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Abstract

This paper develops theory missing in the sizable literature that uses data
envelopment analysis to construct return:risk ratios for investment funds.
It explores the production possibility set of the investment funds to identify
an appropriate form of returns to scale. It discusses what risk and return
measures can justifiably be combined and how to deal with negative risks,
and identifies suitable sets of measures. It identifies the problems of failing to
deal with diversification and develops an iterative approximation procedure
to deal with it. It identifies relationships between diversification, coherent
measures of risk and stochastic dominance. It shows how the iterative pro-
cedure makes a practical difference using monthly returns of 30 hedge funds
over the same time period. It discusses possible shortcomings of the proce-
dure and offers directions for future research.

Keywords: data envelopment analysis, investment fund, diversification,
coherent risk measure, returns to scale, stochastic dominance

1. Introduction

Data envelopment analysis (DEA) estimates the technical efficiency of sev-
eral decision-making units (DMUSs) given several inputs and several outputs.
Typically the efficiency may be written as

weighted sum of outputs

(1)

weighted sum of inputs
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Authors such as Murthi et al. (1997) and Gregoriou and Zhu (2005) observe
the following analogy. If we use risk in place of input and return in place
of output in expression (1), we get a ratio that generalises return—risk ratios
such as the Sharpe (Sharpe, 1966), Calmar and Sortino (Lhabitant, 2004)
ratios, used to compare investment funds. The benefit of DEA is that it lets
us account for different investor attitudes to risk and return.

The published literature on DEA for investment funds is not theoretically
justified. In using the analogy between output—input and return-risk ratios
it usually makes an implicit assumption that fund returns are perfectly cor-
related. And it often ignores the need for comparable measures of risk and
return. We investigate theoretically when and how DEA may be used to com-
pare investment funds, and develop a new method that models diversification
directly. To do this we discuss four important issues.

1. DEA depends on technical assumptions of free disposability and con-
vexity. The literature does not discuss whether these reasonably hold
when modelling investment funds. We show that, in general, they do
not.

2. Originally DEA (Charnes et al., 1978) assumed constant returns to scale
(CRS) but later allowed for variable returns to scale (VRS) (Banker
et al., 1984). Both are used for investment funds (Gregoriou and Zhu,
2005), but the analogy between output—input and risk-return suggests
neither and many authors use one or other with limited or no justifi-
cation. For example, Gregoriou et al. (2005a) argue for a VRS model
only because it compensates for what Section 3 identifies as noncom-
mensurable measures.

3. The literature allows for different investor preferences by combining
measures such as mean, median, standard deviation (Gregoriou et al.,
2005a), lower and upper semivariance and semiskewness (Gregoriou
et al., 2005b), skewness (Wilkens and Zhu, 2001), excess kurtosis (Nguyen-
Thi-Thanh, 2006), time horizons (Galagadera and Silvapulle, 2002),
percentage of periods with negative returns, skewness (Wilkens and
Zhu, 2001), value at risk, conditional value at risk (Chen and Lin,
2006), downside absolute standard deviation, weighted absolute devia-
tion from quantile, and tail value at risk (Lozano and Gutiérrez, 2008).
Eling (2006) reviews the measures used and concludes there is no sin-
gle standard choice. Two problems arise. Some measures use different
units from others. And some may take negative values.



4. We need to deal with diversification because a combination of funds
may be more efficient than any individual fund. Basso and Funari
(2001); Sengupta (2003) account for diversification indirectly using
market S (Alexander, 2001) as a risk measure. Morey and Morey
(1999); Joro and Na (2006); Briec and Kerstens (2009); Lozano and
Gutiérrez (2007) account for it directly using nonlinear versions of DEA.
And Lozano and Gutiérrez (2008) account for it directly in linear DEA,
limited to models with only one input and one output.

We resolve these issues as follows. Section 2 discusses the assumptions needed
for a DEA model of investment funds and how to handle returns to scale.
Section 3 introduces commensurability as a way of choosing a set of risk and
return measures that can justifiably be combined. Section 4 explains coherent
measures of risk and how to satisfy the assumption of convexity and model
diversification through a series of linear approximations to an ideal nonlinear
model. Section 5 illustrates our method using monthly returns from 30 hedge
funds over the same time period. Section 6 discusses possible shortcomings
of our method and some future directions for research.

Coherent measures of risk come up again and again in our discussion.
They relate to investor preference because they help model stochastic dom-
inance. They allow us to account for distributional shape and also to use
multiple risk measures. They also relate closely to what we need in order to
deal with diversification. The best-known coherent measure of risk is con-
ditional value at risk (Cvar), which is based on value at risk (var). var
and Ccvar are families of risk measures, allowing us to account for many dif-
ferent investor preferences and dsutributional shapes. var is the maximum
loss that investors might suffer over a time horizon at a specified confidence
level. cvar is the expected loss conditional on this loss exceeding var. It is
sometimes called expected shortfall, tail conditional expectation, conditional
loss or tail loss (Jorion, 2007). Acerbi and Tasche (2002) note some subtle
differences among these terms, which we can ignore for continuous distribu-
tion functions, and show that CvaR is a coherent measure of risk. Acerbi
(2007) shows how to estimate cvar from a sample. We use this in Section 5.

2. Background

This section describes DEA models for investment funds and the assump-
tions needed for them and shows an NRS model is appropriate.



A DEA model compares n DMUs using m input and s output measures. An
investment fund (or fund for short) produces returns that we can measure
at regular time intervals. Section 5 uses examples with average monthly
returns. We assume the regular returns are realisations of a real random
variable and ignore, for now, the possibility that the random variable is a
function of time. We suppose we have funds described by random variables
fi,..., fn. We define a random variable Z?:l Aifjwith A\, >0(j=1,...,n)
and Z?:l Aj <1 to be a portfolio on fi,..., f, and we define the portfolio
possibility set F to be the set of all such portfolios. Then a measure is a
function g : F — R. Since a measure is a population statistic, we invariably
must estimate it with a sample statistic. We call the sample statistic also a
measure and use the same notation for both, distinguishing only when the
difference is unclear. We classify some measures as return measures and some
as risk measures. For example, the mean value is a return measure and the
standard deviation a risk measure. Later we describe other risk and return
measures and what properties they might have. We suppose we have risk

measures Iy, ..., T, and return measures yi,...,ys. We write z;; = z;(f;),
Yrj = yr(fj)7 Xj = (wljv ce . >xmj) and y; = (y1j7 . .- >ysj) (7/ =1,...,m,
r=1...,s,7=1,...,n) so we can describe DEA compactly.

The (input-oriented) DEA model is this. For each bmMU o € {1,...,n}

choose u, € R*, v, € R”, and o € R to

maximise
a—+Yy, U,
G = ———— (2)
Xo Vo

subject to

o+ Yo .

— - <1 =1,..., 3

A€ ) 3)

and

u, > 0,v, > 0. (4)

Note that we solve (2)—(4) separately for each o. The efficiency of DMU o
is ¢,, which must be in [0, 1] provided x; > 0 and y; > 0 for j = 1,...,n.
We set o = 0 for a CRS model and do not constrain it for a VRS model.
We use an input-oriented model because funds are usually compared using
return-risk ratios like expression (2). Gregoriou and Zhu (2005) show an



output-oriented model is possible. A slacks-based model (Tone, 2001) is also
possible, though we know of none used to model funds.

Model (2)—(4) is sometimes called a ratio model and is usually recast as
a linear program. We present the dual form. Gregoriou and Zhu (2005) give
details. This form lets us discuss the assumptions needed for DEA, relate
them to portfolios and the assumptions needed to model funds, describe the
efficient frontier, and discuss what form of returns to scale is appropriate. We
find the CRS DEA efficiencies from the following (dual) linear programmes
for each 0o =1,...,n. Choose ¢, Ao, ..., Ano tO

minimise
Po (5)
subject to
Zyrj)\jo Z Yro, (’l“: 1a'-'75) (6)
j=1
inj)\jo < ZioPo, (i=1,...,m) (7)
j=1
and
>\on0 (]:1,,77,) (8)

To get the VRS model we add the following constraint to (5)—(8).

zn: Ao = 1. 9)

Following Cazals et al. (2002), we define a VRS production possibility set
as aset U = {(x,y) € RT x R } satisfying

Free disposability: (see, for example, (Shephard, 1970)): if (x,y) € U, then
(x',y’) € ¥ whenever x' > x and y’ <y.

Convezity: if (x,y), (X',y’) € ¥ then (tx+ (1 — t)x',ty + (1 —t)y’) € ¥ for
te(0,1).



VU is the set of (x,y) such that it is possible to produce y from x. Free
disposability and convexity are usually assumed to be reasonable for DEA
models in economics, though Bogetoft (1996); Cazals et al. (2002) discuss
cases where convexity is questionable. The input-oriented efficient frontier
of ¥ is the set {(x,y) € V: (x/,y) ¢ ¥ for x’ < x}. It is straightforward to
show that if Aj1,..., Aj,, @, solves the VRS DEA model, then Z?Zl(xj, Vi)
is on the efficient frontier of the smallest production possibility set containing
all the DMUs and so ¢, is a measure of the efficiency of DMU o. It is also
straightforward to check that we get the corresponding result for the CRS
model if we expand the definition of ¥ so that (tx,ty) € ¥ whenever (x,y) €
¥ and ¢t > 0.

Figure 1 about here.

Figure 1 shows the mean (return) and standard deviation (risk) in the monthly
returns of 30 funds described in Section 5. The darker shaded area is the
production possibility set for the VRS model. Its frontier is shown as a line
on the left of this area that is dashed then solid. It represents the possibility,
common in economic models, that the marginal return on output eventually
decreases as input increases. The total shaded area is the production possi-
bility set for the CRS model. Its frontier is shown as a line on the left of this
area that is solid then dashed.

We know of no literature that checks if the standard assumptions about
production possibility sets and returns to scale are valid for models of funds.
They are not. There is a minor problem with free disposability. Suppose
we use VaRgo and VaRgs as risk measures and have vaRrgs(f) = 0.1 and
VaRg05(f) = 0.2 for fund f. Then the free disposability assumption suggests
an investment f’ with vargq(f’) = 0.3, Varges(f’) = 0.2 is possible because
it exceeds f in one risk measure. But vaRggs > VaRgs by definition. This
does not invalidate DEA because the efficiencies do not depend on free dis-
posability. So we assume from here on that free disposability holds for any
production possibility set we consider.

There is a much bigger problem with convexity. Suppose x(g) is the risk
measure and y(g) the return measure for each fund g. And suppose f and f
are funds. Then, for t € (0,1) we can assume that (x(tf + (1 —1¢)f),y(tf +
(1—t)f")) € W because tf+(1—t)f’ is a possible portfolio. But the equalities

tx(f) + (1 =t)x(f) =x(tf+ (1 —=t)f),
ty(/) +(1=t)y(f)=ytf+ 1 —1)f)

6

(10)



only hold for perfectly correlated funds for all measures we know of other than
mean value. So convexity is at best an approximation. Section 4 develops a
method to deal with this approximation.

We now consider returns to scale in models of funds. A VRS model is
implausible because it allows for a minimum level of risk before a positive
return is possible. A CRS model is implausible because it allows returns
greater than any portfolio can produce. The portfolio possibility set allows
us to choose a portfolio that has some proportion uninvested: that is, invested
with zero risk and zero return. Assuming equalities (10) are reasonable, this
is equivalent to defining the production possibility set ¥ to satisfy

NRS convezity: if (x,y),(x,y’) € ¥ then (tx + ux',ty + uy’) € ¥ for ¢,
u>0,t4+u<1.

The solid line in Figure 1 shows the efficient frontier of the smallest produc-
tion possibility set containing all 30 funds and satisfying this. The corre-
sponding DEA model is (5)—(8) with the extra constraint

> Ao <L (11)
j=1

We call it a nonincreasing returns to scale (NRS) model. Cooper et al. (2007)
describe it as a possible relaxation of constraint (9) and Fare and Lovell
(1994) discuss how NRS efficiencies can be used to classify returns to scale in
a general DEA model. Joro and Na (2006) use NRS with limited explanation
in a nonlinear mean—variance—skewness model. It is straightforward to check,
using linear programming duality that the NRS model is equivalent to (2)—(4)
with a < 0. We consider only NRS models from here on.

3. Commensurable sets of measures

We call a set of inputs and outputs commensurable if each input or output
is measured in a positive constant multiple of some common unit. This
section argues that any DEA model should ideally use only commensurable
sets of inputs and outputs. Later it argues that an input-oriented model of
funds should use nonnegative risk measures and shows there are reasonable
sets of measures that are commensurable and contain only nonnegative risk
measures.



We use commensurable measures for two reasons. First, as (Lovell and
Pastor, 1995) note, the efficiency, given by equation (2), should be dimen-
sionless. Second, we want the efficiencies to be units invariant: multiplying
the fund returns by a positive constant should not change the efficiencies.
Lovell and Pastor (1995) note that most models, including all the models we
discuss, have a weaker form of units invariance: multiplying the values of any
input or output by a positive constant should not change the efficiencies.

In practice, the measures in a commensurable set usually include the mean
and so have the same units as the funds’ returns. Some published models
use measures such as variance, semivariance, skewness and kurtosis that are
not commensurable with the mean return (Wilkens and Zhu, 2001; Gregoriou
et al., 2005b; Nguyen-Thi-Thanh, 2006). There are several plausible expla-
nations. First, funds returns are usually expressed as proportions and so it
may not be immediately obvious that the efficiencies are not dimensionless.
Second, DEA models are often expressed in dual form (like model (5)—(9))
in which the units of the efficiencies are less obvious. Third, some nonlinear
models (Morey and Morey, 1999; Joro and Na, 2006; Briec and Kerstens,
2009) must use noncommensurable measures to be practically solvable. For
example, Morey and Morey (1999) use mean, variance and covariance as
measures in models with quadratic constraints.

Initially DEA did not allow negative values for inputs and outputs. This
is usually reasonable for economic models but less so for models of funds.
Even the mean return can be negative, as Figure 1 illustrates. If y,., < 0 for
some r and o then ¢, = 0, A\j, = -+ = \,, = 0 satisfies constraints (6)—(8),
(11). But ¢, > 0 to satisfy constraints (7) provided z;, > 0 for some i. So
negative return measures are largely unproblematic, and a NRS model with
positive inputs and outputs unrestricted in sign is equivalent to one with
positive inputs in which any negative output value is replaced by zero.

Negative or zero risk measures are more problematic. If x;, < 0 for some
1 it is possible that ¢, > 1. And if x, = 0, ¢, = —00. So we need positive
risk measures for a reasonable definition of efficiency. However, to allow risk-
free investments, ideally we would like at least the possibility that the risk
measure could be zero. One approach to the problem of nonpositive input
values is to add a constant to each value. If doing this does not change the
efficiencies, we can call the input translation invariant. While some DEA
models exhibit (at least limited) translation invariance (Lovell and Pastor,
1995), it is easy to check that the inputs in the NRS model are not translation
invariant. So ideally we should avoid this approach. Another approach deals

8



with negative values by measuring efficiency relative to an ideal point (Silva
Portela et al., 2004). We eschew it because we have found no way to make it
compatible with the production possibility set assumptions for a set of funds.
Instead we define the complete DEA model as follows. Let x; > 0 and y; > 0
for j =1,...,n. If x, > 0 define ¢, as in model (5)—(8), (11); otherwise put
¢, = 1 or 0 according as y, > 0 or y, < 0. The complete model has the
desirable property that a risk-free fund is efficient whenever the value of at
least one return measure is nonnegative. We wish to establish further the
consistency in the definition of ¢,. To do this we first show how the NRS and
VRS models are related.

Suppose that x; >0andy; >0for j=1,...,n -1, and x,, =y, = 0.
Then for j = 1,...,n—1, we can write the programmes of the VRS model (5)—
(9) as minimise ¢, subject to Z?:_ll YriNjo = Yro (T =1,...,5), Z;:ll Trjjo <
Tioho (i =1,...,m), Y"1 Njp < 1, and Ajp > 0 (j = 1,...,n — 1). This
is just the NRS model with bmus 1,...,n — 1. It follows that we can find
the efficiencies of an NRS model by solving all but one of the programmes of
the VRS model we get by adding an extra DMU with all inputs and outputs
equal to zero.

We now investigate the consistency of the complete DEA model. This
matters because Section 4 creates expanded models that typically include a
notional fund o with x, = 0 and y, > 0. Ideally we would like to show
that ¢,, considered as a function of xi,...,X,, y1,...,¥n, is continuous. Al-
though continuity of efficiency measures is desirable (Russell, 1990), Scheel
and Scholtes (2003) show for the VRS model that, although ¢, is continuous
almost everywhere, it may have discontinuities on the frontier and at points
where z;; = 0. We also deliberately allow a discontinuity at y, = 0 because
it is unlikely that a rational investor would consider a fund with no risk and
negative return to be efficient. The following result shows ¢, is continuous
at x, = 0if y, > 0 and z;; > 0 for j # o and for all i. We write ¢, for the
efficiency of DMU o in the complete VRS model and ¢/ for the efficiency of the
oth DMU in the complete VRS model with DMUs given by inputs x; and out-
puts y; (j =1,...,n). We use x,y as a shorthand for x;,..., X, ¥1,..., X
and, for ¢ > 0, write N.(x,y) for {x",y": [|(X,¥') — (x,¥)[2 < €}, the
e-neighbourhood of (x,y).

Theorem 1. Suppose x, =0,y, > 0 and x;; > 0 for all i and for all j # o.
Then ¢, = ¢, for all (x',y") > 0 sufficiently close to (x,y).

Proof. By definition ¢, = 1. Put ¢ = 0.5min{z;;: i € {1,...,m}, j €

9



{1,...,n} \ {o}} > 0, and choose (x',y') € N.(x,y). Then z}; > z, for all
¢ and j. If x| = 0 then ¢, = 1 by definition, and so ¢, = ¢,. Otherwise,
choose i such that x}, > 0. Then constraint (7) gives

n n
o, > Z TiiNjo > Z oy = T, (using constraint (9)).
p j=1

Since z}, > 0, it follows that ¢/ > 1. The feasible solution ¢, = 1, \,, = 1,
Njo =0 (j # o) implies ¢/, < 1, and so ¢/, = 1 = ¢, as required. |

It follows from the relation between the NRS and VRS models that the
result holds mutatis mutandis for the complete NRS model.

From here on we consider only DEA models of investment funds and use
only models based on the complete NRS model. It remains to show there
are commensurable sets of measures suitable for a complete NRS model.
Return measures are straightforward since they can be negative: the mean,
upper quantiles and upper tail means are in the same units as the data. Risk
measures need to be nonnegative. The standard deviation, absolute deviation
and lower semideviation are all reasonable. And vaR and CvaR are measured
in the same units as the data and are usually positive. Theorem 3 shows
how we can deal with negative values.

4. Diversification, convexity, and coherent measures of risk

We wish to compare investment funds to the risks and returns available
from any portfolio composed from them. To do this we must consider diver-
sification because diversification may let us reduce the risk of an investment
without reducing its return, violating one of the basic assumptions of stan-
dard DEA.

This section starts with a mathematical programming model that handles
diversification. The model is not usually practically solvable. The section
then shows this model is a convex programming problem if its measures
have properties similar to the well-known properties of coherent measures
of risk. The section continues by presenting an iterative procedure that
approximates the solution of the convex programming problem. It finishes
with some technical results on convergence and properties of the models
discussed.

10



Diversification: an impractical model

Section 2 defines the production possibility set U for a set of funds as
the set of values of ((x1(f),...,xm(f)), (y1(f), ..., ys(f))) such that f is in
the portfolio possibility set F. If the measures are nonnegative and form
a commensurable set, the efficiency ¢, with respect to ¥ is given by the
complete NRS model if x, = 0 and by the following mathematical program
otherwise. Choose ¢,, Ao, ..., Apo tO

minimise ¢, subject to

Yr <Z )‘J'ij> > yr(fo): (7” =1,... 3) (12>

j=1

X (Z )\jofj> S xi(fo)gbov (Z = 17 ce 7m) (13)

J=1

ZA]’O S 1; (11)
j=1

and
>\on0 (]:1,,71) (8)

We call this model the diversification-consistent (input-oriented complete
NRS DEA) model because it compares each fund accurately with all possible
portfolios and so deals fully with diversification.

The diversification-consistent model is important because it disposes of
the assumption, implicit in conventional DEA, that

. (Z Am-) = o un(r) (1)

for each k € {x1,...,2m,y1,...,ys}. This assumption holds if x is the
mean value, but is otherwise unlikely to hold. The main problem with the
diversification-consistent model is that is not generally solvable by any known
practical method.

The model can use any risk and return measures though we restrict our
attention to commensurable sets of nonnegative measures for the reasons
Section 3 discusses.

11



A number of published models, though not in the form of the diversification-
consistent model, deal directly with correlation. Lozano and Gutiérrez (2008,
2007) describe diversification-consistent linear DEA models with precisely one
input and one output. They estimate additive metrics of the form 6, + dq4
rather than efficiencies, though the models can easily be adjusted to calculate
NRS efficiencies. They achieve linearity by specifying particular estimators
(and not just particular measures) for the risk measures that depend on hav-
ing a vector time series of returns assumed to be stationary and without
serial autocorrelation. The sets of measures are commensurable though the
estimator may be biased for measures such as cvar (see Acerbi (2007)) if we
make the reasonable assumption that the distribution of returns is not dis-
crete. Morey and Morey (1999) describe a DEA models of investment funds
that deals with correlation using variance as a risk measure and includes a
quadratic constraint. Joro and Na (2006) extend this to include skewness in
a model with cubic constraints. Briec et al. (2004); Briec and Kerstens (2009,
2010) use a directional distance function rather than standard DEA and de-
velop nonlinear programming models to allow higher moments as measures.
The main drawback of the published nonlinear models is that they use non-
commensurable sets of measures to get solvable mathematical programmes.

Measures that make the diversification-consistent model a convex program-
ming problem

The diversification-consistent model is likely to be more tractable if we
can find measures that make it a convex programming problem. And it is a
convex programming problem whenever U satisfies the assumptions of free
disposability and NRS convexity. It is easy to check that NRS convexity is
equivalent to requiring

7 (Z )\jfj> <> Nazi(fy) and oy, (Z )\jfj) <> Nwe(fy) (15)
j=1 =1 i1 ey

fori=1,...,mand r =1,...,s in the diversification-consistent model.

We need measures satisfying inequalities (15). Artzner et al. (1999) call
a measure K : F — R a coherent measure of risk if it satisfies the following
four properties. Here r € R represents the total rate of return on a reference
instrument.

Translation invariance: for f € F and o € Rt k(f + ar) = k(f) — a.

12



Subadditivity: for f, g € F, k(f + g) < k(f) + k(g)-
Positive homogeneity: for X > 0 and f € F, k(Af) = A&(f).
Monotonicity: for f, g € F with f < g, k(g) < k(f).

Translation invariance ensures that if we add r&(f) to f we get a random
variable with risk measured as zero. Subadditivity ensures a sum of random
variables has no greater risk than the sum of the risks of the individual
random variables. Positive homogeneity ensures the risk is proportional to
the size of investment. And monotonicity ensures that coherent risk measures
are consistent with a general stochastic ordering. We define an additional
property that is useful for return measures.

Superadditivity: for f, g € F, k(f +g) > &(f) + k(g).

The following theorem shows how some of these properties are useful. We
define a measure to be convexity consistent if it is positively homogeneous
and either: (i) a risk measure and subadditive; or (ii) a return measure and
superadditive.

Theorem 2. Suppose that each measure in a diversification-consistent model
1s convexity consistent. Then its production possibility set VU satisfies NRS
convexity.

Proof. Suppose (x1,y1), (X2,y2) € ¥V and ¢, u € (0,1) with ¢t +u < 1.
Then, for some fi, fo € F we have x(f1) < x1, ¥(f1) > y1, x(f2) < % and

y(f2) > yo.
Put x' = (2f,...,2],) = x(tfi + ufz) and for j = 1,2 write x; =
(1, ..., Tmy). Then, fori=1,...,m,

vy = xi(tfi +ufo)
< xi(tf1) + xi(ufe) (subadditivity)
= tx;(f1) + ux;(f2) (positive homogeneity)

< twy + uxge.

Hence tx; + uxy > x'.

13



Similarly, put y' = (y1,...,9,) = y(tfi + ufz) and for j = 1,2 write
Vi = (Y1j,---,Ysj). Then, for r=1,... s,

Yp = Yr(tf1 +ufa)
>y (tf1) + y-(ufz) (superadditivity)
= ty,(f1) + uy.(f2) (positive homogeneity)
> 1Yr1 + UYpa.

Hence ty; + uy,; <y’

Since we defined x” and y’ so that (x',y’) € ¥, it follows from the free
disposability of W that (tx; + uxa, ty; + uys2) € V. It follows that W satisfies
NRS convexity. |

We now show there are practical convexity-consistent measures. It is easy
to check that standard deviation is convexity consistent, and it is nonnegative
by definition. Theorem 2 shows any nonnegative coherent measure of risk is
convexity consistent. Krause (2002) and Acerbi and Tasche (2002) describe
a range of coherent risk measures including lower semideviation and CvVaR,,.
We can use several values of a to get several risk measures and so model much
of the shape of the distribution. It is easy to check the mean and —Ccvar
are convexity-consistent return measures. Typically we might use cvar,, as
a risk measure for o < 0.4 and —CcvaR,, as a return measure for o > 0.6.

Coherent measures of risk may have negative values, but we need non-
negative risk measures. The following result shows we can construct a non-
negative convexity-consistent risk measure from any coherent measure.

Theorem 3. Suppose F is a class of random variables and x: F — R a
coherent measure of risk. Then & = max(z,0) is positively homogeneous,
subadditive and monotonic.

Proof. Let f and g € F. Then, for A > 0,
2(Af) = max(z(Af),0)) = max(Az(f),0) = Az (f).

So Z is positively homogeneous. And

E(f +g) = max(z(f + g),0) < max(z(f) + z(g),0)
< max(z(f),0) + max(z(g),0) = 2(f) + 2(g).

So  is subadditive. It follows that Z is convexity consistent. Finally,

f<g=1(9) <2(f) = max(z(g),0) < max(x(f),0)
= 2(g9) < 2(f).
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So z is monotonic. |

Note that the newly-constructed measure is not, in general, translation
invariant. The main benefit of translation invariance is that it lets us to
include a reference instrument in the measure. This does not matter when
we can include it in the model.

A practical iterative solution method

The production possibility set of the complete NRS model is the smallest
set containing (x;,y;) (j = 1,...,n) and satisfying free disposability and
NRS convexity. So it is contained in the production possibility set ¥ of
the diversification-consistent model whenever W is convex. This happens
whenever all the measures are convexity consistent. Then the efficiencies
of the complete NRS model estimate the efficiencies of the diversification-
consistent model, but may do so poorly.

We want to improve the estimates of the efficiencies of the diversification-
consistent model. The following model helps. It is no more than the complete
NRS model with some extra funds, which are portfolios composed of the
original funds. We call these portfolios notional funds.

For k=1,...,n and (j = 1,...,n) choose yj; > 0 so that > 7, pu; < 1.
Write f = Yooy kS Put 2y = xz(f]), (t=1,...,m,j5=1,...,n) and
Ur;j :yT(fj), (r=1,...,s8,7=1,...,n). If x, <0 put ¢, = 1 or 0 according
as y, > 0 or y, < 0. Otherwise, for o = 1,...,n, choose ¢,, Ao, ..., Ao,
5\10, ey j\ﬁo to

minimise ¢, subject to

Zyrj)\jO‘{'Z?)rjj‘jo 2 Yros (r=1,...,s) (16)
j=1 =1
inj)\jo + Z ZiiNjo < Tioto, (i=1,...,m) (17)
Jj=1 j=1

ﬁéAp—%ﬁéXﬁfgl, (18)
j=1 j=1

and

No>0 (j=1,...,n), Ao >0 (j=1,...,0). (19)



We call this model the ezpanded (complete NRS) model.

If ., ¥,, and ¥ are the production possibility sets of the complete,
expanded and diversification-consistent models then we have ¥, C ¥, C ¥
because each notional fund must be contained in ¥ but need not be contained
in W.. So if we can find notional funds in W\ ¥, we can use them to construct
an expanded model that better estimates the efficiencies of the diversification-
consistent model.

Figure 2 about here.

Figure 2 describes an iterative procedure that constructs successively bet-
ter approximations to the diversification-consistent model. In this procedure
I represents the original funds, F' the notional funds and P the pairs of funds
that have not yet been considered for some improving solution. Initially we
impose no extra stopping condition. Section 5 shows what we might use in
practice. At each iteration F may change and we consider a fund e efficient
or inefficient according as ¢. = 1 or not in the expanded model ((16)—(19))
with {f1,..., fa} = F.

The following observation shows why we need only consider 0.5(f + g)
in the iterative procedure. It is a standard result, which is easy to show
holds for the complete and expanded models. Put X; = (Z1,...,2,,) and
Yi= (U1, 9s) (3= 1,...,7). Suppose D7 Njo(Xj, ¥5) + D271 Njo(X5, ¥5)
is on the efficient frontier. Then, A;, = 0 unless (x;,y;) is on the frontier
(j=1,...,n) and S\jo = 0 unless (X;,y,) is on the frontier (j =1,...,n).

We want to choose f and g so that h is reasonably likely to be added to
S. To achieve this we maintain the pairs of funds P as a priority queue.We
expect more effieicent funds to be better choices for f and g. And we expect
inequalities (15) to get further from equality as the correlations between the
funds get further from —1. These suggest ¢3¢ (1 — p(f;, fi)) should be a
reasonable priority measure and we find it works well in practice.

Section 5 shows how the iterative procedure works in practice.

Convergence of the iterative procedure and properties of its solution

To see why we might reasonably expect the iterative procedure to give
efficiencies that converge to the values in the diversification-consistent model,
consider the following result.

Theorem 4. Suppose fl, cee fm+s are funds in an expanded model with convexity-
consistent measures. Suppose also Ay > 0, ..., Anys > 0 satisfy Z;’:LIS A < 1.
Then
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1. if (Zm+s A fj) < Zm+5 AT (f]> for somei € {1,...,m}, x; <Z;”J;S u]fj> <

Z’Jnﬁs [T (fj> whenever pi; >0 (j =1,...,n) and Z;”JES p;=1;
2. ify, (Zm+s A j}) > Zm+5 Y (ﬂ) for somer € {1,...,s}, y, (ZT? ,ujfj> >
ZTT Yy (fj) whenever p; >0 (j=1,...,n) and Zm+5

Proof. Put A = min{\;/p;: j =1,...,n}and A\; > 0. Then A > 0 and
pj—AN; >0forj=1,...,n Ifa; (Zm“)\ f]> < SN (fj) for some
ie{l,...,m}, p; >0(j=1,...,n) andij"?uj—lthen

m+s m+s m+s
i (Z Mjfj) = z; (A DoNSi+ D (k- Mj)fj)
j=1 j=1 J=1
m-+s _ m—+s 5
< Az (Z Ajfj) + Dy = A ( j)
j=1 j=1

m+s m+s
<A A (fj) + ) (1 — M) ( j)
j=1 j=1
m+s _
= Z HjTi (f j) .
j=1
The second part follows by a similar argument. |

Since the production possibility set ¥, of an expanded model with convexity-
consistent measures is an unbounded convex polytope, the practical conse-
quence of Theorem 4 is that we need only check one point in the interior of
each facet on the frontier of ¥, to find a new notional fund or show none
exists. For m + s > 2 the iterative procedure of Figure 2 only checks points
on the boundary of each facet. However, it is reasonable to expect that if
the interior points of a facet give new notional funds, then so should the
boundary.

Theorem 3 shows we can choose risk measures that are monotonic. We
do not require this for convexity-consistent measures. The following result
shows how monotonicity might be useful.

Theorem 5. Suppose f, and f, are funds in a diversification-consistent
model with nonnegative convexity-consistent monotonic measures. Then f, >

fq:>¢p2¢q'

17



Proof. Suppose f, > f,. If z;(f,) =0for i =1,...,m then ¢, =1 > ¢,
and so the result holds. Otherwise suppose z;(f,) > 0 for some 4. Then, for
r=1,...,s,

Yr <Z )‘jpfj) > yr(fp) > yr(fq)'

Jj=1

Similarly, for i =1,...,m,

T; <Z )‘jpfj) < $r(fp>¢p < 7i(fq) Pp-

So Njg = Ajp, (7 =1,...,n), ¢, = ¢, satisfies constraints (12)-(13), (11)
and (8) and so ¢, > ¢, as required. |

Theorem 5 shows we can construct DEA models consistent with a general
stochastic ordering. We note that, for any stochastic ordering <, we can
replace monotonicity with the condition that x(g) < k(f) for f, g € F with
f < g for each measure k. So, for example, we can construct diversification-
consistent models that are consistent with second or third degree stochastic
dominance (Levy, 1992), as Lozano and Gutiérrez (2008, 2007) do for sim-
ple DEA models with one risk and one return measure. Some caution is
needed. The definitions of consistency with stochastic ordering (Ogryczak
and Ruszczyniski, 2002; Lozano and Gutiérrez, 2008) give implications of the
form f < g == some conditions on the measures = ¢ < ¢, while we typi-
cally want ¢y < ¢, = f < g.We may be able to do no better than choose
measures that make this reverse implication reasonably likely.

5. A practical illustration

We show here that the procedure of Figure 2 works well in practice and
show it converges reasonably quickly to good estimates of the efficiencies of
the diversification-consistent model.

We need some data. We use 60 monthly returns from 30 hedge funds be-
tween 2000 and 2204, taken from Center for International Securities and
Derivatives Markets (2010). The data set contains ten of each of three
classes of fund. These are market neutral (MN), global macro (GM) and
long/short equity (LS). Global macro funds usually adopt a riskier strategy
than long/short or market neutral ones. So we expect diverse risk—return
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characteristics in different fund types. We also expect substantial asymme-
try in the distributions of returns, justifying a model that incorporates more
than mean and standard deviation. The columns on the right of Table 1
summarise the main features of the fund returns and indicate substantial
departure from normality. Table 2 shows the correlations among six funds.
These reflect the pattern in the 870 correlations between pairs of funds: at
5% significance level, 38 are significantly negatively correlated and only 137
significantly positively correlated.

We use C++ code to maintain the data structures and implement the
iterative procedure, and parallel cPLEX (Ilog, 2008) to solve the linear pro-
grammes. We use a 2.66 GHz Intel Core 2 duo processor and a Gnu/Linux
operating system. The iterative procedure can run indefinitely. So we in-
troduce a stopping criterion. We check the average reduction in efficiency
after a small fixed number of improving iterations and stop when this aver-
age reduction falls below a prespecified tolerance. In practice we find that
10 improving iterations and a tolerance level of 107¢ works well and gives a
solution in under ten seconds for the examples we consider.

We consider two examples. Both use a commensurable set of convexity-
consistent measures including only nonnegative risk measures. Our first ex-
ample illustrates two things. First it shows the improvement available from
diversification. Second, it shows that, even without a risk-free investment,
the diversification-consistent model may easily find portfolios with positive
return and zero measured risk. It uses the mean return of the 30 funds as a
return measure and max (CvaRgy,0) as a risk measure. Figure 3 shows the
production possibility set and efficient frontier from our approximation to a
diversification-consistent NRS model. The dashed line shows the frontier from
the conventional NRS model. There is clear evidence that the conventional
model substantially overestimates the efficiency of many funds.

Figure 3 about here.

Our second example uses risk measures max (CvaRg o5, 0), max (CvaRg.1, 0)
max (CVaRg 2, 0) and max (s;—7, 0), where s9 is the lower semideviation and §
the mean, and return measures y and —CVvaRgg. (Ogryczak and Ruszczynski
(2002) show max (se — 7,0) is coherent and consistent with second degree
stochastic dominance.) Six performance measures is typical for a DEA model
of investment funds (Gregoriou et al., 2005a). They are enough to model most
of the features of the data: much of the variance, skewness and kurtosis. They
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give f, < f, = ¢, < ¢, forp, ¢ € {1,...,n} in the diversification-consistent
model.

Table 1 about here

Column NRS shows the efficiencies from the NRS model described at the
end of Section 2. Column DC shows the efficiencies found by the iterative
procedure of Figure 2, which approximate closely those of the diversification-
consistent model. Column RATIO shows the mean : standard deviation ratio
for each fund. The diversification-consistent model has lower efficiencies than
the NRS model for all but one fund and changes the rank order of the effi-
ciencies. The rank order of the mean : standard deviation ratio shows greater
difference, indicating the weakness of a measure that ignores the shape of
funds’ distributions.

The efficient notional funds we find are portfolios of six of the ten most
efficient funds. Table 2 shows the correlations between these six funds. These
are far from the perfect correlation needed for the NRS model.

Table 2 about here

6. Discussion

We have identified the returns to scale and measures needed for a DEA
model of investment funds and shown how to handle scope for diversification.
However, a number of issues remain. Although the procedure of Figure 2
works well in practice, there may be a much more efficient method to estimate
a set of frontier portfolios. This would help for large data sets or (see below)
if we want to repeat the procedure many thousands of times.

Like all applications of DEA to modelling funds we know of, ours finds
efficiencies that describe past rather than predict future performance. We
treat measures as fixed quantities rather than random variables. This issue
needs further investigation. We suggest an approach based on the bootstrap,
which Simar and Wilson (2000); Dyson and Shale (2010) discuss for general
DEA models. The multiple observations for each fund allow another boot-
strap approach and we have some promising preliminary results. We need
to repeat the iterative procedure many times but find mean efficiencies and
confidence intervals. We also find the bootstrap resolves a problem with
deterministic DEA: the fund with highest mean return (GM2640) is given
efficiency 1 no matter how great its risk measures are.
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Our data come from a time series. We have ignored autocorrelation, which
may affect any estimate of future efficiency. We have also ignored the time
horizon of investors (Galagadera and Silvapulle, 2002). Different funds may
be at their most efficient at different time horizons, and both autocorrelation
and time horizons could be investigated further.
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FUND NRS DC RATIO MEAN SD SKEW KURT AC
GM2640 1.000 1.000 0.239 0.022  0.094 0.487 1.982 0.364
LsS90 1.000 0.912 0.420 0.020 0.048 0.458 1.641 0.211
GM2695 1.000 0.635 0.346 0.019 0.055 0.606 —0.329 0.013
GM45 1.000 0.626 0.794 0.015 0.019 0.308 —0.594 0.320
Ls40 0.668 0.553 0.215 0.021 0.098 0.206 1.249 0.087
MN2681 0.535 0.247  0.648 0.014 0.022 -0.214 -0.241 —-0.121
GM366  0.860 0.234 0.695 0.011 0.016 0.725 2.219 0.157
GM2693 0.881 0.231 0.700 0.011 0.016 0.703 2.170 0.166
MNG629  0.720 0.186 0.673 0.008 0.012 0.053 0.899 0.310
MN2540 0.618 0.182 0.589 0.009 0.015 0.455 0.872 0.393
MN2547 0470 0.178 0.545 0.007 0.013 0.690 1.870 0.043
MN2704 0.262 0.102 0.315 0.004 0.011 1.094 2.155 0.330
GM2889 0.315 0.088 0.419 0.010 0.024 0.000 1.624 0.066
LS78 0.171 0.065 0.250 0.007 0.028 0.192 0.379 0.098
LS57 0.141 0.058 0.219 0.008 0.037 0.001 —-0.646 —0.221
MN299  0.131 0.045 0.180 0.005 0.028 2.786 16.492 —-0.306
LS6 0.101 0.042 0.151 0.009 0.063 0.941 1.906 —0.099
MN301  0.117 0.041 0.164 0.005 0.028 2760 16.290 —-0.312
Ls64 0.102 0.037  0.144 0.006 0.041 2355 11.882 —0.181
GM6876 0.010 0.033 0.186 0.006 0.030 —0.081 2.067 0.195
GM59 0.079 0.026 0.139 0.006 0.046 0.095 1.901 0.020
GM3434 0.069 0.024 0.108 0.006 0.056 1.469 7.007 —0.099
LS32 0.046 0.019 0.070 0.003 0.037 1.752 7.259 —0.140
Ls20 0.044 0.018 0.067  0.003 0.037 1.759 7.297 —-0.142
MN147  0.043 0.017  0.085 0.001 0.015 0.139 1.268 —0.072
LS79 0.037 0.012 0.068 0.006 0.082 —1.146 6.987 —0.088
MN2639 0.027 0.010 0.053 0.001 0.020 0.063 1.378 —0.168
GM2068 0.023 0.008 0.051 0.002 0.038 —1.417 3.012 0.124
Ls39 0.007 0.003 0.013 0.001 0.083 0.493 0.550 0.020
MN2777 0.000 0.000 -0.018 —0.001 0.044 —0.381 0.297 0.010

NRS: efficiency from NRS model; DC: efficiency from expanded model approximating
diversification-consistent model; RATIO: mean—-standard-deviation ratio; MEAN: mean
return; SD: standard deviation in return; SKEW: skewness in return; KURT: kurtosis in
Boldface indicates differences from

return; AC: serial autocorrelation in return series.

zero significant at 5% level.

Table 1: Efficiencies and summary statistics for 30 funds
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Figure 1: Comparison of different returns to scale

put F'={fi,..., fu};
put F' = ();
put P={{fi, f;}: 4,7 €{1,....,n}i<j};
while P # () and no other stopping condition is met:
choose {f,¢g} € P and put P = P\ {f,g};
choose a pair of distinct funds f and g in S not considered before;
fore € {f,g}:
if e € ' and e is wnefficient:
put £ = F\ {e};
forpe P:ife € p: put P =P\ {p};
if neither f nor g was removed from E:
put h = 0.5(f + g);
if h is efficient and x(h) # 0.5(x(f)+x(g)) and y(h) # 0.5(y(f)+x(g)):
foree FUF: put P = PU{e, h};
put £ = FU{h};

Figure 2: Iterative procedure to generate expanded models
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Figure 3: Approximating a diversification-consistent NRS model

FUND Ls90 GM2695 GM45 G6M2693 MN2540
GM2640 —0.144 0.303 —0.306 —0.084 —0.136
Ls90 0.063 0.295 0.121 0.390
GM2695 0.387 0.252 —0.074
GM45 0.357 0.160
GM2693 0.030

Italics indicates correlation not significantly different from zero at 5% level; bold italics
indicates correlation negative and significantly different from zero at 5% level.

Table 2: Correlation coefficients for six funds
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