

This item was submitted to Loughborough’s Institutional Repository

(https://dspace.lboro.ac.uk/) by the author and is made available under the
following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Implementation of Decision Trees for
Embedded Systems

By

Bashar E. A. Badr

A doctoral thesis submitted in partial fulfilment of the
requirements for the degree of

Doctor of Philosophy

School of Electronic, Electrical and Systems Engineering

Loughborough University, United Kingdom

May 2014

© Bashar E. A. Badr, 2014

 Abstract

II

ABSTRACT

This research work develops real-time incremental learning decision tree solutions

suitable for real-time embedded systems by virtue of having both a defined

memory requirement and an upper bound on the computation time per training

vector. In addition, the work provides embedded systems with the capabilities of

rapid processing and training of streamed data problems, and adopts electronic

hardware solutions to improve the performance of the developed algorithm.

Two novel decision tree approaches, namely the Multi-Dimensional Frequency

Table (MDFT) and the Hashed Frequency Table Decision Tree (HFTDT) represent

the core of this research work. Both methods successfully incorporate a frequency

table technique to produce a complete decision tree.

The MDFT and HFTDT learning methods were designed with the ability to generate

application specific code for both training and classification purposes according to

the requirements of the targeted application. The MDFT allows the memory

architecture to be specified statically before learning takes place within a

deterministic execution time.

The HFTDT method is a development of the MDFT where a reduction in the

memory requirements is achieved within a deterministic execution time. The

HFTDT achieved low memory usage when compared to existing decision tree

methods and hardware acceleration improved the performance by up to 10 times

in terms of the execution time.

 Acknowledgements

III

ACKNOWLEDGEMENT

First and foremost, I praise Allah the Almighty, the Most Gracious, the Most

Merciful who blessed me with strength, health, patience to finish this work.

I would like to express my sincere and deepest gratitude to my supervisor Dr David

J. Mulvaney for his continuous support, patience, motivation and valuable advice

throughout this research work. His guidance, assistance, effort and critical

comments were essential to complete this research work and the writing of the

thesis.

I would like to thank my second supervisor Dr Vassilios A. Chouliaras for his

positive energy, continuous support and valuable advice that helped me

throughout the time of my research.

I would like to extend my warmest thanks to all staff members of the school of

Electronic, Electrical and Systems Engineering at Loughborough University

especially the IT department for their kind help and support.

My appreciation also goes to my research colleagues and my friends in

Loughborough for their unlimited support that made my stay in Loughborough so

memorable. I am also grateful to my friends in Jordan for their continual

encouragement.

Last but not least, I would like to express my deepest gratitude and thanks to my

parents and my brothers for their endless care and support throughout my study in

Loughborough. Without the praying, blessing and the encouragement of my

parents I couldn’t achieve my goals.

 Dedication

IV

DEDICATION

I dedicate this work to my parents for

their unconditional love, enormous

support, encouragement and guidance

throughout my life to date.

 Research Publications

V

RESEARCH PUBLICATIONS

1. Bashar E. Badr, and David J. Mulvaney, Hardware Implementation of

Decision Trees for Robotic Applications, Research Conference 2010, RSSE,

Loughborough University, May 2010

2. Bashar E. Badr, David J. Mulvaney, and Vassilios A. Chouliaras, Implementation

of Decision Trees in a Configurable Multiprocessor Architecture in VLSI-

SOC 2011: Proceedings of the 19th IFIP/IEEE International Conference on Very

Large Scale Integration 2011, Kowloon, Hong Kong, China, Oct. 3-5, 2011.

3. Bashar E. Badr, David J. Mulvaney, and Vassilios A. Chouliaras,

Implementation of Decision Trees for Embedded Applications. PhD

Conference 2012, EESE, Loughborough University, May 2012.

 Abbreviations

VI

ABBREVIATIONS

AI : Artificial Intelligence

ANN : Artificial Neural Networks

ASIC : Application-Specific Integrated Circuit

DT : Decision Tree

FPGA : Field Programmable Gate Array

FT : Frequency Table

FTDT : Frequency Table Decision Tree

GA : Genetic Algorithm

HDL : Hardware description language

HFT : Hashed Frequency Table

HFTDT : Hashed Frequency Table Decision Tree

HLS : High-level Synthesis

ID3 : Induction Dichotomizer – version 3

ID4 : Induction Dichotomizer – version 4

ID5 : Induction Dichotomizer – version 5

ID5R : Modified Version of Induction Dichotomizer – version 5

IDP : Incremental Decision Path

IG : Information Gain

IP : Intellectual Property

ITI : Incremental Tree Inducer

LUT : Look up table

MDFT : Multi-Dimensional Frequency Table

ML : Machine Learning

RL : Reinforcement Learning

RTL : Register Transfer Level

SVM : Support Vector Machines

 Table of Contents

VII

TABLE OF CONTENTS

ABSTRACT .. II

ACKNOWLEDGEMENT ...III

RESEARCH PUBLICATIONS ... V

ABBREVIATIONS .. VI

TABLE OF CONTENTS ... VII

LIST OF FIGURES ... XI

LIST OF TABLES .. XIII

1 INTRODUCTION ... 1

1.1 MOTIVATION ... 2

1.2 AIM AND OBJECTIVES .. 2

1.3 CONTRIBUTIONS TO KNOWLEDGE .. 3

1.4 THESIS ORGANIZATION ... 4

1.5 SUMMARY ... 5

2 BACKGROUND ... 6

2.1 MACHINE LEARNING SYSTEMS .. 6

2.1.1 REAL-TIME EMBEDDED SYSTEMS ... 8

2.1.2 REAL-TIME INCREMENTAL LEARNING SYSTEMS ... 8

2.1.3 METHODS USED FOR MACHINE LEARNING .. 9

2.2 DECISION TREES .. 10

2.2.1 NON-INCREMENTAL AND INCREMENTAL LEARNING DT ALGORITHMS 11

2.2.2 FTDT AND IDP INCREMENTAL LEARNING METHODS .. 11

2.2.3 ENTROPY, INFORMATION GAIN AND GAIN RATIO ... 14

2.2.4 DECISION TREE PRUNING ... 16

2.2.5 HARDWARE IMPLEMENTATIONS OF DECISION TREES ... 18

2.3 CONCLUSION... 21

3 EXPERIMENTAL PROCEDURE ... 22

3.1 INTRODUCTION ... 22

3.2 MDFT AND HFTDT STRUCTURE ... 23

 Table of Contents

VIII

3.2.1 GENERATE DECISION TREE CODE ... 24

3.2.2 DECISION TREE TRAINING ... 26

3.2.3 CLASSIFICATION USING THE DECISION TREE .. 29

3.3 SUMMARY ... 30

4 MULTI-DIMENSIONAL FREQUENCY TABLE DECISION TREE ... 31

4.1 INTRODUCTION ... 31

4.2 FREQUENCY TABLE FOR DECISION TREES .. 32

4.3 NOVELTY OF MDFT .. 33

4.4 DECISION TREE CALCULATIONS ... 34

4.5 MAXIMUM NUMBER OF CALCULATIONS (WORST CASE SCENARIO) ... 36

4.6 CALCULATING THE MEMORY USAGE OF THE MDFT METHOD .. 38

4.7 GENERATING A DT AND RULES USING THE MDFT METHOD .. 41

4.8 AN ILLUSTRATIVE EXAMPLE OF THE MDFT METHOD .. 42

4.9 EVALUATION OF THE MDFT METHOD ... 73

4.10 SUMMARY ... 77

5 HASHED FREQUENCY TABLE DECISION TREE .. 79

5.1 INTRODUCTION ... 79

5.2 THE HASHED FREQUENCY TABLE ... 80

5.3 TECHNIQUES FOR THE INDEX AND REVERSE INDEX FUNCTIONS ... 81

5.3.1 INDEX FUNCTION .. 81

5.3.2 REVERSE INDEX FUNCTION ... 82

5.3.3 AN ILLUSTRATIVE EXAMPLE .. 83

5.3.4 ALTERNATIVE INDEX FUNCTION TECHNIQUE ... 84

5.3.5 ALTERNATIVE REVERSE INDEX FUNCTION TECHNIQUE .. 85

5.4 HFTDT METHOD CALCULATIONS ... 86

5.4.1 MAXIMUM NUMBER OF CALCULATIONS (WORST CASE SCENARIO) .. 86

5.4.2 CALCULATING MEMORY USAGE ... 86

5.5 GENERATING THE DT USING HFTDT .. 87

5.6 AN ILLUSTRATIVE EXAMPLE FOR HFTDT METHOD .. 89

5.7 COMPARISON BETWEEN HFTDT AND MDFT ... 92

5.8 SUMMARY ... 93

6 EXPERIMENTS TO GENERATE DECISION TREES USING HFTDT .. 94

6.1 INTRODUCTION ... 94

6.2 CLASSIFIERS USED IN THE EXPERIMENT .. 95

 Table of Contents

IX

6.3 TEST DATASETS ... 95

6.4 TEST RESULTS .. 97

6.4.1 NUMBER OF NODES .. 98

6.4.2 CALCULATION TIME .. 100

6.4.3 MEMORY USAGE .. 103

6.4.4 CLASSIFICATION ACCURACY .. 105

6.5 CONCLUSION... 108

7 HARDWARE IMPLEMENTATION OF HFTDT .. 109

7.1 INTRODUCTION ... 109

7.2 HFTDT CODE PROFILING .. 110

7.2.1 SOURCE CODE RECOMPILATION ... 110

7.2.2 RESULT OBTAINED USING THE FLAT PROFILE ... 110

7.2.3 RESULTS OBTAINED USING THE CALL GRAPH ... 114

7.3 HARDWARE DESIGN FOR THE MOST TIME-CONSUMING FUNCTION .. 117

7.3.1 HIGH-LEVEL SYNTHESIS TOOLS ... 117

7.3.2 CHOOSING AN HLS TOOL .. 118

7.3.3 HARDWARE DESIGN USING THE HLS TOOL .. 119

7.3.4 DESIGN SYNTHESIS AND CO-SIMULATION .. 119

7.3.5 TARGETED FPGAs .. 121

7.3.6 DATASET USED IN THE HARDWARE DESIGN ... 122

7.4 SIMULATION RESULTS ... 122

7.4.1 NURSERY DATASET ... 124

7.4.2 RESULTS FOR THE AGARICUS-LEPIOTA DATASET.. 125

7.4.3 RESULTS FOR THE CHESS DATASET ... 127

7.4.4 RESULTS SUMMARY .. 128

7.5 EXTENSION OF THE PARALLEL IMPLEMENTATION .. 131

7.6 SUMMARY ... 133

8 CONCLUSIONS AND FURTHER WORK ... 134

8.1 CONCLUSIONS ... 134

8.1.1 MULTI-DIMENSIONAL FREQUENCY TABLE METHOD (MDFT) ... 134

8.1.2 HASHED FREQUENCY TABLE DECISION TREE METHOD (hftdt) ... 135

8.2 FURTHER WORK .. 136

REFERENCES:.. 138

APPENDIX A AN ILLUSTRATIVE EXAMPLE FOR THE HFTDT METHOD ... 146

 Table of Contents

X

APPENDIX B SOURCE CODE FUNCTIONS ... 171

B.1 HFTDT ALGORITHM SOURCE CODE FILES .. 172

B.2 SOURCE CODE FUNCTIONS LIST .. 173

APPENDIX C TABLES RESULTS ... 176

C.1 DATA SETS SIMULATION RESULTS ... 177

APPENDIX D RESOURCES INCLUDED ON THE DVD ... 180

 List of Figures

XI

LIST OF FIGURES

FIGURE 2.1: MACHINE LEARNING SYSTEM .. 7

FIGURE 2.2: FTDT ALGORITHM [11] .. 13

FIGURE 2.3: IDP ALGORITHM [11] ... 14

FIGURE 3.1: THE PROGRAMS INVOLVED IN THE IMPLEMENTATION OF THE MDFT AND HFTDT APPROACHES 23

FIGURE 3.2: THE GENERATE PROGRAM .. 24

FIGURE 3.3: THE PROGRAM TO TRAIN THE DECISION TREE ... 28

FIGURE 3.4: TWO DIFFERENT APPROACHES USED FOR STORING THE TRAINING DATA IN A FREQUENCY TABLE 29

FIGURE 3.5: CLASSIFICATION USING THE DECISION TREE .. 30

FIGURE 4.1: A BASIC EXAMPLE OF A THREE DIMENSIONAL FREQUENCY TABLE .. 33

FIGURE 4.2: MDFT NODE STRUCTURE .. 39

FIGURE 4.3 (A): EXAMPLE OF A CONVENTIONALLY LINKED DECISION TREE STRUCTURE ... 39

FIGURE 4.3 (B): DECISION TREE STRUCTURE IN WHICH THE NODES HAVE FIXED MEMORY USAGE BY EMPLOYING CHILD AND SIBLING

POINTER.. 40

FIGURE 4.4: DESCRIPTION OF THE MDFT ALGORITHM ... 41

FIGURE 4.5: ATTRIBUTE OUTLOOK IS CHOSEN FOR THE ROOT NODE. ... 51

FIGURE 4.6: ATTRIBUTE TEMPERATURE IS SELECTED FOR NODE 2. .. 56

FIGURE 4.7: NODE 3 IS A LEAF NODE. ... 57

FIGURE 4.8: ATTRIBUTE WIND IS SELECTED FOR NODE 4.. 62

FIGURE 4.9: NODE 5 IS A LEAF NODE. ... 63

FIGURE 4.10: ATTRIBUTE ‘HUMIDITY’ IS SELECTED FOR NODE 6. .. 66

FIGURE 4.11: NODE 7 IS A LEAF NODE. ... 67

FIGURE 4.12: NODE 8 IS A LEAF NODE. ... 69

FIGURE 4.13: NODE 9 IS A LEAF NODE. ... 70

FIGURE 4.14: ATTRIBUTE WIND IS SELECTED FOR NODE 10. ... 70

FIGURE 4.15: NODE 11 IS A LEAF NODE. ... 71

FIGURE 4.16: THE COMPLETED DT, WHERE NODE 12 IS A LEAF NODE. .. 72

FIGURE 4.17: DECISION TREE CALCULATION TIME OF THE EXAMPLE FOUR DIMENSIONAL MDFTS, EACH BAR SHOWING THE TOTAL

NUMBER OF ATTRIBUTE VALUES IN EACH EXAMPLE. .. 74

FIGURE 4.18: DECISION TREE CALCULATION TIME OF THE EXAMPLE EIGHT DIMENSIONAL MDFTS, EACH BAR SHOWING THE TOTAL

NUMBER OF ATTRIBUTE VALUES IN EACH EXAMPLE. .. 74

FIGURE 4.19: NUMBER OF ADDITIONS NEEDED AT THE ROOT NODE OF THE EXAMPLE FOUR DIMENSIONAL MDFT 76

FIGURE 4.20: NUMBER OF ADDITIONS NEEDED AT THE ROOT NODE OF THE EXAMPLE EIGHT DIMENSIONAL MDFT 76

 List of Figures

XII

FIGURE 4.21: MEMORY REQUIREMENTS OF THE MDFT FOR THE FOUR AND EIGHT DIMENSIONAL EXAMPLES 77

FIGURE 5.1: HFT STRUCTURE .. 80

FIGURE 5.2: DESCRIPTION OF THE HFTDT ALGORITHM .. 88

FIGURE 6.1: NUMBER OF NODES FOR THE NURSERY DATASET ... 99

FIGURE 6.2: NUMBER OF NODES FOR THE AGARICUS-LEPIOTA DATASET ... 99

FIGURE 6.3: NUMBER OF NODES FOR THE CHESS DATASET ... 100

FIGURE 6.4: EXECUTION TIME FOR THE NURSERY DATASET .. 101

FIGURE 6.5: EXECUTION TIME FOR THE AGARICUS-LEPIOTA DATASET ... 102

FIGURE 6.6: EXECUTION TIME FOR THE CHESS DATASET .. 102

FIGURE 6.7: MEMORY USAGE FOR THE NURSERY DATASET... 104

FIGURE 6.8: MEMORY USAGE FOR THE AGARICUS-LEPIOTA DATASET ... 104

FIGURE 6.9: MEMORY USAGE FOR THE CHESS DATASET .. 105

FIGURE 6.10: CLASSIFICATION ERROR FOR THE NURSERY DATASET .. 106

FIGURE 6.11: CLASSIFICATION ERROR FOR THE AGARICUS-LEPIOTA DATASET ... 107

FIGURE 6.12: CLASSIFICATION ERROR FOR THE CHESS DATASET .. 107

FIGURE 7.1: EXAMPLE OF INFORMATION PROVIDED BY A FLAT PROFILE GENERATED BY GPROF FOR THE NURSERY DATASET 111

FIGURE 7.2: FLAT PROFILE RESULTS FOR THE NURSERY DATASET ... 112

FIGURE 7.3: FLAT PROFILE RESULTS FOR THE AGARICUS-LEPIOTA DATASET .. 113

FIGURE 7.4: FLAT PROFILE RESULTS FOR THE CHESS DATASET ... 113

FIGURE 7.5: EXAMPLE OF A CALL GRAPH GENERATED BY GPROF FOR THE NURSERY DATASET ... 115

FIGURE 7.6: CALL GRAPH FOR HFTDT SHOWING THE CALL SEQUENCE AND THE EXECUTION TIMES OF THE FUNCTIONS 116

FIGURE 7.7: PROCESS OF HIGH-LEVEL LANGUAGE TRANSLATION TO HDL USING HLS TOOLS ... 117

FIGURE 7.8 OVERVIEW OF THE VIVADO HIGH-LEVEL SYNTHESIS DESIGN PROCESS ... 119

FIGURE 7.9 CONCEPT OF C VERIFICATION .. 120

FIGURE 7.10: XILINX 7-SERIES FPGAS FAMILIES [109] .. 122

FIGURE 7.11: CODE FOR THE ACCELERATED FUNCTION FOR THE AGARICUS-LEPIOTA DATASET ... 123

FIGURE 7.12: HARDWARE ACCELERATION RESULTS OF TARGETING A RANGE OF FPGAS FOR THE NURSERY DATASET 124

FIGURE 7.13: HARDWARE ACCELERATION RESULTS OF TARGETING A RANGE OF FPGAS FOR THE AGARICUS-LEPIOTA DATASET.126

FIGURE 7.14: HARDWARE ACCELERATION RESULTS OF TARGETING A RANGE OF FPGAS FOR THE CHESS DATASET. 127

FIGURE 7.15: HARDWARE ACCELERATION RESULT COMPARED WITH C4.5 AND ITI FOR THE NURSERY DATASET 130

FIGURE 7.16: HARDWARE ACCELERATION RESULT COMPARED WITH C4.5 AND ITI FOR THE AGARICUS-LEPIOTA DATASET 130

FIGURE 7.17: HARDWARE ACCELERATION RESULT COMPARED WITH C4.5 AND ITI FOR THE CHESS DATASET........................ 131

FIGURE 7.18: IMPLEMENTATION OF REV_INDEX_FUNC TO SUPPLY DATA TO THE OPEN NODES IN A DT 132

 List of Tables

XIII

LIST OF TABLES

TABLE 2.1: SUMMARY OF MACHINE LEARNING METHOD SUITABILITY FOR REAL-TIME INCREMENTAL EMBEDDED LEARNING [11] 10

TABLE 3.1: THE APPLICATION PARAMETERS AVAILABLE FROM THE NAMES FILE .. 24

TABLE 3.2 AN EXAMPLE TRAINING SET, QUINLAN [69] ... 27

TABLE 3.3: (A) THE ATTRIBUTES AND CLASSES SHOWN IN THE ORIGINAL EXAMPLE AND (B) THE .NUMERICAL NOTATION AFTER

CONVERSION .. 27

TABLE 3.4: THE VECTORS OF TABLE 3.2 AFTER CONVERSION TO NUMERICAL FORM .. 28

TABLE 4.1: THE WEATHER PROBLEM DATASET CONTAINS 16 INPUT VECTORS WITH 15 UNIQUE ENTRIES. 42

TABLE 4.2: THE ATTRIBUTES AND CLASSES SHOWN IN THE WEATHER EXAMPLE WITH THE CORRESPONDING NOTATION 43

TABLE 4.3: MDFT SHOWS A UNIQUE NOTATION FOR EACH CELL ACCORDING TO ITS ATTRIBUTES AND CLASS VALUES. 44

TABLE 4.4: MDFT FOR THE WEATHER PROBLEM, WHERE THE CELLS ARE UPDATED ACCORDING TO THE INPUT DATASET. 44

TABLE 4.5: CLASSIFICATION (IF-THEN) RULES MODEL OBTAINED BY THE MDFT METHOD FOR THE COMPLETED DT SHOWN IN

FIGURE 4.16. .. 72

TABLE 5.1: A MAP OF THE KEYS OF THE WEATHER PROBLEM .. 89

TABLE 5.2: HASHED FREQUENCY TABLE OF THE WEATHER PROBLEM .. 90

TABLE 5.3: COMPARISON BETWEEN THE HFTDT AND MDFT METHODS .. 92

TABLE 6.1: SUMMARY OF DATASET CHARACTERISTICS ... 97

TABLE 7.1: TARGETED FPGAS FOR THE HARDWARE DESIGN .. 121

TABLE 7.2: HARDWARE DESIGN REPORT FOR THE NURSERY DATASET ... 125

TABLE 7.3: HARDWARE DESIGN REPORT USING AGARICUS-LEPIOTA DATASET ... 126

TABLE 7.4: HARDWARE DESIGN REPORT USING CHESS DATASET .. 128

TABLE 7.5: HARDWARE SIMULATION RESULTS SUMMARY .. 128

TABLE A.1 CLASSIFICATION (IF-THEN) RULES MODEL OBTAINED BY THE HFTDT METHOD FOR THE COMPLETED DT SHOWN IN

FIGURE 4.16. .. 170

TABLE C.1: HARDWARE SIMULATION RESULTS FOR NURSERY DATASET COMPARED WITH SOFTWARE RESULTS. 177

TABLE C.2: HARDWARE SIMULATION RESULTS FOR AGARICUS-LEPIOTA DATASET COMPARED WITH SOFTWARE RESULTS. 178

TABLE C.3: HARDWARE SIMULATION RESULTS FOR CHESS DATASET COMPARED WITH SOFTWARE RESULTS. 179

Chapter 1 Introduction

1

1 INTRODUCTION

Embedded systems are extensively used in many application domains, such as

avionics, automotive systems, health monitoring and mobile communications. To

maintain a competitive advantage, embedded system developers need to

continually add new features, thereby increasing the computational demands on

such systems. The market is one of substantial growth, forecast to expand at an

annual rate of 6.8% between years 2012 and 2018 [1].

Embedded systems are increasingly being applied in applications that need to

interact with the surrounding environment, requiring the ability to take correct

and rapid decisions. Intelligent interaction with human counterparts requires an

ability to learn in real-time (where the knowledge is accumulated and stored in an

accessible form during the interaction) and incrementally (to augment existing

stored knowledge). Where the targeted environment includes humans, safety

issues will be paramount.

Systems that interact with humans are expected to behave intelligently and ‘human

like’. Such intelligent systems need to be able to adopt interaction modes that are

natural to their human users as well as to understand their requirements. For

intelligent systems to be able to interact with humans in all their environments

implies that machine learning needs to become achievable on embedded platforms;

a consideration still very rarely taken into account in the design of learning

algorithms.

Chapter 1 Introduction

2

1.1 MOTIVATION

At present, machine learning systems are not available that are able to interact

with human users in their normal living and working environments. The

motivation of the work presented in this thesis is to make an initial contribution to

providing such a system. The current work will design and implement a machine

learning system that is capable of learning incrementally, in real-time and which is

suited to embedded implementation. Decision trees (DTs) are adopted as a

machine learning method, due to their simplicity, reliability and classification

performance. Incremental DT learning methods have been considered by previous

researchers, but the real-time embedded aspects have not been fully solved.

1.2 AIM AND OBJECTIVES

The aim in this research work is the design and implementation of novel machine

learning algorithms suitable for embedded systems and to maximize its

responsiveness and usefulness by adopting a real-time, incremental learning

approach. This requires that the learning method is able to produce its outputs and

knowledge updates within an acceptable time interval.

It is important to investigate the range of available candidate classifiers that can be

used to implement a real-time embedded system. The work will show that an

improved decision tree algorithm can give a substantial reduction in memory usage

and calculation time can be achieved. In addition, the utilization of flexible

hardware such as field-programmable gate arrays allows further acceleration of

processing and permits larger problems to be addressed.

The following are the objectives to achieve the aim.

 Investigate the literature for existing learning methods that have potential

to apply real-time incremental learning in embedded systems.

 Develop solutions for incremental learning in software simulation.

Chapter 1 Introduction

3

 Improve the solutions for real-time applications by providing a

deterministic time solutions.

 Improve the memory management of the solutions to target embedded

systems by maintaining a fixed memory usage.

 Evaluate the performance of the solutions with respect to other learning

methods using a range of test databases.

 Implement a hardware solution for the most time-consuming part of the

algorithm.

1.3 CONTRIBUTIONS TO KNOWLEDGE

In this research work, decision tree algorithms were developed that are suitable for

real-time incremental learning systems. Below is a brief summary of the algorithms

where a more detailed discussion can be found in chapters 3, 4 and 5.

Frequency table in multi-dimensional form

The multi-dimensional frequency table introduced in this thesis can hold in a

compact form all the relationships between the attributes of the vectors in the

training datasets. The frequency table has a number of dimensions equal to the

number of attributes and is able to record the frequency of occurrence of each

input vector.

Multi-dimensional frequency table algorithm (MDFT) as a real-time

incremental learning method

The MDFT is a novel real-time incremental learning decision tree algorithm that

employs a multi-dimensional frequency table and provides the ability to build a

decision tree suitable for embedded systems. The MDFT algorithm can meet

embedded system constraints by having a defined calculation time and memory

usage.

Chapter 1 Introduction

4

Hashed frequency table decision tree algorithm (HFTDT) as a real-time

incremental learning method

The HFTDT algorithm is a development of the MDFT algorithm. It also adopts a

multi-dimensional Frequency table technique but stores the table values in a more

compact form, allowing the building of decision trees for datasets larger than these

that can be handled by MDFT. The algorithm uses a hash table to store the multi-

dimensional frequency table, providing a unique key for each vector stored. The

new HFTDT algorithm is able to produce similar classification performance to the

MDFT method, but with reduced memory requirement.

1.4 THESIS ORGANIZATION

Chapter 2 presents background material, including an overview of machine

learning systems, real-time embedded systems and real-time incremental learning

systems. The chapter concentrates on decision tree approaches, including non-

incremental and incremental learning algorithms as well as their implementation

in software and hardware.

Chapter 3 presents the experimental procedure of the research work used for the

generation of application-specific software and hardware to implement the MDFT

and HFTDT algorithms.

Chapter 4 concentrates on the description, implementation and testing of the MDFT

method. The chapter demonstrates the real-time, incremental and embedded

nature of the MDFT approach.

Chapter 5 introduces the HFTDT method and demonstrates its implementation and

testing. It is demonstrated to be a real-time incremental learning decision tree

method, using a hashed frequency table to store incoming input data vectors.

Chapter 6 discusses the results of testing the HFTDT method by means of a series of

examples and compares its performance with other learning methods, namely C4.5,

kNN and ITI.

Chapter 1 Introduction

5

Chapter 7 describes the hardware implementation of HFTDT, where a custom

hardware design of the most time consuming function is implemented to improve

performance.

Chapter 8 presents the main findings of the thesis and gives suggestions for future

research.

1.5 SUMMARY

An important development of modern electronic devices would be their ability to

respond intelligently to their owners and on a time scale that is natural. A suitable

embedded platform for such a device would be a real-time incremental machine

learning system. This thesis investigates the most promising machine learning

algorithm among those already existing and works towards its adoption for use in

embedded systems.

Chapter 2 Background

6

2 BACKGROUND

This chapter introduces a range of machine learning methods that are described in

the literature and which are relevant to the current work. The chapter first

investigates machine learning in general, but concentrates on the real-time

incremental learning systems that are the most relevant to the current work. As a

result of this general investigation, decision tree methods are identified as the most

relevant for real-time incremental learning in embedded system. Consequently, the

second part of this chapter concentrates on existing techniques used for decision

tree implementation, including both incremental and non-incremental approaches,

the splitting criteria used for tree generation, pruning techniques and a review of

the implementations of decision trees in electronic hardware.

2.1 MACHINE LEARNING SYSTEMS

Several methods and algorithms have been developed by researchers in the field of

machine learning with the aim of building intelligent systems that can complete

certain tasks within a pre-defined time period. Machine learning plays a significant

role in Artificial Intelligence (AI) as those systems that are capable of self change as

further information is acquired [2].

Several authors (such as [3], [4]) consider learning to be the gain of knowledge or

the refinement of skills. The Oxford English Dictionary [4] defines machine learning

as “Computing the capacity of a computer to learn from experience”, so including any

self modification that can occur as a result of obtaining the newly acquired

information. Mitchell [5] considered machine learning to be the ability of

computers to program themselves and to take advantage of the data flow rather

than just performing its processing. Köpf [6] considered machine learning to be a

field of concern for the study of algorithms that can improve automatically from

experience. Generally, such changes do not modify the algorithm itself, but rather

the changes are expected to be to the database.

Chapter 2 Background

7

The majority of machine learning methods require that the data from which to

learn are provided in a structured format. These data are typically represented by a

vector whose elements describe attributes specific to the learning problem being

tackled. During training, the vectors are used to modify the algorithm’s internal

representation of the problem. Often, a second set of vectors is maintained for

testing purposes to assess the performance of the learning approach.

Figure 2.1 shows the architecture generally adopted by machine learning systems.

The system behaviour that transforms inputs to actions is the application of rules.

It is important to emphasise that a machine learning algorithm uses the knowledge

acquired to generate rules that are then updated as new knowledge is acquired. It

may be insightful at this stage to explain that in the decision tree implementations

described later in this thesis, the accumulated knowledge is represented as a

frequency table and the machine learning algorithm generates a decision tree that

has an equivalent representation as a set of rules.

Figure 2.1: Machine learning system

Chapter 2 Background

8

2.1.1 REAL-TIME EMBEDDED SYSTEMS

Embedded systems are those dedicated to perform a specific task and are generally

executed on a platform running an operating system that controls the

microprocessor interface [7]. Real-time tasks are those characterized by a deadline,

this being the maximum time needed by the system to complete execution [8].

Real-time systems are often further divided into those dealing ‘hard’ and ‘soft’ tasks

[9]. Hard real-time tasks occur in highly critical applications, where missing one

deadline may cause a catastrophic system failure, for example in automatic anti-

lock braking systems or in air traffic control. In soft real-time systems, the missing

of a deadline is normally possible and, although adversely affecting its

performance, does not cause a major system failure, for example in an automated

teller machine or a domestic appliance controller.

2.1.2 REAL-TIME INCREMENTAL LEARNING SYSTEMS

Although many embedded systems will need to operate in real-time to some extent,

few can be categorised as incrementally learning. Non-incremental learning

systems need to have a complete set of input data vectors available before learning

can proceed. Incremental learning systems [10] have the ability to carry out

continuous learning, in the sense that learning can start even if only one or a small

number of vectors is available, but the rules can continue to be updated as more

data are acquired [11]. A task can be considered as incremental if the learning

system needs to be able to generate outputs before all inputs have been provided

or assimilated [12]. As an example, incremental learning gives an intelligent robot

the ability to navigate not only in fixed environments, but also in changing

environments where existing objects may move or new objects be introduced. It is

important to note that such navigation is likely to require that the learning system

is able to operate in real-time as well as incrementally, since objects need to be

avoided while the system continues to learn.

Chapter 2 Background

9

2.1.3 METHODS USED FOR MACHINE LEARNING

Learning methods can be supervised [13], unsupervised [14] or semi-supervised

[15] algorithms. In supervised learning it is assumed that a teacher or supervisor

trains the system, such that the instance examples are given with the desired

categories. In unsupervised learning, the desired categories aren’t provided as part

of the training and the machine needs to be capable of generating and maintaining

its own categories. In semi-supervised learning the system learns from a mixture of

categorised and uncategorised training vectors.

In the design of an embedded system that performs real-time incremental learning,

a number of constraints need to be met. To operate in an embedded environment,

the algorithm needs to be capable of using a specified memory capacity that is

known a priori. To be able to operate in real-time, the number and types of

calculations that are to be performed during learning needs to be known, as well as

the characteristics of the computing platform on which the algorithm is to be run.

These learning operations will include integrating a new vector into the knowledge

base and updating the rule set. The ability to operate incrementally depends on the

learning algorithm itself, and specifically whether it has been designed to require

the entire dataset is made available before learning can begin, or whether learning

can progress with partial data. Table 2.1 compares the ability of the most popular

categories of machine learning methods to operate in an embedded real-time

incremental manner.

In instance-based learning, the learning process requires the storage of all training

vectors as well as information relating to classification performance: the process is

time consuming and substantial memory is required. For artificial neural networks

and support vector machines, a large sample size is required to achieve the best

prediction accuracy [13], thereby increasing the demand on memory and

computation time and often making the methods unsuitable for real-time

applications. In reinforcement learning and Bayesian learning, the memory

requirement and long computation times limit their suitability for real-time

applications. A small number of genetic algorithm approaches permit incremental

learning, but all require an initially unknown computational time. Inductive

Chapter 2 Background

10

learning, which includes decision trees, is shown in the table as being potentially

suitable for real-time incremental learning. However, as discussed in the following

section, this suitability is highly dependent on the specific decision tree approach

adopted and many have shortcomings in at least one aspect of being suited to real-

time or incremental learning. The focus of the current work is to develop a decision

tree method that is well suited to both real-time and incremental implementation

in embedded systems.

Table 2.1: Summary of machine learning method suitability for real-time incremental embedded

learning [11]

Method
Capable of operating in

embedded devices

Capable of performing

real time learning

Capable of performing

incremental learning

Instance based learning [16] Yes No No

Artificial neural networks [17], [18] Yes Yes Yes

Support vector machines [19] Yes No No

Reinforcement learning [20] Yes No No

Bayesian learning [11], [21] Yes No Yes

Genetic algorithm [22], [23] Yes No Yes

Inductive learning DTs [11], [24] Some Partially Some

2.2 DECISION TREES

Decision trees (DTs) are a hierarchical model generated under supervised learning

which consists of internal decision nodes and terminal leaves identified by a

sequence of recursive splits [2]. DT algorithms have been successfully exploited in

classification domains, including pattern recognition, decision support systems,

expert systems [11], [25] and applied in speech and character recognition, remote

sensing and medical diagnosis [26]. The advantages include simplicity, relatively

low computation complexity, accuracy, and they can produce a representation of

what has been learned that is easy for their users to understand.

Chapter 2 Background

11

2.2.1 NON-INCREMENTAL AND INCREMENTAL LEARNING DT ALGORITHMS

Several DT algorithms have been developed, and can be divided into two

categories, namely non-incremental learning algorithms (ID3 [24], C4.5 [27], C5

[28], CART[29], SPRINT[30] and ID6NB [31]) and incremental learning algorithms

(ID4 [32], ID5 [33], ID5R [34], ITI [35], FTDT and IDP [11]).

The non-incremental C4.5 algorithm introduced by Quinlan [27] is an evolution of

ID3 and uses dynamic memory allocation, a type of storage normally avoided in

embedded applications due to the potential to exceed available storage capacity

[36]. ID4, ID5 and ID5R produce binary trees, and, in spite of the fact that ID5 and

its successor ID5R were developed to overcome the relatively poor classification

performance of ID4, both produce results that are of similar quality to ID3 [11],

[31], [37]. ID5 and ID5R require considerably more memory than their non-

incremental counterparts, making these algorithms poorly suited for embedded

targets.

ITI (Incremental Tree Inducer) [35] exhibits performance often comparable with

C4.5 and better than ID4, ID5 and ID5R [11]. The memory usage and computation

time of ITI increase with the number of training vectors, making this algorithm an

unlikely candidate for embedded systems [38].

2.2.2 FTDT AND IDP INCREMENTAL LEARNING METHODS

The shortcomings of the DT approaches found in the literature were identified by

Swere [11]. Initial work was carried out in order to identify suitable DT

enhancements that would meet the time and memory performance constraints for

real-time incremental learning, yet be able to provide similar classification

performance to C4.5. The FTDT (frequency table decision tree) method and the IDP

(incremental decision path) were both based on a novel frequency table approach

that was originally developed to allowing a fixed memory and known DT

calculation time to be defined; features not apparent in ID5, ID5R and ITI.

Chapter 2 Background

12

In generating DTS, both FTDT and IDP perform information gain (IG) [24] and

entropy [39] calculations similar to those found in C4.5. As all the information

needed to perform DT calculations use data found in the frequency table (FT) for a

given application, an upper bound on the number of calculations can be determined

in advance. As the dimensions of the FT are also known for a given problem, the

memory requirement can also be determined a priori.

A common drawback in incremental learning algorithms arises when more

memory is needed to store the additional data obtained as time progresses [35], an

issue overcome in FTDT and IDP [37]. Swere et al. [38] found that the calculation

time needed to generate the nodes using the frequency table was typically an order

of magnitude less than that required by ITI. However, the major drawbacks of the

FTDT and IDP methods are that they are only able to generate partial decision trees

and consequently are unable to solve only problems with a small number of

attributes or, for larger problems, generate solutions whose classification

performance is significantly inferior to that achievable by C4.5.

Figure 2.2 shows the FTDT algorithm. By recording in a FT the relationship of an

attribute with all other attributes, limited information which is only sufficient to

build a partially decision tree is available. In most DTs, additional information is

required to build accurately trees of depth greater than two, as the correlation of

more than two attributes is needed.

Chapter 2 Background

13

Input: Frequency table, a training vector

Outputs: A new DT and commensurate rules

Start

1. Update the frequency table following the arrival of a new training vector

2. IF

 all the entries in the frequency table are of the same class

THEN

 produce a DT containing a single terminal node of the class, go to step 7

ELSE

 initialize the DT to include a single root node

3. Select a non-terminal node by following a path through each of the attribute values of a

previous node

4. IF

 all the frequency table entries for this node are of the same class

THEN

 label the node as a terminal node of that class

ELSE

compute the entropy value and the IG for all attributes, select the attribute of the largest

IG and use this attribute for the current node

5. Add edges from the node for each of its attribute values

6. If there remains nodes in the DT that are not terminal nodes, then go to step 2

7. Generate rules from the DT

8. Store the DT and the DT rules

9. Use the DT as required and store new training vector

End

Figure 2.2: FTDT algorithm [11]

The IDP algorithm shown in Figure 2.3 is a development of the FTDT algorithm

which aims to reduce the time needed to classify vectors. IDP generates only that

single branch of the DT that is needed to classify a given test vector. This particular

approach is best suited to incremental learning applications where both training

and testing need to be carried out concurrently.

A drawback is that pruning cannot be performed on an IDP tree (section 2.2.4) as

the whole tree is not available.

Chapter 2 Background

14

Input: Frequency table and unclassified vector

Output: Classified vector

1. IF

 all the entries in the frequency table are of the same class

THEN

 produce a DT containing a single terminal node of the class, go to step 5

ELSE

 initialize the DT to include a single root node

2. compute the entropy value and the IG for all attributes, select the attribute of the largest

IG and use this attribute for the current node

3. Select the attribute value at the node that matches the attribute value of the

corresponding attribute in the unclassified vector

3. IF

 all the frequency table entries for this node are of the same class

THEN

 label the node as a terminal node of that class, go to step 5

ELSE

compute the entropy value and the IG for all attributes, select the attribute of the

largest IG and use this attribute for the current node, go to step 3

5. Use the decision branch as required, update the frequency table

6. Record new classified vector and return to step 1

Figure 2.3: IDP algorithm [11]

2.2.3 ENTROPY, INFORMATION GAIN AND GAIN RATIO

Criterion that have been used to ‘split’ data at the nodes of DTs include information

gain, gain ratio [24], Gini index [40] and the Towing Rule [41]. As information gain

and gain ratio are by far the most popular, only these two criteria are described

here.

Entropy calculations are performed to determine the information gain. The entropy

E of a set of probabilities is described by Shannon [42] as

 (2.1)

Chapter 2 Background

15

The quantity of entropy measures the amount of information. The choice of the unit

for measuring information depends on the base b of the log. For base 2 the

resulting units of the measures are bits and for base 10 it is decimal. To change

from base b to base a simply requires multiplication by .

In DTs, two entropies need to be measured in order to calculate the information

gain of each attribute. The information gain compares the entropy of each attribute

with the total entropy of the dataset involved in the calculations at a given node.

The attribute with the largest information gain value is then selected for that node.

The total entropy of the dataset is given by

 (2.2)

and

The entropy of an attribute value at a given node is then

 (2.3)

 is the number of input vectors in class with attribute value and

From Equation 2.3, the entropy for all the values of an attribute can be

determined from

 (2.4)

 are now specifically the attribute values in and is the number of

values of

Chapter 2 Background

16

The information gain for an attribute can then be determined by

 (2.5)

The information gain method in some cases tends to favour attributes with a larger

number of values, adversely affecting performance compared to using the gain

ratio criteria [27] which measures the ratio between the information gain of an

attribute and its information content. The information content for an attribute is

given by

 (2.6)

Where is the number of input vectors of attribute and is the

number of input vectors in the dataset available for node calculation.

The gain ratio for attribute at a node can then be found from

2.2.4 DECISION TREE PRUNING

This section describes the methods for controlling decision tree growth, which is

normally achieved either by applying a stopping criterion or by adopting a pruning

method. The main pruning techniques used are pre-pruning, that controls the

branch growth of the tree at the growing stage and post-pruning, that performs

pruning on a fully grown tree.

Stopping criteria

Kotsiantis [43] listed the popular conditions that have been used to trigger a

stopping criterion during the growth phase of the decision tree. Conditions include

when all vectors in the training set belong to a single class, decision tree growth

 (2.7)

Chapter 2 Background

17

reaching a pre-defined maximum depth, the number of cases in a terminal node

being fewer than a minimum number of cases of its parents, the number of cases in

new child nodes being fewer than a certain minimum, or when the largest splitting

criteria value is less than a preset threshold.

Maimon et al. [44] found that choosing stringent stopping criteria can lead to a

small and underfitted decision tree with poor classification accuracy for both

training and test data, whereas choosing loose stopping criteria tend to generate

larger decision trees which suffers from overfitting. Overfitting of data occurs when

the generated decision tree becomes significantly dependent either on features not

of utmost importance is distinguishing between classes on irrelevant features or on

data noise in the training dataset [45]. Such dependency can result in a poor

classification performance when dealing with unseen data.

Pruning

To mitigate against the effects of overfitting, pruning techniques are used to

generate DTs that produce a representation of the data that is more generalized

and so likely to perform better in the classification of test vectors. Pruning is

normally achieved by removing sub-trees from the DT that have been generated by

relatively few vectors in the training data [46]. The two most commonly-applied

pruning techniques are pre-pruning and post-pruning [47]. Pre-pruning uses

stopping criteria to halt the growth of the DT before it completely represents the

training data. Stopping criteria include the chi-squared test used by Quinlan [24],

Fisher's exact test [48], the statistical significant method [49] and the depth limit of

cost-sensitive DTs [50]. Post-pruning is carried out after the completion of DT

generation. It removes branches (or sub-trees) of the DT with the aim to improving

generalization and hence classification performance when tested with unseen

vectors [43]. Pruning can begin either from the root node and proceed towards the

leaves or from the leaves and progress towards the root [51]. Post-pruning

algorithms proposed in the literature include minimal cost complexity pruning

[29], reduced error pruning [52], minimum error pruning [53], critical value

pruning [54], pessimistic error pruning and error based pruning [27]. Esposito et

al. [51] and Aha et al. [47] have published comparative studies of post-pruning

Chapter 2 Background

18

methods; their results indicate that cost complexity and reduced error pruning

tend to over-prune, which leads to smaller DTs but reduces classification

performance. They found that the other methods listed above tended to perform

under-pruning, producing larger trees, but again adversely affect classification

performance relative to an ideally-sized DT.

Pre-pruning is often computationally more efficient as it can avoid the building of

an entire irrelevant branch, whereas post pruning requires that the branch is built

first before its usefulness is considered [55]. Conversely, however, pre-pruning

may stop tree growth too soon before all the information is available [29], in

contrast to post-pruning that needs access to the complete DT as it operates on a

fully grown tree. A more comprehensive description of pre-pruning methods can be

found in a study conducted by Frank [55].

2.2.5 HARDWARE IMPLEMENTATIONS OF DECISION TREES

DTs have a low computation complexity when compared to many other machine

learning techniques. For large datasets, or when input data is continually streamed,

achieving the rapid generation of DTs requires the development of new algorithms

or the acceleration of existing ones. Parallelization can be used to speed up the

process of building classification trees and is feasible where parts of the DT are

sufficiently computationally separate that their calculations can be carried out

independently. Steinhaeuser et al. [56] proposed a parallel implementation of ID3

by using separate threads to execute independent DT algorithm paths. A significant

performance advantage compared with the serial version, especially when the

number of vectors and the number of attributes is large was demonstrated. The

parallel mode of computation was executed on the Cray multi-threaded

architecture.

Kufrin [57] proposed a data distributed parallel formulation ID3 which relies on

gathering the statistics of the attribute values and classes for each node. Such

statistics can be shared and processed in parallel on a small number of processors

in order to determine the best attribute for splitting at a node.

Chapter 2 Background

19

Srivastava et al. [58] proposed three parallel formulations, namely synchronous

tree construction, partitioned tree construction and a hybrid of the synchronous

and partitioned formulations. In the synchronous approach, all processors operate

at the same node and each calculates the entropy gain of a different set of

attributes. Each processor receives and transmits class distribution information

simultaneously. In the second approach, independent processors each work on

their own parts of the classification tree, following a succession of nodes as they are

expanded. The hybrid formulation has elements of both the synchronous and

partitioned approaches in an attempt to overcome their drawbacks. In its

implementation, the hybrid scheme follows the synchronous approach as long as

the communication cost is not too high, in which case it switches to the partitioned

approach.

In the parallelization approach proposed by Narlikar [59], two levels of divide-and-

conquer parallelism were considered in the building of C4.5 DT. An outer level

extended across tree nodes and an inner level operated within a tree node. The

author proposed using a lightweight thread implementation for C4.5 algorithm to

take advantage of its intrinsic parallel nature.

Jin et al. [60] proposed a new approach to decision tree construction, named SPIES,

in which the numerical attributes of a large number of distinct elements were

divided into intervals of equal width and a class histogram of the frequency of

occurrence of each class was computed. The algorithm computed a subset of

candidate split point values for the numerical attributes and stored the class

histogram for the points to reduce the space complexity of the algorithm and the

communication cost between the processors. The algorithm was parallelized using

the FREERIDE framework and the authors obtained almost linear speedups.

Yildiz et al. [61] presented three types of parallelism and applied these to two DT

algorithms, the C4.5 and the univariate linear discriminate tree. The authors

examined the computational effects of realizing DTs using feature-based

parallelism, node-based parallelism and data-based parallelism. In the feature-

based approach, the attributes under investigation were allocated to separate

processors and the results combined to isolate the attribute giving best split. In the

Chapter 2 Background

20

node-based approach, the computations at the nodes themselves were allocated to

separate processors. The node-based approach maintained a queue of nodes from

where they were extracted and sent to the slave processors. In the data-based

approach, the dataset was portioned according to attribute and only the relevant

data sent to the relevant processor. The experimental results produced by the

study showed that the performance improvement produced by the parallel

implementation depended greatly on the number of attributes and attribute values

in the dataset. The node-based parallelisation approach demonstrated a good

speedup.

Narayanan et al. [62] proposed an FPGA implementation for a DT system providing

binary classification. The architecture implemented the Gini score calculation in

which the impurity computation is the most computationally intensive part of the

learning process. A five-fold improvement in calculation time was demonstrated

when using a fixed-point integer solution relative to that achieved by a software

solution using two embedded PowerPC processors and implemented using floating

point operations.

Zaki et al. [63] presented a parallel DT algorithm for an symmetrical multi-

processor (SMP) system using the SPRINT algorithm. They proposed task

parallelism using dynamic subtree partitioning and data parallelism based on

attribute scheduling among threads running on the SMP processors. Andrade et al.

[64] considered clusters of SMPs running under Linux, where each processor is

allocated a portion of a partitioned dataset. Steinhauser et al. [56] found that the

main disadvantages of SMP systems is that only one processor can access memory

at a time, a considerable restriction in the construction of DTs, which is highly

memory intensive operation.

Chapter 2 Background

21

2.3 CONCLUSION

The work presented in this thesis aims to provide an implementation of a real-time

incremental embedded machine learning system. A comparison of different

machine learning methods showed that DTs and neural networks are capable of

performing real-time incremental leaning. However, as neural networks have the

disadvantage of requiring a large memory capacity, they are not suitable for

implementation in embedded systems with limited memory and computational

resources.

Following the investigation of machine learning systems, DTs were identified as the

most appropriate for real-time incremental implementation. Consequently, this

chapter has concentrated on DT systems and described the calculations used as

splitting criteria such as entropy and information gain.

A common drawback with decision tree algorithms is overfitting, and there is a

range of techniques available to reduce its effects including adopting stopping

criteria or by applying pruning. In the work in this thesis, no stopping criteria or

pruning were applied as the effects of these approaches in real-time incremental

systems require extensive work beyond the main thrust of the current focus.

However, stopping criteria and pruning are not undesirable and their

implementation should be the subject of further work. However, the reader should

be aware that the results presented in this thesis for the new approaches may

sometimes be affected by the absence of stopping criteria and pruning.

The hardware approaches described in the literature have been reviewed. A

number of parallel approaches are available that have concentrated on improving

performance in a range of aspects of building decision trees, such as attribute

selection, node expansion and data parallelism. The inherently parallel nature of

DT algorithms is highly suited to hardware exploitation. Although the DT

algorithms developed in this work are not themselves implemented in hardware,

the method to accelerate the approach used to store training vectors and so enable

incremental learning are realised in hardware.

Chapter 3 Experimental Procedure

22

3 EXPERIMENTAL PROCEDURE

This chapter describes the process that has been developed for the implementation

of the new decision tree approaches. Although a wide variety of practical example

applications can be realised by the new approaches, the process generates a

software implementation that is specialized for the example application of interest,

both at the training and classification stages. Such an approach has advantages

when targeting embedded environments in which execution time and memory

resources need to be carefully controlled.

3.1 INTRODUCTION

By exhibiting the features of both a defined memory requirement (see Sections 4.6

and 5.4.2) and a maximum computation time per training vector, the novel real-

time incremental decision tree algorithms developed in the current research work

are suitable for embedded real-time implementation. This is in contrast to the

decision tree algorithms described in the literature, such as C4.5 [27] and ITI [35],

which are general purpose algorithms that run on computer workstations and

allocate memory in a dynamic manner.

In embedded target environments, dynamic memory may not be available and

execution resources are likely to be at a premium. Consequently, in this thesis, the

software implementation of the decision tree approaches is designed to exhibit the

following features.

 No translation between external and internal data representations are

needed.

 All memory for the decision tree implementation can be allocated statically.

 Offsets to elements in array structures are known at compile time.

To ensure that the above features are incorporated, the current research generates

bespoke decision tree training and classification programs according to the

Chapter 3 Experimental Procedure

23

requirements of the application being considered. This allows the memory

architecture to be specified statically before learning takes place.

This thesis will introduce two novel decision tree approaches, namely the Multi-

Dimensional Frequency Table (MDFT) and the Hashed Frequency Table Decision

Tree (HFTDT). The two approaches will be described in detail in later chapters

(MDFT in Chapter 4 and HFTDT in Chapter 5). The purpose of this chapter is not to

describe the new approaches, but instead to describe the process by which the

software that implements them is produced.

The MDFT and HFTDT methods adopt a frequency table technique to hold the

training data necessary to build their decision trees. The advantage using of a

frequency table is that it permits an incremental approach to learning that has the

potential for implementation in a real-time embedded system. Although earlier

approaches (FTDT and IDP [11], [37]) also used frequency tables, both were only

able to generate partial decision trees. The MDFT and HFTDT methods, which

represent the core of this research work, successfully incorporate the frequency

table technique to produce a complete decision tree.

3.2 MDFT AND HFTDT STRUCTURE

MDFT and HFTDT were designed with the ability to generate bespoke code for a

given specific application. Figure 3.1 shows that a separate ‘generate’ program is

used to produce the ‘training’ and ‘classification’ programs. The programs are

discussed in detail in the following sub-sections.

generate
code

training

classification

Figure 3.1: The programs involved in the implementation of the MDFT and HFTDT approaches

Chapter 3 Experimental Procedure

24

3.2.1 GENERATE DECISION TREE CODE

The program that generates target code optimized for a specific application is

shown in Figure 3.2. Although no standard format is available for describing the

structure of data to be used for training or that require classification, common

practice is to make available the salient parameters in a ‘names’ file that is defined

separately from the data itself. Table 3.1 shows the parameters that can be found

in such a names file.

configuration
data

generate code for
training and
classification

training
program

classification
program

Figure 3.2: The generate program

Table 3.1: The application parameters available from the names file

Parameter Description

 Number of classes

 Class names

 Number of attributes

 Attribute names

 Number of values for each attribute

 Attribute value names

The design of the frequency table and the main functions of the code depend on the

parameters given by the names file. The main code includes functions to perform

entropy and information gain calculations, fetching, building the decision tree and

for performing classification. The number of iterations of the loops in the decision

Chapter 3 Experimental Procedure

25

tree calculations and the values generated for a lookup table are determined

automatically according to the given parameters of the names file.

3.2.1.1 Generating code for training and classification

The number of dimensions of the frequency table is determined by both and ,

where the conversion process of input data vectors into numerical notation and all

nested loops in the generated code depend on the parameters , and .

The training code consists of several functions that are generated according to the

configuration data of the targeted system, covering the following.

 Multi-dimensional frequency table: read/write functions.

 The read function incorporates a search operation to read values saved

in the multi-dimensional frequency table. Both MDFT and HFTDT include

nested loops whose number of iterations is set according to the number

of classes , the number of attributes (and the number of

attribute values (.

 The write function updates the multi-dimensional frequency table on the

arrival of each new training vector. It includes several for loops and if

statements. The loop iterations and if statements depend on the number

of classes , the number of attributes (and the number of

attribute values (.

 Indexing and reverse indexing functions in the HFTDT method.

 The HFTDT method includes an indexing function that is used to

generate a unique index for each input vector to be stored in the hashed

multi-dimensional frequency table. The index function depends on the

number of classes , the number of attributes (and the number of

attribute values (.

 The reverse index function used by HFTDT forms the complementary

operation to the indexing function in that it generates the vector from its

index. It also depends on the parameters provided by the configuration

data, namely as the number of classes , the number of attributes (

and the number of attribute values (.

Chapter 3 Experimental Procedure

26

 Logarithm table.

 A generated logarithmic lookup is used to implement entropy

calculations. Two approaches for choosing the logarithm base were used

in this research work. The first is to use Logarithms to the base 2 as

adopted regardless of the number of classes involved in a calculation in

the implementations of Quinlan [27]. The second is to use a logarithm

base that is equal to the number of classes, allowing a normalising of the

entropy values. The alternative approaches were tested on a range of

examples and were found to give same classification results.

 The logarithmic lookup table has the advantages of having a shorter

execution time [65][66] and reducing hardware realization complexity

[67].

 The logarithmic lookup table was also used in this research work to

allow the generation of hardware implementations. The logarithmic

values were generated with a precision of , allowing the resolution

equivalent to one vector out of a hundred thousand. This was sufficient

to handle all the example applications tested in this research work. A

practical test was conducted and found that the number of generated

was identical whether the logarithmic lookup table or the GNU

mathematical library [68] was used.

3.2.2 DECISION TREE TRAINING

The decision tree training process is shown in Figure 3.3. On application of a new

input data vector to the decision tree training program, the original text data is

converted into a numerical notation beforehand to save execution time when

running the decision tree code.

An illustrative example will now be given of the conversion process being

performed on an example from Quinlan[69] that has three attributes two classes,

as shown in Table 3.2.

Chapter 3 Experimental Procedure

27

Table 3.2 An example training set, Quinlan [69]

Number
ATTRIBUTES

CLASS
Height Hair Eyes

1 Short Blond Brown Negative

2 Tall Dark Brown Negative

3 Tall Blond Blue Positive

4 Tall Dark Blue Negative

5 Short Dark Blue Negative

6 Tall Red Blue Positive

7 Tall Blond Brown Negative

8 Short Blond Blue Positive

The conversion into numerical notation can be seen in Table 3.3, where part (a)

represents the original names file and (b) the equivalent numerical notation for

this example.

Table 3.3: (a) The attributes and classes shown in the original example and (b) the .numerical

notation after conversion

CLASSES CLASSES

Negative Positive 0 1

ATTRIBUTES ATTRIBUTES

HEIGHT HAIR EYES 0 1 2

Short Blond Brown 0 0 0

Tall Dark Blue 1 1 1

 Red 2

(a) (b)

Following conversion, the vectors are as shown in Table 3.4.

Chapter 3 Experimental Procedure

28

Table 3.4: The vectors of Table 3.2 after conversion to numerical form

Number
ATTRIBUTES

CLASS
Height (0) Hair (1) Eyes (2)

1 0 0 0 0

2 1 1 0 0

3 1 0 1 1

4 1 1 1 0

5 0 1 1 0

6 1 2 1 1

7 1 0 0 0

8 0 0 1 1

In order to select an attribute for each node of the decision tree, entropy and

information gain calculations need to be carried out. After completing the decision

tree, rules that represent the knowledge learned are extracted from the decision

tree for use in classification.

calculate entropy
and information

gain

build decision
tree

training
vectors

convert to
numerical
notation

generate rules

Data sotrage
(frequency table)

rules

Training program

Figure 3.3: The program to train the decision tree

Chapter 3 Experimental Procedure

29

Depending on whether the MDFT or the HFTDT method is being used, the

converted vector is stored in a frequency table using one of two available

techniques, as shown in Figure 3.4. Both algorithms use an incremental approach

and during training they are capable of producing an updated decision tree after

receiving each new input data vector. To store the frequency table the MDFT

technique uses a multi-dimensional array, while the HFTDT method uses a hashed

table.

multi-dimensional
array

hashed table

MDFT method HFTDT method

Figure 3.4: Two different approaches used for storing the training data in a frequency table

3.2.3 CLASSIFICATION USING THE DECISION TREE

The classification program is shown in Figure 3.5. As in the training program, the

input data are converted to a numerical notation readable by the program, but in

the classification program an output decision is then made regarding the class to

the converted vectors based on the stored rules.

Chapter 3 Experimental Procedure

30

testing
vectors

generate decision

rules

Class

convert to
numerical
notation

Classification program

Figure 3.5: Classification using the decision tree

3.3 SUMMARY

In order to produce a decision tree that can be implemented on an embedded

target system, including a hardware based solution which has the requirement of

statically-defined memory, an implementation process has been defined that

generates both training and classification programs that are tailored to a particular

learning application.

With the embedded system development process in place, the next two chapters

concentrate on the description, implementation and testing of the two new

decision tree approaches introduced in this thesis, namely the Multi-Dimensional

Frequency Table and the Hashed Frequency Table Decision Tree.

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

31

4 MULTI-DIMENSIONAL FREQUENCY TABLE DECISION TREE

This chapter presents a novel real-time incremental learning decision tree

approach. The new approach is named the Multi-Dimensional Frequency Table

(MDFT) method. The MDFT has been designed to target embedded systems where

the number of calculations and the memory requirement needed to generate a DT

can be known a priori. The chapter firstly includes an introduction to frequency

tables and the use of MDFT for decision trees. Secondly, it presents the novelty of

the approach and the implementation of the MDFT algorithm. Thirdly, a

demonstration of a simple example using the MDFT method is given, including the

calculations that have been conducted on each node of the decision tree. Lastly, the

chapter presents the results of conducting several test experiments leading to the

motivation to develop a successor to MDFT, termed HFTDT.

4.1 INTRODUCTION

Embedded systems generally have limited resources, principally those relating to

memory capacity and computation capabilities. The new approach of MDFT is

designed to operate within the aforementioned constraints in the realisation of a

real-time incremental learning system. The MDFT method adopts a multi-

dimensional array that acts as a frequency table, thereby bounding memory usage

which can be known a priori, as it holds all the iterations of the incoming data

vectors, while keeping all correlations between the attributes and classes. Existing

decision tree incremental learning methods generally lack the ability to execute in

bounded memory as they retain the input training dataset in the nodes of the tree.

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

32

4.2 FREQUENCY TABLE FOR DECISION TREES

Learning embedded systems need to have the ability to act within their

environment by the application of accumulated knowledge. In this research work,

the Frequency Table (FT) [11], [37], [38], [70] (or frequency distribution)

maintains an organized summation of the number of occurrences of specific input

data vectors. The FT provides a compact version of the input data vectors, in which

the correlations between all the attributes are retained for each class.

The FT developed in this work is a multi-dimensional table. The dimensions of the

FT depend on the size of the problem in term of attributes, attribute values and

classes, their values determining the dimensions of the FT for a specific problem.

The number of dimensions of the frequency table for any problem is equal to the

number of attributes, with an additional dimension being required to represent the

class.

The structure of the FT is not limited to a specific number of dimensions and it is

tailored to the characteristics of the application presented. The general structure of

the multi-dimensional FT can be described in the form where

each element in the set represents a dimension. There are ,

divided into and an additional dimension for the

class of the vector, where represents one of the

To illustrate the concept of an MDFT, Figure 4.1 gives a sample example of a three

dimensional FT where the number of attributes and the number of classes

is given by . The set of attributes in the example given are . Each attribute

represents a dimension for the FT, where the third dimension is reserved for the

class and the number of attribute values is defined

as .

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

33

A2

Class

A1

[0]N v

[1]N v

Figure 4.1: A basic example of a three dimensional frequency table

4.3 NOVELTY OF MDFT

The MDFT method presented on this research work is designed for the purpose of

meeting the demands of real-time incremental learning applications of embedded

systems. The demands can be generalised as follow.

 Known memory usage and its efficient management is crucial in real-time

systems[71]. MDFT exhibits fixed usage and computable memory demands that

can be calculated prior to the process of DT building.

 Incremental learning is emphasised when having good mechanism for holding

old data and efficient management of data[72]. The MDFT technique keeps all

correlations and relations of the saved data to improve predictability.

 Calculation time constraints of real-time applications plays a main roll in

affecting prediction and performance of any method used. In terms of decision

tree, the MDFT produces similar classification performance to C4.5 algorithm

but with advantage of knowing in advance how many calculations needed to be

done for a particular application.

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

34

4.4 DECISION TREE CALCULATIONS

Suitable algorithms for real-time applications should meet time deadlines in order

to provide the required response. Therefore, knowing the time needed for

performing calculations for any given application is crucial. The maximum time

needed for the worst case scenario in generating the DT can be an important

decision criterion in assessing the suitability of the algorithm to be used.

Decision tree calculations require that the computation of entropy and information

gain are carried out at each node of the DT. A range of arithmetic operations are

involved in such calculations. The aforementioned calculations need to be done for

every node of the decision tree

Following the approach taken by FTDT [11], the number of calculations needed to

determine the entropy and information gain (see section 2.2.3) for each attribute

value in both MDFT and the HFTDT methods can be determined as below.

Entropy calculations

The number of additions required in an entropy calculation is equal to the number

of classes less one

 (4.1)

The number of multiplications is equal to the number of classes

 (4.2)

The number of divisions is equal to the number of classes

 (4.3)

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

35

The number of logarithmic calculations (or the reading of logarithmic values from a

lookup table) is equal to the number of classes

 (4.4)

The number of entropy calculations for an attribute value is then equal to

 (4.5)

The total number of entropy calculations for attribute is

given by

 (4.6)

where

The entropy calculations can be then determined by summing the entropy

calculations of every attribute involved with the node calculations with addition of

the calculation involved in the overall entropy computation for the whole dataset

involved with the node calculations.

The total number of entropy calculations for node is

 (4.7)

where

Information gain calculations

The number of calculations needed to determine the information gain for an

attribute is now determined.

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

36

The number of additions is equal to the number of attribute values

 (4.8)

The number of multiplications is equal to the number of attribute values

 (4.9)

The number of divisions is equal to the number of attribute values

 (4.10)

The total number of calculations for an attribute is then given by

 (4.11)

The total number of information gain calculations for node can be found from

 (4.12)

where

4.5 MAXIMUM NUMBER OF CALCULATIONS (WORST CASE SCENARIO)

This section determines the maximum number of calculations required to generate

a DT, that is, the worst case scenario. DTs consist of a number of different levels

starting from the root node (level 1) and ending in leaf nodes in (level), where

 is the number of attributes in the problem. The number of attributes values

determines how many nodes are needed at each level. Where the numbers of

values for each attribute are not all the same, the worst case for number of nodes in

the decision tree occurs when levels are ordered such that the attribute with the

largest number of values is chosen at the root and the last level contains the

attribute with the least number of values

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

37

The following equation shows the number of calculations needed at the root node

 (4.13)

The number of calculations needed for subsequent levels of the decision tree is

given by

 (4.14)

Consequently, the worst case scenario where the maximum number of calculations

that need to be conducted to build the decision tree can be found as follows:

(4.15)

Equation 4.15 implies that the worst case scenario for the decision tree is of the

order

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

38

4.6 CALCULATING THE MEMORY USAGE OF THE MDFT METHOD

In embedded systems memory resources are limited. Consequently, the memory

usage of an algorithm needs to be considered before deployment to ensure

sufficient memory is available on the target platform identified.

One of the characteristics of MDFT method is its suitability to embedded

applications, where the memory required by the algorithm can be calculated and be

known a priori. The memory used to build the decision tree is determined below.

 The number of elements of the multi-dimensional frequency table is given by

 (4.16)

 (4.17)

In the MDFT method, the adopted node structure of the decision tree shown in

Figure 4.2 ensures a fixed memory usage. Figure 4.3 (a) shows an example of a DT

structure, but this is implemented in MDFT as a node structure linked list as shown

in Figure 4.3 (b). This fixed memory usage is achieved by defining two pointers to

link the network of nodes of a decision tree. The first pointer links to the child node

while the second pointer links to the sibling node. As the pointers are fixed in their

memory usage (for a given addressing architecture), the maximum memory usage

can be known a priori, which makes the approach more suitable for embedded

solutions.

In contrast, the number of pointers created at node of other DT approaches, such as

in C4.5 and ITI, varies according to the attribute selection at a node, which depends

on a number of the children of that node. Consequently, these methods have a

memory usage not known in advance, making them less well suited to embedded

applications.

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

39

/* MDFT node structure */

/* u8 and u16 notate unsigned 8 bit and unsigned 16-bit integer numbers respectively */

typedef struct node{

 u8 Att; /* attribute chosen at node */

 u16 ClassInstance[]; /* number of class vectors at node */

 u16 Child; /* pointer to child node */

 u16 Sibiling; /* pointer to sibling node */

 Bool AttUsed[]; /* one flag for each attribute used in the tree above this node */

 u8 AttValUsed[]; /*corresponding attribute value for each attribute flagged in

AttUsed */

} NODE;

Figure 4.2: MDFT node structure

Node2

Node1

Node3

Node5

Node4

Node6 Node7 Node9Node8

Figure 4.3 (a): Example of a conventionally linked decision tree structure

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

40

Node2

Node1

Node3

Node5

Node4

Node6 Node7 Node9Node8

Figure 4.3 (b): Decision tree structure in which the nodes have fixed memory usage by employing

child and sibling pointer

From the node structure shown in Figure 4.2, the number of bytes used by each

node can be calculated as follows:

 (4.18)

 By referring to Equations 4.17 and 4.18, the total memory usage by an MDFT

decision tree in bytes can be calculated as follows :

 (4.19)

 where

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

41

4.7 GENERATING A DT AND RULES USING THE MDFT METHOD

Figure 4.4 describes the algorithm of the MDFT method in generating a decision

tree. On arrival of a new training vector the MDFT is updated, the main process of

generating a decision tree follows the routine shown below and on its completion a

set of generated rules will be supplied. The generated rules are created by

following the paths from the root node of the decision tree to each of the leaf nodes.

The set of rules are then stored to be used in the classification process of new

vectors.

Input: Multi-Dimensional Frequency Table (MDFT); set of attributes; training vector

and unclassified vector

Outputs: A Decision Tree, generated rules and classified vector

Start

1. Update the Multi-Dimensional frequency table following the arrival of each new

training vector

2. IF

 all the stored entries in the MDFT are of the same class

THEN

 produce a DT with a single node (Leaf Node) labeled with that class, go to step 7

ELSE

 create a node in the DT

3. Select an attribute among the set of attributes with the highest IG value and label the

node with selected attribute

4. Add a branch for each known value of the selected attribute for that node.

5. Create a node for each branch

6. IF

 all the MDFT entries for this node are of the same class

THEN

 label the node as a leaf node of that class

ELSE

compute the entropy value and the IG for all attributes, select the attribute of the

largest IG and use this attribute for the current node, go to step 4

7. Generate rules from the DT

8. Store the DT and the rules and use as required in the classification of new vectors

9. IF

more training is required

THEN

go to step 1

End

Figure 4.4: Description of the MDFT algorithm

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

42

4.8 AN ILLUSTRATIVE EXAMPLE OF THE MDFT METHOD

In this Section, an example will be used to illustrate how data can be stored in the

MDFT and then used to obtain a DT To illustrate the generation of the MDFT

algorithm, the weather problem dataset is shown in table 4.1, which has four

attributes, two possible outputs, uses various characteristics of the weather to

determine whether to play a game of tennis [11].

Table 4.1: The weather problem dataset contains 16 input vectors with 15 unique entries.

Number
ATTRIBUTES

CLASS
Outlook Temperature Humidity Wind

1 Sunny Hot High Weak Don’t play

2 Sunny Hot High Strong Don’t play

3 Overcast Hot High Weak Play

4 Rainy Mild High Weak Play

5 Sunny Mild High Weak Play

6 Rainy Cool Normal Weak Play

7 Rainy Cool Normal Strong Don’t play

8 Overcast Mild High Strong Play

9 Sunny Mild High Weak Don’t play

10 Sunny Cool Normal Weak Play

11 Rainy Mild Normal Weak Play

12 Sunny Mild Normal Strong Play

13 Overcast Hot Normal Weak Play

14 Sunny Mild High Weak Play

15 Overcast Cool Normal Strong Play

16 Rainy Mild High Strong Don’t play

Table 4.2 shows a summary of the attributes and classes of the weather problem

where the two classes {don’t play, play} notated by {0, 1} correspondingly, and the

attributes {Outlook, temperature, humidity, wind} are represented by

 with numerical notation for the values.

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

43

Table 4.2: The attributes and classes shown in the weather example with the corresponding notation

CLASSES

Don’t play

(C = 0)

Play

(C = 1)

ATTRIBUTES

Outlook

)

Temperature

Humidity

)

Wind

Sunny (0) Hot (0) High (0) Weak (0)

Overcast (1) Mild (1) Normal (1) Strong (1)

Rainy (2) Cool (2)

Each element of the MDFT in Table 4.3 represents an input vector which has a

unique notation according to the attributes and class value. A function f is defined

to provide the number of vectors of input vectors as recorded in each of the MDFT

elements, where each element value can be accessed using the attribute and class

value as shown in Equation 4.20.

 number of vectors = (4.20)

 represent the attribute values for attributes

 And C is the class values .

To clarify how the calculations are performed in this example, the notation (
)

signifies the sum of values stored in the MDFT for node k and for class C (where in

the current example C=0 for class 0, C=1 for class 1 and C=T for both classes taken

together) while the entropy for node k is shown as .

Table 4.4 illustrates how the input vectors of the weather problem populate the

elements in the MDFT.

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

44

Table 4.3: MDFT shows a unique notation for each cell according to its attributes and class values.

 Outlook)

Su
n

n
y

 (
0

)

O
v

er
ca

st
 (

1
)

R
ai

n
y

 (
2

)

Su
n

n
y

 (
0

)

O
v

er
ca

st
 (

1
)

R
ai

n
y

 (
2

)

Su
n

n
y

 (
0

)

O
v

er
ca

st
 (

1
)

R
ai

n
y

 (
2

)

P
la

y

(C
=

1
)

H
u

m
id

it
y

)

High (0) 0,0,0,0,1 1,0,0,0,1 2,0,0,0,1 0,1,0,0,1 1,1,0,0,1 2,1,0,0,1 0,2,0,0,1 1,2,0,0,1 2,2,0,0,1 Weak (0)

W
in

d

P
lay

(C
=

1
)

Normal (1) 0,0,1,0,1 1,0,1,0,1 2,0,1,0,1 0,1,1,0,1 1,1,1,0,1 2,1,1,0,1 0,2,1,0,1 1,2,1,0,1 2,2,1,0,1 Weak (0)

High (0) 0,0,0,1,1 1,0,0,1,1 2,0,0,1,1 0,1,0,1,1 1,1,0,1,1 2,1,0,1,1 0,2,0,1,1 1,2,0,1,1 2,2,0,1,1 Strong (1)

Normal (1) 0,0,1,1,1 1,0,1,1,1 2,0,1,1,1 0,1,1,1,1 1,1,1,1,1 2,1,1,1,1 0,2,1,1,1 1,2,1,1,1 2,2,1,1,1 Strong (1)

D
o

n
’t

 P
la

y

(C
=

0
)

High (0) 0,0,0,0,0 1,0,0,0,0 2,0,0,0,0 0,1,0,0,0 1,1,0,0,0 2,1,0,0,0 0,2,0,0,0 1,2,0,0,0 2,2,0,0,0 Weak (0) D
o

n
’t P

lay

(C
=

0
)

Normal (1) 0,0,1,0,0 1,0,1,0,0 2,0,1,0,0 0,1,1,0,0 1,1,1,0,0 2,1,1,0,0 0,2,1,0,0 1,2,1,0,0 2,2,1,0,0 Weak (0)

High (0) 0,0,0,1,0 1,0,0,1,0 2,0,0,1,0 0,1,0,1,0 1,1,0,1,0 2,1,0,1,0 0,2,0,1,0 1,2,0,1,0 2,2,0,1,0 Strong (1)

Normal (1) 0,0,1,1,0 1,0,1,1,0 2,0,1,1,0 0,1,1,1,0 1,1,1,1,0 2,1,1,1,0 0,2,1,1,0 1,2,1,1,0 2,2,1,1,0 Strong (1)

H
o

t
(0

)

H
o

t
(0

)

H
o

t
(0

)

M
il

d
 (

1
)

M
il

d
 (

1
)

M
il

d
 (

1
)

C
o

o
l (

2
)

C
o

o
l (

2
)

C
o

o
l (

2
)

Temperature

Table 4.4: MDFT for the weather problem, where the cells are updated according to the input dataset.

 Outlook)

Su
n

n
y

 (
0

)

O
v

er
ca

st
 (

1
)

R
ai

n
y

 (
2

)

Su
n

n
y

 (
0

)

O
v

er
ca

st
 (

1
)

R
ai

n
y

 (
2

)

Su
n

n
y

 (
0

)

O
v

er
ca

st
 (

1
)

R
ai

n
y

 (
2

)

P
la

y

(C
=

1
)

H
u

m
id

it
y

)

High (0) 0 1 0 2 0 1 0 0 0 Weak (0)

W
in

d

P
lay

(C
=

1
)

Normal (1) 0 1 0 0 0 1 1 0 1 Weak (0)

High (0) 0 0 0 0 1 0 0 0 0 Strong (1)

Normal (1) 0 0 0 1 0 0 0 1 0 Strong (1)

D
o

n
’t

 P
la

y

(C
=

0
)

High (0) 1 0 0 1 0 0 0 0 0 Weak (0) D
o

n
’t P

lay

(C
=

0
)

Normal (1) 0 0 0 0 0 0 0 0 0 Weak (0)

High (0) 1 0 0 0 0 1 0 0 0 Strong (1)

Normal (1) 0 0 0 0 0 0 0 0 1 Strong (1)

H
o

t
(0

)

H
o

t
(0

)

H
o

t
(0

)

M
il

d
 (

1
)

M
il

d
 (

1
)

M
il

d
 (

1
)

C
o

o
l (

2
)

C
o

o
l (

2
)

C
o

o
l (

2
)

Temperature

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

45

The weather problem given in Table 4.1 consists of four attributes and two

classes

 . In the multi-dimensional array, each attribute is represented by a

single dimension of the array with an extra dimension required for the class.

After the MDFT has been populated, the decision tree can be generated. The

splitting criterion used in generating the decision tree is information gain (see

Section 2.2.3).

The following shows the total entropy calculation needed for the root node and is

calculated using Equation 2.2 in Section 2.2.3 as follows.

The number of vectors of class 0 in the input vectors supplied is given by the sum of

all values in the bottom half (for class 0) of Table 4.4

 (4.21)

The number of vectors of class 1 can be found by the sum of all values in the upper

half (for class 1) of Table 4.4

 (4.22)

The number of vectors of both classes is given by the sum of all the values in the

(for both classes) in Table 4.4

 (4.23)

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

46

The total entropy at the root node is thus

 (4.24)

Choosing the attribute at the root node

In this Section, the entropy values will be computed for each of the attributes for

the root node.

1. Entropy for attribute ‘outlook’.

For attribute value ‘sunny’

 (4.25)

 (4.26)

 (4.27)

For attribute value ‘overcast’

 (4.28)

 (4.29)

 (4.30)

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

47

For attribute value ‘rainy’

 (4.31)

 (4.32)

 (4.33)

By using Equation 2.4, the entropy for attribute ‘outlook’ can be found from

(4.34)

By using Equation 2.5, the information gain for attribute ‘outlook’ is given by

(4.35)

2. Entropy for attribute ‘temperature’

For attribute value ‘hot’

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

48

For attribute value ‘mild’

For attribute value ‘cool’

By using Equation 2.4, the entropy for attribute ‘temperature’ can be found from

By using Equation 2.5, the information gain for attribute ‘temperature’ is

 –

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

49

3. Entropy for attribute ‘humidity’

For attribute value ‘high’

For attribute value ’normal’

By using Equation 2.4, the entropy for attribute ‘humidity’ can be found

By using Equation 2.5, the information gain for attribute ‘humidity’ is

)

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

50

4. Entropy for attribute ‘wind’

For attribute value ‘weak’

For attribute value ‘strong’

By using Equation 2.4, the entropy for attribute ‘wind’ can be found from

By using Equation 2.5, the information gain for attribute ‘wind’ is given by

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

51

The DT progress beyond this point is shown in Figure 4.5. For the root node, the

attribute ‘outlook’ is chosen as it has the largest information gain value. There are

three attribute values for ‘outlook’, namely sunny, overcast and rainy. Therefore

the root node has three children as follows.

Sunny --> node 2

Overcast --> node 3

Rainy --> node 4

Sunny RainyOvercast

A1

C?C?

Node2 Node3 Node4

Root
Node

C?

Figure 4.5: Attribute Outlook is chosen for the root node.

Calculations of node 2

After choosing ‘outlook’ for node 1 according to the entropy and information gain

calculations given by Equations 4.34 and 4.35, the following calculations are for

node 2 to choose the next attribute from the remaining attributes following similar

procedure.

Three main relations will be considered in this stage.

1. Outlook-->Temperature

2. Outlook-->‘humidity’

3. Outlook-->Wind

For node 2 where value ‘sunny’ presented, the number of vectors is 7 as given by

Equation 4.27. In the following, the calculations for node 2 to choose the next

attribute.

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

52

Total entropy for node 2

For first child node 2 for root node with attribute value ‘sunny’, the total node

entropy can be calculated using the following parameters by referring to Equations

4.25, 4.26 and 4.27.

From Equation 2.2, the entropy, for all vectors within attribute value ‘sunny’ can be

found from

 (4.36)

Attribute entropy for node 2

1. The entropy for attribute ‘temperature’ when ‘outlook’ is ‘sunny’ () can be found

as follows.

For attribute value ‘hot’

 (4.37)

 (4.38)

 (4.39)

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

53

For attribute value ‘mild’

 (4.40)

 (4.41)

 (4.42)

For attribute value ‘cool’

 (4.43)

 (4.44)

 (4.45)

By using Equation 2.4,, the entropy for attribute ‘temperature’ can be found from

(4.46)

By using Equation 2.5, the information gain for attribute ‘temperature’ is given by

 (4.47)

)

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

54

2. Entropy for attribute ‘humidity’ when ‘outlook’ is ‘sunny’ ()

For attribute value ‘high’

For attribute value ‘normal’

By using Equation 2.4, the entropy for attribute ‘humidity’ can be found from

By using Equation 2.5, the information gain for attribute ‘humidity’ is given by

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

55

3. Entropy for attribute ‘wind’ when ‘outlook’ is ‘sunny’ ()

For attribute value ‘weak’

For attribute value ‘strong’

By using Equation 2.4, the entropy for attribute ‘wind’ can be found from

By using Equation 2.5, the information gain for attribute ‘wind’ is given by

The DT progress is shown in Figure 4.6, where attribute ‘temperature’ is chosen as

it has the largest information gain value as given by Equation 4.47.

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

56

 Node5 Node6

Sunny RainyOvercast

Cool

A1

A2
C?C?

Node2 Node3 Node4

Root
Node

C?

Hot Mild

C?

 Node7
C?

Figure 4.6: Attribute Temperature is selected for node 2.

Calculations of node 3

The next node is node 3 where attribute value ‘overcast’ presented, the number of

vectors is 4 as given by Equation 4.30. The calculations for the entropy and the

information gain will be repeated on this node as follows.

Total entropy for node 3

For second child node 3 for root node with value ‘overcast’, the total node entropy

can be calculated using the following parameters by referring to Equations 4.28,

4.29 and 4.30.

From Equation 2.2, the entropy for all vectors within value ‘overcast’ is given by

 (4.48)

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

57

According to the entropy calculation node 3 is a leaf node as all the vectors belongs

only to one class. The DT progress beyond this point is shown in Figure 4.7.

 Node5 Node6

Sunny RainyOvercast

Cool

A1

A2
C?C1

Node2 Node3
Leaf node

 Node4

Root
Node

C?

Hot Mild

C?

 Node7
C?

Figure 4.7: Node 3 is a leaf node.

Calculations of node 4

For node 4 where value ‘rainy’ presented, the number of vectors is 5 as given by

Equation 4.33. In the following, the calculations for node 4 to choose the next

attribute.

Total entropy for node 4

For third child node 4 for root node with attribute value ‘rainy’, the total node

entropy can be calculated using the following parameters by referring to Equations

4.31, 4.32 and 4.33.

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

58

From Equation 2.2, the entropy for all vectors within value ‘rainy’ can be found

from

Attribute entropy for node 4

1. Entropy for attribute ‘temperature’ when ‘outlook’ is ‘rainy’ ()

For attribute value ‘hot’

For attribute value ‘mild’

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

59

For attribute value ‘cool’

By using Equation 2.4, the entropy for attribute ‘temperature’ can be found from

(4.49)

By using Equation 2.5, the information gain for attribute ‘temperature’ is given by

 (4.50)

2. Entropy for ‘humidity’ when ‘outlook’ is ‘rainy’ ()

For attribute value ‘high’

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

60

For attribute value ‘normal’

By using Equation 2.4, the entropy for attribute ‘humidity’ can be found from

By using Equation 2.5, the information gain for attribute ‘humidity’ is

3. Entropy for attribute ‘wind’ when ‘outlook’ is ‘rainy’ ()

For attribute value ‘weak’

 (4.51)

 (4.52)

 (4.53)

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

61

For attribute value ‘strong’

 (4.54)

 (4.55)

 (4.56)

By using Equation 2.4, the entropy for attribute ‘wind’ can be found from

By using Equation 2.5, the information gain for attribute ‘wind’ is given by

The DT progress is shown in Figure 4.8, shows that attribute ‘wind’ is chosen as it

has the largest information gain value. There are three values for ‘temperature’,

namely hot, mild and cool. Therefore node 2 has three children as follows.

Hot --> node 5

Mild --> node 6

Cool --> node 7

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

62

 Node9

Strong

Sunny RainyOvercast

WeakCool

A1

A2
C1 A4

C?C?

Node2 Node3
Leaf node

 Node4

Root
Node

C?

Hot Mild

C?

 Node8 Node7 Node5 Node6
C?

Figure 4.8: Attribute Wind is selected for node 4.

Calculations of node 5

The next node 5 where its parent node 2 chooses attribute ‘temperature’ as given

by Equation 4.47. The following calculations are for node 5 to choose the next

attribute from the remaining two attributes.

Two main relations to be considered at this stage are

1. Outlook-->Temperature-->‘humidity’

2. Outlook--> Temperature-->Wind

For node 5 where value ‘hot’ is presented, the number of vectors is 2 as given by

Equation 4.39. In the following, the calculations for node 5 to choose the next

attribute.

Total entropy for node 5

For first child node 5 to parent node 2 with attribute value ‘hot’, the total node

entropy can be calculated using the following parameters that are given by

Equations 4.37, 4.38 and 4.39.

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

63

From Equation 2.2 the total entropy can be found from

According to the entropy calculation, node 5 is a leaf node as all the vectors belongs

to class 0. The DT progress beyond this point has been updated as shown in Figure

4.9.

 Node9

Strong

Sunny RainyOvercast

WeakCool

A1

A2
C1 A4

C?C?

Node2 Node3
Leaf node

 Node4

Root
Node

C1

Hot Mild

C?

 Node8 Node7 Node5
Leaf node

 Node6
C?

Figure 4.9: Node 5 is a leaf node.

Calculations of node 6

For node 6 where value ‘mild’ is presented, the number of vectors is 4 as given by

Equation 4.42. In the following, the calculations of node 6 to choose the next

attribute.

Total entropy for node 6

For second child node 6 to parent node 2 with value ‘mild’, the total entropy can be

calculated using the following parameters that are given by Equations 4.40, 4.41

and 4.42.

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

64

From Equation 2.2, the total entropy can be found from

Attribute entropy for node 6

1. Entropy for attribute ‘humidity’ when ()

For attribute value ‘high’

 (4.57)

 (4.58)

 (4.59)

For attribute value ‘normal’

 (4.60)

 (4.61)

 (4.62)

By using Equation 2.4, the entropy for attribute ‘humidity’ can be found from

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

65

By using Equation 2.5, the information gain for attribute ‘humidity’ is given by

(4.63)

2. Entropy for attribute ‘wind’

For attribute value ‘weak’

For attribute value ‘strong’

By using Equation 2.4, the entropy for ‘wind’ can be found from

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

66

By using Equation 2.5, the information gain for ‘wind’ is given by

(4.64)

As both attributes ‘humidity’ and ‘wind’ have similar information gain as given by

Equations 4.62 and 4.63, an arbitrary decision [73] made to choose the attribute

‘humidity’. The DT has been updated as shown in Figure 4.10, where attribute

‘humidity’ is chosen for node 6.

Sunny RainyOvercast

StrongWeak

Normal

Cool

A1

A2
C1 A4

C?C?

Node2 Node3
Leaf node

 Node4

Root
Node

C1

Hot

A3

Mild

C?

High

C?

 Node8 Node9 Node7 Node5
Leaf node

 Node10
C?

 Node11

 Node6

Figure 4.10: Attribute ‘humidity’ is selected for node 6.

Calculations of node 7

For node 7 where the value is ‘cool’, the number of vectors is 1 as given by Equation

4.45. In the following, the calculations for node 7 to choose the next attribute.

Total entropy for node 7

For the third child node 7 to the parent node 2 with attribute value ‘cool’, the total

node entropy can be calculated using the following parameters that are given by

Equations 4.43, 4.44 and 4.45.

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

67

From Equation 2.2, the total entropy can be found from

The entropy calculation shows that node 7 is a leaf node as one vector of class 1 is

left. The DT beyond this point is shown in Figure 4.11, where the DT is updated

with node 7 as a leaf node.

Sunny RainyOvercast

StrongWeak

Normal

Cool

A1

A2
C1 A4

C?C?

Node2 Node3
Leaf node

 Node4

Root
Node

C1

Hot

A3

Mild

C1

High

C?

 Node8 Node9 Node7
Leaf node

 Node5
Leaf node

 Node10
C?

 Node11

 Node6

Figure 4.11: Node 7 is a leaf node.

There are two values for ‘wind’, namely weak and strong. Therefore there are two

children for node 4 as follows.

Weak --> node 8

Strong --> node 9

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

68

Two main relations to be considered at this stage

1. Outlook-->Wind-->Humidity

2. Outlook-->Wind--> Temperature

Calculations of node 8

The next node is 8 where its parent node 4 has chosen attribute ‘wind’ as given by

Equation 4.50. The following calculations are for node 8 to choose the next

attribute from the remaining two attributes.

For node 8 where the value is ‘weak’, the number of vectors is 3 as given by

Equation 4.53. In the following, the calculations to choose the next attribute..

Total entropy for node 8

For first child node 8 to parent node 4 with attribute value ‘weak’, the total node

entropy can be calculated using the following parameters that are given by

Equations 4.51, 4.52 and 4.53.

From Equation 2.2, the total entropy can be found from

The entropy calculation shows that node 8 is a leaf node as all the vectors of class 1.

The DT has been updated as shown in Figure 4.12.

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

69

Sunny RainyOvercast

StrongWeak

Normal

Cool

A1

A2
C1 A4

C?C1

Node2 Node3
Leaf node

 Node4

Root
Node

C1

Hot

A3

Mild

C1

High

C?

 Node8
Leaf node

 Node9 Node7
Leaf node

 Node5
Leaf node

 Node10
C?

 Node11

 Node6

Figure 4.12: Node 8 is a leaf node.

Calculations of node 9

For second child node 9 to parent node 4 with attribute value ‘strong’, the total

node entropy can be calculated using the following parameters that are given by

Equations 4.54, 4.55 and 4.56.

From Equation 2.2 the total entropy is given by

The DT has been updated as shown in Figure 4.13, where the entropy calculation

shows that node 9 is a leaf node as all vectors are of class 1.

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

70

Sunny RainyOvercast

StrongWeak

Normal

Cool

A1

A2
C1 A4

C0C1

Node2 Node3
Leaf node

 Node4

Root
Node

C1

Hot

A3

Mild

C1

High

C?

 Node8
Leaf node

 Node9
Leaf node

 Node7
Leaf node

 Node5
Leaf node

 Node10
C?

 Node11

 Node6

Figure 4.13: Node 9 is a leaf node.

Node 10

Next node is node 10 where its parent node 6 has chosen attribute ‘humidity’ as

given by Equation 4.63. The relation considered at this stage is

Outlook-->Temperature-->Humidity-->Wind

For node 10 where the value is high, the number of vectors is 3 as given by

Equation 4.59. The only attribute left is ‘wind’ and will be chosen for node10. The

DT beyond this point has been updated as shown in Figure 4.14.

Sunny RainyOvercast

StrongWeak

Normal

Cool

Weak

A1

A2
C1 A4

C0C1

Node2 Node3
Leaf node

 Node4

Root
Node

C1

Hot

A3

Mild

C1

A4

High

C?

 Node8
Leaf node

 Node9 Node7
Leaf node

 Node5
Leaf node

 Node10
C?

 Node11

 Node6

 Node12

Figure 4.14: Attribute Wind is selected for node 10.

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

71

Node 11

For node 11 where the value is normal, there is one vector as given by Equation

4.62. This node is a leaf node as the remaining vector is for class 1 and therefore no

further calculations needed. The DT has been updated as shown in Figure 4.15.

Sunny RainyOvercast

StrongWeak

Normal

Cool

Weak

A1

A2
C1 A4

C0C1

Node2 Node3
Leaf node

 Node4

Root
Node

C1

Hot

A3

Mild

C1

A4

High

C?

 Node8
Leaf node

 Node9
Leaf node

 Node7
Leaf node

 Node5
Leaf node

 Node10
C1

 Node11
Leaf node

 Node6

 Node12

Figure 4.15: Node 11 is a leaf node.

Node 12

For node 12, it is considered as leaf node. The value ‘weak’ on this node has three

vectors distributed as follows.

The structure of the node as shown in Figure 4.2, keeps statistics of the number of

vectors for each class. Referring to the values of class don’t play (0) as in
 and

play (1) as in
 the probability of class play is twice the occurrence of class don’t

play. In this case the decision is choosing the class with higher probability of

occurrence. The complete decision tree is shown in Figure 4.16, where node 12 is

updated as a leaf node.

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

72

Sunny RainyOvercast

StrongWeak

Normal

Cool

Weak

A1

A2
C1 A4

C0C1

Node2 Node3
Leaf node

 Node4

Root
Node

C1

Hot

A3

Mild

C1

A4

High

C1

 Node8
Leaf node

 Node9
Leaf node

 Node7
Leaf node

 Node5
Leaf node

 Node10
C1

 Node11
Leaf node

 Node6

 Node12
Leaf node

Figure 4.16: The completed DT, where Node 12 is a leaf node.

The classification Rules generated by the MDFT method are summarised as shown

in Table4.5.

Table 4.5: Classification (IF-THEN) rules model obtained by the MDFT method for the completed DT

shown in Figure 4.16.

1 Outlook “Sunny” AND Temperature “Hot”

 Class “Play”

2 Outlook “Sunny” AND Temperature “Mild” AND Humidity “High” AND Wind “Weak”

 Class “Play”

3 Outlook “Sunny” AND Temperature “Mild” AND Humidity ”Normal”

 Class “Play”

4 Outlook “Sunny” AND Temperature “Cool”

 Class “Play”

5 Outlook “Overcast”

 Class “Play”

6 Outlook “Rainy” AND Wind “Weak”

 Class “Play”

7 Outlook “Rainy” AND Wind “Strong”

 Class “Don’t play”

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

73

4.9 EVALUATION OF THE MDFT METHOD

The purpose of this section is to evaluate the effect on the calculation time and

memory requirements when using MDFT to classify a range of applications with a

range of different numbers of attributes and attribute values. In the MDFT method,

each attribute and the classes of any problem are represented as a dimension of the

FT. In the code design of the MDFT method, entropy calculations call the search

function FindAttributeInstances for the purpose of accessing the FT’s values. The

implementation details of the function can be found in Appendix B, but

FindAttributeInstances includes a number of nested for loops, with the number of

loops being directly proportional to the number of dimensions, and the number of

iterations of each loop depending on the number of attribute values of each

dimension. Consequently, the complexity of the search function increases with the

number of dimensions.

The aim of the experiments is to demonstrate the effect of different numbers of

attributes and attribute values on the execution time and memory requirements

when using the MDFT method. The number of dimensions of the MDFT frequency

table is equal to the sum of the number of attributes and the class, while the

number of values represented in each dimension of the frequency table is the

number of attribute values. MDFT was tested with 16 different problems that can

be divided into two groups (A and B), where each group consists of eight different

problems that share the same number of dimensions, but with different numbers of

values of attributes and class.

The experiments were conducted under the Ubuntu 12.04 operating system [74]

running as a Virtual Box machine [75] with 2.4GB of dedicated memory on 2.83GHz

Intel Core 2 quad processor. The code for all the approaches was written in C and

gcc version 4.6.3 [76] used to generate the executables. To generate the results

shown in Figures 4.5 and 4.6, the vector values for experimental datasets were

generated using randi function available in Matlab [77]. The examples of group A

have a four dimensional frequency table which includes three attributes and a

class. The number of attribute values for each dimension of the eight examples of

group A are 4, 6, 8, 10, 12, 14, 16, and 18. Group B consists of a further eight

examples that generate an eight dimensional frequency table, which includes seven

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

74

attributes and a class. The number of values for each dimension of the eight

examples are 2, 3, 4, 5, 6, 7, 8, and 9. Because of the way in which each group has

been designed, the total number of attribute values and classes for both groups is

16, 24, 32, 40, 48, 56, 64, and 72.

Figure 4.17: Decision tree calculation time of the example four dimensional MDFTs, each bar showing

the total number of attribute values in each example.

Figure 4.18: Decision tree calculation time of the example eight dimensional MDFTs, each bar showing

the total number of attribute values in each example.

16

24

32
40

48
56 64 72

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

4 6 8 10 12 14 16 18

e
xe

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)

number of values in each dimension

Four Dimensional MDFT

100

10-1

10-2

10-3

10-4

10-5

10-6

16

24

32

40
48

56
64

72

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

2 3 4 5 6 7 8 9

e
xe

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)

number of values in each dimension

Eight Dimensional MDFT

101

100

10-1

10-2

10-3

10-4

10-5

10-6

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

75

The results shown in Figures 4.17 and 4.18 demonstrate that the DT calculation

time increases as the number of attribute values is increased for a given number of

dimensions. The eight dimensional MDFT required more time to compute a

decision tree than did the four dimensional MDFT for a given number of attribute

values. It can also be noticed that the number of elements in the eight dimensional

group increase substantially with attribute values when compared with the four

dimensional group.

To explain the effect of the number of dimensions on the calculation time, Equation

4.65 shows the number of additions needed at the root node for the computations

made by the search function FindAttributeInstances.

 (4.65)

On examination of Equation 4.65, it can be seen that the number of additions for

the root node doubles when number of attributes increases by 1, assuming that the

number of elements in the MDFT remains unchanged.

Equation 4.66 can be used to obtain the worst case for the number of additions at

level of the DT, if the attributes are organized in the tree so that the one with the

largest number of values is at the root and the one with the fewest is at the lowest

level.

 (4.66)

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

76

Figures 4.19 and 4.20 show that, for the four and eight dimensional examples, the

number of additions required increases with the number of attributes. The demand

on the need for the addition operation in the FindAttributeInstances function is

significally greater for the eight dimensional MDFT compared with the four

dimensional examples.

Figure 4.19: Number of additions needed at the root node of the example four dimensional MDFT

Figure 4.20: Number of additions needed at the root node of the example eight dimensional MDFT

0.1

1

10

100

1000

4 6 8 10 12 14 16 18

N
u

m
b

e
r

o
f

ad
d

it
io

n
 f

o
r

ro
o

t
n

o
d

e

number of values in each dimension

Four Dimensional MDFT

106

105

104

103

102

0.001

0.01

0.1

1

10

100

1000

10000

2 3 4 5 6 7 8 9

N
u

m
b

e
r

o
f

ad
d

it
io

n
 f

o
r

ro
o

t
n

o
d

e

number of values in each dimension

Eight Dimensional MDFT

109

108

107

106

105

104

103

102

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

77

Figure 4.21: Memory requirements of the MDFT for the four and eight dimensional examples

The results shown in Figure 4.21 show that the memory consumed increases when

moving from the four dimensions to the eight dimensions even when the total

number of attribute values remain the same. This is due to the increase in the

number of elements of the MDFT. Therefore having a fixed number of dimensions

of the FT for different examples can reduce the memory requirements needed to

generate the DT as this can be crucial to embedded systems where the memory is

limited.

4.10 SUMMARY

This chapter has introduced a new incremental learning method termed MDFT. The

multi-dimensional array acts as a frequency table that stores the incoming data

vectors for further stages to build decision tree. MDFT successfully builds a

complete DT as illustrated by the weather example, in contrast to previous

methods using a frequency table which managed to build only two levels of the

tree.

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

16 24 32 40 48 56 64 72

M
D

FT
 s

iz
e

 (
kB

)

Number of attribute values and classes

4-Dimensions

8-Dimensions

105

104

103

102

101

100

10-1

Chapter 4 Multi-Dimensional Frequency Table Decision Tree

78

In this chapter, the worst case calculation scenario for the decision tree was

presented where the complexity of the algorithm increases with the number of

attributes.

The node structure used in the MDFT method ensures a fixed memory usage. The

advantage of such structure is that it has a fixed node memory requirement where

the maximum memory usage can be known a priori, making the approach suitable

for embedded systems. The MDFT method is designed to target embedded systems

where the efficient use of memory and effective performance are required. The

memory usage for the MDFT method can be calculated and known in advance.

The MDFT approach has a limitation in that it does not scale well with the number

of attributes and attribute values, and a substantial memory resource demand is

incurred by the frequency table as the numbers of these values increases. MDFT

can be applied in embedded systems as long as the memory requirements of the

given application are considered a priori and matched to that available in the

system. To overcome the memory requirement drawback of MDFT, the HFTDT

approach is introduced in the next chapter and this proposes the use of a fixed

number of dimensions instead of a multi-dimensional frequency table to store the

data required to generate the DT.

Chapter 5 Hashed Frequency Table Decision Tree

79

5 HASHED FREQUENCY TABLE DECISION TREE

This chapter introduces and describes the details of the implementation of the

Hashed Frequency Table Decision Tree (HFTDT) algorithm. The new method

produces the same quality of decision tree as produced by its predecessor MDFT.

The HFTDT and MDFT methods can be implemented as real-time learning methods,

as the maximum number of calculations needed to produce a decision tree can be

defined. The operation of HFTDT is demonstrated by means of an example that

shows the operations that need to be conducted at each node of the decision tree.

5.1 INTRODUCTION

The HFTDT method is a development of MDFT. The MDFT results discussed

previously in Section 4.9, showed that the memory required when targeting larger

problems is unlikely to be available on most workstations or embedded systems.

The HFTDT approach is able to reduce the memory required in the implementation

of the frequency table by using a form of hash table. In this approach, only the

active (non-zero) elements of the frequency table need to be allocated memory in

the hash table. Also, the new technique reduces the number of dimensions of the

frequency table array into a two-dimensional array that represents the hash table,

which also reduces the memory required to hold the frequency table when

compared with the MDFT approach.

The HFTDT method converts the frequency table into a hash table while keeping a

record of every vector of the input data. The method includes two main functions:

the index function which generates unique keys for the input vectors to be stored

in the hash table; and a reverse index function that reads the stored keys and

retrieves the original input vectors.

Chapter 5 Hashed Frequency Table Decision Tree

80

5.2 THE HASHED FREQUENCY TABLE

The hashed frequency table (HFT) structure shown in Figure 5.1, consists of an

identifier (id) that holds a key value generated by the index function, and a counter

that holds the number of occurrences of the key generated from the input vectors.

The counter value for a key is set to one on creation and its value is incremented

each time the vector is repeated in the input data.

/* Hashed Frequency Table entry structure */

struct my_struct {

 u64 id; /* 64-bit key */

 u16 counter; /*16-bit holding the number of iterations of id*/

};

Figure 5.1: HFT structure

The basic HFT structure reserves eight bytes for the key (id) and two bytes for the

counter, although the number of bits used for the key and counter can be changed

according to the requirements of the problem.

The number of bits required for storing the id can be determined as follows.

 Calculate the maximum possible number of keys P that can be generated for

the targeted problem by finding the product of the number of values for all

the attributes and classes (see Equation 5.1).

 (5.1)

 The number of bits required for id can be found by determining the number

of bits needed to represent P. In the C language, typical examples are 8, 16,

32 and 64 bits, although other integral powers of two are possible if type

libraries are used. In a hardware implementation, a wider range of possible

values can be realised.

Chapter 5 Hashed Frequency Table Decision Tree

81

5.3 TECHNIQUES FOR THE INDEX AND REVERSE INDEX FUNCTIONS

This section demonstrates two techniques used for the implementation of each of

the index and reverse index functions. The first technique is discussed in Sections

5.3.1 and 5.3.2, where the index and reverse index functions are realised using

mathematical operations such as multiplication, division and modulo. The second

technique as discussed in Section 5.3.4 and 5.3.5 uses only bitwise operators in the

indexing functions such as AND, OR and shift. The advantage of using the second

technique is to provide operations that are better suited to hardware

implementation.

5.3.1 INDEX FUNCTION

The index function is used to generate a unique key for a given input vector. The

generated key is then stored in the hash table. The method used for indexing

depends on the number of attribute values and classes. Equation 5.2 shows a data

vector for n attributes.

 = (5.2)

 is and C is the class value in the input vector.

The method multiplies each attribute value of the input vector with an incremental

product of the number of attribute values and classes. Then it sums the results with

class value to give a unique key.

Equation 5.3 is used to calculate the key

 (5.3)

where is the number of classes, is the number of attributes and

is the number of attribute values for attribute

Chapter 5 Hashed Frequency Table Decision Tree

82

5.3.2 REVERSE INDEX FUNCTION

In order to access the required keys in the hash table for the process of building the

DT, a ‘reverse index function’ is required. The purpose of the reverse index function

is to retrieve a copy of the original input vector that contains the correct attribute

and class values.

Equations 5.4 and 5.5 operate in a recursive manner to determine the original

input vector. The ‘mod’ operation used in Equation 5.4 returns the remainder of its

argument and is the value of its argument rounded down to the nearest integer.

To explain the process, consider when (the initial value of i). From Equation

5.4 the value is the input key for the first attribute and the resulting value is

its attribute value. From Equation 5.5, the value is calculated to be used in

Equation 5.4 to determine . The process is repeated until and the

vector is retrieved.

(5.4)

 (5.5)

Above, the are the input key values,
 are the attribute values, is the

number of attributes, is the number of classes and is the number of

attribute values for attribute .

 Equation 5.6 represents the expected output vector of the reverse index function

 = , (5.6)

 is the class value in the output vector.

Chapter 5 Hashed Frequency Table Decision Tree

83

5.3.3 AN ILLUSTRATIVE EXAMPLE

To facilitate the understanding of the first hash table technique, a small illustrative

example is now presented. The example inputs a vector to the index function to

generate a key, and then the key is provided to the reverse index function to

generate an output vector. The verification of correctness is that the input and

output vectors are identical.

Consider the following example where the dataset consists of three attributes with

four values each and three classes. Assume an input vector .

1. The first step uses the index function to generate a key for the input vector

and this can be done using Equation 5.3 as follows:

 (5.7)

2. The converse operation is performed by the reverse index function to

generate an output vector for the key obtained. The output vector can be

calculated using Equations 5.4 and 5.5 as follows:

 (5.8)

 (5.9)

 (5.10)

 (5.11)

Consequently, the output vector is , in agreement with the input

vector. Further verification tests were carried out using a large number of input

vectors generated by a number of the test examples used in this work.

Chapter 5 Hashed Frequency Table Decision Tree

84

5.3.4 ALTERNATIVE INDEX FUNCTION TECHNIQUE

The alternative technique adopts bitwise operators to implement the same

functionality as described in the previous section. The index function simply

applies an OR and right shift operation to the input vector to generate a unique key.

The left shift operation is analogous to the multiplication used in the index function

described in Section 5.3.1. A left shift by 1 position is analogous to multiplying by 2.

However, the operation available for performing such products is limited to

multiplications by integral powers of 2.

To demonstrate how index function works few preparation steps needed to

consider at the beginning, which are:

a) Create a vector that holds the number of values of each attribute and class.

b) Create a second vector num_att_values of length that holds the

smallest integral power of 2 that is no less than the corresponding vector

created in step a).

c) Generate a vector acc_num_att_values with entries that holds the

cumulative values of num_att_values, then take the logarithm to the base 2 of

each element.

The key is then generated as follows.

a) Set the key to first element of the input vector.

b) The next element of the input vector is left shifted by the number of bits

defined in corresponding element acc_num_att_values and then ORed with

the current value.

c) The process is repeated (return to b)) until all the elements of the input

vector have been accessed. The recursive calculation of the key is given by

 ,
(5.12)

 acc_num_att_values[i-1] , .

Chapter 5 Hashed Frequency Table Decision Tree

85

5.3.5 ALTERNATIVE REVERSE INDEX FUNCTION TECHNIQUE

The alternative reverse index function is modification of the technique given in

Section 5.3.4. The reverse index function uses the vectors generated in steps b) and

c) of Section 5.3.4 to generate the output vector.

The ‘modulo’ and the ‘division’ operations used in the reverse index function in

Section 5.2.2 are substituted as follows.

 is analogous to where & is the bitwise AND operation (5.13)

 is analogous to where is shift right operation. (5.14)

The above equations assume y is an integral of power 2.

The following are the steps taken in the reverse index function to produce an

output vector based on the key by utilizing Equations 5.13 and 5.14.

a) As shown in Equation 5.15, the first entry of the output vector is the bitwise

ANDing of the key and the first entry of the vector num_att_values (Section

5.3.4).

 (5.15)

b) To produce the remainder of the output vector, Equation 5.14 is applied,

involving right shift and bitwise AND operations. The process is repeated

until the final element of the output vector is produced

 i=1,2,∙∙∙,Na . (5.16)

Chapter 5 Hashed Frequency Table Decision Tree

86

5.4 HFTDT METHOD CALCULATIONS

To consider the implementation of the HFTDT method for a real-time system, this

section determines the maximum number of calculations required to generate a

decision tree under the worst case scenario and obtains the required memory

capacity.

5.4.1 MAXIMUM NUMBER OF CALCULATIONS (WORST CASE SCENARIO)

The HFTDT method shares the same number of calculations required to generate a

decision tree, including for the worst case scenario, as the MDFT method (Section

4.5).

5.4.2 CALCULATING MEMORY USAGE

The HFTDT method is suitable for real-time applications, as memory usage can be

determined in a priori. The memory used to build the decision tree can be

determined as follows.

The hashed frequency table (HFT) structure was shown in Figure 5.1 and the

number of bytes it occupies is given by

 (5.17)

 each consisting of a 64-bit id (8 bytes) and a

two byte counter.

The HFTDT method shares the node structure with MDFT, shown in Figure 4.2. The

structure maintains a fixed memory usage for the nodes of the decision tree, and

therefore the maximum memory usage can be calculated and be known a priori.

As can be found in Figure 4.2, the memory occupied by each node can be calculated

as follows

 . (5.18)

Chapter 5 Hashed Frequency Table Decision Tree

87

Combining Equations 5.17 and 5.18, the total memory usage of the HFTDT decision

tree in bytes is given by

 (5.19)

 where is the number of nodes in the decision tree where a maximum

number of nodes can be set

5.5 GENERATING THE DT USING HFTDT

HFTDT is a development of its predecessor MDFT, but modified such that the

storage technique for the input data vectors uses a hashed frequency table. Both

the HFTDT and the MDFT methods depend on the entropy and information gain

calculations to build a decision tree (refer to Section 4.4). The HFTDT algorithm is

designed to allow the data stored in the hash table to be extracted one at a time

through the rev_index_func function to provide the necessary information needed

for entropy calculations at an individual node. This procedure is repeated for every

node in the DT where the process cycles through the stored data as long as an open

node exists, where open node is any node that needs to be investigated.

The algorithm HFTDT is shown in Figure 5.2, where the input is the stored data in

the hashed frequency table and the output is a decision tree that summarises all the

attributes’ correlations. Referring to the algorithm in Figure 5.3, several steps need

to be conducted to achieve the storage of the element in the HFT.

A set of rules is generated after completing the DT. The generated rules instantiate

the knowledge obtained from DT, which is then stored to be used later in the

classification of test data.

Chapter 5 Hashed Frequency Table Decision Tree

88

Input: Hashed Frequency Table (HFT); set of attributes; training vector and

unclassified vector

Outputs: A Decision Tree, generated rules and classified vector

Start

1. Update the Hashed Frequency Table (HFT) following the arrival of each new training

vector

2. IF

 all the stored entries in the HFT are of the same class

THEN

 produce a DT with a single node (Leaf Node) labeled with that class, go to step 7

ELSE

 create a node in the DT

3. Select an attribute among the set of attributes with the highest IG value and label the

node with selected attribute

4. Add a branch for each known value of the selected attribute for that node.

5. Create a node for each branch

6. IF

 all the HFTDT entries for this node are of the same class

THEN

 label the node as a leaf node of that class

ELSE

compute the entropy value and the IG for all attributes, select the attribute of the

largest IG and use this attribute for the current node, go to step 4

7. Generate rules from the DT

8. Store the DT and the rules and use as required in the classification of new vectors

9. IF

more training is required

THEN

go to step 1

End

Figure 5.2: Description of the HFTDT algorithm

Chapter 5 Hashed Frequency Table Decision Tree

89

5.6 AN ILLUSTRATIVE EXAMPLE FOR HFTDT METHOD

This section shows a fully worked example that demonstrates how to generate a

decision tree using the HFTDT method. The weather problem [11] introduced in

Table 4.1 is used.

Table 5.1 shows a map of all the keys that can be generated for the weather

problem. The keys can be obtained using the index function given in Section 5.3.1

Table 5.1: A map of the keys of the weather problem

 Outlook (A1)

Su
n

n
y

O
ve

rc
as

t

R
ai

n
y

Su
n

n
y

O
ve

rc
as

t

R
ai

n
y

Su
n

n
y

O
ve

rc
as

t

R
ai

n
y

P
la

y

‘h
u

m
id

it
y’

(A
3
)

High 1 25 49 9 33 57 17 41 65 Weak

W
in

d
 (A

4)

P
lay

Normal 5 29 53 13 37 61 21 45 69 Weak

High 3 27 51 11 35 59 19 43 67 Strong

Normal 7 31 55 15 39 63 23 47 71 Strong

D
o

n
’t

 P
la

y
 High 0 24 48 8 32 56 16 40 64 Weak D

o
n

’t P
lay

Normal 4 28 52 12 36 60 20 44 68 Weak

High 2 26 50 10 34 58 18 42 66 Strong

Normal 6 30 54 14 38 62 22 46 70 Strong

H
o

t

H
o

t

H
o

t

M
il

d

M
il

d

M
il

d

C
o

o
l

C
o

o
l

C
o

o
l

Temperature (A2)

Table 5.2 shows the data as it is stored in hash table. Note that the hash table is a

compact version of the MDFT as it holds only its non-zero elements. The HFT is

effectively a two dimensional table as it contains elements that themselves consist

of two elements.

Chapter 5 Hashed Frequency Table Decision Tree

90

Table 5.2: Hashed frequency table of the weather problem

id Counter

0 1

2 1

25 1

57 1

9 2

69 1

70 1

35 1

8 1

21 1

61 1

15 1

29 1

47 1

58 1

A function f is defined to provide the number of input vectors as recorded in each of

the HFTDT elements as shown below.

 number of vectors = (5.20)

where id represents a key in the hash table .

The weather problem given in Table 5.2 consists of four attributes and

two classes

 . The HFTDT method uses an HFT that holds the keys and the

corresponding values of each input vector.

After the HFT has been populated, the decision tree can be generated. The splitting

criterion used in generating the decision tree is information gain.

Chapter 5 Hashed Frequency Table Decision Tree

91

The following shows the calculation of the total entropy which is required at for the

root node, see Equation 2.2.

 (5.21)

 (5.22)

 (5.23)

The total entropy at the root node is thus

 (5.24)

The values obtained are the same as those using MDFT (Section 4.8). The complete

implementation of the example using HFT can be found in Appendix A. The decision

tree generated is shown in Figure 4.16 and the classification rules are shown in

Table A.1.

Chapter 5 Hashed Frequency Table Decision Tree

92

5.7 COMPARISON BETWEEN HFTDT AND MDFT

This section demonstrates a comparison between the HFTDT and MDFT methods.

Table 5.3 shows the comparison in terms of the number of dimension of the

frequency table used, memory requirements by the frequency table and the

suitability for embedded systems applications.

Table 5.3: comparison between the HFTDT and MDFT methods

 MDFT HFTDT

Number of dimension

of the frequency table

Variable

 depends on the number of

attributes and class)

Fixed

(2-Dimensional hash table)

Memory requirements

for the frequency table

Fixed

 increase substantially with

number of dimensions

Variable

 much less than MDFT

 depends on the number

of input vectors

Maximum number of

calculations

 Can be known a priori Can be known a priori

Embedded systems

Suitability

Suitable for smaller problems

 depends on the memory

available by the system

Suitable for larger problems

 depends on the memory

available by the system

From Table 5.3, the comparison between MDFT and HFTDT methods can be

summarised as follows. The memory requirements of the MDFT can be known a

priori, but can increase substantially with the number of dimensions of the FT,

while HFTDT achieves a reduction in memory usage as it adopts a two-dimensional

hash table to hold the active non-zero elements of the MDFT frequency table. The

memory requirements of HFTDT depend on the number of elements stored in the

hash table, which can increase with the presence of new vectors. The two methods

have a deterministic time in which the number of calculations can be known in

advance. The MDFT frequency table size must not exceed the memory available in

the system, while in HFTDT the number of unique data vectors determines the

number of HFT elements that are required and hence the memory requirement.

Chapter 5 Hashed Frequency Table Decision Tree

93

5.8 SUMMARY

This chapter has described a novel decision tree algorithm termed HFTDT. The

HFTDT uses a hashed frequency table as storage for the input vectors.

HFTDT generates a compressed version of the MDFT table, with hashed frequency

table that contains only non-zero elements. The HFTDT method uses a two-

dimensional array to represent the hash table, with the aim of achieving a

substantial reduction in the memory required to hold the frequency table

compared to MDFT approach. Consequently, HFTDT will be able to represent larger

problems than MDFT using less memory

HFTDT has two main functions, the index and reverse index functions. The index

function is capable of generating unique keys for the input vectors to be then saved

in the hash table, where the reverse index function can read the hash table keys and

generate the vectors. Two techniques for indexing and reverse indexing are

discussed in this chapter. The first technique depends on arithmetic

multiplications, divisions and modulo operations. While the second technique

depends on bitwise operators such as AND, OR and left or right shift. Both

techniques perform similar functionality; the second technique was originally

intended mainly for hardware implementation, which will be discussed later in

Chapter 7, but the approach was also found to reduce the calculation time for the

software implementations described in the next chapter.

Chapter 6 Experiments on generating decision trees using HFTDT

94

6 EXPERIMENTS TO GENERATE DECISION TREES USING HFTDT

This chapter presents the experimental validation of HFTDT as a machine learning

method to assess its suitability usage in implementation on embedded system

platforms where the memory and computation time are the main resource

constraints. The aspects tested in the experiments are classification accuracy,

computation time, scalability, robustness and memory usage. The experiments

compare HFTDT with three widely used machine learning methods, namely kNN,

C4.5 and ITI.

6.1 INTRODUCTION

The main criteria [78] that are widely followed in evaluating and comparing

classification methods in machine learning can be summarized as follows.

 Accuracy of the classifier. This refers to how well the classifier can predict

the class label of input data vectors. Testing should be carried out using

previously unseen datasets so as to assess the general classification

performance of the learning system. Testing using the training data can only

assess the specific classification performance for that dataset.

 Computational time. This refers to the time taken by the classifier to build

and generate the DT in order to measure the computational cost of

executing the algorithmic calculations.

 Scalability, is the ability of the classification algorithm to continue to act

efficiently as the application becomes more complex. The execution time

must remain acceptable as the computational cost increases.

 Robustness. This refers to the ability of the classification algorithm to

continue to perform satisfactorily even when the data supplied is noisy or

Chapter 6 Experiments on generating decision trees using HFTDT

95

contains missing values. One of the datasets selected for investigation in the

current work contains missing values.

 Interpretability refers to the level of understanding and insight that is

provided by the classification algorithm. This measure can be subjective and

difficult to assess. It is not relevant in the comparison of methods that all

generate output of same type and so these criteria were not used in the

current study.

 Memory usage of the classification algorithm during execution. Memory

usage increases with the number of vectors used for training and the

complexity of the rule system needed to classify new test data [79].

Generally, such additional memory requirements come with a

commensurate increase in computational resources [80].

6.2 CLASSIFIERS USED IN THE EXPERIMENT

The HFTDT method was compared with three classification methods, namely kNN,

where the C source code can be obtained from Ostlund [81], C4.5 where the C

source code can be obtained from Quinlan [82] and ITI where the C source code can

be obtained from Utgoff [83]. C4.5 and ITI are DT classifiers, where ITI supports

incremental learning and C4.5 does not. kNN (k-nearest neighbour) is a well-

known statistical classification approach that has been intensively used in the

literature as a benchmark to assess other machine learning methods [84].

6.3 TEST DATASETS

The HFTDT method has been tested using three different datasets, namely nursery,

agaricus-lepiota and chess (KRKPA7), all of which are available from the UCI

machine learning repository [85]. The datasets have been collected by researchers

for the purpose of carrying out experiments in their particular fields of interest.

The datasets represent a range of numbers of attributes, attribute values and

classes. A brief description of the datasets is now given.

Chapter 6 Experiments on generating decision trees using HFTDT

96

Nursery

The nursery dataset rank the applications made to nursery schools in Ljubljana,

Slovenia during the 1980s at which time an objective explanation was required to

justify rejected applications.

The nursery dataset has five classes, which are not recommend, recommend, very

recommend, priority and special priority. The eight attributes have between two

and five categorical values to describe the evaluations carried out on applications.

These are the parents’ occupations, child’s nursery, form of the family, number of

children, housing conditions, financial standing of the family, social conditions and

health conditions. The dataset consists of 12960 feature vectors of which 8640 are

for training and 4320 for testing.

Agaricus-lepiota

The agaricus-lepiota dataset holds the recorded characteristics of mushrooms

drawn from the Audubon Society field guide to North American mushrooms. There

are 22 attributes and 8124 feature vectors in the dataset, 5416 for training and 100

vectors for testing. The attributes are cap-shape, cap-surface, cap-colour, bruises?,

odour, gill-attachment, gill-spacing, gill-size, gill-colour, stalk-shape, stalk-root,

stalk-surface-above-ring, stalk-surface-below-ring, stalk-colour-above-ring, stalk-

colour-below-ring, veil-type, veil- colour, ring-number, ring-type, spore-print-

colour, population and habitat. The attribute values are all categorical and there are

two classes namely edible and poisonous. The dataset contains around 30%

missing values in the stalk-root attribute.

Chess

The chess dataset records the results of the chess end-game (a white king and rook

versus a black king-and pawn with the latter on A7, usually abbreviated KRKPA7).

It is the white’s turn to move. The dataset has 36 attributes and 3196 feature

vectors in the dataset, where 2130 are used for training and 1066 are for testing.

Chapter 6 Experiments on generating decision trees using HFTDT

97

Each attribute corresponds to a particular position on the board, namely A00,

A01…A35. The attribute values are all categorical and there are two classes, white

can win (won) and white cannot win (no-win).

The characteristics of the datasets are summarized in Table 6.1. The HFT structure

introduced in Section 5.2, has a key whose memory requirement in number of bits

can be determined by calculating the product of the number of attribute values

with the number of classes.

Table 6.1: Summary of dataset characteristics

Dataset name
Attributes

()

Classes

()

Attribute

values

Product of number of

attribute values and classes

HFT key

(bits)

Nursery 8 5 27 6.48 x 104 16

Agaricus- lepiota 22 2 126 3.28 x 1015 52

Chess 36 2 73 2.06 x 1011 38

6.4 TEST RESULTS

The datasets consist of a training set and a test set. The training vectors were

randomly assigned to a number of subsets to allow the progression of training to be

assessed using the test set as additional training vectors are provided. Referring to

Section 6.1, the criteria investigated were the number of nodes in the DT,

computation time for training, memory usage and the classification accuracy for

unseen datasets. The experiments were conducted under the Ubuntu 12.04

operating system [74] running as a Virtual Box machine [75] with 2.4GB of

dedicated memory on 2.83GHz Intel Core 2 quad processor. The code for all the

approaches was written in C and gcc version 4.6.3 [76] used to generate the

executables.

In the next subsections, all the points on the graphs are points in which the HFTDT

apply incremental learning. The training stops every few hundreds of training

vectors being read and used to build a DT. The classification data is then applied to

calculate the classification error.

Chapter 6 Experiments on generating decision trees using HFTDT

98

6.4.1 NUMBER OF NODES

This experiment measures the number of nodes in the DTs produced by HFTDT,

C4.5 and ITI. No kNN results were produced as there is no concept of nodes in the

technique. C4.5 and ITI both adopt pruning techniques in an attempt to generalise

and produce a smaller DT, HFTDT does not implement any pruning (as explained in

Section 2.3) which in general tends to produce a larger, less generalised tree.

The results in Figures 6.1 to 6.3 for each of the three datasets show that ITI

produced relatively smaller DTs and this is as a result of the heavy pruning the

method adopts. Figures 6.1 and 6.3 show that HFTDT produced DTs smaller in size

than the trees produced by C4.5, although for the agaricus-lepiota dataset in Figure

6.2, it can be seen that HFTDT produces a relatively large DT which occurs due to

the presence of missing values in the training set. The percentage of vectors having

missing values in each subset of the agaricus-lepiota training set that holds more

than 3000 records is in the range 15% to 30%. As the HFTDT algorithm does not

employ pruning, each missing value is dealt with as an extra attribute value

resulting in increase in the number of nodes compared with ITI. The tree continues

to grow as more training vectors are applied, and although the DT satisfactorily

classifies the training data, this leads to overfitting. In general and without pruning,

the more noise there is in the dataset or the more prevalent are missing values in

the training set, the greater will be the likelihood of developing a DT that

incorporates nodes and branches that represent spurious vectors that do not

reflect the underlying nature of the dataset.

Chapter 6 Experiments on generating decision trees using HFTDT

99

Figure 6.1: Number of nodes for the nursery dataset

Figure 6.2: Number of nodes for the agaricus-lepiota dataset

0

100

200

300

400

500

600

0 2000 4000 6000 8000

n
u

m
b

e
r

o
f

n
o

d
e

s

number of training vectors

C4.5

HFTDT

ITI

0

20

40

60

80

0 2000 4000 6000

n
u

m
b

e
r

o
f

n
o

d
e

s

number of training vectors

C4.5

HFTDT

ITI

Chapter 6 Experiments on generating decision trees using HFTDT

100

Figure 6.3: Number of nodes for the chess dataset

6.4.2 CALCULATION TIME

This part of the experiment compares the execution time of the four classifiers

when applied to the three datasets. The results of all datasets show that kNN has

the longest classification calculation time as it relies on comparing every test vector

with the all training vectors [86] and it takes longer to execute (6 to 40 times)

when compared to HFTDT.

However, the performance of HFTDT is slower than ITI and C4.5 as revealed in

Figures 6.4 to 6.6. This is due to the approach taken in the HFTDT algorithm design

that is aimed towards providing a hardware solution that is capable of

implementing multiple entropy calculations for a group of nodes which are fed by

the sequential reading of data stored in the hash table. The solution in the

sequential software environment can only be carried out for a single node at a time,

0

20

40

60

80

0 500 1000 1500 2000 2500

n
u

m
b

e
r

o
f

n
o

d
e

s

number of training vectors

HFTDT
C4.5
ITI

Chapter 6 Experiments on generating decision trees using HFTDT

101

causing an increase in execution time compared to other DT methods, since the

HFT accesses need to be repeated for each node. Further, such feeding of HFT data

to the individual entropy and information gain calculations must also be performed

sequentially in software, whereas the intention in the design of the HFT is of a

hardware realisation that allows parallel transmission of the data to such

calculations.

Figure 6.4: Execution time for the nursery dataset

0

2

4

6

8

10

12

0 2000 4000 6000 8000

Ex
e

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)

number of training vectors

kNN×20

HFTDT

ITI

C4.5

Chapter 6 Experiments on generating decision trees using HFTDT

102

Figure 6.5: Execution time for the agaricus-lepiota dataset

Figure 6.6: Execution time for the chess dataset

0.0

0.2

0.4

0.6

0.8

1.0

0 1000 2000 3000 4000 5000

Ex
e

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)

number of training vectors

kNNx100

HFTDTx100

ITI

C4.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 500 1000 1500 2000

Ex
e

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)

number of training vectors

kNNx20

HFTDTx20

ITI

c4.5

Chapter 6 Experiments on generating decision trees using HFTDT

103

6.4.3 MEMORY USAGE

This experiment investigates the memory used by the classifiers. For embedded

systems with limited memory, developers favour algorithm classifiers that require

less memory in order to meet resource constraints. In real-world examples, the

datasets often become larger with time, leading to an increased demand for

memory resources. In particular, incremental methods tend to require more

memory as they need to keep a record of the entire training set [87][88]. As an

example, ITI, which operates incrementally, keeps records of parts of the training

data at each node.

The measurements of memory obtained for ITI and C4.5 include that used to build

and train the DT as well as the structures generated by the code to represent the

DT. For HFTDT, measurements include that needed by the HFT as well the memory

used to describe the DT.

The results shown in Figures 6.7 to 6.9 for the three test datasets demonstrate that

the memory consumption for HFTDT is significantly less than that required by the

other classification methods assessed. This is partly due to the simple structure of

the hashed frequency table (see Section 5.2), but also the adoption of the fixed node

structure described in Section 5.4. The memory usage results demonstrate the

principal contribution of HFTDT to the current range of DT algorithms found in the

literature, namely its ability to operate in environments that are restricted in terms

of memory resource.

Chapter 6 Experiments on generating decision trees using HFTDT

104

Figure 6.7: Memory usage for the nursery dataset

Figure 6.8: Memory usage for the agaricus-lepiota dataset

0

200

400

600

800

0 2000 4000 6000 8000

m
e

m
o

ry
 (

kB
)

number of training vectors

kNN

C4.5

ITI

HFTDT

0

100

200

300

400

500

600

700

0 1000 2000 3000 4000 5000

m
e

m
o

ry
 (

kB
)

number of training vectors

C4.5
kNN
ITI
HFTDT

Chapter 6 Experiments on generating decision trees using HFTDT

105

Figure 6.9: Memory usage for the chess dataset

6.4.4 CLASSIFICATION ACCURACY

Classification accuracy is the principal measurement used to evaluate the

performance of learning algorithms [89]. In classification assessment, a training set

is first used to build the DT and the test is performed on unseen data. The accuracy

of a classifier on a given test set is the percentage of test set vectors that are

correctly classified [78], as measured by the classification error expressed as

 . (6.1)

The results for the nursery dataset shown in Figure 6.10 demonstrate that the

HFTDT classification performance was closest to that of kNN for smaller numbers

of training vectors, but reaching a constant steady-state performance as more

training vectors are added and then performing better than the other classifiers.

The results for the chess dataset are shown in Figure 6.12 and HFTDT achieved

better performance than kNN, but somewhat worse than ITI and C4.5. In

comparison with the other DT methods investigated, HFTDT does not use pruning,

and the difference in performance is likely to be due to its poorer generalization.

0

100

200

300

400

0 500 1000 1500 2000

m
e

m
o

ry
 (

kB
)

number of training vectors

C4.5

ITI

kNN

HFTDT

Chapter 6 Experiments on generating decision trees using HFTDT

106

For the agaricus-lepiota dataset the performance of HFTDT is relatively poor when

the number of training vectors is fewer than 3000, but its performance gets better

with more vectors used in training and the accuracy is best among the classifiers

between sample 3600 and 4000. kNN and C4.5 performed similarly, while ITI

performed poorly between samples 2000 and 3000 due to the underfitting caused

by pruning. As discussed in section 6.5.1, when there are 3000 or more training

vectors in the agaricus-lepiota dataset, 15% to 30% of the vectors contain missing

values, adversely affecting the classification accuracy. Acuna et al. [90] found that

the missing value rates between 1-5% are manageable, 5-15% require

sophisticated methods to handle, but rates above 15% may severely impact

interpretation. The ITI approach to missing values is that whenever a vector with a

missing value is needed for a test in a DT, the vector is simply saved at the node,

without it being passed to other branches [91]. C4.5 uses a probabilistic approach

to handle missing values by using a corrected gain ratio criteria [92], while the kNN

uses a technique to handle one or more missing values, where the missing values

are replaced with estimated ones based on information available in the

dataset.[93].

Figure 6.10: Classification error for the nursery dataset

0

10

20

30

40

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

cl
as

si
fi

ca
ti

o
n

 e
rr

o
r

 (
%

)

number of training vectors

KNN
ITI
C4.5
HFTDT

Chapter 6 Experiments on generating decision trees using HFTDT

107

Figure 6.11: Classification error for the agaricus-lepiota dataset

Figure 6.12: Classification error for the chess dataset

0

10

20

30

40

50

60

0 1000 2000 3000 4000 5000 6000

 c
la

ss
if

ic
at

io
n

 e
rr

o
r

 (
%

)

number of training vectors

ITI

KNN

C4.5

HFTDT

1

6

11

16

21

26

0 400 800 1200 1600 2000

cl
as

si
fi

ca
ti

o
n

 e
rr

o
r

 (
%

)

number of training vectors

KNN
HFTDT
ITI
C4.5

Chapter 6 Experiments on generating decision trees using HFTDT

108

6.5 CONCLUSION

The chapter has presented four experiments with the aim of evaluating the

performance of the HFTDT method, namely the number of nodes, computation

time, memory usage and classification accuracy. The results show that HFTDT can

successfully be used to generate DTs from a range of datasets and partially satisfies

the requirements of embedded systems.

HFTDT demonstrated a substantial reduction in memory usage compared to

existing DT methods. The memory usage of ITI, C4.5 and kNN increase with the

number of vectors applied during training as they maintain records of the dataset

and therefore are unsuitable for embedded system implementation.

The experimental results show that HFTDT satisfies robustness, even when

compared to kNN, ITI and C4.5, all of which employ specific approaches to handle

missing values. HFTDT treats any missing value as a new attribute value, requiring

additional calculations compared to the other DT methods. Robustness can be

improved by adopting a suitable technique to prepare the data before training,

typically by performing data cleaning, data transformation or reduction [78].

However, all such methods require that all the data are available initially and so are

not suitable for use in incremental classification applications. Scalability and

calculation times can be improved by applying a pruning technique such as those

adopted in C4.5 where error-based pruning is applied and in ITI which applies a

pre-pruning technique. These approaches result in a substantial reduction in the

number of nodes, yet are known to suffer from underfitting.

Chapter 7 Hardware Implementation of HFTDT

109

7 HARDWARE IMPLEMENTATION OF HFTDT

This chapter describes a hardware implementation of the most time-consuming

function of the HFTDT implementation. The first section describes the profiling

carried out to measure the times spent in the execution of each function of HFTDT,

with the express purpose of determining those that are the most time consuming.

The second section discusses the hardware approach adopted to improve the

performance of the HFTDT method. The hardware solution uses a state-of-the-art

high-level synthesis (HLS) tool to implement the most time-consuming function on

a range of Xilinx FPGAs families.

7.1 INTRODUCTION

Due to its ability to execute operations in parallel, hardware implementations have

the potential to provide substantial execution time performance advantages over

sequential software implementations.

HFTDT is an incremental learning decision tree method designed to target

embedded systems. The nature of DTs allows parallel realisation and the hardware

implementation can be utilized to exploit two types of parallelism in the

implementation of DTs. The first type is high-level thread-level parallelism that can

be employed when expanding nodes. The second type is low-level instruction

parallelism inside each node that can be exploited to accelerate the necessary

calculations.

Not all DT algorithms are suitable for embedded systems handling real-time

incremental problems, as the two main criteria introduced in Section 2.2.2 need to

be met. The HFTDT source code was written in the C language to facilitate the move

to hardware implementation using HLS tools. Parts of the code were re-written to

allow easier implementation in hardware, as well as employing look-up tables to

avoid the need to synthesise mathematical libraries.

Chapter 7 Hardware Implementation of HFTDT

110

7.2 HFTDT CODE PROFILING

This section concentrates on profiling the execution of the HFTDT code. The

purpose of this activity is to identify those parts of the code whose hardware

implementation would yield the most benefit in terms of execution time reduction.

Profiling measures the time spent executing each function in software in order to

determine the most time-consuming.

7.2.1 SOURCE CODE RECOMPILATION

To profile the source code of the HFTDT method, the GNU ‘gprof’ profiler [94] was

used. gprof collects and arranges statistics of the code under analysis and provides

information about the time spent in each function, the number of times it was

called and which functions called other functions during the execution.

The HFTDT source code is written in the C language and contains 12 functions

together containing approximately one thousand lines of code. The information

presented by the gprof profiler includes all the features that have been used in the

code, and it excludes any unused features from the profile information.

The results of the gprof are made available as a flat profile that shows the total time

taken by each function operating in isolation, and a call graph that shows the time

spent in each parent function and its children functions.

7.2.2 RESULT OBTAINED USING THE FLAT PROFILE

This section presents the gprof flat profile results. The HFTDT source code has

been profiled and tested by the datasets introduced in Section 6.2, namely nursery,

agaricus-lepiota and chess.

Chapter 7 Hardware Implementation of HFTDT

111

7.2.2.1 THE FLAT PROFILE

The flat profile generated by the gprof [94] includes a statistical summary table of

the execution information of a program’s functions. Figure 7.1 shows an example of

the flat profile results for the HFTDT code and provides information of the

percentage of the total running time taken by each function the (% time) column,

the time taken by a function and those that call it (cumulative seconds), the running

time of the function (self seconds), the number of times the function is called (calls),

the average time spent in this function per call (self ms/call) and the average time

in milliseconds spent in the function and its descendants per call (total ms/call).

Figure 7.1: Example of information provided by a flat profile generated by gprof for the nursery

dataset

Figure 7.1 was generated for the nursery dataset and it can be seen that together

the first two functions in the list consume the vast majority of the execution time.

The first of these, rev_index_func consumes around 90% of the total time of the

code. This function is used to read the attribute values from the stored keys in the

hash table (see section 5.3). The function FindAttributeInstances is a second

function that could be considered, but as its execution time is of an order of

magnitude less than that of rev_index_func it was not considered further in the

current work. The function rev_index_func is a clear candidate for consideration for

hardware acceleration.

Chapter 7 Hardware Implementation of HFTDT

112

The results of the flat profile obtained by the gprof for the samples of the nursery

dataset can be found in Figure 7.2 and show that the rev_index_func was again the

most time-consuming function using an average of around 90% of the total running

time. The second most time-consuming function was the FindAttributeInstances

which took on average less than one tenth of the time consumed by the

rev_index_func.

Figure 7.2: Flat profile results for the nursery dataset

The flat profile results for agaricus-lepiota dataset are shown in Figure 7.3 and

confirm the influence of rev_index_func on the total running time, taking an average

of around 88% of the total execution time Again, the second most time-consuming

function was FindAttributeInstances, taking an average of one eighth of the time

consumed by rev_index_func.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

P
e

rc
e

n
ta

ge
 o

f
to

ta
l e

xe
cu

ti
o

n
 t

im
e

Number of tested vectors

rev_index_func

FindAttributeInstances

Chapter 7 Hardware Implementation of HFTDT

113

Figure 7.3: Flat profile results for the agaricus-lepiota dataset

The results obtained by the flat profiling of the chess dataset are shown in Figure

7.4 and again rev_index_func dominates as the most time consuming function this

time consuming around 93% of the total execution time.

Figure 7.4: Flat profile results for the chess dataset

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

P
e

rc
e

n
ta

ge
 o

f
to

ta
l e

xe
cu

ti
o

n
 t

im
e

Number of tested vectors

rev_index_func

FindAttributeInstances

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

P
e

rc
e

n
ta

ge
 o

f
to

ta
l e

xe
cu

ti
o

n
 t

im
e

Number of tested vectors

rev_index_func

FindAttributeInstances

Chapter 7 Hardware Implementation of HFTDT

114

The results of the flat profiling for the three datasets show clearly that the

rev_index_func is constantly the most time-consuming function. As the function

consumes around 90% of the execution time, rev_index_func will be the sole

function considered for hardware acceleration in the current work.

7.2.3 RESULTS OBTAINED USING THE CALL GRAPH

Call graphs were produced for the nursery, chess and agaricus-lepiota. Figure 7.5

shows an example of a call graph, which is part of the profiling results generated by

gprof indicating the time spent in each parent function and its children functions

[94].

The gprof call graph is sorted by the total time spent in the execution of each

function and its children. The function listed in the rightmost column that is on the

same row as in index shown in the leftmost column is the function identified as

under consideration in that section. Within a section, the function under

consideration is called by those listed above it and calls those listed below it. The

second column is the percentage time consumed by the function under

consideration and its children, while the third and the fourth columns are

respectively the time spent in the function alone and the total time in the function

and its children combined. The final column is the number of times the function has

been called following the calling path shown compared with the total number of

calls to that function by all routes. If function has no parents in the code being

profiled, such as the function main in Figure 7.5, the word ‘spontaneous’ is used in

place of a name.

Chapter 7 Hardware Implementation of HFTDT

115

Figure 7.5: Example of a call graph generated by gprof for the nursery dataset

Chapter 7 Hardware Implementation of HFTDT

116

The raw call graphs produced by gprof can be better represented for human

consumption by a graphical format as shown in Figure 7.6. From Figure 7.6, it can

be seen that the main function has six children and function_struct is the parent of

the path that eventually leads to the most time-consuming function rev_index_func.

 main [1]
100%

AttributeEntropy [6]
88.6%

FindAttributeInstances [2]
99.5%

rev_index_func [5]
91.6%

ExpandNextNode [3]
99.5%

function_struct [4]
99.5%

updateHashTable [8]
0.4%

Function_test_data [9]
0.0%

Index_func [10]
0.0%

read_word [11]
0.0%

read_to_EOL [12]
0.0%

NodeEntropy [7]
10.9%

Figure 7.6: Call graph for HFTDT showing the call sequence and the execution times of the functions

The analysis of the call graph shows the sequence of functions calls and has

emphasised the domination of rev_index_func in consuming the vast majority of the

execution time. Appendix B includes the call graph analyses for the HFTDT code

running all three datasets and in each case it was demonstrated that rev_index_func

takes around 90% of the execution time.

Chapter 7 Hardware Implementation of HFTDT

117

7.3 HARDWARE DESIGN FOR THE MOST TIME-CONSUMING FUNCTION

The hardware approach on this research work focuses on improving the

performance of the most time-consuming function of the HFTDT algorithm, namely

rev_index_func

7.3.1 HIGH-LEVEL SYNTHESIS TOOLS

To provide a hardware solution, the approach taken in the current work is to adopt

a high-level synthesis (HLS) tool. HLS tools perform automated conversion from a

high-level language such as C, C++ or SystemC, to an electronic system level (ESL)

description and such tools first became commercially available during the 1990s

[95]. The HLS development is shown in Figure 7.7, where the HLS tool converts the

algorithms written in a high-level programming language into a hardware

description language (HDL) such as Verilog or VHDL. The HDL can then be

synthesised yielding a register transfer level (RTL) design that can target hardware

platforms such as ASICs or FPGAs.

Figure 7.7: Process of high-level language translation to HDL using HLS tools

The steps in the process of generating HDL using an HLS tool can be summarized as

follows [96], [97].

(1) Compilation of functional specification, in which the translation of the

source code to an internal representation is carried out. This step involves

several code optimization such as dead-code and false data dependency

elimination as well as loop transformations.

C, C++
SystemC

code
HLS tool HDL

Hardware
ASIC/FPGA

Chapter 7 Hardware Implementation of HFTDT

118

(2) Allocation defines the type and number of hardware resources needed to

satisfy the design constraints, such as instance, functional and storage units,

as well as connectivity components.

(3) Scheduling, in which each operation required in the specification model is

constrained to fit into a clock cycle.

(4) Binding of variables to a storage unit and operations to a functional unit

capable of its execution.

(5) Output processing, in which the RTL source code is written in the target

language.

7.3.2 CHOOSING AN HLS TOOL

There are several HLS tools available for hardware designers, such as Vivado HLS

[98], Catapult C [99], C-to-Silicon [100], Compaan [101], CyberWorkBench [102]

and Synphony C [103]. Meeus et al. [104] evaluated several HLS tools, including the

aforementioned, and recommended the use of the AutoPilot Xilinx tool (now

Vivado HLS). The evaluation criteria included the source language used, ease of

implementation, tool complexity, user interface and documentation, support for

data types, design exploration capabilities and correctness of the generated design.

BDTI [105] found that the advantage of using AutoPilot is that the quality of the

design results produced were equivalent to hand-written RTL code. The Academic

Department in which the author is currently studying has commercial licences for

both Vivado and Calypto, so both were originally considered. The HLS tool selected

for the current research work is version v_2013.4 of the Vivado HLS tool that was

released in December 2013 [106], and was chosen for its ease of use, fast synthesis

and documentation availability.

Chapter 7 Hardware Implementation of HFTDT

119

7.3.3 HARDWARE DESIGN USING THE HLS TOOL

Figure 7.8 shows the HLS development process adopted. The first step is to verify

the HFTDT C code by means of a test bench that applies example data used in the

software only version described in Chapter 6. The second step is to verify the RTL

design by confirming its functionality matches that of the C algorithm, simply by re-

use of a test bench used for C verification.

Verifying RTL

Vivado HLS

RTL Design

RTL Simulation

C code
Test

Bench

Verifying C

Figure 7.8 Overview of the Vivado high-level synthesis design process

7.3.4 DESIGN SYNTHESIS AND CO-SIMULATION

The part of the HFTDT source code that consumes most of the execution time is

targeted in the hardware design. As shown in Figure 7.9, the C code used at the top

level represents the reverse index function, rev_index_func. The test bench is the C

main function as shown in Figure 7.8 and it is not synthesisable. The main function

Chapter 7 Hardware Implementation of HFTDT

120

includes an array that holds the dataset used in the verification process, this being

the numerical form of one of the nursery, chess and agaricus-lepiota examples.

rev_index_func()

RTL design

main()

Test bench

Top level for
synthesis

Verifying C

Data set

index_func()

Figure 7.9 Concept of C Verification

The C verification process that was carried out is now described. In the test bench,

the main function passes dataset vectors one at a time to the index_func, which

generates a unique 64 bit key for each vector. The key is then passed to the

rev_index_func, which reads the key and generates an output vector. To verify the

design, the outputs of the rev_index_func are compared to the original dataset

vectors; the test being passed only if the two sets of vectors match exactly.

In Vivado HLS, RTL verification is achieved using co-simulation (see Figure 7.8).

The RTL co-simulation uses the C test bench to generate input stimuli for execution

on the RTL design. As in the C verification process, the RTL design verification

compares the input vectors with the outputs of the design. The final step of the

design is to export the RTL design as a block of intellectual property.

For the software implementation, the actual execution time of the reverse index

function is found by knowing the time taken by a single call to rev_index_func and

how many times it is called by using the results from the flat profile table. For the

results obtained in hardware, the time taken to process each vector of the samples

Chapter 7 Hardware Implementation of HFTDT

121

is calculated and then multiplied by the number of times the reverse index function

is called.

7.3.5 TARGETED FPGAS

Vivado HLS supports the Xilinx 7-series [107] and the Xilinx Zynq SoC [108] FPGAs.

The FPGAs listed in Table 7.1 are the four families supported by Vivado HLS and

that were considered in the current hardware design.

 Table 7.1: Targeted FPGAs for the hardware design

Family FPGA

Virtex7 XC7VX980T

Kintex7 XC7K70T

Artix7 XC7A75T

Zynq XC7Z100T

The Zynq SoC family contains an ARM Cortex–A9 microprocessor and an FPGA

fabric, the latter being supported by the Vivado HLS tools. The Xilinx product

specification data sheet for the 7-series FPGA families [107] indicates that the high-

end Virtex7 devices are designed for applications demanding high performance,

Kintex7 are mid-range devices and the Artix7 devices are designed for applications

where low power consumption is important. Figure 7.10 shows a comparison of

the 7-series devices in terms of their relative power consumption and performance.

Chapter 7 Hardware Implementation of HFTDT

122

Highest

Higher

HighLowest

Lower

Low Virtex7

Kintex7

Artix7

High
Performance

Low Power
Consumption

Figure 7.10: Xilinx 7-series FPGAs families [109]

In this work, the intention is to select the FPGA family device that exhibits the

shortest calculation time for the hardware implementation of the rev_index_func

function, in order to reduce the time taken to execute the system code overall. The

evaluation was based on the maximum clock frequency that could be achieved by

each FPGA family following synthesis.

7.3.6 DATASET USED IN THE HARDWARE DESIGN

The C test benches use the numerical versions of the datasets, as introduced in

Section 3.2.2. As each dataset has different numbers of attributes and classes, the

generated top-level function rev_index_func is different for each dataset, with

differences being also being apparent in the two arrays named acc_num_att_values

and num_att_values (as discussed in Chapter 5).

7.4 SIMULATION RESULTS

Each of the FPGAs listed in Table 7.1 were targeted and three hardware designs

were produced, one for each of the datasets nursery, agaricus-lepiota and chess.

Figure 7.11 is an example of the reverse index function for the agaricus-lepiota dataset that

has been accelerated in hardware. Referring to Section 5.3.5 to produce the output vector

the process involves right shift and bitwise AND operations. The ‘key’ is obtained from the

Chapter 7 Hardware Implementation of HFTDT

123

hashed frequency table and the generated output vector is saved in the P_array. The size of

P_array varies according to the characteristics of the dataset. In this example the P_array has

23 elements including 22 attributes and class.

u64 rev_index_func(u64 key, u8 P_array[23])

{

 P_array[0] = (key & (u64) 1);

 P_array[1] = (key >> (u64) 1) & ((u64) 1);

 P_array[2] = (key >> (u64) 2) & ((u64) 1);

 P_array[3] = (key >> (u64) 3) & ((u64) 1);

 P_array[4] = (key >> (u64) 4) & ((u64) 3);

 P_array[5] = (key >> (u64) 6) & ((u64) 3);

 P_array[6] = (key >> (u64) 8) & ((u64) 3);

 P_array[7] = (key >> (u64) 10) & ((u64) 3);

 P_array[8] = (key >> (u64) 12) & ((u64) 3);

 P_array[9] = (key >> (u64) 14) & ((u64) 3);

 P_array[10] = (key >> (u64) 16) & ((u64) 3);

 P_array[11] = (key >> (u64) 18) & ((u64) 7);

 P_array[12] = (key >> (u64) 21) & ((u64) 7);

 P_array[13] = (key >> (u64) 24) & ((u64) 7);

 P_array[14] = (key >> (u64) 27) & ((u64) 7);

 P_array[15] = (key >> (u64) 30) & ((u64) 7);

 P_array[16] = (key >> (u64) 33) & ((u64) 15);

 P_array[17] = (key >> (u64) 37) & ((u64) 15);

 P_array[18] = (key >> (u64) 41) & ((u64) 15);

 P_array[19] = (key >> (u64) 45) & ((u64) 15);

 P_array[20] = (key >> (u64) 49) & ((u64) 15);

 P_array[21] = (key >> (u64) 53) & ((u64) 15);

 P_array[22] = (key >> (u64) 57) & ((u64) 1);

}

Figure 7.11: Code for the accelerated function for the agaricus-lepiota dataset

Chapter 7 Hardware Implementation of HFTDT

124

7.4.1 NURSERY DATASET

The nursery dataset has eight attributes and five classes, and is the simplest of the

three datasets. Figure 7.12 shows the execution time results obtained from the

hardware solutions for a range of FPGAs, as well as times obtained from the

software implementation. The actual values obtained can be found in Appendix C

Table C.1.

The simulation results showed that, compared with the software implementation,

the execution time for the hardware solution was around three times shorter for

the Artix7 and around 4.2 times shorter for the Kintex7. Also, the maximum clock

frequency achievable was the lowest at 521 MHz for the Artix7 and greatest at 743

MHz for the Kintex7.

Figure 7.12: Hardware acceleration results of targeting a range of FPGAs for the nursery dataset

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 R
e

ve
rs

e
in

d
ex

 f
u

n
ct

io
n

 e
xe

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)

Number of training vectors

Software
Artix7 / HW
Zynq / HW
Virtex7 / HW
Kintex7 / HW

Chapter 7 Hardware Implementation of HFTDT

125

Table 7.2 includes the hardware report of the number of slices, where each slice is

a group of four look up tables (LUTs) and eight flip-flops (FFs). The Kintex7

achieved a higher clock frequency when compared to the Virtex7 but the number of

slices used in the Virtex7 was fewer than that required on the Kintex7. The

variation in the number of slices used in the solutions for all the FPGA families is

probably due to inconsistencies in the place and route process of Vivado HLS [110].

Table 7.2: Hardware design report for the nursery dataset

FPGA
FAMILY

SLICES LUTs FFs
Mean

execution time
reduction (%)

Clock frequency
achieved

Virtex7 8 25 19 75.6 724 MHz

Kintex7 9 25 19 76.2 743 MHz

Zynq 9 25 19 73.6 669 MHz

Artix7 9 25 19 66.1 521 MHz

7.4.2 RESULTS FOR THE AGARICUS-LEPIOTA DATASET

The dataset of the agaricus-lepiota problem has 22 attributes and two classes.

Figure 7.13 shows the execution times of the hardware and software

implementations of the rev_index_func for the agaricus-lepiota dataset. Appendix C

Table C.2 shows the actual figures obtained.

The results of simulation given in Figure 7.13 show that hardware acceleration

reduces the execution time by between 6.5 times for the Artix7 and 9.6 times for

the Virtex7.

Chapter 7 Hardware Implementation of HFTDT

126

Figure 7.13: Hardware acceleration results of targeting a range of FPGAs for the agaricus-lepiota

dataset.

Table 7.3 shows the hardware report of the number of slices, LUTs and FFs. The

Kintex7 and Virtex7 achieved a similar clock frequency for the design, but both

values were considerably higher than that of the Artix7. There was a small

difference in the number of slices and LUTs used by the different FPGAs.

Table 7.3: Hardware design report using agaricus-lepiota dataset

FPGA
FAMILY SLICES LUTs FFs

Mean
execution time
reduction (%)

Clock frequency
achieved

Virtex7 21 70 31 89.5 484 MHz

Kintex7 21 71 31 87.7 413 MHz

Zynq 21 69 31 85.1 341 MHz

Artix7 20 69 31 84.6 330 MHz

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

R
e

ve
rs

e
in

d
ex

 f
u

n
ct

io
n

 r
u

n
 t

im
e

 (
se

co
n

d
s)

Number of training vectors

Software

Artix-7 / HW

Zynq / HW

Kintex-7 / HW

Virtex-7 / HW

Chapter 7 Hardware Implementation of HFTDT

127

7.4.3 RESULTS FOR THE CHESS DATASET

The dataset of the chess problem has 36 attributes and two classes. Figure 7.14

shows the execution times of the hardware and software implementations of the

rev_index_func for the chess dataset. Appendix C Table C.3 shows the numerical

figures obtained for the simulation results.

The results of simulation show that the execution time achieved was almost two

times shorter for the Artix7 implementation and around 3.4 times shorter for the

Kintex7 solution. The maximum clock frequencies achieved are shown in Table 7.4

and ranged from 386 MHz for the Kintex7 to 217 MHz for the Artix7.

Figure 7.14: Hardware acceleration results of targeting a range of FPGAs for the chess dataset.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 300 600 900 1200 1500 1800 2100

R
e

ve
rs

e
in

d
e

x
fu

n
ct

io
n

 e
xe

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)

Number of training vectors

Software

Artix7 / HW

Zynq / HW

Virtex7 / HW

Kintex7 / HW

Chapter 7 Hardware Implementation of HFTDT

128

Table 7.4: Hardware design report using chess dataset

FPGA
FAMILY SLICES LUTs FFs

Mean execution
time reduction

(%)

Clock frequency
achieved

Virtex7 39 136 54 69.4 374 MHz

Kintex7 42 136 54 70.3 386 MHz

Zynq 39 135 54 67.7 355 MHz

Artix7 39 134 54 47.3 217 MHz

7.4.4 RESULTS SUMMARY

Table 7.5 shows a summary for the implementation of the reverse index function

showing the clock frequency and hardware acceleration achieved for the different

FPGAs and for each of the datasets.

Table 7.5: Hardware simulation results summary

Dataset
FPGA

Family

Frequency

achieved

(MHz)

Mean

runtime

acceleration

Latency
Initiation

interval

Nursery

Virtex7 724 4.1x 4 5

Kintex7 743 4.2x 4 5

Artix7 521 3.0x 4 5

Zynq 669 3.8x 4 5

Agaricus-

lepiota

Virtex7 484 9.6x 11 12

Kintex7 413 8.2x 11 12

Artix7 330 6.5x 11 12

Zynq 341 6.7x 11 12

Chess

Virtex7 374 3.3x 18 19

Kintex7 386 3.4x 18 19

Artix7 217 1.9x 18 19

Zynq 355 3.1x 18 19

Chapter 7 Hardware Implementation of HFTDT

129

It can be seen from Table 7.5 that the FPGA implementations of the rev_index_func

significantly improved the execution time performance when implemented for the

test examples that exhibited a range of different numbers of attributes and

attribute values.

The latency presented in Table 7.5 is the number of cycles needed to produce the

output and the initiation interval is the number of clock cycles before new input

can be applied. For all of the implementations, the latency reported by Vivado HLS

tools is one cycle less than the initiation interval. Where the latency and initiation

interval are so similar, it is clear that the design generated automatically by Vivado

HLS has used no pipelining. The more the number of attributes required in the

design, the greater the length of the array used to hold the output vector. Since

Vivado HLS is known to map arrays to memory devices that have limited access

capabilities, a solution results that has more hardware interdependencies and

hence longer latency as the array length increases [98]. The Vivado HLS tools

recommend considering array optimization techniques to allow more reads and

writes in the same clock cycle.

Figures 7.15 to 7.17 show a comparison between the best hardware acceleration

result with C4.5 and ITI. The result of Figure 7.15 for nursery dataset shows that

hardware solution is 4.2 times faster than software, achieved similar performance

to ITI and 6 times slower than C4.5. In Figure 7.16 the results for the agaricus-

lepiota dataset show that the hardware solution reduced the execution time taken

by the software by 9.6 times, where on average it is slower by 5.3 times compared

to ITI and 15.6 times compared to C4.5. The results in Figure 7.17 for the chess

dataset show that the hardware solution improved the software execution time by

3.4 times, which in hardware is slower by nine times and 18 times compared to ITI

and C4.5 respectively.

Chapter 7 Hardware Implementation of HFTDT

130

Figure 7.15: Hardware acceleration result compared with C4.5 and ITI for the nursery dataset

Figure 7.16: Hardware acceleration result compared with C4.5 and ITI for the agaricus-lepiota dataset

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Ee
xe

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)

Number of training vectors

Software

Kintex7 / HW

ITI

C4.5

0.0

0.4

0.8

1.2

1.6

2.0

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Ex
ec

u
ti

o
n

 t
im

e
 (

se
co

n
d

s)

Number of training vectors

Software x5

Virtex-7 / HW

ITI

C4.5

Chapter 7 Hardware Implementation of HFTDT

131

Figure 7.17: Hardware acceleration result compared with C4.5 and ITI for the chess dataset

7.5 EXTENSION OF THE PARALLEL IMPLEMENTATION

In this thesis, the hardware realisation has solely related to the supply of data for

individual entropy calculations. The implementation of HFT has provided a novel

method of storing and retrieving data vectors and only this part of the HFTDT

approach has been accelerated; these operations being unique to this DT method.

The HFTDT algorithm implements incremental learning by storing the data in a

HFT. The table is updated regularly with new data and each unique input data

vector is stored with its own key. The way the data are stored is particularly suited

to hardware implementation due to the manner in which the data are extracted.

Since the data extraction is performed by cycling through the data stored in the

HFT, the current entropy calculation that is being considered needs to wait for a

specific data vector to become available before it can be used as part of the

computation.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 300 600 900 1200 1500 1800 2100

Ex
ec

u
ti

o
n

 t
im

e
 (

se
co

n
d

s)

Number of training vectors

software x2

Kintex7 / HW

ITI

C4.5

Chapter 7 Hardware Implementation of HFTDT

132

No attempt has been made to implement the DT node and entropy calculations in

hardware, mainly because approaches already exist in the literature and so have

little novelty value. In particular, where there is a set of open nodes to be

investigated when building a DT, all of the nodes require a number of entropy

calculations to be computed so that their children can be determined. However, as

the method of data supply to HFTDT is quite different from that used in other DT

approaches, it is interesting to consider the architecture that would be appropriate

for parallel hardware implementations.

The hardware solution proposed here exploits two types of parallelism in the

implementation of DTs. For the first type, high-level thread-level parallelism can be

extracted when two or more nodes need to be expanded concurrently. For the

second type, low-level instruction level parallelism inside each node of the DT can

accelerate the sets of entropy calculations that need to be performed at each node.

The hardware approach proposes a parallel solution by using the information

provided by the rev_index_func to feed multiple nodes (open nodes) simultaneously

in order to reduce the overall time taken to perform entropy calculations. Knowing

that the data goes only to the nodes that need to be investigated, Figure 7.18 shows

how a set of n nodes could be considered in parallel, with all data fed

simultaneously from the rev_index_func.

Entropy and
Information gain

calculations

rev_index_func

Keys

Node1

Entropy and
Information gain

calculations

Entropy and
Information gain

calculations

Node2 Node n

Figure 7.18: Implementation of rev_index_func to supply data to the open nodes in a DT

Chapter 7 Hardware Implementation of HFTDT

133

7.6 SUMMARY

HFTDT in its implementation of the nursery, chess and agaricus-lepiota datasets

has been investigated using the GNU gprof profiler. gprof provides two types of

profiling, a flat profile and a call graph. The results of the profiling showed that the

reverse index function rev_index_func consumes most of the total execution time.

To improve the acceleration performance of the HFTDT code, a hardware design

for rev_index_func was implemented. The hardware design was realised using

Vivado HLS, the tool providing simulation, synthesis and verification of the

rev_index_func. A C test bench file was created for verifying both the C code and the

RTL design.

The advantage of the hardware implementation is that all data stored in the hash

table are supplied in sequence and fed to the node under consideration so that it

can perform its entropy calculations. This approach differs from existing

approaches discussed in section 2.2.5 where data are partitioned into subsets. The

hardware implementation improves the performance of HFTDT when compared to

the software results obtained in section 6.5. The hardware simulation results have

been generated for a range of FPGAs and gave improvements in runtime execution

performance by a factor of up to 9.6 times. The hardware shows improvement in

the calculation time when reached similar performance with ITI and six times

slower than C4.5.

Chapter 8 Conclusions and Further Work

134

8 CONCLUSIONS AND FURTHER WORK

This research work has presented novel approaches, namely MDFT and HFTDT,

that have been developed as real-time incremental learning methods targeting

embedded systems. They were designed with the ability to generate application

specific code for both training and classification purposes according to the

requirements of the targeted application. This chapter discusses the conclusions of

each method in terms of the objectives set out in chapter 1 and indicates potential

future work.

8.1 CONCLUSIONS

The aim of this research work has been partially met by developing incremental

learning methods that were able to achieve low memory usage suitable for meeting

embedded system constraints. Nevertheless, memory usage was still shown to

increase as more training vectors are assimilated. By identifying the maximum

number of calculations that are needed to build a DT, it would be feasible to

determine an upper bound for the time tree building would take, assuming it is

possible to know the execution times needed for specific mathematical operations

on the target platform.

Referring to the objectives, the literature for existing methods was reviewed,

allowing the identification of an appropriate method for building an incremental

system. Two solutions have been developed which are MDFT and HFTDT, whose

outcomes are discussed in relation the objectives in the next two subsections.

8.1.1 MULTI-DIMENSIONAL FREQUENCY TABLE METHOD (MDFT)

The MDFT learning method introduced in this research work adopts a multi-

dimensional array that acts as a frequency table. The frequency table technique

was utilized to achieve incremental learning as it holds all the iterations of the

Chapter 8 Conclusions and Further Work

135

incoming data vectors, while keeping all correlations between the attributes and

classes that are necessary to build the decision tree.

A deterministic time solution and memory requirements are issues of importance

when targeting real-time embedded applications. The MDFT demonstrated in

Chapter 4 has the ability to determine the time needed to perform the necessary

calculations to build a DT and with a fixed memory usage. Despite the memory

requirements of the MDFT being deterministic and can be known a priori, the

approach has the limitation that a substantial demand on memory usage occurs

when the number of dimensions of the frequency table is increased. This limits the

MDFT method’s suitability for embedded system applications where the memory is

usually limited.

8.1.2 HASHED FREQUENCY TABLE DECISION TREE METHOD (HFTDT)

The HFTDT method was introduced in Chapter 5, and adopts a hashed frequency

table technique to permit incremental learning. The method employs a compact

version of the frequency table used by MDFT, where a two-dimensional hash table

is utilized to save the non-zero elements of the MDFT frequency table. This

approach considerably reduces the memory usage when compared to MDFT.

HFTDT is a real-time incremental learning method that targets embedded systems.

The method has a deterministic calculation time, as in MDFT, where the number of

calculations can be known a priori. The memory requirements of the HFTDT

depend on the number of elements stored in the hash table, which can increase

with the addition of new vectors. The upper limit of the memory requirement for

the hash table is not possible to determine a priori if the DT is to be operated

incrementally. In a practical system, the number of training vectors that can be

acquired will need to be restricted, possibly through the implementation of a

forgetting algorithm that removes older vectors from the HFT when it exceeds

available memory capacity.

Experimental work carried out in Chapter 6 demonstrates good performance of the

HFTDT in terms of the number of nodes in the induced DT, memory usage and

Chapter 8 Conclusions and Further Work

136

classification accuracy when compare to three widely used machine learning

methods, such as kNN, C4.5 and ITI. The HFTDT performed well in classifying

unseen datasets and when dealing with missing values, even though no pruning

technique was used in producing the DTs.

The source code of HFTDT has been profiled and it was determined that the most

time-consuming function was consistently rev_index_func, it being called many

times to provide the necessary information to conduct the entropy and information

gain calculations needed to build DTs. Hardware designs for the rev_index_func

have been introduced using a range of FPGAs where the execution time was

achieved by up to 10 times less than that of the software simulation.

8.2 FURTHER WORK

Further work in the areas of pruning and parallelism has been identified and these

are discussed below.

Pruning

Improving classification accuracy and overall performance for the HFTDT using a

suitable pruning technique can be considered in future work. As mentioned in

Chapter 2, pruning aims to generalise DTs and improve classification accuracy.

Pre-pruning methods often have a lower computational cost compared to post-

pruning techniques, although the latter can achieve better classification accuracy.

Pre-pruning can be more feasible for incremental learning than post-pruning since

it adopts a set of stopping criteria that can be used to halt the growth of the DT.

HFTDT as an incremental method that has the ability to generate a new DT when

any changes in the data occurs or whenever it is needed, since the FT can provide

all the data needed to build a DT from scratch,. Although both types of pruning can

be implemented in such a case, other incremental methods, such as ITI, adopt pre-

pruning that affects the DT building at an early stage. These changes made during

tree building cannot later be undone when more data are presented.

Chapter 8 Conclusions and Further Work

137

In addition to smaller DTs, pruning provides better classification accuracy, fewer

nodes and a consequent reduction in memory usage. Execution time is also reduced

as fewer calculations are needed in the building of a smaller tree. Consequently,

further work is appropriate to identify a suitable pruning technique to achieve an

equivalent performance to the C4.5 algorithm, which was able to produce a more

generalized DT according to the evaluation results of Chapter 6.

Parallelism

Parallelism has been applied to a number of the decision tree methods found in the

literature. The forms of parallelism which have been identified by other authors as

in Section 2.2.4 include multi-threaded approaches, node based approaches and

entropy based approaches. These methods are broadly applicable to HFTDT, as

only the way in which the data are supplied to nodes is different. The data in most

DTs are obtained as required by the algorithm, whereas in HFTDT the data is fed

continuously from memory and it is the responsibility of the nodes to obtain the

data they require as it is generated so that they can perform their entropy

calculations. Consequently, the detailed implementation of parallelism in the

HFTDT will have some differences from other DT methods, and further work is

needed in order to realise this parallelism and to determine the advantages of this

approach.

 References

138

REFERENCES:

[1] “Embedded System Market - Global Industry Analysis, Size, Share, Growth,
Trends and Forecast, 2012- 2018,” Transparency Market Research, 2013. [Online].
Available: http://www.transparencymarketresearch.com/embedded-system.html.
[Accessed: 01-Jan-2014].

[2] E. Alpaydin, Introduction to Machine Learning. The MIT Press Cambridge,
Massachusetts. London, England, 2004, p. 415.

[3] Ryszard S. Michalski, J. G. Carbonell, and T. M. Mitchell, Machine Learning: An
Artificial Inteligence Approach. Tioga Publishing Company, 1983, p. 572.

[4] Oxford English Dictionary, Draft Revi. Oxford University Press, 2010.

[5] T. M. Mitchell, “The Discipline of Machine Learning,” Technical report, CMU-
ML-06-108. Department of Machine Learning, Carnegie Mellon University, 2006.

[6] C. R. Köpf, Meta-learning: strategies, implementations, and evaluations for algorithm selection.
Akademische Verlagsgesellschaft Aka GmbH, Berlin, 2006.

[7] E. L. Lamie, Real-Time Embedded Multithreading Using ThreadX, Second. Elsevier
Inc., 2009.

[8] G. C. Buttazzo, Hard Real-Time Computing Systems: Predictable Scheduling Algorithms
and Applications, Third. Springer, 2011, p. 521.

[9] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multiprogramming in a
Hard- Real-Time Environment,” J. Assoc. Comput. Mach., vol. 20, no. 1, pp. 46–61,
1973.

[10] J. C. Schlimmer and R. H. Granger, “Incremental learning from noisy data,” Mach.
Learn., vol. 1, no. 3, pp. 317–354, 1986.

[11] E. Swere, “Machine Learning in Embedded Systems,” Loughborough University,
2008.

[12] J. Gama, R. Rocha, and P. Medas, “Accurate Decision Trees for Mining High-
speed Data Streams,” in The ninth ACM SIGKDD international conference on Knowledge
discovery and data mining, 2003, pp. 523–528.

[13] S. B. Kotsiantis, “Supervised Machine Learning: A Review of Classification
Techniques,” Informatica, vol. 31, pp. 249–268, 2007.

 References

139

[14] N. Grira, M. Crucianu, N. Boujemaa, and I. Rocquencourt, “Unsupervised and
Semi-supervised Clustering: a Brief Survey,” in A Review of Machine Learning
Techniques for Processing Multimedia Content, Report of the MUSCLE European Network
of Excellence (FP6) in, 2005, pp. 1–12.

[15] X. Zhu, “Semi-Supervised Learning Literature Survey Contents,” Comput. Sci.
Univ. Wisconsin-Madison, 2008.

[16] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based learning algorithms,”
Mach. Learn., vol. 6, no. 1, pp. 37–66, Jan. 1991.

[17] M. Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems. Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA, 2001, p. 394.

[18] D. Mange and M. Tomassini, Artificial Neural Networks: Algorithms and Hardware
Implementation, 2.2 ed. PPUR Press, 1998, pp. 289–316.

[19] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines, First.
Cambridge University Press, 2000.

[20] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. The MIT Press
Cambridge, Massachusetts. London, England, 1998.

[21] J. Bernardo and A. Smith, Bayesian theory. John Wiley & Sons, 2004.

[22] K. S. Tang, K. F. Man, S. Kwong, and Q. He, “Genetic algorithms and their
applications,” IEEE Signal Process. Mag., vol. 13, no. November, pp. 22–37, 1996.

[23] L. B. Booker, D. E. Goldberg, and J. H. Holland, “Classifier Systems and Genetic
Algorithms,” Artif. Intell., vol. 40, pp. 235–282, 1989.

[24] J. R. Quinlan, “Induction of Decision Trees,” Mach. Learn. J., vol. 1, no. 1, pp. 81–
106, 1986.

[25] P. Kokol, V. Podgorelec, M. Zorman, and M. M. S, “The Art of Building Decision
Trees,” J. Med. Syst., vol. 24, no. 1, pp. 43–52, 2000.

[26] S. K. MURTHY, “Automatic Construction of Decision Trees from Data: A
Multi-Disciplinary Survey,” Data Min. Knowl. Discov., vol. 2, no. 4, pp. 345–389,
1998.

[27] J. R. Quinlan, C4.5: Programs for machine learning. California: Morgan Kaufmann
publishers, inc., 1993.

[28] J. R. Quinlan, “Data Mining Tools See5 and C5.0,” 2009. [Online]. Available:
http://www.rulequest.com/see5-info.html. [Accessed: 11-Nov-2010].

[29] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, “Classification and
Regression Trees,” Wadsworth Stat. Probab. Ser., vol. 19, 1984.

 References

140

[30] J. Shafer and R. Agrawal, “SPRINT: A Scalable Parallel Classifier for Data,” in
Proceedings of 22nd international conference on very large data bases, 1996, pp. 544–555.

[31] S. Appavu and R. Rajaram, “Knowledge-Based Systems Knowledge-based system
for text classification using ID6NB algorithm,” Knowledge-Based Syst., vol. 22, no. 1,
pp. 1–7, 2009.

[32] J. C. Schlimmer and D. Fisher, “A Case Study of Incremental concept induction,”
in Proceedings of the Fifth National Conference on Artificial Intelligence, 1986, pp. 496–501.

[33] P. E. Utgoff, “ID5: An Incremental ID3,” in Proceedings of the Fifth International
Conference on Machine Learning, 1988, pp. 107–120.

[34] P. E. Utgoff, “Incremental Induction of Decision Trees,” in Machine learning 4,
1989, no. C, pp. 161–186.

[35] P. E. Utgoff, N. C. Berkman, and J. A. Clouse, “Decision Tree Induction Based
on Efficient Tree Restructuring,” Mach. Learn. J., vol. 29, pp. 5–44, 1997.

[36] E. Swere and D. J. Mulvaney, “Robot Navigation Using Decision Trees,” Electr.
Eng., pp. 15–17, 2003.

[37] E. Swere, D. Mulvaney, and I. Sillitoe, “A Fast Memory-Efficient Incremental
Decision Tree Algorithm in its Application to Mobile Robot Navigation,” in
Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on, 2006, pp.
645–650.

[38] E. Swere, D. Mulvaney, and I. Sillitoe, “Efficient Incremental Decision Tree
Generation for Embedded Applications,” in Proceedings of the IEEE international
conference on cybernetics and intelligent systems, 2005, pp. 1101–1106.

[39] T. Carter, “An introduction to information theory and entropy.” 2011.

[40] T. ELOMAA and J. ROUSU, “General and Efficient Multisplitting of Numerical
Attributes,” Mach. Learn. J., vol. 36, pp. 201–244, 1999.

[41] K. P. Bennett, N. Cristianini, J. Shawe-Taylor, and D. Wu, “Enlarging the Margins
in Perceptron Decision Trees,” Mach. Learn., vol. 41, no. 3, pp. 295–313, 2000.

[42] C. E. Shannon, “A Mathematical Theory of Communication,” Bell Syst. Tech. J.,
vol. 27, no. July, pp. 379–423, 1948.

[43] S. B. Kotsiantis, “Decision trees: a recent overview,” Artif. Intell. Rev., vol. 39, no.
4, pp. 261–283, Jun. 2011.

[44] L. Rokach and O. Maimon, “Pruning Trees,” in data mining with decision trees: theory
and applications, World Scientific Publishing, Singapore, 2008, pp. 63–69.

 References

141

[45] N. J. Nilsson, “Overfitting and Evaluation,” in INTRODUCTION TO
MACHINE LEARNING, 2005, pp. 80–85.

[46] H. Kim and G. Koehler, “An investigation on the conditions of pruning an
induced decision tree,” Eur. J. Oper. Res., vol. 77, pp. 82–95, 1994.

[47] L. A. Breslow and D. W. Aha, “Simplifying decision trees: A survey,” Knowl. Eng.
Rev., vol. 12, no. 1, pp. 1–40, 1997.

[48] J. Martin, “An exact probability metric for decision tree splitting and stopping,”
Mach. Learn., vol. 291, pp. 257–291, 1997.

[49] P. Clark and T. Niblett, “The CN2 induction algorithm,” Mach. Learn., vol. 3, pp.
261–283, 1989.

[50] J. Du, Z. Cai, and C. X. Ling, “Cost-sensitive decision trees with pre-pruning,”
Adv. Artif. Intell., pp. 171–179, 2007.

[51] F. Esposito, D. Malerba, G. Semeraro, and J. Kay, “A comparative analysis of
methods for pruning decision trees,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
19, no. 5, pp. 476–493, May 1997.

[52] J. R. Quinlan, “Simplifying decision trees,” International Journal of Man-Machine
Studies, vol. 27. pp. 221–234, 1987.

[53] B. Cestnik and I. Bratko, “On estimating probabilities in tree pruning,” in Machine
Learning — EWSL-91 SE - 11, vol. 482, Y. Kodratoff, Ed. Springer Berlin
Heidelberg, 1991, pp. 138–150.

[54] J. Mingers, “An empirical comparison of pruning methods for decision tree
induction,” Mach. Learn., vol. 4, pp. 227–243, 1989.

[55] E. Frank, “Pruning decision trees and lists,” University of Waikato, 2000.

[56] K. Steinhaeuser, N. V Chawla, and P. M. Kogge, “Exploiting Thread-Level
Parallelism to Build Decision Trees,” in International Workshop on Parallel Data
Mining, 2006.

[57] R. Kufrin, “Decision trees on parallel processors,” Parallel Process. Artif. Intell., vol.
3, 1995.

[58] A. Srivastava, E. Han, V. Kumar, and V. Singh, “Parallel Formulations of
Decision-Tree Classification Algorithms,” Data Min. Knowl. Discov., vol. 3, pp. 237–
261, 1999.

[59] G. J. Narlikar, “A Parallel , Multithreaded Decision Tree Builder. TechnicalReport
CMU-CS-98-184, School of Computer Science, Carnegie Mellon University,”
1998.

 References

142

[60] R. Jin and G. Agrawal, “Communication and Memory Efficient Parallel Decision
Tree Construction,” in Proceedings of the 2003 SIAM International Conference on Data
Mining, 2003, pp. 119–129.

[61] O. T. Yıldız and O. Dikmen, “Parallel univariate decision trees,” Pattern Recognit.
Lett., vol. 28, no. 7, pp. 825–832, May 2007.

[62] R. Narayanan, D. Honbo, G. Memik, A. Choudhary, and J. Zambreno, “An
FPGA Implementation of Decision Tree Classification,” in Proc. IEEE Int. Conf.
Design, Automation and Test in Europe, 2007, pp. 189–194.

[63] M. J. Zaki and R. Agrawal, “Parallel classification for data mining on shared-
memory multiprocessors,” Proc. 15th Int. Conf. Data Eng. (Cat. No.99CB36337), pp.
198–205, 1999.

[64] H. Andrade, T. Kurc, A. Sussman, J. Saltz, and C. Park, “Decision Tree
Construction for Data Mining on Cluster of Shared-Memory Multiprocessors,” in
In HPDM: 6th International Workshop on High Performance Data Mining: Pervasive and
Data Stream Mining, 2003.

[65] P. T. P. Tang, “Table-Lookup Algorithms for Elementary Functions and Their
Error Analysis,” in 10th IEEE Symposium on Computer Arithmatic, 1991, pp. 232–
236.

[66] H. Hassler and N. Takagi, “Function evaluation by table look-up and addition,”
Proc. 12th Symp. Comput. Arith., pp. 10–16, 1995.

[67] J. E. Stine and M. J. Schulte, “The Symmetric Table Addition Method for
Accurate Function Approximation,” J. VLSI signal Process. Syst. signal, image video
Technol., vol. 21, no. 2, pp. 167–177, 1999.

[68] “GNU Mathematical Library.” [Online]. Available:
http://www.gnu.org/software/libc/manual/html_node/Mathematics.html.
[Accessed: 20-Mar-2014].

[69] J. R. Quinlan, “Learning Efficient Classification Procedures and Their Application
to Chess End Games,” in Machine Learning SE - 15, R. Michalski, J. Carbonell, and
T. Mitchell, Eds. Springer Berlin Heidelberg, 1983, pp. 463–482.

[70] Y. Wang, D. Mulvaney, I. Sillitoe, and E. Swere, “Robot Navigation by
Waypoints,” J. Intell. Robot. Syst., pp. 175–207, 2008.

[71] H. Zhe, Z. Jun, and L. Xiling, “Design and Realization of Efficient Memory
Management for Embedded Real-Time Application,” in 2006 6th International
Conference on ITS Telecommunications Proceedings, 2006, pp. 174–177.

[72] J. R. Alcob, “Incremental Learning of Tree Augmented Naive Bayes Classifiers,”
in In: Series lecture notes in computer science: Advances in artificial intelligence - IBERAMIA,
Springer Berlin/Heidelberg publisher, 2002, pp. 32–41.

 References

143

[73] R. Wan, I. Takigawa, and H. Mamitsuka, “Applying Gaussian Distribution-
Dependent Criteria to Decision Trees for High-Dimensional Microarray Data,” in
Lecture Notes in Bioinformatics, Springer-Verlag Berlin Heidelberg, 2006, pp. 40–49.

[74] Canonical Ltd, “Ubuntu 12.04.” [Online]. Available: www.ubuntu.com. [Accessed:
01-Apr-2014].

[75] ORACLE, “VirtualBox.” [Online]. Available: https://www.virtualbox.org.
[Accessed: 01-Apr-2014].

[76] I. Free Software Foundation, “GCC, the GNU Compiler Collection.” [Online].
Available: http://gcc.gnu.org/. [Accessed: 01-Mar-2014].

[77] “Matlab,” 2014. [Online]. Available: http://www.mathworks.co.uk. [Accessed: 01-
Mar-2014].

[78] H. Jiawei and M. Kamber, Data mining: concepts and techniques, 2nd ed. Morgan
Kaufmann Publishers, 2006.

[79] A. Moore and D. Zuev, “Internet traffic classification using bayesian analysis
techniques,” ACM SIGMETRICS Perform. Eval. Rev., vol. 33, no. 1, pp. 50–60,
2005.

[80] T. Nguyen and G. Armitage, “A survey of techniques for internet traffic
classification using machine learning,” IEEE Commun. Surv. Tutorials, vol. 10, no.
4, pp. 56–76, 2008.

[81] J. Ostlund, P. Komarek, T. Liu, and A. Moore, “Dense K nearest neighbour.,”
2005. [Online]. Available:
http://www.autonlab.org/autonweb/downloads/software.html. [Accessed: 01-
Dec-2013].

[82] J. R. Quinlan, “Quinlan, J. R., Ross Quinlan’s personal homepage,” 1992.
[Online]. Available: http://www.rulequest.com/Personal. [Accessed: 25-Jan-
2014].

[83] P. E. Utgoff, “Incremental Decision Tree Induction,” 2001. [Online]. Available:
http://www-ml.cs.umass.edu/iti/. [Accessed: 25-Feb-2014].

[84] Y. Yang and X. Liu, “A re-examination of text categorization methods,” Proc. 22nd
Annu. Int. ACM SIGIR Conf. Res. Dev. Inf. Retr. - SIGIR ’99, pp. 42–49, 1999.

[85] K. Bache and M. Lichman, “UCI Machine Learning Repository,” University of
California, Irvine, School of Information and Computer Sciences, 2013. [Online]. Available:
http://archive.ics.uci.edu/ml.

[86] A. Van Den Bosch and K. Van Der Sloot, “Superlinear Parallelization of k -
Nearest Neighbor Retrieval,” 2007.

 References

144

[87] I. H. Witten, E. Frank, and M. A. Hall, “Applications and Beyond,” in DATA
MINING Practical Machine Learning Tools and Techniques, Third., Morgan Kaufmann
Publishers, 2011, pp. 375–381.

[88] D. Wettschereck and T. G. Dietterich, “An experimental comparison of the
nearest-neighbor and nearest-hyperrectangle algorithms,” Mach. Learn., vol. 19, no.
1, pp. 5–27, Apr. 1995.

[89] H. Liang and Y. Yan, “Improve Decision Trees for Probability-Based Ranking by
Lazy Learners,” 2006 18th IEEE Int. Conf. Tools with Artif. Intell., pp. 427–435,
Nov. 2006.

[90] E. Acuna and C. Rodriguez, “The treatment of missing values and its effect on
classifier accuracy,” Classif. Clust. Data Min. Appl., pp. 639–647, 2004.

[91] P. E. Utgoff, “An improved algorithm for incremental induction of decision
trees,” in Proceedings of the Eleventh International Conference on Machine Learning, 1994,
pp. 318–325.

[92] J. Grzymala-Busse and M. Hu, “A comparison of several approaches to missing
attribute values in data mining,” Rough sets Curr. trends Comput., pp. 378–385, 2001.

[93] G. E. a. P. a. Batista and M. C. Monard, “An analysis of four missing data
treatment methods for supervised learning,” Appl. Artif. Intell., vol. 17, no. 5–6,
pp. 519–533, May 2003.

[94] J. Fenlason, “GNU gprof manual.” [Online]. Available:
https://sourceware.org/binutils/docs-2.17/gprof/. [Accessed: 01-Feb-2014].

[95] G. Martin, G. Smith, D. Tho-, M. Barbacci, and A. Parker, “High-Level Synthesis:
Past , Present , and Future,” IEEE Des. Test Comput., pp. 18–25, 2009.

[96] P. Coussy, D. D. Gajski, M. Meredith, and a. Takach, “An Introduction to High-
Level Synthesis,” IEEE Des. Test Comput., vol. 26, no. 4, pp. 8–17, Jul. 2009.

[97] D. Ivosevic and V. Sruk, “Unified flow of custom processor design and FPGA
implementation,” EUROCON, 2013 IEEE, pp. 1721–1727, 2013.

[98] Vivado Design Suite User Guide, UG902 ed. Xilinx Inc., 2013.

[99] M. Fingeroff, High-level synthesis blue book. Xlibris, Philadelphia, 2010.

[100] Cadence, “Cadence C-to-Silicon Compiler,” 2008. [Online]. Available:
http://www.cadence.com/rl/resources/technical_papers/c_to_silicon_tp.pdf.
[Accessed: 15-Apr-2014].

[101] Compaan_Design, “Compaan.” [Online]. Available:
http://www.compaandesign.com/. [Accessed: 15-Apr-2014].

 References

145

[102] NEC, “CyberWorkBench.” [Online]. Available:
http://www.cyberworkbench.com. [Accessed: 13-Apr-2014].

[103] Synopsys, “Synphony C.” [Online]. Available: http://www.synopsys.com/.
[Accessed: 15-Apr-2014].

[104] W. Meeus, K. Van Beeck, T. Goedemé, J. Meel, and D. Stroobandt, “An overview
of today’s high-level synthesis tools,” Des. Autom. Embed. Syst., vol. 16, no. 3, pp.
31–51, Aug. 2012.

[105] BDTI, “An Independent Evaluation of: The AutoESL AutoPilot High-Level
Synthesis Tool (White paper),” 2010. [Online]. Available:
http://www.bdti.com/Resources/BenchmarkResults/HLSTCP/AutoPilot.
[Accessed: 01-Mar-2014].

[106] Introduction to FPGA Design with Vivado High-Level Synthesis, UG998 ed. Xilinx Inc.,
2013.

[107] “7 Series FPGAs Overview,” vol. 180. XILINX Inc., pp. 1–16, 2013.

[108] “Zynq-7000 All Programmable SoC Overview.” Xilinx Inc., pp. 1–21, 2013.

[109] Xilinx Inc., “Xilinx 7-series product brief,” 2012. [Online]. Available:
http://www.xilinx.com/publications/prod_mktg/7-Series-Product-Brief.pdf.
[Accessed: 18-Feb-2014].

[110] T. Feist, “Vivado Design Suite, White Paper,” Xilinx Inc., 2012.

146

APPENDIX A AN ILLUSTRATIVE EXAMPLE FOR THE HFTDT METHOD

APPENDIX A

AN ILLUSTRATIVE EXAMPLE FOR HFTDT METHOD

Appendix B An illustrative example for the HFTDT method

147

The weather problem given in Table 5.2 consists of four attributes and

two classes

 . The HFTDT method uses an HFT that holds the keys and

the corresponding values of each input vector.

After the HFT has been populated, the decision tree can be generated. The

splitting criterion used in generating the decision tree is information gain.

The following shows the total entropy calculation needed for the root node,

using Equation 2.2.

 (A.1)

 (A.2)

 (A.3)

The total entropy at the root node is thus

 (A.4)

Appendix B An illustrative example for the HFTDT method

148

Choosing the attribute at the root node

In this section, the entropy values will be computed for each of the attributes

for the root node.

1. Entropy for ‘outlook’.

For attribute value ‘sunny’

 = 3

(A.5)

(A.6)

 (A.7)

For attribute value ‘overcast’

 (A.8)

(A.9)

 (A.10)

For attribute value ‘rainy’.

(A.11)

(A.12)

 (A.13)

Appendix B An illustrative example for the HFTDT method

149

By using Equation 2.4, the entropy for attribute ‘outlook’ can be found from:

(A.14)

By using Equation 2.5, the information gain for attribute ‘outlook’ is given by:

(A.15)

2. Entropy for ‘temperature’:

For attribute value ‘hot’.

For attribute value ‘mild’.

Appendix B An illustrative example for the HFTDT method

150

For attribute value ‘cool’.

By using Equation 2.4, the entropy for attribute ‘temperature’ can be found from

By using Equation 2.5, the information gain for attribute ‘temperature’ is

)

Appendix B An illustrative example for the HFTDT method

151

3. Entropy for attribute ‘humidity’

For attribute value ‘high’

For attribute value normal

By using Equation 2.4, the entropy for attribute ‘humidity’ can be found from

By using Equation 2.5, the information gain for attribute ‘humidity’ is given by

)

Appendix B An illustrative example for the HFTDT method

152

4. Entropy for attribute ‘wind’

For attribute value ‘weak’

For attribute value ‘strong’

By using Equation 2.4, the entropy for attribute ‘wind’ can be found from

By using Equation 2.5, the information gain for attribute ‘wind’ is given by

Appendix B An illustrative example for the HFTDT method

153

The DT progress beyond this point is shown in Figure 4.5. For the root node,

the attribute ‘outlook’ is chosen as it has the largest information gain value.

There are three attribute values for ‘outlook’ sunny, overcast and rainy.

Therefore the root node has three children as follows.

Sunny --> node 2

Overcast --> node 3

Rainy --> node 4

Calculations of node 2

After choosing ‘outlook’ for node 1 according to the entropy and information

gain calculations given by Equations A.14 and A.15, the following calculations

are for node 2 to choose the next attribute from the remaining attributes

following similar procedure.

Three main relations will be considered in this stage.

1. Outlook-->Temperature

2. Outlook-->‘humidity’

3. Outlook-->Wind

For node 2 where value ‘sunny’ presented, the number of vectors is 7 as given

by Equation A.7. In the following, the calculations for node 2 to choose the next

attribute.

Total entropy for node 2

For first child node 2 for root node with attribute value ‘sunny’, the total node

entropy can be calculated using the following parameters by referring to

Equations A.5, A.6 and A.7.

Appendix B An illustrative example for the HFTDT method

154

From Equation 2.2, the entropy, for all vectors within attribute value ‘sunny’

can be found from

 (A.16)

Attribute entropy for node 2

1. The entropy for attribute ‘temperature’ when ‘outlook’ is ‘sunny’ can be found as

follows.

For attribute value ‘hot’

(A.17)

 (A.18)

 (A.19)

For attribute value ‘mild’

(A.20)

(A.21)

 (A.22)

Appendix B An illustrative example for the HFTDT method

155

For attribute value cool

 (A.23)

(A.24)

 (A.25)

By using Equation 2.4, the entropy for attribute ‘temperature’ can be found from

(A.26)

By using Equation 2.5, the information gain for attribute ‘temperature’ is given by

 (A.27)

)

2. Entropy for ‘humidity’ when ‘outlook’ is ‘sunny’

For attribute value ‘high’

Appendix B An illustrative example for the HFTDT method

156

For attribute value ‘normal’

By using Equation 2.4, the entropy for attribute ‘humidity’ can be found from

By using Equation 2.5, the information gain for ‘humidity’ is given by

3. Entropy for ‘wind’ when ‘outlook’ is ‘sunny’

For attribute value ‘weak’

Appendix B An illustrative example for the HFTDT method

157

For attribute value ‘strong’

By using Equation 2.4, the entropy for ‘wind’ can be found from

By using Equation 2.5, the information gain for ‘wind’ is given by

The DT progress is shown in Figure 4.6, where attribute ‘temperature’ is chosen

as it has the largest information gain value as given by Equation A.27.

Calculations of node 3

Next node is node 3 where attribute value ‘overcast’ presented, the number of

vectors is 4 as given by Equation A.10. The calculations for the entropy and the

information gain will be repeated on this node as follows.

Appendix B An illustrative example for the HFTDT method

158

Total entropy for node 3

For second child node 3 for root node with value ‘overcast’, the total node

entropy can be calculated using the following parameters by referring to

Equations A.8, A.9 and A.10.

From Equation 2.2 the entropy, for all vectors within value ‘overcast’ is given by

 (A.28)

According to the entropy calculation of node 3 is a leaf node as all the vectors

only to one class. The DT progress beyond this point is shown in Figure 4.7.

Calculations of node4

For node 4 where value ‘rainy’ presented, the number of vectors is 5 as given by

Equation A.13. In the following, the calculations for node 4 to choose the next

attribute.

Total entropy for node 4

For third child node 4 for root node with attribute value ‘rainy’, the total node

entropy can be calculated using the following parameters by referring to

Equations A.11, A.12 and A.13.

Appendix B An illustrative example for the HFTDT method

159

From Equation 2.2, the entropy for all vectors within value ‘rainy’ can be found

from

Attribute entropy for node 4

1. Entropy for attribute ‘temperature’ when ‘outlook’ is ‘rainy’

For attribute value ‘hot’

For attribute value ‘mild’

Appendix B An illustrative example for the HFTDT method

160

For attribute value ‘cool’

By using Equation 2.4, the entropy for attribute ‘temperature’ can be found from

(A.29)

By using Equation 2.5, the information gain for attribute ‘temperature’ is given by

 (A.30)

2. Entropy for ‘humidity’ when ‘outlook’ is ‘rainy’

For attribute value ‘high’

Appendix B An illustrative example for the HFTDT method

161

For attribute value ‘normal’

By using Equation 2.4, the entropy for attribute ‘humidity’ can be found from

By using Equation 2.5, the information gain for attribute ‘humidity’ is

3. Entropy for attribute ‘wind’ when ‘outlook’ is ‘rainy’

For attribute value ‘weak’

 (A.31)

(A.32)

 (A.33)

Appendix B An illustrative example for the HFTDT method

162

For attribute value ‘strong’

(A.34)

 (A.35)

 (A.36)

By using Equation 2.4, the entropy for ‘wind’ can be found from

By using Equation 2.5, the information gain for ‘wind’ is given by

The DT progress is shown in Figure 4.8, shows that attribute ‘wind’ is chosen as

it has the largest information gain value. There are three values for

‘temperature’ hot, mild and cool. Therefore node 2 has three children as

follows.

Hot --> node 5

Mild --> node 6

Cool --> node 7

Appendix B An illustrative example for the HFTDT method

163

Calculations of node 5

Next node is node 5 where its parent node 2 chooses attribute ‘temperature’ as

given by Equation A.27. The following calculations are for node 5 to choose the

next attribute from the remaining two attributes.

Two main relations to be considered at this stage are

1. Outlook-->Temperature-->‘humidity’

2. Outlook--> Temperature-->Wind

For node 5 where value ‘hot’ is presented, the number of vectors is 2 as given

by Equation A.19. In the following, the calculations for node 5 to choose the

next attribute.

Total entropy for node 5

For first child node 5 to parent node 2 with attribute value ‘hot’, the total node

entropy can be calculated using the following parameters that are given by

Equations A.17, A.18 and A.19.

From Equation 2.2 the total entropy can be found from

According to the entropy calculation, node 5 is a leaf node as all the vectors

belongs to class 0. The DT progress beyond this point has been updated as

shown in Figure 4.9.

Appendix B An illustrative example for the HFTDT method

164

Calculations of node 6

For node 6 where value ‘mild’ is presented, the number of vectors is 4 as given

by Equation A.22. In the following, the calculations of node 6 to choose the next

attribute.

Total entropy for node 6

For second child node 6 to parent node 2 with value ‘mild’, the total entropy

can be calculated using the following parameters that are given by Equations

A.20, A.21 and A.22.

From Equation 2.2 the total entropy can be found from

Attribute entropy for node 6

1. Entropy for attribute ‘humidity’

For attribute value high

(A.37)

(A.38)

 (A.39)

Appendix B An illustrative example for the HFTDT method

165

For attribute value ‘normal’

 (A.40)

(A.41)

 (A.42)

By using Equation 2.4, the entropy for attribute ‘humidity’ can be found from

By using Equation 2.5, the information gain for attribute ‘humidity’ is given by

(A.43)

2. Entropy for attribute ‘wind’

For attribute value ‘weak’

Appendix B An illustrative example for the HFTDT method

166

For attribute value ‘strong’

By using Equation 2.4, the entropy for attribute ‘wind’ can be found from

By using Equation 2.5, the information gain for attribute ‘wind’ is given by

(A.44)

As both attributes ‘humidity’ and ‘wind’ have similar information gain as given

by Equations A.42 and A.43, an arbitrary decision [73] made to choose the

attribute ‘humidity’. The DT has been updated as shown in Figure 4.10, where

attribute ‘humidity’ is chosen for node 6.

Calculations of node 7

For node 7 where the value is cool, the number of vectors is 1 as given by

Equation A.25. In the following, the calculations for node 7 to choose the next

attribute.

Appendix B An illustrative example for the HFTDT method

167

Total entropy for node 7

For the third child node 7 to the parent node 2 with attribute value ‘cool’, the

total node entropy can be calculated using the following parameters that are

given by Equations A.23, A.24 and A.25.

From Equation 2.2 the total entropy can be found from

The entropy calculation shows that node 7 is a leaf node as one vector of class 1

is left. The DT beyond this point is shown in Figure 4.11, where the DT is

updated with node 7 is a leaf node.

There are two values for ‘wind’ weak and strong. Therefore there are two

children for node 4 as follows.

Weak --> node 8

Strong --> node 9

Two main relations to be considered at this stage

1. Outlook-->Wind-->Humidity

2. Outlook-->Wind--> Temperature

Calculations of node 8

The next node is 8 where its parent node 4 has chosen attribute ‘wind’ as given

by Equation A.30. The following calculations are for node 8 to choose the next

attribute from the remaining two attributes.

Appendix B An illustrative example for the HFTDT method

168

For node 8 where the value is ‘weak’, the number of vectors is 3 as given by

Equation A.33. In the following, the calculations to choose the next attribute.

Total entropy for node 8

For first child node 8 to parent node 4 with attribute value ‘weak’, the total

node entropy can be calculated using the following parameters that are given

by Equations A.31, A.32 and A.33.

From Equation 2.2 the total entropy can be found from

The entropy calculation shows that node 8 is a leaf node as all the vectors of

class 1. The DT has been updated as shown in Figure 4.12.

Calculations of node 9

For second child node 9 to parent node 4 with attribute value ‘strong’, the total

node entropy can be calculated using the following parameters that are given

by Equations A.34, A.35 and A.36.

Appendix B An illustrative example for the HFTDT method

169

From Equation 2.2 the total entropy is equal to

The DT has been updated as shown in Figure 4.13, where the entropy

calculation shows that node 9 is a leaf node as as all vectors are of class 1.

Node10

Next node is node 10 where its parent node 6 has chosen attribute ‘humidity’ as

given by Equation A.43. The relation considered at this stage is

Outlook-->Temperature-->Humidity-->Wind

For node 10 where the value is high, the number of vectors is 3 as given by

Equation A.39. The only attribute left is ‘wind’ and will be chosen for node 10.

The DT beyond this point has been updated as shown in Figure 4.14.

NODE 11

For node 11 where the value is ‘normal’, there is one vector as given by

Equation A.42. This node is a leaf node as the remaining vector is for class 1 and

therefore no further calculations needed. The DT has been updated as shown in

Figure 4.15.

Appendix B An illustrative example for the HFTDT method

170

NODE 12

For node 12, it is considered as leaf node. The value ‘weak’ on this node has

three vectors distributed as follows

Referring to the values of class don’t play (0) as in
 and play (1) as in

 the

probability of class play is twice the occurrence of class don’t play. In this case

the decision is choosing the class with higher probability of occurrence. The

complete decision tree is shown in Figure 4.16, where node 12 is updated as a

leaf node.

The classification Rules generated by the HFTDT method are summarised as

shown in Table A.1.

Table A.1 Classification (IF-THEN) rules model obtained by the HFTDT method for the completed

DT shown in Figure 4.16.

1 Outlook “Sunny” AND Temperature “Hot”

 Class “Play”

2 Outlook “Sunny” AND Temperature “Mild” AND Humidity “High” AND Wind “Weak”

 Class “Play”

3 Outlook “Sunny” AND Temperature “Mild” AND Humidity ”Normal”

 Class “Play”

4 Outlook “Sunny” AND Temperature “Cool”

 Class “Play”

5 Outlook “Overcast”

 Class “Play”

6 Outlook “Rainy” AND Wind “Weak”

 Class “Play”

7 Outlook “Rainy” AND Wind “Strong”

 Class “Don’t play”

171

APPENDIX B SOURCE CODE FUNCTIONS

APPENDIX B

SOURCE CODE FUNCTIONS

Appendix C Source Code Functions

172

B.1 HFTDT ALGORITHM SOURCE CODE FILES

The source code organised in three main folders

(1) src this folder contains the following three subfolders

 convert, contains convert.c

 header, contains global.h

 testbench, contains tb.c and struct.c

(2) data: this folder has four subfolders

 converted_files, contains the converted data and names files

 example, contains the dataset to be tested

 param, contains the generated parameters.c, parameters.h and logarithm

table

 results, contains the results files

(3) bin: this folder contains the executable files

The following is a list of the source code functions.

Appendix C Source Code Functions

173

B.2 SOURCE CODE FUNCTIONS LIST

 Convert.c functions

1. Function: read_word

 Purpose: read attributes and class of the input data vectors one by one

 Arguments: (1) Input data vectors

(2) Pass a word

 Returns:

2. Function: read_to_EOL

 Purpose: Used for the conversion to numerical data

 Argument:

 Returns:

3. Function: Createlog

 Purpose: Create a lookup table to store the logarithm table

 Arguments: Number of classes

 Returns: Nothing

 Parameters.c functions

1. Function: Index_func

 Purpose: Generate key from input vector

 Argument: Input data vector

 Returns: A key value

2. Function: updateHashTable

 Purpose: Store the generated keys in hash table and update its

corresponding counter

 Arguments: Key from index function

 Returns: Nothing

Appendix C Source Code Functions

174

3. Function: rev_index_func

 Purpose: Generate output vector from ceratin key

 Argument: (1) Key value from hash table

(2) Output vector from key

 Returns: Nothing

4. Function: ExpandNextNode

 Purpose: Find the attribute needed in the next node in the list

 Argument: The number of the attribute found to have the largest gain

 Returns: True if an attribute has been found at this node

5. Function: AttributeEntropy

 Purpose: Calculate the entropy for an attribute

 Arguments:

(1) start of the FT region for each attribute

(2) end of the FT region for each attribute

(3) the numer of the attribute to be considered

(4) the number of vectors to be considered

 Returns: The entropy of the data for the attribute

6. Function: NodeEntropy

 Purpose: Calculate the entropy of all data being considered at a node

 Arguments:

(1) start of the FT region for each attribute

(2) end of the FT region for each attribute

(3) The number of vectors to be considered at this node

(4) The entropy of the data being considered at this node

 Returns: Nothing

7. Function: FindAttributeInstances

 Purpose: Find the number of vectors for a certain pattern of attributes

 Arguments: (1) start attribute value (for each attribute)

(2) end attribute value (for each attribute)

(3) Number of classes

 Returns: The number of vectors

Appendix C Source Code Functions

175

 struct.c functions

1. Function: function_struct

 Purpose: Build the decision tree

 Argument: Numerical notation of input vector

 Returns: Nothing

2. Function: function_test_data

 Purpose: Classify new data

 Argument: Input test vector

 Returns: (6) 1 for correct classification

(7) 0 for incorrect classification

176

APPENDIX C TABLES RESULTS

APPENDIX C

TABLES RESULTS

Appendix D Hardware implementation results

177

C.1 DATA SETS SIMULATION RESULTS

(1) Nursery dataset simulation results compared to the software results.

 Table C.1: Hardware simulation results for nursery dataset compared with software results.

Samples
Reverse index function run time (seconds)

Software Virtex7 Kintex7 Artix7 Zynq

500 0.061919 0.007832 0.007628 0.010878 0.008479

1000 0.236946 0.035107 0.034192 0.048759 0.038005

1500 0.365639 0.057207 0.055716 0.079452 0.06193

2000 1.361605 0.110442 0.107563 0.153388 0.119559

2500 0.899293 0.172258 0.167767 0.23924 0.186478

3000 1.211905 0.242236 0.235921 0.336429 0.262232

3500 1.462808 0.302306 0.294425 0.419857 0.327261

4000 2.168851 0.461182 0.44916 0.640512 0.499252

4500 2.099037 0.447915 0.436239 0.622087 0.48489

5000 2.7444 0.588485 0.573144 0.817316 0.637063

5500 2.700256 0.586407 0.571121 0.814431 0.634815

6000 3.504098 0.76516 0.745213 1.062691 0.828323

6500 3.113556 0.770296 0.750215 1.069824 0.833883

7000 3.743051 0.909235 0.885533 1.262789 0.984291

7500 4.099405 0.993459 0.967562 1.379765 1.075468

8000 4.45182 1.083032 1.054799 1.504167 1.172435

8500 4.86446 1.184965 1.154075 1.645737 1.282783

8640 5.016686 1.223684 1.191785 1.699512 1.324698

Appendix D Hardware implementation results

178

(2) Agaricus-lepiota dataset simulation results compared to the software

results

Table C.2: Hardware simulation results for agaricus-lepiota dataset compared with software results.

Samples
Reverse index function run time (seconds)

Software Virtex7 Kintex7 Artix7 Zynq

200 0.13 0.011803 0.013803 0.017316 0.016768

400 0.25 0.023666 0.027675 0.034720 0.033620

600 0.37 0.035528 0.041547 0.052123 0.050472

800 0.51 0.047391 0.055419 0.069526 0.067324

1000 0.60 0.059253 0.069291 0.086930 0.084176

1200 0.72 0.071116 0.083163 0.104333 0.101028

1400 0.85 0.082978 0.097036 0.121736 0.117881

1600 1.02 0.094841 0.110908 0.139140 0.134733

1800 1.07 0.106703 0.124780 0.156543 0.151585

2000 1.18 0.118566 0.138652 0.173946 0.168437

2200 1.30 0.130428 0.152524 0.191350 0.185289

2400 1.41 0.142291 0.166396 0.208753 0.202141

2600 1.53 0.154153 0.180268 0.226156 0.218993

2800 2.28 0.166016 0.194140 0.243560 0.235845

3000 2.19 0.246097 0.287789 0.361046 0.349611

3200 2.32 0.413313 0.483332 0.606365 0.587160

3400 4.12 0.439153 0.513549 0.644275 0.623869

3600 5.07 0.553683 0.647482 0.812300 0.786572

3800 5.34 0.584451 0.683463 0.857441 0.830283

4000 6.34 0.615220 0.719444 0.902581 0.873994

4200 6.01 0.645989 0.755425 0.947721 0.917704

4400 6.23 0.676757 0.791407 0.992862 0.961415

4600 6.47 0.707526 0.827388 1.038002 1.005125

4800 7.47 0.876186 1.024621 1.285441 1.244728

5000 8.05 0.912702 1.067322 1.339012 1.296602

5200 8.75 0.949217 1.110024 1.392583 1.348477

5400 9.03 0.985733 1.152725 1.446155 1.400351

5416 9.01 0.985733 1.152725 1.446155 1.400351

Appendix D Hardware implementation results

179

(3) Chess dataset simulation results compared to the software results

Table C.3: Hardware simulation results for chess dataset compared with software results.

Samples
Reverse index function run time (seconds)

Software Virtex7 Kintex7 Artix7 Zynq

100 0.04 0.008897 0.008617 0.015317 0.009379

200 0.12 0.029106 0.028191 0.05011 0.030685

300 0.2 0.054137 0.052436 0.093205 0.057073

400 0.28 0.072243 0.069972 0.124377 0.076162

500 0.34 0.090757 0.087905 0.156253 0.09568

600 0.45 0.130526 0.126424 0.224721 0.137606

700 0.54 0.160615 0.155568 0.276525 0.169328

800 0.67 0.212052 0.205388 0.365082 0.223555

900 0.99 0.261227 0.253018 0.449745 0.275398

1000 1.02 0.301737 0.292254 0.519488 0.318105

1100 1.15 0.361186 0.349836 0.621841 0.380779

1200 1.27 0.422522 0.409244 0.72744 0.445442

1300 1.52 0.496745 0.481135 0.855226 0.523691

1400 1.49 0.495865 0.480282 0.853712 0.522764

1500 1.59 0.531923 0.515207 0.915791 0.560778

1600 1.72 0.567408 0.549577 0.976885 0.598188

1700 1.99 0.657497 0.636834 1.131986 0.693163

1800 2.01 0.696196 0.674317 1.198613 0.733961

1900 2.43 0.856373 0.829461 1.474384 0.902828

2000 2.9 0.841316 0.814878 1.448461 0.886954

2100 2.44 0.883403 0.855642 1.520921 0.931324

2130 2.47 0.896029 0.867871 1.542659 0.944635
(4)

180

APPENDIX D RESOURCES INCLUDED ON THE DVD

APPENDIX D

RESOURCES INCLUDED ON THE DVD

Appendix E Resources included in DVD

181

The resources included in the DVD are as follow:

(1) HFTDT source code

(2) Datasets: Include the three datasets nursery, agaricus-lepiota and chess.

	ABSTRACT
	ACKNOWLEDGEMENT
	RESEARCH PUBLICATIONS
	ABBREVIATIONS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	1 INTRODUCTION
	1.1 MOTIVATION
	1.2 AIM AND OBJECTIVES
	1.3 CONTRIBUTIONS TO KNOWLEDGE
	1.4 THESIS ORGANIZATION
	1.5 SUMMARY

	2 BACKGROUND
	2.1 MACHINE LEARNING SYSTEMS
	2.1.1 REAL-TIME EMBEDDED SYSTEMS
	2.1.2 REAL-TIME INCREMENTAL LEARNING SYSTEMS
	2.1.3 METHODS USED FOR MACHINE LEARNING

	2.2 DECISION TREES
	2.2.1 NON-INCREMENTAL AND INCREMENTAL LEARNING DT ALGORITHMS
	2.2.2 FTDT AND IDP INCREMENTAL LEARNING METHODS
	2.2.3 ENTROPY, INFORMATION GAIN AND GAIN RATIO
	2.2.4 DECISION TREE PRUNING
	2.2.5 HARDWARE IMPLEMENTATIONS OF DECISION TREES

	2.3 CONCLUSION

	3 EXPERIMENTAL PROCEDURE
	3.1 INTRODUCTION
	3.2 MDFT AND HFTDT STRUCTURE
	3.2.1 GENERATE DECISION TREE CODE
	3.2.1.1 Generating code for training and classification

	3.2.2 DECISION TREE TRAINING
	3.2.3 CLASSIFICATION USING THE DECISION TREE

	3.3 SUMMARY

	4 MULTI-DIMENSIONAL FREQUENCY TABLE DECISION TREE
	4.1 INTRODUCTION
	4.2 FREQUENCY TABLE FOR DECISION TREES
	4.3 NOVELTY OF MDFT
	4.4 DECISION TREE CALCULATIONS
	4.5 MAXIMUM NUMBER OF CALCULATIONS (WORST CASE SCENARIO)
	4.6 CALCULATING THE MEMORY USAGE OF THE MDFT METHOD
	4.7 GENERATING A DT AND RULES USING THE MDFT METHOD
	4.8 AN ILLUSTRATIVE EXAMPLE OF THE MDFT METHOD
	4.9 EVALUATION OF THE MDFT METHOD
	4.10 SUMMARY

	5 HASHED FREQUENCY TABLE DECISION TREE
	5.1 INTRODUCTION
	5.2 THE HASHED FREQUENCY TABLE
	5.3 TECHNIQUES FOR THE INDEX AND REVERSE INDEX FUNCTIONS
	5.3.1 INDEX FUNCTION
	5.3.2 REVERSE INDEX FUNCTION
	5.3.3 AN ILLUSTRATIVE EXAMPLE
	5.3.4 ALTERNATIVE INDEX FUNCTION TECHNIQUE
	5.3.5 ALTERNATIVE REVERSE INDEX FUNCTION TECHNIQUE

	5.4 HFTDT METHOD CALCULATIONS
	5.4.1 MAXIMUM NUMBER OF CALCULATIONS (WORST CASE SCENARIO)
	5.4.2 CALCULATING MEMORY USAGE

	5.5 GENERATING THE DT USING HFTDT
	5.6 AN ILLUSTRATIVE EXAMPLE FOR HFTDT METHOD
	5.7 COMPARISON BETWEEN HFTDT AND MDFT
	5.8 SUMMARY

	6 EXPERIMENTS TO GENERATE DECISION TREES USING HFTDT
	6.1 INTRODUCTION
	6.2 CLASSIFIERS USED IN THE EXPERIMENT
	6.3 TEST DATASETS
	6.4 TEST RESULTS
	6.4.1 NUMBER OF NODES
	6.4.2 CALCULATION TIME
	6.4.3 MEMORY USAGE
	6.4.4 CLASSIFICATION ACCURACY

	6.5 CONCLUSION

	7 HARDWARE IMPLEMENTATION OF HFTDT
	7.1 INTRODUCTION
	7.2 HFTDT CODE PROFILING
	7.2.1 SOURCE CODE RECOMPILATION
	7.2.2 RESULT OBTAINED USING THE FLAT PROFILE
	7.2.2.1 THE FLAT PROFILE

	7.2.3 RESULTS OBTAINED USING THE CALL GRAPH

	7.3 HARDWARE DESIGN FOR THE MOST TIME-CONSUMING FUNCTION
	7.3.1 HIGH-LEVEL SYNTHESIS TOOLS
	7.3.2 CHOOSING AN HLS TOOL
	7.3.3 HARDWARE DESIGN USING THE HLS TOOL
	7.3.4 DESIGN SYNTHESIS AND CO-SIMULATION
	7.3.5 TARGETED FPGAs
	7.3.6 DATASET USED IN THE HARDWARE DESIGN

	7.4 SIMULATION RESULTS
	7.4.1 NURSERY DATASET
	7.4.2 RESULTS FOR THE AGARICUS-LEPIOTA DATASET
	7.4.3 RESULTS FOR THE CHESS DATASET
	7.4.4 RESULTS SUMMARY

	7.5 EXTENSION OF THE PARALLEL IMPLEMENTATION
	7.6 SUMMARY

	8 CONCLUSIONS AND FURTHER WORK
	8.1 CONCLUSIONS
	8.1.1 MULTI-DIMENSIONAL FREQUENCY TABLE METHOD (MDFT)
	8.1.2 HASHED FREQUENCY TABLE DECISION TREE METHOD (hftdt)

	8.2 FURTHER WORK

	REFERENCES:
	APPENDIX A AN ILLUSTRATIVE EXAMPLE FOR THE HFTDT METHOD
	APPENDIX B SOURCE CODE FUNCTIONS
	B.1 HFTDT algorithm SOURCE CODE FILES
	B.2 SOURCE CODE FUNCTIONS LIST

	APPENDIX C TABLES RESULTS
	C.1 DATA SETS SIMULATION RESULTS

	APPENDIX D RESOURCES INCLUDED ON THE DVD

