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Preface 

Physicists are interested in understanding the processes of nature. Within the 
field of Solid State Physics the characterisation of materials and the measurement 
of their properties is the first step towards identifiying new and interesting areas 
of scientific activities. 

The electrical resistivity of conductive materials is an important property which 
provides information about the electronic behaviour of the material. An ele
gant method to determine this characteristic is the measurement without using 
electrical contacts. Such a method avoids a whole set of experimental problems 
connected with the physics of electrical contacts to the sample. 

This Master-thesis gives an introduction into this experimental technique. A de
tailed theoretical description is developed. The experimental activity has involved 
the design, construction and testing of the apparatus. In the process of testing 
the method novel aspect emerged: The measurement at resonance point. These 
measurements can yield separate values for two different physical quantities: the 
electrical resistivity e and the magnetic susceptibility x. 

The innovation of this project is the simultaneous characterisation of both values 
for the material under investigation. 

The report starts by giving the theoretical background within which the first part 
of the detailed theoretical predictions are discussed. The second part contains 
experiments and a description of the experimental set-up. This design is the 
result of a long period of optimisation and testing. The working of the apparatus 
is demonstrated by the measurement of some samples. <> 
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Overview and Theory 
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Chapter 1 

Introd uction 

1.1 Overview 

The investigation and characterisation of materials forms an essential part of 
Solid State Physics. There are different experimental methods to characterise 
the properties of a material, e.g. X-ray experiments are used for the structural 
investigation of a crystal, heat capacity measurements for the thermal properties 
or electrical conductivity measurements for the determination of the electronic 
behaviour of a material. 
The measurement of the electrical resistivity as a function of temperature is a 
standard method which is employed for the detailed investigation of different 
metallic materials. 
According to Ohm's law [21J, the magnitude of a current I flowing through a wire 
is proportional to the potential difference V = <1>2 - <I>I along the wire. Where 
<1>1 and <1>2 are the electrical potential at the ends of the wire. The factor of 
proportionality is the resistance of the wire: 

V= IR (1.1) 

The electrical resistance R of a wire or a sample depends on its dimensions, 
but it is independent of the size of the current or the potential difference. The 
resistance itself is not a material constant because it depends on the dimensions 
of the sample. 
The material constant which can be extracted from the resistance measurements 
is (! the specific electrical resistivity. In most cases it is denoted as the electrical 
resistivity. It does not depend on the geometry of the sample. Within the Drude 
model the electrical resistivity (!, as a material-parameter, is defined to be the 
factor of proportionality between the electric field E at a point r in the metallic 
sample and the current density 1: 

E(r) = (! J(r) (1.2) 
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If E 11 J for all directions of E then the resistivity e is a scalar. Otherwise e is 
given by a matrix which reflects the directional dependence of the current. The 
current density is a vector-field. Its magnitude corresponds to the' amount of 
charge (per unit time) crossing a unit area which is oriented perpendicular to 
the direction of the flow. For an uniform current density which flows through an 
isotropic wire characterised by a constant cross-section A, the current density is 
gIven as: 

. I 
J= -

A 
(1.3) 

where I is the total current. The potential difference along the wire of length I 
is given by: 

Thus eq. (1.2) is rewritten as: 

v= El 

v = el I 
A 

Hence the resistance of a wire is obtained as: 

R= el 
A 

(1.4) 

(1.5) 

(1.6) 

In summary the resistance R of a metallic material depends on the geometry of 
the sample as shown in (1.6). The specific resistivity e is a material constant 
characterising its electrical properties. 
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1.2 Measurement-Methods 

Various examples of the experimental procedures of electrical resistivity measure
ments are discussed in this section. The conventional technique for measuring 
the electrical resistivity of a sample is to cast or shape the sample into a rod and 
attach current and voltage leads. The principal setup is shown in figure 1.1. 

v 
) 

I 
~ 

R 

Figure 1.1: The basic set-up for resistivity measurement 

If the geometry of the specimen is known the electrical resistivity (! can be cal
culated using (1.6)'. 
This method is applicable if the sample resistance is much higher than the resis
tance of the electrical connections. 

'assuming a constant cross-section A along the length of the sample 
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The next two examples are the two-point and the four-point probe methods. 
They are also based on the measurement principle of applying a current and 
measuring the potential difference between two points. For the case of the two 
point method the contacts for current and voltage are applied at two points. The 
resulting set-up is shown at the top of figure 1.2(a). 

I 12 

Ph; 1 == ~,-_s_a_m_p_le_~Phi 2 
a 

v 

b 

Figure 1.2: Two point (a) method and the [our-point (b) 

A more sophisticated method is the four-point method. The electrical set-up is 
shown in figure 1.2b. The four-terminal method is required for low resistivity 
materials [21. There are different methods for calculating the resistivity (!, e.g. 
for a thin sample the resistivity is given by [17]: 

v 
(! = tF

I 
(1. 7) 

where t is the sample thickness, V is the measured voltage, I is the applied current 
and F is a geometric correction factor. For the case of a regular sample geometry 
e.g. a rectangular parallelepiped F is a function of the length and width of the 
sample, e.g. the average of the effective cross-section area. 

(1.8) 

II 
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1.2.1 Experimental Challenges 

For lowest contact resistances mechanically well fixed or soldered contacts are 
required for using any of these methods. However the use of electrical contacts 
may present prohlems. The first difficulty arises due to contact-potentials. This 
occurs if different materials are used for the sample and the electrodes. This 
might be neglected with a correction, e.g. a subtraction ofthe contact-potentials. 
Another difficulty can originate from a change of state (e.g. fluid H solid) of 
the sample during a measurement of {! against temperature. For low resistivity 
materials e.g. for pure metals the measurement of the potential difference must 
be done very accurately. At low temperatures, however, the resistivity decreases 
substantially [3], and these methods may not work reliably. In order to carry out 
a sensitive measurement of the electrical resistance of a high conductivity metal at 
low temperatures, several methods are available to overcome these experimental 
problems. The obvious methods are a reduction in the cross-section or an increase 
of the applied current. However as pointed out by Delaney and Pippard [3] for 
some materials and especially brittle ones it is impossible to manufacture fine 
wires. The alternative of an increase of current results in sample heating and 
hence temperature problems. 
In general the mounting of electrical electrodes implies a non-homogeneous dis
tribution of the electrical potential which results in a non-homogeneous current 
flow through tbe sample. The effect is illustrated using a thin rectangular sample 
geometry of an infinite plane. 

Phi 

Figure 1.3: Electrical Potential for two point contacts 
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The two point method is used here. The voltage and currents leads are connected 
to the material at two points. The resulting electrical potential is shown in figure 
1.3. 
The corresponding electrical field lines in the infinite plane and the equipoten
tial (black) lines are shown in figure lA. The electrical current flows along the 
electrical field lines. It is apparent that the vector field is not homogenous as 
indicated by the grey lines. 

Figure lA: Field lines and equipotentiallines in a infinite plane 

Furthermore a comparison of electrical resistivities for different materials requires 
the measurement to be carried out on an absolute scale. In order to achieve such 
an absolute measurement the geometry of the sample must be known exactly and 
with small error-bars. As discussed above the manufacturing of some materials 
in the form of a regular structure can be very difficult. Thus measurements on 
an absolute scale are a challenging experimental problem. 
The next section introduces an alternative method which was originally developed 
by Bean et al. [1]. 
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1.2.2 An alternative determination of (2 

In the late fifties a new method for measuring the resistivity was developed and 
published by Bean et al. [1]. The basic idea is the following: 

If a magnetic field is applied to a sample (either switched on or off) eddy currents 
are induced inside the sample material. A magnetic field is induced by these 
eddy currents. Due to Lenz's rule the eddy currents flow in such a manner that 
a magnetic field is induced in the opposite direction compared to the direction of 
the applied field. Hence the applied field is not able to immediately penetrate into 
the whole of the sample. Rather the penetration is delayed due to the induced 
magnetic field. Due to the electrical resistivity of the sample the attenuation of 
eddy currents results in a decrease of the induced field within a short period of 
time. As a result the applied magnetic field diffuses into the material. It will 
be shown in chapter 2 that the time dependence of the magnetic field can be 
described by a diffusion equation [1]. 

Diffusion phenomena are generally represented by parabolic differential equations 
[18, 22, 28]. The diffusion of a magnetic field into a material is described here as 
an isothermal process2 which implies "VT = O. Here all effects which are related 
to the heating by eddy currents are neglected3 • The material under investigation 
is assumed to be both isotropic and homogeneous. With these assumptions it 
will be shown below that the diffusion equation takes the form: 

- 8 -aB-D-B = 0 
8t 

(1.9) 

Equation (1.9) is a linear parabolic equation which is characterised by a second 
derivative in space and a first derivative in time [18, 22]. D is the diffusion 
constant which will be derived explicitly later in terms of material constants. 
The diffusion constant D determines the speed of the diffusion process. In more 
general cases D can be a function of B and x. Here however, D is a constant. 

There are some important general properties of the diffusion processes which 
are worth mentioning. In general, diffusion implies the transport of a physical 
quantity e.g. heat or material. Without any sources as for example in electrody
namics where one has divB = 0, and in equilibrium the distribution of a physical 
quantity is homogenous. This state is reached in the limit t -+ 00: 

lim (~ B(x,t)) = 0 
t~oo ut 

In this limit the diffusion equation reduces to the Laplace equation. 

2a small heating up speed in the set-up 
3low field strength of the applied field 
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In general diffusion problems are Initial Boundary Value Problems (IBVP). In 
order to solve such problems initial and boundary conditions are needed. In the 
next chapter the problem will be analysed in detail and a complete s'olution will 
be presented. 

The value of the electrical resistivity {! of a material can be experimentally ob
tained by determining the penetration rate of the magnetic field [1, 2, 3]. In 
experiments it is realized by a pick up coil tightly wound around the sample [1]. 
No electrical contacts to the sample are required. Thus all experimental prob
lems due to the use of contacts are eliminated. This contact-less method has 
been evaluated for various sample geometries. Some applications are described 
in [3J. Special applications include the measurement of {! for semiconductors [10J 
or the measurement of the thickness of a conducting shell [5]. In this report the 
contact-less measurement of electrical resistivity {! is discussed for samples with 
a cylindrical geometry. 
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Chapter 2 

Theory 

2.1 Mathematical Description 

Within this section the mathematical background is presented which is needed 
for the understanding and experimental optimisation of the contact-less mea
surement of g. A qualitative description was given in the last chapter of how an 
applied magnetic field diffuses into a material. The reason for the diffusion to 
occur is the non-equilibrium distribution of the magnetic field inside and outside 
of the sample. The diffusion equation is discussed and solved for the sample 
geometry (long cylinder) which is used in our experiments. 
In general, the macroscopic electromagnetic properties of matter are described 
by using the following set of Maxwell equations': 

divE = 0 

curiE + E = 0 

divD = p 

curlif - D = J 
J.lo(if + 1\-[) = E 

EoE+P=D 

The theory is built on the assumption that the medium is linear: 

E = J.lollr if 

D = EOErE 

In the following derivation it is assumed that 

1. P = 0 and 

IS! units are used here 
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2. D ~O. 
The first assumption states that the medium or the material. is linear and that 

there is no electrical polarisation .. The second assumption, jj = 0, states that 

the displacement current density D can be neglected (the inclusion of radiation 
corrections is not required). This is equivalent to p = 0 where p is the charge 
density. This implies the use of low frequencies in the experimental set-up. The 
conductivity a and the permeability /lr are scalars which are independent of 
frequency within the frequency range covered in these experiments2• For a the 
DC-conductivity is used. Using Ohm's law: 

and combined with the vector-operator identity: 

curi(curi) = grad(div) - .6. 

the equations in (2.1) can be written as: 

Applying the curi operator: 

combined with (2.2) 

Using curiE = -E 

curiH =:; 
1 ~ ~ 

--curiE =j 
/lO/lr 

-.6.E = /lO/lr curi(}) 

.6.E = /lO/lra E 
Finally, using a = 1/12 one obtains: 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

where 12 is the electrical resistivity of the material and /lr the permittivity. This is 
a diffusion equation for the magnetic field E. It is a description of the diffusion 
of a magnetic field into the metallic sample as discussed above. 
This is the basic equation for the contact-less measurement of the electrical re
sistivity. This model is applicable for macroscopic systems. Before the solution 
is presented for a given geometry, some important general properties of diffusion 
equations are discussed. 

21 kHz 
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2.1.1 Diffusion 

Diffusion and (simple) transport processes are described by a parabolic Partial 
Differential Equation (PDE), such as (2.9). Parabolic differential equations are 
characterised by a second derivative in space and a first derivative in time [28]. For 
example heat conduction processes are also described by parabolic PDE's. The 
heat and diffusion equations, which are treated in this report, are mathematically 
equivalent. 
In the previous section a diffusion process was obtained for the B field (2.9), 

with the diffusion constant: 

aa - f.1.of.1.. i.a = 0 
g at (2.10) 

(2.11) 

The magnetic field is diffusing into or out of a volume V (e.g. a sample), as a 
result of the law of induction. The speed of diffusion is expressed by the diffusion 
constant D, which is directly proportional to the electrical resistivity: 

1 
D~

g 
(2.12) 

Thus the electrical resistivity determines the time constant of diffusion of mag
netic flux. There are two important and significant properties of parabolic PDE's 
which will be needed for its solution: the Maximum-Minimum Principle and 
the Steady-State-solution. 

The Maximum-Minimum Principle 

When applied to a diffusion of a magnetic field into a metallic sample this prin
ciple results in the following statement 

The maximum or minimum of the magnetic field inside the sample 
occurs either initially or at the boundary of the sample. 

The general proof of this statement can be found in [18, 22]. 

Characterisation of the Steady State 

The steady state case, as discussed above, is reached in the limit t -+ 00. 

characterised by: 
It is 

aB =0 
at (2.13) 
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the diffusion equation reduces to the steady state form: 

1 
-.6.B = 0 
D 

(2.14) 

This is the Laplace equation. Consequently, in the absence of sources (in elec
trodynamics divB = 0), the steady state magnetic field distribution in a homo
geneous, isotropic medium is governed by the Laplace equation [18, 22, 28]. 

~B =0 (2.15) 

Summary 

The diffusion process of the magnetic field was given in (2.9) with the result 
that the applied magnetic field penetrates into a material with a time constant 
which depends on the electrical resistivity e. This behaviour is attributed to eddy 
currents. The decay time of eddy currents contains the information about the 
attenuation. Therefore a measure of the time constant provides direct information 
about e, the electrical resistivity of the sample. 
In the next section the complete analytical solution is presented for an infinite 
cylinder. 0 
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2.2 Solution for an infinite Cylinder 

The diffusion process of the magnetic field will be discussed for an infinite cylin
der. For the experiment cylindrical samples are made using a flop cast method. 
This technique is standardly used within the Department of Physics at Lough
borough University. For the calculation, a cylinder with an infinitive length is 
chosen because this eliminates end effects. An infinitely long cylinder (denoted 
by n) with radius R is given by the parametrisation: 

n:= (r) X (</» x (z) = (O,R) X (-rr,rr) X (-00,00) 

Expressed in Cartesian coordinates: 

x = rcos(</» 

y=rsin(</» 

z = z 

Figure 2.1: Infinite cylinder 

(2.16) 

(2.17) 

As an experimental configuration the applied B-field is chosen parallel to the 
cylinder axis (z-axis). Thereby the experimental set-up has rotational symmetry 
around the z-axis and translational symmetry along the z-axis. The diffusion 
equation (2.9) is rewritten in cylindrical coordinates as: 

- I-'ol-'r /) -..:lB(r, </>, z, t) - --"B(r, </>, z, t) = 0 e ut 
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The assumption that the material is homogenous (the jj field does not depend 
on a translation along the z-axis) implies that: 

fJ -fJzB(r,q"z, t) = 0 . (2.19) 

The assumption of an isotropic material requires: 

a -
fJq,B(r,q"z, t) = 0 (2.20) 

The vector field jj has a unique direction oriented parallel to the z-axis. Therefore 
it is possible to reduce the vector equation to a scalar one. 

110/1 •• fJ 
6.B(r, t) - -(!-fJt B(r, t) = 0 (2.21) 

This is a diffusion equation of a magnetic field in one dimension. The problem 
will be solved for the application of a magnetic field Bo at t = to = O. Which is 
taken as the initial condition for the IBVP 3. The time dependence of the field is 
shown in figure 2.2. 

B vs. time 

o~-------------
time 

Figure 2.2: Applied field Bo as a function of t 

The various stages can be described as: 

3Initial Boundary Value Problem 

21 



::'C- i < t~ zen{ilt'agnetic fleJd. iii"t1le'cyliitilet'!r-, ',:~- -'7" "'--',,"' -7~ __ :f" 
, : .' ~ :. ;,_' / .: :',.. ,':, . " : .. t ""> ~~',' "-, '_)~::-~-.'<::' .. _ - ,'" '., -:,',_,: _",-"'_i;~ ~'_."._ v'_:':~_A::~~<"~"';'~{:~ 
',2::,in -'..- toa field 'Ba is applied, 'di'ffusidIi::hil'i not yetst~~ "(:'TY:' -~:~~~", 

" ,~ _' ~.... -~"'·~~:7;:,,,>.:·',·, -'~-~'--T-::: /- ... ~ .,,;< • .(:-,,:-,-,.'-~~:,;,.,;;'~ 

,3:. i, > iodiffusion,of magneticfield';wi~!l!:fJ.,~ '~" ':,~" _,,:,'~.':: _':': 

.,~'<t jt()Q,<t *~dysta:tei~ ?bt~;ed<,~;)'~::"'" ,. "'~',, '>:~:".:,., 

First the steady state case at t -+ 00 will be studied, It has been shown above 
that due to divE = 0 and for t -+ 00 the solution is homogeneous, The condition 
of continuity of the parallel component of the H-field at the cylinder surface 
requires 

B( t ) = {llr Bo for r < R 
r, -+ 00 Ba for r 2: R 

The applied field strength is denoted by Ba, This solution is obtained 
straightforward application of electromagnetic boundary conditions, 
The general time dependent structure of the solution is given by: 

B(r t) = { Ilr Bo - b(r, t) for r < R 
'Ba for r 2: R 

(2,22) 

by a 

(2,23) 

The time dependence of the magnetic field is governed by b(r, t), The diffusion 
Le, the decay of eddy currents is described by b(r, t), The field b(r, t) is located 
in the sample cylinder and it is created by eddy currents, These currents are 
induced due to the applied magnetic field at t = 0, The field b(r, t) will vanish 
for t -+ 00 , The time dependence of b( r, t) yields direct inforrnation about the 
resistivity e of the sample, A measurement of this field is the experimental aim 
of the contact-less measurement, 
Substituting (2,23) into (2,21) the diffusion equation for the interior of the cylin
der is: 

The justification of these boundary and initial conditions is given due to the 
following: It was shown that B(r = R, t) = Ba at the boundary, hence 

B(R, t) = Ba - b(R, t) = Ba (2,26) 
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The second condition ensures that the solution is smooth and analytic'. The 
third statement, i.e. the initial condition, results from the induced field at t = 0: 

B(r,O) = 0 (2.27) 

2.2.1 Separation of Variables 

For PDE's there does not exist a complete theory as for Ordinary Differential 
Equations (ODE's). There are some standard methods available for reducing 
PDE's to ODE's, namely integral-transformations e.g. Hankel-, Laplace-, or Eu
ler transformations [28] or the method of conformal mappings [28]. One method 
of finding solutions of partial differential equations is by Separation of Variables. 
For the solution of the diffusion problem only the interior domain is of interest. 
The Laplace operator is transformed to cylindrical coordinates. 

82 82 82 

-+-+-8x2 8y2 8z2 

It reduces, due to symmetry, to: 

(2.28) 

(2.29) 

Due to the independence of </> and z as assumed by the rotational and translational 
symmetry of the problem 2.24) is expressed as: 

82 1 8 JioJir 8 
-8 2b(r, t) + --8 b(r, t) = --8 b(r, t) 

r r r e t 

with the conditions for r = 0, r = Rand t = 0: 

Using the product ansatz [28]: 

b(R,t) = 0 
b(O, t) < 00 

Ib(r, 0)1 = Bo 

b(r, t) = R(r)1"(t) 

The separation of variables results in: 

R"(r) + ~R'(r) _ JioJir T'(t) 
R(r) - -e-1"(t) 

'linear PDE 
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A set of ordinary differential equations is obtained. These will be solved in the 
next subsection. 

Here 17 is a constant. 

R"(r) + ~R'(r) = -17R(r) 
r 

/lo{lrT'(t) = -17T(t) 
(! 

2.2.2 Solution for T(t) 

(2.33) 

(2.34) 

The time dependent part of b(r, t) has to be a solution of the following differential 
equation: 

T'(t) + ~T(t) = 0 (2.35) 
/lo/lr 

As b(r, t -+ 00) = 0 one requires that T(t -+ 00) = O. A solution is found by 
standard methods yielding: 

T(t) = Ae-~' (2.36) 

The steady state solution is obtained in (2.36), for t -+ 00 and 

lim b(r, t) = 0 
1 .... 00 

(2.37) 
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2.2.3 Solution for R{r) 

The solution is obtained here for the radial part of b(r, t) of the induced field. 
The domain in which (2.30) has to be solved forms a circle of radius R. 

y 

x 

Figure 2.3: circle of radius R 

The second order differential equation for the radial part R(r) is given by: 

1 
R"(r) + -R'(r) + 7)R(r) = 0 

r 
r2 R"(r) + rR'(r) + 7)r2 R(r) = 0 (2.38) 

Solutions are required within the grey area indicated in figure 2.3 and subject to 
two conditions: 

R(R,t) = 0 

IR(O, t)1 < 00 (2.39) 

The eigenvalue problem in (2.38) is similar to the Bessel-equation of Oth order. 
The equation will be transformed into a Bessel-equation. However, before pre
senting this transformation the Bessel-functions are discussed first. 
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Bessel functions 

Bessel functions of order m correspond to the general solution of the Bessel equa
tion of m-th order: 

r2 R"(r) + rR'(r) + (r2 - m2)R(r) = 0 

The general solution has the form: 

(2.40) 

(2.41 ) 

The Bessel function can be presented in different ways5, either integral or power 
series presentations. For Jm the power series expansion is given as: 

_ 1 (z)m 00 (_I)n 2n r(n +~) 
Jm(z) - f(!) 2" ]; 2;!z f(n + m + 1) (2.42) 

Here f is the gamma-function as defined by: 

f( ~) = (2n )! f(~) 
n + 2 22nn! 2 

resulting in: 

(z)m 00 (-It 1 (z)2n 
Jm(z) = 2" ]; -;;!f(n + m + 1) 2" (2.43) 

If m is not an integer then none of the coefficients l/f(n + m + 1) vanishes. 
However, if m is an integer, then: 

f(n + 1) = n! 

1 { 0 for n + m + 1 < 0 
f(n + m + 1) = (n;m)! for n + m + 1 > 0 

(2.44) 

For the case of m = 0 in (2.43) the series expansion is simply: 

00 (-It 1 (z)2n 
Jo(z) =]; n! f(n + 1) 2" (2.45) 

The first few terms have the explicit form: 

Z2 Z4 Z6 Z8 ZIO 

1 - "4 + 64 - 2304 + 147456 - 14745600 + 
5Courant Hilbert, Methods of Mathematical Physics, Volume I and II 
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The solution of a Bessel-equation of O-th order: 

(2.46) 

is given by: 
(2.47) 

The coefficients are determined by the boundary conditions. T he functions Jo(r) 
and Yo( r) are shown in figure 2.4. 

1 

0 .75 

0 . 5 

0.25 

0 

- 0 . 25 

-0.5 

- 0 .75 aeu:elJ 

0 5 10 15 20 25 30 

Figure 2.4: Bessel functions of O-tb order 

As r -t 0 the limiting behaviour of Jo(r) is: 

lim Jo(r) = 1 
r-+O 

(2.48) 

while for YQ(r): 
lim YQ(r) = -cc 
r-+O 

(2.49) 

The zeros Xn of the Bessel-function are important for finding the solution of the 
boundary problem. If at the boundary the solution has to be zero then 

is a solution which satisfies the boundary condition at r = R: 
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The zeros can be found with a computer algebra system e.g Mathematica6• Some 
zeros of Jo(r) are: 

In general the Bessel functions are of great importance to applied mathematics, 
because every boundary value problem for a circle, or any problem which can be 
transformed to a circle, is governed by Bessel functions. 

Radial solution 

After the brief overview of the properties of the Bessel function the radial dif
fusion problem of the magnetic field into an infinity long cylinder can be solved 
analytically. It is described by: 

(2.51 ) 

This eigenvalue equation can be transformed into a Bessel function of O-th order. 
Setting: 

and using: 

and 

p = ryr; 

d} d} 

dr2 = '1 dp2 

Substituting (2.53) and (2.54) into (2.51) and combined with 

r=~ yr; 

(2.52) 

(2.53) 

(2.54) 

6for the first hundred zeros with a precision of 32 digits only a few seconds were needed 
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one obtains: 

with: 

1.) 
2.) 
3.) 

R(R..fii, t) = 0 
IR(O, t)1 < 00 

R(p, 0) = JlrBo 

boundary at the radius 
condition for none singular solutions 
initial condition 

(2.55) . 

(2.56) 

This is the Bessel equation of O-th order, as discussed above. The general solution 
IS: 

(2.57) 

with 
a2 = 0 

because Yo(O) -+ -00. Due to the boundary condition it is found that: 

Jo(R,fij) = 0 

so it follows that R..fii must be equal to a zero Xn of the Bessel-function: 

R,fij = Xn 

Thus 

Rn(p) = Rn(r,fij) = anJo GXn) 

R(r) can be represented as a series: 

The coefficients an are determined by the geometry as demonstrated in the next 
section. 
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2.2.4 The Complete Solution R(r)T(t) 

After the separation of time and radial variables two solutions were obtained for 
every n: 

Radial part: 

Time part: 

.' . 
Tn(t) = Ae - R':.p,t 

Combining the two yields the general solution of the diffusion equation: 

b(r, t) = ~ RSn = ~ anJO GXn) e - Rt;.:, t 
With the initial condition 

b(r,O) = IlrBo 

it is possible to calculate every coefficient in (2.59). 

According the theory of Fourier series the coefficients are given by: 

The ortho-normalisation is given with: 

and 

(2.58) 

(2.59) 

(2.60) 

(2.61 ) 

(2.62) 

(2.63) 

(2.64) 

Thus the exact analytical solution of the diffusion problem for a magnetic field 
in an infinite cylinder with radius R was obtained as: 
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Discussion of the Solution 

The solution of a diffusion problem of a magnetic field yields a Fourier-series 
solution with a spatial and a time-dependent part. The time dependent part 
describes the decay of eddy currents. This inner field b(r, t) is damped by the 
resistivity of the material [1]. The induced currents are damped by the finite 
resistance of the sample. The decay constant is determined by (! and f.1.r. 

Limits 

There are two limits. If the resistivity is infinite the magnetic field penetrates 
instantaneously into the material. If a superconducting sample is under investi
gation the eddy currents are persistent currents (Meisser-Ochsenfeld). Therefore 
the critical temperature can be estimated. 
Between these two limits the resistivity determines the decay time of the diffusion 
of the magnetic field. 
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Chapter 3 

Theoretical Studies 

After solving the diffusion equation some numerical examples will be given in "
this section. Equation (2.67) is completely implemented in a Mathematica al
gorithm '. These calculations are approximations because the Fourier series is in
finite. However, the characteristic behaviour can be demonstrated very clearly 
with a finite summation of terms in equation (2.67)2. 
The dependence of f! is shown with different values. The magnetic field inside 
the sample is represented. First the behaviour is investigated at the limit t = o. 
The influence of the electrical resistivity on the diffusion of a magnetic field is 
discussed for different cases. 

For the next examples an infinite cylinder with a radius of R = 3mm is used and 
the applied magnetic field is taken as Ba = ImT. 

'The complete source code is available from the author 
2magnitude - 10 - max. 1000 
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3.0.5 The B-field for t = 0 

At first the system is studied for t = 0, and also for a zero magnetic field inside 
the sample. Every combination of (! and p'r is identical for t = O. 

[ .,.] 
e- R2 ;Ol-'r

t =1 
1=0 

(3.1) 

The first example shows a copper cylinder at t = 0 ill figure 3.1, the B-field is 
plotted along the x-axis. 

B(r,O) = BD - b(r, 0) = 0 (3.2) 

For the red curve the summation was extended to n = 4 while for the blue one 
the limit was set to n = 80. The red curve is given by: 

(3.3) 

and the blue one by: 

(3.4) 

A typical property, the Gibbs phenomenon, of Fourier series is demonstrated in 
figure 3.1. The oscillations decrease with increasing summation index n. This 
phenomenon was first found by Gibbs3

. 

B f or t-O , 3 2 1 0 1 2 3 , 
1 

0 . 8 

... 0.6 • 
c ... 0.' 
m 

0.2 

0 

-0.2 , 3 2 1 0 1 2 3 , 
abs[r} inrrun 

Figure 3.1: The magnetic field 

The physical interpretation follows from the qualitative derivation as given in 
chapter 2. At t = 0 the inner field b(r, t) is induced instantly, thus it has the 

3Fourier's series, Nature Vo!. 59 1898/90 
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same magnitude as the outer applied field. This results in a zero magnetic field 
inside the cylinder. 

3.0.6 The B-field for t > 0 

For t > 0 the magnetic field is shown in figure 3.2. In this case the diffusion has 
already started, which implies that the eddy currents are being attenuated due 
to the resistivity of the material. The parameters were chosen as: 

... • 
c .-< 

" 

1 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

4 

, , , , , , , , , , , , , , , 

1.6710-8 Om 

30 

t .> infinity 

0.3 ms 

0.1 ms 

: 0.05 rns I 

: ____________________________ 0 __ n:s ____ J 

3 2 1 o 1 2 3 
r in mm 

Figure 3.2: The magnetic field for t > 0 

4 

The time-dependence shows how the outer field penetrates into the cylinder. 
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3.0 .7 Resistivity and Decay 

The influence of the resistivity is investigated for three different values of the 
resistivity. The dependence of the induced field was given by (2.67) 

B(r: t) ~ b(r: t) (3.5) 

and 

.' . 
b(r: t ) ~ E - R'::o"r t (3.6) 

For {lr ~ 1 the exponential decay of b(r: t) is solely governed by the resistivity. 
Three examples are shown in figure 3.3. The parameters are: 

1 

1 1.67 10-8 Om 

I!blu, 2 1.67 10-8 Om 

4 1.67 10- 8 Om 

r Imm 

summation index n 100 

mag . fi e ld r = lrtl.'TI 

1 

0 . 8 

'g 0 . 6 

" ." 
III 0 .4 

0 . 2 

0 
0 0 . 3 0 .4 0 . 5 0.6 

t in ms 

Figure 3.3: Different resistivities 
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Finally, the time and radius dependence of the magnetic field B(r, t) for a Cu
cylinder in shown in figure 3.4. 

B (r , t) 
in fiT 

o . 
o . 
o . 
o . 

in fiS 

I r I in mm 

Figure 3.4: Copper cylinder 

The next chapter describes in detail the experimental implementation and set-up. 
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Part 11 

Experiments and Results 
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Chapter 4 

Set-up 

4.1 Overview 

The next chapter describes the experimental set-up for the contactless measure
ment of the electrical resistivity and discusses experiments which were carried 
out with the help of the apparatus. 
In general the implementation of a theory or an idea requires a well prepared de
sign. The contact less measurement of resistivity is based on an applied magnetic 
field and the notation of a change of flux inside the sample material. Therefore 
two basic coil systems are needed, one for the applied homogenous field and a sec
ond coil to measure the change of flux inside the sample. This pick up coil should 
have a very small influence on the whole system. The basic set-up is similar to 
the experiments carried out before [1]. In order to determine the temperature 
dependent resistivity e of a material a temperature measurement is needed, as 
well as a means for cooling down or heating up. All these devices are discussed 
in this chapter. 

A new advantage is added to the contactless resistivity measurement method. 
The pick up coil, which records the response of the sample, is an oscillating 
system. Thus a new data analysis is used for the signal processing. Due to 
this algorithm it is possible to simultaneously measure electric and magnetic 
properties of the sample under investigation. 
The set-up is discussed first by scatching the design. Thereafter every part will 
be explained in detail. 

38 



4.1.1 Experimental Arrangement 

At first the principle experimental set-up is shown. 

Oscilloscope 

GPIB and data 

WOW Amplifier ----' 

DVM 

Square pulse 

Coilsystem in 
liquid Nitrogen 

Computer for 
remote control 

GPIB 

Figure 4.1: The setup in diagram form 

The whole system can be divided into four main sections: 

1. A coil system with driver and pick up coil 

2. Temperature measurement 

3. Data recording 

4. Data analysis and software 

Before the detailed set-up is discussed the basic method is explained. 
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4.1.2 The Method 

As pointed out in the theory chapter an applied magnetic field diffuses into a 
material. This applied (outer) field is provided by a driver coil which is driven by 
a square pulse l . The change of the magnetic field inside the sample is measured 
with a pick up coil which is tightly wound around the sample. A magnetic field, 
b{r, t) is induced inside the material. If h{r, t) of 0 a voltage is induced in the 
pick-up coil, with a dependence given by: 

u ~ -h(r, t) (4.1 ) 

According to eq.{2.67) the long time behaviour is obtained as: 

(4.2) 

The time dependence of the signal of the pick up coil is determined by the time 
dependence of the penetrating magnetic field. The long time dependence is given 
by an exponential decay. For pr ~ 1 the time constant of this decay immediately 
yields a value of e. 

lfollowing the initial condition of the diffusion equation 
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Chapter 5 

The experimental Set-up 
Detail 

• 
III 

As part of the project the experimental arrangements had to be designed, opti
mised and tested. The detailed description as given in this chapter contains the 
relevant information which is needed for the actual construction. The following 
description is based on a substantial amount of practical experience gained during 
the testing and construction period of the device. 
The data recording and transfer is controlled by a computer and due to the 
design high resolution measurements against temperature are possible (ten mea
surements per Kelvin). 
First the driving coil system is explained. Details of the pick up coil system are 
explained at the end of this chapter. The parameters set are given stating the 
range for the best experimental conditions. 

5.1 The Coil System 

The arrangement of the coil system is shown in figure 5.1. The coil holder of 
the driver coil is removed and the number of turns is reduced. The coil holder is 
constructed using a non-magnetic plastic l material. For the coil copper wire is 
used with a diameter of 0.5 mm. 
Two pick up coils are used. This gives the possibility to compare two samples or 
to measure two samples in one measurement. 

5.1.1 The Driver coil 

The magnetic field of the driver coil is given by: 

Bo = 4rr/-L/-LrnI (5.1) 

1 Darvic 
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N 
n= -

I 
(5.2) 

Where N is the number of turns and I the length. Typical values are 1 - 10 mT 
The coil is driven by an amplifier with a square pulse signal. The signal for the 
amplifier is taken from the calibration signal of the oscilloscope which is also used 
for triggering. 

z 
driver coil 

pick up coil 

Figure 5.1: The coil system 
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Parameter for the driver coil 
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5.2 Temperature Measurement 

For the temperature measurement a silicon diode is used in the four point con
figuration. This set-up compensates for the resistivity of the wires. The diode 
is driven with an applied voltage in forward direction using a constant current 
of h od. = 101'A. For these conditions the functional dependence voltage of vs. 
temperature is plotted in figure 5.2. A fit of a third degree polynomial is used 
for both calibration and measurement. 

350 

300 

;; 250 
~ • :0:: 200 

~ 150 

100 

50 

0.4 0 . 5 

Te~perature versus Voltage 

0.' 0.7 0.8 

U in Volt 

0.9 

Figure 5.2: Silicon diode 

The red points in figure 5.2 are the data and the black curve is the fit. The fit 
for temperature (in Kelvin) as a function of the voltage (in Volts) is given as: 

T(U) = 697.63684 - 1087.9679U + 925.56713U2 
- 442.36497U3 (5.3) 

The green dots in figure 5.2 are two fix points, one for 77.4K and the other one 
for the melting point of ice. The sensor is located at the top of tbe pick up coil 
close to the sample. The voltage is measured by a digital nanovoltmeter (DVM) 
which is controlled by the computer via a GPIB. Using (5.3) the control program 
(written in C) converts the voltage into absolute temperature following the fit of 
figure 5.2. The temperature can be measured five times per second. Finally the 
absolute temperature is determined to an accuracy of : 

AT = ±lK (5.4) 
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Parameter of the temperature control 

Method 
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silicon diode ( forward bias) 

10 pA 
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5.2.1 The Heater 

The change of temperature has to be an approximately adiabatic process which 
means that the system changes from an equilibrium state to another equilibrium 
state via a sequence of equilibrium states. In this experiment the temperature 
ranges from 77.4 K to room temperature. The coil system is covered by a copper 
tube with heating wires. There are three heating coils which are drawn yellow 
in figure 5.3. This copper tube is thermally insulated from a bigger copper tube 
which is closed airtight . For a good thermal insulation the whole set-up is put 
under vacuum. The long tubes on the top are for the electrical connections and 
for the connection to the vacuum pump. 

Figure 5.3: Heating system 

Parameters of Heating System 

max. heating up speed lK min-1 

heating voltage U == 20 -40V 
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5.2.2 Data Recording 

An oscilloscope is used in this experiments to measure the signal of the pick-up 
coil and a digital voltmeter (DVM) to measure the voltage of the temperature 
sensor. Both devices are remotely controlled by a computer via the GPIB2-

interface technique [24]. 

5.3 The Pick up Coil 

The functioning of the pick up coil is illustrated using an equivalent circuit as 
shown in figure 5.4. Electrical connections and cables are characterised by a 
capacitance C, a resistance R of the wire and an inductance L of the empty coil 
system. 
The configuration as shown in figure 5.4 is that of an oscillating circuit. 

L 

u (t) c 

R 

Figure 5.4: Tbe pick up coil system 

The voltage U(t) is recorded by an oscilloscope. The input-resistance of this 
oscilloscope is around lMfl and therefore its influence on the circuit can be 
neglected. The following derivation yields the time-dependent voltage U(t). 

2General Purpose Interface Bus 
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The system is explained by using as the variable the charge on the capacitance 
[20j. The differential equation 5.5 describing the circuit shown in figure 5.4. 

.. . Q 
LQ+RQ+ - = 0 

C 

With the well known substitutions for this kind of ODE, 

R 
2{3 = L Damping-constant 

2 1 
Wo = LC Eigenfrequency 

the differential equation takes the form: 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

The initial conditions are defined by the experimental set-up. At t = 0 the 
magnetic field is applied by the driver coil. Therefore, in the pick up coil a voltage 
Uo is induced. This voltage charges up the capacitance C via the resistance R 
(Q of 0) 
Hence: 

and 

It will be solved using the ansatz: 

Q(O) = 0 

Q(O) = Uo 
R 

Q(t) = Ceiw• 

(5.9) 

(5.10) 

(5.11) 

where w is a complex frequency. Substituting (5.11) into (5.8) one obtains: 

w2 
- 2 i j3w - W5 = 0 (5.12) 

This is solved by two complex frequencies: 

Wl.2 = ij3 ± W (5.13) 

where W is given as: 
(5.14) 

The combination is given as: 

(5.15) 
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Using the initial conditions one obtains: 

Hence: 
Q(t) = Cle-Ilt (eiwt _ e-iwt

) = cI 2ie-i1t sin(wt) 

The second initial condition yields: 

and Cl is given as: 

. Uo 
Q(O) = 2i ClW = R 

Uo 1 
Cl = Rw 2i 

And finally the time dependent charge is obtained as: 

Q(t) = e-{Jt ~ sin(wt) 

Using 

Uc(t) = ~Q(t) 
the recorded voltage by the oscilloscope is given as: 

Uc(t) = e-1Jt C ~ w sin(wt) 

or as: 
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(5.17) 

(5.18) 

(5.19) 

(5.20) 

(5.21 ) 

(5.22) 

(5.23) 



The pure signal of the pick up coil IS an exponentially damped oscillation as 
shown in figure 5.5, 

0.15 

0.1 

0.05 ,. 
c 

0 ." 

" 
-0.05 

A A AIf\fV 
V v V 

v 
-0.1 

0 0.1 0.2 0.3 0.4 0.5 
t in ms 

Figure 5.5: Pick up signal 

In figure 5.5 the parameters were taken as f3 = 3333s-1 and Wo '" 129099s- l
. 

The oscillations are characterised by an oscillation frequency wand the decay 
time 1/f3. If a magnetic field is applied by the driver coil with a square pulse a 
voltage is induced in the pick up coil. Thus the pick up coil starts to oscillate as 
shown above with the real frequency w: 

w = JW5 - f32 (5.24) 

For the empty coil the attenuation constant 1/f3 yields the value of the damping 
constant of the secondary coil. 

Discussion 

In the past all experiments [1] which used the contactless measurement method for 
the determination of the electrical resistivity were made for determining 1/ f3 and 
for the case for which the secondary coil system was not driven at resonance. For 
non-magnetic materials with f.lr ~ 1 the technique was successfully implemented 
[1] and analysed [2]. For magnetic sample materials, however, the analysis is 
more complicated. For long time the decay is now proportional to: 

decay 
.. ' 

-~t 
"V e ~r~oR (5.25) 

If the secondary coil system is not driven as a harmonic oscillator the signal is 
a simple exponential decay [1] which depends on {! and f.lr. Therefore in earlier 
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measurements either J.lr was determined if g is known or, alternatively, g with a 
known value of J.lr. 

The advantage of using the pick up coil as an oscillating system is. the simulta
neous determination of the resonant frequency 

1 
Wo~--

.jji; 
(5.26) 

and the decay or damping constant f3 of the system. With (5.25) the resistivity 
can be extracted. The method for determining these two properties is discussed 
in the next section. 
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Spectral Analysis 

In our experiments the oscillations are investigated using the discrete Fourier 
transform. Before experimental data are analysed the spectrum is investigated 
with the analytical Fourier transform which is given by: 

Where: 

and 

S(w) = abs (Fco.(Uc(t)) + iF.in(Uc(t))) 

Fco.(Uc(t)) = If L: El(L) Uc(t) cos(wt) dt 

F.in(Uc(L)) = If L: El(t) Uc(t) sin(wt) dt 

(5.27) 

(5.28) 

(5.29) 

The result is plotted in figure 5.6 for different values of the damping constant j3. 
A set of Lorenz curves is obtained . 
The spectral function S(w) is obtained as: 

S(w) = 1 Uow5 
2j3 V4j32w2 + (w2 _ W6)2 

Analytical Spe ctrum 

:..----------....,..,....,-~ 
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Figure 5.6: Frequency-spectrum 

(5.30) 

A larger damping constant implies an increased width , combined with a decreased 
intensity. 

If a sample is inserted inside the pick up coil and a field is suddenly applied it 
starts to oscillate. Due to the resistivity of the sample material the damping 
inside the pick up coil is increased which results in a shorter decay time. There 
are two classes of materials which will he discussed separately. 
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5.3.1 Weakly Magnetic Samples 

For weakly magnetic materials (fir ~ 1). The resonant frequency Wo is similar 
to the frequency of the empty coil-system3 without a sample. The induced eddy 
currents in the sample are damped due to the electrical resistivity of the material. 
This is expressed by an additional damping of the oscillations of the pick-up coil. 
It can be written mathematically as an exponential time factor as in eq.(5.23). 

Uc(t) = Uow5 e-(IJ+d)'sin(wt) 
2{3w 

(5.31 ) 

Where d is directly proportional to the resistivity (! and the new resonance fre
quency of w is obtained as: 

(5.32) 

5.3.2 Magnetic Samples 

If a magnetic material is fixed in the pick-up coil the situation is different com
pared to weakly magnetic materials. Due to the resistivity of the material the 
damping is also changed. The inductance is changed because: 

(5.33) 

Therefore the resonant frequency is different: 

~ aample 1 
Wo ~wo rv--..;p:; (5.34) 

Thus the pick up signal is different as compared to the signal of a non-magnetic 
sample: 

Uc(t) = Uow5 e-(Il+d)'sin(wt) 
2{3w 

The frequency of oscillation is given as: 

w = J(wgamPle)2 - ({3 + d)2 

(5.35) 

(5.36) 

The separate determination of the damping constant as well as the 'new' reso
nance frequency allows for the simultaneous determination two values: Thus a 
measurement at the resonance point may yield a value of the electrical resistiv
ity of the sample as well as a determination of the magnetic susceptibility X or 
fir of the material under investigation. While the above discussion is restricted 
to a ferromagnetic material the technique is also applicable for paramagnetic or 
weakly magnetic samples. 

3 w~ > {32 
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Chapter 6 

Data Analysis 

The data analysis for the contactless measurement of resistivity is an important 
part in the process of obtaining proper results. The signal of the pick up coil is 
a damped oscillation with frequency wand damping constant (3. For analysing 
the signal the method of Fourier transform (FT) is commonly used. The advan
tage of this method is the possibility of simultaneously estimating the damping 
constant and the resonance frequency. This method is a very sensitive one, as 
demonstrated below. At first a short introduction and an example is given for 
this important method. 
Consider a set of equidistant measurement values as presented by a vector a. The 
discrete Fourier transform of a vector a into a vector b 

(6.1 ) 

is given by: 
1 ~ 2",(r-1H,,-q 

b. = In L...are n 

V'" r=l 
(6.2) 

As a result of a Fourier transform of an oscillating signal measured at equidistant 
time intervals a power spectrum is obtained. The intensity distribution of the 
power spectrum yields the intensity of all frequencies which are contained within 
the signal. In the definition of the Fourier transform as given in (6.2) it is impor
tant to note that the frequency with the value zero appears at the index number 
one. 

In the experiments the oscillations are recorded and stored by the oscilloscope. 
The driver program calculates the discrete FT. The analytical Fourier spectrum 
in (5.30) is used as a fit function for the resulting spectrum. To explain the data 
analysis method two calculated examples are given in the next section. 
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6.1 Signal Analysis - an Example 

The effect of a discrete Fourier transform on a damped harmonic oscillation is 
investigated. The signal is modelled such that it is similar to the output of the 
oscilloscope which is used for the experiments. The oscilloscope has a resolution 
of 512 points. Therefore the discrete signal was chosen as a vector of 512 entries 
with two djfIerent values for the damping constant: 

Uc(t).zampl. = Uc(t) + Randam naisE 

with t the time in steps of one in arbitrary unjts: 

t = 0 ... 511 

The noise is set to 3 % of the total intensity. 
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10 '" 60 
..; " 50 
~ 5 ." c ~ 40 
'" 0 ." ~ 30 
<n - 5 ~ 20 

-10 ~ 10 
-15 

0 100 200 300 400 500 00 5 10 15 20 25 30 
Time Frequency 

15 

10 '" 20 
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.~ 15 
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Ti me Frequency 

Figure 6.1: Signal and Spectrum 

(6.3) 

(6.4) 

35 

35 

The signal at the top simulates a low resistivity sample while the signal at the 
bottom is typical of a high resistivity conductor. The magnetic field which diffuses 
into the material, encounters little resistance due to weak damping. Thus the FT 
spectrum is sharply peaked. The spectrum for the high resistivity sample is found 
to be substantially decreased in intensity. 
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6.1.1 Non-magnetic Samples 

The data analysis for a non-magnetic sample is modelled here. It is assumed to be 
a conductive material with a change of resistivity at approximately Ta = 200 K 
in such a manner that the resistivity is decreasing around 200 K to a constant 
value. The oscillations were generated with a noise of 3 o/c at every temperature. 
The corresponding Fourier spectrum is calculated for all temperatures and stored 
in an array. The result is shown in figure 6.2, the right hand side shows a density 
plot of the spectrum which is used for further data presentations. 
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Figure 6.2: The spectrum for a non-magnetic Sample 

Every spectrum is analysed using a non-linear fit algorithm [19, 27] employing: 

S(w) = 1 Uow~ 
2{J V4{J2W2 + (w2 _ w~)2 

(6.5) 

With such a fitting procedure the value of {J is obtained as a function of temper
ature. 
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The plot is shown in figure 6.3. Due to the high resistivity at temperatures above 
200 K the spectrum is flatter. Therefore the error bars, as indicated by the scatter 
of data points of b, are larger. 
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Figure 6.3: A non-magnetic Sample 
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6 .1.2 Magnetic Samples 

A similar resistivity behaviour discussed as before is modelled here but with an 
additional change of magnetic behaviour at tbe same temperature. The resulting 
spectrum (top left ), the damping constant (bottom left ), the change ofindudance 
(which means p.r, top left) and the resonant frequency (bottom right) are shown 
in the next graph: 
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Figure 6.4: Signal and Spectrum for magnetic Samples 

The Fourier analysis of the oscillations of the pick-up coil provides two pieces 
information: The width of the Lorentz peak which is used for the determination 
of the electrical resistivity f! of the material and the position of the peak which 
is additional information and which is related to p'r of the sample material. 
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Chapter 7 

Results 

7.1 Non-Magnetic Samples 

This section shows the experimental results for non-magnetic samples. The time 
step for the measurements of the oscilloscope is given by the time window of the 
oscilloscope divided by the number of points (512). This results in a time step 
~ 10-6 seconds per point. This value translates to a step of 104 H z in w-space. 
An estimate of the slope of the curve in figure 7.1 can be made by only using the 
first zero of the series. This results in a ,a-value (and assuming pr = 1): 

(7.1 ) 

As non-magnetic samples AI, eu and Zn were measured. The samples were 
investigated at room temperature. For every spectrum the damping constant 
was obtained by averaging 30 runs. The result is shown in figure 7.1. 
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Figure 7.1: Non-mag. samples Cu, Al and Zn 
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The damping constant depends linearly on the electrical resistivity of the mate
rial. The values for the damping constant were measured as: 

• {J'C'uci = 1.102 

• {J~~ci = 1.1 76 

• {J'Z"nci = 1. 481 

These values were measured in oscilloscope units l . After fitting one obtains: 

f30'ci = 0.944 + 0.0971 * {![1O-8fj m] (7.2) 

applying the fit for copper yields: 

{J'C'uci = 0.944 + 0.0971 * 1.6 = 1.099 (7.3) 

The experimental value for Cu can be estimated (up to factor of order 1) using 
only the first zero of the Bessel function as (xo ~ 2.404, R = 3 mm, fJ-r ~ 1 and 
fJ-o = 41l"1O-7). 

x 2 

{Jcu ~ R20 {!Cu = 5 * lOll * 1.6 * 10-8 = 8 * 103 S-I (7.4) 
fJ-o 

This value has to be multiplied with the unit of the Fourier transform (this 
amounts to a factor of 10-4 s). This yields in oscilloscope units: 

{JCu ~ 0.8 (7.5) 

A small shift of {J is obtained due to the damping of the empty pick up coil. The 
cali bration procedure corrects for this shift. 
The result of the measurement series for non-magnetic samples is used for the cal
ibration of the system. This calibration allows the measurement of the electrical 
resistivity on an absolute scale. 

(7.6) 

The resistivity which is plotted on the x-axis is the one obtained by using different 
experimental techniques [21]. 

IThe values for /3 and Wo in oscilloscope units are obtained by using the fit function in (5.30} 
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Summary 

The contactless measurement of electrical resistivity with an oscillating pick up 
coil system works reliably for non-magnetic samples. With the help of the discrete 
Fourier transform the data analysis of these oscillations yields a direct measure
ment of the electrical resistivity. 
It is important to note that the obtained values for f3 and the resulting linear 
dependence for e are suitable for metallic samples. As pointed above the basic 
mechanism is the induction of eddy currents inside the sample. If the material is 
an non-conducting material no eddy currents are induced at all. Therefore the 
oscillating system pick-up coil is not damped. 

Limits 

There are two important limits for conductive materials. The first limit is given by 
e.g. a superconducting material e = 0 the eddy currents are persistent currents. 
Thus the damping due to the sample is equal to zero. The other limit is defined 
by a conductive material with a high resistivity, the maximum value for e is 
deri ved below. 
Using the pick-up coil as an oscillating circuit requires f3 < Wo, which means that 

the frequency w = JW5 - f32 is a real number. The oscillating frequency of the 
pick-up coil is obtained in a range of 20 - 25 in oscilloscope units and therefore 
the measurable resistivity range is given by: 

e = 0 .... 200 lO-BOm (7.7) 

This range covers most of the metallic samples and alloys. A measurement above 
the maximum value is not possible. Due to the complex frequency the system 
does not oscillate and therefore the Fourier analysis as presented above can not 
be used in a meanigful manner. 

61 



7.2 Magnetic Samples 

The first magnetic sample under investigation was the material Ni2M nGa. It 
orders ferro-magnetically with a Curie temperature of Tc = 376 K. A martensitic 
phase transition to a complex tetragonal structure occurs on cooling below 210 K. 
Previous neutron scattering measurements and magnetisation investigations have 
shown a change of properties around 210 K [15]. These data were used for 
comparison with results obtained by using the contactless apparatus measurement 
of the resistivity. 

, 
j! 
• o 

" z 

Frequency 

Figure 7.2: Experimental spectrum for Ni2Ga Mn 

On y-axis the number of measurements is shown and not the t emperature. This 
demonstrates the resolution which can be obtained using this set-up. 
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The analysis of the spectrum and using the nonlinear fit algorithm yields the 
following results: 
The electrical resistivity: 
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Figure 7.3: (! and for Ni2MnGa 

and the resonant frequency (in a. u.): 
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Figure 7.4: Wo for Ni2 MnGa 
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7.3 Conclusions and Outlook 

As shown above the contactless measurement of the electrical resistivity is un
derstood in theory and experiment. 

The experimental arrangement as idealised in chapter 3 is able to capture the 
essential physics of the process. The time dependence of the pick up coil system 
is adequately described by (5.35). The analysis of the time dependence of the sig
nal by discrete Fourier transform allows to separate the electronic and magnetic 
response of the system to the applied magnetic field. Irregularities in the pro
duction of the coil system will have a non-analytic influence on the data analysis. 
However, these effects are small. They may be evidenced in a weak coupling of 
/3 and wo. Such a coupling is not fully treated in the analysis as presented here. 
The effect of this coupling always shifts the damping constant by only a small 
amount even if f.lr changes substantially (figure 6.4). 

Experimentally varying the length of the sample (±5%) did not change the values 
of the resistivity. This demonstrates that end effects due to the finite length of 
the sample stick are not important. 

A number of applications are possible using the set-up which is described in this 
project. Powdered samples or bars of a different shape can be used to compare 
the results of different experimental methods. In the Department of Physics 
at Loughborough University rectangular sample sticks were investigated. These 
bars were originally made for a four point electrical resistivity set-up. Due to 
the increased sensitivity of the contactless resistivity method interest has been 
focused on a measurement series of these sample sticks. The result of a series of 
measurements has shown that relative changes of electrical resistivity are readily 
observable. However, due to the different size and shape of these samples the 
absolute values of the electrical resistivity were found to be too low as compared 
to the value expected for cylindrical samples. With a new calibration for this 
geometry it is also possible to investigate such samples on an absolute scale. 

In conclusion the experimental idea was successfully implemented. This tech
nique is now well established as a new standard measurement method within the 
Department of Physics. 

Future developments may include the extension of this method to the investiga
tion static magnetic field effects on the electrical resistivity. This can be achieved 
by a superposition of the time dependent field by a static magnetic field. 
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Part III 

Appendix and Programs 
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'Appendix A 

The Source Code 

, •••••••••••••••••••••••••••••••• llFO ••••••••••••••••••••••••••••••••••••• 
• This program is A C rontine for the contactless measurement 
• first some information about global variables · --------------------------------------------------------------• TYPE IAIIE USED ID OR VBAT · --------------------------------------------------------------
• double xyarray [513] [2] InindOut I 
• double J [613] FourierTransform. I 
• double T the temperature I 
• in kelvin I 
• ut !min, Tmax: range o£ T I 
• int scope. dvm the tvo devices I 
• I double I Tmin, Tmax I range of T I 
· 1-------------------------------------------------------------1 
• 
• This progrmll vas vritten in the classical rule based style. 
• just a rev pointers 
• 
• 
• 
• reg~ds Frank Schippan 

• (scbippanGphysik.hu-berlin.de) 
•••••.•....•.....•..••.........•••...•..•.•••....•...............•..•••••• , 
'include <math.h> 
'include <stdio.h> 
'include <stdlib.h> 
'include <time.h> 
'include <string.h> 
.include <conio.h> 
.include <decl.h> 
.include <complex.h> 
.include <dos.h> 

,. Dame of the device TEKTRODII 7854 OSZI as configured in CBCODF.EIE.' 
'define DEV_Di1IEl "scope" 
'define DRV _Di1IE2 "dvm" 

,. Size of the ibrd buffer for the size of data there viII be read., 
'define arraylength 513 
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/ ••••••••••••••••••••••••••••••• Greetings •••••••••••••••••••••••••••••••••• 

• lam. Greetings 

• lrguments none 

• returns tvo temperature values TIIUI.% and Tmin 

• Varnings none 

• something about the program, it is not a manual ! ! 

• ............................................................................. / 
int Tmin, Tm.ax; 
void 
GreetingsO 
{ 

FILE .f1; 
system(OIcls") ; 
prin tf ( "------------- ----- ----------------------- ----------- ---------------\n ") : 
printf(OI---------------------- COOLIDG ALGORITBX --------------------------\n"): 
printf(uThis is a program for the contactless measurement of resistivity\n"); 
printf("The minimum temperature is about 77 lelvin\n"); 
printf("Define the temperature range as vhole numbers in the next step\nOl

); 

printf("lIAke sure that your old data are already saved, \n 
othervise stop it vith CTRL+C\n"): 
printf("Press EDTER and go on ... \n"); 
getchar(); 
f1 .. fopen("D:/Log/Sp.dat Ol

, "v+"): 
felose(ft) ; 
printf(OI -- message: old data are removed -- !\ntoo late\n"); 
printf("\n\n\n"): 
pr in tf ( "---- --------- ----- ----------------------- ---------------------- -----\n") ; 
printf("Temperature chooser: \n"); 
printf("---- START VALUE ID KELVIlI _____ \n U

): 

print:t("The start temperature (Tmax) .. 11); 

scanf(OIXdOl
, tTma%); 

printf("-- Bere is Tmax .. %d lelvin\n\n\n", Tma%); 

printf(OI---- STOP VALUE ID KELVID _____ \nU); 

printf(uThe stop temperature (Tmin) .. U): 
scanf(UXdu • tTmin): 

printf(U-- Here is Tm.ax .. Xd Kelvin\n\n\n ll
, Tmin); 

printf("The data vill be recorded from %d I dovn to %d It. \n 
If you are happy 1lith that press EllTER and go OD, ... \nU, Tmax, Tmin); 
getchar(); 
getcharO; 

printf("program started ... \n"); 
printf("Bave a cup of tea or coffee ... \nU

); 

return; 
} 

I ••••••••••••••••••••••••• CheckGPIBError •••••••••••••••••••••••••••••••••• 

• Dame CheckGPIBError 

• 
• 

none 
Done 
Done • 

• 
• 

Arguments 
returns 
Varnings 
it looks 
help 

for the GPIB error status byts in just in case a little 

• ............................................................................. / 
struct ValToDame 

{ 
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int value; 
char -name: 
}; 

atruct ValToDame StatBitsD .. 
{ 
ERR, "ERR", TIRO. "TIRO" • 
RQS. "RQS", CllPL, "CllPL", 
eIC, "eIC" , ATB, "lTB", 
DTAS, "DTAS", DC'S, "DCA.5" • 
}; 

strnct ValToBame ErrVals [] a: 

{ 
EDVR. "EDVR", EeIC, 
EARG, "EARG", ESAC, 
EDIP, "EOIP", ECAP, 
ESTB, "ESTB" • ESRQ, 
} ; 

void CheckGPIBError(void) 
{ 

i:tCibsta I: ERR) 

"EeIC", 
"ESAC" • 
"ECAP" • 
"ESRQ", 

{ print:tC" -- ERROR --\n lO
); 

8'1litch Ciberr) 
{ 

case EDVR: 
print:fCIOEDVR=OOS Error\n"); 

CallS EeIC: 
print:t("ECIC=Board Error\n"}; 

case EDOL: 
printf'C"EDOL=Bo listener\nOl

); 

case EADR: 
priDt:tC"EADR=Address Error\nlO); 

case EARG: 

ElD, "EID", SRQI, 
LOI, "LOI" , IIEI! , 
TACS, "TACS", LACS, 
-1, lULL 

EDOL, "EDOL" , E.lDR, 
E1BO, "EABO" • EBEB, 
EFSa, "EFSO", EBUS, 
-1, BULL 

print1'C"EARG=InvAlid argument vas pused to library\n") j 
case ES1C: 

print£("ESICaSoard is not system controller\n"); 
case EIBO: 

print£("EIBOCll/O operation terminated\n"); 
case EDEB: 

print:tC"EBEB"Do GPIB Board installed do that! !\n"); 
case EOlP: 

print£("EOlP"Saaground I/O already in 
progress no multitasking!\n"); 

case EClP: 
print:t("EClO=Soard missing required capability\n"); 

case EFSO: 
print£("EFSO-File sJstem error!\n"); 

case EBUS: 
print£("EBUS=Command error\n") j 

case ESTB: 
print:t("ESTB-Status byte lost\n"); 

case ESRQ: 
print£("ESRQaSQR lin. is stuck on\n"); 

} 
i:tCiberr .... EDVR) 

print£("DOS Error Code"Xd\n". iberr); 
i£(ibsta t TIKO) 

print:t("GPIB device timed out 8orry\n"); 
} 

return; 
} 
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I ••••••••••••••••••••••••••••••• InitScope •••••••••••••••••••••••••••••••• 

• 
• 
• .""'. Arguments 

Init the TEITROBII 7854 

• aeturns 
Warnings 
\/hat 

OevDame - must be defined vith CBCOIP.ElE 
handle to open device 

• none 

• 
• 
• 
• 
• 

Open the TEITROBII 7854. If there are a ghastly 
error in the opening process you get a message 
and an exit. 
If you are sucessfull the t~.out viII be set 
to 1000 seconds. 

•••..•..•...••..••••••••••••••.•.•••.•••...........••. ·····················1 
int scope; 
int 
InitScope Cchar .OavDamel) 
{ scope ... ibfind COavDame1); 
1£ Cs cope < 0) 

{ 

printfC" 
axit(1) ; 
} 

IBFIBD coudnJt find the b\n", DEV_l&lIE1); 

ibtmo Cscope, T1000s); 
return Cscope);} 

I ••••••••••••••••••••••••• TakeOYmKeasurement ••••••••••••••••••••••••••••••• 
• Dame TakeDvmI!easuremant 
• Arguments none 
• returns a float datatype (this is the voltage in Volts) 
• Warnings none 
• the DV! viII be found and some commands viII be sent 
• the result is a char datatype, 
• convert in a double float datatype: 
• result vill be vritten in a file as a char 
• the file viII be closed and open again 
• and nov the data can read. as a float 

• •••..••.......•..••...•...•...•••.••..••.••••.••••••.. ·······················1 
int dvm; 
double TakeDvmJleasurementC) 
{ 
int dvm,i; 
char rd(20); 
int rdint(16); 
float voltage; 
FILE .dvmfUe: 

if CCdvm ... ibfindC"dYm"» < 0 ){ 
CheckGPIBError(): } 

printfC"oh oh oh\n"); 

i=O; 
ibtrgCdYm) ; 
11 for the command description look in the manual 
ibvrtCdvm, "TOI1B102Q1G",11); 
ibrdCdvm, rd, 15); 
11 vrite ion a file close and open again 
dvmfile a fopenC"D:/Tmp/Tmp.dat". "r+"); 
vhileCi<a14) { 
fprintfCdVldile, "lc". rd[i); 

i++;} 

fcloseCdvm£ile) ; 
dvmfil. a fopen(OID:/Tmp/Tmp.dat Ol

• "r"); 
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fscanf(dvm:file. "%E". I:voltage); 
voltage; 
fclose(dvmfile); 

return(voltage); } 

/ ••••••••••••••••••••••••••••• Temperature ••••••••••••••••••••••••••••••••••• 
• Ilame Temperature 
• none 

• 
• 

Argnments 
returns 
Warnings 

a float datatype this is the voltage in Volt 
none 

• 
• the float result of DYR Reasurement is the argument for this 
• function. The voltage viII be converted in Kelvin 
• For futher information and errors lock in a manual 

• 
• ............................................................................. , 
double Temperature( double Y) 
{ 
double Temp; 
Temp = 697.63684 - Y.I087.9679 + V.Y.925.S6713 - Y.V.V.442.36497 - 3.0 

return Temp; 
} 

/ •••••••••••••••••••••••••• Write Co~d •••••••••••••••••••••••••••••••••• 

• Ilame WriteCommand 
• Arguments device - for the opened scope 

• 
• 

returns 

• send a command to the GPIB device all commands in the 
• language from the Scope (Tek ... ) 
• For information about the Osci. look in the users manual of the osci 

• ..................................................••......................... / 

void 
VriteCommand (int device, char .cmd) 
{ 

int cm.dlength; 
cmdlength = strlen (cmd); 

/. ibvrt vrites some commands in the device .1 
ibvrt (device, cmd. cmdlength)i 

return; 
} 

I ••••••••••••••••••••••••• TakeScopeReasurement •••••••••••••••••••••••••••••• 
• lame TakeScopeReasurement 
• Arguments device - for the opened device 
• returns 
• Warnings the file nmDe lilte this "C:/data/ghastly.dat" 
• do not use this "\ .. 
• the command "cls" produces an error (see the red LED) 
• but vithout this cOllmL!l.D.d it does not vork !! 
• sends some commands to the TEITROBII 7854 and vrites 
• the data in a file as a char. In this file is the vhole curve 
• information. The file vill be opened again for read. the datas. 
• the scaling factors and so on. 

• 
• 
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............................................................................. , 
void 
TakeScopeBeasurement (int device. char ~ile) 

{ 

,. here some commands for the TEKTROBII 7854 ., 
VriteComm.zmd (device. "cls"); 
VriteComm.zmd (device. "stored"); 
VriteComm.zmd (device. "avg100"); 
VriteComm.zmd (device. "send:l:"); 

,. this lines vrite the 1 4 register from the TEITRO!II 7854.' 
,. in a file in ASCII-format .1 
ibrdf (device. file); 

} 

I ••••••••••••••••••••••••••••••• InAndOut ••••••••••••••••••••••••••••••••••• 

• BmDe InAndOut 
• Arguments none 
• returns xyarray 
• Warnings none 
• 
• The data vere vritten in "C:/Tmp/Test.dat" this file vill be opened 
• a pointer "goes" along the file. The pointer shovs on some values. 
• This values vill be read in the program and vill be vritten in 
• some files, like Ydata.dat in ITrap. Finally an array "xyarray" 
• is returned. The entries are {time, voltage}. 
• This subprogram is not very excellent, but it vorks ! 
• If you do some corrections and vrite a better code ....... . 

• ............................................................................. , 
double xyarray[arraylength][2]: 
double y[arraylength]: 
void 
lnAndOutO 

{ 
FILE .datainf •• xinrcf •• yfactorf, .ydataf: 

int device, i. j; 
float xinrc, yfactor. yi; 

char 
char 
char 
char 

xinrcfileO ... "D:/Tmp/linrc.dat" 
yfactorfile[] ... "O:/Tmp/Y.dat"; 
ydatatileO :I "0: /Tmp/Ydata.dat" 
c 

11 printf(OIInAndOutO\n"); 
I. open some files for read in and read out .1 
datainf IS fopen("D:/Tmp/Test.dat". "r+"): 
if (datainf ca IlULLHprintfC"the file testl.dat is not open .. \n");} 

xinrcf Cl fopen(xinrcfile. "v+"); 
if Cdatainf =:I BULLHprintfC"the file xinrc.dat is not open .. \n"):} 

yfactorf Cl fopenCyfactorfile, "V+"): 

if Cdatainf ='111 BULLHprintfC"the file y.dat is not open .. \n");} 

ydatat co fopenCydatafile. "v+OI ); 
if Cdatainf co"" BULLHprintfC"the file ydata.dat is not open .. \n"):} 

I. all files are open, nov some values from the orignal file viII be read 
• and some values viII be vrittan in some files .1 
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,. the xinrc viII be read ., 

fseek (datai.n:f', 51, 0); 
i=O; 
vhile «c a getc(datainf» !a EDF II c !a ',') 

{ 

fprintf (xinrcf. "Xc", c); i ++ ; 
} ; 
fprintf (xinrcf, "\nthis file contains the xinrc"); 

i "" ftoll (xinrc:f) ; 
fseek(xinrcf, -i, 1); 
fscant' (xinrcf. "XE", lxinrc); 

,. the y scale factor (yfactor) viII be read ., 
i=fseek (datainf, 83, 0); 

i=O; 
vhile «c = getc(datainf» != EDF II c !a ',') 

{ 
fprintf (yfactorf, "Xc", c); i++ ; 

}; 
fprintf (yfactorf, "\nthis file contains the yfactorU

); 

i = ftell(yfactorf); 
fseek(yfactorf, -i, 1): 
fscan£ (yfactort. "XE", lyfactor); 

,. read the datas*' 
fseek (datainf, 15, 1); 
vhile ( (cagetc(datainf» !a EDF) 

{ faeek (datainf, -1, 1); 
vhile « c = getc (datainf» !a EOF II c !a ',') 
{ 

fprintf (ydata::t, "Xc", c): 
} 

fprintf (ydataf, "\n"); 

} 

faeek(ydata::t, -:ttell(ydataf), 1); 

i=O; 
vhile (i <a 511) 

{ 

} 

fscan£ (ydata:t, "XE", tyt); 
xyarray(i) (1] a xinrc • i; 
xyarray(i] (2] "" yi • yfactor; 

fseet (ydata:t, 0, 1); 
i++; 

i ., 0; 
vhileCi<=511) 

{ 

} 

y[U • xyarray[i][2] - xyarray[611][2]; 

IIprintf("U\tXE\n", xyarray(i](ll, y(i]); 
i++; 
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fcloseCdatainf ); 
fcloseCxinrcf ); 
fcloseCyfactorf); 
fcloseCydataf ); 

return; 

} 
/ •••••••••••••••••••••••••••• ArraySort ••••••••••••••••••••••••••••••••••••• 

• Deme : ArraySort 
• Arguments : Bone, the global array y[512] is used 
• returns: Bone, the array is reordered 
• Varnings : Bothing know : -) 

• 
• This subprogram gives the y -array a ordering for the 
• Fourier transfrom. Vhy? If the first y-values of the array are 
• a constant Cthe reason is in the triggering) like a line 
• then the FT esp. the Imaginary part is going wrong. 
• This source code is not manual so look in the manual! 

...................................................... ·······················1 
double ft[512]; 
void 
ArraySortO 
{ 

int i, 1; 
//print£C"ArraySortO\n") ; 
i=2; 
vhileCi<=100) 
{ 

if( y(i) > y(i-l) .. 
y(i) > y(i+l) .. 
y[i] ) y[i+2]tt 
y(i) > y(i-2) 
) 

{ 1 = i; 
i = 511; } 

i++; 
} 

// printfC"'Ld\n". 1); 

i = 0; 
vhileCi<=511) 
{ i£Cl<""511) 
£.(i) • y(l); 
else ft[i]" 0.0; 

/Itest 
/I print£C"'LE\tU\n". ft[i] , y[i]); 
h+; 1++; 
} 

/. the £irst points (20) a vere set to 7[0] .. 7[19] == 0 ./ 
return; 
} 
/ ••••••••••••••••••••••••••••••• FourierTransform ••••••••••••••••••••••••••• 

• Bame FourierTransform 
• Arguments vector for the 7-values 
• returns nothing 
• Varnings this is FT vithout a filter Caliasing!) 

• 
• it is a discrete Fourier transform for the input vector invec[512] 
• the output is a vector b[512] vhere b[j] Cj=O ... 511) 

• 
• 
• 
• 

511 
2Pi I k J (1/n) 
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• 
• 
• 
• 

b[j] • 1/sqrt(u) \ a[k] E%p 
1_-
It=O 

• vhere are n = 512 the length 
• in this transformation every point of the curve is used for the 
• b(j]'s, the spectrum. this means 612 • 512 loops per curve. 
• The main (range of interest) part of the spectrum is at the 
• beginning. j .. 2 ... 70, 
• the peaks at the end 450 ... 512 are the same as at the beginning. 
• This is an effect of alaising. skip it! It saves CPU time (expensive!) 
• For further in:t'ormation look in a book! ! 

• ............................................................................. , 
FourierTransform(double invec[S12]) 
{ 
complex ICO,I), b[S12]j 
FILE *spectrua::file; 
double T. Volts. spectrum[100]: 
int i=O, k=O, n=511, m=40j 

Volts = TakeDvmReasurement()j 
T a Temperature(Volts); 
spectrum:tile .. fopenCUD:/Log/Sp.dat", "a+"); 
fprint:f(spectrumfUe. "~E\D", T) j 

for(i=Oj i < mj i++) 
{ 
b[i] • 0, 
for(k=Oj k < Dj k++) 
{ 

b[i] += invec[k] • erp(2.3.1415927.k.i*I/n)j 

} 

b [i] /= sqrt (n) j 
spectrlllD[i] Q abs( b[i] ) j 
fprintf(spectrumfile, "1E\n", spectrum[i]) j 
} 

fcIose(spectrumfile)j 
return OJ} 

/ •••••••••••••••••••••••••• EID OF SUBPROGRAKS ••••••••••••••••••••••••••••• / 
/.#########'######1############################################1#1##1######.I 

/ ••••••••••••••••••••••••••••••• Kill •••••••••••••••••••••••••••••••••••• 
• here is the main routine. WhAt's going on? 
• 1.) it makes an array for temperature [min •........ max] 
• vith a stepsize of your choice 
• then it looks for the temperature or volts 
• if the value in the array+-tolerance then the measurement vUl be run 
• and that's it !!! 
• every value viII be vritten in oil log file 
• see the manual for more usefull information 

• .......................................................................... / 
double T· 
main() 
{ 
FILE .f1; 
double Volts, deItatj 
int i=1, scope. j j 
time_t tl, t2: 
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GreetingsO; 
tl = time(IULL); 
~l = ~open("D:/Log/Tst.dat". 
vhile(i<2) 

"v+") ; 

{ 

T 
Volts = TakeDvmReasnrament(); 
= Temperature(Volts); 

if(T < Tmax) 
{ 

scope 

ibclr(scope); 
t2 = time(UULL); 
deltat = (t2 - tl)/60.00; 
TakeScopePfeasurement(scope. liD: ITmp/Test.d.at"); 
InAndOutO; 
ArraySortO; 
FourierTransform(ft); 
print~("measurement at T = 1E lelvin\n". T); 
print~(IOtim.e = XE miD\n". deltat); 
fprintf(fl. I01E\dE\nlO. deltat. T);} 
else printf(IOVaitiDg "for cooling doVD. .. T =1£ I\n". T); 

if(T < Tmin) i = 2;} 

ibloc(scope) ; 
"fclose (fl) ; 

printf("\n\nprogram. finished\n"); 
printf("Hov vas the tea/coffee?\n\n"); 

return i;} 

I ••••••••••••••••••••••••• HERE IS THE EBD !!!! •••••••••••••••••••••••••• 1 
I ••••••••••••••••••••••••••••••• REALLy •••••••••••••••••••••••••••••••••• , 
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Appendix B 

The Analysis Program 

The Fourier spectra are analysed using a program which is written Mathematica. 
Working with data graphical presentation are is convenient with this computer 
algebra system. 
As worked out above the spectra are Lorentz curves: 

S(w} = Uowo 
J4f32w2 + (w2 - wJ}2 

(B.I) 

This is implemented in a Mathematica program. The data are written in one row 
by the measurement computer: 

Tl 

a l 
1 

a l 
2 

1 a40 (B.2) 
T2 
a2 

1 

2 a40 

Where Tl is the temperature for the first measurement and al ... a!o is the Fourier 
spectrum for this temperature. Due to the use of low frequencies the main peak 
is at the beginning of the spectrum. Therefore the whole spectrum is not needed. 

B.l The Code 

«Statistics 'BonlinearFit , 
DampingFitBev( '_String] :a Rodule[{ T. dat. fitdat. model. sol, 8011ist}, 

dat .. aaadList(A. Table[ Dumber, {41}]]: 
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freqlist 
dampinglist 
intelist 
fitdatlist 
Do[ 

"" 0; 
• 0; 
• 0; 
"" 0; 

ntdat. Tabl.[ {j. dat[[i]][[j])L {j. s. 3S}]; 
AppendTo[fitdatlist, fitdat]; 

model =uo .xO/Sqrt[4 b-2 x-2 + ':l-2-:l0~2)-2]; 

sol =BonlinearRegress[ fitdat, model, x, 
{{UO,11.2}, {b, O.4},{xO, IO.O}}]; 

T "" dat[[i, 1]]; 
AppendTo[ freqlist, {T ,sol[[l,2, 3, 2]]}]; 
AppendTo [ intelist, {T, sol[ [1, 2, 1, 2]]}]; 
.I.ppendTo[ clampinglist, {T, 801[[1,2,2, 2])}], 
{i. 1. L.ngth[ dat], 1 }]; 

Return[ {clampinglist, freqlist, fitd.atlist}] ] 

B.2 Code for Chapter 2 

Wit~in this section the code and a few exapmles for diffusion of magnetic field 
os gIVen. 

,. some functions .) 

muCu a 1 - 9.63 10--6; 
muil a 1 + 2.08 10--5; 
Bz[t_]:a 1; 
innerBField[r_, R_, sigma_, mr_, time_, limit_J = PIodule[ bn, an, coeff, a}. 

:m.::r Read[ "!hollle!8chippan!Vork!Lboro!Contactle8s!DatalZeros.datU); 
an ... Read[ u/home!schippan!Vork!Lboro!Contactless!DatalCoeff.datU]; 

Close [ U!home!schippan!Vork!Lboro!Contactless!DatalZeros. datuJ ; 
Close [ "!home!schippan!Vork!Lboro!Contactless!DatalCoeff. dat U) ; 

a a If[ Ab8[r) < R, 
mr .z[tim.] - S"",[ an[[i]) ••••• U[O. n[[i]] rIB] 

Bz[time].Exp[ - :m.[[i]]-2 !«R 0.001)-2 mr 4 Pi 10--7 sigma) time] • 
{i, 1, limit}], Bz[time]]; 

al; 

:z:n Cl ReacH "!home!schippan!Vork/Lboro!Contactless!Data!Zeros .datoo
) i 

an ::r Read[ "!home!schippan!Vork!Lboro!Contactless!Data!Coeff .dat"); 
Close [ "!home! schippan!Vork!Lboro!Contactless!Data!Zeros. dat U] ; 
C108e( "!home!schippan!Vork!Lboro/contact1oss/Data/Coe:ff.da't"]; 

a a If[ Abs[r] < R, 
Sum[ an[[i]] BesselJ[O, :z:n[[i]] r/R] mr Bz[time) • 

Exp[ - :m[[i]]-:Z !«R 0.001)-2 mr 4 Pi 10--7 sigma).time] • 
{t. 1, limid] , Bz[time] ]; 

al; , ................................. ) 
time Cl 0.0; 
pic1 ... Plot[ innerBField[r, 3, 5.9910-7, muCu, time, 4] 1000, 
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{r. -4. 4}. 
PlotStyle->Red. DiaplayFunction->IdentitY)i 

pic2 a Plot[ innerBField[r. 3, 6.99 10~7. muCu. time. 80] 1000. 
{r. -4. 4}. 
PlotStyle->Blue. PlotPointa->300. 

DiaplayFunction->IdentitY]i 

pic4 Cl Shov[pic1. pic2. 
PlotLabel-> "8 for t=O ". 
Fram.eLabel->{"abs[r) in ram", "B in mT"}. 
Fram.eTicks->{Table[{i. Abs[i)}, {i, -4, 4, 1}], Automatic}, 
PlotRange->{All, {-O.3, 1.2}}, DisplayFunction->$DisplayFunction. 
DefauItFont->{"Courier". 14}]; 
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t 
• • 

About this Report 

The thesis was produced with the typesetting system ~TEX. 
The source code contains 

• 1498 strings 

• 21245 string characters 

• 69741 words 

• 3855 multi-letter control sequences 

• 12791 words of font info for 42 fonts 

The major part of all figures and graphics was produced with the help Mathe
matica 3.0 and imported as POSTSCRIPT. The coil system, the heater figure and 
the infinite cylinder were rendered with the ray-tracing program PovRay 3.0. 
The colour output was printed on a EPSON Stylus Color . 

82 



List of Figures 

1.1 The basic set-up for resistivity measurement . 
1.2 Two point (a) method and the four-point (b) . 
1.3 Electrical Potential for two point contacts .. 
1.4 Field lines and equipotentiallines in a infinite plane. 

2.1 Infinite cylinder ......... . 
2.2 Applied field Bo as a function of t 
2.3 circle of radius R ...... . 
2.4 Bessel functions of O-th order 

3.1 The magnetic field . . . . . 
3.2 The magnetic field for t > 0 
3.3 Different resistivities 
3.4 Copper cylinder ..... . 

4.1 The setup in diagram form. 

5.1 The coil system 
5.2 Silicon diode 
5.3 Heating system 
5.4 The pick up coil system 
5.5 Pick up signal 
5.6 Frequency-spectrum 

6.1 Signal and Spectrum 
6.2 The spectrum for a non-magnetic Sample 
6.3 A non-magnetic SampJe . . . . . . . . . . 
6.4 Signal and Spectrum for magnetic Samples 

7.1 Non-mag. samples Cu, Al and Zn ... 
7.2 Experimental spectrum for Ni2GaMn 
7.3 {! and for Ni 2 MnGa 
7.4 Wo for Ni 2 MnGa ........... . 

83 

10 
11 
12 
13 

20 
21 
25 
27 

33 
34 
35 
36 

39 

42 
44 
46 
47 
50 
52 

55 
56 
57 
58 

59 
62 
63 
63 



Index 

Bessel function, 26 

Acknowledgements, 3 
Analysis program (code), 75 

Bessel function 
zeros, 28 

Coil system, 41 
Conductivity, 17 

Damping, 48 
Data analysis, 54 

Magnetic Samples, 58 
Weakly Magnetic Samples, 56 

Data recording, 47 
Diffusion, 17 
Driver coil, 41 
Driver program (C), 65 

Eigenfrequency, 48 

Fourier Transform, 54 
analytical, 52 
discrete, 54 

Gibbs phenomenon, 33 
GPIB,47 

Heater, 46 

Maximum Principle, 18 
Maxwell equa., 16 

Parameter 
Heating, 46 
temp. control, 44 

84 

Permeabili ty, 17 
Pick up coil, 47 

Magnetic Samples, 53 
spectrum, 52 
Weakly Magnetic Samples, 53 

Radial solution, 25 
Results 

calibration, 59 
magnetic samples, 61 

Separation of Variables, 23 
Set-up, 38 
Simulations 

diffusion, 32 
Samples, 56 

Solution whole, 30 
Steady State, 18 

Temperature measurement, 44 
Theory, 16 



.' 


