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Abstract  
The numerical methods for solving partial differential equations have been one of the 
significant achievements made possible by the digital computers. With the advent of 
parallel computers, many studies have been performed and a number of new techniques 
have been investigated in order to develop new methods that are suitable for these 
computers.  One of these techniques is the explicit group iterative methods which have 
been extensively studied and analysed in the last two decades. 

The explicit group iterative methods for the numerical solution of self-adjoint elliptic 
partial differential equations have been introduced (Evans & Biggins, 1982; Yousif & 
Evans, 1986) and has been shown to be computationally superior in comparison with 
other iterative methods. These methods were found to be suitable for parallel computers 
as they possess independent tasks (Evans & Yousif, 1990). Martins, Yousif & Evans 
(2002) introduced a new explicit 4-points group accelerated overrelaxation (EGAOR) 
iterative method, a comparison with the point AOR method has shown its computational 
advantages. The point TOR method was developed and a number of papers related to the 
TOR method and its convergence have been presented (Kuang & Ji, 1988; Chang, 1996; 
Chang, 2001; Martins, Trigo & Evans 2003). In this paper, we formulate a new group 
method from the TOR family, the explicit 4-points group overrrelaxation (EGTOR) 
iterative method, the derivation of the new method is presented. Numerical experiments 
have been carried out and the results obtained confirm the superiority of the new method 
when compared to the point TOR method. 
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1. INTRODUCTION AND PRELIMINARIES 
 

Many physical phenomena in static field problems particularly in electromagnetism field 

and the incompressible potential flow field are described by elliptic partial differential 

equations (PDEs). In recent years, improved techniques using explicit group methods 

have been developed to approximate the solution of these equations. 
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In this paper we will present the 4-points EGTOR iterative method  to approximate 

the solution of elliptic partial equations. Some numerical experiments will be performed 

to compare the behaviour of this explicit TOR group method with the corresponding 

point TOR method.  

In section 2, the 4-points EGTOR iterative method is presented and developed, while 

the point TOR method is given in this section. Some results concerning the analysis of 

convergence of the interval and point iterative TOR method were already obtained for 

different classes of matrices, namely H-matrices (Martins, Trigo & Evans, 2003). As it is 

well-known from literature, this class of matrices involves strictly diagonally dominant 

matrices, irreducible weakly diagonal matrices, M-matrices and other type of matrices. 

The study of computational complexity of the point and 4-points EGTOR methods is 

discussed in section 3. Further, in order to compare the performance of these two iterative 

methods, numerical experiments have been carried out and the results are summarised in 

section 4. Finally, concluding remarks are presented in section 5. 

 Consider the linear self-adjoint elliptic equation,  
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defined in a bounded region , where A(x, y) > 0, B(x, y) > 0 and  F(x, y)  0  and  is 

the boundary of . 

The two dimensional elliptic equation such as Poisson’s equation is mathematically 

represented by 
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with a Dirichlet boundary condition on a unit square solution domain, 0  x, y  1, with 

m2 internal mesh points. It can be easily concluded that this equation is obtained from 
(1.2) if we consider A(x, y) = B(x, y) = 1 and  F(x, y) = 0 and G(x, y) = y)f(x, . If in (1.3) 

0),( yxf we have Laplace’s equation. 

It is well-known that the discretisation of (1.3) leads to the linear system 

(Varga,1962) 

 A x = b, (1.4) 
where A nn,C  is a given non-singular, sparse matrix with non vanishing diagonal 

entries, b nC  is a known vector and x nC is the unknown vector. 

Hence, the TOR method, defined in the following, can be used if the block diagonal 

part of the coefficient matrix A of the system (1.4) is non-singular. Some authors have 

obtained results on the convergence of the interval and point TOR method (Martins, 

Trigo & Evans, 2003) and other have obtained some convergence conditions for the 

multisplitting parallel TOR method (Chang, 1996; Chang, 2001). 

Split the matrix A of (1.4) such that 
 

    A= D – L – F – U     (1.5) 



 

 

where D = diag (A),  U is a strictly upper triangular matrix, obtained from A, L and F are 

strictly lower triangular matrices, verifying (1.5). 

The corresponding TOR method (Martins, Trigo & Evans, 2003) is given by: 
  

)()1( ])()()1[()( kk xFULDbxFLD    ,  k = 0,1,…(1.6) 

where ,   and   are real parameters and   0. 

As FLD   is a non-singular matrix for any choice of the parameters   and  , 

with  1E  = LD 1 , 2E = FD 1 and U1= D1U , the equation (1.6) takes the form 
 

 ,...1,0,)( 1)(
,,

)1(   kbFLDxTx kk          (1.7) 

where 
  ,,T = (I E1  E2)1 (1 )I  ( )E1 U1  (  )E2 .        (1.8) 
 

Some special well-known iterative methods can be derived from the TOR iterative 
method by assigning special values to the parameters ,   and  .  The Jacobi(J), Gauss-

Seidel (GS), Simultaneous Overrelaxation (JOR), Successive Overrelaxation  (SOR) and 

Accelerated Overrelaxation (AOR) iterative methods are special cases of the TOR 

iterative method as shown in Table 1. 
 

     Method 

1 0 0 J

1 1 1 GS 

 0 0 JOR 

   SOR 

     AOR 
 

Table 1: The derivation of some iterative methods from the TOR method. 
 

In what follows we consider the linear system (1.4) where the matrix A has Property A() 

and is -consistently ordered. Thus, we present some definitions (Young, 1971). 
 
Definition 1.1  

An ordered grouping  of W = {1, 2,…, n} is a subdivision of W into disjoint subsets R1,  

R2, …,  Rq  such that   R1  + R2 + …+  Rq = W. 
 

 Given  a  matrix  A  and  an  ordered  grouping    we  define  the  submatrices Ar,s  

for  r, s = 1, 2,…, q as follows: Ar,s  is obtained from A by deleting all rows except those 

corresponding to Rr  and all columns except those corresponding to Rs. 
  
Definition 1.2   

Let  be an ordered grouping with q groups. A matrix A has Property A() if the q q 

matrix Z = ( z r,s ) defined by 

 z r,s= 
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 (1.9) 

has Property A. 



 

 

Definition 1.3  

A matrix A of order n is consistently ordered if for some t there exist disjoint subsets S1,  
S2, …,  St  of  W = {1, 2,…, n} such that WSt

k k  1  and such that if  i and j are 

associated, then  j  Sk+1  if  j > i and  j  Sk-1   if  j < i , where Sk  is the subset containing i.  
 

Definition 1.4  

A matrix A is -consistently ordered if the matrix Z of (1.9) is consistently ordered. 

 
2.  THE 4-POINTS GROUP EXPLICIT TOR ITERATIVE METHOD 

  

In this section we will present an explicit set of equations for the 4-points EGTOR 

iterative method, where each group is formed from 4 points of the net region, according 

to Figure 1, where t = (qm+1), step 2, (q+1)m-1,  m is an even number and  q = 0, step 2, 

m-2. Each group Gk, k = 1, 2, … , m2 /4 contains only four elements {t, t+1, t+m, t+m+1}. 

 
                         t+2      t+m+2   
     
 
   t-m+1             t+1       t+m+1  t+2m+1 

                   
              t-m   t   t+m  t+2m        
  
   
 

           t-1      t+m-1 

                                          Figure 1 

Let us suppose that the groups are ordered in red-black ordering, if we use the five-point 

approximation scheme, the finite difference equation at the point P (see Figure 2) has the 

form 

 up + 1 uB,P   + 2 uR,P  + 3 uT,P   + 4 uL,P   = bP,  (2.1) 
 

where B, R, T and L denote Bottom, Right, Top and Left of the point P, respectively.  
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         Figure 2 
 

If this scheme is used, for all the mesh points, then in the case where the mesh is the unit 

square and x = y = h = 1/7, we have the linear system 
 



 

 

    A1u = b1
, 

with, 

 A1 = 
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If the groups are taken in the natural row ordering, then the coefficient matrix A1 has the 
block structure 

 A1 = 
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The matrix A1 (in (2.2) or (2.4)), has Property A() and is - consistently ordered. 

 To derive the explicit group TOR method, we evaluate the transformed matrix A2 and 

the modified vector b2, where  

 A2 = 1T  A1
,
 (2.5) 

and 

 b2 = 1T  b, (2.6) 

where  T = diag{R0}. 
 As  1T  is equal to diag{ 1

0
R } and the matrix 1

0
R  is given by 
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0
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, (2.7) 

where, 
 42315 1   ,  142316   ,  131427   . 

Therefore 

 A2 = 







IB

CI
, (2.8) 

where C and B can be evaluated easily. 

 The matrices A1 and A2 have the same block structures.  The unique difference is that 
instead of the matrices R0 and Ri, i = 1,…,4 we have the identity matrices and 1

0
R Ri, 

respectively. 

 If we consider the model problem (1.4) and a square grid, we have  

   1 =  2 =  3 =  4 = 
4

1
 . 

 Hence, from (2.7) 
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and hence, 
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Thus we can set up the computational molecule at the point P as is shown in Figure 3. 
Similarly, we can obtain 1

0
R Ri, i = 2, 3, 4. 
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           Figure 3  

 

Therefore we can derive the explicit group TOR iterative method, by using this molecule. 

Here, we have considered in the implicit version the partition of matrix in the form (1.5)  



 

 

where U is associated with the elements ut+2, ut+m+2, ut+2m+1 and ut+2m, L is associated the 

elements ut-m and ut-1, and finally F is associated with ut-m+1 and ut+m-1. This version will 

be called, in the sequel, Variant A. Then we obtain the following formulas:  

 (2.11a) 
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 (2.11c) 

 (2.11d) 

where t = (pm + 1), step 2, (p + 1)m - 1  and  p = 0, step 2, m-2. 
 

 Obviously, equation (2.15) in (Yousif & Evans, 1986), can be obtained from (2.11) if 
we let   =   = 0 and  = 1. 

 Different versions of the 4-points EGTOR iterative method can be obtained 

considering other association of elements in matrices L and F for the partition (1.5). For 

instance, a second version of the 4-points group TOR method was obtained associating L 

with the elements ut-m and ut-m+1 and F with ut-1 and ut+m-1, this version is denoted by 

Variant B.  
 

3.  ANALYSIS OF THE COMPUTATIONAL COMPLEXITY OF THE POINT 
AND 4- POINTS EGTOR METHODS 

 
The computational effort measured by the number of operations needed to obtain an 
approximation of the solution of (1.1) using the two methods presented in section 1 and 
section 2 will be discussed. We assume that a multiplication takes the same computer 
time as an addition. 
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3.1 The Point TOR Method 

The finite difference solution of the model problem by the point TOR method is given by 
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where     

222221
2

22221 and ,2
4

,
44

,1 βωb αωbhh ,
β

β 
α

α ,
ω

ω ωω  . 

 It can be observed that the number of operations required (excluding the convergence 

test) for the point TOR method is 14m2 operations per iteration. 

 

3.2 The 4-Points EGTOR Iterative Method 

From equations (2.11), it can be seen that the number of operations required (excluding 

the convergence test) for the 4-points EGTOR iterative method is 29.5m2 operations per 

iteration. However, by making use of the fact that not all the elements involved in the 

calculations of the four points are different, we can reduce the work requirement to 

15.25m2 operations per iteration as shown bellow. 
Let     11 ,   4 ,   5 , ,1/241 b   ,2 12 bb   ,7 13 bb   ,144 bb   

,245 bb   b6  b1, b7  b2, ,28 bb   ,19 bb   ,1510 bb   ,2511 bb   ,112 bb   

,213 bb  9
2

14 bhb   these need only be calculated once. 
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These equations require an average of 15.25m 
2 operations per iteration. 

 

 If we consider Laplace’s equation then it can be shown that the number of operations 

required for the point TOR and the 4-points EGTOR iterative methods are 12m2 and 

11.75m2 operations per iteration respectively. 

 



 

 

4.  NUMERICAL RESULTS 
 

We now present some numerical experiments in order to compare the point and 4-points 
EGTOR iterative methods. 

Problem 1.  Consider Laplace’s equation, 

 
2U

x 2 
2U

y 2  0 (x,y)  (0,1)  (0,1)     (4.1) 

and the Dirichlet boundary conditions 

 
1,0,0)1,(),1(),0(

,10,sin)0,(



yxxUyUyU

xxxU 
   (4.2) 

The numerical experiments have been performed using Matlab 7.9, on Core 2 Duo, 2.26 

GHZ (4GM RAM), laptop (MacBook Pro) with Macintosh system. The methods have 

been compared in terms of number of iterations, computing effort and CPU time (in 

seconds). Throughout the experiments the convergence test used was the average error 

test with tolerance error  = 10-7. 

 The numerical solution for the problem (4.1)-(4.2), using the 4-points EGTOR 

method whit h = 1/13 is illustrated in Figure 4. 

    
       Figure 4: Numerical solution of the problem (4.1)-(4.2) obtained with h = 1/13 
 

The coefficient matrix for the two methods possesses Property A() and are - 

consistently ordered. Therefore the theory of block SOR is valid and can be used to 

predict . Hence, in this example, we start with an experimental values of  very close to 
the optimal parameter of the SOR method with   and   close to . 

 In Table 2 and Table 3, we sum up the computational results for the point TOR and 

the 4-points EGTOR method applied to the problem (4.1)-(4.2) respectively. From these 

two tables and Figures 5a and 5b, it can be noted that the 4-points EGTOR method is 

more efficient when compared to the point TOR method. 

 

 

 

 

 

 



 

 

h-1      
No. of 

Iterations

Computing 

effort
CPU time 

	  1.62 1.62  
13	 1.63 1.63 1.61 38 456m2 0.05 
	  1.64 1.60  
	  1.68 1.88  
	 1.77- 1.69 1.87  
25	 1.78 : : 74 888m2 0.25 
	  1.89 1.67  
37	 1.85 1.77 1.92 109 1308m2 0.91 
	  1.78 1.91  
	  1.82 1.94  
	  1.83 1.93  
49	 1.88 : : 145 1740m2 2.77 
	  1.91 1.85  
	  1.85 1.96  
	  1.86 1.95  
61	 1.90 : : 176 2112m2 6.00 
	  1.95 1.86  

Table 2: Computational results for the point TOR method in problem (4.1)-(4.2) 
 
 

  h-1                   
No. of   

Iterations

 Computing 

effort
   CPU time 

  1.49 1.53  
13 1.50- 1.50 1.52 26 305.5m2 0.02 

 1.51 : :  
  1.81 1.21  
  1.42 1.99  

25 1.65- 1.43 1.98  
 1.68 : : 51 599.2m2 0.07 
  1.99 1.42  
  1.59 1.99  

37 1.74- 1.60 1.98  
 1.75 : : 74 869.5m2 0.17 
  1.99 1.59  
  1.69 1.99  

49  1.70 1.98  
 1.72 : : 100 1175	m2 0.50 
  1.99 1.69  
  1.74 1.99  

61  1.75 1.98  
 1.84 : : 123 1445.2m2 1.11 
  1.99 1.74  

Table 3: Computational results for the 4-points EGTOR method (problem (4.1)-(4.2)) 

 

The plots of the CPU computation time vs the mesh size for the two methods is given in 

Figure 5a. Also, the logarithm of the number of iterations vs logh-1 for the two methods is 

plotted, these graphs are shown in Figure 5b. As expected, the plots for the two methods 

were straight lines with a slope of unity, thus verifying the SOR theory.  

 



 

 

     
 Figure 5a              Figure 5b 

Figures 5a and 5b: Computational results for the point TOR and the 4-points EGTOR  
                                  methods (problem (4.1)-(4.2)) 
 

In Table 4 we present the computational results obtained with the variant of the 4-points 

EGTOR method described at the end of section 2 (Variant B). The results are very similar 

in terms of number of iterations, however as it requires a higher number of operations per 

iteration it is not competitive with Variant A, given by equations 2.11, even when it 

reaches the solution with less iterations. 
 

 Variant A Variant B 

h-1 
No. of 

Iterations 

Computing 

effort
CPU time 

No. of 

Iterations

Computing 

effort 
CPU time 

13 26 305.5 m2 0.02 27 344.3 m2 0.06
25 51 599.2 m2 0.07 51 650.2 m2 0.08 
37 74 869.5 m2 0.17 74 943.5 m2 0.23
49 100 1175 m2 0.50 97 1236.8 m2 0.63
61 123 1445.2 m2 1.11 121 1542.8 m2 1.39

Table 4: Comparison results for the two variants of the 4-points group TOR method 
     (problem (4.1)-(4.2)) 
 

Problem 2. The Laplace equation (4.1) was also considered with another Dirichlet 

boundary conditions 

 U(0, y) = 100,                                  0  y  1,        (4.3) 

 U(x, 0) = U(x, 1) = U(1, y) = 0,       0  x, y  1, 

 
Figure 6: Numerical solution of the problem (4.1)-(4.3) obtained with h = 1/13 



 

 

The numerical solution for the problem (4.1) with the boundary conditions (4.3), using 

the 4-points EGTOR method whit h = 1/13 is illustrated in Figure 6. The computational 

results for the point TOR and 4-points EGTOR methods applied to the problem (4.1)-

(4.3) are summarised in Table 5 and Table 6 respectively.  
 

h-1      
No. of 

Iterations 

Computing 

effort 

CPU time 

(seconds) 
13	 1.57 1.63 1.61    
	 1.58 1.59 1.65    
	 1.59 1.55 1.69    
	 1.60 1.52 1.72 38 456m2 0.03 
	 1.61 1.49 1.75    
	 1.62 1.47 1.77    
	 1.63 1.45 1.79    
25	  1.69 1.87    
	 1.66- 1.70 1.86 71 852m2 0.24 
	 1.67 : :    
	  1.73 1.83    
37	 1.82- 1.70 1.99    
	 1.83 1.71 1.98 100 1200m2 0.80 
	  1.72 1.97    
49	 1.85- 1.77 1.99 134 1608m2 2.58 
	 1.86 1.78 1.98    
61	 1.81 1.84 1.97    
	 1.82 1.83 1.98 171 2052m2 5.85 
	 1.83 1.82 1.99    

Table 5: Computational results for the point TOR method (problem (4.1)-(4.3)) 

 
h-1      

No. of 

Iterations 

Computing 

effort 

CPU time 

(seconds) 
13	  1.26 1.75    
	 1.47- 1.27 1.74 27 317.2m2 0.01 
	 -1.52 : :    
	  1.68 1.33    
25	 1.57 1.42 1.99    
	  1.43 1.98 50 587.5m2 0.06 
	  :     
	  1.99 1.42    
37	  1.59 1.99    
	 1.63- 1.60 1.98 73 857.8m2 0.16 
	 -1.64 : :    
	  1.99 1.59    
49	  1.68 1.99    
	 1.79- 1.69 1.98 96 1128m2 0.48 
	 -1.80 : :    
	  1.99 1.68    
61	  1.74 1.99    
	 1.82- 1.75 1.98 119 1398.2m2 1.07 
	 -1.83 : :    
	  1.99 1.74    

Table 6: Computational results for the 4-points EGTOR method (problem (4.1)-(4.3)) 



 

 

The plots of the CPU computation time vs the mesh size and the logarithm of the number 

of iterations vs logh-1 for the two methods are shown in Figures 7a. and 7b, respectively.  
 

          
                      Figure 7a               Figure 7b 

Figures 7a and 7b: Computational results for the point TOR and the 4-points EGTOR 
                                  methods (problem (4.1)-(4.3)) 
 

From the results presented in Table 5, Table 6 and Figures 7a and 7b, it is clear that the 4-

points EGTOR method offers significant economies over the point TOR method.  
 

 In Table 7 we compare the two variants of the 4-points EGTOR methods described 

in this paper. The results are similar to the results given for Problem 1, and hence, we 

reach a conclusion similar to the one given for the previous problem. 

 

 Variant A Variant B 

h-1 
No. of 

Iterations 

Computing 

effort

CPU time 

(seconds)

No. of 

Iterations

Computing 

effort 

CPU time 

(seconds)

13  27 317.2	m2 0.01 26 331.5	m2 0.01
25  50 587.5		m2 0.06 49 624.8	m2 0.07
37  73 857.8	m2 0.16 73 930.7	m2 0.23 
49  96 1128	m2 0.48 94 1198.5	m2 0.60
61  119 1398.2	m2 1.07 116 1479.0	m2 1.32

Table 7: Comparison results for two variants of the 4-points EGTOR method  
               (problem (4.1)-(4.3)) 
 

5.  CONCLUSIONS 
 

From our analysis of the two methods, amount of computational work and minimum 

complexity, and the results given in Table 2, Table 3, Table 5 and Table 6 indicates that 

the new 4-points EGTOR method appears to be more efficient than the point TOR 

method.  

 Further, the group explicit algorithm is suitable for parallel computers as it     

possesses separate and independent tasks, as the groups of 4-points can be executed 

concurrently. Other blocks (groups) are also possible, i.e., the 2, 6, 9 or 16 point group 

and will be matter for further research. 
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