

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288379065?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Monodic Temporal Logic with

Quantified Propositional Variables

Walter Hussak∗

February 2011

Abstract

We extend the monodic fragment of first-order linear temporal logic
to include right-linear grammar operators and quantification of proposi-
tional variables. Unlike propositional temporal logic, the use of grammar
operators in first-order temporal logic is not equivalent to general propo-
sitional quantification, as the latter admit satisfiable formulae without
countable models. We consider the decision problem for fragments where
propositional quantification occurs outside of quantification of individual
variables and temporal (grammar) operators. We show that if externally
quantified propositions inside temporal operators occur within positive
occurrences of universal quantifiers for individual variables then validity
for all propositional prefix classes is recursively enumerable, and decidable
in the two-variable case. Without this condition we show that, even with
very severe restrictions on the first-order part of the logic, no non-trivial
prefix class is recursively enumerable.

Keywords: Monodic Temporal Logic, Quasimodels, Decidability, Recursive
Enumerability.

1 Introduction

Propositional linear temporal logic can be made more expressive by introducing
propositional quantification [18], [17]. The resulting logic QPTL is decidable,
but with non-elementary complexity. Other ways of achieving the expressive
power of QPTL include the use of right-linear grammar operators as in ETL [21],
the linear µ-calculus [2], and the use of various kinds of automata as temporal
connectives [20], [15]. These alternative methods have often been preferred
to propositional quantification because of elementary decision problems, and
have given rise to extensions in a wide range of logics from Extended CTL*
to Automata Logic [5]. Recently, there has been an increase in interest in

∗Department of Computer Science, Loughborough University, Loughborough, LE11 3TU,
UK. W.Hussak@lboro.ac.uk

1

QPTL with complete proof systems being given in [14] and [9]. Propositional
quantification has also been studied in branching temporal logic [8].

In this paper we extend both the use of grammar operators and propositional
quantification to first-order linear temporal logic and establish basic results on
decidability/recursive enumerability. For the latter to hold, the underlying first-
order temporal logic being extended has to be decidable/recursively enumerable,
and so we work with the monodic fragment [12]. We show that unsatisfiability
is recursively enumerable for the monodic fragment where propositional quan-
tification occurs outside of quantification of individual variables and grammar
operators, inside of which externally quantified propositions are within positive
occurrences of existential quantifiers for individual variables in the overall for-
mula. Satisfiability is decidable for the case where the number of individual
variables is restricted to two.

This paper is structured as follows. In section 2, we define the monodic
fragment of first-order temporal logic and monodic fragments with grammar
operators and propositional quantification. The structures used for proving
decidability of monodic temporal logics are ‘quasimodels’ [12]. In section 3, we
give an expanded form of quasimodel corresponding to a collection of models
of a monodic formula differing on the assignments of propositions. The main
decidability/recursive enumerability results are given in section 4. We make
some concluding remarks in section 5.

2 Languages and models

The alphabet of the temporal language consists of lists of propositional sym-
bols P0, P1, . . . some of which are designated as quantifiable, predicate symbols
p0, p1, . . . (but not equality), individual variables x0, x1, . . ., individual constants
c0, c1, . . ., the booleans ¬,∧,>,⊥, the quantifiers ∃x and ∃P for individual and
propositional variables respectively, and temporal operators Gi(ψ1, . . . , ψm) cor-
responding to right-linear grammars Gi. Each Gi with non-terminals V0, . . . , Vl

and terminals v1, . . . , vm, generates words by means of a finite set of produc-
tions Vh → vh′Vh′′ ∈ Prod i starting at V0. The grammar operator G©(ψ1, ψ2)
is defined by the productions V0 → v1V1, V1 → v2 and GW(ψ1, ψ2) by the pro-
ductions V0 → v1V0, V0 → v2. Formulae ψ are defined by:

ψ ::= P | p(t1, . . . tn) | ¬ψ1 | ψ1 ∧ ψ2 | ⊥ | > |
∃xψ | ∃Piψ | Gi(ψ1, . . . , ψm)

where Pi is quantifiable, p is an n-ary predicate symbol and any of the ti’s in
p(t1, . . . , tn) is a constant or individual variable. We use the standard abbrevi-
ations for ∨, ⇒ and ∀, and

©ψ = G©(>, ψ), ψ1Uψ2 = ¬GW(ψ1∧¬ψ2,¬ψ1∧¬ψ2), ♦ψ = >Uψ, ¤ψ = ¬♦¬ψ

and refer, loosely, to ‘predicates’ p(x1, . . . , xn). A formula denoted by, for ex-
ample, ψ(x1, . . . , xn), indicates that its set of free variables is a subset of the

2

set {x1, . . . , xn}. The formula which results from substituting all occurrences
of x by y in ψ, is denoted ψ[x/y]. We write ψ1 ≤ ψ2 to denote that ψ1 is a
subformula of ψ2. The symbols ⊥ and > are also used loosely to denote truth
values. The scopes of occurrences of ∃x and Gi in ∃xψ and Gi(ψ1, . . . , ψm) are
ψ and (ψ1, . . . , ψm) respectively.

A structure (or model) I over domain D assigns values of appropriate type to
propositional symbols, predicate symbols, and individual constants over some
domain D

I = <D, P I
0 , . . . , pI

0, . . . , c
I
0, . . . >

If u assigns values to some subset of symbols, then the structure I † u denotes
the structure which assigns values for these symbols according to u and other
symbols according to I. A temporal structure (or model) M is a sequence of
structures (I(n) : n ∈ N) over the same domain D such that, for every individual
constant c and n1, n2 ∈ N, cI(n1) = cI(n2). The truth relation (M, n) |=a ψ,
where a is an assignment of values to individual variables, is defined inductively
on the construction of ψ as follows:

� (M, n) |=a P iff P I(n) = >
� (M, n) |=a p(t1, . . . , tn) iff pI(n)(a1, . . . , an) = >, where ai = a(ti) if ti is

a variable, and ai = t
I(n)
i if ti is a constant

� (M, n) |=a ¬ψ1 iff (M, n) |=a ψ1 does not hold

� (M, n) |=a ψ1 ∧ ψ2 iff (M, n) |=a ψ1 and (M, n) |=a ψ2

� (M, n) |=a ∃xψ iff (M, n) |=b ψ for some assignment b that may differ
from a only on x

� (M, n) |=a ∃Pψ iff for all n′ ∈ N there is an assignment un′ of a truth
value to P such that, if M′ = (I(n′) † un′ : n′ ∈ N), we have (M′, n) |=a ψ

� (M, n) |=a Gi(ψ1, . . . , ψm) iff there is a finite or infinite word wnwn+1 . . .
generated by Gi such that, for all n′ ≥ n, if wn′ is defined and wn′ = vj ,
then (M, n′) |=a ψj

A temporal structure M satisfies a formula φ with no free individual variables
iff (M, 0) |=a φ for some assignment a, and φ is valid iff all M satisfy φ. Satisfi-
ability/validity for a subset L of the temporal language is decidable/recursively
enumerable iff the set of satisfiable/valid formulae in L is recursive/recursively
enumerable.

A formula φ is monodic if any subformula of φ of the form Gi(ψ1, . . . , ψm) has
at most one free individual variable. The language EMTL is the set of monodic
formulae with no propositional quantification and the language QEMTL is the
set of closed (for the individual variables) monodic formulae where propositional
quantification occurs only outside of quantification of individual variables and
grammar operators. By first-order logic we mean the set of formulae with-
out either grammar operators or propositional quantification. We denote by

3

subxφ the set of subformulae of φ containing at most one free variable, re-
named to some variable x not occurring in φ. For every formula of the form
ψ(x) = Gi(ψ1(x), . . . , ψm(x)), we reserve a unary (possibly nullary) predicate
pψ(x) called the surrogate of ψ. Given any EMTL formula ψ, we denote by
ψ the formula that results from ψ by replacing all subformulae of the form
Gi(ψ1(x), . . . , ψm(x)), which are not within the scope of another occurrence of
a grammar operator, by their surrogates. Clearly, ψ is a formula in first-order
logic.

Every formula in QEMTL can be put into a prenex normal form

Q1P1 . . . QkPk.φ(P1, . . . , Pk) (1)

where each Qi is either ∃ or ∀, each Pi a propositional variable, and φ has
no propositional quantifiers. Here, Q1P1 . . . QkPk is the prefix and φ the ma-
trix. A variable x is said to be live in a subformula ψ of φ if there is some
Gi(ψ1, . . . , ψm) ≤ ψ in which some Pj(1 ≤ j ≤ k) occurs, and such that x oc-
curs free in every ψ′ with Gi(ψ1, . . . , ψm) ≤ ψ′ ≤ ψ. The language EMTL∃pos is
the set of matrices in (1) such that, whenever ∃xψ ≤ φ and x is live in ψ, then

|{ψ′ : ∃xψ ≤ ¬ψ′ ≤ φ}| is even (2)

Then, QEMTL∃pos is the set of formulae (1) such that φ ∈ EMTL∃pos . Note that
(2) says that the quantifier that binds the free variable in any Gi(ψ1, . . . , ψm)
involving a Pj(1 ≤ j ≤ k), is always a positive occurrence of ∃ in φ. Exam-
ples of EMTL∃pos formulae will be seen in section 4. We define subclasses of
formulae (1) called prefix classes by specifying allowable prefixes. As φ in (1)
may contain quantifiers for individual variables, these are only prefix classes for
propositional quantification. We denote by Π the set {P1, . . . , Pk}, by surrφ
the set of propositions, constants, predicates and surrogates of subformulae of
φ, and by surrP φ the set of propositions Pi ∈ Π and surrogates of subformulae
of φ containing at least one Pi ∈ Π. A structure J assigning values of appropri-
ate type to symbols in surrφ− surrP φ may be expanded to a structure J ′ that
assigns values to symbols in surrP φ. In that case J ′ is called a Π-expansion of
J .

3 Quasimodels

The decidability of monodic fragments of first-order temporal logic is usually
established using ‘quasimodels’ [12]. Quasimodels for a formula φ have, at each
moment in time n, a ‘state candidate’ which is a collection of possible sets,
indexed by elements t in some finite set T , of the formulae ψ in subxφ such
that ψ is true at moment in time n, for some element a (substituting for x)
of the domain of a first-order model J(n) that ‘realizes’ the state candidate.
They also have a set R of ‘runs’, which are sequences comprising a choice of t
from each realizable state candidate. This set of runs R forms the domain of a
temporal model (I(n) : n ∈ N) for φ by defining, for each n ∈ N, a surjection

4

∆n from R to the domain D of J(n) so that a run r is interpreted in I(n) in the
same way as its image under ∆n in D is interpreted in J(n). The effect of ∆n

is to ‘duplicate’ the points of the J(n) so that different duplicates can produce
different required behaviours at different moments in time, and hence give rise to
a temporal model for φ. A test for satisfiability of φ is constructed by encoding
the existence of a quasimodel into one of the (decidable) second-order theories
of natural numbers with successor functions and monadic predicates S1S or S2S.
The exact nature of quasimodels depends on the linear [12] or branching [13],
[3] temporal logic of interest. Our aim in this section is to determine when an
EMTLpos formula φ has a model for all (temporal) assignments υ in some set
of assignments Υ where the assignments to Pi ∈ Π vary. This is achieved by
extending the basic quasimodel approach.

We define quasimodels for which realizable state candidates have an extra
index u in some other finite set U , to cater for different subsets of subxφ being
true at the same moment in time n and element of the domain, but for different
assignments over time for the propositions Pi ∈ Π. This leads to a set of first-
order models at n, (Ju(n) : u ∈ U), for state candidates. These new realizable
state candidates are defined below by Definitions 3.3 and 3.4 and are computed
in first-order logic in Lemma 3.6. Also, we define indexed sets of runs Rυ to
correspond to each υ ∈ Υ. A temporal model for φ with temporal assignment
υ ∈ Υ to Pi ∈ Π, (Iuυn(n) : n ∈ N) where uυn ∈ U depends on υ and n, is
then constructed to have its domain equal to the union R of all the indexed
sets of runs Rυ and interpretation at n, Iuυn(n), defined by surjections ∆υn, for
each Rυ, to the domain D (common to all Ju(n)’s) of Juυn(n). Below, runs are
defined by Definitions 3.8 and 3.9 and quasimodels and the surjections ∆υn by
Definitions 3.7 and 3.10, and Lemma 3.12 respectively.

The main result, linking the existence of our (new) quasimodels and models
for φ, for all assignments υ ∈ Υ, is Theorem 3.13. It relies on an induction
on subformulae ψ of φ, proving that ψ is true in Iuυn(n), for an assignment of
free individual variables in ψ to runs r ∈ R, iff ψ is true in the temporal model
at n for the same assignment of free individual variables and for assignments
to Pi ∈ Π according to υ. A difficulty arises in overcoming occurrences of ∀x,
i.e. occurrences of ¬∃x, in the induction, as runs r ∈ R that are in Rυ behave
well in Iuυn(n), but runs in another Rυ′ (υ′ 6= υ), which are in the domain
of the model and have to be taken into account by the universal quantifier,
may not behave so well in Iuυn(n). Fortunately, as φ belongs to EMTL∃pos ,
there is no Pi ∈ Π in the scope of any ∀x, and so interpretations for those
scopes will be the same for υ as for any other υ′. In the induction, the live
individual variables in ψ (that are in the scope of an existential quantifier in φ
that contains Pi ∈ Π), are assigned (by ‘realizing’ assignments) to runs r ∈ Rυ

that satisfy existentially quantified subformulae, as required, in Juυn(n) and
therefore Iuυn(n). Free individual variables bound by other quantifiers can have
any assignments as they behave identically in all υ ∈ Υ. Realizing assignments
are given in Definition 3.5.

The other parts of this section that we have not mentioned are Lemma 3.11,
which concerns countable models, and the two following results from classical

5

first-order logic that we use.

Lemma 3.1 Let J = <D,P J
0 , . . . , pJ

0 , . . . , cJ
0 , . . .> be a structure of first-order

logic. Suppose that
∆ : D′ → D

is a surjection and that the structure I = <D′, P I
0 , . . . , pI

0, . . . , c
I
0, . . .> is such

that, for all l ≥ 0, and for all assignments a of individual variables to elements in
D′, if the assignment aJ is defined by aJ (x) = ∆(a(x)), we have that P I

l = P J
l ,

I |=a pl(x1, . . . , xn) iff J |=aJ

pl(x1, . . . , xn), and ∆(cI
l) = cJ

l . Then, as equality
is absent, for any formula ψ and assignment a,

I |=a ψ iff J |=aJ

ψ

We will say that ∆ induces the first-order structure I over D′ from J .

Lemma 3.2 Satisfiability for the class of first-order logic formulae not neces-
sarily in prenex normal form, which use at most two individual variables and
any number of constants, is decidable (see [4]).

For the remainder of this paper, we shall fix φ to be an EMTL∃pos formula
which is the matrix of a formula as in (1) with no free individual variables.

Definition 3.3 (state candidate) Let C be the set of individual constants
in φ, U be a set of cardinality 22|subxφ|

.2|subxφ||C| and T a set of cardinality
2|subxφ||U | + |C|. Suppose that T and C are functions with signatures:

T : T × U → P(subxφ), C : C × U → P(subxφ)

where P(subxφ) is the powerset of subxφ. Then, the pair <T , C> is called a state
candidate for φ. As T , C, U and subxφ are finite, there is an effective bound on
the number of possible state candidates for φ. The state candidates of interest
are the ‘realizable’ state candidates.

Definition 3.4 (realizable state candidate) For a structure J and an ele-
ment a of its domain D, the type tpJ(a) is defined to be:

tpJ(a) = {ψ ∈ subxφ : J |= ψ(a)}
Let J be a structure assigning values to all symbols in surrφ − surrP φ over a
domain D and let J = {Ju : u ∈ U} be a set of Π-expansions of J . Then, J
realizes the state candidate <T , C> with base J iff:

(i) For all t ∈ T , there is a ∈ D such that, for all u ∈ U , T (t, u) = tpJu
(a).

(ii) For all a ∈ D, there is t ∈ T such that, for all u ∈ U , tpJu
(a) = T (t, u).

(iii) For all c ∈ C, if cJ = a where a ∈ D, then, for all u ∈ U , tpJu
(a) =

C(c, u).

6

A state candidate is realizable if it is realized by some such J . Intuitively, the
u ∈ U give different structures to match different assignments to Pi ∈ Π over
time. Lemma 3.6 below provides a test for realizability. In the proof of the
main result, Theorem 3.13, we shall make use of the following assignment for
live variables.

Definition 3.5 (realizing assignment) Suppose that J realizes <T , C> as
in Definition 3.4. Let ∃xψ be a subformula of φ such that x is live in ψ, a be
an assignment to individual variables, and u ∈ U be such that

Ju |=a ∃x.ψ

Then, clearly, there exists an assignment raa,u,ψ, called a realizing assignment,
such that

raa,u,ψ(y) = a(y) (y 6= x) (3)

and
Ju |=raa,u,ψ ψ (4)

(Strictly speaking, we should write raa,u,ψ,J as the realizing assignment depends
on J , but J will be clear from the context.)

Lemma 3.6 A state candidate <T ,C> for φ is realizable iff the conjunction θ
of the following three first-order logic formulae θ1, θ2 and θ3 is satisfiable:

θ1 =
∧

t∈T

∃x
∧

u∈U

(
∧

ψ(x)∈T (t,u)

ψ(x)[. . .] ∧
∧

ψ(x)/∈T (t,u)

¬ψ(x)[. . .])

θ2 = ∀x
∨

t∈T

∧

u∈U

(
∧

ψ(x)∈T (t,u)

ψ(x)[. . .] ∧
∧

ψ(x)/∈T (t,u)

¬ψ(x)[. . .])

θ3 =
∧

c∈C

∧

u∈U

(
∧

ψ(x)∈C(c,u)

ψ(c)[. . .] ∧
∧

ψ(x)/∈C(c,u)

¬ψ(c)[. . .])

where [. . .] substitutes occurrences of Pi ∈ Π by propositions Pi,u and predicates
pψ ∈ surrP φ by predicates pψ,u of the same arity. Furthermore, if φ has at
most two individual variables (possibly reused with different quantifiers) then
realizability is decidable.
Proof For the decidable case, if φ has at most two individual variables, the
conjunction θ1 ∧ θ2 ∧ θ3 can be written using no more than two individual
variables. Decidability follows from Lemma 3.2.

Definition 3.7 (state function) A state function f associates with each n ∈ N
a realizable state candidate f(n) = <Tn, Cn>.

Definition 3.8 An individual assignment υPi for Pi ∈ Π (1 ≤ i ≤ k), is a
subset of N. For each n ∈ N, we write υPi(n) = > iff n ∈ υPi . A set of
assignments for Π over time Υ is a set of functions υ ∈ Υ such that

υ : N→ P(Π)

7

giving, for each Pi ∈ Π, the individual assignment υPi ∈ P(N) defined by
n ∈ υPi iff Pi ∈ υ(n). For each n ∈ N, we also use the notation υn in the
manner:

υn(Pi) = > iff Pi ∈ υ(n) (Pi ∈ Π)

For the remainder of this section, we fix some non-empty Υ.

Definition 3.9 (runs) A family of runs for (φ, Υ), with respect to the state
function f , consists of pairwise disjoint sets Rυ(υ ∈ Υ) and a map

R : R× N→ T × U

where R =
⋃

υ∈Υ Rυ, with function RT : R × N → T giving the t elements of
R, and, for all υ ∈ Υ and n ∈ N, an uυn ∈ U , called the u value corresponding
to Rυ at n, satisfying

R(r, n) = (RT (r, n), uυn) (r ∈ Rυ, n ∈ N) (5)

such that the following properties hold:

(i) For all υ ∈ Υ, n ∈ N and t ∈ T , there exists r ∈ Rυ such that

RT (r, n) = t

(ii) For all c ∈ C and υ ∈ Υ, there is a rc ∈ Rυ such that, for all n ∈ N,

Tn(R(rc, n)) = Cn(c, uυn)

(iii) For all r ∈ R, n ∈ N and Gi(ψ1, . . . , ψm) ∈ subxφ, Gi(ψ1, . . . , ψm) ∈
Tn(R(r, n)) iff there is a word wnwn+1 . . ., generated by the corresponding
grammar Gi, such that, for n′≥n and 1≤j≤m, if wn′ is defined and wn′ =
vj then ψj ∈ Tn′(R(r, n′)),

(iv) For all n ∈ N, υ ∈ Υ and r ∈ Rυ, Π ∩ Tn(R(r, n)) = υ(n).

As with runs, quasimodels are defined with respect to Υ.

Definition 3.10 (quasimodel) A quasimodel for (φ, Υ) is a pair <f,R> where:

(i) f is a state function

(ii) R is a family of runs for (φ, Υ) with respect to f as in Definition 3.9, such
that φ ∈ T 0(R(r, 0)) for all r ∈ Rυ and υ ∈ Υ.

The following is clear from Definition 3.10.

Lemma 3.11 If there exists a quasimodel for (φ, Υ) and Υ is countable, then
there is a quasimodel <f,R> where R is a function R : R × N → T for some
countable set R.

8

Models are constructed from quasimodels in Theorem 3.13 below by taking the
runs in R as the domain, and inducing structures I(n) at n from the first-order
model J(n) of the realizable state candidate at n, by means of a surjection ∆n

from R to the domain D of the J ’s. Indeed, surjections ∆υn from Rυ to D are
defined and, to ensure that the new domain has at least as many elements as
D, the larger set R×D rather than R is used for the domain of the model.

Lemma 3.12 Let <f, R> be a quasimodel for (φ, Υ). Suppose that, for each
n ∈ N, f(n) = <Tn, Cn> is realized by J (n) = {Ju(n) : u ∈ U}, with base J(n),
(common to all n) domain D and types tpJu(n)(a). Then, for each υ ∈ Υ and
n ∈ N, there exists a surjection

∆υn : Rυ ×D → D

such that, for all r, rc ∈ Rυ and a ∈ D, if uυn is the u value corresponding to
Rυ at n as in (5) of Definition 3.9,

(i) Tn(R(r, n)) = tpJuυn (n)(∆υn(r, a))

(ii) ∆υn(rc, c
J(n)) = cJ(n)

Proof Fix υ, n. By (5) and Definition 3.9(i),

{Tn(RT (r, n), uυn) : r ∈ Rυ} = {Tn(t, uυn) : t ∈ T} (6)

and, by Definition 3.4(i) and (ii),

{Tn(t, uυn) : t ∈ T} = {tpJuυn (n)(a) : a ∈ D} (7)

From (6) and (7), it follows that there exists a surjection ∆υn : Rυ × D → D
such that, for all r ∈ Rυ and a ∈ D,

Tn(RT (r, n), uυn) = tpJuυn (n)(∆υn(r, a))

and
∆υn(r, a) = a if Tn(RT (r, n), uυn) = tpJuυn (n)(a) (8)

For (ii), if c ∈ C, by (5), Definition 3.9(ii) and Definition 3.4(iii),

Tn(RT (rc, n), uυn) = Tn(R(rc, n)) = Cn(c, uυn) = tpJuυn (n)(c
J(n)) (9)

By (8) and (9), ∆υn(rc, c
J(n)) = cJ(n).

The correspondence between models that satisfy φ for all assignments in Υ and
quasimodels for (φ, Υ) is given in the following theorem.

Theorem 3.13 Let φ ∈ EMTL∃pos . Then:

(i) There is a temporal structure M = (I(n) : n ∈ N) such that the temporal
structure Mυ = (I(n) †υn : n ∈ N) satisfies φ for all υ ∈ Υ, iff there exists
a quasimodel for (φ, Υ).

9

(ii) If Υ is countable and M exists as in (i), then M can be chosen to have a
countable domain.

Proof The proof given here is a sketch with some simplifications: full details
are in Appendix 1. Let M and Mυ be temporal structures as in (i) over domain
D. For all n ∈ N and υ ∈ Υ, let Jυ(n) be the expansion of I(n)†υn to surrogates
pψ ∈ surrφ given by:

p
Jυ(n)
ψ (a) = > iff (Mυ, n) |= ψ(a) (a ∈ D) (10)

so that, for all n ∈ N and ψ ≤ φ, and all assignments a into D,

Jυ(n) |=a ψ iff (Mυ, n) |=a ψ (11)

For a quasimodel, we need a finite family of structures {Ju : u ∈ U}. We obtain
this by finding, for each n ∈ N, |U | ‘representatives’ {Jυn

1
, . . . , Jυn

|U|}, where
υn

1 , . . . , υn
|U | ∈ Υ, of the structures {Jυ(n) : υ ∈ Υ}, and |T | representatives

{an
1 , . . . , an

|T |} of the elements of D. The representatives are chosen to be such
that, for each υ ∈ Υ, there exists uυn ∈ {υn

1 , . . . , υn
|U |} such that:

{{ψ ∈ subxφ : Jυ(n) |= ψ(a)} : a ∈ D} =

{{ψ ∈ subxφ : Juυn(n) |= ψ(a)} : a ∈ D} (12)

and, for all c ∈ C,

{ψ ∈ subxφ : Jυ(n) |= ψ(cI(n))} = {ψ ∈ subxφ : Juυn(n) |= ψ(cI(n))}

and such that, for each a ∈ D, there exists an
i ∈ {an

1 , . . . , an
|T |} ⊇ {cI(n) : c ∈ C}

such that, for all uυn ∈ {υn
1 , . . . , υn

|U |},

{ψ ∈ subxφ : Juυn(n) |= ψ(a)} = {ψ ∈ subxφ : Juυn(n) |= ψ(an
i)} (13)

We then let elemTn : {an
1 , . . . , an

|T |} → T and elemU n : {υn
1 , . . . , υn

|U |} → U be
bijections and define a realizable state candidate <Tn, Cn> by:

Tn(elemTn(an
i), elemU n(υn

j)) = {ψ ∈ subxφ : Jυn
j
(n) |= ψ(an

i)}

Cn(c, elemU n(υn
j)) = {ψ ∈ subxφ : Jυn

j
(n) |= ψ(cI(n))}

(1 ≤ i ≤ |T |, 1 ≤ j ≤ |U |, c ∈ C). A family of runs R =
⋃

υ∈Υ Rυ, where Rυ =
{ra,υ : a ∈ D}, is defined by:

R(ra,υ, n) = (elemTn(an
i), elemU n(uυn))

where, from (12) and (13), an
i is chosen to be such that Tn(R(ra,υ, n)) =

Tn(elemTn(an
i), elemU n(uυn)) =

{ψ ∈ subxφ : Juυn(n) |= ψ(an
i)} = {ψ ∈ subxφ : Jυ(n) |= ψ(a)} (14)

10

Given (14), it is a routine though lengthy task to show that <f, R>, where f asso-
ciates with each n ∈ N the realizable state candidate <Tn, Cn>, is a quasimodel
for (φ, Υ). The full proof is given in Appendix 1.

Conversely, suppose that <f, R> is a quasimodel for (φ, Υ) where f(n) is the
realizable state candidate <Tn, Cn>. There are only finitely many possibilities
for the <Tn, Cn> and each distinct <Tn, Cn> can be realized over a countable
domain by classical model theory. It follows, by Lemma 3.1, that there is a
single countable domain D such that, for each n ∈ N, <Tn, Cn> is realized by
a set of structures over D, J (n) = {Ju(n) : u ∈ U}, with base J(n) and types
tpJu(n)(a) (a ∈ D,u ∈ U). As equality is absent it also follows by Lemma 3.1
that each J(n) can be chosen to be such that, if c, d ∈ C are distinct, then
cJ(n) 6= dJ(n). Then, we can arrange for the J(n)’s to be such that for all c ∈ C,
n, n′ ∈ N

cJ(n) = cJ(n′) (15)

As the Rυ (υ ∈ Υ) that make up R are pairwise disjoint, we define, consistently,
surjections ∆n : R×D → D (n ∈ N) such that:

∆n(r, a) = ∆υn(r, a) (r ∈ Rυ, a ∈ D), ∆n(rc, c
J(n)) = cJ(n) (rc ∈ Rυ, c ∈ C)

where the ∆υn satisfy all the conditions of Lemma 3.12. By Lemmas 3.1 and
3.12(ii), for each n ∈ N, ∆n induces a set of structures I(n) = {Iu(n) : u ∈ U}
with base I(n) over domain D′ = R × D from J (n) such that, for n, n′ ∈ N,
cI(n) = (rc, c

J(n)) = (rc, c
J(n′)) (by (15)) = cI(n′), where rc ∈ Rυ for some (any)

choice of υ ∈ Υ. Then, I(n) realizes <Tn, Cn>. Clearly, M = (I(n) : n ∈ N)
and therefore, for υ ∈ Υ, Mυ = (I(n) †υn : n ∈ N) are temporal structures. We
need to show that Mυ satisfies φ, i.e. for all υ ∈ Υ,

(Mυ, 0) |= φ (16)

This is proved by induction on subformulae ψ of φ by showing that, for all n ∈ N
and υ ∈ Υ, if uυn is the u value corresponding to Rυ at n as in (5) and Lemma
3.12, and a is chosen to be an assignment in D′ to individual variables of the
form

a(x) = (r, a) where r ∈ Rυ if x is live in ψ, (17)

then
Iuυn(n) |=a ζψψ implies (Mυ, n) |=a ζψψ (18)

where ζψψ is either ¬ψ or ψ according to whether the number of enclosing ¬’s
is odd or even, i.e.

ζψ =
{

empty string, if |{ψ′ : ψ ≤ ψ′ ≤ ¬ψ′ ≤ φ}| is even
¬, otherwise

From (18), if ψ = φ, ψ is closed and ζψ is the empty string and so, for any
assignment a, we have that

Iuυn(n) |=a φ implies (Mυ, n) |=a φ (19)

11

Then (16) follows from (19) as, by Definition 3.10(ii) and Lemma 3.12(i), for
any a ∈ D, r ∈ Rυ and υ ∈ Υ,

φ ∈ T 0(R(r, 0)) = tpJuυ0 (0)(∆υ0(r, a))

and so, by the definition of tp (Definition 3.4), as φ has no free variables,
Juυ0(0) |= φ and, as Iuυ0(0) is induced by Juυ0(0), Iuυ0(0) |= φ giving (Mυ, 0) |=
φ by (19). The main part of the induction reassigns a live variable x according
to the realizing assignment raa,uυn,ψ (Definition 3.5) to prove the ∃xψ case. The
details are in the Appendix 1.

To prove (ii) we note that, if Υ is countable then, by Lemma 3.11, the
quasimodel <f, R> in (i) can be chosen so that R : R × N → T has countable
R. Then, the temporal structure (I(n) : n ∈ N) constructed above has domain
D′ = R×D which is countable as R and D are countable.

4 Decidability and recursive enumerability

The main result in Section 3, Theorem 3.13, gives an association between mod-
els for (propositionally unquantified) EMTL∃pos formulae φ, for all assignments
υ to Pi ∈ Π in a set of assignments Υ, and quasimodels for (φ, Υ). By Skolem-
ization (Lemma 4.4 below), a QEMTL∃pos formula Q1P1 . . . QkPk.φ has a model
iff φ has a model for all assignments υ in a set of assignments Υσ generated by
a Skolem function for the prefix Q1P1 . . . QkPk. In this section, we encode the
existence of quasimodels for (φ, Υ) into S1S, by means of which a test in S1S for
satisfiability of QEMTL∃pos can be constructed (Theorem 4.5). The main de-
cidability/recursive enumerability result follows in Theorem 4.6. Expressiveness
of QEMTL∃pos is considered in Theorem 4.7, and Theorem 4.8 shows that the
decidability/recursive enumerability result in Theorem 4.6 cannot be improved
significantly.

We arrive at the encoding in stages. Let the ‘predicate’

ξφ(f, υ, <un>)

be parameterized by functions f : N → Σ, where Σ is the set of all realizable
state candidates for φ (with respect to Π = {P1, . . . , Pk}), assignments υ to
Pi ∈ Π over time, and sequences <un : n ∈ N> (abbreviated <un>) of elements
of U . For the function f , let f(m)T and f(m)C denote the T and C part of the
state candidate f(m) respectively (m ∈ N). Let ξφ(f, υ,<un>) assert that, for
all n ∈ N, t ∈ T and c ∈ C, there exist functions

ρn,t : N→ T and ρc : N→ T

such that (compare with corresponding conditions of Definition 3.9(i), (ii), (iii)
and (iv), and Definition 3.10(ii)):

(ρ3.9(i)) ρn,t(n) = t,
(ρ3.9(iii)) the sequence <f(m)T (ρn,t(m), um) : m ∈ N> of subsets of subxφ

12

respects grammars,
(ρ3.9(iv)) the sequence <f(m)T (ρn,t(m), um) : m ∈ N> of subsets of subxφ

agrees with υ,
(ρ3.10(ii)) ρn,t(0) contains φ at 0, i.e. f(0)T (ρn,t(0), u0) contains φ,
(ρ3.9(ii)) conditions ρ3.9(iii), ρ3.9(iv) and ρ3.10(ii) are satisfied when ρn,t

is replaced by ρc and, for all m ∈ N,
f(m)T (ρc(m), um) = f(m)C(c, um)

Lemma 4.1 A function f : N→ Σ is the state function of a quasimodel 〈f, R〉
for (φ, Υ) iff, for all υ ∈ Υ, there exists <un> such that ξφ(f, υ,<un>) is true.

Proof The proof is given in Appendix 2.

We encode ξφ(f, υ,<un>) into S1S as follows. A function f : N→ Σ is given
by unary predicates Ps(z) (s ∈ Σ), where exactly one of the Ps(z)’s is true at
each z ∈ N, i.e.

fS1S = ∀z(
∨

s∈Σ

Ps(z) ∧
∧

s,s′∈Σ,s6=s′
¬(Ps(z) ∧ Ps′(z)))

An assignment υ is given by predicates P1(z), . . . , Pk(z) corresponding to P1,
. . . , Pk. A sequence of U values <un> is given by predicates Ru(z) (u ∈ U)
exactly one of which is true at each z ∈ N. We also need to refer to T values at
z ∈ N in order to define ρ maps. Assuming T ∩ U = ∅, we have

χt(z) = Rt(z) ∧
∧

t′∈T,t′ 6=t

¬Rt′(z), χu(z) = Ru(z) ∧
∧

u′∈U,u′ 6=u

¬Ru′(z),

τT = ∀z
∨

t∈T

χt(z), τU = ∀z
∨

u∈U

χu(z)

Grammars are defined as follows. For a grammar Gi, with non-terminals V0, . . . ,
Vl, terminals v1, . . . , vm and productions Prod i, define predicates V0(z), . . . , Vl(z)
to correspond to the non-terminals and W1(z), . . . ,Wm(z) the terminals. Word
generation by Gi at z is represented by the formula:

γi(z) = V0(z) ∧

∀z′ ≥ z
∧

0≤h≤l

[Vh(z′) ⇒
∨

Vh→vjVh′∈Prodi

(Wj(z′) ∧ Vh′(z′ + 1)) ∨

∨

Vh→vj∈Prodi

(Wj(z′) ∧
∧

1≤j′≤m

¬Wj′(z′ + 1))] ∧

∀z′ ≥ z
∧

0≤h,h′≤l,h 6=h′

∧

1≤j,j′≤m,j 6=j′
[¬(Vh(z′) ∧ Vh′(z′)) ∧ ¬(Wj(z′) ∧Wj′(z′))] ∧

∀z′ ≥ z[(
∧

1≤j≤m

¬Wj(z′)) ⇒ ∀z′′ ≥ z′(
∧

1≤j≤m

¬Wj(z′′))]

13

The properties (ρ3.9(i)), (ρ3.9(iii)), (ρ3.9(iv)), (ρ3.10(ii)) and (ρ3.9(ii)) are given
below by ρ3.9(i), ρ3.9(iii), ρ3.9(iv), ρ3.10(ii) and ρ3.9(ii) respectively, where ρ3.9(iii)∧
ρ3.9(iv) ∧ ρ3.10(ii) is abbreviated by ρ. The ρc of (ρ3.9(ii)) is defined by the Rt

(t ∈ T) corresponding to c in ρ3.9(ii) below.

ρ3.9(i) = ∀z ∧
t∈T ∃ . . . ∃Rt′ . . .︸ ︷︷ ︸

t′∈T

(τT ∧ χt(z) ∧ ρ)

ρ3.9(ii) =
∧

c∈C ∃ . . . ∃Rt . . .︸ ︷︷ ︸
t∈T

((τT ∧ ρ) ∧ ∀z ∧
<T,C>∈Σ

∧
t∈T

∧
u∈U (

P<T,C>(z) ∧ χt(z) ∧ χu(z) ⇒ T (t, u) = C(c, u)))

ρ3.9(iii) = ∀z(
∧
<T,C>∈Σ

∧
t∈T

∧
u∈U

∧
Gi∈subxφ(P<T,C>(z) ∧ χt(z) ∧ χu(z) ⇒ (

Gi(ψ1, . . . , ψm) ∈ T (t, u) ⇔ ∃V0 . . . ∃Vl∃W1 . . . ∃Wm(

γi(z) ∧∧
<T ′,C′>∈Σ

∧
1≤j≤m

∧
t′∈T

∧
u′∈U ∀z′(

z′ ≥ z ∧Wj(z
′) ∧ P<T ′,C′>(z

′) ∧ χt′(z
′) ∧ χu′(z

′) ⇒ ψj ∈ T ′(t′, u′))))))

ρ3.9(iv) = ∀z ∧
<T,C>∈Σ

∧
t∈T

∧
u∈U

∧
1≤i≤k(P<T,C>(z) ∧ χt(z) ∧ χu(z) ⇒

(Pi(z) ⇔ Pi ∈ T (t, u)))

ρ3.10(ii) =
∧
<T,C>∈Σ

∧
t∈T

∧
u∈U (P<T,C>(0) ∧ χt(0) ∧ χu(0) ⇒ φ ∈ T (t, u))

The predicate ξφ(f, υ, <un>) in free variables f , υ and <un> is given in S1S
by a formula

ζS1S
φ (Ps : s ∈ Σ︸ ︷︷ ︸

f

, P1, . . . , Pk︸ ︷︷ ︸
υ

, Ru : u ∈ U︸ ︷︷ ︸
<un>

)

in free variables Ps (s ∈ Σ), P1, . . . , Pk, and Ru (u ∈ U), and is defined by

ζS1S
φ (Ps : s ∈ Σ, P1, . . . , Pk, Ru : u ∈ U) = fS1S ∧ ρ3.9(i) ∧ ρ3.9(ii) ∧ τU

We have the following restatement of Lemma 4.1 in terms of ζS1S
φ .

Lemma 4.2 Unary predicates Ps(z) (s ∈ Σ) define a state function of a
quasimodel for (φ, Υ) iff, for all values υ ∈ Υ for P1, . . . , Pk,

∃ . . . ∃Ru . . .︸ ︷︷ ︸
u∈U

. ζS1S
φ (Ps : s ∈ Σ, P1, . . . , Pk, Ru : u ∈ U)

is true.

The Q1P1 . . . QkPk prefix of QEMTL∃pos formulae is dealt with by a Skolem
function.

14

Definition 4.3 A Skolem function for a quantifier prefix Q1P1 . . . QkPk for
QEMTL (respectively S1S), where P1, . . . , Pk ∈ Π (respectively P1(z), . . . , Pk(z)
are unary predicates in S1S), is a map σ that gives a value in P(N) for each
Pj with Qj = ∃, given as argument a sequence of values (each in P(N)) for the
Pi such that i < j and Qi = ∀. For such a σ, we write Υσ for the set of all
assignments to P1, . . . , Pk, where values for Pi with Qi = ∀ are arbitrary, and
values for Pj with Qj = ∃ are given by σ.

The classical result which relates prefixes and Skolem functions, translates to
the following result here:

Lemma 4.4 Given a temporal structure M or a structure MS1S for S1S over
N, and a QEMTL or S1S formula Q1P1 . . . QkPk.φ, we have that:

(i) (M, 0) |= Q1P1 . . . QkPk.φ iff (M † υ, 0) |= φ for all υ ∈ Υσ

(ii) MS1S |= Q1P1 . . . QkPk.φ iff MS1S † υ |= φ for all υ ∈ Υσ

for some Skolem function σ for Q1P1 . . . QkPk.

By Lemma 4.4, satisfiability of a prefixed expression Q1P1 . . . QkPk.φ reduces
to satisfiability of φ for a set of values Υσ defined by a Skolem function σ. In
view of Lemma 4.2, a test for satisfiability of Q1P1 . . . QkPk.φ can be encoded
into S1S.

Theorem 4.5 A QEMTL∃pos formula Q1P1 . . . QkPk.φ is satisfiable iff the S1S
formula

∃ . . . ∃Ps . . .︸ ︷︷ ︸
s∈Σ

Q1P1 . . . QkPk ∃ . . . ∃Ru . . .︸ ︷︷ ︸
u∈U

.ζS1S
φ (Ps : s ∈ Σ, P1, . . . , Pk, Ru : u ∈ U)

(20)
is satisfiable.
Proof A function f , defined in S1S by unary predicates Ps(s ∈ Σ), is a state
function for a quasimodel 〈f, R〉 for (φ, Υσ) for some Skolem function σ for
Q1P1 . . . QkPk, iff, by Lemma 4.2,

∃ . . . ∃Ru . . .︸ ︷︷ ︸
u∈U

. ζS1S
φ (Ps : s ∈ Σ, P1, . . . , Pk, Ru : u ∈ U)

is true for all values υ ∈ Υσ for P1, . . . , Pk for some Skolem function σ, iff, by
Lemma 4.4(ii),

Q1P1 . . . QkPk ∃ . . . ∃Ru . . .︸ ︷︷ ︸
u∈U

.ζS1S
φ (Ps : s ∈ Σ, P1, . . . , Pk, Ru : u ∈ U) (21)

is true (for the chosen Ps’s). By Lemma 4.4(i), Q1P1 . . . QkPk.φ is satisfiable iff
there is a Skolem function σ for Q1P1 . . . QkPk such that φ is satisfiable for all

15

values υ ∈ Υσ for P1, . . . , Pk. By Theorem 3.13(i), φ is satisfiable for all υ ∈ Υσ

iff there exists a quasimodel 〈f, R〉 for (φ, Υσ). Therefore, Q1P1 . . . QkPk.φ is
satisfiable iff there exists a state function f such that for some Skolem function
σ there is a quasimodel 〈f, R〉 for (φ, Υσ). From (21), this is the case iff

∃ . . . ∃Ps . . .︸ ︷︷ ︸
s∈Σ

Q1P1 . . . QkPk ∃ . . . ∃Ru . . .︸ ︷︷ ︸
u∈U

.ζS1S
φ (Ps : s ∈ Σ, P1, . . . , Pk, Ru : u ∈ U)

is satisfiable.

Theorem 4.6 Validity for QEMTL formulae in which live variables occur
within positive occurrences of universal quantifiers, i.e. formulae of the form:

Q1P1 . . . QkPk.¬φ(P1, . . . , Pk)

where φ(P1, . . . , Pk) ∈ EMTL∃pos , is decidable when φ is restricted to have at
most two individual variables, and recursively enumerable otherwise.

Proof This corresponds to satisfiability of formulae Q1P1 . . . QkPk.φ(P1, . . . , Pk)
where φ(P1, . . . , Pk) ∈ EMTL∃pos . Such a formula is satisfiable iff the S1S for-
mula (20) of Theorem 4.5 is satisfiable. In the 2-variable case, the set of all
realizable state candidates Σ can be computed by Lemmas 3.2 and 3.6, and
satisfiability of (20) can be decided as S1S is decidable [6]. In the general case,
(20) can be evaluated for all possible sets Σ of (not necessarily realizable) state
candidates. By Theorem 4.5, if Q1P1 . . . QkPk.φ is not satisfiable, no set Σ of
realizable state candidates will satisfy (20). State candidates in any set Σ sat-
isfying (20) can be tested for realizability in first-order logic as per Lemma 3.6.
If Q1P1 . . . QkPk.φ is not satisfiable, as unsatisfiability for first-order logic is re-
cursively enumerable, such a Σ will eventually be shown not to be realizable.
Thus, unsatisfiability of Q1P1 . . . QkPk.φ is recursively enumerable.

Theorem 4.7 The language QEMTL∃pos is more expressive than EMTL.

Proof It is easy to see that QEMTL∃pos is more expressive than EMTL as it
admits formulae such as

∀P∃x ¤ p(x) ⇔ P

which has only uncountable models, whereas all satisfiable EMTL formulae have
a countable model by Theorem 3.13(ii). An example of a QEMTL∃pos formula
that has countable models but cannot be expressed in EMTL, is the formula

∀P1∀P2(♦(P1UP2) ∧
∧

i=1,2

¬PiU(Pi ∧©¤¬Pi)) ⇒

∃x♦((p(x) ∧ P1 ∧©♦(¬p(x) ∧ P2)) ∨ (¬p(x) ∧ P1 ∧©♦(p(x) ∧ P2)))

This expresses the negation of the 2-sorted temporal logic formula

∃t1∃t2(t1 < t2 ∧ ∀x(p(t1, x) ⇔ p(t2, x)))

16

which is shown to be not expressible in first-order ETL in [1] and therefore is
not expressible in its monodic fragment EMTL.

Theorem 4.8 Let L be the set of formulae of the form:

∃P1 . . . ∃Pk.φ(P1, . . . , Pk)

where φ(P1, . . . , Pk) is in EMTL and uses just one individual variable and pred-
icate symbol. Then, the set of valid formulae in L is not recursively enumerable.

Proof We make use of the encoding of the Σ1
1-complete recurring tiling problem

for N×N [10] into temporal logic with monadic predicates given in [12]. The
recurrent tiling problem is to determine whether there is a tiling of N×N by a
given set of tiles {t0, . . . , tn}, where each ti has fixed orientation and coloured
edges right(ti), left(ti), up(ti) and down(ti), such that t0 occurs infinitely often
in the first row. Arguing as in [12] we can show, by associating each ti with a
unary predicate pi, that there is a recurrent tiling of N×N iff the conjunction of
the following formulae is satisfiable:

θ1 = ∃x¤♦(C0 ∧ p(x))
θ2 = ∀x∃y♦(Cn+1 ∧ p(x) ∧©p(y))
θ3 = ∀x∀y(♦(Cn+1 ∧ p(x) ∧©p(y)) ⇒ ¤♦(Cn+1 ∧ p(x) ∧©p(y)))
θ4 = ∀x(¬♦(Cn+2 ∧©(¬p(x)UCn+1)) ∧¤¬(p(x) ∧ ¬Cn+1 ∧ ¬Cn+2

∧© (¬Cn+1U(p(x) ∧ ¬Cn+1))))
θ5 =

∧
0≤i≤n ¤∀x∀y(C0 ∧©ip(x) ∧ ♦(Cn+1 ∧ p(x) ∧©p(y))

⇒ ∨
up(ti)=down(tj)

©jp(y))
θ6 =

∧
0≤i≤n ¤∀x(Ci ∧ p(x) ⇒ ∨

right(ti)=left(tj)
©n−i+3+jp(x))

θ7 = Cn+1 ∧©Cn+2 ∧
∧

0≤i≤n©i+2Ci ∧
∧

0≤i≤n+2 ¤(Ci ⇔©n+3Ci)
∧∧

0≤i6=j≤n+2 ¤¬(Ci ∧ Cj)

The first six formulae correspond to those in Theorem 2 of [12]. To economize
on predicate symbols, θ7 partitions time into ‘periods’ of n+3 moments

Cn+1, Cn+2, C0, . . . , Cn, Cn+1, Cn+2, C0, . . . , Cn, Cn+1, . . .

The predicates Q1(x) and Q2(y) in [12] being true at the same moment of time
correspond to p(x) and p(y) being true here at consecutive Cn+1 and Cn+2. The
predicate Pi(x) (0 ≤ i ≤ n) being true in [12] is represented by p(x) being true
at Ci.

The formulae θ1, θ4, θ6 and θ7 belong to EMTL. It suffices to translate θ2,
θ3 and θ5 into negations of formulae in L. These translate thus:

θ2 = ∀x♦(Cn+1∧p(x)∧∃x©p(x))

θ3 = ∀S1∀S2(∃x¤(S1 ⇔ Cn+1∧p(x))∧∃x¤(S2 ⇔ Cn+2∧p(x)) ⇒
(♦(Cn+1 ∧ S1 ∧©S2) ⇒ ¤♦(Cn+1 ∧ S1 ∧©S2)))

θ5 = ∀S10 . . . ∀S1n∀S20 . . . ∀S2n∀S1∀S2 (∃x
∧

0≤i≤n

¤((S1i ⇔ Ci∧p(x))∧

17

(S1 ⇔ Cn+1 ∧ p(x))) ∧ ∃x
∧

0≤i≤n

¤((S2i ⇔ Ci ∧ p(x)) ∧ (S2 ⇔ Cn+1 ∧ p(x)))

⇒
∧

0≤i≤n

¤(C0 ∧©iS1i ∧ ♦(S1 ∧©S2) ⇒
∨

up(ti)=down(tj)

©jS2j))

The reason for undecidability above in Theorem 4.8 is that, in the absence of
restrictions on φ, propositional quantification allows non-monodic formulae to
be simulated monodically. Only the trivial ∀P1 . . . ∀Pk prefix class is recursively
enumerable for unrestricted monodic φ.

5 Conclusions

In [7] monodic temporal logic is extended to include least fixed points such that
scopes of individual variable quantifiers do not contain free fixed point variables.
The correspondence between models and quasimodels is an adaptation of that in
[12] and a similar method would suffice for EMTL here, though not QEMTL∃pos .
As with EMTL here, the existence of models implies the existence of countable
models obtained from suitably chosen quasimodels. The work of [19] considers
quantification of flexible variables in first-order temporal logic. Decidability
of satisfiability is shown for a fragment which also has a restriction to positive
occurrences of existential quantifiers, however the result assumes that predicates
are rigid.

We have dealt with satisfiability over arbitrary domains. A similar encoding
to that given in Theorem 4.8 here, of formulae (1)-(8) of Theorem 3 in [12],
would show that validity over finite domains, for propositional quantification
at the outer level, is not recursively enumerable without further restrictions.
The problems of finding fragments admitting propositional quantification for
which validity over finite domains is recursively enumerable, or fragments where
propositional quantification occurs within temporal operators and/or individual
variable quantification for which validity over arbitrary domains is recursively
enumerable, are left open. Also, we have not considered past-time operators or
flows of time other than the natural numbers, though some of these cases may
be proved by easy additions to the work here.

The aim in this paper has been to demonstrate decidability or recursive enu-
merability in the most convenient manner. It is possible that the bounds given
here (in particular that for |T |) can be reduced. However, the complexity of
QEMTL∃pos is non-elementary as it contains QPTL. A more favourable com-
plexity analysis of monadic EMTL may be possible by methods similar to those
in [11] and [16].

Acknowledgements

I have to thank the anonymous referee for the sacrifice of time in reading several
revisions of this paper, and for the many suggestions that have improved the

18

presentation, accuracy and indeed the main result of the paper.

References

[1] S.Abiteboul, L.Herr, and J.Van Den Busse. Temporal connectives versus
explicit timestamps to query temporal databases. Journal of Computer and
System Sciences, 58, pp. 54-68, 1999.

[2] B.Banieqbal and H.Barringer. Temporal logic with fixed points. In Tempo-
ral Logic in Specification, LNCS 398, pp. 62-74, Springer-Verlag, 1987.

[3] S.Bauer, I.Hodkinson, F.Wolter, and M.Zakharyaschev. On non-local
propositional and one-variable quantified CTL*. In Proceedings TIME’02,
pp. 2-9, IEEE Computer Society Press, 2002.

[4] E.Börger, E.Grädel, and Y.Gurevich, The Classical Decision Problem,
Springer, 1997.

[5] A.Bouajjani and R.Mayr. Model checking lossy vector addition systems.
LNCS 1563, pp. 323-333, Springer, 1999.

[6] J.R.Büchi. On a decision method in restricted second order arithmetic.
In Logic, Methodology and Philosophy of Science: Proc. of the 1960 Int.
Congress, pp. 1-11, Stanford University Press, 1962.

[7] O.Delande. Decidable fragments of fixed point extensions of monodic tem-
poral logic. Master’s thesis, Imperial College London, 2006.

[8] T.French. Decidability of quantified propositional branching time logics. In
Proceedings of the 14th Australian Joint Conference on Artificial Intelli-
gence, LNCS 2256, pp. 165-176, Springer, 2001.

[9] T.French and M.Reynolds. A sound and complete proof system for QPTL.
In Advances in Modal Logic, 4, pp. 127-147, King’s College Publications,
2003.

[10] D.Harel. Effective transformations on infinite trees, with applications to
high undecidability, dominoes, and fairness. Journal of the ACM, 33, pp.
224-248, 1986.

[11] I.Hodkinson, R.Kontchakov, A.Kurucz, F.Wolter, M.Zakharyaschev. On
the computational complexity of decidable fragments of first-order linear
temporal logics. In Proceedings TIME-ICTL’03, pp. 91-98, IEEE Computer
Society Press, 2003.

[12] I.Hodkinson, F.Wolter, and M.Zakharyaschev. Decidable fragments of first-
order temporal logics. Annals of Pure and Applied Logic, 106, pp. 85-134,
2000.

19

[13] I.Hodkinson, F.Wolter, and M.Zakharyaschev. Decidable and undecidable
fragments of first-order branching temporal logics. In Proceedings LICS
2002, pp. 393-402, IEEE Computer Society Press, 2002.

[14] Y.Kesten and A.Pnueli. A complete proof system for QPTL. Journal of
Logic and Computation, 12(5), pp. 701-745, 2002.

[15] O.Kupferman, N.Piterman, and M.Vardi. Extended temporal logic revis-
ited. In Proceedings CONCUR’01, LNCS 2154, pp. 519-535, Springer, 2001.

[16] K.Mamouras. First-order temporal logic with fixpoint operators over the
natural numbers. Master’s thesis, Imperial College London, 2009.

[17] Z.Manna and A.Pnueli. The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer-Verlag, Berlin, 1992.

[18] A.P.Sistla, M.Y.Vardi, and P.Wolper. The complementation problem for
Büchi automata with application to temporal logic. Theoretical Computer
Science, 49, pp. 217-237, 1987.

[19] F.D.Valencia. Decidability of infinite-state timed CCP processes and first-
order LTL. Theoretical Computer Science, 330, pp. 577-607, 2005.

[20] M.Y.Vardi and P.Wolper. Reasoning about infinite computations. Informa-
tion and Computation, 115, pp. 1-37, 1994.

[21] P.Wolper. Temporal logic can be more expressive. Information and Control,
56, pp. 72-99, 1983.

Appendix 1 - proof of Theorem 3.13(i)

Only if

We prove the case where, if ci 6= cj ∈ C, for all υ ∈ Υ and n ∈ N,

|Υ| ≥ |U |, |D| ≥ |T | and c
Jυ(n)
i 6= c

Jυ(n)
j (22)

Put Jn = {Jυ(n) : υ ∈ Υ}. Now, subxφ comprises κ subformulae, say,
ψ1, . . . , ψκ of φ. Define the equivalence relation ≈n

2 on Υ by υ1 ≈n
2 υ2 (υ1, υ2 ∈

Υ) iff
∀a ∈ D∃a′ ∈ D

∧

1≤i≤κ

Jυ1(n) |= ψi(a) ⇔ Jυ2(n) |= ψi(a
′) (23)

and
∀a′ ∈ D∃a ∈ D

∧

1≤i≤κ

Jυ1(n) |= ψi(a) ⇔ Jυ2(n) |= ψi(a
′) (24)

and
∀c ∈ C

∧

1≤i≤κ

Jυ1(n) |= ψi(c
Jυ1 (n)) ⇔ Jυ2(n) |= ψi(c

Jυ2 (n)) (25)

20

As cJυ1 (n) = cJυ2 (n), an upper bound for the number of equivalence classes of
≈n

2 is 22κ

.2κ|C| = 22|subxφ|
.2|subxφ||C| = |U | (by Definition 3.3). If, for all υ ∈ Υ,

[υ]≈n
2

denotes the equivalence class containing υ, then as, by (22), |Υ| ≥ |U |,
there exist distinct υn

1 , . . . , υn
|U | ∈ Υ such that all equivalence classes are listed

in
[υn

1]≈n
2
, . . . , [υn

|U |]≈n
2

Now define the equivalence relation ≈n
1 on D by a ≈n

1 a′ (a, a′ ∈ D) iff
∧

1≤i≤κ

∧

1≤j≤|U |
Jυn

j
(n) |= ψi(a) ⇔ Jυn

j
(n) |= ψi(a

′) (26)

Here, there are at most 2κ|U | equivalence classes and so, by (22), as D has
at least |T | = 2|subxφ||U | + |C| = 2κ|U | + |C| elements, there exist distinct
an
1 , . . . , an

2κ|U| , c
J(n)
1 , . . . , c

J(n)
|C| ∈ D such that all equivalence classes are listed in

[an
1]≈n

1
, . . . , [an

2κ|U|]≈n
1
, [cJ(n)

1]≈n
1
, . . . , [cJ(n)

|C|]≈n
1

where C = {c1, . . . , c|C|} and c
J(n)
i = c

I(n)
i (1 ≤ i ≤ |C|) is the common value

in D assigned to ci by all Jυ(n) ∈ Jn for all n ∈ N. Henceforth, we will not
distinguish between the individual constant ci and its value c

J(n)
i .

First of all, we construct a realizable state candidate <Tn, Cn>. For each
n ∈ N, let

elemTn : {an
1 , . . . , an

2κ|U| , c1, . . . , c|C|} → T

and
elemU n : {υn

1 , . . . , υn
|U |} → U

be bijections. Define
Tn : T × U → P(subxφ),

Tn(elemTn(a), elemU n(υ)) = {ψ ∈ subxφ : Jυ(n) |= ψ(a)} (27)

Cn : C × U → P(subxφ),

Cn(c, elemU n(υ)) = {ψ ∈ subxφ : Jυ(n) |= ψ(c)} (28)

From now on, we will drop the elemTn and elemU n and will identify elemTn(a)
and elemU n(υ) with a and υ respectively. Clearly, <Tn, Cn> is a state candidate.
We show that <Tn, Cn> is realized by the finite family of structures

J F
n = {Jυ(n) : υ ∈ U}

over domain D. For conditions (i) and (ii) of Definition 3.4, suppose that (t =)
a ∈ T and a′ ∈ D are such that a ≈n

1 a′, and that υ ∈ U . Then, for all
ψ ∈ subxφ,

ψ ∈ Tn(a, υ)

iff, by (27),
Jυ(n) |= ψ(a)

21

iff, by (26), as a ≈n
1 a′,

Jυ(n) |= ψ(a′)

iff, by the definition of tp,
ψ ∈ tpJυ(n)(a

′)

Thus, Tn(a, υ) = tpJυ(n)(a′) if a ≈n
1 a′. As ≈n

1 is an equivalence relation, given
(t =) a ∈ T , a′ ∈ D such that a ≈n

1 a′ can be found (e.g. a′ = a), and, given
a′ ∈ D, (t =) a ∈ T such that a ≈n

1 a′ can be found. Conditions (i) and (ii) of
Definition 3.4 follow from this. For condition (iii) of Definition 3.4, let c ∈ C
and a ∈ D be such that cJ(n) = a, and let υ ∈ U . Then, for all ψ ∈ subxφ,

ψ ∈ Cn(c, υ)

iff, by (28),
Jυ(n) |= ψ(cJ(n))

iff
Jυ(n) |= ψ(a)

iff, by the definition of tp,
ψ ∈ tpJυ(n)(a)

We now construct a quasimodel <f,R> for (φ, Υ). The state function f asso-
ciates with each n ∈ N the realizable state candidate f(n) = <Tn, Cn> defined
above. For each a ∈ D, υ ∈ Υ and 1 ≤ i ≤ |T |, let ra,υ,i be a (distinct) run
identifier and put

Rυ = {ra,υ,i : a ∈ D, 1 ≤ i ≤ |T |}, R =
⋃

υ∈Υ

Rυ

We have added an i subscript in ra,υ,i, to allow for sufficiently many run identi-
fiers for each a and υ, so that each a′′ ∈ T can be mapped to by RT from
some ra,υ,i as required by Definition 3.9(i) (see (35) below). As, for each
n ∈ N, ≈n

2 is an equivalence relation, then given υ ∈ Υ, there exists uυn ∈ U
(= {υn

1 , . . . , υn
|U |}) such that

uυn ≈n
2 υ (29)

Given a ∈ D, by (23) there exists a′ ∈ D such that

Jυ(n) |= ψ(a) ⇔ Juυn(n) |= ψ(a′) (ψ ∈ subxφ) (30)

By (26) and the definition of T in terms of ≈n
1 , there exists a′′ ∈ T such that

Juυn(n) |= ψ(a′) ⇔ Juυn(n) |= ψ(a′′) (ψ ∈ subxφ) (31)

Therefore, by (29), (30) and (31), given υ ∈ Υ there exists uυn ∈ U such that

∀ a ∈ D ∃ a′′ ∈ T. Jυ(n) |= ψ(a) ⇔ Juυn(n) |= ψ(a′′) (ψ ∈ subxφ) (32)

22

Moreover, by (24),

∀ b′ ∈ T ∃ b ∈ D. Jυ(n) |= ψ(b) ⇔ Juυn(n) |= ψ(b′) (ψ ∈ subxφ) (33)

By (32), there exists a function RT : R × N → T such that RT (ra,υ,i, n) is the
a′′ corresponding to a in (32); precisely

Jυ(n) |= ψ(a) ⇔ Juυn
(n) |= ψ(RT (ra,υ,i, n)) (ψ ∈ subxφ) (34)

As, for each (υ ∈ Υ and) a ∈ D, there are |T | many ra,υ,i’s as i ranges from 1
to |T |, by (33) there exists a function RT satisfying (34) such that every b′ ∈ T
has a rb,υ,i mapped to it; precisely

∀ b′ ∈ T ∃ b ∈ D.
∨

1≤i≤|T |
RT (rb,υ,i, n) = b′ (35)

Furthermore, by (25), there exists RT satisfying (34) and (35) such that

RT (rci,υ,1, n) = ci (36)

We put
R(ra,υ,i, n) = (RT (ra,υ,i), uυn) (ra,υ,i ∈ Rυ, n ∈ N) (37)

and show that <f,R> is a quasimodel for (φ, Υ). This requires showing that
Definition 3.9(i)-(iv) and Definition 3.10(i) and (ii) hold. Definition 3.9(i) follows
from (35). For Definition 3.9(ii), if c ∈ C and υ ∈ Υ, put rc = rc,υ,1 (∈ Rυ).
Then, for all n ∈ N,

Tn(R(rc, n)) = Tn(RT (rc,υ,1, n), uυn) (by (37))
Tn(c, uυn) (by (36))
Cn(c, uυn) (by (27) and (28))

For Definition 3.9(iii), we have that (the two i’s below are not related)

Gi(ψ1, . . . , ψm) ∈ Tn(R(ra,υ,i, n))

iff by (37),
Gi(ψ1, . . . , ψm) ∈ Tn(RT (ra,υ,i, n), uυn)

iff, by (27), if x is the free variable in Gi(ψ1, . . . , ψm),

Juυn(n) |= Gi(ψ1, . . . , ψm)[x/RT (ra,υ,i, n)]

iff, by (34), as Gi(ψ1, . . . , ψm) ∈ subxφ,

Jυ(n) |= Gi(ψ1, . . . , ψm)[x/a]

iff, by (11),
(Mυ, n) |= Gi(ψ1, . . . , ψm)[x/a]

23

iff there is a word wnwn+1 . . . generated by the corresponding grammar Gi, such
that, for all n′ ≥ n and 1 ≤ j ≤ m, if wn′ = vj then

(Mυ, n′) |= ψj(a)

iff, by (11),
Jυ(n′) |= ψj(a)

iff, by (34),
Juυn′ (n

′) |= ψj(R
T (ra,υ,i, n

′))

iff, by (27),
ψj ∈ Tn′(R

T (ra,υ,i, n
′), uυn′)

iff, by (37),
ψj ∈ Tn′(R(ra,υ,i, n

′))

as required. For Definition 3.9(iv), we have that

P ∈ Π ∩ Tn(R(ra,υ,i, n))

iff, by (37),
P ∈ Π ∩ Tn(RT (ra,υ,i, n), uυn)

iff, by (27),
Juυn(n) |= P

iff by (34), as P is one of the ψ’s,

Jυ(n) |= P

iff, by the definition of Jυ(n) and Definition 3.8,

P ∈ υ(n)

We have defined f to be a state function, so Definition 3.10(i) holds. As Def-
inition 3.9(i)-(iv) have been shown to hold above, it follows that R is a family
of runs for (φ, Υ) with respect to f . It remains to show that Definition 3.10(ii)
holds, i.e. φ ∈ T 0(R(ra,υ,i, 0)). As (I(n) † υn : n ∈ N) satisfies φ, we have that

(Mυ, 0) |= φ

which implies, by (11), that
Jυ(0) |= φ

which implies, by (34), as φ is closed and thus belongs to subxφ,

Juυ0(0) |= φ

which implies, by (27), that

φ ∈ T 0(R
T (ra,υ,i, 0), uυ0)

24

which implies, by (37), that

φ ∈ T 0(R(ra,υ,i, 0))

If

We prove (18) by induction.

Case ψ = Pi where Pi /∈ Π or ψ = p(x1, . . . , xm)

By the definition of |=a and as ψ contains no surrogates

Iuυn
(n) |=a ψ iff (Mυ, n) |=a ψ

from which (18) follows.

Case ψ = Pi where Pi ∈ Π

Pi ∈ Tn(R(r, n)) = tpJuυn (n)(∆υn(r, a)) iff Juυn(n) |=a Pi, (38)

by Lemma 3.12(i) and Definition 3.4. By Definition 3.9(iv) and the definition
of Mυ,

Pi ∈ Tn(R(r, n)) iff Pi ∈ υ(n) iff (Mυ, n) |=a Pi (39)

As Iuυn(n) is induced from Juυn(n), (38) and (39) yield

Iuυn(n) |=a Pi iff Juυn(n) |=a Pi iff (Mυ, n) |=a Pi

from which (18) follows.

Case ψ = ¬ψ1

In this case, ζψ = empty string iff ζψ1 = ¬.

Subcase 1: ζψ1 = ¬. By induction,

Iuυn(n) |=a ζψ1ψ1 implies (Mυ, n) |=a ζψ1ψ1

and so
Iuυn(n) |=a ¬ψ1 implies (Mυ, n) |=a ¬ψ1

and so
Iuυn(n) |=a ψ implies (Mυ, n) |=a ψ

and so, as ζψ = empty string,

Iuυn(n) |=a ζψψ implies (Mυ, n) |=a ζψψ

25

Subcase 2: ζψ1 = empty string. By induction,

Iuυn(n) |=a ζψ1ψ1 implies (Mυ, n) |=a ζψ1ψ1

and so
Iuυn

(n) |=a ψ1 implies (Mυ, n) |=a ψ1

and so
Iuυn

(n) |=a ¬¬ψ1 implies (Mυ, n) |=a ¬¬ψ1

and so
Iuυn

(n) |=a ¬ψ implies (Mυ, n) |=a ¬ψ

and so, as ζψ = ¬,

Iuυn
(n) |=a ζψψ implies (Mυ, n) |=a ζψψ

Case ψ = ψ1 ∧ ψ2

In this case, ζψ = ζψ1 = ζψ2 . By induction,

Iuυn(n) |=a ζψ1ψ1 implies (Mυ, n) |=a ζψ1ψ1 (40)

and
Iuυn(n) |=a ζψ2ψ2 implies (Mυ, n) |=a ζψ2ψ2 (41)

Subcase 1: ζψ = ζψ1 = ζψ2 = empty string.

Iuυn(n) |=a ζψψ implies (Mυ, n) |=a ζψψ

follows immediately from (40) and (41).

Subcase 2: ζψ = ζψ1 = ζψ2 = ¬. We have that

Iuυn(n) |=a ¬(ψ1 ∧ ψ2) iff Iuυn(n) |=a ¬ψ1 or Iuυn(n) |=a ¬ψ2 (42)

Hence, by (40), (41) and (42), it follows that

Iuυn(n) |=a ¬(ψ1 ∧ ψ2) implies (Mυ, n) |=a ¬(ψ1 ∧ ψ2)

i.e.

Iuυn(n) |=a ζψ1∧ψ2(ψ1 ∧ ψ2) implies (Mυ, n) |=a ζψ1∧ψ2(ψ1 ∧ ψ2)

Case ψ = ∃xψ1

Here, ζψ = ζψ1 .

26

Subcase 1: ζψ = ¬
Iuυn(n) |=a ζψψ, i.e. Iuυn(n) |=a ¬∃x.ψ1

implies, for all assignments b differing from a only on x,

Iuυn(n) |=b ¬ψ1

implies, as ζψ = ¬ and so the number of enclosing ¬’s of ∃x.ψ1 is odd and thus x
cannot be live in ψ1, all such b satisfy (17) trivially and therefore, by induction,
for all such b,

(Mυ, n) |=b ζψ1ψ1 (= ¬ψ1)

iff
(Mυ, n) |=a ¬∃x.ψ1

iff
(Mυ, n) |=a ζψψ

Subcase 2: ζψ = empty string

Iuυn(n) |=a ζψψ, i.e. Iuυn(n) |=a ∃x.ψ1

implies, putting aJ (y) = ∆n(a(y)) for all y, as ∆n induces Iuυn ,

Juυn(n) |=aJ ∃x.ψ1

implies (we give the more difficult case when x is live in ψ1 as, if x is not live,
there is no requirement that r ∈ Rυ for b(x) = (r, a) below), by (4) of Definition
3.5,

Juυn(n) |=raaJ ,uυn,ψ1 ψ1 (43)

implies, as ∆υn is a surjection, choosing r ∈ Rυ and a ∈ D such that

∆n(r, a) = ∆υn(r, a) = raaJ ,uυn,ψ1(x)

and putting
b(y) = a(y) (y 6= x), b(x) = (r, a) (44)

we have (from (43), as raaJ ,uυn,ψ1(y) = aJ (y) (by (3) of Definition 3.5) wherever
b(y) = a(y), and ∆n induces Iuυn from Juυn), by Lemma 3.1,

Iuυn(n) |=b ψ1

implies, by induction (condition (18) can be applied as, by (44), x is reassigned
to (r, a) for some r ∈ Rυ and therefore (17) still holds),

(Mυ, n) |=b ψ1

implies
(Mυ, n) |=a ∃x.ψ1

27

i.e.
(Mυ, n) |=a ζψψ

Case ψ = Gi

Put ψ(x) = Gi(ψ1(x), . . . , ψm(x)). Note that ζψ = ζψ1 = . . . = ζψm .

Subcase 1: ζψ = empty string

Iuυn(n) |=a ζψψ, i.e Iuυn(n) |=a ψ(x)

implies, for some a ∈ D, υ′ ∈ Υ and r ∈ Rυ′ such that a(x) = (r, a),

Iuυn
(n) |= pψ((r, a))

implies, as ∆n induces Iuυn
(n),

Juυn(n) |= pψ(∆n(r, a))

implies, as pψ ∈ surrφ− surrP φ if x is not live in ψ and υ′ = υ (by (17)) if x is
live in ψ,

Juυ′n(n) |= pψ(∆n(r, a))

implies, as ∆n(r, a) = ∆υ′n(r, a),

Juυ′n(n) |= pψ(∆υ′n(r, a))

implies, by the definition of tpJu
υ′n (n)(∆υ′n(r, a)) (Definition 3.4) and Lemma

3.12(i),

ψ(x) = Gi(ψ1(x), . . . , ψm(x)) ∈ tpJu
υ′n (n)(∆υ′n(r, a)) = Tn(R(r, n))

implies, by Definition 3.9(iii), there is a word wnwn+1 . . . generated by Gi such
that, for all n′ ≥ n, if wn′ = vj then

ψj(x) ∈ Tn′(R(r, n′))

implies, by Lemma 3.12(i),

ψj(x) ∈ Tn′(R(r, n′)) = tpJu
υ′n′ (n

′)(∆υ′n′(r, a))

implies, by the definition of tpJu
υ′n′ (n

′)(∆υ′n′(r, a)),

Juυ′n′ (n
′) |= ψj(∆υ′n′(r, a))

implies as, if x is not live in ψ, then ψ and therefore its subformula ψj do not
contain any P ∈ Π and so ψj only contains symbols in surrφ − surrP φ (and
thus, by an easy induction, we have that, for all ξ ≤ ψj , n ∈ N, assignments aJ

28

to elements of D, and u, u′ ∈ U , Ju(n) |=aJ

ξ iff Ju′ |=aJ

ξ) and, if x is live in
ψ, then υ′ = υ,

Juυn′ (n
′) |= ψj(∆υ′n′(r, a))

implies, as ∆υ′n′(r, a) = ∆n′(r, a) and ∆n′ induces Iuυn′ (n
′),

Iuυn′ (n
′) |= ψj((r, a))

implies there is a word wnwn+1 . . . generated by Gi such that, for n′ ≥ n and
wn′ = vj ,

Iuυn′ (n
′) |=a ψj(x)

implies, by induction (if x is live in ψj then x is plainly live in ψ and so by
hypothesis a(x) ∈ Rυ × D and the inductive hypothesis can be applied) as
ζψj

= ζψ = empty string, there is a word wnwn+1 . . . generated by Gi such
that, for n′ ≥ n and wn′ = vj

(Mυ, n′) |=a ψj(x)

implies
(Mυ, n) |=a Gi(ψ1(x), . . . , ψm(x))(= ζψψ)

Subcase 2: ζψ = ¬

Given that ζψ = ¬, we need to prove that

Iuυn(n) |=a ¬ψ implies (Mυ, n) |=a ¬ψ

i.e.
(Mυ, n) |=a ψ implies Iuυn(n) |=a ψ

Letting a ∈ D, υ′ ∈ Υ and r ∈ Rυ′ be such that a(x) = (r, a),

(Mυ, n) |=a ψ

i.e.
(Mυ, n) |=a Gi(ψ1, . . . , ψm)

implies there is a word wnwn+1 . . . generated by Gi such that, for n′ ≥ n and
wn′ = vj ,

(Mυ, n′) |=a ψj(x)

implies (as ζψj = ζψ = ¬ and therefore, by induction, Iuυn′ (n
′) |=a ¬ψj(x)

implies (Mυ, n′) |=a ¬ψj(x), i.e. (Mυ, n′) |=a ψj(x) implies Iuυn′ (n
′) |=a ψj(x))

Iuυn′ (n
′) |=a ψj(x)

implies
Iuυn′ (n

′) |= ψj((r, a))

29

implies, as ∆υ′n′(r, a) = ∆n′(r, a) and ∆n′ induces Iuυn′ (n
′),

Juυn′ (n
′) |= ψj(∆υ′n′(r, a))

implies, as ψj only contains symbols in surrφ− surrP φ if x is not live in ψ, and
υ′ = υ if x is live in ψ,

Juυ′n′ (n
′) |= ψj(∆υ′n′(r, a))

implies, by the definition of tpJu
υ′n′ (n

′)(∆υ′n′(r, a)),

ψj(x) ∈ tpJu
υ′n′ (n

′)(∆υ′n′(r, a))

implies, by Lemma 3.12(i) (there is a word generated by Gi such that, for n′ ≥ n,
if wn′ = vj then),

ψj ∈ tpJu
υ′n′ (n

′)(∆υ′n′(r, a)) = Tn′(R(r, n′))

implies, by Definition 3.9(iii) and Lemma 3.12(i),

ψ(x) = Gi(ψ1, . . . , ψm) ∈ Tn(R(r, n)) = tpJu
υ′n (n)(∆υ′n(r, a))

implies, by the definition of tpJu
υ′n (n)(∆υ′n(r, a)),

Juυ′n(n) |= pψ(∆υ′n(r, a))

implies, as ∆n(r, a) = ∆υ′n(r, a),

Juυ′n(n) |= pψ(∆n(r, a))

implies, as pψ ∈ surrφ− surrP φ if x is not live in ψ, and υ′ = υ if x is live in ψ,

Juυn(n) |= pψ(∆n(r, a))

implies, as ∆n induces Iuυn(n),

Iuυn(n) |= pψ((r, a))

implies
Iuυn(n) |=a ψ

Appendix 2 - proof of Lemma 4.1

Only if

Let 〈f, R〉 be a quasimodel for (φ, Υ) as in Definitions 3.9 and 3.10. Then, by
Definition 3.9, for each υ ∈ Υ, there is a sequence

<un : n ∈ N> = <uυn : n ∈ N>

30

of elements of U , and a function RT : Rυ × N → T satisfying (5), Definition
3.9(i), (iii) and (iv), and Definition 3.10(ii). Also, for all c ∈ C, there is a rc ∈ Rυ

satisfying Definition 3.9(ii). For all n ∈ N and t ∈ T , consider ρn,t : N → T
defined by

ρn,t(m) = RT (r,m) (m ∈ N)

where r is as in Definition 3.9(i), so that ρn,t(n) = RT (r, n) = t and therefore
(ρ3.9(i)) is satisfied. By Definition 3.9(iii) and (iv) and Definition 3.10(ii), the
sequence

<f(m)T (ρn,t(m), um) : m ∈ N> = <Tm(RT (r,m), uυm) : m ∈ N>

= <Tm(R(r,m)) : m ∈ N> (by (5))

satisfies (ρ3.9(iii)), (ρ3.9(iv)) and (ρ3.10(ii)) respectively. Also, for all c ∈ C, there
exists ρc : N→ T such that, for all m ∈ N,

ρc(m) = RT (rc, m)

and so

f(m)T (ρc(m), um) = Tm(RT (rc,m), uυm) = Tm(R(rc, m)) (by (5))

= Cm(c, uυm) (by Definition 3.9(ii)) = f(m)C(c, um)

As (ρ3.9(iii)), (ρ3.9(iv)) and (ρ3.10(ii)) can be shown to be satisfied for ρc as above,
it follows that ρ3.9(ii) is satisfied.

If

Conversely, suppose that, for all υ ∈ Υ, there exists <un> such that, for the
given f , ξφ(f, υ,<un>) holds. With this f , we construct a quasimodel 〈f, R〉
for (φ, Υ). Let υ ∈ Υ, and let <un> be such that ξφ(f, υ, <un>) holds. Put
uυn = un (n ∈ N) and

Rυ = (N× T) ∪ C

For all r ∈ Rυ and m ∈ N, we need to define R(r,m) and so we need a value
RT (r,m) ∈ T . Put

RT (r,m) = ρn,t(m)

from the definition of ξφ(f, υ,<un>), for all r = (n, t) ∈ Rυ, and put

RT (c,m) = ρc(m)

for all c ∈ C ⊆ Rυ. Then, Definition 3.9(i) is satisfied as, given n ∈ N and
t ∈ T , taking r = (n, t) ∈ Rυ, we have, by ρ3.9(i),

RT (r, n) = ρn,t(n) = t

Definitions 3.9(iii) and (iv) hold for all r = (n, t) ∈ Rυ as

<Tm(R(r,m)) : m ∈ N> = <Tm(RT (r,m), uυm) : m ∈ N>

31

= <f(m)T (ρn,t(m), um) : m ∈ N>

satisfies grammars and agrees with υ, by (ρ3.9(iii)) and (ρ3.9(iv)). Definition
3.10(ii) holds for all r = (n, t) ∈ Rυ by (ρ3.10(ii)) as

T 0(R(r, 0)) = f(0)T (ρn,t(0), u0)

contains φ. Definitions 3.9(iii) and (iv) and Definition 3.10(ii) hold for r = c ∈
Rυ similarly. Definition 3.9(ii) holds as, taking rc = c ∈ Rυ, for all m ∈ N,

Tm(R(rc,m)) = Tm(RT (c,m), uυm) = f(m)T (ρc(m), um)

= f(m)C(c, um) (by (ρ3.9(ii))) = Cm(c, uυm)

32

