

This item was submitted to Loughborough's Institutional Repository (<u>https://dspace.lboro.ac.uk/</u>) by the author and is made available under the following Creative Commons Licence conditions.

COMMONS DEED
Attribution-NonCommercial-NoDerivs 2.5
You are free:
 to copy, distribute, display, and perform the work
Under the following conditions:
Attribution . You must attribute the work in the manner specified by the author or licensor.
Noncommercial. You may not use this work for commercial purposes.
No Derivative Works. You may not alter, transform, or build upon this work.
 For any reuse or distribution, you must make clear to others the license terms of this work.
 Any of these conditions can be waived if you get permission from the copyright holder.
Your fair use and other rights are in no way affected by the above.
This is a human-readable summary of the Legal Code (the full license).
Disclaimer 🖵

For the full text of this licence, please go to: <u>http://creativecommons.org/licenses/by-nc-nd/2.5/</u>

MICRONEEDLE ASSISTED PERMEATION OF LIDOCAINE HCL FROM A NaCMC:GEL HYDROGEL

Atul Nayak, Diganta B Das, Goran T. Vladisavljević

Chemical Engineering Department, Loughborough University, Loughborough, UK. (Email: <u>A.Nayak@lboro.ac.uk;</u> <u>D.B.Das@lboro.ac.uk</u>)

Lidocaine hydrochloride (HCI) is a common local anaesthetic with a short time of drug action and relatively long period of sustained delivery¹. Additional active molecules, such as tetracaine and adrenaline, are used in topical lidocaine ointment to enhance lidocaine HCl delivery. However, these molecules compete with the injected lidocaine HCl². For example, adrenaline is likely to cause a reduced percutaneous delivery of lidocaine HCl^{3,4}. Microneedle assisted delivery of lidocaine HCl involves the creation of artificial pores to bypass the SC layer of skin for delivery of lidocaine HCl⁵. Unlike topical based ointments, injectable lidocaine HCI can produce a burning sensation and is suitable for less sustained percutaneous delivery^{6,7}. However, the time delay between skin surface applications of eutectic mixtures of local anaesthetics (EMLA) to permeating at a depth of 3000µm is 60 minutes⁸. In the present work, a pre-fabricated set of stainless steel microneedles with a needle interspacing of 1100um was impacted on dissected porcine skin section at a force of ~0.09 N per needle⁵. A novel lidocaine hydrogel was also formulated with approximately half the mass loading of local anaesthetics contained in Lidoderm and EMLA formulation^{5,9,10}. A poke and patch method was adopted in directing the polymeric hydrogel into the microneedles holes on skin. Mild pseudoplasticity resembling an ointment formulation for lidocaine NaCMC:gel hydrogel remained constant when lidocaine HCI loading mass increased. Gelatine (gel) to sodium carboxymethylcellulose (NaCMC) mass ratio of 2.3 resulted in highly favourable zeta potentials when lidocaine HCl 2.4% w/w was loaded. Microneedle assisted lidocaine delivery of gel to NaCMC mass ratio of 2.3 resulted in crossing a minimum therapeutic level at skin depths of ~730µm before 70 minutes (Fig. 1). The lidocaine permeation flux was 1.7 times greater for gel to NaCMC mass ratio of 2.3 compared with a mass ratio of 1.6 under microneedle assisted delivery (Fig. 2).

Fig. 1 Example of cumulative amount of lidocaine hydrochloride permeated through skin from NaCMC/GEL within a 4 hour period.

Fig. 2 Example of Lidocaine (2.4% w/w) NaCMC/GEL flux permeation through skin.

References

- 1. R.G. Loughlin, M.M. Tunney, R.F. Donnelly, D.J. Murphy, Jenkins, P.A. McCarron "Modulation of gel formation and drug-release characteristics of lidocaine-loaded poly(vinyl alcohol)-tetraborate hydrogel
- systems using scavenger polyol sugars" *Eur. J. Pharm. Sci.*, **69**, 1135–1146 (2008).
- B.C. Smith and A.H. Wilson, "Topical versus injectable analgesics in simple laceration repair: An integrative review" J.N.P., 9, 374–380 (2013).
- M.H. Bekhit, The essence of analgesia and anagesics. Lidocaine for neural blockade, Cambridge University Press, 280-281 (2011).
- 4. S. Chale, A.J. Singer, S. Marchini, M.J. McBride, D. Kennedy "Digital versus local anesthesia for finger lacerations: A randomized controlled trial" Acad. Emerg. Med., **13**, 1046-1050 (2006).
- 5. A. Nayak, D.B. Das, G.T. Vladisavljević "Microneedle-assisted permeation of lidocaine carboxymethylcellulose with gelatine co-polymer hydrogel" Pharm. Res., **30**, 1-15 (2013).
- 6. M.E. Hogan, S. vanderVaart, K. Perampaladas, M. Machado, T.R. Einarson, A. Taddio "Systematic review and meta-analysis of the effect of warming local anesthetics on injection pain" Ann. Emerg, Med., **58**, 86-98 (2011)
- 7. M.H. Bekhit, The essence of analgesia and anagesics. Lidocaine for neural blockade, Cambridge University Press, 280-281 (2011).
- 8. S. Tadicherla and B. Berman "Percutaneous dermal drug delivery for local pain control" Therapeut Clin Risk Manag., **2**, 99-113 (2006).
- 9. A. Nayak, D.B. Das "Potential of biodegradable microneedles as a transdermal delivery for lidocaine" Biotechnol Lett., **35**: 1351-1363 (2013).

 K.S. Paudel, M. Milewski, C.L. Swadley, N.K. Brogden, P. Ghosh, A.L. Stinchcomb "Challenges and opportunities in dermal/transdermal delivery" Ther Deliv., 1, 109-131 (2010).