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ABSTRACT 

Annual fetus mortality rates due to road traffic accidents are much higher than 

the infant mortality rates in motor vehicle crashes. The goal of this study is to 

generate a computational model of the unborn occupant (fetus) for crash 

protection research. The multibody fetus model is accommodated in the Finite 

element uterus model of ‘Expecting’, the computational pregnant occupant 

model which tackles the complexity of a pregnant women’s anatomy and 

incorporates pregnant female anthropometry.  

In particular, 38 weeks gestation level is focused upon since at this stage of 

pregnancy the fetus is at greatest risk during a crash due to the size increase of 

the abdomen resulting in a close proximity to the vehicle steering wheel and 

awkward routing of the seatbelt. This article explains in detail all stages of 

modelling the unborn occupant and the links to its environment, the uterus with 

a placenta and the computational female model. 
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1. INTRODUCTION 

It has been shown in the literature that motor vehicle collisions are the leading 

cause of accidental fetal death [1]. In the UK alone there are approximately 

750,000 pregnant women each year all of which are likely to be vehicle drivers 

or passengers during some or all stages of their pregnancy [2-4].  It has been 

estimated that around 3400 women in the second half of pregnancy are 

involved in car crashes annually [5]. Fetus mortality rates due to accidents are 

much higher than the infant mortality rates in motor vehicle crashes and the 

number of children die because of the bicycle accidents [2]. 

The risks to the fetus in the case of an automobile impact have been described 

in medical studies as being; placental abruption [6], [7], maternal death [8], 

direct fetal injury [9], feto-maternal transfusion [10], onset of labour and preterm 

delivery [11].  

The safety of pregnant women as car occupants may be compromised due to 

the size and shape changes that occur during pregnancy as well as due to the 

added complexity of having an occupant within an occupant. Early 

investigations using pregnant baboons and monkeys concluded that the 

standard 3-pt seatbelt system provided better protection to both mother and 

fetus compared to just the lap portion of the belt [12]. In the mid 90’s a 

pregnancy insert for the Hybrid III small female was developed in [13] to further 

explore the affect of loading of vehicle safety systems on the approximately 28-

week pregnant occupant. This physical model included a urethane fetus which 

fitted inside a urethane casing that fitted inside a urethane uterus. The model 

had many limitations such as a non-anthropometric shape, unrealistically high 

stiffness and attached weights which would affect overall ATD kinematics. A 



second-generation physical model of pregnancy insert was developed [14]. The 

model has more realistic anthropometry however it has neither a placenta nor 

fetus instead the uterus is filled with water. A computational model to represent 

a pregnant driver was also developed [15], using MADYMO, combining a FE 

model of a liquid-filled uterus, without fetus, within an existing 5th percentile 

female occupant model available in the MADYMO package. 

The significant mass of the considerably solid fetus during the later stages of 

pregnancy almost fills the entire volume of uterus but is reasonably free to move 

during an impact, only constrained by the boundaries of the uterus. The fetus 

has therefore the potential to affect the entire dynamic response to impact. 

Hence the magnitude and location of the forces exerted by the solid fetus and 

the consequent stresses and strains would be significantly different than those 

exerted by the fluid alone. Hence the lack of any representation of a fetus in 

recent models, both physical and computational, warrants further investigation 

in this area. 

The focus of this paper is on the generation of a detailed computational 

representation, multibody model of the unborn occupant, the fetus, as part of 

the computational model of pregnant women ‘Expecting’. 

 

2. FETUS AND UTERUS ANATOMY 

Figure 1 shows the general anatomy of fetus and uterus near term, as with 95% 

of all pregnancies the fetus assumes an upside-down position with its head 

downwards nestled within the confines of the pelvis bones. The fetus is 

surrounded by amniotic fluid; this fluid physically cushions the embryo as it 



develops and permits free movement of the fetus. At term the volume of 

amniotic fluid relative to that of the fetus is at its lowest. 

The placenta, a large vascular organ covering approximately a quarter of the 

inner surface of the uterus, is generally, in around 80% of pregnancies, located 

at the fundus (top) of the uterus. The placenta has a flattened discoidal mass 

with a roughly circular shape. It has an average weight of around 470g (range 

200-800g), an average diameter of 185mm (range 150-200mm) and an average 

thickness of 23 mm at its centre (range 10-40 mm). The placenta attaches to 

the internal surface of the uterus via small finger-like protrusions from the 

surface of the placenta known as microvilli, as well as connecting the two 

structures; this utero-placental interface (UPI) facilitates nutrient transportation 

to the fetus [16], [17]. 

 

Fig 1 Anatomy of the pregnant abdomen. 

The uterus grows dramatically during pregnancy increases in weight 

significantly and it expands out of the pelvic basin displacing other abdominal 

organs upward with the uterine fundus reaching the level of the xiphisternum by 



the 36th week of gestation. At this stage the uterine wall thickness is 

approximately 10mm. The uterus is attached at the cervix to the pelvis and 

sacrum via ligaments but is otherwise unattached in the abdominal cavity; from 

around the 16th week onwards the uterus makes contact with the anterior 

abdominal wall and the lumbar and sacral spines. 

 
3. MODELLING THE UNBORN OCCUPANT: FETUS 
 
At later stages of pregnancy, beyond 30 weeks, as the abdominal size 

increases, its proximity to the steering wheel during driving gets closer. Also in 

the later stages of pregnancy the amount of amniotic fluid surrounding the fetus, 

which is thought to offer some degree of protection, is at a minimum and the 

fetus occupies the majority of the uterine volume. It is therefore decided in this 

study to model a 38-week fetus and uterus, a very close to term, in order to 

create a model for the investigations where the pregnant women are most 

concerned [18].  

The multibody model of the fetus is composed of 15 rigid bodies representing 

the different body regions of the fetus interconnected by kinematic joints. Each 

rigid body is defined by its mass, moments of inertia and its centre of gravity 

position. The geometric surface of the various body segments are represented 

by ellipsoids with dimensions estimated from fetal biometric measurements or 

scaled from anthropometric data of newborns found in the literature.  Ellipsoids 

are positioned with respect to their parent rigid body.  Kinematic joints connect 

the rigid bodies. Mass and moment of inertia properties of the segments along 

with the characteristics of the joints connecting them have been scaled from 

existing multibody models of infants. The details of geometry, mass and inertial 



properties, joint properties and the contacts are given in this section. 

3.1 Geometry 

The anatomy of the 38th week fetus is represented by hyper ellipsoids, which 

require the specification of the lengths of the three semi-axes as well as the 

position of the centre and ellipsoid orientation relative to their parent rigid body.  

The dimensions of the various segments were mostly derived from a 

combination of fetal biometric measurements and scaling of anthropometric 

measurements from newborns. When direct fetal biometric measurements or 

newborn data is not available at all, existing infant and child models available in 

the MADYMO dummy database are scaled and used. 

Head: Ultrasound measurements of the biparietal diameter (BPD) and occipito-

frontal diameter (OFD) (measured from the outer borders of the skull) were 

used to define the semi-axes or the head [19-20]. The mean BPD (96mm) and 

OFD (115mm) measurements for a 38th week old fetus correlate well with the 

recorded mean head breadth (95mm) and head length (120mm) respectively of 

newborns [21]. 

Limbs: Ultrasound measurements of the fetal long-bones as presented in [22] 

were used to derive the semi axes of the leg and arm segments. For the femur 

or upper leg segment the measured bone length for a 38th week fetus was 

76mm, this length defines the distance between the hip and knee joint in the 

model, the primary axes of the ellipsoid used to represent the segment is 

slightly longer to allow overlapping of the segments. Similarly for the tibia, or 

lower leg, the measured length of 66mm defines the distance between the knee 

joint and ankle joint. Foot length was obtained from [23]. For the arms 

measured bone lengths of 66mm and 61mm for the humerus and ulna 



respectively have been taken from [22]. For the upper arm the humerus length 

defines the distance between the shoulder and elbow joints. No body is defined 

to represent the hands in the model so the ellipsoid used to represent the lower 

arms incorporates the added length of the hands.  

Pelvis Abdomen and Torso: The measured abdominal circumference of 

339mm for a 38th week old fetus measured and recorded  by [19] was used to 

obtain a scaling factor for other trunk measurements where direct fetal 

measurements are not available. The mean waist circumference of 163 0-3 

month old new-borns were recorded in [24] as 356.1mm. This gives a scaling 

factor of 0.95. This scaling factor was used to determine the ellipsoid 

dimensions of the pelvis and abdomen.  

 
Table 1: Inertial and geometric data used for the rigid bodies of the fetal model. 

Name 
Parent 
Body Mass 

 
Moments of Inertia 

Origin of local 
coordinate system w.r.t 

parent coordinate system 
Position of CoG 

 
Ixx 

 
Iyy 

 
Izz sx sy sz gx gy gz 

  kg kg.cm2     mm  mm 
 
P1 Pelvis 
A1 Abdomen 
T1 Thorax 
N1 Neck 
H1 Head 
HL1 HumerusL 
HR1 HumerusR 
UL1 UlnaL 
UR1 UlnaR 
FL1 FemurL 
FR1 FemurR 
TL1 TibiaL 
TR1 TibiaR 
FL1 FootL 
FR1 FootR 

 
Ref 
P1 
A1 
T1 
N1 
T1 
T1 
HL1 
HR1 
P1 
P1 
FL1 
FR1 
TL1 
TR1 

 
0.42 
0.12 
0.62 
0.08 
1.02 
0.11 
0.11 

0.062 
0.062 
0.18 
0.18 
0.13 
0.13 
0.04 
0.04 

 
19.0 
10.0 
54.0 
10.0 
20.1 

5.0 
5.0 
3.0 
3.0 
3.0 
3.0 

10.0 
10.0 

1.0 
1.0 

 
14.0 
10.0 
31.0 
10.0 
21.6 

5.0 
5.0 
3.0 
3.0 
8.9 
8.9 

10.0 
10.0 

1.0 
1.0 

 

 
17.0 
10.0 
32.0 

1.0 
25 
1.0 
1.0 
1.0 
1.0 
8.9 
8.9 
1.0 
1.0 
1.0 
1.0 

 
0.0 

-15.4 
0.0 
0.0 
0.0 
5.0 
5.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

 
0.0 
0.0 
0.0 
0.0 
0.0 

43.0 
-43.0 

0.0 
0.0 

35.0 
-35.0 

0.0 
0.0 
0.0 
0.0 

 
0.0 

30.0 
55.0 
57.0 
54.0 
63.0 
63.0 

-65.0 
-65.0 

0.0 
0.0 

-76.0 
-76.0 
-66.0 
-66.0 

 
2.6 

14.0 
0.1 
0.0 
6.0 

-2.7 
-2.7 
-3.8 
-3.8 
45.0 
45.0 
-2.0 
-2.0 
17.0 
17.0 

 
0.0 
0.0 
0.0 
0.0 
0.0 

-1.9 
1.9 
1.5 
1.5 

-2.8 
2.8 

-4.0 
4.0 
0.0 
0.0 

 

 
5.6 

23.0 
43.0 
27.0 
30.0 

-26.4 
-26.4 
-41.7 
-41.7 
-1.7 
-1.7 
-4.5 
-4.5 
-7.0 
-7.0 

 
 
3.2 Mass and Inertial Properties 
 
An estimated fetal weight of 3.3kg, from [25] based on the biparietal diameter 

and abdominal circumference used in the model, was selected. This 

corresponds to the mean fetal weight (male and female averaged) of 3.28kg for 



a 38th week old fetus. Segment weights were scaled from the TNO 9-month-old 

child dummy using the major dimensions of each segment to determine 

respective scaling factors. The mass of each segment is shown in Table 1.  

The inertial properties of the fetus are lumped into the rigid bodies. The position 

of the centre of gravity of a particular body is given with respect to the local 

coordinate system of that body, gx, gy, gz (Table 1). The positions of the centre 

of gravity for each rigid body were obtained from the TNO 9 month old child 

dummy, for each body segment a scaling factor was obtained from the 

respective ellipsoid surface in x, y and z directions and used to scale the CoG 

position for each axis. Table 1 also lists the CoG position for each of the rigid 

bodies in the fetus model.  

The principle moments of inertia of each body are defined with respect to the 

centre of gravity and parallel to the local coordinate system. Non-linear 

regression equations for the estimation of segmental inertia properties of the 

human body is published in [26]. The equations were derived from 

anthropometric measurements and segmental moments of inertia taken from 

the study reported in [27]. The calculated moments of inertia of the various body 

segments of the fetus are given in Table 1.  



 

Figure 2 Left: lateral and frontal view of the fetus model showing the ellipsoid surfaces with their 
body local coordinate systems. Right: Lateral view of fetus model in fetal position.  
 

 
3.3 Joint Properties 

The pelvis forms the base of the model with its local coordinate system being 

the reference coordinate system of the model. The origin of the pelvis is located 

at the hip joint centre in the sagittal plane. The spine of the fetus model is 

divided into four joints: lumbar, thoracic, and lower and upper cervical. Spherical 

joints are used together with Cardan restraints consisting of three torsional 

parallel springs and dampers. The torques are dependent on the Bryant angles 

that describe the relative orientation between the two relative restraint 

coordinate systems. There are no translational degrees of freedom between the 

joints. The joint properties for the spinal joints are scaled from adult values 

found in the literature [28]. The hip, ankle and shoulder joints are described 

using spherical joints permitting three rotational degrees of freedom while the 



knee and elbow joints are represented by revolute joints allowing one degree of 

freedom in the physical plane of rotation. Joint restraints are used to limit the 

range of motion of each anatomical joint within the physiological range of 

motion allowed for each joint for each degree of freedom. This resistance is 

modelled as a sharp linear increase in stiffness past the maximum allowed free 

range of motion in each direction.  

 

3.4 Contacts  

Due to the position the fetus takes within the uterus during pregnancy, it is 

expected that during an impact situation there will be a large degree of 

interaction between body regions. It was therefore important to model body to 

body contact between the various anatomical surfaces. A force-penetration 

characteristic is defined for each ellipsoid surface that is capable of coming into 

contact with another region of the body. The force-penetration characteristics 

for the various body regions of the fetus model are determined, based on the 

values used in the TNO dummy models, as actual values for these material 

characteristics are not available in the literature, and are shown in Figure 3. It 

follows that the head and pelvis are the stiffest sections of the fetus due to the 

large skeletal bones in these areas while the abdomen is the softest. The 

damping and friction coefficients of 30 and 0.3 respectively as used in the TNO 

child dummies are used in the fetus model for all body to body contacts. The 

effect of the amniotic fluid is simulated by Cardan restraint element [29], which  

consists of three torsional parallel springs and dampers. It is used to connect 

the pelvis of the pregnant female and pelvis of the fetus. 

 



 

  

Figure 3  Force-penetration contact characteristics for the various body regions of the 
multibody fetus model. 

 
 

4. THE ENVIRONMENT OF THE FETUS:  ‘EXPECTING’ 
 

Physical or computational models of the human body are usually validated 

against experimental tests on cadavers or live human volunteers. Typically, 

abdominal response of dummies are based on, or validated against force-

deflection data collected from dynamic testing of cadavers. In the case of 

human fetus, due to ethical issues, there is no force deflection data based on 

cadaver or volunteer tests. This means that the fetus model cannot be validated 

in isolation in the sense that other models are validated, but the pregnant 

occupant model containing the fetus model could be subjected to rigid bar 

impact and belt loading tests for validation. 

 



The detailed multibody fetus model is integrated into a finite element uterus 

model, which is later integrated into a female human model of MADYMO. The 

resultant pregnant woman model carrying a multibody fetus model is named 

‘Expecting’. 

Generating the uterus and placenta; incorporating the ‘bump’ into the female 

model and validation of ‘Expecting’ are described in detail in [30]. Brief 

descriptions of the uterus, placenta and ‘Expecting’ are included in this section 

for completion. 

 
4.1  Finite Element Uterus and Placenta Model 
 
The finite element uterus model was developed in conjunction with the 

multibody fetus model with the fetal dimensions and configuration controlling the 

dimensions of the uterus based on data reported in [31]. This also provides a 

snug fit around the fetus. The material properties for the three components of 

the uterus model, namely the fat layer, uterus and placenta are similar to earlier 

FE uterus models without the fetus. For example, the uterine wall thickness is 

taken as 10mm [17].  Further 10mm of fat layer was meshed around the outer 

surface of the uterus. The placenta is generated as a discoid with a diameter of 

185 mm and thickness of 20 mm at its centre which is gradually reduced to 

4mm at the edges [16]. Two elements are used through the thickness of the 

uterine wall, fat layer and placenta. 

 



 
 
 
Figure 4  Side view of the FE uterus and placenta with and without the multibody fetus in 
position. 
 

The uterus and placenta were meshed using Hypermesh (Altair) by first 

meshing the inner surface of the uterus using quad elements then mapping the 

elements to the outer surface to create the uterus, and mapping the 

corresponding elements of the placental outer surface to the inner surface of 

the placenta to create the placental elements. The nodal coordinates and 

element configuration was then exported into MADYMO where the first order 8 

noded (3-D hexahedral) solid elements were used for FE components.  

 
4.2  ‘Expecting’ model 
 
The multibody fetus, model of an unborn occupant and its environment were 

integrated into an existing multibody female model to complete the pregnant 

occupant model. The facet occupant model available within the MADYMO 

package represents a 5th percentile female, 1.52m in height and 49.8 kg in 

weight. The 5th percentile model was altered to represent the anatomy of a 

pregnant 5th percentile female using the anthropometric data collected from 



female volunteers in their final trimester of pregnancy [31]. The outer nodes of 

the portion of the FE uterus that nestles within the pelvis bones are fixed 

relative to the pelvis body of the human model. The remainder of the uterus is 

reasonably free to move, its motion being restricted only by the contact 

relationships with the lumbar vertebrae and the skin surface of the MADYMO 

human model. The resultant pregnant woman model carrying a multibody fetus 

model is named ‘Expecting’. 

 
 
 
 

 
 
 
Figure 5.  38th week pregnant female occupant model ‘Expecting’ in vehicle interior from Acar 
and Van Lopik  [30]. 
 
 

Rigid bar impact and belt loading tests were performed by earlier researchers 

and the force-deflection abdominal corridors were developed for the 50th 



percentile male [32]. As no other data is available these corridors are scaled 

and used in the development and validation of the 5th percentile pregnant 

female physical and computational models, including ‘Expecting’.  The 

comparison of a number of crash simulations and predictions by using 

‘Expecting’ and earlier pregnant woman models are reported in [30]. Various 

other scenarios are simulated to investigate the fetus and pregnant woman’s 

safety in [33-36]. Simulations and analysis indicate that taking unborn occupant 

into consideration is much more realistic modelling. For example, Figure 6 

demonstrates the von Mises stress distribution in the uterus at 60 ms of a 

frontal crash with Δv=25kph. Pregnant occupant is restrained by a three-point 

seatbelt, the fetus continues to move forwards due to inertia and is forced 

against the anterior wall of the uterus, causing stress concentration points from 

loading of the head, shoulder and pelvic regions. Further observations of these 

movements and calculation of strains at the utero-placental interface can 

suggest placental abruption based on an accepted strain thresholds. 

 

 

  Fig 6 Frontal view of fetus and uterus demonstrating stress concentration points from loading 
of the head, shoulder and pelvic of the fetus at 60 ms of Δv=25kph 3-point belt test. 

 



 

5. DISCUSSION 

 Earlier physical and computational models of pregnant woman in her third 

trimester do not carry a fetus in them. The fetus fills the uterus almost 

completely towards the end of pregnancy. It is considerably solid, has 

approximately 3.3 kg of mass and is relatively free to move within the uterus. It 

is essential to include a fetus model within a uterus model for a realistic 

pregnant woman model. Placental abruption is the main cause of fetal mortality 

in road traffic accidents and it can be predicted by the strains at the utero-

placental interface and it is the only quantifiable injury criterion for the fetus. 

Even if the fetus itself does not physically impact the placenta and directly 

cause placental abruption during an impact, its existence alone has the 

potential to affect the dynamic response of the pregnant occupant and the strain 

levels at the utero-placental interface.  

‘Expecting’ is the only known pregnant occupant model in the world which 

incorporates a detailed fetus model. In this article, generating a multibody model 

of a fetus is explained in detail for the first time. The authors acknowledge the 

fact that the unborn occupant model cannot be validated in the traditional 

sense. However, ‘Expecting’ is used in predicting fetus safety in real-life 

accidents case studies and full agreement is achieved between the predicted 

and accident outcomes.  

The fetus model presents an opportunity to predict fetal movements as opposed 

to ‘no fetal movements’ in earlier pregnant woman models. During an accident, 

inertial effects on the fetus cause it to move forwards relative to the pregnant 

occupant as the restraint systems restrict the expectant mother’s motions. The 



fetus model provides an opportunity to observe the stress concentration points. 

There is a very good indication that the unborn occupant model truly represents 

an unborn occupant within the model of an expectant mother. Despite the 

limitations, the first multibody fetus model is generated and reported here starts 

the life for future generation of research on unborn occupant modelling. 
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