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II 

 

ABSTRACT 

This research work develops real-time incremental learning decision tree solutions 

suitable for real-time embedded systems by virtue of having both a defined 

memory requirement and an upper bound on the computation time per training 

vector. In addition, the work provides embedded systems with the capabilities of 

rapid processing and training of streamed data problems, and adopts electronic 

hardware solutions to improve the performance of the developed algorithm.  

Two novel decision tree approaches, namely the Multi-Dimensional Frequency 

Table (MDFT) and the Hashed Frequency Table Decision Tree (HFTDT) represent 

the core of this research work. Both methods successfully incorporate a frequency 

table technique to produce a complete decision tree.  

The MDFT and HFTDT learning methods were designed with the ability to generate 

application specific code for both training and classification purposes according to 

the requirements of the targeted application. The MDFT allows the memory 

architecture to be specified statically before learning takes place within a 

deterministic execution time.  

The HFTDT method is a development of the MDFT where a reduction in the 

memory requirements is achieved within a deterministic execution time. The 

HFTDT achieved low memory usage when compared to existing decision tree 

methods and hardware acceleration improved the performance by up to 10 times 

in terms of the execution time. 
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1 INTRODUCTION 

 

Embedded systems are extensively used in many application domains, such as 

avionics, automotive systems, health monitoring and mobile communications. To 

maintain a competitive advantage, embedded system developers need to 

continually add new features, thereby increasing the computational demands on 

such systems. The market is one of substantial growth, forecast to expand at an 

annual rate of 6.8% between years 2012 and 2018 [1].  

 

Embedded systems are increasingly being applied in applications that need to 

interact with the surrounding environment, requiring the ability to take correct 

and rapid decisions. Intelligent interaction with human counterparts requires an 

ability to learn in real-time (where the knowledge is accumulated and stored in an 

accessible form during the interaction) and incrementally (to augment existing 

stored knowledge). Where the targeted environment includes humans, safety 

issues will be paramount.  

 

Systems that interact with humans are expected to behave intelligently and ‘human 

like’. Such intelligent systems need to be able to adopt interaction modes that are 

natural to their human users as well as to understand their requirements. For 

intelligent systems to be able to interact with humans in all their environments 

implies that machine learning needs to become achievable on embedded platforms; 

a consideration still very rarely taken into account in the design of learning 

algorithms.  
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1.1 MOTIVATION 

At present, machine learning systems are not available that are able to interact 

with human users in their normal living and working environments. The 

motivation of the work presented in this thesis is to make an initial contribution to 

providing such a system. The current work will design and implement a machine 

learning system that is capable of learning incrementally, in real-time and which is 

suited to embedded implementation. Decision trees (DTs) are adopted as a 

machine learning method, due to their simplicity, reliability and classification 

performance. Incremental DT learning methods have been considered by previous 

researchers, but the real-time embedded aspects have not been fully solved.  

1.2 AIM AND OBJECTIVES 

The aim in this research work is the design and implementation of novel machine 

learning algorithms suitable for embedded systems and to maximize its 

responsiveness and usefulness by adopting a real-time, incremental learning 

approach. This requires that the learning method is able to produce its outputs and 

knowledge updates within an acceptable time interval.  

It is important to investigate the range of available candidate classifiers that can be 

used to implement a real-time embedded system. The work will show that an 

improved decision tree algorithm can give a substantial reduction in memory usage 

and calculation time can be achieved. In addition, the utilization of flexible 

hardware such as field-programmable gate arrays allows further acceleration of 

processing and permits larger problems to be addressed. 

 

The following are the objectives to achieve the aim. 

 Investigate the literature for existing learning methods that have potential 

to apply real-time incremental learning in embedded systems. 

 Develop solutions for incremental learning in software simulation.  
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 Improve the solutions for real-time applications by providing a 

deterministic time solutions. 

 Improve the memory management of the solutions to target embedded 

systems by maintaining a fixed memory usage.  

 Evaluate the performance of the solutions with respect to other learning 

methods using a range of test databases. 

 Implement a hardware solution for the most time-consuming part of the 

algorithm. 

1.3 CONTRIBUTIONS TO KNOWLEDGE 

In this research work, decision tree algorithms were developed that are suitable for 

real-time incremental learning systems. Below is a brief summary of the algorithms 

where a more detailed discussion can be found in chapters 3, 4 and 5.  

 

Frequency table in multi-dimensional form  

The multi-dimensional frequency table introduced in this thesis can hold in a 

compact form all the relationships between the attributes of the vectors in the 

training datasets. The frequency table has a number of dimensions equal to the 

number of attributes and is able to record the frequency of occurrence of each 

input vector. 

 

Multi-dimensional frequency table algorithm (MDFT) as a real-time 

incremental learning method 

The MDFT is a novel real-time incremental learning decision tree algorithm that 

employs a multi-dimensional frequency table and provides the ability to build a 

decision tree suitable for embedded systems. The MDFT algorithm can meet 

embedded system constraints by having a defined calculation time and memory 

usage. 
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Hashed frequency table decision tree algorithm (HFTDT) as a real-time 

incremental learning method 

The HFTDT algorithm is a development of the MDFT algorithm. It also adopts a 

multi-dimensional Frequency table technique but stores the table values in a more 

compact form, allowing the building of decision trees for datasets larger than these 

that can be handled by MDFT. The algorithm uses a hash table to store the multi-

dimensional frequency table, providing a unique key for each vector stored. The 

new HFTDT algorithm is able to produce similar classification performance to the 

MDFT method, but with reduced memory requirement.  

1.4 THESIS ORGANIZATION 

Chapter 2 presents background material, including an overview of machine 

learning systems, real-time embedded systems and real-time incremental learning 

systems. The chapter concentrates on decision tree approaches, including non-

incremental and incremental learning algorithms as well as their implementation 

in software and hardware.  

Chapter 3 presents the experimental procedure of the research work used for the 

generation of application-specific software and hardware to implement the MDFT 

and HFTDT algorithms.  

Chapter 4 concentrates on the description, implementation and testing of the MDFT 

method. The chapter demonstrates the real-time, incremental and embedded 

nature of the MDFT approach.  

Chapter 5 introduces the HFTDT method and demonstrates its implementation and 

testing. It is demonstrated to be a real-time incremental learning decision tree 

method, using a hashed frequency table to store incoming input data vectors.  

Chapter 6 discusses the results of testing the HFTDT method by means of a series of 

examples and compares its performance with other learning methods, namely C4.5, 

kNN and ITI.  
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Chapter 7 describes the hardware implementation of HFTDT, where a custom 

hardware design of the most time consuming function is implemented to improve 

performance. 

Chapter 8 presents the main findings of the thesis and gives suggestions for future 

research. 

1.5 SUMMARY 

An important development of modern electronic devices would be their ability to 

respond intelligently to their owners and on a time scale that is natural. A suitable 

embedded platform for such a device would be a real-time incremental machine 

learning system. This thesis investigates the most promising machine learning 

algorithm among those already existing and works towards its adoption for use in 

embedded systems.  
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2 BACKGROUND 

This chapter introduces a range of machine learning methods that are described in 

the literature and which are relevant to the current work. The chapter first 

investigates machine learning in general, but concentrates on the real-time 

incremental learning systems that are the most relevant to the current work. As a 

result of this general investigation, decision tree methods are identified as the most 

relevant for real-time incremental learning in embedded system. Consequently, the 

second part of this chapter concentrates on existing techniques used for decision 

tree implementation, including both incremental and non-incremental approaches, 

the splitting criteria used for tree generation, pruning techniques and a review of 

the implementations of decision trees in electronic hardware. 

 

2.1 MACHINE LEARNING SYSTEMS  

Several methods and algorithms have been developed by researchers in the field of 

machine learning with the aim of building intelligent systems that can complete 

certain tasks within a pre-defined time period. Machine learning plays a significant 

role in Artificial Intelligence (AI) as those systems that are capable of self change as 

further information is acquired [2].  

Several authors (such as [3], [4]) consider learning to be the gain of knowledge or 

the refinement of skills. The Oxford English Dictionary [4] defines machine learning 

as “Computing the capacity of a computer to learn from experience”, so including any 

self modification that can occur as a result of obtaining the newly acquired 

information. Mitchell [5] considered machine learning to be the ability of 

computers to program themselves and to take advantage of the data flow rather 

than just performing its processing. Köpf [6] considered machine learning to be a 

field of concern for the study of algorithms that can improve automatically from 

experience. Generally, such changes do not modify the algorithm itself, but rather 

the changes are expected to be to the database. 
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The majority of machine learning methods require that the data from which to 

learn are provided in a structured format. These data are typically represented by a 

vector whose elements describe attributes specific to the learning problem being 

tackled. During training, the vectors are used to modify the algorithm’s internal 

representation of the problem. Often, a second set of vectors is maintained for 

testing purposes to assess the performance of the learning approach. 

 

Figure 2.1 shows the architecture generally adopted by machine learning systems. 

The system behaviour that transforms inputs to actions is the application of rules. 

It is important to emphasise that a machine learning algorithm uses the knowledge 

acquired to generate rules that are then updated as new knowledge is acquired. It 

may be insightful at this stage to explain that in the decision tree implementations 

described later in this thesis, the accumulated knowledge is represented as a 

frequency table and the machine learning algorithm generates a decision tree that 

has an equivalent representation as a set of rules. 

 

 

Figure 2.1: Machine learning system 
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2.1.1 REAL-TIME EMBEDDED SYSTEMS 

 

Embedded systems are those dedicated to perform a specific task and are generally 

executed on a platform running an operating system that controls the 

microprocessor interface [7]. Real-time tasks are those characterized by a deadline, 

this being the maximum time needed by the system to complete execution [8]. 

Real-time systems are often further divided into those dealing ‘hard’ and ‘soft’ tasks 

[9]. Hard real-time tasks occur in highly critical applications, where missing one 

deadline may cause a catastrophic system failure, for example in automatic anti-

lock braking systems or in air traffic control. In soft real-time systems, the missing 

of a deadline is normally possible and, although adversely affecting its 

performance, does not cause a major system failure, for example in an automated 

teller machine or a domestic appliance controller. 

 

2.1.2 REAL-TIME INCREMENTAL LEARNING SYSTEMS 

 

Although many embedded systems will need to operate in real-time to some extent, 

few can be categorised as incrementally learning. Non-incremental learning 

systems need to have a complete set of input data vectors available before learning 

can proceed. Incremental learning systems [10] have the ability to carry out 

continuous learning, in the sense that learning can start even if only one or a small 

number of vectors is available, but the rules can continue to be updated as more 

data are acquired [11]. A task can be considered as incremental if the learning 

system needs to be able to generate outputs before all inputs have been provided 

or assimilated [12]. As an example, incremental learning gives an intelligent robot 

the ability to navigate not only in fixed environments, but also in changing 

environments where existing objects may move or new objects be introduced. It is 

important to note that such navigation is likely to require that the learning system 

is able to operate in real-time as well as incrementally, since objects need to be 

avoided while the system continues to learn.  
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2.1.3 METHODS USED FOR MACHINE LEARNING 

Learning methods can be supervised [13], unsupervised [14] or semi-supervised 

[15] algorithms. In supervised learning it is assumed that a teacher or supervisor 

trains the system, such that the instance examples are given with the desired 

categories. In unsupervised learning, the desired categories aren’t provided as part 

of the training and the machine needs to be capable of generating and maintaining 

its own categories. In semi-supervised learning the system learns from a mixture of 

categorised and uncategorised training vectors.  

 

In the design of an embedded system that performs real-time incremental learning, 

a number of constraints need to be met. To operate in an embedded environment, 

the algorithm needs to be capable of using a specified memory capacity that is 

known a priori. To be able to operate in real-time, the number and types of 

calculations that are to be performed during learning needs to be known, as well as 

the characteristics of the computing platform on which the algorithm is to be run. 

These learning operations will include integrating a new vector into the knowledge 

base and updating the rule set. The ability to operate incrementally depends on the 

learning algorithm itself, and specifically whether it has been designed to require 

the entire dataset is made available before learning can begin, or whether learning 

can progress with partial data. Table 2.1 compares the ability of the most popular 

categories of machine learning methods to operate in an embedded real-time 

incremental manner. 

 

In instance-based learning, the learning process requires the storage of all training 

vectors as well as information relating to classification performance: the process is 

time consuming and substantial memory is required. For artificial neural networks 

and support vector machines, a large sample size is required to achieve the best 

prediction accuracy [13], thereby increasing the demand on memory and 

computation time and often making the methods unsuitable for real-time 

applications. In reinforcement learning and Bayesian learning, the memory 

requirement and long computation times limit their suitability for real-time 

applications. A small number of genetic algorithm approaches permit incremental 

learning, but all require an initially unknown computational time. Inductive 
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learning, which includes decision trees, is shown in the table as being potentially 

suitable for real-time incremental learning. However, as discussed in the following 

section, this suitability is highly dependent on the specific decision tree approach 

adopted and many have shortcomings in at least one aspect of being suited to real-

time or incremental learning. The focus of the current work is to develop a decision 

tree method that is well suited to both real-time and incremental implementation 

in embedded systems.  

 

Table 2.1: Summary of machine learning method suitability for real-time incremental embedded 

learning [11]  

Method 
Capable of operating in 

embedded devices 

Capable of performing 

real time learning 

Capable of performing 

incremental learning 

Instance based learning  [16] Yes No No 

Artificial neural networks [17], [18] Yes Yes Yes 

Support vector machines [19] Yes No No 

Reinforcement learning [20] Yes No No 

Bayesian learning [11], [21] Yes No Yes 

Genetic algorithm [22], [23] Yes No Yes 

Inductive learning DTs  [11], [24] Some Partially Some 

 

 

2.2 DECISION TREES 

Decision trees (DTs) are a hierarchical model generated under supervised learning 

which consists of internal decision nodes and terminal leaves identified by a 

sequence of recursive splits [2]. DT algorithms have been successfully exploited in 

classification domains, including pattern recognition, decision support systems, 

expert systems [11], [25] and applied in speech and character recognition, remote 

sensing and medical diagnosis [26]. The advantages include simplicity, relatively 

low computation complexity, accuracy, and they can produce a representation of 

what has been learned that is easy for their users to understand.  
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2.2.1 NON-INCREMENTAL AND INCREMENTAL LEARNING DT ALGORITHMS 

Several DT algorithms have been developed, and can be divided into two 

categories, namely non-incremental learning algorithms (ID3 [24], C4.5 [27], C5 

[28], CART[29], SPRINT[30] and ID6NB [31]) and incremental learning algorithms 

( ID4 [32], ID5 [33], ID5R [34], ITI [35], FTDT and IDP [11]).  

The non-incremental C4.5 algorithm introduced by Quinlan [27] is an evolution of 

ID3 and uses dynamic memory allocation, a type of storage normally avoided in 

embedded applications due to the potential to exceed available storage capacity 

[36]. ID4, ID5 and ID5R produce binary trees, and, in spite of the fact that ID5 and 

its successor ID5R were developed to overcome the relatively poor classification 

performance of ID4, both produce results that are of similar quality to ID3 [11], 

[31], [37]. ID5 and ID5R require considerably more memory than their non-

incremental counterparts, making these algorithms poorly suited for embedded 

targets. 

ITI (Incremental Tree Inducer) [35] exhibits performance often comparable with 

C4.5 and better than ID4, ID5 and ID5R [11]. The memory usage and computation 

time of ITI increase with the number of training vectors, making this algorithm an 

unlikely candidate for embedded systems [38]. 

 

2.2.2 FTDT AND IDP INCREMENTAL LEARNING METHODS 

The shortcomings of the DT approaches found in the literature were identified by 

Swere [11]. Initial work was carried out in order to identify suitable DT 

enhancements that would meet the time and memory performance constraints for 

real-time incremental learning, yet be able to provide similar classification 

performance to C4.5. The FTDT (frequency table decision tree) method and the IDP 

(incremental decision path) were both based on a novel frequency table approach 

that was originally developed to allowing a fixed memory and known DT 

calculation time to be defined; features not apparent in ID5, ID5R and ITI. 
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In generating DTS, both FTDT and IDP perform information gain (IG) [24] and 

entropy [39] calculations similar to those found in C4.5. As all the information 

needed to perform DT calculations use data found in the frequency table (FT) for a 

given application, an upper bound on the number of calculations can be determined 

in advance. As the dimensions of the FT are also known for a given problem, the 

memory requirement can also be determined a priori. 

 

A common drawback in incremental learning algorithms arises when more 

memory is needed to store the additional data obtained as time progresses [35], an 

issue overcome in FTDT and IDP [37]. Swere et al. [38] found that the calculation 

time needed to generate the nodes using the frequency table was typically an order 

of magnitude less than that required by ITI. However, the major drawbacks of the 

FTDT and IDP methods are that they are only able to generate partial decision trees 

and consequently are unable to solve only problems with a small number of 

attributes or, for larger problems, generate solutions whose classification 

performance is significantly inferior to that achievable by C4.5. 

 

Figure 2.2 shows the FTDT algorithm. By recording in a FT the relationship of an 

attribute with all other attributes, limited information which is only sufficient to 

build a partially decision tree is available. In most DTs, additional information is 

required to build accurately trees of depth greater than two, as the correlation of 

more than two attributes is needed.  
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Input: Frequency table, a training vector 

Outputs: A new DT and commensurate rules 

Start 

1. Update the frequency table following the arrival of a new training vector 

2. IF 

 all the entries in the frequency table are of the same class 

THEN 

 produce a DT containing a single terminal node of the class, go to step 7 

ELSE 

 initialize the DT to include a single root node 

3. Select a non-terminal node by following a path through each of the attribute values of a 

previous node 

4. IF 

 all the frequency table entries for this node are of the same class  

THEN  

 label the node as a terminal node of that class  

ELSE  

compute the entropy value and the IG for all attributes, select the attribute of the largest 

IG and use this attribute for the current node 

5. Add edges from the node for each of its attribute values 

6. If there remains nodes in the DT that are not terminal nodes, then go to step 2 

7. Generate rules from the DT 

8. Store the DT and the DT rules 

9. Use the DT as required and store new training vector 

End 

Figure 2.2: FTDT algorithm [11] 

 

The IDP algorithm shown in Figure 2.3 is a development of the FTDT algorithm 

which aims to reduce the time needed to classify vectors. IDP generates only that 

single branch of the DT that is needed to classify a given test vector. This particular 

approach is best suited to incremental learning applications where both training 

and testing need to be carried out concurrently. 

A drawback is that pruning cannot be performed on an IDP tree (section 2.2.4) as 

the whole tree is not available. 
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Input: Frequency table and unclassified vector 

Output: Classified vector 

1. IF 

 all the entries in the frequency table are of the same class 

THEN 

 produce a DT containing a single terminal node of the class, go to step 5 

ELSE 

 initialize the DT to include a single root node 

2. compute the entropy value and the IG for all attributes, select the attribute of the largest 

IG and use this attribute for the current node  

3. Select the attribute value at the node that matches the attribute value of the 

corresponding attribute in the unclassified vector 

3. IF 

 all the frequency table entries for this node are of the same class  

THEN  

 label the node as a terminal node of that class, go to step 5  

ELSE  

compute the entropy value and the IG  for all attributes, select the attribute of the 

largest IG and use this attribute for the current node, go to step 3 

5. Use the decision branch as required, update the frequency table 

6. Record new classified vector and return to step 1 

Figure 2.3: IDP algorithm [11] 

 

2.2.3 ENTROPY, INFORMATION GAIN AND GAIN RATIO 

Criterion that have been used to ‘split’ data at the nodes of DTs include information 

gain, gain ratio [24], Gini index [40] and the Towing Rule [41]. As information gain 

and gain ratio are by far the most popular, only these two criteria are described 

here. 

Entropy calculations are performed to determine the information gain. The entropy 

E of a set of probabilities         is described  by Shannon [42] as  

 
             

 

   

    (2.1) 
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The quantity of entropy measures the amount of information. The choice of the unit 

for measuring information depends on the base b of the log. For base 2 the 

resulting units of the measures are bits and for base 10 it is decimal. To change 

from base b to base a simply requires multiplication by      .  

In DTs, two entropies need to be measured in order to calculate the information 

gain of each attribute. The information gain compares the entropy of each attribute 

with the total entropy of the dataset involved in the calculations at a given node. 

The attribute with the largest information gain value is then selected for that node. 

 

The total entropy of the dataset is given by  

 

      
   
   

     
   
   

 

  

   

   (2.2) 

 

                                                                                              

and                                           

 

The entropy    of an attribute value   at a given node is then 
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  is the number of input vectors in class    with attribute value    and 

  
  
                                                   

 

From Equation 2.3, the entropy for all the values of an attribute    can be 

determined from 

 

            

      

   

  (2.4) 

 

        are now specifically the attribute values in    and        is the number of 

values of      
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The information gain for an attribute    can then be determined by 

                    (2.5) 
 

The information gain method in some cases tends to favour attributes with a larger 

number of values, adversely affecting performance compared to using the gain 

ratio criteria [27] which measures the ratio between the information gain of an 

attribute and its information content. The information content for an attribute    is 

given by 

 

              
  

  
     

  

  
 

      

   

 (2.6) 

 

Where    is the number of input vectors of attribute                  and    is the 

number of input vectors in the dataset available for node calculation. 

 

The gain ratio for attribute   at a node can then be found from  

2.2.4 DECISION TREE PRUNING 

This section describes the methods for controlling decision tree growth, which is 

normally achieved either by applying a stopping criterion or by adopting a pruning 

method. The main pruning techniques used are pre-pruning, that controls the 

branch growth of the tree at the growing stage and post-pruning, that performs 

pruning on a fully grown tree.  

 

Stopping criteria 

Kotsiantis [43] listed the popular conditions that have been used to trigger a 

stopping criterion during the growth phase of the decision tree. Conditions include 

when all vectors in the training set belong to a single class, decision tree growth 

 
       

      

           
 (2.7) 
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reaching a pre-defined maximum depth, the number of cases in a terminal node 

being fewer than a minimum number of cases of its parents, the number of cases in 

new child nodes being fewer than a certain minimum, or when the largest splitting 

criteria value is less than a preset threshold. 

Maimon et al. [44] found that choosing stringent stopping criteria can lead to a 

small and underfitted decision tree with poor classification accuracy for both 

training and test data, whereas choosing loose stopping criteria tend to generate 

larger decision trees which suffers from overfitting. Overfitting of data occurs when 

the generated decision tree becomes significantly dependent either on features not 

of utmost importance is distinguishing between classes on irrelevant features or on 

data noise in the training dataset [45]. Such dependency can result in a poor 

classification performance when dealing with unseen data.  

 

Pruning 

To mitigate against the effects of overfitting, pruning techniques are used to 

generate DTs that produce a representation of the data that is more generalized 

and so likely to perform better in the classification of test vectors. Pruning is 

normally achieved by removing sub-trees from the DT that have been generated by 

relatively few vectors in the training data [46]. The two most commonly-applied 

pruning techniques are pre-pruning and post-pruning [47]. Pre-pruning uses 

stopping criteria to halt the growth of the DT before it completely represents the 

training data. Stopping criteria include the chi-squared test used by Quinlan [24], 

Fisher's exact test [48], the statistical significant method [49] and the depth limit of 

cost-sensitive DTs [50]. Post-pruning is carried out after the completion of DT 

generation. It removes branches (or sub-trees) of the DT with the aim to improving 

generalization and hence classification performance when tested with unseen 

vectors [43]. Pruning can begin either from the root node and proceed towards the 

leaves or from the leaves and progress towards the root [51]. Post-pruning 

algorithms proposed in the literature include minimal cost complexity pruning 

[29], reduced error pruning [52], minimum error pruning [53], critical value 

pruning [54], pessimistic error pruning and error based pruning [27]. Esposito et 

al. [51] and Aha et al. [47] have published comparative studies of post-pruning 
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methods; their results indicate that cost complexity and reduced error pruning 

tend to over-prune, which leads to smaller DTs but reduces classification 

performance. They found that the other methods listed above tended to perform 

under-pruning, producing larger trees, but again adversely affect classification 

performance relative to an ideally-sized DT. 

Pre-pruning is often computationally more efficient as it can avoid the building of 

an entire irrelevant branch, whereas post pruning requires that the branch is built 

first before its usefulness is considered [55]. Conversely, however, pre-pruning  

may stop tree growth too soon before all the information is available [29], in 

contrast to post-pruning that needs access to the complete DT as it operates on a 

fully grown tree. A more comprehensive description of pre-pruning methods can be 

found in a study conducted by Frank [55]. 

 

2.2.5 HARDWARE IMPLEMENTATIONS OF DECISION TREES 

DTs have a low computation complexity when compared to many other machine 

learning techniques. For large datasets, or when input data is continually streamed, 

achieving the rapid generation of DTs requires the development of new algorithms 

or the acceleration of existing ones. Parallelization can be used to speed up the 

process of building classification trees and is feasible where parts of the DT are 

sufficiently computationally separate that their calculations can be carried out 

independently. Steinhaeuser et al. [56] proposed a parallel implementation of ID3 

by using separate threads to execute independent DT algorithm paths. A significant 

performance advantage compared with the serial version, especially when the 

number of vectors and the number of attributes is large was demonstrated. The 

parallel mode of computation was executed on the Cray multi-threaded 

architecture.  

Kufrin [57] proposed a data distributed parallel formulation ID3 which relies on 

gathering the statistics of the attribute values and classes for each node. Such 

statistics can be shared and processed in parallel on a small number of processors 

in order to determine the best attribute for splitting at a node.  
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Srivastava et al. [58] proposed three parallel formulations, namely synchronous 

tree construction, partitioned tree construction and a hybrid of the synchronous 

and partitioned formulations. In the synchronous approach, all processors operate 

at the same node and each calculates the entropy gain of a different set of 

attributes. Each processor receives and transmits class distribution information 

simultaneously. In the second approach, independent processors each work on 

their own parts of the classification tree, following a succession of nodes as they are 

expanded. The hybrid formulation has elements of both the synchronous and 

partitioned approaches in an attempt to overcome their drawbacks. In its 

implementation, the hybrid scheme follows the synchronous approach as long as 

the communication cost is not too high, in which case it switches to the partitioned 

approach.  

In the parallelization approach proposed by Narlikar [59], two levels of divide-and-

conquer parallelism were considered in the building of C4.5 DT. An outer level 

extended across tree nodes and an inner level operated within a tree node. The 

author proposed using a lightweight thread implementation for C4.5 algorithm to 

take advantage of its intrinsic parallel nature. 

Jin et al. [60] proposed a new approach to decision tree construction, named SPIES, 

in which the numerical attributes of a large number of distinct elements were 

divided into intervals of equal width and a class histogram of the frequency of 

occurrence of each class was computed. The algorithm computed a subset of 

candidate split point values for the numerical attributes and stored the class 

histogram for the points to reduce the space complexity of the algorithm and the 

communication cost between the processors. The algorithm was parallelized using 

the FREERIDE framework and the authors obtained almost linear speedups.  

Yildiz et al. [61] presented three types of parallelism and applied these to two DT 

algorithms, the C4.5 and the univariate linear discriminate tree. The authors 

examined the computational effects of realizing DTs using feature-based 

parallelism, node-based parallelism and data-based parallelism. In the feature-

based approach, the attributes under investigation were allocated to separate 

processors and the results combined to isolate the attribute giving best split. In the 
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node-based approach, the computations at the nodes themselves were allocated to 

separate processors. The node-based approach maintained a queue of nodes from 

where they were extracted and sent to the slave processors. In the data-based 

approach, the dataset was portioned according to attribute and only the relevant 

data sent to the relevant processor. The experimental results produced by the 

study showed that the performance improvement produced by the parallel 

implementation depended greatly on the number of attributes and attribute values 

in the dataset. The node-based parallelisation approach demonstrated a good 

speedup. 

Narayanan et al. [62] proposed an FPGA implementation for a DT system providing 

binary classification. The architecture implemented the Gini score calculation in 

which the impurity computation is the most computationally intensive part of the 

learning process. A five-fold improvement in calculation time was demonstrated 

when using a fixed-point integer solution relative to that achieved by a software 

solution using two embedded PowerPC processors and implemented using floating 

point operations. 

Zaki et al. [63] presented a parallel DT algorithm for an symmetrical multi-

processor (SMP) system using the SPRINT algorithm. They proposed task 

parallelism using dynamic subtree partitioning and data parallelism based on 

attribute scheduling among threads running on the SMP processors. Andrade et al. 

[64] considered clusters of SMPs running under Linux, where each processor is 

allocated a portion of a partitioned dataset. Steinhauser et al. [56] found that the 

main disadvantages of SMP systems is that only one processor can access memory 

at a time, a considerable restriction in the construction of DTs, which is highly 

memory intensive operation.   
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2.3 CONCLUSION 

The work presented in this thesis aims to provide an implementation of a real-time 

incremental embedded machine learning system. A comparison of different 

machine learning methods showed that DTs and neural networks are capable of 

performing real-time incremental leaning. However, as neural networks have the 

disadvantage of requiring a large memory capacity, they are not suitable for 

implementation in embedded systems with limited memory and computational 

resources. 

Following the investigation of machine learning systems, DTs were identified as the 

most appropriate for real-time incremental implementation. Consequently, this 

chapter has concentrated on DT systems and described the calculations used as 

splitting criteria such as entropy and information gain.  

A common drawback with decision tree algorithms is overfitting, and there is a 

range of techniques available to reduce its effects including adopting stopping 

criteria or by applying pruning. In the work in this thesis, no stopping criteria or 

pruning were applied as the effects of these approaches in real-time incremental 

systems require extensive work beyond the main thrust of the current focus. 

However, stopping criteria and pruning are not undesirable and their 

implementation should be the subject of further work. However, the reader should 

be aware that the results presented in this thesis for the new approaches may 

sometimes be affected by the absence of stopping criteria and pruning.  

The hardware approaches described in the literature have been reviewed. A 

number of parallel approaches are available that have concentrated on improving 

performance in a range of aspects of building decision trees, such as attribute 

selection, node expansion and data parallelism. The inherently parallel nature of 

DT algorithms is highly suited to hardware exploitation. Although the DT 

algorithms developed in this work are not themselves implemented in hardware, 

the method to accelerate the approach used to store training vectors and so enable 

incremental learning are realised in hardware.  
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3 EXPERIMENTAL PROCEDURE 

This chapter describes the process that has been developed for the implementation 

of the new decision tree approaches. Although a wide variety of practical example 

applications can be realised by the new approaches, the process generates a 

software implementation that is specialized for the example application of interest, 

both at the training and classification stages. Such an approach has advantages 

when targeting embedded environments in which execution time and memory 

resources need to be carefully controlled.  

3.1 INTRODUCTION 

By exhibiting the features of both a defined memory requirement (see Sections 4.6 

and 5.4.2) and a maximum computation time per training vector, the novel real-

time incremental decision tree algorithms developed in the current research work 

are suitable for embedded real-time implementation. This is in contrast to the 

decision tree algorithms described in the literature, such as C4.5 [27] and ITI [35], 

which are general purpose algorithms that run on computer workstations and 

allocate memory in a dynamic manner.  

In embedded target environments, dynamic memory may not be available and 

execution resources are likely to be at a premium. Consequently, in this thesis, the 

software implementation of the decision tree approaches is designed to exhibit the 

following features. 

 No translation between external and internal data representations are 

needed. 

 All memory for the decision tree implementation can be allocated statically. 

 Offsets to elements in array structures are known at compile time. 

To ensure that the above features are incorporated, the current research generates 

bespoke decision tree training and classification programs according to the 
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requirements of the application being considered. This allows the memory 

architecture to be specified statically before learning takes place. 

This thesis will introduce two novel decision tree approaches, namely the Multi-

Dimensional Frequency Table (MDFT) and the Hashed Frequency Table Decision 

Tree (HFTDT). The two approaches will be described in detail in later chapters 

(MDFT in Chapter 4 and HFTDT in Chapter 5). The purpose of this chapter is not to 

describe the new approaches, but instead to describe the process by which the 

software that implements them is produced. 

The MDFT and HFTDT methods adopt a frequency table technique to hold the 

training data necessary to build their decision trees. The advantage using of a 

frequency table is that it permits an incremental approach to learning that has the 

potential for implementation in a real-time embedded system. Although earlier 

approaches (FTDT and IDP [11], [37]) also used frequency tables, both were only 

able to generate partial decision trees. The MDFT and HFTDT methods, which 

represent the core of this research work, successfully incorporate the frequency 

table technique to produce a complete decision tree.  

3.2 MDFT AND HFTDT STRUCTURE 

MDFT and HFTDT were designed with the ability to generate bespoke code for a 

given specific application. Figure 3.1 shows that a separate ‘generate’ program is 

used to produce the ‘training’ and ‘classification’ programs. The programs are 

discussed in detail in the following sub-sections. 

generate 
code

training

classification

 

Figure 3.1: The programs involved in the implementation of the MDFT and HFTDT approaches 
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3.2.1 GENERATE DECISION TREE CODE 

The program that generates target code optimized for a specific application is 

shown in Figure 3.2. Although no standard format is available for describing the 

structure of data to be used for training or that require classification, common 

practice is to make available the salient parameters in a ‘names’ file that is defined 

separately from the data itself.  Table 3.1 shows the parameters that can be found 

in such a names file. 

configuration 
data

generate code for 
training and 
classification 

training 
program

classification 
program

 

Figure 3.2: The generate program 

Table 3.1: The application parameters available from the names file 

Parameter Description 

   Number of classes 

   Class names 

   Number of attributes 

   Attribute names 

       Number of values for each attribute  

              Attribute value names 

 

The design of the frequency table and the main functions of the code depend on the 

parameters given by the names file. The main code includes functions to perform 

entropy and information gain calculations, fetching, building the decision tree and 

for performing classification. The number of iterations of the loops in the decision 
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tree calculations and the values generated for a lookup table are determined 

automatically according to the given parameters of the names file. 

3.2.1.1 Generating code for training and classification  

The number of dimensions of the frequency table is determined by both    and   , 

where the conversion process of input data vectors into numerical notation and all 

nested loops in the generated code depend on the parameters   ,    and       .  

The training code consists of several functions that are generated according to the 

configuration data of the targeted system, covering the following.  

 Multi-dimensional frequency table: read/write functions. 

 The read function incorporates a search operation to read values saved 

in the multi-dimensional frequency table. Both MDFT and HFTDT include 

nested loops whose number of iterations is set according to the number 

of classes      , the number of attributes (    and the number of 

attribute values (      . 

 The write function updates the multi-dimensional frequency table on the 

arrival of each new training vector. It includes several for loops and if 

statements. The loop iterations and if statements depend on the number 

of classes      , the number of attributes (    and the number of 

attribute values (      . 

  

 

 Indexing and reverse indexing functions in the HFTDT method. 

 The HFTDT method includes an indexing function that is used to 

generate a unique index for each input vector to be stored in the hashed 

multi-dimensional frequency table. The index function depends on the 

number of classes      , the number of attributes (    and the number of 

attribute values (      . 

 The reverse index function used by HFTDT forms the complementary 

operation to the indexing function in that it generates the vector from its 

index. It also depends on the parameters provided by the configuration 

data, namely as the number of classes      , the number of attributes (    

and the number of attribute values (      . 
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 Logarithm table. 

 A generated logarithmic lookup is used to implement entropy 

calculations. Two approaches for choosing the logarithm base were used 

in this research work. The first is to use Logarithms to the base 2 as 

adopted regardless of the number of classes involved in a calculation in 

the implementations of Quinlan [27]. The second is to use a logarithm 

base that is equal to the number of classes, allowing a normalising of the 

entropy values. The alternative approaches were tested on a range of 

examples and were found to give same classification results. 

 The logarithmic lookup table has the advantages of having a shorter 

execution time [65][66] and reducing hardware realization complexity 

[67]. 

 The logarithmic lookup table was also used in this research work to 

allow the generation of hardware implementations. The logarithmic 

values were generated with a precision of       , allowing the resolution 

equivalent to one vector out of a hundred thousand. This was sufficient 

to handle all the example applications tested in this research work. A 

practical test was conducted and found that the number of generated 

was identical whether the logarithmic lookup table or the GNU 

mathematical library [68] was used. 

 

3.2.2 DECISION TREE TRAINING 

 

The decision tree training process is shown in Figure 3.3. On application of a new 

input data vector to the decision tree training program, the original text data is 

converted into a numerical notation beforehand to save execution time when 

running the decision tree code. 

An illustrative example will now be given of the conversion process being 

performed on an example from Quinlan[69] that has three attributes two classes, 

as shown in Table 3.2. 
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Table 3.2 An example training set, Quinlan [69] 

Number 
ATTRIBUTES 

CLASS 
Height Hair Eyes 

1 Short Blond Brown  Negative 

2 Tall Dark Brown Negative 

3 Tall Blond Blue Positive 

4 Tall Dark Blue Negative 

5 Short Dark Blue Negative 

6 Tall Red  Blue Positive 

7 Tall Blond Brown Negative 

8 Short Blond Blue Positive 

 

 

The conversion into numerical notation can be seen in Table 3.3, where part (a) 

represents the original names file and (b) the equivalent numerical notation for 

this example.  

 

Table 3.3: (a) The attributes and classes shown in the original example and (b) the .numerical 

notation after conversion 

CLASSES  CLASSES 

Negative Positive  0 1 

ATTRIBUTES  ATTRIBUTES 

HEIGHT HAIR EYES  0 1 2 

Short Blond Brown   0 0 0 

Tall Dark Blue  1 1 1 

 Red    2  

(a)  (b) 

 

Following conversion, the vectors are as shown in Table 3.4. 
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Table 3.4: The vectors of Table 3.2 after conversion to numerical form 

Number 
ATTRIBUTES 

CLASS 
Height (0) Hair (1) Eyes (2) 

1 0 0 0 0 

2 1 1 0 0 

3 1 0 1 1 

4 1 1 1 0 

5 0 1 1 0 

6 1 2 1 1 

7 1 0 0 0 

8 0 0 1 1 

 

In order to select an attribute for each node of the decision tree, entropy and 

information gain calculations need to be carried out. After completing the decision 

tree, rules that represent the knowledge learned are extracted from the decision 

tree for use in classification. 

 

calculate entropy 
and information 

gain

build decision 
tree

training 
vectors

convert to 
numerical 
notation

generate rules

Data sotrage 
(frequency table)

rules

Training program

 

Figure 3.3: The program to train the decision tree 
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Depending on whether the MDFT or the HFTDT method is being used, the 

converted vector is stored in a frequency table using one of two available 

techniques, as shown in Figure 3.4. Both algorithms use an incremental approach 

and during training they are capable of producing an updated decision tree after 

receiving each new input data vector. To store the frequency table the MDFT 

technique uses a multi-dimensional array, while the HFTDT method uses a hashed 

table. 

multi-dimensional 
array

hashed table

MDFT method HFTDT method

 

Figure 3.4: Two different approaches used for storing the training data in a frequency table 

 

3.2.3 CLASSIFICATION USING THE DECISION TREE 

The classification program is shown in Figure 3.5. As in the training program, the 

input data are converted to a numerical notation readable by the program, but in 

the classification program an output decision is then made regarding the class to 

the converted vectors based on the stored rules. 
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testing 
vectors

generate decision

rules

Class

convert to 
numerical 
notation

Classification program

 

Figure 3.5: Classification using the decision tree 

3.3 SUMMARY 

In order to produce a decision tree that can be implemented on an embedded 

target system, including a hardware based solution which has the requirement of 

statically-defined memory, an implementation process has been defined that 

generates both training and classification programs that are tailored to a particular 

learning application.  

With the embedded system development process in place, the next two chapters 

concentrate on the description, implementation and testing of the two new 

decision tree approaches introduced in this thesis, namely the Multi-Dimensional 

Frequency Table and the Hashed Frequency Table Decision Tree. 
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4 MULTI-DIMENSIONAL FREQUENCY TABLE DECISION TREE 

This chapter presents a novel real-time incremental learning decision tree 

approach. The new approach is named the Multi-Dimensional Frequency Table 

(MDFT) method. The MDFT has been designed to target embedded systems where 

the number of calculations and the memory requirement needed to generate a DT 

can be known a priori. The chapter firstly includes an introduction to frequency 

tables and the use of MDFT for decision trees. Secondly, it presents the novelty of 

the approach and the implementation of the MDFT algorithm. Thirdly, a 

demonstration of a simple example using the MDFT method is given, including the 

calculations that have been conducted on each node of the decision tree. Lastly, the 

chapter presents the results of conducting several test experiments leading to the 

motivation to develop a successor to MDFT, termed HFTDT. 

 

4.1 INTRODUCTION 

 

Embedded systems generally have limited resources, principally those relating to 

memory capacity and computation capabilities. The new approach of MDFT is 

designed to operate within the aforementioned constraints in the realisation of a 

real-time incremental learning system. The MDFT method adopts a multi-

dimensional array that acts as a frequency table, thereby bounding memory usage 

which can be known a priori, as it holds all the iterations of the incoming data 

vectors, while keeping all correlations between the attributes and classes. Existing 

decision tree incremental learning methods generally lack the ability to execute in 

bounded memory as they retain the input training dataset in the nodes of the tree.  
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4.2 FREQUENCY TABLE FOR DECISION TREES 

 

Learning embedded systems need to have the ability to act within their 

environment by the application of accumulated knowledge. In this research work, 

the Frequency Table (FT) [11], [37], [38], [70] (or frequency distribution) 

maintains an organized summation of the number of occurrences of specific input 

data vectors. The FT provides a compact version of the input data vectors, in which 

the correlations between all the attributes are retained for each class.  

The FT developed in this work is a multi-dimensional table. The dimensions of the 

FT depend on the size of the problem in term of attributes, attribute values and 

classes, their values determining the dimensions of the FT for a specific problem. 

The number of dimensions of the frequency table for any problem is equal to the 

number of attributes, with an additional dimension being required to represent the 

class. 

The structure of the FT is not limited to a specific number of dimensions and it is 

tailored to the characteristics of the application presented. The general structure of 

the multi-dimensional FT can be described in the form                  where 

each element in the set represents a dimension. There are                  , 

divided into                                and an additional dimension for the 

class of the vector, where   represents one of the                        

                 

To illustrate the concept of an MDFT, Figure 4.1 gives a sample example of a three 

dimensional FT where the number of attributes          and the number of classes 

is given by   . The set of attributes in the example given are        . Each attribute 

represents a dimension for the FT, where the third dimension is reserved for the 

class and the number of attribute values is defined 

as                                                             . 
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A2

Class

 
A1

[0]N v

[1]N v

 

Figure 4.1: A basic example of a three dimensional frequency table  

4.3 NOVELTY OF MDFT 

The MDFT method presented on this research work is designed for the purpose of 

meeting the demands of real-time incremental learning applications of embedded 

systems. The demands can be generalised as follow. 

 Known memory usage and its efficient management is crucial in real-time 

systems[71]. MDFT exhibits fixed usage and computable memory demands that 

can be calculated prior to the process of DT building.  

 

 Incremental learning is emphasised when having good mechanism for holding 

old data and efficient management of data[72]. The MDFT technique keeps all 

correlations and relations of the saved data to improve predictability. 

 

 Calculation time constraints of real-time applications plays a main roll in 

affecting prediction and performance of any method used. In terms of decision 

tree, the MDFT produces similar classification performance to C4.5 algorithm 

but with advantage of knowing in advance how many calculations needed to be 

done for a particular application. 
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4.4 DECISION TREE CALCULATIONS 

 

Suitable algorithms for real-time applications should meet time deadlines in order 

to provide the required response. Therefore, knowing the time needed for 

performing calculations for any given application is crucial. The maximum time 

needed for the worst case scenario in generating the DT can be an important 

decision criterion in assessing the suitability of the algorithm to be used.  

Decision tree calculations require that the computation of entropy and information 

gain are carried out at each node of the DT. A range of arithmetic operations are 

involved in such calculations. The aforementioned calculations need to be done for 

every node of the decision tree  

Following the approach taken by FTDT [11], the number of calculations needed to 

determine the entropy and information gain (see section 2.2.3) for each attribute 

value in both MDFT and the HFTDT methods can be determined as below. 

 

Entropy calculations  

The number of additions required in an entropy calculation is equal to the number 

of classes less one  

    
              (4.1) 

                                                  

 

The number of multiplications is equal to the number of classes 

    
             (4.2) 

 

The number of divisions is equal to the number of classes 

    
           (4.3) 
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The number of logarithmic calculations (or the reading of logarithmic values from a 

lookup table) is equal to the number of classes 

    
           (4.4) 

 

The number of entropy calculations for an attribute value is then equal to 

   
     

     
     

     
        (4.5) 

 

The total number of entropy calculations for attribute                     is 

given by 

 

  
          

 

      

   

     (4.6) 

 

where                                                   

 

The entropy calculations can be then determined by summing the entropy 

calculations of every attribute involved with the node calculations with addition of 

the calculation involved in the overall entropy computation for the whole dataset 

involved with the node calculations.  

 

The total number of entropy calculations for node   is 

   
        

     

     

   
       (4.7) 

where                                                                    

 

Information gain calculations 

The number of calculations needed to determine the information gain for an 

attribute is now determined. 
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The number of additions is equal to the number of attribute values  

    
                  (4.8) 

                                                         

The number of multiplications is equal to the number of attribute values 

    
                    (4.9) 

 

The number of divisions is equal to the number of attribute values 

    
                  (4.10) 

  

The total number of calculations for an attribute    is then given by 

   
          

           
           

           (4.11) 

 

The total number of information gain calculations for node   can be found from  

    
         

      

     

    (4.12) 

where                                                                   

4.5 MAXIMUM NUMBER OF CALCULATIONS (WORST CASE SCENARIO) 

This section determines the maximum number of calculations required to generate 

a DT, that is, the worst case scenario. DTs consist of a number of different levels 

starting from the root node (level 1) and ending in leaf nodes in (level   ), where 

   is the number of attributes in the problem. The number of attributes values 

determines how many nodes are needed at each level. Where the numbers of 

values for each attribute are not all the same, the worst case for number of nodes in 

the decision tree occurs when levels are ordered such that the attribute with the 

largest number of values is chosen at the root and the last level contains the 

attribute with the least number of values 
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The following equation shows the number of calculations needed at the root node  

 

         
         

      

   

    

   
     (4.13) 

                                      

 

The number of calculations needed for subsequent levels of the decision tree is 

given by 

 

            

   

    

      
         

      

   

    

   
       (4.14) 

                                                       

 

Consequently, the worst case scenario where the maximum number of calculations 

that need to be conducted to build the decision tree can be found as follows: 

      
         

      

   

    

   
 

          

   

    

      
         

      

   

    

   
   

    

   

 

(4.15) 

         

Equation 4.15 implies that the worst case scenario for the decision tree is of the 

order             
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4.6 CALCULATING THE MEMORY USAGE OF THE MDFT METHOD 

In embedded systems memory resources are limited. Consequently, the memory 

usage of an algorithm needs to be considered before deployment to ensure 

sufficient memory is available on the target platform identified. 

One of the characteristics of MDFT method is its suitability to embedded 

applications, where the memory required by the algorithm can be calculated and be 

known a priori. The memory used to build the decision tree is determined below. 

 The number of elements of the multi-dimensional frequency table is given by 

  
              

  

    

       (4.16) 

 

                                                                           

             (4.17) 

                                                               

 

In the MDFT method, the adopted node structure of the decision tree shown in 

Figure 4.2 ensures a fixed memory usage. Figure 4.3 (a) shows an example of a DT 

structure, but this is implemented in MDFT as a node structure linked list as shown 

in Figure 4.3 (b). This fixed memory usage is achieved by defining two pointers to 

link the network of nodes of a decision tree. The first pointer links to the child node 

while the second pointer links to the sibling node. As the pointers are fixed in their 

memory usage (for a given addressing architecture), the maximum memory usage 

can be known a priori, which makes the approach more suitable for embedded 

solutions. 

In contrast, the number of pointers created at node of other DT approaches, such as 

in C4.5 and ITI, varies according to the attribute selection at a node, which depends 

on a number of the children of that node. Consequently, these methods have a 

memory usage not known in advance, making them less well suited to embedded 

applications. 
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/* MDFT node structure */ 

/* u8 and u16 notate unsigned 8 bit and unsigned 16-bit integer numbers respectively */ 

typedef struct node{   

    u8 Att; /* attribute chosen at node */ 

    u16 ClassInstance[  ]; /* number of class vectors at node */ 

    u16 Child; /* pointer to child node */ 

    u16 Sibiling; /* pointer to sibling node */ 

    Bool AttUsed[  ]; /* one flag for each attribute used in the tree above this node */ 

    u8 AttValUsed[  ]; /*corresponding attribute value for each attribute flagged in 

AttUsed */ 

} NODE;  

Figure 4.2: MDFT node structure 

  

 

Node2

Node1

Node3

Node5

Node4

Node6 Node7 Node9Node8

 

Figure 4.3 (a): Example of a conventionally linked decision tree structure 
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Node2

Node1

Node3

Node5

Node4

Node6 Node7 Node9Node8

 

Figure 4.3 (b): Decision tree structure in which the nodes have fixed memory usage by employing 

child and sibling pointer 

 

From the node structure shown in Figure 4.2, the number of bytes used by each 

node can be calculated as follows: 

                         (4.18) 

 

 By referring to Equations 4.17 and 4.18, the total memory usage by an MDFT 

decision tree in bytes can be calculated as follows : 

                                                      (4.19) 

      where                                                             

 

  



Chapter 4  Multi-Dimensional Frequency Table Decision Tree 

 

41 

 

4.7 GENERATING A DT AND RULES USING THE MDFT METHOD 

Figure 4.4 describes the algorithm of the MDFT method in generating a decision 

tree. On arrival of a new training vector the MDFT is updated, the main process of 

generating a decision tree follows the routine shown below and on its completion a 

set of generated rules will be supplied. The generated rules are created by 

following the paths from the root node of the decision tree to each of the leaf nodes. 

The set of rules are then stored to be used in the classification process of new 

vectors. 

Input: Multi-Dimensional Frequency Table (MDFT); set of attributes; training vector 

and unclassified vector 

Outputs: A Decision Tree, generated rules and classified vector 

Start 

1. Update the Multi-Dimensional frequency table following the arrival of each new 

training vector 

2. IF 

 all the stored entries in the  MDFT are of the same class 

THEN 

 produce a DT with a single node (Leaf Node) labeled with that class, go to step 7 

ELSE 

 create a node in the DT 

3. Select an attribute among the set of attributes with the highest IG value and label the 

node with selected attribute 

4. Add a branch for each known value of the selected attribute for that node. 

5. Create a node for each branch 

6. IF 

 all the MDFT entries for this node are of the same class  

THEN  

 label the node as a leaf node of that class  

ELSE  

compute the entropy value and the IG for all attributes, select the attribute of the 

largest IG and use this attribute for the current node, go to step 4 

7. Generate rules from the DT 

8. Store the DT and the rules and use as required in the classification of new vectors 

9. IF  

more training is required  

THEN 

go to step 1 

End 

Figure 4.4: Description of the MDFT algorithm 
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4.8 AN ILLUSTRATIVE EXAMPLE OF THE MDFT METHOD 

In this Section, an example will be used to illustrate how data can be stored in the 

MDFT and then used to obtain a DT To illustrate the generation of the MDFT 

algorithm, the weather problem dataset is shown in table 4.1, which has four 

attributes, two possible outputs, uses various characteristics of the weather to 

determine whether to play a game of tennis [11]. 

Table 4.1: The weather problem dataset contains 16 input vectors with 15 unique entries. 

Number 
ATTRIBUTES 

CLASS 
Outlook Temperature Humidity Wind 

1 Sunny Hot High Weak Don’t play 

2 Sunny Hot High Strong Don’t play 

3 Overcast Hot High Weak Play 

4 Rainy Mild  High Weak Play 

5 Sunny Mild High Weak Play 

6 Rainy Cool Normal Weak Play 

7 Rainy Cool Normal Strong Don’t play 

8 Overcast Mild High Strong Play 

9 Sunny Mild High Weak Don’t play 

10 Sunny Cool Normal Weak Play 

11 Rainy Mild Normal Weak Play 

12 Sunny Mild Normal Strong Play 

13 Overcast Hot Normal Weak Play 

14 Sunny Mild High Weak Play 

15 Overcast Cool Normal Strong Play 

16 Rainy Mild High Strong Don’t play 

 

Table 4.2 shows a summary of the attributes and classes of the weather problem 

where the two classes {don’t play, play} notated by {0, 1} correspondingly, and the 

attributes {Outlook, temperature, humidity, wind} are represented by 

                with numerical notation for the values. 
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Table 4.2: The attributes and classes shown in the weather example with the corresponding notation 

CLASSES 

Don’t play 

(C = 0) 

Play 

(C = 1) 

ATTRIBUTES 

Outlook 

   ) 

Temperature 

     

Humidity 

   ) 

Wind 

     

Sunny (0) Hot (0) High (0) Weak (0)  

Overcast (1) Mild (1) Normal (1) Strong (1) 

Rainy (2) Cool (2)   

 

Each element of the MDFT in Table 4.3 represents an input vector which has a 

unique notation according to the attributes and class value. A function f is defined 

to provide the number of vectors of input vectors as recorded in each of the MDFT 

elements, where each element value can be accessed using the attribute and class 

value as shown in Equation 4.20.  

 number of vectors  =                       (4.20) 

 

                        represent the attribute values for attributes       

           And C is the class values . 

To clarify how the calculations are performed in this example, the notation (  
 ) 

signifies the sum of values stored in the MDFT for node k and for class C (where in 

the current example C=0 for class 0, C=1 for class 1 and C=T for both classes taken 

together) while the entropy for node k is shown as   . 

Table 4.4 illustrates how the input vectors of the weather problem populate the 

elements in the MDFT.  
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Table 4.3: MDFT shows a unique notation for each cell according to its attributes and class values.  
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Table 4.4: MDFT for the weather problem, where the cells are updated according to the input dataset. 
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The weather problem given in Table 4.1 consists of four attributes        and two 

classes   
 
   . In the multi-dimensional array, each attribute is represented by a 

single dimension of the array with an extra dimension required for the class. 

After the MDFT has been populated, the decision tree can be generated. The 

splitting criterion used in generating the decision tree is information gain (see 

Section 2.2.3). 

The following shows the total entropy calculation needed for the root node and is 

calculated using Equation 2.2 in Section 2.2.3 as follows. 

The number of vectors of class 0 in the input vectors supplied is given by the sum of 

all values in the bottom half (for class 0) of Table 4.4 

 
  

                           

 

     

 

     

 

     

 

     

         (4.21) 

 

                                                       

 

The number of vectors of class 1 can be found by the sum of all values in the upper 

half (for class 1) of Table 4.4 

 
  

                            

 

     

 

     

 

     

 

     

 (4.22) 

 

                                                       

 

The number of vectors of both classes is given by the sum of all the values in the 

(for both classes) in Table 4.4 

 
  

                             

 

     

 

     

 

     

 

     

 (4.23) 
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The total entropy at the root node is thus 

  
     

 
  

 

 
  

     

 
  

 

 
  

    
 
  

 

 
  

     

 
  

 

 
  

   (4.24) 

  

    
 

  
    

 

  
   

  

  
    

  

  
             

 

Choosing the attribute at the root node 

In this Section, the entropy values will be computed for each of the attributes for 

the root node. 

1. Entropy for attribute ‘outlook’. 

For attribute value ‘sunny’ 
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For attribute value ‘overcast’ 
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For attribute value ‘rainy’ 
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    (4.33) 

 

By using Equation 2.4, the entropy for attribute ‘outlook’ can be found from 
 

        
 
  
 
 

  
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
   

  
 
  
 
 

 
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
      

 
 
  
 
 

 
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
              

(4.34) 

 

By using Equation 2.5, the information gain for attribute ‘outlook’ is given by 

          
          

                                                

                                                                                

(4.35) 

 

2. Entropy for attribute ‘temperature’ 

For attribute value ‘hot’ 
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For attribute value ‘mild’ 

    
                           

 

     

 

     

 

     

             

 

  

    
                            

 

     

 

     

 

     

             
 

  

 
  
 
       

      
      

 

For attribute value ‘cool’ 

    
                           

 

     

 

     

  

 

     

            

  

    
                              

 

     

 

     

 

     

            

  

 
  
 
       

      
     

 

By using Equation 2.4, the entropy for attribute ‘temperature’ can be found from 

       
 
  
 
 

  
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
   

  
 
  
 
 

 
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
      

 
 
  
 
 

 
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
              

 

 

By using Equation 2.5, the information gain for attribute ‘temperature’ is 
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3. Entropy for attribute ‘humidity’ 

For attribute value ‘high’ 

    
                           

 

     

 

     

 

     

                 
 

  

    
                            

 

     

 

     

 

     

                 
 

  

 
  
 
       

      
     

 

For attribute value ’normal’ 

    
                           

 

     

 

     

 

     

                 
 

  

    
                            

 

     

 

     

 

     

               
 

  

 
  
 
       

      
      

 

By using Equation 2.4, the entropy for attribute ‘humidity’ can be found 

       
 
  
 
 

  
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
   

  
 
  
 
 

 
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
              

 

 

By using Equation 2.5, the information gain for attribute ‘humidity’ is  
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4. Entropy for attribute ‘wind’ 

For attribute value ‘weak’ 

    
                           

 

     

 

     

 

     

                
 

  

    
                           

 

     

 

     

 

     

               
 

  

 
  
 
       

      
      

 

For attribute value ‘strong’ 

    
                            

 

     

 

     

 

     

               
 

  

    
                           

 

     

 

     

 

     

                
 

  

 
  
 
       

      
      

 

By using Equation 2.4, the entropy for attribute ‘wind’ can be found from  

       
 
  
 
 

  
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
   

  
 
  
 
 

 
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
               

 

 

By using Equation 2.5, the information gain for attribute ‘wind’ is given by 
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The DT progress beyond this point is shown in Figure 4.5. For the root node, the 

attribute ‘outlook’ is chosen as it has the largest information gain value. There are 

three attribute values for ‘outlook’, namely sunny, overcast and rainy. Therefore 

the root node has three children as follows. 

Sunny   --> node 2 

Overcast --> node 3 

Rainy    --> node 4 

 

Sunny RainyOvercast

A1

C?C?

Node2  Node3  Node4

Root 
Node

C?

 

Figure 4.5: Attribute Outlook      is chosen for the root node. 

 

 

Calculations of node 2 

After choosing ‘outlook’ for node 1 according to the entropy and information gain 

calculations given by Equations 4.34 and 4.35, the following calculations are for 

node 2 to choose the next attribute from the remaining attributes following similar 

procedure.  

Three main relations will be considered in this stage. 

1. Outlook-->Temperature 

2. Outlook-->‘humidity’ 

3. Outlook-->Wind 
 

For node 2 where value ‘sunny’ presented, the number of vectors is 7 as given by 

Equation 4.27. In the following, the calculations for node 2 to choose the next 

attribute. 
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Total entropy for node 2 

For first child node 2 for root node with attribute value ‘sunny’, the total node 

entropy can be calculated using the following parameters by referring to Equations 

4.25, 4.26 and 4.27. 

  
  

      
    

 
  

      
    

 
  

   
  
 
    

From Equation 2.2, the entropy, for all vectors within attribute value ‘sunny’ can be 

found from  

  
    

  
  

 

 
  

     

  
  

 

 
  

    
  
  

 

 
  

     

  
  

 

 
  

     
 

 
    

 

 
   

 

 
    

 

 
  (4.36) 

                   

 

 

Attribute entropy for node 2 

 

1. The entropy for attribute ‘temperature’ when ‘outlook’ is ‘sunny’ (     ) can be found 

as follows. 

For attribute value ‘hot’ 

    
                          

 

     

 

     

              (4.37) 
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For attribute value ‘mild’ 
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For attribute value ‘cool’ 
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By using Equation 2.4,, the entropy for attribute ‘temperature’ can be found from 

       
 
  
 
 

  
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
   

  
 
  
 
 

 
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
      

 
 
  
 
 

 
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
               

(4.46) 

 

By using Equation 2.5, the information gain for attribute ‘temperature’ is given by 

          
          (4.47) 

                                                                 )  
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2. Entropy for attribute ‘humidity’ when ‘outlook’ is ‘sunny’ (     ) 

For attribute value ‘high’ 

    
                         

 

     

 

     

               

  

    
                         

 

     

 

     

               

  

 
  
 
       

      
      

 

For attribute value ‘normal’ 

    
                         

 

     

 

     

               

  

    
                          

 

     

 

     

               

  

 
  
 
       

      
      

 

By using Equation 2.4, the entropy for attribute ‘humidity’ can be found from  

       
 
  
 
 

  
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
   

  
 
  
 
 

 
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
                  

 

 

By using Equation 2.5, the information gain for attribute ‘humidity’ is given by 
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3. Entropy for attribute ‘wind’ when ‘outlook’ is ‘sunny’ (     ) 

For attribute value ‘weak’ 

    
                          

 

     

 

     

               

  

    
                          

 

     

 

     

               

  

 
  
 
       

      
      

For attribute value ‘strong’ 

    
                         

 

     

 

     

               

  

    
                         

 

     

 

     

               

  

 
  
 
       

      
      

 

By using Equation 2.4, the entropy for attribute ‘wind’ can be found from 

       
 
  
 
 

  
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
   

  
 
  
 
 

 
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
                 

 

 

By using Equation 2.5, the information gain for attribute ‘wind’ is given by 

          
           

                                                                       

 

The DT progress is shown in Figure 4.6, where attribute ‘temperature’ is chosen as 

it has the largest information gain value as given by Equation 4.47. 
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Figure 4.6: Attribute Temperature      is selected for node 2. 

 

Calculations of node 3 

The next node is node 3 where attribute value ‘overcast’ presented, the number of 

vectors is 4 as given by Equation 4.30. The calculations for the entropy and the 

information gain will be repeated on this node as follows.  

 

 

Total entropy for node 3 

For second child node 3 for root node with value ‘overcast’, the total node entropy 

can be calculated using the following parameters by referring to Equations 4.28, 

4.29 and 4.30. 

  
  

      
    

 
  

      
    

 
  

   
  
 
    

 

From Equation 2.2, the entropy for all vectors within value ‘overcast’ is given by 

  
    

  
  

 

 
  

     

  
  

 

 
  

    
  
  

 

 
  

     

  
  

 

 
  

     
 

 
    

 

 
   

 

 
    

 

 
    (4.48) 
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According to the entropy calculation node 3 is a leaf node as all the vectors belongs 

only to one class. The DT progress beyond this point is shown in Figure 4.7. 
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Figure 4.7: Node 3 is a leaf node. 

 

Calculations of node 4 

For node 4 where value ‘rainy’ presented, the number of vectors is 5 as given by 

Equation 4.33. In the following, the calculations for node 4 to choose the next 

attribute. 

 

Total entropy for node 4 

For third child node 4 for root node with attribute value ‘rainy’, the total node 

entropy can be calculated using the following parameters by referring to Equations 

4.31, 4.32 and 4.33. 
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From Equation 2.2, the entropy for all vectors within value ‘rainy’ can be found 

from 

  
    

  
  

 

 
  

     

  
  

 

 
  

    
  
  

 

 
  

     

  
  

 

 
  

     
 

 
    

 

 
   

 

 
    

 

 
   

                   

 

 

Attribute entropy for node 4 

 

1. Entropy for attribute ‘temperature’ when ‘outlook’ is ‘rainy’ (     ) 

For attribute value ‘hot’ 

    
                         

 

     

 

     

               

  

    
                         

 

     

 

     

               

  

 
  
 
       

      
      

 

For attribute value ‘mild’ 
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For attribute value ‘cool’ 

    
                          

 

     

 

     

               

  

    
                          

 

     

 

     

               

  

 
  
 
       

      
      

 

By using Equation 2.4, the entropy for attribute ‘temperature’ can be found from 

       
 
  
 
 

  
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
   

  
 
  
 
 

 
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
      

 
 
  
 
 

 
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
              

(4.49) 

 

By using Equation 2.5, the information gain for attribute ‘temperature’ is given by 

          
          (4.50) 

                                                 

                                                        

 

 

2. Entropy for ‘humidity’ when ‘outlook’ is ‘rainy’ (     ) 

For attribute value ‘high’ 
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For attribute value ‘normal’ 

    
                         

 

     

 

     

               

  

    
                         

 

     

 

     

               

  

 
  
 
       

      
      

 

By using Equation 2.4, the entropy for attribute ‘humidity’ can be found from  

       
 
  
 
 

  
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
   

  
 
  
 
 

 
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
                 

 

 

By using Equation 2.5, the information gain for attribute ‘humidity’ is  

          
           

                                                   

                                                               

 

 

3. Entropy for attribute ‘wind’ when ‘outlook’ is ‘rainy’ (     ) 

For attribute value ‘weak’ 
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     (4.53) 
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For attribute value ‘strong’ 
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By using Equation 2.4, the entropy for attribute ‘wind’ can be found from  

       
 
  
 
 

  
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
   

  
 
  
 
 

 
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
            

 

 

By using Equation 2.5, the information gain for attribute ‘wind’ is given by  

          
           

                                            

                                                 

 

 

The DT progress is shown in Figure 4.8, shows that attribute ‘wind’ is chosen as it 

has the largest information gain value. There are three values for ‘temperature’, 

namely hot, mild and cool. Therefore node 2 has three children as follows. 

Hot  --> node 5 

Mild --> node 6 

Cool --> node 7 
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Figure 4.8:  Attribute Wind      is selected for node 4. 

 

Calculations of node 5 

The next node 5 where its parent node 2 chooses attribute ‘temperature’ as given 

by Equation 4.47. The following calculations are for node 5 to choose the next 

attribute from the remaining two attributes. 

Two main relations to be considered at this stage are 

1. Outlook-->Temperature-->‘humidity’ 

2. Outlook--> Temperature-->Wind 

 

For node 5 where value ‘hot’ is presented, the number of vectors is 2 as given by 

Equation 4.39. In the following, the calculations for node 5 to choose the next 

attribute. 

 

Total entropy for node 5 

For first child node 5 to parent node 2 with attribute value ‘hot’, the total node 

entropy can be calculated using the following parameters that are given by 

Equations 4.37, 4.38 and 4.39. 
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From Equation 2.2 the total entropy can be found from  

  
    

  
  

 

 
  

     

  
  

 

 
  

    
  
  

 

 
  

     

  
  

 

 
  

      

 

According to the entropy calculation, node 5 is a leaf node as all the vectors belongs 

to class 0. The DT progress beyond this point has been updated as shown in Figure 

4.9. 
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Figure 4.9: Node 5 is a leaf node. 

 

Calculations of node 6 

For node 6 where value ‘mild’ is presented, the number of vectors is 4 as given by 

Equation 4.42. In the following, the calculations of node 6 to choose the next 

attribute. 

 

Total entropy for node 6 

For second child node 6 to parent node 2 with value ‘mild’, the total entropy can be 

calculated using the following parameters that are given by Equations 4.40, 4.41 

and 4.42. 
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From Equation 2.2, the total entropy can be found from  

  
    

  
  

 

 
  

     

  
  

 

 
  

    
  
  

 

 
  

     

  
  

 

 
  

             

 

Attribute entropy for node 6 

1. Entropy for attribute ‘humidity’ when (                 ) 

For attribute value ‘high’ 
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                  (4.58) 

  

 
  
 
       

      
    (4.59) 

For attribute value ‘normal’ 
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By using Equation 2.4, the entropy for attribute ‘humidity’ can be found from 
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By using Equation 2.5, the information gain for attribute ‘humidity’ is given by 

          
          

                                                 

                                                      

(4.63) 

 

2. Entropy for attribute ‘wind’ 

For attribute value ‘weak’ 

    
                        

 

     

                  
 

  

    
                        

 

     

                  
 

  

 
  
 
       

      
     

For attribute value ‘strong’ 

    
                        

 

     

                  
 

  

    
                        

 

     

                  
 

  

 
  
 
       

      
     

 

By using Equation 2.4, the entropy for ‘wind’ can be found from 
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By using Equation 2.5, the information gain for ‘wind’ is given by 

          
          

                                                  

                                                           

(4.64) 

 

As both attributes ‘humidity’ and ‘wind’ have similar information gain as given by 

Equations 4.62 and 4.63, an arbitrary decision [73] made to choose the attribute 

‘humidity’. The DT has been updated as shown in Figure 4.10, where attribute 

‘humidity’ is chosen for node 6. 
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Figure 4.10: Attribute ‘humidity’      is selected for node 6. 

 

Calculations of node 7 

For node 7 where the value is ‘cool’, the number of vectors is 1 as given by Equation 

4.45. In the following, the calculations for node 7 to choose the next attribute. 

 

Total entropy for node 7 

For the third child node 7 to the parent node 2 with attribute value ‘cool’, the total 

node entropy can be calculated using the following parameters that are given by 

Equations 4.43, 4.44 and 4.45. 
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From Equation 2.2, the total entropy can be found from  

  
    

  
  

 

 
  

     

  
  

 

 
  

    
  
  

 

 
  

     

  
  

 

 
  

      

 

The entropy calculation shows that node 7 is a leaf node as one vector of class 1 is 

left. The DT beyond this point is shown in Figure 4.11, where the DT is updated 

with node 7 as a leaf node.  

 

Sunny RainyOvercast

StrongWeak

Normal

Cool

A1

A2
C1 A4

C?C?

Node2  Node3 
Leaf node

 Node4

Root 
Node

C1

Hot

A3

Mild

C1

High

C?

 Node8  Node9 Node7 
Leaf node

 Node5 
Leaf node

 Node10
C?

 Node11 

 Node6

 

Figure 4.11: Node 7 is a leaf node. 

 

There are two values for ‘wind’, namely weak and strong. Therefore there are two 

children for node 4 as follows. 

Weak   --> node 8 

Strong --> node 9 
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Two main relations to be considered at this stage 

1. Outlook-->Wind-->Humidity 

2. Outlook-->Wind--> Temperature 

 

Calculations of node 8 

The next node is 8 where its parent node 4 has chosen attribute ‘wind’ as given by 

Equation 4.50. The following calculations are for node 8 to choose the next 

attribute from the remaining two attributes. 

For node 8 where the value is ‘weak’, the number of vectors is 3 as given by 

Equation 4.53. In the following, the calculations to choose the next attribute.. 

 

Total entropy for node 8 

For first child node 8 to parent node 4 with attribute value ‘weak’, the total node 

entropy can be calculated using the following parameters that are given by 

Equations 4.51, 4.52 and 4.53. 

 
  

      
    

 
  

      
    

 
  

   
  
 
    

 

From Equation 2.2, the total entropy can be found from 

  
    

  
  

 

 
  

     

  
  

 

 
  

    
  
  

 

 
  

     

  
  

 

 
  

      

 

The entropy calculation shows that node 8 is a leaf node as all the vectors of class 1. 

The DT has been updated as shown in Figure 4.12. 
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Figure 4.12: Node 8 is a leaf node. 

 

Calculations of node 9 

For second child node 9 to parent node 4 with attribute value ‘strong’, the total 

node entropy can be calculated using the following parameters that are given by 

Equations 4.54, 4.55 and 4.56. 

 
  

      
    

 
  

      
    

 
  

   
  
 
    

From Equation 2.2 the total entropy is given by 

  
    

  
  

 

 
  

     

  
  

 

 
  

    
  
  

 

 
  

     

  
  

 

 
  

      

 

The DT has been updated as shown in Figure 4.13, where the entropy calculation 

shows that node 9 is a leaf node as all vectors are of class 1. 



Chapter 4  Multi-Dimensional Frequency Table Decision Tree 

 

70 

 

Sunny RainyOvercast

StrongWeak

Normal

Cool

A1

A2
C1 A4

C0C1

Node2  Node3 
Leaf node

 Node4

Root 
Node

C1

Hot

A3

Mild

C1

High

C?

 Node8 
Leaf node

 Node9 
Leaf node

 Node7 
Leaf node

 Node5 
Leaf node

 Node10
C?

 Node11 

 Node6

 

Figure 4.13: Node 9 is a leaf node. 

 

Node 10 

Next node is node 10 where its parent node 6 has chosen attribute ‘humidity’ as 

given by Equation 4.63. The relation considered at this stage is 

Outlook-->Temperature-->Humidity-->Wind 
 

For node 10 where the value is high, the number of vectors is 3 as given by 

Equation 4.59. The only attribute left is ‘wind’ and will be chosen for node10. The 

DT beyond this point has been updated as shown in Figure 4.14. 
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Figure 4.14: Attribute Wind      is selected for node 10. 
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Node 11 

For node 11 where the value is normal, there is one vector as given by Equation 

4.62. This node is a leaf node as the remaining vector is for class 1 and therefore no 

further calculations needed. The DT has been updated as shown in Figure 4.15. 
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Node2  Node3 
Leaf node

 Node4

Root 
Node

C1

Hot

A3

Mild

C1

A4
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C?

 Node8 
Leaf node

 Node9 
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C1

 Node11 
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 Node6

 Node12

 

Figure 4.15: Node 11 is a leaf node. 

 

Node 12 

For node 12, it is considered as leaf node. The value ‘weak’ on this node has three 

vectors distributed as follows. 

 

    
     

    
     

The structure of the node as shown in Figure 4.2, keeps statistics of the number of 

vectors for each class. Referring to the values of class don’t play (0) as in     
   and 

play (1) as in     
   the probability of class play is twice the occurrence of class don’t 

play. In this case the decision is choosing the class with higher probability of 

occurrence. The complete decision tree is shown in Figure 4.16, where node 12 is 

updated as a leaf node. 
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Figure 4.16: The completed DT, where Node 12 is a leaf node. 

 

The classification Rules generated by the MDFT method are summarised as shown 

in Table4.5. 

Table 4.5: Classification (IF-THEN) rules model obtained by the MDFT method for the completed DT 

shown in Figure 4.16. 

1 Outlook “Sunny” AND Temperature “Hot”  
    
    Class “Play” 

2 Outlook “Sunny” AND Temperature “Mild” AND Humidity “High” AND Wind “Weak” 
    
    Class “Play” 

3 Outlook “Sunny” AND Temperature “Mild” AND Humidity ”Normal” 
    
    Class “Play” 

4 Outlook “Sunny” AND Temperature “Cool” 
    
    Class “Play” 

5 Outlook “Overcast” 
    
    Class “Play” 

6 Outlook “Rainy” AND Wind “Weak” 
    
    Class “Play” 

7 Outlook “Rainy” AND Wind “Strong” 
    
    Class “Don’t play” 
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4.9 EVALUATION OF THE MDFT METHOD 

The purpose of this section is to evaluate the effect on the calculation time and 

memory requirements when using MDFT to classify a range of applications with a 

range of different numbers of attributes and attribute values. In the MDFT method, 

each attribute and the classes of any problem are represented as a dimension of the 

FT. In the code design of the MDFT method, entropy calculations call the search 

function FindAttributeInstances for the purpose of accessing the FT’s values. The 

implementation details of the function can be found in Appendix B, but 

FindAttributeInstances includes a number of nested for loops, with the number of 

loops being directly proportional to the number of dimensions, and the number of 

iterations of each loop depending on the number of attribute values of each 

dimension. Consequently, the complexity of the search function increases with the 

number of dimensions.  

The aim of the experiments is to demonstrate the effect of different numbers of 

attributes and attribute values on the execution time and memory requirements 

when using the MDFT method. The number of dimensions of the MDFT frequency 

table is equal to the sum of the number of attributes and the class, while the 

number of values represented in each dimension of the frequency table is the 

number of attribute values. MDFT was tested with 16 different problems that can 

be divided into two groups (A and B), where each group consists of eight different 

problems that share the same number of dimensions, but with different numbers of 

values of attributes and class. 

The experiments were conducted under the Ubuntu 12.04 operating system [74] 

running as a Virtual Box machine [75] with 2.4GB of dedicated memory on 2.83GHz 

Intel Core 2 quad processor. The code for all the approaches was written in C and 

gcc version 4.6.3 [76] used to generate the executables. To generate the results 

shown in Figures 4.5 and 4.6, the vector values for experimental datasets were 

generated using randi function available in Matlab [77]. The examples of group A 

have a four dimensional frequency table which includes three attributes and a 

class. The number of attribute values for each dimension of the eight examples of 

group A are 4, 6, 8, 10, 12, 14, 16, and 18. Group B consists of a further eight 

examples that generate an eight dimensional frequency table, which includes seven 
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attributes and a class. The number of values for each dimension of the eight 

examples are 2, 3, 4, 5, 6, 7, 8, and 9. Because of the way in which each group has 

been designed, the total number of attribute values and classes for both groups is 

16, 24, 32, 40, 48, 56, 64, and 72. 

 

Figure 4.17: Decision tree calculation time of the example four dimensional MDFTs, each bar showing 

the total number of attribute values in each example. 

 

Figure 4.18: Decision tree calculation time of the example eight dimensional MDFTs, each bar showing 

the total number of attribute values in each example. 
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The results shown in Figures 4.17 and 4.18 demonstrate that the DT calculation 

time increases as the number of attribute values is increased for a given number of 

dimensions. The eight dimensional MDFT required more time to compute a 

decision tree than did the four dimensional MDFT for a given number of attribute 

values. It can also be noticed that the number of elements in the eight dimensional 

group increase substantially with attribute values when compared with the four 

dimensional group. 

 

To explain the effect of the number of dimensions on the calculation time, Equation 

4.65 shows the number of additions needed at the root node for the computations 

made by the search function FindAttributeInstances. 

   
    

 

 
 
                        

  

   

 

 

 
 
  (4.65) 

 

On examination of Equation 4.65, it can be seen that the number of additions for 

the root node doubles when number of attributes increases by 1, assuming that the 

number of elements in the MDFT remains unchanged. 

 

Equation 4.66 can be used to obtain the worst case for the number of additions at 

level   of the DT, if the attributes are organized in the tree so that the one with the 

largest number of values is at the root and the one with the fewest is at the lowest 

level.  

              

   

    

   
          

       
   
    

          

    

   

   (4.66) 
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Figures 4.19 and 4.20 show that, for the four and eight dimensional examples, the 

number of additions required increases with the number of attributes. The demand 

on the need for the addition operation in the FindAttributeInstances function is 

significally greater for the eight dimensional MDFT compared with the four 

dimensional examples. 

 

Figure 4.19: Number of additions needed at the root node of the example four dimensional MDFT 

 

 

Figure 4.20: Number of additions needed at the root node of the example eight dimensional MDFT 
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Figure 4.21: Memory requirements of the MDFT for the four and eight dimensional examples 

 

The results shown in Figure 4.21 show that the memory consumed increases when 

moving from the four dimensions to the eight dimensions even when the total 

number of attribute values remain the same. This is due to the increase in the 

number of elements of the MDFT. Therefore having a fixed number of dimensions 

of the FT for different examples can reduce the memory requirements needed to 

generate the DT as this can be crucial to embedded systems where the memory is 

limited. 

 

4.10   SUMMARY  

This chapter has introduced a new incremental learning method termed MDFT. The 

multi-dimensional array acts as a frequency table that stores the incoming data 

vectors for further stages to build decision tree. MDFT successfully builds a 

complete DT as illustrated by the weather example, in contrast to previous 

methods using a frequency table which managed to build only two levels of the 
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In this chapter, the worst case calculation scenario for the decision tree was 

presented where the complexity of the algorithm increases with the number of 

attributes. 

The node structure used in the MDFT method ensures a fixed memory usage. The 

advantage of such structure is that it has a fixed node memory requirement where 

the maximum memory usage can be known a priori, making the approach suitable 

for embedded systems. The MDFT method is designed to target embedded systems 

where the efficient use of memory and effective performance are required. The 

memory usage for the MDFT method can be calculated and known in advance.  

The MDFT approach has a limitation in that it does not scale well with the number 

of attributes and attribute values, and a substantial memory resource demand is 

incurred by the frequency table as the numbers of these values increases. MDFT 

can be applied in embedded systems as long as the memory requirements of the 

given application are considered a priori and matched to that available in the 

system. To overcome the memory requirement drawback of MDFT, the HFTDT 

approach is introduced in the next chapter and this proposes the use of a fixed 

number of dimensions instead of a multi-dimensional frequency table to store the 

data required to generate the DT.  
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5 HASHED FREQUENCY TABLE DECISION TREE 

This chapter introduces and describes the details of the implementation of the 

Hashed Frequency Table Decision Tree (HFTDT) algorithm. The new method 

produces the same quality of decision tree as produced by its predecessor MDFT. 

The HFTDT and MDFT methods can be implemented as real-time learning methods, 

as the maximum number of calculations needed to produce a decision tree can be 

defined. The operation of HFTDT is demonstrated by means of an example that 

shows the operations that need to be conducted at each node of the decision tree. 

 

5.1 INTRODUCTION 

The HFTDT method is a development of MDFT. The MDFT results discussed 

previously in Section 4.9, showed that the memory required when targeting larger 

problems is unlikely to be available on most workstations or embedded systems. 

The HFTDT approach is able to reduce the memory required in the implementation 

of the frequency table by using a form of hash table. In this approach, only the 

active (non-zero) elements of the frequency table need to be allocated memory in 

the hash table. Also, the new technique reduces the number of dimensions of the 

frequency table array into a two-dimensional array that represents the hash table, 

which also reduces the memory required to hold the frequency table when 

compared with the MDFT approach. 

The HFTDT method converts the frequency table into a hash table while keeping a 

record of every vector of the input data. The method includes two main functions: 

the index function which generates unique keys for the input vectors to be stored 

in the hash table; and a reverse index function that reads the stored keys and 

retrieves the original input vectors.   
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5.2 THE HASHED FREQUENCY TABLE  

The hashed frequency table (HFT) structure shown in Figure 5.1, consists of an 

identifier (id) that holds a key value generated by the index function, and a counter 

that holds the number of occurrences of the key generated from the input vectors. 

The counter value for a key is set to one on creation and its value is incremented 

each time the vector is repeated in the input data.  

 

/* Hashed Frequency Table entry structure */ 

struct my_struct {   

    u64 id; /* 64-bit key */ 

    u16 counter;  /*16-bit holding the number of iterations of id*/ 

};  

Figure 5.1: HFT structure 

The basic HFT structure reserves eight bytes for the key (id) and two bytes for the 

counter, although the number of bits used for the key and counter can be changed 

according to the requirements of the problem. 

The number of bits required for storing the id can be determined as follows. 

 Calculate the maximum possible number of keys P that can be generated for 

the targeted problem by finding the product of the number of values for all 

the attributes and classes (see Equation 5.1). 

            

  

   

     (5.1) 

 

 The number of bits required for id can be found by determining the number 

of bits needed to represent P. In the C language, typical examples are 8, 16, 

32 and 64 bits, although other integral powers of two are possible if type 

libraries are used. In a hardware implementation, a wider range of possible 

values can be realised. 
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5.3 TECHNIQUES FOR THE INDEX AND REVERSE INDEX FUNCTIONS  

 

This section demonstrates two techniques used for the implementation of each of 

the index and reverse index functions.  The first technique is discussed in Sections 

5.3.1 and 5.3.2, where the index and reverse index functions are realised using 

mathematical operations such as multiplication, division and modulo. The second 

technique as discussed in Section 5.3.4 and 5.3.5 uses only bitwise operators in the 

indexing functions such as AND, OR and shift. The advantage of using the second 

technique is to provide operations that are better suited to hardware 

implementation.  

 

5.3.1 INDEX FUNCTION 

 

The index function is used to generate a unique key for a given input vector. The 

generated key is then stored in the hash table. The method used for indexing 

depends on the number of attribute values and classes. Equation 5.2 shows a data 

vector for n attributes. 

    =                        (5.2) 
 

           is                                     and  C  is the class value in the input vector. 

 

The method multiplies each attribute value of the input vector with an incremental 

product of the number of attribute values and classes. Then it sums the results with 

class value to give a unique key.  

Equation 5.3 is used to calculate the key 

            

    

   

               

    

   

            (5.3) 

 

where     is the number of classes,     is the number of attributes and              

is the number of attribute values for attribute          
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5.3.2 REVERSE INDEX FUNCTION 

In order to access the required keys in the hash table for the process of building the 

DT, a ‘reverse index function’ is required. The purpose of the reverse index function 

is to retrieve a copy of the original input vector that contains the correct attribute 

and class values. 

Equations 5.4 and 5.5 operate in a recursive manner to determine the original 

input vector. The ‘mod’ operation used in Equation 5.4 returns the remainder of its 

argument and     is the value of its argument rounded down to the nearest integer. 

To explain the process, consider when      (the initial value of i). From Equation 

5.4 the value    is the input key for the first attribute and the resulting value     is 

its attribute value. From Equation 5.5, the value    is calculated to be used in 

Equation 5.4 to determine    . The process is repeated until        and the 

vector is retrieved.  

      
  

            
    

 

  

  

 
 

             

(5.4) 

                        

    

   

      (5.5) 

 

Above, the     are the input key values,         
 are the attribute values,     is the 

number of attributes,    is the number of classes and           is the number of 

attribute values for attribute     . 
 

 Equation 5.6 represents the expected output vector of the reverse index function  

 

    =                           , (5.6) 
 

         is the class value in the output vector. 
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5.3.3 AN ILLUSTRATIVE EXAMPLE  

To facilitate the understanding of the first hash table technique, a small illustrative 

example is now presented. The example inputs a vector to the index function to 

generate a key, and then the key is provided to the reverse index function to 

generate an output vector. The verification of correctness is that the input and 

output vectors are identical. 

Consider the following example where the dataset consists of three attributes with 

four values each and three classes. Assume an input vector              .  

 

1. The first step uses the index function to generate a key for the input vector 

and this can be done using Equation 5.3 as follows:  

                                         (5.7) 

 

2. The converse operation is performed by the reverse index function to 

generate an output vector for the key obtained. The output vector can be 

calculated using Equations 5.4 and 5.5 as follows: 

 

      
   

      
    

   

   
                                         (5.8) 

                                           

                      
 

    
    

 

   
            (5.9) 

                                   

                     
 

  
       (5.10) 

                              (5.11) 

 

Consequently, the output vector is              , in agreement with the input 

vector. Further verification tests were carried out using a large number of input 

vectors generated by a number of the test examples used in this work. 
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5.3.4 ALTERNATIVE INDEX FUNCTION TECHNIQUE 

The alternative technique adopts bitwise operators to implement the same 

functionality as described in the previous section. The index function simply 

applies an OR and right shift operation to the input vector to generate a unique key. 

The left shift operation is analogous to the multiplication used in the index function 

described in Section 5.3.1. A left shift by 1 position is analogous to multiplying by 2. 

However, the operation available for performing such products is limited to 

multiplications by integral powers of 2. 

To demonstrate how index function works few preparation steps needed to 

consider at the beginning, which are:  

a) Create a vector that holds the number of values of each attribute and class. 

b) Create a second vector num_att_values of length       that holds the 

smallest integral power of 2 that is no less than the corresponding vector 

created in step a). 

c) Generate a vector acc_num_att_values with        entries that holds the 

cumulative values of num_att_values, then take the logarithm to the base 2 of 

each element. 

The key is then generated as follows. 

a) Set the key to first element of the input vector.  

b) The next element of the input vector is left shifted by the number of bits 

defined in corresponding element acc_num_att_values and then ORed with 

the current value. 

c) The process is repeated (return to b)) until all the elements of the input 

vector have been accessed. The recursive calculation of the key is given by  

                      , 
(5.12) 

                             acc_num_att_values[i-1] ,            . 
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5.3.5 ALTERNATIVE REVERSE INDEX FUNCTION TECHNIQUE 

The alternative reverse index function is modification of the technique given in 

Section 5.3.4. The reverse index function uses the vectors generated in steps b) and 

c) of Section 5.3.4 to generate the output vector.  

The ‘modulo’ and the ‘division’ operations used in the reverse index function in 

Section 5.2.2 are substituted as follows. 

           is analogous to            where & is the bitwise AND operation  (5.13) 
  

            is analogous to          where   is shift right operation.  (5.14) 

The above equations assume y is an integral of power 2. 

The following are the steps taken in the reverse index function to produce an 

output vector based on the key by utilizing Equations 5.13 and 5.14. 

a) As shown in Equation 5.15, the first entry of the output vector is the bitwise 

ANDing of the key and the first entry of the vector num_att_values (Section 

5.3.4). 

                                                 (5.15) 

 

b) To produce the remainder of the output vector, Equation 5.14 is applied, 

involving right shift and bitwise AND operations. The process is repeated 

until the final element of the output vector is produced 

                                                                         i=1,2,∙∙∙,Na . (5.16) 
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5.4 HFTDT METHOD CALCULATIONS 

To consider the implementation of the HFTDT method for a real-time system, this 

section determines the maximum number of calculations required to generate a 

decision tree under the worst case scenario and obtains the required memory 

capacity. 

 

5.4.1 MAXIMUM NUMBER OF CALCULATIONS (WORST CASE SCENARIO) 

The HFTDT method shares the same number of calculations required to generate a 

decision tree, including for the worst case scenario, as the MDFT method (Section 

4.5).  

 

5.4.2 CALCULATING MEMORY USAGE 

The HFTDT method is suitable for real-time applications, as memory usage can be 

determined in a priori. The memory used to build the decision tree can be 

determined as follows. 

The hashed frequency table (HFT) structure was shown in Figure 5.1 and the 

number of bytes it occupies is given by  

                         (5.17) 
 

                                               each consisting of a 64-bit id (8 bytes) and a 

two byte counter. 

The HFTDT method shares the node structure with MDFT, shown in Figure 4.2. The 

structure maintains a fixed memory usage for the nodes of the decision tree, and 

therefore the maximum memory usage can be calculated and be known a priori.  

As can be found in Figure 4.2, the memory occupied by each node can be calculated 

as follows 

                          . (5.18) 
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Combining Equations 5.17 and 5.18, the total memory usage of the HFTDT decision 

tree in bytes is given by 

                                                      (5.19) 
 

 where         is the number of nodes in the decision tree where a maximum 

number of nodes can be set   

5.5 GENERATING THE DT USING HFTDT 

HFTDT is a development of its predecessor MDFT, but modified such that the 

storage technique for the input data vectors uses a hashed frequency table. Both 

the HFTDT and the MDFT methods depend on the entropy and information gain 

calculations to build a decision tree (refer to Section 4.4). The HFTDT algorithm is 

designed to allow the data stored in the hash table to be extracted one at a time 

through the rev_index_func function to provide the necessary information needed 

for entropy calculations at an individual node. This procedure is repeated for every 

node in the DT where the process cycles through the stored data as long as an open 

node exists, where open node is any node that needs to be investigated. 

 

The algorithm HFTDT is shown in Figure 5.2, where the input is the stored data in 

the hashed frequency table and the output is a decision tree that summarises all the 

attributes’ correlations. Referring to the algorithm in Figure 5.3, several steps need 

to be conducted to achieve the storage of the element in the HFT.  

 

A set of rules is generated after completing the DT. The generated rules instantiate 

the knowledge obtained from DT, which is then stored to be used later in the 

classification of test data. 
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Input: Hashed Frequency Table (HFT); set of attributes; training vector and 

unclassified vector 

Outputs: A Decision Tree, generated rules and classified vector 

Start 

1. Update the Hashed Frequency Table (HFT) following the arrival of each new training 

vector 

2. IF 

 all the stored entries in the  HFT are of the same class 

THEN 

 produce a DT with a single node (Leaf Node) labeled with that class, go to step 7 

ELSE 

 create a node in the DT 

3. Select an attribute among the set of attributes with the highest IG value and label the 

node with selected attribute 

4. Add a branch for each known value of the selected attribute for that node. 

5. Create a node for each branch 

6. IF 

 all the HFTDT entries for this node are of the same class  

THEN  

 label the node as a leaf node of that class  

ELSE  

compute the entropy value and the IG for all attributes, select the attribute of the 

largest IG and use this attribute for the current node, go to step 4 

7. Generate rules from the DT 

8. Store the DT and the rules and use as required in the classification of new vectors 

9. IF  

more training is required  

THEN 

go to step 1 

End 

Figure 5.2: Description of the HFTDT algorithm 
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5.6 AN ILLUSTRATIVE EXAMPLE FOR HFTDT METHOD 

This section shows a fully worked example that demonstrates how to generate a 

decision tree using the HFTDT method. The weather problem [11] introduced in 

Table 4.1 is used. 

Table 5.1 shows a map of all the keys that can be generated for the weather 

problem. The keys can be obtained using the index function given in Section 5.3.1   

Table 5.1: A map of the keys of the weather problem  
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Table 5.2 shows the data as it is stored in hash table. Note that the hash table is a 

compact version of the MDFT as it holds only its non-zero elements. The HFT is 

effectively a two dimensional table as it contains elements that themselves consist 

of two elements. 
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Table 5.2: Hashed frequency table of the weather problem   

id Counter 

0 1 

2 1 

25 1 

57 1 

9 2 

69 1 

70 1 

35 1 

8 1 

21 1 

61 1 

15 1 

29 1 

47 1 

58 1 

 

 

A function f is defined to provide the number of input vectors as recorded in each of 

the HFTDT elements as shown below.  

 number of vectors  =        (5.20) 
 

where  id  represents a key in the hash table . 

 

The weather problem given in Table 5.2 consists of four attributes         and 

two classes    
 
   . The HFTDT method uses an HFT that holds the keys and the 

corresponding values of each input vector.  

After the HFT has been populated, the decision tree can be generated. The splitting 

criterion used in generating the decision tree is information gain. 

  



Chapter 5  Hashed Frequency Table Decision Tree 

 

91 

 

The following shows the calculation of the total entropy which is required at for the 

root node, see Equation 2.2. 

 
  

                                                     (5.21) 
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The total entropy at the root node is thus  
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The values obtained are the same as those using MDFT (Section 4.8). The complete 

implementation of the example using HFT can be found in Appendix A. The decision 

tree generated is shown in Figure 4.16 and the classification rules are shown in 

Table A.1. 
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5.7 COMPARISON BETWEEN HFTDT AND MDFT 

This section demonstrates a comparison between the HFTDT and MDFT methods. 

Table 5.3 shows the comparison in terms of the number of dimension of the 

frequency table used, memory requirements by the frequency table and the 

suitability for embedded systems applications.  

 

Table 5.3: comparison between the HFTDT and MDFT methods 

 MDFT HFTDT 

Number of dimension 

of the frequency table 

Variable 

 depends on the number of 

attributes and class) 

Fixed 

(2-Dimensional hash table) 

Memory requirements 

for the frequency table 

Fixed 

 increase substantially with 

number of dimensions 

Variable 

 much less than MDFT 

 depends on the number 

of input vectors 

Maximum number of 

calculations 

 Can be known a priori  Can be known a priori 

Embedded systems 

Suitability 

Suitable for smaller problems 

 depends on the memory 

available by the system 

Suitable for larger problems 

 depends on the memory 

available by the system 
 

 

From Table 5.3, the comparison between MDFT and HFTDT methods can be 

summarised as follows. The memory requirements of the MDFT can be known a 

priori, but can increase substantially with the number of dimensions of the FT, 

while HFTDT achieves a reduction in memory usage as it adopts a two-dimensional 

hash table to hold the active non-zero elements of the MDFT frequency table. The 

memory requirements of HFTDT depend on the number of elements stored in the 

hash table, which can increase with the presence of new vectors. The two methods 

have a deterministic time in which the number of calculations can be known in 

advance. The MDFT frequency table size must not exceed the memory available in 

the system, while in HFTDT the number of unique data vectors determines the 

number of HFT elements that are required and hence the memory requirement.   
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5.8 SUMMARY 

This chapter has described a novel decision tree algorithm termed HFTDT. The 

HFTDT uses a hashed frequency table as storage for the input vectors. 

HFTDT generates a compressed version of the MDFT table, with hashed frequency 

table that contains only non-zero elements. The HFTDT method uses a two-

dimensional array to represent the hash table, with the aim of achieving a 

substantial reduction in the memory required to hold the frequency table 

compared to MDFT approach. Consequently, HFTDT will be able to represent larger 

problems than MDFT using less memory  

HFTDT has two main functions, the index and reverse index functions. The index 

function is capable of generating unique keys for the input vectors to be then saved 

in the hash table, where the reverse index function can read the hash table keys and 

generate the vectors. Two techniques for indexing and reverse indexing are 

discussed in this chapter. The first technique depends on arithmetic 

multiplications, divisions and modulo operations. While the second technique 

depends on bitwise operators such as AND, OR and left or right shift. Both 

techniques perform similar functionality; the second technique was originally 

intended mainly for hardware implementation, which will be discussed later in 

Chapter 7, but the approach was also found to reduce the calculation time for the 

software implementations described in the next chapter.  
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6 EXPERIMENTS TO GENERATE DECISION TREES USING HFTDT  

This chapter presents the experimental validation of HFTDT as a machine learning 

method to assess its suitability usage in implementation on embedded system 

platforms where the memory and computation time are the main resource 

constraints. The aspects tested in the experiments are classification accuracy, 

computation time, scalability, robustness and memory usage. The experiments 

compare HFTDT with three widely used machine learning methods, namely kNN, 

C4.5 and ITI.  

6.1 INTRODUCTION 

The main criteria [78] that are widely followed in evaluating and comparing 

classification methods in machine learning can be summarized as follows. 

 Accuracy of the classifier. This refers to how well the classifier can predict 

the class label of input data vectors. Testing should be carried out using 

previously unseen datasets so as to assess the general classification 

performance of the learning system. Testing using the training data can only 

assess the specific classification performance for that dataset.  

 

 Computational time. This refers to the time taken by the classifier to build 

and generate the DT in order to measure the computational cost of 

executing the algorithmic calculations. 

 

 Scalability, is the ability of the classification algorithm to continue to act 

efficiently as the application becomes more complex. The execution time 

must remain acceptable as the computational cost increases.  

 

 Robustness. This refers to the ability of the classification algorithm to 

continue to perform satisfactorily even when the data supplied is noisy or 
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contains missing values. One of the datasets selected for investigation in the 

current work contains missing values. 

 

 Interpretability refers to the level of understanding and insight that is 

provided by the classification algorithm. This measure can be subjective and 

difficult to assess. It is not relevant in the comparison of methods that all 

generate output of same type and so these criteria were not used in the 

current study. 

 

 Memory usage of the classification algorithm during execution. Memory 

usage increases with the number of vectors used for training and the 

complexity of the rule system needed to classify new test data [79]. 

Generally, such additional memory requirements come with a 

commensurate increase in computational resources [80]. 

6.2 CLASSIFIERS USED IN THE EXPERIMENT 

The HFTDT method was compared with three classification methods, namely kNN, 

where the C source code can be obtained from Ostlund [81], C4.5 where the C 

source code can be obtained from Quinlan [82] and ITI where the C source code can 

be obtained from Utgoff [83]. C4.5 and ITI are DT classifiers, where ITI supports 

incremental learning and C4.5 does not. kNN (k-nearest neighbour) is a well-

known statistical classification approach that has been intensively used in the 

literature as a benchmark to assess other machine learning methods [84]. 

6.3 TEST DATASETS  

The HFTDT method has been tested using three different datasets, namely nursery, 

agaricus-lepiota and chess (KRKPA7), all of which are available from the UCI 

machine learning repository [85]. The datasets have been collected by researchers 

for the purpose of carrying out experiments in their particular fields of interest. 

The datasets represent a range of numbers of attributes, attribute values and 

classes. A brief description of the datasets is now given.   
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Nursery 

The nursery dataset rank the applications made to nursery schools in Ljubljana, 

Slovenia during the 1980s at which time an objective explanation was required to 

justify rejected applications.  

The nursery dataset has five classes, which are not recommend, recommend, very 

recommend, priority and special priority. The eight attributes have between two 

and five categorical values to describe the evaluations carried out on applications. 

These are the parents’ occupations, child’s nursery, form of the family, number of 

children, housing conditions, financial standing of the family, social conditions and 

health conditions. The dataset consists of 12960 feature vectors of which 8640 are 

for training and 4320 for testing. 

 

Agaricus-lepiota 

The agaricus-lepiota dataset holds the recorded characteristics of mushrooms 

drawn from the Audubon Society field guide to North American mushrooms. There 

are 22 attributes and 8124 feature vectors in the dataset, 5416 for training and 100 

vectors for testing. The attributes are cap-shape, cap-surface, cap-colour, bruises?, 

odour, gill-attachment, gill-spacing, gill-size, gill-colour, stalk-shape, stalk-root, 

stalk-surface-above-ring, stalk-surface-below-ring, stalk-colour-above-ring, stalk-

colour-below-ring, veil-type, veil- colour, ring-number, ring-type, spore-print-

colour, population and habitat. The attribute values are all categorical and there are 

two classes namely edible and poisonous. The dataset contains around 30% 

missing values in the stalk-root attribute. 

 

Chess  

The chess dataset records the results of the chess end-game (a white king and rook 

versus a black king-and pawn with the latter on A7, usually abbreviated KRKPA7). 

It is the white’s turn to move. The dataset has 36 attributes and 3196 feature 

vectors in the dataset, where 2130 are used for training and 1066 are for testing. 



Chapter 6  Experiments on generating decision trees using HFTDT 

 

97 

 

Each attribute corresponds to a particular position on the board, namely A00, 

A01…A35. The attribute values are all categorical and there are two classes, white 

can win (won) and white cannot win (no-win). 

 

The characteristics of the datasets are summarized in Table 6.1. The HFT structure 

introduced in Section 5.2, has a key whose memory requirement in number of bits 

can be determined by calculating the product of the number of attribute values 

with the number of classes. 

Table 6.1: Summary of dataset characteristics  

Dataset name 
Attributes 

(  ) 

Classes 

(  ) 

Attribute 

values 

Product of number of 

attribute values and classes 

HFT key 

(bits) 

Nursery 8 5 27 6.48 x 104 16 

Agaricus- lepiota 22 2 126 3.28 x 1015 52 

Chess 36 2 73 2.06 x 1011 38 

 

6.4 TEST RESULTS 

The datasets consist of a training set and a test set. The training vectors were 

randomly assigned to a number of subsets to allow the progression of training to be 

assessed using the test set as additional training vectors are provided. Referring to 

Section 6.1, the criteria investigated were the number of nodes in the DT, 

computation time for training, memory usage and the classification accuracy for 

unseen datasets. The experiments were conducted under the Ubuntu 12.04 

operating system [74] running as a Virtual Box machine [75] with 2.4GB of 

dedicated memory on 2.83GHz Intel Core 2 quad processor. The code for all the 

approaches was written in C and gcc version 4.6.3 [76] used to generate the 

executables.  

In the next subsections, all the points on the graphs are points in which the HFTDT 

apply incremental learning. The training stops every few hundreds of training 

vectors being read and used to build a DT. The classification data is then applied to 

calculate the classification error.    



Chapter 6  Experiments on generating decision trees using HFTDT 

 

98 

 

6.4.1 NUMBER OF NODES 

 

This experiment measures the number of nodes in the DTs produced by HFTDT, 

C4.5 and ITI. No kNN results were produced as there is no concept of nodes in the 

technique. C4.5 and ITI both adopt pruning techniques in an attempt to generalise 

and produce a smaller DT, HFTDT does not implement any pruning (as explained in 

Section 2.3) which in general tends to produce a larger, less generalised tree. 

 

The results in Figures 6.1 to 6.3 for each of the three datasets show that ITI 

produced relatively smaller DTs and this is as a result of the heavy pruning the 

method adopts. Figures 6.1 and 6.3 show that HFTDT produced DTs smaller in size 

than the trees produced by C4.5, although for the agaricus-lepiota dataset in Figure 

6.2, it can be seen that HFTDT produces a relatively large DT which occurs due to 

the presence of missing values in the training set. The percentage of vectors having 

missing values in each subset of the agaricus-lepiota training set that holds more 

than 3000 records is in the range 15% to 30%. As the HFTDT algorithm does not 

employ pruning, each missing value is dealt with as an extra attribute value 

resulting in increase in the number of nodes compared with ITI. The tree continues 

to grow as more training vectors are applied, and although the DT satisfactorily 

classifies the training data, this leads to overfitting. In general and without pruning, 

the more noise there is in the dataset or the more prevalent are missing values in 

the training set, the greater will be the likelihood of developing a DT that 

incorporates nodes and branches that represent spurious vectors that do not 

reflect the underlying nature of the dataset.  
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Figure 6.1: Number of nodes for the nursery dataset 

 

 

Figure 6.2: Number of nodes for the agaricus-lepiota dataset 
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Figure 6.3: Number of nodes for the chess dataset 
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causing an increase in execution time compared to other DT methods, since the 

HFT accesses need to be repeated for each node. Further, such feeding of HFT data 

to the individual entropy and information gain calculations must also be performed 

sequentially in software, whereas the intention in the design of the HFT is of a 

hardware realisation that allows parallel transmission of the data to such 

calculations. 

 

 

Figure 6.4: Execution time for the nursery dataset 

 

0 

2 

4 

6 

8 

10 

12 

0 2000 4000 6000 8000 

Ex
e

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)
 

number of training vectors 

kNN×20 

HFTDT 

ITI 

C4.5 



Chapter 6  Experiments on generating decision trees using HFTDT 

 

102 

 

 

Figure 6.5: Execution time for the agaricus-lepiota dataset 

 

 

Figure 6.6: Execution time for the chess dataset 
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6.4.3 MEMORY USAGE 

 

This experiment investigates the memory used by the classifiers. For embedded 

systems with limited memory, developers favour algorithm classifiers that require 

less memory in order to meet resource constraints. In real-world examples, the 

datasets often become larger with time, leading to an increased demand for 

memory resources. In particular, incremental methods tend to require more 

memory as they need to keep a record of the entire training set [87][88]. As an 

example, ITI, which operates incrementally, keeps records of parts of the training 

data at each node.  

The measurements of memory obtained for ITI and C4.5 include that used to build 

and train the DT as well as the structures generated by the code to represent the 

DT. For HFTDT, measurements include that needed by the HFT as well the memory 

used to describe the DT. 

The results shown in Figures 6.7 to 6.9 for the three test datasets demonstrate that 

the memory consumption for HFTDT is significantly less than that required by the 

other classification methods assessed. This is partly due to the simple structure of 

the hashed frequency table (see Section 5.2), but also the adoption of the fixed node 

structure described in Section 5.4. The memory usage results demonstrate the 

principal contribution of HFTDT to the current range of DT algorithms found in the 

literature, namely its ability to operate in environments that are restricted in terms 

of memory resource.  
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Figure 6.7: Memory usage for the nursery dataset 

 

 

Figure 6.8: Memory usage for the agaricus-lepiota dataset 
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Figure 6.9: Memory usage for the chess dataset 
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        . (6.1) 
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For the agaricus-lepiota dataset the performance of HFTDT is relatively poor when 

the number of training vectors is fewer than 3000, but its performance gets better 

with more vectors used in training and the accuracy is best among the classifiers 

between sample 3600 and 4000. kNN and C4.5 performed similarly, while ITI 

performed poorly between samples 2000 and 3000 due to the underfitting caused 

by pruning. As discussed in section 6.5.1, when there are 3000 or more training 

vectors in the agaricus-lepiota dataset, 15% to 30% of the vectors contain missing 

values, adversely affecting the classification accuracy. Acuna et al. [90] found that 

the missing value rates between 1-5% are manageable, 5-15% require 

sophisticated methods to handle, but rates above 15% may severely impact 

interpretation. The ITI approach to missing values is that whenever a vector with a 

missing value is needed for a test in a DT, the vector is simply saved at the node, 

without it being passed to other branches [91]. C4.5 uses a probabilistic approach 

to handle missing values by using a corrected gain ratio criteria [92], while the kNN 

uses a technique to handle one or more missing values, where the missing values 

are replaced with estimated ones based on information available in the 

dataset.[93].  

 

 

Figure 6.10: Classification error for the nursery dataset 
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Figure 6.11: Classification error for the agaricus-lepiota dataset 

 

Figure 6.12: Classification error for the chess dataset 
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6.5 CONCLUSION 

The chapter has presented four experiments with the aim of evaluating the 

performance of the HFTDT method, namely the number of nodes, computation 

time, memory usage and classification accuracy. The results show that HFTDT can 

successfully be used to generate DTs from a range of datasets and partially satisfies 

the requirements of embedded systems.  

HFTDT demonstrated a substantial reduction in memory usage compared to 

existing DT methods. The memory usage of ITI, C4.5 and kNN increase with the 

number of vectors applied during training as they maintain records of the dataset 

and therefore are unsuitable for embedded system implementation. 

The experimental results show that HFTDT satisfies robustness, even when 

compared to kNN, ITI and C4.5, all of which employ specific approaches to handle 

missing values. HFTDT treats any missing value as a new attribute value, requiring 

additional calculations compared to the other DT methods. Robustness can be 

improved by adopting a suitable technique to prepare the data before training, 

typically by performing data cleaning, data transformation or reduction [78]. 

However, all such methods require that all the data are available initially and so are 

not suitable for use in incremental classification applications. Scalability and 

calculation times can be improved by applying a pruning technique such as those 

adopted in C4.5 where error-based pruning is applied and in ITI which applies a 

pre-pruning technique. These approaches result in a substantial reduction in the 

number of nodes, yet are known to suffer from underfitting. 
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7 HARDWARE IMPLEMENTATION OF HFTDT 

This chapter describes a hardware implementation of the most time-consuming 

function of the HFTDT implementation. The first section describes the profiling 

carried out to measure the times spent in the execution of each function of HFTDT, 

with the express purpose of determining those that are the most time consuming. 

The second section discusses the hardware approach adopted to improve the 

performance of the HFTDT method. The hardware solution uses a state-of-the-art 

high-level synthesis (HLS) tool to implement the most time-consuming function on 

a range of Xilinx FPGAs families. 

 

7.1 INTRODUCTION 

Due to its ability to execute operations in parallel, hardware implementations have 

the potential to provide substantial execution time performance advantages over 

sequential software implementations.  

HFTDT is an incremental learning decision tree method designed to target 

embedded systems. The nature of DTs allows parallel realisation and the hardware 

implementation can be utilized to exploit two types of parallelism in the 

implementation of DTs. The first type is high-level thread-level parallelism that can 

be employed when expanding nodes. The second type is low-level instruction 

parallelism inside each node that can be exploited to accelerate the necessary 

calculations. 

Not all DT algorithms are suitable for embedded systems handling real-time 

incremental problems, as the two main criteria introduced in Section 2.2.2 need to 

be met. The HFTDT source code was written in the C language to facilitate the move 

to hardware implementation using HLS tools. Parts of the code were re-written to 

allow easier implementation in hardware, as well as employing look-up tables to 

avoid the need to synthesise mathematical libraries.  
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7.2 HFTDT CODE PROFILING 

 

This section concentrates on profiling the execution of the HFTDT code. The 

purpose of this activity is to identify those parts of the code whose hardware 

implementation would yield the most benefit in terms of execution time reduction. 

Profiling measures the time spent executing each function in software in order to 

determine the most time-consuming. 

 

7.2.1 SOURCE CODE RECOMPILATION 

 

To profile the source code of the HFTDT method, the GNU ‘gprof’ profiler [94] was 

used. gprof collects and arranges statistics of the code under analysis and provides 

information about the time spent in each function, the number of times it was 

called and which functions called other functions during the execution. 

The HFTDT source code is written in the C language and contains 12 functions 

together containing approximately one thousand lines of code. The information 

presented by the gprof profiler includes all the features that have been used in the 

code, and it excludes any unused features from the profile information. 

The results of the gprof are made available as a flat profile that shows the total time 

taken by each function operating in isolation, and a call graph that shows the time 

spent in each parent function and its children functions. 

  

7.2.2 RESULT OBTAINED USING THE FLAT PROFILE 

 

This section presents the gprof flat profile results. The HFTDT source code has 

been profiled and tested by the datasets introduced in Section 6.2, namely nursery, 

agaricus-lepiota and chess.  
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7.2.2.1 THE FLAT PROFILE 

The flat profile generated by the gprof [94] includes a statistical summary table of 

the execution information of a program’s functions. Figure 7.1 shows an example of 

the flat profile results for the HFTDT code and provides information of the 

percentage of the total running time taken by each function the (% time) column, 

the time taken by a function and those that call it (cumulative seconds), the running 

time of the function (self seconds), the number of times the function is called (calls), 

the average time spent in this function per call (self ms/call) and the average time 

in milliseconds spent in the function and its descendants per call (total ms/call). 

 

 

Figure 7.1: Example of information provided by a flat profile generated by gprof for the nursery 

dataset  

Figure 7.1 was generated for the nursery dataset and it can be seen that together 

the first two functions in the list consume the vast majority of the execution time. 

The first of these, rev_index_func consumes around 90% of the total time of the 

code. This function is used to read the attribute values from the stored keys in the 

hash table (see section 5.3). The function FindAttributeInstances is a second 

function that could be considered, but as its execution time is of an order of 

magnitude less than that of rev_index_func it was not considered further in the 

current work. The function rev_index_func is a clear candidate for consideration for 

hardware acceleration.  
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The results of the flat profile obtained by the gprof for the samples of the nursery 

dataset can be found in Figure 7.2 and show that the rev_index_func was again the 

most time-consuming function using an average of around 90% of the total running 

time. The second most time-consuming function was the FindAttributeInstances 

which took on average less than one tenth of the time consumed by the 

rev_index_func. 

 

 

Figure 7.2: Flat profile results for the nursery dataset 

 

The flat profile results for agaricus-lepiota dataset are shown in Figure 7.3 and 

confirm the influence of rev_index_func on the total running time, taking an average 

of around 88% of the total execution time Again, the second most time-consuming 

function was FindAttributeInstances, taking an average of one eighth of the time 

consumed by rev_index_func. 
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Figure 7.3: Flat profile results for the agaricus-lepiota dataset 

 

The results obtained by the flat profiling of the chess dataset are shown in Figure 

7.4 and again rev_index_func dominates as the most time consuming function this 

time consuming around 93% of the total execution time. 

 

 

Figure 7.4: Flat profile results for the chess dataset 
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The results of the flat profiling for the three datasets show clearly that the 

rev_index_func is constantly the most time-consuming function. As the function 

consumes around 90% of the execution time, rev_index_func will be the sole 

function considered for hardware acceleration in the current work. 

 

7.2.3  RESULTS OBTAINED USING THE CALL GRAPH 

 

Call graphs were produced for the nursery, chess and agaricus-lepiota. Figure 7.5 

shows an example of a call graph, which is part of the profiling results generated by 

gprof indicating the time spent in each parent function and its children functions 

[94].  

 

The gprof call graph is sorted by the total time spent in the execution of each 

function and its children. The function listed in the rightmost column that is on the 

same row as in index shown in the leftmost column is the function identified as 

under consideration in that section. Within a section, the function under 

consideration is called by those listed above it and calls those listed below it. The 

second column is the percentage time consumed by the function under 

consideration and its children, while the third and the fourth columns are 

respectively the time spent in the function alone and the total time in the function 

and its children combined. The final column is the number of times the function has 

been called following the calling path shown compared with the total number of 

calls to that function by all routes. If function has no parents in the code being 

profiled, such as the function main in Figure 7.5, the word ‘spontaneous’ is used in 

place of a name. 
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Figure 7.5: Example of a call graph generated by gprof for the nursery dataset  
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The raw call graphs produced by gprof can be better represented for human 

consumption by a graphical format as shown in Figure 7.6. From Figure 7.6, it can 

be seen that the main function has six children and function_struct is the parent of 

the path that eventually leads to the most time-consuming function rev_index_func. 

 main [1]
100%

AttributeEntropy [6]
88.6%

FindAttributeInstances [2]
99.5%

rev_index_func [5]
91.6%

ExpandNextNode [3]
99.5%

function_struct [4]
99.5%

updateHashTable [8]
0.4%

Function_test_data [9]
0.0%

Index_func [10]
0.0%

read_word [11]
0.0%

read_to_EOL [12]
0.0%

NodeEntropy [7]
10.9%

 

Figure 7.6: Call graph for HFTDT showing the call sequence and the execution times of the functions 

The analysis of the call graph shows the sequence of functions calls and has 

emphasised the domination of rev_index_func in consuming the vast majority of the 

execution time. Appendix B includes the call graph analyses for the HFTDT code 

running all three datasets and in each case it was demonstrated that rev_index_func 

takes around 90% of the execution time. 
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7.3 HARDWARE DESIGN FOR THE MOST TIME-CONSUMING FUNCTION 

The hardware approach on this research work focuses on improving the 

performance of the most time-consuming function of the HFTDT algorithm, namely 

rev_index_func  

 

7.3.1  HIGH-LEVEL SYNTHESIS TOOLS 

To provide a hardware solution, the approach taken in the current work is to adopt 

a high-level synthesis (HLS) tool. HLS tools perform automated conversion from a 

high-level language such as C, C++ or SystemC, to an electronic system level (ESL) 

description and such tools first became commercially available during the 1990s 

[95]. The HLS development is shown in Figure 7.7, where the HLS tool converts the 

algorithms written in a high-level programming language into a hardware 

description language (HDL) such as Verilog or VHDL. The HDL can then be 

synthesised yielding a register transfer level (RTL) design that can target hardware 

platforms such as ASICs or FPGAs. 

 

 

Figure 7.7: Process of high-level language translation to HDL using HLS tools 

 

The steps in the process of generating HDL using an HLS tool can be summarized as 

follows [96], [97].  

(1) Compilation of functional specification, in which the translation of the 

source code to an internal representation is carried out. This step involves 

several code optimization such as dead-code and false data dependency 

elimination as well as loop transformations.  
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(2) Allocation defines the type and number of hardware resources needed to 

satisfy the design constraints, such as instance, functional and storage units, 

as well as connectivity components. 

 

(3) Scheduling, in which each operation required in the specification model is 

constrained to fit into a clock cycle. 

 

(4) Binding of variables to a storage unit and operations to a functional unit 

capable of its execution. 

 

(5) Output processing, in which the RTL source code is written in the target 

language.  

 

 

7.3.2 CHOOSING AN HLS TOOL  

There are several HLS tools available for hardware designers, such as Vivado HLS 

[98], Catapult C [99], C-to-Silicon [100], Compaan [101], CyberWorkBench [102] 

and Synphony C [103]. Meeus et al. [104] evaluated several HLS tools, including the 

aforementioned, and recommended the use of the AutoPilot Xilinx tool (now 

Vivado HLS). The evaluation criteria included the source language used, ease of 

implementation, tool complexity, user interface and documentation, support for 

data types, design exploration capabilities and correctness of the generated design. 

BDTI [105] found that the advantage of using AutoPilot is that the quality of the 

design results produced were equivalent to hand-written RTL code. The Academic 

Department in which the author is currently studying has commercial licences for 

both Vivado and Calypto, so both were originally considered. The HLS tool selected 

for the current research work is version v_2013.4 of the Vivado HLS tool that was 

released in December 2013 [106], and was chosen for its ease of use, fast synthesis 

and documentation availability. 
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7.3.3 HARDWARE DESIGN USING THE HLS TOOL  

 

Figure 7.8 shows the HLS development process adopted. The first step is to verify 

the HFTDT C code by means of a test bench that applies example data used in the 

software only version described in Chapter 6. The second step is to verify the RTL 

design by confirming its functionality matches that of the C algorithm, simply by re-

use of a test bench used for C verification.  

 

Verifying RTL

Vivado HLS

RTL Design

RTL Simulation

C code
Test 

Bench

Verifying C

 

Figure 7.8 Overview of the Vivado high-level synthesis design process 

 

7.3.4 DESIGN SYNTHESIS AND CO-SIMULATION  

The part of the HFTDT source code that consumes most of the execution time is 

targeted in the hardware design. As shown in Figure 7.9, the C code used at the top 

level represents the reverse index function, rev_index_func. The test bench is the C 

main function as shown in Figure 7.8 and it is not synthesisable. The main function 
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includes an array that holds the dataset used in the verification process, this being 

the numerical form of one of the nursery, chess and agaricus-lepiota examples.  

 

 

rev_index_func()

RTL design

main()

Test bench

Top level for 
synthesis

Verifying C

Data set

index_func()

 

Figure 7.9 Concept of C Verification 

The C verification process that was carried out is now described. In the test bench, 

the main function passes dataset vectors one at a time to the index_func, which 

generates a unique 64 bit key for each vector. The key is then passed to the 

rev_index_func, which reads the key and generates an output vector. To verify the 

design, the outputs of the rev_index_func are compared to the original dataset 

vectors; the test being passed only if the two sets of vectors match exactly. 

In Vivado HLS, RTL verification is achieved using co-simulation (see Figure 7.8). 

The RTL co-simulation uses the C test bench to generate input stimuli for execution 

on the RTL design. As in the C verification process, the RTL design verification 

compares the input vectors with the outputs of the design. The final step of the 

design is to export the RTL design as a block of intellectual property.  

For the software implementation, the actual execution time of the reverse index 

function is found by knowing the time taken by a single call to rev_index_func and 

how many times it is called by using the results from the flat profile table. For the 

results obtained in hardware, the time taken to process each vector of the samples 
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is calculated and then multiplied by the number of times the reverse index function 

is called. 

 

7.3.5 TARGETED FPGAS  

Vivado HLS supports the Xilinx 7-series [107] and the Xilinx Zynq SoC [108] FPGAs. 

The FPGAs listed in Table 7.1 are the four families supported by Vivado HLS and 

that were considered in the current hardware design.  

 

 Table 7.1: Targeted FPGAs for the hardware design  

Family FPGA 

Virtex7 XC7VX980T 

Kintex7 XC7K70T 

Artix7 XC7A75T 

Zynq XC7Z100T 

 

The Zynq SoC family contains an ARM Cortex–A9 microprocessor and an FPGA 

fabric, the latter being supported by the Vivado HLS tools. The Xilinx product 

specification data sheet for the 7-series FPGA families [107] indicates that the high-

end Virtex7 devices are designed for applications demanding high performance, 

Kintex7 are mid-range devices and the Artix7 devices are designed for applications 

where low power consumption is important. Figure 7.10 shows a comparison of 

the 7-series devices in terms of their relative power consumption and performance. 
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Figure 7.10: Xilinx 7-series FPGAs families [109] 

 

In this work, the intention is to select the FPGA family device that exhibits the 

shortest calculation time for the hardware implementation of the rev_index_func 

function, in order to reduce the time taken to execute the system code overall. The 

evaluation was based on the maximum clock frequency that could be achieved by 

each FPGA family following synthesis. 

 

7.3.6 DATASET USED IN THE HARDWARE DESIGN 

The C test benches use the numerical versions of the datasets, as introduced in 

Section 3.2.2. As each dataset has different numbers of attributes and classes, the 

generated top-level function rev_index_func is different for each dataset, with 

differences being also being apparent in the two arrays named acc_num_att_values 

and num_att_values (as discussed in Chapter 5). 

 

7.4 SIMULATION RESULTS  

Each of the FPGAs listed in Table 7.1 were targeted and three hardware designs 

were produced, one for each of the datasets nursery, agaricus-lepiota and chess. 

Figure 7.11 is an example of the reverse index function for the agaricus-lepiota dataset that 

has been accelerated in hardware. Referring to Section 5.3.5 to produce the output vector 

the process involves right shift and bitwise AND operations. The ‘key’ is obtained from the 
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hashed frequency table and the generated output vector is saved in the P_array. The size of 

P_array varies according to the characteristics of the dataset.  In this example the P_array has 

23 elements including 22 attributes and class.   

 

 
 

u64 rev_index_func(u64 key, u8 P_array[23]) 

{ 

 P_array[0] = (key & (u64) 1); 

 P_array[1] = (key >> (u64) 1) & ((u64) 1); 

 P_array[2] = (key >> (u64) 2) & ((u64) 1); 

 P_array[3] = (key >> (u64) 3) & ((u64) 1); 

 P_array[4] = (key >> (u64) 4) & ((u64) 3); 

 P_array[5] = (key >> (u64) 6) & ((u64) 3); 

 P_array[6] = (key >> (u64) 8) & ((u64) 3); 

 P_array[7] = (key >> (u64) 10) & ((u64) 3); 

 P_array[8] = (key >> (u64) 12) & ((u64) 3); 

 P_array[9] = (key >> (u64) 14) & ((u64) 3); 

 P_array[10] = (key >> (u64) 16) & ((u64) 3); 

 P_array[11] = (key >> (u64) 18) & ((u64) 7); 

 P_array[12] = (key >> (u64) 21) & ((u64) 7); 

 P_array[13] = (key >> (u64) 24) & ((u64) 7); 

 P_array[14] = (key >> (u64) 27) & ((u64) 7); 

 P_array[15] = (key >> (u64) 30) & ((u64) 7); 

 P_array[16] = (key >> (u64) 33) & ((u64) 15); 

 P_array[17] = (key >> (u64) 37) & ((u64) 15); 

 P_array[18] = (key >> (u64) 41) & ((u64) 15); 

 P_array[19] = (key >> (u64) 45) & ((u64) 15); 

 P_array[20] = (key >> (u64) 49) & ((u64) 15); 

 P_array[21] = (key >> (u64) 53) & ((u64) 15); 

 P_array[22] = (key >> (u64) 57) & ((u64) 1); 

} 
 

 

Figure 7.11: Code for the accelerated function for the agaricus-lepiota dataset 
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7.4.1 NURSERY DATASET 

The nursery dataset has eight attributes and five classes, and is the simplest of the 

three datasets. Figure 7.12 shows the execution time results obtained from the 

hardware solutions for a range of FPGAs, as well as times obtained from the 

software implementation. The actual values obtained can be found in Appendix C 

Table C.1. 

The simulation results showed that, compared with the software implementation, 

the execution time for the hardware solution was around three times shorter for 

the Artix7 and around 4.2 times shorter for the Kintex7. Also, the maximum clock 

frequency achievable was the lowest at 521 MHz for the Artix7 and greatest at 743 

MHz for the Kintex7. 

 

 

Figure 7.12: Hardware acceleration results of targeting a range of FPGAs for the nursery dataset 
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Table 7.2 includes the hardware report of the number of slices, where each slice is 

a group of four look up tables (LUTs) and eight flip-flops (FFs). The Kintex7 

achieved a higher clock frequency when compared to the Virtex7 but the number of 

slices used in the Virtex7 was fewer than that required on the Kintex7. The 

variation in the number of slices used in the solutions for all the FPGA families is 

probably due to inconsistencies in the place and route process of Vivado HLS [110]. 

Table 7.2: Hardware design report for the nursery dataset 

FPGA 
FAMILY 

SLICES LUTs FFs 
Mean 

execution time 
reduction (%) 

Clock frequency 
achieved 

Virtex7 8 25 19 75.6 724 MHz 

Kintex7 9 25 19 76.2 743 MHz 

Zynq 9 25 19 73.6 669 MHz 

Artix7 9 25 19 66.1 521 MHz 

 

 

7.4.2 RESULTS FOR THE AGARICUS-LEPIOTA DATASET 

 

The dataset of the agaricus-lepiota problem has 22 attributes and two classes. 

Figure 7.13 shows the execution times of the hardware and software 

implementations of the rev_index_func for the agaricus-lepiota dataset. Appendix C 

Table C.2 shows the actual figures obtained. 

The results of simulation given in Figure 7.13 show that hardware acceleration 

reduces the execution time by between 6.5 times for the Artix7 and 9.6 times for 

the Virtex7.  
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Figure 7.13: Hardware acceleration results of targeting a range of FPGAs for the agaricus-lepiota 

dataset. 

 

Table 7.3 shows the hardware report of the number of slices, LUTs and FFs. The 

Kintex7 and Virtex7 achieved a similar clock frequency for the design, but both 

values were considerably higher than that of the Artix7. There was a small 

difference in the number of slices and LUTs used by the different FPGAs.  

 

Table 7.3: Hardware design report using agaricus-lepiota dataset 

FPGA 
FAMILY SLICES LUTs FFs 

Mean 
execution time 
reduction (%) 

Clock frequency 
achieved 

Virtex7 21 70 31 89.5 484 MHz 

Kintex7 21 71 31 87.7 413 MHz 

Zynq 21 69 31 85.1 341 MHz 

Artix7 20 69 31 84.6 330 MHz 
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7.4.3 RESULTS FOR THE CHESS DATASET 

The dataset of the chess problem has 36 attributes and two classes. Figure 7.14 

shows the execution times of the hardware and software implementations of the 

rev_index_func for the chess dataset. Appendix C Table C.3 shows the numerical 

figures obtained for the simulation results.  

The results of simulation show that the execution time achieved was almost two 

times shorter for the Artix7 implementation and around 3.4 times shorter for the 

Kintex7 solution. The maximum clock frequencies achieved are shown in Table 7.4 

and ranged from 386 MHz for the Kintex7 to 217 MHz for the Artix7. 

 

 

Figure 7.14: Hardware acceleration results of targeting a range of FPGAs for the chess dataset. 
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Table 7.4: Hardware design report using chess dataset 

FPGA 
FAMILY SLICES LUTs FFs 

Mean execution 
time reduction 

(%) 

Clock frequency 
achieved 

Virtex7 39 136 54 69.4 374 MHz 

Kintex7 42 136 54 70.3 386 MHz 

Zynq 39 135 54 67.7 355 MHz 

Artix7 39 134 54 47.3 217 MHz 

 

7.4.4 RESULTS SUMMARY 

Table 7.5 shows a summary for the implementation of the reverse index function 

showing the clock frequency and hardware acceleration achieved for the different 

FPGAs and for each of the datasets.  

Table 7.5: Hardware simulation results summary 

Dataset 
FPGA 

Family 

Frequency 

achieved 

(MHz) 

Mean 

runtime 

acceleration 

Latency 
Initiation 

interval 

Nursery 

Virtex7 724 4.1x 4 5 

Kintex7 743 4.2x 4 5 

Artix7 521 3.0x 4 5 

Zynq 669 3.8x 4 5 

Agaricus-

lepiota 

Virtex7 484 9.6x 11 12 

Kintex7 413 8.2x 11 12 

Artix7 330 6.5x 11 12 

Zynq 341 6.7x 11 12 

Chess 

Virtex7 374 3.3x 18 19 

Kintex7 386 3.4x 18 19 

Artix7 217 1.9x 18 19 

Zynq 355 3.1x 18 19 
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It can be seen from Table 7.5 that the FPGA implementations of the rev_index_func 

significantly improved the execution time performance when implemented for the 

test examples that exhibited a range of different numbers of attributes and 

attribute values.  

The latency presented in Table 7.5 is the number of cycles needed to produce the 

output and the initiation interval is the number of clock cycles before new input 

can be applied. For all of the implementations, the latency reported by Vivado HLS 

tools is one cycle less than the initiation interval. Where the latency and initiation 

interval are so similar, it is clear that the design generated automatically by Vivado 

HLS has used no pipelining. The more the number of attributes required in the 

design, the greater the length of the array used to hold the output vector. Since 

Vivado HLS is known to map arrays to memory devices that have limited access 

capabilities, a solution results that has more hardware interdependencies and 

hence longer latency as the array length increases [98]. The Vivado HLS tools 

recommend considering array optimization techniques to allow more reads and 

writes in the same clock cycle.  

Figures 7.15 to 7.17 show a comparison between the best hardware acceleration 

result with C4.5 and ITI. The result of Figure 7.15 for nursery dataset shows that 

hardware solution is 4.2 times faster than software, achieved similar performance 

to ITI and 6 times slower than C4.5. In Figure 7.16 the results for the agaricus-

lepiota dataset show that the hardware solution reduced the execution time taken 

by the software by 9.6 times, where on average it is slower by 5.3 times compared 

to ITI and 15.6 times compared to C4.5. The results in Figure 7.17 for the chess 

dataset show that the hardware solution improved the software execution time by 

3.4 times, which in hardware is slower by nine times and 18 times compared to ITI 

and C4.5 respectively.  
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Figure 7.15: Hardware acceleration result compared with C4.5 and ITI for the nursery dataset 

 

Figure 7.16: Hardware acceleration result compared with C4.5 and ITI for the agaricus-lepiota dataset 

0.0 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 

Ee
xe

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)
 

Number of training vectors  

Software 

Kintex7 / HW 

ITI 

C4.5 

0.0 

0.4 

0.8 

1.2 

1.6 

2.0 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 

Ex
ec

u
ti

o
n

 t
im

e
 (

se
co

n
d

s)
 

Number of training vectors  

Software x5 

Virtex-7 / HW 

ITI 

C4.5 



Chapter 7  Hardware Implementation of HFTDT 

 

131 

 

 

 

Figure 7.17: Hardware acceleration result compared with C4.5 and ITI for the chess dataset 
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to hardware implementation due to the manner in which the data are extracted. 
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No attempt has been made to implement the DT node and entropy calculations in 

hardware, mainly because approaches already exist in the literature and so have 

little novelty value. In particular, where there is a set of open nodes to be 

investigated when building a DT, all of the nodes require a number of entropy 

calculations to be computed so that their children can be determined. However, as 

the method of data supply to HFTDT is quite different from that used in other DT 

approaches, it is interesting to consider the architecture that would be appropriate 

for parallel hardware implementations.  

 

The hardware solution proposed here exploits two types of parallelism in the 

implementation of DTs. For the first type, high-level thread-level parallelism can be 

extracted when two or more nodes need to be expanded concurrently. For the 

second type, low-level instruction level parallelism inside each node of the DT can 

accelerate the sets of entropy calculations that need to be performed at each node. 

 

The hardware approach proposes a parallel solution by using the information 

provided by the rev_index_func to feed multiple nodes (open nodes) simultaneously 

in order to reduce the overall time taken to perform entropy calculations. Knowing 

that the data goes only to the nodes that need to be investigated, Figure 7.18 shows 

how a set of n nodes could be considered in parallel, with all data fed 

simultaneously from the rev_index_func.  
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Figure 7.18: Implementation of rev_index_func to supply data to the open nodes in a DT 
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7.6 SUMMARY 

HFTDT in its implementation of the nursery, chess and agaricus-lepiota datasets 

has been investigated using the GNU gprof profiler. gprof provides two types of 

profiling, a flat profile and a call graph. The results of the profiling showed that the 

reverse index function rev_index_func consumes most of the total execution time. 

To improve the acceleration performance of the HFTDT code, a hardware design 

for rev_index_func was implemented. The hardware design was realised using 

Vivado HLS, the tool providing simulation, synthesis and verification of the 

rev_index_func. A C test bench file was created for verifying both the C code and the 

RTL design. 

The advantage of the hardware implementation is that all data stored in the hash 

table are supplied in sequence and fed to the node under consideration so that it 

can perform its entropy calculations. This approach differs from existing 

approaches discussed in section 2.2.5 where data are partitioned into subsets. The 

hardware implementation improves the performance of HFTDT when compared to 

the software results obtained in section 6.5. The hardware simulation results have 

been generated for a range of FPGAs and gave improvements in runtime execution 

performance by a factor of up to 9.6 times. The hardware shows improvement in 

the calculation time when reached similar performance with ITI and six times 

slower than C4.5. 
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8 CONCLUSIONS AND FURTHER WORK 

This research work has presented novel approaches, namely MDFT and HFTDT, 

that have been developed as real-time incremental learning methods targeting 

embedded systems. They were designed with the ability to generate application 

specific code for both training and classification purposes according to the 

requirements of the targeted application. This chapter discusses the conclusions of 

each method in terms of the objectives set out in chapter 1 and indicates potential 

future work. 

8.1 CONCLUSIONS 

The aim of this research work has been partially met by developing incremental 

learning methods that were able to achieve low memory usage suitable for meeting 

embedded system constraints. Nevertheless, memory usage was still shown to 

increase as more training vectors are assimilated. By identifying the maximum 

number of calculations that are needed to build a DT, it would be feasible to 

determine an upper bound for the time tree building would take, assuming it is 

possible to know the execution times needed for specific mathematical operations 

on the target platform.  

Referring to the objectives, the literature for existing methods was reviewed, 

allowing the identification of an appropriate method for building an incremental 

system. Two solutions have been developed which are MDFT and HFTDT, whose 

outcomes are discussed in relation the objectives in the next two subsections.  

 

8.1.1 MULTI-DIMENSIONAL FREQUENCY TABLE METHOD (MDFT) 

 

The MDFT learning method introduced in this research work adopts a multi-

dimensional array that acts as a frequency table. The frequency table technique 

was utilized to achieve incremental learning as it holds all the iterations of the 
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incoming data vectors, while keeping all correlations between the attributes and 

classes that are necessary to build the decision tree. 

A deterministic time solution and memory requirements are issues of importance 

when targeting real-time embedded applications. The MDFT demonstrated in 

Chapter 4 has the ability to determine the time needed to perform the necessary 

calculations to build a DT and with a fixed memory usage. Despite the memory 

requirements of the MDFT being deterministic and can be known a priori, the 

approach has the limitation that a substantial demand on memory usage occurs 

when the number of dimensions of the frequency table is increased. This limits the 

MDFT method’s suitability for embedded system applications where the memory is 

usually limited. 

 

8.1.2 HASHED FREQUENCY TABLE DECISION TREE METHOD (HFTDT) 

 

The HFTDT method was introduced in Chapter 5, and adopts a hashed frequency 

table technique to permit incremental learning. The method employs a compact 

version of the frequency table used by MDFT, where a two-dimensional hash table 

is utilized to save the non-zero elements of the MDFT frequency table. This 

approach considerably reduces the memory usage when compared to MDFT. 

HFTDT is a real-time incremental learning method that targets embedded systems. 

The method has a deterministic calculation time, as in MDFT, where the number of 

calculations can be known a priori. The memory requirements of the HFTDT 

depend on the number of elements stored in the hash table, which can increase 

with the addition of new vectors. The upper limit of the memory requirement for 

the hash table is not possible to determine a priori if the DT is to be operated 

incrementally. In a practical system, the number of training vectors that can be 

acquired will need to be restricted, possibly through the implementation of a 

forgetting algorithm that removes older vectors from the HFT when it exceeds 

available memory capacity.  

Experimental work carried out in Chapter 6 demonstrates good performance of the 

HFTDT in terms of the number of nodes in the induced DT, memory usage and 
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classification accuracy when compare to three widely used machine learning 

methods, such as kNN, C4.5 and ITI. The HFTDT performed well in classifying 

unseen datasets and when dealing with missing values, even though no pruning 

technique was used in producing the DTs. 

The source code of HFTDT has been profiled and it was determined that the most 

time-consuming function was consistently rev_index_func, it being called many 

times to provide the necessary information to conduct the entropy and information 

gain calculations needed to build DTs. Hardware designs for the rev_index_func 

have been introduced using a range of FPGAs where the execution time was 

achieved by up to 10 times less than that of the software simulation. 

8.2 FURTHER WORK 

Further work in the areas of pruning and parallelism has been identified and these 

are discussed below. 

 

Pruning  
 

Improving classification accuracy and overall performance for the HFTDT using a 

suitable pruning technique can be considered in future work. As mentioned in 

Chapter 2, pruning aims to generalise DTs and improve classification accuracy.  

Pre-pruning methods often have a lower computational cost compared to post-

pruning techniques, although the latter can achieve better classification accuracy. 

Pre-pruning can be more feasible for incremental learning than post-pruning since 

it adopts a set of stopping criteria that can be used to halt the growth of the DT. 

HFTDT as an incremental method that has the ability to generate a new DT when 

any changes in the data occurs or whenever it is needed, since the FT can provide 

all the data needed to build a DT from scratch,. Although both types of pruning can 

be implemented in such a case, other incremental methods, such as ITI, adopt pre-

pruning that affects the DT building at an early stage. These changes made during 

tree building cannot later be undone when more data are presented. 
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In addition to smaller DTs, pruning provides better classification accuracy, fewer 

nodes and a consequent reduction in memory usage. Execution time is also reduced 

as fewer calculations are needed in the building of a smaller tree. Consequently, 

further work is appropriate to identify a suitable pruning technique to achieve an 

equivalent performance to the C4.5 algorithm, which was able to produce a more 

generalized DT according to the evaluation results of Chapter 6. 

 

Parallelism  

Parallelism has been applied to a number of the decision tree methods found in the 

literature. The forms of parallelism which have been identified by other authors as 

in Section 2.2.4 include multi-threaded approaches, node based approaches and 

entropy based approaches. These methods are broadly applicable to HFTDT, as 

only the way in which the data are supplied to nodes is different. The data in most 

DTs are obtained as required by the algorithm, whereas in HFTDT the data is fed 

continuously from memory and it is the responsibility of the nodes to obtain the 

data they require as it is generated so that they can perform their entropy 

calculations. Consequently, the detailed implementation of parallelism in the 

HFTDT will have some differences from other DT methods, and further work is 

needed in order to realise this parallelism and to determine the advantages of this 

approach. 
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The weather problem given in Table 5.2 consists of four attributes        and 

two classes   
 
   . The HFTDT method uses an HFT that holds the keys and 

the corresponding values of each input vector.  

After the HFT has been populated, the decision tree can be generated. The 

splitting criterion used in generating the decision tree is information gain. 

The following shows the total entropy calculation needed for the root node, 

using Equation 2.2. 
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The total entropy at the root node is thus  
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Choosing the attribute at the root node 

In this section, the entropy values will be computed for each of the attributes 

for the root node. 

1. Entropy for ‘outlook’. 

For attribute value ‘sunny’ 
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For attribute value ‘overcast’ 
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For attribute value ‘rainy’. 
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By using Equation 2.4, the entropy for attribute ‘outlook’ can be found from: 
 

        
 
  
 
 

  
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
   

  
 
  
 
 

 
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
      

 
 
  
 
 

 
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
              

(A.14) 

 

By using Equation 2.5, the information gain for attribute ‘outlook’ is given by: 

          
          

                                                

                                                          

(A.15) 

 

 

2. Entropy for ‘temperature’: 

For attribute value ‘hot’. 

    
                                                         

              

 

  

    
                                                           

             

 

 
  
 
       

      
     

 

For attribute value ‘mild’. 
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For attribute value ‘cool’. 

    
                                                         

               

 

  

    
                                                                  

               

 

 
  
 
       

      
     

 

By using Equation 2.4, the entropy for attribute ‘temperature’ can be found from 

       
 
  
 
 

  
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
   

  
 
  
 
 

 
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
      

 
 
  
 
 

 
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
              

 

 

 

By using Equation 2.5, the information gain for attribute ‘temperature’ is  
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3. Entropy for attribute ‘humidity’ 

For attribute value ‘high’ 

    
                                                              

              

 

    
                                                                  

                

 

  

 
  
 
       

      
     

 

For attribute value normal 

    
                                                       

             

 

    
                                                                     

               

 

  

 
  
 
       

      
      

 

By using Equation 2.4, the entropy for attribute ‘humidity’ can be found from 

       
 
  
 
 

  
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
   

  
 
  
 
 

 
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
              

 

 

By using Equation 2.5, the information gain for attribute ‘humidity’ is given by 
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4. Entropy for attribute ‘wind’ 

For attribute value ‘weak’ 

    
                                                                 

              

 

  

    
                                                                        

              

 

  

 
  
 
       

      
      

 

For attribute value ‘strong’ 

    
                                                               

             

 

    
                                                                 

            

 

  

 
  
 
       

      
      

 

By using Equation 2.4, the entropy for attribute ‘wind’ can be found from 

       
 
  
 
 

  
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
   

  
 
  
 
 

 
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
               

 

 

By using Equation 2.5, the information gain for attribute ‘wind’ is given by  
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The DT progress beyond this point is shown in Figure 4.5. For the root node, 

the attribute ‘outlook’ is chosen as it has the largest information gain value. 

There are three attribute values for ‘outlook’ sunny, overcast and rainy. 

Therefore the root node has three children as follows. 

Sunny   --> node 2 

Overcast --> node 3 

Rainy    --> node 4 

 

Calculations of node 2 

After choosing ‘outlook’ for node 1 according to the entropy and information 

gain calculations given by Equations A.14 and A.15, the following calculations 

are for node 2 to choose the next attribute from the remaining attributes 

following similar procedure.  

Three main relations will be considered in this stage. 

1. Outlook-->Temperature 

2. Outlook-->‘humidity’ 

3. Outlook-->Wind 
 

For node 2 where value ‘sunny’ presented, the number of vectors is 7 as given 

by Equation A.7. In the following, the calculations for node 2 to choose the next 

attribute. 

 

Total entropy for node 2 

For first child node 2 for root node with attribute value ‘sunny’, the total node 

entropy can be calculated using the following parameters by referring to 

Equations A.5, A.6 and A.7. 
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From Equation 2.2, the entropy, for all vectors within attribute value ‘sunny’ 

can be found from 

  
    

  
  

 

 
  

     

  
  

 

 
  

    
  
  

 

 
  

     

  
  

 

 
  

     
 

 
    

 

 
   

 

 
    

 

 
  (A.16) 

                   

 

Attribute entropy for node 2 

 

1. The entropy for attribute ‘temperature’ when ‘outlook’ is ‘sunny’ can be found as 

follows. 

For attribute value ‘hot’ 

    
                                                             

             

(A.17) 
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For attribute value ‘mild’ 
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For attribute value cool 
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By using Equation 2.4, the entropy for attribute ‘temperature’ can be found from 

       
 
  
 
 

  
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
   

  
 
  
 
 

 
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
      

 
 
  
 
 

 
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
               

(A.26) 

 

By using Equation 2.5, the information gain for attribute ‘temperature’ is given by 
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2. Entropy for ‘humidity’ when ‘outlook’ is ‘sunny’ 

For attribute value ‘high’ 
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For attribute value ‘normal’ 

    
                                                   

  

    
                                                          

             

 

  

 
  
 
       

      
      

 

By using Equation 2.4, the entropy for attribute ‘humidity’ can be found from 

       
 
  
 
 

  
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
   

  
 
  
 
 

 
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
                  

 

 

By using Equation 2.5, the information gain for ‘humidity’ is given by 

          
           

                                                   

                                                       

 

 

3. Entropy for ‘wind’ when ‘outlook’ is ‘sunny’ 

For attribute value ‘weak’ 
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For attribute value ‘strong’ 

    
                                                         

             

 

  

    
                                                        

             

 

  

 
  
 
       

      
      

 

By using Equation 2.4, the entropy for ‘wind’ can be found from 

       
 
  
 
 

  
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
   

  
 
  
 
 

 
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
                 

 

 

By using Equation 2.5, the information gain for ‘wind’ is given by 

          
           

                                                  

                                                        

 

 

The DT progress is shown in Figure 4.6, where attribute ‘temperature’ is chosen 

as it has the largest information gain value as given by Equation A.27. 

 

Calculations of node 3 

Next node is node 3 where attribute value ‘overcast’ presented, the number of 

vectors is 4 as given by Equation A.10. The calculations for the entropy and the 

information gain will be repeated on this node as follows.  
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Total entropy for node 3 

For second child node 3 for root node with value ‘overcast’, the total node 

entropy can be calculated using the following parameters by referring to 

Equations A.8, A.9 and A.10. 

  
  

      
    

 
  

      
    

 
  

   
  
 
    

From Equation 2.2 the entropy, for all vectors within value ‘overcast’ is given by 

  
    

  
  

 

 
  

     

  
  

 

 
  

    
  
  

 

 
  

     

  
  

 

 
  

     
 

 
    

 

 
   

 

 
    

 

 
    (A.28) 

 

According to the entropy calculation of node 3 is a leaf node as all the vectors 

only to one class. The DT progress beyond this point is shown in Figure 4.7.  

 

Calculations of node4 

For node 4 where value ‘rainy’ presented, the number of vectors is 5 as given by 

Equation A.13. In the following, the calculations for node 4 to choose the next 

attribute. 
 

Total entropy for node 4 

For third child node 4 for root node with attribute value ‘rainy’, the total node 

entropy can be calculated using the following parameters by referring to 

Equations A.11, A.12 and A.13. 
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From Equation 2.2, the entropy for all vectors within value ‘rainy’ can be found 

from 

  
    

  
  

 

 
  

     

  
  

 

 
  

    
  
  

 

 
  

     

  
  

 

 
  

     
 

 
    

 

 
   

 

 
    

 

 
   

                   

 

 

Attribute entropy for node 4 

 

1. Entropy for attribute ‘temperature’ when ‘outlook’ is ‘rainy’ 

For attribute value ‘hot’ 

    
                                                    

  

    
                                              

  

 
  
 
       

      
      

 

For attribute value ‘mild’ 
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For attribute value ‘cool’ 

    
                                                         

             

 

  

    
                                                          

             

 

  

 
  
 
       

      
      

 

By using Equation 2.4, the entropy for attribute ‘temperature’ can be found from 

       
 
  
 
 

  
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
   

  
 
  
 
 

 
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
      

 
 
  
 
 

 
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
              

(A.29) 

 

By using Equation 2.5, the information gain for attribute ‘temperature’ is given by 
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2. Entropy for ‘humidity’ when ‘outlook’ is ‘rainy’ 

For attribute value ‘high’ 
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For attribute value ‘normal’ 

    
                                                          

              

 

  

    
                                                               

             

 

  

 
  
 
       

      
      

 

By using Equation 2.4, the entropy for attribute ‘humidity’ can be found from  

       
 
  
 
 

  
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
   

  
 
  
 
 

 
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
                 

 

 

By using Equation 2.5, the information gain for attribute ‘humidity’ is  

          
           

                                                   

                                            

 

 

 

3. Entropy for attribute ‘wind’ when ‘outlook’ is ‘rainy’ 

For attribute value ‘weak’ 
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For attribute value ‘strong’ 

    
                                                              

             

(A.34) 
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     (A.36) 

 

By using Equation 2.4, the entropy for ‘wind’ can be found from 

       
 
  
 
 

  
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
   

  
 
  
 
 

 
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
            

 

 

By using Equation 2.5, the information gain for ‘wind’ is given by 

          
           

                                            

                                                    

 

 

The DT progress is shown in Figure 4.8, shows that attribute ‘wind’ is chosen as 

it has the largest information gain value. There are three values for 

‘temperature’ hot, mild and cool. Therefore node 2 has three children as 

follows. 

Hot  --> node 5 

Mild --> node 6 

Cool --> node 7 
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Calculations of node 5 

Next node is node 5 where its parent node 2 chooses attribute ‘temperature’ as 

given by Equation A.27. The following calculations are for node 5 to choose the 

next attribute from the remaining two attributes. 

Two main relations to be considered at this stage are 

1. Outlook-->Temperature-->‘humidity’ 

2. Outlook--> Temperature-->Wind 

 

For node 5 where value ‘hot’ is presented, the number of vectors is 2 as given 

by Equation A.19. In the following, the calculations for node 5 to choose the 

next attribute. 

 

Total entropy for node 5 

For first child node 5 to parent node 2 with attribute value ‘hot’, the total node 

entropy can be calculated using the following parameters that are given by 

Equations A.17, A.18 and A.19. 

 
  

      
    

 
  

      
    

 
  

   
  
 
    

From Equation 2.2 the total entropy can be found from 

  
    

  
  

 

 
  

     

  
  

 

 
  

    
  
  

 

 
  

     

  
  

 

 
  

      

 

According to the entropy calculation, node 5 is a leaf node as all the vectors 

belongs to class 0. The DT progress beyond this point has been updated as 

shown in Figure 4.9. 
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Calculations of node 6 

 

For node 6 where value ‘mild’ is presented, the number of vectors is 4 as given 

by Equation A.22. In the following, the calculations of node 6 to choose the next 

attribute. 

 

Total entropy for node 6 

For second child node 6 to parent node 2 with value ‘mild’, the total entropy 

can be calculated using the following parameters that are given by Equations 

A.20, A.21 and A.22. 

 
  

      
    

 
  

      
    

 
  

   
  
 
    

From Equation 2.2 the total entropy can be found from  

  
    

  
  

 

 
  

     

  
  

 

 
  

    
  
  

 

 
  

     

  
  

 

 
  

             

 

 

Attribute entropy for node 6 

 

1. Entropy for attribute ‘humidity’  

For attribute value high 

    
                                                             

                

(A.37) 

  

    
                                                             

                

(A.38) 
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For attribute value ‘normal’ 
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(A.41) 

  

 
  
 
       

      
    (A.42) 

 

By using Equation 2.4, the entropy for attribute ‘humidity’ can be found from 

       
 
  
 
 

  
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
   

  
 
  
 
 

 
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
              

 

 

By using Equation 2.5, the information gain for attribute ‘humidity’ is given by 

          
          

                                                  

                                                     

(A.43) 

 

2. Entropy for attribute ‘wind’ 

For attribute value ‘weak’ 
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For attribute value ‘strong’ 

    
                                                   

  

    
                                                           

               

 

  

 
  
 
       

      
     

 

By using Equation 2.4, the entropy for attribute ‘wind’ can be found from 

       
 
  
 
 

  
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
   

  
 
  
 
 

 
  

    
    
 

 
  
 
     

    
 

 
  
 
    

    
 

 
  
 
     

    
 

 
  
 
              

 

 

By using Equation 2.5, the information gain for attribute ‘wind’ is given by 

          
          

                                                  

                                                           

(A.44) 

 

As both attributes ‘humidity’ and ‘wind’ have similar information gain as given 

by Equations A.42 and A.43, an arbitrary decision [73] made to choose the 

attribute ‘humidity’. The DT has been updated as shown in Figure 4.10, where 

attribute ‘humidity’ is chosen for node 6. 

 

Calculations of node 7 

For node 7 where the value is cool, the number of vectors is 1 as given by 

Equation A.25. In the following, the calculations for node 7 to choose the next 

attribute. 
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Total entropy for node 7 

For the third child node 7 to the parent node 2 with attribute value ‘cool’, the 

total node entropy can be calculated using the following parameters that are 

given by Equations A.23, A.24 and A.25. 

 
  

      
    

 
  

      
    

 
  

   
  
 
    

From Equation 2.2 the total entropy can be found from 

  
    

  
  

 

 
  

     

  
  

 

 
  

    
  
  

 

 
  

     

  
  

 

 
  

      

 

The entropy calculation shows that node 7 is a leaf node as one vector of class 1 

is left. The DT beyond this point is shown in Figure 4.11, where the DT is 

updated with node 7 is a leaf node. 

There are two values for ‘wind’ weak and strong. Therefore there are two 

children for node 4 as follows. 

Weak   --> node 8 

Strong --> node 9 

Two main relations to be considered at this stage 

1. Outlook-->Wind-->Humidity 

2. Outlook-->Wind--> Temperature 

 

 

Calculations of node 8 
 

The next node is 8 where its parent node 4 has chosen attribute ‘wind’ as given 

by Equation A.30. The following calculations are for node 8 to choose the next 

attribute from the remaining two attributes. 
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For node 8 where the value is ‘weak’, the number of vectors is 3 as given by 

Equation A.33. In the following, the calculations to choose the next attribute. 

 

Total entropy for node 8 

For first child node 8 to parent node 4 with attribute value ‘weak’, the total 

node entropy can be calculated using the following parameters that are given 

by Equations A.31, A.32 and A.33. 

 

 
  

      
    

 
  

      
    

 
  

   
  
 
    

 

From Equation 2.2 the total entropy can be found from 

  
    

  
  

 

 
  

     

  
  

 

 
  

    
  
  

 

 
  

     

  
  

 

 
  

      

 

The entropy calculation shows that node 8 is a leaf node as all the vectors of 

class 1. The DT has been updated as shown in Figure 4.12. 

 

Calculations of node 9 

For second child node 9 to parent node 4 with attribute value ‘strong’, the total 

node entropy can be calculated using the following parameters that are given 

by Equations A.34, A.35 and A.36. 
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From Equation 2.2 the total entropy is equal to 

  
    

  
  

 

 
  

     

  
  

 

 
  

    
  
  

 

 
  

     

  
  

 

 
  

      

 

The DT has been updated as shown in Figure 4.13, where the entropy 

calculation shows that node 9 is a leaf node as as all vectors are of class 1. 

 

 

Node10 

Next node is node 10 where its parent node 6 has chosen attribute ‘humidity’ as 

given by Equation A.43. The relation considered at this stage is 

Outlook-->Temperature-->Humidity-->Wind 

 

For node 10 where the value is high, the number of vectors is 3 as given by 

Equation A.39. The only attribute left is ‘wind’ and will be chosen for node 10. 

The DT beyond this point has been updated as shown in Figure 4.14. 

 

 

NODE 11 

 

For node 11 where the value is ‘normal’, there is one vector as given by 

Equation A.42. This node is a leaf node as the remaining vector is for class 1 and 

therefore no further calculations needed. The DT has been updated as shown in 

Figure 4.15. 
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NODE 12 

 

For node 12, it is considered as leaf node. The value ‘weak’ on this node has 

three vectors distributed as follows 

 

    
     

    
     

 

Referring to the values of class don’t play (0) as in     
   and play (1) as in     

   the 

probability of class play is twice the occurrence of class don’t play. In this case 

the decision is choosing the class with higher probability of occurrence. The 

complete decision tree is shown in Figure 4.16, where node 12 is updated as a 

leaf node. 

The classification Rules generated by the HFTDT method are summarised as 

shown in Table A.1. 

Table A.1 Classification (IF-THEN) rules model obtained by the HFTDT method for the completed 

DT shown in Figure 4.16. 

1 Outlook “Sunny” AND Temperature “Hot”  
    
    Class “Play” 

2 Outlook “Sunny” AND Temperature “Mild” AND Humidity “High” AND Wind “Weak” 
    
    Class “Play” 

3 Outlook “Sunny” AND Temperature “Mild” AND Humidity ”Normal” 
    
    Class “Play” 

4 Outlook “Sunny” AND Temperature “Cool” 
    
    Class “Play” 

5 Outlook “Overcast” 
    
    Class “Play” 

6 Outlook “Rainy” AND Wind “Weak” 
    
    Class “Play” 

7 Outlook “Rainy” AND Wind “Strong” 
    
    Class “Don’t play” 
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B.1 HFTDT ALGORITHM SOURCE CODE FILES 

The source code organised in three main folders 

(1) src  this folder contains the following three subfolders  

 convert, contains convert.c  

 header, contains global.h 

 testbench, contains tb.c and struct.c  

 

(2) data: this folder has four subfolders 

 converted_files, contains  the converted data and names files 

 example, contains the dataset to be tested  

 param, contains the generated parameters.c, parameters.h and logarithm 

table  

 results, contains the results files 

 

(3) bin: this folder contains the executable files  

 

 

The following is a list of the source code functions.  
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B.2 SOURCE CODE FUNCTIONS LIST  

 

 Convert.c functions 

1.  Function: read_word 

 Purpose:  read attributes and class of the input data vectors one by one 

 Arguments:  (1) Input data vectors 

(2) Pass a word  

 Returns:   

   

2.  Function: read_to_EOL 

 Purpose: Used for the conversion to numerical data 

 Argument:   

 Returns:   

   

3.  Function: Createlog 

 Purpose: Create a lookup table to store the logarithm table 

 Arguments:  Number of classes 

 

 Returns:  Nothing 

   

 

 Parameters.c functions 

1.  Function: Index_func 

 Purpose: Generate key from input vector  

 Argument:  Input data vector  

 Returns:  A key value  

   

2.  Function: updateHashTable 

 Purpose: Store the generated keys in hash table and update its 

corresponding counter  

 Arguments:  Key from index function 

 Returns:  Nothing 
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3.  Function: rev_index_func 

 Purpose: Generate output vector from ceratin key 

 Argument:  (1) Key value from hash table 

(2)  Output vector from key  

 Returns:  Nothing 

   

4.  Function: ExpandNextNode 

 Purpose: Find the attribute needed in the next node in the list 

 Argument:  The number of the attribute found to have the largest gain 

 Returns:  True if an attribute has been found at this node 

   

5.  Function: AttributeEntropy 

 Purpose: Calculate the entropy for an attribute 

 Arguments:  

 

(1) start of the FT region for each attribute 

(2) end of the FT region for each attribute 

(3) the numer of the attribute to be considered 

(4) the number of vectors to be considered 

 Returns:  The entropy of the data for the attribute 

   

6.  Function: NodeEntropy 

 Purpose: Calculate the entropy of all data being considered at a node 

 Arguments:  

 

(1) start of the FT region for each attribute 

(2) end of the FT region for each attribute 

(3) The number of vectors to be considered at this node 

(4)  The entropy of the data being considered at this node  

 Returns:  Nothing 

   

7.  Function: FindAttributeInstances 

 Purpose: Find the number of vectors for a certain pattern of attributes 

 Arguments: (1) start attribute value (for each attribute) 

(2) end attribute value (for each attribute) 

(3) Number of classes 

 Returns: The number of vectors 
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 struct.c functions 

1.  Function: function_struct 

 Purpose: Build the decision tree 

 Argument:  Numerical notation of input vector 

 Returns:  Nothing 

   

 

  

2.  Function: function_test_data 

 Purpose: Classify new data 

 Argument: Input test vector 

 Returns: (6) 1 for correct classification 

(7) 0 for incorrect classification 
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C.1 DATA SETS SIMULATION RESULTS  

 

(1) Nursery dataset simulation results compared to the software results. 

 

 Table C.1: Hardware simulation results for nursery dataset compared with software results. 

Samples 
Reverse index function run time (seconds) 

Software Virtex7 Kintex7 Artix7 Zynq 

500 0.061919 0.007832 0.007628 0.010878 0.008479 

1000 0.236946 0.035107 0.034192 0.048759 0.038005 

1500 0.365639 0.057207 0.055716 0.079452 0.06193 

2000 1.361605 0.110442 0.107563 0.153388 0.119559 

2500 0.899293 0.172258 0.167767 0.23924 0.186478 

3000 1.211905 0.242236 0.235921 0.336429 0.262232 

3500 1.462808 0.302306 0.294425 0.419857 0.327261 

4000 2.168851 0.461182 0.44916 0.640512 0.499252 

4500 2.099037 0.447915 0.436239 0.622087 0.48489 

5000 2.7444 0.588485 0.573144 0.817316 0.637063 

5500 2.700256 0.586407 0.571121 0.814431 0.634815 

6000 3.504098 0.76516 0.745213 1.062691 0.828323 

6500 3.113556 0.770296 0.750215 1.069824 0.833883 

7000 3.743051 0.909235 0.885533 1.262789 0.984291 

7500 4.099405 0.993459 0.967562 1.379765 1.075468 

8000 4.45182 1.083032 1.054799 1.504167 1.172435 

8500 4.86446 1.184965 1.154075 1.645737 1.282783 

8640 5.016686 1.223684 1.191785 1.699512 1.324698 
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(2) Agaricus-lepiota dataset simulation results compared to the software 

results 

 

Table C.2: Hardware simulation results for agaricus-lepiota dataset compared with software results. 

Samples 
Reverse index function run time (seconds) 

Software Virtex7 Kintex7 Artix7 Zynq 

200 0.13 0.011803 0.013803 0.017316 0.016768 

400 0.25 0.023666 0.027675 0.034720 0.033620 

600 0.37 0.035528 0.041547 0.052123 0.050472 

800 0.51 0.047391 0.055419 0.069526 0.067324 

1000 0.60 0.059253 0.069291 0.086930 0.084176 

1200 0.72 0.071116 0.083163 0.104333 0.101028 

1400 0.85 0.082978 0.097036 0.121736 0.117881 

1600 1.02 0.094841 0.110908 0.139140 0.134733 

1800 1.07 0.106703 0.124780 0.156543 0.151585 

2000 1.18 0.118566 0.138652 0.173946 0.168437 

2200 1.30 0.130428 0.152524 0.191350 0.185289 

2400 1.41 0.142291 0.166396 0.208753 0.202141 

2600 1.53 0.154153 0.180268 0.226156 0.218993 

2800 2.28 0.166016 0.194140 0.243560 0.235845 

3000 2.19 0.246097 0.287789 0.361046 0.349611 

3200 2.32 0.413313 0.483332 0.606365 0.587160 

3400 4.12 0.439153 0.513549 0.644275 0.623869 

3600 5.07 0.553683 0.647482 0.812300 0.786572 

3800 5.34 0.584451 0.683463 0.857441 0.830283 

4000 6.34 0.615220 0.719444 0.902581 0.873994 

4200 6.01 0.645989 0.755425 0.947721 0.917704 

4400 6.23 0.676757 0.791407 0.992862 0.961415 

4600 6.47 0.707526 0.827388 1.038002 1.005125 

4800 7.47 0.876186 1.024621 1.285441 1.244728 

5000 8.05 0.912702 1.067322 1.339012 1.296602 

5200 8.75 0.949217 1.110024 1.392583 1.348477 

5400 9.03 0.985733 1.152725 1.446155 1.400351 

5416 9.01 0.985733 1.152725 1.446155 1.400351 
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(3) Chess dataset simulation results compared to the software results 

 

Table C.3: Hardware simulation results for chess dataset compared with software results. 

Samples 
Reverse index function run time (seconds) 

Software Virtex7 Kintex7 Artix7 Zynq 

100 0.04 0.008897 0.008617 0.015317 0.009379 

200 0.12 0.029106 0.028191 0.05011 0.030685 

300 0.2 0.054137 0.052436 0.093205 0.057073 

400 0.28 0.072243 0.069972 0.124377 0.076162 

500 0.34 0.090757 0.087905 0.156253 0.09568 

600 0.45 0.130526 0.126424 0.224721 0.137606 

700 0.54 0.160615 0.155568 0.276525 0.169328 

800 0.67 0.212052 0.205388 0.365082 0.223555 

900 0.99 0.261227 0.253018 0.449745 0.275398 

1000 1.02 0.301737 0.292254 0.519488 0.318105 

1100 1.15 0.361186 0.349836 0.621841 0.380779 

1200 1.27 0.422522 0.409244 0.72744 0.445442 

1300 1.52 0.496745 0.481135 0.855226 0.523691 

1400 1.49 0.495865 0.480282 0.853712 0.522764 

1500 1.59 0.531923 0.515207 0.915791 0.560778 

1600 1.72 0.567408 0.549577 0.976885 0.598188 

1700 1.99 0.657497 0.636834 1.131986 0.693163 

1800 2.01 0.696196 0.674317 1.198613 0.733961 

1900 2.43 0.856373 0.829461 1.474384 0.902828 

2000 2.9 0.841316 0.814878 1.448461 0.886954 

2100 2.44 0.883403 0.855642 1.520921 0.931324 

2130 2.47 0.896029 0.867871 1.542659 0.944635 
(4)  
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The resources included in the DVD are as follow: 

 

(1) HFTDT source code 

 

(2) Datasets: Include the three datasets nursery, agaricus-lepiota and chess. 
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