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Resampling dea estimates of investment fund performance
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Data envelopment analysis (dea) is attractive for comparing investment funds because it handles different
characteristics of fund distribution and gives a way to rank funds. There is substantial literature applying
dea to funds, based on the time series of funds’ returns. This article looks at the issue of uncertainty in
the resulting dea efficiency estimates, investigating consistency and bias. It uses the bootstrap to develop
stochastic dea models for funds, derive confidence intervals and develop techniques to compare and rank
funds and represent the ranking. It investigates how to deal with autocorrelation in the time series and
considers models that deal with correlation in the funds’ returns.
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1 Introduction

Consider an investor or fund manager who has data on
the returns of n investment funds over T recent time
periods and wishes to know if fund o is likely to perform
well in future. They have a performance measure φo. It
is not known exactly and can only be estimated from the
data as φo,T . We consider here the case where φo is a
(population) efficiency from a data envelopment analysis
(dea) model whose decision-making units are the n
investment funds. But, in general, φo can be another
performance measure such as the Sharpe, Calmar or
Sortino (Lhabitant, 2004) ratio. And the methods we
describe apply whenever dea efficiencies are estimated
from a time series of observed data.

Our purpose is to investigate the following. First, is
φo,T a consistent estimator of φo? If it is, is it biased?
And if it is biased, how can we estimate the bias? Sec-
ond, how can we obtain a confidence interval for each
φo? Third, how can we compare funds statistically and
rank them according to their performance? We in-
vestigate these assuming initially no autocorrelation in
the time series and later allowing for autocorrelation.
We test the methods we develop on both standard
and diversification-consistent (Lamb and Tee, 2011) dea

models, which are arguably more appropriate for invest-
ment funds.

Investment funds (especially hedge funds) are often
characterised by strong skewness and kurtosis (Brooks
and Kat, 2002) and not just mean and variance. These
makes dea attractive because it can handle multiple prop-
erties of the fund distributions and provide a means
to rank them. Ranking is important because it helps
identify funds that perform well and so, for example,
helps form a fund of hedge funds portfolio efficiently.
However, the accuracy of the ranking requires the inves-
tigation of the statistical properties of the dea models,
the main purpose of the paper.

Various studies (e.g. Murthi et al. (1997); Gregoriou and
Zhu (2005); Chen and Lin (2006); Lozano and Gutiér-
rez (2008a); Kumar et al. (2010)) apply deterministic
dea to the problem of measuring the efficiency of in-
vestment funds. Studies have considered both choice
of model (e.g. Gregoriou and Zhu (2005); Lozano and
Gutiérrez (2008a,b); Briec and Kerstens (2010)) and
choice of measure (e.g. Eling (2006)). Our findings are
valid for a wide range of models and measures and so
we do not discuss these in detail. Lamb and Tee (2011)
discuss what models and risk (input) and return (output)
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measures are appropriate for modelling funds.

As far as we know, stochastic dea has not been applied
before to modelling funds. However, several methods
for stochastic dea are developed in other contexts. In
particular we note the methods developed by Simar and
Wilson (1998); Löthgren and Tambour (1999a,b); Löth-
gren (2000); Kuosmanen and Johnson (2010), which
have been applied to modelling Italian banking data
(Ferrier and Hirschberg, 1997) and Spanish public ser-
vices (González and Miles, 2002). These methods use
the bootstrap (Efron and Tibshirani, 1998) to deal with
uncertainty, and Souza et al. (2011) use a similar method
for confidence intervals. These methods assume only
one observation of each input and output for each deci-
sion making unit (dmu), which means the bootstrap data
generating processes cannot include every dmu in each
replication. By contrast, investment fund data has many
observations for each fund (or dmu) and so we can use a
more conventional bootstrap method. We know of one
example of stochastic dea with multiple observations
for each dmu: Kao and Liu (2009) model Taiwanese
banks with five values for each input and output but do
not use the bootstrap. Dyson and Shale (2010) discuss
more generally the problems that arise in stochastic dea
and how to deal with them.

Investment funds are typically ranked (see, for example,
Morningstar (2011)). Ranking is straightforward if we
know the values of the performance measure exactly, as
in deterministic dea with precisely known inputs and
outputs. In stochastic dea ranking must be reassessed.
The exact rank of a fund cannot be known for sure
and may change from one resample to the next. In
this case, ranking will be based on the average value
of the efficiency scores out of the entire re-sampling.
However, using the average value could bias the accuracy
of the rank position, an issue which we will address in
the paper. Still, the effect of biases could complicate
the position ranking of two funds, especially when the
average values of their scores are very similar. Therefore,
an alternative approach we adopt in this paper is to
use partial ranking to ascertain the relative positions of
funds. Partial ranking ensures that one fund is ranked
above another whenever its performance is statistically
significantly better. Partial ranking is a partial ordering
� that we can best show in figures like Fig. 2 as a Hasse
diagram (Rutherford, 1965). A Hasse diagram shows an

arrow from i to j if (a) φi � φj and (b) there is no k
with φi � φk and φk � φj .

Section 2 presents basic deamodels and shows that φo,T
is, in general, a consistent estimator of φo. Section 3
describes a bootstrap data generating process and how
we can use it to produce an unbiased estimator of φo.
It then shows how we can find bootstrap confidence
intervals for dea efficiency and how we can compare
and rank funds statistically. Section 4 discusses how to
deal with autocorrelation. Section 5 applies the methods
to deamodels that allow the possibility of risk reduction
through diversification. Furthermore, Sections 3, 4 and 5
discuss fund ranking and related issues in the resampling
process. And Section 6 presents some discussion and
conclusions.

2 Consistency of DEA efficiency esti-
mates

A sequence of estimators θT (T = 1, 2, . . .) for a pa-
rameter θ is consistent if θT converges in probability to
θ as T → ∞. Clearly we want dea estimates to be
consistent. We show they are when T is the num-
ber of observations for each fund. Contrast this with
Banker (1993), whose result is of the form φo,n → φo in
probability as n→∞, where n is the number of dmus.

We now describe the main dea models we use. Sec-
tion 3 discusses the specific measures we use. We
assume we have investment funds f1, . . . , fn whose
returns for time periods 1, . . . , T are given as rjt
(j = 1, . . . , n, t = 1, . . . , T ). We assume we have
nonnegative risk measures x1, . . . , xm and nonnegative
return measures y1, . . . , yr that we can estimate for any
fund. Let xij = xi(fj) (i = 1, . . . ,m, j = 1, . . . , n) and
let yrj = yr(fj) (r = 1, . . . , s, j = 1, . . . , n). We use
the risk and return measures to estimate an efficiency
φo,T for each fund fo (o = 1, . . . , n).

We use the following input-oriented model. Define
φo,T (o = 1, . . . , n) as follows. If (x1o, . . . , xmo) ≤ 0
put φo,T = 1. Otherwise, choose φo,T , λ1, . . . , λn to

minimise φo,T subject to
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n∑
j=1

yrjλj ≥ yro, (r = 1, . . . , s) (1)

n∑
j=1

xijλj ≤ xioφo,T , (i = 1, . . . ,m) (2)

n∑
j=1

λj ≤ 1, (3)

and

λj ≥ 0 (j = 1, . . . , n) (4)

This is a conventional dea model in dual form (Grego-
riou and Zhu, 2005) with two modifications, explained
in detail in Lamb and Tee (2011). First, constraint (3)
creates a nonincreasing returns to scale (nirs) (Cooper
et al., 2007; Färe et al., 1994) model. This relaxes the
constraint of the more usual variable returns to scale
model by allowing some proportion of an investment
to be invested in no fund while avoiding the impossi-
ble sets of risks and returns that a constant returns to
scale model permits. Second, the model allows the risk
and return measures to take zero values without giving
implausible efficiency scores.

We also use an output-oriented nirs model that gives
an efficiency φ′o,T in the range [0, 1]. It is the model of
A simplified by setting n̂ = 0.

We denote by φo and φ′o the population efficiencies
we would get if we could replace the risk and return
measures with the corresponding population statistics.

The following results help establish when φo,T and φ′o,T
are consistent. LetX be them×nmatrix whose (i, j)th
entry is xij . Let Y be the s× n matrix whose (r, j)th
entry is yrj . Call a function f(X,Y ) p-continuous if it is
continuous with respect to perturbations in X,Y that
leave elements that take the value zero unchanged.

Proposition 1 The efficiencies φo and φ′o are p-
continuous for almost every value of X and Y .

Proof. Note that if we add a fund all of whose risk and re-
turn measures are zero to either model, we get a variable
returns to scale model. Then the result for φo follows a
fortiori from Scheel and Scholtes (2003, Proposition 3).
The result of Scheel and Scholtes (2003) requires a
linear programme with a bounded feasible set and so
cannot be used directly for φ′o. But if (y1o, . . . , yso) = 0
then φ′o is p-continuous with probability 1 by definition.
Otherwise, define ψro (r = 1, . . . , s) by the linear pro-
gramme: choose λ1, . . . , λn to

maximise

ψro =
n∑
j=1

λjyrj (5)

subject to constraints (9) (with n̂ = 0) and (4). (Banker
(1993) uses this programme to estimate frontier points
when s = 1.) Put ηro = yro/ψro if ψro > 0 and 0 other-
wise. Then ηo = maxr=1,...,s ηro is the solution to the
output-oriented nirs model. The linear programme has
a bounded feasible set and so (see Scheel and Scholtes
(2003); Robinson (1977)) each ψro is continuous at X and
Y . Since the functions max and ηro are p-continuous
almost everywhere it follows that φ′o = 1/ηo is also
p-continuous almost everywhere.

The following well-known result of Mann and Wald
(1943) is called the continuous mapping theorem.

Proposition 2 Let g : S → T be continuous almost ev-
erywhere and let wn be a sequence of random vectors on S
such that wn converges in probability to w. Then g(wn)
converges in probability to g(w).

Proposition 3 Suppose x1, . . . , xm, y1, . . . , ys are con-
sistent measures. Suppose that each estimate of xi(f)
(i = 1, . . . ,m) is either always zero or zero with prob-
ability 0 and that each estimate of yr(f) (r = 1, . . . , s)
is either always zero or zero with probability 0. Then
φo,T and φ′o,T are consistent estimators of φo and φ′o for
o = 1, . . . , n.

Proof. We can consider φo and φ′o as functions of the el-
ements of X,Y that are not always zero. Then they are
continuous almost everywhere by Proposition 1 and so
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φo,T and φ′o,T are consistent estimators by Proposition 2.

Although Proposition 3 is proved for nirs models, it
is straightforward to check that it holds also for vrs
models.

3 Bootstrap, bias, confidence intervals
and comparisons

We have shown φo,T is consistent but wish to know
more about its properties. The bootstrap is a method
for investigating the properties of a sample statistic (for
example, estimating bias and standard error) such as φo,T
when the distribution of the sample statistic is unknown.
It is particularly useful when parametric methods are in-
appropriate. Clearly the distribution of φo,T is bounded
below by zero and above by one and plausibly may take
either with nonzero probability. We know of no para-
metric method that can be used in such circumstances.

3.1 Bootstrap data generating process

The bootstrap needs a data generating process (Efron
and Tibshirani, 1998). Our data generating process is as
follows. We generate a number of replications. These
are data sets of the form r∗it = riρ(t) (i = 1, . . . , n, t =
1, . . . , T ) where ρ(1), . . . , ρ(t) are generated uniformly
at random with replacement from {1, . . . , T}. This is
a standard approach for generating data sets of vectors
and preserves correlations between returns of different
funds. We use 2000 replications in each test we carry
out because Efron and Tibshirani (1998) indicate this is
a reasonable number for each bootstrap method we use.
We estimate the dea efficiencies for each replication
and use them in various bootstrap procedures.

3.2 Specific data and measures

We use data comprising 60 monthly returns from 30
hedge funds for the period 2000–2004. The funds come
from Center for International Securities and Derivatives
Markets (2010) and are broadly classified as market neu-
tral (mn), long/short strategy (ls) and global macro (gm).

Although we may use any risk or return measures, we

illustrate our method with measures that satisfy a prop-
erty called convexity consistency (Lamb and Tee, 2011)
because we need such measures in Section 5. Convex-
ity consistency is closely related to the well-known
notion of a coherent measure of risk (Artzner et al.,
1999; Rockafellar and Uryasev, 2002). We use mea-
sures base on two particular coherent measures of risk.
The first is conditional value at risk: cvarα is the ex-
pected loss on an investment conditional on that loss
not exceeding varα, where varα, the value at risk at α,
is the negative of the 100α% percentile of the distri-
bution of returns. Both cvar and var are widely used
in the finance literature (Jorion, 2007). The second
measure is the lower semideviation minus the mean
(Ogryczak and Ruszczyński, 1999). We use the same
four specific risk and return measures for every test we
carry out. The risk measures are max(cvar0.2, 0) and
max(sd, 0), where sd is the lower semideviation minus
the mean. The return measures are the mean return
and max(−cvar0.1, 0).
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Figure 1: Efficient frontiers of simplified nirs and
diversification-consistent nirs models

Fig. 1 plots mean against max(cvar0.2, 0) for each fund
and the solid line shows the efficient frontier from the
simplified nirs dea model that uses only these two
measures. Note that the frontier does not depend on
whether the model is input-oriented or output-oriented.

3.3 Bias

We first estimate the bias and derive bias-corrected es-
timates of the dea efficiencies. We use the bootstrap
estimate of bias of Efron and Tibshirani (1998, Sec-
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tion 10.2). Although there are better bootstrap methods
to estimate bias (Efron, 1990), we cannot adapt them
for dea because the efficiencies are given by linear pro-
grammes rather than an explicit formula.

Columns 2–4 of Table 1 show, for each fund, the dea ef-
ficiency (labelled φT , raw efficiency for short) bootstrap
bias-corrected dea efficiency (labelled φbc,T ) and boot-
strap standard error (labelled se) for the input-oriented
model. The bootstrap estimate of bias can be found as

b̂ias = φT − φbc,T . (6)

We estimate also the bootstrap standard error using
Efron and Tibshirani (1998, Algorithm 6.1). The table is
ordered by bias-corrected efficiency and we note that
the ordering is noticeably different from that given by
the raw efficiencies.

The bootstrap bias we observe is invariably less than the
standard error, but is large enough to suggest it may be
better to use bias-corrected efficiency estimates. The
bias is negative for funds that have efficiency close to 1
though some funds have positive bias. This is expected.
The basic dea model must produce some funds with
efficiency 1 but it unlikely that these funds will achieve
efficiency 1 in every replication.

Section 5 discusses columns 5–7 of Table 1.

3.4 Confidence intervals

There are several bootstrap methods for confidence
intervals (Efron and Tibshirani, 1998). We cannot use
the parametric bootstrap because it assumes we know
the form of the distribution of the dea efficiencies. So
we seek a nonparametric bootstrap method. Suppose a
method gives a 1 − 2α confidence interval (φα, φ1−α)
satisfying

P (φ < φα)− α = O(T−r) and
P (φ > φ1−α)− α = O(T−r),

(7)

for some r, where T is the sample size and O is the
Landau symbol. The method is first-order accurate if it
satisfies Eq. (7) with r = 1 and second-order accurate if it
satisfies it with r = 2. Ideally we want a second-order
accurate method. The bias-corrected accelerated (bca)

method (Efron and Tibshirani, 1998) is second-order
accurate depending on the assumption (Efron, 1987) that
there is a strictly increasing function g and constants z0
and a such that

g(φT ) = g(φ)+(1+ag(φ))(Z−z0), Z ∼ N(0, 1),

(8)

where φ is the population efficiency and φT is sample
efficiency. However, φo,T is bounded below by zero and
above by one, and we find that in practice it may take
either value with positive probability. So the assumption
of a strictly-increasing g satisfying Eq. (8) is not plausibly
even approximately true for dea efficiency estimates.

The bootstrap percentile interval (Efron and Tibshirani,
1998) is first order accurate and does not depend on as-
sumptions about the distribution of efficiency estimates,
and so we report percentile confidence intervals for the
efficiencies. In practice, we find the percentile and bca
intervals are very similar.

Table 2 presents the funds in the same order as Table 1.
Columns 2–3 show the 95% percentile bootstrap confi-
dence intervals for each fund using the input-oriented
model. Columns 2–3 of Table 3 show the 95% percentile
bootstrap confidence intervals using the output-oriented
model. Sections 4 and 5 discuss the remaining columns
of both tables.

3.5 Comparisons

The confidence intervals of Table 2 are wide. Nonethe-
less, we may reasonably hope to observe significant
differences between many pairs of funds if we can use
a matched pairs test. Such a test is possible because
we have matching observations for each fund in each
time period. We can test individual differences in ef-
ficiency between funds using a one-sample bootstrap
hypothesis test (Efron and Tibshirani, 1998, Chapter 16)
based on the difference between efficiencies. As in Sec-
tion 3.4, we use bootstrap percentiles for the differences
in efficiency to construct individual hypothesis tests.

As usual, when we carry out multiple matched-pairs
tests, some tests may appear significant by chance alone
(our example has 435 tests). The usual adjustments
are inappropriate because a transitive comparison rela-
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basic diversification consistent
fund φT φbc,T se φT φbc,T se
gm45 1.000 0.931 0.195 0.391 0.196 0.334
gm2693 0.881 0.727 0.313 0.031 0.052 0.130
gm366 0.860 0.695 0.306 0.030 0.046 0.112
ls90 1.000 0.659 0.502 0.773 0.442 0.519
mn629 0.720 0.584 0.322 0.025 0.028 0.063
mn2681 0.535 0.564 0.325 0.173 0.106 0.200
gm2695 0.691 0.520 0.406 0.456 0.331 0.394
gm2640 1.000 0.492 0.662 1.000 0.440 0.712
mn2540 0.618 0.491 0.305 0.022 0.024 0.055
ls40 0.582 0.416 0.347 0.362 0.430 0.411
mn2547 0.470 0.365 0.234 0.017 0.020 0.044
gm2889 0.315 0.305 0.254 0.011 0.027 0.085
mn2704 0.245 0.180 0.133 0.009 0.010 0.032
ls6 0.092 0.131 0.194 0.003 0.049 0.156
ls78 0.160 0.125 0.112 0.006 0.008 0.021
mn299 0.131 0.107 0.104 0.005 0.007 0.033
ls57 0.118 0.105 0.113 0.004 0.011 0.046
ls39 0.007 0.101 0.261 0.000 0.069 0.239
gm3434 0.069 0.098 0.174 0.002 0.029 0.123
ls79 0.037 0.098 0.216 0.001 0.050 0.185
mn301 0.117 0.097 0.099 0.004 0.007 0.040
ls64 0.102 0.097 0.133 0.004 0.014 0.071
gm6876 0.100 0.094 0.107 0.004 0.007 0.031
gm59 0.079 0.086 0.148 0.003 0.022 0.114
mn2777 0.000 0.083 0.253 0.000 0.062 0.237
ls20 0.040 0.073 0.169 0.001 0.029 0.149
ls32 0.042 0.070 0.150 0.001 0.025 0.129
mn2639 0.027 0.052 0.139 0.001 0.021 0.134
mn147 0.043 0.050 0.002 0.010 0.097 0.085
gm2068 0.023 0.041 0.092 0.001 0.007 0.068

Table 1: dea efficiencies and bootstrap bias-corrected values

tion (see Section 1, Shaffer (1986)) implies the tests are
not all independent of each other. Shaffer (1986) de-
scribes a procedure for such a situation. It modifies for
matched pairs the well-known Bonferonni correction
that estimates experimentwise significances for individ-
ual comparisons from a familywise significance level.
We modify the procedure slightly by using the more
accurate Šidák (1967) equation rather than the Bonfer-
onni approximation for the experimentwise significance
level. We also consider in Section 5 a version of Shaf-
fer’s procedure, which is called least significant differences

(lsd). It uses a single significance level and identifies
all individually significant differences that do not violate
the transitivity assumption. In all the comparisons we
use a familywise significance level of 5%.

Fig. 2 (first diagram) should be compared with Table 1.
It shows as a Hasse diagram (See Section 1) the ranking
of the funds in the input-oriented model using Shaf-
fer’s procedure. The same comparison procedure with
the output-oriented model shows far fewer significant
differences.
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standard bootstrap block (size 3) bootstrap
basic dc basic dc

fund 2.5% 97.5% 2.5% 97.5% 2.5% 97.5% 2.5% 97.5%
gm45 0.058 1.000 0.000 1.000 0.000 1.000 0.000 1.000
gm2693 0.000 1.000 0.000 0.442 0.000 1.000 0.000 0.449
gm366 0.000 1.000 0.000 0.391 0.000 1.000 0.000 0.395
ls90 0.000 1.000 0.000 1.000 0.018 1.000 0.000 1.000
mn629 0.177 1.000 0.000 0.198 0.175 1.000 0.000 0.206
mn2681 0.177 1.000 0.000 0.712 0.157 1.000 0.000 1.000
gm2695 0.079 1.000 0.000 1.000 0.097 1.000 0.000 1.000
gm2640 0.019 1.000 0.000 1.000 0.004 1.000 0.000 1.000
mn2540 0.183 1.000 0.000 0.181 0.145 1.000 0.000 0.170
ls40 0.019 1.000 0.000 1.000 0.023 1.000 0.000 1.000
mn2547 0.142 1.000 0.000 0.143 0.137 1.000 0.000 0.166
gm2889 0.091 1.000 0.000 0.209 0.083 1.000 0.000 0.202
mn2704 0.052 1.000 0.000 0.079 0.029 1.000 0.000 0.076
ls6 0.034 1.000 0.000 0.480 0.027 1.000 0.000 0.276
ls78 0.031 1.000 0.000 0.059 0.014 1.000 0.000 0.049
mn299 0.019 1.000 0.000 0.055 0.009 0.668 0.000 0.038
ls57 0.029 1.000 0.000 0.079 0.022 1.000 0.000 0.048
ls39 0.024 1.000 0.000 1.000 0.019 1.000 0.000 1.000
gm3434 0.019 1.000 0.000 0.342 0.011 1.000 0.000 0.227
ls79 0.022 1.000 0.000 1.000 0.020 1.000 0.000 0.575
mn301 0.012 1.000 0.000 0.048 0.006 1.000 0.000 0.036
ls64 0.019 1.000 0.000 0.113 0.000 0.892 0.000 0.027
gm6876 0.016 1.000 0.000 0.051 0.020 1.000 0.000 0.100
gm59 0.021 1.000 0.000 0.195 0.000 1.000 0.000 0.037
mn2777 0.033 1.000 0.000 1.000 0.015 1.000 0.000 0.907
ls20 0.011 1.000 0.000 0.557 0.021 1.000 0.000 0.829
ls32 0.008 1.000 0.000 0.385 0.015 0.989 0.000 0.713
mn2639 0.003 1.000 0.000 0.053 0.004 1.000 0.000 0.042
mn147 0.000 1.000 0.000 0.032 0.000 1.000 0.000 0.033
gm2068 0.000 1.000 0.000 0.024 0.000 1.000 0.000 0.032

Table 2: Bootstrap percentile confidence intervals for basic and diversification-consistent (dc) input-oriented
models

4 Dealing with autocorrelation

The standard bootstrap assumes that we have a set of
independent identically distributed (iid) observations. The
observations may be vectors. But they should not form
a time series with trend or autocorrelation.

We may assume that returns from investment funds are
available as a time series of vectors rt = (r1t, . . . , rnt)

(t = 1, . . . , t). In general we might reasonably expect
this time series to be stationary but to show some au-
tocorrelation. Exploratory data analysis in the form of
sequence plots and Ljung–Box (Ljung and Box, 1978)
tests suggests that our data have these properties. Sev-
eral bootstrap methods are available (Bühlmann, 2002)
for stationary vector time series. These deal with au-
tocorrelation either by resampling blocks of data or by
resampling the (assumed iid) residuals of a model of
the data. We consider three: the block bootstrap (Kün-
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Figure 2: dea efficiency rankings: left to right: standard bootstrap; block (size 3) bootstrap; matched block (size 3)
bootstrap; svar(2) bootstrap

sch, 1989), the matched-block bootstrap (Carlstein et al.,
1998) and bootstrap based on a structural vector autore-
gressive (svar) model (cf. Bühlmann (1997); Inoue and
Kilian (2002)).

The block bootstrap works by resampling blocks
rt, . . . , rt+l−1 of l consecutive vectors, which reduces
any autocorrelation effects. We resample with replace-
ment as described in Künsch (1989). Hall et al. (1995)
indicate a block size l = 2–4 should be reasonable
and we have tried block sizes up to l = 10 with simi-
lar results, especially for smaller block sizes. Columns
6–7 of Tables 2 and 3 show 95% percentile bootstrap
confidence intervals for the input-oriented and output-
oriented models with block size l = 3. Fig. 2 (second
diagram) shows a Hasse diagram illustrating the signif-
icant differences using Shaffer’s procedure with the
input-oriented model.

The matched-block bootstrap uses blocks of fixed size
but uses a transition matrix to choose consecutive blocks.
We tried the method of Carlstein et al. (1998) with block
sizes 2–6. Fig. 2 (third diagram) shows a Hasse diagram

illustrating the significant differences using Shaffer’s
procedure with the input-oriented model. The prob-
lem we note with this method is that it assumes that
there is a hidden set of discrete performance states and
individual funds move from time to time among them.
But we have no reason to assume this.

We consider also a svar bootstrap model, based closely
on the vector autoregressive (var) bootstrap model of
Section 2 of Inoue and Kilian (2002). A var(k) model
with vectors of length n requires n × n matrices
A1, . . . , Ak of coefficients. We use an svar model
rather than a var model because we have 60 observa-
tions for 30 funds, which only allows us to estimate the
coefficients of a var(k) model for k = 1. We can, how-
ever, estimate svar(k) models. These have the same
coefficient matrices as the var(k) model but fewer coef-
ficients because many of the entries of A1, . . . , An are
set to zero. We estimate svar(k) models for k = 2 and
3 as described by Lütkepohl (2007) using the Akaike
information criterion to decide which coefficients to set
to zero. Fig. 2 (right diagram) shows the ranking of the
funds using Shaffer’s procedure with the input-oriented
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model. We note that the method is problematic for
the data we have. The matrices A1, . . . , Ak are sparse
for both k = 2 and k = 3. And we have no theoretical
grounds for supposing a particular structure for them.

We note that the ranking of funds is broadly similar
to the original ranking for all three methods we con-
sider and suggest the block bootstrap with small block
size is appropriate when there is reason to doubt the
assumptions needed for the other methods.

5 Models that deal with diversification

Consider Fig. 1. The solid line shows the standard dea
frontier. The grey dashed line shows another frontier.
It shows the maximum return that an investor wealthy
enough to hold a portfolio of hedge funds could have
achieved at any given risk level. The reason these fron-
tiers are different is that standard dea does not allow
for the very real possibility of reducing risk by diver-
sification: that is, choosing a portfolio of imperfectly
correlated investments. Several dea models allow for
diversification (Morey and Morey, 1999; Joro and Na,
2006; Lozano and Gutiérrez, 2008a,b; Briec and Ker-
stens, 2009, 2010). Most use nonlinear programmes.
Lamb and Tee (2011) discuss them and introduce the
diversification-consistent model, which we use here be-
cause it uses a linear programme and does not prescribe
specific risk and return measures.

Lamb and Tee (2011) describe the input-oriented
diversification-consistent model, and A describes the
output-oriented diversification-consistent (nirs) model
and the iterative procedure we use to compute efficien-
cies using the models.

Columns 5–7 of Table 1 show the raw and bootstrap
bias-corrected efficiency estimates and bootstrap stan-
dard errors for our funds with the input-oriented
diversification-consistent model. As before, we ob-
serve substantial bias in many raw efficiency estimates.
Columns 4–5 of Table 2 show the 95% bootstrap per-
centile confidence intervals for our funds with the input-
oriented diversification-consistent model. Columns 8–9
show the corresponding intervals with block (size 3)
bootstrap. The main features to note are that both
upper and lower bounds are invariably reduced rela-

tive to the corresponding confidence interval from the
standard dea model, and the lower bounds are zero in
every case in our example. Columns 4–5 of Table 3
show the 95% bootstrap percentile confidence intervals
for our funds with the output-oriented diversification-
consistent model, and columns 8–9 show the corre-
sponding intervals with block (size 3) bootstrap. Again,
the upper and lower bounds are invariably reduced rela-
tive to those from the corresponding standard model.
But the reduction is much less and very few lower
bounds are zero.

MN2704

GM45

MN2639

MN2681

MN147

GM2693 GM366

MN301

MN299

MN2704

LS90GM45 MN2681

MN147

GM2889

MN299MN301 MN2639

Figure 3: Output-oriented diversification-consistent dea
efficiency rankings using standard (top) and block size 3
(bottom) bootstrap, and Shaffer’s procedure

The Shaffer procedure that is applied to our data in the
input-oriented diversification-consistent model shows
no significant differences, though there are a small
number of significant differences with lsd. However,
we observe some significant differences in the output-
oriented diversification-consistent model. Fig. 3 shows
as a Hasse diagrams the rankings of the funds found
by Shaffer’s procedure, excluding the 21 funds that are
not significantly different from any other fund. The
top diagram shows the standard bootstrap ranking and
the bottom the block (size 3) ranking. Fig. 4 shows
least significant differences: that is, it shows the pairs
of funds that are experimentwise significantly different.
Four funds are not significantly different in lsd from
any other.

We noted that the diversification-consistent models
give smaller values for both upper and lower confidence
interval bounds. We also noted the input-oriented
diversification-consistent model produces fewer sig-
nificant differences than the diversification-consistent
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standard bootstrap block (size 3) bootstrap
basic dc basic dc

fund 2.5% 97.5% 2.5% 97.5% 2.5% 97.5% 2.5% 97.5%
gm45 0.647 1.000 0.460 1.000 0.578 1.000 0.366 1.000
gm2693 0.460 1.000 0.346 0.861 0.453 1.000 0.336 0.861
gm366 0.454 1.000 0.339 0.843 0.454 1.000 0.334 0.848
ls90 0.439 1.000 0.418 1.000 0.496 1.000 0.444 1.000
mn629 0.340 1.000 0.273 0.643 0.316 1.000 0.243 0.618
mn2681 0.458 1.000 0.382 0.977 0.462 1.000 0.373 1.000
gm2695 0.379 1.000 0.360 1.000 0.363 1.000 0.356 1.000
gm2640 0.503 1.000 0.503 1.000 0.307 1.000 0.307 1.000
mn2540 0.344 1.000 0.260 0.720 0.291 1.000 0.215 0.721
ls40 0.489 1.000 0.489 1.000 0.377 1.000 0.377 1.000
mn2547 0.269 0.972 0.207 0.565 0.268 0.889 0.184 0.559
gm2889 0.282 1.000 0.260 0.860 0.267 1.000 0.243 0.825
mn2704 0.117 0.536 0.087 0.371 0.074 0.516 0.053 0.366
ls6 0.111 0.979 0.109 0.944 0.098 0.876 0.098 0.845
ls78 0.140 0.754 0.132 0.650 0.093 0.699 0.088 0.612
mn299 0.095 0.733 0.085 0.649 0.100 0.557 0.088 0.505
ls57 0.140 0.767 0.135 0.711 0.170 0.704 0.160 0.665
ls39 0.000 0.776 0.000 0.773 0.000 0.662 0.000 0.659
gm3434 0.056 0.897 0.055 0.870 0.066 0.900 0.066 0.884
ls79 0.091 1.000 0.091 1.000 0.077 1.000 0.077 1.000
mn301 0.081 0.710 0.072 0.628 0.086 0.533 0.076 0.487
ls64 0.075 0.833 0.073 0.749 0.084 0.616 0.078 0.562
gm6876 0.125 0.767 0.118 0.672 0.089 0.838 0.087 0.752
gm59 0.095 0.887 0.090 0.848 0.109 0.674 0.102 0.661
mn2777 0.000 0.472 0.000 0.436 0.000 0.449 0.000 0.419
ls20 0.000 0.598 0.000 0.527 0.000 0.466 0.000 0.410
ls32 0.000 0.603 0.000 0.530 0.000 0.469 0.000 0.414
mn2639 0.010 0.434 0.009 0.394 0.021 0.437 0.018 0.407
mn147 0.023 0.353 0.017 0.325 0.015 0.296 0.012 0.273
gm2068 0.058 0.597 0.058 0.536 0.059 0.570 0.059 0.524

Table 3: Bootstrap percentile confidence intervals for basic and diversification-consistent (dc) output-oriented
models

output-oriented model. And we noted in Section 3.5
that the input-oriented standard model produced more
significant differences than the output-oriented model.
Fig. 1 helps illustrates why we might observe these ef-
fects. Given a point on the standard frontier, we can
always find a point on the diversification-consistent fron-
tier with at least as much return on each return measure
and at most as much risk on each risk measure. So, any
solution of a standard model gives a feasible solution for
a corresponding diversification-consistent model and so

in each bootstrap resample the diversification-consistent
model efficiency of a fund must be at most the stan-
dard model efficiency. Thus both the lower and upper
bounds of a percentile bootstrap efficiency confidence
interval from the diversification-consistent model must
be at most those of the standard model.

Consider a fund o. Any solution λ1, . . . , λn, λ̂1, . . . , λ̂n̂
(see constraint (10)) of the diversification-consistent
output-oriented model must have at least as much re-
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Figure 4: Output-oriented diversification-consistent dea efficiency rankings using block (size 3) bootstrap and
lsd

turn in each measure as the solution λ1, . . . , λn of the
standard model. But the return is not infinite and so,
provided o produces positive return in some measure,
φ′o > 0 in the diversification-consistent model. By con-
trast a solution of the diversification-consistent input-
oriented model has at most as much risk as the corre-
sponding solution in the standard model and may have
zero risk and so zero efficiency provided o has positive
risk. In practice, we find this happens rather often in
bootstrap replications for low-return funds, making it
hard to distinguish statistically among them.

6 Discussion

The ranking of investment funds is important in sup-
porting fund selection, especially for hedge funds. And
dea allows us to compare and rank funds based on the
characteristics of funds’ return distributions. But, the
accuracy of the ranking also depends on the statistical
properties of dea. We investigate these properties and
conclude the following.

First, the dea efficiency estimates of investment fund
performance typically have substantial bias. Worse, this
bias may be markedly different for different funds. In
particular, high-risk high-return funds may show greater
bias than low-risk low return funds. Bootstrap methods
help us deal with this bias.

Second, the bootstrap allows us to estimate the accuracy
of dea efficiency estimates. In particular, it gives us
confidence intervals for efficiency scores.

Third, resampling gives us a better way than using
simple dea scores to approximately rank investment
funds. The ranking should nearly always be a partial
ordering rather than a total ordering, and we find Hasse
diagrams indicate the ranking parsimoniously.

Fourth, the substantial bias, wide confidence intervals
and partial orderings whose precise structure depends
on the bootstrap method used suggest we should be
modest in how we interpret dea efficiencies. This
is especially true for the model suggested by Lamb
and Tee (2011) that accounts for correlation between
the performance of different funds. We can identify
approximately how well we expect an individual fund
to perform in future compared to its peers. But it is
difficult to predict with confidence precisely what its
future efficiency will be.

We note that the methods we use can be applied to
many different dea models or even to comparing funds
using more conventional methods such as Sharpe ratios.
We anticipate the same issues of bias, accuracy and
ranking will arise.

A Output-oriented diversification-
consistent DEA model and iterative
procedure

Lamb and Tee (2011) describe an input-oriented
diversification-consistent dea model. The correspond-
ing output-oriented model is as follows. A portfolio is
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a combination of funds
∑n

j=1 µjfj with
∑n

j=1 µj ≤ 1
and µj ≥ 0 for j = 1, . . . , n. Suppose we have port-
folios f̂1, . . . , f̂n̂, which we call notional units. Let x̂ij
be the risk measure estimate using measure xj for f̂j
(i = 1, . . . ,m, j = 1, . . . , n̂). Let ŷrj be the risk mea-
sure estimate using measure yr for f̂j (r = 1, . . . , s,
j = 1, . . . , n̂). Define φ′o,T (o = 1, . . . , n) as follows.
If (y1o, . . . , yso) = 0 put φ′o,T = 1 or 0 according as
(x1o, . . . , xmo) = 0 or (x1o, . . . , xmo) > 0. Otherwise,
choose ηo, λ1, . . . , λn, λ̂1, . . . , λ̂n̂ to

maximise ηo subject to

n∑
j=1

xijλj +
n̂∑
j=1

x̂ij λ̂j ≤ xio, (i = 1, . . . ,m) (9)

n∑
j=1

yrjλj +

n̂∑
j=1

ŷrjλ̂j ≥ yroηo, (r = 1, . . . , s)

(10)

n∑
j=1

λj +

n̂∑
j=1

λ̂j ≤ 1, (11)

and

λj ≥ 0 (j = 1, . . . , n),

λ̂j ≥ 0 (j = 1, . . . , n̂),
(12)

and put φ′o,T = ηo.

This model and the input-oriented diversification-
consistent model are not generally diversification con-
sistent if they include no notional units (Lamb and Tee,
2011): that is, its efficient frontier does not take into
account the possibility of improving performance by di-
versification. So we use the iterative procedure of Fig. 1
to add notional units and approximate a diversification-
consistent model arbitrarily accurately provided the risk
and return measures are convexity consistent (see Sec-
tion 3.2 and Lamb and Tee (2011)).

Lamb and Tee (2011) suggest choosing α = 0.5. How-
ever, here we choose α using 10 iterations of golden

put F = {f1, . . . , fn};
put F̂ = ∅;
put P = {{fi, fj} : i, j ∈ {1, . . . , n}, i < j};
while P 6= ∅ and no other stopping condition is met:

choose {f, g} ∈ P and put P = P \ {f, g};
choose a pair of distinct funds f and g in S not
considered before;
for e ∈ {f, g}:

if e ∈ F̂ and e is inefficient:
put F̂ = F̂ \ {e};
for p ∈ P : if e ∈ p: put P = P \ {p};

if neither f nor g was removed from F̂ :
put h = αf + (1− α)g;
if h is efficient and xi(h) 6= αxi(f) + (1− α)xi(g)
for each i = 1, . . . ,m and yr(h) 6= αyr(f) + (1−
α)yr(g) for each r = 1, . . . , s:

for e ∈ F ∪ F̂ : put P = P ∪ {e, h};
put F̂ = F̂ ∪ {h};

Figure 1: Iterative procedure to generate diversification-
consistent models

section search (see Winston and Albright (2001)) be-
cause we find it gives more accurate approximations
without slowing the iterative process too much. We
need many computations and to solve large numbers
of linear programmes during the iterative procedure.
We coded C++ programmes and libraries for the com-
putation and use cplex 12.1 (IBM, 2010) to solve
the linear programmes. The code is available from
http://www.abdn.ac.uk/~cms127/code.html together with
documentation. We carried out all the computations on
a gnu/Linux operating system with a 2.4GHz Intel quad
core processor. We stop the iterative procedure when
the average reduction in efficiency over ten improving
iterations falls below 10−4. In practice, it takes about
two hours to calculate efficiencies from 2000 bootstrap
replications.
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