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THEORY AND APPLICATION OF MULTI-DIMENSIONAL STATTONARY STOCHASTIC PROCESSES

ABSTRACT

The theory of stationary stochastic processes in several dimensions
‘has been investigated to provide a general model which may be apvplied to
various problems which involve unknown functions of several variables,
In particular, when values of the function are known only at a finite set
of points, treating the unknown function as a realisation of a stationary
stochastic process leads to an interpolating function which reproduces the
values exactly at the given points. ‘With suitable choice of auto-correlation
for the model, the interpolating fgﬁction may also be shown to be continuous
in all its derivatives everywhere. A few parameters only need to be found

- for the interpolator, and these may be estimated from the given data.

One problem tackled using such an interpolator is that of automatic
contouring of functions of two variables from arbitrarily scattered data
points. A "two-stage" model was developed, which incorporates a long-range
-"trend" component as well as a shorter-range 'residual” term. This leads

to a contouring algorithm which gives good results with difficult data.

The second area of application is tha£ of optimisation, particularly of
objective functions which are expensive to compute. Since the interpolator.
gives an estimate of the derivatives with lirtle work, it is simple to
optimise it using conventional techniques, and to re—evaluate the true
function at the apparent optimum point. An iterative algoritum along these
_lines gives good results with test functionms, especially with functions of
more than two variables. A program has been developed with incorporates

both the optimisation and contouring applications into a single package.




Finally, the theory of c#cursions of a stationary prccess above a
fixed level has been applied to the problem of modelling the occurrence
of oilfields, with special reference to their .spatial distribution and
tendency to cluster. An intuitively reasonable model with few parameters

has been developed and applied to North Sea data, with intcresting results.
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CHAPTER 1

INTRODUCTION




The concept of & stochastic process is a very powerful oune, and I
hope to show that it has useful applications.in several fields whete
‘existing ideas and methods are not always entirely satisfactory. One of
the most familiar examples of a stochastic process is the random function

of one variable, A time.series may be considered to be such a random

function, sampled at a discrete set of points.

A stochastic process is a probabilistic entity, and has no direct
physical reality. We may say that a particular physical function of several
variables is a realisation of an underlying stochastic process, but it is
not identical to the stochastic process itself, which cannot be directly

experienced. In the same way an ordinary random variable cannot be directly

experienced, but only its realisations.

The main area of interest to which.this concept has been applied is
that of igterpolation. If a function of several variables is known only
at a number of discrete points, and values are required at other points,
then some means of estimating the unknown values is required. Any such
algorithm gives rise to an "interpolating function", i.e. a function éf
the variables which estimates the unknown true function given the known
values at the data points. By the nature of the problem, such an
interpolating function is virtually bound to be in error, and it is only
by purest'chance that it will exactly match the true function everywhere.
Also by the nature of che problem, the number of possible interpolat;ng

functions for any given set of data is infinite. The question thus arises

of judging which of these possible functions is best in some way.



Two criteria may be used to judge such an interpolating function.

A first, it should be "exact", in the sense that it should exactly repreduce
the true function values at the data points. This criterion is not |
generally satisfied by fitting a function of given algebraic form (c.g.
polynomial) to the data,.unless the number of parameters to be fitted is
edual to the number of data points. Second, it is usually desirable that
the interpolating function Ee continuous in all its derivatives. This is
not the case with‘interpolat{ng functions of the spline type, ér any of the

more “ad hoc'" methods used.

I aim to show that modelling the unknown function as a realisation of
a multi-dimensional stochastic brocess leads to an interpolating functiom
- which satisfies both these crite;ia. Furthermore, it is simple to compute
and requires the estimation of very few parameters. Of course, the simple
stochastic model is qot always a reasonable representatioh of a physical

function, but it is possible to widen the scope of the basic model to

embrace a large range of practical situations.

This type of stochastic interpolating function has been applied in
two fields whe?e there seemed to be a need for ; better means of inter-
polation. The first application was in the automatic generation cf contour
maps, especialiy from saéttered data points. In this case the model is of
a stochastic process in only two dimensions, but there is no essential
difference between this interpolaéing function and those in higher

dimensions. .

To generate contour lines efficiently from scattered data points,
it is necessary not only to have a good interpolator, but also a means

for keeping track of the contour lines. Conventionally, this is done by




interpolating values to the nodes of a regular mesh,'aﬁd then using a
standard contouring algorithm for gridded déta. However, this can lead
to a loss of representation of the 6rigina1 data, so a contouring
algorithm was developed, using the stochastic interpolating function,

which generates contour lines directly, without the use of any kind of grid.

-

The contouring élgorithm has been tested on various sets of physical
data. From this it became apparent that in séme cases the very simple
stochastic model could be extended to cover the situation where there was
an underlying long-range trend plus a more gquickly varying short-range

Coe
component. Thus the "two-stage' model was developed, whereby the stochastic
pfocess is assumed to be the sum of two such components. Interesting and

subjectively reasonable contour maps of physical data have been produced

in this way.

As an application for the interpolating function in more than two
dimensions, the problem of optimising objective functions of several
variables was considered. Much work has been done on this subject, and
many excellent algorithms exist for the eféicient location of loéal optima,
éSpecially if the function can be differentiated. However, most such
- techniques can require a fair number of function evaluations to be carried

out in order to reach ‘the final optimum value..

The problem was considered from a sliéhtly different angle: suppecse
we have a function of several variables which is expensive or difficult to
cbmpute and the derivative canhot be directly evaluated, but we wish to
obtain a good idea of the position and value of'an optimum point with a
minimum number of fﬁnction evaluations. How should we proceed? If we

pick an arbitrary starting point and apply a conventional technique, it
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may take an unacceptable aumber of function evaluations to reach a result,

even if progress is steady.

An alternative aﬁprqach to this problem is to start with a set of
initial points, spread widely throughout the region within which the optimum
is known (or hoped) to lie, These.initial points should be positioned
within the multi-dimensional "region of interest” so as to gain the maximum
information about the behaviour of the function. (How this is to be
achieved is a problem in itself). A stochastic inﬁerpolating function is
fitted to.;his'initial set of data, and a standard optimisafion technique
is used to find an optimum point for the interpolator. This is made simpler
by the fact that derivatives of the interpolator are easily computed. At .
the interpolated optimum point,_g,ngw function evaluation is carried out,
which is compéred with the interpolated value;: If they agree, this is taken
to be a good approximation to the true optimum yalue. Otherwisé, the .
ihterpolator is re-fitted (taking into account the new point) and the

process is repeated.

In essence, the philosophy here is to ﬁake the maximum possible use of
all the data collected at evéry stage. This will lead to more computiﬁg
between function evaluations, but it is hoped that this will be offset by
a reduction in the total number of fungtion evaluations. This technique
has been applied to various teét functions, and the resul?s appear to be

promising.

It has been found necessary tc include in the stochastic model
provision for anisotropic correlation. In other words, adjacent funétion
values may be more highly correlated in some dimensions than in others.
This is a fairly trivial extension to the theory, the 6n1y problem in

practice being that of estimating the anisotropy factors.




A program has been .written which incorporates all these applications
of stochastic processes into a single package, 'The progrdm, named SIMP
(Stochastic Interpolatioﬁ and Mecdelling Program), is described in detail
in Appendix A, It is designed to handle either a user-defined function of
several variables, with data points generated evenly throughout the region
of interest, or a set of input data values at arbitrary locations in several
dimensions, With the latter type of data input contour maps may be produced
in any plane defined by two of the variables, and it is also possible to
plot cross-sections of the interpolating function along a line joining any
two points. For the user-defined function, it is possible “to produce

contour maps and sections in the same way, but in addition optimisation

may be carried out on the function as described earlier. As & by-product

T

an estimate of the function integral over the region of interest is also

given,

Another application of the theory of stochastic processes is in a
different area of interest, The particular problem is that of modelling
the occurrence of oilfields within some oil-bearing region. This has
obvious practical and economic importance, especially if the region is
only partially developed. Models used to date have been very "ad hoc",
with many parameters defined purely intuitively., To put things on a
rather better footing, it is necessary to have a model which is simple
and coherent, with a small number of parameters which can be fitted to

the given data,

The model suggested is based on a stationary stochastic process in
two dimensions, An oilfield is assumed to be 2 connected region over
which the stochastic process exceeds some specified value or limit, From

the parameters of the stochastic process and the value of the given liuit,



it is possible to calculate expected values for the area of an oilfield, -
as well as the number of oilfields per unit area and the reserves of an
arbitrary oilfield. An extra refinement is to allow the limit value to
vary slowly from point to point, This simulates the real situation in

which the sizes and numbers of oilfields vary regionally,

This model has been fitted to some data for the British.North Sea,
and the results obtained are at least subjectively appealing. It is hoped
that this type of model can produce a framework on which more reasonable
estimates can be based of the resefves of partially explored oil-bearing

regions,

As can be seen, the theory of stationary stochastic processes in
several dimensions provides access to a set of models which can be applied
to various types of problem. Interpolation of functions from finite sets

of data points has been the main area of application in this work, but it

is by no means the only one.




CHAPTER 2

A BRIEF SURVEY OF THE THEORY




2.1 DEFINITIONS

A stochastic process in m dimensions 1is a genéralisation of the
concept of a time geries, or random function of one variable. The lattex
may be defined as follows: for each possible value x of an indicator
variable within some domain, there is defined a random variable Z{x) with
a given probability distribution., This probability distribution may be
deseribed by ﬁeans of the probability distribution function F(z,x)=P[Z(x)gz]
However, knowledge of this distribution function F(z,x) for all values of
x is not sufficient to define the behaviour of the stochastic process
completely - it does not aescribe the relationships between values of
the stochastic process at different points. To specify the beh§viogr
completely, we need to define -the finite—dimeﬁsional distribution function

?(zl,zz,...,zn,xl,...,xn) for any set of points (xl,...,xn):

F(2)y00ns2s% pene k) = 220052 0 000n20)57] (2.1

The extension of this definition of a time series, or random
function of one variable, to that of a random function of m varigbles
Z(E)’ is straightforward, The indicator variablé'giij now a vector of
m elements, and the finite-dimensional distribution function for a set of

n points is
F(zl’t"’zn’fﬂ""’ﬁn) = P[Z(El)szi,...,z(gn)ng . (2.2)

An important concept for stochastic processes of this type is

that of stationarity. The stochastic process Z(x) is said to be

i

stationary "in the wide sense" if, for every set of n points
(51,...,§n) and arbitrary translation vector T,

F(zl,...,zn,ﬁ&,....gn) = F(zl,...,znaglfg,...,§n+£) . (2.3)



In other words, tramslation thrcugh the m—-dimensional domain dces

not change the probabilistic structure of the stochastic process.

The assumption of wide-sense stationarity has some important
consequences, Firstly, equation (2,3) shows that F(z,x) = F(z,x+1}, and
hence that the probability distribution of Z(x) is the same for every
point x. In particular, this implies that the mean

E[Z(}_c_).] = constant = p , (=say) . (2.1;)

Secondly, we may define the covariance of the stochastic process
»

between two points Xy and X,

Covar[z(x,),2(x,)] = E[(z(x))=-n) (Z(x,)-w]. _ (2.5)

This obviously depends on the distribution function F(zl’z2’-§1’-§2)‘

which is independent of absolute position (by wide—sense stationarity)

and is a function only of the difference x Hence the covariance is

1 ="

a function of XX, only, and ve may write:
Covarlz(x,),2(x,)] = T(x)75y) . (2.6)

it is also clear that Co'Jar[Z(_}f_l),Z(_)gz)] = Covar[Z(':_c_Q,z(gc_l)} and

"hence that the covariance function y() is symmetrical: y(£)=y(-£).

” )
The variance of the stochastic process, g~ say, is clearly

o* = Elz@-w4 =1 . 2.7

We can normalise the covariance function by dividing by the

. variance to give the auto-correlation function

g(x) = y(D) /o . (2.8)

These properties of the stochastic process, derived from wide-seunse



stationarity, car be used as an alternative stationarity criteriom,
that of second-order stationarity, Z(x) will be said to be stationary
to second order if E[Z(E)] is a constant and the covariance between any

two points x, and x

1 2

Wide-sense stationarity implies but is not implied by second-order

is a symmetric function of the vector X X only.

stationarity,

For general definitions of stationarity and auto-covariance and
auto-correlation functions, see for example Bartlett (1966, p.l74ff),

Adler (1981, p.13-15, 22-25), Ripley (1981, p.9ff).



2.2 PROPERTIES OF THE AUTQ-CORRELATION FUNCTION

Suppose that we have a stochastic process Z(x) which is stat‘ionary
in the wide sense, and thus possesses an auto-correlation functiom g().
We may be interested in the continuity of the stochastic process Z(x),
so this concept will need to be defined., One definition is to say that

Z(x) is continuous in the mean square if

ENZ() - 2(x+h))+ Oash+0 . (2.9
Now ELZ(x) - 2(x+h))?]

= Elze)? + @) ? - 2(02w)
= 2(02+u2) - 2(y(h) + 112)

= 2051 - g(w) . | (2.10)

Thus Z(_:f_) is mean square continuous if and only if g(_l}_) tends
to 1 as 'h tends to 0., The form of the auto-correlation function will

also tell us something about the differentiability or otherwise of Z{x).

Let S(x} = Lim (2,11)

I:Z(gsz_) - Z(g_g):l
h+0 '

h

where h = |h| .

Obviously S5(x) is also a stochastic process, and we shall say

that Z(_}_:.) is differentiable ir the direction h if $(x) has a finite

variance,
Z(x+h) - Z(x)
E[S(x)] = E[ Lim ¢ ™ ) ]
h+0
B{z(e)]) - E[Z2(0)]
= Lim ¢ - ) = 0. (2.12)
0
Z(x+h) - 2(x) 2
Var[S(x)] = E Lim ¢ o )]
h-+0
. E [(z(_;-_:.@))?' + .(2(33)):Z = 22(z+h)2(:))
= Lim (

h~0 h2

i0
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26%(1 - g(h))

= Lim )
0 . hz
= -6 g"(0) . (2.13)

Therefore, Z(x) is differentiable if the auto—correlation function
is twice differentiable at the origin, By a similar argument, we may
derive the covariance of the derivative process S(x).

Covar[S(x), S(x+r)]

= E[s(x)S(x+1)]
v (2(x+h) =2 (%)) (Z(x+z+D)~Z(x+1)) |
= E[{Lim >

-

1g] h

4

Lim 27 [2%() = Y(z+h) - Wz-h)]
0 h ‘

fl

—czé"(g) (2.14)

(See Bartlett, 1966, p.1809, Adler, 1981, p.25-27).

We can therefore use the properties of the auto-correlation fuﬁction
to classify stationary stochastic processes into one of three types:
a) Non-continuous. g(r) does not tend to 1 as 1»0. This implies
that the stochastic proceés contains an element which is
totaily random, or "white noise", (This is called "nugget
effect" in the terminology of regionalised variable theory -

see Chapter 3).

b) Continuous, but not differentiable. g(0) is continuous, but is
not twice differentiable. This implies that the stochastic

process is fairly regular, but by no means swooth,

¢) Continuous and differentiable, g(r) is twice differentiable at
the origin, which because of symmetry impiies that g'(0) = 0.

z(x) is a smoothly varying fuaction,
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Matheron (1971, p.57-58) describes these three classes of stochastic

process with relation to their variograms rather than covariance functions.

Generally speaking we shall try, if necessary by suitable scaling,
to ensure that the auto-correlation function is an isotropic function of
distance only, That is g(r)} = g(r) where r=|£|. In Chapter '5 scaling
factors will be introduced to model the case of anisotropic correlations,

The functional form of the auto—covrelation _has a controlling influence
B e T

on the behaviour of the stochastic process, as seen above, but it is

important to note that not all arbitrary forms of function are aljowable.

For an arbitrary function g() with g(0)=1 to be an allowable auto-

correlation function it must be positive semi-definite. That is to say,

given a set of n points EireresX, and arbitrary multipliers Al""’Aﬁ’

then

Il =113

n
) Aik'g(fgfi:) >0, - (2,15)
1 j=1t 3 T

(]

The reason for this is simple to see - suppose that it were not

so, and it was possible to find a set of Ei's and Ais such that

n
Y A d.glx,~x.) <0,
1 j=1t 3 T

1t~

i

Consider the random variable

n
X = izlxim(gci) - W .
1)
Var(X) = _ A AE [(Z(x ) - (2(x. ) ~u)]
i=1 =1 ' i 3 :
5 n | X
=0 121 jzlliljg(gi-fj) <0. (2.16)

!

Since it is impossible for the variance of a random variable

to be negative, it is clear that the requirement of being positive
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semi-definite is necessary for g(). Another way of interpreting this

constraint on the possible forms of g() is via the Fourier transform.

At this point we need to apply the "ergodic theorem'" .of stationary
stochastic processes (see for example Yaglom 1962), This states that the
mathematical expectation of functions of the process Z({(x) may be replaced

by the limit of the average of the function over a large region Q.

If we replace the covariance function Y(E) by its estimate over
a large region Q:
A 1 '
() = f (Z(x)-w (Z(x-r)-u)dz ,
.|Q| Q
then as @ tends to =, ?(E) tends to y(xr). If we consider the Fourier

transform of ?():

o 1 iw.r
G(w) = I (T'T f (2(x)~1) (Z(x~x)-p)dx)e ="= dr
A Q

'l'QlT I'](Z(gc_)"u)eiﬂ'“}s .(Z(g_:_-::_)-u)e.-b-%'(z_—}p dx dr

Tfl?rj (Z(R-we'= di‘-[ @(-y)-we' Y gy

'['slz'[' ¢(w) . ¢(w) , (2.17)

where ¢() is the Fourier transform of Z(x)-u.
Therefore a 1
Glw) = T le(w)|” > 0 . (2.18)

Thus the Fourier transiorm of the covariance (and hence the auto-
correlation) function must be greater then or equal to 0 for all values
of w, Furthermore, by considering the inverse transform we can show
that the Fourier transform must have a finite integral,

y(x) a] G(gj_)e_im'- dy (2.19)
W
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(W is the m-dimensional region over which g is defined).

Therefore v(Q) = Var(z(x))
i [ Glw) dy « (2.20)
)

Thus. the integral of the Fouriér transform must be finite if Z(x)

-

has a finite variance. See Matheron (1971, p.13-14), Bartlett (1966, p.175-
176), Ripley (1981, p.10-11).

With these principles in mind, we can.consider various possible

forms of the auto-correlation function g(), assuzed to be isotropic.

a) g(r)=e_ar. Switzer (1955) has shown that a stochastic process
can be defined in any number of diwmensions with this auto-
correlation function, The main disadvantage of the function is

_ that it is not differentiable at the origin, and hence the

stochastic process, although continuous, is not differentiabls.

-ar . . . .
b) g(r)=e ¢ cosfr., This form of auto-correlation function 1is used
by Shvidler (1964) in two dimensions. Unfortunately, it is not
positive semi-definite in two dimensions and can therefore give

rise to negative variances. Its use is to be avoided.

2
¢) gl(r)=e @Y This "Gaussian" form of the auto-correlation

function has a similar form for its Fourier transform in any
number of dimensions, It is positive semi-definite for any
number of dimensions., Furthermore it is differentiable at r=0
and is therefore associated with a continuous and differentiable
stochastic process, This is the form of auto-correlation
function which will generally be used for the rest of this work,

usually in the form:

g(r) = exp(—r2/202) s

where p will be known as the "correlation distauce".



~d) A stochastic process can be created which is of "moving average"

type with a certain form in the following way:

Let e(x) be a totally uncorrelated random white noise process of
mean zero, and use a weighting function of arbitrary form, q() say, such
that - -
Z(x) = wu +[ g(x-u}e(uw) du . (2.21)

Then Z(x) is a well-defined stochastic process and will have a
positive semi-definite auto-correlation function, whose form is given
by: 2

g(x) = f q(uw) q(u+x) dg/f q (u) du . (2.22)
Thus by choice of the form of q(), we may generate a wide range
of forms for g(). For example in two-dimensions, for the case of an
isotropic weighting function gq(x,y), we could write

r r q(u-r/2,v) q(u+x/2},v) dudv
g(r) = ‘ . (2,23)

fm_ [” qz(u,v) dudv

Two such weighting functions have been used to generate appropriate

two-dimensional auto~correlation functions:

1. If q(x,y) = exp(-r2/2) with r2=x2+y2,

[” fmexp["(uz-rU+r2/4 +v2+u2+ru+r2/4 +v2)/2]dudv

I“ f“ exp[-(u2+v2)]dudv

exp(-r2/4) . f

then g{r}=

exp(-arz)cos(srz), then we.can show that

. . 2 2
e-t[coswt)— ;m(Yt) + (11129 oY t} L (2.24)

2. If q(x,y)

g(r)

24y 2+y

where t = 2%— and y = B/a .
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Thus the first example of such a "moving average" process gives rise
to an auto-correlation funcpion which is of Gaussian form (type (c) above),
while the second function, for §>0, gives rise to negative values of g(r)
for certain values of r. This may be useful in modelling practical
examples where this type.of negative correlation cccurs, since function

(b) above cannot be used.

Figures 2.1 to 2.3 illustrate some of these forms of auto-correlation

» function.

This list_by no means exhausts all the possibilities for auto-correlation
functions which have been suggested in the literature. For example, several
authors (Whittle, 1954, p.448; Maté}p, 1960, p.56; Ripley, 1981, p.56) have
suggested that the "most natural” form of auto-correlation function in two
dimensions is given by

= L T
g{r) = Ty Kl(r )

where Kl( ) is the modified Bessel function of the second kind, order 1.
Another popular model is the "spherical"” auto-corrclation (see David, 1977,
p.102; Journel & Huijbregts, 1978, p.163-164; Ripley, 1981, p.56) which in

three dimensions is represented as

3r r3'
g(r) = 1- + ’ rer
2r 3 0
0] 2r
0
= 0 s r>r0.

However, in the rest of this work I shall assume the simple form of
auto~correlation function given as (c) above. It is computationally
simple, is continuous at the origin, and requires the estimation of only a

‘single parameter to be fitted to real data. In practice, wve shall mainly
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be dealing with data which is sparse and widely scattered, so that it will
not be possible to differentiate precisely between the various possible
forms of auto-correlation function. See Ripley, 1981, p.58-64 for an

example where the data does not give clear guidance as to the form of

function ‘to be used.



2.3 ESTIMATION OF VALUES OF TiE FROCESS AT UNKNOWN POINTS

If the stationary stochastic process Z(E) has known mean ¥ and auto-
correlation funetion g(), then we may use the structure of the process to
estimate values at unknown points, given a set of known values. Suppose
a realisation of the procass has measured values Zy5e00yZ At m points
X.y+-23X , and it 18 required to estimate a value at the point X . We
~1 -n —n+l
shall consider linear estimators of the form
n

) = + X b..(z.-p)
. i1
1=1

B+ b)) (2.25) (2.25)

A least-squares error criterion will be used to find optimal values
of b. If Z(x) has a Normal probability distribution, then this criterion

will lead to a best linear unbiased estimator'for Z(§n+1).

B2, ) = 2, )]

il

Let ' H

E[(Z(x ,,) —n - 3‘(3_-}5))2]

=c2_~ 2b'c + bL'SH . (2.26)

where ¢ is a vector of covariances

2}

C.
1

Covar(ﬁ(gi), Z(§n+1

2 - x 3
o 8% —n+1)

and 3 is the covariapce matrix for the n known points

it

S, .

i3 ‘Covar(Z(Ei), Z(Ej))

2
o g(x; ij) .

To minimise H, set
b=slte ; (2.27)
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. -1
= L~ ”—
i.e, Z(§ﬂ+1) o+ s (: u)
= U o+ E'-_ (2.28)
-1

where Y =8 “(z-y) .

The vector Y depends only on the-values at and correlations between
the n original points. It may be considereé to be a vector of un—
correlated values derived from the initial data values corrected for their
known correlations. The estimation of an unknown value therefore consists

of multiplying this constant vector by the vector of correlations between

~ unknown point and known points, and adding the mean.

The variance in the estimate of Z(x1+l) is equal to the value of H
when b is set equal to S—IEJ i.e.-

A 2
Var[2(§n+l)] =¢ —-¢e'S ¢, (2.29)

We may estimate the value of the stochastic process Z(x) at any

arbitrary point in this way, and hence we may define an "interpolation

function" _
£ = E[z@|2Gx) = 2,..,2() = 2]
=u+c'(0).y | (2.30)
where ci(i) & g(gfgi) .

(see Ripley, 1981, p.44-47; Whittle, 1963, p.46-47).

1£ Z(x) 1is continuous and differentiable in the mean square, then
£() will also be continuous and differentiable. From the nature of the
estimation we know that f(E_.l)=zi for all the known points i=1l,...,n.

The interpolating function f£() thwus possesses two useful. properties:
1. It is continuous and differentiable everywhere,

2. It passes exactly through the given data points.



The first point can bec seen easily from the form of £{), rewritten

as:

£(x) = u + v;e(xx) . (2.31)

1l

Nl X

1

This is a linear sum of auto-correlation fumction terms. If the
auto—correlation function is continuous in all its derivatives at alil

points (including r=0) then £() will also be so. An example of an auto-

correlation function with thi's property is
2,.2 an
g(r) = exp(-r /2p7) , (2.32)

which is the form which will be used in most practical applications of

this work.

_ To see the second point from the definition of f£(), suppose that

X=X. say. From the definition of the vector v,

SY =z -qu . 0 (2.33)

.th - . . .
The 1 tow of this set of equations can be written as

' = - ‘r
E.(fi)'l. z; 0o (2.34)

This implies that

f(x.) = z.
&) =2z

and hence the function £{) is an exact interpolator.

In addition to the function itself, the derivatives of £{} in any

dimension k can be computed

Fh
~~
»
St
L)
{1 S 1

3
1‘Yi E-x;’ g(___"‘_‘{:i) . .(2.35)

al —
X i
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Similarly the integral of f() may be computed:

n
f(x)dx = uf dx + § v, I g(x-x.)dx ., (2.326)
IR - R i=1 */r T

Both these results will be used later.

Tﬁe assumption that Z(x) is a Normally distributed random variable is
one that will be made, implicitly or explicitly, throughout the remainder
of this work. As mentioned previously, with this assumption the interpolating
function (2.31) gives é best linear unbiased estimator for the value at.an
unknown point. However, it is possible to study the behaviour of non-Normal
randoﬁ fields - Adler (1981, p.168ff) deals with a-xz field,built as a sum

of squares of several independent Normal random fields. Ripley (1981, p.73)
advises that the best way of predicting a non-Normal process would be to
. find a transformation to Normality and pfedict the transformed process, and

- shows that a common example of this procedure is when Z(x) is assumed to be

log—Normally distributed.

Thus the Normal random field is both the simplest to handle and the
basis from which we may tackle other forms of stationary stochastic

process,



b
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2.4 ESTIMATION OF THE PARAMETERS OF- THE STOCHASTIC PROCESS MODEL

Before being able to use the stochastic interpolating function £()
defined in the previous section, it i1s first necessary to estimate values
of the parameters of the stochastic process of which the n data values are
assumed to form a realisation. In other words, we need to fit the
stoéhastic process model to the data. One of these model parameters is
the "grand mean" u, and we also need at least one other parameter to
des;riﬁe the auto-correlation function., We shall ;ssume for the rest of
the current work that the auto-correlation function take§ the form

g(r) = exp(-r2/2p2) , ' 2.37)

vhere p is the "correlation distance", and corresponds to an extra model

parameter to be estimated, e

The two parameters y and p control the general form of the inter-
polating function which is fitted to the data. The grand mean p can be
‘considered to'be the value to which the functien tends as i1t moves away
from regions of known data. In other words, it is the "best guess" at
thé function value when no other information is available, or the value
to which the stochastic interpolating function will extrapolate. The
correlation distance p is the distance over which the correlation betwzen
two points is strong. These two parameters interact in an interesting

fashion.

As p tends to zero, g() tends to become equal to u everywhere,
except at the measured data points where there are narrow "bumps' in
the function which make f(Ei) equal to z; . As p tends to infinity,
the value of p becomes of less and less importance to the interpolation,
which depends heavily upon the data values. Figure 2.4 illustrates

these properties of p and p.
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These two important parameters may be selected on the basis of some
subjective criterion to produce an acceptable.interpolator. Alternatively,
the parameters which best fit the data may be estimated using maximum
likelihood principles, making the assumﬁtion that the underlying stochastic
prdcess is normally distributed. This can be done in two phéses -
estimating p for a given p value and then estimating p for a giveﬁ u value.

Best values of both parameters are speedily obtained after a few iterations.

a) Estimation of u given p

I

Let us assume that the n random variables Z(ﬁf,...,z(fu) are
distributed with a multivariate normal distribution with probability

density

L an Vg

exP[-'i‘té - 3)'5-1(5 -wl o, (2.38)

where S is the covariance matrix, depending on p,

1

z (zl,...,zn)

and = u.l.

We may consider this to be the -likelihood L(p) given the data

ZyseeesZos and wish to choose y so as to maximise L(u). First take logs:

log L(u) = —inloanf£1og|Sf§(E_- E)'S-I(E_— 'y (2.39)

Hence Co i l
%log L) =1'8 'z + 2's "1 - 2u.1'S 1 =0, (2.40)
. @'sh ¢ 2's T 2.1 L (2.41)

i.e. : u=(1's

Therefore the maximum likelihood estimate of u for a certain

value of p is given by

fad
B =

. (2.42)




b) Estimation of o given u

Let N

e; = Zkzi) - Zi , i=1,...,n , (2.43)

N . .. .th .
where Z(Ei) 1s the value of the stochastic process at the i data point
A L * - ) - -

and Zi 1s the estimated value at that point, based on the previous i-1
values ZysveesBoe By is a normally distributed randem variable of mean O

. . 2 . . . =
and variance ., the residual error variance (see equation (2.29)). If
i 3

we form the series of values

M

..-.q |y.

e, = , i=l,...,n , - - (2.46)

1

this will produce a set ¢f n independent standard normal randem
variablees, ecact with mean O and variance 1. The log likelihood of the

assumed covariance matrix S used to generate these is proportional to
n n
= ‘2] 2 2 .
[; Y 6. J=- X e./a . (2.45)
1 . i
1= 1=1 '

We therefore need to search for a value of 5 which minimizes

the sum A . .
q - 267 R
H = (zi ; . . (2.46)

Ui
i=]

I t~1g

The terms in this expression may be most easily generated by the

operation of pivoting, as suggested by Beale (1976). Pivoting on the qth

e

diagonal element of the matriz § teo form a new matrix S* is carviaed out

as follows:

8% = ~1/8
qq
g% = Gk = -2 /S : . '
qk kq qi’ qg ‘ ;
=8% =5, -~S, 8§ sdq, kia) . (2.4
Sjk ng ik SJq qk/Sqq (3#q, k#q) (2.47)




If we perform this operation using the first i-1 diagon:l elements

of 5 in turn, with a new matrix S$** as the result, then we may write the

following:
~ i'z-l
Z. = uw - S%% (z. - 1)
i 521 1] 3j
ol = swx, . (2.48)
i i1

These two estimation procedures, used together, give good estimates
of the parameters pu and p. However, if the number of data points is large
then the process of estimation may be slow and time—consuming. This is
because of the necessity for computing the n by n correlation matrix §

and pivoting on it.

L

An alternative way of computing the e values for the above estimation.
procedure is to make use of the Cholesky decomposition. Ripley (1981, p.17}
shows that 1t is always possible to find a lower triangular matrix L such
that LL'=S. Then gfh_yg, and the computation of L_l is simple. Chambers
(1977, p.102-107) describes the computational details of the Cholesky

decomposition to produce L from S,

For reasonably large n it may be more practical to substitute
estimation procedures which, although not so rigorous as those already
described, produce acceptable results with less cemputation. If n is
large it will probably be reasonable to estimate u by the arithmetic mean
or the median of the data values. (The median may well be preferable as
being a more robust estimator and less influenced by extreme values). If
the data points are fairly evenly Spread, a good estimate of u can be

obtained with little computation.



One approach rto estimating p for large numbers of data points is to
consider the points in pairs, and to estimate the value of p by means of
each point and its nearest neighbour. Suppose that two such points are a

. 2,.2
distance r apart and let x=exp{(-r /2p7).

The covariance matrix for just two points

§ = , (2.49)

The log likelihood function for'x ‘derived from the bivariate Normal

distribution is

log L = -log(27w) -1 log ISI -4 Efsﬁlg (2.50)
where : z. -1 B
_ 1- 71
z = = say.
Z T M Y2

To find a maximum likelihood estimator for x set

dx 2|S| dx dx
Elﬁl = - 4 it 5
Therefore it B Bl CACI | (2.51)
Now
.d_l.il. = —20’41
dx ;
2 2,2 2
20 y,y o (yyty,"2xy.y,) 4
- . S
and E?? (2'sla) = - — L2 LRE . cllxl (2.52)
|s| s
which finally leads to
2
Y.y y,ty ¥,y
33 - 122 X2 + ( 12 Z_ 1)x - 122 =10 (2.53)
a g ¢ '

If a solution x* can be found for this cubic equation between the

values O and 1, then the maximum likelihood estimator of p derived frem
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the two given points is

A - 1
p =1 / “Jiogr (2.54)

This procedure may be repeated for n pairs of neighbouring points
and the set of estimates so produced averaged in some way, for example
by use of the median of the individual estimated values for different

sets of data.

In an attempt to evaluate the effectiveness of both these techniques
for estimating p, some simulation experiments have been carried out. Full
details are summarised here. Each experiment consisted of generating N

data points, randomly positioned in two dimensions inside a square region

-

of extent 10x10. Values of a Nofmal ﬁrocess with correlation distance p

were generated, and estimates p of this parameter were computed using both
methods ("Maximum iikelihood" and "pair-point")}. 10 such experiments were
pérformed fer each value of N and p. Values of N were 10,20 and 40, and p

took the values 1.0,2.0 and 4.0.

Figure 2.5 illustrates the results of these experiments, by plotting‘
both the average value of S'and the estimated mean square errox for each
combination of N and o, for each of the two methods. It can be seen that
for p=1.0 and 2.0 thé maximunt likelihood estimator is better than the pair-
point for N=10, but both aépear to cénverge towards the true p value for
ﬁ=20 and 40. However, both methods severely underestimate when p=40. It
seems to be quite difficult to estimate p acéurately when it i3z of the:
order of the dimensions oi the region of interest. For smaller values,

the pair-point methods seems to be equally as'effective as the maximum



likelihood technique for reasonable numbers of data points,

Another possible approach to estimating covariances from sets of
data points is'described in an appendix to Nelder & Mead (1964). Here in
n dimensions, a simplex of n+l points is used (together with the "half-
way" points between them) to give an estimate of B, the information matrix,
from which the covariance matrix can be ébtained. This can be seen to have

some similarities to the pair-point method, except that in say two dimensions

a number of triangles would be evaluated.
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2.5 EXCURSIONS OF A STOCHASTIC PROCESS ABOVE A FIXED LEVEL

One aspect of the theory of stochastic processes which has interesting
applications is that of excursions above a fixed level. It is probably
best to study the one-dimensional case first and then see how it can be

generalised. (See Cramer & Leadbetter, 1967, p.190-218).

H

Let Z{t) be a stationary stochastic process, with probability density
function £() at any point. Consider the fixed level Z(t)=u, and define an
"excursion" as an interval [tl,tz] for which

Z(tl) = Z(tz) = u

and z(t) > u for g <t<r, (2.55)

(see Figure 2.6). ~

3 ——

Various properties of these excursions may be investigated. For

)

example, the probability distribution of the length L (vhere L=t2—tl
may be investigated. Alternatively, the probability distribution of N,

the rate of occurrence of excursions per unit interval in t, may be

computed.

Each excursion is bounded by one "upcfossing" and one “downcrossing'
éf the process Z(t) relative to the level u, An upcrossing (such as tl)
is a point where Z(t)=u and Z'(t)>0. A downcrossing (such as tz) is a .
point where Z(t)=u and Z'(t)<0. Let us assume. that Z(t) has continuous

derivatives up to at least second order (so that it is continuous and

differentiable from section 2.2), and define the reverse gradient w by

wlt) = =2"(t)
Let fw() be the probability density function for w,

Rm(x) = Pluzx] = I:fm(x) dy ,
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c(z) be the probability density function of Z(t), conditional on Z{t)zu

= £(z)/R(2)
Consider P[Downcrcséing in (t,t+6t)|2(t);u]

e [wc(u+6) Plu> 6/8¢t]as
~40

= rc(u+6)R (5/6t)ds (2.56)
0 @, .

(see Figure 2.7).
Let y=8/6t, whereupon the required probability becomes

St fwc(u+y6t)R (y) -dy .
0 o

As 8t+0, this tends to become equal to

-

5t c(u) JMR (y) dy = s.c(u)ét (say).
00.1
Therefore P[Downcrossing in (t,t+6t)|2(t)2u]

- s.c(u)st = Bst (say) . (2.57)

where B = ;EE; er(y) dy = If{&; ry-fw(y) dy
: 0 0

If Z(t) is normally distributed with mean zero, then

[0
y.£ (y) dy = —=2
J:- w Y2

where Ui-=028"(0)'

_ e--u2/2cr2 N
So in this case B = " . (2.58)
1~¢ﬁ;) o

Suppose now we consider the random variable L, defined to be the

distance from the last upcrossing to the next downcrossing.

P[LE(R,8 +8t) |Lxa]= = BSt.
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Let fl(z) be the probability density function of L, and RL(z) =

P[L>22].
Then ' £ ()6t = BSTR (2) . (2.59)
Therefore dRL(ﬁ)
e T BRL(z)
and

dr, (2)
- = Rdg

RLGi
which imples that RL(l) = ke P*

L =0 F>RL(0) =1=K=1,

Therefore RL(z) = e_Bg
and £,(2) =ge ot (2.60)
Thus L has a negative exponential distribution, whose mean is
1. Rw '
E(L) = B = s.E(0) {2.61)
We can show, by a similar argument to the above, without:
conditionality on Z(t)2u, that
P[Downcrossing in (t,c+8€)] = s.f(u) 6t 1 (2.62)
Let X(t) = 1 if there is a downcrossing in (t,t+8t)
= Q otherwise.
¢

Consider an interval of size T, and divide it into M small sub-
intervals of size §t=T/M. Assume that &t is .sufficiently small that

the probability of more than one downcrossing in 8t can be neglected.

M
E[No. of downcrossings in T} = E[ X(ti)]
i=1
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=Ms f(u) 6t =5 f(u) T . (2.63)

Therefore, if N is the number of downcrossings per unit interval,

which is equal to the number of excursions per unit interval,

E(N) = s £Qu) , (2.64)

-

. and if Z(t) is normally distributed with mean zero, then

o 2., 2
E(N) = —% e /207 (2.65)
2

It would be nice if these simple results could be extended in a
straightforward fashion to higher dimensiéns - unfortunately this is not
the case., Adler (1976) discusses thoroughly the problems involved in
dealing with the random varizbles associated with excursions of a
stationary stochastic process above a fixed level in more than one
dimension. One résult that can be obtained is that the "volumes" of such
excursions tend to have a negative exponential discribution, but only

asymptotically as u tends to infinity.

Adler and Hasofer (1976) have generalised the notion of the number
of downcrossings of a stochastic pfocess per ﬁnit interval to define
a "characteristic” x of an m-dimensional process. x is closely related
to the number of connected components of the excursion set of the process
above the fixed level u; The difference arises in the cﬁse vhere
components of the excursion set contain "holes" or totaliy enclosed
regions where Z(x)<u. Probabilistic calculations may be carried out on Y

which are not possible on the more directly useful variable.

For example, if Z(x) is a two-dimensional stationary process,
Adler and Hasofer show that

—u2/20’2

2 ]
3/20UJ ue R (2.66)

E(y) = (ZTrUz)-
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" by comparison with equation (2.65) for the one-dimensional case.

In Chapter 6 of this work I shall use the concept of excursion
sets in two dimensions to model the occurrence of ecilfields, and derive

approximately the expected area of an arbitrary such excursion.



g(xr) = exp (-ur)

FIGURE 2.1:

Auto-correlation function example
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g(r) = EKP("Grz)

FIGURE 2.2: Auto-correlation function example
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_ e 2 - _y2
g(r) = e t [CObYt ysinyt (1+Y ) ¢ t]
2 2
2+y 2+Y
t = ar2/2
/-\ s
0 v

FIGURE 2, 3: Auto-correlation function example
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s, TEST DATA.

~

FIGURE 2.4(2): Example of stochastic interpolaticn

- small correlation distance p
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's. TEST DATA.
;

=-13.
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FIGURE 2.4 (b):

Large correlation distance p
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FIGURE 2.6: Excursions of a stochastic process

above the level u

\



t \\\\\\t+6t

FIGURE 2.7: Downcrossing of the level u by the stochastic

process in a small interval 6t
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CHAPTER 3

OTHER APPROACHES TO THE SAME PROBLENS
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3.1 THE TBEORY CF REGICNALISED VARIABLES AND KRIGING

The French geostatician Matheron has developed a theory of
"regionalised variables" which he applies to problems-in the mining
_industry. It may be instructive to outline briefly the basic concepts
of his theory and compare it with this work. Unfortunately, Matheron
has also developed his own-terminology to describe his methods, which

often makes translation into terms of conventional theory difficult.

Regionalised variables are assumed to be fealisatioﬁs of stochastic
processes in one, two or three dimensions. Since the theory is to be
applied to physical properties (e.g. of ore-bodies) which are highly
variable from point to point and which appear not to possess a constant
mean, the stochastié processes-ég;sidered are not necessarily stationary.
If they are sgationafy, then they neced not possess a finite variance or
be differentiable or continuous. To allow for the possibility of noun-
stationary functions with infinite variances, Matheron introduces a weaker
condition than stationarity, which he terms the "intrinsic hypothesis™,

(See Matheron, 19271, p.533; Journel & Huijbregts, 1978, p.33).

This hypothesis is that the increment 2(5959—2(5) has a mesn and
variance which are independent of x.

i.e. CE[z(x+r) - 2(x)] = m(r)

Var[Z(x+r) ~ Z(x)] = 2v*(x) . (3.1)

The function y*() is known as the "semi-variogram'" and can be
seen to be related to the auto-covariance function y() if Z(x) is
stationary and has finite variance.

Y*(r) = {Var{Z(x+r) - Z(x0)]
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} E[(Z(xrn) - 2D 7] if E[2(x+p)] = E[2(0)]

b2u? + 207 - 2y - 2% .

o? - v . | (3.2)

i

-

Note that if y*(r) tends to a finite limit as r tends to infinity,
then the process is stationary, with variance equal to this limiting
value. Otherwise, if the semi-variogram tends to infinity, the process

is non-stationary (see Figure 3.1).

Thus Matheron uses the "intrinsic function" ¥Y*() in preference to
the autd—covariance function y() because of its applicability to a wider
class of stochastic processes. However, in most of the applications in
this work (contouring, interpolégion of unknown functions) the assumption
,Of stationarity is a reasonable one to-make, and it is simpler and more

natural to use the auto-covariance or auto~correlaticon function.

In actual ﬁractice, the difference between a stationary and a non-
stationary process is very difficult to detect - it depends upon the
domain over which the process is being studied. An apparently non-
stationary trend may in fact be a local manifestation of a long-range

variation which is itself stationary (see Figure 3.2).

This leads on to the concept of "universal kriging" in Matheron's
theory. '"Kriging" relates to the estimation of unknown values or
integrals - thus "punctual kriging" refers to the estimation of values
of the stochastic process at unknown points. In "universal kriging' the
assumption is made that the process has a "trend function" m() such that

E[2(x)] = m(x) , . (3.3)

as well as the intrinsic function
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Y*(x) = {Varl[Z{x+r) - Z(x)]

(see Figure 3.3).

Some sort of functional form is assumed for m() (e.g. polynomial)
and parameters of this function neea to be fitted to the data, and the
form of y*() must simultaneously be estimated. Given all these parameters
of the.regionalised variable model fitged to the known data, best linear
unbiased estimates of any function of the underlying variable may be
obtained. Thus universal kfiging leads to an iterative procedure in which
an estimate of y*() enables a form of m()} to be fitted, and hence residuals
can be calculated. The correlation structure of these residuals leads to

an updated form of Y*() and so on.

In general, a fairly large number of parameters need to be estimated,
specially if m() is to be fitted in séveral dimensions., There may well be
no good a priori reason why m{) should have any particular functional
form, so attempts to fit polynomials may not be particularly useful, and

can lead to dangerous extrapolation tendencies. Whittle (1963, p.84-85)
has some cautionéry words regarding this approach with regard to time

series. :

' Wh;t seems to be a better philosophy for modelling functions which
inqlude some form of "trend" is to treat them as realisations of a
stochastic process which is a sum of stationary components. These
individual processes will have different ranges over which their
correlations extend, and this will lead to a siﬁpler, more uniform

model with fewer parameters to be estimated.

Olea (1974) has applied universal kriging to automatic contouring,



and claims that the maps so produced are "optimal" in the sense of
producing minimum variance unbiasced estimates of the unknown values.
However, Akima (1975) has criticised this claim by pointing out that

the optimality criterion chosen requires certain fairly strict conditions
on the structure of the data, and that other criteria might well be more
applicable for other types of data. Generally speaking, it is true that

no one wethod is going to be "optimal" for all possible sets of data.

+

Akima proceeds to more detailed criticisms of Olea's methods, but
also points out a crucial problem with all techniques for fitting a
"drift" function together with correlated residuals. This is the problem
of the inter-relation between the chosen "drift" function and the form
of correlation for the residuals- - a large number of possible selections
may be made .of drift/correlatian combinations, all of which will fit the
observed data. But, as Akima savs: "The question is whether or not such
a selection can be made objectively and automatically with a prescribed
algorithm". The chances are that it cannot, and that an element of
subjective decision and choice will always be present in automatic

contouring.

One important difference between geostatistics and the types of
problem dealt with iﬁ this work concerns the amount and regularity of
data. Génerally speaking, it is the case that geostatiétical data is
collected at a large ﬁumber of points on a regular grid. It is thus
reasonable to fit complex models with many parameters and to expect to

extract meaningful information from such models. (See Journel &

Huijbregts, 1978 - for exauple their case study 11, pp.272-280).
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An important pért of geostatistical analysis is the fitting of the
variogram to the data — equivalent to our problem of estimating p,
(S;ction 2.4), but normally with enough data to enable the functional
form of the variogram to be checked, David (1977, p.119) describes
various general strategies for fitting variograms, while Journel &
Huijbregts (1978, pp.207£ff) give formulae and computer programs for
calcplating experimental variograms in different situations. Of particular
interest is their method for "non-aligned data" (p.211,223) - i,e, randoﬁly
scattered data. Their preferred uethod is to use "angle classes” and
"distance classes" to estimate the variogram averages in different
directions. From the experimental variograms so derived, fits of more
or lessicomplex theoretical variograms may be obtained. On pp.192-195,
Journel & Huijbregés discuss the variogram estimation variances, and
note that strict goodness-of-fit tests for this problem would almost
never invalidate the fit, because of the large "fluctuation variance”,
On pp.233-235 they investigate the robustness of the geostatistical
results with respect to two different»model variograms fitted to the-
same data - the conclusion is that the difference is negligible in the
case studied. So that even in geostatistical analysis, with large amounts
of data, the form of model variogram fitted may be governad less by the

data and more by subjective considerations,

Hawkins & Cressie (1981) have developed a system for the robust
estimation of the variogram in the presence of outliers. Taking pairs

a distance h apart, they show that Y =/Z

of points Zt and Zt+h . t+h—zt

has a probability distribution which is close to Normal if the Zt values

are Normally distributed. They consider robust estimators of the variogram
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proportional to Y and Y , where Y and Y are the mean and median of the

Yt values respectively, and test them against simulated data with outliers,
We shall return to consideration of estimators of this type when we

discuss the estimation of anisotropy (Section 5.4).



3.2 OPTIMISATION OF EXPENSIVE OBJECTIVE FUNCTIONS

The optimisation problem is that of finding a point x which
maximises {or minimises) an m—dimensional function F() within some

specified "region of interest” R. Practical optimisation problems may

be broadly grouped into three classes, as follows:

a) Local optimisation problems. Starting from a given initial

point in R, to move to local maximum (or minimum) of F().

b) Global optimisation problems. To find the local optimum
point in R with the highest (or lowest) value among the

class of all local optima,.

L

c) Expensive optimisation problems. Assuming that each
evaluation of F() at .a new point is "expensive'" in some way
(e.g. in terms of computing time), to find a reasonably good
apﬁrbximation to a global optimum value in an acceptably

small number of function evaluations.

Much work has been done on type a) problems, and many excellent
algorithms exist (see for example Zoutendijk,1976 & Fletcher,1980).
Most modern algorithms require knowledge of the first derivatives of tne

function F(), either given explicitly or computed numerically,

The global optimisation problem, type b) above, is theoretically
impossible to solve. Therz is no guarantee that any given algorithm
will detect a global pptimum in a finite number of function evaluations
for all possible objective functions. Figure 3.4 illustrates the

problems invoived. However, this fact has not prevented some work being
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done in this field, the assumption being that most functions of interest
will be reasonably well-behaved. Dixon et al (1975) have produced a
general survey of the pfoblems involved in global optimisation and some
of fhe strategies which have been used.

Most strategies involve some modification of the totally random
search technique, which is to generate a large number of random points in
‘R aﬁd choose the largest (or smallest). Alterna;ively,-a number of
random points in R may be generated and from each such point a local
optimisation routine initiated. . Then choose the largest (or smallest)
local optimum so found. These crude methods ecan be modified in various
ways to imprbve the efficiency with which the global optimgm value is
founﬁ (normally measured in terms-of number of function evaluations).

(see e.g. Solis &—Wets, 1981).

For example, frice (1977) describes a '"controlled random search
procedure"”. An m-dimensional function F() is optimised by genérating
an initial set of N points randomly in the region of interest R. New
ﬁoints are generated taking .into acéount the N existing points by
selecting a random subset of m+1 points from the full set of N points.
This subset of points forms a simpléx in the mrdimeﬂsional space, and a
new trial point is generated by reflecting an arbitrary membér of the
subset in the centroid of the simplex (see;Figure 3.53). If the new
trial point has a value F(x) better than the worst point in the current
set‘of N points, that worst point is dropped from the current set and
the new point is included, In this way it.is hoped that the N points

will tend to cluster about global optima as the algorithm continues.

Price quotes some results from tests on different objective functions.
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For example, with a 9-dimensional function (described in more detail

in Chapter 6), a very good approximation to a global optimum point was
found after six runs of the program, each time restarting with a smaller
region of intefest centred on the end point of the previous run. Each
run required qf the order of 20,000 to 30,000 function evaluations, so
this procedure would not be ideal for an objective function which was

expensive to compute.

de Bizse and Frontini (1978) describe a method based on random
sampling of points within R. Their first aim is to estimate the function

w(), where

Y(E) = P[Random point EER haSAF(E) 's. E] , (3.4)

or, alternatively, y(£) is the normalised Lebesgue measure of the

subset of R for which F(x)sg.

If the function ¢() is known, then the minimum value bf F() iﬂ R
‘may be obtained by setting $(£)=0. de Biase and Frontini set out first
to estimate Y(£) by random sampling in R. Sets of q random points are
generated %teratively and pairs of values (Ei’$i) are obtained for each
such set. This ié repeated and spline approximations are used to fit
the funetion p() to these results. This stage of the procedure is
terminated when a consistent fit is achieved, and enough points are

assumed to have been génerated. The predicted minimum value 8% of F()

can be obtained from these results.

The second stage of their procedure is to group the points
generated in the first stage into clusters and carry out a search for
a local optimum within each cluster. Results for this algorithm for two

test functions considered later (see Chapter 6) are tabulated on the next

page. . - . .

y/



Stage 1 Total g* ¥
Function Function Function (Predicted {Final
Evaluations Evaluations Minimum) Minimum)
Branin's RCOS 142 208 2.360 1.250

Goldstein & Price 72 144 3.5513 2.9997

Thus the first stage (initial random sampling) and the second

(local searches) take a similar number of function evaluations.

It seems obvious that methods based on random sampling are not
going to be of maximum efficiency. Points will not be evenly spread

throughout the region of interest, but will tend to clump together,

-

leaving uneven spaces between (;ee Figure 3.6). Two points which are
very close are not contributing fully to ; knowledge of the function
behaviour, assuming the function is spatially correlated to some degree,
since the value at one point could have been inferred, to a greater or
lesser extent, from the other point., At the same time information is

being lost in the empty spaces.

For an expensive objective function is seems clear that random
sampling is not efficient enough, and that points must be spread as evenly
as possible throughout the region of interest so as to maximise the

information gained from a small number of function evaluations.




3.3 PREDICTION OF THE OCCURRENCE CF OILFIELDS

An "o0il province'" may be defined as a geological area within which
oilfields have been or may be discovered. Such an oil province is
expiored by conducting geophysical and geological §urveys_which locate
subsurface structures with potential for accumulating oil, and by drilling
"ildcat” wells to determine whether or not an oilfield is present at eacﬁ
such locétion. It. is obviousiy of considerable interest to be able to
predict for a given oll province the number of oilfields which are actuélly
present and the reserves of oil Which they contain. If the oil province
.has been thoroughly explored, this is not difficult since the majority of
the fields will have been discovered. If however the exploration has just

begun, it requires much more inéiéht to be able to make usecful predictions.

Some work has already been done in putting these predictions on a
sounder footing than sheer guesswork. In particular the Russians have
.studied the subject, see for example Juca and Nitkiewicz (1975). The
best-known attempt in the West is p;obably that by 0dell and Rosiﬁg (1274)

to predict the development of the North Sea oil province.

Odell and Rosing set out to predict not only the total recoverakble
reserveé of the North Sea but also its future rate of development and
_production. waever, the model they used was unfortunately full of ad
ﬁoc assumptions which rendered the results of little objective value.
The numbers and Qizes of potential oil-bearing struc£ures were assumed,
as were the sucégss probabilities for wells drilled into the various
structures. An oilfield having been discovered, the reserves initially
estimated for it were assumed to apprgciate consistently with time (in

practice in the North Sea, unlike some other regions of the world,
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initial estimates of reserves can be either too high or too low, and
are not consistently low). Mogt of the model paramete;s were treated as
;andom variables, and a Monte Carlo program was run to produce a range
of results, 100 iterations of the program generated a range of total

recovepaﬁle reserves for the whole North Sea of 7QX109 STB (stock tank

-barrels) to 13BX109 STB.

The main critique of this model is the large number of assumptions -
built into it, without any possibility of fitting the model parameters
to the ekisting data in any meaningfﬁl way. Furthermore, the model takes
no account of the very obvious spatial correlation between the locations
of oilfields. It is pormai for oilfields té cluster togethér in certain
regions of an oil province, and for other regions to remain relatively

barren. This type of behaviour should be taken into account.

A better attempt at developing a consistent methodology for fore—
.casting oil reserves is provided by Meisner and Demirmen (i981) with
their "creaming method”. This consists of a model of oilfield discovery
which allows the larger fields to be discovered, or '"creamed off" earlier,
leaving smaller and smaller fields to be found later in the exploration
process. They assume that the probability éf an oilfield being found
with reserves between v and v+dv will be probortional to vl. They then
postulate that the parameter A is not a constant, but a (decreasing)

" linear function of the number n of exploration wells already drilled, so

that -
A= Yl +.Y2n ’ l(3.5)

with Y, § 0.

The mechanics of fitting this type of model to data for an oil
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province are fairly complex, but the results appear quite'good for their
test data, although it would seem that a reasonably long exploratioﬁ
hisfory is required to fit the model. Also Meisner and Demirmen's
creaming model, like Odell aﬁd Rosing's model, fails to take any account

of cilfield clustering or spatial correlation.

Thus I believe that any useful model for this problem of oilfield
occurrence prediction should satisfy the following ériteria, as far as

* 1is possible:

1. It should be simple, with only a few parameters which can be

estimated from existing data at an early stage of explorarien,

2. It should take into account the spatial correlation between

ollfields.

3. It should predict, in addition to the total reserves of an

oil province, the approximate distribution of oilfields

within the oil province.
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Apparently non-stationary process
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Stationary over a larger range

FIGURE 3.2: TIllustration of the difficulties involved in deciding
a process is mon-stationary



FIGURE 3.3: Illustration of "Universal kriging"
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FIGURE 3.5: Illustration of choice of new point in controlled

random search procedure !



60

Empty

region ) =

X X}
x N Cx

A

Points close
together

FIGURE 3.6: Disadvantages of random positioﬁing of data points



CHAPTER 4

INTERPOLATION IN TWO DIMENSIONS AND CONTOURING

e



4.1 CONTOURING PROBLEMS AND ALGORITHMS

The problem of drawing contour lines to represent the behaviour of
a two-dimensional function over a plane region may be classified into

three sub-problems, depending on the way in which the function is presented.

a) Algebraic - the algebraic form of the function is given,

and it may be computed at any arbitrary point.

b) Gridded = - function values are only given at the nodes of
a grid (usually rectangular) which spans the

area of interest.

c¢) Scattered - function values are only given at a finite set
of points, distributed in an arbitrary fashion

over the area of interest.

Case b) is thus a special case of ¢}, but in ﬁractice most contouring
algorithms are based on the assumption of gridded data (see for exémple |
Sutcliffe, 1976). Case a) can be easily converted to gridded form by

‘evaluating the algebraic function at the grid nodes, although this
naturally leads to loss of definition in the spaces between nodes.

However, with a sufficiently fine grid acceptable results can be obtained.

Conversion of case ¢) to gridded form poses more problems. A means
is requiréd to interpolate from the scattered poiﬁts to the nodes of the
grid. Various methods have been used for this (see for example McLain,
1976 and Sabin, 1978),.but problems can be encountered in this, .
especialiy when the data poinis are‘not evenly scattered. In practice

it has been found that sets of data points which leave large "blank” arcas
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can lead to totally meaningless contour lines being produced in these

areas.

Even if the interpolation process is reasonable, the fact that the
contour lines are based on the grid rather than on the actual data
points may lead to inconsistencies between the contour lines and the
original data. Figure 4.1 shows an illustration of this kind of error.
One solution to this problem ﬁight be to use an irregﬁlar grid tailored
to the data points. If~N poilnts were given, a grid of at most NxN nodes

- would be needed, as in Figure 4.2, to guarantee that each data point

coincided with a grid node.

For thése reasons it was fg}t to be bettér not to base the
contouring algorithm on the assumption of gridded data, but to contour
directly from an algebraic function. If scattefed data is given, then
the use of an interpolating function as defined in equation 2.30 leads
.diréctly to the production of contour lines without using any intermediate
grid system. The stochastic interpolating function has the added

advantage of an easily computable derivative, which will be shown to be

useful in defining the contour lines.

* An algorithm of this type, designed to handle the most difficult
case of scattered data, includes the other cases within its scope. Data
presented in gridded form is merely a special case of arbictrarily

scattered data.
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4.2 TRACKING CONTOUR LINES

The aim is to draw a set of contour lines f(x,y)=ci, i=l,...,n for
the interpolating function £() based on the N data points {(xl,yl)...
(xN,yN)} with values-{zl,...,zN}, without using any kind of superimposed

grid system. A method of tracking contours needs to fulfil the following

requirements:

1. It must ensure that all the contour segments appropriate to

the given set of data are drawm.

M

2. 7Tt must define a starting point for the drawing of each such

contour segment.

e

"3, It must decide when to terminate a contour Segment, either
because the starting point has been reached again, or because

the area of interest has been left in both directions.

We shall assume that a rectangular border is defined for the area
of interest, within which the contour lines are to be drawn. Values of
the interpolating function f£() are computed at the vertices of the
border rectangle, and these are treated essentially as extra data points,.
Thus the data seg consists of the ''real"™ data points plus the ;dummy"

border points.

The system for keeping track of the contours works by means of a

set of "reference points™. Such a set is defined for each contour level
¢ and consists of a number of points where the interpolating function
value exactly equalé the contour level, The set is chosen so that at

least one reference point lies on each 'definable" contour segment within

the area of interest.




‘A definable contour segment is one which divides the area of interest
into two parts, each containing at least one data point or border point.
It is possible for undefinable contour segments to exist, which enclose
no data points and cannot be detected by this algorithm. Figure 4.3
shows ;uch a segment, One way of detecting such segments would be by
the introduction of internal dummy points with values given by the

interpolating function.

Reference points are defined by drawing a set of straight lines
joining data points. Each such line joins a data point with value
greater than the contour level to a point with value less than the contour
level. Border polnts are all connected to internal data points. A se2arch
is carried out along each line until a point is found with estimated
function value equal to the contour level, and this becomes the reference

point. Figure 4.3 illustrates this process,

The technique for carrying out the search for a given value along
a straight line is basically a Newton's method solution of the equation
f(x,y) - e, = 0 ;1ong the line., If the current point is at position £
along the line from the starting point, then a change of linear position

is given by AL = (c; - EOLYDAT . (4.1)

If the line is at an angle § to the x-direction then

%% = %ﬁ-cos 8.+ g;-sin 0, B (4.2)

where the derivatives of f() are given by equation 2.35. f

This process is repeated until If(x,y) - cil <g, a prescribed

tolerance,
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The main problem that can arise is illustrated in Figure 4.4 The
gradient at the starting point of the search may be opposite to the
secant gradient joining ‘the values at the two points A and B - this
means that the search for the reference point would be initially conducted
in the wrong direction, and the required point might never be found, This
problem is overcome by successive sub-~division of the interval AB until a
sub-interval containing the reference point is found with the starting

gradient in the correct direction,

Using the set of reference points generéted in this way, the algorithm
for drawing all the definable contour segments appropriate to a particular

contour level works as follows:

e

1. The first reference point on the list is taken as the starting

point of a new contour segment,

2. From the present point on the contour, a new point is computed
(the algorithm for this is described later). This is repeated
until
Either
3., If the contour segment has reached ité starting point again,

then the tracking of this segment is ended and it is drawn.

Or 4, If the new point is on or outside the boundary of the area of
interest, this arm of the segment is ended. If the other arm
has also been ended then the contour segment is drawn,

Otherwise, the tracking is begun again from the start point,

., 5. As a contour segment is being drawn, all the reference points

which lie on that segment are deleted from the list.
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6. If any reference points still exist on the list, a new segment is

started from step 1.

The algorithm for generating a new point on the contour from the

previous point operates in two stages:

1. A tangent is drawn to the contour at the current point and a
point a distance Ar along it is chosen. Ar is the "step

length" for generating the new point.

2, From this point a perpendicular is drawn to the tangent, and a
search is carried out along this line until a function wvalue
f(x,y) is found which is within a specified tolerance of the
desired contour level.” If no such point is found (due to the

contour forming a sharp bend in the neighbourhoed), then the

value of Ar is halved and the process repeated,

It is necessary to find the angle 8 which the tangent makes with-

the x-direction, and this can be done quite simply.

If 3f/3r is the derivative of f() along the contour taangent, then

of _ af of . . _ )
3T - 3y oS 0+ 5 sing =0, (4,3)
: of of
therefore , tan 9§ = %3y ° (4.4)
- of of . . .
where EE'a“d E; may be computed by the interpolating function,

Figure 4.5 illustrates this procedure,

It is obviously worthwhile to pay some attention to the
selection of Ar so as to use the minimum number of points to define a
reasonably smooth contour, In areas where the contour is almost

straight, Ar can be large. Where the contour is sharply curved, Ar



should be much smaller. It is possible to estimate a desirable value

for Ar, based on the second derivatives of the interpolating function.,

Along the centour,

Since
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If we specify a required change in direction A6, then we

can relate the step length AT to this by

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)
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4.3 LONG-RANGE TREND AND THE TW0 STAGE MODEL

It is often felt that the function being contoured consists of
more than one component, In particular it may be assumed to consist
of a long-range "trend" with a2 more short-range "residual' component
superimposed on top. Often (as in universal kriging) this trend is
modelled by some algebraic function, such as a polynomial, but this
has nothing to recommend it unless there is a good reason to suppose
that the trend takes such a form. Within the context of modelling
functions as realisations of stationary stochastic processes, it is
felt to be more natural to allow the trend to be another stationary
stochastic process, so that the "two stage' model is

2(0) =2, () + z_(x) (4.10)
where ZLQE) is a stationary, normally distributéd, random process
of mean p and correlation distance Prr and ZSQQ is a similar

process with mean O and correlation distance Pos and

>> .
pL ps

Three parameters (u, and ps) are needed to fit this model

°L
to the data, and this can be carried out in various ways, One
technique which has been used to fit the model to scattered data
for contouring is to cluster the N data points into n (<<N) clusters.
A .., A A ' ..
The average value z, and centroid (xi,yi) of each cluster 1 isg
calculated. Values of u and p, are fitted to these cluster average
points, and this gives a model for the long-range trend Zlfgg.

For each of the N original points a residual error value is found.

a3
z, =z, ~ 3z, 4,11)
i j i! (4.

wvhere
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zj is the actual value at point j

and E} is the trend value at point j, estimated from the n

cluster average points.

The value of Pg is fitted to these N residual values, giving a

complete model. The interpolating function at any point (x,y)

f(x,y) = Estimated trend from n average points using
and Py

+ Estimated residual from N data points using Hyo

L

The estimaticn procedure cutlined here is bound to suffer from the
problems described in Section 3.1 when fitting "trend" and correlated
"residual" functions to data = those associated with the circular nature
of whatever technique is usedi The number of clusters (n) used will
~obviously influence and constrain the long-range correlation distance
fitted. Errors in the estimation of o will inevitably affect the
estimation of P Thus in adding to the complexity of the model, we
‘are increasing the difficulty of obtaining accurate estimates of all the

parameters.

As a check on the feasibility of estimating the parameters of such
a "two-stage” model, some simulation experiments have been carried out

(See Appendix B). Although both p  and p, are under-estimated, it is

L
significant that in general the ratio pL/pS igs approximately correct
(especially for N=40 rather than N=20). Thus, although there may be

errors in the parameter estimation, the structure of the two-stage

model 1s being correctly reflected.



4.4 RESULTS WITH TEST DATA

A program SIMP (Stochastic Interpolation and Modelling Progrém)
has been written in ALGOL-68R to implement the contouring concepts
in this section, as well as containing other features, It has been
tested on various sets of data, mainly related to genuine examples
of information available only at scattered points. A brief description

of the program and its operation is given in Appendix A,

As a comparison with a "conventional" contouring program, the
CALCOMP package GPCP (General Purpose Contouring Program) has been
used to produce a contour map of permeability based on measurements
at 72 oil wells in a Russian eilfield ~- data obtained from Schvidler
(1964). This data is listed in Table 4.1, . These points are not
scattered evenly across the area of interest, but tend to leave large
" empty regions. The results of GPCP are shown in Figure 4.6. Fronm
this is is obvious that a number of features produced by GPCP are
purely imaginary - in ﬁarticular the‘large "cliff" in the southern
part of the map where there are no data points. Also, in several
places the contour lines are not entirely consistent with the data

points, because of the gridding introduced by the program.

By comparison, Figure 4;7 shows the same data contoured by
SIMP (no trend assumed), The value of grand mean (p=299.5) is the
median of the data, and the correlation distance (p=0.5076) was
estimated by the "pair-point' method. The interpolating functionlis
"flat", with little or no structure, in areas‘where there is no data,
and only shows significant variability close to the data points.:
Subjectively, this would seem to give a better representation of the

(necessarily incomplete) data available than the GPCP map.
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An additional feature which was a simple matter to include in the
program was that of being able to draw cross—-sections of the inter-
polating function along any specified line. Two such sections are
shown in Figures 4.8 and 4.9 for the Shkapovskii data - they illustrate

graphically the high degree of variability in this data.

As an example of the two stage model including a long-range trend,
height contours from the Ordnance Survey map for the Chamwood Forest
area to the south-west of Loughborough were used. These original
contours are shown in Figure 4,10, 40 points were scattered at random
on this map, and heights in metres above sea level at these points were
input to the program. The value of‘grand mean {p=60) was input as a
subjective estimate, based on théfknowledge that the ground continues
to slope downhill to the north-east. The parameters of the "two-stage'
model (pL=2.39 and ps=0.5) were estimated using the procedure described
in the previcus section. The data is given in Table 4.2, and the contours
produced are shown in Figures 4.11 and 4,12, Figure 4.1l is a contour
map of the long-range trend only, and Figure 4,12 is a full map including
the short-range residuals, The final result is not dissimilar to the

~

actual topography of the area, given the limited amount of data used,

Figure 4.13 is a cross-section from south-west to north-east of the area,

As a further example of the two stage model, data provided by a
colleague was used. This relates to erosion of a microscopic irridium
projection. 115 data points were provided (see Table 4,3) and a value
of grand mean (u=32) was input, because it was known that the object was
a single projection on an otherwise flat surface., A "two-stage' model

was fitted, as before, with the long-range correlation (pL=42.53) being
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given by the estimation procedure, but the short-range (ps=10.0) being
equal to a pre-set minimum, A trend was fitted which is shown in Figure
4.14, 1In many ways this map may be more informative than the full map
including the residuals and fitting all the data ex?ctly, which is shown

in Figure 4,15. Cross-sections are shown in Figures 4.16 and 4.17,

Finally, a set of data (see Table 4.35) was invented which was
designed as a "difficult case" for contouring programs. Figure 4.18

illustrates this data set - it is intended to represent a circular "hole”

4

with very steep sides. Three different programs have been tested on this

data - GPCP, SIMP and the GINO-F library routine GINOSURF,

GPCP was run using two different grids - a 20x20 grid and a 100x100
grid. Results for.the former are shown in Figure 4.19, from which it is
apparent that the contour lines do not fit the data values very closely. -
The outer set of points have values of 100, but from the map they appear
to have values between 70 and 100, Similarly, the inner set have nominal
values of 10, but from the map apparent values between 35 and 40, The
results with the 100x100 grid are more satisfactory in terms of fitting
the actual data, although the overall map has a rather strange "rosette

shape and lacks the spected symmetry (see Figure 4.20).

The results from SIMP are shown in Figure 4,2). The fit of the contours

.to the data is good, and a symmetrical, circular shape is achieved.
Values of 1 and p equal to 100 and 1.0 respectively were used to achieve

. this plot.
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The results from the GINOSURF package are shown in Figure 4.22,
These are quite good, although. the "gridded" nature of the contouring
algorithm used is probably apparent., There is still a certain amount

of discrepancy between data points and contour lines.

It would seem from this set of tests that the kind of contouring
algorithm used in SIMP shows up well in comparison to the "gridded"
algorithms used in other programs. It produces contours which are smooth,

symmetrical and f£it the data.

In producing contour maps from data using SIMP, the user has the
option of allowing the program to estimate all the parameters to be used,
or of supplying some of them himsgif.' As can be seen from some of the
above examples, it is often the case that specifying one of the parameters
reflects a subjective knowledge about the_surface to be contoured which
is not explicit in the data points. For example, if it is known that
the surface to be contoured is a "mound" or "hollow” in an otherwise
flat "plain'", then it is wise to set u equal to the surrounding, flat,
value, On the other hand, it appears than the estimation procedures
sometimes under-estimate the value of the correlation distance (see
Section 2.4), so that it is valuable to be able to over-rule their

judgement and supply an increased value.
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4,5 ONE-DIMENSIONAL APPLICATLIONS

Before progressing to applications of stochastic interpolation
in more than two dimensions, it is worth briefly considering the one-
dimensional case, Some work has been done (see Brodlie, 1978) on
the problem of fitting a curve of the form y=f(x) to a set of data
points {(xl,yl),...,(xN.YN)}. A variety of methods are available,

mostly based on some form of spline interpolation.

The cross—section option in the program SIMP will obviously
produce plots of one-dimensional stochastic interpolating functions,
Two sets of test data were used to illustrate the results of the
program applied to one-dimensional data., The details of the test

data are given in Table 4,4,

Figure 4,23 shows the results from SIMP applied to the first set
‘of data. The curve fits the data reasonably well, although it could
be criticised for being somewhat oscillatory. The mean (u=3,3) was
estimated by the program, but‘the correlation distance (p=1.0) was

fixed., Fig.2.4 shows other examples of the same data with different
values of p.

The second set of test data is "better—behaved' than the first,
and this is shown in Figure 4,24 which gives the curve produced by
SIMP, The mean (u=0) was fixed so that the curve approached zero to the

right, and the correlation distance (p=1.17) was fitted by the program, ‘

Thus stochastic interpolation is easily capable of application
to ‘functions of a single variable - whether the results are acceptable
depends on subjective preconceptions about the likely shape of the

underlying functions.




TABLE 4.1

Shkapovskii 0il Deposit Data

- (%,y - Co-ordinates in arbitrary units

z - Permeabilities in millidarcies)
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5.35 304 25 2.6 4.75 255 49 9.2 6.95 406
0.85 360 26 2.15 4.5 608 50 10.5 5.95 64
4,45 418 27 2.25 5.9 346 51 10.75 5.6 360
6.45 415 28 - 2:3 6.35 575 52 10,6 3.0 361
7.1 400 29 2.75 7.3 197 53 6.75 4.55. 343
5.4 269 30 2.0 7.3 224 54 5.7 4,75 276
5.6 198 | 31 3.1 7.45 174 | 55 3.35 5.55 196
5.9 70 32 2.7 7.85 364 56 3.9 8.65 254
4,05 668 33 4,25 8.25 271 57 4,65 8.7 263
2.75 480 34 571 8.35 48 58 7.15 4.15 321
3.65 66 35 7.4 7.35 295 59 9.3 1.9 385
4.45 273 36 6.65 8.2 65 60 8.9 1.95 642
3.3 88 37 7.75 7.1 450 61 8§.55 2.1 241
2.6 175 38 7.05 B.0 238 62 8.1 2.25 315
2.2 220 39 8.45 6.8 430 63 2.8 5.5 346
0.8 232 40 7.4 7.85 183 64 8.15 6.4 376
1.3 255 | 41 8.8 6.65 248 | 65 8.8 6.15 314
1.5 396 52 7.75 7.65 620 66 9.8 5.3 70
1.6 341 43 9.1 6.5 153 67 10.15 3.5 310
1.75 200 44 9.35 -6.15 116 68 2.8 3.2 458
1.4 372 45 8.5 7.25 107 69 4.45 7.45 335
3.55 580 46 9.7 5.95 106 70 4.0 7.95 289
3.85 542 47 8.8 7.1 207 71 8.7 2.25 313
4.15 346 48 10.35 5.55 59 72 9.65 2.05 510

Model fitted:

Grand mean p = 299.5

Correlation distance p = 0.,5076




TABLE 4.2

Charnwood Data

(Heights in metres above sea level)

Xy Y3 2 1 x5 i %
1 1.0 2.9 218 21 5.3 8.5 .76
2 9.0 7.0 65 22 3.4 1.3 178
3 0.2 6.5 150 23 7.7 3.6 85
4 6.1 8.4 78 24 0.6 6.9 153
5 6.0 3.8 122 25 4.8 5.0 130
6 1.7 2.0 218 26 5.8 8.3 79
7 6.9 9.9 65 27 8.7 3.8 74
8 8.1 9.4 61 28 5.9 4.9 108
9 5.9 3.6 128 29 36 4.7 169
6.9 5.7 79 30 3.3 3.1 187
4.7 1.1 144--) 31 9.6 2.4 76
1.4 8.0 115 32 0.4‘ 3.6 194
9.0 2.3 76 i3 4.2 2.4 153
2.9 1.7 200 34 6.3 7.3 75
4.3 3.3 172 35 8.7 C3.6 75
1.6 5.2 221 36 7.4 3.8 g0
3.0 7.5 140 37 4.8 9.3 74
4.8 8.1 83 38 4,2 5.2 144
2.8 6.9 146 39 6.2 3.0 122
8.6 6.5 70 40 7.9 9.2 63

Model fitted:

Grand mean yu = 60 metres

Long-range correlation distance P = 2.39

Short-range correlation distance Pg = 0.5



TABLE 4.3

Symmetric Irridium Tip Data

g | s 2 i x; v, % i X, v; z,
1 136.5 69.5 26.0 140 75.0 65.5 1.0 78 101.5 61.5 5.5
2 124.0 69.5 17.5t41 79.5- 60.0 2.5} 79 105.0 57.0 8.0
3 118.5 69.0 13.5 (42 98.0 42.0 10.5 8¢ 113.5 55.5 12.0
4 104.5 70.0 7.5 143 103.0 37.0 17.5 81 117.0 55.0 16.0
5 98.0 69.5 4.5}44 48,0 12.0 26.0 ] 82 132.5 48.0 29.5
6 93,5 70.0 3.5]45 54.0 25.014.0] 83 130.5 91.0 .5
7 17.0 70.5 0.5] 46 57.5 30.5 10.0 84 70.0 70.0 .0
8 60.5 69.5 1.0[47 59.5 37.5 7.0| 8 89.0 52.0 .0
9 49.5 70.5 3.0|48 62.5 40,5 5.0 | 8 89,5 53.5 .0
42,0 70.5 4.5 49 78.0 99.0 5.0 87 52.0 90.0 .0
34.5 70.0 7.5 150 81.5 102.5 7.0 88 51.5 52.5 .0
25.5 72.0 13.5}51 84,0 110.5 10.5 89 53.5 50.5 .0
17.5 70.5 18.0 ] 52 85.0 115.5 14.5 90 89.0 89.0 .0
2.0 67.0 27.0153 90.5 129.5 27.0 91 88.5 80.5 .0
66.0 13.0 23.0]54 53.5 129.0 26.5 92 35.5 124.5 .0
63.5 21.0 14.5|55 55.5 115.0 14.5 | 93 13.0 104.5 .5
64.0 26,5 11.51 56 56.0_.109.0 10.0 94 10.5 32.0 .5
69.0 39.5 6.5]157 58.0 102.0 7.0 $5 30.5 15.5 .0
70.5 45,5 4.0]58 63.0 99.0 5.0} 96 105.0 16.5 .5
70.0 58.5 1.5|59 75.5 40.5 5.0} 97 127.5 36.5 .0
70.0 82.5 1.5 ] 60 80.5 37.5 7.0 98 127.5 106.5 .0
70.0 95.0 4.0 | 61 84.0 31.0 10.0 99 105.5 126.0 .5
70.5 103.0 6.5]62 83.5 2.55 14.0 {100 38.0 114.5 .5
69.5 110.5 12.0] 63 88.5 13.0 25.5 (101 47.0 113.0 .0
71.5 116.5 16.0{ 64 10.0 48.5 27.5]|102 22.0 102.0 .0
72.0 129.0 25.0] 65 24,5 53.5 15.G |103 25.0 94.5 .5
04.5 104.5 16.0} 66 27.0 56.0 12.0 | 104 21.0 35.5 .5
99.5 99.0 10.0}67 35.5 57.5 8.0 |103 23.0 43.5 .5
76.5 77.0 2.5]68 39.0 61.5 5.5]106 35.0 25.C .0
73.5 73.5 1,0]69 101.5 79.0 5.5]1107 45.0 26.0 .0
66.5 66.0 1.5 70 104.5 83,5 8.0 | 108 10t.5 27.5 .0
62.5 62.0 2.5]171 113.5 84.5 12.0 |109 93.0 29.0 .0
39.5 39.0 11.0{72 116.0 84.5 15.5 |110 116.0 39.5 .5
35.0  35.0 17,0473 8.5 91.5 29,0111 115.5 47.0 5
36.5 102.5 17.5|74 24,0 85.0 16.0 |112 116.5 103.5 .0
43.5 96.5 0.0175 27.0 84.5 11.51113 115.0 94.5 .5
52.0 88.5 5.0176 36.5 83.0 7.5]1114 103.0 116.5
. 61,0 79.5 2.5177 40.0 79.5 5.5 {115 94.0 113.0
66.5 74.0 1.0
Model fitted:
Grand mean u = 32.0
Long~range correlation distance p, = 42.53

L
Short-range correlation distance o  ='10.0




TABLE 4,35

"Hole'" Test Data for Contouring

i X3 Y3 %
1 2.9 5.0 100.0
2 3.1 5.0 10.0
3 3.5 3.5 100.0
4 3.7 3.7 10.0
5 5.0 2.9 100.0
6 5.0 3.1 10.0
7 6.5 3.5 100.0
8 6.3 3.7 10.0
9 6.9 5.0 10.0
10 7.1 5.0 100.0
11 6.3 6.3 10.0
12 6.5 6.5 100.0
13 5.0 6.9 -10.0
14 5.0 7.1 100.0
15 3.7 6.3 10.0
16 3.5 6.5 100.0
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TABLE 4.4

One-dimensional Test Data

Test Data Set 1

i X. z
1 1
1 2.0 1.0
2 4.0 4.0
3 6.0 9.0
4 8.0 10.0
5 9.0 2.0
6 13.0 3.0
7 14.0 11.0°
8 18.0 3.0

\

Model fitted:

Grand mean ¥ = 3.5.(fitted)

" Correlation distance p.='1.0 (fixed)

Test Data Set 2

i X. z,
1 i
1 0.0 15.0
2 1.0 13.0
3 2.0 10.0
4 3.0 6.0
5 4.0 4.0
6 . 5.0 3.0
7 6.0 3.0
8 8.0 2.0
9 10.0 3.0
10 12.0 1.0

Model fitted:

Grand mean y = 0.0 (fixed)
Correlation distance p = 1.17 (fitted)
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FIGURE 4.1: Illustration of contouring errors using a gridded

algorithm for scattered data.
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Use of irregular rectangular grid to fit

" FIGURE 4.2:

scattered data points exactly



Undefinable
contour segment

/
‘ /
/
/
N 12 ' /-
y o~ /
/ T~
- N /
Sk
11\
\
\
\

\

FIGURE 4.3:

(Contour level = 10)
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Shkapovskii oil deposit permeabilities contoured by GPCP

FIGURE 4.6:



SHKAPOVSKII OIL .BEPOSIT.

FIGURE 4.7:

Shkapovskii oil deposit permeabilities contoured by SIMP
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FIGURE 4.8: Shkapovskii data - Cross-section SW to NE
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FIGURE 4.

11: Trend fitted to Charnwood data, with average points
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CHARNWOOD DATA. ) 3]

" FIGURE 4.12: Trend plus residual map for Charnwood data, with

data points
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FIGURE 4.14
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FIGURE 4.,19: '"Hole" data

- GPCP 20%20 grid
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"Hole" data — GPCP 100x100 grid

FIGURE 4.,20:
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"Hole" test data.

FIGURE 4.21
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_TEST DATA 2.
:
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FIGURE 4.24: Test data set 2 fitted by SIMP



CHAPTER 5

APPLICATION TO THE OPTIMISATION OF FUNCTIONS

OF SEVERAL"VARIABLES
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5.1 GENERAL QUTLINE

As mentioned earlier, the problem of global optimisation of a function
of several variables has been stuﬁied by many people. Dixon et al (1976)
make the point that what is perhaps nceded is a technique which will obtain
a good estimate of the optimum value of the function in a reasonably small
number of function evaluations, assuming that each function evaluation is
very expensive and that it is therefore worthwhile undertaking a
considerable amount.of calculation between function evaluations if this
leads to a reduction in the number required. A method aimed at meeting

&

this objective has been developed using the concept of stochastic inter-

~ polation introduced earlier in this work.

~Conventional optimisation techniques normally require a reasonable
number of functioﬁ evaluations to reach a successfﬁl conclusion. This is
especially the case if a method depending on the computation of the
dérivatives of the function in.several dimensions is to be used. Ideally
we want to be able to use the minimum number of function evaluations to
give the maximum information about the overall form of the function. We

should also like to be able to estimate the derivatives of the function

at a point based on the existing known values at other points,

Given an objective function F(), whose derivative is not easily
computable, and a "region of interest" R within which the search for an

optimum value is to be conducted, the outline algorithm is as follows:

1. Carry out N function evaluations at a set of initial points

'{xl,xz,...,xN} scattered throughout R.

2. Fit a stochastic interpolating function £() to this set of
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function values {zl,zz,...,zN}. The function f{) will have

derivatives which are easily computable, using equation (2.35).

3. Find the optimum value in the initial set and optimise £()
starting from this point by means of a conventional optimisation

techniqug_using the derivatives .of £().

4. Evaluate the true function value F(x*) at the optimum point x*
of the interpolating'function F() found in the previous step, and
compare this with f(x*). If they are not sufficiently close,
refig the intérpolating function using the new point and repeat

step 3 above.

S. If they are sufficiently close, either terminate with this as
the estimated optimum value, or proceed to refine the solutiocn

locally using a conventional technique on F().

Several interesting problems must be dealt with before this simple
outline scheme can be put into practice. The distribution of the initial
set of N function evaluations in such a way as to gain the maximum
information about F() in the.region R is not a trivial pr&blem, and will
be discussed in the next section. |

Fitting the stochastic interpolating funcﬁion £() to the N data
points-éan be carried out using the Eoncept of the two stage model
" developed in the previous chapter, possibly éxtended to more than two
dimensions. che%er, two changes seemed to be appropriate in this case.
Firstly, since the data points will be chosen to be as widely écattered

as ‘possible throughout R, it does not scem sensible to generate the

average points which define the long-range trend by a clustering algorithm



as described previcusiy. Instead, the number of average points n, éo be
used is defined in advance and the locations of these points are generated
using the same algorithm which generates the positions of the initial N
data points. Values of F() are not computed at these points - instead
weighted average values are calculated from nearby data points, using as

weighting function the auto-correlation functiom g().

N

A izlzig(rij)

zj = . (5.1)
izlg(rij)

where rij is the distance from average point 3 to initial data point i.

The long-range trend is fitted to these averaged values, giving

rise to the parameter p the long-range correlation distance. Values

L’
of the trend are computed at each of the initial data points, and
sﬁbtracted from the known functicn values there, giving a set of residual
values. The short—range residual function is fitted to these, with a
parameter p_, the short-range correlation distance. Thus the interpolating

function f(x) at any point is the sum of the trend function (based on the

n, average points) and the residual function (based on the N residual

A

values at the original data points).

This techanique for fitting trend and residual functions to the data
is in most essentials similar to that described in Chapter 4, and suffers
from the-same limitations, especially in the matter of disentaﬁgling
trend from residual. The "'smoothing” to obtain the average values is
carried out using the auto-correlation function, which depends cn the
unknown correlation distance p. This difficultﬁ is resolved in SIMP
by seﬁting the value of p equal to half the "average inter-point distance”,

d, a formula for which is given as equation 5.20. Some simulation

experiments have been carried out to validate this estimation procedure
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(see Appendix B) and the results seem to indicate that the overall structure
of the data can be reproduced, even if the actual estimates of the correlation

distances are low.

The interpolating function £() is optimised using a "variable

o~

metric" algorithm, as described in Zoutendijk (1976) pp.370f. This ™~

N

requires the first derivatives of £(), which in practice are the sums

of the derivatives of the trend and the residual functions.

Having reached a local optimum of £(}, at a point x* say, the true
function value F(x*) is evaluated here and included in éhe set of known
data points. N is incremented by 1, Xy is set equal to x*, and Zy become
F(E#)', If |F(x*) - F(x*)] < ¢, a;given tolerance, the procedure
termiﬁ;tés; Otherwise the interpolating function is refitted including

the new point, and optimisation of f() begins again starting at the

current best point in the data set.

An additional feature which is simple to include is an estimate of
thé integral of F() cover the region R.- This is discussed in a later

section,
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5.2 CONVERGENCE OF THE OPTIMISATION ALGORITHM AND RELATED QUESTIONS

The optimisation algorithm outlined previously is based on the
_céncept of iterative optimisation of an interpolating function, a2 new
data point being evaluated each time, until ultimate agreement is
reached between the (optimum) interpolated value and the true function

value. This leads to three related questions being raised:

1. Is this algorithm pguaranteed to converge to a result in a

finite number of iterations?

2. Does the introduction of a new data point in the very near
neighbourhood of an existing data point always lead to
improved accuracy in the interpolating function in that

neighbourheood?

3. What is the behaviour of the gradient of the interpolating
function as data points become very close to each other, in

particular when the method converges on an optimum value?

To answer these questions, let us assume that we have a known data
point (Point 1) and another location (Point 3) where the function value

is unknown, and let us suppose that the distance h1 between these two

3
points is sufficiently small so that the correlation between the values
at the two points hi3 4
= n 3
gh)3) =1+ - B @ + oG ), (5.2)

may be closely enough approximated by

[ %

h .
o1 . .13 2 :

where ci = —g'"(0) .
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Now the variance of the unknown value at Point 3 given the known
value at Point 1 is
_ 2 2
varlz,[z,] = 0%(1 - g°(h ;)

22 .2 4 ,

_ This result enables us to examine the question of convergence.
The optimisation algorithm will terminate when a point x%¥ is found

which is a local optimum point of the interpolating function and where
[Fix*) - £x*)] <e . _ (5.5)

For a given € value and a certain probability level a, we may

define a distance § so that
P{|F(x) - f(x)]| <e] za

for points within a distance é of a known data point. For small &,
we know from (5.4) that the variance of the interpolating function is

. . 222
approximated closely by o oSG , and-so

PIFG - £@] 2 )= 20 - o)) (5.6)
S

where ¢{) is the Standard Normal Integral Function.

Thus § is chosen so that

£
og 6
s

0C=) =41 +a) . | (5.7)

-

Therefore, if the new point x* is within a distance § of an
existing data point, the probability is at least a that the termination
criterion will be met, The probability is zero that an infinite number

of data points will be generated in a finite region without satisfying

the termination criterion.
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Let us now consider the situation when two known data points are
closely adjacent. Introduce a second data point (Point 2) at a distance
h12 from Point 1 and a distance h23 from Point 3 (see Figure 5.1). We

should like to be able to show that, for suitably small distances,

Var{zalzl,zz] < Var[23|21] . . (5.8)

Now, if X and Y are two vectors which are jointly multivariate Normal,

it can be seen that (e.g. Whittle, 1963, p.46-47)

-1.1
Var(X|¥) = Sy - S.oSieSiy (5.9)

4

where SXX = covariance matrix for X
SXY = cross-covariance matrix between X and Y
S = covariance matrix for Y

. -1 . . .
Since SYY and hence SYY are non-negattive definite, we can see that

Var(X{Y) s var(x) (5.10)

So if we set X equal to the residual error in 23 predicted from Zs

and Y to Z,, the relationship (5.8) follows immediately.

2’
Thus, for an interpolating function based on realisations of a regular
stochastic process with continuous derivatives up to at least second order,

the addition of a new data point within a close distance of an existing point

will reduce the variance of the interpolation errors within a certain region.

In terms of modelling a real function F(), let us assume that F() has
continuous derivatives up to at least second order, so that within some

small Feglon, ‘(F'(E))z < some finite limit.

We may assume that, within the given small region, F{) is a realisation
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of a stochastic process whose gradient has finite variance, i.e. a regular
process with continuous derivatives up to at least second order. For such
functions, therefore, as the number of data used to interpolate them
increases, ultimately the residual errors in the interpolation will tend

to decrease everywhere,

We shall now turn our attention to the question of the behaviour
of the gradient of the interpolating function in the near neighbourhood
of two adjacent data points. Having pivoted on Point 1 and Point 2, the

estimated value at the unknown Point 3 is

-f(_§3) =¥ -7;8(h5) - v,8(h, ) (5.11)
z, — glh, )z
where Y, = 1 12 2
Yor- ey
8 Wy
2y ~ 8hy,)z,
Y, =

2
l-g (h12)

and zy and z, are the values (less the mean u) at the two known points.

Therefore,

3 oy 2 -y, 5
3;; f(fs) =" o, 8(h13) Yy o 8(h23) (5.12)

This gives a general form of the slope of the interpolating
function in the near neighbourhood of these two data points. We shall
examine two special cases:

1, Point 3 has its x co-ordinate in the interval betwean the

xk co-ordinates of Points 1 and 2. Let us further assume it

is midway between the points, so that \

] d | .
3;; g(h13) - 3;; g(h23) = ¢ . {5.13)

Therefore 5

£y £(x,) = ~(y;7yy)e!

= (z; = 2) (1 + g(h ) . (5.14)
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If h12 is sufficiently small, 1+g(h12)=2 and l-gz(h12)=c§hi2.
2¢'(z, - z.)
] 1 2
— Y =
So oy £(x,) > . (5.15)
o h
s 12

If Point 3 actually lies on the straight line joining Points

1 and 2, and the difference between the two points is in the

N dimension only, then

2
h
+ 3 13 2
e' = (1 - ¢ )
3h13 2 s
2 Mg oo (5.16)
h1305 B 2 Us
And then Z, = Z
3 1 2
———. 2 p——— 17

av

In this case, we havé shown the gradient of the interpolating
function midway between the two points to be equal to the chord
slope joining the points, which is an extremely reasconable

result,

2. If Point 3 is well beyond Points 1 and 2 in the X direction,

S50 that'
3 . 9 = o
' - -—
Then 3 foe = c (41 + z2)(1 g(h13))
) -3 2.2
xk - 9h,
., 2 2
_ &z v 2) (b0
2.2
OePi2
et 19
= 5 (2 +2) (5.19)

This again is quite reasonable, since it implies that theo
interpolating function slope is equal to the slope of the
auto-correlation function times the average of the deviations

from the mean at the two data points,



5.3 DISTRIBUTION OF INITTIAL POINTS

This is an important part of the algorithm, and may well repay
further study. Even if the region of interest R is of simple form,
it is by no means obvious how to arrange N points so as to survey the
m—dimensional region as efficiently as possible, ;specially if N<2™,

Intuitively, the points should be spaced apart as far as possible
from one another, without 1y;ng on the boundaries of R, They should
also be spread evenly throughout R so as to maximise the information
gained about the form of F(): !for'this reason scattering points
randoinly through R is not recommended, since it leads to an uneven

distribution and parts of R which are not close to a data point. It

-

also means that the results cannot be reproduced exactly.

The approach which has been adopted 1s to set up the positions of
the N data points using an 'ad hoc' technique, and then adjust the
positions to minimise & 'repulsive' function which will tend to spread

. the points more evenly through R.

We shall assume that R is of simple rectangular form: xR if
aksxksbk, k=1l,,.,,m. With this assumption, two 'ad hoc' methods for

initialising the points have been developed,

v

Method 1

This is a recursive algorithm, At any stage, we have N' points
to be positioned in a region R', If N' 1is odd, place one point in the
centre of R', Divide R' into two equal regions along its longest |
dimension, and position half the remaining points in each such region

using the same algorithm,

113



114

Method 2

Define for each dimension k a "high value" xE = ubk+(l-u)ak, and

.a "Jow value" x; = aak+(1*u)bk, where a is taken to be 0,75, for example,.
The position of each point may be represented by a word of m bits, where
a 0 in position k represents xi and a 1 represents xﬁ. Such "words" are |

permuted systematically so as to produce a set of points which will

explore reasonably well the.total region R.

Method 1 above works quite well for yazm, but otherwise gives rise
to sz2ts of points lying in a subspace of R, Method 2 is preferred in
this case. Whichever is used, the distribution of points is unlikely to
be idcal, The locations are updated to minimise a "repulsive" fumction

which aims to spread them as ﬁ{dely as possible throughout R,

The basis of the repulsive funétion was taken to be the same as
.the correlation function g(), as given in equation (2.37). Intuitively,
this corresponds to positioning the initial set of data points so as to
minimise the total correlation between them. However, at this stage we
do not know the value of p, the correlation distance, to be used,
Therefore, let us define the average distance between the peints, d, by
dividing up the total volume of R between the N points and finding the

dimensions of the equivalent hypercube for each point,

/N

l/m
] (5.20)

m
i.e. '&=(f((b—a)

k=1 k k

Good results are obtained if we set p = id, g

As well as repelling the points from one another, we also need to

repel them from the boundaries of R, Otherwise they are obviously



giving information about the space beyond R, which is not required.
The way in which this is achieved is to imagine that each point has
an "image" in each of the 2m boundaries of R, and that it is also
repclled from these image points, Thus the total repulsive function

to be minimised is

) e et
H = _ exp -d,./2p + Cexp —(x.,.-a ) /ip
i=1 j=1 11, i=1 k=1 ik "k

N X . 2 5

+ ) )] exp ~(x, -b ) /ip (5.21)
L. L ik 'k
i=1 k=1 _ .
m
where d2. = I {x, -x )2 (See Figure 5.2),.
ij kQI ik "jk '

This function is adjusted by moving one point at a time, in one
dimension only (based on the first derivatives of H), This terminates
when the changes in successive values of H are less than a preset
tolerance, Tigure 5.3 shows an example of positioning 20 points in a

square two-dimensional region of interest,

115
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5.4 ANISOTROPIC CORRELATION

In all the work carried out so far, we have assumed that the auto-

correlation function between two points X. and Ej is of the form

2 2
g(r) = exp(-d../2p")
J -
m .
2 2
where dij Z (xik xjk) . ‘ (5.22)

k=1

I

It is very simple to extend this definition to the case where the
carrelation 1s not isotropic:

Let 2 2

m
dij = kgl uk(xij - xjk) . {(5.23)

where the m coefficients @ s k=1,...,m are the "anisotropy factors"

for the model.

With this addition, everything carries through as before, with minor

changes. For example, the derivatives of the interpolation function become

3 N
ﬁ f(ﬁ) = 1'_21 Yi“kg' (I'l)
N 2,02, 2
- izl Yiak(xik - xk)exp;-ri/Zp )/ p
m 9 :
where r, = z ak(xik - xk) . (5.24)
: k=1

What we are essentially doing here is to rescale the coordinates x
to produce an isotropic model. Matérn (1960, p.17) shows that exp (-u'Au)
is a suitable auto-correlation function where A is an orthonormal matrix,
and this corresponds to a more general case with tﬁe directions of aniso-

tropy not aligned along the coordinate axes,

In geostatistics (see David, 1977, p.134 and Journel & Huijbregts,
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1978, p.177-183) there is a distinction made between ''geometrical" or
"affine" anisotropy, which is the kind of model outlined above in which
different scgling factors are applied in different directions, and "zonal"
or.fstratified" anisotropy, in which there exist strata or zones in space

with different properties. We shall not consider the latter case at the

present time.

The main problem that remains is that of estimating the anisotropy
factors 4 k=1,...,m from the N given data points. Two methods are
outlined below, but they are by no means ideal or foolproof. More work

needs tc be done on this problem.

METHOD I

1. Take a set of pairs of héighﬁouring points, with say the Eth

such pair being points i and j.

2. Estimate the correlation cg between the values at the two

points using the method outlined on page 25.

3. TForm the anisotropic auto-correlation function,

| 5o 2 2 (5.25)
c, = exp |- Zﬂkﬂxgkﬁp
: k=1
2 2
where Axpy = (xik xjk) .

Taking logs and setting Yy = -log ¢y

o _
2 1207 (5.26)
Y = kzlukﬂxzk/ZQ o

I

4., If we use L such pairs of ‘points, then we may estimate the
.coefficients ak/2p2 by multiple linear regression applied to
the L values Vg 2=1,...,L, dependent on the L values of the m
variables Axik, 2=1,...,L, k=1,...,m. Obviocusly our estimates

of the anisotropy factors are therefore conditioned by the
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value of p, which is at this stage unknown, but their ratios may
be estimated and they may be nwormalised to give a mean valuc of

1.0,

METHOD IT
1. For each dimension k, find pairs of points i and j such that the

separation between them is mainly in the xk-direction, i.e.,

dps s Alxgy - x|

where A can be taken to be, for example, 1.5. (This is similar

to the idea of "angle classes" used in geostatistics - sce Journel
& Huijbregts, 1978, p.211).
2. For the gth pair, compute A% = |Z.-Z.|/|x,,—x. ].
? ‘ i 7] ik Tjk
3. Find the median, zkk), over all such pairs, and repeat from step
1 for all values of k from 1 to m.
4. Assume for each k that the median "gradient" Ekk) is approximately

proportional to fak, the linear anisotropy factor. Hence the

ratios of the anisotropy factors may be estimated.

Step 4 above can be justified from the work of Hawkins & Cressie (1981).
They define Y =/|Zi—2j| and show that a reasonable estimator of the
variogram is proportioﬁal to the median of Yi.
to 1-g(r)=1—exp(—akr2/2p2) if the distance is all in the kth dimension.

The variogram is proportional

Thus, for reasonably small r, we may say approximately that.}4 is

. . 2
proportional to a T .

Both these methods have been tested on simulated anisotropic data -
the results are presented in Appendix B. In both cases the anisotropy of

the data is clearly underestimated, although it appears that Method II is

better than Method I. It seems to be possible to detect the presence of
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anisotropy, without necessarily obtaining a very precise estimate of its
value. It is therefore important, in the optimisation application, to
ensure that the variables used are scaled beforehand so as to reduce,

as far as possible, the effect of anisotropy.




5.5 ESTIMATION OF THE FUNCTION INTEGRAL

It is a simple matter to calculate the integral of the interpolating
function £{) over the region R, once it has been fitted to the data points.
This may be of some value in estimating the integral of the true function

-

F(), and can be produced as a "by-product" from the optimisation process.

If the interpolating function is

N
. £Qx) = L ov;e, () +w
i=1
N
then I f(x)dx = Z J v.c.(x)dx + p J dx (5.27)
R j=1 o+ 1% R

With the assumed form of covariance function, this becones

.‘-"Jt "

rd

2
f(x)dx = z Y J [ Z o, (x - %) /2 ]dx 2%,y 0., dX
JR =T A 1 )R K= 1 X 1’772 | o

+ U I dx . (5.28)
R

Now if R is a rectangular region, bounded between limits 3 and bk

: ' th .. .
in the k¥ dimension, then

exp[ Za (X ) /29 ]dx ,dX_ 5 0., ,dx
JR k=1 ‘(k 2 | m

m bk
= -IT J exp[a (x xk) /2p dek (5.29)

k=1 a
.And b
J 1{exp [—ak(xik - Kk)2/202] dx,
%
Vo, (b, %, ) Yo, (a =x, )
2n kk ik k e MK -]

ﬁhere $() is the Standard Normal Integral function.

In practice, the full integral is the sum of the integrals of the
. -
- long-range trend and the short-range residual. (See Matern, 1960, p.20

& Matheron, 1971, p.59}.
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5,6 RESULTS WITH TEST FUNHCTIONS

Tests of this optimisation technique have been carriedrout on a
variety of functions, most of which have been used by other workers to
test glébal optiﬁisation algbrithms. None of them is in fact "expensive'
to compute, but it is hoped that good results with these teét functions
will show promise for general applications,.

a-

The functions and the results obtained are described together, and

then the overall results are summarised.

1. Simple Test Function (2d)

This merely illustrates the use of the interpolating function for both

optimisation and integration.

- : - 1y, -
Fl(xl,xz) (sin Xy 2xl)(2x2 x2) . (5.31)

The region R is Olesn/2; 05x253.
This function has a maximum value of 0.3424 at (x/3,1) and the total

integral over R is O.

10 initial data points were generated, and a stochastic interpolating
function was fitted with no trend or anisotropy factors assumed. Figure
5.4 illustrates how the algoriﬁhm conducted its search from the current
highest point. After four additional function evaluations a point was
found at which real and inferpblated function values agreed to within a
specified tolerance (10—4), giving an estimated maximum value of 0.3417 at

(1.0717, 0.9621). The estimated integral was -0.0101. |
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2, Branin's RCOS (2d)

This function is described in de Biase and Frontini (1978).

_ 5.1 2 5 2
F,(x;,%,) = (x, o X * =%, = 6)7 + 8.75c0s x; + 10. (5.32)
The region R is —55x1510 H C$x2515 .
This function has three global minima with values 1.25 within R, and the

total integral over R 1is l2.238x103.

20 initial data points'were generated, and anisotropy factors
were estimated as (0.7658, 1.2342), The trend function was fitted
using 12 average points. Figure 5.5 is a contour map of the interpolating
function fitted to the 20 data points ~ the approximate locations of the
three global minima are apparentf”‘Figure 5.6 shows tﬁe average points
and the trend function fitted. Figures 5.7-and 5.8 are cross-sections

of the interpolating function along the diagonals of R.

The lowest of the 20 initial function values was 2.7060, and after
10 extra function evaluations the optimisation algorithm terminated with
a value of 1.2754 at (-3.1403, 12.4313).- This is close to one of the
global minima at (-w, 12.275). Figure 5.9. shows the region close to the
minimum and the path traced by the algorithm during optimisation. Figure
5,10 is a plot of current function value versus number of evaluations,

' . . ; 3
and shows how the algorithm converges. The estimated integral was 11.342x107.

3. Goldstein and Price's Function (2d)

This function is described in de Biase and Froutini (1978).

2.2
X, +3x2)

2
+3x4 14x2+6x1 o +3%, ]

) 2
F3(x1,x2) = [1+(x1+x2+1) (19—14}:1

2 2 2. "
[30+(2x1—3x2) (18—32x1+12x1+48x2"36x1x2+27x2)]. (5.33)
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The region R is -2$xi$2, i=1,2, This function has a global minimum with

value 3.0 at (0,~1).

40 initial points were generated, and anisotropy factors were
estimated ;s {0.7662,1.2338). The trend was_fitted with 20 average points
and Figures 511 and 512 show contour maps of the full iﬁterpolatiﬁg
function and the trend function, respectively. Figures 5.13 and 5.14 are
cross—sections along the diagonals of R. The lowest initial function value
was 547.19, and after 13 extra function evaluations the algorithm termirated

with a value of 6;226 at (-0.0152,-0.9614). Figure 5.15 illustrates the

progress of the optimisation (note the bad guess at value number 50).

4. Rosenbrock's Banana Valley Function (2d)

This function is commonly used to test hill-climbing optimisaticn
techniques, as it involves searching along the bottom of a steep curved

valley. 2.2 ”
Fa(xl,xz) = 10(_)(x2 - xl) + (1 - xl) . (5.34)
The region R was chosen as ‘5$Xi55s i=1,2. The minimum point is at

(1,1) with a value of O.

20 points were generated initially, with the trend fitted to 10
average points. Figure 5.16 shows a contour map of the interpolaring
function. Figure 5.17 is a cross-section along the tangent to the valley
at (1,1). The iﬁitial lowest point was 49.975, and after an extra 8
function evaluations a value of 0.0219 was reached at (1.0227,1.0312).

Figure 5.18 illustrates the progress of the algorithm.
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5. Shekel Function (4d)

de Biase and Frontini (1978) describe this family of test functions.
A 4-variable example was chosen:

1

I~~~

7 .
i=1 2
- kE1 (g~ 350 ey

with the following constants:

= Si Sik

1 0.1 - 0.7, 0.7, 0.5, 0.1

2 0.2 0.3, 0.3, 0.8, 0.2

3 0.3 0.8, 0.6, 0.8, 0.6

4 0.4 0.4, 0.2, 0.9, 0.9 |
5 0.5 0.1, 0.6, 0.8, 0.1

6 0.6 " 0.8, 0.2, 0.7, 0.7

7 0.7 0.4, 0.5, 0.1; 0.9

The region R was taken as: OSxksl, k=l,...,4.

20 initial points were generated, and 10 average points were used to
fit the trend. The highest initial value was 11.6759, and after an extra

17 function evaluations a value of 16.525 was reached.

Contour maps were generated on two orthogonal planes. Figure 5.19

x, blane with x3=0.5 and x4=0.1, while Figure 5.20

XgsX, plane with x1=0.7 and x2=0.7. In both cases the

contour maps were generated after optimisation and the path taken by the

shows a map in the X5

shows a map in the

algofithm, projected on to the appropriate plane, has been drawn. Figure
5.21 illustrates the progress of the algorithm in terms of function value

versus number of evaluations. Alsoc shown is the performance of the NAG

routine Eo4CGF,SEarting from a pair of randomly chosen initial points.
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6. Price's Function (9d)

This function is described in Price (1977), and is particularly

difficult to optimise because of the presence of exponential terms.

. 4 2 2 2
F6(x1,...,x9) = kzl(ak + Bk) + (x1x3 - xzxa) . (5.36)
whereh a = (1-x,x)x, [exp[x.(g,, ~2 x10_3x‘-g x10-3x )]-1]
k - T12773 5 %1k *3k 1 ®5k 3
"853t 84 ¥
and B, = (l-x,x,)x%, [explx, (g,, -2, -8 >QO_3x - ﬂD-3x )1-1]
k 1727 %4 LEXP g 8811 780 "By 7 84k 9
"B *1 8k
and the constants B;) are given by the matrix:
[ 0.485  0.752 0.869 0.982 )
0.369 1.254 0.703 1.455

5.2095 10.0677 22,9274 20.2153

23.3037 101.779 111.461 191.267

(28.5132  111.8467  134.3884  211.4823/

The region R was taken to be -35xk53, k=1,...,9,.

The logarithm of the function itself-was modelléd and optimised.
40 points were genérated initially and 20 average points werc used to fit
the trend. The loweét initial value was 10,4759 {actual function value
35450.76), and after 13 extra function evaluations a value of 5.3768
(actual funétion value 216.33) was reached. Figure 5.22 illustrates the
progress of the optimisétion algorithm For comparison pufposes, the NAG
routine EO4CGF was started from a number of randomly chosen starting points.
Also shown on Figure 5.22 is the progress of this routine starting from a .

"good" point and a "bad" point.
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Summary of Results

Table 5.1 summarises the parametérs of the interpolating functions
fitted to the six test functions. To compare efficiency of optimisation
with a standard technique (in terms of number of function evaluations),
each of these functions has also been optimised using the NAG library
routine EO4CGF, starting from the best of the N initial points. NE is
the number of extra function gvaluations required by the experimental
technique to reach a conclusion, and NN is the number of function

evaluations required to reach the same level of the objective function by

&

EQ4CGF. These results are tabulated in Table 5.2.

Discussion of the total computer time used by the optimisation
algorithm is made difficult by the fact that some means must be found
to compare algorithms running on different machines in different languages.
Therefore, a suggestion of Dixon & Szegg (1978, p.2-3) has been adopted,
and a "standard" time computed against which other times may be computed.
The results for our test functions may also be compared with those given
in Dixon & Szegg (1978), p.9-10. Table 5.3 contains these times, both in
mill units and standardised, for both SIMP and the NAG routine EO4CGF
(the latter's time relating only to the optimisation stage starting from
the best point of SIMP's initial N trials, while the former's time

includes the initial N trials).

The optimisation algorithm using the stochastic interpolating function
concept appears to be effective, at least in terms of total function
evaluations. It seems to give better results than standard techniques in
higher dimensions, where the overheads involved in estimating derivatives

are greater. The stochastic interpolating function gets round this
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problem by estimating the derivatives from the existing data points,

rather than requiring further function evaluations.

This work has concerned itself mainly with reaching a true function
value which is consistent with an optimum value of the interpolating
functién. This does not guarantee, of course, that it is in fact an
optimum value of the true function. Two possibilities exist for

verifying the location of a true optimum value:

a) Céntre a new, smaller region of inperest R' around the poiﬁt
found by the algorithm, and generate a new set of points spread
throughout R', including any of the existing data points which
lie inside R'. Refit the interpolating function inside the

smaller region and repeat the optimisation algorithm.

b) Use a conventional local optimisation algorithm on the true
function, starting from the estimated location of the optimum

point.




TABLE 5.1

Summary of Interpolating Functions Fitted to Test Data
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FUNCTION m ﬁ n, U oL, Py (o on
1. Simple 2 110 - -0.2526 - 1.0 - -
Test :
2. Branin's 2 20 | 12 31.593 |3.0415{1.699 |46.94 | 30.85
RCOS '
3. Goldstein 2 40 20 10.22 10]0.527 0.276 |17.693 | 77.18
& Price x105 xlod
4, Banana 2 | 20 {100 | 5472.7 {1.336 |0.356 |13.59 | §.14
Valley x103 xlOB
5. Shekel 4 20 10 8.633 0.364 0.251 ;1.605 1.079
6. Price 9 40 20 12.994 2.830 0.429 | 0.925 0.838
(Log)
. m - Number of variables -
N -~ Number of initial points generated
n, - Number of average points for trend
# - Grand mean fitted
DL — .Correlation distance for trend
OS - Correlation distance for residual
o - Standard deviation of initial data
a ~ Standard deviation of residuals




TABLE 5.2

Results of Optimisation of Test Functions

FUNCTION m N fI fF NE NN
1. Simple 2 10 0.3296 03417 4 -
Test
2. Branin's 2 20 2.7060 1.2754 | 10 14
RCOS
3. Goldstein 2 40 547.19 6.266 13 11
& Price
4. Banana 2 - 207 49,975 0.0219 8 9
Valley
5. Shekel 4 20 11.676 16.525 17 89
6. Price 9 40 10.476 5.377 14 76
(Log)
m Number of variables
N Number of initial points generated
fI Best function value from initial points
fF Best function value at end of algofithm
NE Number of extra function evaluations
to reach f.
NN Number of function evaluations by EO4CGF

to reach f;
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TABLE 5.3

Timing of Optimisation Results
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FUNCTION SIMP EQ4CGF
- MILL UNITS STANDARDISED MILL UNITS STANDARDISED

1. STANDARD 21 1.0 58 1.0
FUNCTION ’

2. Branin's 208 10 3 0.05
RCOS

3. Goldstein 568 32 4 0.07
& Price

4. Banana 108 5 29 0.5
Valley

5. Shekel 384 T 18 12 0.2

6. Price 1500 71 36 0.6
(log)

(Standard function consists of 1000 evaluations of a
particular Shekel function — see Dixon & Szegg, 1978, p.2-3).
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Unknown point

Known data point Known data point

FIGURE 5.1: Configuration of two known data points

and one unknown point in close proximity
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FIGURE 5.3: Example of distribution of initial points
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FIGURE 5.4: Test function 1 with 10 initial points
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BRANIN"S RCOS.

FIGURE 5.5: Branin's RCOS - interpolating function contours
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FIGURE 5.6: Branin's RCOS ~ trend function contours
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16eBRANIN"S RCOS (BGTTOM LEFT TO TOP RIGHT).
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FIGURE 5.7: Branin's RCOS - section through interpolating function
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16eBRANIN-S RCOS (TOP LEFT TO BOTTOM RIGHT).

»

FIGURE 5.8 : Branin's RCOS - section through interpolation

function




BRANIN'S RCOS
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FIGURE 5.11: Goldstein & Price - interpolating function contours
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FIGURE 5.13: Goldstein & Price - section through interpolation function
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4-D SHEKEL (X1,X2).
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FIGURE 5.19: Shekel function - interpolating function contours in

(xl,xz) plane
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4-D SHEKEL (X3,X4)

FIGURE 5.20: Shekel function - interpolating function contours in »

(x3,x4) plane
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CHAPTER ©

A MODEL FOR THE OCCURRENCE OF OILFIELDS




153

6.1 DESCRIPTION OF THE BASIC MODEL

Consider an oil province, or region of interest, which has total area
. Let Z(x) be a stationary, homogeneous and isotropic random process
defined over the region. We shall suppose that an oilfield is a connected
subset of the region of interest over which Z(x)>u, some fixed limit.
Conceptually, Z(x) may be assumed to represent "potential oil reserves per
unit area”, and these become classified as actual reserves once they exceed

a given threshold. (See Figure 6.1).

Let fz() be the probability density function of Z(x) at any fixed
point, and

R(z) = Jm fz(v) dv =1 - F(z) . (6.1)
z .-

For this basic model, the foliowing random variables will be of
interest:

1. The number of oilfields (N) contained within the region Q.

2. The area (A) of a."randomly selected" oilfield.

3. The volume (V) of a "randomly selected” oilfield.



154

6.2 EXPECTATIONS OF OILFIELD VARIABLES

To generate even‘approximate formulae for the expectations of oilfieild
random variables we shall need to consider carefully what we mean by a
"randomly selected" oilfield. We shall suppose that the N oilfields in Q
have areas Al,...,AN, and that we "randomly select" an oilfield by generating

a uniform random integer between 1 and N.

If we repeat this experiment a sufficiently large number of times,
the "average area" so obtained will tend to the value XAi/N. It is thus
tempting to relate this to the "expected area" of an oilfield in some way.

R.E. Miles (1974, p.202ff) defines an "ergodic distribution" = in the same

way, if we let Q increase in area, we may define the "ergodic expectation”
E[A) = lim —2% (6.2)

Define A(R) to be the total area of the region @, and then

BA,  lim JA./a(®)

, N = 1im N/A(R) (6.3)

lim
>R
Define T to be the area inside @ above the level Z(x) = a per unit
(gross) area of 2, and n to be the number of oilfields per unit (gross)
area of Q. Then using multidimensional ergodic theorems (see e.g. Wiener,
1939, p.l1-18 and Adler, 1981, pilngf) we can sée that

YA, .

. i - '
lim 2 m = E[T] (6.4)

and 2R
lim 21{%27 = E[n] (6.5)

1 >R

Thus the "ergodic expectation" of the area of a "randomly selected"
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oilfield is given by

E{T] -

E[A] = Eln]

(6.6)

To derive an expression for E[T] we must define an indicator variable

X(x) such that

X(x) =0 if Z(x)<u

1 if Z(x)zu
Assume that Q is a unit square, whence
E[T] = E J X(x)dx = [ P[Z(E)au]d§ = R(u)[ dx = R{u)
i o il Q
(6.7)
To obtain an expression for E[{n] is not so straightferward.
Adler (1981, p.70£f) has shown that the extension to two or more dimensions
of theé theory of "level—crossingéﬁ—;n one dimension 1s non-trivial. He
defines the '"IG characteristic" T of an excursion set in the more general
case, and shows that in two dimensions the expectation of I' for a zera-
mean, homogenecus, Gaussian process is (p.115}:
2)-3/205 L u/20”

E[r} = (250 (6.8)

where Ui is the variance of the gradient of Z(x) = —ozg"(o).

It appears from Adler's point set representation for I' (see p.78ff)
that this will give a good approximation to u, the number of oilfields
(excursion sets) in a unit area, The main difference will arise when sets
with "holes" appear (see Figure p.76). It would thus seem reasonable to

take as an approximation:

2
2 3/203 g el /20

E[n]= (2n07) 6.9)
from which. it follows that
2.3/2
E[a] = {2me ) Rl (6.10)

2 u e-—u2/2cr2
%
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As well as areas and numbers of oilfields, we are also interested in
the reserves of o0il contained in them., To include this in the stochastic
model requires that we give a physical interpretation to the variable Z(x).
We shall do this by describing Z(x) as the "potential oil reserves per unit
area'", and éssuming that "potential reserves'" only become "actual reserves"
once they exceed a certain threshold u. That is to say, the reserves of

oil per unit area = Z(x) if Z(x)2u, and = 0 if Z(x)<u.

As before, we are interested in E[V], the "average reserves" of an

oilfield "randomly selected” from the N oilfields in @ with reserves Vl"'VN'
Once again we shall define this in terms of the "ergodic expectation' so that
v,
E[vV] = lm & (6.11)
ﬂ"*Rz
If we define Y to be the total reserves inside 9 per unit (gross)
" area, then
v, lim }V./A(%)
Lim ¥~ ° Tl va@
QR
E[¥] '
= .1
= E[Mm] _ (6.12)
To derive an expression for EfY], assume that @ is a unit square,
‘and define a variable W(x) such that:
W(x) = z(x) if Z(x)zu
= 0 if Z(x)<u
Then E[Y] = EJ W(x)dx = J E[W(x)]dx
Y 194
= 'E[W(;_)]J dx = E[W(x)] (6.13)
9 .
Now E[W(E)]‘= J“ z fz(z)dz (6.14)
0]

So in the Normal case:
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2,2
Ely]l = % W /20 (6.15)
v
and E[v]l] = E[Y)/E[n]
= 2“02 T (6.16)
uo
1]

Thus we have derived approximate formulae for the expected numbers,
area and volumes of oilfields in a certain sense. The question arises as
_to the accuracy of these approximatiouns. -Adler (1981, p.136ff) shows that

. . X ...

as the level u increases, the excursion sets tend to become convesme figures
with no holes - thus for large u equation {6.9) will be a good approximation.
To investigate the accuracy of the approximation over a range of values of
u . (or of £=u/g), some simulation experiments were carried out, in particular

to validate equation (6.10).

It was felt to be relatively simple to simulate a closed contour Z(x)}=u
and compute the area within it, whereas the validation of (6.9) or (6.16)
would have required an order of-magnitude more work. The technique used
was to choosg a point in space,-specify that Z(x)=u at that point, and track
the contour from there back to the starting point using a triangular grid
of simulated values of the correlated variable Z(x). A numHer of realisations
of closed contours were generated in this way, and the results as regards
their areas are shown in Appendix B. The results of these simulations are
in reasonably good agreement with equation (6.10), even for quite small

values of e (=u/o).
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6.3 VARTIABLE THRESHOLD

A useful generalisation of the model is to assume that the threshold
level u is not a constant but varies from point to point of the area of
interest. This corresponds to the intuitive concept that oilfields tend to

be found in clusters, and some areas are more likely than others to hold

cil. This is essentially equivalent to assuming that Z(x) is in fact
composed of two components: a.slowly-varying trend plus a residual, while

the threshold u remains a constant.

We shall consider u to be a stationary random process, with a much
longer-range correlation structure than Z(x) (see Figure 6.2). Let us

2
define € = ufo, oy = -g"(0) and R*(c) = R{eco).

We can rewrite the approxiﬁate formulae for the expectations of the

quantities of interest with respect to the value of e which is appropriate

/2

to a particular point.
: *

R(e) (2m)°
2 e~52/2
s

12

E[A)} (6.17)

)

t
[
|
Q

E[v] * % . (6.18)

14
"

Ep] ¥ S | (6.19)

E[Y] (6.20)

To fit a model of this type to data and produce the above estimates
for various points within a given oil province, we need to estimate the
following parameters: values of ¢ at points of interest, the variance o

of Z(x) and the variance og of the gradient.
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6.4 FITTING THE MODEL TO OILFIELD DATA

In order to illustrate a simple application of this model, data for
the British sector of the North Sea up to about wid-1974 has been used.

‘This consists of:

-

1. Locations of 104 exploration wells and whether or not a commercial

oilfield was discovered.
2, Areas and (ecstimated) recoverable reserves of commercial oilfields.

. This data is only approxiﬁaﬁe as well as rather out-of-date, but it
is used to illustrate how the model can be fitted over an oil province to

give a reasonable picture without any geological information being included.

v

The first problem is the estimation of €. This was carried out at the
location of each oilfield, based on the number of successful and unsuccessful

exploration wells drilled in the near neighbourhood.

Let n, = number of successful wells,
n. = number of unsuccessful wells,
= -+ N
and ﬁ ns/(ns. nf) _

If wells were drilled at random, we should expect n to give us an
estimate of R?e), and hence an estimated value of €., But obviouslf
exploration wells are not drilled wholly_at random, but tend to be drilled
in the more likely places first. We should take some account of thic in
the estimation of e. How this should be done is véry nmuch open to debate -

we shall make a very crude assumption for this illustrative example. .

Suppose the probability that a well is drilled at some point x,

conditional upon the value Z(x)=z, is proportional to ¥(z).
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Plwell drilled at x|Z2(x)i= z] = aF(x) ,

and P[well drilled at x and Z(x) = 2] = aF(z) f(z) dz.

Therefore the total probability is JwaF(z) £{(z) dz = 1.

-0

Let v = F(z) and thus dv = f£(z)dz.
1

Therefore aJ vdv=1=g =2 ,
0

* And so the probability that af oilfield will be discovered at the point x
is '

2 ImF(z) f{z) dz =1 - [@(e)]2 ) ) (6.21)

(v
£

: 2
Let us therefore assume that n is an estimate of 1-[¢(e)]  and

Re) =1 - /M= . (6.22)

This method was used to estimate'e at the location of each oilfield
("near neighbourhood" being defined as within 3 British North Sea blocks
of the oilfield). Table 6.1 shows the déta for each oilfield and the
estimated values of €. These values of ¢ were input to the automatic
contouring algorithm (with grand mean equal to 3.0 for the boundéry regions)
and the resultihg map is shown in Figure 6.3, This map gives a fairly good
indication of the geﬁéral shape of the northern North Sea basins in the

British sector.

The other two parameters, cz_and 0: were estimétéd from the North Sea
. data somewhét approximately. Using equation (6.17) for the mean oilfield
area together with tﬁe estimated & values, it was éossible to produce a
value of 02 fof each field. An average value of 0.3676 miles_2 was uéed
for later calculations. Using this value togethér with equation (6.18)

for each oilfield gave a set of values of . These values were well
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scattered, with a few very large ones. The arithmetic mean was 32.59x106

STB/sq.mile, with a median value of 18.QQXI06 STB/sq.mile. The geometric
mean of 20.30X106 STB/sq.mile was chosen as the best compromise for the

overall value of .

Using these estimated parameter values, it is possible to substitute
into equations (6.17) to ﬁ6.26) to show the relationships between € and the
functions of interest. Figure 6.4 shows the expected volumes of discovered
oilfields and the expected reserves per (British) North Sea blocﬁ as
functions of £. Figure 6.5 shows the expected areas of discovered fields
‘and the expected number discovered per block as functions of €. These

graphs, in association with the & contour map of Figure 6.3, give an

-

impression of the model's predictions about prospects in the British North

Sea.
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6.5 MEAN AND VARIANCE OF OiL RESERVES

From the results of fitting a model of this form to the reserves of an
oil province, we wish to be able to gain an impression of the estimated
‘total reserves and the uncertainty in this estimate. The latter we may

categorise by the variance in the total reserves, and may be considered to

be made up of uncertainty from three sources:

1. For a fixed spatial diétribution of ¢ values, the variance in the
total reserves = Var[R] say,

2. Given e values at fixed points (oilfields) and correlation
parameters for the ¢ distribution, the uncertainty due to the fact
that the ¢ values form a stochastic process.

3., Errors due to uncertainty’in the correlation parameters of the ¢

process.

The first source of variation may be computed, and the second estimated
by.simulation, but the third is more difficult to quantify. Let us suppose
that our region of interest {2 is dividgd into M blocks, and in each such
block we may assume that the value of e is essentially constant (thus we are
making a step—function approximation to the true z surface). Let Yi be the

. .th . '
reserves in the 1 block, with value ei and ui = €,0. Then the total

reserveé M
R = ) Y
i=1
M M
e ‘ var(R] = } 2 Covar[Yi,Y.] (6.23)
i=1 j=1 J
Consider Covar[Yl,Yz] = A1A2 IW J” zlzzf(zl,zz)dyldz2
u. /u
1 2
~E[Y,]E[Y,)] (6.24)

where Al,Az are the areas. of the two blocks.
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-

The first term above

) r -
= z,6(z )dz . (6.25)
Y2t uy 11
22 .2 22
(o5 25-20" 2.2 +a5°z
where G(z)) = 1 r 2, exp| - 271 1241 2 °172 d,
‘/2—1?T 21

)

2 2 2 . . .
and 01,02 and 01, are the variances and covariances of Z(ﬁ) in the two blocks

and Ta = 0202 - 04
T 172

12°
2
Row 02( - Elg )2
’ 2,02 2 1'%2 7.7 A
z_ /20 o o o
1 1/%% 12 I— 1. dz,
G(zl) —_— e ( s 5 zl)exp ~ A i
Y211 : u2 01 27T
02
2 -2 2
2 1'% " T "
%2 )
MRS r expi - 7 dz,
o " lu 2T
1 2
2 2 -
-z, /20 _ 2 g %
= e 1 -ol = ew/25 +—-—-§2 le (E{) (6.26)
1| V2n o SJ
) 1
02 :
where w = - —lg-z
Y2 2 1
< o]
. 2 _ 1t
an s 02
1

These formulée enable us to estimate Var[ﬁ], given a set of values of
€ for each block. This calculation was applied to the North Sea .data, using
tﬁe e values at the oilfields as fixed and estimatiné the correlation
distance for the ¢ procéss (pe) by maximum likelihood methods as 0.623 units

{1 unit = 1 block length = 24.75 miles). Other parameters used were:

For the £ process:

w, o= 3.0 (fixed so that at the boundaries of the oil province
the oilfields wvanish)
o = 0,551 (estimated from data}.
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For the Z(x) process:

©
n

0.0666 units (= 1.65 miles)

12.433x109 STB/sq.unit

Q
]

(= 20.30x106 STB/sq. mile)

On this basis, assuming that the € values are fixed as in Figure 6.3,
9

the mean reserves value was computed as 38.86x10" STB with a variance of

721.1><1018 STBZ, or a standard deviation of 26.85x109 STB.

To explore the uncertainty inherent in the definition of the € values,
random realisations of e values ﬁere produced, consistent with the values at
the oilfields and with the parameters Pes B and g The details of these
experiments are described in Appendix B; "On this basis, the mean reserves

9

{over 10 realisations) was computedy$s 48.95%x10° STB, with a variance of

917.6X1018 STB2 {standard deviation of 30.29XI09 STE) .

The sensitivity of this model to the value of p, Was explored by
varying this parameter. Values of P equal to 0.44 and 0.8 were used, as
these gave likelihood values approximately 50% of that for the maximum
likelihood estimate of 0.623, The results for these values are also shown

in Appendix B.

To put these estimates into perspective, it should be noted that they
include the reserves from existing fields (approximately 13.4x109 STB). The
Department of Energy (1976) estimated a possible total of oil reserves from
existing licences of 3,190 million tons (equivalent to about 22.3X109 STB).
Odell and Rosing's model produced a total for the whole North Sea of between

9

79 and 138x10° STB. However, for various reasons this latter estimate is

brobably optimistic.
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Oilfield

Block

Longitude

Latitude

Area

Reserves

. Fl ¢
(sq.mile) (106 STB)
Montrose | 22/18 1%24'E 57°23'8 12 500 5 1.36
Josephine| 30/13 2°32'E 56°34'N 5 300 10 [1.16
Forties | 21/10 0°59'E 57°44'N 40 1800 8 |1.58
Auk 30/16 2°2'g .56°25"N 16 150 9 [1.31
Brent 211/29 1%1'E 61% N 66 2000 2 |0.09
Argyll 30/24 2°46'E 56°10"N 5 100 10 |1.36
Beryl 9/13 1°32'  |..59%33'N 10 800 5 11.02
Cormorant| 211/26 106'E 6108'N 5 400 3 .20
Thistle | 211/18 1°32'E 61°22'n 22 800 4 10.34
Piper 15/17 0°16'E 58°28"N 16 800 14 [1.83
Maureen | 16/29 1%43'E 58°7'N 4 300 2 {0.55
Dunlin 211/23 1°36'E 61°16'N 20 1250 4 10.34
Alwyn 3/14 1%40' 60°33'N 24 500 5 l1.02
Hutton 211/28 1°24'E 61%4'N . 12 800 3 lo.20
Heather | 2/5 0°57'E 60°57'N 9 500 1 lo.20
Ninian 3/8 1°29'E 60°48'N 40 1100 4 lo.ss
Andrew - | 16/28 1241 58°3'y 5 200 4 lo.90
Magnus 211/12 | . 1°17' 61°37'N 10 400 5 10.81
Claymore | 14/19 0°16'w 58%26'N 16 700 8 {1.58
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FIGURE 6.1: Model of the occurrence of o0ilfields



167

Z(x)

FIGURE 6.2 : Oilfield occurrence with variable cut—off level
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North Sea epsilon contours.
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- FIGURE 6.3: Contours of ¢ and existing oilfield values
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FIGURE 6.4: Estimated reserves as a function of €
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FIGURE 6.5: Areas and numbers of fields as functions of e



CHAPTER 7

‘CONCLUSIONS



171

The aim of this work has been to explore possible applications for
the theory of correlated random functions of several variables. This theory
is well-developed, but there appeared to be interesting fields of study to

'which it could be applied, but so far had not.

The first such field was contouring, in particular contoufing from
sparse and arbitrary data points. Current methods of interpolating from
the data points to any other-point seemed to lack an underlying fundamental
m;del, and could ﬁﬁerefore be ciassified as "ad hoe" techniques. Typically,

they also tended to lead to discontinuities in derivatives at various points,

and to run into-difficulties with data points which are unevenly scattered.

Treating the data points as realisations of a stationgry stochastic
process gives the desired fundamental conceptual model from which a
éensiblé interpolation technique may proceed. The model has few parameters,
and when these have been estimated an. interpolating function is produced
which is continupus in all derivatives everywhere, and passes exactly

through all the data.

One obvious fact about.contouriug is'thap there is no "right' contour
maﬁ for a given set of data - an infinite number of maps will répresent
" the given data exéctly. But it is interesfing to see just what effect a
change in the interpolating algorithm can have'oﬁ the visual impact of a

contour map.

If it is desired to model a long-range trend in the data, as well as
local’variations, it was felt best to use a stochastic process model for
this also. The alternative is to fit some function (e.g. polynomial) to

act as the trend function, but this seems arbitrary unless there is a
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priori knowledge that the trend is of this form,

The contouring problem having led to a satisfactory model for data in
two dimensions, it was felt useful to extend the model to several
dimensions, and to explore situations in which it is d?sirable to extract
as much information as possible.abbut the overali form of a function of
several variables, with &ata only available at a finite set of points. The
main application to be investigated was that of 0ptimfsation, in particular
for cases where the number of function evaluations needed to be minimised.

- Use of the interpolating function ledl to an élgorithm which compared well
with conventional techniques, in particular in higher dimensions since

derivatives need not be explicitly computed.

-
-

This work has -led to the development of a piece of software named
SIMP (Stochastic Interpolation and Modelling Program) which combines most
of these concepts and algqrithms into a singie package. Data may be
presénted as either a set of arbitrary point ;alﬁes, or as a function of
severél variables with points to be generated systematically to explore a
specified space. The program will fit arstationary stochastic model to

the data and may use it to generate contour maps and cross-sections, or to

optimise the given function.

Finally, the concept of a stationary stochastic process has been used
to develop a model for the occurrence of o0ilfields in an oil-bearing region,
in terms of the excuréions of such a prccess above a given level. This
model seems to have intuitive éppeal,.requires only a few parameters to be
estimated and leads to estimates of useful quantities such as expected
feserves and area per oilfield, and exnpected number of oilfields per unit area.
Encéuraging results have been obtained from fitting this model to some data

for the British North Sea.
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INTRODUCTION

The program SIMP has been~written in ALGOL-68R and is running on the
Loughborough University of Technology 19045 computer system. Its purpose
is to fit a stochastic interpolating function to multi-dimensional data
and appij it in various ways. The data to be fitted can be defined in one

of two forms:

1. As a user-defined function, with N data points spread evenly
throughout the region of interest, and the function evaluated

at these points.

2. As N input data values, at arbitrary input co-ordinates.

The program can produce one or all of the following results:
1. Contour maps of the interpolating function in any two dimensions.

2, Cross-sections of the interpolating function along any line in

the region of interest.

3. Optimisation of the user-defined function (providing one is

supplied) by iterative optimisation of the interpolating function.

The whole system actually operates in two stages.— the main program
(SIMP) which fits the-model to the data and carries out all the
computation for the results to be obtained. If contour maps or cross-—
sections are required, the requisite data is generated by SIMP and output
to a file. A secondary program (SIMPLOT) can be gctivateé to produce the
actual plofs from this file. All the data relevant to the plotting is

input to this program (e.g. scaling factors, number sizes, colours etc.).
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The program SIMPLOT is also written in ALGOL-68R, but interfaces with
_the FORTRAN gfaphics library GINO-F via a se;ond intermediate file and a
FORTRAN program which interprets coded instructions on the file as calls
to GINO-F subroutines. This is part of a system developed in the Computer
Studies Department for plotting from ALGOL-68R programs. Each GINO-F
subroutine call required is activated by an identically-named procedure

call in SIMPLOT.

»

Thé program SIMP also possesses the ability to dump the stochastic
model and the data on to a "model file" and to restart a later rum from
this file. This is,deéigned té‘save computing time when several sets of
results are required from the same set of data, as the model fitting phase

need only be carried out once. .Figure Al illustrates the overall system.
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SIMP — An outline of the structure and the data imnput

The main program SIMP operates in five phases, as follows:

1. Data generation. (Procedure SETUPDATA).
2. Model fitting. (Procedure FITMODEL). -
3. thimisation. (Procedure OPTIMISE)}.

4. Contouring. (Procedqre CONfOUR).

5. Cross-sectioning. (Procedure SECTION).

The operation of these five:phases is controlled by commands read into
the program as data. - These consist of eight-character strings punched in
the first eight columns of data cards. The first such card controls the

"mode" of the program, The three possible commands are:

NORMAL - Model neither dumped to file or restarted from file.
DUMP ~ Model dumped to model file after phase 2 (model fitting}.
GETMODEL - Model and data acquired from model file and phases 1 and

2 omitted.

Thus in "NORMAL" mode or "DUMP" mode phases 1 and 2 are carried out
(in that order) before any other phase is invoked, while in "GETMODEL"

mode they are omitted.

Each phase of the program will now be described, in terms of the

overall action performed and the data input required.

Phase 1 - Data Generation

This phase of the program defines the dimensionality of the problem,

the limits of the region of interest, and the values at the initial set of



data points. These latter are either generated from 2 user-defined function
or input as data. The five commands to control this phase and their

associated data values are described below:

1. NDIMS - This command specifies the number of dimensions in
which the data is defined. The value is read in as
an integer following the command, and stored in the

variable NDIMS.

2., LIMITS - This command specifies the lower and upper limits of
the region of interest in cach dimension. Following
the command, the values are read in for each dimension
from 1 to q?;MS, lower limit followed by upper limit

each time,

3. GENERATE - This command specifies that the initial data values
are to be generated from a user—defined function, and
spread evenly throughout the region of interest,
Following the command, the integer value NPOINTS is

read in, which is the number of initial data points.

4, DATA - This command is an alternative to the "GENERATE"
command. It specifies that the-initial data values
will be read in as inﬁut. Following the command the
| integef NPOINTS is read, and after that NPOINTS scts
of data values. Each set I consists of NDIMS values
of the co-ordinates of the poiﬁt XPT[I], plus the

value of the function of interest Z[I].




5. FITMODEL - This command specifies that Phase 1 of the program

has ended and Phase 2 should be entered.

Notes: If the command "NDIMS" is omitted, a default value of NDIMS=2 will

be used. One and only one of the commands "GENERATE" and "DATA"

should be used.

Phase 2 - Model Fitting

This phasé of the program fits a two-stage stochastic model to the
data points input in the first phase. Data may be input to this phase to
control the fitting of model parameters, but some or all of this data may
be omitted, in which case default .values will be used. The following

commands are understood by this phase of the program:

AVERAGE -~ This command is followed by the number of average
points (NOAV) to be used in the two-stage model

(default value of NOAV=0),

MUFACT - This command is followed by a value for the real
variable MUFACT, which governs the estimation of the
grand mean. (Default value = 0). If Z is the
arithmetic mean of the given data wvalues, and Z is the
median, then the grand mean h is estimated as

B = MUFACT*Z + (1 - MUFACT)*Z .

ROSMIN - This command is followed by the minimum value for the

short-range correlation distance. (Default = Q).

ROSMAX - Maximum value of the short-range correlation distance.

12
(Default = 10 ).
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MEAN - Input grand mean value. If this command is not read,

then the grand mean will be estimated using MUFACT.

ROLMIN - Minimum value of the long-range correlation distance.
{Default = 0). -
ROLMAX - Maximum value of the long-range correlation distance.

(Default = 1012).

ANISOMIN - Minimum anisotropy factor value. (Default = 0).
ANISOMAX - Maximum anisotropy factor value. (Default = 1012).
ANISO - This command is followed by NDIMS values of input

“ . .. . . .. anisotropy factors. If this command is not read, then

the anisotropy factors will be estimated.

ENDMODEL - This command terminates the data for phase 2. The
stochastic model is fitted to the data using the

parameters input (or default values).
Note: All commands {(except ENDMODEL) are optional and may occur in any order.

The model fitting which is carried out after the input of these

parameters consists of the following steps:
a) Compute grand mean and anisotropy factors (if not input as data).

b) Distribute NOAV average points evenly through the region of

interest and calculate a weighted average value at each such point,

c) Estimate the long-range correlation distance from the average

points.
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d) Compute the trend value (based on the average points) for each
4

initial data point and hence the residual error at each point.
e) Estimate the short-range correlation distance based on the

residual error values.

The model to fit the data is then totally defined by these estimated
parameters. If the program is in "DUMP" mode, all the details of the data

and the fitted model_will be output to a file.

Phase 3 — Optimisation

This phase of the program is initiated by reading the command
"OPTIMISE" in the first 8 columns of a card. Following thié the program
reads the value of the variable EéSILON, which.is the termination tolerance
for the optimisation algorithm. No other data input is required for this

phase.
The following steps are carried out:

a) Optimise interpolating function fitted to current set of data

points, using a "variable metric" algorithm,
b) Evaluate user-defined function at optimum point so found.

¢) If the user-defined function and the interpolating function
values are within the tolerance EPSILON of one ancthetr, then
the algorithm terminates. Otherwise the model is.re—fitted,
using thé new point just evaluated in the current set, and

the algorithm is repeated from step a).
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In addition to optimisation, this phase of the program also computes

the integral of the interpolating function over the region of interest.

Phase 4 - Contouring

This phase of the program is initiated by reading the command "CONTOUR".

Furthér commands and data input for this phase are as follows:

LEVELS

REGULAR

STEPMAX

TITLE

PLANE

.

This command is followed by the integer NLEVELS (number
of contour levels required), and then NLEVELS values of

contour levels.

This is designed for the input of contour levels which
are evenly spaced. The data to follow consists of the
integer NLEVELS (number of contour levels required)
and two real values SLEVEL (first contour level) and
DLEVEL (increment between suécessive contour levels}).

This cowmmand is an alternative to "LEVELS".

This command is followed by the value of the maximum

step length for producing contour linmes. (Default = 0.1).

On the card following the command, a title of up to 80

characters will be read.

This specifiés the plane in which contouring is to be
carried out. Two integers IX and IY are read (dimensions
corresponding to X and Y on the 2-d plot). Following
this, for every dimension not equal to IX or IY, a fixed

value is read in (Default IX=1, 1¥=2}.



PROJDIST - This command is followed by a real value which determines
the maximum projected distance which a data point mey be
from the contouring plane and still be marked on the plot.

12
(Default = 107 7).

-

TRENDMAP - This command initiates the generation of contour lines
of the long-range trend. Average points will be marked

on the ploﬁ (if within PROJDIST of the contouring plane).

'FULLMAP - .This command %nitiages the generation of contour lines
of the full inte?polating function. Data points will be
marked on the plot (if within PROJDIST of the contouring
plane).

ENDMAP - - - End of Phase 4.

Note: These commands may occur in any order, repeated any number of times,
although it is obviously sensible to ensure that the relevant data

has been input before using "TRENDMAP" or "FULLMAP",

Phase 5 — Cross-sectioning

This phése of the program is initiated by reading the command "SECTION".

Following this command the following data is expected:

1. NSTEPS - An integer corresponding to the nﬁmber of steps, or
points along the cross-section at which the interpolation
function will be evaluated.

2. Co-ordinates X1{K], K=1, NDIMS and X2[K], K=1, NDIMS of the two

points between which the cross-section is to be produced.
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This program outputs to the plotting file not only the values at the
steps along the cross-section line, but also the values at any data points
which lie on the line, so that these may (if desired) be included on the

plot,
Termination

Phases 3,4 and 5 may be re-run in any order as often as required. The
command "FINISH" terminates the program when all the required computation

has been done.
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EXAMPLES OF INPUT DATA

Some examples of input data are included here as a guide to using

the program in different cases.

1. User-defined function with optimisation and contouring

A 4-dimensional Shekel function is defined by the user, given by the
procedure with declaration:
PROC obj = (REF REAL x, INT ndims) REAL :

The following data cards are input.

Command Rest of Card Comments

(Cols. 1-8)
NORMAL e . "Normal" mode
NDIMS 4 )
LIMITS ] 1 0 1 0 1 0 1 | Phase 1
GENERATE 20 Data input
FITMODEL J

3
AVERAGE 10 . Phase 2
ENDMODEL [ Model fitting
OPTIMISE 0.001 - Phase 3

: Optimlsation
CONTOUR )
PLANE 1 2 0.5 0.1
STEPMAX - 0.025
REGULAR 12 7 1
: £

PROJDIST 0.25 Phase &

r Contouring
FULLMAP (2 maps)
PLANE 3. 4 0.7 0.7
FULLMAP
ENDMAP
FINISH ‘ J
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2. User-defined function with contouring and sectioning

A 2-dimensional 6-~hump camel function is defined by the user, and

the following data cards are input:

Command Rest of Card ° Comments
{Cols. 1-8)
DUMP . "DUMP" mode
3
NDIMS 2
LIS . =3, e b | Phase 1
GENERATE 40 : Data input
FITMODEL |
AVERAGE 20 ) 1
HEAN | 80 ¢ Phase 2
ROSMIN 0.5 Model fitting
ENDMODEL : ]
CONTOUR . 1
STEPMAX ' 0.5
LEVELS 7
o 1 2 5 1o 20 30| ¢ Fhase s
. Contouring
TRENDMAP (trend)
ENDMAP _ J
SECTION 50 1
Phase 5
-3 -1.5 3 1.5 [ cross-section
J
FINISH




-

3. Input data values with contouring and sectioning
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In a previous run a model has been defined using 72 input data points,

and this has been stored on a file using the "DUMP" command. Data cards

for a later run are as follows:

Command

(Cols. 1-8)

GETMODEL
CONTOUR
STEPMAX
REGULAR
FULLMAP
ENDMAP

SECTION

SECTION

FINISH

Rest of Card.

0.05

6 100 100

100
0 0 12
100
0 8 12

Comments

"GETMODEL" mode

Phase 4
Contouring

Phase 5
Cross—section

Phase 5
Cross-section
(repeated)




A BRIEF DESCRIPTION OF THE MAIN VARIABLES AND PROCEDURES IN SIMP

Before describing the procedures which make up the program, it is
worth also describing some of the more important variables, especially

those that make up the 'model" which is fitted to the given data.

Integers

ndims - Number of dimensions in problem.

npoints - Number of given data éoints (N).

noav- - Number of average points for estimation of trend (nA).
Reals

. mu - Grand mean (u).

ro ~ Short-range cor;glation distance (ps).

rolong - Long-range cor?elation distance (pL).

avsep ~ Average separatién between data points.

Real Arrays

[1:npoints, 1:ndims] REAL xpt Co-ordinates of data points.

[1:noav, l:ndims] REAL xav - Co-ordinates of average points.
[1l:npoints] REAL z - Function values at data points.
[1:noav] REAL zav ’ ~ Trend values at average points.
[l:npoints] REAL ze - Residual values at data points.
[1:npoints] REAL gamma -~ Values of y at data points,
[1:npoints] REAL delta | -~ Values of y for trend at average
points.
[L:ndims] REAL aniso - Anisotropy factors for each dimension.
[l:ndims] REAL xlower - Lower boundaries of region of interest

in each dimension.
[l:indims] REAL xupper -~ Upper boundaries of region of irterest

in each dimension.
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An outline flowchart of the main routine of SIMP is included as

Figure A2.

getmodel

dump

setupdata

fitmodel
optimise
contour

section

Seven procedures are called from the main routine:

procedure to input model values from file.

procedure to éump model values to file after

model has been fitted to-data.

procedure to set up number of dimensions,

bouanries of region of interest, and values of

given function at data ﬁoints {Phase 1).

procedure to fit model to data values (Phase 2).
-

optimisation procedure (Phase 3).

contouring procedure (Phase 4).

cross-sectioning procedure (Phase 5).

A brief description of every other procedure in the program follows,

in the order in which they occur in the program.

Procedures marked with an asterisk have been listed at the end of

this appendix - these consist of those procedures of particular novelty

or relevance to the techniques used in the program.

min

max
outarray
inarray

obj

distance

pivot

set up

Returns minimum value of a list of reals.

Returns maximum value of a list of reals.

Writes array of reals out to ﬁile.

Reads in array of reals from file.

User—defined objective funcﬁion.

Calculates distapce between two points, including
anisotropy factors.

Pivots on diagonal element of symmetric matrix.

Sets up correlation matrix for a set of points.

(Calls distance).



*9, cutup v - Ad hoc method to define initial locations of
‘points in region of interest, for large number

of points, (Calls cutup).

~ *10. explorev - Ad hoc method to define initial locations of
points in region of interest, for small number of

points., (Calls distance).

%11, hecalec - Computes value and derivatives of repulsive function
for a given configuration of points inside the

region of interest. - (Calls setup).

#12. wupdateh , -~ Updates value of repulsive function when the

position of a point has been changed.

*13. spreadem ,, Takes initial configuration of points in region
of interest and varies it to reduce the value of

the repulsive function. (Calls hcalc, updateh).

*14. 1initialpts v~ Defines positions of initial data points in region

of interest. (Calls cutup, explore, spreadem).

‘15, statistics - Estimates mean, median and standard deviation of

a list of reals and prints them out.

16. cubic . — Finds a root of a cubic equation between 0 and 1

by Newton's method.

17. covarest - Estimates correlation between the function values

at two points. (Calls cubic).

18. regress - Multiple regression procedure. (Calls pivet).




*19. -

*20,

%21,

*23,

%24,

#25.

*26,

*27.

28.
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anisocalc - Estimates anisotropy factors from initial set of

data points. {(Calls distance, covarast, regress).

averageptsv- Defines positions of average points in region of
interest and calculates weighted average values

for them. (Calls initialpts, distance).

errorsum v — Computes error sum of sguares for a given value of

p and set of data points. (Calls setup, pivot).
minest v - Estimates minimum value of a function of one

variable given 3 points.

estimated rovwEstimates o by minimising error sum of squares.

“HNH\KSCalls'é}rorsum, minest).

—~

Quick ro - Estimates p based on correlations between adjacent

pairs of data points. (Calls covarest).

point value - Estimates function value at unknown point given
a set of data points and values of p and ¢.

{Calls distance).

interpolator —Estimates total function value using two-stage
model, as a2 sum of trend and residual terms.

. (Calls point value),

prepare - Computes y values for model, given data values

and y and p. (Calls setup and pivot).

normal - Approximates the Standard Normal Integral.



29,

30.

31.

32.

33.

*34.

*35.

*36.

- %37,

*38.
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integrali ~ Estimates the integral of the interpolating
function over the region of interest. (Calls
normal),

onedimmax - Searches for maximum of function along a given

-

line. (Calls interpolator).

changedir - Changes direction matrix for variable metric

optimisation algorithm,

variable matric - Optimises interpolating function starting

\\ . &

\\\Egom current best point using varizble metric
algorithm. (Calls interpolator, onedimmax,

distance, changedir).

gammachange - Updates model Yy values to allow for new data point.

PR

{Calls distance, prepare).

find - Searches along a given straight line to find
point at which interpolating function equals contour

level. {(Calls interpolator).

divide - Searches between two data points to find

reference point. (Calls interpolator, find).

sclect - Selects reference points for a given contour

level and set of data points. (Calls divide).

outpoint - Qutputs point on contour to plot file, and checks

. to see if any reference point should be deleted.

anglediff - Computes the difference between two angles.




#*39,

%40,

*4]1.

*42,

*43.

44,

45.
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smooth - Checks if contour is .reasonably smooth at current

point, (Calls anglediff).

stepalong - Generates new point on contour from existing point.

(Calls interpolator, find, smooth).

outofarea - Checks if contour segment has left the area of

interest.

backtostart - Checks if contour segment has returned to its

starting point. (Calls anglediff).

countourtrace ~ Traces the contour segments for a given contour
level. (Calls select, outpoint, stepalong,

outofarea, backtostart).

contourstart - Initialises contour map and defines data polnts

to be plotted. (Calls distance, interpolator).

contourmap - Produces contour lines for all levels for a given
model and set of data. (Calls contourstart,

statistiecs, contourtrace).



198

SIMPLOT - AN OUTLINE OF THE STRUCTURE AND THE DATA INPUT

SIMPLOT has two sources of inpdt data. One is the plot file created
by running SIMP, which contains contour maps and/or cross—-sectional data
generatea from the model fitted to the given data points. The other is
from the staﬁaard input file and contains control commands and data to

supervise the actual creation of the relevant plots.

Some of the commands govern the input of parameters for the plott;ng
{which may have default values) and others instruct the program to create
a plot from the data on the plot file. The commands are read in the first
.8 columns of a data card, and a description of them and their associated

data values follows:

TITLESIZ - TFollowed by values of SIZETITLE, DXTITLE and
'DYTITLE. SIZETITLE is the size of the characters
for plotting the title in mms., (Default is 3mms).
DXTITLE and DYTITLE are the go-ordinates (in mms)
of the start of the title relative -to the top left-
hand corner of the map or section plot. (Default

values are 0 and Zmms).

SCALE | - Foliowed by values of SCALE and SPACING. SCALE is
the scaling factor in both X and Y directions, in
ﬁms/d;ta unit (default is 10), generally used for
conto;r maps. SPACING is the distance in mms on
the contour lines between adjacent markings of thg

contour level (default is 300).

LEVELSIZ - Followed by values of LEVELSIZE and CONTOURDECS.



COLOUR

POINTS

PTNO

199

LEVELSIZE is the size in mms of the contour level
markings .(for contour maps) or of the axis scale
markings (for sections). (Default is 2).
CONTOURDECS is the number of decimal places to

which these are plotted (default is 0).

Followed by values of CONTOURPEN, CPSTART and CPINC.
CONTQURPEN is an integer in the range 1 to 4 which
controls the pen colour for a subset of the contours
(1 is black, 2 is red, 3 is blue and 4 is green).

o
Contour levels, starting at number CPSTART and

incrementing by CPINC, will be plotted in this

colour. (For example, if the data input wera:

—_

2 3 5, contour levels numbered 3, 8, 13 etc,.
on the list would be coloured red)}. (Default values

are 1 1 1),

Followed by values of PTPEN, PTSYMB, and PTSIZE.
PTPEN is aﬁ-integer from 1 to 4 indicéting pen
colour for marking the positions on the plot of

tﬁe data points. PTSYMB is an integer indicating

the type of symbol used to mark the data points

(see GINO~F documentatien for routine SYMBOL for
details). If PTSYMB<O then the data points ara not
plbtted. PTSIZE is the size in mms of these symbols.

(Default values are 1 8 2).

Followed by values of PTNOSIZE, PTNODX, and PTINODY.

PTNOSIZE is the size in mms of the characters used
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to mark the data point value against the plotted
symbol {default is 25. If PTVALSIZEZ0D this will
not be plotted. PTVALDECS is the number of
decimal places to which it will be plotted.
."PTVALDX AND PTVALDY are the distances in mms of
the start of this number from tﬂe plotted symbol,
in the X and Y directions. (Default wvalues are
2 0 .—2 2). Figure A3 illustrates all these
various parameters with reference to plot;ing a

typical data point,

TITLE ~ On the following card, up to 80 characters of

title m;y"be_input.

- DRAWMAP - This command instructs the program to plot the

next contour map on the plot file.

PLOTSIZE - TFollowed by values of XMAX and YMAX, which are the
maximum overall plot sizes in mms in the X and Y
directions. This command should be given, once

only, before any plotting is carried out.

FACTOR - Followed by the value of PACTOR, a scaling factor
by which the function values on the file are
multiplied for the plot. Contour levels are

multiplied by the same factor (default is 1).
I

DRAWSECT - This command instructs the program to plot the

next cross-section on the plot file.



SCALEXY . ~ Followed by values of SCALEX and SCALEY, distance
scaling factors in ams/data unit in the X and Y

directions, generally used for cross-sections.

(Default is 10 10).

AXES - TFollowed by values for the axes of a cross—section
| plot: XL, XU, DX, XSTART, YL, YU and DY. XL are
the lower, upper and incremental values to be
marked on the X axis, and YL, YU and DY are
similar values for the Y axis.
XSTART is the X-value of the start of the cross-
section,

FINISH , — Terminates the run.

Notes: The above commands are all optional, with the exception of "FINISH".
The commands "DRAWMAP' and "DRAWSECT' should be mixed in a way which
reflects the structure of the plot file. (For example, if the input
to SIMP contained the Eommands "CONTOUR", "SECTION" and "CONTOUR"
in that order, then the input to SIMPLOT-should contain ''DRAWMAP",
"DRAWQECT" and "DRAWMAP" in the same order. Each command (except

"FINISH" and "PLOTSIZE") may be repeated as often as required.
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These examples correspond to the three examples given for SIMP, and

illustrate how the results of these runs could be plotted.

Example 1

Coumand

TITLE

4-D SHEKEL (X1,X2)
PLOTSIZE

LEVELSIZ

POINTS

PTVALUE

SCALE

DRAWMAP

| TITLE

4D SHEKEL (X3,X4)
DRAWMAP

FINISH

Example 2

Command

TITLE

Rest of Card

Rest of Card

6-HUMP CAMEL FUNCTION (TREND)

PLOTSIZE
POINTS
LEVELSIZ
PTVALUE
FACTOR

SCALE

500

40

250
| g§ 2
-1
1 -2 2

150

Comments

{Title starts

in column 1)

Data points in
red, with "'+"
symbol and values
not pletted.

Conmments



Command
DRAWMAP
SCALEXY
AXES

TITLE

Rest of Card

20 3

6-HUMP (BOTTOM LEFT TO TOP RIGHT)

DRAWSECT

FINISH

ExamEIe 3

Command
PLOTSIZE
TITLE
SHKAPOVSKII OIL DEPOSIT
LEVELSIZ
SCALE
PTNO
POINTS
PT&ALUE

DRAWMAP

TITLE
. SHKAPOVSKIL (BOTTOM LEFT
SCALEXY

 AXES
DRAWSECT
TITLE
SHKAPOVSKII (TOP LEFT TO
. DRAWSECT

FINISH

Rest of Card

750 275

2 -1

20 150

-1 0 0
2 8 2
3 ~1 -2

TO TOP RIGHT)
10 0.3

0 15 5

BOTTOM RIGHT)

.0 600 100
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Couments

Cross—-section
data

Comments

Points
plotted in
red, values

only



commands
& data

SIMP

DUMP

J

Model
file

commands
& data

SIMPLOT

FORTRAN

program
including

GINO-F library

GETMODEL

v
Results on
printer Plot

) (

file

|

O

codes

(

FIGURE Al: Diagram to illustrate overall systenm

20
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GETMODEL"
?

Y

setupdata

fitmodel

mode=

"DUMP"
?

read comm

"OPTIMISE" "CONTOUR "SECTION" "FINISH"

contour

‘ optimise ) ( section )

~N

(EEEE)

FIGURE A2: Outline flowchart of main vroutine of SIMP
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PEVALSIZE
v
PTNODY

P e
i | ;

I | | "
: | ! t
V Lefee t =

1
PTRODX

FIGURE A3: Illustration of parameters for data point
plotting in SIMPLOT
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'PROC' CUTUP = ('REF'[,]*REAL' XPT,'REF'[] 'REAL' XLOWER, XUPPER,
. "INT' NPOINTS,NDIMS,'REF''INT' NOLEFT, IPOINT) 'VOID':
Icl .

) PROCEDURE TO DEFINE LOCATIONS OF LARGE NO. OF INITIAL PTS.
. 1c .
"'BEGIN'
"REAL' LARGEST,SAVEUP, SAVELOW ;
{INT' ICUT,REMAINDER,NOLEFTSAVE;
'IF ' NOLEFT > @
*THEN '

LARGEST := 8. 0;

'FOR' I 'TO' NDIMS 'DO' 'BEGIN'

"IF' XUPPER[I} - XLOWER{I] > LARGEST

'THEN' ]
LARGEST := XUPPER{I] - XLOWER[I}; ICUT := I
'PI‘
*END';
SAVEUP := XUPPER[ICUT] ; SAVELOW := XLOWER[ICUT]:
REMAINDER := NOLEFT - 2% (NOLEFT'/'2);
'IF!' REMAINDER = ]
YTHEN

IPOINT 'PLUS' 1; NOLEFT °'MINUS' 1;
'FOR' I 'TO' NDIMS 'DO'

XPT[IPOINT, I] := 8.5%(XUPPER[I]+XLOWERII])

‘PI1°';

NOLEFT := NOLEFT'/'2;

NOLE®TSAVE := NOLEFT;

XUPFER[ICUT]! := @.5*(SAVEUP+SAVELOW)} ;

CUTUP (XPT, XLGWER, XUPPER,NFOINTS, RDIMS, NOLEFT, IDOINm),

XUPPER[ICUT] := SAVEUP; XLOWERI{ICUT] := 08.5*(SAVEUP+SAV=LOW) ;

NOLEFT := NOLEFTSA:

CUTUP (XPT, XLOWER, XUPPPR NEPQINTS, NDTMS NOLEFT, IPOINT);
' X?PPER[ICUT} t= SAVEUP; XLOWER[ICUT) := SAVELV
FI1

TYEND';
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'"PROC' EXPLORE = ('REF'[,]'REAL"XPT,'REF'[]'REAL' XLOWER, XUPPER,
'REF''INT' IPOINT,'INT' NPOINTS,NDIMS) 'VOID':
Icl
PROCEDURE TO DEFINE LOCATIONS OF INITIAL POINTS.
Icl
'BEGIN'
[1:NDIMS] 'REAL' XDUM,HIGH,LOW,ANISODUM : .
'BOOL' FINISHED,POINTOK;
YINT' R,NHIGHS,IFIX, ISWITCH;

'REAL' FACTOR := 4.0;
'FOR' I 'TO' NDIMS 'DO‘' 'BEGIN'
HIGH[I]) := ((FACTOR-1.8)*XUPPER[I] + XLOWER[I])/FACTOR;
LOW[I) := ((FACTOR-1.P2)*XLOWER{[I]) + XUPPER[I])/FACTOR;
~ ANISODUM[I] := 1.0
'END';
'FOR' R 'TC' NDIMS-1 'WHILE' IPOINT < NPOINTS 'DO' ‘'BEGIN'
XDUM := HIGH;
NHIGHS := NDIMS; FINISHED := 'FALSE'; IFIX := 1;
‘WHILE' 'NOT' FPINISHED '[O' 'BEGIN'
POINTOK := '"TRUE’';
'FOR' K 'TO' IPOINT 'WHILE' POINTOX 'DO' 'BEGIN'
POINTOK := PCINTOK 'AND'
. DISTANCE (XDUM,XPT[K,],ANISCODUM ,NDIMS) > 1.8&-6
END '
*IF' POINTOX
"PHEN
1POINT 'PLUS' 1;
XPT [IPOINT,] := XDUM;
FIRISHED := (IPOINT = NPOINTS)
IFII;
'FOR' J '"TO' NDIMS - R 'DO' 'BEGIN'
ISWITCH := IFIX + R - 1 + J ;
'IF' ISWITCH > NDIMS 'THEN' ISWITCH 'MINUS' NDIMS 'FI‘';
XDUM[ISWITCH] := HIGH [ISWITCH] + LOW[ISWITCH] - XD [ISWITCH
'END'; .

IPIX '"PLUS'™ 1;
‘IF' IFIX > NDIMS 'THEN' IFIX 'MINUS' NDIMS 'Fi';
NHIGHS := 8;
'FCR' I 'rO' NDIMS 'DO' 'BEGIN'
'IF' XDUM [I) > LOWI[I] 'THEN' NHIGHS 'PLUS' 1 'FI’
YEND': _
FINISHED := PINISHED 'OR®' NHIGHS = NDIMS
'END' .
'END'
IENDl;
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"PROC' HCALC = ('REF'[)'REF'[}'REAL' S,'REF'[,] "REAL' XPT,DH,D2H,
'REF ' [] '"REAL' XLOWER, XUPPER, 'REAL' RO, 'INT' NPCINTS,
NDIMS) 'REAL':
|Cl
PROCEDURE TO CALCULATE SEPARATION MEASURE "H" FOR SET OF PTS.
lcl
'BEGIN'
"INT' IDUM,JDUM;

'REAL' HPART,HNEW := 0.0;
[1:NDIMS] 'REAL' ANISGDUM;
'FOR' I 'TO' NDIMS 'DO' ANISODUMI[Y] := 1.0;

SETUP {5 , XPT,ANISODUM, RO, NPOINTS, NDIMS);
‘FOR' I 'TO' NPOINTS 'DO' 'BEGIN'
'"POR' K 'TO' NDIMS 'DO' 'BEGIN'
HPART := EXP (~{(XPT[I,K] XLOWER[K}) "2/{(B.5*RO72}));
HNEW 'PLUS' HPART;

DH[I,K] := HPART*4 ﬁ*(XPT[I K}-XLOWERI[X]) /RO"2;
DZHII,K] := 4*HPART* (4* (XPT(I,K]-XLOWER[K]) "2/R0O"4-1/RO"2);
HPART := EXP{-{(XPTI[I,K)-XUPPERIK]) "2/(8.5*R0"2)});

DH[I,K] 'PLUS' 4.3*HPART* (XPT[I,K]-XUPPER[K]}/RO 2;
D2H [I,K] 'PLUS' 4*HPART*(4*(XPT[I,K]l-XUPPER[{K]) 2/R0"4

- 1/R072);
HNEW 'PLUS' HPART
'TEND ' .
'FCR' J 'TO' NPOINTS 'DO' 'BEGIN'
'IF' I % J
"THEN'
YIF' I > 4
'THEN' IDUM := I; JDUM := J
'ELSE' IDUM := J; JDUM := I
-'FI';

HPART := S[IDUM][JDUM];
HNEW 'PLUS' HPART;
'"FOR' K 'TO' NDIMS 'DO' 'BEGIN'
DH[I,K] 'PLUS'. 2.0*HPART* (XPT[I,K]-XPTIJ, K])/Ro‘z-
D28 [I,K] 'PLUS' 2*HPART*{(XPT(I, h] ~XPT [J,K]) "2/R0O"4
, A - 1/R0"2)
CEN-DI
lFII
'END' '
‘END’; :
BNEW
'END‘';
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'PROC' UPDATEY = ('REF'{]}'REF'[]'REAL' S,'REF'[,] 'REAL’ XPT DH,D 2ZH,
'"REF'[) "REAL"' XLOWER,XUPPER, 'REF''REAL' HNEW,
'"REAL ' RO,NEWX,'INT' ISHIFT, KShIFT,NPOINTS NDIMS)
'VOID':
Icl
PROCEDURE TO UPDATE "H" VALUE FOR CHANGED POSITIOR OF PT.
lcl
'BEGIN'
'REAL' HPART, GLDHPART, DHPART, D2HPART;
TINT ' IDUM,JDUM;
[1:NPOINTS]'REAL' NEWS;
'FOR' I 'TO' NPOINTS 'DO!
' 'IF' I 4 ISHIFT
TPHEN!
'REAL' DIST := £.8;
'POR' K 'TO' NDIMS 'DO!
‘IF' K 4 KSHIFT
*THEN' DIST 'PLUS' (XPTI[I,K]- XPT[ISHIFT K]} 2
'ELSE' DIST 'PLUS' (XPT[I,K]-NEWX)
IFII.'
NEWS[I]) := EXP (- (DIST/(2.8*RO0"2)))
‘F1';
NEWS [ISHIFT] := 1.8;
BLEH;ART :=]EXP{—((XPT[ISHIrT KSHIFT]- -XLOWER [KSBIFT]) "2/(B.5%R072)));
HPART := EXP (~ ( (NEWX-XLOWER [KSHIFT]) "2/ (8.5*RO ~2y)) o
HNEW 'PLUS' HPART - OLDHPART;

DH [ISHIFT,KSHIFT] 'PLUS' 4*(HPART*NEWX~OLDHPART*XPT [ISHIFT, KSHIFT}
+ XLOWER[KSHIFT]* {OLDHPART~HEPART)})/R0O"2;
D2H [ISHIFT,KSHIFT] 'PLDS' 4*(4*HPPRT*(N¢WX XLOWER[LSHIFT])
~ 4 *CLDHPART* {}PT [ISHIFT, KSHIFT]~-XLCWER [KSEIFT]) ~
+ Ro“z*(OLDHPART—HPART))/Ro“4 ;
OLDHPART := EXP (- ({XPT[ISHIFT,KSHBIFT]-XUPPER[KSHIFT]) "2/(8.5*%*R0"2)}));
BPART := EXP (- { (NEWX-XUPPER[KSHIFT]) "2/ (6. S*Ro‘z)));
ENEW 'PLUS' HPART - OLDHPART:;
DH[ISHIFT,KSHIFT] 'PLUS' 4*(HPART*NEWX~OLDHPART*XPT [ISHIFT, KSHIFT]
+ XUPPER [KSHIFT]* (OLDHPART-HPART))/RO"2;
D24 [ISHIFT,KSHIFT] 'PLUS' 4*(4*HPART* (NEWX-XUPPER[KSHIFT)) "2
- 4*OLDHPART*(XPT[ISHIFT,KSHIFT] XUPPER{KSHIFT])““
+ RO 2*(OLDBPART—HPART))/RO 4 ;
'FOR' J '"TO' NPOINTS 'DO'
'IF' J § ISHIFT

"PHEN®
'IF' ISHIFT > J
*THEN' IDUM := ISHIFT; JDUM := J
'ELSE' IDUM := J; JDUM := ISHIFT
iFIl;
_OLDHPART := S{IDUM}[JDUM],
HPART := NEWS[J];
HNEW 'PLUS' 2.0%(HPART - OLDHPART);
DHPART := 2* (HPART*NEWX - OLDHPART*XPT [ISHIFT, KSHIFT]

+ XPT[J,KSHIFT]* (OLDHPART-BPART))/RO"2;
DH {ISEBIFT, KSHIFT] 'PLUS' DHPART;
DH[J,KSHIFT] 'MINU3' DHPART;
D2HPART := 2% (HPART* (NEWX~XPT [J,KSHIFT)) "2 - OLDHEPART*
(XPT [ISHIFT, KSHIFT]-XPT[J,KSHIFT]) "2) /KO0 4;
D2HPART 'PLUS' 2.8* (OLDHPART-HPART)/RO"2;
D?H [ISHIFT,KSHIFT] 'PLUS' DZHPART;
D2H {J,KSHIFT] 'PLUS' DZ2HPART;
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'FOR' K 'TO' NDIMS 'DO'
'IF' K § KSHIFT

‘THEN' .
DHPART := 2,0*(BPART-OLDHPART)* (XPT [ISHIFT,K]-XPT{J,K]}/RO"2;
D2HPART := 2* (HPART -OLDBPART}* (XPT [ISHIFT,K]~

XPT[J,K]) "2/R0"4;

D2HPART 'PLUS®' 2.0* (OLDHPART-HPART)/RO"2:
DH[ISHIFT,K] 'PLUS' DHPART;

DH[J,K] 'MINUS' DHPART;

D2H [ISHIFT,X] 'PLUS' D2HPART;

D2H [J,K] 'PLUS' D2HPART

IFII;
S{IDUM] [JDUM] := NEWS[J]
'FI':
XPT [ISHIFT,KSHIFT] := NEWX

IEND 1 H . »
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‘PROC' SPREADEM (*REF'[,] "REAL' XPT, *REF'[] 'REAL' XLOWER, XUPPER,
Lo » 'REAL' AVSEP,'INT' NPOINTS,NDIMS} 'VOID':

ol
PROCEDURE TO MOVE INITIAL CONFIGURATION OF PTS INTO BETTER
POSITIONS USING REPULSIVE FUNCTION.

lcl
'BEGIRN®
'REAL' HNEW, HOLD, DHMA X, HPART, STEP;
'REAL' RO := B.5*AVSEP;
'REAL' SHIPT := @.5*RO:;
'INT' NITS := B;

"INT' IMAX, KMAX, IDUM, JDUM ;
« VINT' IMAXLAST, KMAXLAST;

'REAL' LASTSTEP := 9.0;
[1:NDIMS]'REAL' ANISODUM ;
[1:NPOINTS,1:NDIMS] 'REAL' DH,DZH;
[1:NPOINTS]'REF'[] 'REAL' S;-

'FOR' I 'TO' NPOINTS 'DO' S[I] := [1:I]'REAL’';

'FOR' I 'TO' NDIMS 'DO' ANISODUMI[I] := 1.0:

'BOOL' FINISHED := 'FALSE';

‘BOOL' DEBUG := 'FALSE';

HOLD := 1.0&6;

'REAL' NEWX: '

HNEW := HCALC(S,XPT,DH, D2H, XLOWER, XUPPER, RO, NPOINTS,NDIMS};

OUTF (STANDOUT, SLL* INITIAL H VALUE ="2X<4.4>$,HBNEW);
"WHILE' 'NOT' FINISHED 'DO''BEGIN'
NITS 'PLUS' 1;
DHMAX := 0. 8;
'FOR' I 'TO' NPOINTS ‘DO’
"FOR' K 'TO' NDIMS 'DO'
"IF' 'ABS'DH[I,K] > DHMAX’ ‘ :
'AND' (XPT([I,K)-XLOWER([K]) > -0.B8l*(XUPPER[K]-XLOWER[K])*
*SIGN' (DH [I,K]) 'AND' (XUPPER [K]-XPT[I,K]). > 8.01%
(XUPPER [K ]-XLOWER[K]) *'SIGN' (DH [I,K])

'THEN' IMAX := I; KMAX := K; DHMAX := 'ABS'DH[I,K]
'FI';

'IF' DEBUG

'"THEN'

OUTF (STANDOUT, SL<5>, 2X<2, 582>, 2X<5>, 1X<5>, 2X<2.582>§,
(NITS,HNEW, IMA X, KMAX, DHMAX))

.FI':
FINISHED := HOLD ~ HBNEW < 1.8/NPOINTS 'OR"' NITS: > 2*NDIMS*NPOINTS;
HOLD := HNEW; '
'IF' DHMAX <= 1.0&-6 :
- "THER' -

'FOR'™ I 'TO' NPOINTS 'WHILE'®' FINISHED 'DO'
'POR' K 'TO' NDIMS 'WHILE' FINISHED 'DO'
'IF' DZH[I,K] < 2.8

" THEN ' ' ]
FINISHED := 'FALSE'; ‘
IMAX := I; KMAX := K;

D?MAX := 1.08&-6; DH{I,K] := DHMAX

'FI

C'FIY



TIP' 'NOT' FINISHED

*THEN ' _
*IF' D2H [IMAX, KMAX] > 0.0
*PHEN
STEP := MAX({-SHIFT,MIN((SHIFT, Di [IMAX, KMAX]/D2d {IMAX,

KMAX]})) ) }:

FINISHED := 'ABS'STEP < 6.601*(XUPPER [KMAX]-XLOWER [KMAX])
'‘ELSE' STEP := DH[IMAX,KMAX]*1.8*SHIFT/DHMAX
lFIl;
"IF' STEP > 0
"THEN' STEP :
*ELSE' STEP :
'FI‘;
'IF' IMAX = IMAXLAST 'AND' KMAX = KMAXLAST
'AND' STEP*LASTSTEP < 0

- MIN ( (STEP, (XUPPER [KMAX]-XPT[IMAX,KMA X)) /2.8))
= MAX ((STEP, (XLOWER [KMAX] -XPT [ IMAX,KMAX]) /2.8))

‘*THEHN' STEP := -g.,5*LASTSTEP

'FI';

LASTSTEP := STEP;

IMANLAST := IMAX; KMAXLAST := KMAX;

'IF' DEBUG 'THEN'
CUTF (STANDOUT, $2X<2.5&2>, 2X<5. 4>%, (D2H[IMAX,KMAX] STEP)):
'SKIP' 'FI"

REWYX := MAX((XLOWER[KMAX] MIN((XUPPER[KMAX] ¥XPT [IMAX, KMAX]
+ STEF))) )
UPDATEH(S,XPT,DH,D2H,XLUWER,XUPPER,HNEW,RO,NEWX,,JAX KMa X,
NPOINTS, NDIMS)
'FI'
YEND'; )
OQUTF (STANDOUT, SL2X"FINAL B VALUE ="2X<4. 4>, 2X"AFTER"<4>" ITERATIONS"S,
(HNEW,NITS)).
'END ';



'*PROC' INITIALPTS = ('REF'[,] 'REAL' XPT,'REF'[]'éEAL' XLOWER, XUPPER,
K 'REF''REAL' AVSEP,’'INT' NPOINTS,NDIMS) ‘VOID':

lcl
PROCEDURE TO DEFINE FINAL POSITIONS OF INITIAL PTS.
. lcl R
'BEGIN' ,
YINT' IPOINT,NOLEFT;:
IPOINT := §; NOLEFT := NPOINTS;
AVSEP := 1.0;

‘FOR' I 'TO' NDIMS 'DO' AVSEP '"IMES' {XUPPER[I]-XLOWERI[I]}:
'IF' NPOINTS > @ 'THEN' .
AVSEP := EXP (LN (AVSEP/NPOINTS)/NDIMS);
'SKIP'
'ELSE' AV3EP := EXP (LN {AVSEP}/NDIMS)
'FI';
QUTF (STARDOUT, $LL"AVERAGL SEPARATION BETWEEN PTS ="2X<6.4>LS$,AVSEDP):
'‘IF' NPOINTS »>= 2 "NDIMS
'THEN
. CUTUP (XPT, XLOWER , XUPPER, NDOINTS NDIMS, NOLEFT, IPOINT)
ELSE'
EXPLORE (XPT, XLOWER , XUPPER, IPOINT, NPOINTS, NDIMS) ;
*IF' IPOINT < NPOINTS
"PHEN' -
NOLEFT := NPOINTS - IPOINT;
CUTUP (XPT, XLCWER, XUPPER, NPOINTS NDIMS, NOLEFT IPOINT)
[} 1
o
PRINT ((NEWLIWE," STARTING POSITIONS OF INITIAL PTS -",NEWLINE));
'PFOR' I 'TO' NPOINTS 'DO'
OUTF (STANDOUT, SL<5>, N(NDIMS) (2X<4.4>)$,(I,XPT[I,]));
SPREADEM(XPT XLOWER XUPPER,AVSEP, NPOINTS MDIMS);
'SKIP' ) . .
'END';
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'PROC' ANISOCAIC = ('REF'[,]'REAL' XPT,'REF'[] 'REAL' Z,ANISO,

. 'REF''REAL' MU,RO,SD,AVSEP,ANISOMIN,ANISOMAX,
SRR - .VINT' NPOINTS,NDIMS) 'VGID':
IC_I

PROCEDURE TO ESTIMATE ANISOTROPY FACTORS.
lcl
"BEGIN' - :
"INT' NCOUNT := @; 'INT' NREF := 4;

'REAL' DIST,MAXDIST,ALPHAMEAN;
[1:NDIMS)'REAL"' ALPHA;
[1:NPOINTS] 'REAL' ZSCALE;
[1:NREF*NPOINTS] 'REAL' Y; :
[1:NREF*NPOINTS,1:NDIMS] 'REAL' DELTAX2;
'BOOL' DEBUG :="'FALSE':
MAXDIST := 1.5*AVSEP;
"YCLEAR' DELTAX2;
'FOR' I 'TO' NDIMS 'DO' ALPHA[I] :
'FOR' I 'TO' NPOINTS 'DO' 'BEGIN'
ZSCALE([I]) := (Z{I}-MU)/SD;
'POR' J 'TO' I~1 'WHILE' NCOUNT < NREF*I 'DO' 'BEGIN'
'IF*' ZSCALE [I]*2ZSCALE{J] > 0.0
'*THEN'
DIST := DISTANCE (XPTI[I,]},XPT{J,],ALPHBA,NDIMS);
'"IF* DIST < MAXDIST
'THEN'
NCOUNT 'PLUS' 1;
Y [NCOUNT] := ~LN(COVAREST (ZSCALEI[I]l,2SCALE([J]));
'IF' Y [NCOUNT] < 1.3
JTHEN®
FOR' K 'TO' NDIMS 'DO! .
DELTAX2 [NCOUNT, K] := (XPT[I,R]-XPT|[J,K]) "2
'ELSE' NCOUNT 'MINUS' 1 .
'FI'
'‘FI?
IFII
'END"*
YEND ';
REGRESS (DELTAX2, Y, ALPHA, NDIMS, NCOUNT),
ALPHAMEAN := g£.0; NCOUNT := @;
‘FCR' I 'TO' NDIMS DO !
'IF' ALPHA[I) > 9.8
"THEN'
A%PHAMEAN 'PLUS' ALPHA[I]; NCOUNT 'PLUS' 1
. "F1'; .
"IF' NCOUNT
'THEN'
NCOUNT := 1
ALPHAMEAN :
lFI l:
ALPHAMEAN 'DIV' NCOUNT;
RO := SQRT(1.0/(2.8*ALPHAMERN)); ;
OUTF (STANDOUT, SLL" ESTIMATED RO ="2X<4. 4>LS,R0O); :
PRINT ( (NEWLIWE,NEWLINE,"ALPHA VALUES AND ANISOTROPY FACTORS ~",
NEWLINE));
'FOR' I 'TO' NDIMS '‘DO' 'BEGIN'
'IF' ALPHAI[I] > 8.9

1. 9;

!

g

= 1.8/AVSEP"2

'THEN' ANISO[I] := ALPHA{I]/ALPHAMEAN

'ELSE' ANISO[I] := ANISOMIN

'FI'} .

ANISOQ[I] := MAX((ANISOMIN,MIN{((ANISO[1],ANISCOMAX))));

OUTF (STANDOUT, SL<5>, 2K<2.5&2>,2X<4.4>$, (I, ALPHA [I] ,ANISO [I]))
‘END!
'END':
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'PROC' AVERAGEPTS = ('REF'{,] 'REAL' XPT, XAV, 'REF' [] 'REAL' ZAV,Z,
S ANISO, XLOWER, XUDPER,'INT NOAV, NPOINTS , NDIMS)
: 'VOID '
'ICI B
PROCEDURE TO DEFINE POSITIONS AND VALUES OF AVERAGE PTS.
lC' v
"BEGIN"

*REAL' AVSEP,RO,WTSUM,DIST,COVAR;
INITIALPTS (X¥AV, XLOWER, XUPPER,AVSEP,NOAV,NDINS};

PRINT ( (NEWLINE, NEWLINE,"POSITIONS AND VALUES OF AVERAGE PTS -",

NEWLINE) ) ;
'CLEAR' ZAV;
“RO := @.5*AVSEP;

‘FOR' I 'TO' NOAV 'DO' 'BEGIN'
WISUM := 8.0;
'FOR' J 'TO' NPOINTS 'DO' 'BEGIN'
DIST := DISTANCE (XPT(J,].XAV[I,]! ,ANISO,NDIMS);
COVAR := EXP{- (DIST 2/(2.8%R0"2)));
WTSUM 'PLUS' COVAR;
ZAV{I) 'PLUS' 2 [J)*COVAR
'END ' ;
ZAV[I] 'DIV' WISUM;
OUTF (STANDOUT, SL<3 >, 2X<2. 562>, 2XN (NDIMS) (1X<3. 4>)$.
(1,zAvVI[I), XAV[I 1))
IEN-Dl
'END'; '

'PROC' ERRORSUM = ('REF'[,]'REAL' X,'REF'{] 'REAL' 2,ANISO,
'REAL' RO,MU,'INT' NPOINTS,NDIMS) 'REAL':

lcl
PROCEDURE TO COMPUTE ERROR SUM OF SQUARES FOR GIVEN RO VALUE.
ICI
'BEGIN' ‘
[1:NPOINTS]'REF'{]'REAL' S;
'"FOR' I 'TO' NPOINTS 'DG' S([I] := [1l:1]'REAL';

[1:NPOINTS]'BOOL' PIVOTTED;

'‘REAL' ESTIMATE,ERRORS; ERRORS := 8.8;

"INT' NOUSED := 8;

SETUP (S, X,ANISO,RO,NPOINTS,NDIMS ) ;

'FOR' I 'TO' NPOINTS 'DQ' 'BEGIN'
- ESTIMATE := MU;

'FOR' J 'TO' I~1 'DO!
*IF' PIVOTTED([J] 'THEM' ESTIMATE 'MINUS' S[I]([J)*({Z2[J]-MU)}

ERRORS 'PLUS' {2 (I)-ESTIMATE) "2/5I[I][(1];
PIVOT (S, PIVOTTED, I, NPOINTS);
'IF' PIVOTTED{I] 'THEN' NOUSED 'PLUS' 1 'FI'
YEND'; '
ERRORS/NOUSED
‘END'; .

lFI';
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sl N -

'PROC' MINEST = ('REF'[]'REAL' XX,YY,'REF''BOOL' MINFOUND) 'REAL':
Icl N
'PROCEDURE TO ESTIMATE MIN 'OF FUNCTION FROM 3 PTS.
'C
'BEGIN'
'REAL' A,B,C,WORKER,MINX;
A 1= ({XX[2)-XX[3])*(YY[r]-¥Y[2]) - (XX[Y]-XX[21)*(¥Y[2]-YY[31))/
((XX{1)-XX[2])* (XX [2)-XX[3] ) * (XX [1]-XX[3])):
B 1= (YY[1] - YY[2] = A* (XX[1]-XX{[2))*(XX[1]+XX[2)) /(XX [1])-%XX{2]);
C := YY[1] -~ A*XX[1}"2 - B*XX([1l]); :
MINFOUND := A > 0.0;
'IF' MINFOUND

'THEN' MINX := -B/(2.0%A3)
'‘ELSE’ :
'"REAL' MINY := 1.0418; WORKER := 8.8;

'FOR' 1 'TO' 3 'DO' ‘'BEGIN'
WCRKER 'PLUS' XX[1]/3.8;
'IF' YY [I] < MINY

TTHEN' MINY := YY[I] 3 MINX := XX[I]
'FI° -
" YEND';
MINX := 3.0*MINX - 2.@*WORKER
IFI I;
MINX . - . . . e

'END‘;
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'PROC' ESTIMATED RO = ('REF'([,) 'REAL' X,'REF'[]'REAL' Z,ANISO,
'REAL' MU,STARTRO,'INT' NPOINTS,NDIMS) ‘REAL':

ol ’
PROCEDURE TO ESTIMATE RO BY MINIMISING ERROR SUM OF SQUARES.

IC|
'BEGIN"®
TINT' IDROP,NITS;:; NITS := @:
E'REAL' RO, CLOSENESS ,MAXESUM : CLOSENESS
'BOOL ' FOUNDIT,MINFOUND; FOUNDIT := 'FALSE';

[1: 3] 'REAL' ESUM,TRIALRO;

PRINT ( (NEWNLINE, NEWLINE,
"VALUES OF RO AND ERROR VARIANCE FOR ESTIMRTION -",NEWLINE)});

'FPOR' I 'TO' 3 'DO' 'BEGIN'
TRIALRO[I] := STARTRO*(2.87(1-2)};
ERRORSUM(X,Z,ANISO, TRIALRO [I] ,MU,NPOINTS,NDIMS) ;

ESUM[I] H 1oy
OUTF (STANDOUT, SL<3>, 2X<4.4>, 2<2.5&2>3%, (I, TRIALRO[I),ESUMI[I]))

:= @.0825*STARTRO;

.END':
'WHILE' NITS < 28 'AND' 'NOT' FOUNDIT 'DO' 'BEGIN'
RO := MINEST (TRIALRO,ESUM,MINFOUND);

NITS 'PLUS' 1;
RO := MAX((RO, 0.
MAXESUM := 6.8;
'FOR' I 'TO' 3 'DO°
"IF' ESUM(I] > MAXESUM .
"PHEN' IDROP := I; MAXESUM := ESUM[I]

'FI';
FOURDIT := MINFOUND. 'AND' 'ABS'(RO-TRIALRO[IDROP]})

I*STARTRO/NITS)}; .

< CLOSENESS;

'IF' 'NOT' FOUNDIT

'THEN'
MAXESUM := ERRORSUM(X,2,ANISO,RO,MU, NPOINTS, NDIMS);
'IF' MAXESUM > ESUM[IDROP] _

"THEN *
RO := @.5% (RO+TRIALRO [IDROP]);

MAXESUM := ERRORSUM(X,Z,ANISO,RO,MU,NPQINTS,KDIMS)
'FI'; - 7
ESUM [IDROP] := MAXESUM;

TRIALRO [IDROF] := RO;
OUTF (STANDOUT, SL<3>, 2X<4. 4>, 2X<2. 582>, 1X<3>8,
(NITS,RO,MAXESUM, IDROP))

IFII

. YEND;
RO .
'‘END'; ' | . _

|

¥
1
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‘PROC' QUICK RO = ('REF'[,]'REAL' X,'REF'[]'REAL' Z,ANISO, 'REAL' MU, SD,
' 'INT' NPOINTS,NDIMS) 'REAL':
e .
' PROCEDURE FOR QUICK ESTIMATION OF RO.
lc!
T"BEGIN'
[1:NPOINTS]'REAL' ZSCALE,ROVAL; 'CLEAR' ROVAL;
[l:NPOINTS]'INT' POINTER; ‘'CLEAR' POINTER;
'INT' NEAREST, ICOUNT;
'REAL' XCOVAR,RO,ROMEAN, ROSD, DIST, FINDIST'

YINT' NFAIL := B'
ICOONT := 0;
*FOR' I 'TO' NPOINTS 'DO' ZSCALE[I) := (Z[I]-MU)/SD;
*FOR' I 'TO' NPOINTS 'DQ' 'BEGIN! :
NEAREST := I; MINDIST := 1.88&12;
'POR' J 'TO' NPOINTS 'DO°
"IF' I # J
YPHEN®

DIST := DISTANCE (X[I,],Xi(J,],ANISO,NDIMS); .
'IF' DIST < MINDIST ‘AND' POINTER{J] # I
TAND' ZSCALE ([T ]*2SCALE[J] > @
"THEN®
NEAREST := J; MINDIST := DIST
|FII
'FI'=
'IF' NEAREST % I
'"THEN'
ICOUNT 'PLUS' 1;:
XCOVAR := COVAREST (ZSCALE[T],2SCALE [NEAREST]);
'*IF' XCOVAR < 1.6&-5 ‘THEN' NPAIL 'PLUS' 1 *FI‘; .
POINTER([I] := NEAREST;
RO := MIN((4.B8*MINDIST,MINDIST*SQRT (-1. B/(Z e*LN(XCOVAR))))}.
ROVAL [ICOUNT] := RO;
OUTF(STANDOUT,$L2(2x<4>),2(2x<2.5&2>),3(2x<4.4>)$,(I.NEAREST.
ZSCALE [1],2SCALE [NEAREST] ,MINDIST, XCOVAR,RO))}

IFII
'END';
‘PRINT ( (NEWLINE," STATISTICS FOR ESTIMATED RO VALUES -",NEWLINE));
STATISTICS (ROVAL, ICOUNT, ROMEAN,RQO,ROSD) ; :
'IF' NFAIL > ICOUNT/2 'THEN' RO := ROMEAN 'FI';
RO :
'ERD';
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'PROC' POINT VALUE = ('REF'{,]'REAL' XPT,'REF'[] 'REAL' X, GAMMA,6ANISO,
, DFDX, 'REAL' MU,RO,'INT' NPOINTS,NDIMS) 'REAL':

.lcl "
PROCEDURE TO ESTIMATE FUNCTION VALUE AT UNKNOWN PT.

ICI
*BEGIN' _

'"REAL' ESTIMATE,DIST2,COVAR;

ESTIMATE := MU;

'FOR' I 'TO' NPOINTS 'DO' 'BEGIN®

DIST2 := DISTANCE (X,XPT[I,],ANISO,NDIMS) ~2;
'IF' DIST2 < 25.0*RO"2
SPHEN *
COVAR := EXP (- (DIST2/(2.
ESTIMATE 'PLUS' COVAR;
'FOR' K '"TO*' NDIMS 'DO'
DFDX[K] 'PLUS' COVAR*ANISO[K]*(XPT[I,K]-X[K])/RO"2
IFII .
'END';
ESTIMATE : :
'END'; o

P*RO2)) ) *GAMMA [1];

'PROC' INTERPOLATOR = ('REF'[,] 'REAL' XPT,XAV,'REF'[] 'REAL" X, GAMMA,
DELTA,ANISO, DFDX, 'REF ' 'REAL"' MODG, 'REAL' MU,

o RO, ROLONG, 'INT' NPOINTS,NOAV,NDIMS) 'REAL':
, 'INTERPOLATING FUNCTION USING 2-STAGE MODEL.
C
'"BEGIN'
'"REAL' INTERP;

'CLEAR' DFDX;
INTERP := POINTVALUE (XAV, X, DELTA,ANISO, DFDX, MU, ROLONG, NOAV, NDIMS )
+ POINTVALUE (XPT, X, GAMMA ,ANISO, DFDX, 8. @, RO, NPOINTS, NDIMS) ;

MODG := 0.9;
'FOR' I 'TO' NDIMS 'DO' MODG 'PLUS' 'ABS'DFDX [1];
INTERP

‘END’;
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'PROC' PREPARE = ('REF'l,)'REAL' XPT,'REF'[]'REAL' Z,ANISO, GPHMA,
: .. 'REAL' RO,MU,'INT' NPOINTS NDIMS) 'VOID’-

!C‘t . .
PROCEDURE TO COMPUTE GAMMA VALUES.

tcl
'BEGIN'

[1:NPOINTS]'REF'{]'REAL"' S;

[1:NPOINTS] 'BOOL' PIVOTTED;

'INT' IDUM, JDUM ; .

FOR' I 'TO' NPOINTS 'DO*' S[I) := [1:I)'REAL';

SETUP (S, XPT,ANISO,RC, NPOINTS, NDIMS ) ;-

'FOR' I 'T0' NPOINTS 'DO' PIVOT(S PIVOTTED, I, NPOINTS) ;

*FOR' I 'TO' NPOINTS 'DO' 'BEGIN'

GAMMAII] := 0.8;

'FOR' J 'TO' NPOINTS 'DO' °*BEGIN’
YIF' I > J
'THEN' IDUM := I; JDUM = J
'ELSE' IDUM := J; JDpWM := 1
IFIl

'IF! PIVOTTED[J]
'THEN' GAMMA{I]j 'MINUS' S[IDUM]{JDUM]*(Z{J]-MU)

!FII
'END';
'"IF' 'NOT' PIVOTTED[I) 'THEN' GAMMA[I} := 6.0 'FI'
‘END’ . e
'END';
'*PROC' FIND = ('REF'{,] 'REAL"' xpT,xAV,'REF'[]'REAL' X, GAMMA , DELTA,
ANISO, 'REAL' ANGLE,CONTOUR, TOL,DLLIM,NU, RO, ROLONG,
*INT' IX,I1Y,NPOINTS,NOAV,NDIMS} 'BOOL':
ICI

PROCEDURE TO FIND CONTOUR VALUE ALONG GIVEN LINE.

ol .
_'BEGIN' T ///
YINT® ITS := 0; o ' .
'REAL' MODG,DL, DZDL, VALUE;

{1:NDIMS]'REAL' DFDX;

VALUE := INTERPOLATOR (XPT, XAV, X, GAMMA, DELTA ,ANISO, DFDX, MODG, MU, RO,
ROLONG, NPOINTS, NOAV,NDIMS) ;

"WHILE' 'ABS'(VALUE-CONTOUR) > TOL 'AND' ITS <= 1@ 'DO''BEGIN’

ITs 'PLUS' 1; '

DZDL := DFDX[IX]*COS(ANGLE) + DFDX[IY]*SIN(ANGLE);
‘IF' 'ABS'DZDL < 1.0&-9 'THEN' DZDL := 1.8&-9 'FI';
DL := (CONTOUR-VALUE)/DZDL;

DL := DL/(1.8 + 'ABS'DL/DLLIM);
X[IX] 'PLUS' DL*COS (ANGLE);

X[1IY] 'PLUS' DL*SIN(ANGLE):;
VALUE := INTERPOLATOR (XPT, XAV,A,GRMMA DELTA,ANISO, DFDX,MODG,MU, RO,

ROLONG, NPOINTS,NOAV, NDIMM)
'END'; '
'ABS! (VALUE-CONTOUR) < TOL
'END *; ,
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'PROC' DIVIDE = ('REF'{,)'REAL' XPT, XAV,XYZ,'REF'{] 'REAL"' X, GEMMA,

ICI

ok
'BEGIN'

DELTA ,ANISO, 'REAL' CONTOUR, TOL, DLLIM,MU, RG, ROLONG,
';NT' IX,IY,NPOINTS,NOAV,NDIMS) 'BOOL':

PROCEDURE TO DIVIDE LINE TO FIND REF. PT,

'REAL' FRACTION,VALUE,ANGLE,DZDL,MODG}AX,AY;

VINT!
[l:3]

IDIR,NITS, IXX,1;
"REAL' XYZL,XYZU;

[1:NDIMS] 'REAL' DFDX:

FRACTION := (CONTOUR - XYZ {3,2])/(XY2[3,1)-XY21(3,2));
FRACTION := MAX ((0.081,MIN((9.999,FRACTION)}));

AX := XYZ2{l1,2) + FRACTION*(XYZ[1l,1]1-XYZ[1,2]};:

AY := XYZ([2,2] + FRACTION*(XYz2{2,1)-X¥2{2,2}});
FRACTION := XYZ[1,1} - XYZI[l,2i:

IIFI

'ABS'FRACTION < 1.8&-9 'THEN' FRACTION := 1.0&-9 'FI';

ANGLE := ARCTAN((XYZ[2,1]}-XYZ[2,2]))/FRACTION);
IXX := -'SIGN’'FRACTION;

IDIR
I:=
AYZ U
IDIR

1= "SIGN'(XYZ{3,2]-XYZ2({3,1));
{3+IDIR)'/'2;

1= XYZ (,1]; XYZL := XY2[,3~I];

:= IDIR*IXX; DZDL := ~IDIR; NITS := @;

'WHILE'® DZDL*IDIR < @ ‘AND' NITS <= 19 'DO‘''BEGIN'
NITS 'PLUS' 1;

X[IX] := AX;
X[IY] := AY;
VALUE := INTERPOLATOR (XPT, XAV, X, GAMMA, DELTA,ANISO, DFDX,MODG, MU,
RO, ROLONG, NPOINTS, NOAV,NDIMS) ;
DZDL := DFDX{[IX]*COS (ANGLE) + DFDX[IY]*SIN(ANGLE};
'IF' VALUE > CONTOUR
YTHEN' XYZU[l] := AX; XYZUf2] := AY; XY2U[3] := VALUE
'ELSE' XYZL{1] := AX; XYZL[2] := AY; XYZL{[3] := VALUE
'FI';
AX := D.5%(XYZL[1]+XYZU[1l]}); AY := B.5%(XYZL[2]+XY2U[2])
YEND '
X[IX] :=aX; X[IY]) := AY:

FIND (XPT, XAV, X, GAMMA, DELTA ,ANIS0, ANGLE,CONTOUR, TOL, DLLIM MU, RC,

IENDl;

ROLONG, IX,IY,NPOINTS, NOAV,NDIMS)
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"PROC' SELECT = ('REF'[,]'REAL' XPT, XAV,'REF'[]'REAL' X, GAMMA,DELTA,
ANISO, XREF, YREF, XDATA, YDATA, ZDATA, "REAL' CONTOUR,.

TOL,DLLIM,MU,RO,ROLONG,MEDIAN,'REF"INT' NREF,

o "INT' IX,IY,NDATA,NPOINTS,NOAV, NDIMS) 'VOID':
ol ’

PROCEDURE TO DEFINE REFERENCE PTS.
ICI
'BEGIN'
'REAL' DIST, IMIN;
"INT' K; NREF := 0;

[1:3,1:2) "REAL' XYZ;
[1:NDATA] 'BOOL"' IBEEN; 'CLEAR' IBEEN:
'"BOOL' FINISHED := 'FALSE':
'FOR' I 'FROM' NDATA 'BY' -1 'TO' 1 'WHILE' 'NOT' FINISHED 'DO°
'BEGIN'
'IF' (ZDATA[I]-CONTOUR)*{MEDIAN-CONTOUR) < 1.8&-12
'OR' I > NDATA - 4

'"THEN ' : o
DMIN := 1.8812; '
FINISHED := 'TRUE';

'FOR' J 'TO' NDATA 'DO'
'IF' I 4 J 'AND' 'NOT' IBEEN{J] 'AND'
{ZLATA{I])-CONTOUR)* {ZDATA [J ] ~CONTOUR) < 1.0&-12

'THEN'
DIST := SCRT((XDATA[I]-XDATA[J]}) "2 + (YDATA[I]-YDATA[JI]) "2);
FINISBED := 'FALSE';
'IF' DIST < DMIN
'THEN' K := J; DMIN := DIST
IFII
IFIl;
'IF' 'NOT' FINISHED
*THEN' -
'IF' I <= NDATA - 4 'THEN' IBEENI{K] := 'TRUE' 'FI';
XYz [1,1] := XDATA[I]; X¥Z({2,1] := ¥YDATA[I]; XYZ[3,1] := ZDATA[I}
- XY¥2[1,2) := XDATA[K]; XYZ2[2,2} := YDATA[K]); XYZ[3,2} := ZDATA[K)

'IF' DIVIDE (XPT, XAV,XYZ, X, GAMMA, DELTA,ANISO,CONTOUR, TOL, DLLIN,
MU, RO, ROLONG, IX, IY, NPOINTS, NOAV, NDIMS)

'THEN '
NREF °'PLUS' 1;
XREF [NREF] := X[IX]; YREF{NREF] := X[IY]
lFII .
IFI|
lFII
'END'

'END';
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, ., PROCEDURE TO OUTPUT CONTOUR PT. .
C
EGIN®
'REAL' DIST; '
STORE [2*NSTORE + 1] := AX; STORE[2*NSTORE + 2] := AY;

NSTORE 'PLUS' 1:
'IF' NSTORE = 4 'OR' 'ABS'(AX+999.08) < 8,081
'THEN'
OUTF (PLOTFILE, $SL8(1X<3. 4>)$ STORE) ;
_ 'CLEAR' STORE;
NSTORE := @
'FI';
'FOR' I 'TO' NREF 'DO''BEGIN'
'IF' 'NOT' DELETED[I]

"PHEN"'
DIST := SCRT({AX-XREF[I])}) "2 + (AY-YREF[I])"2);
DELETED {I] := DIST < DTOL
IFII
'END?
END ' ;

PROC*®' ANGLEDIFF = ('REAL' ANGLE1l,ANGLE2) 'REAL':

'C' DIFFERENCE BETWEEN 2 ANGLES. 'C°
BEGIN'

MIN(('ABS'(ANGLE1-ANGLE2) ,'ABS"' (ANGLE1~ANGLEZ+2*PI),

'ABS ' (ANGLE1-ANGLEZ2-2%*PI)}))
END '

PROC' SMOOTH = ('REF''REAL' ANGLE, 'REAL' X1,Y¥1,X2,Y2,ANGTOL)

'C' PROCEDURE TO CHECK THAT CONTOQUR IS SMOOTH. 'C'
BEGIN' '

'REAL' ANGDUM, DANGLE ,WORKER;

WORKER := X1 -~ X2;
'IF'" 'ABS'WORKER < 1.0&-9 'THEN' WORKER := 1,0&-9 'FI';
ANGDUM := ARCTAN { (Y1-Y2)/WORKER):;

'IF' X1 < X2 'THEN' ANGDUM 'PLUS' PI 'FI1‘';

DANGLE := ANGLEDIFF{ANGLE,ANGDUM);

'IF' DANGLE < ANGTOL
'THEN' ANGLE := ANGDWM; 'TRUE'
'ELSE' 'FALSE'
lFIi
END *;

'ROC ' OUTPOINT = ('REF'[] 'REAL' XREF, YREF,STORE,'REF'[]'BOOL"
) 'REAL' AX,AY,DTOL, 'REF"INT NSTORE,‘INT NREF) 'VvQID':

224

DELETED,

'BOOL ' :
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'PROC' STEPALONG = ('REF'[,] 'REAL' XPT, XAV,'REF'[]'REAL' X,GAMMA,
DELTA,ANISO, 'REF''REAL' ANGLE,'REAL' CONTOUR,
ANGTOL, TOL,DLLIM,STEPMAX,MU,RO,ROLONG, 'BCOL’
NEWSTART, 'INT' IX,IY,NPOINTS,NOAV,NDIMS) 'VOID':
ICI
PROCEDURE TO FIND NEXT PT ON CONTOUR.
e
'BEGIN'
'REAL' ANG1l,ANG2,WORKER, XSAVE, YSAVE, STEP, VALUE, THETA , ORTHOG, MODG;
"INT' NITLIM := 2;

XSAVE := X{IX]; YSAVE := X[IY];

{1:NDIMS] 'REAL' DFDX;
“VALUE := INTERPOLATOR (XPT, XAV, X, GAMMA , DELTA ,ANISO, DFDX, MODG, MU,

RO, ROLONG, NPOINTS,NOAV,NDIMS);

STEP := STEPMAX:

*IF' 'ABS' DFDXI[IY] < 1.8&-9 'THEN' DFDX[IY] := 1.8&-9 O
ANGl := ARCTAN (-DFDX [IX] /DFDX [IY]):

ANGZ2 := ANG1l + PI:

1TF' ANGLECIFF(ANG]1,ANGLE)} < ANGLEDIFF(ANGZ,ANGLE)

*THEN ' THETA := ANGl

'ELSE' THETA := ANG2

'FI';

*7F' NEWSTART ‘THEN' ANGLE := THETA 'FI1';

ORTHOG := THETA + B.5*PI;

X{IX] := XSAVE + STEP*COS (THETA); X[IY] := YSAVE + STEP*SIN (THETA);

'"INT* NITS := 0;
'WHILE' ('NOT' FIND(XPT, XAV, X, GAMMA, DELTA, ANISO, CRTHOG, CONTOUR, TOL,
DLLIM,MU,RC,ROLONG,1X,IY,NPOINTS, NOAV,NDIMS)
'OR' 'NOT' SMOOTH (ANGLE, X[IX],X{IY],XSAVE,YSAVE,ANGTOL)}

'AND' NITS < NITLIM 'DO' 'BEGIN'

NITS 'PLUS' 1;
STEP 'DIV' 2;

X[IX] := XSAVE + STEP*COS(THETA); X[IY] := YSAVE + STEP*SIN (THETA)
‘END';
'IF' NITS >= NITLIM 'THEN' ANGLE := THETA 'FI'
'END'; ’

'"PROC' OUTOFAREA = ('REF''REAL' AX,AY,'REAL' BORD,XLAST,YLAST,
- 'INT' SIGN) ‘'BOOL':
.'BEgIN?ROCEDURE TO CHECK IF CONTOUR HAS LEFT SPECIFIED AREA. 'C'
'"IF' (AX-BORD)*SIGN > @

"THEN !
AY := YLAST + (AY~YLAST)* (BORD-XLAST)/(AX-XLAST);
AX := BORD;
'"PRUE

'ELSE' 'FALSE'

"PI

'END';
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'"PROC' BACKTOSTART = ('REAL' AX,AY, XSTART, YSTART,STEPMAX,
SAVEDANGLE) °'BOOL':
'C' PROCEDURE TO CHECK IF CONTOUR HAS RETURNED TO START. 'C'
'BEGIN'
'‘REAL' DIST,ENDANGLE;
DIST := SCRT ((AX-XSTART) 2 + (AY-YSTART) 2); *
“'IF' DIST < 1.5*STEPMAX
'THEN®
ENDANGLE := XSTART - AX;
'"IF*' 'ABS'ENDANGLE < 1.8&-9 'THEN' ENDANGLE := 1.6&-9 'FI';
ENDANGLE := ARCTAN ( {YSTART-AY)/ENDANGLE);
'"IF' XSTART < AX ‘'THEN' ENDANGLE 'PLUS' PI 'FI';
ANGLEDIFF (ENDANGLE, SAVEDANGLE) < £.5*PI
‘ELSE' 'FALSE'
IFII . '
'END';

'PROC' CONTOURTRACE = ('REF'[,] 'REAL' XPT,XAV,'REF'[]'REAL"' X,GAMMA,
~ DELTA,ANISO, XDATA, YDATA, 2DATA,ALOWER, XUPPER,
'REAL' CONTOUR,ANGTOL,TOL,DLLIM,STEPMAX,MU,
RO, ROLONG, MEDIAN, 'INT' IX, IY,NPOINTS, NOAV,
. NDATA,NDIMS) 'VOID':
c .
. 'PROCEDURE TO TRACE CONTOUR LINES OF GIVEN LEVEL.
C .
'BEGIN'
'REAL' ANGLE,SAVEDANGLE, DTOL, XSTART YSTART, XLAST, YLAST ;
- 'REAL' STEP;
- "REAL' DUMANG;

[1:8)'REAL' STORE; 'CLEAR' STORE;

'INT' NSTORE.ICON,NREF,IREF;

[1:NDATA]'REAL' XREF,YREF;

DTOL := STEPMAX;

SELECT (XPT, XAV, X, GAMMA, DELTA,ANISO, XREF, YREF, XDATA YDRTA,ZDATA,
CONTOUR, TOL,DLLIM,MU,RO,ROLONG,MEDIAN,NREF, IX,1Y,NDATA,
NPOINTS, NOAV, NDIMS};

[1:NREF] 'BCOL' DELETED; 'CLEAR' DELETED;

NSTORE := 8; ICON := @;
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QUTF (PLOTFILE, SL"VALUE"3X<4.4>5,CONTOUR) ;
QUTF {STANDOUT, SLL" CONTOUR LEVEL"2X<4. 4>L 5, CONTCUR) ;
QOUTF (5TANRDOUT, $SL"NO. OF REFERENCE PTS ="<5>LS, NREF);
ALLGONE := NREF = @: IREF := 1};
'"WHILE' ‘*NOT' ALLGONE 'DO''BEGIN'
ICON '‘PLUS' 1;
QUTF (PLOTFILE, SL" LINE"4X<4>$, ICON);

BORDERHIT := FINISHED := 'FALSE';
X[IX] := XSTART := XLAST := XREF|[IREF];
X[{IY] := ¥YSTART := YLAST := YREF[IREF];

OUTF (STANDOUT, $L" SEGMENT"<4>, 2X"STARTS AT"2 {2X<3.4>)5§,
(ICON, XSTART,YSTART) ) ;
. ANGLE := @.06; NEWSTART := 'TRUE’;
" OUTPOINT (XREF, YREF,STORE, DELETED,X [IX},X [1Y],DTOL,NSTORE, NREF) ;
STEP := STEPMAX/S5;
'WHILE®' °'NOT' FINISHED 'DO''BEGIN'
STEPALONG (XPT, XAV, X, GAMMA, DELTA, ANISO, ANGLE, CONTOUR, ANGTOL,
TOL, DLLIM,STEP,MU, RO, ROLONG, NEWSTART, IX, IY,NPOINTS,
) NOAV, NDINMS);
STEP := STEPMAX;
'IF' NEWSTART :
'THEN' SAVEDANGLE := ANGLE; NEWSTART := ‘FALSE' 'FI';
JUSTHIT := OUTOFAREA(X [IX],X [IY],XLOWER [IX]},XLAST, YLAST,-1)
'‘OR' OUTOFAREA (X [IX},X[1Y), XUPPER[IX]), XLAST, YLAST, 1)
'OR' OUTOFAREA(X [IY],X{IX],XLOWER[IY],YLAST,XLAST,-1) .
'OR' OUTOFAREAR(X [1Y],X{IX]), XUPPER([IY], YLAST, XLAST, 1) ;
XLAST := X [IX]); YLAST := X[IY];
OUTPOINT (XREF, YREF,STORE, DELETED, x[le X[IY], DTOL, NSTORE, NREF) ;
YIF' JUSTHIT

'THEN' FINISHED := BORDERHIT; BORDERHIT := 'TRUE' 'FI';
'IF' 'NOT' FINISHED ‘AND' JUSTHIT
'THEN'

OUTPOINT (XREF, YREF, STORE, DELETED, -999, a DTOL, NSTORE, B),

OUTF (PLOTF ILE, SL"JOIN"4X <4>$, ICON) ;

PRINT {* BORDER REACHED");

OUTPOINT (XREF, YREF, STORE, DELETED, XSTART, YSTART, DTOL, NSTORE, €)
DUMANG := ANGLE - PI;

"IF' DUMANG < ~PI/2 'THEN' DUMANG 'PLUS' 2%PI 'FI';

ANGLE := SAVEDANGLE - PI; _

"IF* ANGLE < -PI/2 'THEN' ANGLE °‘'PLUS' 2*PI 'FI';

SAVEDANGLE := DUMANG;

XLAST := XSTART; YLAST := YSTART;

XSTART := X [IX]; YSTART := X[IY];

X{IX])] := XLAET; X{IY]) := YLAST
IFII;

"IF' 'NOT' JUSTHIT ‘AND' BACKTOSTART (X {IX],X[IY], ¥START,
' _YSTART,STEPMAX,SAVEDANGLE)

"PHEN®
OUTPOINT (XREF, YREF,STORE, DELETED, XSTART, YSTART, DTOL, NSTORE, £) ;
FINISHED := 'TRUE';
PRINT (" RETURNED TO START")
'FI°
"'END';
OUTPOINT (XREF, YREF,STORE, CELETED, -999, 8, DTOL NSTORE, 8):
ALLGONE := 'TRUE'-

'POR' I 'TO' NREF 'DO'
'IF' 'NOT' DELETED {1]
"THEN '
IREF := I; ALLGONE := 'FALSE'
lFII
'END'
‘END':
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RESULTS OF SIMULATION EXPERIMENTS
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INTRODUCTION

Simulation experiments were performed to validate certain of the
results and the techniques developed. The areas of investigation of these
experiments were as follows:
a) Estimation of p - comparison of "pair—pointﬁ and "maximum likelihood"
techniques.
b) Estimation of parameters for "two-stage" model
c¢) Estimation of anisotropy - comparison of éechniques
d) Areas of closed contours of a correlated stationary process

e) Uncertainty in oil province reserves due to different realisations

of €.

Although simulation experiments should be treated with a certain degree
of caution, and not used indiscriminantly, they can provide a valuable check
on the validity or otherwise of techniQues which have been developed, in

particular in the field of estimation.

a)A Estimacion of p

These simulation experiments were carried out in a two-dimensional
region of area 10x10 units, with values of the true correlation distance (p)
of 1,2 and 4 units, and using N randomly positioned data points, where N

took values 10, 20 and 40,

For each combination of N and p values, the following procedure was
carried out:
1. Generate N data points, with data values given by the true p, u
and ¢ values,- |
2. Estimate a by the median of the data values

3. Estimate P using the "pair-point" method
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4. Estimate P using the "maximum-likelihood" method
5. Repeat the whole process 10 times from step 1.
6. Compute the average and standard deviation of the P estimates by
both methods.
(For these experiments, the true values of U and ¢ were fixed as 10 and 2

respectively).

The details of the generarion of the N data point values are as follows:
1.1 i:=1
1.2 For the ith data point, compute its position using a uniform
random distribution within the region of interest.
1.3 Estimate its mean value 2} and residual variance Gz, given
the preceding i-1 data points (see equ. (2.48)).
1.4 Set zi=3i+oi2, whefe Z is a Standard Normal random variate.
1.5 i:=i+l

1.6 Repeat from step 1.2 until i>N.

P
As well as computing the average P value (for both techniques) from the

10 iterations, it was possible to estimate the mean square error by:-

MSE = (P-p)? + ss (B.1)
wvhere o = average p estimate
Ss = computad variance of p estimates.

The results of these 9 experiments are tabulated in Table B.1, and are shown

in graphical form in Figure 2.5.

b) Estimation of "two-stage' model parameters

The estimation of the parameters of the "two-stage' model is a more
‘complex process, and only a very limited set of experiments was carried out,

to verify that at least reasonably sensible results were being obtained.



230

A two-dimensional 10x10 region with p=10 was used once more, with the

following parameters for the long-range and short-range processes:

Long~range:

2.5; o, =3

°L L

Short-range: p_ =1 ; a_ =1

s s

The procedure for each experiment was as follows:

1.

10.

i1.

‘A

Generate random coordinates for N data points, with data values

(zi) given by u, PL and'UL.

. . ' . e
Using the same coordinates, generate short-range residuals (zi)

given by Pq and g with mean O,

s . e.
For each point 1, z,:=z,+z,,
i 11

Estimate ﬁ by the median of these data values.

Position n, "average points" evenly in the region of interest,
- ' ; . A .

and compute welghted average values (zj) at these points.

Estimate 3

L from these average points by the “maximum likelihood"

method.
AL g
Estimate zi;at each data point by subtracting the fitted trend
. A A
process using u .and Pre
. Ll . . .
Estimate pg using the "pair-point’ method

. A . . . .
Estimate p, using the "maximum-likelihcod" method,

Repeat the whole process 10 times from step 1.

Compute the average and standard deviation of: BL’as by both methods,

pLIBS (maximum likelihood).

The experiment was repeated twice, once with N=20 and n,=10, and the

A

second time with N=40 and n,=20. The results are shown imn Table B.2. It

A

is noticeable that the correlation distances are consistently under-estimated,

* but that the ratio of Py, to g is reproduced to a reasonable extent,

especially with more data points.
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-

c¢) Estimation of Anisotropy

Two methods ha&e been developed for estimating anisotropy factors (see
Section 5.4). In addition, it will be useful to compare the results obtained
when points are randomly scattered with those obtained with reguiarly
positioned data points. Other variables of interest are the number of data

points (N) and the ratio of the anisotropy factors {a, and az).

1

As before, the basic experiment involved a 2-dimensional 10x10 area.
.The values of the other parameters were fixed: p=10, o=2, p=2. 16

experiments were carried out, varying the four factors as follows:

1. Method I/Method II
2. Random points/regular points

3. N=20/8=40 a

4, 32/u1=4.01a2/a1=25.0.

"Each experiment involved generating N data points in the region of
inferest using the given parameters and anisotropy factors, and then using
the appropriate method to estimate the anisotropy factors. The ratio &2/91,
was compﬁted, and this procedure repeated 10 times. The results of each

such experiment were quoted as:

1. The geometric mean of 32/31

2. K= es

where s is the estimated standard deviation of log(az/éi).

(This seemed the most appropriate way to quote the results, as we are

interested in the ratios of anisotropies in the two directioms).

Table.B.S gives these results for each experiment. The anisotropy
ratio is generally underestimated quite significantly, although Method II

seems to do a better job than Methed I,
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d) Areas of closed contours

In Chapter 6, a formula is derived (6.10) for the approximate average
area of an oilfield, considered as a closed contour at a certain level u.
If we set e=u/c, then equation (6.17) gives the average arca in terms of
0,0, and e. It was felt necessary to validate these formulae, especially
in the case where € is small and the approximation may not be accurate.
Also of interest is the shape of the distribution of these areas, which

should be approximately negative expomential, at least for large e.

In order to investigate these distributions, random realisations of
such contours were generated, and their areas computed. A triangular grid
was used to track the positions of the points on the contour, and realisations
of the correlated stochastic process were generated at the required nodes
of the grid, using the method desé;;bed in section a) of this appendix.
Figure B.l illustrates this procedure for a simple example. The closed
contour Z(x)=u is thus approximated by a set of straight line segments,

each produced by linear interpolation across a triangle.

This procedure was carried out using the following parameters: p=2
(=1/US), o=2, and for a range of values of £ (=u/0) from 0.5 to 2.5.
Between 25 and 32 realisations were generated for each value of €, and the
results are tabulated in Table B.4. The average area (K) and standard
deviation (SA) were estimated from the results and an approximate 957
confidence interval for the true mean area was computed, assuming

approximate normality for the distribution of A.

From Figure B.3 it can be seen that EfA], computed from equation (6.17),
falls inside this confidence interval in every case, and that the agreement

is particularly close between E[A]and A for large e. Figure B.3 shows
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histograms of the distribution of areas for the various values of ¢ — the
negative exponential assumption is seen to be quite reasonable, even for
small €. Figures B.4 and B.5 show come example realisations of closed
contours for €=1.0 and €=2.0 respectively. These bear out the assumption
that for large € the contours will tend to take elliptical form (sece Adler,
1981, p.136ff), although this is obviously not the case for smaller values
of €. The results of these simulation experiments seem to confirm that the

’

assumptions made in Chapter & are not unreasonable.

e¢) Uncertainty in oil reserves due to variation in g

In Chapter 6 it was shown that the uncertainty in oil reserves in a
given area, according to our model, can be considered to be due to at least
two sources., One is the variance in the reserves given a certain set of ¢

-values in the blocks under consideration, and the other is the variance due
to variations in the g values themselves. To evaluate the latter, random
realisations of £ for the blocks were generated, and for each such set of g

values the mean and variance of the reserves were computed.

Given the known t© value at the locations of the existing fields, it is

simple to estimate the mean values g at thé block locations, as well as the
residual covariance matrix S* for the blocks. The simplest way of generating
a random_g realisation consistent with this is to use the Cholesky
decomposition method (see Ripley, 1981, p.17), and find a lower triangular

matrix L such that
*

LL' =

w

o]

Then, e=¢g+L (Bf2)

where the e values are independent Standard Normal random variables.

This Cholesky method is to be preferred to the method outlined earlier
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for generating random realisations in this case, as the locations of the
blocks are fixed for each iteration. Thus the Cholesky decomposition can

be carried out once for all.

Three different values of the correlation parameter for the & values
(Qs) were used — 0.44, 0.623 and 0.8 block units. In each case the assumed
values of He and p. were 3.0 and 0.551 respectively. For the stpchastic
process used to model the oilfie}ds, the values of p and ¢ were 0.0666 block
.units and 12.433x106 STB. For each value of Pes the folloﬁing calculations
were carried out: usiné the mean ¢ values (g).the mean and variance of the
0il reserves were computed; then 10 iterations were performed, each time
generating a random ¢ realisation and computing the mean and variance of the
01l reserves, If R is the mean reserves for one such iteration, and cé the
corresponding variance{ then for fggt iieration we may set 82£§2+c§. We may
.estimate E[Rz] by averaging this 82 value over"the 10 iterations, and

similarly estimate E[R]by averaging‘i. Hence the variance, including the

. . 2
uncertainty in £, can be computed from E[R"]- (E[R])z.

Table B.5 gives the results of these experiments. As would be expected,
increasing Pe increases the mean and variance of the oil reserves. Allowing
uncertainty in thenE.va1ues_tends to increase the mean reserves, because a
block with high & value will have little contribution to the expected
reserves, and therefore can only give an increased contribution if e is

allowed to vary.



Results of p Estimation

TABLE B.1

Testing
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N=10 N=20 N=40
Mean §S.d. M.5.E. | Mean S.d. M.8.E. | Mean §.d. M.S5.E.
P.-P.| 1.93 1.26 2.46 1.70 0.66 0.93 1.23 0.42 0.23
| p=1.0
M.L. 0.63 0.31 0.23 0.57 0.21 0.23 0.98 0.30 0.09
P.-P.| 2.53 2.12 4.78 1.77 0.69 0.53 1.83 0.41 0©.19
p=2.0
M.L. } 0.91 0.56 1.50 1.16 0.34 0.82 1.25 0.16 0.59
P.-P.] 2.42 0.8 3.14 1.84 0.60 5.04 1.73 0.78 .76
pP=4.0
M.L. 1.34 0.67 7.51 1.94 0.36 4.40 1.86 0.50 .84
P.-P. - p by pair-point method (10 iterations)
M.L. -0 by maximum likelihood method (10 iterations)




TABLE

B.2

Results of Parameter Estimation for
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"Two-Stage'" Model

- 0.194

True values: B = 10 pL = 2.5
GL = 3.0
N = 20, nA = 10
Parameter Mean
“j:"—“"— .
PL (ML) 1.838
Ss (ML) 0.523
BS (Pair-point) 0.517 _
Median value of BL/B; (ML) = 3.861.
N =40, n, =20
Parameter Mean
BL (ML) 1.464
38 (ML) 0.524
63 (Pair-point) 0.403
Median value of BL/BS (ML) = 2.942

0.267

0.254

1.0 -

1.0

M.S.E.

0.769
0.260

0.275

M.S.E.
1.1108
0.299

0.421



azlal +
=25.0

The top value in each cell is the geometric mean of 32/31.

N=20

N=40

N=20

N=40

TABLE B,3

Results of Anisotropy Estimation
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METHOD I . METHOD II
RANDOM PTS. { REGULAR PTS. | RANDOM PTS. | REGULAR PTS.
0.986 0.651 5.204 1.361
(4.111) (2.425) (2.839) (2.592)
1.546 1.213 1.7696 2.162
(2.411) (1.732) (2.073) (1.7569)
METHOD I METHOD I1I
RANDOM PTS. | REGULAR PTS. | RANDOM PTS. | REGULAR PTS.
0.923 0.924 5.862 2.444
(3.928) (3.696) (2.134) (1.5%0)
2.017 2.027 4.114 4.268
(1.865) (1.633) (2.081) (1.550)

- s . . . .
The value in brackets = e , where s is the estimated standard deviation

of log (azlal).




TABLE B.4

Areas of Qilfield

Realisations
No. of Av. r* Approximate 957

£ E[A] Realisations A(R) A C.I. for mean
0.5 44,045 26 65.58 | 95.47 28.89-102.28
1.0 | 16.485 32 21.00 | 18.34 14.23-27.76
1.5 8.640 28 - 9.27 9.11 5.89-~12.64
2.0 5.307 25 4.86 5.21 2.82-6.91

2.5 3.559 25 3.18 3.60 1.51~4.76




TABLE B.5

Variation in 0il Reserves
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£ fixed

Mean (109 STB)

Variance (1012 sTB%)

Standard deviation

('.I.O9 STB)

Averaging ¢ realisations

E[Rz] (1018 STB2)
E[Rr] (109 STB)
Var[R](lO18 STBZ)

Standard deviation

(10° STB)

p€=0.44 p€=0.623 p€=0.8
24 .63 38.86 47.79
505.5 7211 867.1
22.48 26.85 29,45
1608.3 3313.45 4095.1
31.06 48.95 55.535
643.6 917.6 1010.9
25,37 30.29 31.80
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(® - POINT AT WHICH
REALISATION OF
PROCESS Z(x) IS
GENERATED

STARTING ,
POINT ——  CONTOUR Z(x)=u

FIGURE B.1l: Example of generation of random closed contour
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FIGURE B.2: Results of random realisations of closed contours
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FIGURE B.3: Area histograms for different values of ¢
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Area = 77.69

FIGURE B.4: Examples of contours for e = 1.0
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W) 1 2 3
| 1 1 ]
Area = 5.57

Area = 12,03

FIGURE B.S: Examples of contours for £ = 2.0






