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THEORY A.'lD APPLICATION OF HULTI-DIHENSIONAL STATIONARY STOCHASTIC PROCESSES 

ABSTRACT 

The theory of stationary stochastic processes in several dimensions 

-has been investigated to provide a general model which may be applied to 

various problems which involve ~nknown functions of several variables. 

In particular, when values of the function are known only at a finite set 

of points, treating the unknown function as a realisation of a stationary 

stochastic process leads to an interpolating function which reproduces the 

values exactly at the given points. With suitable choice of auto-correlation 

for the model, the interpolating function may also he shown to be continuous 

in all its derivatives everywhere. A few parameters only need to be found 

for the interpolator, and these may be estimated from the given data. 

One problem tackled using such an interpolator is that of automatic 

contouring of functions of two variables from arbitrarily scattered data 

points. A "two-stage" model was developed, which incorporates a long-range 

. "trend" component as well as a shorter-range "residual" term. This leads 

to a contouring algorithm which gives good results with difficult data. 

The second area of application is that of optimisation, particularly of 

objective functions which are e:~ensive to compute. Since the inte~polator. 

gives an estimate of the derivatives "ith little "ark, it is simple to 

optimise it using conventional techniques .. and to re-evaluate the true 

function at the apparent optimum point. An i terati ve algori tilffi along these 

lines gives good results with test functions, especially ,·Iith fuactions of 

more than two variables. A program has been developed with incorporates 

both the optimisation and contouring applications into a single peckage. 



Finally, the theory of excursions of a stationary process above a 

fixed level has been applied to the problem of modelling the occurrence 

of oilfields, with special reference to their.spatial distribution and 

tendency to cluster. An intuitively reasonable model with few parameters 

has been developed and applied to Nor.th Sea data,. wi.th interesting results. 
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CHAPTER 1 

INTRODUCTION 
. . - - -- ----



The concept of a stochastic process is a very powerful one, and I 

hope to show·that it has useful applications in several fields where 

·existing ideas and methods are notaiways entirely satisfactory. One of 

the most familiar examples of a stochastic process is· the random function 

of one variable. A time. se·ries may be considered to be such a random 

function •. sampled-at a discrete set of points. 

I 

A stochastic process is a probabilistic entity, and· has no direct 

physical reality. He may say that a particular physical function of several 

variables is a realisation of an underlying s tochas tic process, but it is 

not identical to the stochastic p_rocess itself, which cannot be directly 

experienced. In the same way an ordinary random variahle cannot be directly 

experienced, bet only its realisations. 

The main area of interest to which this concept has been applied is 

that of interpolation. If a function of several variables is known only 

at a number of discrete points .• and values arc required at other points, 

then some means of estimating the unknown values is required. Any such 

algori.thm gives rise to an "interpolating function". ·i.e. a function of 

the variables which estimates the unknown true function given the known 

values at the data points. By the nature of the problem. such an 

interpolating function is virtually bound to be in error, and it is only 

by purest chance that it will exactly match the true function everywhere. 

Also by the nature ofche problem, the number of possible interpolating 

functions for any given set of data is infinite. The ques tion thus arises 

of judging <rhich of these possible functions is best in some way. 
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Two criteria may be used to judge 5uch an interpolating function. 

First, it should be "ey-act", in the sense that it should· exactly reproduce 

the true function values ·at the data points. This criterion is not 

generally satisfied by fitting a function of given algebraic fo:r:n (c .g. 

polynomial) to the data, unless the number of parameters to be fitted is 

equal to the number of data points. Second, it is usually desirable that 

the interpolating function be continuous in all its derivatives. This is 

not the case with· interpolating functions of the spline type, or any of the 

more "ad hoc" methods used • 

I aim to show that modelling the unknown function as a realisation of 

a multi-dimensional stochastic process leads to an interpolating function 

which satisfies both these criter.ia. Furthermore, it is simple to co:upute .•. 

and requires the estimation of very. few parameters. Of course, the simple 

stochastic model is not always a reasonable representation of a physical 

function, but it is possible to widen the scope of the basic model to 

embrace a large range of practical situations. 

This type of stochastic interpolating function has been applied in 

two fields where there seemed to be a need for a better means of inter-

polation. The first application was in the automatic generation of contour 

maps, especially from scattered data points. In this case the model is of 

a stochastic process in only two dimensions, but there is no essential 

difference between this interpolating function and those in higher 

dimensions. 

To generate contour lines efficiently from scattered data points, 

it is necessary not only to have a good interpolator, but also a means 

for keeping track of the contour lines. Conventionally, this is done by 
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interpolating values to the nodes of a regular mesh, and then using a 

standard contouring algorithm for gridded data. However, this can lead 

to a loss of representation of the original data, so a contouring 

algorithm was developed, using the stochastic interpolating function, 

which generates contour lines directly, without the use of any kind of grid. 

The contouring algorithm has been tested on various sets of physical 

data. From this it became apparent that in some cases the very simple 

stochastic model could be extended to cover the situation "here there was 

an underlying long-range trend plus a more quickly varying short-range , 
component. Thus the "two-stage" model was developed, whereby the stochastic 

process is assumed to be the sum of two such components. Interesting and 

subjectively reasonable contour maps of physical data have been produced 

~n this way. 

As an application for the interpolating function in more than «10 

dimensions, the problem of optimising objective functions of several 

variables was considered. Much work has been done on this subject, and 

many excellent algorithms exist for the efficient location of local optima, 

especially if the function can be differentiated. However, most such 

~echniques can require a fair number of function evaluations to be carried 

out in order to reach "the final optimum value. " 

The prohlem was considered from a slightly different angle: suppose 

we have a function of several variables which is expensive or difficult to 

compute and the derivative canhot be directly evaluated, but "e "ish to 

obtain a good idea of the position and value of an optimum point with a 

minimum number of function evaluations. How should wc proceed? If >le 

pick an arbitrary starting point and apply a conventional technique, it 



may take an unacceptable number of function evaluations to rcach a result, 

even if progress is steady. 

An alternative approach to this problem is to start \,ith a set of 

initial points, spread widely throughout the region within \·,hich the optil!lum 

is known (or hoped) to lie. These initial points should be positioned 

within the multi-dimensional "region of interest" so as to gain the maximum 

information about the behaviour of the function. (How this is to be 

achieved is a problem in itself). A stochastic interpolating function is 

fitted to.this initial set of data, and a standard optimisation technique 

is used to find an optimum point for the interpolator. This is made simp ler 

by the fact that derivatives of the interpolator are easily computed. At 

the interpolated optimum point, .. a..new function evaluation is carried out, 

which is compared with the interpolated value. If they agree, this is taken 

to be a good approximation to the true optimum value. Otherwise, the 

interpolator is re-fitted (taking into account the. new point) and the 

process is repeated. 

In essence, ·the philosophy here is to make the maximum possible USe of 

all the data collected at every stage. This will lead to more computing 

between function evaluations, but it is hoped that this will be offset by 

a reduction in the total number of function evaluations. This technique 

has been applied to various test functions, and the results appear to be 

promising. 

It has been found necessary to include in the stochastic model , 

provision for anisotropic correlation. In other· words, adjacent function 

values may be more highly correlated in some dim,msions than in others. 

This is a fairly trivial extension to the theory, the only problem in 

practice being that of estimating the anisotropy factors. 
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A program has been . .,ritten which incorporates all these applications 

of stochastic processes into a single package. 'The program, named SIMP 

(Stochastic Interpolation and l10delling Program), is described in detail 

in Appendix A. It is designed to handle either a user-defined function of 

several variables, with data points generated evenly throughout the region 

of interest, or a set of input data values at arbitrary locations in several 

dimensions. With the latter type of data input contour maps may be produced 

in any plane defined by two of the variables, and it is also possible to 

plot cross-sections of the interpolating function along a line joining any 

two points. For the user-defined function, it is possible 'to produce 

contour maps and sections in the same ,,;ay, but in addition optimisation 

may be carried out on the function as described earlier. As a bY-ot'oduct , .-
an estimate of the function integral over the region of interest is also 

given • 

• 
Another application of the theory of stochastic processes is in a 

different area of interest. The particular problem is that of mode11iu'g 

the occurrence of oilfields within some oil-bearing region. This has 

obvious practical and economic importance, especially if the region is 

only partially developed. Models used to date have been very "ad hoc", 

with many parameters defined purely intuitively. To put things on a 

rather better footing, it is necessary to have a model which is simple 

and coherent, with a small n,lIDber of paraii12ters "hich can be fitted to 

the given data. 

The model suggested is based on a stationary stochastic process in 

two dimensions. An oilfield is assumed to be a connected region over 

which the stochastic process exceeds SOllle specified value or lilllit. From 

the parameters of the stochastic process and the value of the given liJ:Jit, 
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it is possible to calculate expected values for the area of an oi1fie1d,­

as well as the number of oilfields per unit area and the reserves of an 

arbitrary oilfield. An extra refinement is to allow the limit value to 

vary slowly from point to point. This simulates the real Eituation in 

which the sizes and numbers of oilfields vary regiona11y. 

This model has been fitted to some data for the British, North Sea, 

and the results obtained are' at least subj ective1y appealing. It ishop"d 

that this type of model can produce a framework on which more reasonable 

estimates can be based of the reserves of partially explored oil-bearing 

regions. 

As can be seen, the theory of stationary stochastic processes in 

several-dimensions provides access to a set of models which can be applied 

to various types of problem. Interpolation of functions from finite sets 

of data points has been the main area of application in this work, but it 

is by no means the only one. 



• 

CHAPTER 2 

A BRIEF SURVEY OF THE THEORY 
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2.1 DEFINITIONS 

A stochastic process in m dimensions is a generalisation of t!le 

concept of a ti~.peries. or random function of onc variable. The latter 

may be defined as follows: for each possible value x of an indicator 

variable within some domain. there is defined a random variable Z(x) ,·1ith 

a given probability distribution. This probability distribution may be 

described by means of the probability distribution function F(z.x)=p[Z(x):oz]. 

.• However, knowledge of this distribution function F(z.x) for all values of 

x is not sufficient to define the behaviour of the stochestic process 

completely - it does not describe the relationships between values of 

the stochastic process at different points. To specify the beh,;viour 

completely, we need to define ·the finite-dimensional distri.bution function 

(2.1) 

The extension of this definition of a ti~e series, or random 

function of one variable. to that of a random function of m variables 

Z(x), is' straightforward. The indicator variable A is notv a ve.ctor of 

m elements, and the finite-dimensional distribution function for a set of 

n points is 

F(zl ..... z .xl' ... ,x ) = P[Z(xl):ozl'" .,Z(x )<z 1 " n- -n - -n .... n 

An important concept for stoLhastic processes of this type is 

that of stationarity. The stochastic process Z(~ is said to be 

stationa.ry ".in the wide sense" if, for every set of n points 

(xl""'x) and arbitrary translation vector ~, - -n. '. 

F(Zl""'Z ,xl' ••.• x) = F(zl""'z ,X,+T, •••• X +1") n - -n n -_ - -cl -

(2.2) 

(2.3) 



In other "ords, translation through the ",-dimensional domain does 

not change the probabilistic structure of the stochastic process. 

The assumption of wide-sense stationarity has some important 

consequences. Firstly, equation (2.3) shows that F(z,~) = F(Z'~+T)' and 

hence that the probability distribution of z(~) is the same for every 

point x. In particular, this implies that the mean 

E [z (~).J = cons tan t = 11 , (say) (2.4) 

Secondly, we may define the covariance of the stochastic process 

" 
between two poin~s xl and ~2: 

covar[z(~1),Z(~2)1 = E[(Z(~1)-Il)(Z(~2)-1l)1. (2.5) 

'; This obviously depends ou/the distribution function F(zl,z2'~l,x2)' 

which is independent of absolute position (by wide-sense stationarity) 

and is a function only of the difference ~l-x2' Hence the c;)variance is 

a function of ~l-x2 only, and <le may write: 

(2.6) 

It is also clear that conr[Z(~l) 'Z(~2)1 = Covar[Z(~i,Z(;:'l)] and 

, hence that the covariance function '(0 is symmetrical: y(,!)=-y(-r). 

2 The variance of the stochastic process, 0 say, is clearly 

We can normalise the covariance function by dividing by the 

variance to give the auto-correlation function 

2 
g(!) = y(!)/a • 

(2.7) 

(2.8) 

These properties of the stochastic process, derived from wide-sense 

8 



stationarity, car.. be used as an alternative stationarity criterion~ 

that of second-order stationarity. Z(~ will be said to be stationary 

to second order if E[Z(~l is a constant and the covariance between any 

two points ~l and ~2 is a symmetric function of the vector ~l - ~2 only. 

Wide-sense stationarity implies but is not implied by second-order 

stationarity. 

For general definitions of stationarity and auto-covariance and 

auto-correlation functions, see for example Bartlett (1966, p.174ff), 

Adler (1981, p.13-l5, 22-25), Ripley (1981, p.9ff). 

9 



2.2 PROPERTIES OF THE AUTO-CORRELATION FUNCTION 

Suppose that we have a stochastic process Z(x) which is stationary 

in the wide sense, and thus possesses an auto-correlation function g(). 

We may be interested in the continuity of the stochastic process Z(~), 

so this concept will need to be defined. One definition is to say that 

Z(x) is continuous in the mean square if 

E [(Z (2!) - Z (~+h) ) 2)+ 0 as h + 0 (2.9) 

Now 2 
E [(Z (,:Y - Z (~+h» ) 

= 
2 2 2 2(0 +~ ) - 2(y(h) + ~ ) 

2 
= 20 (1 - g(.!!» • (2.10) 

Thus Z(~) is mean square continuous if and only if g(h) tends 

to 1 as . h tends to O. The form of the auto-correlation function will 

also tell us something about the differentiability or otherwise of Z(x). 

where 

Let S(~) = 

h = I.!!I 

Lim 
h+O 

Obviously S(~) is also a stochastic process, and we shall say 

(2.H) 

that Z(,:Y is differentiable it' the direction h if S(~) has a finite 

variance. 

E[S(x») = 

= 

Var[S(~») 

Z(~+l!) - Z(~) 
E [ Lim ( ) ) 

h+O It 

E [Z (~+!!.) ) - E[Ze;:)] 
Lim e 
h+O 

= E [Lim 
h->O 

h 

Z(x+h) - Z(x) 2J e----h-----') 

) 

2 
E [(Z (~+l!.» + (ze,:Y)2 -

= 0 . 

= Lim (--------0;;--------
h->O h

2 

(2.12) 

10 



Lim· 
h->O 

2 
20" (1 - g(h» 

( - ) 

h
2 

2 
= -0" g"(£) • (2.13) 

Thereforc, Z(~) ·is differentiable if the auto-correlation function 

is twice differentiable at the origin. By a similar argument, we may 

derive the covariance of the derivative process S(x). 

, ' ..... 

Covar[S(x), S(x+r)] 

= E[s (x) s (~+.!.)] 

[
. ,. (Z(~+h)-Z(x» (Z<'~+.E.+~)-Z(~+r» ", 

= E Lim 2 
h->O h _ 

= Lim 
lr>0 

1 •. ' 
2' l 2 y(.!.) .- Y(,!,+,2,) 
h 

2"'·' 
= -0" g"(.!.) 

(2.14 ) 
(See Bartlett, 1966, p.1809, Adler, 1981, p.25-27). 

~le can therefore use the properties of the euto-correlation function 

to classify stationary stochastic processes into one of three types: 

a) Non-continuous. g(.!.) does not tend to 1 as r~O. This implies 

that the stochastic process contains an element which is 

totally random, or "white noise". (This is called "nugget 

effect" in the terminology of regionalised variable theory -

see Chapter 3). 

b) Continuous, but not differentiable. g(~ is continuous, but is 

not twice differentiable. This implies that the stochastic 

process is fairly regular, but by no means smooth. 

c) Continuous and differentiable. g(r) is tVlice differentiable at 

the origin, which because of symmetry implies that g' (£) = 0.' 

z(x) is a smoothly varying function. 

11 
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Hatheron (1971,. p.s7-58) describes these three cl.asses of stochastic 

process with relation to their variograms rather than covariance functions. 

Generally speaking we shall try, if necessary by suitable scaling, 

to ensure that the auto-correlation function is an isotropic function of 

distance only, That is g(r) = g(r) where r=lrl. In Chapter·s scaling - -
factors "ill be introduced to model the case of anisotropic correlations. 

The functional form of the a'uto-CQ.l:r.elation has a controlling influence 

on the behaviour of the stochastic process, as seen above, but it is 

important to note that not all arbitrary forms of functipn are allowable. 

For an arbitrary function g() with g(O)=l to be an allowable auto-

correlation function it must be positive semi-definite. That is to say, 

given a set of n points xl' ••• ,x and arbitrary multipliers Al' ... ,A , 
- """"11 ~ 

then 

(2.15) 

The reason for this is simple to see - suppose that it were not 

so, and it was possible to find a set of x. 's and A!S such that 
-:I. 1 

n n 
L I A.A.g(X.-X.) < 0 

i=l j=l 1 J -1-J 

Consider the random variable 

n 
X = I A.(Z(X.) - u) • 

. 1 1 '"'l. 1= 

n n 
Var(X) = r L A.h.E [(Z(x.)-u)(Z(x.)-u)] 

j =1 1 J '"'l. -:J i=l 

2 n n 
= 0 I I A.Lg(x.-x.) < 0 . 

i=l j=l 1 J '"'l.-:J 

Since it is impossible for the variance of a random variable 

to be negative, it is clear that the requirement of being positive 

(2.16) 
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semi-definite is necessary for g(). Another way of interpreting this 

constraint on the possible forms of gO is via the Fourier transform. 

At this point we need to apply the "ergodic theorem".of stati.onary 

stochastic processes (see for example Yaglom 1962). This states that the 

mathematical expectation of functions of the process Z(x) may be replaced 

by the limit of the average of the function over a large region o. 

If we replace the covariance function y(.!) by its estimate over 

a large region n: 

y(r) ; 1;1 In (Z(X)-jJ)(Z(~-EHl)d.'O , 

then as n tends to ~, y(r) tends to Y(E). If we consider the Fourier 

A 
transform of ye): 

.. ' .-~ 

1 
=rnr dx dr 

1 ; loT <I> (!!!.) • <I> (.!!'..) 1 (2.17) 

where <I>() is the Fourier transform of Z~)-jJ. 

Therefore 
(2.18) 

Thus the Fourier transform of the covariance (and hence the auto-

correlation) function must be greater than or equal to 0 for all values 

of w. Furthermore, by considering the inverse transform we can show 

that the Fourier transform must have a finite integral. 

-iwr 
G(.!!'..)e -- :It" , (2.19) 
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(W is the m-dimensional region over which ~ is defined). 

Therefore Y<'2.) = Var(Z(x» 

= fw G(III) dill • (2.20) 

Thus. the integral of the Fourier transform must be finite if Z(x) 

has a finite variance. See Hatheron (1971, p.13-l4), Bartlett (1966, p.175-

176), Ripley (1981, p.lO-ll). 

With these principles ix~ mind, we can. consider various possible 

forms of the auto-correlation function g(), assumed to be isotropic • 

a) 

b) 

c) 

-ar g(r)=e • Switzer (1955) has shown that a stochastic process 

can be defined in any number of dimensions with this auto-

correlation function. The main disadvantage of the function is 

that it is not differentiable at the origin, and hence the 

stochastic process, although continuous, is not differentiable. 

-ar g(r)=e cosSr. This form of auto-correlation function is used 

by Shvidler (1964) in two dimensions. Unfortunately, it is not 

positive semi-definite in two dimensions and can therefore give 

rise to negative variances. Its use is to be avoided. 

2 -ar g(r)=e • This "Gaussian" form of the auto-correlation 

function has a similar form for its Fourier transform in any 

number of dimensions. It is positive semi-definite for any 

number of dimensions. Furthermore it is differentiable at r=O 

and is therefore associated with a continuous and differentiable 

stochastic process. This is the form of auto-correlation 

function which will generally be used for the rest of this work, 

usually in the form: 

2 2 
g(r) = exp(-r /2p ) , 

where p will be known as the "correlation distance".· 

• 
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d) A stochastic process can be created which is of "moving average" 

type with a certain for~ in the following way: 

Let e(x) be a totally uncorrelated rando~~hite noise process of 

mean zero, and use a weighting function of arbitrary form, qO say, sueh 

that 
(2.21) 

Then Z(~) is a well-def'ined stochastic process and will have a 

positive semi-definite auto-correlation function, whose form is given 

by: 
(2.22) 

Thus by choice of the form of qO, we may generate a wide range 

of forms for gO. For example ··iii two·.dimensions, for the case of an 

isotropic weighting function q(x,y),. we could write 

g(r) = 
J:=J:=q(U-r/2,V) q(u+r/2),v) dudv 

J:~ J:=q2(U,V) dudv 

(2.23) 

Two such weighting functions have been used to generate appropriate 

two-dimensional auto-correlation functions: 

1. 

2. 

2 .22 2 
If q(x,y) = exp(-r /2) wl.th r =x +y , 

r[ 2 2 22 2 )_= _:xp[-(u -ru+r /4 +v +u +ru+r /4 

then g(r)= --~~--------------------------------------
.J:=~-=exp[-(u2+v2)ldUdV 

2 
= exp(-r /4). 

If q (x,y) 
2 2 

= exp(-ar )cos(Sr ), then wc· can show that 

g(r) = e- t [ cos(yt)- ~in(yt) 
2+y 

2 
ar 

where t = ~ and y = .a/a • 

2 
+(~ 

2+y 
(2.24) 
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Thus the first example of such a "moving average" proc.:!ss gives rise 

to an auto-correlation function which is of Gaussian for~ (type (c) above), 

while the second function, for y>O, gives rise to negative values of g(r) 

for certain values of r. This may be useful in modelling practical 

examples where this type of negative correlation occurs, since function 

(b) above cannot be used. 

Figures 2.1 to 2.3 illustr~te some of these forms of auto-correlation 

" function. 

This list by no means exhausts all the possibilities for auto-correlation 

functions which have been suggested in the literature. For example, several 

authors (Whittle, 1954, p./,48; Mat~rn, 1960, p.56; Ripley, 1981, p.56) have 

suggested that the "most natural" form of auto-correlation function in two 

dimensions is given by 

g(r) r r =-K(-) 
rO 1 rO 

where K
l

( ) is the modified Bessel function of the second kind, order 1. 

Another popular model is the "spherical" auto-correlation (see David, 1977, 

p.l02; Journel & Huijbregts, 1978, p.163-l6 l,; Ripley, 1981, p.56) which in 

three dimensions is represented as 

3r 
3" 

g(r) 1 
r 

= - -- + r~rO 
2rO 3 

2rO 

= 0 r>rO' 

However, in the rest of thi~ work I shall assume the simple form of 

auto-correlation function given as, (c) above. It is computationally 

simple, is continuous at the origin, and requires the estimation of only a 

"single parameter to be fitted to real data. In practice, 1<C shall mainly 
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be dealing with data which is sparse and widely scattered, so that it "ill 

not be possible to differentiate precisely between the various possible 

forms of auto-correlation function. See Rip1ey,' 1981, p .58-6/, for an 

example where the data does not give clear guidance as to the form of 

function ·to be used • 

,. 
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2.3 ESTIMATION OF VALUES OF THE ,ROCESS AT UNKNOI-IN POINTS 

If the stationary stochastic process Z(x) has known mean ~ and auto-

correlation function gel, then we may use the structure of the process to 

estimate values at unknown points, given a set of known values. SUppOSE 

a realisation of t:he process has measured values zl"'" Z n at n points 

xl"'; ,x , and it is required to estimate a '-,aiue at the point x l' l-le 
- -n -0+ 

shall consider linear estimators of the form 

.. 
Z(x ) '" j.l + 

--0.+1 

/ 

n 
L b .• (z.-j.l) 

J=l 1 1 

(2.25) (2.25) 

A least-squares error criterion will be used to find optimal values 

of b. If Z(~) has a NorElal probability distribution, then this criterion 

will lead to a best linear unbiased estimator for Z(x ). 
--0.+1 

Let 11 " 2 E[(Z(x .) - Z(x 1» 1 
-n+J. -0.+ 

2 
- E[(Z(~+l) - \l - b'(3!.-l~» 1 

2 
= a - 2b'c + L'Sb 

where c is a vector of covariances 

e. - Covar(Z(x.), Z(x 1» 
~ -I. 1\+ 

2 
= a g(x. - x j 

-1 -n+l 

and S is the covariance matrix for the n known points 

S •. = Covar(Z(x.), Z(x.» 
1J -1-J 

2 
= a g(x. x.) 

• -1 -J 

To minimise H, set 

(2.26 ) 

(2.27) 
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i.e. Z(~+l) 
-1 

= 11 + .s'S (.!O.-J:!) 

= 11 + .s'y (2.28) 

-1 
r. = s (~-J:!) where 

The vector r. depends only on the values at and correlations bct"een 

the n original points. It may be considered to be a vector of un-

correlated values derived from the initial cata values corrected for their 

known correlations. The estimation of an unknown value therefore consists 

of mUltiplying this constant vector by the vector of correlations between 

unknown point and known points, and adding the mean. 

The variance in the estimate of Z(x 1) is equal to the value of H 
-11+ 

-1 
when b is set equal to S .s, i.e . .-

A 2 
Var[Z(x 1») = a 

-.l+ 

-1 
c'S c 

We may es timate the value of the s tochas tic process Z (x) at any 

(2.29) 

arbitrary point in this way, and hence "e may define an "interpolation 

function" 

E[Z(x) Iz(x ) = z., ... ,Z(x ) = z 1 
- -1 i -n n 

= 11 + .s' (~) .r. (2.30) 

where c.(x) = g(x-x.) . 
1- --:t 

(see Ripley, 1981, p.41,-47; Hhittle, 1963, p.46-47). 

1= Z(x) is continuous and differentiable in the mean square, then 

f() will also be continuous and differentiable. From the nature of the 

estimation we know that f(x.)=z. for all the known points i=l, •.. ,n. 
-1 1 

The interpolating function f 0 thus possesses t'-IQ useful· properties: 

1. It is continuous and differentiable everywhere. 

2. It passes exactly through the give" data points. 
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The first point can be; seen easily from the form of fO, re"ritten 

as: 
n 

f(!y = 11 + L y.g(x-x.) • 
1 --1 

(2.31) 
i=l 

This is a linear sum of auto-correlation function terms. If the 

auto-correlation function is continuous in all its derivatives at all 

points (including r=O) then f() will also be so. An example of an auto-

correlation function with th1s property is 

(2.32) 

which is the form which will be used in most practical applications of 

this work. 

To sec the second point from· the definition·of fO, suppose that 

x=x. say. From the definition of the vector y, 
--1 

S1. = z - 1:'.. 

The i th row of this set of equations· can be vritten as 

c'(x.).y = z. - 11 • 
--J.- 1 

This implies that 

f (x.) = z. 
-1 1 

and hence the function f() is an exact interpolator. 

(2.33) 

(2.34) 

In addition to the function itself, the derivatives of f() in any 

dimension k can be computed 

3 f(x) = 
3"1<. 

g(x-x.) • 
- -1. 

(2.35) 



'. 
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Similarly the integral of f() may be computed: 

n 

L y. 
1 

(2.36) 
i=l 

Both these results will be used later. 

The assumption that Z<.~) is a Normally di'stributed random variable is 

one that will be made, implicit~y or explicitly, throughout the remainder 

of this work. As mentioned previously, with'this assumption the interpolating 

function (2.31) gives a best linear unbiased estimator for the value at an 

unknown point. HOI<ever, it is possible to study the behaviour of non-Nonr.al 

random fields - Adler (1981, p.168ff) deals with a.i field,·built as a sum 

of squares of several independent Normal random fields. Ripley (1981., p.73) 

advises that the best way of predicting a non-Normal process would be to 

find a transformation to Normality and predict the tranzformed process, and 

shows that a common example of this procedure is when Z(~) is assumed to b~ 

log-Normally distributed. 

Thus the Normal random field is both the simplest to handle and the 

basis from which we may tackle other forms of stationary stochastic 

process. 
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2.4 ESTUl.<\TION OF THE P ARAHETERS OF- THE STOCHASTIC PROCESS NODEL 

Before being able to USe the stochastic interpolating function fO 

defined in the previous section, it is first necessary to estimate values 

of the parameters of the stochastic process of which the n data values are 

assumed to form a realisation. In other words, we need to fit the 

stochastic process model to the data. One of these model parameters is 

the "grand,mean" 11, and we also need at least one other parameter to 

describe the auto-correlation function. We shall assume for the rest of 

the current work that the auto-correlation function takes the form 

, 2 2 
g(r) = exp(-r /2p ) , (2.37) 

where p is the "correlation distance", and corresponds to an extra model 

parameter to be estimated. 

The two parameters 11 and p control, the general fonn of the inter-

polating function which is fitted to the data. The grand mean 11 can be 

considered to be the value to which the function tends as it moves aVlay 

from regions of known data. In other words" it is the "best guess" at 

the function value when no other information is available, or the value 

to which the stochastic interpolating function "ill extrapolate. The 

correlation distance p is the distance over Vlhich the correlation betl·/ee:> 

two points is strong. These t~TO parameters interact in an interesting 

,fashion. 

As p tends to zero, f() tends to becom~ equal to 11 everywhere, 

except at the measured data points where there are narro',/ "bumps" in 

the function which make f(x.) equal to z.. As p tends to infinity, 
--J. 1 

the value of 11 becomes of less and less 'importance to the interpolation, 

which depends heavily upon the data values. Figure 2,1, ill.ustrates 

these properties of 11 and p. 
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These two important parall'eters may be selected on the basi.s of. some 

subjecti ve eri terion to produee an acceptable interpolator. Al ternati vely, 

the parameters which best fit the data may be estimated using maximum 

likelihood principles, making the assu!llption that the underlying s tochas tic 

process is normally distributed. This can be done' in two phases 

est:imat:ing J.I for a given p value and then estimating p for a given J.I value. 

Best values of both parameter,s are speedily obtained after a fe'" iterations, 

a) Estimation of J.I given p 

Let us assume that the n random variables Z(~~, •.. ,Z(~) are 

distributed with a multivariatenormal distribution with probability 

density 

where S is the covariance matri>;, depending on p, 

and 

We may consider this to be the ·likelihood L(J.I) given the data 

(2.38) 

zl, •.• ,zn' and wish to choose J.I so as to maximise L(J.I) , First take logs: 

-1 
log L(J.I) ; -inlog2n-j10gISH (~- .!!..) 's (z - .!!.) 

Hence 
a L (J.I) l'S-lz z'S-ll '-I 

-log ; + - 2]l·l'S 1:. ; 0 • 3J.1 

Le. J.I -
-1 

(l'S ~ + ~'S -I!) /2 ,l'S -ll 

Therefore the maximum likelihood estimate of J.I for a certain 

value of p is given by 

,.. 
J.I ; 

L ( L s-:-~)z. 
, ,1J 1 
1 J 

L L S-:-~ 
i j 1J 

(2.39) 

(2.40) 

(2.41) 
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b) Estimatio~ of p given ~ 

Let 
" 

E: •• - Z(x.) - z. , i=l, •.. ,n , 
1. """1. 1. 

(2.43) 

h Z ( ) • h 1 . h . ' h . th . were x. 16 t e v3 uc ot t e stocnast1c process at t e 1 data p01nt 
-1 

... 
and Z. is the estimated value at that point, based on the previous i'-l 

1 

values zl"" ,zn' c
i 

is a normally distribut:ed random variable of mean 0 

and variance a~, the re.sidual, error variance (sep. equation (2.29)) 0 If 

we fOlim the geries of values 

e. = 

C. 
1 

1 G. 
1 

, i::;l,o· .. ,u , -(2.4 l,) 

this will produce a set uf n independent stand3rd normal ra!1ciom 

variables, each with mean 0 and varL:mce 1. The log likelihood of the 

assumed covariance ~atrix S used" to gene.:-atc. th.:!sc is proportional to 

[- n 

l. 
.e i=l 

n 

I 
i=l 

2, Z 
e:.. G. 

1. 1. 
(2 .• 45 ) 

We therefore n~ed to search for a value of ;> which ZLini"Jlises 

the sum 
n 

Of = I 
i=l 

A 2 2 
(z.-Z.)lc. 

1 1 1 
/ 

The terms in this expression may be mos t eaRily b~nerated by· the 

operation of pivoting, ::is suggested by Bea1e (1970). th Pivoti!::; on th·~ q 

diagonal element of the matrix S tfJ form a new matrix 5" is c2.rri(!ci out 

as follows: 

5" = -1/5 
qq qq 

S"" r~ S'~ = -2 . /5 
qk kq qK qq 

5'\ = s* = <' - S. S 1 /5 (j;lq, k~q) (2. l,7) "kj ~ .\ 
J.' J : Jq q ( qq 



If we perform this operation using the first i-I diagon"l elements 

of S in turn, with a new matrix S** as the result, then we may write the 

fOllowing: 
,.. 
z. 

1 

2 
fJ. 

1 

= 

= 

1J -

S** ii 

i-I 
I 

j=l 
s** (z. - 1J) 
ij J 

These two es timation procedures, used together, give good esti.mates 

of the parameters 11 and p. However, if the number of data points is large 

then the process of es timation may be SlOtl ar:d ti[le-consmning. This is 

because of the necessity for computing the n by n correlation matrix S 

and pivoting on it. 

..--" 

An alternative way of computing the e values for the above estimation. 
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procedure is to make use of the Cholesky decomposition. Rip1ey (1981, p.17) 

shows that it is ahlays possible to find a 10v,er triangular matrix L such 

, -1 . L-1 .. I that LL =S. Then £.=L .!:.' and the computat10n of 1S SHOp e. Chambe~s 

(1977, p.I02-107) describes the computational details of the Cholesky 

decomposition to produce L from S. 

For reasonably large n it may be more practical to substitute 

estimation procedures which, although not so rigorous as those already 

described, produce acceptable results with less computation. If n is 

large it will probably be reasonable to estiQate ~ by the arithmetic mean 

or the median of the data values. (The median may well be pn,ferablc as 

being a more robust estimator and less influenced by extreme values). If 

the data points are fairly evenly spread, a good estimate of 1J can be 

obtained with little computation. 



One approach to estimating p for large n~~bers of data points is to 

consider the points in pairs, and to estimate the value of p by means of 

each point and its nearest neighbour. Suppose that two such points are a 

2 ? 
distance r apart and let x=exp(-r /2p-). 

The covariance matrix for just two points 

5 = 

The log likelihood function for'x 'derived from the bivariate No=l 

distribution is 

log L = -10g(2rr) -! log Isl - ! ~'S-l~ 

where ': 

z = say. 

To find a maximum likelihood estimator for x set 

dIg L = dx 0 

1 

21 5 1 
~ - ! ~ (z'S-lz) = 0 

dx dx - -

Therefore d!!' = -1 51 d -1 
(_z'S _,,) dx 

Now 

~ = 
dx 

and 

which finally leads to 

3 
x 

4 
-20 x 

2 2 
Y +y 

+ (1 2 
2 

o 

YIYZ 
l)x - -2- = 0 

Cl 

dl 5 L 
dx 

(2.49) 

(2.50) 

(2.51) 

(Z.5Z) 

(2.53) 

If a solution x* can be found for this cubic equation between the 

values 0 and 1, then the maximum likelihood estimator of p derived from 

26 
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the two given points is 

" p = (2.54) 

This procedure may be repeated for n pairs of neighbouring points 

and the set of estimates so produced averaged in some way, for example 

by use of the median of the individual estimated values for different 

sets of data. 

In an attempt to evaluate the effectiveness of both these techniques 

for estimating p, some simulation experiments have been carried out. Full 

details are summarised here. Each experiment consisted of generating N 

data points, randomly positioned in two dimensions inside a square 'region 

of extent 10xlO. Values of a Normal process with correlation distance p 

were generated, and estimates p of this' parameter were computed using both 

methods ("Haximum likelihood" and "pair-point"). 10 such experiments "ere 

performed for each value of Nand p. Values of N "ere 10,20 and 40, and P, 

took the values 1.0,2.0 and 4.0. 

Figure 2.5 illustrates the results of these experiments, by plotting 

.... 
both the average value of p and the estimated mean square error for each 

combination of Nand p, for each of the t,lO methods. It can be seen that 

for p=l.O and 2.0 the maximum likelihood estimator is better than the pau-

point for N=10, but both appear to converge to"lards the true p value for 

N=20 and 40. However, both methods severely underestimate "hen p=4.o. It 

seems to be quite difficult to estimate p accurately when it is of the 

order of the dimensions of the region of interest. For smaller values, 

the pair-point methods seems to be equally a's-'effcCtive as the maximum 
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likelihood technique for reasonable numbers of data points. 

Another possible approach to estimating covariances from sets of 

data points is' described in an appendix to Ne1der & Mead (1964). Here in 

n dimensions, a simplex of n+l points is used (together with the "half-

way" points between them) to give an estimate of B, the information matrix, 

from ~lhich the covariance matrix can be obtained. This can be seen to have 

some similarities to the pair-point method, except. that in say two dimensions 

a number of triangles would be evaluated. 
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'2.5 EXCURSIONS OF A STOCHASTIC PROCESS ABOVE A FIXED LEVEL 

One aspect of the theory of stochastic processes which has interesting 

applications is that of excursions above a fixed level. It is probably 

best to study the one-dimensional case first and then see ho" it can be 

generalised. (See Cramer & Leadbetter, 1967, p.l90-2l8). 

Let Z(t) be a stationary stochastic process, with probability density 

function f() at any point. Consider the fixed level Z(t)=u, and define an 

"excursion" as an interval [t
l
,t2) for Hhich 

,. 

and Z(t) > u for (2.55) 

(see Figure 2.6). 

Various properties of these excurSlons may be investigated. For 

example, the probability distribution of the length J. (where L=t 2-t
l

) 

may be investigated. Alternatively, the probability distribution of N, 

the rate of occurrence of excursions per unit interval in t, may be 

computed. 

Each excursion is bounded by one "upcrossing" and one "do\-lncrossing!i 

of the process Z(t) relative to .the level u. An upcrossing (such as tl) 

is a point where Z(t)=u and Z'(t»O. A downcrossing (such as t 2) is a 

point where Z(t)=u and Z' (t)<O. Let us assume. that Z(t) has continuous 

derivatives up to at least second order (so that it is continuous and 

differentiable from section 2.2), and define the reverse gradient w by 

w(t) = -Z' (t) . 

Let f () be the probability density function for w, 
w 

-------------------------------------------------------------------------------~ 
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c(z) be the probability density function of Z.(t), conditional on Z(thu 

= f (z) /R(z) • 

Consider P[Downcrcssing in (t,t+ot)IZ(t)3u] 

'" rc(u+o) P.[W3%t]do 
- J 0 

= [C(U+O)R (%t)do 
o w. 

(see Figure 2.7). 

Let y=%t, ,whereupon the required probability becomes 

ot [C(U+yot)R (y) 'dy 
o W 

As ot~, this tends to become equal to 

ot c(u) [;-~y) dy = s.c(u)ot (say). 
o W 

Therefore P[Dmmcrossing in (t, t+ot) I Z(thu] 

= s.c(u)ot = ~ot (say) 

where 

If Z(t) is normally distributed with mean zero, then 

a 
W 

= --

where 0'2 =o2g,,(0). 
W' 

a 
So in this case W 

(2.56) 

(2.57) 

(2.58) 

Suppose nO~l we consider the rs.ndom variable 'L, defined to be the 

distance from the last upcrossing to the next downcrossing. 

P[LE(R.,R. + ot) IL3R.]= = ~ot. 



Let fl (~) be the probability density function of L, and P~(~) = 

P[L~~J. 

Then' 

Therefore 
d~ (~) 

e~w = 
d~ 

d~ (,R.) 
ed~ ~ (~) 

: 

and 

which imples 'that ~(R.) = Ke -e~ 

1 = 0 ". ~ (0) = 1 => K = 1 . 
Therefore ~ (~) = e -e~ 

and fL(O 
_ -,-a~ 

= ee 

Thus L has a negative exponential distribution, whose mean is 

E(L) 
1 

= Il = 
R(u) 
s.f(u) 

We can shDl<, by a similar argument to the above, without 

conditionality on Z(t)~u, that 

P[Downcrossing in (t,t+at)] = s.f(u) at 

Let X(t) = 1 if there is a downcrossing in (t,t+at) 

= 0 otherwise. 

( 

Consider an interval of size T, and divide it -into M small sub-

intervals of size at=T/M. Assume that et is ,sufficiently small that 

31 ' 

(2.59) 

(2.60) 

(2.61) 

(2.62) 

the probability of more than one downcrossi.ng in at can be neglected. 

E[No. of dOWIlcrossings in T] 
'M 

E[ L X(t.)] 
i=l 1 
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= M s f(u) Ot = s £(u) T (2.63) 

Therefore, if N is the number of downcrossings per unit interval, 

which is equal to the number of excursions per unit interval, 

E(N) = s f(u) , 

. and if Z(t) is normally distributed with mean zero, then 

E(N) = 
o w 2 2 

-u /20 
e 

It would be nice if these simple results could be extended in a 

(2.64) 

(2.65) 

straightforward fashion to highe-r dimensions - unfortunately this is not 

the case. Adler (1976) discusses thoroughly the problems involved in 

dealing with the random variables associated with excursions of a 

5 tationary s tochas tic process above a' fixed leve 1 in more than one 

dimension. Onc result that can be obtained i,; that the "volumes" of such 

excursions tcnd to have a negative exponential dis tribution, but only 

asymptotically as u tends to infinity. 

Adler and Hasofer (1976) have generalised the notion of the number 

of downcrossings of a stochastic process per unit interval to defiae 

a "characteristic" X of an m-dimensional process. X is closely relat",d 

to the number of connected components of the excursion set of the process 

above the fixed level u. The difference arises in the case ",here 

components of the excursion set contain "holes" or totally enclosed 

regions where Z(~)<u. Probabilistic calculations may be carried out on X 

which are not possible on the more directly useful variable. 

For example, if Z(~) is a two-dimensional stationary process, 

Adler and Hasofer show that 

2 2 
-u /20 

u e (2.66) 
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by comparison with equation (2.65) for the onc-dimensional case. 

In Chapter 6 of this work I shall use the concept of excursion 

sets in two dimensions to model the occurrence of oilfields, and derive 

approximately the expected area of an arbitrary such excursion • 

.. -
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g(r) = exp(-ar) 

o r 

FIGURE 2.1: Auto-correlation function example 



1 

•... --. 

2 g(r) = exp(-ar ) 

o r 

FIGURE 2.2: Auto-correlation function example 
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o 

g(r) 
-t 

= e (cOsyt-~sinyt 

2+y 

2 
t = Clr /2 

2 
+ (l+Y ) 

2 2+y 

FIGURE 2.3: Auto-correlation function example 
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15. TEST DATA. 

1 1 • 

12. 12. 

s. 

5. 

~ . 

IJ I 

5 
1. 

~---->=5-.-----;'1 !al>. ---~,i1'5;.----22i3. 

FIGURE 2.4(a): Example of stochastic interpolation 

- small correlation distance p 
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15. TEST DATA .. 

1 • 

12 • 1 • 

• 
, . ,. 

5. 

\I 3. 

2. 

-5. 

FIGURE 2.4 (b): 

Large correlation distance p 
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* - - -K NAXIMUM LIKELIHOOD 

)~('----':I<)( PAIR-POINT 

[NOS. IN LINES ARE TRUEp VALUES] 

~----.~ 
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}f-- --..-

20 

MEAN SQUARE 
ERROR 

N 

FIGURE 2.5: Results of experiments in p estimation 
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L .---~ 

FIGURE 2.6: Excursions of a stochastic process 

above the level u 
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FIGURE 2.7: Downcrossing of the level u by the stochastic 

process in a small interval ct 
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CHAPTER 3 

OTHER APPROACHES TO THE S~,~lE PROBLEMS 



3.1 THE THEORY OF REGIONALISED VARIABLES AND KRIGlNG 

The French geostatician Matheron has developed a theory of 

"regionalised variables".which he applies to problems in the mining 

industry. It may be instructive to outline briefly the basic concepts 

of his theory and compare it with this work. Unfortunately, Matheron 

has also developed his own terminology to describe his methods, which 

often makes translation into terms of conventional theory difficult. 

Regionalised variables are assumed to be realisations of stochastic 

processes in one, two or three dimensions. Since the theory is to be 

applied to physical properties (e .g. of ore-bodies) which are highly 

variable from point to point and which appear not to possess a constant 
....... 

mean, the stochastic processes considered are not necessarily stationary. 

If they are stationary, then they need not possess a finite variance or 

be differentiable or continuous. To allow for the possibility of nou-

stationary functions with infinite ·variances, 11atheron introduces a \\Tcake·r 

condition than stationarity, which he terms the ·"intrinsic hypothesis". 

(See Ma~heron, 1971, p.53; Journel & Huijbregts, 1978, p.33). 

This hypothesis is that the increment Z(i+~)-Z(~) has a meE-n and 

variance which are independent of ~. 

i.e. 

(3.1) 

The function y*O is ·known as the "semi-variogram" and can be 

seen to be related to the auto-covariance function ye) if Z(~) is 

stationary and has finite variance. 



'" ~ E [ (2 ('::'+E.) 

~ [2/ 
2 = + 20 

2 
- Y(E.) = 0 (3.2) 

Note that if Y*(E.) tends to a finite limit as r tends to infinity, 

then the process is stationary, with variance equal to this limiting 

value. Otherwise, if the semi-variogram tends to infinity, the process 

is non-stationary (see Figure 3.1). 

. ,. 
Thus Matheron uses the "intrinsic function" y*O in preference to 

the auto-covariance function y() because of its applicability to a wider 

class of stochastic processes. However, in most of the applications in 

this ,work (contouring, interpol,;tion of unknmm functions) the assumption 

of stationarity is a reasonable one to make, and it is simpler and more 

natural to use the auto-cDvariance or auto-correlation function. 

In actual practice, the difference betHeen a stationary and a non-

stationary process is very difficult to detect - it depends upon the 

domain over which the process is being studied. An apparently non-

stationary trend may in fact be a local manifestation of a long-range 

variation which is itself stationary (see Figure 3.2). 

This leads on to the concept of "universal kriging" in Hatheron I s 

theory. "Kriging" relates to the estimation of unknown values or 

integrals - thus "punctual kriging" refers to the estimation of values 

of the s tochas tic process at unknown points. In "universal kriging" the 

assumption is made that the process has a "trend function" mO such that 

(3.3) 

as well as the intrinsic function 

o ... 



y*(~) = ~Var[Z(~+~) - Z(~)l 

(see Figure 3.3). 

Some sort of functional form is assumed for m() (e.g. polynomial) 

and parameters of this function need to be fitted to the data, and the 
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form of y*() must-simultaneously be estimated. Given all these parameters 

of the regionalised variable model fitted to the known data, best linear 

unbiased estimates of any function of the underlying variable may be 

obtained. Thus universal kriging leads to an iterative procedure in which 

an estimate of y*() enables a form of m() to be fitted, and hence residuals 

can be calculated. The correlation structure of these residuals leads to 

an updated form of y*O and so on • 

.. -
In general, a fairly large number of parameters need to be es timated, 

specially if m() is to be fitted in several dimensions. There may well be 

no good a priori reason why m() should have any particular functional 

form, so attempts to fit polynomials may not be particularly useful, and 

can lead to dangerous extrapolation tendencies. lfuittle (1963, p. 84-35) 

has some cautionary words regarding this. approach with regard to time 

series. 

What seems to be a better philosophy for modelling functions which 

include some form of "trend" is to treat them as realisations of a 

stochastic process which is a sum of stationary components. These 

individual processes will have different ranges over which their 

correlations extend, and this will lead to a simpler, more uniform 

model with fewer parameters to be estimated. 

Olea (1974) has applied universal kriging to automatic contouring, 



and claims that the maps so produced are "optimal" in the sense of 

producing minimum variance unbiased estimates of the unknown values. 

However, Akima (1975) has criticised this claim by pointing out that 
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the optimality criterion chosen requires certain fairly strict conditions 

on the structure of the data, and that other criteria might >!ell be more 

applicable for other types of data. Generally speaking, it is true that 

no one method is going to be "optimal" for all possible sets of data. 

Akima proceeds to more detailed criticisms of Olea's methods, but 

also points out: a crucial problem "ith all techniques for fitting a 

"drift" function together with correlated residuals. This is the problem 

of the inter-relation between the chosen "drift" function and the form 

of correlation for the residuals· - a large number of possible selections 

may be made. of drift/correlation combinations, all of which wi 11 fi t the 

observed data. But, as Akima says: "The question is whether or not such 

a selection can be made objectively and automatically with a prescribed 

algori thm" • The chances are that it cannot, and that an element of 

subjective decision and choice will always be present in automatic 

contouring. 

One important difference between geostatistics and the types of 

problem dealt with in this work concerns the amount and regularity of 

data. Generally speaking, it is the case that geostatistical data is 

collected at a large number of points on a regular grid. It is thus 

reasonable to fit complex models with m1!IlY parameters and to expect to 

extract meaningful information from such models. (See Journel & 

Huijbregts, 1978 - for example their case study 11, pp.272-280). 
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An important part of geostatistical analysis is the fitting of the 

variogram to the data - equivalent to our· problem of estimating p, 

(Section 2.4), but normally with enough data to enable the functional 

form of the variogram to be checked. David (1977, p.119) describes 

various general strategies for fitting variograms, while Journel & 

Huijbregts (1978, pp.207ff) give formulae and computer programs for 

calculating experimental variograms in different ~ituations. Of particular 

interest is their method for "non-aligned data" (p.211,223) - Le. randomly 

scattered data. Their preferred tlethod is to use "angle classes" ''lOd 

"distance classes" to estimate the variogram averages in different 

directions. From the experimental variograms so derived, fits of ~ore 

or less complex theoretical variograms may be obtained. On pp .192-195, 

Journe1 & Huijbregts discuss the variogram estimation variances, and 

note that strict goodness-of-fit tests for this problem would almost 

never invalidate the fit, because of the large "fluctuation variance". 

On pp.233-235 they investigate the robustness of the geostatistical 

results with respect to two different model variograms fitted to the· 

same data - the conclusion is that the difference iD negligible in the 

case studied. So that even in geostatistical analysis, with large amounts 

of data, the form of model variogram fitted may be governed less by the 

data and more by subjective considerations. 

Hawkins & Cressie (1981) have developed a system for the robust 

estimation of the variogram in the presence of outliers. Taking pairs 

of points Z and Z h a distance h apart, they show that Y =12 -Z t t+ t t+h t 

has a probability distribution which is close to Normal if the Z values 
t 

are Normally distributed. They consider robust estimators of the variogram 
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-4 "'4 "" proportional to Y and Y , .mere Y and Y are the mean and median of the 

Y
t 

values respectively, and test them against simulated data with outliers. 

We shall return to consideration of estimators of this type when we 

discuss the estimation of anisotropy (Section 5.4). 
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.3.2 OPTIMISATION OF EY.PENSlVE OBJECTIVE FUNCTIONS 

The optimisation problem is that of finding a point x which 

Ulaximises (or minimises) an m-dimensional function FO within some 

specified "region of interest" R. Practical optimisation problens may 

be broadly grouped into three classes, as follows: 

a) Local optimisation p;oblems. Starting from a given initial 

point in R, to move to local maximum (or minimum) of F() . 

b) Global optimisation problems. To find the local optimum 

point in R with the highest (or lowest) value among the 

class of all local optima. 

c) Expensive optimisation problems. Assuming that each 

evaluation of FO at.a new point is "expensive" in some way 

(e.g. in terms of computing time), to find a reasonably good 

approximation to a global optimum value in an acceptably 

small number of function evaluations. 

Much work has been done on type a) problems, and many excellent 

algorithms exist (see for example Zoutendijk,1976 & Fletcher,1980). 

Most modern algorithms require knowledge of the first derivatives of the 

function FO. either given explicit.!y or computed numerically. 

The global optimisation problem, type b) above, .is theoretically 

impossible to solve. There is no guarantee that any given algorithm 

will detect a global optimum in a finite number of function evaluations 

for all possible objective functions. Figure 3.4 illustrates the 

problems involved. However, this fact has not prevented some work being 
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done in this field, the assumption being that most functions of interest 

~lil1 be reasonably well-behaved. Dixon et a1 (1975) have produced a 

general survey of the problems involved in global optimisation and some 

of the strategies which have been used. 

Host strategies involve some modification of the totally random 

search technique, "hich is to generate a large number of random points in 

R and choose the largest (or smallest). Alternatively, a number of 

random points in R may be generated and from each such point a local 

optimisation routine initiated. ,. Then choose the largest (or smallest) 

local optimum so found. These crude methods can be modified in various 

ways to improve. the efficiency with "hich the global optimum value is 

found (normally measured in terms· of number of function evaluations). 

(see e.g. Solis & Wets, 1981). 

For example, Price (1977) describes a "controlled random search 

procedure". An m-dimensional function FO is optimised by generating 

an initial set of N points randomly in the region of interest R. New 

points "re generated taking .into account the N exis tirig points by 

selecting a random subset of m+l points from the full set of N points. 

This subset of points forms a simplex in the m-dimensional space, and a 

new trial point is generated by reflecting an arbitrary member of the 

subset in the centroid of the simplex (see· Figure 3.5). If the new 

.trial point has a value F(~) better than the worst point in the current 

set ·of N points, that worst point is dropped from the current set and 

the new point is ir,cJ.uded. In this way it is hoped that the N points 

~1ill tend to cluster about global optima as the algorithm continues. 

Price quotes some results from tests on different objective functions. 
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For example, "rith. a 9-dimensional function (described in more detail 

in Chapter 6), a very good approximation to a global optimum point was 

found after six runs of the program, each time restarting with a smaller 

region of interest centred on the end point of the previous run. Each 

run required of the order of 20,000 to 30,000 function evaluations, so 

.this procedure would not be ideal for an obj ecti ve function which "'as 

expensive to compute. 

de Biese and Frontini (1978) describe a method based on random 

sampling of points within R. Their first aim is to estimate the function 

1/1 0, where 
tjl{1;;) ; P [Random point x ER has F(~) .:: 1;;] (3.4) 

or, alternatively, .p (F;;) is the normalised Lebesgue measure of the 

subset of R for which F(x)::I;;. 

If the function .p() is' known, then the minimum value of F() in R 

may be obtained by setting 'P(I;;);O. de Biase and Frontini set out first 

to estimate 1/1(1;;) by.random sampling in R. Sets of q random points are 
. ,.. 

generated iteratively and pairs of values (I;;. ,.p.) are obtained for each 
1 1 

such set. This is repeated and spline approximations are used to fit 

the fmiction .pO to these results·. This stage of the procedure is 

terminated ;,Then a consistent fit is achieved, and enough points are 

assumed to have been genera·ted. The predicted minimum value S* of FO 

can be obtained from these results. 

The second stage of their procedure is to group the points 

generated in the first stage into clusters and car~y out a search for 

a local optimum within each cluster. Results for this algorithm for two 

test functions considered later (see Chapter 6) are tabulated on the next 

p"ge. 



Function 

Branin's Reos 

Goldstein & Price 

Stage 1 

Function 

Evaluations 

142 

72 

Total 

Function 

Evaluations 

208 

144 

6* 

(Predicted 

Hinimum) 

2.360 

3.5513 

F* 

(Final 

Minimum) 

1.250 

2.9997 

Thus the first stage (initial random sampling) and the second 

• (local searches) take a similar numbe.: of function evaluations. 

It seems obvious that methods based on random sampling are not 

going to be of maximum efficiency. Points will not be evenly spread 

throughout the region of interest, but will tend to clump together, 
... ,~ 

leaving nneven spaces between (see Figure 3.6). Two points which are 

very close are not contributing fully to a knowledge of the function 

behaviour, assuming the function is spatially correlated to some degree, 

since the value at one point could have been inferred, to a greater or 

lesser extent, from the other point. At the same time information is 

being .lost in the empty spaces. 

For an expensive objective function is seems clear that random 
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sampling is not efficient enough, and that points must be spread as evenly 

as possible throughout the region of interest so as to maximise the 

information gained from a small number of function evaluations. 
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3.3 PREDICTION OF THE OCCURRENCE OF OILFIELDS 

An "oil province" may· be defined as a geological area within which 

oilfields have been or may be discovered. Such an oil province is 
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explored by conducting geophysical and geological ;>urveys which locate 

subsurface structures with potential for accumulating oil, and by drilling 

"wildcat" wells to determine whether or not an oilfield is present at each 

such location. It· is obviously of considerable interest to be able to 

predict for a given oil province the number of oilfields which are actually 

present and the reserves of oil which they contain. If the oil province 

has been thoroughly explored, this is not difficult since the majority of 

the fields will have been discovered. If however the exploration has just 

begun, it requires much more ins"ight to be able to make useful predictions. 

Some work has already been done in putting these predictions on a 

sounder footing than sheer guesswork. In particular the Russians have 

studied the subject, see for example Juca and Nitkiewicz (1975). The 

best-known attempt in the West is probably that by Odell and Rosing (1~74) 

to predict the development of the North Sea oil province. 

Odell and Rosing set out.to predict not only the total recoverable 

reserves of the North Sea but also its future rate of development and 

production. However, the model they used was unfortunately full of ad 

hoc assumptions which rendered the results of little objective value. 

The numbers and sizes of potential oil-bearing structures were assumed, 

as were the success probabilities for wells drilled into the various 

structures. An oilfield having been discovered, the reserves initially 

estimated for it were assumed to appreciate consistently with time (in 

practice in the North Sea, unlike some other regions of the ,",orld, 
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initial estimates of reserves can be either too high or too low, and 

are not consistently low). Host of the model parameters were treated as 

random variables, and a Monte Carlo program was run to produce a range 

of results. 100 iterations of the program generated a range of total 

9 
recoverable reserves for the whole North Sea of 79x10 STB (stock tank 

,barrels) to 138x109 STB. 

The main critique of thi's model is the large number of assumptions 

built into it, without any possibility of fitting the model parameters 

to the existing data in any meaningful way. Furthermore, the model takes 

no account of the very obvious spatial correlation between the locations 

of oilfields. It is normal for oilfields to cluster together in certain 

regions of an oil province, and "'for 'other regions to remain relatively 

barren. This type of behaviour should be taken into account. 

A better attempt at developing a consistent methodology for fore-

casting oil reserves is provided by Heisner and Demirmen (1981) with 

their "creaming method". This consists of a model of oilfield dincovery 

which allows the larger fields to be discovered', or "creamed off" earlier, 

leaving smaller and smaller fields to be found later in the exploration 

process. They assume that the probability of an oilfield being found 

with reserves between v and v+dv will be proportional to vA, They then 

postulate that the parameter A is not a constant, but a (decreasing) 

linear function of the number n of exploration wells already drilled, so 

that (3.5) 
i 

with Y2 ~ O. 

The mechanics of fitting this type of model to data for an oil 



province are fairly complex, but the results appear quite good for their 

test data, although it would seem that a reasonably long exploration 

history is required to fit the model. Also Meisner and Demirmen's 

creaming model, like Odell and Rosing's model, fails to take any account 

of oilfield clustering or spatial correlation. 

Thus I believe that any useful model for this problem of oilfield 

occurrence prediction should ~atisfy the follo>1ing criteria, as far as 

is possible: 

1. It should be simple, with only a few parameters which can be 

estimated from existing data at an early stage. of exploration. 

2. It should take into account the spatial correlation bet"een 

oilfields. 

3. It should predict, in addition to the total reserves of an 

oil province, the approximate distribution of oilfields 

within the oil province. 
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FIGURE 3.1: Examples of semi-variograms 



Apparently non-stationary process 

, 
1 \ 

\ \ I 1 

\ \ I I 
\ \ 1 

\ 

\ \ 
\ 

\ \ 1.1 

\ ~ Y~ 
I 

~ 1 I 
\ \ I I 

\ \ 
\ 1 1 

\ 
\ 

\ 
1 I 

\ 
1 J 

\ 

\ 

\ 

\ 

\ 

> 
Stationary over a larger range. 

FIGURE 3.2: Illustration of the difficulties involved in deciding 

a process is .non-stationary 

56 

, 
. i 



57 

, 

x 

FIGURE 3.3: Illustration of "Universal kriging" 
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FIGURE 3.4: Pathological case for global optimisation 
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CHAPTER 4 

INTERPOLATION IN TWO DIMENSIONS AND CONTOURING 
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4.1 CONTOURING PROBLEMS AND ALGORITHMS 

The problem of drawing contour lines to represent the behaviour of 

a two-dimensional function over a plane region may be classified into 

three sub-problems, depending on the way in which the function is presented. 

a) Algebraic. 

b) Gridded 

c) Scattered 

the algebraic form of the function is given, 

and. it may be computed at any arbitrary point. 

function values are only given at the nodes of 

a.grid (usually rectangular) which spans the 

area of interest. 

funct~.on values are only given at a finite set 

of points, distributed in an arbitrary fashion 

over the area of interest. 

Case b) is thus a special case of c), but in practice most contouring 

algorithms are based on the assumption of gridded data (see for example 

Sutcliffe, 1976); Case a) can be easily converted to gridded form by 

'evaluating the algebraic function at the grid nodes, although this 

naturally leads to loss of definition in the spaces between nodes. 

However, with a sufficiently fine grid acceptable results can be obtained. 

Conversion of case c) to gridded form poses more problems. A means 

is required to interpolate from the scattered points to the nodes of the 

grid. Various methods have been used for this (see for example McLain, 

1976 and Sabin, 1978), but problems can be encountered in this, 

especially when the data points are not evenly scattered. In practice 

it has been found that sets of data points which leave la;'ge "blank" areas 



" 
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can lead to totally meaningless contour lines being produced in these 

areas. 
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Even if the interpolation process is reasonable, the fact that the 

contour lines are based on the grid rather than on the actual data 

points may lead to inconsistencies between the contour lines and the 

original data. Figure 4.1 shows an illustration of this kind of error. 

One solution to this problem might be to use an irregular grid tailored 

to the data points. If N points were given, a grid of at most NXN nodes 

would be needed, as in Figure 4.2, to guarantee that each data point 

coincided with a grid node. 

For these reasons it was fe1,t to be better not to base the 

contouring a1go'rithm on the assumption of gridded data, but to contour 

directly from an algebraic function. If scattered data is given, then 

the use of an interpolating function as defined in equation 2.30 leads 

directly to the production of contour lines without using any intermediate 

grid system. The stochastic interpolating function has the added 

advantage of an easily computable derivative, which will be shown to be 

useful in defining the contour' lines. 

An algorithm of this type, designed to handle the most difficult 

case of scattered data, includes the other cases within its scope. Data 

presented in gridded form is merely a special case of arbitrarily 

scattered data. 
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4.2 TRACKING CO~~OUR LINES 

The aim is to draw a set of contour lines f(x,y)~c., i~l, ••• ,n for 
1 

the interpolating function f() based on the N data points {(xl'Yl) •• ' 

(~'YN)} with values,{zl,··.,zN}' without using any kind of superimposed 

grid system. A method of tracking contours needs to fulfil the following 

requirements: 

1. It must ensure that all the contour segments appropriate to 

the given set of data are drawn. 
,. 

2. It must define a starting point for the drawing of each such 

contour segment. 

. ... --
, 3.' It must decide when to terminate a contour segment, either 

because the starting point has been reached again, or because 

the area of interest has been left in both directions. 

~le shall assume that a rectangular border is defined for the area 

of interest, within "hich the contour lines are to be drawn. Values of 

the interpolating function fO are computed at the vertices of the 

border rectangle, and these are treated essentially as extra data points. 

Thus the data set consists of the "real" data points plus the "dummy" 

border'pdints. 

The system for keeping track of the contours works by means of a 

set of "reference points". Such a set is defined for each contour level 

c., and consists of a number of points where the interpolating function 
1 

value exactly equals the contour level. TIle set is chosen so that at 

least one reference point lies on each "definable" contour segment within 

the area of interest. 
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·A definable contour segment is one .,hich divides the area of interest 

into two parts, each containing at least one data point or border point. 

It is possible for undefinable contour segments to exist, .,hich enclose 

no data points and cannot be detected by this algorithm. Figure 4.3 

shows such a segment. One way of detecting such segments would be by 

the introduction of internal dummy points with values given by the 

interpolating function. 

Reference points are defined by drawing a set of straight lines 

Joining data points. Each such line joins a data point with value 

greater than the contour level to a point with value less than the contour 

level. Border points are all connected to internal data points. A search 

is carried out along each line until a point is found with estimated 

function value equal to the contour level, and this becomes the reference 

point. Figure 4.3 illustrates this process. 

The technique for carrying out the search 

a straight line 

f(x,y) - c. = 0 1 

along the line 

is given by 

is basically a Newton's method 

along the line. If the current 

from the starting point, then a 

at 
6~ = (ci - f(x'Y»/ai 

for a given value along 

solution of the equation 

point is at position ~ 

change of linear position 

(4.1) 

If the line is at an angle e to the x-direction then 

af 
a~ 

= af e af . 0 ax cos .. + ay S1n 

where the derivatives of f() are given by equation 2.35. 

This process is repeated until If(x,y) - c.1 <e:, a prescribed 
1 

tolerance. 

(4.2) 



The main problem that can arise is illustrated in Figure 4.4 The 

gradient at the starting point of the search may be opposite to the 

secant gradient joining ,the values at the two points A and B - this 
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means that the search for the reference point would be initially conducted 

in the wrong direction, and the required point might never be found. This 

problem is overcome by successive sub-division of the interval ,AB until a 

sub-interval containing the r~ference point is found with the starting 

gradient in the correct direction. 

Using the set of reference points generated in this way, the algorithm 

for drawing all the definable contour segments appropriate to a particular 

contour level works as follows: 

1. The first reference point on the list is taken as the starting 

point of a new contour segment. 

2. From the present point on the contour, a new point is computed 

(the algorithm for this is described later). This is repeated 

until 

Either 

3. If the contour segment has reached its starting point again, 

then the tracking of this segment is ended and it is drawn. 

~ 4. If the new point is on or outside the boundary of the area of 

interest, this arm of the segment is ended. If the other arm 

has also been ended then the contour segment is dra\>fi. 

Otherwise, the tracking is begun again from the start point. 

5. As a contour segment is being drawn, all the reference points 

which lie on that segment are deleted from the list. 
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6. If any reference points still exist on the list, a new segment is 

started from step 1. 

The algorithm for generating a new point on the contour from the 

previous point operates in two stages: 

1. A tangent is drawn to the contour at the current point and a 

point a distance IH, along it is chosen. l1r is the "step 

length" for generating the new point • 

2. From this point a perpendicular is drawn to the tangent, and a 

search is carried out along this line until a function value 

f(x,y) is found .which is withip a specified tolerance of the 

desired coetour leve1;·--- If no such point is found (due to the 

contour forming a sharp bend in the neighbourhood), then the 

value of l1r is halved and the process repeated. 

-
It is necessary to find the angle e which the tangent makes with-

the x-direction, and this can be done quite simply. 

If 3f/3r is the derivative of f() along the contour tangent, then 

af af e + g s;n e = ar = a;z cos ay ~ o , (4.3) 

therefore tan e = - g/g ax ay , (4.4) 

- af af where a;z and ay may be computed by the interpolating function. 

Figure 4.5 illustrates this procedure. 

It is obviously worthwhile to pay some attention to the 

selection of l1r so as to use the minimum number. of points to define a 

reasonably smooth contour. In areas where the contour is almost 

straight, l1r can be large. Where the contour is sharply curved, l1r 

... ; 
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should be much smaller. It is possible to estimate a desirable value 

for hr, based on the second derivatives of the interpolating function. 

Let 

therefore 

and 

Now 

and 

where 

af af 
s = -tan e = -/­ax ay 

cos 

sin 

2 
~ = ,U/.ll - .ll 
ax ai ay ax 

2 
2..L/(.ll) 2 
axay ay 

• 

Along the contour, 

Since 

Therefore 

as as as . 
- = - cos e + - S1n e ar ax ay 

2 2 
= 2 .. ..L2 (.ll/.ll)2..L y ax2 Y ax ay axay 

s = -tan e 

as 2 ae 
- = -sec e ar ar 

2 3 af 
Y ~ 

• 

If we specify' a required change in direction 60, then we 

can relate the step length 6r to this by 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 
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4.3 LONG-RANGE TREND AND TIlE TI,'O STAGE MODEL 

It is often felt that the function being contoured consists of 

more than one component. In particular it may be assumed to consist 

of a long-range "trend" with a more short-range "residual" component 

superimposed on top. Often (as in universal kriging) this trend is 

modelled by some algebraic function, such as a polynomial, but this 

has nothing to recommend it unless there is a good reason to suppose 

that the trend takes such a form. Within the context of modelling 

functions as realisations of stationary stochastic processes, it is 

felt to be more natural to allow the trend to be another stationary 

stochastic process, so that the "two stage" wdel is 

Z(x) = Z~\:s) + Zs(E • (4.10) 

where ZL(~) is a stationary, normally distributed, random process 

of mean ~ and correlation distance P
L

, and Z (x) is a similar 
s-

process with mean 0 and correlation distance Ps' and 

» P 
s • 

Three parameters (11, P
L 

and ps) a're needed to fit this model 

to the data, and this can be carried out in various ways. One 

technique which has been used to fit the model to scattered data 

for contouring is to cluster the N data points into n «<N) clusters. 

A 
The average value z. 

~ 

A A and cent roid (x., y.) of each clus ter i is 
1 1 

calculated. Values of \land P
L 

are fitted to these cluster average 

points, and this gives a model for the long-range trend ZL(x), 

For each of the N original points a residual error value is found. 

E 
z. = 

J 

where 

,. 
z. - z. 

J J 
(l,.ll) 



z. is the ac tual value at point j 
J 

and ~. is the trend value at point ], estimated from the n 
J 

cluster average points. 

The value of P is fitted to these N residual values, giving a 
s 

complete model. The interpolating function at any point (x,y) 

f(x,y) = Estima~ed trend from n average points using V 

and PL 

+ Estimated residual from N data points using V • ,. s 
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The estimation procedure outlined here is bound to suffer from the 

problems described in Section 3.1 when fitting "trend" and correlated 

"residual" functions to data ","'those associated with the circular nature 

of whatever technique is used. The number of clusters (n) used ·,.,ill 

obviously influence and constrain the long-range correlation distance 

fitted. Errors in the estimation of P
L 

will inevitably affect the 

estimation of P 
s 

Thus in adding to the complexity of the model, we 

are increasing the difficulty of obtaining accurate estimates of all the 

parameters. 

As a check on the feasibility of estimating the parameters of such 

a "two-stage" model, some simulation experiments have been carried out 

(See Appendix B). Although both P
L 

and Ps are under-estimated, it is 

significant that in general the ratio PL/Ps is approximately correct 

(especially for N=40 rather than N=20). Thus, although there may be 

errors in the parameter estimation, the structure of the two-stage 

model is being correctly reflected. 
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4.4 RESULTS WITH TEST DATA 

A program SIMP (Stochastic Interpolation and Modelling Program) 

has .been written in ALGOL-68R to implement the contouring concepts 

in this section, as well as containing other features. It has been 

tested on various sets of data, mainly related to genuine examples 

of information available only at scattered points. A brief description 

of the program and its operation is given in APpendix A • 

As a comparison with a "conventional" contouring program, the 

CALCO}W package GPCP (General Purpose Contouring Program) has been 

used to produce a contour map of permeability based on measurements 

at 72 oil wells in a Russian oilfield - data obtained from SchviGler 

(1964). This data is listed in Table 4.1. Tbese points are not 

scattered evenly across the area of interest, but tend to leave large 

empty regions. The results of GPCP are shown in Figure 4.6. From 

this is is obvious that a number of features produced by GPCP are 

purely imaginary - in particular the large "cliff" in the southern 

part of the map where there are no data points. Also, in several 

places the contour lines are not entirely consistent with the data 

points, because of the gridding introduced by the program. 

By comparison, Figure 4.7 shot.s the same data contoured by 

SIMP (no trend assumed). The value of grand mean (~=299.5) is the 

median of the data, and the correlation distance (p=O.5076) was 

estimated by the "pair-point" method. The interpolating function is 

"flat" with little or no structure, in areas where there i.s lIO data, , . 

and only shows significant variability close to the data points. 

Subjectively, this would seem to give a better representation of the 

(necessarily incomplete) data available than the GPCl' mf.lp. 
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An additional feature which was a simple matter to include in the 

program was that of being able to dra., cross-sections of the inter-

polating function along any specified line. Two such sections are· 

shown in Figures 4.8 and 4.9 for the Shkapovskii data - they illustrate 

graphically the high degree of variability in this data. 

As an example of the two stage model including a long-range trend, 

height contours from the Ordnance Survey map for the Chanlwood Forest 

area to the south-I,est of Loughborough were used. These original 

contours are shmm in Figure 4.10. 40 points were scattered at random 

on this map, and heights in metres above sea level at these points were 

input to the program. The value of grand mean (11=60) was input as a 
...... 

subjective estimate, based on the knowledge that the ground continues 

to slope dOlmhill to the north-east. The parameters of the "two-stage" 

model (PL=2.39 and p
s

=0.5) were estimated using the procedure described 

in the previous section. The data is given in Table 4.2, and the contours 

produced are shown in Figures 4.11 and 4.12. Figure 4.11 is a contour 

map of the long-range trend only, and Figure 4.12 is a full map including 

the short-range residuals. The final result is not dissimilar to the 
r 

actual topography of the area, given the limited amount of data used. 

Figure 4.13 is a cross-section from south-west to north-east of the area. 

As a further example of the two stage model, data provided by a 

colleague was used. This relates to erosion of a microscopic irridium 

projection. 115 data points were provided (see Table 4.3) and a value 

of grand mean (11=32) was input, because it was known that the object was 

a single projection on an otherwise flat surface. A "two-stage" model 

was fitted. a5 before. with the long-range correlation (P
L 
=42.53) being 



given by the estimation procedure, but the short-range (p =10.0) being 
s 
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equal to a pre-set minimum. A trend was fitted wbich is shown in Figure 

4.14. In many >lays this map may be more informative than the full map 

including tbe residuals and fitting all the data exactly, which is shown 

in Figure 4.15. Cross-sections are shown in Figures 4.16 and 4.17. 

Finally, a set of data (s~e Table 4.35) was invented which was 

designed as a "difficult case" for contouring programs. Figure i,.18 

illustrates this data set - it is intended to represent a circular "bole" 
" 

with very steep sides. Three different programs have been tested on this 

data - GPCP, SIHP and the GINO-F library routine GINOSURF. 

GPCP was run using two different grids - a 20x20 grid and a 100xlOO 

grid. Results for the former are shoml in Figure 4.19, from «hich it is 

apparent that the contour lines do not fit the data values very closely. 

The outer set of points have values of lOO, but from the map they appear 

to have values between 70 and 100. Similarly, the inner set have nominal 

values of 10, but from the map apparent values between 35 and 40. The 

results with the 100xlOO grid are more satisfacto~' in terms of fitting 

the actual data, although the overall map has a' rather strange "rosette" 

shape and lacks the spected syrr.metry (see Figure 4.20). 

The results from SIHP are shown in Figure 4.21. The fit of the contours 

,to the data is good, and' a symmetrical, circular shape is achieved. 

Values of 11 and p equal to 100 and 1.0 respectively were used to achieve 

, this plot. 
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The results from the GINOSURF package are shown in Figure 4.22. 

These are quite good, although. the "gridded" nature of the contouring 

algorithm used is probably apparent. There is still a certain amount 

of discrepancy between data points ~,d contour lines. 
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It would seem from this set of tests that the kind of contouring 

algorithm used in SUIP shows up well in comparison to the "gridded" 

algorithms used in other programs. It produces contours which are smooth, 

symmetrical and fit the data. 

In producing contour maps from data using SI}IP, the user has the 

option of allowing the program to estimate all the parameters to be used, 

or of supplying some of them hims(;lf.· As can be seen from some of the 

above examples, it is often the case that specifying one of the parameters 

reflects a subjective kno>lledge about the surface to be contoured which 

is not explicit in the data points. For example, if it is kno>ln that 

the surface to be contoured is a "mound" or "hollow" in an otherwise 

flat "plain", then' it is wise to set ~ equal to the surrounding, flat, 

value. On the other hand, it appears than the estimation procedures 

sometimes under-estimate the value of the correlation distance (see 

Section 2.4), so that it is valuable to be able to over-rule their 

judgement and supply an increased value. 



4.5 ONE-DIMENSIONAL APPLICATIONS 

Before progressing to applications of stochastic interpolation 

in more than two dimensions. it is worth briefly considering the one­

dimensional case. Some work has been done (see Brodlie. 1978) on 

the problem of fitting a curve of the form y=f(x) to a set of data 

points {(xl'Yl) ••••• (~.yN)}. A variety of methods are available. 

mostly based on some form of spline interpolation. 

The cross-section option in the program SIMP will obviously 

produce plots of one-dimensi.onal stochastic interpolating functions. 

Two sets of test data were used to illustrate the results of the 

program applied to one-dimensional data. The details of the test 

data are given in Table 4.4. 

Figure 4.23 shows the results from SIMP applied to the first set 

of data. The curve fits the data reasonably well. although it could 

be criticised for being somewhat oscillatory. The mean (~=3.5) was 

estimated by the program, but the correlation distance (p=l.O) was 

fixed. Fig.2.4 shows other examples of the same data with different 

values of P. 

The second set of test data is "better-behaved" than the first. 
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and this is shown in Figure 4.24 which gives the curve produced by 

SHiP. The mean (~=O) ,·,as fixed so that the curve approached zero to the 

right. and the correlation distance (p=1.l7) was fitted by the program. 

Thus stochastic interpolation is easily capable of application 

to 'functions of a single variable - whether the results are acceptable 

depends on subjective preconceptions about the likely shape of the 

underlying functions. 



i x. 
1 

1 5.9 
2 7.5 
3 7.55 
4 4.0 
5 8.2 
6 2.0 
7 8.3 
8 10.05 
9 8.75 

10 1.7 
11 0.95 
12 10.55 
13 1.05 
14 10.65 
15 10.65 
16 9.6 
17 9.6 
18 8.85 
19 8.4 
20 8.0 
21 7.7 
22 2.85 
23 2.55 
24 2.3 

TABLE 4.1 

Shkapovskii Oil Deposit Data 

- (x,y - Co-ordinates in arbitrary units 

z - Permeabilities in millidarcies) 

y. z. i x. y. z. i 
1 1 1 _ 1 1 

5.35 304 25 2.6 4.75 255 49 
0.85 360 26 2.15 4.5 608 50 
4.45 418 27 2.25 5.9 346 51 
6.45 415 28 - 2(-3 6.35 575 52 
7.1 400 29 2.75 7:3 197 53 
5.4 269 30 2.0 7.3 224 54 
5.6 198 31 3.1 7.45 174 55 
5.9 70 32 2.7 7.85 364 56 
4.05 668 33 4.25 8.25 271 57 
2.75 480 34 5,'1' 8.35 48 58 
3.65 66 35 7.4 7.35 295 59 
4.45 273 36 6.65 8.2 65 60 
3.3 88 37 7.75 7.1 1,50 61 
2.6 175 38 7.05 8.0 238 62 
2.2 220 39 8.45 6.8 430 63 
0.8 232 40 7.4 7.85 183 64 
1.3 255 41 8.8 6.65 248 65 
1.5 396 42 7.75 7.65 620 66 
1.6 341 43 9.1 6.5 153 67 
1. 75 200 44 9.35 -6.15 116 68 
1.4 372 45 8.5 7.25 107 69 
3.55 580 46 9.7 5.95 106 70 
3.85 542 47 8.85 7.1 207 71 
4.15 346 48 10.35 5.55 59 72 

Model fitted: 

Grand mean ~ = 299.5 

x. 
1 

9.2 
10.5 
10.75 
10.6 
6.75 
5.7 
3.35 
3.9 
4.65 
7.15 
9.3 
8.9 
8.55 
8.1 
2.85 
8.15 
8.8 
9.8 

10.15 
2.85 
4.45 
4.0 
8.7 
9.65 

Correlation distance p = 0.5076 
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y. z. 
1 1 

6.95 406 
5.95 64 
5.6 360 
3.0 361 
4.55· 343 
4.75 276 
5.55 196 
8.65 254 
8.7 263 
4.15 321 
1.9 385 
1.95 642 
2.1 241 
2.25 315 
5.5 346 
6.4 376 
6.15 314 
5.3 70 
3.5 310 
3.2 458 
7.45 335 
7.95 289 
2.25 313 
2.05 510 



i 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

TABLE 4.2 

Charnwood Data 

(Heights in metres above sea level) 

x. y. z. i x. y. z. 
1 1 1 1 1 1 

1.0 2.9 218 21 5.3 8.5 76 
9.0 7.0 65 22 3.4 1.3 178 
0.2 6.5 150 23 7.7 3.6 85 
6.1 8.4 78 24 0.6 6.9 153 
6.0 3.8 122 25 4.8 5.0 130 
1.7 2.0 218 26 5.8 8.3 79 
6.9 9.9 65 27 8.7 3.8 74 
8.1 9.4 61 28 5.9 4.9 108 
5.9 3.6 128 29 36 4.7 169 
6.9 5.7 79 30 3.3 3.1 187 
4.7 1.1 144- .. 31 9.6 2.4 76 
1.4 8.0 liS 32 0.4 3.6 194 
9.0 2.3 76 33 4.2 2.4 153 
2.9 1.7 200 34 6.3 7.3 75 
4.3 3.3 172 35 8.7 . 3.6 75 
1.6 5.2 221 36 7.4 3.8 90 
3.0 7.5 140 37 4.8 9.3 74 
4.8 8.1 83 38 4.2 5.2 144 
2.8 6.9 146 39 6.2 3.0 122 
8.6 6.5 70 40 7.9 9.2 63 

Model fitted: 

Grand mean ~ = 60 metres 

Long-range correlation distance P
L 

= 2.39 

Short-range correlation distance P = 0.5 . s 
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i 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18. 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

TABLE 4.3 

Symmetric Irridium Tip Data 

x. y. z. i x. y. z. i x. 
l. l. 1 1 1 1 1 

136.5 69.5 26.0 40 75.0 65.5 1.0 78 101.5 
124.0 69.5 17.5 41 79.5 60.0 2.5 79 105.0 
118.5 69.0 13.5 42 98.0 42.0 10.5 80 113.5 
104.5 70.0 7.5 43 103.0 37.0 17.5 81 117.0 

98.0 69.5 4.5 44 48.0 12.0 26.0 82 132.5 
93.5 70.0 3.5 45 54.0 25.0 14.0 83 130.5 
77 .0 70.5 0.5 46 5.7.5 30.5 10.0 84 70.0 
60.5 69.5 1.0 47 59.5 37.5 7.0 85 89.0 
49.5 70.5 3.0 48 62.5 40.5 5.0 86 89.5 
42.0 70.5 4.5 49 78.0 99.0 5.0 87 52.0 
34.5 70.0 7.5 50 81.5 102.5 7.0 88 51.5 
25.5 72'.0 13.5 51 84.0 110.5 10.5 89 53.5 
17.5 70.5 18.0 52 85.0 115.5 14.5 90 89.0 
2.Q 67.0 27.0 53 90.5 129.5 27.0 91 88.5 

66.0 13.0 23.0 54 53.5 129.0 26.5 92 35.5 
63.5 21.0 14.5 55 55.5 115.0 14.5 93 13.0 
64.0 26.5 11.5 56 56.0 .. 109.0 10.0 94 10.5 . 
69.0 39.5 6.5 57 58.0 102.0 7.0 95 30.5 
70.5 45.5 4.0 58 63.0 99.0 5.0 96 105.0 
70.0 58.5 1.5 59 75.5 40.5 5.0 97 127.5 
70.0 82.5 1.5 60 80.5 37.5 7.0 98 127.5 
70.0 95.0 4.0 61 84.0 31.0 10.0 99 105.5 
70.5 103.0 6.5 62 83.5 2.55 It, .0 100 38.0 
69.5 110.5 12.0 63 88.5 13.0 25.5 101 47.0 
71.5 116.5 16.0 64 10.0 48.5 27.5 102 22.0 
72.0 129.0 25.0 65 24.5 53.5 15.0 103 25.0 

104.5 104.5 16.0 66 27.0 56.0 12.0 104 21.0 
99.5 99.0 10.0 67 35.5 57.5 8.0 105 23.0 
76.5 77.0 2.5 68 39.0 61.5 5.5 106 35.0 
73.5 73.5 1.0 69 101.5 79.0 5.5 107 45.0 
66.5 66.0 1.5 70 104.5 83.5 8.0 108 101.5 
62.5 62.0 2.5 71 113.5 84.5 12.0 109 93.0 
39.5 39.0 11.0 72 116.0 84.5 15.5 110 116.0 
35.0 35.0 17.0 73 8.5 91.5 29.0 III 115.5 
36.5 102.5 17.5 74 24.0 85.0 16.0 112 116.5 
43.5 96.5 10.0 75 27.0 84.5 11.5 113 115.0 
52.0 88.5 5.0 76 36.5 83.0 7.5 114 103.0 
61.0 79.5 2.5 77 40.0 79.5 5.5 115 94.0 
66.5 74.0 1.0 

Model fitted: 

Grand mean ~ = 32.0 

Long-range correlation distance P
L 

= 42.53 

Short-range correlation distance P ='10.0 s . 
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y. Z. 
1 1 

61.5 5.5 
57.0 8.0 
55.5 12.0 
55.0 16.0 
48.0 29.5 
91.0 27.5 
70.0 0.0 
52.0 4.0 
53.5 4.0 
90.0 4.0 
52.5 CO 
50.5 4.0 
89.0 4.0 
90.5 4.0 

124.5 29.0 
104".5 29.5 
32.0 32.5 
15.5 30.0 
16.5 28.5 
36.5 30.0 

106.5 31.0 
126.0 29.5 
114.5 19.5 
113.0 15.0 
102.0 21.0 
94.5 16.5 
35.5 22.5 
43.5 18.5 
25.0 20.0 
26.0 16.0 
27.5 18.0 
29.0 14.0 
39.5 19.5 
47.0 16.5 

103.5 20.0 
94.5 16.5 

116.5 20.0 
113.0 15.0 

I 
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TABLE 4.35 

"Hole" Test Data for Contouring 

i x. y. Z. 
1. 1. 1. 

1 2.9 5.0 100.0 

. 
2 3.1 5.0 10.0 

3 3.5 3.5 100.0 

4 3.7 ° '0 3.7 10.0 

5 5.0 2.9 100.0 

6 5.0 3.1 10.0 

0; 7 6.5 3.5 100.0 

8 6.3 3.7 10.0 

9 6.9 5.0 10.0 

10 7.1 5.0 100.0 

11 6.3 6.3 10.0 

12 6.5 6.5 100.0 

13 5.0 6.9 10.0 

14 5.0 7.1 100.0 

15 3.7 6.3 10.0 

16 3.5 6.5 100.0 
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TABLE 4.4 

One-dimensional Test Data 

Test Data Set 1 

i x. z. 
1. 1. 

1 2.0 1.0 
2 4.0 4.0 
3 6.0 9.0 
4 8.0 10.0 
5 9.0 2.0 
6 13.0 3.0 
7 14.0 11.0 
8 18.0 3.0 

-
Model fitted: 

Grand mean \l = 3 ._?_ (fitted) 

Correlation distance p =-1.0 (fixed) 

Test Data Set 2 

i x. z. 
1. 1. 

1 0.0 15.0 
2 1.0 13.0 
3 2.0 10.0 
4 3.0 6.0 
5 4.0 4.0 
6- 5.0 3.0 
7 6.0 3.0 
8 8.0 2.0 
9 10.0 3.0 

10 12.0 1.0 

Model fitted: 

Grand mean \l = 0.0 (fixed) 

Correlation distance p = 1.17 (fitted) 

79 



10 
o 

20 

o 

KEY: 

(23) r 
- -f-

- -~­
(20) 

I 
-' .-

I 
r 
I 

(27) ;k­"'--
""'-", I 

oS' I 

8 ~ 
I 

,*-
(23)1 

I 

(23) X - Grid node with interpolated value 

20 
() - Given data point with value 

--:15-- - Part of contour at level 25 

30 
o 

FIGURE 4.1: Illustration of contouring errors using a gridded 

algorithm for scatte:::ed data. 

80 

20 o 



• 

1 r 1 I 

1 ,I' : 
- J - -~ t- - - _I - - - - - - - - ,-

I "I "I 

1 - I, - - T - - -*- -' -'. -I-
, 1 'I' 1 
,I 1 1 1 , 

r -.l - L *- - -I - - - '- ~ - -ch _ L -
r-- -, -, -, - - ,-' - -, - t- ~ -, - -

" , r ,'I 1 1 
~-I -" - - ¥-. ~ ~ t- -' 

, " ! 'I - - -1- - - - - - -t- -x-- ., - -
1 1 I : I', 1 

f...- 1:" - - -l- - -,- -..... ,- -I _1_, - *-
- 7 -I " - - I - - - --L - - -1- -

FIGURE 4.2: Use of irregular rectangular grid to fit 

scattered data points exactly 

81 



82 

Undefinab le 
contour segment 

8 9 

"- I 
"-

"- I 

/ 
" ,. 

"-
/ , 

12 I 
X- I / -

/ - - 8 I - -/ -X 
/ 

, 
/ " I 

/ " I X 
11\ 

\ 
/ 

/ \ 

/ \ 
/ 

9 
8 (Contour level = 10) 

-' 

x Data point 

o Reference point 

Contour segment 

Line of search for reference point 

FIGURE 4 :3: Use of reference points for tracking contours 



f 

/ 
/' 

/' 
/' 

Contour 
level /' 

\"","Od 
/' 

/' 
/' 

/' reference point: 

L-~-----------------------------------------------9~t 

FIGURE 4.4: Searching for a reference point between two 

data points 

83 



y 
Line of 
search for 
new point 

Current point 

Tangent 

'\ 

New point 

~------------------------------------~* x 

FIGURE 4.5: Finding a ne" point on the Contour 

84 



85 

lIJ 0 

- N 

0 

\ I 

'\J 
I -.. .,. 

( !D CD 

CJ 

... <:0 
CD 

+ LI") N 
N 

~ + ~ -
(0 

+v 
~ CD 

+N 
N 

I 
I 

I 
" 

(];J 

.. ID 
ID 

I 

, 
-1 
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FIGURE 4.8: Shkapovskii data - Cross-section SW to NE 



88 

w~SHKAPOVSKII (TOP LEFT TO BOT 0 R HT). 

S~0 

.... -
i00 

300 

200 

100 

0o~0------------------~S~----------------~10~--------~------~15 

FIGURE 4.9: Shkapovskii data - Cross-section NW to SE 
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FIGURE 4.10: Original Charnwood contour map (from 

Ordnance Survey) 
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FIGURE 4.11: Trend fitted to Charnwood data, with average points 
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FIGURE 4.19: "Hole" data - GPCP 20x20 grid 
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FIGURE 4.20: "Hole" data - GPCP 100xlOO grid 
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FIGURE 4.24: Test data set 2 fitted by SIMP 



CHAPTER 5 

APPLICATION TO THE OPTIMISATION OF FUNCTIONS 

OF SEVERAL VARIABLES 
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5.1 GENERAL OUTLINE 

As mentioned earlier, the problem of global optimisation of a function 

of several variables has been studied by many people. Dixon" et al (1976) 

make the point that what is perhaps needed is a technique which wi 11 obtain 

a good estimate of the optimum value of the function in a reasonably small 

number of function evaluations, assuming that each function evaluation is 

very expensive and that it is therefore worthwhile undertaking a 

considerable amount of calculation bet"een function evaluations if this 

leads to a reduction in the number required. A method aimed at meeting 

this objective has been developed using the concept of stochastic inter-

polation introduced earlier in this work. 

Conventional optimisation techniques normally require a reasonable 

number of function evaluations to reach a successful conclusion. This is 

especially the case if a method depending on the computation of the 

derivatives of the function in several dimensions is to be used. Ideally 

we want to be able to use the minimum number of function evaluations to 

give the maximum information about the overall form of the function. We 

should also like to be able to estimate the derivatives of the function 

at a point based on the existing known values at other points. 

Given an objective function F(), whose derivative is not easily 

computable, and a "region of interest" R within which the search for an 

optimum value is to be conducted, the outline algorithm is as follows: 

1. Carry out N function"evaluations at a set of initial points 

{x
l

,x
2

' ••• ,x
N

} scattered throughout R. 

2. Fit a stochastic interpolating function f() to this set of 
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function values {zl.z2 •..•• zNl. The function f() will have 

derivatives which are easily computable. using equation (2.35). 

3. Find the optimum value in the initial set and optimise f() 

starting from this point by means of a conventional optimisation 

technique using the derivatives .of f(). 

4. Evaluate the true function value F(~*) at the optimum point x* 

of the interpolating function F() found in the previoue. step. and 

compare this with f(~*). If they are not sufficiently close. 

refit the interpolating function using the new point and repeat 

step 3 above. 

5. If they are sufficiently _close. either terminate with this as 
.. -' 

the estimated optimum value. or proceed to refine the solution 

locally using a conventional technique on F(). 

Several interesting problems must be dealt with before this simple 

outline scheme can be put into practice. The distribution of the initial 

set of N function· evaluations in such a way as to gain the maximum 

information about FO in the region R is not a trivial problem. and will 

be discussed in the next section. 

Fitting the stochastic interpolating function f() to the N data 

points can be carried out· using the concept of the two stage model 

developed in the previous chapter. possibly extended to more than tHO 

dimensions. However. two changes seemed to be appropriate in this case. 

Firstly. since the data points will be chosen to be as widely scattered 

as·possible throughout R. it does not seem sensible to generate the 

average points ',hich define the long-range trend by a clustering algorithm 
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as described previously. Instead, the number of average poi~ts n
A 

to be 

used is defined in advance and the locations of these points are generated 

using ~he same algorithm which generates the positions of the initial N 

data points. Values of F() are not computed at these points - instead 

weighted average values are calculated from nearby data points, using as 

weighting function the auto-correlation function g(). 

A z. = 
J 

N 
L z.g(r .. ) 

i=l 1 1J 

N 
L g(r .. ) 

i=l 1J 

(5.1) 

where r .. is the distance from average point J to initial data point i. 
1J 

The long-range trend is fitted to chese averaged values, giving 

rise to the parameter PL, the long-range correlation distance. Valu~s 

of the trend are computed at each of the ini tial data points, and 

subtracted from the knotm function values there, giving a set of residual 

values. The short-range residual function is fitted to these, with a 

parameter P , the short-range correlation distance. Thus the interpolating 
s 

function f (~) at any point is the sum of the trend function (based on the 

n
A 

average points) and the residual function (based on the N residual 

values at the original data points). 

This.technique for fitting trend and residual functions to the data 

is in most essentials similar to that described in Chapter 4, and suffers 

from the same limitations, especially in the matter of disentangling 

trend from residual. The "smoothing" to obtain the average values is 

carried out using the auto-correlation function, which depends on the 

unknown correlation distance p. This difficulty is resolved in SIMP 

by setting the value of p equal to half the "average inter-point dis tance", 

d, a formula for "hich is given as equation 5.20. Some simulation 

experiments have been carried out to validate this estimation procedure 



107 

(see Appendix B) and the results seem to indicate that the overall st~ucture 

of the data can be reproduced. even if the actual estimates of the correlation 

distances are low. 

The interpolating function f 0 is optimised using a "variable 

metric" algorithm. as described in Zoutendijk (1976) pp.370f. This 

requirez the first derivatives of f(). which in practice are the sums 

of the derivatives of the trend and the residual functions. 

Having reached a local opti~u~ of f(). at a point ~* say. the true 

function value F(~*) is evaluated here and included in the set of known 

data points. N is incremented by 1. ~ is set equal to ~*. and zN become 

F (i*) . tf IF (~*) - f (~*) I < "'. a given to lerance. the procedure 

terminates. Otherwise the interpolating function is refitted including 

the new point. and optimisation of fO begins again starting at the 

current best point in the data set. 

An addi donal feature which is simple to include is an es tirnate of 

the integral of F() over the region R. This is discussed in a later 

section. 



5.2 CONVERGENCE OF THE OPTlNISATlON ALGORITHM AND RELATED QUESTIONS 

The optimisation algorithm outlined previously is based on the 

.concept of iterative optimisation of an interpolating function, a new 

data point being evaluated each time, until ultimate agreement is 

reached between the (optimum) interpolated value and the true function 

value. This. leads to three related questions being raised: 

1. Is this algorithm guaranteed to converge to a result in a 

finite number of iterations? 

2. Does the introduction of a new data point in the very near 

neighbourhood of an existing data point ·always lead to 

improved accuracy in th~ interpolating function in that _ ... 
neighbourhood? 

3. ~~at is the behaviour of the gradient of the interpolating 

function as data points become very close to each other, in 

particular when· the method converges on an optimum value? 

To answer these questions, let us assume that we have a known data 

point (Point 1) and another location (Point 3) where the function value 

is unknoun, and let us suppose that the distance h
13 

between these two 

points is sufficiently small so that the correlation between the values 

at the two points 

108 

(5.2) 

may be closely enough approximated by 

2 
h13 2 
2· as 1 -

where 2 _g" (0) • as = 

(5.3) 
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Now the variance of the unkno~m value at Point 3 given the knmm 

value at Point 1 is 

I 2 2 vadz
3 

Zl] ; (1 (1 - g (h
l3

» 
2 2 2 4 = 0 Os h l3 + O(h13) (5.4) 

This result enables us to examine the question of convergence. 

The optimisation algorithm will terminate when a point x* is found 

which is a local optimum point of the interpolating function and where 

IF(x*) - f(x*) I < E - - (5.5) 

For a given E value and a certain probabi li ty level a, "e may 

define a distance 15 so that 

for points within a distance 15 of a known data point. For small 6, 

we know from (5.4) that the variance of the interpolating function is 

approximated closely by 020~Q2, and so 

p£lF(x) - f(x) I ~ El; 2(1 - ~(~» - - ocr u 
(5.6) 

S 

where ~() is the Standard Normal Integral Function. 

Thus 15 is chosen so that 

~(_E_) ; 1(1 + a) • 
00 15 2 

(5.7) 
S 

Therefore, if the new point x* is wi thin a dis tance 15 of an 

existing data point, the probability is at least Cl. that the termination 

criterion will be met. The probability ~s zero that an infinite number 

of data'points will be generated in a finite region without satisfying 

the termination criterion. 



Let us now consider the situation when two known data points are 

closely adjacent. Introduce a second data point (Point 2) at a distance 

h12 from Point 1 and a distance h23 from Point 3 (see Figure 5.1). We 

should like to be able to show that, for suitably small distances, 

(5.8) 

Now; if X and! are two vectors which are jointly multivariate Normal, 

it can be seen that (e.g. Whittle, 1963, p.46-47) 

= (5.9) 

where = covariance matrix for X 

= cross-covariance matrix between X and Y 

covariance matrix for Y 
.. .- -

'-1 
Since Syy and hence 5yy are non-negative definite, we can see that 

(5.10) 

So if we sct ! equal to the residual error in Z3 predicted from ~, 

and Y to Z2' the relationship (5.8) follows immediately. 

Thus, for an interpolating function based on realisations of a regular 

stochastic process with continuous derivatives up to at least second order, 

110 

the addition of a new data point \'lithin a close distance of an existing point 

will rcduce the variance of the interpolation'errors within a certain region. 

In terms of modelling a real function F(), ,let us assume that F() has 

continuous derivatives up to at least second order, so that wi thin some 

small region, , (F I (~)) 2 < some fil1i te Hmi t. 

We may assume that, within the given small region, F() is a realisation 
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of a stochastic process whose gradient has finite variance, i.e. a regular 

process with continuous derivatives up to at least second order. For such 

functions, therefore, as the number of data used to interpolate them 

increases, ultimately the residual errors in the interpolation will tend 

to decrease everywhere. 

We shall now turn our attention to the question of the behaviour 

of the gradient of the interpolating function in the near neighbourhood 

of two adjacent data ~oints. Having pivoted on Point 1 and Point 2, the 

estimated value at the unknown Point 3 is 

f(~3) = 11 -Ylg(h
13

) - y
2

g(h
23

) (5.11) 

z - g(h12)z2 
where Yl = 1 

2 
1 - g (h ) 

12 

and zl and z2 are the values (less the mean 11) at the two known points. 

Therefore, 

(5.12) 

This gives a general ·form of the slope of the interpolating 

function in the near neighbourhood of these two data points. We shall 

examine two special cases: 

1. Point 3 has its ~ co-ordinate in the interval betwe~n the 

~ co-ordinates of Points 1 and 2. Let us further assume it 

is midway between the points, so that 

(5.13 ) 

Therefore 

= (5.14 ) 
1 -



'.,. 

So 
a 

- f(x' a"k -3' 
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• (5.15 ) 

If Point 3 actually lies on the straight line joining Points 

1 and 2, and the difference between the two points is in the 

~ dimension only, then 

2 

c' 
. a 

(1 
h13 2 

= ah13 
- -CJ ) 

2 s 

2 h12 Z 
= h13CJ s = -- CJ 

2 s 
(5.16) 

And then 
(5.17 ) 

In this case, we have shown the gradient of the interpolating 

function mi~,ay between the two points to be equal to the chord 

slope joining the points, which is an extremely reasonable 

result. 

2. If Point 3 is Hetl beyond Points 1 and 2 in the"k direction, 

so that 

Then 

= 

cl(Zl + zZ)(l - g(h13» 
2 Z 

CJ
s

h
12 

, Z Z 
clCz

l 
+ z2)(!h12CJ

s
) 

2 Z 
CJ

s
h

12 

(5.18 ) 

(5.19 ) 

This again is quite reasonable, since it implies that th~ 

interpolating function slope is equal to the slope of the 

auto-correlation function times the average of the deviations 

from the mean at the two data points. 



5.3 DISTRIBlTrION OF INITIAL POINTS 

This is an important part of the algorithm, and may well repay' 

further study. Even if the region of interest R is of simple form, 

it is by no means obvious how to arrange N points so as to survey the 

m-dimensional region as efficiently as possible, ~speciallY if N<2m. 

Intuitively, the points should be spaced apart as far as possible 

from one another, without lying on the boundaries of R. They should 

also be spread evenly throughout R so as to maximise the information 
,. 

gained about the form of FO. For this reason scattering points 

randomly through R is not recommended, since it leads to an uneven 

distribution and parts of R which are not close to a data point. It 
., .... '" 

also means that the results cannot be reproduced exactly. 

The approach which has been adopted is to set up the positions of 

the N data points using an 'ad hoc' technique, and then adjust the 

positions to minimise a 'repulsive' function which .Till tend to spread 

the points more evenly through R. 

We shall assume that R is of simple rectangular form: ~ER if 

~~~~bk' k=l, ••• ,m. With this assumption, two 'ad hoc' methods for 

initialising the points have been developed. 

Method 1 

This is a recursive algorithm. At any stage, we have N' points 

to be positioned in a region R'. If N' is odd, place one point in the 

centre of R'. Divide R' into t.TO equal regions along its longest 

dimension, and position half the remaining points in each such region 

using the same algorithm. 

113 
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Method 2 

u Define for each dimension k a "high value" "I< = ab
k 
+(1-«),\, and 

"a "1m. value" { = aak+(l-a)b
k

, where a is taken to be 0.75, for example. 

The position of each point may be represented by a word of m bits, .,here 

L u 
a 0 in position k represents "I< and a I represents "1<' Such "words" are 

permuted systematically so as to produce a set of points which will 

explore reasonably well the.total region R. 

Method I above works quite well for N~2m, but otherwise gi,'es rise 

to sets of points lying in a subspace of R. Method 2 is preferred in 

this case. ~lliichever is used, the distribution of points is unlikely co 

be i'fc!al. The locations are updated to minimise a "repulsive" function 

<lhich aims to spread them as i.,i"dely as possible throughout R. 

The basis of the repulsive function was taken to be the same as 

the correlation function gO, as given "in equation (2.37). Intuitively, 

this corresponds to positioning the initial set of data points so as to 

minimise the total correlation between them. Hm,ever, at this stage we 

do not know the value of P, the correlation distance, to be used. 

Therefore, let us define the average distance betlieen the points, d, by 

dividing up the total volume of R between the N points and finding the 

dimensions of the equivalent hypercube for each point. 

i.e. (5.20) 

Good results are obtained if we set P = id. 

As well as repelling the points from one another, we also need to 

repel them from the boundaries of R. Otherwise they are obviously 



giving information about the space beyond R, which is not required. 

The way in which this is achieved is to imagine that each point has 

an "image" in each of the 2m boundaries of R, and that it is also 

repelled from these image points. Thus the total repulsive function 

to be minimised is 

N 
H = L 

i=l 

where 

N 

~ 
j=l 

+ 

2 
d .. = 

1.J 

exp 

N 

~ 
i=l 

2 2 N X"" 
- 2 ! 2 -d .. /2p + ~ I c>'1' -(x. -~) / P 1.J. - i=l k=l 1.k ~ 

x", , 2 2 
~ exp -(xik-bk) I!p (5.21 ) 

k=l 

(See Figure 5.2). 

This function is adjusted by moving one point at a time, 1n one 

dimension o:lly (based on the first derivatives of H). This terminates 

when the changes in successive values of H are less than a preset 

tolerance. Figure 5.3 shows an example of positioning 20 points in a 

square two-dimensional region of interest. 
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5.4 ANISOTROPIC CORRELATION 

In all the work carried out so far, we have assumed that the auto-

correlation function between two points x. and x. is of the form 
""""1 -J 

g(E) 

",here 
2 

d •• 
1J 

2 2 
= exp(-d .. /2p ) 

1J 

= 
m 

L (x· k -
k=l 1 

(5.22) 

It is very simple to extend this definition to the case "here the 

correlation is not isotropic: 
,. 

Let 2 
d .. = 

1J 

m 

L 
k=l 

(5.23) 

where the m coefficients k=l, ... ,m are the "anisotropy factors" 

for the model. 

With this addition, everything carries through as before, "ith minor 

changes. For example, the derivatives of the interpolation function become 

N 

L 
i=l 

a -, - f(x) = 
o~ -

y.C/..g'(r.) 
1 k 1. 

N 
= L 

i=l 

where (5.2 l ,) 

What we .are essentially doing here is to rescale the coordinates x 

to produce an isotropic model. Matern (1960, p.17) shows that exp(-~'A~) 

is a suitable auto-correlation function where A is an orthonormal matrix, 

and this corresponds to a more general case wi th the directions of ani so-

tropy not aligned along the coordinate axes. 

In geostatistics (see David, 1977, p.134 and Journel & Huijbregts, 
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1978; p .177-183) there is a distinction made between "geometrical" or 

"affine" anisotropy, ,·,hich is the kind of model outlined above in which 

different scaling factors are applied in different directions, and "zonal" 

or '~stratified" anisotropy, in which there exist strata or zones in space 

with different properties. We shall not consider the latter case at the 

present time. 

The main problem that remains is that of estimating the anisotropy 

• factors a k , k=l, •••• m. from the N given data points. Two methods are 

outlined belm.,. but they are by no means ideal or foolproof. More work 

needs to be done on this problem. 

METHOD I 

1. Take a set of pairs of n~ighbouring points. wi th say the l', th 

such pair being points i and j-. 

2. Estimate the correlation c
t 

between the values at the two 

points using the method outlined on page 25. 

3. Form the anisotropic auto-correlation function, 

c
i 

= exp 

where 

Taking logs and setting Yt = -log ct 

y = 
t 

4. If we use L such pairs of 'points, then we may estimate the 

(5.25) 

(5. 26) 

. coefficients a
k

/2p2 by multiple linear regression applied to 

n 1 L d delt on the L values of the m the L values y t' ",= , ••• , , epen 1 

variables Ax2 , t=l, .•.• L. k=l, •..• m. Obviously our estimates 
tk 

of the anisotropy factors are therefore conditioned by the 



118 

value of p, "hich is ae this stage u~nown, but their ratios may 

be estimated and they may be .. ~ormalised to give a mean value of 

1.0. 

METHOD II 

1. For each dimension k, find pairs of points i and j such that the 

separation bet\\,1'cen them is mainly in the ~-direction, i.e., 

. 
d .. 

1.J 
f: Alxik - xjkl 

where A can be taken to be, for example, 1.5. (This is similar 

to the idea of "angle classes" used ·in geostatistics - see Journel 

& Huijbregts, 1978, p.2ll). 

2. For the ith pair, compute ti ; Iz.-z.l/lx.k-x.kl. 
1. J 1. J 

3. Find the median, b(k), ove~ all such pairs, and repeat fron step 

1 for all values of k from 1 to m. 

~ 

4. Assume for each k that the median "gradient" lI(k) is approximately 

proportional to ~, the linear anisotropy factor. Hence the 

ratios of the anisotropy factors may be estimated. 

Step 4 above can be justified from the "ork of Ha"kins & Cressie (1981). 

They define Y ;/lz.-z.1 and sho" that a reasonable estimator of the 
1. J 

4 variogram is proportional to the median of Y
i

. The variogram is proportional 

1 () 1 ( 2/2 2) . f h d' . 11' h kth d' . to -g r ; -exp -akr p 1. t e l.stance 1.S a ln t e 1.menS1.on. 

Thus, for reasonably small r, "e may say approximately that Y4 is 

2 
proportional to akr • 

Both these methods have been tested on simulated anisotropic data -

the results are presented in Appendix B. In both cases the anisotropy of 

the data is clearly underestimated, although it appears that Method II is 

better than Method I. It seems to be possible to detect the presence of 
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anisotropy, without necessarily obtaining a very precise estimate of its 

value. It is therefore important, in the optimisation application, to 

ensure that the variables used are scaled beforehand so as to reduce, 

as far as possible, the effect of anisotropy. 

--.-
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5.5 ESTIMATION OF THE FUNCTION INTEGRAL 

It is a simple matter to calculate the integral of the interpolating 

function f() over the region R, once it has been fitted to the data points .. 

This may be of some value in estimating the iritegra1 of the true function 

FO, and can be produced as a "by-product" from the optimisation process. 

then 

If the interpolating function is 

N 
L y.c.(x) + 1.l 

.11. 1. -
1.= 

I J y.c.(x)dx + 1.l 
i=l R 1. 1. - -

With the assumed form of covariance function, this becomes 

N 

L 
i=l 

y. 
1. 

--

(5.27) 

(5.28) 

Now if R is a rectangular region, bounded between limits ~ and bk 

in the kth dimension, then 

JRexp [-Jlnk (xik 

m 

=TT (5.29) 
k=l 

And 

(5.30 ) 

where ~() is the Standard Normal Integral function. 

In practice, the full integral is the sum of the integrals of the 

long-range trend and the short-range residual. 
/ 

(See Matern, 1960, p.20 

& Matheron, 1971, p.59). 
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5.6 RESULTS WITH TEST FUNCTIONS 

Tests of this optimisation technique have been carried out on a 

variety of functions, most of which have been used by other workers to 

test global optimisation algorithms. None of them is in fact "expensive" 

to compute, but it is hoped that good results ~lith these test functions 

will 'show promise for general applications. 

The functions and the results obtained are described together, and 

then the civerall results are summarised. 

1. Simple Test Function (2d) 

This merely illustrates the use of the interpolating function for both 

optimisation and integration. 

(5.31 ) 

The region R is 0~xl~~/2; 0~x2~3. 

This function has a maximum value of 0.3424 at (~/3,1) and the total 

integral over R is o. 

10 initial data points were generated, and a stochastic interpolating 

function was fitted with no trend or anisotropy factors assumed. Figure 

5.4 illustrates how the algorithm conducted its search from the current 

highest point. After four ,additional function evaluations a point was 

found at which real and interpolated function values agreed to within a 

specified tolerance (10-
4
), giving an estimated maximum value of 0.341.7 at 

(1.0717, 0.9621). The estimated integral was -0.0101. 
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2. Branin's Reos (2d) 

This function is described in de Biase and Frontini (1978). 

5.1 2 - -- x + 
4112 1 

5 2 
11 xl - 6) + 8.75c05 xl + 10. (5.32) 

The region R is -5~xl~10; C~x2~15 

This function has three global minima with values 1.25 within R, and the 

3 
total integral over R is 12.2~8xlO • 

20 initial data points were generated, and anisotropy factors 

were estimated as (0.7658, 1.2342). The trend function was fitted 

using 12 average points. Figure 5.5 is a contour map of the interpolating 

function fitted to the 20 data points - the approximate locations of the 

three global minima are apparent': Figure 5.6 ShOHS the average points 

and the trend function fitted. Figures 5.7 and 5.S are cross-sections 

of the interpolating function along the diagonals of R. 

The lowes t of the 20 ini tial function values was 2.7060, and after 

10 extra function evaluations the optimisation algorithm terminated "ith 

a value of 1.2754 at (-3.1403, 12.4313). This is close to one of the 

global minima at (-rr, 12.275). Figure 5.9. shows the region close to the 

minimum and the path traced by the algorith~ during optimisation. Figure 

5.10 is a plot of current function value versus number of evaluations, 

and shows how the algorithm converges. The estimated integral was 11.3I,2xl03• 

3. Goldstein and Price's Function (2d) 

This function is described in de Biase and Frontini (1.97S). 

2 2 2,2 
F3 (xl ,x2) = [l+(xl +x2+1) (19-14xl+3xl-14x2+6xlx2+3x2' ] 

[30+(2x -3x )2(lS-32x +12x
2
+48x "36x x +27Y

2
)] (5.33) 1 2 1 1 2 1 2 '2 . 



The region R is -2~x.~2, i=1,2. This function has a global minimum >1ith 
1. 

value 3.0 at (0,-1). 

40 initial points were generated, and anisotropy factors were 

estimated as (0.7662,1.2338). The trend was fitted with 20 aVerage points 

and Figures 5 ~1 and 5 ~2 show contour maps of the full interpolating 

function· and the trend function, respectively. Figures 5.13 and 5.14 are 
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cross-sections along the diagonals of R. The low.est initial function value 

• was 547.19, and after 13 extra function evaluations the algorithm termi~ated 

with a value of 6.226 at (-0.0152,-0.9614). Figure 5.15 illustrates the 

progress· of the optimisatio~ (note the bad guess at value number 50). 

4. Rosenbrock' s Banana Valley Fun·ction (2d) 

This function is commonly used to test hill-climbing optimisation 

techniques, as it involves searching along the bottom of a steep curved 

valley. 

The region R was chosen as -5~x.~5, i=1,2. 
1. 

(1,1) with a value of O. 

The minimum point is at 

20 points were generated initially, with the trend fitted to 10 

average points. Figure 5.16 shows a contour map of the interpolating 

(5.34) 

function. Figure 5.17 is a cross-section along the tangent to the valley 

at (1,1). The ini tial lo,Test point was 49.975, and after an extra 8 

function evaluations a value of 0.0219 was reached at (1.0227,1.0312). 

Figure 5.18 illustrates the progress of the algorithm. 
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5 •. Shekel Function (4d) 

de Biase and Frontini (1978) describe this family of test functions. 

A 4-variable example was chosen: 

7 
1 

F 5 (x l ,x2 ,x3 ,x4)· = L (5.35 ) 4 i=1 L (~ 2 - a.
k

) +c. 
k=l 1. l. 

with the following constants: 

i c .. a ik 1.. 

1 0.1 0.7, 0.7, 0.5, 0.1 

2 0.2 0.3, 0.3, 0.8, 0.2 

3 0.3 0.8, 0.6, 0.8, 0.6 

4 0.4 0.4, 0.2, 0.9, 0.9 

5 0.5 0.1, 0.6, 0.8, 0.1 

6 0.6 0.8, 0.2, 0.7, 0.7 

7 0.7 0.4, 0.5, 0.1, 0.9 

The region R was taken as: O~~~l, k=1, ••. ,4 • 

. 20 initial points "ere generated, and 10 average points were used to 

fit the trend. The highest initial value "as 11.6759, and after an extra 

17 function evaluations a value of 16.525 was reached. 

Contour maps were generated on two orthogonal planes. Figure 5.19 

shows a map in the x
l
,x

2 
plane with x

3
=0.5 and x

4
=0.l, while Figure 5.20 

shows a map in the x
3

,x
4 

plane with x
l
=0.7 and x

2
=0.7. In both cases the 

contour maps were generated after optimisation and the path taken by the 

algorithm, projected on to the appropriate plane,· has been drawn. Figure 

5.21 illustrates the progress of the algorithm in terms of function value 

versus number of evaluations. Also shown is the performance of the NAG 

routine E04CGF, starting from a pair of randomly chosen initial points. 
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6. Price' s Function (9d) 

This function is described in Price (19~7), and is particulerly 

difficult to optimise because of the presence of exponential terws. 

where 

and 

and the constants gik are given 

0.485 

0.369 

5.2095 

23.3037 

28.5132 

4 2 I (ak k=l 

by the matrix: 

0.752 0.869 

1.254 0.703 

10.0677 22.9274 

101.779 111.461 

111.8467 134.3884 

The region R was taken to be -3~~~3, k=1 ••.•• 9. 

0.982 

1.455 

20.2153 

191.267 

211.4823 

The logarithm of the function itself·was modelled and optimised. 
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(5.36 ) 

40 points were generated initially and 20 average points were used to fit 

the trend. The lowest ini tial value was 10.4759 (actual function value 

35450.76), and after 13 extra function evaluations a value of 5.3768 

(actual function value 216.33) was reached. Figure 5.22 illustrates the 

progress of the optimisation a1gori thrn. For comparison purposes, the NAG 

routine E04CGF was started from a number of randomly chosen starting points. 

Also shown on Figure 5.22 is .the progress of this routine starting from a 

"good" point and a I1bad" point. 
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Summary of Results 

Table 5.1 summarises the parameters of the interpolating functions 

fitted to the six test functions. To compare efficiency of optimisation 

with a standard technique (in terms of number of function evaluations), 

each of these functions has also been optimised ustng the NAG library 

routine E04CGF, starting from the best of the N initial points. NE is 

the number of extra function ~valuations required by the experimental 

technique to reach a conclusion, and NN is the number of function 

evaluations required to reach the same level of the objective function by 

E04CGF. These results are tabulated in Table 5.2. 

Discussion of the total computer time used by the optimisation 

algorithm is made difficult by the" fact that some means must be found 

to compare algorithms running on different machines in different languages. 

" Therefore, a suggestion of Dixon & Szego (1978, p.2-3) has been adopted, 

and a "s tandard" time computed against which other times may be' computed. 

The results for our test functions may also be compared with those given 

in Dixon & Szeg~ (1978), p.9-l0. Table 5.3 contains these times, both Ln 

mill units and standardised, for both SI~~ and the NAG routine E04CGF 

(the latter's time relating only to the optimisation stage starting from 

the best point of SI~~'s initial N trials, while the former's time 

includes the initial N trials). 

The optimisation algorithm using the stochastic interpolating function 

concept appears to be effective, at least in terms of total function 

evaluations,. It seems to give better results than standard techniques in 

higher dimensions, where the overheads involved in estimating derivatives 

are greater. The stochastic interpolating function gets round this 



problem by estimating the derivatives from the existing data points, 

rather than requiring further function evaluations. 

This work has concerned itself mainly with reaching a true function 

value which is consistent «ith an optimum value of the interpolating 

function. This does not guarantee, of course, that it is in fact an 

optimum value of the true function. Tt<o possibilities exist for 

verifying the location of a tr.ue optimum value: 

a) Centre a new, smaller region of interest R' around the point 

found by the algorithm, and generate a new set of points spread 

throughout R', including any of the existing data points which 

lie inside R'. Refit the interpolating function inside the 

smaller region and repe~ th'e optimisation algorithm. 

b) Use a conventional local optimisation algorithm on the true 

function, starting from the estimated location of the optimum 

point. 
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TABLE 5.1 

Summary of Interpolating Functions Fitted to Test Data 

FUNCTION m N nA Jl. PL Ps 0 oR 

1. Simple 2 10 - -0.2526 - 1.0 - -
Test: 

2. Branin's 2 20 12 31.593 3.0415 1.699 46.94 30.85 
RCOS 

3. Go1dstein 2 40 20 10.22 10 0.527 0.276 17.693 77.18 
& Price 5 

xI04 XlO 

4. Banana 2 20 10 5472.7 1.336 0.356 13.59 8.14 
Valley X103 x10 3 

5. Shekel 4 20 10 8.633 0.364 0.251 1.605 1.079 

6. Price 9 40 20 . 12.994 2.830 0.429 0.925 0.838 
(Log) 

m - Number of variables' 

N Number of initial points generated 

nA - Number of average points for trend 

Jl Grand mean fitted 

PL 
. Correlation distance for trend 

P Correlation distance for residual 
s 

° Standard deviation of initial data 

oR Standard deviation of residua1s 



1. 

2. 

3. 

4. 

5. 

6. 

TABLE 5.2 

Results of Optimisation of Test Functions 

FUNCTION m N f1 fF NE NN 

Simple 2 10 0.3296 03417 4 -
Test 

Branin's 2 20 2.7060 1.2754 10 14 
RCOS 

,. 

Co1dstein 2 40 547.19 6.266 13 11 
& Price 

Banana 
Valley 

Shekel 

Price 
(Log) 

2 20· 49.975 0.0219 8 9 

4 20 11.676 16.525 17 89 

9 40 10.476 5.377 14 76 

m - Number of variables 

N Number of initial points generated 

f1 Best function value from initial points 

fF Best function value at end of algorithm 

NE Number of extra function evaluations 

to reach f i' 

NN Number of function evaluations by E04CGF 

to reach f-,-
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1. 

2. 

3. 

4. 

5. 

6. 
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TABLE 5.3 

Timing of Optimisation Results 

FUNCTION SUlP E04CGF 

- MILL UNITS STANDARDISED HILL UNITS 

STANDARD 21 1.0 58 
FUNCTION 

Branin's 208 10 3 
RCOS 

Goldstein 668 32 4 
& Price 

Banana 108 5 29 
Valley 

.-
Shekel 384 18 12 

Price 1500 71 36 
(log) 

(Standard function 

paPticular Shekel 

consists of 1000 evaluations of a 
. . " funct~on - see D~xon & Szego, 1978, 

STANDARDISED 

1.0 

0.05 

0.07 

0.5 

0.2 

0.6 

p.2-3). 
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FIGURE 5.1: Configuration of two known data points 

and one unknown point in close proximity 
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FIGURE 5.3: Example of distribution of initial points 
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CHAPTER 6 

A MODEL FOR THE OCCURRENCE OF OILFIELDS 

, .. 
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6.1 DESCRIPTION OF THE BASIC MODEL 

Consider an oil province, or region of interest, which has total area 

n. Let Z(~) be a stationary, homogeneous and isotropic random process 

defined over the region. We shall suppose that an oilfield is a connected 

subset of the region of interest over which Z(~)~u, some fixed limit. 

Conceptually, Z(~) may be assumed to represent "potential oil reserves per 

unit area", and these become cl:assified as actual reserves once they exceed 

a given threshold. (See Figure 6.1). 

Let f () be the probability density function of Z(~) at any fixed z 

point, and 

R(z) c J: fz(v) dv = 1 - F(z) . 
z ....... -

(6.1) 

For this basic model, the following random variables will be of 

interest: 

1. The number of oilfields (N) contained within the region n. 

2. The area (A) of a "randomly selected" oilfield. 

3. The volume (V) of a "randomly selected" oilfield. 
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6.2 EXPECTATIONS OF OILFIELD VARIABLES 

To generate even approximate formulae for the expectations of oilfield 

random variables we shall need to consider carefully what we mean by a 

"randomly selected" oilfield. We shall suppose that the N oilfields in fl 

have areas AI""'~' and that we "randomly select" an oilfield by generating 

a uniform random integer between 1 and N. 

If we repeat this experiment a sufficiently large number of times, 

the "average area" so obtained will tend to the value LA. IN. It is thus 
1 

tempting to relate this to the "expected area" of an oilfield in some "ay. 

R.E. Miles (1974, p.202ff) defines an "ergodic distribution" - in the same 

way, if we let fl increase in area, we may define the "ergodic expectation" 
_ .. --

E[A] = (6.2) 

Define A(fl) to be the total area of the region fl, and then 

LA. 
1 

N 

lim LA./A(rI.) 
. 1. (6.3) lim N/A(rI.) 

Define T to be the area inside fl above the level Z(~) = a per unit 

(gross) area of fl, and n to be the number of oilfields per unit (gross) 

area of fl. Then using multidimensional ergodic theorems (see e.g. Wiener, 

1939, p.1-18 and Adler, 1981, p.142ff) we can see that 

and 

LA. lim __ 1._ 

2 A(fl) 
fl -+R 

lim _N_ 
2 A(fl) 

fl -+ R 

E[T] 

E [n] 

(6.4) 

(6.5) 

Thus the "ergodic expectation" of the area of a "randomly selected" 



oilfield is given by 

E[AJ = 
E [T] . 
E [n] 
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(6.6) 

To derive an expression for E [T] '''~ must define an indicator variable 

x<.~) such that 

X(x) = 0 if Z(x)<u 

= 1 if Z(~hu 

Assume that n is a unit square, whence 

E[T] = = dx = R(u) 

(6.7) 

To obtain an expression for E[n] is not so straightforward. 

Adler (1981, p.70ff) has shown that the extension to two or more dimensions 

of the theory of "level-crossings" in one dimension is non-trivial. He 

defines the "IG characteristic" r of an excursion set in the more general 

case, and shows that in t'"o dimensions the expectation of r for a zero-

mean, homogeneous, Gaussian process is (p.llS): 

2 2 
(2 2)-3/2 2 -u /20 = ~cr a u e 

w 
E [r] 

where 0- 2 is the variance of the gradient of Z(~) = _0-2g" (0) • 
w 

(6, S) 

It appears from Adler's point set representation for r (see p.78ff) 

that this will give a good approximation to n, the number of oilfields 

(excursion sets) in a unit area. The main difference will arise when sets 

with "holes" appear (see Figure p.76). It would thus seem reasonable to 

take as an approximation: 

E[n]: (2n02)-3/2a2 
w 

from which. it follows that 

E[A] 

2 2 
-u /20 

u e (G.9) 

(6.10) 
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As well as areas. and numbers of oilfields., we are also interested in 

the reserves of oil contained in them. To include this in the stochastic 

model requires that we give a physical interpretation to the variable Z(x). 

We shall do this by describing Z(~) as the "potential oil reserves per unit 

area", and assuming that "potential reserves" only b.ecome "actual reserves" 

once they exceed a certain threshold u. That is to say, the reserves of 

oil per unit area = Z(~ if Z(~~u, and = 0 if Z(~<u. 

As before, we are interested in E [V], the "average reserves" of an 

oilfield "randomly selected" from ,~he N oilfields in fl with reserves VI'" .VN• 

Once again we shall define this in terms of the "ergodic expectation" so that 

E[V] = 
LV. 

1 

N 
(6.11) 

If we define Y to be the total reserves inside fl per unit (gross) 

area, then 
LV. lim LV. /A(fl) 

Hm 1 = 1 

fl ->R2 
N Hm N/A(fl) 

= ~ E[n]· 
(6.12) 

To derive an expression for E[Y), assume that n is a unit square, 

and define a variable W(x) such that: 

W(~ = Z(~) if Z(~)~u 

= 0 if Z(~<u 

Then E[Y] = Et W(~)d~ = In E[W(~»)d~ 

= E[W(~)Ifl dx = E [W(::») (6.13) 

Now E[W(~») = (z f (z)dz 
z 

(6.14) 

So in the Normal case: 

.... ' 
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o· 2 2 
E[Y] -u /20 

= e rz; (6.15) 

and E[V] = E[Y]/E[n] 

21T0 4 
= --2 . '.(6.16) 

uo 
w 

Thus we have derived approximate formulae for the expected numbers, 

area and volumes of oilfields in a certain senSe. Tne question arises as 

to the accuracy of these approximations. 'Adler (1981, p • 136ff) shows that 

X . 
as the level u increases, the excursion sets tend to become conveEBe figures 

with no holes - thus for large u equation (6.9) will be a good approximation. 

To investigate the accuracy of the approximation over a range of values of 

u:(or of £=u/o), some simulation experiments were carried out, in particular 

to validate equation (6.10). 

It was felt to be relatively simple to simulate a closed contour Z(~)=u 

and compute the area within it, whereas the validation of (6.9) or (6.16) 

would have required an order of magnitude more work •. The technique used 

was to choose a point in space, specify that Z(~=u at that point, and track 

the contour from there back to the starting point using a triangular grid 

of simulated values of the correlated variable Z(~). A number of realisations 

of closed contours were generated ~n this way, and the results as regards 

their areas are shown in Appendix B. The results of these simulations are 

in reasonably good agreement with equation (6.10), even for quite small 

values of £ (=u/o). 
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6.3 VARIABLE THRESHOLD 

A useful generalisation of the model is to assume that the threshold 

level u is not a constant but varies from point to point of the area of 

interest. This corresponds to the intuitive concept that oilfields tend to 

be found in clusters, and some areas are more likely than others to hold 

oil. This is essentially equivalent to assuming that Z(~) is in fact 

composed of two components: a ,slowly-varying trend plus a residual, while 

the threshold u remains a constant. 

We shall consider u to be a stationary random process, "ith a much 

longer-range correlation structure than Z(~) (see Figure 6.2). Let us 

2 
define £: = u/o, Cl's =, _g" (0) and R* (c) = R(£O') • 

. .. --
We can rewrite the approximate formulae for the eh~ectations of the 

quantities of interest with respect to the value of e which is appropriate 

to a particular point. 

E [A] 

E[V] = 

E [n] ~ 

E[Y] = 

2 
-e /2 e . 

(2n) 3/2 

2 
-e /2 

e 0 

,12,;' 

(6.17) 

(6. 18) 

(6. 19) 

(6. 20) 

To fit a model of this type to data and produce, the above estimates 

for various points within a given oil province, we need t9 estimate the 

2 
following parameters: values of e at points of interest, the variance 0 

of Z(x) and the variance 0; of the gradient. 
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6.4 FITTING THE HODEL TO OILFIELD DATA 

In order to illustrate a simple application of this model, data for 

the British sector of the North Sea up to about mid-1974 has been used. 

This consists of: 

1. Locations of 104 exploration wells and whether or not a commercial 

oilfield was discovered. 

2. Areas and (estimated) recoverable reserves of commercial oilfields • 

. This data is only approximate as well as rather out-of-date, but it 

is used to illustrate how the model can be fitted over an oil province to 

give a reasonable picture without any geological information being included. 

The first problem is the estimation of c. This "as carried out at the 

location of each oilfield, based on the number of successful and unsuccessful 

e}~loration wells drilled in the near neighbourhood. 

n = number of successful wells, 
s Let 

nf = number of unsuccessful wells, 

and n = n I(n 
s s 

. + n
f

) . 

If wells were drilled at random, we should expect n to give 'us an 

estimate of R~C), and hence an estimated value of c. But obviously 

exploration wells are not drilled wholly at random, but tend to be drilled 

in the more likely places first. We should take some account of this in 

the estimation of c. How this should be done is very much open to debate -

we shall make a very crude assumption for this illustrative example. 

Suppose .the probability that a well is drilled at some point ~, 

conditional upon the value Z(~)=z, is proportional to F(z). 
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P[well drilled at ~IZ(~)!= z] = aF(x) , 

and P[well drilled at x and Z(~) = z] = aF(z) f(z)dz. 

Therefore the total probability is J:~F(Z) fez) dz = 1. 

Let v ="F(z) and thus dv = f(z)dz. 

Therefore a J~ v dv = 1 => a = 2 • 

And so the probability that art oilfield will be discovered at the point x 

is 

2 fF(Z) fez) dz = 1 
EO 

? 
Let us therefore assume that n is an estimate of l-'[HE)]- and 

.-
R(E) = 1 - 11 - n 

(6.21) 

(6.22 ) 

This method was used to estimate E at the location of each oilfield 

("near neighbourhood" being defined as within 3 British North Sea blocks 

of the oilfield). Table 6.1 shows the data for each oilfield and the 

estimated values of E. These values of E were input to the automatic 

contouring algorithm (with grand mean equal to 3.0 for the boundary regions) 

and the resulting map is shown in Figure 6.3. This map gives a fairly good 

indication of the general shape of the northern North Sea basins in the 

British sector. 

22" " " 
The other two parameters, 0 and 0 were estimated from the North Sea " s 

data somewhat approximately. Using equation (6.17) for the mean oilfield 

area together with the estimated E values, it was possible to produce a 
2 " -2 " 

value of 0 for each field. An average value of 0.3676 miles was used 
s 

for later calculations. Using this value together with equation (6.18) 

for each oilfield gave a set of values of o. These values were well 



scattered, with a few very large ones. The arithmetic mean was 32.59xl06 

STB/sq.mile, with a median value of 18.94xl0
6 

STB/sq.mile. The geometric 

6 
mean of 20.30xlO STB/sq.mile was chosen as the best compromise for the 

overall value of o. 

Using these estimated parameter values, it is possible to substitute 
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into equations (6.17) to (6.20) to shOl' the relationships bet>1een EO and the 

functions of interes t. Figure 6.4 sho>1s the expected volumes of discovered 

oilfields and the expected reserves per (British) North Sea block as 

functions of EO. Figure 6.5 shows the e~~ected areas of discovered fields 

and the expected number discovered per block as functions of EO. These 

graphs, in association with the EO contour map of Figure 6.3, give an 

impression of the model's predictions about prospects in the British North 

Sea. 
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6.5 MEAN AND VARIANCE OF OIL RESERVES 

From the results of fitting a model of this form to the reserves of an 

oil province, we wish to be able to gain an impression of the estimated 

total reserves and the uncertainty in this estimate. The latter we may 

categorise by the variance in the total reserves, and may be considered to 

be made up of uncertainty from three sources: 

1. For a fixed spatial distribution of E values, the variance ~n the 

total reserves = Var[R] say. 

2. Given E values at fixea pbints (oilfields) and correlation 

parameters for the £ distribution, the uncertainty due to the fact 

that the E values form a stochastic process. 

3., Errors due to uncertainty"'in the correlation parameters of the 8 

process. 

TIle first source of variation may be computed, and the second estimated 

by simulation, but the third is more difficult to quantify. Let us suppose 

that our region of interest n is divided into M blocks, and in each such 

block we may assume that the value of £ is essentially constant (thus we are 

making a step-function approximation to the true E surface). Let y, be the 
~ 

reserves in the ith block, with value E. and u. = 
1 1 

reserves 
R = 

M 
Var[R] = L 

i=l 

Consider 

M 

L 
i=l 

y, 
~ 

M 

L 
j=l 

Covar [y, , Y .] 
1 J 

where A
l

,A
2 

are the areas, of the two blocks. 

E. Cl'. 
~ 

Then the total 

(6.23) 

(6.24 ) 
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The first term above 

AIA2 ( zlG(zl)dz l (6 .25) = 
rz;T 1 

z2 exp [-
2 2 2 2 2j 

where G(zl) ~T r (02z1-2012z1z2+01z2) 
= 4 dZ2 

u
2 

2T 

222 
and 01 ,02 and 012 are the variances and covariances of Z(~) in the two blocks 

2 
2 (112 2 Now, 2 2 (ll(z2 - -- ',) l'" [ 2 

2 
1 -z/201 '" (112 [ (11 , 

G(zl) = --e f (z2- 2 zl)exp 
ff,"n L 2T4 u2 (11 

2 
2 012 

.,)~ ", ] 2 (ll(z2 - -2-
(112 

[ exp [-
0'1 

+ -- zl, 2T4 2 
(11 u

2 

2 2 2 

R* (~)J -zr'201 [ 2 2 (112 T s -w /2s = e -- e + -2- zl 
(11 ili (11 

(6.26 ) 

2 

where -
(112 ' 

w = u2 zl 2 
(11 

2 4 T 
S = 

2 
'and 

(11 

These formulae enable us to estimate var[R] , given a set of values of 

E for each block. This calculation was applied to the North Sea ,data, using 

the E values at the oilfields as fixed and estimating the correlation 

distance for the E process (p ) bv maximum likelihood methods as 0.623 units 
E -

(1 unit = 1 block length = 24.75 miles). Other parameters used were: 

For the E process: 

= 3.0 (fixed so that at the boundaries of the oil province 

the oilfields vanish) 

(lE = 0.551 (estimated from data). 



For the Z(~) process: 

p = 

a = 

0.0666 units (= 1.65 miles) 

l2.433x109 STB/sq.unit 

(= 20.30x10
6 

STB/sq. mile) 

On this basis, assuming that the e: values are fixed as in Figure 6.3, 

the mean reserves value was computed as 38.86xl09 STB with a variance of 

721.lX10
18 

STB2 , or a standard deviation of 26.85x109 STB. 
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To explore the uncertainty inherent in the definition of the e: values, 

random realisations of e: values were produced, consistent with the values at 

the oilfields and with the parameters Pe:' \le: and ae:' The details of these 

experiments are described in Appendix B. 'On this basis, the mean reserves 

9 (over 10 realisations) was computed as 48.95xlO STB, "ith a variance of 

917.6x10
l8

STB
2 

(standard deviation of 30.29xl0
9 

STB). 

The sensitivity of this model to the value of P was explored by 
e: 

varying this parameter. Values of Pe: equal to 0.44 and 0.8 were used, as 

these gave likelihood values approximately 50% of that for the maximum 

likelihood estimate of 0.623. The results for these values are also shown 

in Appendix B. 

To put these estimates into perspective '. it should be noted that they 

include the reserves from existing fields (approximately 13.4xJ.0
9 

STB). The 

Department of Energy (1976) estimated a possible total of oil reserves from 

9 
existing licences of 3,190 million tons (equivalent to about 22.3xlO STB). 

Odell and Rosing's model produced a total for the whole North Sea of bet"een 

9 79 and 138xlO STB. However, for various reasons this latter estimate is 

probably optimistic. 
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TABLE 6.1 

British North Sea Oilfield -Data and Estimated Parameters 

Oilfield Block Longitude Latitude Area Reserves n nF 
(sq .mi1e). (10

6 
STB) 

s £ 

Montrose 22/1S 1
0

24'E 57023'N 12 500 1 5 1.36 

Josephine 30/13 2032'E 56°34'N 5 300 3 10 1.16 

. Forties 21/10 0059'E 57
0

44'N 40 isoo 1 S 1.58 

Auk 30/16 20Z'E ,_56°25 'N 16 150 2 9 1.31 

Brent 211/29 1041'E 6106'N 66 2000 5 2 0.09 

Argyll 30/24 2
0

46'E 56°lO'N 5 100 2 10 1.36 

Beryl 9/13 1°32' E __ .59033'N 10 SOO 2 5 1.02 

Cormorant 211/26 106'E 610S'N 5 400 6 3 0.20 

Thistle 211/1S 1032'E 61
0

22'N 22 SOO 6 4 0.34 

Piper 15/17 0016'E 5S02S'N 16 800 1 14 1.83 

Maureen 16/29 1° 43' E 5S07' N 4 300 2 2 0.55 

Dunlin 211/23 1036'E 61016'N 20 1250 6 4 0.34 

A1wyn 3/14 1040'E 60
0

33'N 24 500 2 5 1.02 

Hutton 211/2S 1
0

24'E 6104'N 12 800 6 3 0.20 

Heather 2/5 0057'E 60
0

57'N 9 500 2 1 0.20 

Ninian 3/8 1029'E 6004S'N 40 1100 4 4 0.55 

Andrew - 16/2S 1
0

24'E 58°3 'N 5 200 2 4 0.90 

Magnus 211/12 1
0

17'E 61
0

37'N 10 400 3 5 0.81 

Claymore 14/19 0°16'\1 5S026!N 16 700 1 S loSS 
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FIGURE 6.1: Model of the occurrence of oilfields 
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FIGURE 62: Oilfield occurrence with variable cut-off level 
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FIGURE 6.3: Contours of E and existing oilfield values 
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·CONCLUSIONS 
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The aim of this work has been to explore possible applications for 

the theory of correlated random functions of several variables. This theory 

is well-developed, but there appeared to be interesting fields of study to 

which it could be applied, but so far had not. 

The first such field was contouring, in particular contouring from 

sparse and arbitrary data points. Current methods of interpolating from 

the data points to any other point seemed to lack an underlying fundamental 

model, and could therefore be classified as "ad hoc" techniques. Typically, 

.they also tended to lead to discontinuitics in derivatives at various points, 

and to run into· difficulties with data points which are unevenly scattered. 

Treating the data points as realisations of a stationary stochastic 

process gives the desired fundamental conceptual model from which a 

sensible interpolation technique may proceed. The model has few parameters, 

and when these have been estimated an interpolating function is produced 

which is continuous in all derivatives everywhere, and passes exactly 

through all the data. 

One obvious fact about contouring is· that there is no "right" contour 

map for a given set of data - an infinite number of maps will represent 

the given data exactly. But it is interesting to see just what effect a 

change in the interpolating algorithm can have· on the visual impact of a 

contour map. 

If it is desired to model a long-range trend in the data, as well as 

local:.variations, it was felt best to use a stochastic process model for 

this also. The alternative is to fit sorr~ function (e.g. polynomial) to 

act as the trend function, but this seems arbitrary unless there is ·a 
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priori knowledge that the ,trend is of this form. 

The contouring problem having led to a satisfactory model for data in 

two dimensions, it was felt useful to extend the model to several 

dimensions, and to explore situations in which it is desirable to extract 

as much information as possible about the overall form of a function of 

several variables, with data only available at a finite set of points. The 

main application to be investigated was that of optimisation, in particular 

for cases where the number of function evaluations needed to be minimised. 

Use of the interpolating function 'leU to an algorithm which compared well 

with conventional techniques, in particular 1n higher dimensions since 

derivatives need not be explicitly computed. 

This work has 'led to the development of a piece of software named 

SIMP (Stochastic Interpolation and Modelling Program) which combines most, 

of these concepts and algori thms into a single package. Data may be 

presented as either a set of arbitrary point values, or as a functio~ of 

several variables with points to be generated systematically to explo~e a 

specified spaee. The program will fit a stationary stochastic model to 

the data and may use it to generate contour maps and cross-sections, or to 

optimise the given 'function. , 

Finally, the concept of a stationary stochastic process has been used 

to develop a model for the occurrence of oilfields in an oil-bearing region, 

in terms of the excursions of such a process above a given level. This 

model seems to have, intuitive appeal, requires only a few parameters to be 

estimated and leads to estimates of useful quantities such as expected 

reserves and area per oilfield, and e><pected number of oilfields per unit area. 

Encouraging results have been obtained from fitting this model to some data 

for the British North Sea. 
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INTRODUCTION 

The program SIMP has been written in ALGOL-68R and is running on the 

Loughborough University of Technology 1904S c6cputer system. Its purpose 

is to fit a stochastic interpolating function to multi-dimensional data 

and apply it in various ways. The data to be fitted can be defined in one 

of two forms: 

1. As a user-defined function, with N data points spread evenly 

throughout the region of interest; and the function evaluated 

at these points. 

2. As N input data values, at arbitrary input co-ordinates. 

The program can produce one or all of the following results: 

1. Contour maps of the interpolating function in any two dimensions. 

2. Cross-sections of the interpolating function along any line in 

.the region of interest. 

3. Optimisation of the user-defined function (providing onc is 

supplied) by iterative optimisation of the interpolating function. 

The whole system actually operates in two stages - the main program 

(SIMP) which fits the model to the data and carries out all the 

computation for the results to be obtained. If contour maps or cross­

sections are required, the requisite data is generated by SIMP and output 

to a fi le. A secondary program (SIMPLOT) can be activated to produce the 

actual plots fro", this file. All the data relevant to the plotting is 

input to this program (e.g. scaling factors, number sizes, colours etc.). 
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The program SIl-IPLOT is also wri tten in ALGOL-68R, but interfaces wi th 

the FORTRAN graphics library GINO-F via a second intermediate file and a 

FORTRAN program which interprets coded instructions on the file as calls 

to GINO-F subroutines. This is part of a system developed in the Computer 

Studies Department for plotting from ALGOL-68R programs. Each GINO-F 

subroutine call required is activated by an identically-named procedure 

call in SIMPLOT. 

The program SIMP also possesses the ability to dump the stochastic 

model and the data on to a "model file" and to restart a later run from 

this file. This is.designed to save computing time when several sets of 

results are required from the same set of data, as the model fitting phase 

need only be carried out once •. Figure Al illustrates the overall system. 
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SI~W - An outline of the structure and the data input 

The main program SI~ operates in five phases, as follows: 

1. Data generation. (Procedure SETUPDATA). 

2. Model fitting. (Procedure FITMODEL). 

3. Optimisation. (Procedure OPTIMISE). 

4. Contouring. (Procedure CONTOUR). 

5. Cross-sectioning. (Procedure SECTION). 

The operation of these five 'phases is controlled by commands read into 

the program as data.- These consist of eight-character strings punched in 

the first eight columns of data cards. The first such card controls the 

"mode" of the- program. The three -possible commands are: 

NO~~ Model neither dumped to file or restarted from file. 

D~ Model dumped to model file after phase 2 (model fitting). 

GETMODEL - Model and data acquired from model file and phases 1 and 

2 omitted. 

Thus in "NO~~" mode or "D~" mode phases 1 and 2 are carried out 

(in that order) before any other phase is invoked, while in "GETI!ODEL" 

mode they are omitted. 

Each phase of the program \-li 11 now be described, in terms of the 

overall action performed and the data input required. 

Phase 1 - Data Generation 

This phase of the program defines the dimensionality of the problem, 

the limits of the region of interest, and the values at the initial set of 

-, 
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data points. These latter are either generated h'om a user-defined function 

or input as data. The five commands to control this phase and their 

associated data values are described below: 

1. NDIMS This command specifies the number of dimensions in 

.. which the data is defined. The value is read in as 

an integer following the command, and stored in the 

variable NDII1S. 

2. LIMITS This command specifies the lower and upper limits of 

the region of interest in each dimension. Following 

the command, the values .are read in for each dimension 

from I to NDUIS, lower limit followed by upper limit .. --

each time. 

3. GENER..l\TE This command specifies that the initial data values 

are to be generated from a user-defined function, ana 

spread evenly throughout the region of interest. 

Following the connlland, the integer value t-'POINTS is 

read in, which is the number of initi.al data points. 

4. DATA This command is an a1 ternati ve to the "GENERATE" 

command. It specifies that the' initial data values 

will be read in as input. Following the cOll'.II!and the 

integer NPOINTS is read, and after that NPOINTS sets 

of data values. Each set I consists of NDIMS values 

of the cO-'ordinates of the point XPT[I], plus the 

value of the function of interes t Z [I] • 
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5. FITMODEL This cOOIDla"d specifies that Phase 1 of the program 

has ended and Phase 2 should be entered. 

Notes: If the command "NDIHS" is omitted, a default value of NDIMS=2 will 

be used. One and only one of the cOl!1Inands "GENERATE" and "DATA" 

should be used. 

Phase 2 - Model Fitting 

This phase of the program fits a two-stage stochastic model to the 

data points input in the first phase. Data may be input to this phase to 

control the fitting of model parameters, but some or all of this data may 

be omitted, in which case defaul; .. values will be used. The following 

commands are understood by this phase of the program: 

AVERAGE This command is followed by the nu~~er of average 

points (NOAV) to be used in the two-stage model 

(default value of NOAV=O). 

NUFACT This command is followed by a value for the real 

variable MUFACT, which governs the estimation of the 

grand mean. (Default value = 0). If Z is the 
N 

arithmetic mean of the given data values, and Z is the 

ROSMIN 

ROSMAX 

median, then the grand mean ~ is estimated as 

- '" ~ = MUFACT*Z + (1 - ~ruFACT)*Z 

This command is followed by the minimum value for the 

short-range correlation distance. (Default = 0). 

Maximum value of the short-range correlation distance. 

12 
(Default = 10 ). 



MEAN 

ROLMIN 

ROLMAX 

ANISOMIN 

ANISOMAX 

ANI SO 

Input grand mean value. If this command is not read, 

then the grand mean will be estimated using MUFACT. 

Minimum value of the long-range correlation distance. 

(Default = 0). 

Maximum value of the long-range correlation distance. 

12 (Default = 10 ). 

Minimum anisotropy factor value. (Default = 0). 

Maximum anisotropy factor value. (Default = 10
12

). 

This command is followed by NDIMS values of input 
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anisotropy factors. If this command is not read, then 

the anisotropy factors will be estimated. 

ENDMODEL This command terminates the data for phase 2. The 

stochastic model is fitted to the data using the 

parameters input. (or default values). 

Note: All commands (except ENDMODEL) are optional and may occur 1n any order. 

The model fitting IYhich is carried out after the input of these 

parameters consists of the following steps: 

a) Compute grand mean and anisotropy factors (if not input as data). 

b) Distribute NOAV average points evenly through the region of 

interest and calculate a weighted average value at each such point. 

c) Estimate the long-range correlation distance from the average 

points. 



cl) Compute the trend value (based on the average points) for each 
I 

initial data point and hence the residual error at each point. 

e) Estimate the short-range correlation distance based on the 

residual error values. 

The model to fit the data is then totally defined by these estimated 
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parameters. If the program is in "DUMP" mode, all the details of the data 

and the fitted model will be output to a file. 

Phase 3 - Optimisation 

This phase of the program is initiated by reading the command 

"OPTIMISE" in the first 8 columns·· of· a card. Following this the program 

reads the value of the variable EPSILON, which is the termination tolerance 

for the optimisation algorithm. No other data input is required for this 

phase. 

The following steps are carried out: 

a) Optimise interpolating function fitted to current set of data 

points, using a "variab le metric" algori thm. 

b) Evaluate user-defined function at optimum point so found. 

c) If the user-defined function and the interpolating function 

values are within the tolerance EPSILON of one another, then 

the algorithm terminates. Otherwise the model is re-fitted, 

using the new point just evaluated in the current set, and 

the algorithm is repeated from step a). 
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In addition to optimisation, this phase of the program also computes· 

the integral of the interpolating function over the region of interest. 

Phase 4 - Contouring 

This phase of the program is initiated by reading the command "CONTOUR". 

Further commands and data input for this phase are as follows: 

LEVELS 

REGULAR 

STEPMAX 

TITLE 

PLANE 

This command is followed by the integer NLEVELS (number 

of contour levels required), and then NLEVELS values of 

contour levels. 

This is designed for the input of contour levels which 

are evenly spaced. The data to follow consists of the 

integer ~ILEVELS (number of contour levels reql!ired) 

and two real values SLEVEL (first contour level) and 

DLEVEL (increment between successive contour levels). 

This command is an alternative to "LEVELS". 

This command is followed by the value of the maximum 

step length for producing contour lines. (Default = 0.1). 

On the card following the command, a title of up to 80 

characters will be read. 

This specifies the plane in whfch contouring is to be 

carried· out. Two integers IX and 1Y are read (dimensions 

corresponding to X and Y on the 2-d plot). Following 

this, for every dimension not equal to IX or IY, a fixed 

value is read in (Default IX=l, 1Y=2). 



PROJDIST 

TRENDMAP 

ENDMAP 
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This connnand is followed by a real value "'hich determines 

the. maximum projected distance which a data point may be 

from the contouring plane and still be marked on the plot. 

(Default = 10
12

). 

This command initiates the generation of contour lines 

of the long-range trend. Average points will be marked 

on the plot (if within PROJDIST of the contouring plane). 

This command initiages the generation' of contour lines 

of the full interpolating function. Data points will be 

marked on the plot (if within PROJDIST of the contouring 

plane). 

End of Phase 4. 

Note: These commands may occur in any order, repeated any number of times, 

although it is obviously sensible to ensure that the relev3nt data 

has been input before using "TRENDMAP" or "FULLMAP". 

Phase 5 - Cross-sectioning 

This phase of the program is initiated by reading the command "SECTION". 

Following this command the following data is expected: 

1. NSTEPS - An integer corresponding to the number of steps, or 

points along the cross-section at which the interpolation 

function will be evaluated. 

2. Co'-ordinates Xl [K), K=l, NDlMS and X2 [K), K=l, NDIMS of the two 

points between which the cross-section is to be produced. 
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This program outputs to the plotting file not only the values at the 

steps along the cross-section line, but also the values at any data points 

which lie on the line, so that these may (if desired) be included on the 

plot. 

Termination 

188 

Phases 3,4 and 5 may be re-run in any order as often as required. The 

command "FINISH" terminates the program when all the required computation 

has been done. 



EXAMPLES OF INPUT DATA 

Some examples of input data are included here as a guide to using 

the program in different cases. 

1. User-defined function with optimisation and contouring 

A 4-dimensional Shekel function is defined by the user, given by the 

procedure with declaration: 

PROC obj = (REF .REAL x, INT ndims) REAL 

The following data cards are input. 

Command Rest of Card 

(Cols. 1-8) 

NORMAL 

NDUIS 4 

LIMITS o 1 o 1 o 1 o 1 

GENERATE 20 

FITMODEL 

AVERAGE 

ENDMODEL 

10 ) 
OPTIMISE 0.001 

CONTOUR 

PLANE 1 2 0.5 0.1 

STEPMAX 0.025 

REGULAR 12 7 1 

PROJDIST 0.25 

FULLMAP 

PLANE 3. 4 0.7 0.7 

FULLM.'\.P 

ENDMAP 

FINISH 

Comments 

"Normal" mode 

Phase 1 
Data input 

Phase 2 
Model fitting 

Phase 3 
Optimisation 

Phase t, 
Contouring 
(2 maps) 
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2. User-defined function with contouring and sectioning 

A 2-dimensional 6-hump camel function is defined by the user, and 

the follot,ing data cards are input: 

..... ; 
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3. Input data values with contouring and sectioning 

In a previous run a model has been defined using 72 input data points, 

and this has been stored on a file using the. "DUMP" connnand. Data cards 

for a later run are as follows: 

Command Rest of Card 

(Cols. 1-8) 

GETMODEL 

CONTOUR' 

STEP~IAX 0.05 

REGULAR 6 100 100 

FULLHAP 

ENDMAP 

SECTION 100 

0 0 12 8 

SECTION 100 

0 8 12 0 

FINISH 

) 
) 

Comments 

"GETI!ODEL" mode 

Phase 4 
Contouring 

Phase 5 
Crosc;-section 

Phase 5 
Cross-section 
(repeated) 
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A BRIEF DESCRIPTION OF THE HAIN VARIABLES AND PROCEDURES IN SIMP 

Before describing the procedures Hhich make up the program, it is 

Horth also describing some of the more important variables, especially 

those that make up the "model" which is fitted to the given data. 

Integers 

ndims Number of dimensions in problem. 

npoints Number of gfven data points (N). 

noav Number of average points for estimation of trend (n
A
). 

Reals 

mu Grand mean (Jl). 

ro Short-range correlation distance (p ). 
s .----

rolong 

avsep 

Long-range correlation distance (PL)' 

Average separation between data points. 

Real Arrays 

[l:npoints, l:ndims] REAL xpt 

[l:noav, l:ndims] REAL xav 

[l:npoints] REAL z 

[l:noav] REAL zav 

[l:npoints] REAL ze 

[l:npoints] REAL gamma 

[l:npoints] REAL delta 

Co-ordinates of data points. 

Co-ordinates of average points. 

Function values at data points. 

Trend values at average points. 

Residual values at data points. 

Values of y at data points. 

Values of y for trend at average 

points. 

19? 

[l:ndims] REAL aniso Anisotropy factors for iOach dimension. 

[1: ndims] REAL xlower Lower bou~daries of region of interest 

in each dimension 

[l:ndims] REAL xupper Upper boundaries of region of i~terest 

in each dimension. 
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An outline flowchart of the ma1n routine of SIMP is included as 

Figure A2. Seven procedures are called from the main routine: 

1. getmodel procedure to input model values from file. 

2. dump procedure to dump model values to file after 

model has been fitted to data. 

3. setupdata procedure to set up number of dimensions, 

bound.aries of region of interest, and values of 

given function at data points (Phase 1). 

4. fitmodel procedure to fit model to data values (Phase 2). 
,. 

5. optimise optim:i.sation procedure (Phase 3). 

6. contour contouring procedure (Phase 4). 

7. section cross-sectioning procedure (Phase 5). 
.. '~' 

A brief description of every other procedure in the program fo11o"IS, 

in the order in which they occur in the program. 

Procedures marked with an asterisk have been listed at the end of 

this appendix - these consist of those procedures of particular novelty 

or relevance to the techniques used in the program. 

1. min Returns minimum value of a list of reals. 

2. max Returns maximum value of a list of reals. 

3. outarray Writes array of reals out to file. 

4. inarray Reads in array of reals from file. 

5. obj User-defined objective function. 

6. distance Calculates distance between two points, including 

anisotropy factors. 

7. pivot Pi.vots on diagonal element of symmetric matrix. 

8. set up Sets up correlation matrix for a set of points. 

(Calls distance). 
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*9. cutup v Ad hoc method to define initial locations of 

'points in ~'egion of interest, for large number 

of points. (Calls cutup). 

*10. explore v Ad hoc method to define initial locations of 

points in region of interest, for small number of 

points. (Calls distance). 

*11. hcalc v Computes value and derivatives of repulsive function 

for a given configuration of points inside the 

region of interest. (Calls setup). 

*12. updateh v Updates value of repulsive function when the 

position of a point has been changed . .... 

*13. spreadem V - Takes ini tial configuration of points in region 

of interest and varies it to reduce the value of 

the repulsive function. (Calls hcalc, updateh). 

*14. ini tialpts ,,- Defines posi tions of initial d"ta points in region 

of interest. (Calls cutup, explore, spreadem). 

15. statistics Estimates mean, median and standard deviation of 

a list of reals and prints them out. 

16. cubic Finds a root of a cubic equation between 0 and 1 

by Newton's method. 

17. covares t Estimates correlation betl.een the function values 

at two points. (Calls cubic). 

18. regress Nultiple regression procedure. (Calls pivot). 
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*19. anisocalc Estimate~ anisotropy factors from initial set of 

data points. (Calls distance, covarest, regress). 

*20. averageptsV- Defines posi tions of average points in reg10n of 

interest and calculates weighted average values 

for them. (Calls initialpts, distance) . 

. *21. errorsum v - Computes error sum of squares for a given value of 

p and set of data points. (Calls setup, pivot). 

*22. minest V Estimates minimum value of a function of one 

variable given 3 points. 

*23. es timated ro ..... Es timates p by minimising error sum of squares. 

_______ (:alls·~~rorsum, minest). 

*24. Quick ro Estimates p based on correlations between adjacent 

pairs of data points. (Calls covarest). 

*25. point value - Estimates function value at unknown point given 

a set of data points and values of p and p. 

(Calls distance). 

*26. interpolator -Estimates total function value using tHo-st<oge 

model, as a sum of trend and residual terms. 

(Calls point value). 

'~27 • prepare 

28. normal 

Computes y values for model, given data values 

and p and p. (Calls setup and pivot). 

Approximates the Standard Normal Integral. 



29. integral Estimates the integral of the interpolating 

function over the region of interest. (Calls 

normal). 

30. onedinnnax Searches for maximum of function along a given 

line. (Calls interpolator). 

31. changedir Changes direction matrix for variable metric 

optimisation algorithm. 

32. variable. matric Optimises interpolating function starting 
", l< 

~~om current best point using variable m"tric 

algorithm. (Calls interpolator, onedimmax, 

distance, changedir) . 
.... 

33. garnmachange - Updates model y values to allow for new data point. 

(Calls distance, prepare). 

*34. find Searches along a given straight line to find 

point at which interpolating function equals contour 

level. (Calls interpolator). 

*35. divide Searches between two data points to find 

reference point. (Calls interpolator, find). 

*36. sClect Selects reference points for a given contour 

level and set of data points. (Calls divide). 

*37. outpoint Outputs point on contour to plot file, and checks 

. to see if any reference point should be deleted. 

*38. anglediff Computes the difference between two angles. 
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*39. smooth Checks if contour is ,reasonably smooth at current 

point. (Calls anglediff). 

*40. stepalong Generates new point on contour from existing point. 

(Calls interpolator, find, smooth). 

*41. outofarea Checks if contour segment has left the area of 

inter,est. 

*42. backtostart - Checks if contour segment has returned to its 

starting point. (Calls anglediff). 

*43. countourtrace - Traces the contour segments for a given contour 

level. (galls select, outpoint, stepalong, 
.-.. -

outofarea, backtostart). 

44. contours tart - Initialises contour map and defines data 'points 

to be plotted. (Calls distance, interpolator). 

45. contourmap - Produces contour lines for all levels for a given 

model and set of data. (Calls contours tart, 

statistics, contourtrace). 
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SHlPLOT - AN OUTLINE OF TIlE STRUCTURE At'lD TIlE DATA INPUT 

SIMPLOT has two sourceS of input data. One is the plot file created 

by running SIMP, which contains contour maps and/or cross-sectional data 

generated from the model fitted to the given data points. The other is 

from the standard input file and contains control commands and data to 

supervise the actual creation of the relevant plots. 

Some of the commands govern the input of parameters for the plotting 

(which may have default values) and others instruct the program to create 

a' plot from the data on the plot file. The commands are read in i:he first 

8 columns of a data card, and a description of them and their associated 

data values follows: 

TITLESIZ 

SCALE 

LEVELSIZ 

Followed by values of SIZETITLE, DXTITLE and 

DYTITLE. SIZETITLE is the size of the characters 

for plotting the title in mms. (Default is 3mm5). 

DXTITLE and DYTITLE are the co-ordinates (in mms) 

of the start of the title relative ,to the top left­

hand corner of the map or section plot. (Default 

values are 0 and 2mms). 

Followed by values of SCALE and SPACING. SCALE is 

the scaling factor in both X and Y directions, in 

mms/data unit (default is 10), generally used for 

contour maps. SPACING is the distance in mms on 

the contour lines between adj acent markings of the 

contour level (default is 300). 

Followed by values of LEVELSIZE and CONTOURDECS. 
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LEVELSIZE is the size in mms of the contour level 

markings .(for contour maps) or of the axis scale 

markings (for sections). (Default is 2). 

CONTOURDECS is the number of decimal places to 

\,hich these are plotted (default is 0). 

COLOUR Followed by values of CONTOURPEN, CPSTART and CPINC. 

CONTOURPEN is an integer in. the range 1 to 4 which 

controls the pen colour for a subset of the contours 

(1 is black, 2 is red, 3 is blue and 4 is green). 

Contour levels, starting at number CPSTART and 

incrementing by CPINC, will be plotted in this 

colour. (For example, if the data input were: 

. .. 2 3 5, contour levels numbered 3, 8, 13 etc • 

on the list would be coloured red). (Default values 

are 1 1 1). 

POINTS Followed by values of PTPEN, PTSY}ffi, and PTSIZE. 

PTPEN is an integer from 1 to 4 indicating pen 

colour for marking the positions on the plot of 

the data points. PTSY}ID is an integer indicating 

the type of symbol used to mark the data points 

(see GINO-F documentation for routine SYMBOL for 

details). If PTSY}ID(D then the data points are not 

plotted. PTSIZE is the size in mms of these symbols. 

(Default values are 1 8 2). 

PTNO Followed by values of PTNOSIZE, PTNODX, and PTNODY. 

PTNOSIZE is the size in mms of the characters used 



TITLE 

DRA\,TMAP 

PLOTSIZE 

FACTOR 

DRAWSECT 
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to ma):k the data point value against the plotted 

symbol (default is 2). If PTVALSIZE~O this will 

not be plotted. PTVALDECS is the number of 

decimal places to which it will be plotted. 

·PTVALDX AND PTVALDY are the distances in mms of 

the start of this number from the plotted symbol, 

in the X and Y directions. (Default values are 

2 0 -2 2). Figure A3 illustrates all these 

various parameters with reference to plotting a 

typical data point. 

On the following card, up to 80 characters of 

title may .. be. input. 

This command instructs the program to plot the 

next contour map on the plot file. 

Followed by values of XMAX and YMAX, which are 

maximum overall plot sizes in mms in the X and 

directions. This command should be given, once 

only, before any plotting is carried out. 

the 

Y 

Followed by the value of FACTOR, a scaling factor 

by which the function values on the file are 

multiplied for the plot. Contour levels are 

multiplied by the same factor (default is 1). 

This command instructs the program to plot the 

next cross-sectio~ on the plot file. 



SCALEXY 

AXES 

FINISH 
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Follmied by values of SCALEX and SCALEY, distance 

scaiing factors in nuns/data unit in the X and Y 

directions, generally used for cross-sections. 

(Default is 10 10). 

Followed by values for the axes of a cross-section 

plot: XL, XU, DX, XSTART, YL, YU and DY. XL are 

the lower, upper and incremental values to be 

marked on the X axis, and YL, YU and DY are 

similar values for the Y axis. 

XSTART is the X-value of the start of the cross-

section. 

Terminates the run. 

Notes: The above conunands are all optional, with the exception of "FINISH". 

The commands "DRA\o/MAP'" and "DRAHSECT" should be mixed in a way which 

reflects the structure of the plot file. (For example, if the input 

to SHIP contained the connnands "CONTOUR", "SECTION" and "CONTOUR" 

in that order, then the input to SIMPLOT should contain "DRAWJ.lAP". 

"DRAHSECT" and "DRAWMAP" in the same order. Each connnand (except 

"FINISH" and "PLOTSIZE") may be repeated as often as required. 
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EXAMPLES OF INPUT DATA TO SI~WLOT 

These examples correspond to the three examples .given for SI}W, and 

illustrate how the results of these runs could be plotted. 

Example 1 

Connnand Rest of Card 

TITLE 

4-D SHEKEL (Xl,X2) 

PLOTSIZE 500 200 
. ,. 

LEVELSIZ 2 -1 

POINTS 2 3 2 

PTVALUE -1 o 0 0 

SCALE 150 200 

DRAI·/MAP 

TITLE 

4-D SHEKEL (X3,X4) 

DRAI,T!-lAP 

FINISH 

Example 2 

Connnand Rest of Card 

TITLE 

6-HllW CAMEL FUNCTION (TREND) 

PLOTSIZE 500 250 

POINTS 2 8 2 

LEVELSIZ 2 -1 

PTVALUE 2 1 -2 2 

FACTOR -1 

SCALE 40 150 

Connnents 

(Ti tIe starts 

in column 1) 

Data points in 

red, with 11+" 

symbol and values 

not plotted. 

Connnents 
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Command Rest of Card Comments 

DRA\o,TMAP 

SCALEXY 20 3 

AXES 0 7 1 0 -5 60 5 Cross-section 
data 

TITLE 

6-HUMP (BOTTOM LEFT TO TOP RIGHT) 

DRAWSECT 

FINISH 

Example 3 

Command Rest of Card COUL'1l12. n t s 

PLOTSIZE 750 275 

TITLE 

SHKAPOVSKII OIL DEPOSIT 

LEVELSIZ 2 -1 

SCALE 20 150 

PTNO -1 0 0 Points 

POINTS 2 8 2 plotted l.n 

red, values 
PTVALUE 3 -1 -2 -2 

only 

DRAWMAP 

TITLE 

. SHKAPOVSKII (BOTTOH LEFT TO TOP RIGHT) 

SCALEXY 10 0.3 

AXES 0 15 5 0 .0 600 100 

DRAWSECT 

TITLE 

SHKAPOVSKII (TOP LEFT TO BOTTOM RIGHT) 

DRAWSECT 

FINISH 
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Read mode 

y 

N 

getmodel 

fitmodel 

y 

dump 
N 

read comm 

"OPTIMISE" "CONTOUR "SECTION" 

contour 

optimise section 

FIGURE A2: Outline flowchart of main 'routine of SIMP 
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'PROC' CUTUP = ('REF'!,] 'REAL' XPT,'REF'[] 'REAL' XLOWER,XUPPER, 
'INT' NPOINTS, NDIl1S, 'REF 11 INT' NOLEFT, IPOINT) 'VOID': 

'C' 
PROCEDURE TO DEFINE LOCATIONS OF LARGE NO. OF INITIAL PTS. 

'C' 
"BEGIN' 

'REAL' LARGEST, SA VEUP, SA VELOv/: 
'INT' ICUT, REMAINDER, NOLEFTSA VE: 
'IF' NOLEFT > 0 
'THEN' 

LARGEST : = 0.0: 
'FOR' I 'TO' NDIMS 'DO' 'BEGIN' 

'IF' XUPPER[I] - XLOWER[Ij > LARGEST 
'THEN I 

LARGEST := XUPPER[I] - XLOWER[I]: ICUT := I 
'FI ' 

i END' : 
SAVEUP :=XUPPER[ICUT]: SAVELOW :=XLOWER[ICUT]: 
REMAINDER := NOLEFT - 2*(NOLEFT'j'2): 
'IF' REMAINDER = 1 
'THEN' 

IPOINT 'PLUS' 1: NOLEFT 'MINUS' 1: 
'FOR' I 'TO' NDIMS '00' 

XPT[IPOINl',I] := 0.5"(XUPPER[I]+XLOWER[I]) 
• FI I ; 

NOLEFT := NOLEFT'/'2: 
NOLEFTSAVE := NOLEFT: 
XUPFER[ICUT] := 0.5*(SAVEUP+SAVELOW): 
CUTUP (XPT, XLCAi ER, XUPPER, NFO I1<'1'S. ND IMS, NOLEFT, I POINT) : 
XUP?ER[ICUT] := SAVEUP: XLO\'IER[ICUTj := 0. 5* (SAVEUP+SAELOVl) ; 

NOLEFT := NOLEFTSAVE: 
CUTUP (XP1' , XLOVIER, XUPPER, NPOIHTS, I'<'"DIMS, NOLEFT , IPO INT) : 
XUPPER[ICUT] := SAVEU?: XLOWER[ICUT] := SAVELail ' 

'FI ' 
'END' : 

~. 

" .' 
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'PROC' EXPLORE = ('REF'I,] 'REAL' XPT,'REF' I] 'REAL' XLOWER,XUPPER, 
'REF"INT' IPOINT,'INT' NPOINTS,NDIMSl 'VOID': 

'c' 
PROCEDURE TO DEFINE LOCATIONS OF INITIAL POINTS. 

'c' 
'BEGIN' 

[l:NDIMS] 'REAL' XDUM,HIGH,LOW,ANISODUM; 
'BOOL' FINISHED,POINTOK; 
'INT' R, t.."HIGHS', IFIX, ISWITCH; 
'REAL' FACTOR := 4.0; 
'FOR' I 'TO' NDIMS 'DO' 'BEGIN' 

HIGHII] := «FACTOR-1.0l*KUPPER[I) + XLCMER[I)l/FACTOR; 
LO\~ [I] : = ( (FAC'l'OR-l. III *XLOWER [I] + XUPPER [I ]l/FACTOR; 
ANISODL'MII) := 1.0 

"END' ; 
'FOR' R 'TO' NDIMS-1 'WHILE', I.POINT < NPOINTS 'DO' 'BEGIN' 

XDUM := HIGH; 
NHIGHS := NDIMS; FINISHED := 'FALSE'; IFIX := 1; 
'WHILE' 'NOT' FINISHED 'CO' 'BEGIN' 

POINTOK := 'TRUE'; 
'POR' K 'TO' IPOINT 'WHILE' POHiTOK 'DO' 'BEGIN' 

POINTOK := POINTOK 'AND' 

'END' ; 
'IF' POINTOK 
'THEN' 

DISTANCE (XDUM, XPT [K,) , ANISODUM, NDms l > 1.0&-6 

IPOINT 'PLUS' 1; 
XP'.r[IPOINT,) := XDlA'!; 
FINISHED := (IPOINT = NPOINTSl 

• FI I ; 

'r'OR' J 'TO' NDIMS - R 'DO' 'BEGIN' 
ISWITCH := IFIX + R - 1 + J ; 
'IF' ISWITCH > NDIMS 'THEN' ISWITCH 'MINUS' NDIMS 'FI'; 
XDUM [ISWITCH) : = HIGH [ISWITCH) + LOW[ISWITCH) - XDm IISWITCH 

'END' ; 
II'll( 'PLUS' 1; 
'IF' IFIX > NDIMS 'THEN' IFIX 'MINUS' NDIMS 'FI'; 
NHIGHS := 0; 
'FOR' I 'TO' NDIMS 'DO' 'BEGIN' 

'IF' XDUN[I) > LOl'I[I] 'THEN' NHIGHS 'PLUS' 1 'FI' 
, END' ; 
FINISHED := FINISHED 'OR' NHIGHS = NDIMS 

'END' 
'END' 

'END' ; 
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, PROC' HCALC = (' REF ' [] 'REF' [] 'REAL' S,' REF' [ ,] 'REAL I XPT, DH, D 2H, 
'REF'[] 'REAL' XLOWER,XUPPER,'REAL' RO,'INT' NPOINTS, 
NDIMS) 'REAL': 

'C' 
PROCEDURE TO CALCULATE SEPARATION MEASURE "H" FOR SET OF PTS~ 

'C' 
'BEGIN' 

'INT' IDUM, JDUM; 

'REAL' HPAR'I,HNElv:= 0.0; 
[l:NDIMS] 'REAL' ANISOOUM; 
'FOR' I 'TO' NOIMS 'DO' ANISODl'M[I] := 1.0; 
SETUP (S ,XPT,ANISOOUM,RO, NPOINTS,NOIMS); 

'FOR' I 'TO' NPOINTS 'DO' 'BEGIN' 
'FOR' K 'TO' NDlMS '00' 'BEGIN' 

HPART : = E XP (- ( (XPT [ I, K] -XLo;vER [K] ) ~2/ (0.5 *RO ~2 ) ) ) ; 
IlNElv 'PLUS' HPART; 
DH [I, K] : = HPART*4. 0* (XPT [I, K] -XLOWER [R]) IRO

A

2; 
o 2H [I, K] : = 4 "'H PART * (4 * (XPT [ I, K ] -XLOOER [K] ) "2/ Ra" 4-1/RO A2 ) ; 
HPl,RT : = EXP (- «XPT [1, KJ -XUPPER [K J) "2/(0. 5*RO

A
2») ; 

DH[I,K] 'PLUS' 4.0*!lPART*(XPT[I,K]-XUPPER[K]l/RO'2; 
D2H [I,K] 'PLUS' 4*HPART*(4*(XPT[I,K]-XUPPER[KJ) "2/RO"4 

- 1/RO
A

2); 
HNEI,; 'PLUS' H PART 

'ENO' ; 
'FOR' J 'TO' NPOINTS '00' 'BEGIN' 

'IF' I i J 
'THEN' 

'IF'I>J 
'THEN' IOUM := I; JDUM := J 
'ELSE' IOUM := J; JOUM := ! 

. 'F I' ; 
HPART : = S [IDUM] [JOUM] ; 
HNElv 'PLUS' H PART; 
'FOR' K 'TO' NOIMS '00' 'BEGIN' 

OH [I,K] 'PLUS'. 2.13 *H PART * (XPT [I,K]-XPT [J,K] )/RO A2 ; 
D2H[I,K] 'PLUS' 2*HPART*i(XPT[I,K]-XPT[J,K])A 2 / RO "4 

'END' . 
'FI' 

'ENO' 

- 1/RO"2) 

'ENO' ; 
HNEW 

'ENO ' ; 
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'PRoe' UPDATEH = ( 'REF ' I] 'REF' [j 'REAL' S,' REF ' [ , j 'REAL' XPT, DH, D 2H, 
'REF' [j 'REAL' XLOi'iER, XUPPER, 'REF ' 'REAL' HNEW, 
'REAL' RO,NEWX,'INT' ISHIFT',KSHIFT,NPOINTS,NDIMS) 
'VOID' : 

'c' 
PROCEDURE TO UPDATE nH" VALUE FOR CHANGED POSITION OF PT. 

'C' 
'BEGIN' 

'REAL' HPART, OLDHPART, DHPART, D2HPART; 
'INT' lDUM,JDUM; 
[l:NPOlNTS]'REAL' NEWS; 
'FOR' I 'TO' NPOINTS 'DO' 

'IF' I JI rSHIFT 
'THEN' 

'REAL' DIST := 0.0; 
'FOR' K 'TO' NDIMS' 'DO' 

, r F' K # KS H I FT! 
, 'THEN' DIST 'prius' (XPT[I,K]-XPT[1SHIFT,K])"2 

'ELSE' DIST 'PLUS' (XPTII,KJ-NEWX)"2 , 
I F I I; 

NEI'1S II J : = EXP (- (DIST/ (2. 0*RO"2» ) 
t 1,'11 1 ; 

NEWS [ISHIFT] := 1.0; " " 
OLDHPART := EXP(_«XPT[ISHIFT,KSHIFT]-XLOWER[KSHIFT]) 2/(0.5*RO 2»): 
HPART : = EXP (- «NEWX-XLOWER [KSHIFTj) "2/ (IJ.S"RO

A

2»); 
HNEI'I 'PLUS' H PART - OLDHPART; 

DH [ISHIFT,KSHIFT] 'PLUS' 4*(HPART*NElvX-OLDHPP,RT*XPT [ISHIFT, :<SHIFT} 
+ XL<JwER [KSHIrTj * (OLDHPART-HPART) )/RO"2; 

D 2H I I SH 1FT, KS H 1FT J 'PLUS' 4 * (4 *H PP.RT* (NEW X-XLOI"ER [KSH 1FT] ) A 2 
- 4 *OLDHPART* (XPT [ISHIFT, KSHIFTj-XLo;'1ER [KSHIFT]) "2 
+ RO"2*(OLDHPART-HPART) )/RO"4 ; 

OLDHPART : = EXP (- ( (XPT [I SHIFT, KSHIFT j -XUPPER [KSH 1FT j ) '2/ (0. S*RO"2» ) ; 
HPART := EXP(-( (NENX-XUPPEF,[KSHIFT]) A2 /(0.S*RO"2»); 
HNEW 'PLUS' HPART - OLDHPART; 
DH [1 SH IF'I, KS HIFT] 'PLUS' 4 * (HPART*NEWX-OLDHPART*XPT [ISH 1FT, KSH 1FT] 

+ XUPPER [KSHIFTj" (OLDB PART-H PART) )/RO
A
2; 

,D2H [ISHIFT, KSHIFTj 'PLUS' 4*(4*HPART* (NEWX-XUPPER[KSHIFTj) "2 
- 4*OLDHPART*(XPT[ISHIFT,KSHIFTj-XUPPER[KSHIFTj) ~2 
+ RO ~2 * (OLDHPART-HPART) ) /RO A 4 

'FOR' J 'TO' NPOINTS '00' 
'IF' J !I lSHIFT 
'THEN' 

'IF' ISHIFT > J 
'THEN' IDUM := ISHIFT; JDUM := J 
'ELSE' lDUM := J; JDUM := ISHIFT 
'F I ' ; 

·OLDHPART : = S [I DUM j [JDUM j ; 
HPART : = NEWS [J j; 
HNE'd 'PLUS' 2.0* (HPP.RT - OLDHPA RT) ; 
DHPART := 2* (HPART*)<EWX - OLDHPART*XPT [ISHIFT, KSHIFTj 

+ XPT [J , KSHIFTj * (OLDHPART-HPART» /RO
A
2; 

DH [ISH IF'!', KSHIFT] 'PLUS' DHPlIRT; 
DH[J,KSHIFTj 'MINUS' DHPART; 
D211PART := 2* (HPiI.RT* (NEI'<X-XPT [J, KSHIFTj) A2 - OLDHPART* 

(XPT [I SH 1FT, RS!lIFT j-XPT (J , KSHIFTj ) "2 )/RO
A
4; 

D2HPART 'PLUS' 2.0* (OLDHPART-BPART)/RO
A
2; 

D?'H[ISHIFT,KSHIFTj 'PLUS' D2HPART; 
D2H [J,KSHIFTj 'PLUS I D2HPART; 



'FOR' K 'TO' NOIMS '00' 
'IF' K f KSHIFT 
'THEN' 
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OHPART : = 2.13* (HPART-oLOHPART) * (XP"l' [I SHIFT, Kj -XPT [J , K]) /RO
A
2; 

02HPART := 2* (HPART-OLOHPART) * (XPT[ISHIFT,Kj-
XPT[J,K])A 2 / RO A4 ; 

02HPART 'PLUS' 2.0* (OLOHPART-HPART)/RO
A

2; 
OH[ISHIFT,K] 'PLUS' OHPART; 
OH [J,Kj 'HlNUS' OHPART; 
D2H [lSHIFT,K] 'PLUS' 02HPART; 
02H [J,Kj 'PLUS' 02HPART 

'FI'; . 
S [lOUM] [JDUM] : = NEWS [J] 

1 FI ' ; 
XPT[lSHlFT,KSHIFT] := NEWX 

'END' ; . ,. 
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'PROC' SPREADEM = ('REF'[,) 'REAL' XPT,'REF' [) 'REAL' XLO\'IER,XUPPER, 
'REAL' AVSEP,'INT' NPOINTS,NDIMS) 'VOID': 

'c' 

'e' 

PROCEDURE TO MOVE INITIAL CONFIGURATION· OF PTS INTO BETTER 
POSITIONS USING REPULSIVE FUNCTION. 

'BEGIN' 
'REAL' HNE\~, HOLD, DHMAX, HP.l\.RT, STEP; 
'REAL' RO := 0.5*AVSEP; 
'REAL' SHIFT := 0.5*RO; 
'INT' NITS := 13; 
'INT' IMAX, KMAX, IDUM,JDUM; 
'INT' IMAXLAST, KMAXLAST; 

. 
IMAXLAST : = 0; Kf1A XL.l\.ST : = 0; 
'REAL' LASTSTEP := 0.0; 
[1:NDIMS) 'REAL' ANISODUM; 
[1:NPOINTS, 1:NDIMS) 'REAL' DH,D2H; 
[1:N?OINTS)'REF'[) 'REAL'S; 
'FOR'I 'TO' NPOINTS '00' S[I) := [1:1) 'REAL'; 
'FOR' I 'TO' NDIMS 'DO' ANISODUM [I I : = 1.0; 
'BooL' FINISHED := 'FALSE'; 
'BooL' DEBUG := 'FALSE'; 
HO .... D := 1.0&6; 
'RE.l\.L' NEWX; 
HN~fl := HCALC(S,XPT,DH,D2H,XLOWER,XUPPER,RO,NPOINTS,NDIMS); 
OUTF(STANDOUT,$LL"INITIAL H VALUE ="2X(4.4>$,HNEw); 
'\~HILE' 'NOT' FINISHED 'DO"BEGIN' 

NITS 'PLUS' 1; 
DllMAX : = 0. e; 
'FOR' I 'TO' NPOINTS 'DO' 

'FOR' K 'TO' NDIMS '00' 
'IF' 'ABS'DH[I,K) > DHMAX· 
'AND' (XPT [I, K)-XLOWER [K]) > -0. In * (XUPPER [K )-XLOWER [K)) * 
'SIGN' (DH[I,K) 'AND' (XUPPER[K)-XPT[I,K). > 0.01* 
(X UPPER fK j -x LOW ER [K ) ) * , SIGN' (DH [I, K) ) 
'THEN' IMAX := I; KMAX := K; DHMAX := 'ABS'DH[I,K) 
, F I' ; 

'IF' DEBUG 
'THEN' 

OUTF (STANDOUT, $L <5>, 2X<2. 5&2>, 2X<5 >, 1X<5>, 2x<2. 5&2 >$, 
(NITS,HNEW, IMAX, KMAX,DHMAX» 

• FI t ; 
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FINISHED := HOLD - HNEW < 1.0/NPOINTS 'OR' NITS> 2*NDIMS*NPOINTS; 
HOLD : = HNEI~; 
'lP' DHMAX <= 1.0&-6 
'THEN' 

'FOR' ! 'TO' NPOINTS 'WHILE' FINISHED 'DO' 
'FOR' K 'TO' NDIMS 'WHILE' FINISHED '00' 

'IF' D2H[I,K) < 0.0 

'FI ' ; 

'THEN' 
FINISHED := 'FALSE'; 
HIAX : = I; KMAX : = K; 
DHMAX := 1.0&-6; DH[I,Kj := DHMAX 

'FI' 
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I IF' 'NOT' FINISHED 
'THEN ' 

'IF' D2H[IMAX,RMAX] > 11.11 
'THEN' 

STEP : = MAX «-SHIFT, M IN «SHIFT, OH [H1AX, RMAX] /D2H [IMAX, 
KMAX 1 ) ) ) ) ; 

FINISHED := 'ABS'STEP < 11. 001*(XUPPER[KMAX)-XLOWER[KMAX) 
'ELSE' STEP := DH[If>lAX,Kl'AX)*1.0*SHIPT/DHI1AX 
'F I ' ; 
'IF' STEP > 0. '" 
'THEN' STEP := MIN«STEP, (XUPPER[KMAX)-XPT[IMAX,KMAX])/2. 0» 
'ELSE' STEP :=MAX«STEP,(XLOWER(KMAX]-XPT[IHAX,KMAX)/2.0» 
, F I ' ; 
'IF' IMAX = IMAXLAST 'AND' KMAX = KMAXLAST 
'AND' STEP*LASTSTEP < '" 
!THEN' STEP := -0.5*LASTSTEP 
'FI I; 
LASTSTEP := STEP; 
IMAXLAST : = IMAX; KMAXLAST : = KMAX; 
'IF' DEBUG 'THEN' 

OUTF (STANDOUT, $2X <2.5&2>, 2X <5.4>$, (D 2H [Il1AX, KMAX], STE P) ) ; 
'SKIP' 'PI'; 

NEvlX : = MAX ( (XLOWER [KMA X] , M IN ( (XUPPER [KI1AX) , XPT [I!1A X, Kf.1A X) 
+ STEP») ) ; 

UPDATEH (5, XPT, DH, D 2H, XLOWER, XUPPER, HNEW, RO, NEW X, }HA X, KW, X, 
NPOINTS,NDIMS) 

'FI' 
'Elm' ; 
OUTF(STANDOUT, $L2X"FINAL H VALUE ="2X<4. 4>, 2X"APTER"<4 >" ITERATIONS"S, 

(HNEW,NITS» . 
'END' ; 



',PROC' INITIALP'TS = ('REF'[,] 'REAL' XPT,'REF'[] 'REAL' XLOvIER,XUPPER, 
'REF"REAL' AVSEP,'INT' NPOINTS,NDIMS) 'VOID': 

'e' 
PROCEDURE TO DEFINE FINAL POSITIONS OF INITIAL PTS. 

'C' 
'BEGIN' 

'INT' IPOINT,NOLEFT; 
IPOINT := 0; NOLEFT := NPOINTS; 
AVSEP : = 1. 0; 
'FOR' I 'TO' NDIMS 'DO' A VSEP '''f'IMES' (XUPPER [I ]-XLOW ER [I ]) ; 
'IF' NPOIN'TS > 0 'THEN' 
AVSEP := EXP(LN(AVSEP/NPOINTS)/NDIMS); 
'SKIP' 
'ELSE' AVSEP := EXP (LN (AVSEP)/NDIMS) 
• FI I i 

OUTF (STANDOUT, $LL" AVERAGE SEPARATION BETwEEN PTS ="2X <6. 4>L $, A VSEP) ; 
'IF' NPOINTS >= 2 ~ND HIS 
'THEN' 

CUTUP (XPT,XLOWER,XUPPER,NPOINTS,NDIMS,NOLEFT, IPOINT) 
'ELSE' 

EXPLORE (XPT,XLOWER,XUPPER, IPOINT,NPOINTS,NDIMS); 
'IF' IPOINT < NPOINTS 
"£HEN' 

NOLEFT := NPOINTS - IPOINT; 
CUTUP (XPT, XLOWER, XUPPER, NPOINTS, NDIMS, NO LEFT , IPOINT) 

'FI' 
'F I' ; 
PRINT «NEWLINE," STARTING POSITIONS OF INITIAL PTS -",NEWLINE»; 
'POR' I 'TO' NPOINTS 'DO' 

OUTF (S Tl>.NDOUT , $L <5> , N (N DIMS) (2 X <4 • 4» $ , (I , XPT (I ,] ) ) ; 
SPREADEM(XPT,XLOWER,XUPPER,AVSEP,NPOINTS,NDIMS); 
I SKIP' 

'END' ; 

. , 
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'PROC' ANISOCALC = (. REF' [ , ) 'REAL' XPT,' REP' [] • REAL' Z, AN ISO, 

'c·' 

'c' 

._ 'REF' 'REAL' HU,RO,SD,AVSEP,ANISOMIN,ANISOMAX, 
-, .. ' INT' NPOINTS,NDIHS) 'VOID': 

PROCEDURE TO ESTIMATE ANISOTROPY FACTORS. 

'BEGIN' 

-;:. 

'INT' NCOUNT := 0; 'INT' NREF := 4; 
'REAL' DIST,HAXDIST,ALPHAMEAN; 
[l:NDIMS) 'REAL' ALPHA; 
[1: NPOINTS j 'REAL' ZSCALE; 
[l:NREF*NPOINTSj'REAL' Y; 
[l:NREF*NPOINTS,l:NDIMS) 'REAL' DELTAX2; 
'BOOL' DEBUG :=-'FALSE'; 
HAXDIST := 1.5*AVSEP; 
'CLEAR' DELTAX2; 
'FOR' I 'TO' NDIMS 'DO' ALPHA[I) := 1.0; 
'FOR' I 'TO' NPOINTS '00" 'BEGIN' 

ZSCALE [I j : = (Z [I j-MU)/SD; 
'FOR' J 'TO' I-I 'WHILE' NCOUNT < NREF*I 'DO' 'BEGIN' 

'IF' ZSCALE[I)*ZSCALE[J) > 0.0 
'THEN' 

DIST := DISTANCE (XPT[1,j ,XPT[J,) ,ALPHA,ND1MS); 
'lP' DIST < HAXDIST 
'THEN' 

NCOUNT 'PLUS' 1; 
Y [NCOUNT) : = -LN (COVAREST (ZSCALE [I j, ZSCALE [J j» ; 
, IF' Y [NCOUNT j < 1.:1" 
-'THEN' 

~OR' K 'TO' NDIMS 'DO' 
Dt~LTAX2 [NCOUNT, Kj : = (XPT [I ~ K]-XPT [J, RJl A2 

'ELSE' NCOUNT 'MINUS' 1 
I F I' 

'FI' 
'FI' 

'END' 
'END' ; 

REGRESS (DELTAX2,Y,ALPHA,NDIMS,NCOUNT); 
ALPHAMEAN := 0.0; NCOUNT := 0; 
'FOR' I 'TO' NDIMS 'DO' 

, IF' ALPHA [I] > 0. 0 
'THEN' 

ALPHAMEAN 'PLUS' ALPHA[I); NCOUNT 'PLUS' 1 
'FI ' ; 

'IF' NCOUNT = 0 ., ... 
'THEN ' 

NCOUNT := 1; 
ALPHAMEAN :=1.0/AVSEp

A
2 

'PI' ; 
ALPHAMEAN 'DIV' NCOUNT; 
RO : = S QRT ( 1. 13 / ( 2.1l * ALPHAMEAN) ) ; 
OUTF (STANDOUT, $LL" ESTUIATED RO =h2X <4. 4>L$, RO); 
PRINT«NEWLINE,NEWLINE,"ALPHA VALUES AND ANISOTROPY FACTORS -" 

NEW LINE ) ) ; 
'FOR'I 'TO' NDrMS '00' 'BEGIN' 

'IF' ALPHA[I] > 0.0 
'THEN' ANISO[1] := ALPHA!l]/ALPHAMEAN 
'ELSE' AN1SO[IJ :: ANISo}lIN 
'F I' ; 
ANI SO [I J : = MAX «JI.NISOHIN,MIN «ANISO [1] ,ANIS014AX»»; 
OUTF(STANDOUT,$L<S>,2X<2.S&2>,2X<4.4>$,(1,ALPHA[I],AN1SO[IJ» 

'END' 
'END' ; 
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'PRoe' AVERAGEPTS = ('REF'[,) 'REAL' XPT,XAV,'REF'[) 'REAL' ZAV,Z, 
ANISO,XLOWER,XUPPER,'INT' NOAV,NPOINTS,~~IMS) 
'VOID' : 

, 'e ' 
PROCEDURE TO DEFINE POSITIONS AND VALUES OF AVERAGE PTS. 

'C' 
'BEGIN' 

'REAL' AVSEP,RO,WTSUM,DIST,COVAR; 
INITIALPTS (XA V, XLo\~ER, XUPPER,A VSEP, NOA V, ND INS) ; 
PRINT«NEWLINE,NEwr.INE,"POSITIONS AND VALUES OF AVERAGE PTS _u, 

NEWLINE»; 
'CLEAR' ZAV; 

",RO := 0. 5*AVSEP; 
'FOR' I ''IQ' NOAV '00' 'BEGIN' 

WTSUM : = 0.0; 
'POR' J 'TO' NPOINTS 'DO' 'BEGIN' 

DIST := DISTANCE (XPT[J,) ,XAV[I,) ,ANISO,NDIMS); 
COVAR := EXP(-(DIST

A

2/(2.0*RO
A

2»); 
WTSUM 'PLUS' COVAR; 
ZAV[Ij 'PLUS' Z[J)*COVAR 

'END' ; 
ZAV[Ij 'DIV' I-lTSUM; 
OUTF (S TANDOUT, $L <3 >, 2X <2. 5&2>, 2XN (NDUIS) (1 X <3. 4» $ , 

(I,ZAV [I), XAV [I, j» 
'END' 

'END' ; 

" 

...... 

'PRoe' ERRORSLM = ('REF'[,) 'REAL' X,'REF'fj'REAL' Z,ANISO, 
'REAL' RO,MU,'INT' NPOINTS,NDIMS) 'REAL': 

'C' 
PROCEDURE TO COMPUTE ERROR SUM OF SQUARES FOR GIVEN RO VALUE. 

'e' 
'BEGIN' 

(l:NPOINTS)'REF'[)'REAL'S; 
'FOR'I ''IQ' NPOINTS '00' SrI) := [l:I) 'REAL'; 
(l:NPOINTSj'BOOL' P!VOTTED; 
'REAL' ESTIMATE, ERRORS; ERRORS := 0.0; 
'INT' NOUSED := 0; 
SETUP (S,X,ANISO,RO,NPOINTS,NDIMS); 
"FOR' I 'TO' NPOINTS 'DO' 'BEGIN' 

ESTIMATE : = MU; 
'FOR' J 'TO' I-I 'DO' 

'IF' PIVOT'I'ED[J) 'THEN' ESTIMATE 'MINUS' S[IJ [J)*(Z[J)-~iU) 'FI'; 

ERRORS 'PLUS' (Z [I j-ESTIMATE) A 2/ S [11 [I j ; 
PIVOT(S,PIVOTTED,I,NPOINTS); 
'IF' PIVOTTED[I) 'THEN' NOUSED 'PLUS' 1 'FI' 

'END' ; 
ERRORS/NOUSED 

'END' ; 
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'PROC' MINEsr = ('REF'[) 'REAL' XX,yy,'REF"BOOL' MINFOUND) 'REAL': 
'C ' 

PROCEDURE TO ESTIMATE M IN 'OF' FUNCTION FRml 3 PTS. 
'C' 

'BEGIN' 
'REAL' A,B,C,WORKER,MINX; 
A := «XX[2]-XX[3])*(YY[1]-YY[2) - (XX[1)-XX[2»*(YY[2]-YY[3]»/ 

( (XX [I)-XX [2] ) * (XX [2)-XX [3] )~. (XX [I)-XX (3) ) ; 
B := (YY[l) - YY[2] - A*(XX[1]-XX[2])*(XX[1]+XX[2]»/(XX[lj-XX[2)); 
C := YY [1) - A*XX [1) A2 - B*XX [1); 
MINFOUND : = A > 1!I.0; 
'IF' MINFOUND 
'THEN' MINX := -B/(2.0*A) 
'ELSE' 

'REAL' MINY :=1.0&18; WORKER :=0.0; 
'FOR' I _' TO' 3 'DO' 'BEGIN' 

WORKER 'PLUS' XX[Ij/3.0; 
'IF' YY[I) < MINY 
'THEN' MINY := YY[I) : MINX := XXII] 
'FI ' 

'END' ; 
~HNX : = 

'FI ' ; 
MINX 

'END '; 

3.0*MINX - 2.I!I*WORKER 
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'PROC' ESTIMATED RC = ('REF' [,]'REAL' X, 'REF' [) 'REAL' Z,ANISO, 
'REAL' MU,STARTRO,'INT' NPOINTS,NDIMS) 'REAL': 

'c' 
PROCEDURE TO ESTIMATE RO BY IHNIMISING ERROR SUM OF SQUARES. 

'C' 
'BEGIN' 

'INT' IDROP,NITS; NITS := O; 
.. 'REAL' RO, CLOSENESS, MAXESUM; CLOSENESS : = "'.025 *STARTRO; 
., BOOL' FOUNDI T ,IH NFOUND; FOUNDIT : = 'FALSE'; 
[1:3]'REAL' ESUM,TRIALRO; 
PRINT ( (NE'flLINE, NEWLINE, 

"VALUES OF RO AND ERROR VARIANCE FOR ESTIMATION - n , NEW LINE) ) ; 
'FOR'I 'TO' 3 '00' 'BEGIN' 

TRIALRO[I] := STARTRO*(2."'~(I-2»; 
ESUM[I) := ERRORSUM(X,Z,ANISO,TRIALRO[I) ,MU,NPOINTS,NDnlS); 
OUTF(STANDOUT, $L<3>, 2X<4. 4>, 2X<2. 5&2 >$, (I ,TRIALRO[I), ESUM [I]» 

• END 1 ; 

'WHILE' NITS < 20 'AND' 'NOT' FOUNDIT '00' 'BEGIN' 
RO := MINEST(TRIALRO,ESUM,MINFOUND); 
NITS 'PLUS' 1; 
RO := MAX«RO,0.1*STARTRO/NITS»;. 
HAXESUM : = O. "'; ... -.-
'FOR' I 'TO' 3 '00' 

'IF' ESUl-I [I) > MA XESUM 
'THEN' IOROP := I; MAXESUI1 := ESUM[I) 
'FI ' ; 

FOUNDIT := MINFOUNO 'ANO' 'ABS'(RO-TRIALRO[IDROP]) < CLOSENESS; 

'IF' 'NOT' FOUNDIT 
'THEN' -

MAXESUM := ERRORSUM(X,Z,ANISO,RO,MU,NPOINTS,~~IMS); 
'IF' I1AXESljM > ESUM [IOROP) 
'THEN' 

RO := 0.5*(RO+TRIALRO[IOROP]); 
MAXESUN : = ERRORSUM (X, Z ,ANISO, RO,~IU, NPOINTS, NDIMS) 

1 F I I ; 

ESUM[IOROP) := MAXESUM; 
TRIALRO [IDROP) : = RO; 
OUTF (STANOOUT, $L <3 >, 2X <4. 4>, 2X <2. 5&2>, IX <3 >$ , 

(NITS,RO,MAXESUM, 10ROP» 
'FI ' 

'ENO' ; 
RO 

'END' ; 
. -"'...,: ~.- -;':",' ,,~ -.', 
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'PROC' QUICK RO = ('REF'[,j'REAL' X,'REF'[J'REAL' Z,ANISO,'REAL' !o1U,SD, 
'INT' NPOINTS,NDIMS) 'REAL': 

.~C ' 
PROCEDURE FOR QUICK ESTIMATION OF RO. 

'C' 
'BEGIN' 

[l:NPOINTSj'REAL' ZSCALE,ROVAL;- 'CLEAR' ROVAL; 
[l:NPOINTSj'INT' POINTER; 'CLEAR' POINTER; 
'INT' NEAREST, ICOUNT; 
'REAL' XCOVAR, RO, R011EAN, ROSD, DIST, MINDIST; 
'INT' NFAIL := ~; 
ICOUNT : = Il; 
'FOR' I 'TO' NPOINTS 'DO' ZSCALE[Ij := (Z[Ij-MU)/SD; 
'FOR' I 'TO' NPOINTS '00' 'BEGIN' 

NEAREST := I; MINDIST := 1.0&12; 
'FOR' J 'TO' NPOINTS 'DO' 

'IF'IilJ 
"THEN' 

DIST := DISTANCE (X [I,) ,X[J,) ,ANISO,NDIMS); 
'IF' DIST < MINDIST 'AND' POINTER[J) iI I 

'AND' ZSCALE (I) * ZSCALE (J I > '" 
'THEN' 

NEAREST :7 J; MINDIST := DIST 
'FI' 

I F I • i 
'IF' NEARESt iI I 
'THEN' 

ICOUNT 'PLUS' 1; 
XCOVAR := COVAREST(ZSCALE[I),ZSCALE[NEAREST]); 
'IF' XCOVAR < 1. '" &-5 'THEN' NFAIL 'PLUS' 1 'FI';' 
POINTER [I] : = NEAREST; . 'c, 

RO : = MIN ((4 .1l*MINDIST,MINDIST*SQRT (-1. 0/(2.Il*LN (XCOVAR»»); 
ROVAL[ICOUNT] := RO; 
QUTF(STANDOUT, $L2(2X<4 » ,2 (2X<2. 5&2» ,3 (2X<4. 4»$, (I ,NEAREST, 

ZSCALE [I) , ZSCALE [NEAREST] ,MINDIST, XCOVAR, RO) ) 
'FI ' 

'END' ; 
'PRINT ((NEWLINE," STATISTICS FOR ESTIMATED RO VALUES 
STATISTICS (ROVAL,ICOUNT,ROMEAN,RO,ROSD); 
'IF' NFAIL > ICOUNT/2 'THEN'. RO := ROMEAN 'FI'; 
RO 

'END' ; 

-" ,NEWLINE:»; 
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• 

'PROC' POINT VALUE = ('REF'[,] 'REAL' XPT,'REF'[] 'REAL' X,GAMi'IA,ANISO. 
DFDX, 'REAL' MU,RO, ',INT' NPOINTS. NDIMS) 'REAL': 

'c' 
PROCEDURE TO ESTIMATE FUNCTION VALUE AT UNKNOWN PT. 

'c' 
'BEGIN' , 

'REAL' ESTIMATE.DIST2,COVAR; 
ESTIMATE : = MU; 
'FOR' I 'TO' NPOINTS 'DO' 'BEGIN' 

DIST2 := DISTANCE(X,XPT[I,]',ANISO,NDIMSI
A

2; 
'IF' DIST2 < 25.0*RO-2 

,'THEN' 
COVAR : = EXP (- (DIST2/(2. 0*RO

A

2 I I I*GAMMA [I]; 
ESTIMATE 'PLUS' COVAR; ",' 
'FOR' K 'TO' NDIMS 'DO' 

DFDX[K] 'PLUS' COVAR*ANISO[K]*(XPT[I,K]-X[I<)I/RO-2 
'FI ' 

'END' ; 
ESTIMATE 

'END' ; 

~ , 

'PROC' INTERPOLATOR = ('REF'[,] 'REAL' XPT,XAV,'REF' []'REAL' X,GAI.1MA, 
''', DELTA,ANISO,DFDX.'REF"REAL' MODG,'REAL' ~IU, 

'C' 
RO, ROLONG, 'INT' NPOINTS, NOA V, NDIMS I 'REAL': 

'e' 
INTERPOLATING FUNCTION USING '2-STAGE i~ODEL. 

'BEGIN' 
'REAL' INTERP; 
'CLEAR' DFDX; 
INTERP := POINTVALUE(XAV,X,DELTA,ANISO.DFDX,MU,ROLONG,NOAV,lIDIMS) 

+ POINTVALUE (XPT, X, GMIMA,ANISO, DFDX, 0. 0,RO,NPOINTS,l\DIMS I; 
HODG : = 0. G; 
'FOR' I 'TO' NDIMS 'DO' MODG 'PLUS' 'ABS'DFDX[I]: 
INTERP 

'END' : 
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'PROC' PREPARE '" (' REF' I , ] 'REAL' XPT,' REF' I] 'REAL' Z, ANISO, GI'.!-lH.~, 
'REAL' RO,MU, 'INT' NPOINTS,NDIMS) 'VOID': 

·C·, 
PROCEDURE TO COMPUTE GAMMA VALUES. -

'c' 
'BEGIN' 

[l:NPOINTS] 'REF' []'REAL' S; 
{l:NPOINTS] 'BOOL' PIVOTTED; 
• INT' IDUM, JDUH; 

-. 

'FOR' I 'TO' NPOINTS 'DO' -S [I] : = [1: I] 'REAL'; 
SETUP (S, XPT ,ANISO, RO, NPOINTS, NDrMS) ;. 
'FOR' I 'TO' NPOINTS 'DO' PIVOT (S, PIVOTTED, I, NPOINTS) ; 
'FOR' I 'TO' NPOINTS 'DO' 'BEGIN' 

GAMMA [l] : = 0. 0; 
'FOR' J 'TO' NPOINTS 'DO' 'BEGIN' 

'IF' I > J 
'THEN' IDUM := I; JDUM := J 
'ELSE' lDUM := J; JDUM := I 
'F I ' ; 
'IF' PIVOTTED[J] 
'THEN' GAMMA[I] 'MINUS' S[IDUM] !JDUM]*(Z[J]-MU) 
'FI ' 

, END' ; 

'IF' 'NOT' PIVOTTED[I] 'THEN' GAMMA!I] := 0.Il'FI' 
'END' 

'END' ; 

'PROC' FIND = ('REF'!,] 'REAL' XPT,XAV,'REF'[] 'REAL' X, GAII,HA, DELTA, 
ANISO,'REAL' ANGLE,CONTOUR,TOL,DLLlM,MU,RO,ROLONG, 
'INT' IX, IY,NPOINTS,NOAV,NDIMS) 'BOOL': 

'c' 
PROCEDURE TO FIND CONTOUR VALUE ALONG 

'C' 
'BEGIN' 

'INT' ITS := 0; 
'REAL' MODG,DL, DZDL, VALUE; 

[l:NDIMS] 'REAL' DFJX; 

GIVEN LINE. 

J 

VALUE := INTERPOLATOR (XPT,XAV,X, GhMMA,DELTA,ANlSO,DFDX,MODG,MU,RO, 
ROLONG,NPOINTS,NOAV,NDHlS) ; 

'WHILE' 'ABS'(VALUE-CONTOUR) ) TOL 'AND'-ITS (= 10 'DO"BEGIN' 
ITS 'PLUS' 1; 
DZDL := DFDX[IX]*COS(ANGLE) + DFDX[IY]*SIN(ANGLE); 
'IF' 'ABS'DZDL < 1.0&-9 'THEN' DZDL := 1.0&-9 'FI '; 

DL := (CONTOUR-VALUE)/DZDL; 
DL := DL/(1.0 + 'ABS'DL/DLLIM); 
XlIX] 'PLUS' DL*COS(ANGLE); 
X[IY] 'PLUS' DL*SIN(ANGLE); 
VALUE : = INTERPOLATOR (XPT, XA V, X, GAMMA, DELTA, ANISO, DFDX, MODG, NU, RO, 

ROLONG, NPOINTS, NOAV,NDIMS) 
'END' ; 
'ABS' (VALUE-CONTOUR) < TOL 

'END' ; 



' .. 222 

'PROC' DIVIDE = ('REF'[,) 'REAL' XPT,XAV,XYZ,'REF'[]'REJI.L' X, GAMMA, 
DELTA, ANI SO, 'REAL' CONTOUR, TOL, DLLIM ,11 U, RO, ROLONG, 
'INT' IX, IY,NPOINTS,NOAV,NDIl~S) 'SOOL': 

'C' 
PROCEDURE TO DIVIDE LINE TO FIND REF. PT. 

'C' 
'BEGIN' 

'REAL' FRACTION,VALUE,ANGLE,DZDL,MODG,AX,AY; 
'INT' IDIR,NITS,IXX,I; 
[1: 3]'REAL' XYZL,XYZU; 
[1:NDIMS] 'REAL ' DFDX; 

FRACTION : = (CONTOUR - XYZ [3,2]) / (XYZ [3, l]-XYZ [3, 2]l ; 
FRACTION: = MAX «0. 001,MIN «0. 999,FRACTION»»; 
AX : '" XYZ [1,2) + FRACTION * (XYZ [1, 1)-XYZ [1, 2)l; 
AY:= XYZ[2,2] + FRACTION*(XYZ[2,I)-XYZ[2,2)l; 
FRACTION := XYZ[l,l) - XYZ[l,2];. 
'IF' 'ABS'FRACTIO'l ( 1.0&-9 'THEN' FRACTION := 1.~&-9 'FI'; 

ANGLE := ARCTAN«XYZ [2,I)-XYZ [2,2)l/FRACTION); 
IXX := -'SIGN 'FRACTION; 
IDIR : = 'SIGN' (XYZ [3, 2]-XYZ [3, l)l; 
1 := (3+IDIRl' /'2; 
XYZ U : = XYZ [ , I]; XYZ L : = XYZ [ , 3-1) ; 
IDIR := IDIR*IXX; DZDL := -IDIR; NITS := 0; 
'WHILE' DZDL*IDIR ( 0 'AND' NITS (= 10 'DO"BEGIN' 

NITS 'PLUS' 1; 
XlIX) := AX; 
X [IY) := AY; 
VALUE := INTERPOLATOR(XPT,XAV,X,~MMA,DELTA,ANISO,DFDX.MODG,MU, 

RO,ROLONG,NPOINTS,NOAV,NDIMS); 
DZDL := DFDX[IX]*COS(ANGLE) + DFDX[IY)*SIN(ANGLE); 
, IF' VALUE ) CONTOUR 
'THEN' XYZU[I) := AX; XYZU[2) := AY; XYZU[3) := VALUE 
'ELSE' XYZL[lj := AX; XYZL[2) := AY; XYZL(3) := VALUE 
'F I ' ; 
AX := 0.5*(XYZL[I]+XYZU[1]); AY:= 0.5*(XYZL[2)+XYZU[2) 

'END' ; 
XlIX] := AX; X[IY) := AY; 
FIND (XPT,XAV, X, GAMMA, DELTA,ANISO,ANGLE,CONTOUR,TOL,DLLIM, MU,RO, 

ROLONG,IX,IY,NPOINTS,NQ~V,NDIMS) 

'END' ; 
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'PROC' SELECT = ('REF'[,] 'REAL' XPT,~V,'REF' [] 'REAL' X, GAMMA, DELTA, 
ANISO, XREF, YREF, XDATA, YDATA, Z DA.TA, 'REAL' CONTOUR,. 

'e' 

TOL,DLLIM,MU,RO,ROLONG,MEDIAN,'REF' i INT , NREF, 
'INT' IX, IY, NDATA, NPOINTS, NOAV, NDIMS) 'VOID': 

PROCEDURE TO DEFINE REFERENCE PTS. 
'c' 

'BEGIN' 
'REAL' DIST, r:M IN; 
, INT' K; NREF : = 0; 
[ 1: 3, 1: 2] 'R EA L' XYZ; 
[l:NDATA]'BOOL' IBEEN; 'CLEAR' IBtEN; 
'BOOL' FINISHED := 'FALSE'; 
'FOR' I 'FROM' NDATA 'BY' -1 'TO' 1 'WHILE' 'NOT' FINISHED 'DO' 
'BEGIN' 
'IF' (ZDA.TA[I]-CONTOUR)*(MEDIAN-CONTOUR) < 1.0&-12 

'OR'I > NDATA - 4 
'THEN' 
DMIN :" 1. 0&12; 
FINISHED := 'TRUE'; 
'FOR' J 'TO' NDATA 'DO' 

'IF' I # J 'AND' 'Nor' IBEEN[J] 'AND' 
(ZCATA[I]-CONTOUR)*(ZDATA[J]-CONTOUR) < 1.0&-12 

'THEN' 
DIS'l' : = S QRT ( (XDATA [I ]-XDATA [J] ) '2 + (YDATA [I ]-YDATA [J ]) '2) ; 
FINISHED :" 'FALSE'; 
'IF' DIST < mlIN 
'THEN' K := J; 01IN := DIST 
'FI' 

'FI ' ; 
'IF' 'NOT' FINISHED 
'THEN' 

'IF'I <= NDATA - 4 'THEN' IBEEN[K] := 'TRUE' 'FI'; 
XYZ[l,l] := XDATA[I]; XYZ[2,1] := YDATA[I]; XYZ[3,1] :" ZDATA[I]; 
XYZ[1,2] := XDATA[K]; XYZ[2,2] := YDATA[K]; XYZ[3,2] :" ZDATA[K]; 
'IF' DIVIDE (XPT, XA V, XYZ, X, GAMHA, DELTA,ANIS O,CONTOUR, TOL, DLLIM, 

MU, RO, ROLONG, IX, IY, NPOINTS, NOAV, NDIr1S) 
'THEN' 

NREF 'PLUS' 1; 
XREF[NREF] := XliX]; YREF[NREF] := X[IY] 

'FI ' 
'FI' 

'F I ' 
'END' 

'END' ; 
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'ROC' OUTPOINT = 

'C' 

( 'REF ' [) 'REAL' XREF, YREF ,STORE, 'REF ' [) 'BOOL' DELETED, 
'REAL' AX,AY,DTOL,'REF"INT' NSTORE,'INT' NREF) 'VOID': 

PROCEDURE TO OUTPUT CONTOUR PT. 
'c' 

,EGIN' 
'REAL' DIST, 
STORE [2*NSTORE + 1) := AX, STORE [2*NSTORE + 2] := 
NSTORE ' PLUS' 1, 
'IF' NSTORE = 4 'OR' 'ABS' (AX+999. 0) < 0.001 
''l'HEN ' 

OUT'F (PLOTFILE, $~B (lX <3. 4» $, STORE), 
'CLEAR' STORE, 

NSTORE : = 0 
• FI • ; 
'FOR' I 'TO' NREF 'DO"BEGIN' 

'IF' 'Nor' DELETED [I] 
'THEN" 

DIST : = SCRT «AX-XREF [I]) -2 + (AY-YREF [I]) -2); 
DELETED [I] := DIST < DTOL 

'FI' 
'END' 

::ND • ; 

--.-

PROC' ANGLEDIFF = ('REAL' ANGLEl,ANGLE2) 'REAL': 
'c' DIFFERENCE BETWEEN 2 ANGLES. 'c' 

BEGIN ' 

AY; 

MIN « 'ABS' (ANGLEl-ANGLE2) ,'ABS' (ANGLEI-ANGLE2+2*PI), 
'ABS' (ANGLEI-ANGLE2-2 *PI») 

END' , 

PROC' SMOOTH = ('REF"REAL' ANGLE,'RElIL' Xl,Yl,X2,Y2,ANGTOL) 'BOOL': 
'C' PROCEDURE TO CHECK THAT CONTOUR IS SMOOTH. 'c' 

BEGIN' 
'REAL' ANGDUM,DANGLE,WORKER, 

WORKER := Xl - X2; 
'IF' 'ABS'WORKER < 1.0&-9 'THEN' WORKER := 1.0&-9 'FI', 
ANGDUM := ARCTMJ«YI-Y2)/WORKER), 
'IF' Xl < X2 'THEN' ANGDUM 'PLUS' PI 'FI', 
DANGLE := ANGLEDIFF(ANGLE,ANGDUM); 
'IF' DANGLE < ANGTOL 
'THEN' ANGLE : = ANGDlM, 'TRUE' 
'ELSE' 'FALSE' 
'FI' 

~ND' ; 
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'PROC' STEPALONG = ('REF' [, ) 'REAL' XPT, XA V, 'REF' [] 'REAL' X, GAMMA, 
DELTA,ANISO,'REF"REAL' ANGLE, 'REAL' CONTOUR, 
ANGTOL, TOL, DLLIM, STEPMA X,M U, RO,ROLONG, 'BOOL' 
NEWSTART,'INT' IX,IY,NPOINTS,NOAV,NDIMS) 'VOID': 

'C' 
PROCEDURE TO FIND NEXT PT ON CONTOUR. 

'e' 
'BEGIN' 

'REAL' ANGl,ANG2,WORKER,XSAVE,YSAVE, STEP, VALUE, THETA,ORTHOG,MODG; 
'INT' NITLL'1 := 2; 
XSAVE := XliX); YSAVE := X[IY]; 
[l:NDIMS) 'REAL' DFDX; 

·.VALUE : = INTERPOLATOR (XPT, XA V, X, GAMMA, DELTA, ANISO, DFDX, MODG, MU, 
. RO,ROLONG,NPOINTS,NOAV,NDIMS); 
STEP := STEPMAX; 
'IF' 'ABS' DFDX[IY) < 1.13&-9 'THEN' DFDX[IY] := 1.0&-9 'FI'; 
ANGl : = ARCTAN (-DFDX [IX) /DFDX [-IY); 
ANG2 := ANGl + PI; 
'IF' ANGLEDIFF(ANGl,ANGLE) < ANGLEDIFF(ANG2,ANGLE) 
'THEN' THETA := ANGl 
'ELSE' THETA := ANG2 
• FI I i 
'IF' NEWSTART 'THEN' ANGLE := THETA 'FI'; 
ORTHOG := THE~ + 0.5*PI; 
XliX) := XSAVE + STEP*COS(THETA); X[IY) := YSAVE + STEP*SIN(THETA); 
, INT' NITS : = "'; 
'WHILE' ('NOT' FIND (XPT, XA V, X, G\MMA, DELTA, ANI SO, ORTHOG, CONTOUR, 1'OL, 

DLLIM ,MU, RO, ROLONG, 1 X, I Y, NPOINTS, NOA V, NO HIS) 
'OR' 'NOT' SMOOTH (ANGLE, X [IX], X[IY] ,XSAVE, YSAVE ,ANGTOL» 

'AND' NITS < NITLIM '00' 'BEGIN' 

NITS 'PLUS' 1; 
STEP 'ON' 2; 
XliX) := XSAVE + STEP*COS(THETA); X[IY) := YSAVE + STEP*SIN(THETA) 

'END' ; 
'IF' NITS >= NITLIM 'THEN' ANGLE := THETA 'FI' 

'END' ; 

'PROC' OUTOFAREA = ('REF' 'REAL' AX,AY,'REAL'. BORD,XLAST,YLAST, 
'INT' SIGN) 'BOOL': 

'c' PROCEDURE TO CHECK IF CONTOUR HAS LEFT SPECIFIED AREA. 'C' 
'BEGIN' 

'IF' (AX-BORD)*SIGN > 13 
'THEN' 

AY := YLAST + (AY-YLAST)*(BORD-XLAST)/(AX-XLAST); 
AX := BORD; 
'TRUE' 

'ELSE' 'FALSE' 
'FI' 

'END' ; 



'PROC' BACKTOSTART = ('REAL' AX,AY,XSTART,YST"RT,STEPMAX, 
SAVEDANGLE) 'BOOL': 

·c· PROCEDURE TO CHECK IF CONTOUR· HAS RETURNED TO START. 'e' 
'BEGIN' 

'REAL' DIST,-END"NGLE; 
DIST := SQRT «AX-XSTART) A2 + (AY-YSTART)A 2 ); 

'--'IF' DIST < 1.5*STEPMAX 
'THEN' 

ENDANGLE := XSTART - AX; 
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'IF' 'ABS 'ENDANGLE < 1. 0&-9 'THEN' ENDANGLE : = 1. 0&-9 'F I ' ; 
ENDANGLE := ARCTAN«YSTART-AY)/ENDANGLE); 
'IF' XSTART < AX 'THEN' ENDANGLE 'PLUS' PI 'FI'i 
ANGLEDIFF(ENDANGLE,SAVEDANGLE) < 0.5*PI 

'ELSE' 'FALSE' 
• FI 1 • t. 

'END' ; 

, PROC' CONTOURTRACE = (' REF ' [ , ] 'REAL' XPT, XA V, 'REF ' [] 'REI'.L' X, Gf..!'lHA, 
DELTA, ANISO, XDATA, YDATA, ZDATA, XLOWER. XliPPER, 
'REAL' CONTOUR, ANGTOL, TO L, DLLHl, STEPi1f.. X .!~ l], 

RO, ROLONG, MEDIAN, 'INT' IX, IY, NPOINTS, NOAV, 
NDATA,NDIMS) 'VOID': 

'C' 
PROCEDURE TO TRACE CONTOUR LINES OF GIVEN LEVEL. 

'C' 
'BEGIN' 

'REAL' ANGLE,SAVEDANGLE,DTOL,XSTART,YSTART,XLAST,YLAST; 
'REAL' STEP; 
'REAL' DUMANG; 
[1:8] 'REAL' STORE; 'CLEAR' STORE; 
'INT' NSTORE,ICON,NREF,IREF; 
[1:NDATA] 'REAL' XREF,YREF; 
DTOL :~ STEPMAX; 
SELECT (XPT, AA V, X, GMIMA, DELTA, ANI SO, XREF, YREF, XDATA, YDATA, Z D_~TA, 

CONTOUR,TOL,DLLIM,MU,RO,ROLONG,MEDIAN,NREF,lX,IY,NDATA, 
NPOINTS, NO" V, NDIM S) ; 

[l:NREF] 'BOOL' DELETED; 'CLEAR' DELETED; 
NSTORE := 0; ICON := 0; 



'BOOL' BORDERHIT,FINISHED,NEWSTART,JUSTBIT,ALLGONE; 
OUTF (PLOTF I LE, $ L"VALU E" 3X < 4.4> $, CONTOUR) ; 
OUTF (S'fANDOUT, $LL" CONTOUR LEVE L" 2X<4. 4>L $, CONTOUR) ; 
OUTF (STANDOUT, $L" NO. OF REFERENCE PTS =" <5>L $, NREF) : 
ALLGONE := NREF = 0; IREF := 1; 
'WHILE' 'NOT' ALLGONE '00' 'BEGIN' 

ICON 'PLUS' 1; 
OUTF (PLOTFILE, $L" LINE" 4X <4 >$, ICON); 
BORDERHIT := FINISHED := 'FALSE'; 
XliX) := XSTART := XLAST := XREF[IREF); 
X [IY) := YSTART := YLAST := YREF [IREF]; 
OUTF (STANDOUT, $L" SEGMENT" < 4 >, 2X" STARTS r,T" 2 (2X <3. 4» $, 

(ICON, XS,!'ART, YSTART»; 
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ANGLE := 0.0; NEWSTART := 'TRUE'; 
OUTPOINT(XREF,YREF,STORE,DELETED,X[IX] ,X[IY] ,DTOL,NSTORE,NREF); 
STEP := STEPMAX/5; 
'WHILE' 'NOT' FINISHED 'DO' 'BEGIN' 

STEPALONG (XP'!', x.1'\ V, X, GAMMA, DELTA, ANI SO, ANGLE, CONTOUR, ANG'l'OL, 
TOL, DLL IM, STEP,M U, RO, ROLONG, NEWSTART, I X, I Y, NPOIN'l'S, 
NOAV,NDIr1S); 

STEP := STEPMAX; 
'IF' NEI1START 
'THEN' SAVEDANG~E := ANGLE; NEWSTART := 'FALSE' 'FI'; 
JUSTHIT := OUTOFAREA(X [IX],X[IY] ,XLOWER[IX] ,XLAST,YLAST,-1) 

. 'OR' OUTOFAREA(X[IX],X[IY],XUPPER[IX],XLAST,YLAST,l) 
'OR' OUTOFAREA(X [IY] ,X [IX],XLOWER[IY],YLAST,XLAST,-l) 
'OR' OUTOFAREA(X[IY],X[IX],XUPPER[IY],YLAST,XLAST,l) ; 

XLAST : = X [IX]; YLAST : = X [IY]; 
OUTPOINT(XREF,YREF,STORE,DELETED,X[IX],X[IY],DTOL,NSTORE,~REFi; 
'IF' JUSTHIT . 
'THEN' FINISHED : = BORDERHIT; BORDERHIT : = 'TRUE' 'F I': 
'IF' 'NOT' FINISHED 'AND' JUSTHIT 
'THEN' 

OUTPOINT (XREF , YREF , STORE, DELE'!'ED, -999, 0, DTOL, NS'l'ORE, 0) ; 
OUTF (PLOTF ILE, $L"JOI N" 4X <4 > $, ICON) ; 
PRINT(" BORDER REACHED"); 
OUTPOINT (XREF, YREF ,STORE, DELETED,XSTART, YSTART, DTOL, NSTORE, 0); 
DUMANG := ANGLE - PI; 
'IF' DUMANG < -PI/2 'THEN' DUMANG 'PLUS' 2*PI 'FI'; 
ANGLE := SAVEDANGLE - PI; 
'IF' ANGLE < -PI/2 'THEN' ANGLE 'PLUS' 2*PI 'FI'; 
SAVEDANGLE : = DUMANG; 
XLAST := XSTART; YLAST := YSTART; 
XSTART := XliX]; YSTART := X[IY): 
XliX] := XLAST; X[IY] := YLAST 



ApPENDIX B 

RESULTS OF SH1ULATION EXPERIMENTS 
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INTRODUCTION 

Simulation experiments were performed to validate certain of the 

results and the techniques developed. The areas of investigation of these 

experiments were as follows: 

a) Estimation of p - comparison of "pair-point" and "maximum likelihood" 

techniques. 

b) Estimation of parameters for "two-stage" model 

c) Estimation of anisotropy - comparison of techniques 

d) Areas of closed contours of 
" 

a correlated stationary process 

e) Uncertainty in oil province reserves due to different realisations 

of c. 

Although simulation experiments should be treated with a certain degree 

of caution, and not used indiscriminantly, they can provide a valuable check 

on the validity or otherwise of techniques which have been developed, in 

particular in the field of estimation. 

a) Estimation of p 

These simulation experiments were carried out in a two-dimensional 

region of area 10xlO units, with values of the true correlation distance (p) 

of 1,2 and 4 units, and using N randomly positioned data points, where N 

took values 10, 20 and 40. 

For each combination of Nand p values, the following procedure was 

carried out: 

1. Generate N data points, with data values given by the true p, ~ 

and C1 values.· 

2. "-Estimate ~ by the median of the data values 

3. Estimate P using the "pair-point" method 
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4. Estimate P using the "maximum-likelihood" method 

5. Repeat the «hole process 10 times from step 1. 

6. • A. Compute the average and standard dev1atioll of the p esnmates by 

both methods. 

(For these experiments, the true values of ~ and a were fixed as 10 and 2 

respectively). 

The details of the generatipn of the N data point values are as follows: 

1.1 i:=1 

1 2 h · th d· ..... . For t e 1 ata p01nt, compute 1tS pos1t1on uS1ng a un1form 

1.3 

1.4 

1.5 

1.6 

random distribution within the region of interest. 

2 
Estimate its mean value ~. and residual variance cr., given 

1 1 

the preceding i-I data points (see equ. (2.48» . 

... Set z.=z.+CJ.Z, where Z is a Standard Normal random variat:e. 
111 

i:=i+l 

Repeat from step 1.2 until i>N. 

,.. 
As «ell as computing the average P value (for both techniques) from the 

10 iterations, it was possible to estimate the mean square error by:-

~lhere " p = average 

S2 = computed 
p 

MSE = 

p estimate 

variance 

" 2 2 (p-p) + S 
p 

of p estimates. 

(B .1) 

The results of these 9 experiments are tabulated in Tab le B .1, and are sho,m 

in graphical form in Figure 2.5. 

b) Estimation of "two-stage" model parameters 

The estimation of the parareeters of the "two-stage" model is a more 

·complex process, and only a very limited set of experiments ~TaS carried out, 

to verify that at least reasonably sensible results "ere being obtained. 



A two-dimensional 10xlO region with ~=10 was used once more, with the 

follm'ing parameters for the long-range and short-range processes: 

The 

Long-range: PL = 2.5; O"L = 3 

Short-range: Ps = 1 0" = 1 s 

procedure for each experiment \.Jas as follolo1s: 

1. Generate random coordinates for N data points, lo1ith data values 

(Zi) given by ~, PL and' O"L' 

2. Using the same coordinates, generate short-range residuals (z7) 
1. 

3. 

4. 

5. 

given by p and 0" , with mean O. 
s s 

For each point e· i, z. :=Z.+Z .. 
1. 1. 1. .. 

Estimate ~ by the median of these data values. 

Position n
A 

"average points" evenly in the region of interest, 

A and compute weighted average values (z.) at these points. 
J 
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6. Estimate P
L 

from these average points by the "maximum likelihood" 

7. 

8. 

9. 

10. 

11. 

method. 

Ae 
Estimate z. ·at each data point by subtracting the fitted trend 

1. 
. " d process uS1.ng lJ ·an 

A 
Estimate Ps using the "pair-point" method 

.. 
Estimate Ps using the "maximum-likelihood" method. 

Repeat the whole process 10 times from step 1. 

" ... Compute the average and standard deviation of: PL'P
s 

by both methods, 

'PL/P
s 

(maximum likelihood). 

The experiment was repeated twice, once with N=20 and nA=lO, and the 

second time with N=40 and nA=20. The results are shown in Table B.2. It 

is noticeable that the 'correlation distances are consistently under-estimated, 

but that the ratio of PL to Ps is reproduced to a reasonable extent, 

especially "ith more data points. 
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c) Estimation of Anisotropy 

Two methods have been developed for estimating anisotropy factors (see 

Section 5.4). In addition, it will be useful to compare the results obtained 

when points are randomly scattered with those obtained with regularly 

positioned data points. Other variables of interest are the number of data 

points (N) and the ratio of the anisotropy factors (a
l 

and a
2
). 

As before, the basic experiment involved a 2-dimensional 10xlO area. 

The values of the other parameters were fixed: ~=lO, 0=2, p=2. 16 

experiments were carried out, varying the four factors as follows: 

1. Method I/Method II 

2. Random points/regular points 

3. N=20/N=40 .. -

. Each experiment involved generating N data points in the region of 

interest using the given parameters and anisotropy factors, and then using 

the appropriate method to estimate the anisotropy factors. The ratio ~2/~1' 

was computed, and this procedure repeated 10 times. The results of each 

such experiment were quoted as: 

. " /" 1. The geometr1c mean of a 2 a l 

2. K = eS 

where s is the estimated standard deviation of 109(~2/~l). 

(This seemed the most appropriate way to quote the results, as we are 

interested in the ratios of anisotropies in the two directions). 

Table B.3 gives these results for each experiment. The anisotropy 

ratio is generally underestimated quite significantly, although Method 11 

seems 'to do a better job than Method 1. 
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d) Areas of closed contours 

In Chapter 6, a formula is derived (6.10) for the approximate average 

area of an oilfield, considered as a closed contour at a certain level u. 

If we set E=U/O, then equation (6.17) gives the average area in terms of 

O,Os and E. It was felt necessary to validate these formulae, especially 

in the case where E is small and the approximation may not be accurate. 

Also of interes t is the shape of the dis tribution of these areas, <1hich 

should be approximately negative exponential, at least for large E. 

In order to investigate these distributions, random realisations of 

such contours were generated, and their areas computed. A triangular grid 

was used to track the positions of the points on the contour, and realisations 

of the correlated stochastic process were generated at the required nodes 
...... 

of the grid, using the method described in section a) of this appendix. 

Figure B.l illustrates this procedure for a simple example. The closed 

contour Z(~)=u is thus approximated by a set of straight line segments, 

each produced by linear interpolation across a triangle. 

This procedure was carried out using the following parameters: p=2 

(=l/os)' 0=2, and for a range of values ofE(=u/o) from 0.5 to 2.5. 

Bet<1een 25 and 32 realisations were generated for each value of E, and the 

results are tabulated in Table B.4. The average area (A) and standard 

deviation (~A) were estimated from the results and an approximate 95% 

confidence interval for the true mean area was computed, assuming 

approximate normality for the distribution of A. 

From Figure B.3 it can be seen that E[A], computed from equation (6.17), 

falls inside this confidence interval in every case, and that the agreement 

is particularly close between E LA] and A for large E. Figure B. 3 shows 
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histograms of the distribution of areas for the various values of £ - the 

negative exponential assumption is seen to be quite reasonable, even for 

small £. Figures B.4 and B.S show some example realisations of closed 

contours for £=1.0 and £=2.0 respectively. These bear out the assumption 

that for large E the contours will tend to take e11i~tica1 form (sce Ad1er, 

1981, p.136ff), although this is obviously not the case for smaller values 

of £. The results of these simulation experiments seem to confirm that the 

assumptions made in Chapter 6 are not unreasonable.' 

c) Uncertainty in oil reserves <1u~, to variation in E 

In Chapter 6 it was shown that the uncertainty in oil reserves in a 

given area, according to our model, can be considered to be due to at least 

two sources. One is the variance in" the reserves given a certain set of £ 

values in the blocks under consideration, and the other is the variance due 

to variations in the £ values themselves. To evaluate the 1atter"random 

realisations of £ for the blocks were generated, and for each such set of 2 

values the mean and variance of the reserves "ere computed. 

Given the known ~ value at the locations of the existing fields, it is 

simple to estimate the mean values £ at the block locations, as well as the 

* residual covariance matrix S for the blocks. The simplest way of generating 

a random £ realisation consistent with this is to use the Cholesky 

decomposition method (see Rip1ey, 1981, p.17), and find a lower triangular 

matrix L such that 

Then, 

* LL' = S • 

E: = E + Le 

where the e values are independent Standard Normal random variables. 

(B.2) 

This Cho1esky method is to be preferred to the method outlined earlier 
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ror generating random realisations in this case, as the locations of the 

blocks are fixed for each iteration. Thus the Cholesky decomposition can 

be carried out once for all. 

Three different values of the correlation parameter for the £ values 

(p~) were used - 0.44, 0.623 and 0.8 block units. In each case the assumed 

values of ~~ and p~ were 3.0 and 0.551 respectively. For the stochastic 

process used to model the oilfields, the values of p and cr were 0.0666 block 
. 6 
units and l2.433xlO 5TB. For each value of p , the following calculations 

~ 

were c~rried out: using the mean ~ values (£).the mean and variance of the 

oil reserves were computed; then 10 iterations were performed, each time 

generating a random £ realisation and computing the mean and variance of the 

oil reserves. 
2 If R is the mean reserves for one such iteration, and a
R 

the 

2 -2 2 
corresponding variance, then for that iteration we may set 5 =R +aR. We may 

2 2·· 
. estimate E[R j by averaging this 5 value over the 10 iterations, and 

simi larly es timate E [Rj by averaging R. Hence the variance, including the 

uncertainty in £, can be computed from E[R2j_ (E[Rj)2. 

Table B.S gives the results of these experiments. As would be expected, 

increasing p~ increases the mean and variance of the oil reserves. Allowing 

uncertainty in the-- £ values tends to increase the mean reserves, because a 

block with high 8 value will have little contribution to the expected 

reserves, and therefore can only give an increased contribution if ~ is 

allowed to vary. 
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TABLE B.l 

Results of p Estimation Testing 

N=10 N=20 N=40 -- -- ---
Mean S.d. M.S.E. Mean S.d. H.S.E. ~Iean S.d. M.S.E. -- -- -- -- --

p .-p. 1.93 1.26 2.46 1. 70 0.66 0.93 1.23 0.42 0.23 
p.,1.0 

M.L. 0.63 0.31 0.23 0.57 0.21 0.23 0.98 0.30 0.09 

P.-P. 2.53 2.12 4.78 1.77 0.69 0.53 1.83 0.41 0.19 
·p=2.0 

M.L. 0.91 0.56 1.50 1.16 0.34 0.82 1.25 0.16 0.59 

P.-P. 2.42 0.80 3.14 1.84 0.60 5.04 1. 73 0.78 5.76 
p=4.0 

M.L. 1.34 0.67 7.51 1.94 0.36 4.40 1.86 0.50 4.84 

P.-P. - P by pair-point method (10 iterations) 

M.L. - P by maximum likelihood method (10 iterations) 

I 
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TABLE B.2 

Results of Parameter Estimation for "Two-Stage" Model 

True values: Jl ; 10 PL 
; 2.5 Ps ; 1.0 

ClL 
; 3.0 Cl ; 1.0 s 

N = 20, n = 10 A 

Parameter Mean S.d. M. S.E. --" ,.. 
(HL) 1.838 0.575 0.769 PL 

A 
(HL) 0.523 0.182 0.260 Ps 

... 
(Pair-point) 0.517 0.205 0.275 Ps 

}Iedian value of PL/P~ (HL) = 3.861. 

N = 40, nA = 20 

Parameter Mean S.d. H.S.E. 

A 
(HL) 1.464 0.194 1.1108 PL .. 
(HL) 0.524 0.267 0.299 Ps 

A 
(Pair-point) 0.403 0.254 0.421 Ps 

Median A /" value of PL Ps (HL) = 2.942 
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TABLE B.3 

Results of Anisotropy Estimation 

METHOD I • METHOD II 

.. RANDOM PTS. REGULAR PTS. RANDOM PTS. REGULAR PTS . 

0.986 0.651 5.204 1.361 

N=20 (4.111) (2.425) (2.839) (2.592) 

1.546 ~.213 1.7696 2.162 

N=40 (2.411) (I.732) (2.073) (1. 769) 

....... 

METHOD I HETHOD II 

RANDOH PTS. REGULAR PTS. RANDOM PTS. REGULAR PTS. 

0.923 0.924 5.862 2.444 

N=20 (3.928) (3.696) (2.134) (1.590) 

2;017 2.027 4.114 4.268 

N=40 (1.865) (1.633) (2.081) (I.550) 

The top value in each cell is the geometri"c mean of &/al • 

s 
The value in brackets = e • where s is the estimated standard deviation 
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TABLE B.4 

Areas of Oilfi~ld Realisations 

No. of Av. 1'0 
Ap~roximate 95% 

e: !!ill Realisations A(li) 
CJA 

C.l. for mea!} - . 
: 

0.5 44.045 26 65.58 95.47 28.89-102.28 

1.0 16.485 32 21.00 18.34 14.23"27.76 

1.5 8 .6l,O 28 
" 

9.27 9.11 5.89-12.64 

2.0 5.307 25 4.86 5.21 2.82-6.91 

2.5 3.559 25 3.18 3.60 1.61-4.76 
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TABLE B.s 

variation in Oil Reserves 

-. p =0.44 p =0.623 p_=0.8 
£ £ ~ 

£ fixed 

9 Mean (l0 STB) 24.63 38.86 47.79 

Variance (1018 . STB2) 505.5 721.1 867.1 

Standard deviation 22.48 26.85 29.45 

(109 STB) 

Averaging ~ realisations 

---
E [R2] (10

18 STB2) 1608.3 3313 .45 4095.1 

E [R] (109 STB) 31.06 48.95 55.535 

Var[R] (1018 STB2) 643.6 917.6 1010.9 

Standard deviation 25.37 30.29 31.80 

(109 STB) 
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o - POINT AT IffiICH 
REALISATION OF 
PROCESS Z(~) IS 
GENERATED 

CONTOUR Z (~) =u 

FIGURE B.l: Example of generation of random closed contour 
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FIGURE B.3: Area histograms for different values of to 
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FIGURE B.4: Examples of contours for e - 1.0 



, 

244 

o 1 2 3 

,. 

; 5.57 

Area; 12.03 

FIGURE B.5: Examples of contours for e ; 2.0 




