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The results of numerical modeling of sonic crystals with resonant array elements are reported. The

investigated resonant elements include plain slotted cylinders as well as their various combinations,

in particular, Russian doll or Matryoshka configurations. The acoustic band structure and transmis-

sion characteristics of such systems have been computed with the use of finite element methods.

The general concept of a locally resonant sonic crystal is proposed that utilizes acoustic resonances

to form additional band gaps that are decoupled from Bragg gaps. An existence of a separate attenu-

ation mechanism associated with the resonant elements that increases performance in the lower fre-

quency regime has been identified. The results show a formation of broad band gaps positioned

significantly below the first Bragg frequency. For low frequency broadband attenuation, a most

optimal configuration is the Matryoshka sonic crystal, where each scattering unit is composed of

multiple concentric slotted cylinders. This system forms numerous gaps in the lower frequency re-

gime, below Bragg bands, while maintaining a reduced crystal size viable for noise barrier technol-

ogy. The finding opens alternative perspectives for the construction of sound barriers in the low

frequency range usually inaccessible by traditional means including conventional sonic crystals.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3643818]

PACS number(s): 43.40.Fz, 43.20.Gp, 43.20.Ks, 43.25.Jh [ANN] Pages: 2746–2755

I. INTRODUCTION

Recent years have seen a growing interest in sonic crys-

tals1,2 and their potential for use as noise barriers with

reported sound attenuation up to 20 dB (Ref. 3) and 25 dB.4

Such crystals usually consist of periodic arrays of a high me-

chanical impedance material (often as cylindrical rods) and

are known to give high attenuation at selective but often

rather narrow frequency bands as a consequence of multiple

scattering phenomena. An advantage of sonic crystal noise

barriers is that by varying the distance between the scatter-

ers, it is possible to attain peaks of attenuation in a selected

frequency range. Further advantages of a sonic crystal bar-

rier in comparison with more traditional solid sound barriers

are its ability to allow light to pass and, uniquely, that it does

not present an obstruction to the free flow of air. The rela-

tionship between the lattice parameter and operating fre-

quency suggests extremely large barriers will be required to

attenuate lower frequency noise such as traffic. Therefore

locally resonant sonic materials (LRSM)5 are better suited

due to their ability to form band gaps decoupled from the pe-

riodicity. However, these band gaps cover a narrow attenua-

tion range and such LRSM are unsuitable for use as a noise

barrier.

We investigate the effects of elastic wave propagation

through a new class of LRSM with multiple acoustic

resonances, capable of broadening the range of attenuation.

The proposed sonic crystal forms broad attenuation bands in

the lower frequency regime and comprises concentric slotted

cylinders. The preliminary results of this work are presented

in Ref. 6. Previously Hu et al.7 constructed a sonic crystal

lens composed of an array of two-dimensional Helmholtz

resonators, which in the long-wave regime was found to

have a high relative acoustic refractive index n and at the

same time, a small acoustic impedance Z mismatch with air

for airborne sound. Furthermore, the wave propagation in a

sonic crystal with Helmholtz resonator defect was studied by

Wu et al.,8 where a Helmholtz resonator is placed as a point

defect of the sonic crystal and exhibits local resonance phe-

nomena. Similar acoustic metamaterials have shown sound

confinement and focusing.9 Movchan et al. investigated the

asymptotic analysis of an eigenvalue problem for the Helm-

holtz operator in a periodic structure involving split-ring res-

onators and associated multistructures where the position of

stop bands was deduced from an asymptotic model.10

In the present paper, an array of the resonant elements

that have broad resonances below the Bragg band gaps have

been studied. In particular, the elements having a shape of

slotted cylinders and their various configurations have been

considered. The interaction between their resonances pro-

duces band gaps and gives rise to phenomena that can lead

to acoustic attenuation. The continuum band of the surround-

ing effective medium interacts with resonance states by

hybridization (mixtures of different waves states) giving rise

to hybridization gaps such as those found in three dimen-

sional solid phononic crystals11 and experimentally in colloi-

dal films.12 The proposed systems have been studied

numerically with the use of finite elements methods (FEM)

as the analytical techniques for calculating the band structure

and transmission become impractical with phononic crystals

of complex geometries. The complicated geometries are dif-

ficult to express by means of elementary functions. Using

FEM, unusual geometries can easily be described, and the

continuous problem can be discretized.13,14 To validate the

numerical analysis, we have replicated the results presented
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by Movchan et al.10 Here calculations of the band structure

are performed using an asymptotic approximation. The mul-

tistructure reported is comprised from two “C”-shaped cav-

ities concentrically arranged. For the dimensions detailed in

Ref. 10, the first two eigenvalues calculated by our FEM

model are found to be x1 ¼ 0:777 and x2 ¼ 1:766. These

are in good agreement with those predicted by the asymp-

totic approximation model thus, confirming the reliability of

the FEM calculations. It should be noted that the asymptotic

analysis does not hold for cavities with large slot widths, as

the approximation of a thin ligament becomes invalid. It is

found that the behavior of resonators with a large slot is best

described by the standard formula for Helmholtz resona-

tors15 even when arranged concentrically.

II. NUMERICAL MODELLING OF RESONANT ARRAYS
WITH THE USE OF FINITE ELEMENT METHOD

A. Eigenvalue analysis

First we consider infinite arrays of solid cylinders. Their

band structures are obtained using the FEM that was devel-

oped in the framework of COMSOL MULTIPHYSICS.16 For a sonic

crystal in a two-dimensional square array, the unit cell (seen

in Fig. 1) is used as a basis for the calculations. The structure

is assumed to be infinite and periodic in the direction x with

the period a1 and in the direction y with the period a2 and

described by two basis vectors: ða1; 0Þ and ð0; a2Þ. Accord-

ing to the Floquet–Bloch theorem, the relation for the pres-

sure distribution p for nodes lying on the boundary of the

unit cell can be expressed as

pð~xþ~a1 þ~a2Þ ¼ pðxÞ exp½iðkxa1 þ kya2Þ�; (1)

where x is the position vector in the unit cell and
~k ¼ ðkx; kyÞ is the Bloch wavevector. Considering the peri-

odic boundary conditions in the preceding text allows the

reduction of the model to a single unit cell. First we apply

boundary conditions of the Neumann type; this is required

on boundaries where pressure p is controlled by a periodic

boundary condition. Next a phase relation is applied in the

boundary of the unit to define boundary conditions between

adjacent units. This phase relation is related to the wavenum-

ber of the incident wave in the periodic structure. The peri-

odic boundary conditions are applied to truncate the two-

dimensional simulation plane in the x and y directions by

reducing the system to one unit cell. An ideal crystal is infin-

itely periodic, hence the periodic boundary condition ensures

that the finite simulation space mimics an infinitely periodic

crystal in the x and y directions. The pressure components at

all edges of the computational domain are relocated by the

periodic boundary conditions to the opposite edges of the do-

main. This enforces the condition that a wave travelling into

the top edge of the computational domain is relocated and

appears outside the computational domain in the bottom per-

iodic boundary condition. Similarly a wave travelling into

the bottom edge of the domain is relocated and appears out-

side the computational domain in the top periodic boundary

condition domain. Similarly this occurs for the left and right

edges of the domain. The cylinder in the unit cell is consid-

ered to be rigid, and therefore the Neumann boundary condi-

tion is applied to its surface. By defining the Bloch

wavevector in the first Brillouin zone, for the CX direction,

kx varied from 0 to p, whilst ky ¼ 0; CM direction ky varied

from 0 to p, while kx ¼ p; and in the XM direction kx and ky

varied from 0 to p. The analysis of the first 10 eigenfrequen-

cies and the corresponding eigenvectors is computed. The

eigenvectors are related to the pressure distribution of the

mode. In this investigation, the infinite sonic crystal is com-

posed of steel cylinders in air, with lattice parameter a¼ 22

mm, radius of steel scatterer r¼ 6.5 mm, and packing frac-

tion f¼ 0.27. Figure 2 displays the characteristic band struc-

ture for this system and is plotted in the three principal

symmetry directions.

The dispersion remains isotropic in the low-frequency

range, following a linear trend c ¼ x=k, where the propagat-

ing wave cannot resolve the fine structure of the cylinders in

the long-wavelength limit. A sonic band gap opens between

the first two bands in the CX direction. It can be seen that to-

ward the edges of the Brillouin zone, the dispersion is no

longer linear with a curving of the bands where, at the edge,

the bands exhibit zero group velocity.

B. Transmission analysis

The finite element method has been utilized to calculate

the pressure field behind a sonic crystal and to generate a

pressure map of the system at fixed frequencies. The COMSOL

MULTIPHYSICS software is adopted to solve the acoustic wave

propagation in the sonic crystals. The equation used to ana-

lyze the acoustic wave problems is expressed as

1

q0c2

@2p

@t2
þr � � 1

q0

rp

� �
¼ 0: (2)

This reduces to a Helmholtz equation for a time harmonic

pressure wave excitation, p ¼ p0eixt,

FIG. 1. Single unit cell of an infinite sonic crystal system with Floquet–

Bloch boundary conditions applied to the borders of the unit cell.
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r � � 1

q0

rp0

� �
� x2p0

q0c2
¼ 0; (3)

where x ¼ 2pf is the angular frequency. By solving Eq. (3),

the pressure field can be obtained.

A two-dimensional sonic crystal system in a 10� 10

square lattice is described in COMSOL MULTIPHYSICS with lat-

tice parameter a¼ 22 mm and cylinder radius r¼ 6.5 mm.

Material parameters for this system are qs¼ 7800 kg m�3,

cs¼ 6100 m s�1, qa¼ 1.25 kg m�3, ca¼ 343 m s�1 where

subscripts denote the air domain and steel scatterers. In the

case of the rigid cylinders in the sonic crystal system, sound-

hard boundary conditions have been applied; i.e., the normal

component of the velocity of the air particles is zero in the

walls of the cylinders. The radiation boundary conditions at

the exterior edges of the rectangular domain are considered

to be perfectly absorbing. In the simulations, a rising tone

noise source at the left edge of the domain, from 0 to 30 000

Hz, is modeled as a radiation condition with pressure source

set to 1 Pa, which is equivalent to a 90 dB source. For the

numerical simulation, we use a triangular mesh of approxi-

mately 106 elements, with at least 10 elements per wave-

length to solve the wave equation across the domain.

The illustrated pressure maps are taken at 4000 Hz (pre

Bragg band gap formation), 8000 Hz (in the center of the

band gap), and 12 000 Hz (after Bragg band gap formation) as

shown in Fig. 3. The pressure map taken pre band gap forma-

tion demonstrates that at low frequencies the sonic crystal

system behaves as a homogeneous material and acoustic

wave propagation is unaffected by the periodic structure. This

is due to the lattice parameter being much smaller than the

relevant wavelength. The pressure map at 8000 Hz, in

the center of the band gap shows band gap formation with the

wavelength of the incoming acoustic wave comparable to

the lattice parameter. The acoustic wave is severely attenuated

due to multiple scattering effects and a shadow zone is formed

behind the sonic crystal. At 12 000 Hz, post band gap

formation, the wavelength of the acoustic wave is smaller

than that of the lattice parameter of the sonic crystal system.

The wave is free to propagate through the sonic crystal system

as the plane wave cannot resolve the individual scatterers.

By solving for a parametric sweep of frequency, a fre-

quency spectrum displaying the attenuation properties of the

sonic crystal can be constructed. A comparison of the

FIG. 2. Finite element computed band structure for a sonic crystal consist-

ing of steel scatterers embedded in air (r¼ 6.5 mm, a¼ 22 mm). Inset: Bril-

louin zone. CX refers to the [1 0] direction, and CM the [1 1] direction,

while XM refers to the wavevector varying from [1 0] to [1 1] on the side of

the Brillouin zone.

FIG. 3. (Color online) Finite element computed pressure maps for solid

steel cylinders in air taken at three frequencies: 4000, 8000, and 12 000 Hz.

FIG. 4. A comparison of finite element computed band structure in the CX
direction against the finite element computed frequency spectra for sound

pressure level for conventional sonic crystal.
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transmission spectrum from 0 to 30 000 Hz against the com-

puted band structure, limiting the study to the CX direction

can be seen in Fig. 4. The finite element transmission calcu-

lations give band gaps of larger width than those predicted

by the band structure. This difference can be attributed to the

finite number of scatterers used in the transmission simula-

tions and the subsequent diffraction effects around the edges

of the sonic crystal structure. The overall position of the

band gaps are in good agreement with those of the band

structure calculations.

III. C-SHAPED LOCALLY RESONANT SONIC
CRYSTAL

The conventional sonic crystal modeled with solid scat-

tering inclusions forms band gaps solely due to the periodicity

in agreement with theory and our experiments.6 To operate

below this Bragg gap, we now investigate a design of a locally

resonant sonic crystal (LRSC), which is an array of slotted

cylinders. An advantage of using COMSOL MULTIPHYSICS to com-

pute the acoustic band structure is the capability of modeling

more complex scatterer geometries. Similar to the conven-

tional sonic crystal system modeled previously, periodic

boundary conditions have been employed, see Fig. 5.

Again, by varying the wavevector in the first Brillouin

zone for the first 10 eigenvalues, the band structure can be

constructed, see Fig. 6. The figure gives the computed band

structure of a two-dimensional sonic crystal, comprising

slotted tubes with inner radius 5 mm, external radius 6.5

mm, and slot width 4 mm arranged in a square lattice in air.

The period is 22 mm. We call each resonating inclusion a

C-shaped resonator.

We note the appearance of a flat band in the band struc-

ture (Fig. 6). Modes associated with a flat band should have

a group velocity equal to zero and exhibit strong spatial

localization. In practice, such localized modes are often cre-

ated by inserting a defect in a periodic structure, i.e., creating

a cavity.8 It is clear that the acoustic resonance owing to the

C-shaped inclusions leads to the appearance of this flat band,

forming a complete acoustic band gap that is induced by the

local acoustic resonance of each individual scatterer. The

slotted tubes act analogous to Helmholtz resonators and all

have the same resonance frequency, predicted by a modified

resonator equation (Ref. 15) fres¼ 4840 Hz. The combined

action of the resonators induces the degenerate state to form

a band gap symmetrically around fres spanning 4190–5190

Hz, centered at 4690 Hz.

Due to the periodicity of the C-shaped LRSC, the struc-

ture still exhibits Bragg band gaps in the CX, the first of which

spans 6410–8550 Hz. A further three Bragg bands are present

due to the fulfillment of the Bragg condition located at

12 525–14 135 Hz, 15 400–17 210 Hz, and 21 050–22 140 Hz.

The introduction of the extra, flat resonance band could lead

to the construction of viable acoustic barriers in the low fre-

quency regime, which offer sound attenuation in all crystal

lattice planes. The flat band (originating from the localized

acoustic resonance seen in the band structure) is a large anti-

crossing gap; this is generally referred to as a hybridization

gap in the context of sonic crystals.11

FE transmission simulations are implemented for the C-

shaped LRSC. Similar boundary conditions have been

applied as for the conventional sonic crystal investigation.

Effectively this new system is a duplicate of the conven-

tional sonic crystal system detailed in the preceding text but

with the inclusion of a slot to create a resonant cavity.

Computed pressure maps, taken at four frequencies of in-

terest, demonstrate the propagation of an acoustic plane wave

through the C-shaped LRSC. Similar to the conventional

sonic crystal, at frequencies below the active frequency (3 000

Hz), the incoming wave propagates as if the system was a ho-

mogeneous medium. At 4850 Hz, the computed pressure map

shows that the C-shaped LRSC attenuates the wave in this

region. The pressure map, see Fig. 7, indicates that regions of

maximum pressure are localized to the inclusions at the reso-

nance frequency. Above the resonant frequency around 6500

Hz, the acoustic wave is free to propagate through the system.

As we approach the Bragg band gap frequency of 9000 Hz,
FIG. 5. Unit cell for a C-shaped locally resonant sonic crystal with Floquet–

Bloch boundary conditions described.

FIG. 6. Finite element computed band structure for a C-shaped locally reso-

nant sonic crystal.
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again we see the appearance of band gap attenuation. Looking

at the pressure maps, it becomes apparent that the two regions

of attenuation are controlled by two different mechanisms;

resonance and Bragg scattering.

In the transmission spectrum, see Fig. 8, additional

attenuation peaks can be observed (�20 000 Hz). If we com-

pare the location of these peaks with the computed band struc-

ture, the peaks can be attributed to anticrossing regions

present in the band structure. In general, such gaps originate

from level repulsion when two bands of the same symmetry

avoid crossing each other. The appearance of these anticross-

ing regions are beyond the scope of this investigation but

should be investigated further to enhance the performance of

the “C”-shaped LRSC. The reader is directed toward a semi-

nal paper by Wu et al.17 detailing this phenomenological

effect. The physical origin of these anticrossing gaps is differ-

ent when compared with those induced by the acoustic reso-

nance. The flat band (hybridization gap) originating from the

acoustic resonance of the C-shape scatterer and regions corre-

sponding to the anticrossing gaps that are formed due to the

longitudinal displacement field in the homogeneous effective

medium.11 The narrowness of the anticrossing gaps indicate

that they are much weaker. The hybridization discussed is

analogous to s-d hybridization in the energy band structure of

transition metals, see, for example, Harrison.18

IV. MATRYOSHKA SONIC CRYSTAL

The C-shaped tubes act as acoustic resonators that give

rise to a single flat band that extends across all high symmetry

directions and is located below the Bragg gap. Its position is

dependent upon the cavity dimensions and is independent of

the sonic crystal periodicity. For practical applications of

sonic crystals as noise barriers, it is desirable to be able to

broaden the width of this resonance gap. One method to

achieve this is to include multiple resonator sizes and

“overlap” the individual resonance peaks. We have investi-

gated mixed arrays that display this ability;6 however, to save

space and reduce the overall barrier thickness, we now pro-

pose a design of sonic crystal with resonators placed concen-

trically inside one another, extending the multistructure

describe by Movchan et al.10 We coin this the Matryoshka

(Russian doll) configuration. Specifically we investigate a

FIG. 7. (Color online) Finite element computed pressure level maps for a

C-shaped locally resonant sonic crystal at 3000, 4850, 9000, and 11 000 Hz.

FIG. 8. A comparison between finite element computed band structure and

finite element transmission simulation for a C-shaped locally resonant sonic

crystal.

FIG. 9. Schematic of the unit cell used in band structure calculations for the

six concentric Matryoshka system.
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Matryoshka sonic crystal the unit cell of which is defined with

six concentric C-shaped resonators, all tuned to frequencies

that lie within 200 Hz of each other in the low frequency re-

gime. This is achieved by increasing the dimensions of the

resonating inclusions and lattice parameter (see Fig. 9).

Applying periodic boundary conditions, to replicate an

infinite array of these Matryoshka inclusions in a square

array with lattice parameter a¼ 15.5 mm, the acoustic band

structure can be computed. The dimensions of each C-

shaped resonator are designed so that they can be placed

concentrically inside each other. The largest C-shaped reso-

nator has an external diameter¼ 132 mm and an internal

diameter¼ 109 mm with a slot width 31 mm. Subsequent

concentric resonators have a scale factor of 1=1:3, giving the

smallest of the nested resonators an external diameter¼ 22.5

mm and an internal diameter¼ 14.1 mm with a slot width

11.3 mm. Figure 10 presents the finite element computed

band structure in all high symmetry directions.

The band structure has been computed in the low fre-

quency regime < 2000 Hz, corresponding to the first 13

eigenvalues, by varying the wave vector in the first Brillouin

zone. It can be seen that a Matryoshka system, with many

individual resonating units, induces the formation of multi-

ple band gaps. Due to the periodic nature of these inclusions,

this sonic crystal system possesses the characteristic Bragg

band gaps, although it is hard to identify which bands are

attributed to the separate band gap formation mechanisms

from the band structure alone. A conventional sonic crystal

system with a lattice parameter a¼ 15.5 mm should possess

a Bragg band gap around 1120–1360 Hz, therefore the other

band gaps present in the band structure must be caused by

the acoustic resonance of each C-shaped inclusion. It can be

seen that the induced resonance band gaps are complete

acoustic band gaps, inhibiting wave propagation across all

lattice planes without the need for a large packing fraction as

found with the characteristic Bragg band gap.

For completeness, finite element methods have been

employed to obtain a transmission spectrum for this array,

see Fig. 12. A 10 � 10 array of the Matryoshka inclusions

(each containing six concentric C-shaped resonators) is

described in COMSOL. The spectrum extends to 2000 Hz and

FIG. 10. (Color online) Finite element computed band structure for the six

concentric Matryoshka system. (A) to (D) correspond to the eigenmode

pressure distribution in Fig. 11.

FIG. 11. (Color online) Finite ele-

ment computed eigenmode pressure

distribution: (A) indicating individ-

ual resonance of largest resonator,

(B) second largest resonator, (C)

multiple harmonic resonance of larg-

est resonator, and (D) propagating

mode, indicating a Bragg gap edge.
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demonstrates the appearance of multiple regions of attenua-

tion, owing to the individual resonances of the six C-shaped

resonators as well as a Bragg band gap. The first attenuation

band is caused by the individual resonance of the largest di-

ameter resonating inclusion, spanning 400–600 Hz. Five

more regions of attenuation can be seen spanning, 600–740

Hz, 740–880 Hz, 880–1120 Hz, 1120–1360 Hz, and

1360–1500 Hz.

The fact that we have large slot sizes that are aligned

concentrically with the same orientation means that the as-

ymptotic model in Ref. 10 does not hold for our alternative

structure. We can use a modified Helmholtz resonator equa-

tion (Ref. 15) to predict the location of each resonance gap

attributed to the different sized inclusion. A comparison of

the band gap locations from finite element computation to

the modified Helmholtz resonantor equation can be seen in

Table I showing good agreement.

Figure 11 presents the corresponding eigenmode pres-

sure diagrams computed for the first two bands [Figs. 11(A)

and 11(B), respectively]. It can be seen that each individual

resonator experiences an increase in pressure inside the cav-

ity, caused by the acoustic resonance of each C-shaped

inclusion. It should be noted that multiple harmonic reso-

nance gaps are formed [shown in Fig. 11(C)] and induce the

formation of extra gaps in the band structure. We can con-

firm the existence of a Bragg gap by again studying the

eigenmode pressure distribution [Fig. 11(D)]. It is clear to

see that this band is attributed to a propagated mode. This

allows us to confirm the band gap formation mechanism, ei-

ther resonance or Bragg, that is responsible for each region

of attenuation present in the frequency spectrum.

For comparison, Fig. 12 shows both the finite element

computed band structure, limited to the CX direction, and the

computed frequency spectrum. The frequencies at which the

band gaps occur in the band structure are in good agreement

with the regions of attenuation present in the transmission

spectrum. A small attenuation band is present in the transmis-

sion spectrum at around 1700 Hz. At the corresponding fre-

quency in the band structure, an anticrossing region appears,

induced by the level repulsion effect. Because the resonances

are very close in frequency to the frequency that satisfies the

Bragg condition, the two band gap regimes appear to overlap

in this Matryoshka sonic crystal. Resonance scattering occur-

ring in the same frequency range as Bragg scattering favors

the formation of broad band gaps.

V. CONCLUSION

The proposed Matryoshka sonic crystal offers a viable so-

lution to overcome the inherent dependence on spacing experi-

enced with conventional sonic crystal designs. It has been

discovered that such systems can form multiple resonance

band gaps in the lower frequency region below that of Bragg

formation. These resonance bands can be combined to form

broad regions of attenuation either by selecting close acoustic

resonances or further by tuning the structure to combine the

characteristic Bragg band gap with the resonance band gaps.

The proposed six shell Matryoshka design is particularly

suited for noise barrier applications. Although road traffic

noise is essentially broad band in nature (due to a large num-

ber of very different vehicles that move at different veloc-

ities), it often has a defined maximum frequency. A study by

Sandberg19 found that a multi-coincidence peak in the tyre-

noise spectra is observed around 1000 Hz. The simulation

results obtained using a six shell concentric Matryoshka sys-

tem demonstrates the active frequency range spans 400–1600

Hz, providing decent levels of attenuation across this range.

Moreover, the experimental results provided for the single C-

shaped locally resonant sonic crystal,6 offer �25 dB of

attenuation for applications as a noise attenuation solution.
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APPENDIX: PLANE WAVE EXPANSION METHOD

The plane wave expansion (PWE) method is a commonly

utilized numerical technique to calculate the band structures

for phononic crystals.20,21 The PWE method can be applied to

TABLE I. Band gap location in comparison with Helmholtz predicted

resonances.

Band Number FEM Eigenfrequency (Hz) Helmholtz Eq. (Hz)

1 550.8 546.1

2 674.8 707.3

3 828.9 925.5

4 1051.5 Bragg

5 1096.6 1092.2

6 1263.5 1201.1

7 1424.1 1414.5

8 1546.0 1502.8

9 1686.8 1638.2

10 1850.2 Bragg

11 1857.5 1851.9

12 2106.7 2111.5

FIG. 12. A comparison of the finite element computed band structure with

the finite element computed frequency spectrum for a six concentric

Matryoshka system.
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a phononic crystal with any solid scatterer but only infinite

arrays can be modeled. The main technique of PWE is to

expand the system parameter functions (density, speeds) and

wavefunctions by plane waves in the wave equation in Fourier

series.22 An infinite periodic array of scatterers can be mod-

eled by applying the Floquet–Bloch theorem to the PWE.

The wave equation is

r � 1

qð~rÞrpð~rÞ
� �

þ x2

qð~rÞc2ð~rÞ pð
~rÞ ¼ 0; (A1)

where qð~rÞ and cð~rÞ are the mass density and the sound

speed, respectively; both are modulated by the periodic

structures.

We can rewrite the wave equation with a definition of a

scalar potential Uð~r; tÞ such that q~u ¼ rU:

1

qc2
l

@2U
@t2
¼ r � ðq�1rUÞ; (A2)

where 1=qc2
l is the longitudinal elastic constant.

According to Bloch’s theorem, the solution of the sound

pressure field has the Bloch form:

pð~rÞ ¼ eið~kÞ�ð~rÞ�xt
X
ð~GÞ

/~kð~GÞeið~GÞ�ð~rÞ; (A3)

where ð~kÞ is termed the Bloch wavevector, ð~GÞ is the recip-

rocal lattice vector. The summation is made for all possible

reciprocal vectors.

For periodic structures, both q�1 and ðqc2Þ�1
in the

wave equation can be expanded by discrete plane waves as

follows:

1

qð~rÞ ¼
X
ð~GÞ

rð~GÞeið~GÞ�ð~rÞ; (A4)

1

qð~rÞc2ð~rÞ pð
~rÞ ¼

X
ð~GÞ

gð~GÞeið~GÞ�ð~rÞ: (A5)

As qð~rÞ and cð~rÞ are known parameters, both rð~GÞ and gð~GÞ
can be determined from an inverse Fourier transform.

Substituting the Bloch form and the expanded wave

equation back into the initial wave equation gives

�
X
ð~GÞ

rðð~GÞ � ð~G0ÞÞðð~kÞ þ ð~GÞÞ � ðð~kÞ þ ð~G0ÞÞ
�

�gðð~GÞ � ð~G0ÞÞx2
�
rð~kÞð~G0Þ ¼ 0: (A6)

Using a finite number M of Fourier components in the expan-

sion, an appropriate M �M matrix equation, C can be solved:

X
ð~G0Þ

Cð~GÞ;ð~G0Þ/~kð~G
0Þ ¼ 0: (A7)

The secular equation

� det Cð~GÞ;ð~G0Þ

h i
¼ det rðð~GÞ � ð~G0ÞÞðð~kÞ

�
þð~GÞÞ � gðð~GÞ � ð~G0ÞÞx2

�
ð~GÞ;ð~G0Þ¼ 0 (A8)

gives the dispersion relation between the frequency xðkÞ and

the wavevector ~k.22

For a two-dimensional phononic crystal system with a

square lattice geometry, we have to define some variable in

the PWE method. For such a system the cylinder material

has density qa and it occupies a fraction f of the background

material with density qb. Then,

qð~GÞ¼
q�1

a f þq�1
b ð1� f Þ�q�1; ~G¼0;

ðq�1
a �q�1

b ÞFð~GÞ�Dq�1Fð~GÞ; ~G 6¼0;

(
(A9)

f ð~GÞ ¼ A�1
c

ð
d2reð�i ~G�rÞ: (A10)

The system comprises elastic rods with circular cross-section

embedded in air. Because the system has circular scatterers

the structure factor is defined in the PWE method as

Fð~GÞ ¼ 2fJ1ðGr0Þ=ðGr0Þ; (A11)

where J1 is the Bessel function of the first kind. The square

lattice configuration has a reciprocal lattice vector defined in

the PWE method as

~G ¼ 2p
a

� �
ðnxxþ nyyÞ: (A12)

A periodic lattice of steel cylinders in an air background is

one of the most studied phononic crystal configurations, so

this is a good basis to start from. For such a system, because

the density contrast of steel and air qs=qa is very large, the

shear stress and transverse waves inside the steel cylinders

will not make a significant contribution to the scattering of the

acoustic waves in the air background. consequently the scaler

acoustic wave equation is adequate to describe the scattering

events of pressure waves at the steel cylinder interfaces, there-

fore the PWE method is sufficient for this system.

The eigenvalue problem is obtained by computing an

acoustic wave equation with pressure to obtain the corre-

sponding band structure of this system. The integers nx and ny

were permitted to take values between �10 and þ10, provid-

ing 441 plane waves. This resulted in a good convergence.

A. Conventional phononic crystal

A conventional phononic crystal system comprising cir-

cular steel cylinders embedded in air, with lattice parameter

22 mm and a scatterer radius 6.5 mm, is described in the

density and shape functions in the PWE method. The disper-

sion relation is obtained by plotting frequency against the

reduced wavevector. This will indicate any regions where

TABLE II. PWE material parameters for a phononic crystal system com-

prising steel scatterers embedded in air.

Material Density (kg m�3) Velocity of sound (ms�1)

Steel 7800 6100

Air 1.2 343
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band gaps exist. The PWE material parameters are described

in Table II. When coherent scattering occurs from equally

spaced layers in a phononic crystal, the band gap opens up

close to the first branch folding, i.e., at the border of the first

Brillouin zone kBZ ¼ p=a. The dispersion in the vicinity of

the band gap will be modified, but the center frequency of

the band gap is approximately given by assuming linear dis-

persion and using kBZ:

x ¼ vkBZ ¼ v
p
a
; (A13)

which can be rearranged to give a simple relation to the cen-

ter frequency of a Bragg band gap:

fc ¼
v

2a
¼ 343

2� 0:022
¼ 7795 6 20 Hz: (A14)

Figure 13 shows the band structure (markers) for a pho-

nonic crystal system with a filling fraction of f¼ 0.274.

The shading in the figure indicates areas where band gaps

are present. The inset in the figure is the first Brillouin

zone. CX refers to the [1 0] direction, and CM the [1 1]

direction, while XM refers to the wavevector varying from

[1 0] to [1 1] on the side of the Brillouin zone. It can be

seen that toward the edges of the Brillouin zone that the

dispersion is no longer linear with a curving of the bands

and an opening of a band gap in the CX direction with the

first band gap extending from 5525 to 9125 Hz, centered at

7325 Hz. An acoustic band gap can be observed due to the

low packing fraction, a complete acoustic band gap is not

formed in all directions. Four additional band gaps are

present in the first 10 eigenvalues (bands), the second span-

ning 12 950–15 000 Hz, centered at 13 975 Hz, third span-

ning 16 525–18 500 Hz, centered at 17 513 Hz, and last

20 550–23 250 Hz, centered at 21 900 Hz. This is in excel-

lent agreement with the results obtained by FEM shown in

Fig. 13 (solid lines). Finally, using the finite element

method, the band structure for multistructure described by

Movchan et al. in Ref. 10 can be seen in Fig. 14, showing

good agreement with calculated frequencies of the local-

ized standing waves.
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