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1.  Introduction 

 
Protective clothing is worn in many industrial and military situations. 

Although worn for protection from one or more hazards, the clothing can 

have secondary effects which may limit the ability of the worker to perform 

the tasks required of the job. As demonstrated in the previous chapter, 

increases in energy consumption of 10 to 20 % are not uncommon. A small 

number of other results in this range have been reported in the literature 

along with suggestions that the additional clothing weight of the protective 

garments may be contributing to the observed increases. However, despite 

these proposals little investigation has been undertaken. In the previous 

chapter a plot of the percentage increases in metabolic rate in relation to the 

garment weight, fitted with a linear regression line resulted in a 2.7 % 

increase in metabolic rate per kg of clothing weight, which is considerably 

higher than would be predicted for carrying load.  

 

1.1  Previous research 

 
A number of studies have shown that various protective clothing ensembles 

increase the metabolic cost of walking and stepping by adding weight 

(Teitlebaum and Goldman 1972, Duggan 1988, Patton et al. 1995). Murphy 

et al. (2001) also cited the additional weight and bulkiness of chemical 

protective clothing contributing to performance degradation in stationary, 

intermittent and continuous tasks, when wearing chemical protective 

clothing (CPC) weighing 9.3 kg compared to standard battledress uniform 
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(BDU) weighing 3.7 kg. They report the difference in energy cost between 

the CPC and BDU was significantly higher in the continuous tasks. Even 

after normalising VO2 for clothing weight, the differences between the 

garments for the continuous tasks was still significant. The CPC garment 

had little impact on the tasks of a stationary or intermittent nature. Nunneley 

(1989) also commented on the fact that the effect of added weight on work 

load depends in part upon the task, citing the example of a heavy suit 

posing little problem for a stationary worker but presenting a severe 

handicap for a firefighter climbing a ladder or stairwell. 

 

Experimental studies have demonstrated that the metabolic cost of walking, 

without external load, is linearly related to the weight of the body (Goldman 

and Iampietro 1962; Givoni and Goldman 1971). When dressed in protective 

clothing the energy cost of walking is dependent on various aspects; weight, 

number of layers and motion restriction (Lotens 1982). Heavy fabrics will 

show their impact in several ways. The weight of the garment has to be 

carried and increases the energy cost. With clothing it is obvious that some 

weight is moved out on to the extremities towards the hands and feet 

(Lotens 1988b). Soule and Goldman (1969) have demonstrated that the 

metabolic cost of load carriage increases when the load is placed in the 

hands or on the feet, i.e. away from the centre of gravity of the body. Weight 

on the extremities of the body has to be accelerated and decelerated at 

every step, causing an even higher increase in energy cost. As Nunneley 

(1989) suggests, the increased metabolism when weight is carried on the 

legs and feet is probably due to the cyclic up-and-down displacement of the 

lower limbs, which produces internal heat without measurable external work.  

 

In the Soule and Goldman study (1969) they used 20 minutes of treadmill 

walking at 4, 4.8 and 5.6 km/hr. Subjects carried 1) no load, 2) 4 or 3) 7 kg 

on each hand, 4) 6 kg on each foot or 5) 14 kg on the head. The energy cost 

(expressed as millilitres of oxygen per minute per kg of total weight 

(man+clothing+load)) of carrying the load on the hands at 4 and 4.8 km/hr 

was 1.4 times the expected cost per kg of the no load condition for the 4 kg 
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condition and 1.9 times for the 7 kg condition. At 5.6 km/hr the cost per 

kilogram of the 4 and 7 kg loads on the hands was 1.9 times higher. The 

cost expressed per kg of load carried on the feet was 4.2 times higher at 4 

km/hr, 5.8 times at 4.8 km/hr and 6.3 times at 5.6 km/hr (Soule and 

Goldman 1969). Soule and Goldman (1969) note that loads 3), 4) and 5) 

represented a maximum for their subjects. Overall the loads used in their 

study are unrealistic in relation to clothing weights. However it is important to 

remember this study was carried out 35 years ago and there had been no 

careful comparison of the energy costs of carrying weights on the head, 

hands and feet. The authors describe developments in wrist / helmet radios, 

and helmet-suspended binoculars which explains the loads and sites they 

studied (Soule and Goldman 1969). 

 

In the sports science literature a number of studies have looked at the 

aerobic responses of walking and running with hand, wrist and ankle 

weights, including Francis and Hoobler (1986), Auble et al. (1987), Graves 

et al. (1988) and Claremont and Hall (1988). However research findings 

regarding the effects of handweights are mixed. There are ambiguous 

findings due to variations in the combinations of walking or running speed 

and handweight used. The magnitude of the effect of handweights on the 

energy costs of exercise are most closely related to variations in arm 

movement patterns. 

 

Clothing and other protective garments decrease performance due to their 

weight, bulkiness and friction. Clothing can therefore impair manual 

dexterity, decrease the range of movements and increase energetic costs of 

work. Each additional kg in clothing weight increases energy costs by 

approximately 2.7 % (previous chapter) to 3 % (Rintamaki 2005). Increased 

energy costs are associated with a decrease in physical performance, which 

is often task specific, and roughly equal to the changes in energy costs. The 

decrement in performance can be minimised by decreasing clothing weight 

and bulkiness (Rintamaki 2005).  
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For the military, one of the most relevant aspects of clothing is the 

decrement in performance but many of the trials that have tried to 

investigate these issues have done so in very artificial environments (Lotens 

1988a). However, in general, tests show a dependency of performance on 

clothing / load weight and a strong correlation between performance 

decrement and increased energy cost (Lotens 1988a).   

 

In summary, there has been very little investigation of the effects of load / 

weight distribution on energy cost, since Soule and Goldman highlighted the 

issue in their paper in 1969. However the loads employed in their study 

were extreme and planned to represent the weight of wrist and helmet 

mounted equipment rather than clothing.  

 

1.2  Aims  

 
The purpose of this trial, was to look at the effects of carrying more realistic 

simulated clothing weight distributions close to the body centre of gravity 

(using a weight belt) and at the extremities (weights worn around the wrists 

and ankles). The metabolic rate was measured as participants walked, 

stepped and completed an obstacle course.  

 

Therefore the aims of this study are; 

 To investigate the energy cost of carrying simulated clothing weight 

on combinations of the ankles, wrists and waist with the hypothesis 

that the further away from the body core the weight is positioned, the 

higher the resulting energy cost during work. The most expensive 

position for the weight in terms of energy cost is expected to be the 

ankles, followed by the wrists and then the waist. 

 To investigate the effect of carrying the simulated clothing weights 

during different work modes, for example walking and completing an 

obstacle course. The hypothesis is that the energy cost of the 

extremity weight conditions (ankles and wrists) will be higher in 

activities requiring greater ranges of movement of the limbs 
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supporting the weight, in this case the obstacle course compared to 

walking. 
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2.  Methods 

 

2.1  Participants 

 
Eight participants (4 male, 4 female) completed the trial. They were all 

volunteers drawn from the student population at Loughborough University. 

Their physical characteristics are detailed in Table 2.1 below. 

 

Table 2.1. Participant details. 

Participant no. Gender Age Height Weight 

  M / F years cm kg 

1 F 29.6 168 57 

2 M 18.8 183 106 

3 F 26.8 150 59 

4 F 21.9 171 59 

5 M 21.0 171 63 

6 M 24.3 180 67 

7 M 21.6 180 75 

8 F 25.3 172 70 

Average + SD   23.7 + 3.5 171.9 + 10.4 69.5 + 16.0 

 

Participants were made fully aware in writing of all experimental details 

(including time demands, measurements to be taken, protocol and all other 

procedures). Before participating each participant was required to complete 

an ‘Informed Consent’ form and a ‘Generic Health Screen for Study 

Volunteers’ which provided information on their general health and fitness. 

 

2.2  Weight simulations 

 
For the waist the weight simulations were achieved using a simple diving 

belt and diving weights (Tribord, Decathlon). As it was easy to alter the 

weight, the weights could be positioned and taped in such a way that they 

did not move about and it was a comfortable fit around the waist. An army 

webbing system was also trialled however some of the weight carried in that 

way is supported by the shoulders and the webbing pouches were too bulky 

and got in the way during the crawling and bending phases of the obstacle 

course. 
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11 weight conditions were defined for the study. Weights of 2, 4, 6, 8, 10 kg 

were carried around the waist. 1 and 2 kg weights with velcro fastenings 

(Domyos, Decathlon) were carried around the ankles and wrists, the 

conditions being ankles 2 (1 kg on each ankle), ankles 4 (2 kg on each 

ankle), wrists 2 (1 kg on each wrist), wrists 4 (2 kg on each wrist), 

ankles/wrists 4 (1 kg on each ankle and wrist) and ankles/wrists 8 (2 kg on 

each ankle and wrist). For all conditions including the control (unweighted 

condition) participants wore lightweight tracksuit trousers and a sweatshirt 

which were provided, and their own trainers. See Figure 2.1 for photographs 

of the weight distributions. 

 

2.3  Work modes 

 
Participants completed 2 work modes for each condition. They were 

required to walk on a treadmill (h/p/cosmos mercury, Germany) for 4 

minutes set at a speed of 5 km/hr, then complete 6 minutes of an obstacle 

course circuit. The circuit included moving crates containing 5 kg, walking 

over some steps, ducking and crawling under a hurdle and stepping over 

another hurdle. This was repeated for 6 minutes with participants speed 

controlled by a metronome and verbal counting. Photographs and 

descriptions of the work modes are provided in Chapter 2 (Methodology). 

 

2.4  Floor plan and details  

 
A detailed floor plan for the obstacle course is included in Figure 2.2 with the 

shapes described in Chapter 2 (Methodology). As previously explained 

participants completed the obstacle course circuit continuously for 6 

minutes. The arrows show the direction of movement, following the white 

arrows first, participants moved the crates between the tables and floor as 

detailed in Table 2.3 in Chapter 2, they then stepped over the two stage 

step, stepped over a low hurdle, crawled under the high hurdle and touched 

the wall. The black arrows now show that they passed back under the high 

hurdle, over the low hurdle and the two stage step before walking back to 

the start. 
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Wrist weights      Ankle weights       Ankle and wrist weights 

  
Waist weights (front view)       Waist weights (back view) 

 

Figure 2.1. Photographs of the weight distributions used. 
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Figure 2.2. Floor plan for the obstacle course completed. A key for the shapes used 
can be found in Table 2.3, Equipment section, Chapter 2. For extra explanation of 
boxes with dashed lines, see detailed task descriptions in Table 2.3, Equipment 
section, Chapter 2, including photographs.  
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2.5  Experimental design 

 
The experiment was a within-subjects design with each participant acting as 

their own control. Three weight conditions could be completed with a control 

in each session. To prevent order effects a Latin Square was generated to 

assign the order of the weight simulations for each participant (control 

included in Latin Square).  

 

2.6  Procedure 

 
The general health and fitness of participants was checked when they 

arrived at the laboratory before each session. Participants were shown the 

obstacle course and the route was described and demonstrated to them, 

they also had a chance to practice before they started. When wearing the 

ankle and wrist weights participants were instructed to try and retain a 

normal gait and arm swing.  

 

They were provided with the clothing and given time to dress and put on the 

heart rate monitor. They were then prepared for the first weight condition 

with the diving belt around the waist or wrist / ankle weights secured around 

the wrists / ankles.  

 

They were instrumented with the MetaMax and instructed to sit at rest, data 

collection was started. Following a 5 minute seated rest, participants 

completed the first work mode (walking on a treadmill at 5 km/hr) which 

lasted 4 minutes, followed by 6 minutes of the obstacle course, moving 

crates, and going over and under hurdles. They were always asked for their 

Rate of Perceived Exertion (RPE) score in the final minute of the work 

periods. Participants then had 10 minutes of seated rest before the next 

condition. Three weight conditions and a control were completed in each 

session. 
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3.  Results 

 

3.1  Participants and environment 

 
8 participants (4 males, 4 females, age 23.7+3.5 years, height 171.9+10.4 

cm, weight 69.5+16 kg) completed the test for 11 weight conditions. The 

average environmental conditions for the room were 17.9+0.1 oC and 43+2 

% relative humidity.  

 

3.2  Absolute results 

 
The absolute values for all the weight conditions for walking and the 

obstacle course are shown in Tables 3.1 and 3.2 respectively. For each 

condition average and standard deviations are given for heart rate, oxygen 

consumption (VO2), respiratory exchange ratio (RER) and metabolic rate. 

The averages and standard deviations are for each condition are based on 

the final 2 minutes of steady state data from each of the 8 participants. 

 

The figures in the tables are not the same as those that will be seen in 

subsequent graphs. The figures in the tables are an average of, for example 

the metabolic rate of all participants when walking with 4 kg on the wrists. 

However the figures in the graphs take account of the control conditions, 

and are based on an average of each participants % increase data (which is 

derived from comparing the weight condition to the control condition of the 

same experimental session).The graph data is included in Appendix 3. 

 

Table 3.1. Absolute results when walking at 5 km/hr for control and 11 weight 
conditions. 
 

WALK   Heart Rate VO2 RER Met Rate Met Rate  

   [bpm] [l/min]   [W] [W/m2] 

control ave 97 0.89 0.87 303.4 167.2 
  SD 10 0.18 0.08 58.4 23.7 
waist 2 ave 97 0.89 0.85 299.7 165.7 
  SD 13 0.16 0.08 54.3 23.4 
waist 4 ave 102 0.98 0.84 328.3 179.4 
  SD 6 0.19 0.11 59.3 19.7 
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waist 6 ave 98 0.93 0.85 314.6 173.7 
  SD 15 0.20 0.08 63.3 25.9 
waist 8 ave 101 1.00 0.84 337.4 186.7 
  SD 6 0.17 0.09 55.3 22.7 
waist 10 ave 103 1.00 0.87 338.8 187.9 
  SD 9 0.20 0.09 64.9 31.8 
ankles 2 ave 99 0.96 0.83 323.6 178.1 
  SD 12 0.22 0.09 70.5 26.8 
ankles 4 ave 102 0.97 0.87 328.0 181.0 
  SD 9 0.22 0.07 71.3 29.8 
wrists 2 ave 100 0.92 0.84 309.5 176.3 
  SD 6 0.20 0.11 61.4 20.8 
wrists 4 ave 100 0.93 0.83 313.6 173.5 
  SD 9 0.16 0.09 49.9 20.4 
ank/wris 4 ave 102 0.99 0.82 331.2 182.4 
  SD 10 0.22 0.05 72.0 28.1 
ank/wris 8 ave 106 1.04 0.84 350.5 192.7 
  SD 8 0.16 0.08 52.0 23.9 
 

Table 3.2. Absolute results when completing an obstacle course in control and 11 
weight conditions. 
 

OBSTACLE   Heart Rate VO2 RER Met Rate Met Rate  

COURSE  [bpm] [l/min]   [W] [W/m2] 

control ave 123 1.31 0.87 444.5 245.5 
  SD 10 0.21 0.06 70.1 27.1 
waist 2 ave 123 1.33 0.86 451.6 250.6 
  SD 12 0.16 0.06 54.1 23.0 
waist 4 ave 127 1.43 0.86 482.6 264.5 
  SD 11 0.26 0.06 85.2 35.1 
waist 6 ave 133 1.44 0.88 490.6 272.4 
  SD 16 0.18 0.08 58.3 26.4 
waist 8 ave 127 1.47 0.89 503.5 279.0 
  SD 9 0.21 0.07 72.0 30.7 
waist 10 ave 126 1.47 0.91 502.6 279.4 
  SD 12 0.23 0.08 76.3 41.2 
ankles 2 ave 128 1.43 0.87 487.0 269.5 
  SD 15 0.26 0.05 82.8 36.0 
ankles 4 ave 127 1.42 0.92 487.3 270.4 
  SD 11 0.24 0.06 76.2 37.1 
wrists 2 ave 125 1.34 0.86 455.4 260.6 
  SD 8 0.23 0.06 74.6 31.2 
wrists 4 ave 131 1.41 0.90 481.3 265.7 
  SD 11 0.29 0.08 95.1 38.6 
ank/wris 4 ave 131 1.44 0.87 488.4 270.3 
  SD 13 0.26 0.04 85.6 37.8 
ank/wris 8 ave 134 1.49 0.90 507.9 280.2 
  SD 10 0.17 0.08 55.0 32.8 
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3.3  Metabolic rate results 

 
The following graphs illustrate the results for the walking, obstacle course 

and overall (average of data collected when walking and completing 

obstacle course) data, in Figures 3.1, 3.2 and 3.3 respectively.  

 

3.3.1  Walking 

 
As weight carried around the waist increased in 2 kg increments from 2 kg 

up to 10 kg there was a stepped increase in metabolic rate. Figure 3.1 

shows that 2 kg around the waist caused a 3 % increase in metabolic rate, 

with the increase rising to 6, 8 and 9 % for 4, 6 and 8 kg respectively, with 

the highest increase of 10 % for the 10 kg condition.  

 

When the weight was carried on the ankles the increases in metabolic rate 

were recorded as 8 and 11 % for 2 and 4 kg respectively. These increases 

were higher than the 3 and 6 % increases for the same weight when 

distributed around the waist. The increases for the ankle conditions were 

also higher than those recorded when the weight was carried around the 

wrists, 7 and 6 % for the 2 and 4 kg conditions respectively.  

 

When the weight was distributed over the ankles and wrists the increases in 

metabolic rate were recorded as 9 % for 4 kg (1 kg on each limb) and 17 % 

for 8 kg (2 kg on each limb). The increase for the 4 kg condition is larger 

than when the weight is distributed on the waist or around the wrists but 

smaller than when it is carried only on the ankles. 

 

The metabolic rate recorded in all conditions was significantly (p<0.05) 

higher than in the control.  
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Figure 3.1. Increase in metabolic rate when carrying weight simulations around the 
waist, ankles and wrists (ank/wris; weight split between sites) when walking at 5 
km/hr on a treadmill compared to an unweighted control, significance (p<0.05) 
marked by *. (weights in kgs on x-axis). 
 

3.3.2  Obstacle course 

 
The order of the conditions on the x axis in Figure 3.2 has been kept the 

same as in Figure 3.1, and on average the increases in metabolic rate 

recorded for the obstacle course were slightly higher than for the walking 

work mode. The increases in metabolic rate for the waist were 8, 4, 10, 11 

and 13 % for the 2, 4, 6, 8 and 10 kg loads respectively. As for the walking 

the increase in metabolic rate for the 2 kg ankle weight condition, just under 

10 % was much higher than for the 2 kg wrist weight condition (4 %). 

However, the results for the 4 kg conditions were very similar, 9 % for the 

ankles, 10 % for the wrists and 9 % for the ankles/wrists. As the obstacle 

course requires upper body movements including lifting and moving crates 

the added weight on the wrists had a much greater effect on the metabolic 

rate than during the walking work mode, except for the wrists 2 condition. 

 

The results for the ankle/wrists conditions are similar to those seen in Figure 

3.1, although for the maximum weight condition of 8 kg the metabolic rate 
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increase is 4 % higher than that recorded for the walking work mode, this 

can most probably be attributed to the additional demands on the upper 

body of the obstacle course as previously highlighted. The metabolic rate 

recorded in all conditions was significantly (p<0.05) higher than in the 

control.  

 

Figure 3.2. Increase in metabolic rate when carrying weight simulations around the 
waist, ankles and wrists (ank/wris; weight split between sites) when completing the 
obstacle course, compared to an unweighted control, significance (p<0.05) marked 
by *. (weights in kgs on x-axis). 
 

 

3.3.3  Overall 

 
The graph for the overall results, Figure 3.3, shows very similar trends to 

Figure 3.1, greater increases with more weight on the waist, greater 

increases on the wrists and even greater increases on the ankles. The 

percentage increases in metabolic rate are slightly higher than those for 

walking only, but the obstacle course requires movements of the upper body 

when lifting crates and a greater range of movement in the lower body when 

stepping and moving over hurdles. The metabolic rate recorded in all 

conditions was significantly (p<0.05) higher than in the control.  
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Figure 3.3. Overall increase in metabolic rate when carrying weight simulations 
around the waist, ankles and wrists (ank/wris; weight split between sites), based on 
average of data collected when walking and completing an obstacle course, 
compared to an unweighted control, significance (p<0.05) marked by *. (weights in 
kgs on x-axis). 
 

3.4  Weight comparisons 

 
When the data is grouped according to the weight carried as in Figure 3.4 

some of the trends described above become more obvious. For the 2 kg 

conditions, carrying the weight around the waist induced a 3 % increase in 

metabolic rate when walking, this compares to 7 % and 8 % increases for 

both activities when the same weight is carried on the wrists and ankles 

respectively. The results for the obstacle course do not fit this trend as the 

induced metabolic rate increases were 8 % for the waist condition, 4 % for 

the wrists and 10 % for the ankles. 

 

For the 4 kg weight conditions, walking caused a 6 % increase in metabolic 

rate, 7 % overall. Walking with the weight on the wrists also caused only a 

6% increase in metabolic rate which jumped to 10 % overall (when the data 

for obstacle course was included in the average). For the ankles the 

increases were 11 % for walking, 10 % overall and for the ankles and wrists 

the increases were 9 % for walking, 10 % overall. For the wrists condition 
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clearly the obstacle course required a greater range of movement than just 

walking hence the increase in metabolic rate from 6 % to 10 %. For the 

obstacle course weight carried on the ankles and wrists caused metabolic 

rate increases of 9-10 %, compared to only 4 % for the waist weight. With 

weight carried wholly or partly on the ankles the increases are consistently 

9-11 % for all activity. Doubling the weight carried on the ankles and wrists 

from 4 kg (1 kg on each limb) to 8 kg (2 kg on each limb) doubled the 

metabolic rate increase overall from 10 % to 19 %. This increase was 

greater for the obstacle course (12 %) than the walking condition (8 %) .  

 

Figure 3.4. Increase in metabolic rate due to carrying weight around the waist, 
ankles, wrists or ankles and wrists (ank/wris) for two work modes, walking (light grey 
bars) and obstacle course (white bars) and overall (average of data collected when 
walking and completing an obstacle course (dark grey bars)). Significant (p<0.05) 
differences between sites for same weight indicated by *. 
 

 

The only statistically significant differences in the increase in metabolic rate 

depending on the site of the weight (tested with a one way anova and Tukey 
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0

5

10

15

20

25

waist 2 wrists 2 ankles 2 waist 4 wrists 4 ankles 4 ank/wris 4 waist 8 ank/wris 8

Weight configuration

In
c

re
a

s
e

 i
n

 m
e

ta
b

o
li

c
 r

a
te

 (
%

)

walking

obstacle course

overall

**
*



________________________________________________________ 

Weight simulations 

18

and wrists when walking, 11 % to 21 % for the obstacle course and from 11 

% to 19 % overall. 

 

In Figure 3.5 the data has been expressed in a different way, the weight 

configurations have been plotted against the increase in walking metabolic 

rate. The relationship between increasing weight carried on the waist and 

increasing metabolic rate can be seen to be fairly linear. There are also 

clear positive relationships between increased weight carried on the ankles 

and the ankles/wrists, and increased metabolic rate. Compared to the same 

weight carried around the waist the increase in metabolic rate when walking 

with weight at the ankles and ankles/wrists is much higher. The metabolic 

rate recorded when 4 kg was carried around the ankles, as 2 kg on each 

one was also higher than when 4 kg was carried on the ankles and wrists (1 

kg on each limb). Additionally increasing the weight carried at the 

extremities compared to the waist has a greater increase in metabolic rate 

as illustrated by the slope of the line with the circular symbol for 

ankles/wrists. When weight was carried at the wrists a greater increase in 

metabolic rate was observed than when the weight was carried around the 

waist, but with no increase in metabolic rate when the weight increased from 

2 to 4 kg. 

Figure 3.5. Graph of metabolic rate increase in relation to weight carried when 
walking for the 4 weight distribution sites (waist, ankles, wrists, ankles/wrists). 
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When the same graph is plotted for the metabolic rate increase during the 

obstacle course, as in Figure 3.6 the trends are not quite as linear as those 

seen in the walking data. With the exception of the 4 kg waist condition 

there is a gradual increase in metabolic rate with increasing weight carried. 

For the wrists conditions. 2 kg has very little effect, less than 5 % on 

metabolic rate but when the weight carried is doubled to 4 kg the extra 

energy cost is also doubled to 10 %. There is very little change when weight 

is carried around the ankles, with actually a drop in the % increase in 

metabolic rate from 10 % to 9 % for 2 and 4 kg respectively. The highest 

increases in metabolic rate can again be seen in the ankles / wrists 

conditions. The obstacle course requires a much greater range of motion 

and activities including upper limb movements. The contrast between 

Figures 3.5 and 3.6 illustrates what happens when testing occurs in the 

laboratory under idealised conditions, for example, walking on a treadmill, 

as opposed to incorporating more realistic tasks into the testing as in the 

obstacle course. 

 

Figure 3.6. Graph of metabolic rate increase in relation to weight carried during the 
obstacle course for 4 weight distribution sites (waist, ankles, wrists, ankles/wrists). 
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3.5  Rate of Perceived Exertion results 

 
Participants also recorded their ‘Rate of Perceived Exertion’ in the final 

minute of the work periods and the results are summarised in Figure 3.7. 

For the control (no weight) condition participants rated their exertion at 9 

(very light) for the walking and just under 12 (between light and somewhat 

hard) for the obstacle course.  

 

For the walking work mode most values for the weighted conditions were 

rated around 10 except waist 2 which was perceived closer to 9, the same 

value as the control, and ankles/wrists 8 perceived as 11 (light). For the 

obstacle course 7 of the conditions were perceived between 12 and 13 

(somewhat hard) and the wrists 4, ankles/wrists 4, ankles/wrists 8 and waist 

10 conditions perceived closer to 14. However, none of the observed values 

were significantly different from the control.  

 

Figure 3.7. Graph of results of ‘Rate of Perceived Exertion’ responses taken during 
last minute of walking and obstacle course work modes for all weight simulations 
and control. 
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4.  Discussion 

 

The resulting increases in energy costs of walking and completing an 

obstacle course with additional weight around the waist, ankles and wrists 

compared to a control condition with no weight have been described. When 

walking with weight carried around the waist and increasing in 2 kg 

increments from 2 kg to 10 kg there was a stepped rise in the increase in 

metabolic rate percentages from 3 to 10 %. The increases in metabolic rate 

were highest for the ankle / wrists conditions, 17 % and 9 % for the 8 kg and 

4 kg conditions respectively, followed by the ankles, 11 % and 8 % and the 

wrists, 6 % and 7 % (4 kg and 2 kg respectively). For the obstacle course 

work mode the general trend in the results was very similar with all the 

extremity conditions being higher than the metabolic rate recorded with the 

same weight around the waist, except the wrists 2 kg result.  

 

All of the increases seen in metabolic rate across the weight simulations 

were statistically significant (p<0.05) from an unweighted control. However 

the only significant difference between conditions, when the same weight 

was carried in different locations was for the heaviest 8 kg configurations. 

Metabolic rate increases recorded with 8 kg carried on the ankles and wrists 

were significantly (p<0.05) higher than for weight carried around the waist. 

The metabolic rate increases for the 4 kg and 2 kg configurations were for 

the most part higher with the weight on the extremities than the waist but the 

size of the differences, less than 5 % and the sensitivity of the method 

discussed previously meant significance was not achieved. This outcome is 

disappointing, however the increased metabolic costs of carrying the weight 

around the ankles and wrists are clear, Figure 4.1 combines the data from 

the weight conditions (waist, ankles, wrists, ankles/wrists) with data 

collected on protective clothing in Study 1 (Chapter 3) and the theoretical 

data calculated from the equation of Givoni and Goldman (1971), also 

presented in the previous chapter. The data collected in this study for weight 

carried around the waist fits well with Givoni and Goldman (1971), whose 

equation gives an increase in energy cost of 1 % per kg for load carried. The 

increase in metabolic rate when carrying the weight around the ankles/wrists 
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is 2.25 % per kg (taken from the slope of the line for ankles/wrists data) and 

the increase in energy cost per kg of the clothing from the clothing linear 

regression line is 2.7 % per kg, as described previously. Therefore the 

metabolic costs of carrying the clothing weight could be well explained if the 

majority of the clothing weight was concentrated around the extremities, 

however this is unrealistic and thus factors other than clothing weight must 

be contributing to the metabolic rate increases observed. 

 
Figure 4.1. Increase in metabolic rate in relation to clothing weight or load carried on 
the waist, ankles, wrists, ankles/wrists. Theoretical line based on equation of Givoni 
and Goldman (1971). 
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authors assert that as mean skin temperatures were stabilised at 31.5oC, 

29.5oC and 30.0oC in the 20oC, 0oC and –15oC environments respectively, 

the observed increase in energy cost was not directly related to the body 

cooling but rather reflected the effect of clothing. The final oxygen 

consumption values of 1.67, 1.78 and 1.88 l/min correspond to increases in 

energy cost per extra kg of clothing of 2.7 – 3.3 % (Oksa et al. 2004). 

 

The trend for greater increases in metabolic rate when performing the 

obstacle course compared to walking as seen in Figures 3.1 to 3.4 can be 

explained by the greater range of movements required. Walking on the 

treadmill obviously requires a degree of leg and arm swing but the range of 

movement is quite small. In contrast, the obstacle course required 

participants to squat with the crates, step, crawl and bend in the lower body 

and lift, carry and place the weighted crates at different levels involving the 

upper body. This explanation fits with both Nunneley (1989) and Murphy et 

al. (2001) who observed greater effects of heavy clothing in tasks that 

required greater movements. In the study of Murphy et al. (2001) the tasks 

of a continuous nature (load carriage and obstacle course), requiring more 

mobility demonstrated a greater increase in oxygen consumption and thus 

metabolic cost than stationary tasks. It would also follow from these studies 

that heavier loads cause greater increases in metabolic costs but in terms of 

the treadmill walking data in Figure 4.1 for this study there was a different 

finding. When weight was carried at the wrists there was a greater increase 

in metabolic rate than when the weight was carried around the waist, but in 

this study there was no increase in metabolic rate when 4 kg was carried on 

the wrists compared to 2 kg. This is a slightly surprising finding, however it 

can be explained by the fact that the participants were instructed to keep 

their arm swing as natural as possible and swinging the arms was not 

enforced. In hindsight they may actually have reduced their arm movements 

when carrying the heavier weights to reduce the impact and energy cost of 

the increased load. Soule and Goldman (1969) discuss compensation 

mechanisms that may be functioning when the load is carried on the hands. 

Shortening the swing of the arms, reduces the physical work so conserving 

energy which is balanced against the extra energy cost of fixing the 
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extremities. They suggest this could be occurring at lower walking speeds 

with lighter weights but the results for this study suggest a smaller arm 

swing when more weight is carried. 

 

Auble et al. (1987) reported that carrying hand weights caused only small 

increases in the aerobic energy requirement of normal walking, increases 

that could have been achieved by increasing walking speeds. In contrast 

pumping handweights (arms fully flex, swing upwards and fully extend 

downwards) while walking substantially increased the energy cost of normal 

walking. So the authors suggest that the most likely cause of variability in 

the effects of handweights is the amount of arm movement used when 

walking. In many of the studies that have assessed the use of hand, wrist 

and ankle weights for aerobic training, arm swinging has been strictly 

controlled and often exaggerated. This has led to findings of substantially 

greater energy costs when carrying weights on the hands and wrists than 

the ankles (Claremont and Hall 1988, Graves et al. 1988) and in comparison 

to the present study.  

 

As explained in the introduction, the study by Soule and Goldman (1969) 

was one of the first to consider the effects of weight carried on energy costs. 

However the loads used in their study were extreme, up to 7 kg in each 

hand and 6 kg on each foot. The increased energy cost for their data can be 

calculated as in this study using the data presented in Table 2 of their paper 

which details the energy cost (expressed as millilitres of oxygen 

consumption per minute) of carrying the loads at 3 different speeds. When 

walking at a speed of 4.8 km/hr the increase in energy cost compared to a 

no load condition is 14 % and 34 % for the hands, 4 kg and 7 kg 

respectively and 95 % for the feet (6 kg).  

 

It is also important to emphasize the different sites used, in the present 

study the weight was attached to the ankle but in the Soule and Goldman 

(1969) study the load for the feet was made by filling standard US Army 

double-walled “vapour barrier” with mercury until each boot weighed 6 kg. 

The authors discuss the fact that some of the increase in energy cost may 
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be attributable to the fact that with 6 kg added to each foot, there was some 

immobilisation of the ankle joint, preventing the normal flexion-extension of 

the ankle. The different footwear used is also important to the scale of the 

differences found. In the present study, trainers were worn with the weight 

attached to the ankle as opposed to the army boots used by Soule and 

Goldman (1969). It is well known that the weight of footwear can influence 

the energy cost of walking and running (Jones et al. 1984, Legg and 

Mahanty 1986).  

 

Energy cost was found to be significantly higher, 0.7 % per 100 g increase 

in the weight of boot, over a range of walking speeds when wearing boots 

than compared to lightweight athletic shoes by Jones et al. (1984). They 

attribute a large portion of the increase to the weight of the footwear, also 

noting that the increased energy cost of locomotion with boots appears to 

place a limiting stress on untrained subjects (Jones et al. 1984). Legg and 

Mahanty (1986) also clearly showed increasing the weight of a pair of boots 

significantly increased the energy cost of treadmill walking, a mean increase 

of 0.96 % in VO2 for each 100 g increase in boot weight. Applying the figures 

of 0.7 – 0.96 % per 100 g of boot weight to the present study would increase 

energy cost by 7–9.6 % and 14–19.2 % for the ankles 2 and ankles 4 

conditions. However the increased energy costs recorded in the present 

study were lower, 8 % and 9–11 % for the ankles 2 kg and 4 kg conditions 

respectively. It must be remembered that in the present study trainers were 

worn by the participants and weights carried around the ankle therefore it is 

not surprising that the results are slightly lower than predicted by the results 

of the 2 studies that used military boots (Jones et al. 1984, Legg and 

Mahanty 1986) but otherwise they are rather close. 

 

Although Legg and Mahanty (1986) did not carry out gait analysis, variations 

in the regional discomfort ratings they did record suggest increasing boot 

weight may influence gait and this links with observations from Soule and 

Goldman (1969). Therefore adopting a different walking stance/style that is 

more rigid and less efficient could potentially increase energy cost.  
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5.  Chapter summary 

 

The purpose of this trial, was to look at the effects of carrying more realistic 

simulated clothing weight distributions close to the body’s centre of gravity 

(using a weight belt) and at the extremities (weights worn around the wrists 

and ankles). The findings confirmed the hypotheses put forward at the 

beginning of the chapter, i) the further away from the body core the weight is 

positioned the higher the resulting energy cost during work and ii) the 

energy cost of the extremity weight conditions (ankles and wrists) will be 

higher in activities requiring greater ranges of movement of the limbs, in this 

case the obstacle course compared to walking. 

 

The results provide additional data about the energy costs of carrying 

weights of 2 – 10 kg around the waist and on the extremities. The energy 

cost of carrying weight on the ankles and wrists was shown to be 2.25 % per 

kg compared to 1 % per kg for weight carried around the trunk. Additionally 

work requiring greater ranges of movement in all limbs, in this instance 

completing an obstacle course also incurs a greater energy cost compared 

to a less demanding activity, for example, walking. 

 

The weight of protective garments and the distribution of that weight can 

therefore clearly have a significant effect on the metabolic cost of work as 

the wearer has to carry the additional load of the garment on their body. The 

effect of the load is dependent on where the extra weight is present, being 

particularly costly if the material on the arms and trousers of the garment is 

heavy, as weight on the limbs has to be accelerated and decelerated with 

each step. Data from Chapter 3 of a 2.7 % increase in energy cost per kg of 

clothing also corresponds very well with previously documented values.  

 

Although the % increase in energy cost per kg values observed for carrying 

load at the ankles and wrists resemble those for clothing, in the later case 

obviously not all weight is concentrated at the extremities which leaves a 

role for other factors such as clothing bulk and stiffness, number and friction 

of layers, which will be investigated in subsequent chapters. 
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