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Abstract 

Solution generating techniques for 2+I-dimensional nonlinear integrable sys
tems given by the integrability condition of linear problems (Lax pairs) are 
presented. According to certain symmetries of these linear problems a dis
tinction between generalized Darboux and Darboux-Levi transformations 
is made. In the 1+ I-dimensional limit the link to twisted and untwisted 
Kac-Moody algebras as prolongation algebras and the well-known N-soliton 
Ansatz is discussed. It is shown that the Moutard theorem and the dromion 
solutions for the Davey-Stewartson equation I are contained within this ap
proach. Moreover, the applicability of an extended version of the general
ized Darboux-Levi transformation to a Loewner-type system is demonstrated 
which leads to localized soli tonic solutions of a 2+1-dimensional sine-Gordon 
system (Konopelchenko-Rogers equations). 
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Chapter 1 

Introduction 

During the past twenty years the study of nonlinear integrable systems has 
been the area of research for legions of scientists. The reason why this field 
of theoretical and mathematical physics has become so attractive might have 
its roots in the exact solvability of nonlinear partial differential equations 
and the behaviour of their simplest solutions called solitons. They describe 
phenomena in hydrodynamics, nonlinear optics, solid state physics, plasma 
physics and even general relativity [1, 2J. Solitons, loosely speaking, are one
dimensional localized objects which move at constant velocity, preserve their 
shape and do not interact with each other except for a phase-shift. J. Scott 
Russell who first observed 'solitary waves' whilst riding beside the narrow 
Union canal near Edinburgh described them as follows [3J: 

"I was observing the motion of a boat which was rapidly drawn 
along a narrow channel by a pair of horses, when the boat suddenly 
stopped - not so the mass of water in the channel which it had put 
in motion; it accumulates round the prow of the vessel in a state 
of violent agitation, then suddenly leaving it behind, rolled forward 
with great velocity, assuming the form of a large solitary elevation, 
a rounded, smooth and well-defined heap of water, which continued 
its course along the channel apparently without change of form or 
diminuation of speed. I followed it on horseback, and overtook it still 
rolling on at a rate of some eight or nine miles an hour, preserving its 
original figure some thirty feet long and a foot to a foot and a half 
in height. Its height gradually diminished, and after a chase of one 
or two miles I lost it in the windings of the channel. Such, in the 
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month of August 1834, was my first chance interview with that rare 
and beautiful phenomenon which I have called Wave of Translation 

" 

The mathematical tools which have been developed to analyse nonlin
ear equations governing such phenomena are diverse. The oldest tool which 
dates back to the 19th century is the Biicklund transformation [4]. It has 
its origin in the transformation for the famous sine-Gordon equation. The 
method from which the modern soli ton theory emanated is the inverse spec
tral transform [5]. Hirota's direct method using bilinear forms of differential 
equations provides a more elementary tool for generating solutions [6]. In
terestingly, the class of multi-soli ton solutions for differential equations such 
as the Korteweg-de Vries equation, modified Korteweg-de Vries equation, 
sine-Gordon equation, nonlinear Schriidinger equation, Boussinesq equation, 
Ernst equation and many other nonlinear integrable systems could be con
structed by all of these approaches [4J - [11], even though the precise relation 
between them is still not known. 

The common feature of the above-mentioned integrable equations is that 
they are 1+I-dimensional (or 2+0-dimensional). In this case a necessary con
dition for the applicability of the inverse scattering scheme is the existence of 
a linear scattering problem and a compatible time evolution equation (Lax 
pair [12]). A semi-algorithmic m.ethod of finding such a linear problem is 
the prolongation method of Wahlquist and Estabrook [13, 14], which pro
vides also a means of generating Biicklund transformations. The content of 
Chapter 2 is a brief introduction to the Wahlquist-Estabrook approach. 

Unfortunately, no comparable procedure is known for differential equa
tions in 2+1 dimensions. In this thesis, however, we shall exploit the fact 
that the prolongation method yields infinite-dimensional Kac-Moody alge
bras [15J as prolongation algebras, which can be realized as loop algebras 
of finite-dimensional ones. Using a suitable representation it turns out that 
there exists a natural generalization of 1 + I-dimensional linear problems and 
their integrability conditions, the underlying nonlinear differential equations, 
to 2+ 1 dimensions. 

Different Kac-Moody algebras require different solution generating tech
niques so that in Chapter 3 linear problems associated with untwisted Kac
Moody algebras will be discussed. The considerations are based on a gener
alization of the well-known Darboux theorem [16], which in its original for-
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mulation provides an invariance of the Schriidinger equation Ar/J = </>zz + u</>. 
The twisted Kac-Moody algebras are subalgebras of untwisted ones. In 

a particular representation this fact can be expressed by certain symmetries 
of the corresponding linear problems. Since the generalized Darboux trans
formation does not allow for these symmetries we shall generalize a result by 
Levi [17J in Chapter 4. His Darboux-Levi transformation is another linear 
transformation which leaves the Schriidinger equation invariant. It will be 
shown that in 1+1 dimensions the generalized Darboux-Levi transformation 
reduces to the usual N-soliton Ansatz [18J. 

In Chapter 5 we shall prove that this transformation indeed preserves the 
above-mentioned symmetries of the linear problems provided the associated 
(adjoint) eigenfunctions satisfy appropriate constraints. First steps concern
ing a classification of the symmetries are taken, which are endowed with 
several examples, producing, among other things, well-known results such 
as the Moutard theorem [19, 20J and the dromion solutions of the Davey
Stewartson equation I [21J. 

Chapter 6 is devoted to the generalized Loewner system [22], which is 
not of the type discussed in the previous chapters. It represents in the 
1+1-dimensional limit a linear problem which is described by a prolonga
tion algebra involving not only the Taylor part of a loop algebra. It is, 
however, amenable to an extended version of a generalized Darboux-Levi 
transformation. Remarkably, the Loewner triad contains a 2+1-dimensional 
sine-Gordon system (Konopelchenko-Rogers equations [23]) wherein the spa
tial coordinates occur on an equal footing. Application of the generalized 
Darboux-Levi transformation will yield localized soli tonic solutions. 
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Chapter 2 

Prolongation structures 

2.1 The general method 

In 1975 Estabrook and Wahlquist [13, 14J introduced a new geometric ap
proach to the study of integrable systems solvable by the inverse scattering 
technique [5J. Their method is based on Cartan's calculus of differential 
forms [24, 25J which can be used to express (nonlinear) partial differential 
equations by an equivalent closed ideal of differential forms. It provides a 
semi-algorithmic way of finding linear problems (Lax pairs [12]) for a given 
set of partial differential equations in two dimensions. 

Following Estabrook and Wahlquist we begin with a set of first-order 
differential equations 

h(u,u",Ut,X, t) = 0 (2.1) 

where u is a vector-valued function depending on x and t the partial deriva
tives of which being denoted by u, and Ut. Since we are dealing with sys
tems of differential equations, it is obvious that higher-order equations are 
contained within this approach. 

It was Cartan's merit to point out that in almost all conceivable practical 
situations, i.e. if h = 0 includes in some sense all integrability conditions 
and is neither under- nor overdetermined, one can find a set of differential 
two-forms 
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(Einstein's summation convention) which is completely equivalent to the 
system (2.1). w, ai, i3i and 'Y are vector-valued differential two-forms and 
functions respectively defined on the manifold labelled by (u,x, t). The set ~? 
I = {w} has the property that it constitutes a closed ideal of differential uP .. . ..........- (F 
forms, I.e. 

dJ.JJ = 0 mod w 

and its maximum dimension integral manifold is two-dimensional. This 
means that the maximum dimension of a submanifold which annihilates I is 
9 = 2. 9 is called the genus of I [261. 

Furthermore, restriction of I to an integral manifold (pull-back), which 
can be labelled by (x, t) if x and tare involutory, i.e. if the basis one-forms 
dx and dt are linearly independent, gives the system of differential equations 
(2.1). Hence 

wlu=u(x,t) = 0 {o> h(u, U x , Ut, x, t) = o. 
The next step in the prolongation method is to seek (vector-valued) one

forms 

n = -dy + F(u,x,t,y)dx + G(u,x, t,y)dt (2.2) 

which live on an extended manifold spanned by the primitive variables u, x, t 
and the so-called pseudopotentials y such that the set {w, n} is still closed. 
The condition for this is 

dn = 0 mod (n,w). (2.3) 

This guarantees the existence of two-dimensional integral manifolds of {w, n}, 
or in other words, the integrability of the Frobenius system [271 

nly=y(x,t),u=u(x,t) = O. 

The central task is to evaluate condition (2.3). We shall see that this 
is by no means algorithmic. However, the difficult part of the process of 
prolonging I will turn out to be solving 'Lie algebra' equations for the pseu
dopotentials y. Having found solutions of these equations one can fall back 
on the widely-studied representation theory of Lie algebras, which, among 
other things, enables us to get a handle on the as yet unspecified number of 
pseudopotentials. 

i 



After substituting for dy-terms via (2.2) the integrability condition (2.3) 
reads 

where the commutator is the usual Lie bracket between two vectorfields with 
respect to the pseudopotentials (up to the sign). Finally, we replace as many 
two-forms as possible by means of the ideal I. The coefficients of the remain
ing basis two-forms then have to vanish identically. We obtain equations of 
the general structure 

[F, CJ + Ft - Cx + Fu'ai + Cu,bi = 0 
Fu,aik + Cu,bik = 0 

(2.5) 

where ai,bi,aik and bik are again functions depending only on u,x and t. 
We are now looking for solutions of (2.5) of the form 

F = fi(u,x,t)Xi(y) 

C = gi(U, X, t)Xi(Y). 
(2.6) 

This may either be a consequence of (2.5), as it is the case for the Korteweg
de Vries equation [13J, or is an Ansatz. A prominent example for this is the 
sine-Gordon equation [28J. 

Now, if we insert (2.6) into (2.5) and sort with respect to functions of u, x 
and t we are left with commutator equations for the vectorfields Xi, viz 

<:;/ = const. (2.7) 

Unfortunately, not all commutators will be given a priori since some of the 
functions Ji and gi may vanish so that not all vectorfields Xi appear in F 
and G respectively. (Actually, one is inclined to regard this as a blessing 
rather than a curse because otherwise one would not be able to construct an 
infinite-dimensional Lie algebra from (2.7), which, apart from some curious 
exceptions [29], seems to be a precondition for Biicklund transformations to 
exist.) . 

The question which now arises is whether the vectorfields Xi can be em
bedded in a(n) (infinite-dimensional) Lie algebra. Assuming that this is the 
case we alternately introduce new generators for unknown commutators and 
go through the Jacobi identities, which need to be satisfied. This procedure 
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may determine unknown commutators and generate identities between some 
vectorfields, which have to be inserted back into the commutator relations 
that are already known. In doing so we might get further identities. 

The process is algorithmic and can be done by computer, which in fact 
requires recursive programming [30, 31J. However, it either terminates, i.e. 
there is a finite-dimensional Lie algebra (at least two-dimensional Abelian) 
related to (2.7) or it seems to be open-ended. If it appears that the commuta
tor table can be enlarged ad infinitum one is forced to interrupt the program 
and can attempt to deduce the structure of the Lie algebra. Unfortunately, 
this is a matter of intuition and experience. 

Interestingly, on some occasions the incomplete set of commutator rela
tions (2.7) is nothing but the defining relations for Kac-Moody-algebras [15J. 
They are generated by 3n generators ei, fi and hi satisfying 

[hi, hjJ = 0, 

[hi, ejJ = G.;jej, 

and the Serre relations 

(adei)l-a;jej = 0, 

le;, hJ = 6ij hj 

[hi, hJ = -aijfj 
(2.8) 

(2.9) 

where A = (G.;j)i,j=O, ... ,n-l is an integer-valued (generalized) Cartan matrix. 
Two cases are of interest to us: 

• Finite case. The Cartan matrix is of maximum rank n and corresponds 
to one of the finite-dimensional simple Lie algebras classified by Killing 

. and Cartan [32J . 

• Tame case. The Cartan matrix has rank n - 1. The algebra is an 
infinite-dimensional affine Kac-Moody algebra. 

Under these circumstances the Cartan matrix has the following property 

n· < 0 """') - , 
aij = 0 =} aji = 0 

and the off-diagonal entries satisfy the conditions 

max( -G.;j, -aji) ::; 4 

aij = aji = 0 V 
mine -aij: -aji) = 1 
max( -G.;j, -aji) ::; 3 
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The algebra of the tame case without derivation and centre can be realized as 
loop algebra associated with a Lie algebra 9 of the first type (or a subalgebra 
of it, depending on the twist). The commutator relations of 

where !R(A, A-I) is the algebra of Lament polynomials in A, are simply de
fined via the ones for its horizontal algebra g. They read 

for arbitrary generators X, YE g. 
In most cases it is much harder to identify the algebra. However, the 

prolongation algebras for differential equations which have been derived so 
far are either (subalgebras of) loop algebras or semi-direct products of loop 
algebras with the Virasoro algebra [33). In the following we shall only be 
concerned with loop algebras as prolongation algebras. 

Now, it is always possible to find a faithful matrix representation of the 
finite-dimensional Lie algebra g, which immediately leads to a representation 
of its loop algebra. Thus we have found a realization of the vectorfields Xi. 
They are linear combinations of the basis vectorfields 

xl:= AiXiy 

with {X;} being a basis of the above-mentioned matrix representation of g. 
Consequently, the one-form fl takes the form 

fl = -dy + F(A)Ydx + G(A)ydt 

where the dependence of F and G on the primitive variables has been sup
pressed. It is linear in the pseudopotentials and a Lament polynomial in the 
parameter A. Sectioning on an integral manifold yields the linear problem 

Yx = F(A)y 

Yt = G(A)y 
(2.10) 

which is guaranteed integrable since the compatibility condition (2.3), i.e. 

(2.11) 

is by construction satisfied on the solution manifold h = O. 
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Linear problems of the type (2.10) and their compatibility conditions 
(2.11) will be the starting point for our considerations in this thesis. Before 
we study their possible generalizations to 2+ 1 dimensions let us briefly il
lustrate the prolongation method by its application to the Leznov-Savel'ev 
system. 

2.2 Application to the Leznov-Savel'ev sys
tem 

The Leznov-Savel'ev system [34) 

(2.12) 

is of some importance to us as it already involves one of the Cartan matrices 
A = (a;j). It contains some of the well-known integrable systems of wave 
equation-type, e.g. 

( 2 -2) 
-2 2 

( 2 -1) 
-4 2 

2 -I 
A(1) 2 00 - -1 

-1 

-1 

2 

Liouville 

'P"t = e'" 

sinh-Gordon 

Dodd-Bullough 

'Pxt = e2'P - 2e-'P 

Toda lattice 
i _ _lPi - 1+2i.pi_\pi+l 

'Pxt - e . 

If A corresponds to an affine Kac-Moody algebra, i.e. is of rank n-I, then 
(2.12) can be split into a coupled system of n-l equations and an integration 
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for one function, e.g. <po, since the kernel of A is one-dimensional. Conse
quently, the above-mentioned scalar equations are the only scalar equations 
which can be derived from (2.12). 

In order to clarify this further we look more closely at one of the more 
exotic algebras, the exceptional algebra 

G~l) = (~1 ~1 ~1). 
o -3 2 

The Leznov-Savel'ev system adopts the form 

which transforms under 1/;0 := <p0,1/;1 := 2<p° _ <pI and 1/;2 := _<pI + 2<p2 into 

Thus once one has solved the coupled system for 1/;1 and 1/;2 it remains to 
integrate for the function 1/;0. 

One may now wonder whether the Cartan matrix A has something to do 
with the prolongation algebra. Following the lines developed in the previous 
section we shall see that it is indeed possible to identify the prolongation 
algebra as associated with A. To this end we write (2.12) in terms of a 
closed ideal. One possibility is 

w\ = -d<pidt + Xidxdt 

w~ = dXidx + ea;,,,,, dxdt. 
(2.13) 

It is easy to verify that (2.13) is closed and has genus 2. The first set of two
forms wi defines the functions Xi = <p~ on an integral manifold (x and t are 
involutory) whereas the second one reproduces the Leznov-Savel'ev system. 
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Replacing dl.pidt- and dxidx-terms in (2.4) and sorting with respect to the 
remaining basis two-forms we end up with 

[F, Cl = - Fx,eOj,<pi + C<p,xi 

F<p' = Cx' = o. 
(2.14) 

We have neglected the dependence of F and C on the coordinates x and t. 
This can be done without loss of generality for autonomous differential equa
tions, i.e. for those which do not depend explicitly on the coordinates. 

~...AS-..fm:. the sine-Gordon equation we are not able to extract any 
useful information about the remaining dependence of F and G on the primi
tive variables from these equations. Hence we make the more or less natural 
Ansatz (cf. [28]) 

F = XiXi + Y 
C = Zieaj'<pi. 

Finally, (2.14) has to be satisfied identically in Xi and the exponentials. We 
conclude 

[Xi, Zjl = G.;jZj 
[Y,Z.l =·-Xi • 

Let us now come back to the defining relations (2.8). 
second equation over !j yields 

rei, L !jl = hi. 
j 

Hence the identifications 

X i := hi, Y:= L!J, 
j 

Zi := ei 

provide a possible solution of our problem, viz 

n = -dy + (hiXi + L Ii)dx + eieaj,.pi dt 
j 

dn = 0 mod (n,WhW2). 

(2.15) 

Summation of the 

(2.16) 

(2.17) 

We should mention that in the case of finite-dimensional Kac-Moody alge
bras this solution seems too restrictive. The prolongation algebra for example 
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of the Liouville equation is in fact not the finite-dimensional Al = 81(2, JR) 
but its loop algebra. To see this we emphasize that (2.16) is only a particular 
case of the more general solution Xo := ho, Y := fo + Aeo, Zo := eo, namely 
A = o. Thus if we regard the arbitrary parameter A as the indeterminate 
of the Laurent polynomials JR(A, A -I) we rediscover the prolongation alge
bra 81(2, JR} ® !R(A, A-I}. We shall not pursue this point any further as the 
general solution of the Leznov-Savel 'cv system in the finite case has already 
been given anyway [351. 

We are therefore interested in the affine Kac-Moody algebras. It has 
turned out that (2.17) reproduces for example the well-known prolongation 
structure for the sinh-Gordon equation [361. Since the Dodd-Bullough equa
tion will be mentioned later in connection with the Novikov- Veselov equation, 
we derive, as an example, its linear problem (2.10) in detail. All we need is a 
matrix representation of the generators {ei,!i, hd associated with A~2) The 
simplest one is given in terms of the 3 x 3-matrices 

u. 00) i"~U 
0 A) ( -J 

0 n eo = o 0 , 0 ~ ,ho= ~ 0 

o 0 0 0 

(0 1 0) i.~ U 0 n, h. ~ (: 
0 

~2 ) 
el = 0 0 1 , 0 0 

000 2 0 

which immediately leads to the linear problem 

c-. 0 : ), Yx = 2 0 
o 2 <Px 

(2.18) 

( 0 -, 0 ) 
Yt = 0 eo e-<P y. 

A- 1e2<p o 0 

As can be seen it involves only one function 'P := <po - 2<p1 which reflects 
the decoupling of the Leznov-Savel'ev system in the affine case. Finally, its 
integrability condition (2.11) is indeed the Dodd-Bullough equation. 
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We wish to complete the chapter with the remark that each equation 
of the Leznov-Savel 'ev system has its compatible counterpart of modified 
Korteweg-de Vries-type [34]. Compatible is meant in the sense that one can 
find a closed ideal of differential two-forms which represents both equations 
and has genus 3. As examples we mention the known relation between the 
sinh-Gordon equation and the modified Korteweg-de Vries equation in po
tential form, viz 

CP:J:t = e'l' - e-'I' 

CP. = CPX:J:X - 4cp; 

and the compatibility of the Dodd-Bullough equation and a fifth·order equa
tion found by Konopelchenko and Dubrovsky [3i, 38], namely 

CPxt = e2
'1' - 2e-'I' 

CP. = CPXXXXX - 5cpxxx'Pxx - 5'Px=cp; - 5<p;x"x + cp~. 
The fact that each couple of equations share three-dimensional integral mani
folds can formally be verified by cross-differentiation. 
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Chapter 3 

Darboux transformations 

In this and the following chapters we shall try to find 2+ I-dimensional gener
alizations of integrable systems which are given by the integrability condition 
(2.11). The idea is to stick as close as possible to the original systems in I + I 
dimensions. For this purpose an appropriate extension of certain symmetries 
which may characterize the linear problems (2.1O) needs to be found. It is 
clear that these symmetries make the underlying partial differential equations 
in question differ from each other. They can most conveniently be described 
in terms of the prolongation algebras. Furthermore, it will turn out that 
the kind of algebra is closely related to the kind of solution generating tech
nique. In the case of untwisted Kac-Moody algebras generalized Darboux 
transformations [39] will be the suitable approach, whereas linear problems 
corresponding to twisted Kac-Moody algebras are amenable to an extended 
version of the Darboux-Levi transformation [17]. Finally, we shall show that 
either of those transformations reduce in the 1+ I-dimensional limit to the 
well-known N-soliton Ansatz of Neugebauer, Kramer and Meinel [18, 40]. 

3.1 2+1-dimensional equations 

In this section we shall assume that the prolongation algebra is the Taylor 
part of an untwisted Kac-Moody algebra A~l) Prominent members of this 
class are nonlinear Schr6dinger equation, Korteweg-de Vries equation, modi
fied Korteweg-de Vries equation (AP» or Boussinesq equation (AI» [36,41]. 
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As mentioned in the previous chapter its realization is 

A~12t := sl(n, IR) ® IR(>.). 

Furthermore, we choose the n2 - 1 traceless matrices of dimension n as rep
resentation and suppose that the linear problem (2.10) 

y", = F(>.)y 

Yt = G(>')y 
(3.1) 

is polynomial of finite degree. (We have dropped the hat since it is ob
vious that F and G are matrices.) Thus, so far, the matrices F and G are 
characterized by their degree, dimension and the absence of trace-terms. Un
fortunately, this is not sufficient to distinguish between the underlying partial 
differential equations. In most cases the highest or second highest powers of 
F and G have a particular structure. Experience, however, has shown that 
the N -soli ton Ansatz has enough degrees of freedom to allow for that special 
choice of matrices. The reason for this fact has not been unveiled yet. The 
problem is that one does not know in terms of which quantities one might 
classify these reductions. 

A natural way of generalizing the linear problem (3.1) to 2+ 1 dimensions . 
is now to replace the parameter>' by a derivative O. and regard F and G 
as linear differential operators in O. depending on x, t and the additional 
independent variable z. The associated linear problem therefore reads 

rP", = F(oz)rP 
rP! = G(o.)rP 

(3.2) 

where rP is called the (vector-valued) eigenfunction of (3.2). It is now nec
essary to drop the conditon that the operators F and G are traceless. In 
1 + 1 dimensions this did not constitute a restriction since trace-terms could 
be gauged away. Thus the matrix-valued differential operators F and G are 
only determined by their order and dimension. 

Finally, the nonlinear equations in 2+ 1 dimensions are given by the op
erator equation 

FM.) - G",(oz) + [F(o.), G(o.)] = 0 (3.3) 
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which is the compatibility condition of (3.2). If we assume that F(a.) and 
G(a.) are parametrized by some functions ui we can write (3.3) as 

(3.4) 

The l+l-dimensionaI limit with respect to a. is performed by assuming 
F and G not to depend on z any more and setting 

</>(x,t,z) = e>,z</>(x,t). 

Consequently, (3.2) and (3.3) turn into (2.10) and(2.11) respectively. 
Even though the substitution A ~ a. seems quite naIve we shall see 

that it is a powerful method for the purpose of creating integrable equations 
which have given l+l-dimensionaI equations as dimensional reductions. On 
the other hand, if we assume that an equation in 2+ 1 dimensions can be rep
resented by the integrability condition (3.3) its symmetry reduced equations 
with respect to any Lie-point symmetry must be amenable to the prolonga
tion method. Hence it is certainly helpful not to tackle a 2+l-dimensional 
equation directly but to find a linear problem for a symmetry reduced equa
tion such that the generalization in the above-mentioned manner gives the 
equation with which we started. 

3.2 A generalized Darboux theorem 

We are now looking for linear transformations which leave the linear problem 
(3.2) invariant. To this end we briefly recall an old theorem given by Darboux 
in 1882 [16]. 

Theorem 1 (Darboux Theorem). The nonlinear Schrodinger equation 

is invariant under 
o 

</> ~ J = (- </>: + a.)</> 
</> 

o 

u ~ it = u + 2(ln </» .. 

o 
where </> is an arbitrary solution of (3.5) with the parameter AO. 
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The essential point is that the new field u depends only on the eigenfunction 
o 

rP and not on rP. It is therefore possible to iterate the above transformation. 
The iterated version of the Darboux theorem was proven by Crum [421. It 
reads 

Theorem 2. The function 

~= W(rPI, ... ,rPN,Q) 
W(rPI,"" rPN) 

solves the Schrodinger equation (3.5) with the field 

(3.6) 

for linearly independent eigenfunctions rPI, ... , cPN and the usual abbre
viation of the Wronskian determinant 

(
dj-I Ji) 

W (iJ, ... , Jk) := det dzj-I .. . 
t,)=l, ... ,k 

In order to generalize the Darboux theorem we observe that in Crum's 
result the new eigenfunction ~ can equivalently be characterized by 

~ = P(8.)rP = (P.i8t + 8~V)rP 
P(8x )rPi = 0, i = 1, ... , N. 

Having this in mind we are now in the position to generalize the Darboux 
theorem. The only thing we have to do is to replace in the above formula 
the scalar eigenfunctions by matrix-valued ones. 

Theorem 3 (Generalized Darboux transformation). Let F(8.) be a 
matrix-valued linear differential operator of finite order and <I> be a 
matrix-valued solution of 

(3.7) 

Further, let 4> be defined by 
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where the linear differential operator P{ 8z} of order N is given by 

{3.8} 

with N linearly independent solutions <PI, ... , <PN of {3.7}. 
Then there exists an operator F{8z } of the same order as F{8z } such 
that the pair {F{ 8z}, 4>} again satisfies {3. 7}. 

We note that the operator P{ 8z} is given in a purely algebraic manner. The 
system of linear equations {3.8} may be solved via Cramer's rule. In the scalar 
case its solution can nicely be written in terms of Wronskian determinants 
(cf. Crum theorem). 

The constructive proof of this theorem is quite simple. It is based on 
the factorizability of linear differential operators. By assumption the col
umn vectors of {<p;} are a basis of the kernel of P. (From now on we omi t 
the explicit dependence of operators on 8z in the formulae.) From that we 
compute 

i.e. the kernel of P is a subspace of the kernel of Q := Px + P F. Q is of order 
N + nF, where nF is the order of F. We now define the operator F by the 
requirement that the operator 

R:=Q-FP 

is of order N - 1. On the other hand, we know that 

R<Pi = Q<Pi - F P<Pi = 0 

for N eigenfunctions <Pi. Consequently R == O. 
This kind of factorizability is well-known in the scalar case and, as shown 

above, extendable to matrix-operators. It is clear that F has the same order 
as F. Furthermore, we obtain 

4>x = {P<p}x = {Px + PF)<p = Q<I> = FP<p = F4> 

which establishes Theorem 3. q.e.d. 
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It is now obvious that Theorem 3 is applicable to the second equation of 
the linear problem (3.2) as well. Thus we are left with 

- --<P% = F<p 

4>t = C4>. 
(3.9) 

The corresponding integrability condition is 

(Pt - C% + [P,C])4> = 0 (3.10) 

which is equivalent to the operator equation (3.3) for the twiddled quantities 
since at any point (x, t) the general solution of (3.9) is an arbitrary function 
of z. Hence the ordinary differential operator within the brackets of (3.10) 
vanishes identically. A direct way of proving the operator equation (3.3) will 
be formulated in the next section. 

To summarize: We have proven that the generalized Darbollx transfor
mation as defined in Theorem 3 leaves the linear problem (3.2) invariant. 
The coefficients u' which parametrize the new operators l' and C are given 
in terms of the old ones and the arbitrary solutions <Pi of (3.2),viz 

(3.11) 

For N = 1 it is often possible to solve (3.11) for <PI. Insertion of <PI into the 
linear problem (3.2) then results in two equations of the form 

feu, UX1 Ut) UZ1 U .. .) U, UX1 Ut, U Z1 U,..) = 0 

g(u, UX1 Ut) UZ1 U .. .l U , UX1 Ut) U Zl 1.L . ..) = o. 
which are called a Biicklund transformation or more precise an auto-Biicklund 
transformation [4] of the nonlinear equations (3.4). u ... and 1L ... denote some 
elements of the local jet bundle. For lack of a better expression we also use 
this term for the relation (3.11) (N = 1) analogously to the 1+1-dimensional 
case [13]. The iterated version is then called the N-fold Biicklund transfor
mation. 

Finally, we wish to stress that in the 1 + I-dimensional limit, i.e. Oz -> A, 
the Darboux transformation reduces to the N-soliton Ansatz 

4> = P(A)r!J 
P(A,)r!J, = 0, i = 1, ... ,nN 

peA) = P(A)F(A)P-I(A) + P%(A)P-I(A) 
C(A) = P(A)G(A)P-I(A) + Pt(A)P- 1 (A). 
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Here, cP, are n-dimensional vector-valued eigenfunctions. The second equa
tion guarantees that the transfonned matrices F and G are again polynomial 
in ). as pointed out in [18]. We have therefore found a natural generalization 
of the N-soliton Ansatz, which has successfully been applied to the entire 
AKNS-system or in a modified version to Emst's equation of general relativ
ity [40]. 

3.3 Explicit formulae 

So far, the transfonned operator F is only given implicitly. (The same goes 
for G.) The nF + 1 highest orders in the defining equation 

FP = PF + Px (3.12) 

(cf. the proof of Theorem 3) constitute recursive relations for the coefficients 
of F. In order to find an explicit expression for F it is convenient to introduce 
the concept of pseudo-differential operators as, for example, employed in the 
Sato theory [43]. We shall be using the pseudo-differential symbol only as a 
means of book-keeping, even though its area of application is much wider. 

We consider the space of operators 

(3.13) 

where m, are matrix-valued functions depending on z. In this context the 
independent variables x and t can be regarded as parameters. The set of 
operators (3.13) is provided with an algebraic structure by means of multiple 
application of the generalized Leibniz rules 

a'ai .= ai+i z z . z 

a,m := ma, + m, (3.14) 

a;lm := ma;1 - m,a;2 + m"a;3 =F .... 

We emphasize that for k 2': 0, a; is a usual differential operator whereas a; I / 

is noY more than the fonnal inverse of a,. It cannot act on a function in the 
sense of an integration! A useful formula deduced from (3.14) is 

a-I a-I + a-2 + a-3 
m z = z m z mz z m z : + .... (3.15) 
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The benefit which we get from the introduction of the pseudo-differential 
operators is the formal invertibility of differential operators. This enables us 
to solve the recursion relations (3.12). First of all we prove 

Lemma 4. The inverse of the operator P as defined in Theorem 3 is given 
by 

where the matrices Qi are the solution of the linear equations 

(3.16) 

In the following (Om)o is an abbreviation of the function which is given by 
the action of an operator 0 on the function m. However, in order not to 
clutter up the formulae with too many symbols we try to suppress the index 
whenever it is obvious that Om is a function and not an operator. Similarly, 
0>0 denotes the differential part of O. 

- For the proof we note that P<I>i8; IQi is purely differential since 
(P<I>i)o = O. Application of the formula (3.15) yields 

<l>i8;IQi = L 8;H(8i<l>i)oQi 
j2:0 

= 8;N + L 8;I-j(8i<l>;)oQi 
j2:N 

because of (3.16). Hence 

j2:N 

=1. 

Thus multiplication of (3.12) by p- l from the right and projection onto 
the differential part yields 

F = (PFP-lho 

since Px is of order N - 1 and for any differential operator R of order N - 1 
the differential part of RP- l vanishes. 
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To formulate the most general Darboux-type transformation which leaves 
the linear problem (3.2) invariant we remark that we still have one more 
degree of freedom, namely a gauge transformation of the operators F and 
G with an arbitrary matrix depending on x, t and z. The following theorem 
takes this into account. 

Theorem 5. The linear problem 

<l>x = F<I> 

<1>, = G<I> 

and its integrability condition 

F, - Gx + [F, G] = 0 

is invariant under 

<I> --> <i> := Y P<I> 

F --> F:= Y(PFP-1ho Y-l + Yx Y-l 

G --> G:= Y(PGP- 1ho y- I + y,y- I 

with P as defined in Theorem 3 and an arbitrary matrix Y depending 
on x,t and z. 

Even though it has already been proven that the integrability condition 
for the transformed quantities is satisfied, we wish to mention, for reasons 
which become apparent later, that this property can be regarded as embedded 
in a more general framework. The general formulation reads 

Lemma 6. Let the pseudo-differential operators Ll and L2 satisfy the con
dition 

The gauge transformation 

LI := TL1T- 1 + TxT- 1 

L2 := TL 2T-1 + T,T- 1 

(3.17) 

with an arbitrary pseudo-differential operator T then generates a new 
solution of (3.17). 
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Lemma 6 may directly be proven by inserting LI and L2 into (3.17). 
The essential feature of the Darboux operator P is that it transforms dif

ferential operators into differential operators. We shall see that the operator 
which corresponds to the generalized Darboux-Levi transformation shares 
this property. 

3.4 The Davey-Stewartson equation 11 

The aim of the following is to show the practical applicability of the methods 
developed in the previous sections. Before we discuss an example in extenso 
we wish to mention the classical Kadomtsev- Petviashvili equation 

(3.18) 

It arises naturally in plasma physics, gas dynamics and hydrodynamics. In 
the latter case it describes long gravity waves in shallow water, which move 
predominantly in one direction with a small perturbation in the perpendi
cular one. Aside from this physical importance the Kadomtsev-Pctviashvili 
equation is the generic member of a hierarchy of the same name [43J. The 
2+ I-dimensional equations which can be derived from this hierarchy are in
tegrable in the sense of admitting a non-trivial prolongation structure (Lax 
formulation), infinitely many conservation laws, Biicklund transformations, 
multi-soli ton solutions and other interesting structures. 

Coming back to the Kadomtsev-Petviashvili equation itself it has yet 
another property which seems typical of integrable equations. Its Lie-point 
symmetry group [44J is infinite-dimensional. To be explicit, its symmetry 
algebra is a subalgebra of the loop algebra 8l(5, 1R.) ® IR.{A, A-I). It is known 
that symmetry reduction with respect to any generator leads, apart from the 
trivial equation U zz = 0, either to the Korteweg-de Vries equation (uz = 0) 

Ut + Ux:rx + UUx = 0 

or to the Boussinesq equation (Ut = 0) 

[45J. Furthermore, starting with one of those 1+1-dimensional equations and 
generalizing them as described before (the prolongation algebra is All) and 
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A~l) respectively) one can show that one recovers equation (3.18). We stress 
that in this case the gauge matrix T turns out not to be trivial. 

As another example, which will be discussed in detail, we now choose the 
nonlinear Schrodinger equation. Its 'real' version has the form 

a, + a",,,, - 2aba = 0 

b, - b",,,, + 2bab = 0 
(3.19) 

By letting t - -it and identifying a and b with the complex functions u and 
±u respectively we obtain the nonlinear Schriidinger equation 

iUt. + U xx 'f 2ulul 2 = 0 

which plays an important role, for example, in nonlinear optics [46]. The bar 
denotes complex conjugation. 

It has been pointed out that the prolongation algebra for system (3.19) is 
the untwisted Kac-Moody algebra (All» [29, 47]. The degree of the matrix 
F is deg F = 1 whereas deg G = 2. In our particular representation their 
dimension is 2. 

Let us now have a look at the Darboux transformation for r = 1 (Theo
rem 3). The highest coefficient of the operators transform as 

ih=Hk 

where H = F for k = 1 and H = G for k = 2. Since Hk is invariant, we can 
choose it to be constant. Consequently, 

Hk - 1 = Hk - 1 + [PN - 1 , Hk ] 

Hk- 2 = Hk- 2 + [PN - 1, Hk-d + [~V-2, Hk] (3.20) 

- [PN-l,Hk]~V-l + NHk_lz - kHkPN - Iz · 

The first equation shows that only the projection of H k _ l onto the image of 
ad Hk changes. Thus the Darboux transformation allows the choice 

Hk ~ (1 0), Hk - l ~ (0 *) 
o -I * 0 

(3.21) 

which is exactly the additional requirement of the type mentioned in the 
introduction of this chapter. It is the particular feature of the real version of 
the nonlinear Schriidinger equation. 
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We are now in the position to calculate its 2+1-dimensional extension. 
We consider the linear problem 

<1>% = (Fo + F18z )<I> 
<1>, = (Go + GI8z + G28;)<I>. 

(3.22) 

The integrability condition (3.3) gives the following constraints on the ma
trices Fi and Gi : 

[H,G2J = 0 
[Fo,G2J + [FI,Gd = 0 

-GI% + [Fo, Gd + [FI' Gol - 2G2Foz + FIGlz = 0 

Fo, - Go% + [Fo,Gol - GIFoz - G2 Fozz + FIGoz = O. 

The parametrization 

immediately leads to 

G I = 2Q, Go = R 

(3.23) 

because of the first two equations of (3.23). (The scalar factor in G2 is 
arbitrary.) The remaining equations then simplify to 

2Q% + 2a3Qz - h, RJ = 0 
Q, - R:x + [Q, R]- 2QQz - 2a3Qzz + a3Rz = o. 

(3.24) 

(3.25) 

(3.24) is an equation only for the off-diagonal entries of R. Hence we decom
pose R into its diagonal part and off-diagonal part, i.e. R. = Rd + R!' and 
obtain 

FUrthermore, decomposition of (3.25) results in 

(3.26) 

27 



(diagonal part) and 

Qt - (J3(Q",,,, + Qzz) + [Q, ~l = 0 (3.27) 

(off-diagonal part), where [ . , .1+ is the anti-commutator. 
In order to evaluate (3.26) it is now convenient to make the decomposition 

~ = P+q(J3 

which leads to a coupled system for p and q, viz 

p", + (ab)z - qz = 0 

q", + (ab)", - pz = O. 

After introducing a potential X and writing (3.27) explicitly we finally con
clude 

at + ll.a + all.x = 0 

bt - ll.b - bll.X = 0 

Ox + 2ab= 0 

with the parametrization 

p= Xxz 

q = Xzz - ab 

(3.28) 

(3.29) 

and the abbreviations ll. := B-; + B; and ° := B-; - B;. As it can easily be 
seen, dimensional reduction of (3.28) with respect to Oz leads to the system 
(3.19) with which we started. 

Similar to the 1+I-dimensional case, we can identify a and b with a 
complex field u. We are interested in the following identifications 

• t ~ -it, a = u, b = -u: 

iUt + ll.u + ull.X = 0 

Ox - 21ul 2 = 0 
Davey-Stewartson [ 

• t ~ -it, z -> -iz, a = u, b= ±u: 

iu, + Du + uOX = 0 

ll.X ± 21ul 2 = 0 
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The systems (3.30) and (3.31) are different versions of the Davey-Stewartson 
equation. (3.31) with the plus sign between the Laplace operator and the 
non linear term has a physical application. It describes the evolution of long 
water waves of slowly varying amplitude under gravity [48, 49]. The version 
(3.30) is the one that possesses localized coherent structures, the so-called 
dromions [21,501. It remains to prove which of the reductions are compatible 
with the Darboux transformation. 

For the purpose of getting explicit formulae for the new solutions of the 
system (3.28) we note that the defining relations for P can be written in 
terms of 2N linearly independent vector-valued solutions of (3.22), namely 

PrI>. = 0, i = 1, ... ,2N. (3.32) 

The relevant coefficients are therefore found to be 

with the definition 

W .- W(-/.l -/.2 aN - 1-/.1 aN - 1-/.2) .- If' ,,+, , ... , % ,+" z ,+,. 

The quantities W( ... ) denote double Wronski-type determinants of matrices 
with columns of the kind 

for some k and Cl< = 1,2. Since the first equation of the linear problem 
(3.22) enables us to replace derivatives of rI>. with respect to z of any order 
by derivatives with respect to x via 

rl>tz = brl>~ + rl>t. 
rI>~z = arl>t - rI>~. 
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we obtain the useful fonnulae 

(PN-l)ll + (PN-lb = -(In W), 
(PN-l)ll - (PN-lb = -(In W)x' 

(3.33) 

We are now left with the explicit calculation of the new fields ii, b and X 
in tenns of the generalized Wronskian detenninants. The first equation of 
(3.20) gives 

ii = a + 2(PN - lhl 
b = b - 2(PN - l h2' 

Taking the trace of the second equation on the one hand and doing the same 
after multiplying it by 0"3 on the other hand we compute 

trR = trR - 4tr(0"3PN_I), 
- 2 2 tr(0"3R) = tr(0"3R) + trQ - tr(Q + [PN-I, 0"3]) - 4trP'v_I,. 

If we now take into account the parametrization of R we obtain two equations 
for X of the fonn 

Xxz = Xxz - 2tr(0"3 PN_dz 

Xzz = Xzz - 2trPN_lz 

which can be integrated by means of (3.33). The final result is 

X = X + 2ln W. 

Trivial functions of integration have been set to zero whereas the nontrivial 
one has to vanish since the linear problem (3.22) and its Darboux transfor
mation is invariant under (x, z, b, ii, ii) - (z, x, -b, ±ii, ",b) depending on N 
even or odd. 

In closing this chapter we remark that the Davey-Stewartson equation II 
can be characterized by the two equivalent properties 

• The operators F and G have the symmetry FO" = O"F, GO" = O"G . 

• If cjJ is an eigenfunction of (3.22), so is 0"0. (3.34) 
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with 

The sign in a corresponds to the sign in (3.31). Hence the choice 

i = 1, ... ,N 

in the defining relations (3.32) produces the symmetry 

Fa=aP 

which has the consequence 

a</> = a pq; = Pa</> 

because of a-I = ±a. Thus the transformed eigenfunction J satisfies the 
property (3.34)' as well as <p. Consequently, the Darboux transformation 
allows,f6r'the reduction (3.31). 7 

Without going into details we state that for the Davey-Stewartson equa
tion II with the bright soli ton solution (minus sign) the seed solution 
u = X = 0 and a suitable choice of eigenfunctions (essentially exponen
tials) lead to the class of solutions found by Hirota, Ohta and Satsuma [51 J. 
It has been derived via Hirota's direct method using bilinear equations [6J 
and contains two-dimensional multi-soliton solutions. 

Finally, it has turned out that the remaining system (3.30) is not compat
ible with the Darboux transformation. However, we shall see in Chapter 5 
that there is a symmetry associated with the corresponding linear problem 
which is preserved under a generalized Darboux-Levi transformation. 
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Chapter 4 

Darboux-Levi transformations 

The previous chapter has been devoted to the extension of linear problems 
and their integrability conditions (underlying nonlinear differential equa
tions) in 1+1 dimensions which have no symmetry in a sense which will 
be specified later. The precise form of the linear problems has been given 
by the prolongation algebras A~l)+ and a particular representation of the 
simple Lie algebras sl(n + I, Ill). As seen at the end of the last section, 
certain symmetries may appear which are not preserved under a Darboux 
transformation. Thus another transformation has to be sought which allows 
for these symmetries. Since the theory of this new kind of transformation 
can be developed independently of invariances, we shall first turn our atten
tion to the general theory (this chapter) and then give the precise definition 
of the above-mentioned symmetries (next chapter). In the 1+I-dimensional 
limit they will be closely related to twisted Kac-Moody algebras as prolon
gation algebras so that our very first intention of preserving ali characteristic 
properties of the 1 + I-dimensional originals will be met. 

4.1 A generalized Darboux-Levi transforma
tion 

As motivation and justification of the title of this section we review a theorem 
given by Levi in 1988 [17J. 
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Theorem 7 (Darboux-Levi transformation). The Schriidinger equation 

(4.1) 

is invariant under 

o 0 

u -> it := u + 2[In M(1/;, cjJ )1 •• 

o 0 

where cjJ and 1/; are arbitrary solutions of (4.1) and its adjoint 

- p,1/; = 1/; •• + u1/; 

respectively and a bilinear potential has been introduced according to 

M.(1/;, r/J) := 1/;cjJ. 

We note that the new eigenfunction J, is again a linear functional of cjJ which 
_ 0 

satisfies <1>[ cjJ 1 = O. Furthermore, the new field it depends only on the eigen-
o 0 

function and adjoint eigenfunction cjJ and 1/; respectively which 'drive' the 
transformation of <1>. What is different from the Darboux transformation is 
the introduction of a potential. We shall see that a similar bilinear poten
tial will have a key position in the extended version of the Darboux-Levi 
transformation. 

We consider, as usual, matrix-operators P and C which are polynomial 
in O. and of finite order. They define the linear problem 

where cjJ is a vector-valued eigenfunction. Its adjoint is of the form 

1/;", = - P'1/; 

1/;t = -C'1/; 
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where the adjoint of any operator 0 is defined by 

0' = (O,o~)' := (-oz)'O;' (4.4) 

The superscript T denotes transposition. 1/J is called an adjoint eigenfunction. 
Sinoe (010 2)' = 0 20; it is clear that the integrability conditions of (4.2) and 
(4.3) are the adjoints of each other, i.e. the underlying nonlinear differential 
equations are the same. . 

Now, from the definition of the adjoint operator it immediately follows 
that 1/JT F,p - (F'1/J)T,p is a total z-derivative, viz 

1/JT FtP - (F'1/Jf,p = Xz(1/J, ,p). 

X emerges from throwing over z-derivatives in 1/JT F,p to the left-hand side by 
substracting total derivatives. It can nicely be expressed in terms of residues 
of pseudo-differential operators, i.e. 

res(O,o~) := 0_ 1• 

All we need are the useful formulae' 

resO' = -(resO)T 
(resO)z = res(ozO - OOz) 

with which we compute 

1/JT F,p - (F'1/J)T,p = res(1/JT F,pO;l) - res(lj7 F'1/Jo;l) 
= res(1/JT F,pO;l - o;l1/;T F,p) 

= [res(o;l1/JT F,pO;l)J:,. 

On the other hand if we combine (4.2) and (4.3) we obtain 

(1/JT ,p)z = 1/JT ,pz + 1/J;,p = 1/JT Fr/> - (F'1/Jf <i> = X z (1/J, rP). (4.5) 

We are therefore in the position to formulate 

Lemma 8. The linear problem (4.2) and its adjoint (4.3) admit the potential 

M.(1/J, r/» = 1/JT r/> 

MA1/J, r/» = res(o;l1/JT Fr/>O;l) 
Mt (1/J, r/» = res(o;l1/JTGr/>o;l). 
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For the proof it remains to show that the two potentials which are defined 
by (4.5) and its counterpart for G coincide. Indeed, cross-differentiation and 
use of the identity 

res (8; 101 0 28;1) = res(8;IOI (02)08;1) + res(8;I(On~028;1) 

for any differential operators 0 1 and O2 [52] yields 

[M", (1/1, 4»], - [M,(1/I,4»]", = res(8;11/IT (F, - G",)4>8;1) 

- res«G'w)~ FdJ8;1) 
+ res(8;11/IT F(GdJ)o8;1) 

+ res«F'1/;)~GdJ8;1) 
- res(8; I 1j;TG(F4»08; I ) 

- res(8;I1j;T(F, - G", + [F, G])cp8;1) 

which vanishes due to the integrability condition of (4.2). 
We remark that in the scalar case the potential M(1j;,4» is precisely the 

one which has been introduced in Theorem 7. The transformation of 4> is 
equivalently given by 

_ 0 

4> = 4> + AM(1/I, 4» 

where the function A is determined via 
_ 0 

4>[4>] = o. 

Analogous to the Darboux transformation it turns out that this is the suitable 
characterization for a generalized Darboux-Levi transformation. 

Theorem 9 (Generalized Darboux-Levi transformation). Let 
4>1, ... ,4>N be linearly independent solutions of 

(4.6) 

and 1/11, ... ,1/IN linearly independent solutions of the adjoint problem 

1/1", = - F'1/I. 
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Then there exists a differential operator F of the same order as F which 
satisfies (4.6) with the new eigenfunction 

J:= r/J + A'M(1/;"r/J) 

where the vector-valued functions Ai are the solution of the linear al
gebraic equations 

The proof will be given constructively by defining the linear functional 

(4.7) 

for an as yet unspecified differential operator F. The first observation is that 

R[r/J,] = 0 (4.8) 

as a direct consequence of J[r/Jd = o. If we evaluate (4.7) and separate the 
'differential part' we obtain 

(4.9) 

with 

Q[r/J] := Fr/J + A'X(1/;" r/J) 
- F[r/J + Ai M(1/;i, r/J)] + (F Ai)oM(1/;i' r/J). 

(4.10) 

OL 

Q[r/J] can be regarde~ as/differential operator acting on r/J. Hence the condi
tion Q = 0 defines F uniquely, having the same order as F. Finally, since 
Q vanishes identically, (4.8) constitutes a linear homogeneous system of N 
equations for N vector-valued coefficients. Its determinant det M(7f;i, r/Jj) can 
be chosen non-zero as the potentials are determined only up to arbitrary 
constants. We therefore conclude 

A' = FA' 
" 

(4.11) 

and hence R[r/J] = O. q.e.d. 
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We observe that the vectors Ai are obviously eigenfunctions of the twid
dled linear problem (4.2), which reflects the fact that in Theorem 9 J is only 
defined up to arbitrary constants stemming from the potentials M (If;;, 1J). 

It is now convenient to derive two different explicit expressions for the new 
operator F. To this end we note that insertion of the definition of X(t/Ji, ciJ) 
into Q = 0 yields 

[F(1 + Ai 8;1t/JTlho = [(1 + A'8;It/JTlFho (4.12) 

which can immediately be solved for F. We get 

F = (DFD-1ho 

D := 1 + Ai 8;1t/J'f. 
( 4.13) 

On the other hand, we can drop the subscripts >0 in (4.12) if we subtract the 
corresponding negative orders. (4.12) becomes 

FD - (FAi)08;1t/JT = DF - (A'8;It/JT F)<o 
= DF + (F't/Ji8;1 AiT)~O 

= DF + [(F't/Ji)o8;IAiTJ' 
= DF - Ai8;I(F't/J;)"{; 
= DF + Ai8- 1• I•T 

z 'PtX 

and hence 

F = DFD- 1 + DxD- 1 (4.14) 

having used (4.11). 
The next step in the procedure is to find an explicit expression for D- 1

• 

After some trial and error we obtain 

Lemma 10. The inverse of the operator 

D = 1 + Ai8- 1• I•T 
z '1', 

is given by 

D- 1 = 1-1Ji8;IEiT. 

The vector-valued functions Ei are the solution of the linear equations 
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The proof of the lemma is very simple if one makes use of the formula 

m. = o.m- mo. 
which is true for any matrix m depending on z. A brief calculation shows 

from which we conclude 

D(l - 4>iO;1 BiT) = 1 + AjO;lljJJ - 4>iO;1 BiT 
_ Aj 0- 1 ,f,T ,!,'O-l BiT 

z'r"J't'\z 

= 1 + AjO;I[1ftJ + BiTM(l/;j, 4>i)] 
- [4>i + Aj M(l/;j, 4>i)] 0; I BiT 

=1. 

To round off we wish to find the transformation law of the adjoint eigen
function. Taking the adjoint of (4.13) we obtain 

po = [(1 + Bio;l4>iT)F(l _l/;jO;1 AjT)ho 

which is nothing but (4.13) itself after interchanging eigenfunctions and ad
joint eigenfunctions as well as Aj and Bi. Doing the same in Theorem 9 we 
end up with 

;j; = 1ft + BiM(1ft,4>i)' 

It is now clear that all of the above considerations for the operator F hold 
mutatis mutandis for C. Furthermore, since we have been able to write the 
transformation of the operators as gauge transformation with the pseudo
differential operator D (4.14), we can apply Lemma 6, which implies that 
the integrability condition for the transformed operators is again satisfied. 
A further gauge transformation with an arbitrary (non-constant) matrix Y 
results in 

Theorem 11. The linear problem 
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together with its adjoint 

1/!", = - F*1/! 

1/!, = -C'1/! 

and their compatibility condition 

possess the invariance 

cP -+ ~:= Y[cp + AiM(1/!i,cp)] 
1/! -+ -if;:= y-IT[1/! + BiM(1/!,CPi)] 
F -+ F:= Y(DFD-'ho y- I + Y", y- I 

C -+ G:= Y(DCD-1»oy- 1 + y,y- I 

where the quantities involved are defined in Lemma 8, Theorem 9 and 
Lemma 10. 

For practical purposes it is helpful to be aware of the following relation 
between the coefficients Ai and Bi: 

Lemma 12. The vectors Ai and Bi satisfy the matrix identity 

To prove this identity we have to consider only the definitions of Ai and Bi. 
We compute 

0= [CPi + Aj M(1/!j, CPi)] BiT 

= CPiBiT + AiBi™(1/!j,CPi) 

= CPi BiT - Aj1/!J. 

Resume: The (generalized) Darboux-Levi transformation is driven by N 
pairs of (adjoint) eigenfunctions (1/!i, cp,). The new operators and therefore 
the parametrizing fields u depend only on these pairs, i.e. 

u = u( U, 1/!1, CPl, ... ,1/!N, CPN). 
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Both Darboux transformation and Darboux-Levi transformation have the 
property that the new eigenfunction ~ is a linear functional of <1>. It is alge
braically determined by the basis {4>;} of its kernel. 

Let us now turn to the question whether the Darboux-Levi transformation 
in the 1 + I-dimensional limit 8z - .\ has anything to do with what is already 
known in 1 + 1 dimensions. 

4.2 The l+l-dimensional limit 

For simplicity we shall discuss only the case N = 1 and Y = 1. (In fact 
one can show that this implies no loss of generality.) As mentioned in the 
previous chapter the 1+1-dimensionallimit is performed by letting 

4>(x, t, z) - eAz4>(x, t) 
'Ij;(x, t, z) - e''''Ij;(x, t). 

The crucial point is that we are now able to integrate for the potential 
M ('Ij;1 , 4» because 

Mz('Ij;I, 4» = 'Ij;; 4>e(I'I+A)z 

(cf. Lemma 8) which leads to 

M(Vh,4» = (J1.1 + .\)-I'Ij;; 4>e(I'I+A)z + f(x,t) 

with an arbitrary function of integration f(x, t). Since the right-hand sides 
of the two remaining equations for M ('Ij;I, 4» in Lemma 8 are bilinear in 
the exponentials, it immediately follows that f is constant. The constant 
is arbitrary and can therefore be set to zero. Hence we obtain for the new 
eigenfunction ~ 

J= (J1.1 + .\)-1[J1.1 - (J1.1 + .\I):r~ + .\]4>. (4.15) 

On the other hand, the 1+I-dimensional limit of the linear problem (4.2) 
and its adjoint (4.3) reads 

4>", = F(.\)4>, 

rPt = G(.\)rP, 

'Ij;", = _F'f'( -J1.)'Ij; 

'lj;t = _Cr ( -J1.)'Ij; 
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from which we conclude 

[1jJT(lld4>( -IlI)]z = 0 

[1jJT(IlI)4>(-IlI)]t = o. 
Since (4.16) constitutes' Frobenius systems, we can find n-llinearly inde

pendent eigenfunctions 4>1 (-Ill), ... ,4>n-1 (-/1-1) ~orthogonal to 1jJ(IlI). 
n is the dimension of the matrices F and C. If we now apply the N-soliton 
Ansatz 

~ = P(A)4> = (Po + A)4> 

with 

P(Ad4>(AI) = 0 

P( -lld4>i( -Ill) = 0 

where 4>(Ad is an arbitrary eigenfunction, we reproduce (4.15) up to a con
stant and hence irrelevant factor, viz 

- 4>(Al)1jJT(lll) 
4> = [Ill - (Ill + Ad 1jJT(lld4>(Al) + A]4>. 

One can easily verify that (fi vanishes for 4> E {4>( Ad, 4>k( - Il I) }. 
Thus the Darboux-Levi transformation reduces in the 1 + I-dimensional 

limit to the well-known N-soliton Ansatz for suitably chosen eigenfunctions. 
In the reduction 1jJ(IlI) = 1jJ[4>(AI = IldL which will be discussed in the follow
ing chapter, this is precisely the choice which generates the Biicklund trans
formation for· equations such as the potential modified Korteweg-de Vries 
equation, Dodd-Bullough equation, the fifth-order equation mentioned at 
the end of Chapter 2 and many other equations [53]. 

4.3 The time-dependent Schrodinger equa
tion 

The example which we wish to discuss in this section is the 'time-dependent' 
Schriidinger equation. We consider the real scalar operator 

(4.17) 
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Here, we are not interested in a pair of linear equations. We shall investigate 
only the equation 

f/Y" = f/Yzz + uf/Y 

and its adjoint 

-w" = wzz + uw. 
The Darboux-Levi transformation provides according to Theorem 9 an in
variance of the more general operator 

F2o; + Floz + Fo. 

Evaluation of (4.12) or (4.13) yields 

F2 = F2 

FI = FI 

Fo = Fo - 2F2 (AiWi )z + F2Aiwiz - Ai(WiF2)z 

which allows for the specialization (4.17). The field 7L transforms as 

ii. = u - 2(AiWi )z' 

The following lemma helps simplify the above expression. 

Lemma 13. The coefficients Ai satisfy the identity 

W; A' = -(In IMDz 

with the abbreviation IMI := det M(Wi,<Pj). 

For the proof it is convenient to define the vectors 

Mi[VI"" , VNJ := (Mi[V{, ... , V~])j;I, ... ,N 

where Mi [vi, ... , dN J denotes the determinant of the matrix which is obtained 
by replacing the i. th row in the matrix M by (vi, . .. , dN ). {vd are vectors 
of arbitrary dimension. These determinants are those which appear when 
solving the algebraic equations for Ai via Cramer's rule. We obtain 

Mi[rPI,'" ,rPNJ 
IMI 
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Hence 

wT Ai = -wT Mi [<Pl, ... , <pNJ/IMI 

= - L Mi[Mz(Wi' <pd,··· ,Mz(Wi, <i>,y )J/IMI 
i 

= -(In IMl)z 

which proves the lemma. 
The final result for the new potential of the Schriidinger equation is then 

U = U + 2(ln IMl)zz 

which has, in the 1+1-dimensionallimit and N = 1, exactly the form given 
in the original Darboux-Levi transformation (Theorem 7). 
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Chapter 5 

Reductions and symmetries 

Our intention in this chapter is to reduce the number of fields u which 
parametrize the operators F and G in the linear problems (4.2) and (4.3) 
and therefore in the associated nonlinear differential equations such that the 
Darboux-Levi transformation is still applicable. We shall endow the opera
tors with symmetries relating them to their adjoints. As a consequence the 
adjoint eigenfunctions will turn out to be linear functionals of eigenfunctions 
so that the Darboux-Levi transformation will only be driven by an arbitrary 
number of eigenfunctions. The syrnmetries can be expressed as gradation 
of the prolongation algebras in the l+l-dimensional limit. After a suitable 
application of isomorphisms the prolongation algebras can be identified with 
twisted Kac-Moody algebras. For this reason we wish to begin with a brief 
introduction to graded loop algebras. 

5.1 Twisted Kac-Moody algebras 

We know already that untwisted Kac-Moody algebras can be realized as loop 
algebras of finite-dimensional simple Lie algebras. A twisted Kac-Moody 
algebra is associated with an outer automorphism of a simple Lie algebra Q. 
Let us assume that Q admits an automorphism a of finite order T, i.e. 

[a(X), a(Y)] = a([X, YD, aT = 1 

for X, YE Q. It is then possible to decompose Q into the eigenspaces of a as 

Q = _9 Qk, [Qk,Qi] C Qk+1 (5.1) 
kEZ'T 
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where ZT := Z mod T and gic are the eigenspaces of 17 for the eigenvalues 
exp(2i7rk/T) with k = k mod T. It is clear that 90 is a Lie algebra, the 
so-called horizontal algebra. The gradation (5.1) now defines in a natural 
manner the loop algebra 

£(9, (7) = EB (9k ® ,\k) (5.2) 
kEZ 

associated with 17. The twisted Kac-Moody algebras are central extensions 
of these loop algebras. For our purposes it is sufficient to identify them with 
the latter algebras. Taking into account that different outer automorphisms 
of g may generate identical loop algebras one finds the following classes of 
twisted Kac-Moody algebras [15J: 

T . 2 A(2) A(2) A(2) D(2) E(2) r 2 d I 3 • WlstT=. 2, 2n, 2n'-J, n-J, 6 lorn?,: an n?': . 

• Twist T = 3. Di3 l. 

In fact these classes correspond to the symmetries of the Dynkin diagrams 
of the finite simple Lie algebras An, Dn and E6 which are isomorphic to the 
conjugacy classes of their outer automorphisms. The conjugacy classes are 
given by the factor group 

automorphisms 
inner automorphisms' 

The inner automorphisms are 'divided out' since they generate isomorphic 
loop algebras. The factor group is finite and discrete. 

Similar as in Chapter 3 we shall discuss only the loop algebras associated 
with the simple Lie algebras A/, i.e. A~2), A~~ and A~~_l' The representation 
we choose is given in terms of their horizontal algebras 

and 

(2) for A 2n , n?,:1 

go = Dn for A~~_l' n?': 3. 

The simple Lie algebras Bn and Dn can be regarded as matrices being anti
symmetric relative to 
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respectively [32]. In denotes the n-dimensional unit matrix. A representation 
of the graded loop algebras L(9, a) is then obtained by means of the defining 
relation 

(5.3) 

where:=: is one of the matrices above. Different representations are obtained 
by applying similarity transformations with a constant matrix erA) to the 
matrices X(A), which leads to the invariance of (5.3) 

X --+ e-I(A)Xe(A) 
:=: --+ eT(-A):=:e(A). 

(5.4) 

We stress that after a similarity transformation:=: may depend on A. More
over, :=: is only defined up to a constant factor. 

It is easily seen that (5.3) is still meaningful for 9 = Dn with n = 1,2. 
This is interesting because the associated loop algebras are of course isomor
phic to the untwisted Kac-Moody algebras All) and AI) respectively. On 
the other hand, the Taylor parts, in which we are only interested, are not. 
Thus it makes sense to introduce the algebras A \2) and A~2). 

Furthermore, one can construct a representation of A~~ in another gra
dation corresponding to an outer automorphism of order.,. = 4 [54]. The 
horizontal algebra is the symplectic algebra en [32]. It is clear that a rep
resentation of this algebra cannot be given by (5.3) if A is supposed to be 
associated with the gradation. For, if the parameter A in (5.3) coincides 
with the indeterminate of the Laurent polynomials in (5.2), the twist of the 
corresponding loop algebra has to be .,. = 2. 

How do we find, in some sense, a natural representation of the algebra 
in question? To this end we perform a similarity transformation (5.4) to 
:=: = :=:Bn with the matrix 

e(A) = (1 In ) 
-A-IIn 

(5.5) 

which results in the block matrix 
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We observe that Cn is indeed anti symmetric relative to the A-free part of 
3c., which we denote by A. The solution of (5.3) decomposes naturally into 
four classes 

with the restrictions 

a := -trQ_. 

After a further similarity transformation with 

8(A) = ( A-~ ) 
12n 

and the substitution A -> A2 we finally end up with the decomposition of the 
representation 

E9 (XOA4k E9 X I A
4k+1 E9 X 2A4k+2 E9 X 3A4k+3). 

kEZ 
(5.6) 

The matrices X k are obviously the matrices above for A = 1. They constitute 
a representation of the eigenspaces (h. of the outer automorphism of order 
T = 4 with which we started. Hence we shall regard the representation 
given by 3 = 3c• as the representation of the Kac-Moody algebra A~~ in 
this particular gradation. We introduce the notation A~~ for this algebra, 
taking into account that the similarity transformation (5.5) maps the Taylor 
part of A~~ onto 'negative powers' of A~~. Hence their Taylor parts are not 
isomorphic. 

An analogous analysis can be done for A~~_l. There exists an outer 
automorphism of order T = 4 which leads to a gradation with horizontal 
algebra gij = Cn - l E9 AI, i.e. a direct sum of the Lie algebra Cn - l and the 
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one-dimensional Abelian Lie algebra AI. The representation of A~~_I can be 
computed from (5.3) with the matrix 

-.n • . = 
~.' 

I 

-I 

-In_I 

We shall see later that the algebra A\4) generates the well-known Moutard 
theorem [55J. 

Let us come back to the algebras A~ and .4~~_1 and their corresponding 
linear problems. Hence the matrices F and G satisfy (5.3) for:=: = :=:B. or 
:=: = :=:0.' The similarity transformation (5.4) is then nothing bllt a gauge 
transformation of the linear problem (3.1), i.e. 

4J -+ e- I 4J. 
A gauge transformation has no influence on the integrability condition of a 
linear problem since the gauge matrix drops out. Hence linear problens are 
characterized only by the conjugacy classes:=: modulo gauge transformations. 

As long as we are dealing with Lie algebras over the set of the complex 
numbers (C the classification of Kac is valid and any real symmetric matrix 
:=: = Sk (det Sk of 0) is equivalent to one of the matrices :=:B. or :=:0., viz 

with dim Sk = k. The reason for this is the following: Any non-singular 
symmetric matrix can be brought into the canonical form 

_ ( Ip ) 
=.p,q = -Iq 

via a similarity transformation with a real orthogonal matrix 8. The integers 
p and q depend on the signs of the eigenvalues of the matrix Sp+q, i.e. its 
signature. Moreover, the minus-signs can be gauged away if we apply another 
similarity transformation with 

e = (lp ilq)' 
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We emphasize that, strictly speaking, (5.4) is only a similarity transforma
tion for the representation of the algebra and not for the defining matrix :=:. 
Otherwise the latter transformation would not have been possible. 

The situation changes if we are dealing with real Lie algebras. In this case 
:=:Bn and :=:Dn are no longer equivalent to any symmetric matrix (of suitable 
dimension, of course) since only real gauge matrices 8 are permitted under 
these circumstances. In fact the conjugacy classes are now given by the 
diagonal matrices ~,q, which define the real forms so(p, q) of Bn and Dn for 
p + q = 2n + 1 and p + q = 2n respectively. In both cases we can assume 
p 2: q since the algebras so(p, q) and so(q, p) are isomorphic. Hence we only 
find 

En ~ so(n + 1, n) 

Dn ~ so(n, n). 

This way of looking at the prolongation algebras opens up the possibility 
of extending the transposition T to Hermitian conjugation t in the defining 
relation (5.3). The condition 

(5.7) 

for ~,q now defines loop algebras of the real Lie algebra sl(p + q, <C) with 
twist T = 2 and horizontal algebras 90 = su(p, q). It is clear that all of 
the previous considerations concerning the Darboux-Levi transformation are 
completely unaffected by this extension. 

The above list of graded loop algebras is by no means exhaustive. It 
should only be considered as an indication of what can be done. It is evi
dent that a classification of loop algebras for example with regard to their 
Taylor parts is required. Whether this will be sufficient is not obvious. The 
class of linear problems, however, which is covered by the algebras A~~ and 
A~-I and the (real) algebras related to A~ and A~~_I will turn out to 
be of considerable importance. Its 2+ I-dimensional extension will be the 
subject of the following sections. It is related among other things to the 
above-mentioned Moutard theorem and therefore the Novikov-Veselov equa
tion [55], the dromion solutions of the Davey-Stewartson equation I [21], a 
2+1-dimensional sine-Gordon system found by Konopelchenko and Rogers 
[23J and its localized soli tonic solutions. 
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502 (2) (2) The algebras A2n and A2n- 1 

Here, we assume that the prolongation al~ebra associated with the linear 
problem (3.1) is related to either A~~ or A2~-1. In our particular represen
tation F and C then satisfy the relation (5.3) for the symmetric matrices 
=: = :::;',q. Following the recipe ,\ -+ 8z it converts into 

W(8z )=: = -=:H(8z ) (5.8) 

for H = F, C. It is quite obvious that its l+l-dimensionallimit is indeed 
(5.3). In order to show this it is sufficient to let (5.8) act on eigenfunctions, 
viz 

[W(8z )=: + =:H(8z )]<p(x, t, z) = [W(8z )=: + =:H(8z)]eAZr/l(x, t) 
= eAZ[W( -,\)=: + =:H(,\)]r/l(x, t). 

Hence choosing two linearly independent eigenfunctions 4>(x, t) we obtain 
(5.3). Analogous to the 1+ I-dimensional case the following two conditions 
are equivalent: 

• The operators F and C satisfy (5.8) . 

• If <p is an eigenfunction then 1j; := =:<p is an adjoint eigenfunction. (5.9) 

For the proof we compute (for F and analogously for C) 

Thus if (5.8) is satisfied then the right-hand side of the above equation van
ishes and therefore =:<p is an adjoint eigenfunction. On the other hand, if 
the left-hand side is zero then the kernel of the linear differential operator 
=:F + F°=: includes the infinite-dimensional class of eigenfunctions dJ. This is 
only possible if the operator vanishes identically, which establishes (5.8). 

It now remains to check whether the Darboux-Levi transformation allows 
for the symmetry (5.8). It indeed does under the restrictions of 

Theorem 14. The Darboux-Levi transformation (Theorem 11) preserves 
the symmetry 

FOS= -SF 

CoS = -SC 
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for a constant symmetric matrix S = ST if the adjoint eigenfunctions 
1/;i are related to the eigenfunctions <Pi through 

and the matrix M is chosen to be symmetric, i.e. 

Furthermore, the gauge matrix Y is restricted by 

The verification of Theorem 14 can be divided into two steps. We first 
prove the symmetry condition on M. The definition of the potentials in 
Lemma 8 yields 

M. (-l/ii, r!>j) = 1/;T r!>j = r!>T S<Pj = M.( 1/;j, r!>i) 

since the matrif S is symmetric. The second equation reads 

M",(1/;i, r!>j) = res(8;Ir!>TSFr!>/);I) 
= -res(8;1r!>J F' Sr!>i8;1) 

= res(8;Ir!>JSFr!>i8;1) 

= M",(1/;j,r!>i) 

having used (5.8). Hence taking into account the arbitrariness of the inte
gration constants in the potentials the symmetry condition can be fulfilled. 

We shall n~w show that for any new eigenfunction ~ jt' exists an adjoint 
eigenfunction 1/; satisfying 

which will prove Theorem 14 (cf. (5.9)). To this end we introduce the linear 
functional 

R[r!>] := ;j; - S~ 
= y-lT[1/; + Bi M(1/;, r!>i)] - SY[r!> + Ai M(1/;i, r!»] 

= (y-lT S - SY)r!> + (y-lT Bi - SYAi)M(1/;i, <p) 
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where we have chosen 1/J = Se!> and M(1/J, chi) = M(1/Ji, cf». The first term 
on the right-hand side of the last equation is supposed to vanish whereas 
the second one is zero for non-vanishing determinant det M (-1/Ji, 4>j) since, by 
definition, R[4>d = 0 (cf. the argument which has been used in the proof of 
Theorem 9). q.e.d. 

We finish this section with an identity which is useful for explicit calcu
lations. 

Lemma 15. The following identity holds: 

A brief calculation, which is typical of the derivation of formulae like the one 
above (cf. Lemma 12), yields 

0= Ai[cf>f + AjT M(1/Jj, cf>;)l 
= Aicf>f + AiAj™(1/Ji,cf>j) 
= Aicf>f - cf>jAjT. 

We have again made use of the fact that the matrix of the potentials is 
symmetric. 

5.3 The Davey-Stewartson equation I 

In Chapter 3 we had already shown that the Davey-Stewartson equation Il is 
amenable to a generalized Darboux transformation. The Davey-Stewartson 
equation I had defied this approach and we have postponed the problem 
of finding a transformation which leaves it invariant. We are now in the 
position to solve this problem. The appropriate mathematical tools have 
been developed in the last chapter and the. previous sections. 

First of all we note that the prolongation algebra for the nonlinear Schro
dinger equation is A(1). The generators appearing in the 1 + I-dimensional 
version of the linear problem (3.22) generate a complete basis of the Taylor 
part of the loop a1gebrasl(2, 1R)®IR('\, ,\-1). However, in the form which can 
be generalized to the Davey-Stewartson equation I (3.30) the linear problem 
consists only of matrices satisfying (5.7) for:=: = '::'2,0. The prolongation 
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algebra can therefore be regarded aslreal twisted loop algebra of 51(2, (C) 
with horizontal algebra su(2). 

This observation is now reflected by the fact that the linear problem (3.22) 
is generated by anti symmetric operators F and C, i.e. 

F' =-F 

C' = -C. 
(5.10) 

We can therefore apply Theorem 14 for 5 = 1. In order to investigate the 
remaining question whether the Darboux-Levi transformation allows for the 
specialization (3.21) of F and C we have a look at the three highest orders 
of the transformed operators F and G in Theorem 11. Using Lemma 12 and 
setting T = 1 we get 

[ 
, t 

Hk- 1 = Hk- 1 + A 1/1" Hkl 
- ['t ['t 1 Hk_2 = Hk- 2 + A 1/1" Hk-d - A 1/1,z> Hk 

- [A'1/1i, HklA\tJ - kHk(A'#). 

(5.11) 

where again H = F for k = 1 and H = C for k = 2. Interestingly, the above 
structure is almost the same as the one for the Darboux transformation 
(3.20). We therefore conclude that the specialization (3.21) is preserved. 
Moreover, if we identify Ai1/1i with PN - 1 in the formulae (3.20) we obtain 
precisely the same expressions for the new fields u and X as in Section 3.4. 
They read 

and 

u = u + 2(Ai)21/1; 

Xn = Xx. - 2(1/1;0"3Ai ). 
X •• = X •• - 2(1/1; A') •. 

In Lemma 13 we have already prm·en that 1/1; A' = -(In IMI) •. On the other 
hand, if we take into consideration that 

(5.12) 

it is easy to see that a similar identity is true for 1/1;0"3A' as well, namely 

1/1;0"3A' = -(In IMI)x. 
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Hence we immediately obtain 

x = X + 2ln IMI + J(x,t) + g(t)z. (5.13) 

The function of integration 9 is trivial since the Davey-Stewartson equation 
is invariant under X ~ X + g(t)z. Moreover, if one interchanges the roles of 
x and z in the linear problem (3.22), the symmetry (5.10) converts into 

F'*(O:z:)CT3 = -CT3F'(O:z:) 
C"(O:z:)CT3 = -CT3C'(O:z:). 

The adjoint of F' and C' is now taken with respect to o:z:. We then observe 
that the new potentials M' (1/!:, rPj) for 1/!: = CT31/!i and rP: = rPi are the same as 
before (cf. (5.12)). A direct consequence is that the Darbollx-Levi transfor
mation applied to the operators F' and C' is identical with the one discussed 
above. It now turns out that the new formula for the field X is given by 
(5.13) after interchanging x and z. Consequently, J(x, t) has to have the 
form J(x, t) = J(t)x + h(t) and can therefore be neglected as well as g(t). 

As seed solution we take the ~e solution of the Davey-Stewartson S IlV\r lIs-t 
equation I: 

u=O, OX=o. 

For this solution the linear problem (3.22) simplifies to 

rP:z: = CT3rPz 
rP, = -i(X:z:z + Xzz CT3)rP - 2iCT3<Pzz. 

The corresponding potentials are then gi ven by the defining relations 

MZ(1/!i,rPj) = rPIrPj 

M:z: (1/!i, rPj) = rPI CT3<Pj 
M,(1/!i, rPj) = 2irP;zCT3rPj - 2irP!a3<PjZ. 

(5.14) 

(5.15) 

We immediately observe that system (5.14) has decoupled with respect 
to the components <p' and rP2 of the eigenfunction, which enables 11S to choose 
the solutions 

rPt = rPt(a, t), 
rPr = rPt({3, t), 

rPr = 0, 
<hi = 0 . , , 

i = 1, ... , No 

i = No + 1, ... ,1'1' 
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with a := z + x and fl := z - x. They satisfy two copies of the Schriidinger 
equation 

ill>: -' 2<p~Q - 1=<p1 = ° 
i<p~ + 2<p~f3 + g{l{l<p2 

= ° 
with the potentials I = I(a, t) and 9 = g(fl, t), which are related to the field 
X through X = !Cf + g). Moreover, let us introduce the notation 

Mi~ := M("l/;i, <Pi) 

Mi} := M("l/;i, <Pi) 
Gii : . M("l/;i, <Pi) 

for i, j ::; No 

for i,j > No 

for i > No,j ~ No. 

It follows from (5.15) th~t the matrices Ml and M2 are independent of fl and 
a respectively and that the matrix G is constant. Finally, the integration 
constants in the potentials Mi~ and Mi} have to be chosen such that Ml and 
M2 are Hermitian. This is the symmetry condition of Theorem 14 extended 
to complex matrices. 

Putting everything together we obtain the absolute value of the complex 
field it in the form 

( 
Ml et) litl2 

= Dlndet G M2 . 

This class of solution is not new. It has been derived by Gilson and Nimmo 
[21] via a direct approach using the Hirota form of the Davey-Stewartson 
equation. It contains the dromion solution found by Boiti, Leon, Martina and 
Pempinelli [50] and more generally the interaction of No(N - No) dromions. 
For the asymptotic analysis and properties of their interaction see [21]. Lo
calized solutions of the same functional form have also been found for the 
Novikov-Veselov equation. Their deri\'ation was based on the Moutard theo
rem [55]. We shall see that the Moutard transformation can be regarded as 
a generalized Darboux-Levi transformation. 

Before we close this section we wish to remark that Theorem 14 is ob
viously also applicable to scalar linear problems. S = 1 can formally be 
associated with:=: = :=:80' Without proof we state that the prolongation al
gebra of the 1 + I-dimensional Kaup-Kuperschmidt equation [56) is Afl. The 
Darboux-Levi transformation with non-trivial gauge matrix Y can be applied 
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to its 2+ I-dimensional version. On the other hand, the corresponding linear 
problem admits a reduction to the scalar problem 

4>" = (a; + 2uaz + uz )4> 

4>t = (9a~ + 30ua; + 45u,a~ 
+ (35uzz + 20u2 + 10p,,)az + 20uuz + 5ux + 10uzzz )4>. 

The structure of the scalar operators F and G seems complicated. On the 
contrary, it is not. F and G are completely determined by the assump
tion that their highest orders are constant and that they are antisymmetric. 
The integrability condition yields the 2+1-dimensional Kaup-Kupcrschmidt 
equation 

for u = pz. Finally, the new field ii, is given by the simple formula 

ii. = u + ~(ln IMl)zz 

which reproduces the result of the above-mentioned Darboux-Levi transfor
mation applied to the linear problem involving 3 x 3-matrices. 

5.4 (4) (4) The algebras A2n and A2n- 1 

This chapter is devoted to linear operators H = F, G which possess the 
symmetry 

(5.16) 

where 2 is now an operator associated wi th the twisted algebras A~~ or 
A~_l. 2 is obtained by the substitution A ~ az in the definition for the 
matrices 2co and 2 010 . Using the same notation the operators 2 have the 
form 

a, -1 

.=.otn = 

1 
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Firstly, we observe that the operator equation (5.16) is well-defined in the 
sense that its adjoint does not give anything new. To see this we decompose 
:::: in a natural manner into 

:::: = sa. + A 

from which we conclude that:::: is antisymmetric since S = ST and A = _AT. 
Hence 

(W:::: + ::::H)* = ::::0 H + W=.o = -(W=' + ='H). 

Secondly, a similar argument analogous to the one given in Section .5.2 shows 
that the 1 + I-dimensional reduction of (5.16) is indeed (5.3). Furthermore, it 
is clear that the condition (5.16) on the operators F and C is equivalent to the 
requirement that if cjJ is an eigenfunction then ='6 is an adjoint eigenfunction. 
Hence we have to prove this relation between the new eigenfunction ~ and 
the new adjoint eigenfunction -0 to verify 

Theorem 16. Let the adjoint eigenfunctions w; be given by 

and let the potentials M (1/1;, cjJj) be restricted by 

Then the Darboux-Levi transformation leaves 

F°=' = -='F 
Co=. = -::::C 

invariant if the gauge matrix I has the form 

• ===c· ...... ...... n° 

I = (~ ~) (~ l~J 
with V = (Ai) lcjJf and AO = AT N A . 
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·===01' ...... ...... n" 

with v = (Ai) I A°4>i and N = /\ T N /\. The constant {3 is defined 
as {3 := 1 + (Ai)l# = ±1 whereas a is arbitrary. 

The matrix AO and the vectors <l>i are the projections of A and <l>i 
respectively onto the subspace associated with /\. 

The existence of potentiais restricted by (5.17) is connected with a partic
ular choice of the integration constants. According to the definition of the 
potentiais we compute on the one hand 

Mz('lj;i, 4>j) + Mz('lj;j, 4>i) = C=·4>Y r/>j + (=-<I>j)T cPi 

= 4>T.Sibj + 4>J.Sr/>i 
= (4)TscPj)z 

since A is antisymmetric. On the other hand, from the symmetry (5.16) it 
follows 

res( 8; 14>T=-Fr/>j8; I) = -res( 8; 14>J=-Fr/>i8; I) 

and consequently 

Mx('lj;i, 4>j) + Mx('lj;j, cPi) 
= res( 8;! (=-4>;)"{; F4>j8; I) + res(8; I (=-cPj)6" F4>i8; I) 

- - res( 8;14>J F' (=-cPi)o8; I) - res( 8; 14>T F' (=-cPj lo8; I) 

= - res(8;14>J F'=-cP i8;1) + res(8;1r/>J F' S0i) 
- res(8;14>i F'=-4>j8;1) + res(8;Ir/>i F' S0j) 

= 4>iS(F4>j)o + 4>fS(F4>i)O 
= (4)T S4>j)x 

where we have used the identity 

(=-m)o = =-m - Sm8z 

58 



for any matrix m depending on z.· 
Having established that (5.1 i) can be imposed on the potentials it remains 

to show that =:.;p is an adjoint eigenfunction. To this end we need 

Lemma 17. The constraint (5.17) leads to the identity 

For the proof see Lemma 15. 
The (1, I)-component of the matrix identity above reads 

and hence 

(5.18) 

It is now convenient to introduce the linear functional 

R[4>] := ;fi - =:.;p 

with 1/; = =:'4>. Insertion of the definition of ;p and ;fi yields 

R[4>] := y-IT[1/; + Bi M (1/; , 4>i)]- =:'Y[</> + Ai M(1/;i, 4»] 
= y- IT[=:'4> + Bi( - M (1/;i , 4» + 4>T Sq»)] - =:'Y[d.> + Ai M( 1/;i, q»)] 
= Q4> - [y-IT Bi + (=:.y k)o]M(1/;i, 4». 

The differential operator Q has the form 

Q := y- IT (=:. + 1/;iAiT S) - =:.y - Sy Ai1/;T 

where we have used Lemma 12. 
Let us for the moment consider only the case A = 1. [t is then straight 

forward to show that Q vanishes identically for the particular choice of Y 
given in Theorem 16. Assuming that the determinant of the potentials IMI 
is non-zero, we conclude that R vanishes as well, since R[4>d = O. 

For the case A =f 1 we denote that matrix which contains A in Theorem 16 
by Yo. By construction it commutes with the differential part of the operator 
3, Le. 

=:'Yo = AYo + Yosa, 
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from which follows 
- - - -IT - - - -IT -1/; - =.r/J = To 1/;1,,=1 - =.Tor/JIA=I = (To A - ATo)r/JIA=I' 

This finishes the proof of Theorem 16. q.e.d. 

We wish to stress that thc form of the gauge matrix T has been derived 
in a purely algebraic manner. There are still some degrees of freedom left 
since the matrix A has not yet been entirely determined. In the next chapter 
we shall see by way of an example in which manner A may be specified if one 
imposes further restrictions on the operators F and G. 

5.5 The 2+ I-dimensional Sawada-Kotera 
equation 

The examples concerning the Darboux-transformation and the Darboux-Levi 
transformation which have been discussed so far have not completely exhib
ited the variety of these approaches. In order to illustrate the points not 
touched upon so far we shall discuss the 2+ I-dimensional extension of the 
Sawada-Kotera equation [56]. Its prolongation algebra is A~2). Unfortu
nately, in this gradation the corresponding linear problem contains negative 
powers of A. The crucial point is that one can apply a gauge transformation 
to the linear problem such that the new matrices F and G satisfy (5.3) with 
:::: = ::::C, and that they are polynomial in A. In this sense it is reasonable to 
regard the prolongation algebra as A~4), which allows us to make use of the 
resul ts developed in the last section. 

We start with the linear problem of the form 

(5.19) 

The asterisks denote some functions which are uniquely determined by the 
compatibility condition. It turns out that they can be expressed in terms 
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of derivatives of the field u. What remains is a single equation for u, the 
Sawada-Kotera equation 

- - - 2 0 Ut + Uxxxxx + :JUUx:r.x + DUx U xx + DU U x = . (5.20) 

We observe that the highest powers in (5.19) are constant. Let us in
vestigate whether we can maintain this special form in 2+1 dimension. To 
this end it is noted that the transformation of the operators F and G under 
the Darboux-Levi transformation is given by (5.11) 'plus' a non-trivial gauge 
transformation with T. We find 

ih = THkT- I 

Hk_1 = T(Hk_1 + [A i 1/JT, Hk])T + Okl T x y-I 
(5.21 ) 

with the usual notation H = F for k = 1 and H = G for k = 2. From the 
first equation it is readily seen that F't = FI and O2 = G2 iff 

A=( 1 0). 
Vi 1 

(5.22) 

Hence the gauge matrix T has been determined completely by algebraic 
conditions. From the second equation we conclude that the second highest 
orders of F and G can be assumed to be traceless as 

tr(T x T- I
) = (In det T)x = O. 

It should be emphasized that this trace condi tion and the special structure 
of the highest orders of F and G are the only conditions to impose on the 
linear problem (aside from the symmetry (5.16), of course). Thus we are 
left with a bunch of algebraic equations for the coefficients of F and G, 
namely the algebraic part of the symmetry (5.16) and the algebraic part of 
the integrability condition, i.e. the first two equations of (3.23). Solving these 
equations it turns out that the linear problem in 2+ 1 dimensions has exactly 
the same form as the 1+I-dimensional version (5.19). 

The third and fourth equation of the integrability condition (3.23) then 
determine the remaining coefficients in terms of the field u and an auxilliary 
field q, say. We finally end up with the 2+1-dimensional Sawada-Kotera 
equation 
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with U = Q"" which indeed yields (5.20) in the 1+ I-dimensional limit Qz = o. 
The best way of calculating the new field u is multiplying the second 

equation of (5.21) by T from the right and then take the {3,2)-component. 
The resul t is 

u = U - {Ai)I<,/>~ - v2 
- v!. 

where v is given by 

{cf. Theorem 16 and (5.22)) or, more explicitly, 

Vi = (Ai) I<,/>; 

v 2 = {V I)2 + {Ai)l<'/>r· 

(5.23) 

In principle we could stop at this point since we have already managed 
to find a new solution of the 2+ l-dimensional Sawada-Kotera equation in 
terms of the seed solution and an arbitrary number of eigenfunctions and 
corresponding potentials. We shall, however, try to simplify the relation 
(5.23). 

The first observation is that the components of an arbitrary eigenfunction 
<,/> are simply related to each other via the linear problem (5.19), viz 

<,/>2 = <,/>; 

,,3 = "I 
'of' o/xx' 

(5.24) 

Secondly, an appropriate combination of the (I, 1)-, (2, 1)- and (2, 2)-compo
nent of the matrix identity in Lemma 17 immediately gives 

Finally, the relations (5.24) must also hold true for the new eigenfunction J. 
Hence the two expressions 

and 
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must- coincide. Consequently, 

The reason for this is again the fact that the potentials M (1/1;,4» are only 
defined up to arbitrary integration constants. It is therefore permitted to 
sort with respect to them. Multiplication by 4>; and summation then yields 

where we have used (5.24). 
The last step is to find a simple expression for Vi. To this end wc note 

that 

M",(1/1;,4>j) = 1/1;4>J = 4>?4>J. 

Having in mind the proof of Lemma 13 we deduce 

Vi = -(In IMlk 

Putting everything together we find 

U = U + 3(ln IMD""". (5.25) 

This result is not very surprising. In fact (5.24) suggests eliminating 4>2 
and 4>3 in the linear problem (5.19) (of course after A - 8,) via 4>1 and 
write (5.19) as scalar linear problem. The corresponding operators are then 
polynomials in 8", which explains the occurrence of x-derivatives in (5.25). 

In this case the reduction to a scalar linear problem leads again to equa
tions of the type (3.2). In the next section we shall discuss a hyperbolic 
differential equation which is a priori not amenable to the Darboux-Levi 
transformation. It can, however, be converted into an evolution eqnation 
associated with A (4) . 

5.6 The Moutard transformation 

We now wish to show that the classical Montard theorem [19, 20J can be 
derived from the Darboux-Levi transformation applied to a linear operator 

63 



having the symmetry (5.16) for:=: = :=:01,. In the first place we are not inter
ested in a couple of linear equations which define nonlinear partial differential 
equations, rather we focus on the single equation 

c/Jz' = (2 + 8z)c/J (0 -1) (1 0) 
u 0 0 -1 

(5.26) 

and the behaviour of the potential u under a Darboux-Levi transformation. 
We verify b~ direct computation that the operator F is associated wi th 

the algebra A \4. The relations (5.21) show that fo~ Cl' = 0 in Theorem 16 
the form of FI is preserved and that the coefficient Fa has the form 

- (0 v) Fo=2 ii 0 . 

Hence it remains to prove that v = -I. To do so we evaluate the second 
equation of (5.21). It becomes 

ii = (3(u + (Ai)2'lj;f) 
V = -(3(1 + (Ai)I'lj;f). 

From'lj;; = c/Ji and (5.18) it follows ii = _(32 = -I. We could have proven 
this directly because the upper right entry of Fa is uniquely fixed by FI via 
the symmetry (5.16). 

Having established the invariance of the linear equation (5.26) we can 
now formulate 

Theorem 18 (Generalized Moutard theorem). The linear hyperbolic 
differential equation 

is invariant under 

c/J-+J= c/J+ AiM('lj;i,c/J) 
u -+ ii = u - (In IM/)zy 
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where the potentials M (l/Ji, </» are defined by 

M",(l/Ji, </» ~ </> .. 9 
My(l/Ji' </» = c/Jic/Jy 

satisfying M(l/Ji' c/Jj) + M(l/Jj, </>i) = c/Ji</>j. The quantities Ai and IMI 
are defined as usual. 

For the proof we observe that the first component of (5.26) can be solved for 
</>2, viz 

-1,2 _ 1 (-1,1 ·1 ) 
"P - 2 '+'z - <Px' . 

Insertion into the second component of (5.26) yields the scalar hyperbolic 
equation 

O</> = 4u</> (5.27) 

with the revised definition c/J := </>1 and 0 := 8~ - 8-;',. It is clear that we 
can express the potentials M (l/Ji, c/Jj) and the transformation formula for u in 
terms of c/Ji. To this end we compute 

l/Jl = c/J! - c/J2 = ~ (</>. + <P"" ). 

If we now introduce the new coordinates x := Z + x' and y := Z - x' (5.27) 

transforms into 

</>",y = uc/J 

and the potentials obey the equations 

MA l/Ji, c/J) = c/Ji"'c/J 
My(l/Ji' c/J) = </>ic/Jy. 

(5.28) 

(5.29) 

The most elegant way of simplifying the equation for i"L is deriving it in a 
different way. We know already that (5.28) is invariant under 

c/J --> ~ = </> + AiM(l/Ji'c/J) (5.30) 

where Ai := (Ai)l. Hence the only thing we have to do is to insert (5.30) 
into the twiddled version of (5.28) and sort with respect to <p, first derivatives 
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of t/J and potentials. We are allowed to do so because this decomposition is 
equivalent to the way we have defined the new operator F in (5.26). Thus 

o = ~xy - u~ 
= t/Jxy + [(Ait/Jix)Y - ujt/J + (Ait/Ji)xt/Jy + (A~y - uAi)M('!j1i' <p). 

Finally, substitution for <Pxy by means of (5.28) and collection of terms linear 
in t/J results in 

u = u - (In IMI)xy (5.31) 

where we have again made use of Ai<pix = -(In IM!)x· q.e.d. 

We shall now show that for N = 1 Theorem 18 is a reformulation of 
Moutard's theorem. For this we solve (5.30) for the potential M(1/;I, rf»: 

and insert it into the definitions (5.29). We obtain, together with the formula 
(5.31) for the new field u, 

(5.32) 

(5.33) 

The formulae (5.32) and (5.33) together with the hyperbolic equation (5.28) 
constitute Moutard's theorem. It may be phrased as follows: 

For a given potential u and a pair of eigenfunctions 0 and <PI solving 
(5.28) a new eigenfunction ~ is obtained by integration of the Frobenius 
system (5.32). Its integrability condition is satisfied modulo (5.28). The new 
potential u is given by (5.33). 

Let us investigate whether the Moutard theorem is of any practical use. 
To this end it is worth going back to Chapter 2 and having a look at the 
linear problem of the Dodd-Bullough equation (2.18). We are interested in 
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the second component of the pseudopotential y and denote it by r/J := y2. 
Solving the 'x-part' of the linear problem for yl and (;Dwe obtain 

Y
l _ !A. 

- 2I.jJx 

JD= ~,\-l(rPxx + 'PxrPx)· 

Insertion into the first equation of the t-part and the third equation of the 
x-part then yields the Lax-pair [12) 

rPxt = 2e-'PrP 

4,\rP = rPxxx + ('Pxx - 'P;)rPx. 

Interestingly, the hyperbolic equation (5.28) has turned up during this pro
cedure. (From now on we set t = y.) 

After the substitution 4,\ -> as> a si~e calculation reveals that the 
second equation of the 2+1-dimensional Lax-pair 

rPxy = urP 

rP. = rPxxx + 3XxxrPx 
(5.34) 

has the symmetry 

(5.35) 

with 

which can formally be identified with (5.16) for ~ = 3co . The compatibility 
condition for the Lax-pair (5.34) yields a 2+ I-dimensional generalization of 
the Dodd-Bullough equation in a disguised form, viz 

u = -Xxy. (5.36) 

It now turns out that the Darboux-Levi transformation applied to the 
second equation of the Lax pair (5.34) coincides with the one appearing 
in the generalized Moutard theorem. This is hardly surprising because in 
the coordinates z and x' we can bring (5.34) into the form of an evolution 
equation, which is, of course, compatible with (5.26). 
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The connection with the Novikov-Veselov equation is as follows: Exploit
ing the symmetry of (5.28) in x and y, it easy to see that one can add a third 
equation 

I/>r = I/>yyy + 3Xyyl/>y 

to the Lax pair (5.34) without 101sing compatibility. As expected the addi- I 
tional nonlinear equation reads 

A combination with (5.36) results in the symmetrized version 

Ut = Uxxx + Uyyy + 3(Xxxu)x + 3(Xyyu)y 

with t := !(s + r), the Novikov-Veselov equation [57]. 
In [55] Athorne and Nimmo have generated dromion solutions for this 

equation of the same functional form as for the Davey-Stewartson equa
tion 1. They are contained within a more general class of solutions which are 
characterized by expressions involving antisymmetric bilinear forms S(<b;, 1/». 
They are related to the potentials M (l/!;, rP) through 

S(l/>i,l/» = 2M(l/!i, 1/» - 1/>;1/>. 

Even though Athorne and Nimmo regard the original Darboux-Levi trans
fonnation extended to 2+ 1 dimensions (cf. Section 4.3) as generalized YIou
tard transformation, we are inclined to put it the other way round. As we 
have seen in this section the Moutard transformation is a particular case 
of, what we call, generalized Darboux-Levi transformations. Time will show 
which point of view will prevail. 

5.7 Another symmetry 

In finishing this chapter we shall discuss another reduction of the generators 
F and G which may be associated with the algebras A~ and A~-l. Even so, 
one could be under the impression that the connection with these algebras is 
somewhat artificial. It will turn out, however, that the content of this section 
is useful for the considerations in the next chapter. 
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Let us reconsider the na·ive way of 'lifting' the relation (5.3) for =: = ~,q 
to 2+ 1 dimensions. Why not first multiply (5.3) by >. and then replace>. by 
8.? We should obtain 

H'S8, = -S8.H (5.37) 

for the symmetric matrix S = ::::",q. 
Let us see whether this Ansatz is reasonable. First of all, (5.37) is equal 

to its adjoint. Secondly, we observe that H, = 0, which suggests assuming 
H to be in the subalgebra of differential operators 

H=~I. (5.~ 

It is evident that the integrability condition associated with two of them, say 
F and C, 

Ft - Cx + [F, Cl = 0 

is compatible with the assumption above. Moreover, there are some reasons 
for the Darboux-Levi transformation to preserve (5.37). Ifwe look back at the 
proof of Theorem 16 we realize that the only assumptions which have entered 
into the proof for the restriction of the potentials have been the symmetry 
properties of A and S. Thus setting formally A = 0 there immediately follows 
the existence of potentials obeying 

M(W" I/Jj) + M(Wj, I/J,) = I/J;SI/Jj 

for W, = SI/!i'· It remains to show that ,j; = SJ, is a new adjoint eigenfunction 
with W = SI/!, and an appropriate gauge matrix Y to be found. Whether the 
new operators F and (; will again be contained within the class (5.38) has 
to be examined afterwards. 

The procedure is as usual. We introduce the linear functional 

R[I/!l := ,j; - SJ, 
= y-IT[W + B' M(W" I/!)l - S8, Y[I/! + A' M(Wi, I/!)l 
= QI/J - [y-IT Bi + S(YAi),lM(Wi, 6) 

where 

Q := y- IT(S8, + WiAiT S) - SY, - SY(8, + AiI/JTzS). 

The functional R is supposed to be zero. This is again equivalent to the 
requirement that the differential operator Q vanishes identically, which con
stitutes (differential) equations for Y. Their solution is given in 
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Lemma 19. The matrix equation 

under the constraint 

has the general solution 

T = A(l + qI,A,TS) 
5 = AT SA 

for a constant matrix A. 

(5.39) 

(5.40) 

As a side remark we note that (5.39) can be written as linear equation in T 
by means of (5.40). Hence it is sufficient to prove Lemma 19 for A = l. 

It need not be proven that the general solution satisfies (5.40) since this 
is precisely the matrix identity of Lemma 17. The differential equation (5.39) 
may be derived as follows: 

0= (A'qI; + A' M('Ij;j, qI,)AjT)z 

= (A'qlJ)z + (qlj + A'qI;Sqlj)A{T + A'qI;Sd>jzAjT - A;qI; 
= (1 + A'qI;S) (qljAjT)z + A'qlT. - qljzAjT 
= S-ITTST 5-1 + A'.,r,T _.,r, IVT z If',z YJ]Z . 

It is now relatively easy to verify that the particular choice of T given in 
~m 19 allows for the condition (5.38) if we consider an alternative form 
of the Darboux-Levi transformation. 

Theorem 20. In the reduction 

F' 58. = -S8z F 
C' 58. = -S8zC 
'Ij; = SqI. 

M('Ij;" qI) + M('Ij;, qI,) = qlTSqI 
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the transformation law for the eigenfunction under the generalized Dar
boux-Levi transformation (Theorem 11) can be converted into 

(5.41) 

where the vectors C i are the solution of ~[4>d = 0 and the matrix A 
satisfies the constraint 

for a non-singular symmetric matrix S. Furthermore, the transforma
tion acts within the subalgebra (5.38). 

We should mention the reverse order of the arguments in the potentials in 
(5.41). 

All we have to show is the identity 

T[4> + Ai M(1/;i, 4»] = A [4> + Ci M(1/;, 4>i)] 
= A[q) + Ci<fJ;S4> - Ci M(1/;i, q»)]. 

Again, it is sufficient to take into consideration only the terms not involving 
the potentials since both sides of the equations vanish for q) = q)i. Hence 
once we have established 

4>iAiT = C4>f 

we get the relations 

AC + TAi = 0 

for free. We briefly calculate 

0= [4>i + Ci M (1/;i, 4>i)]AiT = rhiAiT - Cirh;' 

(5.42) 

(5.43) 

In order to complete the proof of Theorem 20 we insert (5.41) into the linear 
problem for the new eigenfunction ~. The equation for F reads 

o = ~z - F~ 
= A[Fq) + C~M(1/;, 4>i) + C i res(8; 14>;SFq)i8; I)] 

- ft..I4> + Ci M(1/;, q)i)]. 
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In our construction the new operator F has been defined via the 'differential 
part' of the equation above. The terms of zeroth order simply yield 

AFo = FoA 

which proves that if Fa is zero, so is Fo. q.e.d. 

The explicit form of the new operators F and G is now given in 

Theorem 21. Under the assumptions made in Theorem 20 the new opera
tors F and G have the form 

F = A(TFT-1h1A-1 

G= A(TGT-1bA-1 

where 

T = 1 + Ci8;I</JT S8. 
T- 1 = 1 + </Ji8; 1 CiTS8 •. 

From Theorem 11 we conclude that we have to show 

O=AT-TD 

= A(l + Ci</JTS - Ci8;W·.S) - T(l + Ai8;1</>T.S) 

which is true because of (5.42) and (5.43). Finally, the explicit form of the 
inverse operator T-l may be verified by repeating the arguments given in 
the proof of Lemma 10. 

Summary: We have explicitly constructed a gauge matrix r such that 
the symmetry (5.37) is preserved under the Darboux-Levi transformation. 
It has turned out that the additional requirement (5.38) is then satisfied 
automatically. In fact it is possible to drop the symmetry condition (5.37) 
without losing the nice property (5.38). Unfortunately, the formula for T is 
more complicated, which could be an indication that one has to look at this 
problem from a different viewpoint. 



Chapter 6 

The generalized Loewner 
system 

So far we have proceeded on the basic assumption that the linear problem 
(3.1) is polynomial in the parameter'\. That is the reason why the way of 
extending linear problems and their corresponding Biicklund transformations 
in 1+1 dimensions to their 2+1-dimensional counterparts has been rather 
straight forward. 

From now on we shall drop this condition, which makes it difficult to 
develop a general theory of 2+ I-dimensional linear problems and Darboux 
(-Levi) transformations. This chapter is therefore devoted to a particular 
linear system which can be regarded as an extension of usual linear problems 
in 1+1 dimensions. It will contain, for example, the Leznov-Savel'ev system 
(2.12) for A~l) [61], i.e. in particular the sinh-Gordon equation. Hence the 
associated prolongation algebras will then evidently be more than only the 
Taylor parts of Kac-Moody algebras. 

6.1 The Loewner system 

Ignoring the genesis of the Loewner system [22J we start with a linear problem 
in 1 + 1 dimensions of the form 

<Px = ,\R<p 
<Pt = (V + ,\-IW)<p 

(6.1) 
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with matrices R, V and W of arbitrary dimension. The question which im
mediately arises is the following: How do we have to interpret the inverse of 
>. in the substitution>. -+ ay? We shall not give an answer to this question 
in that we get rid of this problem by performing the most simple and nai"ve 
transformation to the second equation of (6.1). We first multiply it by >. and 
then replace>. by ay. For purely aesthetic reasons we denote in this chapter 
the third independent variable by y. We obtain the linear triad 

4J,. = R4Jy 

4Jyt = {Vay + W)4J 

4Jxt = (V Ox + W')4J 

(6.2) 

where the third equation, which can be derived from the other two equations, 
has been added to underline the invariance of the above triad under 

x ..... y 

R -+ R- 1 

W ..... W'. 

(6.3) 

This indicates already that it might be possible to derive nonlinear differential 
equations from (6.2) wherein the 'spatial coordinates' x and y occur on an 
equal footing. 

The integrability condition of the system (6.2) reads 

Rt = [V,R] 
Vx - VyR + [W, R] = 0 

Wx - {RW)y = 0 

(6.4) 

with W' = RW. We emphasize that (6.4) is founded on the assumption 
that the class of solutions of (6.2) is as large as possible, i.e. we have sorted 
with respect to 4J, 4Jy and 4Jyy. There exist1 examples of linear triads (in 1 + 1 ! 
dimensions) for which a similar assumption is too restrictive in order to get 
non-trivial nonlinear differential equations [62]. 

In the original formulation of Loewner, given in a gasdynamical context, 
the compatibility conditions (6.4) together with the last two equations of 
(6.2) constitute an infinitesimal Biicklund transformation for the remaining 
equation 

(6.5) 
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a. 
if the independent variable y is reinterpreted asjcontinuous parameter on i. 
which the vector-valued function </J and the matrices R, V and Ware assumed 
to depend. We should mention that the systems (6.2) and (6.4) are not the 
most general ones discussed by Loewner in [22]. For a more detailed study 
of the Loewner system we refer to [23, 61, 63]. 

In the following we are interested in a special reduction of the triad (6.2). 
We observe that the first equation is of the kind discussed in the last section 
of the previous chapter if we impose the constraint 

(6.6) 

on the operator F ;= R8y (cr. Theorem 20). Consequently, for this operator 
the work has already been done and the Darbollx-Levi transformation IS 

established. 
How can we find the corresponding symmetry of the second equation 

</Jty = (V 8y + W)</J. (6.7) 

To this end we formally associate with (6.7) the operator 

L := 8;I(V8y + W) 

and assume that the symmetry condition (6.6) holds for the pseudo-differen
tial operator L as well. We compute 

0= L*S8y + S8y L 

= _(-8y VT + WT)S + S(V8y + W) 

which together with (6.6) leads to the constraints 

RTS = SR 

VTS = -SV 

WTS = S(W - Vy ). 

(6.8) 

It is easy to verify that these constraints are compatible with the nonlinear 
equations (6.4). Transposition and substitution for the appropriate quantities 
by means of (6.8) does not change the equations. 
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In order to proceed we now need to find a suitable extension of the po
tentials M(1/1, r/>i) given in Theorem 20. So far they are only defined by a 
contour integration in the (x, y)-plane, i.e. 

My (1/1, r/>i) = r/>r S r/>i 
M%(1/1, r/>i) = res(8;11/1T R8yr/>J);1) = r/>~S<Pi 

(6.9) 

with 1/1 = Sr/>y. After some trial and error we find that the 'time'-derivative 
of the potentials is given by 

(6.10) 

The compatibility condition of (6.9) and (6.10) is directly proven to be sat
isfied modulo the linear system (6.2) and the constraints (6.8). 

Having found the appropriate extension of our potentials we can formulate 
the following 

Theorem 22. The linear triad (6.2) and the constraints (6.8) are invariant 
under 

r/> -> ~ = r/>+ C'M(1/1,r/>i) 
R -> R= YRy- 1 

V -> V := YVy-l + y,y-l 

W -> W := W + [Gi(r/>TtS + r/>TSV)]y 

where the matrix Y is given in Lemma 19 for A = I, i.e. 

Y = 1+ Gir/>TS 
y- 1 = 1 + r/>iCiT S. 

The invariance of equation (6.5) has already been proven in Theorem 20. 
The transformation law for R may be read off Theorem 21. We shall verify 
the invariance of (6.7) in a constructive manner. For that we introduce the 
linear functional 

Q[r/>]:= ~,y - V~y - W~ 
- [(I + C'r/>TS) V + (C'r/>TS), - V(1 + GWS)]<i>y 

+ [W + (Ci(r/>TtS + r!>TSV))y - W]<i> 
+ (C;y - VC~ - WC')M(1jJ, r/>i). 
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The new matrices V and Ware now defined such that the differential part 
of Q vanishes. Taking into account that Q[ciJ;J = 0 we conclude once again h!bt" 
Q=O. 

The first equation of the constraints (6.8) is preserved due to Theorem 20. 
With the help of the identity 

S = yTSY (6.11) 

(cf. Lemma 19) we calculate 

VTS = y-ITVTyTS + y-ITYTS 

= -S(YVy-1 + y,y-I) 

= -Sv. 
The second step in this calculation has been performed by pulling S through 
to the left-hand side via (6.11) and yTS = -SV. To finish the proof of 
Theorem 22 we shall show that the constraint 

WTS = S(W - Vy) 

is nothing but the time evolution of Y compatible with its spatial counterpart 
considered in Lemma 19. An appropriate calculation may be 

WTS - S(W - Vy) = (WT + r~)S - S(W + ry - Vy) 

= (SV - sv - sr + rT Sly 

with the abbreviation 

r := C(ciJ;'S + ciJT SV). 

(6.12) 

We suppose for the moment that the expression in brackets on the right-hand 
side of (6.12) already vanishes. Insertion of the definition of V and r then 
yields 

Sy,y-I = S(CiciJ;' - ciJi,CT)S - SCiciJTsvrPjCjTS 

which can be verified by copying the proof of Lemma 19. q.e.d. 

We have demonstrated by way of an example that an extended Darboux
Levi transformation is applicable to linear problems which do not have the 
form of evolution equations. A more general approach geared to the Loewner 
system (6.2) without any symmetry does exist. Up to now, however, we have 
not succeeded in gaining a deeper insight into how linear problems involving 
higher derivatives with respect to all coordinates x, y and t may be tackled 
in the most general case. 
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6.2 A 2+ I-dimensional sine-Gordon system 

We have already mentioned that the invariance (6.3) of the Loewner system 
might admit nonlinear integrable equations wherein x and y occur on an equal 
footing. This is an interesting observation since for quite a long time the only 
integrable equations sharing this property had been the Davey-Stewartson 
equation as 2+ I-dimensional generalization of the nonlinear Schriidinger 
equation and the Novikov-Veselov equation, which may be regarded as gen
eralization of the Korteweg-de Vries equation or Dodd-Bullough equation 
(cf. Section 5.6). 

Very recently Konopelchenko and Rogers proposed a strong generaliza
tion of the classical sine-Gordon equation (sometimes also called Enneper 
equation) [23]. Konopelchenko and Dubrovsky have shown its integrability 
in the sense that it is amenable to the inverse spectral transform method. 
Their solutions have been constructed by the dressing method based on the 
8-a-problem [58]. Recently Nimmo has exploited the Moutard transforma
tion to determine a broad class of solutions of the 2+ I-dimensional sine
Gordon system [60]. As expected (cf. Section 5.6), his approach can be 
translated into the language of the Darboux-Levi transformation given in 
the previous section. 

In order to derive the Konopelchenko-Rogers equations we investigate the 
structure of the Darboux-Levi transformation in Theorem 22. We immedi
ately observe that it preserves the constraints 

R2 = 1 
(6.13) 

trR = O. 

We shall show that for 2 x 2-matrices R, V and W the constraints (6.8) and 
(6.13) determine completely a sinh-Gordon system, which is gauge-equivalent 
to the sine-Gordon system if wc choose 

s=(~ ~). 
From (6.13) and the first of the symmetry conditions (6.8) it follows that 

the matrix R is parametrized by one function only. We choose 

= ( 0 e-"'-"") R ~"' . e"'" ~ 0 
(6.14) 
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The first equation of (6.4) then determines uniquely 

V = _~ ( 'Pt + 'P: 0, ) . 
2 0 -',Ot-'Pt 

The parametrization of W is more tricky. First of all we note that the third 
symmetry constraint (6.8) allows to express the antisymmetric part of SW 
in terms of V. Secondly, the third nonlinear equation of (6.4) admits the 
introduction of a scalar potential according to 

trW = -4('P - 'P')ty 

tr(RW) = -~('P - 'P')tx. 

Finally, the second equation of (6.4) determines algebraically the remaining 
coefficients of W. It becomes 

W __ ~ ( 'Pty -e-<P-<P' ',0;" ) 
- 2 e<P+'P' ',Otx -'P:y . 

The rest of the nonlinear system (6.4) then produces the 2+ I-dimensional 
sinh-Gordon system [61J 

(e<P+'P' 'Ptx)x = (e<P+<p' 'Pty)y 

( -<p-<p' ') - ( -<p-<p' , ) e 'Ptx x - e 'Pty y. 
(6.15) 

We observe that the system above is characterized by the feature that 
the spatial coordinates appear on an equal footing. The following gauge
equivalent forms of (6.15) will share this property. Setting 

X := -~i(',O + 'P') 

P := 4(',0 - 'P')t 

we obtain the alternative form 

Xtuv + pvXu + puXv = 0 

puv - (XuXV)t = 0 

with x =: u + v, y =: u - v, which has been found by Konopelchenko 
and Dubrovsky [58J and has been used in the above-mentioned· approach 
by Nimmo. 
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In order to obtain the sine-Cordon system we perform a gauge transfor
mation to the Loewner system (6.2), viz 

e:= _1 (i 1). 
.J2 -i 1 

(6.16) 

The factor in front of the matrix has been chosen such that the potentials 
M(1j;, cPi) are identical in both gauges. The transformation of the symmetric 
matrix S then reads 

As derived in [61] the auxiliary triad (6.2) converts under this gauge trans
formation into 

cPz = - ( ~s () sin () ) cPy 
Sin () - cos() 

-(), ) {) 1 ( K 
o y + 4 ()'y + ()~ 

where we have introduced the abbreviations 

K = (()'Y +()~)cot() - (()"" +()~)sin-l () 

K' = ((),z + ()~) cot() - ((),y + ()~) sin- 1 
() 

L = (()'y - ()~) cot () + (()'z - ()~) sin- 1 
() 

L' = (()"" - ()~) cot () + ((),y + ()~) sin- 1 
(). 

-(),y L + ()~ ))<i> (6.17) 

-()tz + ()~ ))@ 
L' . 

The connection between the paramctrizations in the two gauges is achieved 
by means of 

() = -i( 'I' + '1") 
()~ = (),y cos () + U'y sin () 

~ = ()"" cos () + Utz sin () 

(6.18) 
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with 17:= <p - <p'. The integrability of (6.18) is guaranteed modulo the sinh
Cordon system (6.15). The linear triad (6.17) has as compatibility condition 
the Konopelchenko-Rogers equations 

(6.19) 

( 
O~ ) _ (..!iL) + OzOty - OyOt3; = O. 

sinO z sinO y sin2 0 

It is noted that under the reduction 

0' = Ot (6.20) 

the system (6.19) takes the simple form 

(~) _ (~) + OzOty - {}y{}tz = 0 
Slll{} z smO y sm2 {} 

(6.21) 

which represents a 2+ I-dimensional generalization of the sine-Gordon equa
tion. In the one-dimensional limit Oy = 0 or {}z = 0 we obtain indeed the 
sine-Cordon equation after a suitable transformation of the independent vari
able t. Moreover, in this reduction there is a link between the triad (6.17) 
and the scalar Zakharov-Manakov system [64, 65]. On insertion of (6.20) 
into (6.17) it is readily seen that one can integrate for the component d>l. We 
obtain 

(6.22) 

so that the Loewner system (6.17) reduces to the scalar triad 

~tu 
atu = ~t at - ~t tan ~ a u 

~tv 
atv = ~t at + ~t cot ~ a v 

(6.23) 
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with the change of the dependent variables er := </>2 and I: := ()/2. The 
independent variables u and v are defined as before. In this representation 
the sine-Cordon equation (6.21) becomes 

(6.24) 

which is, indeed, the integrability condition for the triad (6.23). 
The general scalar Zakhanw-Manakov triad is given by (6.23) if one re

places the coefficients, which are in the case of the sine-Cordon equation 
parametrized by a single field E, by arbitrary functions. In the most general 
case er is a vector-valued function and the coefficients are matrices. 

Let us now come back to the Darboux-Levi transformation and calculate 
explicitly the new fields ;p and ;p' in the very firs·t gauge. From the constraint 
S = yTSY in Lemma 19 we immediately deduce 

Yl1 Y22 + Y12Y 21 = 1 

Y 11 Y 21 = 0 = Y 22 Y 12 
(6.25) 

and hence from R. = YRy-l and the particular parametrization (6.14) 

Using (6.25) we finally obtain 

cj; + cj;' = -<p - <p' + 2In[( C i )2d.>n 

cj; + cj;' = <p + <p' + 21n[1 + (Ci )2</>!l 

forY 12 =Y21 =0 

for Y l1 = Y 22 = o. 
We wish to mention that in general the Darboux-Levi transformation for 

arbitrary N can be regarded as N-fold iteration of the simple Darboux-Levi 
transformation for N = l. This generalizes the well-known result for the 
Darboux transformation. Consequently, 

Y 12 = Y21 = 0 

Y l1 =Y22 =O 

for N odd 

for N even 

since iteration yields cj; + rp' = (- 1 ) N (<p + <p') + .... 
For the derivation of the new field (j = cj; - rp' we note that the Loewner 

triad (6.2) is completely symmetric in the independent variables x and y. 
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Thus it is clear that a formula similar to the one given in Theorem 22 has to 
hold for W'. Hence we can also make use of 

If we now take the trace of this equation and its counterpart in Theorem 22 
we find 

Integration by means of an identity analogous to the one given in Lemma 13 
yields 

where functions of integration have been neglected due to the obvious invari
ance a -> a + h(t) + g(x, y). 

Even though we have been able to integrate the Frobenills system (6.18) 
for the new field 0' we are only interested in giving the transformation formula 
for the function 0 in the gauge (6.17). For this purpose it is necessary to 
mention that the coefficients Ci transform under the gauge transformation 
(6.16) as 

Consequently, a short calculation, using the identities (6.25), shows 

- (C i j2lP! o = 0 + 4 arctan (Ci)2IPr (6.26) 

The distinction between even and odd N could be dropped as we have applied 
the invariance of the sine-Gordon system (0,0') -> (-0, -0') for N odd. It 
is clear that we could have derived this relation from Theorem 22 for S = I. 

The next question which arises is whether the reduction of the sine
Gordon system to the single equation (6.21) is preserved by the Darboux-Levi 
transformation. It is quite laborious to verify directly that the constraint 
(6.20) is satisfied by the twiddled quantities. A more elegant method is 
to exploit the fact that (6.20) is equivalent to the condition for the com
ponents of the eigenfunction (6.22) if we take into account the invariance 
0' -> 0' + f(t). The calculations, however, are lengthy but straight. forward. 
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We shall suppress them and state that they lead to the required result. In fact 
the transformation for the single sine-Cordon equation had first been found 
by tackling the Zakharov-Manakov system directly. It has turned out later 
that it coincides with the Darboux-Levi transformation for the sine-Cordon 
system under the reduction (6.22). 

It is of some interest that the Darboux-Levi transformation (N = I) for 
the sine-Cordon equation in the form (6.24) admits a formulation as auto
Biicklund transformation in the original sense. In terms of the field ~ = () /2 
(6.26) reads for N = 1 

E = ~ + 2arctan r 

where 

r ._ 4>l _ alt 
.- 4>~ - ~tat' 

The triad system (6.23) written in terms of r = tan(E - ~}/2 now provides 
the following auto-Biicklund transformation for (6.24): 

~t. tan ~+ + ~~ cot ~- = ~t ~;; (cot ~+ cot ~- - tan ~+ tan ~-) 

~t cot ~+ - ~~ cot ~- = ~t~;;(tan ~+ cot ~- - cot ~+ tan ~-} 

with the definition of the quantities 

"'± .= E ± ~ 
'-'. 2' 

(6.27) 

The elimination process of at via r in the triad (6.23) has been carried 
out by taking mixed second derivatives of r and replacing second and third 
derivatives of at by means of (6.23). Interestingly, the remaining terms have 
turned out to depend only on r. 

The link to the well-known auto-Biicklund transformation in 1+1 dimen
sions [66] comes about as follows. In the 1+ I-dimensional limit ~± are 
supposed to depend only on x = u + v. Hence we can integrate the first 
equation of (6.27) and obtain 

(E - ~}z = '\(t) sinCE + ~). 
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The two other equations coincide iff A is constant. They then become 

(t + ~)t = g(t) sin(t - ~). 

Hence we have recovered the usual Biicklund transformation for the sine
Cordon equation if we take into account that (6.21) is written in a form 
which admits the invariance t -+ h(t). 

We wish to close this section with two remarks. ~ first the relation 
between the Darboux-Levi transformation for the sinh-Cordon system and 
the Moutard transformation .Hall be worked out. To this end we apply 
another gauge transformation to the Loewner system (6.2). This time the 
gauge transformation will be generated by a non-constant matrix e so that 
the operator F does not transform as simply as before. In fact with 

(

'£J;f-
8= e 

o 

the equation (6.5) becomes 

(8,. _ (0 1) 8 + ~ ( -tp,. - cp~ 
10 y 2 tpy+tp~ 

(6.28) 

Now if we solve (6.28) for .p~ and .p~ and take the compatibility condition we 
obtain, after repeating the same procedure for <1>2, 

with 0 := 8~ - 8;. The system above consists of two copies of the scalar 
hyperbolic equation (5.27) which is amenable to the Moutard transformation 
(cf. Section 5.6). Hence it is not surprising that, in this gauge, a transfor
mation of the Loewner system which is based on Moutard's theorem can be 
found [60]. 

Secondly, it is worth mentioning that the reduction of the sine-Cordon 
system to the sine-Cordon equation (6.21) reflects the more general fact 
that the matrix-valued Zakharov-Manakov system can be written as£Loewner i et 

system with matrices of double the size and special form. Even though 
the transformation from the Zakharov-Manakov system to the (particular) 
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Loewner system is explicitly known [67] it is not clear whether the Darboux
Levi transformation given in this chapter allowsJPf this specialization of the 
Loewner system in general. It is certainly necessary to study the properties of 
the Zakharov-Manakov system since in the 1 + I-dimensional limit it contains 
or is equivalent to physically interesting systems such as the Ernst equation of 
general relativity or the self-induced transparency equations [67] respectively. 

6.3 A class of solutions 

In this section it is our intention to give explicitly a class of solutions of 
the Konopelchenko-Rogers equations (6.19). For this purpose it is useful to 
introduce the notation 

so that the matrix Dij is given by 

0 <fri ... #N 
Dij = <l>i 

M 

<I>~ 

which follows from the definition of the coefficients Ck in Theorem 20 by 
means of Cramer's rule. In this notation the solution (6.26) becomes 

_ ID211 
8 = 8 + 4arctan ID221. (6.29) 

We start with the l!1Q§t..§iIDJ2b seed solution of the sine-Cordon system 

8 = 8(s, t) 

8t = 0 

with the argument s := (/1{J + >'o)x+ (lLo - >'o)y and some constants >'0 and lLo· 
Integration of (6.19) then yields the 1+ I-dimensional sine-Gordon equation 

8ts = 4sin8. 
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In the limit e -> 0 the triad system (6.17) becomes 

(-1 0) 4>",= 01 4>y 

'" = (2AO 0 ) . 
'l't:z: 0 2J1.o <P 

which can easily be solved to give the simplest solutions 

The constants Ai, J.L;, Pi and Gi are as yet unspecified. Insertion into the 
defining relations for the potentials (6.9) and (6.10) 

My(1/!i' 4>;) = 4>~4>; 
M",(1/!i, 4>;) = 4>[.4>; 
M,(1/!i, 4>;) = 4>;4>;, 

immediately yields 

M(o', "') Ai e(A,+A;)(",-y)+2>'o(>.;-1+>.;1),+p,+p; 
'l'i, '1'; = \ \ 

Ai + A; 
+ fJi e(J.&i+J..Li)(X+y)+2J.'o(J';1+l-'jl)t+O'i+17j 

J1.i + /Lj 

where the integration constants have been set to zero for simplicity. 
Fortunately, only the quotient of determinants enter into the formula 

(6.29). Hence we can multiply the rows and columns of the matrices D21 

and D22 by common factors without distorting the equation for O. Thus we 
obtain the simple formula 

iJ = 4 arctan I~:I (6.30) 
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where 

o 

and 

(6.31) 

For real solutions we choose real constants Ai, Pi, '\0, po and complex con
stants Vi the imaginary parts of which are half-integer multiples of 70. 

The simplest solutions within this class are those describing the inter
action of plane wave solitons [58, 59]. A different choice of eigenfunctions 
solving the triad (6.17) leads to breather solutions [58, 60]. 

Here, we wish to present a new class of solutions which may represent the 
interaction of an arbitrary number of two-dimensional locali7.ed solitons. To 
this end we restrict the parameters in (6.31) to Pi = -Ai for i = 1, ... , No 
and Pi = Ai for i = No + 1, ... , N, i.e. 

(Xi = AiX + (AD + Po)V1t + vi, 

(Xi = -'-AiY + (AD - Po)A;'t + v" 

i = 1, ... , No 

i = No + 1, ... , N. 

For N = 1, No = 1 we obtain the well-known one-soli ton solution 

ij =: a = 4 aretan e201 

of the 1+1-dimensional sine-Cordon equation 

atx = 4(po + AD) sin a. (6.32) 

There are two cases to distinguish. a is called a kink solution if it increases 
by 270 in positive x-direction and an anti kink if it decreases by 211'. 

Similarly, for N = 1, No = 0 the solution (6.30) represents an (anti)kink 
moving in y-direction. It becomes 

ij =: b = 4 arctan e202 (6.33) 
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and solves the sine-Gordon equation in the form 

b,y = 4(/-10 - >.0) sin b. (6.34) 

For reasons which will become apparent soon we have committed a slight 
impropriety in denoting the argument in (6.33) by 0'2 and not al· 

The simplest 2+ I-dimensional solution is obtained in the case N = 2, 
No = 1. It reads 

with the definitions 

Ai - Aj 
C;j := . 

Ai + Aj 

After absorbing the factor C21 into III and 112 we obtain 

(6.35) 

which is reminiscent of the two-soliton solution in 1+1 dimensions. 
The quantity 

BxB = 16 AIA2 
y cosh 2a I cosh 20'2 

now provides a localized object since it decays to zero exponentially as 
(x, y) -> 00 in any direction. The sign of its amplitude depends on the 
imaginary parts of III and 112. Interestingly, it can be regarded as nonlinear 
superposition of two one-dimensional (anti)kinks for positive amplitude and 
a kink and an anti kink for negative amplitude moving in .r-direction and 
y-direction respectively. This can be seen from 

BxBy = axby 

where a and b are the one-soliton solutions of (6.32) and (6.34) repectively. 
Hence we shall call the solution with positive amplitude a two-dimensional 
kink and the solution with negative amplitude a two-dimensional antikink. 
A kink solution at a fixed time t is plotted in Figure 1. 
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Figure 1. Kink 

We shall now show that for N'= 3, No = 2 the solution (6.30) decomposes 
asymptotically into two two-dimensional (anti)kinks. It can be brought into 
the form 

with 

0
- 4 A32eol + A21 eo3 + A l3e02 

= arctan -,--='---.....,.-=----:"'---
A32e-o l + A21 e-03 + A 13e-02 

A21 := c21eOI+02 + c2Ie-OI-02 

A ,- c e 03+0'1 + c-le-a3-o1 13·- 13 13 

A32 := c32e02+03 + C32
1 e-02- 03 . 

(6.36) 

For the asymptotic analysis we consider the quantity ID+I/ID-I in a frame 
moving with the (anti)kink associated with a2 and a3 as t - 00, We compute 
for al - +00 

ID+I (C32 + Cl3 + c2t}e02+03 + c321e-02-a3 ---ID-I C13e0'3-02 + c21eo2-03 

and for al - -00 

ID+I ~le03-02 + c131eo2-o3 
----:-.... ---;--..,--=------
ID-I (c3l + Cl31 + c2de-02- 03 + C32e02+<>3 ' 
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Hence to obtain asymptotically solutions of the form (6.35) the constraints 

(C32 + Cl3 + o.!l)C32C13C2l < 0 

(cid + cl3
l + C21)C32C13C2l < 0 

need to be imposed on the parameters Ai. An analogous analysis associated 
with the frame of reference corresponding to the second (anti)kink does not 
give further conditions. 

Moreover, we observe that a(n) (anti)kink cannot alter its character dur
ing the interaction. The amplitude remains unchanged. The only indication 
that an interaction has occured is that the objects are phase-shifted. In that 
sense they behave like one-dimensional soli tons. As can be read off the above 
limits, the phase-shifts are complicated functions of the coefficients c,j. 

In Figures 2 and 3 snapshots are shown at various times during the in
teraction of a kink with a kink and an anti kink respectively. 

We emphasize that the properties of these soli tonic solutions differ from 
those of the dromion solutions [211. The dromion solutions admit head-on 
collisions and a change of their amplitudes. It is even possible to create and 
annihilate dromions. Head-on collisions cannot appear in the case of two
dimensional (anti)kinks since the signs of the components of their velocities 
are determined by AO and J.Lo. Whether for arbi trary N and No creation and 
annihilation of localized soli tons can be generated has to be left to a more 
detailed study of the class of solutions discussed in this section. 

Figure 2. Kink-kink interaction 
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Figure 3. Kin\{-antikin\{ interaction 
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Chapter 7 

Concluding remarks 

In this thesis we have developed solution generating techniques for nonlinear 
partial differential equations in 2+ 1 dimensions which can be represented as 
integrability conditions of auxiliary linear equations. A distinction between 
linear problems with and without a symmetry of the kind discussed in Chap
ter 5 has been necessary, which has led us to the Darboux-Levi and the Dar
boux transformation respectively. In both cases the orders of the associated 
linear differential operators could be preserved. Unfortunately, symmetries 
and the orders of the operators have not been sufficient to characterize the 
underlying differential equations. In order to maintain the additional con
straints of the type (3.21) or (5.19) it has been inevitable to introduce an 
additional gauge transformation associated with the matrix "f. Analogous 
to the 1 + I-dimensional case it is still unclear how the gauge matrix and 
the constraints are in general related to each other. Interestingly, so far, T 
could always be determined in a purely algebraic manner, which in princi
ple confirms our philosophy that 'everything' can be derived without solving 
non-trivial differential equations. 

There exist, however, classes of linear problems for which the gauge ma
trix T can be ignored. One of those is associated with the (multi-component) 
Kadomtsev-Petviashvili hierarchy. Its construction is based on the general
ized Sato theory [43, 68], which parametrizes a collection of operators F, G, ... 
corresponding to different 'times' tF = X, te = t, . .. such that the integra
bility conditons associated with any pair of operators are, in some sense, 
automatically satisfied. To this end one introduces the dressing operator 

W = 1 +W\8;1 +w28;2 + ... 
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and calculates its inverse according to 

Furthermore, one defines a hierarchy of differential operators 

where A belongs to a set of commuting constant differential operators. The 
multi-component Kadomtsev-Petviashvili hierarchy is now defined by the 
evolution equations 

which satisfy the hierarchy of integrability conditions. It includes the Kadom
tsev-Petviashvili equation for the scalar pseudo-differential operator Wand 
in the case of 2 x 2-matrices the Davey-Stewartson equation. 

As we have seen in Chapter 3 and 5, the gauge matrix Y could be assumed 
to be trivial, i.e. Y = 1. In [69] it has been shown that this is possible 
for the entire Kadomtsev-Petviashvili hierarchy. Moreover, one can express 
the Darboux(-Levi) transformation in terms of its action on the pseudo
differential operator W, viz 

Hr = pwa-N 
z 

W=DW 

Darboux 

Darboux-Levi. 

Even though the structure of the operators LA is explicitly known, e.g. 
in the simplest case 

LA = aa~ + [Wl, ala~-l + ... 

it is not obvious how this parametrization is directly given in terms of the 
orders of LA. This is closely related to the question what kind of subalgebra of 
a Kac-Moody algebra is described by the matrices LA in the 1 + I-dimensional 
limit (if it is a subalgebra). 

The second outstanding problem is a classification of the symmetries of 
the differential operators given by the condition 

H'=' = -='H. (7.1) 
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For which operators =: can constraints on the adjoint eigenfunctions be found 
such that the Darboux-Levi transformation preserves the above reduction? It 
is, for example, clear that if a linear operator 8 and its inverse are polynomial 
in A. the reduction (7.1) and the integrability condition is invariant under 
the generalized gauge transformation 

H -+ 8-1H8 

=: -+ 8'=:8. 

The next item deals with a generalization of the results given in this thesis 
to prolongation algebras which are semi-direct products of loop algebras and 
the Virasoro algebra. A prominent example for an integrable system which 
admits this particular prolongation algebra is the Ernst equation 

1 £.£. 
£.i + 2(z + z) (£. + £i) = Re£ 

governing axially symmetric stationary gravitational fields in general relativ
ity [33J. The linear problem involves in this case a non-constant parameter 
A. It has the form 

</>. = F(A)</>, 
</>i = G(A)</>, 

Az = J(A) 
Ai = g(A). 

Obviously, the difficulty is to find a suitable extension to 2+1 dimensions 
as A is not constant. Interestingly, one can circumvent this problem if one 
considers the linear problem which has been used to generate the Hoenselaers
Kinnersley-Xanthopoulos transformations of the Ernst equation [70J. An 
explicit transformation which relates the two linear problems has been given 
by Kramer [71J. As mentioned in the previous chapter, the latter one is a 
special 1+ I-dimensional reduction of the matrix-valued Zakharov-Manakov 
system. Unfortunately, there exists a symmetry of the linear problem which 
is rather complicated and not of the type considered here. 

Without claiming to have been exhaustive we wish to conclude the thesis 
in the hope that we have made at least some contributions to the theory of 
nonlinear integrable systems. 
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