure for spectral correction. The flow chart given below (Figure 32) explains the 

steps involved in the spectral response correction. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32: Modelling flow chart of spectral correction of module irradiance 

Load Spectrum (E) 
data corresponding 
reference days and 
hours 

‘E’ at wavelength 
more than 200nm 

     

      



dAMCSRdE

dAMdECSR

GG AMAM

5.1,25*

5.1*,25

*

0

0

mod,5.1mod,







 

Load AM1.5G 
Spectrum at 1 nm 
resolution 

Load Spectral 
Response (SR) 
data corresponding 
to PV module 

 

SR at wavelength 
more than 200nm 

Interpolate ‘E’ to 1 
nm steps 

Integral of 
Spectrum,  

  dE )(  

Yes 

No 

Interpolate SR to 1 
nm steps 

Integral of Spectral 
Response and Spectrum, 

  dECSR O )(),25(  

Yes 

Trim AM1.5 
Spectrum to the 
same range of 
wavelength as 
Reference days 

Integral of  
AM1.5 G Spectrum,  

  dAM )(5.1  

Integral of Spectral 
Response and AM1.5 G 
Spectrum, 

  dAMCSR O )(5.1),25(

 

Weather data Module data 

IEC 60904-3 

AM1.5G Spectrum 



42 
 

The same wavelength resolution of 1 nm interval for sun’s spectrum, spectral 

response of the module and the standard spectrum at AM1.5G for spectral correction 

is essential in order to get accurate correction.  

 

3.4.3 Temperature Modelling 

Module temperature has been estimated as a function of incident irradiance on the 

module and ambient temperature with thermal coefficients at different wind speed 

class which is outlined in Figure 33 Thermal coefficients, a and b initially estimated 

from the slope and intercept of the plot of the difference of module and ambient 

temperature against irradiance at different wind speed class explained in section 

3.3.2. 

 

  

 

 

 

 

  

 

 

 

  

 

Figure 33: Flow chart of module temperature calculation as a function of irradiance 

and wind speed. 
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3.4.4 Pmax fitting as function of irradiance and temperature 

Considering direct and diffuse irradiance, the amount of total irradiance enters into 

the module (Gmod AM) is spectrally corrected to AM1.5G (Gmod AM1.5) and module 

temperature (Tmod) is estimated as a function of ambient temperature (Tamb) and total 

irradiance (Gmod AM)  with thermal coefficients. This has been carried out in order to 

make the combination of environmental input data (Gmod AM1.5, Tmod) and the 

measured power matrix of module as a function of irradiance at AM 1.5G spectrum 

(Gmod AM1.5) and module temperature (Tmod). Intermediate values of the measured G-

T matrix of maximum power (Pmax) of the modules are calculated by linear fitting 

approach as explained in Figure 34.  

 Irradiance (W/m
2
) 

Temperature 
(°C) 

1100 1000 800 600 400 200 100 

15              

25               

50              

75            

 

 

  

  

 

 

 

 

Figure 34: Pmax fitting as a function of module temperature and module irradiance 

The characterised power matrix of the module and the weather data of each 

reference day (Figure 29) are then analysed in order to estimate the energy output 

for each day as per the procedure shown in Figure 28.   
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3.5 Sensitivity analysis 

In order to evaluate the importance of the different steps of the above energy rating 

model an impact analysis against irradiance, temperature, AOI and spectrum is 

carried out based on daily conversion efficiency and daily energy generation of each 

reference day using different PV modules outlined in Table 4 (page 40).  

Effect of irradiance has been analysed to see the importance of considering the 

variation of efficiency with irradiance. This sensitivity was carried out based on 

operating efficiency rather than power, as the main effect would otherwise have been 

due to the increase of input power. The efficiency of a simulation where each hour 

had an irradiance of 1000W/m2 has been carried out and the percentage change 

compared to the normal irradiance is shown in Figure 35.  

 
Figure 35: Deviation in daily module 

efficiency between actual and fixed (at STC 

value) irradiance. 

 
Figure 36: Deviation in daily energy 

generation between unmodified and 

modified with fixed (at STC value) 

temperature. 

 

 
Figure 37: Relative change of daily energy at 

actual and fixed at normal AOI.  

 
Figure 38:  Relative change of daily energy 

at actual and fixed at spectrum AM 1.5. 
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Strong deviation has been found for the low irradiance days MIMT and LILT. 

Specifically the c-Si module is affected, showing an increase of 20-25% if it would be 

operating at 1000W/m2 all the time.  

The effect of temperature on the energy yield is shown in Figure 36. Here a fixed 

temperature of 25 degrees was chosen. Again, the c-Si module shows the most 

significant effect, more than ±10% influence for HIHT and LILT respectively, followed 

by CIGS and a-Si. 

Similarly AOI and spectral influence has been analysed based on relative changes in 

energy generation for each day which is depicted in Figure 37 and Figure 38 

respectively.  

Daily spectral effect ranges from 2-3% for all three module technologies. 

Surprisingly, there is a very significant change between the HIHT and the HILT for 

the a-Si material, which is due to the different incident spectrum (Figure 30). The 

angle of incidence is in the range of 2-4%, depending on the material, thus an effect 

can be represented.  

 

3.6 Conclusions 

Two PV module performance metrics – power rating and energy rating – were 

compared in this chapter. The power rating sets the retail price and so is more linked 

to a sales point of view, but return on investment is mainly aligned with energy rating. 

Significant efforts by different research groups on energy yield prediction methods 

are explained in this chapter, including the evaluation of the proposed IEC standard 

for energy rating. 

This energy rating standard has lack of clarity on the interpolations method and 

irregular resolution in the given spectral irradiance and spectral response of the 

modules, which includes the quality of the given spectral data. Similarly, the 

integration for the diffuse irradiance, where there the interval should be fixed to 1 

degree steps. Differences were also observed when applying the G-T-P matrix, were 

the choices are between choosing the closest measurements or apply an 
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interpolation for each time step. The complexity of the standard is actually not 

beneficial for an accurate energy prediction, as it requires data which is actually 

normally not known (angular distribution of the diffuse irradiance. 

The reference days are not particularly representative for an energy rating standard. 

In the standard days, it is not known how accurate the spectra used in the standard 

data sets are. Search for a representative standard meteorological dataset for this 

standard is under way.  

The rank of sensitivity of four STC parameters on the performance of PV modules is 

demonstrated in this chapter. It is identified that the effect of irradiance is the most 

influencing parameter on the output of the different PV modules in different climatic 

conditions and the output of the efficiency can varies up to 25% at low irradiance 

conditions against STC value. The effect of temperature is the second most 

influencing parameter which can cause a deviation of daily energy yield up to 10% in 

the high temperature recorded days compare to 25°C. The effects of spectrum and 

the angle of incidence comes lower in the range compare to irradiance and 

temperature and the daily energy yield can varies up to 3% against STC parameters 

depending on the module technology (specially spectrally sensitive thin film 

modules) and the availability of the different components of irradiance (direct and 

diffuse).   

The existing methods are either technology dependent or they are only considering 

two main influencing parameters –irradiance & temperature without considering the 

spectral effects. Reviewing the existing methods and analysis the proposed energy 

rating standard, it is clear that there is a need of an energy yield calculation 

procedure which should be technology independent and considering the spectral 

irradiance factor into account, with the level of uncertainty information available at 

different stages. 

A details analysis of the energy rating methodology is explained in the next chapter 

and demonstrated the level of accuracy by performing an uncertainty analysis of the 

yield calculation. 
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4 Uncertainty in the Performance Modelling of 

Photovoltaic Modules 

 

4.1 Introduction 

This chapter describes the validation and uncertainty analysis of the IEC energy 

rating procedure. Uncertainties in the energy yield prediction come from both 

measurements and modelling element in the procedure [56]. Estimation of the 

energy yield of PV system requires two sets of measured input data (Figure 28 in 

page 37); 

 The PV module characterisation:  The current-voltage (I-V) measurements at 

different irradiance and temperature conditions (Table 2). It may also include 

spectral response, angular response etc. [57,58]  

 The site specific environmental data: Global horizontal irradiance, ambient 

temperature, spectral irradiance, wind speed etc.  

Based on the above measured values, different modelling steps are required in the 

procedure, comprising [59], 

 The translation of global horizontal irradiance into plane of array irradiance,  

 Estimation of module temperature,  

 Spectral and angular corrections and  

 Estimation of maximum power of the PV module over the time period.  

Measurement and modelling components of each of the above contribute to the final 

uncertainty in the energy yield estimation of the PV system. These uncertainty 

contributions are classified into statistical and systematic errors.  

A framework for the uncertainty analysis is established and explained in this chapter. 

It is then applied to study the measurement uncertainty of the environmental data, 

mainly concentrated on the irradiance and temperature measurements. The 

magnitude of uncertainty over the range of irradiance and temperature 
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measurements is revealed, which gives an indication of the level of uncertainty at 

different signal strengths of irradiance and temperature measurements.  

Different irradiance translation models are analysed and the method best matched 

for the UK climate is identified. A temperature translation model is also validated 

against the real measurements. Evaluating different modelling steps, the IEC 61853 

energy yield prediction method is validated against the real measurement of annual 

energy generation of three different PV modules at Loughborough, UK. Uncertainty 

analysis and the validation of the energy yield estimation indicates the requirement 

of better measurements and that accurate modelling method identification is 

necessary for reliable energy yield estimation of a PV system.  

 

4.2 Framework of Uncertainty analysis 

The uncertainty in the energy yield estimation directly linked with the quality of the 

measured environmental data as well as the measured module specific parameters. 

There is significant published effort made by other researchers towards the various 

aspects of the PV parameter uncertainty analysis [60-66] and this thesis analyses 

the uncertainty of the irradiance and temperature measurement.  

4.2.1 Types of uncertainty 

Uncertainties are classified into two categories in this study: the systematic 

uncertainty from a fixed bias error and the statistical (random) error from the noise of 

each parameter [67, 68].  

4.2.1.1 Statistical  

Statistical uncertainty can be described as the value of a quantity and its random 

variation when it is observed multiple times. Normal or Gaussian distribution (Figure 

39) is a common probability distribution often found when the measured quantities 

contain a large number of small and independent error contributions.   
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Figure 39: Shape of Normal or Gaussian probability distribution  

 

In Figure 39, the central axis, mean, of the curve corresponds to the expectation of 

the true value. The two dotted line on the left and right slope are at locations - σ and 

+ σ from central axis, the mean error or standard deviation associated with this 

distribution curve. The larger the mean error or standard deviation or statistical 

uncertainty, the broader the curve. 

The statistical uncertainty can be calculated by standard deviation (SD) as per the 

equation (20) [68]. 
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4.2.1.2 Systematic 

Systematic uncertainty can be evaluated based on non-statistical information i.e. 

from calibration certificates and manufacturers’ specifications. This is an offset error 

which remains with repeated measurements. Systematic uncertainty can determined 

by comparison to theory or other experiments.  

 

 

 

 

Figure 40: Total uncertainties combining statistical and systematic components. 
 

Overall uncertainty is then determined by combining estimated systematic 

uncertainty (‘B’) and statistical uncertainty (‘S’) as per equation (21) [68]. 

Total Uncertainty = 
22 B  

            (21) 

 

4.2.2 Monte Carlo Approach 

To analyse the uncertainties, a statistical analytical tool - Monte Carlo technique is 

used in this study. This is done by performing random sampling from the probability 

distribution of each input parameter and evaluating the model output several times 

using a different set of randomly selected values from the probability functions. The 

flow chart of this Monte Carlo method is illustrated in Figure 41 [70]. A normal 

distribution is used for the probability distribution of each input parameter. The 

Bias uncertainty 

Total uncertainty 

+ σ - σ 

True value 
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normal distribution is mostly used distribution in statistics because of the central limit 

theorem, which states that, under mild conditions, the mean of many random 

variables independently drawn from the same distribution is distributed 

approximately normally. Normal distribution defines the mean and a standard 

deviation to describe the random variation about the mean.  

 

Figure 41: General framework of Monte Carlo simulation approach  
 

 

4.3 Uncertainty Evaluation of Energy Yield Prediction Method 

Any measurement providing input data into the model contributes uncertainty. The 

level of that uncertainty scale depends on the type of measurement equipment used 

and the nature of the measurement. One set of inputs for energy yield estimation are 

measured environmental data, i.e. irradiance, ambient temperature, spectral 

irradiance, wind speed etc. that influence the performance of the PV system. 

Irradiance and temperature are the two major parameters (as discussed in Chapter 

3) that influence the performance of a system the most. This study concentrated on 

these two main parameters and their level of measurement uncertainty that comes 

from the irradiance and ambient temperature measurement devices.  
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4.3.1 Uncertainties of Environmental Inputs 

4.3.1.1 Irradiance Measurement 

Irradiance is the primary input parameter that influence the power output of a PV 

module or system. So, the uncertainty of irradiance measurement largely influences 

the accuracy of the estimated output for all PV module technologies. The level of 

irradiance measurement uncertainties varies over a range of irradiance values, 

hence the level of accuracy of the yield prediction.  

There are different irradiance measurement sensors [71, 72] are available in the 

marketplace offering different levels of measurement uncertainty. The thermopile 

pyranometer is one of the accurate sensors commonly used for irradiance 

measurement for commercial and research applications. To-date the irradiance 

measurement uncertainties are analysed based on the given uncertainty values in 

the manufacturer datasheet by different researchers [73, 74]. Kratzenberg et al [73] 

analysed the irradiance measurements uncertainty of a Kipp & Zonen CM 11 

thermopile at 800 W/m2 based on three weeks measured values. This testing period 

was very short and also didn’t consider the low irradiance cases.  Strobel et al [74] 

analysed the uncertainties of irradiance measurements from an annual dataset.  

This thesis is aiming to establish a robust model that can analyse the irradiance 

measurement uncertainty by a CM 11 pyranometer as a case study.  

 The irradiance uncertainties are categorised into two components: 

i. Uncertainties that change over the annual time period of measurement time. 

The components of uncertainty (of the CM 11 sensor) utilised in this thesis that 

change over longer time period are: 

Uncertainty cause CM 11Uncertainty 

1. Calibration ±3.4 W/m2 

2. Annual drift ±0.00288 W/m2 

Longer Term Uncertainty  ±3.40288 W/m2 

Table 5: The uncertainties of CM11 (Kipp & Zonen) pyranometer that change over 

long timescales. 
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ii. Uncertainties that change at each timestamp of the measurement. 

The components of uncertainty that change from one measurement to other are: 

Uncertainty cause CM 11 
Uncertainty 

3. Zero-offset due to temperature change (5k/h) ±2 W/m2   

4. Zero-offset due to thermal radiation    (200 

W/m2) 

±7 W/m2      

5. Tilt error (beam 1000 W/m2) ±0.25% 

6. Spectral sensitivity ±2% 

Short Term Uncertainty ±9 W/m2 ±2.25% 

Table 6: The uncertainties of CM11 (Kipp & Zonen) pyranometer that changes at 

each timestamp of the measurement. 

There are three analyses available in the CM 11 manual [71] which explain the level 

of uncertainties of the following uncertainty components depending on the signal 

strength of irradiance, ambient temperature and zenith (or incident) angle. 

Uncertainty cause CM 11 
Uncertainty 

7. Non-linearity (0-1000 W/m2) Modelled 

8. Temperature dependence of sensitivity  

      (-20 to 50°C)  

Modelled 

9. Directional error  

      (Zenith angle from 0° to 80° ) 

Modelled 

Table 7: The uncertainties of CM11 (Kipp & Zonen) pyranometer that depends on 

the level of irradiance and temperature sensitivity also on zenith angle. 

 

Extracting the values from the data in the manual (i.e. irradiance sensitivity of non-

linearity, temperature sensitivity and directional error at different zenith angle), three 

models are established which describe the level of uncertainty as the influencing 

parameter changes.  
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Figure 42: Non-linearity error of Kipp & Zonen CM11 pyranometer. 

 

The non-linearity error, sensitivity variation with irradiance, is equal for any given CM 

11 sensor as shown in Figure 42. A linear interpolation method is applied to estimate 

the non-linearity error against variable irradiance at every timestamp of the 

measurement. This gives more accurate estimation of the uncertainty scale of non-

linearity error against irradiance.  

The temperature dependence of the sensitivity is an individual function. For a given 

CM 11 the uncertainty curve lies somewhere within the upper line (blue line) a lower 

line (red line) of the Figure 43 from a baseline (green line) reference. A fourth order 

polynomial interpolation method is applied to estimate the baseline reference at any 

targeted temperature. Then a Monte Carlo method is utilised for the probability of the 

distribution of the error based on the standard deviation within upper and lower line 

of the temperature sensitivity curve of the Figure 43.  
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Figure 43: The curve of relative sensitivity variation with instrument temperature of a 

Kipp & Zonen CM11 pyranometer in the shaded region. 

 

The directional error is the summation of the azimuth and zenith error. Figure 44 

shows the maximum relative zenith error in any azimuth direction for the CM 11 

sensor.  

 

Figure 44: Directional error of Kipp & Zonen CM11 pyranometer 
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A fourth order polynomial interpolation method is applied to estimate the baseline 

reference at any targeted zenith angle. Then a Monte Carlo method is utilised for the 

probability of the distribution of the error based on the standard deviation within 

upper and lower line of the zenith angle sensitivity curve of the Figure 44. 

Based on the above uncertainty components and their scale factors, the annual 

irradiance measurement uncertainty is evaluated using a Monte Carlo method. The 

flow chart of the Monte Carlo approach is outlined in Figure 45. All measured 

irradiance data is taken from the CREST outdoor monitoring system (COMS) at 

Loughborough University, Loughborough, UK, where irradiance sensors are installed 

in the horizontal and inclined plane of module installation. Ten second timestamps of 

the annual data from October 2009 to November 2010 are used for this analysis.  

Measured global horizontal irradiance (Ghor) data is assumed as the true value in this 

uncertainty analysis of the irradiance measurement. The same irradiance i.e. Ghor is 

used as the input for Monte Carlo simulation. Here the input parameter for the Monte 

Carlo simulation is Ghor and uncertainty scale factors are listed in Table 5, Table 6 

and Table 7. The uncertainty of the Ghor measurement from each timestamp is then 

summed for the whole year in order to obtain the uncertainty in the annual 

irradiation. Five thousand iterations have been chosen to generate the probability 

distribution of the annual irradiation, which is shown in Figure 46. 
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Figure 45: Flow chart of irradiance measurement uncertainty by Monte Carlo 
approach. 
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Figure 46: Probability distribution of annual sum of global horizontal irradiation 

measurement uncertainty by CM 11. 

 

Figure 47: Monthly irradiation (kWh/m2) and measurement uncertainty in the UK 

climate. 
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Using all the above listed uncertainty components, the uncertainty of annual 

irradiation from measurements with the CM 11 sensor is calculated as ±1.56%. 

Monthly uncertainty ranges from ±2% to ±6.2% depending on the irradiation in 

different months of the year (Figure 47). The annual uncertainty is low compare to 

the monthly uncertainty because of the negative – positive cancel out effect of the 

five thousand iteration of the simulation. A similar effect is appears in the frequency 

distribution graph in Figure 46. These values are within the agreement that have 

been reported elsewhere [73]. 

 

4.3.1.2 Temperature Measurement 

Temperature is the second most influential parameter after irradiance that 

determines the power output of a PV module (Figure 35  to Figure 36 in Page 45-

46). So, accurate temperature measurement is also critical in order to estimate the 

energy yield of different PV technologies. As with irradiance, there are a variety of 

temperature sensors available with different levels of measurement uncertainty. This 

study takes a Vaisala HMP45C P1000 sensor [75] as a case study, as it is in use for 

ambient temperature measurements in the CREST outdoor monitoring system. The 

results are applicable to the sensor that monitors the module temperatures also. 

The measurement uncertainty of HMP45C P1000 is taken from the manufacturer 

datasheet and uses a Monte Carlo method for annual and monthly temperature 

measurement uncertainty estimation.  
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Figure 48: Measurement uncertainty of the HMP45C P1000 sensor. 

The flow chart of the Monte Carlo approach is outlined in Figure 49. All measured 

temperature data is taken from the CREST outdoor monitoring system (COMS). Ten 

second timestamps of the annual data from October 2009 to November 2010 is used 

for this analysis.  
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Figure 49: Flow chart of ambient temperature measurement uncertainty by Monte 

Carlo approach. 

Measured ambient temperature (Tamb) data are assumed as the true values in this 

analysis. The uncertainty scale factor of the chosen sensor has been estimated 

using linear interpolation based on the data shown in Figure 48 and Monte Carlo 

simulation is used to draw random uncertainty values and estimate annual and 

monthly average ambient temperature measurement uncertainty. Again, five 

thousand samples have been chosen to generate random numbers within the given 

range of uncertainty of Tamb at each time stamp for the whole year and the annual 

sum is estimated for each sample set.  

The uncertainty of annual average ambient temperature measurement is calculated 

as ±0.08°C and the uncertainty of monthly average of ambient temperature is 

illustrated in Figure 51, which is within agreements that have been reported 

elsewhere [76]. The probability distribution of Gaussian shape of the annual 

temperature is shown in Figure 50. 
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Figure 50: Probability distribution of annual sum of ambient temperature 
measurement uncertainty. 
 

 

Figure 51: Monthly average ambient temperature and their uncertainties in UK 

climate. 

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

0

20

40

60

80

100

120

140

160

C
u

m
u

la
ti

v
e

 %

F
re

q
u

e
n

c
y

Bin

Frequency Cumulative %

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

0

3

5

8

10

13

15

18

20

23

25

U
n

ce
rt

a
in

ty
 (

o
C

)

M
o

n
th

ly
 A

v
er

a
g

e 
o

f 
A

m
b

ie
n

t 

T
em

p
er

a
tu

re
 (

o
C

)

Monthly Avg of Tamb (°C) Uncertainty (°C)



63 
 

4.3.2 Energy Yield Uncertainty of PV Modules 

Energy yield is then calculated using the IEC 61853 Pmax Fitting as function of 

irradiance and temperature as explained in section 3.4.4 of chapter 3. Based on the 

above measurement uncertainties of irradiance and temperature, the uncertainty of 

annual energy yield for c-Si and CIGS PV modules were determined through Monte 

Carlo simulation and are listed in Table 8. The monthly energy yield estimation 

uncertainties of the c-Si module, as an example, are shown in Figure 52.  

Table 8: Uncertainty of annual energy yield of c-Si and CIGS PV module. 

Module Pmax (Wp) Uncertainty Distribution 

c-Si 10 2.78 % Normal 

CIGS 5 15.45% Normal 

 

Figure 52: Monthly energy yield (kWh) and their uncertainties in the UK climate for a 

c-Si module. 
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irradiance levels. The linear regression method is suggested in the IEC 61853 to 

estimate the Pmax at target irradiances and temperatures. 

 

4.4 Validation of Energy Yield Prediction Method 

This section analyses the prediction method, which involves  

 modelling to translate the available solar irradiance data to the system specific 

geometry.  

Different irradiance component separator methods and in-plane irradiance 

translation methods are analysed and validated against their respective 

measured values.   

 a translation method to estimate the module temperature as a function of 

ambient temperature and irradiance.  

The above methods are applied to study the annual energy yield prediction of three 

different device technologies.  

All the necessary data are measured at the CREST outdoor monitoring system 

(COMS). The annual time period of the measurements is used from October 2009 to 

September 2010. For the irradiance model validation study, beam and diffuse 

irradiance is measured in the horizontal plan and also in the plan of array . Measured 

global horizontal irradiance (GHor) and ambient temperature (Tamb) are taken from 

COMS as environmental input parameters into the yield estimation method. A matrix 

of maximum power (Pmax) of PV modules over a wide range of irradiance and 

temperature are used as module descriptor. 

This matrix was measured at Arsenal Research, Austria. Power matrices of three 

device technologies are used in this study: c-Si, a-Si and CIGS. The same modules 

are also measured during this study on the CREST outdoor system to log their 

annual energy output. The Pmax at target irradiance and temperature are estimated 

by linear regression method at each timestamp of the annual time period. The 

procedure of the prediction method is illustrated in Figure 53. 
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Figure 53: Procedure of the energy yield prediction methodology with IEC 61853 

power calculation method 
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needs to be followed in two consecutive manners. First the global horizontal 

irradiance needs to be separated into horizontal beam and horizontal diffuse 

irradiance. Then horizontal beam and horizontal diffuse irradiance components have 

to be translated onto the tilted surface of the PV modules.  

This thesis analyses four different horizontal irradiance separator models and three 

horizontal to in-plane translation models. Analysis of different methods helps to 

identify the best matched methods for the UK climate, where the estimated models 

are validated. A flow chart is given in Figure 54 explaining the irradiance modelling 

steps followed to translate GHor to GPoa. 

 

Figure 54: Flow chart of horizontal to in-plane irradiance translation. 
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 models that calculate the decomposition of global irradiance in its 

components.  

 

Atmospheric transmittance models require detailed information of atmospheric 

parameters such as distribution of clouds, the fractional sunshine, atmospheric 

turbidity, precipitable water content and cloud cover [77, 78]. On the other hand, 

decomposition models try to estimate direct and diffuse irradiance from global 

irradiance data [79-84]. 

 

Due to the relative simplicity of the model, decomposition models are widely used 

within the research communities, are also analysed here. These models are based 

on the correlation between the clearness index, kt (global irradiance/horizontal extra-

terrestrial irradiance) and the diffuse fraction, Ψ (diffuse irradiance/global irradiance). 

Four different component separator models of global horizontal irradiance are 

analysed proposed by  

 Orgill and Hollands [79],  

 Erbs et al. [80],  

 Reindl et al 1. [82].  

 Reindl et al 2. [82].  

 

All the above models estimate direct irradiance from the diffuse fraction. The results 

provided by these models depend on the clearness index, kt, and the solar elevation. 

Each of these models represents a correlation between the hourly clearness index, 

kt, and the corresponding diffuse fraction, Ψ of the irradiance. The model developed 

by Reindl introduces the solar elevation angle as a new variable in the model. The 

direct irradiance is obtained from the following equation (22) when diffuse fraction is 

estimated from Ψ -kt correlations.  

              (    )      
 

(22) 

Where G is the global radiation, α is the solar elevation angle, and Ψ is the hourly 

diffuse fraction. 
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Orgill and Hollands model:  

Ψ                          
            

(23) 

Ψ                              
                                                

(24) 

Ψ                          (25) 

 

Erb Klein Duffie model: 

Ψ                         
(26) 

Ψ                         
          

          
     

            

                                            
(27)  

Ψ                         (28) 

 

Reindl-I model: 

Ψ                            
 

(29) 

Ψ                                
                                            

(30)  

Ψ                          (31) 

 

Reindl-II model: 

Ψ                                       
 

(32) 

Ψ                                          
                                            

(33)  

Ψ                                    (34) 

 

All the above models are implemented in Delphi and validated against the measured 

values of respective parameters taken from CREST outdoor monitoring system.  
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4.4.1.1 Horizontal Diffuse Irradiance: 

Estimated values using the four (equation (23) - (34)) horizontal diffuse irradiance 

methods above are validated with actual measured values (Figure 55 - Figure 62), 

that includes the histograms of the deviation between measured and estimated 

values at an irradiance bin width of 50 W/m2. The agreements between the models 

are similar against the measured values and the best matched model is Reindl-II 

method which shows better agreement in the UK climatic conditions (Figure 61).   

 

Figure 55: Measured vs estimated 
horizontal diffuse irradiance using the 
Erb Klein Duffy model. 

 

Figure 56: Histogram of the deviation 

between estimated (by Erb-Klein-Duffy) 

and measured horizontal diffuse 

irradiance. 

 

Figure 57: Measured vs estimated 

horizontal diffuse irradiance using Origill 

Hollands model. 

 
Figure 58: Histogram of the deviation 

between estimated (by Origill Hollands) 

and measured horizontal diffuse 

irradiance 
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Figure 59: Measured vs estimated 

horizontal diffuse irradiance using Reindl-

I model. 

 

 

Figure 60: Histogram of deviation 

between estimated (by Reindl-I) and 

measured horizontal diffuse irradiance  

 

 

Figure 61: Measured vs estimated 

horizontal diffuse irradiance using Reindl-

II model. 

 

 

Figure 62: Histogram of deviation 

between estimated (by Reindl-II) and 

measured horizontal diffuse irradiance 

 

 

Arrows in the histograms (Figure 56, Figure 58, Figure 60 Figure 62) show the 

percentage contribution of the deviation between measured and modelled value at 

bin width 50 W/m2 and 100 W/m2. This indicates the lower percentage contribution of 

error by Reindl-II method at bin width 50 W/m2 compared to other models, whereas 

the error contributions at bin width 100 W/m2 of all four models shown similar results. 

 

4.4.1.2 Horizontal Beam Irradiance: 

Again, the histograms (Figure 64, Figure 66, Figure 68 and Figure 70) for horizontal 

beam irradiance modelling shows lower percentage contribution of error against 

measured values by Reindl-II method. 
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Figure 63: Measured vs estimated 

horizontal beam irradiance using the Erb 

Klein Duffy model. 

 

Figure 64: Histogram of deviation 

between estimated (by Erb Klein Duffy) 

and measured horizontal beam 

irradiance. 

 

 

Figure 65: Measured vs estimated 

horizontal beam irradiance using Origill 

Hollands model. 

 

 
Figure 66: Histogram of deviation 

between estimated (by Origill Hollands) 

and measured horizontal beam 

irradiance 

 

 
Figure 67: Measured vs estimated 

horizontal beam irradiance using Reindl-I 

model. 

 

 
Figure 68: Histogram of deviation 

between estimated (by Reindl-I) and 

measured horizontal beam irradiance.  
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Figure 69: Measured vs estimated 

horizontal beam irradiance using Reindl-

II model. 

 

Figure 70: Histogram of deviation 

between estimated (by Reindl-II) and 

measured horizontal beam irradiance 

 

 

The root mean square error (RMSE) and mean bias error (MBE) for all four methods 

compared with their respective measured values of horizontal beam and horizontal 

diffuse irradiance are shown in Table 9. 
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Model RMSE 

(W/m2) 

MBE 

(W/m2) 

RMSE % MBE % 

Erb Klein Duffie 49.0 8.0 34.0 5.8 

Orgill & Hollands 46.0 6.0 32.0 5.8 

Reindl I 51.0 11.0 35.4 8.0 

Reindl II 41.0 -7.0 28.5 -5.2 

Table 9: Comparison of statistical errors of the global horizontal irradiance 

component (beam & diffuse) separator models. 
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Table 9 represents the close agreement between the models with the best results 

achieved by the Reindl II model. Comparison between measured and estimated 

horizontal beam and diffuse irradiance using the Reildl-II model are shown in Figure 

61 and Figure 69. Due to the better agreement of the Reindl–II model with measured 

values (Table 9) this method is used in this study as the irradiance component 

separator model. Based on the Reindl–II model, three in-plane irradiance estimation 

methods [85] are analysed for the UK climate as illustrated in Table 10.   

Compared to all three GHor to GPoa translation methods analysed in this thesis 

(Figure 54), the Klucher model shows the best agreement with measured values in 

the UK climate. It should also be noted that translation models are site dependent 

considering the sky conditions of the specific site. Comparison of measured and 

estimated in-plane irradiance by the Klucher model is shown in Figure 73. 

 

Figure 71: Measured vs estimated in-

plane irradiance using the Lui Jordon 

model. 

 

 

Figure 72: Histogram of the deviation 

between estimated (by Lui-Jordon 

model) and measured in-plane irradiance 

 

Figure 73: Measured vs estimated in-

plane irradiance using the Klucher 

model. 

 

 
Figure 74: Histogram of the deviation 

between estimated (by Klucher model) 

and measured in-plane irradiance. 
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Figure 75: Measured vs estimated in-

plane irradiance using the Temps-

Coulson model. 

 

Figure 76: Histogram of the deviation 

between estimated (by Temps-Coulson 

model) and measured in-plane 

irradiance. 

 

The RMSE and MBE for all three methods compared with the measured values of in-

plane irradiance are shown in Table 10.  

Model 

 

RMSE 

(W/m2) 

MBE 

(W/m2) 

RMSE 

% 

MBE 

% 

Lui- Jordon 61.0 -13.0 21.3 -4.6 

Temp-Coulson 64.0 22.0 22.4 8.0 

Klucher 57.0 0.47 19.9 0.1 

Table 10: Validation results of the horizontal to in-plane irradiance translation 

models. 

All the above models are relatively old models but still representative. Compared to 

all three GHor to GPoa translation methods analysed in this section, the Klucher model 

shows the best agreement with measured values (Figure 73 and Figure 74). 

Selection of irradiance translation model largely influence the modelling related 

uncertainty introduced by the two irradiance sub-models studied in this section. Also, 

the level of uncertainty varies as a function of irradiance intensity and it’s higher at 

lower intensity of irradiance. So, the selection of irradiance sub-models should be a 

site dependent component in the energy yield prediction method considering the sky 

conditions of the specific site. 
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4.4.2 Temperature Modelling 

Accurate estimation of module temperature (Tmod) should improve the accuracy of 

the energy yield estimation. In this study, Tmod is estimated as a function of ambient 

temperature (Tamb) and irradiance (GPoa) using the equation (37) [86]. 

poaamb GkTT *mod   
                                  (37) 

Where k is the irradiance factor. ‘k’ is estimated based on the data measured in the 

CREST outdoor monitoring system for different module technologies and those 

values are 0.016, 0.03 and 0.026 for c-Si, a-Si and CIGS, respectively. The 

estimated Tmod (using equation (37)) is then compared with the measured Tmod for c-

Si, a-Si and CIGS modules. The RMSE and MBE between the estimated and 

measured Tmod is shown in Table 11 for all three modules. 

 

Figure 77: Measured vs estimated Tmod 

for c-Si module. 

 

Figure 78: Histogram of the difference 

between estimated and measured 

module temperature for c-Si module. 

 

Figure 79: Measured vs estimated Tmod 

for a-Si module. 

 

Figure 80: Histogram of the difference 

between estimated and measured 

module temperature for a-Si module. 
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Figure 81: Measured vs estimated Tmod 

for CIGS module. 

 

Figure 82: Histogram of the difference 

between estimated and measured 

module temperature for CIGS module. 

 

Figure 77, Figure 79 and Figure 81 shows the measured vs estimated Tmod for c-Si, 

a-Si and CIGS module. 

Module RMSE (oC) MBE (oC) RMSE (%) MBE (%) 

c-Si 3 -1 17.3 -6.8 

a-Si 5 2 31.5 13.4 

CIGS 3 0.5 21.1 2.9 

Table 11: Error analysis to estimate module temperature of different devices. 

Calculation of module temperature largely depends on the type of module, module 

mounting system, thermal effect due to wind speed and these factors directly linked 

with the module temperature modelling uncertainty. Also, the level of uncertainty 

varies as a function of temperature intensity and the above factors. The uncertainty 

level varies as the similar pattern as irradiance but at lower scale and it’s higher at 

lower temperature.  

 

4.4.3 Pmax Modelling 

Matrices of measured Pmax over a wide range of Gmod and Tmod are used as the 

module descriptor for all three different modules. Maximum power at target 
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irradiance (GPoa) and module temperature (Tmod) of the environmental data at all 

timestamps are estimated by linear regression from the input Pmax matrix plot. This 

method is suggested in the draft energy rating standard [87]. Three modules of the 

different technologies are also measured for the same period of time on the CREST 

outdoor monitoring system and the maximum power (Pmax) for each module is 

recorded at the same timestamp. The estimated Pmax values are compared with the 

measured values at real operation. The errors between estimated and measured 

values of all three modules are validated, shown in Table 12. Measured and 

estimated Pmax for c-Si, a-Si and CIGS modules are shown in Figure 83, Figure 85 

and Figure 87 respectively. 

 

Figure 83: Measured vs. estimated Pmax 

for c-Si module. 

 
Figure 84: Histogram of the difference 
between estimated and Pmax for c-Si 
module. 

 
Figure 85: Measured vs. estimated Pmax 
for a-Si module. 

 
Figure 86: Histogram of the difference 
between estimated and Pmax for a-Si 
module. 
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Figure 87: Measured vs. estimated Pmax 

for CIGS module. 

 

Figure 88: Histogram of the difference 

between estimated and Pmax for CIGS 

module. 

      

Module RMSE (Wp) MBE (Wp) RMSE (%) MBE (%) 

c-Si 0.73 -0.17 25.6 -5.9 

a-Si 0.51 0.22 36.5 15.6 

CIGS 0.35 -0.06 23.7 -3.8 

Table 12: Variation of errors of the estimated and measured Pmax of three PV 

modules. 

  

The uncertainty of the measured in-plane irradiance and module temperature 

contributes towards the error in the above table (Table 12). Additional uncertainty 

contributors are comes from the Pmax measurement, irradiance and temperature 

translation models including Pmax calculation method.  

 

4.5 Conclusions 

The level of accuracy in the IEC energy rating method is analysed by evaluating the 

uncertainty of the environmental parameters and validating the estimation method 

against real measurements.  
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In this chapter a robust analytical procedure for propagating the measurement 

uncertainties of irradiance and temperature for energy yield prediction was 

established. A Monte Carlo simulation approach was employed which is applicable 

to any location. For the evaluation of this procedure, the method has been validated 

at Loughborough, UK. The irradiance sensor used in this thesis is a CM 11 

pyranometer which gives ±1.56% annual irradiation uncertainty in the UK climate. 

The temperature sensor studied is a HMP45C Pt1000 sensor which resulted ±0.08°C 

annual average temperature uncertainty. It should also be noted that the level of 

uncertainty depends on the site dependent weather conditions and also the type of 

measurement equipment. 

The best-performing horizontal irradiance component separator model for the UK 

climate was identified as the Reindl-II model. Similarly the Klucher model to translate 

the horizontal to in-plane irradiance was identified as the best for UK climatic 

conditions amongst the models studied.  

The agreement between estimated and measured module temperature for three 

modules was found to be in the range of ± 3-5°C. This number may be improved by 

considering the thermal effects due to wind speed, but already is of similar scale of 

observed temperature variation within a single module [88].  

Estimation of Pmax for c-Si and CIGS modules was underestimated by 5.9% and 

3.8%, respectively, whereas that of the a-Si module was overestimated by over 15%. 

Possible reasons for this over estimation are the high spectral sensitivity of the a-Si 

module and seasonal material changes. Considering the spectral irradiance effects 

would potentially improve the predicted energy yield values close to the real 

measurement.  

The range of realistic operating conditions including spectral irradiance is analysed in 

chapter 5 in relation to the performance of the PV module. This helps to identify the 

measurement points for the module descriptor at a range irradiance, temperature 

and spectral irradiance conditions.  

 

 



80 
 

5 Fast Energy Yield Calculations (FEnYCs) Methodology 

 

5.1 Introduction 

To establish a reliable performance predictor for PV modules, efforts on energy yield 

prediction methodologies and energy rating standard are underway as demonstrated 

in the previous chapter. In order to achieve a realistic and accurate energy prediction 

method, the importance of good quality environmental data and module 

characterisation measurements were also explained in chapter four. This chapter 

explains in detail the requirements of a customized module characterisation 

methodology that will test the module over all relevant environmental conditions. The 

main objectives of this chapter are  

 To establish a new module characterisation methodology replicating the full 

range of realistic operational environmental conditions. 

 To establish the full procedure of FEnYCs methodology 

 To establish the modelling approach of FEnYCs power calculation from a multi-

dimensional power matrix at irradiance, temperature and spectral irradiance 

The matrix based energy yield calculation, explained before, requires either indoor or 

outdoor based PV module characterisation in order to obtain a performance matrix 

over the wide range of relevant environmental conditions. There are advantages with 

both indoor and outdoor based measurement campaigns. Indoor measurements are 

performed in a solar simulator by generating variable irradiance at constant air mass 

1.5 spectrum and over a controllable range of temperatures. Outdoor 

characterisation performs the measurement campaign in real conditions at different, 

uncontrolled, irradiance, spectral and temperature conditions.  

In an indoor test campaign, a wide ranging performance matrix of any PV module 

can be generated within very short period of time (a few hours) using solar simulator. 

This is the major advantage of indoor based measurement campaign which allows a 

fast characterisation of any PV module. But solar simulators have a particular 

limitation: current simulators are generally not able to generate the variable 
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irradiance spectra that are experienced in real operation. It is only possible to 

measure different irradiance at AM 1.5 spectrum. Due to this restriction, a spectral 

mismatch appears in the energy yield prediction method compared to the actual 

generation in real operation. The influence of spectral mismatch effects can be 

significant for strongly spectrally sensitive PV technologies, e.g. a-Si, as 

demonstrated in Chapter 4.  

Module characterisation in an outdoor measurement campaign can generate 

different irradiance conditions at different (and realistic) spectra and also at different 

temperatures. This method can offer accurate energy yield prediction as the module 

encounters all relevant environmental conditions. However, in order to achieve the 

full performance matrix over the required wide range of irradiance-temperature-

spectrum (G-T-E) conditions, it is required to expose that PV module for a long 

period of time, generally a full calendar year. So with outdoor based module 

characterisation, energy yield estimation can present an accurate method but with 

the penalty that it is time consuming (more than industry would tolerate). Also the 

range of weather conditions depends on location, so outdoor based characterisation 

may not be possible at all locations - as a result the implementation of this method 

as a standard would be an issue for some established test institutes.  

In the ideal case, a fast and accurate energy yield estimation method requires indoor 

equipment which can better replicate the outdoor weather conditions. To achieve 

this, a custom-built LED (Light Emitting Diode) based solar simulator is available at 

CREST which can generate variable irradiance, temperature and at the same time 

variable spectrum also.  

This chapter establishes the range of different operating conditions (irradiance, 

temperature and spectral irradiance) and the required measurement setup in the 

LED simulator to generate the module characterisation data for a robust energy yield 

prediction. This includes the characteristic analysis of the environmental data, which 

aims to specify the range of different parameters under which a PV module operates 

in real operation and identify the conditions of major energy generation contribution 

over the year. A correlation between irradiance-temperature and spectral irradiance 

in relation to the PV module performance outdoors is also analysed. The 

measurement settings of different influencing parameters are then established for 
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characterisation of the PV module indoors at compatible realistic outdoor operational 

conditions. This chapter helps to achieve the ultimate aim of this thesis to establish 

the fast energy yield prediction (FEnYCs) method for PV module of any technology 

with better accuracy.  

 

5.2 FEnYCs Methodology Development 

5.2.1 Overview of the proposed model 

The requirements of the proposed method are explained in this section. Similar to 

other energy yield prediction methods, this proposed method also requires two basic 

input measurement data sets i.e. PV module characterisation data and 

meteorological data of the operating location(s).  

Modules require characterisation indoors under variable irradiance, temperature and 

spectral irradiance to form a multidimensional performance matrix. Required 

measured meteorological data are irradiance, ambient temperature, spectral 

irradiance and wind speed. A matrix of meteorological data of the same parameters 

(as the indoor measurement matrix) is then required from any arbitrary site in order 

to estimate the energy yield (Figure 89) of the PV module. 
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Figure 89: Flow chart of Fast Energy Yield Prediction (FEnYCs) of PV modules. 

 

To develop the proposed method, all the meteorological data are taken from the 

CREST outdoor measuring systems. Total irradiance is estimated from the direct 

and diffuse components and translated from the horizontal to the plane of module 

array. The module temperature is calculated as a function of total irradiance, ambient 

air temperature and wind speed.  
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5.2.2 Analysis of Meteorological Data and Identification of Suitable Test 

Conditions  

This section analyses the environmental data in Loughborough to represent the UK 

climate for this study. The objectives of this study are to: 

1. Specify the extents of the different dimensions (parameter range) in the 

matrix, to successfully characterise the device. 

2. Define the modelling procedure, to show how to combine the module 

characteristics determined in step 1) with the meteorological data from 

anywhere to give the annual energy yield. 

3.  Evaluate the uncertainty overall and from each contribution. 

This information is used to define the measurement settings for the indoor 

measurement system by reproducing the outdoor conditions. This method enables 

module characterisation within short period of time (a few hours) under artificially 

generated realistic climatic conditions that PV devices can experience in real 

operation.  

 

5.2.2.1 Range of Operating Environmental Conditions 

The parameters considered in this study are irradiance, temperature and spectral 

irradiance and the selected time period of the measured dataset is from January 

2009 to December 2009. 

A three dimensional binning method is applied to analyse the above mentioned 

parametric annual dataset. Annual incoming energy (solar irradiation) has been 

binned by the above three parameters, with bin widths of 100W/m2, 10°C and 0.5AM 

for irradiance, temperature and spectrum, respectively. The results are shown in 

Figure 90. 
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Figure 90-a: Energy distribution from sum at 

AM 1.5 as a function of irradiance and 

temperature 

 
Figure 90-b: Energy distribution from sum at 

AM 2 as a function of irradiance and 

temperature 

 
Figure 90-c: Energy distribution from sum at 

AM 2.5 as a function of irradiance and 

temperature 

 
Figure 90-d: Energy distribution from sum at 

AM 3 as a function of irradiance and 

temperature 

 
Figure 90-e: Energy distribution from sum at 

AM 3.5 as a function of irradiance and 

temperature 

 
Figure 90-f: Energy distribution from sum at 

AM 4 as a function of irradiance and 

temperature 
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Figure 90-g: Energy distribution from sum at 

AM 4.5 as a function of irradiance and 

temperature 

 
Figure 90-h: Energy distribution from sum at 

AM 5 as a function of irradiance and 

temperature 

 
Figure 90-i: Energy distribution from sum at 

AM 5.5 as a function of irradiance and 

temperature 

 
Figure 90-j: Energy distribution from sum at 

AM 6 as a function of irradiance and 

temperature 

 
Figure 90-k: Energy distribution from sum at 

AM 6.5 as a function of irradiance and 

temperature 

 
Figure 90-l: Energy distribution from sum at 

AM 7 as a function of irradiance and 

temperature 
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Figure 90-m: Energy distribution from sum at 

AM 7.5 as a function of irradiance and 

temperature 

 
Figure 90-n: Energy distribution from sum at 

AM 8 as a function of irradiance and 

temperature 

 
Figure 90-o: Energy distribution from sum at 

AM 8.5 as a function of irradiance and 

temperature 

 
Figure 90-p: Energy distribution from sum at 

AM 9 as a function of irradiance and 

temperature 

 
Figure 90-q: Energy distribution from sum at 

AM 9.5 as a function of irradiance and 

temperature 

 
Figure 90-r: Energy distribution from sum at 

AM 10 as a function of irradiance and 

temperature 
 

Figure 90: Incoming energy distribution from sum at AM 1.5 to AM 10 as a function 

of irradiance and temperature. 
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The energy distribution surface plots above reveal at which levels of irradiance and 

temperature and at which AM spectum, the largest contributions of solar resource 

are available for a PV system in the UK climate.The ranges of operating conditions 

of irradiance and temperature at different AM spectra are listed in Table 13. 

Table 13: Range of climatic conditions in the UK covering major annual incoming 

energy density. 

AM 

Range 

Irradiance 

Range 

(W/m2) 

Temperature 

Range (°C) 

Incoming energy 

contribution (%) 

Annual 

Energy 

contribution 

cumulative 

(%) 

1.5 – 2 50 – 1050 10 – 55 38.7   

2.5 – 3 50 – 950 10 – 45 20.4 

3.5 – 4 50 – 350 10 – 35 13.1 

550 – 900 

4.5 – 5 50 – 250 5 – 30 9.3 

500 – 850 

5.5 – 6 50 – 150 5 – 30 4.8 

300 – 700 

6.5 – 7 50 – 600 5 – 25 3.2 

   7.5 – 8 50 – 500 5 – 25 2.2 

   8.5 – 9 50 – 400 5 – 25 1.7 

9.5 – 10 50 – 400 5 – 25 1.2 

 

 

 

 

81.5 

 

 

 

 

 

 

94.6 
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Table 13 shows the correlation of the ranges of irradiance and temperature at 

different air mass bands in relation to the annual solar energy contributions at 

Loughborough, UK. The bins of AM selected for the purposes of module 

characterisation have been primarily based on the level of their energy contrbutions. 

It is noticed that over 80% of annual energy is incident at spectra up to AM 5 and 

close to 95% up to AM 10 for the UK climate. 

SPECTRAL IRRADIANCE DEFINITION 

Integration of spectral irradiance at a range of wavelength is called irradiance. 

Different climatic region and cloudiness strongly influences the spectral irradiance 

and the intensity of the solar irradiance [89].  The spectral response of different 

module technology is different; hence the production of energy is different of different 

PV modules in different locations. Spectral mismatch effects are presented by other 

research groups [90-94]. 

So far, in this study, the spectral irradiance has been defined only by the air mass. 

However, there are other parameters that potentially can also influence the spectral 

irradiance such as the cloud condition (kt) and angle of incidence (AOI). Also, there 

is an on-going research in the research community for a unique number descriptor 

for spectral irradiance [93, 95].  Characterisation of spectral data, Average Photon 

Energy (APE) as a unique number descriptor for spectral irradiance is studied. APE 

of each spectrum of different Air Mass (AM) is then estimated using the equation 

(38). The unit of APE is the electron volt (eV). 
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              (38) 

Where E is the spectral irradiance, λ is the wavelength within the range 300nm to 

1700nm; q is the charge of electron.  

 

Total incoming energy from the sun (HPOA) is binned as a function of irradiance at 

plane of array, ambient temperature and APE with a bin size of 50 W/m2, 5°C and 

0.05eV, respectively. The annual irradiation distribution over different APE at 
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Loughborough are shown in Figure 91 with the APE of the standard AM1.5G 

spectrum in the range between 350 and 1700 nm is approximately 1.59 eV.  

 

Figure 91: Distribution of energy from sun as a function of APE. 

Other studies have already aimed to assess APE as a unique spectral irradiance 

descriptor [89, 93, 95].  

The annual energy distribution in the module plane (mounting frame at azimuth 0° 

and tilt angle at 45°) of array over different AM is shown in Figure 92. 

Clearness index (kt) is another environmental parameter considered to affect 

spectral irradiance. Clearness index distinguishes the sky conditions and indicates 

the level of cloudiness. Inclusion of the clearness index in the energy yield prediction 

method helps to define spectral irradiance characterisation points more realistically 

than assuming solely AM dependence. 

Spectral irradiance is also influenced by the solar angle of incidence (AoI). The 

energy distribution profile over different AoI is shown in Figure 93 and it’s largely 

influenced by the cosine effect, then reflection, then spectrum probably last. It is 

been found that major energy contribution takes place at near 35° AoI in 

Loughborough. 
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Figure 92: Incoming in-plane irradiation 

distribution at different AM. 

 
Figure 93: Incoming in-plane irradiation 

distribution at different AoI. 

 

Analysing all the above parameters, finally, spectral irradiance is defined as a 

function of AM, AoI, clearness index (kt). To classify the spectral irradiance, GPOA 

(incoming energy from sun) is binned as a function of AM, kt and Aol with their bin 

width of 0.5, 0.1 and 10° respectively and the energy distributions of each bin is 

shown in Figure 94. 

It is noted that at AoI upto  20°, the major contribution of energy from sun comes at 

lower AM spectrum (up to AM 2.5) in all sky conditions (kt: 0.2-1). Previously, Figure 

93 shows that major energy comes at AoI between 30° – 40° in the UK climate, 

which match the results shown below where the significant quantity of energy comes 

at clear sky condition (kt: 0.7 – 0.9) at higher irradiance level. 

An energy contribution at AoI above 50° mostly occurs in combination of partial cloud 

conditions and overcast condition at AM spectrum of 1.5 to 4.  

 
Figure 94-a: Incoming energy distribution as a 

function of different AM and Kt and  AoI at 10° 

 
Figure 94-b: Incoming energy distribution as a 

function of different AM and Kt and  AoI at 20° 
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Figure 94-c: Incoming energy distribution as a 

function of different AM and Kt and  AoI at 30° 

 
Figure 94-d: Incoming energy distribution as a 

function of different AM and Kt and  AoI at 40° 

 
Figure 94-e: Incoming energy distribution as a 

function of different AM and Kt and AoI at 50° 

 
Figure 94-f: Incoming energy distribution as a 

function of different AM and Kt and AoI at 60° 

 
Figure 94-g: Incoming energy distribution as a 

function of different AM and Kt and AoI at 70° 

 
Figure 94-h: Incoming energy distribution as a 

function of different AM and Kt and AoI at 80° 

 
Figure 94-i: Incoming energy distribution as a 

function of different AM and Kt and AoI at 90° 

 
Figure 94-j: Incoming energy distribution as a 

function of different AM and Kt and AoI at 100° 

Figure 94: Incoming energy distribution as a function of different AM and Kt and  AoI 
from 0° to 100°. 
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So far, the above meteorological data has been analysed to identify the range of 

operating conditions of each climatic parameter in the UK climate. This indicates the 

operating range of relevant environmental conditions for a PV system in outdoor 

operation at this location. The following section presents the correlation of the above 

environmental parameters in relation to PV performance for use in a generalised 

way. 

 

5.2.2.2 Correlations of Irradiance-Temperature-Spectral Irradiance (G-T-E) in 

Relation to PV Performance 

The aim of this section is to identify the measurement setup required for PV module 

characterisation indoors for the proposed energy yield prediction method of this 

thesis. The idea is to minimise the complexity of and time taken for the module 

characterisation, while maintaining the lowest possible uncertainties. 

Three different mini modules of different technologies (c-Si, a-Si and CIGS) were 

installed on the CREST outdoor testing facilities under the scope of this thesis, as 

shown in Figure 95. The electrical parameters of each module are measured and 

logged alongside the above environmental parameters.   

 

 

 

 

 

Figure 95: Three mini modules under test at CREST Outdoor Test System. 
 

To establish the correlations between the PV module performance and the 

irradiance, temperature and spectral irradiance, a five way binning method is 

applied. The dataset of this analysis is from January to December 2009.  

c-Si a-Si 

CIGS 
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Maximum power (Pmax) generation of each PV module are binned as a function of 

irradiance at PV module plane (Gpoa), module temperature (Tmod), air mass (AM), 

clearness index (kt) and angle of incidence (AoI). Integration of the Pmax values of 

each bin gives the annual energy yield contribution from different combinations of all 

the above environmental parameters. The selected bin widths are 50 W/m2, 5°C, 0.5 

AM, 0.25 and 10° respectively for Gpoa, Tmod, AM, kt and AoI.  

Selective surface plot of the annual energy contributions from the c-Si module are 

shown in Figure 96 at a combination of the above bin classes up to AM 10 and kt  up 

to 1. Due to the limitation of the measurement system (LED simulation), AoI variation 

is not taken into account and the outdoor data is considered with no restriction (the 

full range of operation within 0 – 120 degree is used). 

From this analysis, a four dimensional power matrix is formed as a function of Gpoa, 

Tmod, AM, kt (Energy Sum of Pmax = f {Gpoa, Tmod, AM, kt}).  

 
Figure 96-a: Annual energy distribution as a 

function of irradiance, temperature, AM1.5, kt 

0.25 at the  AoI range 0 - 120° 

 
Figure 96-b: Annual energy distribution as a 

function of irradiance, temperature, AM1.5, kt 0.5 

at the  AoI range 0 - 120° 

 
Figure 96-c: Annual energy distribution as a 

function of irradiance, temperature, AM1.5, kt 

0.75 at the  AoI range 0 - 120° 

 
Figure 96-d: Annual energy distribution as a 

function of irradiance, temperature, AM1.5, kt 1 at 

the  AoI range 0 - 120° 
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Figure 96-e: Annual energy distribution as a 

function of irradiance, temperature, AM2, kt 0.25 

at the  AoI range 0 - 120° 

 
Figure 96-f: Annual energy distribution as a 

function of irradiance, temperature, AM2, kt 1 at 

the  AoI range 0 - 120° 

 
Figure 96-g: Annual energy distribution as a 

function of irradiance, temperature, AM2.5, kt 

0.25 at the  AoI range 0 - 120° 

 
Figure 96-h: Annual energy distribution as a 

function of irradiance, temperature, AM2.5, kt 1 at 

the  AoI range 0 - 120° 

 

Figure 96-i: Annual energy distribution as a 

function of irradiance, temperature, AM3, kt 0.5 

at the  AoI range 0 - 120° 

 

Figure 96-j: Annual energy distribution as a 

function of irradiance, temperature, AM3, kt 1 at 

the  AoI range 0 - 120° 
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Figure 96-k: Annual energy distribution as a 

function of irradiance, temperature, AM3.5, kt 

0.25 at the  AoI range 0 - 120° 

 

Figure 96-l: Annual energy distribution as a 

function of irradiance, temperature, AM3.5, kt 1 at 

the  AoI range 0 - 120° 

 

Figure 96-m: Annual energy distribution as a 

function of irradiance, temperature, AM4, kt 0.25 

at the  AoI range 0 - 120° 

 

Figure 96-n: Annual energy distribution as a 
function of irradiance, temperature, AM4, kt 0.75 
at the  AoI range 0 - 120° 

 

Figure 96-o: Annual energy distribution as a 

function of irradiance, temperature, AM4.5, kt 0.5 

at the  AoI range 0 - 120° 

 

Figure 96-p: Annual energy distribution as a 

function of irradiance, temperature, AM5, kt 0.5 at 

the  AoI range 0 - 120° 

5

15

25

35

45

55

5
0

1
5
0

2
5
0

3
5
0

4
5
0

5
5
0

6
5
0

7
5
0

8
5
0

9
5
0

1
0
5

0

1
1
5

0

1
2
5

0

T
e

m
p

e
ra

tu
re

 (
 C

)Annual Energy 
Contribution

Irradiance (W/m2)

AM 3.5, kt 0.25

0,40%-0,60%

0,20%-0,40%

0,00%-0,20%

5

15

25

35

45

55

5
0

1
5
0

2
5
0

3
5
0

4
5
0

5
5
0

6
5
0

7
5
0

8
5
0

9
5
0

1
0
5

0

1
1
5

0

1
2
5

0

T
e

m
p

e
ra

tu
re

 (
 C

)Annual Energy 
Contribution

Irradiance (W/m2)

AM 3.5, kt 1

0,06%-0,08%

0,04%-0,06%

0,02%-0,04%

0,00%-0,02%

5

15

25

35

40

50

5
0

1
5
0

2
5
0

3
5
0

4
5
0

5
5
0

6
5
0

7
5
0

8
5
0

9
5
0

1
0
5

0

1
1
5

0

1
2
5

0

T
e

m
p

e
ra

tu
re

 (
 C

)

Annual Energy 
Contribution

Irradiance (W/m2)

AM 4, kt 0.25

0,40%-0,50%

0,30%-0,40%

0,20%-0,30%

0,10%-0,20%

0,00%-0,10% 5

15

25

35

45

55

5
0

1
5
0

2
5
0

3
5
0

4
5
0

5
5
0

6
5
0

7
5
0

8
5
0

9
5
0

1
0
5

0

1
1
5

0

1
2
5

0

T
e

m
p

e
ra

tu
re

 (
 C

)

Annual Energy 
Contribution

Irradiance (W/m2)

AM 4, kt 0.75

0,08%-0,10%

0,06%-0,08%

0,04%-0,06%

0,02%-0,04%

0,00%-0,02%

-5

10

20

30

40

50

5
0

1
5
0

2
5
0

3
5
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0

0

1
1
0

0

1
2
0

0

1
3
0

0

T
e

m
p

e
ra

tu
re

 (
 C

)Annual Energy 
Contribution

Irradiance (W/m2)

AM 4.5, kt 0.5

0,20%-0,30%

0,10%-0,20%

0,00%-0,10%

-5

10

20

30

40

50

5
0

1
5
0

2
5
0

3
5
0

4
5
0

5
5
0

6
5
0

7
5
0

8
5
0

9
5
0

1
0
5

0

1
1
5

0

1
2
5

0

T
e

m
p

e
ra

tu
re

 (
 C

)

Annual Energy 
Contribution

Irradiance (W/m2)

AM 5, kt 0.5

0,20%-0,30%

0,10%-0,20%

0,00%-0,10%



97 
 

 

Figure 96-q: Annual energy distribution as a 

function of irradiance, temperature, AM6, kt 0.5 

at the  AoI range 0 - 120° 

 

Figure 96-r: Annual energy distribution as a 

function of irradiance, temperature, AM6.5, kt 0.5 

at the  AoI range 0 - 120° 

 

Figure 96: Annual energy distribution of c-Si module as a function of irradiance, 

temperature, AM, kt at the  AoI range 0 - 120°. 

 

Measurement Set Up for Indoor Module Characterisation 

Based on the correlation of irradiance, temperature, air mass and clearness index 

with maximum power generation, measurement settings of a c-Si module in the UK 

climate is illustrated in Table 14. An extended set of measurement target points 

across all conditions are listed below. It should also be noted that this measurement 

settings might vary in different location with different climatic profile. In that case, 

similar annual energy distribution of a module as a function of irradiance, 

temperature, AM, kt needed to be carryied out for more accurate module 

charactirisation measurement settings.  

To identify the suitable modelling method for power calculation - with the module 

characterised data using above measurement settings and local weather data – 

different current-voltage translation approach are analysed in the next section. 
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Suitable modelling method help optimisation of the measurement points by 

minimising the required measurement settings, hence minimises the time and cost 

for manufacturers to testing a module.  

Table 14: Extended measurement setting for module characterisation. 

AM 
 

Kt 
 

AoI 
 

Irradiance  
(W/m2) 

Module 
Temperature 
(°C) 

1.5 

 

 

 

0.25 

0.5 

0.75 

1 

0-120 

 

 

 

50, 100  

200, 300, 400 

550, 700 

900, 1150 

15, 25, 40 

15, 25, 40 

      20, 40 

25, 35, 50 

2 

 

 

 

0.25 

0.5 

0.75 

1 

0-120 

 

 

 

50, 100 

200, 300 

450, 650 

800,1000 

     15, 25 

     15, 35 

     20, 40 

     25, 40 

2.5 

 

 

 

0.25 

0.5 

0.75 

1 

0-120 

 

 

 

50, 100 

200, 300 

400, 600 

850-1000 

     15, 25 

     15, 25 

    15, 35 

    15, 35 

3 

 

 

 

0.25 

0.5 

0.75 

1 

0-120 

 

 

 

50, 100 

200, 300 

400 

650, 1000 

5, 15,30 

5, 15, 30 

    15, 35 

    15, 30 

3.5 0.25 0-120 50, 100 5, 15, 30 
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0.5 

0.75 

1 

 

 

 

200 

300, 400 

600, 800, 900 

5, 15, 30 

    15, 30 

    15, 30 

4 

 

 

0.25 

0.5 

0.75 

0-120 

 

 

50, 100 

200 

350, 450, 650, 800 

5, 15, 25 

5, 15, 30 

    15, 25 

4.5 

 

0.5 

0.75 

0-120 

 

50, 100, 200 

450, 600, 750 

0, 15, 25 

      15, 25 

5 

 

0.5 

0.75 

0-120 

 

50, 100, 200 

350, 450,600, 700 

0, 15, 30 

    15, 25 

5.5 

 

0.5 

0.75 

0-120 

 

50, 100 

200, 300,450, 650 

0, 15, 30   

    15, 25 

6 

 

0.5 

0.75 

0-120 

 

50, 100, 200 

 300,450,600 

0, 15, 25 

0, 15, 25 

6.5 

 

0.5 

0.75 

0-120 

 

50, 100, 200 

300, 400, 550 

0, 15, 30 

     5, 20 

7 

 

0.5 

0.75 

0-120 

 

50, 100 

200, 300, 400, 500 

5, 15, 25 

5, 15, 25 

7.5 0.5 0-120 50,100, 150 0, 15, 25 

8 0.5 0-120 50,100, 150 0, 15, 25 

8.5 0.5 0-120 50,100, 150 5, 15, 30 
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9 0.5 0-120 50, 100, 250 0, 15, 25 

9.5 0.5 0-120 50, 100, 250 0, 15, 25 

10 0.5 0-120 50, 100, 250 5, 15, 25 

 

 

5.2.2.3 Optimisation of Required Number of Irradiance and Temperature 

Measurement Points:  I-V Translation Methodologies 

So far in this thesis, a linear fitting of irradiance and temperature is applied. In order 

to optimise the required number of measurement points for module characterisation 

for fast energy yield calculation and for better understanding the characteristics of 

PV module performance over the range of irradiance and temperature, different 

current-voltage (I-V) correction methods are analysed in this section. 

 

5.2.2.3.1   I-V Translation Methodologies:  

There are number of current –voltage (I-V) translation methods available [96-100] to 

estimate the I-V points and ultimately Pmax at a target irradiance and temperature. 

These translation models are illustrated elsewhere: Marion et al [97], explains an 

indoor characterisation method to determine a PV module’s temperature and 

irradiance correction factors in order to translate a reference I-V curve to outdoor 

conditions of PV module temperature and irradiance for energy yield calculation. 

This is based on the translation equations of ASTM E 1036–96 96]. Anderson et al 

[98] demonstrated an I-V translation approached using dimensionless temperature 

coefficients for current and voltage, which is based on Procedure 2 of the IEC 60891 

standard [100].  

Procedure 1 is based on the measured current-voltage characteristic which can be 

corrected to Standard Test Conditions or other selected temperature and irradiance 

values. Procedure 2 is based on the simplified one-diode model. Both procedure 1 

and 2 require I-V correction parameter extraction from two I-V curve measurements 
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at different temperature and irradiance conditions. Those extracted parameters are 

temperature coefficient of Isc and Voc, internal series resistance (Rs’) temperature 

coefficient of internal series resistance (k’). 

Procedure 3 of IEC 60891 [100] standard is based on the procedure developed by 

Hishikawa et al [101]. This procedure is based on linear interpolation with respect to 

two measured I-V characteristics to estimate the target I-V characteristics at a target 

irradiance and temperature.  

Analysis of the different I-V translation methods also helped to identify the suitable 

modelling approach for the proposed energy yield estimation. To study the 

characteristics of module performance at a range of irradiance and temperature, a c-

Si PV module has been tested indoors under variable irradiance and temperature 

using the LED-based solar simulator. The deviation of actual measured Pmax and 

estimated Pmax of different approaches of I-V translation is then compared using 

Procedures 2 and 3. These modelling approaches indicate the expected level of 

accuracy of each translation method and ultimately an indication of the scale of 

modelling errors in the energy yield prediction of PV modules. 

I-V Translations: The measured current-voltage characteristics are translated 

according to procedure 2 of IEC 60891 to the target irradiance and temperature 

conditions using equation (39) and   (40). 

1

11 *))(*1(*
G

G
TTII T

TrelT    

 

      (39) 

)(**ln*)(** 1
1

111 TTIk
G

G
aTTVVV TT

T
TrelocT 















   

 

  (40) 

 

Where (I1, V1) are coordinates and Voc1 is the open circuit voltage at measured 

irradiance G1 and temperature T1. (IT, VT) are targeted coordinates at target 

irradiance GT and target temperature TT. α and β are the relative current and voltage 

temperature coefficients at G1. ‘a’ is the irradiance correction factor for open circuit 
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voltage with a typical value of 0.06 [100]. “k” is the curve correction factor of the test 

sample. Estimation of curve correction factor is outlined in Figure 97. 

Temperature coefficients for current and voltage are determined from measured I-V 

curves at AM1.5 spectrum and irradiance at 765 W/m2 (the maximum irradiance the 

LED solar simulator can measure at AM1.5 spectrum) and temperatures in the range 

of 15-55 °C. To calculate the curve corrector factor (k), the I-V characteristics at 

lowest temperature and at constant irradiance are used. All other I-V curves at 

different temperatures within the range of interest and at higher irradiances are 

translated to the I-V curve at temperature of 15°C using equation (39) and   (40) also 

temperature coefficients as described in Figure 97.  

 

Figure 97: Flow diagram to estimate curve correction factor (k). 
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Maximum Power Interpolation: Linear interpolation is applied using equation (41) 

and (42) to estimate the maximum power (Pmax) at the intermediate points of the 

power matrix of the c-Si PV module as a function of irradiance and temperature at 

AM1.5 spectrum.  

 121 * PPaPPT   

 

        (41) 

 
 12

1

GG

GG
a T

G



  OR 

 
 12

1

TT

TT
a T

T



  

 

        (42) 

Where PT is the maximum power of the I-V curve at target irradiance and 

temperature (GT,TT). P1 and P2 are the measured maximum power of the I-V curves 

at irradiance and temperature at (G1,T1) and (G2,T2) respectively. aG and aT are the 

interpolation coefficients for power interpolation against irradiance and temperature 

respectively. 

Pmax is corrected to its intermediate values from the four measured various 

irradiances and temperatures. A surface of power matrix as a function of irradiance 

and temperature is shown in Figure 98, where the blue squares represent the 

measured maximum power points of a c-Si module. All the other points of maximum 

power at different irradiance and temperature points (white squares) are estimated 

by bilinear interpolation method.  Deviation of estimated Pmax by linear interpolation 

against the measured Pmax are analysed and shown in Figure 100 and Figure 101. 

 

Figure 98: Different sets of data points in the power matrix as a function of irradiance 

and temperature. 
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I-V Correction Results: The maximum measured irradiance of the LED simulator, 

developed by other researchers at CREST, is 765 W/m2. For Procedure 2 of IEC 

60891 (equation (39) and (40)), the reference measured irradiance and temperature 

for I-V characteristics are 765 W/m2 and 25°C respectively. All the other I-V curves 

are translated to other irradiance and temperature points of interest as shown in 

Figure 99. The estimated and measured maximum power points of each curve are 

then compared. Deviations between the estimated Pmax and the actual measured 

Pmax are shown in Figure 99. 

 

Figure 99: Deviation of measured and translated Pmax based on procedure 2 of IEC 

60891 standard. 

It is clearly noticeable that the agreement between measured and estimated Pmax by 

I-V translation procedure 2 of IEC 60891 standard is within ±2% at higher irradiance 

level with over ±6% at low light condition. Hence using this I-V translation method for 

targeted power calculation in lower irradiance zones can lead to a higher error in the 

prediction e.g. in the UK climatic zone. 

For better accuracy at lower intensity levels Hishikawa et al [99], demonstrated a 

linear interpolation/extrapolation between the four measured I-V curves within the 

range of irradiance and temperature conditions. A similar approach based on 

equation (41) and (42) in the power matrix is carried out in this study. With this 
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method the agreement between the estimated and measured Pmax is up to ±6%, as 

shown in Figure 100. The reason for this high deviation is the non-linearity effect of 

power at low intensity level of irradiance against the linear interpolation modelling 

approach between four extreme irradiance and temperature points.  

 

Figure 100: Deviation of measured and interpolated Pmax with four extreme points of 

irradiance and temperature in the power matrix. 

   

To minimise the modelling uncertainty in order to achieve an accurate energy yield 

prediction method, the number of measurement points at other irradiances and 

temperatures is increased. The bilinear interpolation method is executed again by 

selecting different sets of data points (Figure 98) within the operational range of 

irradiance and temperature. 

Selecting two sets of data points (blue squares blocks in Figure 98), the deviation of 

Pmax is minimised to within 2.5% as shown in Figure 101. 
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Figure 101: Deviation of measured and interpolated Pmax with two sets of four points 

of irradiance and temperature in the power matrix. 

 

This deviation implies that the power output of c-Si is non-linear at lower irradiance 

level but it is linear against temperature. Measurement of other module technologies 

and their I-V modelling show similar characteristics to the c-Si module for the number 

of irradiance and temperature points studied. The number of irradiance and 

temperature measurement points are optimised by realising the linear characteristics 

of PV modules at the range of irradiance and temperature, shown in Table 15. 

Table 15: Optimised measurement set up for module characterisation. 

AM 
 

Kt 
 

Irradiance  
(W/m2) 

Module 
Temperature 
(°C) 

1.5 

 

 

 

0.25 

0.5 

0.75 

1 

50, 100  

200, 400 

600 

800, 1100 

15, 25, 50 

15, 25, 50 

15, 25, 50 

15, 25, 50 

-2,5

-2
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2 

 

 

 

0.25 

0.5 

0.75 

1 

50, 100  

200, 400 

600 

800, 1100 

     15, 25 

     15, 35 

     20, 40 

     25, 40 

2.5 

 

 

 

0.25 

0.5 

0.75 

1 

50, 100  

200, 400 

600 

800, 1100 

     15, 25 

     15, 25 

    15, 35 

    15, 35 

3 

 

 

 

0.25 

0.5 

0.75 

1 

50, 100 

200, 300 

400 

650, 1000 

5, 15,30 

5, 15, 30 

    15, 35 

    15, 30 

3.5 

 

 

 

0.25 

0.5 

0.75 

1 

50, 100 

200 

300, 400 

600, 800, 1000 

5, 15, 30 

5, 15, 30 

    15, 30 

    15, 30 

4 

 

 

0.25 

0.5 

0.75 

50, 100 

200 

400, 600, 800 

5, 15, 25 

5, 15, 30 

    15, 25 

4.5 

 

0.5 

0.75 

50, 100, 200 

400, 600, 800 

0, 15, 25 

      15, 25 

5.5 

 

0.5 

0.75 

50, 100 

200, 300,450, 

650 

0, 15, 30   

    15, 25 

7 0.5 50, 100 5, 15, 25 
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 0.75 200, 300, 400, 

500 

5, 15, 25 

7.5 0.5 50,100, 150 0, 15, 25 

10 0.5 50, 100, 250 5, 15, 25 

 

5.3 Evaluation of The FEnYCs Method 

In this section the Fast Energy Yield Calculations (FEnYCs) method is evaluated. 

The procedure of the calculation methodology is illustrated comprising the 

measurement and modelling elements. Meteorological data are taken from the 

CREST outdoor test facility. The energy output of PV devices of three different 

technologies are modelled with the FEnYCs method and compared with measured 

values. The required module characterisation data based on the measurement 

settings described in chapter 5 are extracted from the annual outdoor measurement 

dataset.  

A tri-linear interpolation method is utilised to calculate the maximum power of each 

device at target irradiance, temperature and AM spectrum, as dictated by the time 

series of weather data. Validation of the FEnYCs method is then presented for each 

device over a range of environmental conditions available throughout a year. 

5.3.1  FEnYCs Procedure 

The procedure of the FEnYCs method comprises a combination of different 

measurements and modelling approaches.  

1. Measurement 

i. The measurement of the environmental data 

a. Global horizontal irradiance, clearness index (kt), ambient 

temperature. 

b. Module power matrix as a function of Gmod, Tmod and AM spectrum. 

2. Modelling 

ii. Global horizontal irradiance to global horizontal beam and diffuse and 

then to plane of array irradiance (Gmod) 
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iii. Ambient temperature to module temperature considering irradiance 

factors 

iv. FEnYCs energy yield calculation: tri-linear interpolation between power 

matrix points against target Gmod, Tmod and AM spectrum. 

 

 

Figure 102: Procedure of the Fast Energy Yield Calculation (FEnYCs) Method 
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Blue colour blocks represent the measurement elements of the procedure and grey 

blocks represent the modelling elements. The above procedure is applied to 

calculate the annual energy yield of three different device technologies.  

 

5.3.1.1 Outdoor Measurement  

 

The measured environmental data are taken from the CREST outdoor monitoring 

system (COMS) at Loughborough. The duration of the measurement period is from 

October 2009 to November 2010. 

The same three PV modules are investigated as shown in Table 4: small crystalline 

silicon (c-Si), amorphous silicon (a-Si) and copper indium gallium selenide (CIGS) 

modules. I-V curves of these modules are measured in the COMS system every 5 

minutes and this provides their annual energy yields. The parameters extracted from 

the measured data are irradiance in module plane, module temperature and 

maximum power of each module from October 2009 to November 2010. In addition, 

solar geometry calculations provide corresponding AM values for each timestamp. 

 

5.3.1.2 Irradiance modelling Approach 

Irradiance modelling in the FEnYCs method follows the two steps translation 

modelling as presented in Chapter 4, where Reindl II method shows the best results 

between measured and estimated horizontal beam and diffuse irradiance values and 

the Klucher model shows the best agreement with measured values for horizontal to 

plane of array irradiance as presented in chapter 4 (section 4.4.1) of this thesis,  

 

5.3.1.3 Temperature modelling Approach 

Module temperature (Tmod) is estimated as a function of ambient temperature (Tamb) 

and irradiance (GPoa) as shown in (37) (chapter 4). Irradiance factor of module 

temperature is calculated considering the type of module, module mounting system, 

thermal effect due to wind speed. 
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5.3.1.4 Pmax modelling 

Since the target Gmod, Tmod and AM points from the environment data time series will 

not generally coincide with the modules characterisation matrix points, a tri-linear 

interpolation method is applied within a cube of measured Pmax at the vertices of the 

cube. The cube is formed, as shown in Figure 103 of a three dimensional matrix of 

measured Pmax from the module characterisation over a wide range of Gmod, Tmod and 

AM (as the spectral representative). This multi-dimensional matrix is used as the 

module descriptor for all three different modules (each with its own characterisation 

dataset). Maximum power at target irradiance (GPoa), module temperature (Tmod) and 

AM of the environmental data at all timestamps are estimated by a tri-linear 

interpolation from the input multi-dimensional Pmax matrix plot.  

The vertices of the cube of maximum The matrix of the maximum power of the 

module as a function of irradiance, temperature and AM is loaded. Then the length of 

the arrays of irradiance, temperature, AM and maximum power of each module are 

set. The tool then searches for the relevant bounding values of irradiance, 

temperature and AM and looks up the respective Pmax values at the combination of 

these environmental parameters. A cube is then defined of its eight Pmax values 

(Figure 103) of each device at eight different combinations of irradiance, temperature 

and AM spectrum. Cube selection criteria also includes the target irradiance, target 

temperature and target AM spectrum and two nearby points of each of these 

parameters for linear interpolation. 
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Figure 103: Tri-linear interpolation 
 

Power coefficients of the four dimensional tri-linear interpolation method are 

calculated by using the following calculations: 

 

c0 = Pmax000 (43) 

c1 = (Pmax100 - Pmax000) (44) 

c2 = (Pmax010 - Pmax000) (45) 

c3 = (Pmax001 - Pmax000) (46) 

c4 = (Pmax110 - Pmax010 - Pmax100 + Pmax000) (47) 

c5 = (Pmax011 - Pmax001 - Pmax010 + Pmax000) (48) 

c6 = (Pmax101 - Pmax001 - Pmax100 + Pmax000) (49) 
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c7 = (Pmax111 - Pmax011 - Pmax101 - Pmax110 + Pmax100   

         + Pmax001 + Pmax010 - Pmax000) 

(50) 

 

Using the selected cube of the power matrix and the above power coefficients, the 

power at target conditions is calculated by the following tri-linear formula. Tri-linear 

interpolation is derived by applying the bilinear interpolation seven times – three 

times each to determine the Pmax 1 and Pmax 0, then one more time to calculate the 

point Pmax. 

 

Targeted Pmax = c0 + c1 * ∆Gmod + c2 * ∆Tmod + c3 * ∆AM + 

c4 * ∆Gmod * ∆Tmod + c5 * ∆Tmod * ∆AM + c6 * ∆Gmod * ∆AM + 

c7 * ∆Gmod * ∆Tmod * ∆AM; 

(51) 

 

Where:      

∆Gmod:= (Targeted Gmod - Irrad0) / (Irrad1 - Irrad0); 

∆Tmod:= (Targeted Tmod - Temp0) / (Temp1 - Temp0);  

∆AM:= (Targeted AM - AM0) / (AM1 - AM0); 

 

Irrad0 and Irrad1 are the bracketing irradiances to the target irradiance.  Temp0 and 

Temp1 are the bracketing module temperatures to the target temperature.  AM0 and 

AM1 are the bracketing AM values of the target AM spectrum. 
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5.3.2 Validation of FEnYCs Method 

 

Figure 104: Validation of FEnYCs energy yield method for c-Si module in 

Loughborough, UK. 

 

Figure 105: Deviation of monthly energy yield between calculated and measured 

values for c-Si module in Loughborough, UK. 
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Figure 106: Validation of FEnYCs energy yield method for a-Si module in 

Loughborough, UK. 

 

Figure 107: Validation of FEnYCs energy yield method for CIGS module in 

Loughborough, UK. 
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also observed for the a-Si and CIGS modules. It is seen that the FEnYCs method 

tends to overestimate the power at higher irradiance and temperature levels. This 

overestimation is expected potentially due to the sensitivity of introducing spectral 

influences in the power calculation. Due to the large number of outliers in the power 

calculation for February month, a larger deviation is noticed. This is due to the 

combination of the variability in the measurements and experimental error that 

occurs in the COMs system in February 2010. It should also be noted that the small 

number of measurements available in February leads to the higher deviation for this 

month. 

 

5.3.2.1 Accuracy of the estimated energy yield against measured energy yield of the 

PV modules 

 

The RMSE and MBE between the calculated and measured Pmax of all three devices 

are shown in Table 16. Previously these values are estimated for IEC 61853 method 

shown in Table 12 (chapter 4). There is a minor improvement in the c-Si and CIGS 

modules are noticed, with a significant improvement for the a-Si module. This is 

largely due to AM influence consideration in the FEnYCs method.      

Module RMSE (Wp) MBE (Wp) RMSE (%) MBE (%) 

c-Si 0,57 0,16 19,46 5,48 

a-Si 0,33 0,10 22,76 6,97 

CIGS 0,27 0,05 16,54 3,10 

 

Table 16: Error analysis of calculated Pmax of different devices against measured 
values. 
 

Sensitivity of power at different AM spectrum of all these module is shown in Figure 

14. The best performance of a-Si module is appears in AM1.5 spectrum and the 

contribution of incoming energy from the sun in the range of AM1.5 – AM2 is 38.7% 

in the UK climate. The irradiance data used in the validation of IEC 61853 method 
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only contains AM1.5 spectrum data compare to up to AM10 spectral irradiance is 

used in the FEnYCs method, hence the improvement is observed in the yield 

calculation for the most spectrally sensitive PV module in this study.  

The spectral response range of c-Si and CIGS module is similar and they are 

relatively less spectrally sensitive with best performance at the range of AM4 to AM5 

spectrum, which covers over 81% of incoming energy (Table 13) in UK climate. A 

further minor improvement in the FEnYCs method for all three modules are highly 

expected by using a good full year data, as the February months outliers introduces 

larger deviation between estimated and measured energies  of each technologies.  

 

5.4 Conclusions 

In this chapter the climatic parameters that influence the performance of PV devices 

were analysed. The range of operating irradiance, temperature, AM and kt are 

identified that needed for module characterisation, i.e. Gpoa = 0 - 1400W/m2, Tmod = -

5 - 55°C, AM = 1.5 - 10, kt =0.25 – 1. The identified operating range would be 0 – 

120°. These operating conditions contributed 94.6% of the annual energy yield of the 

c-Si module studied in this thesis. It should be noted that a site specific analysis is 

needed to identify the range of operating conditions, which gives an expected energy 

yield profile.   

A correlation between irradiance, temperature and spectral irradiance in the UK 

climate is identified in relation to PV performance, which helps to identify the realistic 

module characterisation measurement points for Fast Energy Yield Calculation 

(FEnYCs) method covering all relevant environmental conditions.  

Different I-V translation methods are evaluated to identify a suitable modelling 

method for FEnYCs. The variation of power against all relevant environmental 

conditions and their level of accuracy in the power calculation are evaluated.  

Analysing the accuracy in the power calculation, the linear interpolation method is 

identified for FEnYCs method and accordingly customised the number of 

measurement points. 
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The number of measurement points are 160 for module characterisation is identified. 

These numbers are identified based on the linearity of the power variation against 

irradiance and temperature – i.e. the frequency of measurement of irradiance and 

temperature is higher at non-linear regime of the power.   

Higher the number of measurement points potentially increases the chance of better 

agreement of calculated power against real measurements. But it should also be 

noted that every measurement takes time and also the cost associated with it, plus 

potentially introduce the chance of additional measurement uncertainty.  

Validation of the FEnYCs method is presented in chapter 5 to evaluate the level of 

accuracy of the proposed model and how the results compare with the validation 

results of IEC energy rating standard.  

The evaluation of the Fast Energy Yield Calculations (FEnYCs) method is carried out 

introducing tri-linear interpolation of the power as a function of irradiance, 

temperature and AM spectrum. The validation result showed an improvement in the 

calculated power against the measured values for different device technologies, 

especially for spectrally sensitive a-Si module, where near 8% improvement is 

noticed.  

The FEnYCs method assessment is carried out based on the outdoor module 

characterised data and the maritime climate weather data is used. Reindl II and 

Klucher models are applied as in-plane irradiance translation models and a simple 

but widely used module temperature translation model is used as presented in 

Chapter 4. It should be noted that the selection of irradiance sub-models should be a 

site dependent component in the energy yield prediction method considering the sky 

conditions of the specific site. 

 The tri-linear interpolation promised to be a better power calculation modelling 

approach in this study. With this promise, a full validation of FEnYCs method at 

different climatic conditions is needed in order to establish its robustness for energy 

yield calculation of all commercial modules. This includes the validation method 

based on the indoor module characterisation of the same measurement settings.  
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6 Thesis Conclusions and Future Work 

6.1 Conclusions 

A new energy yield calculation method – FEnYCs - is established with a novel multi-

dimensional module characterisation method and a tri-linear interpolation method 

that is used first time in any PV yield estimation model. To develop the FEnYCs 

method and to identify the specific requirements of a robust energy yield method, a 

detail validation of the proposed energy rating algorithm is evaluated. A detail 

validation of different irradiance and temperature translation methods are analysed 

and identified the best suited irradiance translation model for the UK climate. 

Uncertainty analysis of the irradiance and temperature measurements as 

environmental input data are performed.  

6.1.1 Validation of Energy Rating Method 

Partial validation of this standard was performed elsewhere, but a full validation effort 

is made in this first time within the scope of this research. This is a 2D matrix based 

module characterisation method at AM1.5 spectrum with spectral irradiance 

correction. Part 1 and Part 2 is IEC 61853 standard is now commercially available. 

Overall, the IEC energy rating procedure is a complex one and it’s not beneficial for 

an accurate energy prediction.  Part 3 of this standard is the calculation part, which 

has lack of clarity in some of the modelling algorithm. This includes, the 

interpolations method of spectral correction algorithm and irregular resolution in the 

given spectral irradiance and spectral response of the modules. It also fails to give 

clarity on the modelling approach to estimate a power at targeted irradiance and 

temperature – it’s rather open to select linear regression or linear interpolation.  

The six reference days are not particularly mapping the global range of weather 

pattern and represents as a standard weather dataset, hence collaborative effort is 

ongoing within EU PV community to establish a standard dataset for this energy 

rating standard. Commercial success of this energy rating standard is not very 

promising with its current status but has a potential to be adoptable in the PV 

commercial community with some modification in the algorithm. 
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6.2 Performance Modelling of Photovoltaic Modules and Uncertainties 

Irradiance is the most influencing environmental parameters that affect the 

performance of a PV module. The irradiance of all weather dataset is typically 

available at horizontal plane. Then a modelling approach is needed to convert this 

global horizontal irradiance to plane of module array. There are different translation 

models available. Evaluating different methods, first time ever for the UK climate, the 

best-performing horizontal irradiance component separator model was identified as 

the Reindl-II model. Similarly the Klucher model to translate the horizontal to in-plane 

irradiance was identified as the best model for UK climatic condition. Both of these 

two models are applied in the FEnYCs method. 

Similarly, a temperature translation model is requiring converting the ambient 

temperature to module temperature. Calculation of module temperature largely 

depends on the type of module, module mounting system, and thermal effect due to 

wind speed. In this thesis a simplified module temperature calculation is applied as a 

function of ambient temperature and irradiance factor –k. ‘k’ is estimated based on 

the data measured in the CREST outdoor monitoring system for c-Si, a-Si and CIGS 

module technologies and those values are 0.016, 0.03 and 0.026 for, respectively. 

These ‘k’ values can be applied in the commercial application in the UK while 

designing a PV system string configuration and to get an indication of the maximum 

module temperature in a given ambient temperature. 

A novel approach is applied for uncertainty analysis of irradiance and temperature 

measurement using Monte Carlo technique. A thermopile pyranometer – CM11 - is 

analysed considering its uncertainties that changes over the annual time period of 

measurement time and uncertainties that changes at each timestamp of the 

measurement. This procedure is validated in the UK climate, which gives ±1.56% 

annual irradiation uncertainty in the UK climate with monthly variation in the range of 

±2% to ±6%. Lower the irradiance level higher the level of measurement 

uncertainties. All given uncertainties in the manufacture’s manual are modelled at 

each timestamp of the measured irradiance level rather than just using the 

uncertainty values given in the manual. Using this method one can expect a robust 

uncertainty analysis of thermopile type pyranometer in any location.  
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A similar Monte Carlo approach is applied for temperature measurement uncertainty 

analysis. The measurement uncertainty is calculated in the range of ±0.18°C to 

±0.46%°C in different months of the year with an annual average uncertainty as 

±0.08OC.  

Based on the above measurement uncertainties of irradiance and temperature, the 

uncertainty of annual energy yield for c-Si and CIGS PV modules were determined 

through Monte Carlo simulation and they are ±2.78% and ±15.45. 

This uncertainty results are useful for any commercial PV system these days in the 

financial risk analysis process. 

6.3 Fast Energy Yield Calculations (FEnYCs)  

A three-dimensional matrix is established as the module descriptor which is 

independent of module technologies. Maximum power at any given irradiance, 

temperature and AM in any location can be calculated by a tri-linear interpolation 

method from the input three-dimensional Pmax matrix plot. The operational range of 

all relevant environmental parameters to be considered before applying FEnYCs 

algorithm for better accuracy achievement in the energy prediction.  

The operational range of irradiance, temperature, AM and kt in the UK climate is 

studied and the identified values are: Gpoa = 0 - 1400W/m2, Tmod = -5 - 55°C, AM = 

1.5 – 10 (upto 94.6% annual incoming energy), kt =0.25 – 1.  A site specific 

environmental data analysis is require to identify the range of operating conditions 

and the expected energy generational profile of different technologies. This also 

helps to establish a correlation between different environmental parameters with 

respect to a PV device performance.   

A novel approach, tri-linear interpolation of power against three parameters – 

irradiance, temperature and AM – is applied as the power calculation model of 

FEnYCs method with a customised number of measurement points in the module 

characterisation power matrix.  

Considering the linear nature of the power variation against irradiance and 

temperature, a novel three-dimensional module characterisation power matrix with 
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160 measurement points are identified. In this measurement setting, the number of 

irradiance measurements are higher in lower intensity level (shorter interval within 

the full range), where the power is non-linear.  

More measurement points of the matrix minimise the interval of the distribution, 

which ideally minimise the modelling error of the power calculation using linear 

interpolation between points. But increasing the number of measurement point not 

necessarily is the best solution in terms of the energy yield calculation accuracy, 

because more measurement means potentially increasing the measurement 

uncertainty. Also every measurement is associated with cost. Optimisation of the 

measurement points against the level of calculation accuracy is important.    

FEnYCs algorithm also presented other two sub-models - irradiance and 

temperature translation models. Reindl II and Klucher models are applied as in-plane 

irradiance translation models and a simple but widely used module temperature 

translation model is used. Selection of irradiance sub-models should be site specific 

and to be identified as per the local environmental conditions in relation to the direct 

and diffuse fraction of irradiance, solar elevation angle, clearness index. 

Validation results of the FEnYCs method showed a good agreement against real 

measured values of all three device technologies. Improvement is noticed in the 

modelling accuracy against the IEC energy rating standard and a comparison in 

shown in Table 17. A minor improvement is noticed for c-Si and CIGS module. But 

above 8% improvement is noticed for a-Si module. 

Spectral corrections are not applied in the above results of IEC 61853 method (only 

used AM1.5 spectral irradiance). Whereas a-Si performs best in lower AM spectrum 

and the incoming energy from the sun in the range of AM1.5 – AM2 is 38.7% in the 

UK climate. Hence a significant improvement is achieved in the FEnYCs method. 

The best performance of c-Si and CIGS occurs at spectrum range of AM4 to AM5, 

which contains 81% of energy; hence a little improvement is noticed in the FEnYCs 

method. A further improvement is expected in the above results as there are some 

outliers in the February month weather data.  
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Table 17: Comparison of calculation error of FEnYCs method against IEC 61853 

energy rating method  

Module 

IEC 61853 Method           

(without spectral correction) 

FEnYCs Method 

RMSE (%) MBE (%) RMSE (%) MBE (%) 

c-Si 25.6 -5.9 19.46 5.48 

a-Si 36.5 15.6 22.76 6.97 

CIGS 23.7 -3.8 16.54 3.10 

 

FEnYCs method shown favourable results applicable to different device technologies 

with both its unit module characterisation approach and the tri-linear interpolation 

approach for power calculation. With this potential for more accurate and applicable 

to all technologies, FEnYCs energy yield prediction method requires a full validation 

at different climatic conditions in order to establish its robustness for energy yield 

calculation. This includes the validation method based on the indoor module 

characterisation of the same measurement settings.  

6.4 Future Work 

A full validation of this method based on the indoor module characterisation data 

leads to the requirements of a solar simulator which should be able to characterise 

the module at variable irradiance at different spectrum and temperature at the full 

operational range. 

For application of the full FEnYCs methodology to be validated in different climate 

conditions. Measurement uncertainties of FEnYCs module characterisation (indoors 

& outdoors) would improve the robustness of prediction method. 

For better representation of the of IEC 61853 energy rating method, the IEC 

Technical Committee 82 can adopt the FEnYCs module characterisation method and 

the tri-linear modelling approach for power calculation.  
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