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ABSTRACT 

Neural activation is thought to be essential for the expression of maximal muscle 

performance, but the exact contribution of neural mechanisms such as the level of agonist, 

antagonist and stabiliser muscle activation to muscle strength is not fully understood. 

Explosive neuromuscular performance, including the ability to initiate (the electromechanical 

delay, EMD) and develop force rapidly (termed, rate of force development, RFD) are 

considered essential for the performance of explosive sporting tasks and joint stabilisation 

and thus injury avoidance. The thesis aimed to improve our understanding of the contribution 

of neural factors to muscle performance, with a specific focus on explosive neuromuscular 

performance. The work in this thesis utilised a range of approaches to achieve this aim. 

Initially, the association between muscle activation and rate of force development and EMD 

was established. Comparison of unilateral and bilateral actions was then undertaken. Finally 

interventions with the aim to both negatively affect and improve muscle strength, which 

included fatigue and resistance training (RT), respectively was undertaken and the neural 

contributions to changes in performance established. Agonist activation during the early 

phase of voluntary force production was shown to be an important determinant of voluntary 

EMD, explaining 41% of its inter-individual variability. Agonist activation was an important 

determinant of early, but not late phase RFD. Use of bilateral actions resulted in a reduction 

in explosive strength, which was thought to be due to differences in postural stability between 

unilateral and bilateral strength tasks. The level of stabiliser activation was strongly related to 

the level of agonist activation during the early phase of explosive force development and had 

a high association with explosive force production. Task-specific adaptations following 

isoinertial RT, specifically, the greater increase in isoinertial lifting strength than maximal 

isometric strength were due to training-specific changes in the level of agonist activation. 

High-intensity fatigue achieved a more substantial decline in explosive than maximal 

isometric strength, and this was postulated to be due to neural mechanisms, specifically 

decreased agonist activation. This work provides an in depth analysis of the neural 

contributions to maximal muscle performance.  

 

Key Words: Rate of force development, explosive strength, strength training neural 

activation, electromechanical delay, electromyography, fatigue, muscle coordination, 

contractile properties. 
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Movement is achieved through the production of muscle force acting about a bone support 

system. It is the amount ofmuscle force and duration over which this is maintained which 

governs the change in velocity and resultant displacement of a body of mass and thus, 

resultant movement. Furthermore, active stabilisation of joints via muscular actions allows 

for the maintainance of posture and prevention of joint injury. The ability of the 

neuromuscular system to produce force is defined as strength (Siff, 2001). There are different 

types of muscle strength; the ability of the neuromuscular system to produce its maximal 

voluntary force (MVF) irrespective of any time domain, termed maximal strength; and the 

ability to develop force rapidly (typically defined as the rate of force development, RFD), 

termed rate of force development (RFD) or explosive force production. RFD is considered 

functionally more important than MVF production during certain explosive functional 

movements, such as sprinting or re-stabilizing the body following a loss of balance (Aagaard 

et al., 2002a; de Ruiter et al., 2004; Tillin et al., 2010, 2013). These movements involve 

contraction times which are significantly shorter than the time available for the development 

of MVF (typically in the order of more than 300 ms, Thorstennson et al., 1976). For example, 

ground contact time during sprint running is typically in the order of 80-120 ms (Kuitunen et 

al., 2002), whilst recent evidence suggests that injuries such as an anterior cruciate ligament 

rupture occur as early as 50 ms after ground contact (Krosshaug et al., 2007), and therefore, 

limited time available for force production to re-stabilise joint complexes and avoid injury as 

the result of mechanical perturbation.  

The electromechanical delay (EMD) represents the time delay between the onset of 

neuromuscular activation and the initiation of force production. It represents an important 

aspect of neuromuscular reaction time, during which there could be unrestrained development 

of forces of sufficient magnitude to damage ligamentous tissue in synovial joints (Huston and 

Wojtys 1996; Mercer et al. 1998; Shultz et al. 2001). Thereby, a short EMD as well as good 

explosive force production capabilities are important aspects of explosive neuromuscular 

performance, which are considered to be essential for the performance of explosive sporting 

actions as well as the prevention of sports injuries (Aagaard et al., 2002a; Minshull et al., 

2007; Tillin et al., 2010, 2012a). Despite a body of evidence documenting the association of 

explosive strength on explosive dynamic muscle performance such as sprint running (Tillin et 

al., 2013) and vertical jump performance (de Ruiter et al., 2007; Tillin et al., 2013), there is 

little evidence supporting an association between explosive neuromuscular capabilities and 

injury risk. Understanding the factors which influence the expression of explosive 
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neuromuscular performance, and considering how the capability for explosive neuromuscular 

performance may impact on injury risk are important research topics to improve our 

understanding of how to prevent injuries.  

Sale (1988) likened the expression of voluntary strength to a skilled act, where agonists must 

be optimally activated, while supported by appropriate synergist and stabiliser activation and 

opposed by minimal antagonist activation. It is not fully understood how agonist and 

antagonist activation influence the expression of strength. Furthermore, there is a paucity of 

research examining the influence of stabiliser muscle activation on muscle strength and thus, 

relatively little known on the topic.  

The broad theme of this PhD was to consider the neural contributions to maximal muscle 

performance, with a focus on explosive neuromuscular performance indicators (EMD, RFD), 

and maximal muscle strength. There are different approaches one may take to understand the 

neural contributions to muscle strength. The first is to assess muscle strength and neural 

activation across a range of individuals and assess their inter-relations in order to determine 

the proportion of shared variance between measures of performance. Other investigational 

approaches include interventions which manipulate force through various approaches and 

document the concurrent changes in neural and/or morphological parameters. This can be 

investigated on a group and/or individual level. The thesis utilised a range of approaches to 

enhance our understanding of the neural contributions to maximal muscle performance.  

Although explosive strength appears to be essential for sports performance and injury risk, 

there is little documented evidence of its reliability. Therefore the initial aim of the thesis was 

to investigate the reliability of neuromuscular measurements during explosive isometric 

muscular actions.  

The exact contributions of neural mechanisms such as the level of agonist activation to EMD 

are not known. Voluntary EMD of the quadriceps has been shown to be 100% (16-25 ms) 

longer than electrically-evoked EMD (Zhou et al., 1996; Minshull et al., 2007), and this 

suggests a significant neural component to the delay. Chapter 4 investigated the contribution 

of agonist activation on the variability in EMD. This was determined by comparing two 

groups for EMD performance, and documenting the underlying neural and contractile 

mechanisms which differed between these groups. Neural and contractile performance 

indicators were related to EMD performance to establish the shared variance between 

measures.  
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Bilateral deficit (BLD) has been used to describe the phenomenon of a reduction in 

performance during synchronous bilateral (BL) movements when compared against the sum 

of identical unilateral (UL) movements. BLD is considered to be due to neural mechanisms, 

although the exact mechanisms are not fully understood. Although there has been 

considerable research attention into the BLD for MVF, there is little research into explosive 

force production, and currently no documented evidence that there is a neural deficit during 

BL explosive isometric efforts. Agonist activation is considered a major determinant of RFD, 

and therefore more substantial reductions in RFD could be expected during BL explosive 

tasks. If the addition of an extra limb causes a substantial reduction in explosive 

neuromuscular performance, even for relatively simple isometric single joint tasks, then it 

would suggest that there could be much more substantial reductions in neural activation for 

explosive force development during more complex tasks, which involve more complex motor 

control, across multiple joints and consisting of a high number of degrees of freedom in 

movement. Thereby, understanding the influence of BL actions of explosive force production 

would serve as an important stepping stone to unravelling the neural contributions to 

movement and joint stabilisation.  

Muscles may take up differing roles, depending on the required joint motion. An optimal 

level of stabiliser activation (that is muscles acting as stabilisers to fixate joints, in order to 

allow allow agonists to appropriately function) is thought to be important for muscle 

performance (Sale, 1988; Folland & Williams, 2007a). However, there is an incredible lack 

of research assessing the influence of muscle stabiliser activation on movement quality. No 

study has  examined if the variability in stabiliser activation between individuals influences 

the expression of strength. Furthermore, it is unsure how the levels of agonist, antagonist and 

stabiliser activation inter-relate with one another during explosive contractions. Chapter 6 

assessed the level of agonist, antagonist and stabiliser muscle activation across the rising 

force-time curve during explosive isometric contractions and assessed the independent 

influence of each muscle group on the expression of explosive strength and further 

documented the inter-relationship of agonist, antagonist and stabiliser muscle activation.   

An increase in strength due to neural mechanisms demonstrates that muscle activation 

patterns pre-training were sub-optimal and provides evidence for the contributions of neural 

factors to the expression of muscle strength. Resistance training (RT) is typically undertaken 

by athletes with the primary goal to enhance neuromuscular performance, and consequently 

improve athletic performance and reduce injury risk. Marked increases in strength during the 
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early phase of a training programme have been observed, and are thought to be due to neural 

enhancements (Aagaard et al., 2002a; Del Balso & Cafarelli, 2007; Cannon et al., 2007; 

Tillin et al., 2011). Most research has documented changes in isometric strength which 

involved constrained situations. Although, isometric measures of neuromuscular performance 

allow for a more precise delineation of the neural contributions to muscle strength and as 

such a more accurate interpretation of the contributions changes in in neural factors make to 

mechanical measures of muscle performance following an intervention, these tasks are 

inherently simplier and as such likely reduce the potential contribution of enhanced neural 

mechanisms following training could make on measured performance. Changes in strength 

appear highly specific to the nature of the training task. For example, conventional dynamic 

isoinertial RT has repeatedly been found to produce disproportionately greater increases in 

isoinertial lifting strength than isometric strength (Thorstensson et al., 1976, Rutherford & 

Jones, 1986). This specificity of training phenomenon is often taken as strong indirect 

evidence for neural adaptations to RT (Folland & Williams, 2007a). However, there is no 

actual evidence to indicate neural mechanisms are responsible for this task specific 

phenomenon. Functional tasks generally require isoinertial strength and thus establishing the 

neural contributions to changes in isoinertial strength following RT would seem important, 

but has received minimal research attention. Chapter 7 assessed the task specific adaptations 

in isometric (maximum and explosive) and isoinertial strength following short term (three 

weeks) isoinertial RT and documented the concurrent neural changes in agonist, antagonist 

and stabiliser activation.  

Evoking reductions in force capabilties and establishing the mechanisms responsible for the 

deficits in force is an alternative method of investigating the neural contributions to explosive 

neuromuscular performance. Fatigue can be defined as a temporaray reduction in muscle 

strength following muscular efforts, which largely recovers after a period of rest and declines 

in neuromuscular performance as a result of fatigue is thought to be a conbtributory risk 

factor for sports related injuries (Hawkins et al. 2001) and therefore is a topic of considerable 

interest to the sporting community. However, most of the research investigating the influence 

of fatigue on the functional capacity of the neuromuscular system has focused on the decline 

in MVF, with little focus on explosive neuromuscular performance. As explosive 

neuromuscular performance is thought to be a component of injury risk, understanding how 

fatigue may achieve a reduction in explosive neuromuscular performance is an important 

research topic, which has yet to be established. Chapter 8 of this thesis documented the 
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influence of a fatiguing exercise protocol on EMD and explosive force and contrasted these 

changes with the decline in MVF during the same muscular actions throughout a fatiguing 

protocol. The neural and contractile contributions to impaired performance were concurrently 

assessed to establish their contribution to the decline in muscle strength. 

The purpose of the thesis was to assess the influence of neural factors (agonist, antagonist and 

stabiliser activation) on maximal muscle performance, specifically on explosive 

neuromuscular performance. This was done by examining the relationship of agonist 

activation on EMD and agonist, antagonist and stabiliser EMG explosive force production 

throughout the rising force-time curve, as well as investigating the influence of bilateral 

contractions, RT and fatigue on explosive neuromuscular performance and establishing the 

role of neural factors to changes in muscle performance.  
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The first section will provide a brief overview of the historical background of the area of 

sport and exercise science. After this, the review will present important information on the 

process of voluntary force production and consider the peripheral, neural and mechanical 

factors which influence the expression of voluntary force. The review will then present issues 

concerning measurement of explosive neuromuscular performance (section 2.2) before 

considering its association with performance of explosive sporting tasks and injury risk 

(section 2.3). Section 2.4 will consider the determinants of maximal and explosive strength 

and EMD, whilst the review will finish with consideration of the influence of fatigue on 

explosive neuromuscular performance and associated peripheral and neural mechanisms.  

 

2.1 Roots and Historical Perspective of Exercise Physiology as a Field 

Before we critically review the available literature present today, it is important to consider 

the development of the field of sport and exercise science as a whole, and in particular 

exercise physiology and acknowledge the contributions of reseachers in the development of 

the field. An initial question could be how old is the field of Sport and Exercise Science? The 

formal answer might be that of 40 years, since the formal linkage in the united kingdom of 

‘science’ to ‘sport and exercise’ in the mid 1970s with the introduction of degree standard 

study (Winter, 2008). However, although not formally under the title of ‘Sport and Exercise 

Scientist’, the origins of the practice of the discipline can be considered to range as far back 

of the ancient times, to the great works of Galen and Hipprocrates. Like Hippocrate, Galen 

had an interest in sport and exercise, and was appointed as physician to the gladiator school 

in Pergamum by Roman Emperor Marcus Auerlius (A.D. 121-180, Winter & Fowler, 2009). 

Galen was a pioneer of the field of physiology, who implemented the enhanced current 

thinking about health and hygiene, which can be considered ‘applied’ exercise physiology. 

Hippocrates similarly to Galen, was appointed by the state as physicans to aid the welfare of 

athletes of his time. They both essentially developed the first sports medicine and science 

institutes, which can be considered similar to that available today. Although, we are now 

driven by scientific approach to the study of sport and exercise science, through 

multidisciplinary teams surrounding the athletes, our science and medicine institutes can be 

considered a reinterpretation of what was available nearly 2000 years ago (McArdle et al., 

2007; Winter, 2008). Fast forward through time and the development of the field was the 

result of a strong relationshiop between the classically trained physician, academically based 

anatomists and physiologists and emergence of physical educators who struggled to gain the 
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credibility of the field as a whole. Finally, that the application of scientific method to the 

sport and exercise was characterised by the research of Hill in the 1960 and 70s. 

 

2.2 Voluntary Force Production 

2.2.1 Skeletal Muscle Structure 

The main function of skeletal muscle is to produce force and act on the bone to which the 

muscle is attached to either stabilise joint complexes and thereby protect bony structures, 

maintain posture or joint position and enable movement. The word muscle derives from the 

latin musculus, a diminutive mouse, due to the way in which active muscle bears close 

resemblance to that of mice running underneath the skin. Human bodies are thought to 

contain 434 skeletal muscles. Each single skeletal muscle is composed of two main 

components: specialised contracting cells, myofibers, and a connective tissue framework 

formed by fibroblasts. Each myofiber is composed of myofilaments (comprising the 

contractile proteins, actin and myosin, see Figure 1) and a variety of structural proteins, all 

arranged in a regular configuration throughout the length of the myofibril, so as to form a 

series of contractile components, or sarcomeres. Each muscle fibre is surrounded by its own 

basal lamina, bordering directly on the endomysial connective tissue. The cell membrane of 

the muscle fibre possesses all the characteristics of cell membranes in general in which they 

have the capability to create and maintain a membrane potential which is vital to normal 

contractile function. The sarcoplasmic reticulum (SR) is the endoplasmic reticulum of the 

muscle fibre and functions as a calcium store. Transverse tubules or T-tubules are 

invaginations of the muscle cell membrane and run perpendicular to the muscle fibres, and 

along with the SR are integral to the contractile functioning of the muscle. Thousands of 

muscle fibres, each individually wrapped in a thin layer of connective tissue, the endomysium, 

are grouped together to form muscle fascicles. A layer of connective tissue, named 

perimysium surrounds each fascicle. Finally, a number of muscle fascicles are grouped 

together by another connective tissue sheath named epimysium. According to the sliding 

filament theory (Huxley, 1957), the interaction between the thick (myosin) and thin (actin) 

filaments causes the sarcomere and therefore the muscle fibre to contract and produce force. 

There are significant amounts of connective tissue in muscle (fascia, epimysium, perimysium, 

endomysium). The amount of connective tissue in muscle is ~ 13 % and this remains constant 

even with muscle hypertrophy (MacDougall et al., 1984). The component of connective 
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tissue which dictates its properties is collagen, although there is also elastin. Although, a 

main role of the connective tissue is to envelope, and thus forms skeletal muscle, tension in 

skeletal muscle fibres is transmitted to the skeletal via this connective tissue, at the ends of 

the muscle as it forms a tendon to essentially link muscle with bone. Therefore, when 

considering muscle and tendon, it is best to consider them as a single functional unit (i.e., 

muscle tendon unit, MTU).  

 

 

 
 
Figure 2.1 An overview of skeletal muscle structure from whole muscle to individual 
myofibrils (A) and of the muscle sarcomere and muscle proteins (B). Adapted from Jones et 
al., 2004). 
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2.2.2 Muscle Fibre Type Classifications 

 

Skeletal muscle is composed of different types of muscle fibre with contrasting contractile 

and metabolic properties. Human skeletal muscle fibres can be characterised as slow twitch 

(type I) and fast twitch (type IIa or type IIx). At present, muscle fibre types are typically 

characterised according to their myosin heavy chain (MHC) isoform (I, IIa or IIx) and the 

greater muscle ATPase activity of muscle fibres containing purely MHC IIx allows them to 

contract faster than fibres comprising only MHC IIa, which in turn have faster contractile 

properties than pure MHC type I fibres (Bottinelli et al., 1996; Li & Larsson, 1996; Bottinelli 

& Reggiani, 2000; D'Antona et al., 2006; Degens & Larsson, 2007). Consequently, type II 

fibres can produce more force at a given velocity than type I fibres and therefore have a 

higher power output than type I fibres. The specific tension of the three different types of 

muscle fibres is a matter of debate however, in which some studies have reported higher 

specific tension of type IIa and IIx fibres (Bottinelli et al., 1996; D’Antona et al., 2006; 

Pansarasa et al., 2009), whereas others have not (Larsson & Moss, 1993; Ottenheijm et al., 

2000; Gillier et al., 2009). Type I fibres are more oxidative than type IIa fibres, which in turn 

are more oxidative than type IIx fibres which primarily rely upon glycolysis for muscle ATP 

production. This can be seen as a logical consequence of the hierarchical order of recruitment, 

which will be discussed in section 2.1.6.  

 

2.2.3 Muscle Architecture  

Skeletal muscle can be characterised according to its alignment of the fibres relative to the 

tendon and aponeurosis. Essentially muscles can be grouped into two major types of fibre 

arrangements: parallel and pennate. Parallel muscles have their fibres arranged parallel to the 

length of the muscle. Generally, parallel fibres will produce a greater range of motion as they 

are equipped for greater muscle shortening. Pennate muscles have shorter fibres that are 

arranged obliquely to their tendon and aponeurosis. The pennation angle and muscle fibre 

lengths differ between muscles (Alexander & Vernon, 1975) and for the same muscle 

between individuals (Kawakami et al., 2006). It is possible using ultrasound to assess muscle 

fascicle angle of pennation of human muscles in-vivo (Kawakami et al., 1993).  
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2.2.4 Activation of Skeletal Muscle 

A muscle is innervated by a number of motoneurons and each motoneuron innervates a 

specific group of muscle fibres. All the individual muscle fibres that are innervated by the 

same motoneuron form a motor unit, which will differ in size and type, according to the total 

number of fibres innervated and the contractile characteristics of those fibres. Each 

motoneuron innervates from as few as ten to up to possibly several thousand muscle fibres, 

referred to as small and large motor units, respectively. Correct timing and smooth and 

targeted execution of a movement is the result of close cooperation between sensory and 

motor systems. Although, the final executors are the muscles, muscles are referred to as the 

motoneurons ‘slaves’ as rested muscle obeys their commanding motoneurons completely. 

Each time a group of motoneurons launches their impulse trains, the corresponding muscle 

fibres respond in a predictable manner. 

The motoneurons are responsible for the ultimate command of muscle contraction. There is 

considerable debate surrounding the term ‘muscle contraction’. Although, commonly used 

terminology, it is important to note that the muscle when activated does not actually ‘contract’ 

(see Winter & Fowler, 2009). However, for the purpose of simplicity the commonly adopted 

term of muscle contraction will be used within the thesis, with appreciation of the debate 

concerning this use. Back to the process of muscle activation, irrespective of whether a reflex 

or voluntary contraction is performed, motor commands to the muscles have to be conveyed 

by motoneurons, earning for the latter the name "final common path". In turn motoneurons 

are influenced from several sources, including afferents from the periphery and descending 

tracts from supraspinal levels as well as local spinal circuitry. The term supraspinal alludes to 

a hierarchical organisation of motor control and comprises all areas of the central nervous 

system (CNS) that contribute to motor control, but have to do it through their influence on 

motoneurons only. Supraspinal motor areas of the CNS include the motor area of the cerebral 

cortex, the cerebellum, and various nuclei in the brain and brain stem. Some of these give rise 

to descending tracts that affect the motoneurons directly or- more often-indirectly through 

interneurons (Ästrand et al., 2003).  

From the skeletal muscles afferent nerves report to the CNS about information on the state of 

the muscle, including tension, length, position and about changes in this state of muscle. 

These nerves are activated by special receptors, one of which is the muscle spindle.  The 

muscle spindle is a sensory organ, and consists of intrafusal and extrafusal muscle fibres 
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which provides the CNS with information concerning muscle stretch. Golgi tendon organs 

are connected in series within extrafusal muscle fibres and insert between the muscle and 

tendon. Their primary role is to provide information concerning the active tension of skeletal 

muscle, and when stimulated, the afferent fibres have been found to cause neural inhibition of 

the corresponding muscle groups. Within joints, the ligaments and joint capsule contain 

different kinds of receptor and can provide information concerning joint position and 

movement of joints (Ästrand et al., 2003).  

When a motoneuron is activated, a single electrical impulse (action potential) will be passed 

down the axonal branches to the neuromuscular junction. The action potential is caused by 

movements of Na+ into the cell and K+ out of the cell. The neuromuscular junction appears to 

provide uniform 1:1 action potential transmission under physiological conditions and 

therefore once activated always results in the release of acetylcholine from the synapse and 

depolorarisation of the sarcolemma (the muscle fibre plasma membrane). This is achieved via 

interaction of acetylcholine with its receptors on the post-synaptic membrane. The action 

potential is actively conducted down the transverse tubules (t-tubules) into the interior of the 

muscle. T-tubular membrane expresses high levels of L-type Ca2+ channels (or 

dihydopyradine receptors, DHPRs, voltage sensors) which change their conformation with an 

action potential, and result in charge movement. These voltage sensors are in close contact 

with the SR Ca2+ release channels (ryanodine receptors, RyR) and when activated result in a 

release of Ca2+ from the SR. Ca2+ release by SR gives rise to transient increase in myoplasmic 

free Ca2+ which binds to tropinin C on the actin filament, instigates movement of 

tropomyosin and exposes the myosin binding sites. The myosin heads then attach to the actin 

filament and, with the hydrolysis of adenosine tri-phosphate (ATP), the cross bridge power 

stroke occurs, drawing the Z-lines of the sarcomere closer together, causing the muscle to 

shorten. This whole process is called excitation-contraction (E-C) coupling, as the excitation 

by neural stimulation is coupled to the resulting muscle action. Finally, the muscle relaxes as 

elevated Ca2+ is pumped back into the SR by ATP driven SR Ca2+ pumps. 

 

2.2.5 Mechanical Factors Influencing Force Production 

The mechanical properties of skeletal muscle determine its performance. Mechanical 

properties will be defined and those properties of skeletal muscle that can be measured by 

parameters derived from mechanics: force, length, velocity and power. As will be discussed 

later in the thesis sports performance and joint stabilisation are determined by the ability of 
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the human neuromuscular system to apply force, and this application of force is determined 

by a number of factors which will be discussed herein. The mechanical properties to be 

discussed here include the force-length relationship and force-velocity relationship. The 

power-velocity relationship is an important mechanical factor influencing muscle 

performance, but will not be reviewed here as power is not assessed within this thesis. 

Furthemore, time dependent properties such as force depression, force enhancement and post-

activation potentiation will also not be reviewed in this thesis. A large review of endurance 

time stress relationship (influence of fatigue) will be presented later in the thesis (section 2.7).  

 

2.2.5.1 Force-length Relationship 

The ability for muscle to develop force is critically dependent upon muscle length. The most 

basic form, the length tension relationship reflects the fact that tension generation in skeletal 

muscle is a direct function of magnitude of overlap between actin and myosin filaments. The 

greatest potential for force production occurs when the cross-bridges are formed with optimal 

overlap between actin and myosin filaments (optimal length). At this length cross-bridge 

interaction is maximal. When sarcomere lengths shorten below optimal, force production is 

impaired due to overlap between actin filaments from opposite ends of the sarcomere, 

whereas at muscle length longer than optimal force production is reduced due to less overlap 

between actin and myosin filaments (Gordon et al., 1966; Edman, 1966).  

 

2.2.5.2 Force-velocity Relationship 

There are three types of muscular contraction concentric, the muscle shortens under tension; 

isometric, the muscle is under tension but does not change length; and eccentric, the muscle 

lengthens under tension. The influence of type of contraction on force production can be 

described by examining the force-velocity relationship. Experimentally the force-velocity 

relationship like the force-length relationship is a curve that represents the results of many 

measurements plotted on the same graph. In short, the in-vitro tetanic relationship shows 

concentric force lower than isometric force, with an hyperbolic decay in force with increasing 

velocity during concentric muscle contraction (Hill, 1938). As the velocity of muscle action 

increases less force is capable of being generated during that contraction. This can be 

explained due to actin-myosin cross-bridge cycling. As it takes time for filaments to attach 

and detach, as filaments slide pass one another faster and faster, force decreases, as there is a 

lower number of cross bridges attached. As force generation of the muscle is dependent upon 
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the number of actin-myosin cross-bridges, force production decreases as velocity increases. 

The cross-bridge theory which so eloquently describes the force-velocity relationship for 

concentric actions does not hold true for eccentric actions. The eccentric phase of the tetanic 

force-velocity relationship shows absolute tension that is greater than the maximal tetanic 

isometric tension and relatively independent of velocity, with a plateau at approximately 1.5-

1.9 times isometric maximal tetanic force (Hill 1938; Edman et al., 1978; Harry et al., 1990). 

Although the force-velocity relationship was first defined in frog muscle (Hill, 1938), all 

human movement is fundamental limited by this muscle property (Thorstennson et al., 1976; 

Pain & Forrester, 2009). In-vivo the force-velocity relationship can be assessed by examining 

the force production of a joint through full of motion on an isokinetic machine at varying 

velocities and plotting the subsequent peak force output. The measurement in-vivo is more 

complicated than in-vitro, as muscles contain  mixed fibre types (Faulkner et al., 1986), have 

different architectural characteristics (Wickiewicz et al., 1984; Herbert & Gandevia, 1995), 

and can be influenced by the level of voluntary neuromuscular activation (Pain & Forrester, 

2009). In human’s in-vivo, during MVCs the force-velocity relationship differs to that 

measured in-vitro, whereby eccentric maximum force is typically only 90-110% of isometric 

maximum force (Dudley et al., 1990; Pain & Forrester 2009).  

 

2.2.6 Neural Aspects of Muscle Force Production 

Motor unit recruitment and firing frequency represent two more or less parallel mechanisms 

of force regulation at the whole muscle level. Motor units are recruited in a systematic order 

during voluntary actions of increasing magnitude according to the size principle (Henneman 

et al., 1974). The increase in muscle force, with the activation of additional motor units, 

depends on the number of muscle fibres within that motor unit. Relatively small motor units 

that innervate type I fibres are initially activated at low force levels, whilst progressively 

larger α-motoneurons that innervate type IIa and IIx fibres are typically recruited after the 

slow twitch motor units at higher thresholds of force. The maximum force capabilities of 

motor units have been reported to vary up to 50 times (Enoka, 1995). Thus, the level of force 

produced during movement is largely influenced by how many motors, and specifically 

which motor units are activated.  

Muscle force production is also influenced by the firing frequency of individual motor units. 

The motor unit firing frequency (MUFF) represents the rate of neural impulses delivered 

from the motoneuron to the muscle fibres. The effect of firing frequency can be understood 
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by examining the force-frequency relationship. A single action potential will cause the 

muscle to contract and then quickly relax, referred to as a twitch contraction (Enoka 2008). A 

single twitch represents the smallest contractile response, and usually does not occur in the 

development of human motion. If a second electrical impulse is delivered before the muscle 

has been allowed to completely relax, then the force output will be a summation of the two 

impulses. This summation of force, which will continue as long as consecutive impulses are 

elicited at a frequency that does not allow the muscle to relax, will eventually plateau, known 

as a tetanic contraction. The amplitude of the tetanus will depend on the frequency at which 

impulses are elicited (firing frequency), with higher firing frequencies inducing greater 

tetanic peak forces. The force-frequency relationship is sigmoidal, in that at low firing 

frequencies, small increments in the stimulation frequency result in large increases in force, 

but for firing frequencies above 40 Hz, much greater increments in frequency are required to 

produce relatively small increases in force (Figure 2.2). However, the specific shape of the 

curve will depend on the contractile speed of the motor unit. Due to the time characteristics 

of slow and fast motor units (fast motor units have much quicker contraction and relaxation 

time), slow twitch units will summate individual force impulses more readily than fast twitch 

units. Therefore, the activation required for the production of half or maximum force is 

usually less for slow than fast-twitch muscle fibres (Kernell et al., 1983; Botterman et al., 

1986). 

 

Figure 2.2 Force-frequency relationship recorded during electrically evoked contractions of 
the pollicis nerve. Force is reported as a percentage of maximum (Adapted from de Ruiter et 
al., 1999). 
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MUFF may not only influence contractile peak force, but also the RFD observed for whole 

muscle in-vivo (Grimby et al., 1981; Nelson et al., 1996). The MUFF at the onset of an 

explosive isometric contraction can be much higher than during the stable segment of a 

maximum voluntary contraction (i.e., 100-200 Hz vs. 20-30 Hz, Monster & Chan, 1977; 

Kukulka & Clamann, 1981; Bellemare et al., 1983; Van Cutsem et al., 1998). de Ruiter et al. 

(1999) reported that in-vivo muscle peak RFD of the adductor pollicis elicited via 

percutaneous electrical stimulation of the adductor ulnar nerve, increased with increasing 

firing frequency, with an initially steep increase in RFD at low firing frequencies (2-50 Hz), 

and a more gradual increase in RFD at higher firing frequencies (Figure 2.3). The muscle 

pRFD was achieved at 300 Hz. Thus, very high firing frequencies are required for explosive 

but not MVF production. Additionally, the frequency of the first impulses in an impulse train 

is particularly important, since an initial high-frequency doublet or triplet results in 

contractile force that is higher than would be expected from the frequency of the rest of the 

train of impulses. This is known as catch property of muscle (Lee et al., 1999) and likely 

serves to increase maximum RFD.  

 

 

Figure 2.3 RFD-frequency relationship during electrically evoked contractions. RFD is 
denoted as a percentage of maximum (adapted from de Ruiter et al., 1999).  
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2.3 Measuring Maximal and Explosive Neuromuscular Performance 

2.3.1 Maximal Strength 

Muscle strength is specific to the muscle group(s) and situation in which it is measured. 

Muscle strength can be measured isoinertially (lifting), isometrically or isokinetically (Enoka, 

2002). Maximum strength measured using an isometric or isokinetic dynamometer is 

commonly reported as the peak force/torque achieved over the course of a series of maximal 

contractions. There is inherent variability in the production of force and therefore, multiple 

maximal efforts (typically 3-4 attempts) are performed during a testing session to ascertain a 

participant’s true MVF. MVF is typically defined as either the peak instantaneous force 

achieved during a measurement session (e.g., Tillin et al., 2010; Hannah et al., 2012, Figure 

2.4) or as the highest mean force over a given period time during the MVC (i.e., average 

force over 500 ms). Isoinertial strength is commonly measured as the maximum weight that 

can lifted during a lift, named one repetition maximum (1RM) and reported as an absolute 

value or relative to body mass.   

 

Figure 2.4 A force time curve recorded during an isometric maximum voluntary contraction 
of the knee extensors.  
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2.3.2 Explosive Neuromuscular Performance  

EMD is commonly considered the time difference between muscle activation (typically 

assessed using surface EMG) and force onset (Zhou et al., 1996, Figure 2.5). This delay 

essentially encompasses the time between the muscle being ‘turned on’ and the actual time 

force can be initially recorded. If the researcher is concerned with the electromechanical 

delay (and not the delay in processing time, transmission of neurons down the synapse, the 

time between the motor end plate receiving the signal and the transmission throughout the 

sarcomlemma then the more commonly investigated method is to measure onset of muscle 

activation with surface EMG and then the recorded force with either a strain gauge or force 

plate (e.g., Tillin et al., 2010). EMD has been suggested to be due to several neuromechanical 

processes, specifically the time involved in: the propagation of the action potentials along the 

muscle fibre membrane; excitation contraction-coupling; and the stretching of the series 

elastic component (SEC) by the contractile component (Cavanagh & Komi, 1979). Estimates 

of EMD from force and EMG measurements during voluntary contractions range from ~16 – 

50 ms for a range of lower limb muscles (Zhou et al. 1995b; Kubo et al. 2001; Minshull et al. 

2007; Tillin et al. 2010; Wu et al. 2010). EMD can also be elicited through evoked 

contractions from electrical stimulation of efferent nerves as well as reflexively through 

electrical stimulation of peripheral afferent nerves (Zhou et al., 1995). The different methods 

as well as muscles investigated likely explains an aspect of the the discrepancies in recorded 

values between studies.  
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Figure 2.5 Force (A) and agonist EMG (B) during the early phase of an explosive isometric 
contraction of the knee extensors. EMD is reported as the time delay between onset of 
electromyographic activity and force, assessed through manual identification of the signals.  

 

Explosive force is a measure of the capability to increase force from a low or resting level as 

quickly as possible. It is typically measured isometrically using isometric dynamometer (e.g. 

Aagaard et al., 2002a), isometric strength testing rig (e.g. Bosjen-Moller et al., 2005; de 

Ruiter et al., 2004; Barry et al., 2005) or on a force plate (e.g. Gruber & Gollhoffer et al., 

2004; Nuzzo et al., 2008; Tillin et al., 2012). Some studies have attempted measurement of 

RFD during dynamic actions such as a vertical jump (Thorstennson et al., 2009; Tillin et al., 

2012b), however, this situation is experimentally problematic, as the mechanics of the system 

interact with velocity in a non-linear manner. Based on Newtonian physics (force = mass × 

acceleration) and the force-velocity relationship (discussed above in section 2.1.5.2), an 

increase in force during the early phase of a dynamic action will result in an increase in 
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acceleration and therefore a higher velocity, which will then comprise potential force 

production during latter time points of the dynamic action, thereby influencing the observed 

RFD throughout the dynamic contraction.  

Explosive neuromuscular force production is commonly quantified as the force (or torque) 

produced at specific time points from contraction onset (Tillin et al., 2010, Figure 2.6), or the 

RFD over a particular time period (i.e. the slope of the force time-curve; (Aagaard et al., 

2002a; Barry et al., 2005)), or the force-time integral (area beneath the force-time curve, 

Aagaard et al., 2002a). RFD can be defined as the peak slope of the force-time curve, referred 

to as peak RFD (Jakobi & Cafarelli, 1998; Sahaly et al., 2001; Del Balso & Cafarelli, 2007). 

However, this reflects a single time point and does not account for variance in the time in 

which peak RFD (pRFD) actually occurs. Recently, assessing explosive force/RFD in distinct 

50 ms time points/windows has been advocated to provide a clearer understanding of the 

underlying determinants of RFD (Tillin et al., 2010).  

 

 

Figure 2.6 Force-time trace depicting the initial 150 ms of an explosive isometric contraction 
of the knee extensors. 
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There are certain methodological factors which need to be considered when assessing 

measures of explosive neuromuscular performance, namely both EMD and RFD. Firstly, 

Wilkie (1949) identified the influence of system compliance on muscle RFD in which RFD 

was shown to be lower when a compliant spring was introduced between participant’s wrist 

extensors and the force transducer. Therefore, a compliant measurement system will likely 

reduce the initial force production and potentially lengthen EMD and reduce early phase RFD, 

but not necessarily influence MVF. Thus, a stiff measurement system is needed for accurate 

interpretation of isometric explosive neuromuscular performance. As previously described, 

force and velocity are interrelated, and therefore velocity can have a strong impact on 

subsequent force production. Consequently, explosive force production is typically measured 

isometrically. The identification of force and EMG onsets is pivotal to the valid and reliable 

assessment of EMD and explosive force. The majority of studies determining EMG and force 

onset for explosive contractions have used automated methods of onset such as absolute force 

thresholds (e.g., 7.5 Nm, Andersen & Aagaard, 2006) or mathematical algorithms (e.g. 3 

standard deviations of mean baseline force, de Ruiter et al., 2004). However, manual (visual) 

identification of signal onsets is considered the “gold standard” method for identifying signal 

onsets (Staude, 2001; Allison, 2003; Moretti et al., 2003; Pain & Hibbs, 2007; Pulkovski et 

al., 2008) and has been shown to be able to identify signal onsets up to 60 ms earlier than 

automated methods (Allison 2003; Pain & Hibbs, 2007; Pulkovski et al., 2008). Therefore, 

automated detection methods are considerably less valid and relatively insensitive than 

manual (visual) identification procedures. Furthermore, the level of pre-tension in the muscle 

prior to performing an explosive contraction has been shown to subsequently affect the level 

of force that can be applied over the initial rising phase of contraction (de Ruiter et al., 2006) 

and so explosive contractions should be performed from a relaxed state (i.e. no pre-tension). 

Counter-movement (a drop in baseline force) exerts a strong influence on subsequent 

recorded values of explosive force production (Grabiner et al., 1994; Kamimura et al., 2009), 

and therefore a consistent baseline force should be ensured.  

Although MVF has been documented widely to have excellent reliability (ICC > 0.95; 

coefficient of variation [CV] < 4%, Thorstensson et al., 1976; Strass, 1997; Kollmitzer et al., 

1999; de Ruiter et al., 2004; Place et al., 2007) the between-session reliability of RFD has 

received less attention. The between-session reliability of RFD in the plantar flexors has been 

documented, but only in the early phase of the contraction (5- 40% MVF, Clark et al., 2007). 

Others have noted some reliability data for knee extensor RFD during intervention or 
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comparative studies (Clark et al., 2007; Place et al., 2007; Tillin et al., 2010) but there has not 

been a comprehensive attempt to assess the reliability of RFD measurements. 

Whilst functional human movement involves the coordinated actions of multiple joints, given 

the number of technical considerations it can be seen why explosive force production has 

typically been assessed in isolated muscle groups such as knee extensors (e.g., Aagaard et al., 

2002a; de Ruiter et al., 2004), ankle plantar flexors (e.g., Del Balso & Cafarelli, 2007) and 

elbow flexors (e.g., Barry et al. 2005). A few studies have assessed RFD in multiple joint 

situations such as an isometric squat (e.g., Nuzzo et al., 2008; Tillin, 2013) or leg press 

(Gruber & Gollhoffer, 2004). However, this situation is not ideal for understanding the 

underlying neural and morphological factors which influence the expression of explosive 

strength between participants. Therefore, measurement of isometric explosive strength in a 

single joint isometric situation minimises the potential number of confounding variables that 

can influence RFD measurement, and allows for a more controlled situation in which the 

determinants of RFD or peripheral and neural contributions to changes in explosive strength 

following an intervention can be more appropriately examined. 

 

2.3.3 Measuring Neuromuscular Activation  

Unfortunately, there is no gold standard technique for the measurement of neuromuscular 

activation. However, several methods have been used to measure neural activation and/ or 

motoneuron excitability. These include electromyography (EMG, intra-muscular and surface), 

the interpolated twitch technique (ITT), mechanomyograms, trans-cranial magnetic 

stimulation (TMS), magnetic resonance imaging (MRI) and measurement of V-waves and H-

waves. This section will mainly review the two methods that have been most commonly used 

to quantify neural activation at MVF, and during explosive contractions; EMG and ITT. 

Furthermore, a relatively new measure of overall neural efficacy during explosive 

contractions, defined as percentage of voluntary to octet force/force-time integral (de Ruiter 

et al., 2004; Hannah et al., 2012; Tillin et al., 2012) will be discussed. Other methods 

available for assessing neuromuscular activation will be reviewed more briefly.  

Electromyography measures the voltage potential generated across the sarcolemma of muscle 

fibres, in response to neural activation (MacIntosh et al., 2006). There are two available 

methods of EMG, intra-muscular and surface EMG. Intramuscular EMG can be used to 
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measure the activation timing and firing rate of single motor units. The main advantage of 

single motor unit studies with intramuscular EMG is that the discharge properties of the 

motor neuron can be obtained from the analysis of the single motor unit discharge. This can 

be achieved because for every action potential generated in the motor neuron, a 

corresponding action potential will occur in all the muscle fibres within that motor unit, due 

to a high safety factor for action potential transmission at the neuromuscular junction 

(Bigland-Ritchie et al., 1979). Consequently, this is one of few methods that can provide 

unambiguous information about motor neuron behaviour during voluntary contractions in 

humans. Intramuscular EMG is not ideal for measuring large muscles groups (Tucker, 1993). 

It is best suited for analysis of deep muscles, or smaller muscles located near the skin 

periphery. The surface EMG signal comprises the sum of electrical contributions made by the 

active motor units (MUs) as detected by electrodes placed on the skin overlying the muscle 

(Farina et al., 2004). The information extracted from the EMG signal is often considered a 

global measure of motor unit activity, because of the inability of the traditional (2 or 3 

electrode) recording configuration to detect activity at the level of single motor units. There 

are numerous limitations with surface EMG which need to be considered when interpreting 

the signal. Firstly, substantial cancellation of the EMG interference signal can occur due to 

out-of-phase summation of motor unit action potentials (MUAP). Therefore, it has been 

suggested that the EMG signal does not provide a true estimate of the total amount of motor 

unit activity (Day & Hulliger, 2001). For example, research has also shown that increased 

motor unit synchronisation can result in increased EMG amplitude (Yao et al. 2000) due to 

less cancellation of the EMG signal as a consequence of less out-of-phase summation of the 

MUAPs. Therefore, changes in EMG can not only reflect changes in muscle fibre recruitment 

and/ or firing frequency, but also changes in MUAP synchronisation. However, the positive 

curvilinear relationship between EMG amplitude and force output (Alkner et al., 2000; 

Kooistra et al., 2007; Disselhorst-Klug et al., 2009) supports its use as a global indicator of 

the level of neural activation. 

Additionally, the overall interference signal is mediated by a multitude of intracellular and 

extracellular factors which all exert a significant influence on the pattern of spatial and 

temporal summation of the single action potential. These include factors such electrode 

placement, signal crosstalk from other muscles, subcutaneous tissue, blood flow, fibre 

diameter, muscle biochemistry amongst others (de Luca, 1997; Farina et al., 2004, 2006). 
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Consequently, normalisation of the EMG signal is considered essential for comparisons 

between participants as well as for repeated measurement sessions with the same individual.   

The EMG amplitude during a task of interest has typically been normalised to the amplitude 

obtained from a reference contraction, although there is no general agreement as to the best 

normalisation method (Perry, 1992). One method during maximal contractions is to compare 

the peak EMG during an isometric MVC (Burden & Bartlett, 1999); however, this method 

becomes problematic when it is necessary to quantify activation during MVC across 

individuals and across trials for the same individual. For EMG during maximal contractions, 

EMG response to an evoked maximal compound muscle action potential (Mmax) has also been 

suggested as an alternative normalisation method (Araujo et al., 2000; Gandevia et al., 2001). 

As the Mmax response is not confounded by volitional activation, it may provide superior 

reliability to traditional normalisation techniques (i.e. to EMG during MVCs). The peak-to-

peak amplitude of Mmax (Mmax P-P) has been used to normalise EMG during explosive and 

maximum voluntary contractions (Van Cutsem et al., 1997; Tillin et al., 2010, 2011). 

Although, the reliability of EMG normalised to Mmax P-P has been investigated during MVCs 

(CV, 12.1-13.4%, ICC, 0.45-0.90, Place et al., 2007) there has been no investigation during 

explosive contractions. Recent research has also suggested that the cumulative area of the 

Mmax (Mmax Area) may provide a more reliable measurement parameter than Mmax P-P 

(Tucker & Turker, 2007), but the reliability of this parameter in either absolute terms, or 

when used as a normalisation method for volitional EMG has not been assessed.  

 

Surface EMG can be used to assess activation during the explosive phase of isometric 

contractions, by splitting EMG into distinct time windows. EMG amplitude should reflect the 

timing of force achieved during the contraction. As there is an EMD at force onset, EMG 

analysis should begin from the onset of muscular activation (onset of EMG amplitude), and 

adjusted for this EMD. This onset of neuromuscular activation should be determined 

manually using visual identification of EMG onset. Whilst the between-session reliability of 

EMG amplitude has been assessed during maximal, submaximal and sustained isometric 

contractions (Yang & Winter, 1983; Rainoldi et al. 2001; Mathur et al. 2005; Clarke et al., 

2007), its reliability during explosive isometric contractions has not been documented. 

Similarly, to EMG at MVF, effective use of EMG requires a normalisation procedure. 

However, there is no consensus on the most appropriate procedure (Perry, 1992). Isometric 

maximum voluntary contractions (MVC) are the most widely used (De Luca, 1997) and 
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advocated (Burden, 2010) reference method. There is however, no standard procedure for 

assessing the EMG during MVCs for the purpose of providing a reliable reference for EMG 

normalisation. Some authors have used the peak EMG (Bruhn et al., 2006) irrespective of the 

time it occurs, whereas others have used EMG at MVF (Gruber & Gollhofer, 2004), but there 

appears to be no evidence as to which is superior. Additionally, there is no consensus on the 

optimal window length that should be used when processing the amplitude of the EMG signal 

during MVCs, and a range of window lengths has been reported (100 ms, de Ruiter et al., 

2004, 2006; 200 ms, Gruber & Gollhofer; 500 ms, Place et al., 2007).  

 

Alternatively, de Luca (1997) suggested that sub-maximal contractions at ≤ 80% MVF might 

provide more stable EMG amplitude than MVCs, and there is evidence that the EMG 

amplitude during sub-maximal contractions exhibits superior between-session reliability 

(Yang & Winter, 1983; Rainoldi et al., 1999). Furthermore, normalisation to Mmax in line 

with EMG at MVF has been suggested. Further research is required to begin to understand 

the most appropriate normalisation procedures for EMG during explosive contractions.  

  

TheITT is commonly used to assess the completeness of skeletal muscle activation during 

voluntary contractions (for a review see Shield & Zhou, 2004). The theoretical basis for the 

ITT is that when a supramaximal electrical stimulus is applied to a motor nerve branch during 

voluntary contraction, those motor units not already recruited, or those motor units firing sub-

optimally and not in refractory state will respond with a twitch response or twitch like 

increment in force (Belanger & McComas, 1981; Shields & Zhou, 2004). With increasing 

neural drive to the muscle, fewer motor units are available for recruitment, therefore, the 

twitch response becomes smaller and smaller with increasing activation. The superimposed 

twitch as a proportion to a control twitch elicited at rest is considered to represent the inactive 

proportion of muscle. An increment in force from the ITT during an MVC denotes sub-

maximal neural activation. The conventional method of calculating voluntary activation with 

the ITT assumes a linear relationship between evoked twitch and voluntary force, in which 

voluntary activation is quantified as the ratio of the superimposed to control twitch, 

subtracted from 1 and multiplied by 100 (Pucci et al., 2006; Del Balso & Cafarelli 2007). 

Several investigators have questioned the use of the ratio of superimposed twitch to control 

twitch as a reliable method for measuring maximal activation (see de Haan et al., 2009). 

Firstly, the relationship between evoked twitch and voluntary force has been examined in 

numerous muscle groups and reported to be concave and asymptotic at medium and high 
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voluntary forces (Belanger & McComas, 1981; Behm et al., 1996; Suter et al., 1996). 

Furthermore, the method assumes the superimposed twitch to occur at MVF (Folland & 

Williams, 2007b), which is highly unlikely. Recently, alternative methods, presumed to be 

more valid have been recommended in which a measure of maximal voluntary activation may 

be obtained by calculating the difference between MVF and theoretical maximum force 

(TMF), where TMF has been extrapolated from an appropriate curvilinear model of the 

superimposed twitch force-voluntary force relationship (Folland & Williams, 2007b).  

 

A limitation of the ITT is that it cannot be used during an explosive contraction. The ITT 

requires stable force production, to ensure correct application of the stimulus to the 

corresponding force level, ensure a stable level of voluntary activation and to also ensure that 

the superimposed force response can be accurately measured. Neither of these requirements 

occurs throughout the rising force-time curve during explosive force production. A potential 

alternative method which has recently been used, and considered to provide a quantifiable 

measure of voluntary activation during the early phase of explosive contractions (0-75 ms), is 

to contrast voluntary explosive strength in relation to the force production achieved in 

response to electrically evoked octet (8 pulses at 300 Hz) stimulation (de Ruiter et al., 2004; 

Tillin et al., 2012; Hannah et al., 2012) hereby termed ‘Neural Efficacy’. The supramaximal 

octet is thought to elicit maximal RFD of the MTU (de Ruiter et al., 2004) and therefore, 

provide a valid and reliable reference measure by which to contrast voluntary activation 

capacity. It is possible that this measure of overall Neural Efficacy could provide a more 

valid and reliable measurement technique than surface EMG for assessment of 

neuromuscular activation during explosive contractions, however the reliability of either 

evoked octet RFD/ force or reliability of ratio of voluntary/evoked octet force has yet to be 

documented. A weakness of both the ITT and Neural Efficacy (voluntary to octet force) is 

that they can only be used to assess completeness of activation of the agonists during a single 

joint action. Human movement involves complex coordination involving multiple muscle 

groups across multiple joints, as well as antagonist, stabiliser and synergist muscle groups. 

Thus, these techniques can only be used to assess agonist activation during isolated single 

joint, typically isometric situations, but not functional, multiple joint or dynamic actions.  

 

The quantitative evaluation of the neuromuscular excitability may be appraised by measuring 

the EMG responses elicited from electrical stimulation of peripheral nerves. Reflex studies 

produced through the stimulation of peripheral nerves have the potential to provide 
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information concerning the sites of adaptation following an intervention such as RT (i.e., 

spinal vs. supraspinal). There are two types of reflex techniques typically utilised, the H-

reflex (Magladery & McDougal, 1950) and the V-wave (Upton et al., 1971). The H-reflex 

involves delivering a sub-maximal electrical stimulus to a peripheral nerve, which results in a 

characteristic reflex response (H wave), caused by a motoneuron discharge evoked by the 

activation of the Ia fibers from the muscle spindles. The maximal H-reflex response (Hmax) is 

often normalised to the maximum compound action potential (Mmax) and may be useful to 

assess motoneuron excitability in-vivo (Hugon, 1973; Schieppati, 1987). The V-wave is an 

electrophysiological variant of the H-reflex, and is delivered during an MVC and can be used 

to reflect the magnitude of efferent α-motoneuron output during voluntary muscle activation 

(Aagaard et al., 2002b).   

 

Transcranial magnetic stimulation (TMS) involves painlessly activating neurons in the human 

cerebral motor cortex through the scalp. An index of responsiveness of the entire pathway 

from brain to muscle can be obtained from size of the compound muscle action potential, 

recorded with surface EMG. Use of TMS over the motor cortex elicits short-latency 

excitatory responses termed motor evoked potentials (MEPs). TMS has been used to interpret 

the level of supraspinal activation (Carroll et al., 2009) and it is thought that an increase in 

force is elicited from TMS then it can be assumed that the voluntary activation from the 

cerebral cortex was suboptimal. Voluntary activation using TMS is determined in a similar 

manner to the ITT, in which an MVC is performed, and this is compared to an extrapolated 

reference twitch (except down to a predicted resting twitch as opposed to up from a measured 

resting twitch for the ITT) in order to calculate voluntary activation. The size of the TMS is 

also influenced by factors within the spinal cord. Many corticospinal cells terminate on 

interneurons in the spinal cord; therefore the net output produce from TMS can be affected by 

synaptic efficiency and intrinsic responsiveness of the spinal inter-neuronal circuits (Carroll 

et al., 2011). Thus, it is inappropriate to use it as a measure of cortical activity.  TMS is 

inherently a variant of the ITT, which involves delivering one or more stimuli during 

voluntary activation. It requires similar measurement constraints as the ITT including a stable 

force and activation value to elicit the electrical stimulation and thereby, it cannot be used to 

provide a reliable valid measure of activation during explosive tasks.  

 

Mechanomyography (MMG) is a technique which measures mechanical (as opposed to 

electrical with EMG) activity of muscle using specific transducers to record muscle surface 
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oscillations due to mechanical activity of the motor units (Orizio & Gabbo, 2006). Islam et al. 

(2013) recently suggested that MMG is a useful tool for the assessment of voluntary 

activation. However, there is very little research currently available concerning its validity 

and reliability. Furthermore, the majority of research has been performed involving small 

sample sizes and healthy participants (Islam et al., 2013). Therefore, future work is required 

to determine if the method could provide an effective comprehensive measurement technique 

for the study of muscle function.  
 

Muscle functional magnetic resonance imaging (mfMRI) is a further method of examining 

muscle activation. It refers to changes in the contrast properties of certain MR images that 

occur in exercising muscles. It measures the activity-induced increase in the nuclear magnetic 

resonance transverse relaxation time of muscle water, which is caused by osmotically driven 

shifts of fluid into the myofibrillar space (Meyer & Prior, 2000). These changes result 

indirectly from increased rates of cellular energy metabolism (Damon et al., 2007), and 

therefore provides an indirect measure of neuromuscular activity only. Unlike surface EMG, 

which provides a more global measure of neuromuscular activation (due to typically using 

two or three electrodes across the skin, and therefore localised to a specific region), 

noninvasively obtaining three-dimensional images of muscles (Kinugasa et al., 2006). The 

limited number of activities which can be performed within the MRI scanner, expense and 

time consuming nature of analysis, limit its applicability.  

 

In summary, there is no gold standard measurement available for the assessment of 

neuromuscular activation. Numerous methods are available and each has their own strengths 

and limitations. Regardless of the method employed it is important to design rigorous studies 

to account for the measurements limitations. The majority of measurement techniques do not 

offer the opportunity to assess voluntary activation during explosive force development. 

Surface EMG and Neural Efficacy are techniques available for measurement of 

neuromuscular action during rising force development, but there is little or no evidence 

available on their reliability. Furthermore, given the issues associated with use of surface 

EMG, it is essential that the signal be normalised to a reference contraction to allow for 

comparison between individuals or for multiple between session analyses of the same 

individual. No study to date has assessed which methods may provide reliable reference 

points for this purpose, and this should be established.  
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2.3.4 Measuring the Intrinsic Contractile Properties of Skeletal Muscle 

The contractile properties of a skeletal muscle describe its force response to a known 

electrically or magnetically evoked input stimulus. The contractile properties can be 

measured for a single motor unit, a skinned muscle fibre, or for a whole muscle group in-vivo. 

However, this review will focus on in-vivo measurement of contractile properties of human 

skeletal muscle. Whole muscle in-vivo contractile properties are assessed by eliciting 

impulses via percutaneous electrical stimulation (or magnetic stimulation) either directly over 

the muscle belly/ muscle motor points (Maffiuletti 2010), or over the nerve that innervates 

the muscle of interest (e.g., de Ruiter et al., 2004, Tillin et al., 2010). The intrinsic contractile 

properties can be determined via the force-frequency relationship, but this will not be 

reviewed here. Assessment of involuntary RFD in response to evoked contractions can give 

insight into the intrinsic capacity of the MTU for explosive force production without the 

influence of voluntary control and is therefore thought to reflect muscle morphology and 

tissue mechanics (Almeida et al., 1994; Harridge et al., 1996; Oda et al., 2007).  

The contractile properties are typically assessed from single twitch supramaximal stimulation. 

Assessment of the force response typically includes measurement of isometric peak force, 

time to peak force, RFD (peak RFD or RFD over a given time period), and half relaxation 

time (time for the descending force-time curve to reach half peak force, Enoka 2008). It has 

been shown however, that maximal RFD can only be achieved at high frequencies of 

stimulation (Buller & Lewis, 1965). Twitch peak RFD is only 25-30% of the maximal RFD 

(de Ruiter et al. 1999), and therefore single twitch contractions may provide less insight into 

the intrinsic explosive capacity of the MTU than high frequency contractions such as an 

evoked octet (8 pulses at 300 Hz), which has been found to evoke the maximum capacity for 

RFD (de Ruiter et al., 2004, 2006). The reliability of an evoked octet contraction for 

assessing the MTUs maximal capacity for RFD is unknown and therefore, needs to be 

established. Furthermore, a body of research is required to determine the most valid method 

for assessing the contractile properties, in order to effectively document the morphological 

contributions to voluntary muscle performance. 
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2.4 Relationship of Neuromuscular Performance to Sports Performance and Injury 

Risk 

2.4.1 Sports Performance 

The evidence for an association of isometric maximum strength variables and sporting 

performance such as a vertical jump is equivocal (Young et al., 1999, 2001; Tillin et al., 

2013). Isometric assessments of muscle strength are more controlled than isoinertial strength 

measurements and therefore allow for a more precise delineation of underlying neural and 

morphological contributions to performance. However, they have been criticised for a 

perceived lack of specificity and validity in relation to the dynamic muscle actions of athletic 

activities (Wilson & Murphy, 1996). Functional tasks generally require isoinertial strength, 

and thus isoinertial strength is of importance to sports performance. The evidence of an 

association with isoinertial maximum squat strength and explosive dynamic performance is 

also controversial. Nuzzo et al. (2008) compared the relationship between vertical jump 

height and 1RM squat strength in absolute and relative terms (normalised to body mass) and 

reported a good relationship between vertical jump height and relative, but not absolute 1RM. 

Similarly, Requena et al. (2011) reported moderate to strong correlation values between 

sprint and jump performance and relative 1RM squat scores, but non-significant findings with 

absolute 1RM scores. Taken together, it appears that relative and not absolute measures of 

isoinertial strength tasks (1RM squat) are important for athletic performance. This is not 

surprising when examining Newtonian mechanics as a body’s ability to accelerate is 

dependent upon relative force capabilities (acceleration = force ÷ mass).  

The human capability for explosive force production is considered by some to be more 

important than the capaability for MVF production during sports activities where time to 

develop force is limited (such as sprinting, jumping and punching) (Aagaard et al., 2002a; de 

Ruiter et al., 2004; Tillin et al., 2010). For example, Tillin et al. (2010) has reported that 

explosive power athletes with ability for explosive sporting actions (sprinters and jumpers) 

had two fold superior ability to express their available explosive force capacity during the 

early phase of contraction, but only 26% superior MVF capability. Thereby, suggesting the 

ability for explosive force development of the quadriceps is important for dynamic explosive 

sporting tasks. Two studies have assessed the relationship between explosive-isometric force 

production of the knee extensors and countermovement jump performance in small groups (N 

= 11), and whilst one reported a correlation between these parameters (de Ruiter et al., 2006) 
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the other did not (de Ruiter et al., 2007). The discrepancy in these results likely reflects 

similar thoughts when examining isometric and isoinertial strength parameters, that there are 

several muscle groups in addition to the knee extensors that contribute to jump performance. 

Likewise however, multiple joint explosive isometric force production has been reported to 

be either strongly related to jump height (Marcora & Miller, 2000), or unrelated to jump 

height (isometric squats, Nuzzo et al, 2008). Tillin et al. (2013) suggested that the assessment 

of RFD could explain the contrasting findings, in which assessment of isometric RFD at only 

one specific time point during the force-time curve may not have assessed the relevant force-

time characteristics for jumping. Indeed, when examining the explosive force time 

characteristics over distinct time points from force onset (50, 100, 150, 200 and 250 ms) and 

relating force production at each time point to both countermovement jump and sprint 

performance, it was shown that multiple joint RFD in the early phase of contractions (≤ 100 

ms) was more closely related to acceleration capabilities during a sprint run (5-20 m, r = - 

0.54 to -0.63), whereas the ability for late phase RFD (> 100 ms) was more related to vertical 

jump performance (r = 0.51 to 0.61). The results of the study suggested that explosive force 

production during isometric squats was associated with athletic performance. More 

specifically, that sprint performance was most strongly related to the proportion of maximal 

force achieved in the initial phase of explosive-isometric squats (≤ 100 ms), whilst jump 

height was most strongly related to absolute force in the later phase of the explosive-

isometric squats (> 100 ms). Consequently, it seems that the time constraints of the task need 

to be considered when understanding the possible determinants of a sporting action.  

 

2.4.2 Injury Risk 

 

There is wide belief that the development of neuromuscular strength parameters is integral to 

injury prevention. Thereby, there is wide implementation of neuromuscular training 

programmes by athletes with a goal to decrease injury risk. There is good evidence of a 

positive effect of neuromuscular training interventions (i.e., RT, balance training, 

plyometrics) on the reduction in sporting injury risk (in team sports players (e.g. Caraffa et al. 

1996; Mandelbaum et al. 2005; Olsen et al. 2005; Pasanen et al. 2008; Emery et al. 2010). In 

a recent analysis it was found that implementation of multi intervention programs was 

effective at decreasing the risk of lower limbs injuries (39%), specifically, knee (54%) and 

ankle injuries (50%). The rate of injury risk reduction was more pronounced in those 

individuals with a previous history of injury (Hubscher et al., 2010). Although, fundamental 
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and important research, the use of multi-aspect neuromuscular training programmes does not 

enable the identification of the extent of the various training components (e.g. balance, 

strength, flexibility) individual contribution to this injury risk reduction. It does provide 

excellent support for the benefits of neuromuscular training on injury risk minimisation, 

particularly for those with an increased risk following previous injury.  

 

Tillin et al. (2013) reported that the time available for force development during a particular 

task, was a strong predictor of the type of neuromuscular strength required to achieve the 

goal. As recent evidence suggests that an injury such as anterior cruciate ligament rupture 

occurs within the initial 50 ms after ground contact (Krosshaug et al., 2007), it is possible that 

the ability for rapid force development may be of more importance than the ability to produce 

MVF for joint stabilisation and injury prevention.  

 

EMD represents an important aspect of neuromuscular reaction time, as following 

mechanical perturbation after a loss of balance or trip or fall, there could be unrestrained 

development of forces of sufficient magnitude to damage ligamentous tissue in synovial 

joints (Huston and Wojtys 1996; Mercer et al. 1998; Shultz et al. 2001). Furthermore, given 

the limited time constraints to stabilise the knee before possible injury, it is likely an 

enhanced capability for very early phase RFD may help overcome potentially harmful forces, 

and limit damage to the surrounding structures. Thus, it is felt that EMD and RFD are 

important descriptors of explosive neuromuscular performance for injury prevention by 

facilitating the timely initiation and development of protective muscle forces (Shultz et al. 

1999; Minshull et al., 2007; Blackburn et al. 2009). No research is available, as to whether 

there is an association between the ability to initiate and develop force and injury risk. 

However, evidence is accumulating that suggests that muscle strength and explosive force 

production capabilities are important determinants of the effectiveness of postural corrections 

during gait and following a perturbation that could lead to a fall or injury (Izquierdo et al. 

1999; Pijnappels et al. 2008; Karamanidis et al. 2008; Wyszomierski et al., 2009; Sundstrup 

et al., 2009; Bento et al., 2010; Arampatzis et al., 2011). For example, both RFD and strength 

of the lower limb muscles appear to be associated with the ability to recover from 

experimentally-induced trips (Pijnappels et al. 2008) and slips (Wyszomierski et al., 2009). 

Furthermore, balance training has been reported to separately improve both RFD (Gruber & 

Gollhoffer, 2004, 2007) and decrease risk of joint injuries (Hubscher et al., 2010), but there is 
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no evidence at present for a causal relationship. It is important to begin to further understand 

the potential role of neuromuscular explosive performance on injury risk. 

 

2.5 Evidence for Determinants of Maximal Muscle Strength 

2.5.1 Morphological Contributions to Maximal Muscle Strength  

2.5.1.1 Muscle Size & Architecture 

A large muscle size is reflective of an increased number of sarcomeres in parallel and 

therefore, greater number of actin-myosin cross-bridges. Cross-sectional differences in 

strength are observable between different age groups (Always et al., 1996), gender (Castro et 

al., 1995) and throughout development (Kanehisa et al., 1995) and these differences are 

typically attributed to differences in muscle size. Muscle size can be evaluated in-vivo from 

ultrasound, computerised tomography and MRI. MRI is considered the superior method of 

determining muscle size due to its clearer resolution (Fukunaga et al., 2001; Folland & 

Williams, 2007a). Whilst MRI provides good resolution of ACSA of muscle, allowing for 

distinction between muscle, fat and connective tissue, this does not tell us anything about the 

alignment of the muscle fibres. Use of ultrasound may facilitate measurement of fascicle 

length and angle of pennation.  

 

The pennate arrangement of muscle fibres allows a greater number of muscle fibres to be 

arranged in parallel, which theoretically should increase the force generating capacity of the 

muscle. However, with an increase in angle of pennation, the sum of forces resolved along 

the aponeurosis by the individual muscle fibres is reduced by a factor of cosine angle 

(Fukunaga et al. 1997). Thus, a trade-off exists between the increase in angle of pennation 

and thus muscle CSA and force generating capacity and the force resolved along the 

aponeurosis, in which isometric force per ACSA increases with increased angle of pennation 

until 45º (Alexander & Vernon, 1975), beyond which a further increase in angle of pennation 

would result in a net reduction in force capacity. Evidence from cross-sectional investigations 

relating indices of muscle size (such as anatomical and physiological CSA [PCSA], and 

muscle volume) and maximum strength suggest that muscle size explains ~ 50% of the 

variability in isometric maximum isometric force capabilities between individuals (Maughan 

et al., 1983; Bamman et al., 2000; Fukunaga et al., 2001; Blazevich et al., 2009).  
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Blazevich et al. (2009) recently assessed a range of anatomical factors including muscle 

volume, PCAS, ACSA, moment arm and knee extensor torque. The authors reported that 

muscle volume was the best predictor of knee extensor movement measured isometrically (R2 

= 0.60) and at 30̊ s-1 (R2 = 0.74). The unexplained variability is likely explained by factors 

other than muscle morphology and likely includes the level of neuromuscular activity during 

force production.  

 

Longitudinally, it has been consistently shown that increased strength in response to RT is 

associated with muscle hypertrophy (Narici et al., 1996; Hakkinen et al., 1998; Aagaard et al., 

2001; Cannon et al., 2007), and declines in strength with rest or immobilisation, associated 

with atrophy of muscle (de Boer et al., 2007). The long term gains in maximal strength are 

thought to be primarily due to peripheral adaptations, as evidenced by parallel increases in 

muscle size and strength following the initial two months of RT, whereas the short term 

adaptations in strength are thought to be largely due to neurological changes (Narici et al., 

1996). Various indices of muscle size (ACSA, PCSA, muscle volume) assessed by MRI, 

show significant changes after 8-12 weeks of regular RT (Folland & Williams, 2007a). 

However, increases in muscle size have been documented as early as four weeks (Seynnes et 

al., 2007). This adaptation appears to proceed in a linear fashion from onset of training for at 

least six months (Narici et al., 1996). Furthermore, training adaptations appeared to be 

influenced by muscle group with greater hypertrophic responses of upper body than lower 

body (Welle et al., 1996; Abe et al., 2000). Additionally, the extent of whole muscle growth 

appears to vary within constituent muscles of a muscle group, as well as along the length of 

each of the constituent muscles (Narici et al., 1989, 1996; Hakkinen et al., 2001; Folland & 

Williams, 2007a). Increased muscle size is thought to be due to the hypertrophy of muscle 

fibres (increased muscle fibre CSA), facilitating the increase in contractile proteins arranged 

in parallel (Folland & Williams 2007a). RT is thought to elicit an increased angle of muscle 

fascicle pennation, through increased packing of contractile proteins in parallel with muscle 

fibre hypertrophy (and potential hyperplasia) of pennate muscles (Folland & Williams 2007a) 

following training for maximum strength (Aagaard et al. 2001; Reeves et al., 2004; Blazevich 

et al., 2007). 

 

Recently, it was reported that 9 weeks of RT of the knee extensors resulted in 26% increase 

in isometric knee extensor MVF production, but only a 6% increase in muscle PCSA 

(Erskine et al., 2009). Therefore, as well as changes in muscle size, other adaptations such as 
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muscle fibre type composition as well as neural contributions involving changes in muscle 

activation may be expected to influence adaptations in strength following RT.  

 

2.5.1.2 Fibre Type 

The exact role of fibre type proportion on the expression of muscle strength is not fully 

understood. The specific tension of the three different types of muscle fibre is a matter of 

debate in which some studies have reported higher specific tension of type IIa and IIx fibres 

(Bottinelli et al., 1996; D’Antona et al., 2006; Pansarasa et al., 2009), whereas others have 

not (Larsson & Moss, 1993; Ottenheijm et al., 2000; Gillier et al., 2009). There is evidence 

that fibre type proportion is an important determinant of force production at fast concentric 

velocities (Aagaard & Andersen, 1998) but less is clear of its role on maximal isometric 

strength.  

 

Longitudinally, there is evidence of greater hypertrophy of type II fibres which increase in 

size earlier and greater extent than type I fibers (Hakkinen et al., 1981; Tesch, 1988; Staron et 

al. 1990; Folland & Williams 2007a). It is possible that the greater hypertrophic response and 

greater specific tension of type II fibers, contributes to the higher specific tension observed 

following RT (Folland & Williams, 2007a). Further work is required to understand the role of 

fibre type composition and maximal muscle strength. 

 

2.5.2 Neural Contributions to Maximal Muscle Strength 

Although it is clear that the nervous system regulates skeletal muscle function, the 

contribution of the nervous system in explaining the variability in muscle strength between 

individuals is not fully understood. For the nervous system to make a substantial contribution 

to muscle performance, or the prevention of injuries, there must be variability in the ability of 

individuals to appropriately activate their muscles, i.e. it is sub-optimal in untrained 

individuals, and/or it can be enhanced through training. Sale (1988) likened the expression of 

voluntary strength to a skilled act, where agonists must be maximally activated, while 

supported by appropriate synergist and stabiliser activation and opposed by minimal 

antagonist activation. Muscles are generally termed agonists when contracting concentrically 

they cause joint motion through a specified plane of motion. Antagonist muscles are usually 

located opposite of the joint from the agonists and have the opposite concentric action, and 

work in tandem with agonist muscles as a pair. Stabilisers surround the joint or body part and 
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contract to fixate or stabilise the area to enable another limb or body part segment to exert 

force and move. Synergists assist the action of the agonist muscles, but are not prime movers 

of the action and are known as guiding muscles (Thompon & Floyd, 2004). 

 

2.5.2.1 Evidence for Maximal Agonist Activation 

Quantifying activation capacity has been a controversial issue within neuromuscular 

physiology. The field is limited by the available technology and techniques, in that there is no 

considered gold standard measure of neural activation capacity. Early research using 

insensitive forms of the ITT concluded that untrained healthy participants can achieve 

‘maximal’ activation during isometric single joint efforts (Gandevia, 2001). However, 

researchers have become more aware of the methodological issues associated with the use of 

the ITT. It appears that activation values vary as a function of muscle group, in which 

activation of the elbow flexors even in untrained participants has been reported to be maximal 

or close to maximal (> 98%, Allen et al., 1998; Gandevia et al., 1998), whilst the knee 

extensors are reported to range from 85-95% (Brown et al., 1990; Jakobi & Cafarelli, 1998; 

Kalmar & Cafarelli, 1999; Behm et al., 2002; Shima et al., 2002; Tillin et al., 2011). 

Furthermore, it appears muscle activation may also be joint angle specific. Becker and 

Awiszus (2001) demonstrated within the knee extensors that muscle activation was reduced 

with increasing knee joint angle to more extended knee joint positions, so that at a knee joint 

angle of 40° muscle activation was ~ 20% lower (~70% activation) than at a knee joint angle 

of 90. Therefore, it can be concluded that for isometric single joint MVCs, agonist activation 

is generally not maximal in untrained individuals, but does vary as a function of muscle 

group and joint angle.  

There is evidence that there is inhibition during high force concentric contractions typical of 

heavy lifting/maximal strength tasks, resulting in reduced neural drive (Westling et al., 1991; 

Aagaard et al., 2000). Aagaard et al. (2000) found lower EMG amplitude during slow 

concentric contractions than  for fast concentric contractions of the knee extensors, which 

was either partly (rectus femoris) or totally abolished (vastus medialis/ lateralis) following a 

period of 14 weeks of RT. Babault et al (2001) reported a lower level of activation for slow 

concentric than isometric contractions (89.7 vs. 95.2%).  



  Chapter 2: Literature Review  

38 
 

Greater deficiencies in activation can be observable during maximal eccentric muscle actions. 

The force-velocity relationship measured in-vivo during maximal voluntary muscle actions 

has been shown to deviate markedly from that of isolated, in-vitro muscle preparations (Katz, 

1939). Maximal eccentric contraction strength is equal to or up to about 40% higher than 

maximal isometric contractions recorded in the human quadriceps in-vivo (Westling et al., 

1988; Dudley et al., 1990; Seger & Thorstennson 1994). In contrast maximal eccentric 

strength obtained from isolated muscle preparations in-vitro is 50-100% greater than 

isometric or slow concentric force (Katz, 1939; Edman, 1988). Armiridis et al. (1996) 

measured the force-velocity relationship during MVCs of the quadriceps and reported that the 

force generated during an eccentric contraction was not greater than the force achieved 

during concentric muscle actions. Superimposition of electrical stimulation onto the maximal 

voluntary contraction resulted in an increase in eccentric but not concentric force. Pain and 

Forrester (2009) examined the in vivo knee extensor force-length-velocity relationship of a 

group of athletes using a series of eccentric, isometric and concentric contractions and a 

muscle model, and contrasted it to the tetanic in-vitro force-velocity relationship. The authors 

also then divided the MVC forces by the normalised EMG data and generated corrected EMG 

amplitude-length-velocity data and EMG corrected force-length-velocity data. The in-vitro 

tetanic force-velocity relationship provided a significantly better fit to the EMG corrected 

forces compared to the actual measured MVC forces. Additionally, EMG corrected forces 

generated realistic in-vitro tetanic force-velocity profile. The authors concluded that neural 

factors are the major contributor to the difference between in-vitro and in-vivo maximal force, 

and declared a 58% increase in maximal eccentric strength is theoretically possible through 

the elimination of neural deficits. This is substantially different to the 0-15% window for 

improvements in isometric MVF, and highlights the significant contribution neural factors 

can make to the inter-individual variability in eccentric strength. 

Improvement in neural function contributing to an increase in strength following RT indicates 

that neural function pre-training was sub-optimal, and that neural factors can explain some of 

the variability in muscle strength between individuals. Increases in maximal contraction force 

as well as maximal RFD will occur not only because of alterations in muscle morphology and 

architecture (Aagaard et al., 2002a), but also the result of changes in the nervous system. 

Large increases in muscle strength during the early phase of a RT program have been 

observed (Abe et al., 2000; Pucci et al., 2006; Del Balso & Cafarelli, 2007) and attributed to 

neural adaptations.  
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Early indirect evidence of the importance of neural adaptations in the gains in strength 

following RT arised from the observation that muscle strength increased disproportionately 

compared to the increase in muscle CSA (Moritani & de Vries, 1979; Narici et al., 1996; 

Aagaard et al., 2001; Erskine et al., 2008). Possible explanations for this discrepancy could 

be changes in muscle architecture, fibre type composition or neural activation. However, it 

appears, even when muscle fibre type and muscle architecture are accounted for, there still 

exists a discrepancy in changes in muscle morphology and strength following RT (Degens et 

al., 2009), and suggests a substantial neural contribution to changes in strength following RT. 

Conventional dynamic isoinertial RT has repeatedly been found to produce 

disproportionately greater increases in isoinertial lifting strength (1RM, Thorstensson et al., 

1976; Rutherford & Jones, 1986; Knight & Kamen, 2001) which suggests a considerable 

facility for neural adaptations that are specific to the training task (Sale, 1988; Folland & 

Williams, 2007a). These neural adaptations are associated with learning and improvement in 

muscle coordination (Rutherford & Jones, 1986; Laidlaw et al., 1999). However, there is no 

research which has examined how adaptations of muscle activation may contribute to task 

specificity and in particular the gains in isoinertial lifting strength, in contrast to more 

commonly studied isometric measurements. Functional tasks generally require isoinertial 

strength, and thus isoinertial strength is of importance, but the neural contributions to 

isoinertial strength have received limited investigation.  

Evidence of adaptive changes in neural function with RT has been provided through the use 

of surface EMG. The research concerning changes in absolute agonist EMG during maximal 

isometric tasks following RT is controversial, with some studies reporting an increase 

(Hakkinen & Komi, 1983; Narici et al., 1989; Kubo et al., 2006), whilst others have reported 

no change (Carolan & Cafarelli, 1992; Garfinkel & Cafarelli, 1992; Narici et al., 1996; Kubo 

et al., 2001). The majority of these studies did not normalise EMG to Mmax, and therefore the 

equivocal evidence could be associated with the methodological issues surrounding absolute 

EMG amplitude. However, the evidence is still equivocal when reviewing the literature that 

has normalised EMG to Mmax, in which  RT has been shown to elicit both an increase in 

agonist EMG to Mmax (Van Cutsem et al. 1998; Pensini et al., 2002; Cannon et al. 2007) and 

no change (Rich & Cafarelli, 2000; Pucci et al., 2006; Tillin et al., 2011). With regard to 

isoinertial strength, Hakkinen et al (1998) demonstrated an increase in absolute agonist EMG 

during the knee extensor 1RM following six months’ isoinertial RT, but no study has 
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investigated how changes in EMG normalised to Mmax contribute to the improvement in 

isoinertial strength. 

 

2.5.3 Specific Neural Mechanisms Influencing Force Expression or Adaptations to 

Training 

Enhanced agonist activation following training could be due to increased muscle fibre 

recruitment and/or firing frequency. Definitive evidence of an increase in motor-unit 

recruitment with training would require demonstration of a population of motor units which 

were in-active pre-training, but can be recruited during voluntary contractions post training 

(Folland & Williams, 2007a). This is beyond the capabilities of current techniques and so 

changes in muscle fibre recruitment can only be inferred and so have yet to be demonstrated. 

It is clearly evident that enhanced agonist activation would require either enhanced firing 

frequency or recruitment or both.  

 

2.5.3.1 Firing Frequency  

Intramuscular EMG recording techniques can be used to examine MUFF of humans in vivo. 

Few studies have measured MUFF in response to training. Leong et al. (1999) reported 

higher MUFF in elderly strength trained individuals than age matched controls, suggesting 

long term training could enhance MUFF, or least in the context of the sample population, 

override the age related decline in MUFF. Changes in MUFF with RT are equivocal (Rich & 

Cafarelli, 2000; Pattern et al., 2001). Increased maximal MUFFs have been reported in 

response to a single session of RT (Rich & Cafarelli, 2000; Pattern et al., 2001). However, it 

was shown that MUFF returned to pre-training baseline levels by the end of training (Pattern 

et al., 2001). Other research has reported no change in MUFF in response to isometric 

training assessed using both submaximal (Rich & Cafarelli, 2000; Pucci et al., 2001) and 

MVCs (Pucci et al., 2006).  
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2.5.3.2 Synchronisation 

Motor unit synchronisation is the simultaneous activation of numerous motor units. The 

evidence concerning the influence of synchronisation on MVF production indicates that RT 

athletes appear to demonstrate greater motor unit synchronisation than untrained individuals 

and that RT may enhance motor unit synchronisation during MVCs (Milner-Brown et al., 

1975; Semmler et al., 1998). Theoretically, it is unsure how an increase in motor unit 

synchronisation would increase MVF production, as at firing frequencies equivalent to that 

during an MVC, there is no effect of synchronisation on force (Lind & Petrofsky, 1978).  

 

2.5.3.3 Cortical Adaptations 

Although numerous reports suggest central adaptations to RT, the specific sites of neural 

adaptations within the central nervous system are yet to be definitively identified. Motor skill 

training has been shown to be accompanied by changes in the functional organisation of the 

cerebral cortex (e.g. Martin & Morris, 2001) and it seems reasonable to presume RT may 

involve some reorganisation of the cortex. Research has shown decreases in corticospinal 

excitability following RT (Carrol et al., 2002; Jensen et al., 2005). Jensen et al. concluded it 

is likely that motor learning and RT produce differential neural adaptations. However, more 

recent research has presented evidence that strength training does enhance neural drive from 

the motor cortex as measured using transcranial magnetic stimulation (Griffin et al. 2007; 

Carrol et al., 2009; Lee et al., 2009).   

 

2.5.3.4 Spinal Reflexes 

Studies using the H-reflex at rest have demonstrated elevated H-reflex excitability in 

endurance athletes in compared to sprint and power athletes (Rochcongar et al., 1979; 

Casabona et al., 1990; Maffiuletti et al., 2001), as well as no influence of RT (Scaglioni et al., 

2002). However, the method of assessing the H-reflex at rest has received criticism (Aagaard 

et al., 2002b), and it has been suggest that the H-reflex should be assessed during muscle 

actions. This is because low stimulation intensities will exert stronger afferent responses on 

the slow twitch type I fibers (Hugon, 1973). Elevated V-wave amplitudes have been found in 

sprinters and weight lifters compared to controls (Milner-Brown et al., 1975; Upton & 
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Radford, 1975) and increased V-wave amplitudes have been found in response to RT (Sale et 

al., 1983; Aagaard et al., 2002b).  

Aagaard et al. (2002b) assessed the V-wave and H-reflex amplitudes (normalised to an M-

wave) during maximal contractions and showed a 55% and 19% increase, respectively, in 

conjunction with a 20% increase in isometric MVF after 14 weeks of dynamic resistance 

training. The authors concluded that neural adaptations occurred at both spinal and 

supraspinal levels, involving an enhanced neural drive in descending pathways from higher 

motor centres as well as increased motoneuron excitability and/or changes in presynaptic 

inhibition. Further to this, Del Balso and Cafarelli (2007) reported a 57% increase in V-wave 

to M-wave amplitude with no change in H-reflex to M-wave amplitude at either rest or 

during contraction (10% MVC) in response to four weeks of isometric training that elicited a 

20% increase in MVF. Taken together the research indicates that supraspinal mechanisms 

play an important role in the adaptations following RT and serve to enhance descending 

volitional drive to the muscle during MVCs. However, far more research is required 

particularly concerning the sites of adaptation during different types of muscle actions (i.e. 

eccentric and explosive contractions). 

 

2.5.3.5 Antagonist Co-activation 

Any co-contraction of antagonist muscles clearly reduces net force output of the joint, but it 

also impairs, by reciprocal inhibition the ability to fully activate the agonists. As a 

consequence, it is thought that the net torque about a joint would increase due to the removal 

of negative torque contributed by the antagonist muscles. The level of antagonist co-

contraction (measured using surface EMG) produced during an isometric knee extension or 

flexion MVCs has been reported to be between 5 and 20% of the maximum values recorded 

from that muscle when acting as an agonist (de Ruiter et al., 2004; Kubo et al., 2004; 

Krishnan & Williams, 2009, 2010; Tillin et al., 2011). The level of antagonist activation 

appears to scale to the level of agonist activation, with increments in joint force production 

(Krishnan & Williams, 2009), and varies as a function of knee angle (Kubo et al., 2004). 

Strength trained athletes have been demonstrated to exhibit reduced coactivation of the 

hamstring muscles compared to sedentary participants when performing isokinetic 

contractions, with knee extensors muscles (Amiridis et al., 1996). Intuitively, a decrease in 

antagonist coactivation would seem desirable, as this would cause a greater net joint moment 



  Chapter 2: Literature Review  

43 
 

(agonist joint moment minus antagonist joint moment). However, lower antagonist activation 

may not be optimal for joint integrity, and furthermore, antagonist co-activation may be 

important for optimal muscle performance. Firstly, antagonist activation is important to 

protect ligaments at the end-range of motion (Draganich & Vahey, 1990; More et al., 1993). 

It ensures homologous distribution of compression forces over the articular surfaces of the 

joint (Baratta et al., 1988) and it increases joint stiffness, thereby providing protection against 

external impact forces as well as enhancing the stiffness of the entire limb (Milner & Cloutier, 

1993).  

Carolan and Cafarelli (1992) found a small but significant decrease in hamstring coactivation 

after one week of RT with no further decrease throughout the remaining seven weeks of 

isometric training. The authors calculated the net force production of both agonists and 

antagonist muscles and concluded that the decrease in coactivation accounted for 10% of the 

increase in MVF following eight weeks of training. Hakkinen et al. (1998) reported a 

decrease in hamstring coactivation in elderly but not middle aged individuals in response to 

six months of RT. In contrast, Pucci et al. (2006) showed no change in hamstring co-

activation, whilst Simoneau et al. (2006) and de Boer et al. (2007) reported increased dorsi-

flexor co-activation after long term plantar-flexor RT in older individuals. Recently, Tillin et 

al. (2011) showed increased hamstring antagonist EMG amplitude normalised to EMG at 

MVF in young recreationally active individuals, but a reported a downward shift in the entire 

agonist-antagonist EMG relationship, representing reduced co-activation post training for any 

given level of agonist activation.  

 

2.5.3.6 Stabiliser Muscle Activation 

The effective stabilisation of joints is thought important for optimal force production (Sale, 

1993; Folland & Williams, 2007a). Nozaki et al. (2005) highlighted the importance of 

controlling the adjacent joint on output of the primary joint. The authors demonstrated that 

even during relatively simple strength tasks (isometric knee extension), that there was a large 

variation, both between and within-participants in the ability to stabilise the adjacent joint 

torque through effective inter-muscular coordination. Although, mono-articular muscles 

attach to a bony process which allows for a rigid base of support, bi-articular muscles attach 

to complexes at different joints. Therefore, stability of the adjacent torque may influence 

expression of these muscles. There is little direct evidence available on the influence of 
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stabiliser activation on maximal muscle performance. Indirect evidence does come from the 

observation, that instability (created via use of unstable platforms) causes a reduction in force 

output, through increased co-contraction of antagonists and resultant decrease in net moment 

of force and altered muscle coordination (increased reliance on agonists to act as global 

muscle stabilisers, for a review see Andersen & Behm, 2005). Therefore, it is possible that 

low levels of stabiliser activation, even during relatively simple constrained tasks, could alter 

the expression of agonist muscle activation. Cacchio et al. (2008) assessed the training 

induced adaptations following either constrained or unconstrained path machine training on 

maximal and sub-maximal muscle activation patterns (activation of agonist, antagonist and 

stabiliser muscles during a chest press exercise task) and force production. The alterations in 

agonist, antagonist and stabiliser activation during the submaximal task were investigated and 

it was reported that the level of stabiliser activation increased following training, with a 

concomitant reduction in the level of agonist and antagonist activation. The authors suggested 

the unconstrained path training (which involved having to stabilise the joints without support 

from the machine) improved efficiency of motor control during the submaximal task, thereby 

allowing for a lower level of agonist activation, and reduced agonist effort during the 

submaximal task. 

An interesting observation from the Cacchio et al. (2008) was the greater cross-over to 

unconstrained tasks for the constrained trained versus the unconstrained path to constrained 

movement. The authors suggested that the gains from unconstrained training included both 

strength adaptations but also motor pattern changes, but the motor patterns could not be 

utilised during the constrained activity. The finding does further highlight an important aspect 

of neuromuscular assessment, in which neural adaptations to training are often assessed in 

isolated isometric situation, which do not allow for adaptations in movement patterns, 

specifically possible changes in stabiliser activation to be accurately assessed. It is important 

to begin to fully understand the influence of morphological versus neural factors on 

functional performance, if we are to begin to fully understand how to optimally train our 

athletes or injured individuals.  

The majority of research concerning the neural contributions to strength has been considered 

in isolated single joint situations. This is due to the fact that i) it allows for a more appropriate 

investigation of the mechanisms contributing to performance and ii) at present we are limited 

by the technology available for assessing neural activation (using the ITT and not surface 

EMG) in more complex neuromuscular tasks. It is unlikely that a controlled single joint 
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isometric situation fully reflects the neural requirements for functional performance. It is 

important to begin to understand the neural contributions in more functional/ complex 

situations if we are to fully understand the neural contributions to dynamic sports 

performance and injury avoidance situations. 

 

2.5.4 Unilateral and Bilateral Contractions  

One approach to bridging the gap between isolated single joint situations and functional 

movement, taking into account the limitations of current knowledge and available assessment 

techniques for the study of neuromuscular function is to consider bilateral single joint 

situations. Although not evident in all research studies there is considerable evidence that the 

human neuromuscular system is incapable of maximally activating both homologous limbs 

simultaneously (for a review see Jakobi & Chilibeck, 2001). Bilateral deficit (BLD) has been 

used to describe this phenomenon of a reduction in performance during synchronous bilateral 

actions when compared to the sum of identical unilateral movements. BLD in MVF is 

reported to range up to ~25% (Koh et al., 1993; Van Dieen et al., 2003; Magnus & Farthing, 

2008), and therefore represents a potentially influential factor in the expression of bilateral 

muscle function. Understanding the BLD phenomenon may provide insight into complex 

neuromuscular control patterns. Many dynamic two-limb studies report a BLD, whereas 

isometric studies are more numerous and controversial (see Jakobi & Chilibeck, 2001). The 

mechanisms of the BLD are thought to be of neural origin, although the exact mechanisms 

explaining the phenomenon are unresolved. The primary explanation for BLD during 

maximum isometric and isokinetic contractions is reduced neural drive to the agonist muscles. 

However, the evidence is equivocal, with several studies documenting parallel reductions in 

force and agonist activation during bilateral tasks (Oda & Moritani, 1995; Van Dieen et al., 

2003; Post et al., 2007), where as others have not (Schantz et al., 1989; Howard & Enoka, 

1991; Herbert & Gandevia, 1996; Magnus & Farthing, 2008).  

 

2.5.5 Summary of Determinants of Maximal Muscle Strength 

In summary, the inter-individual expression of maximal muscle appears to be influenced by a 

multitude of morphological and neural mechanisms. Muscle size is thought to contribute ~ 50% 

of the variability in maximal isometric strength of single joints, and is thought to contribute 
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substantially to gains in strength following RT, particularly during the latter phases of 

training. Other morphological factors which may contribute to the variability in maximal 

strength include a possible higher specific tension of type II fibre and preferential 

hypertrophy of type II fibres following RT. Neural mechanisms including agonist and 

antagonist activation are thought to contribute to the variability in maximal strength tasks. A 

lower co-activation may increase force production, but could compromise joint stability. 

Changes in strength particularly during the early period of RT are thought to be primarily due 

to neural adaptations although the exact mechanisms are not fully understood. Stabiliser 

activation may contribute to the expression of maximal strength and could likely explain an 

aspect of the changes in strength following RT, but has received virtually no research 

attention.  

Typically, the determinants of strength have been investigated within single joint actions. Use 

of isolated isometric assessment allows for more precise understanding of the determinants of 

strength, but has been criticised for its perceived lack of relationship to functional 

performance. It is thought that the human system is incapable of maximally activating both 

limbs during maximal isometric contractions. If a small increase in task complexity such as 

assessment of bilateral versus unilateral single joint MVF production causes decreased neural 

outflow and resultant performance, then it could indicate that the precise determinants of 

isolated single joint actions may not reflect functional muscle actions. Consequently, further 

work is required to progress the field in order to provide applied practitioners with 

appropriate evidenced based findings on the factors which influence muscle performance.  

  

2.6 Evidence for Determinants of Explosive Neuromuscular Performance 

2.6.1 Determinants of Electromechanical Delay 

EMD has been suggested to include the time courses of the propagation of the action 

potential along the muscle membrane, theE-C coupling processes and the stretching of the 

series elastic component (SEC) by the contractile component (Cavanagh & Komi, 1979).  

Recent evidence from a study using high frame rate ultrasound imaging of the gastrocnemius 

medialis muscle fibres and myotendinous junction suggests that propagation of the action 

potential along the muscle membrane and E-C coupling account for ~52% of the delay, with 

the remaining 48% explained by the time taken to stretch the SEC (Nordez et al., 2009).  
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2.6.1.1 MTU Stiffness and Slack  

The SEC is responsible for transmitting muscle force to bone. Tendons are extensible and 

lengthen due to application of force from the contractile apparatus. The extent of the 

deformation will depend on the mechanical properties of the entire MTU. The influence of 

tendon slack on EMD has been examined by several authors. Muraoka et al. (2004) measured 

EMD of the medial gastrocnemius in vivo by varying the ankle angle and corresponding 

tendon slack. The authors demonstrated that EMD was independent of joint angle where 

tendon slack was taken up by the muscle tendon complex. EMD obtained at the muscle 

tendon complex length with the greatest tendon slack, was greater than when tendon slack 

was taken up, suggesting that the extent of tendon slack was an important determinant of 

EMD. The results have been confirmed by Hug et al. (2011) and Lacourpaille et al. (2013) 

who measured EMD within the biceps muscle group. It is thought that the increase in EMD at 

short muscle lengths (i.e., shorter than the slack length) is probably explained by an increased 

time required for the muscle to take up the tendon slack (Lacourpaille et al., 2013). 

 

In theory, increased tendon stiffness would be expected to benefit EMD, by increasing force 

transmission from muscle to bone, thereby decreasing the time from contraction to joint 

movement. Cross-sectional research has demonstrated EMD to be negatively related to MTU 

stiffness (R = -0.77; Wu et al., 2010). A reduction in tendon stiffness and lengthening of 

EMD has been reported following muscle unloading (de Boer et al., 2007), bed-rest (Kubo et 

al. 2000) and plyometric training (Grosset et al., 2009). Increased MTU stiffness following 

RT has been accompanied by a reducted EMD (Kubo et al., 2001), although this is not a 

global finding (Reeves et al., 2003). The contrasting findings concerning RT, could relate to 

the measurement differences between studies. Kubo et al. (2000) investigated stiffness of the 

vastus lateralis aponeurosis, whilst Reeves et al. (2003) investigated the patella tendon 

stiffness. Further work considering the role of tendon or MTU mechanics on EMD is sought.  

 

 

2.6.1.2 Fibre Type Composition  

As discussed previously, fast twitch fibres have greater shortening velocity and superior 

contractile RFD than slow twitch fibres (Bottinelli et al., 1996; Harridge et al., 1996; Li & 

Larsson, 1996; Bottinelli & Reggiani, 2000; D'Antona et al., 2006; Degens & Larsson, 2007).  

Therefore, a higher type II percentage of muscle fibres would be expected to shorten EMD by 
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decreasing the time taken to stretch the SEC. Significant relationships between muscle fibre 

type composition and EMD have been reported within the literature (% type II, r = -0.72, 

Taylor et al., 1997; % type I, r = 0.51; Viitasalo & Komi, 1981).  

 

2.6.1.3 Neural Activation 

As discussed, assessment of the intrinsic contractile capacity of the neuromuscular system is 

thought to reflect muscle morphology. Evoked EMD has been shown to be unrelated to 

voluntary EMD (Zhou et al. 1996; Mihsull et al., 2007), which suggests that the MTU 

intrinsic contractile capacity likely does not explain a significant proportion of voluntary 

EMD variance between individuals. This would indicate that factors other than muscle 

morphology (such as the level of neural activation) largely explain the variability in voluntary 

EMD. Voluntary EMD of the quadriceps has been shown to be 100% (16-25 ms) longer than 

electrically-evoked EMD (Zhou et al., 1996; Minshull et al., 2007), which suggests a 

significant neural component to the delay. A higher level of agonist activation during the 

early phase of contraction would be expected to stretch the SEC quicker and therefore 

decrease the response time. However, no study to date has actually assessed the contribution 

of agonist neuromuscular activation to the variability in voluntary EMD between individuals.  

 

2.6.1.4 Summary of Determinants of EMD 

It is clear that multiple factors likely influence the variability in EMD between individuals, in 

which morphological factors such as MTU stiffness and muscle fibre composition may play a 

role. It is likely that neural factors associated with activation of skeletal muscle also explain a 

proportion of the variability in voluntary EMD, but there is no evidence either direct or 

indirect to confirm this. Further work to understand the determinants of EMD is sought.  
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2.6.2 Determinants of Explosive Strength 

2.6.2.1 Maximal Muscle Strength 

Explosive force production at specific times is a composite function of a joint MVF 

capabilities multiplied by the relative percentage of MVF able to achieve at that specific time 

point. Therefore, if there was no variability in the relative capabilities to express the available 

force generating capacity, then it would be scaled purely to MVF. Andersen and Aagaard 

(2006) assessed the relationship between MVF and RFD throughout the rising force-time 

curve (0-10, 0-20, 0-30…0-250 ms) during isometric explosive MVCs of the knee extensors. 

The authors reported that the role of MVF on RFD depended upon the time period from force 

onset, in which voluntary RFD became increasingly more dependent on MVF as the time 

from onset of contraction increased. At time intervals later than 90 ms from the onset of 

contraction MVF accounted for 52–81% of the variance in voluntary RFD. However, MVF 

only accounted for 18-21% of the variance in initial voluntary RFD (0-40 ms). Similarly, 

Folland et al. (2013), reported that MVF was correlated increasingly strongly with absolute 

explosive force as time from force onset progressed (r = 0.59 – 0.95). Taken together there is 

good evidence that MVF appears to be an important determinant of later phase RFD, but less 

important for early phase RFD.   

An increase in RFD would be perhaps the single most important functional benefit induced 

by RT. However, the efficacy of RT for improving explosive isometric strength is 

controversial, with some reports finding an improvement (Hakkinen et al. 1998, Aagaard et al. 

2002a) and others no change (Andersen et al., 2010, Tillin et al., 2011). Tillin et al. (2011) 

recently investigated the influence of RT on explosive strength when specifically training for 

MVF. The authors instructed their participants to slowly increase force production during an 

isometric contraction of the knee extensors (over 1 second) up to 70% their respective MVF, 

before holding for three seconds at the target force. The authors reported an increase in MVF 

(20%) and EMG at MVF (26%), but no change absolute force achieved at either 100 or 150 

ms after force onset following four weeks of RT. In addition the percentage of MVF achieved 

after 100 and 150 ms declined by 15% and 12 %, respectively. The authors concluded that the 

neural mechanisms associated with an enhanced MVF following training were specific to the 

high force non-explosive contractions performed during training. Similar findings were 

observed from Andersen et al. (2010) who investigated the adaptations in early (0-100 ms) 

and late phase RFD (> 200 ms) in response to RT and demonstrated that conventional RT 
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using loads that could be lifting 6-12 times over a progressive RT programme for 14 weeks 

resulted in no change in absolute RFD and a decrease in relative RFD during the early phase 

of contraction. Absolute RFD over the later stages of force development increased 11%, with 

no change in relative RFD during this time period. Taken together, it appears that RT may 

evoke differential adaptations in force production across the force-time curve.  

 

2.6.2.2 Fibre Type 

RFD is higher in muscles possessing a higher percentage of MHC type II isoforms (Harridge 

et al., 1996), and therefore muscles possessing higher percentage of type II muscle fiberes 

would be expected to have higher RFD capabilities. The evidence for an association between 

fibre type proportion and RFD in-vivo is limited and where it has been performed equivocal. 

Viitasalo and Komi (1981) assessed the relationship between fibre composition (determined 

via histochemical analysis) of the vastus lateralis, and time taken to achieve different 

proportions of MVF (5% increments) during explosive voluntary isometric leg press 

contractions and reported a low to moderate significant relationship between the two (0.34 < r 

< 0.48, Viitasalo, Komi 1978). However, further research by the group reported no 

relationship between RFD and fibre composition (Viitasalo & Komi, 1981). Evidence from 

Harridge et al. (1996) supported a role of fibre type as a determianant of RFD, by reporting 

strong significant positive relationships between the two (R = 0.999). However, the study did 

examine three different muscles (triceps brachii, vastus lateralis, soleus), which have with an 

array of different morphological and mechanical differences not limited to just muscle fibre 

composition. Additionally, RFD was not normalised to either MVF or muscle size in this 

study. Thus, there remain considerable question marks over the role of fibre type composition 

on RFD in-vivo.  

Andersen et al. (2010) reported a decrease in type IIx muscle fibre percentage and 

concomitant increase in type IIa muscle fibre percentage following RT which was 

accompanied by a decline in relative RFD. The change in RFD and type IIx fibre percentage 

were related to one another (r = 0.61). It is possible that the decline in relative RFD observed 

following training (Andersen et al., 2010; Tillin et al., 2012a) could in some part be explained 

by fibre type conformation changes observed with RT. 
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2.6.2.3 Tendon Stiffness 

There is evidence to support an association between tendon stiffness and RFD during both 

single and multiple joint actions (Wilson et al., 1994; Walshe et al., 1996; Ditroilo et al., 

2010). Bojsen-Moller et al. (2005) reported positive correlations between MTU stiffness of 

the vastus lateralis (measured using ultrasonography) and absolute RFD over the initial 100 (r 

= 0.65) and 200 ms (r = 0.68) of explosive isometric knee extensions. Furthermore, there was 

also a small to moderate relationship between tendon stiffness and relative (normalised to 

body mass) RFD (r = 0.55). There is a potential spurious relationship which may influence 

these findings, as both MTU (e.g. Muraoka, 2005; Seynnes et al., 2009) and RFD (Andersen 

& Aagaard, 2006; Folland et al., 2013) are both reported to be related to MVF capabilities. 

Therefore, further work to understand the influence of tendon stiffness and RFD when 

accounting for the influence of MVF is required.  

 

2.6.2.4 Muscle Contractile Properties 

Assessment of involuntary RFD in response to evoked contractions can give insight into the 

intrinsic capacity of the MTU for explosive force production without the influence of 

voluntary control and is therefore thought to reflect muscle morphology and tissue mechanics 

(Almeida et al., 1994; Harridge et al., 1996; Oda et al., 2007). A greater RFD of whole 

muscle in-vivo during electrically evoked contractions represents a greater capacity of the 

MTU for explosive force production, which should theoretically benefit RFD during an 

explosive voluntary contraction. Andersen and Aagaard (2006) documented the influence of 

the contractile properties on isometric RFD within the knee extensors. The authors reported a 

moderate relationship (0.45 < r < 0.60) between twitch peak RFD and voluntary RFD during 

the early phase (0-50 ms) of an explosive contraction. Twitch pRFD was not related to RFD 

when analysed over time periods greater than 50 ms. However, it has been shown that 

maximal RFD can only be achieved at high frequencies of electrical stimulation (Buller & 

Lewis, 1965). Twitch peak RFD is only 25-30% of the maximal RFD (de Ruiter et al. 1999), 

and therefore single twitch contractions may provide less insight into the intrinsic explosive 

capacity of the MTU than high frequency contractions such as an evoked octet (8 pulses at 

300 Hz), which has been found to evoke the maximum capacity for RFD (de Ruiter et al., 

2004, 2006).  
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2.6.2.5 Agonist Activation 

There is strong evidence for a significant contribution of agonist activation to RFD. 

Theoretically a higher level of neural drive to skeletal muscle will benefit RFD (through 

higher motor unit recruitment and firing frequency). There is some preliminary evidence 

demonstrating that the level of agonist activation is a key determinant of RFD during the 

early phase of the contraction. Firstly, research has shown that maximal RFD can only be 

achieved when using high pulse rates during electrical stimulation protocols (Buller & Lewis, 

1965). Secondly, de Ruiter et al. (2004) reported an 8 fold difference in the capability for 

individuals explosive force capacity when voluntary force production was compared to the 

muscle maximal capacity for force generation during electrical stimulation of 8 pulses at 300 

Hz (10 to 83%). This difference in capability was largely explained by differences in agonist 

muscle activation measured via normalised surface EMG at the start of the contraction 

(torque time integral over initial 40 ms, r2 = 0.75). Additionally, Tillin et al. (2010) compared 

a group of explosive power athletes (sprinters and jumpers) who were accustomed to 

performing explosive actions to a group of controls, and reported that despite the explosive 

power athletes displaying only a 26% higher knee extensor MVF than controls, the athletes 

exhibited a 2-fold greater absolute RFD over the initial 50 ms of the contraction from force 

onset. The observed mechanical differences were thought to be explained by the large 

differences in agonist activation (EMG values normalised to Mmax), as the intrinsic contractile 

properties of the muscle (response to electrically evoked twitch and tetanic contractions) were 

similar between groups. The activation values during explosive force production are 

reportedly 30-40% when examined with either surface EMG normalised to EMG at MVF or 

Neural Efficacy (de Ruiter et al., 2004; Tillin et al., 2012a; Hannah et al., 2012). Taken 

together, it appears that the early phase of contraction is sub-maximal and can vary 

substantially across individuals.  

The relationship between EMG and RFD in other studies has been reported to be less than 

that of de Ruiter et al. (2004). Klass et al. (2008) reported a shared variance between EMG 

amplitude up to peak RFD and peak RFD capabilities of 33%. Hannah et al. (2012) and 

Folland et al. (2013) reported a shared variance of 45-50% and 34% for normalised agonist 

EMG (to Mmax) and RFD (both 0-50 ms from respective EMG and force onsets) respectively. 

Therefore, there is strong support for the role of agonist activation on explosive strength, 

although the exact contributions are not fully understood and appear to vary between studies.  
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There is some evidence that including an explosive strength component to RT (i.e., intending 

to lift the weight as quickly as possible) is sufficient to enhance early phase explosive 

strength and agonist neural drive (Van Cutsem et al., 1998; Barry et al., 2005; Del Balso et al., 

2007; Gruber et al., 2007; de Hann et al., 2009; Tillin et al., 2012a). Behm and Sale (1993) 

reported similar adaptations in RFD for interventions using dynamic ballistic training using 

loads at 30-40% 1RM and isometric ballistic training and concluded that it was the intention 

to increase force as quickly as possible regardless of velocity that determined changes in RFD. 

Those studies that have required participants to develop maximum force as quickly as 

possible have shown increased RFD following training (Hakkinen et al., 1998; Van Cutsem 

et al., 1998; Barry et al., 2005; Del Balso & Cafarelli, 2007) with a concomitant increase in 

EMG.  

Del Balso and Cafarelli (2007) reported a large increase in RFD (43%) and agonist EMG 

(49%) following four weeks of RT of the ankle plantar flexors. Similarly, Tillin et al. (2012a) 

investigated the influence of explosive strength training using short explosive type 

contractions which required the participants to increase force as quickly as possible (1-s 

duration, achieve at least 90% MVF) over four weeks of training of the knee extensors and 

reported  a 54% increase in RFD over the initial phase of contraction (0-50 ms), which was 

accompanied by 42% increase in agonist activation and relative explosive force production. 

Furthermore, the early phase of activation is highly trainable with on average 2-3% increase 

per session or over 10% improvement per week during the early phase of training in 

untrained individuals (Tillin et al., 2012a). Thus, training the early phase of activation 

appears to provide significant benefit to RFD, within a short period of training time. 

A key question missing from the literature however, is ‘is the inclusion of intention to lift a 

weight quickly during isoinertial RT sufficient to achieve increases in agonist neural drive 

and explosive force capabilities?’ Mechanical changes of explosive strength have been 

investigated following RT involving either isometric actions or ballistic type training (i.e., 

Van Cutsem et al., 1998; Rich & Cafarelli, 2000; Del Balso & Cafarelli, 2007). Therefore 

there is little documented support for the use of conventional RT to develop RFD. Athletic 

training and/or rehabilitation programmes adopt conventional type RT models, and therefore 

it is important to understand the influence of isoinertial RT on explosive strength. Aagaard et 

al. (2002a) has demonstrated an increase in both RFD and agonist EMG following 

conventional type RT. However, EMG was not normalised, and there was expected to be 

considerable hypertrophy of type II fibres, following 12 weeks of RT. Another study by the 
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same research group failed to elicit an increase in RFD and agonist EMG following a similar 

conventional RT programme (Andersen et al., 2010). No study has examined the influence of 

isoinertial RT on RFD following short term training. Given the considered importance of 

RFD for sports performance and injury prevention, understanding how to effectively train 

this component of athletic performance is essential for applied practitioners.  

 

2.6.2.6 Antagonist Activation 

The reported values  of antagonist activation have been shown to be very low during the very 

early phase of voluntary explosive contractions (40-50 ms) of the knee extensors (1-2 %, de 

Ruiter et al., 2004; Hannah et al., 2012) and therefore would be thought to contribute 

minimally to the observed joint torque during this time period. There is little documented 

evidence of the level of antagonist co-activation during explosive force development for other 

muscle groups than the knee extensors, or during the latter phases of explosive force 

production (> 50 ms) is available. Furthermore, no study to date has attempted to document 

the contributions of antagonist co-activation to the variability in voluntary explosive force 

development observed between individuals. Longitudinally, no research studies have reported 

stable values of co-activation pre and post RT during explosive force production (Aagaard et 

al., 2002a; Barry et al., 2005).  

 

2.6.2.7 Stabiliser Activation  

No study has considered the importance of stabiliser activation to isometric RFD, or has it 

been assessed during explosive contractions. It is important to understand the role of 

stabiliser activation on explosive strength in order to comprehensively understand the 

determinants of explosive strength. 

 

2.6.2.8 Unilateral and Bilateral Contractions  

Despite considerable investigation of the BLD in maximal isometric and isokinetic strength 

tasks, only a few studies have examined whether there is a BLD in explosive force production, 

with equivocal findings and limited mechanistic evidence. A BLD in peak RFD has been 
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reported to range between 0-24% (Koh et al., 1993; Jakobi & Cafarelli, 1998; Sahaly et al., 

2001; Van Dieen et al., 2003), and has been shown to be greater than the BLD in MVF in 

some (Koh et al., 1993; Sahaly et al., 2001; Van Dieen et al., 2003) but not all studies (Jakobi 

& Cafarelli, 1998; Sahaly et al., 2001). The primary explanation for BLD during maximum 

isometric and isokinetic contractions is a reduction in neural drive to the agonist muscles. 

Therefore, as the MUFF at the onset of an explosive isometric contraction can be much 

higher than at MVF (i.e., 100-200 Hz vs. 20-30 Hz, Monster & Chan, 1977; Kukulka & 

Clamann, 1981; Bellemare et al., 1983; Van Cutsem et al., 1998), it is possible that any 

reduction in agonist activation might exert a more pronounced effect on explosive force than 

MVF. However, at present only one study has actually assessed agonist neuromuscular 

activation during the explosive phase of an isometric contraction, and reported no change in 

activation, despite a 13% decline in peak RFD (Van Dieen et al., 2003). Therefore, a possible 

neurological basis for any BLD in MVF and RFD is equivocal or remains to be established. 

Given explosive force production is considered to be more important than MVF on 

performance of dynamic sports tasks (Aagaard et al., 2002a; Tillin et al., 2010), 

understanding how bilateral contractions influence RFD is an important step to furthering our 

understanding of the neural contributions to dynamic sports actions. If bilateral contractions 

exert a significant decline in RFD due to neural inhibition of agonist activation, then the 

underlying neural contributions of single joint RFD could be considered to not be fully 

reflective of bilateral explosive strength capabilties.  

 

2.6.2.9 Summary of Determinants of Explosive Strength 

In summary, it is evident that there is large inter-individual variability in the capability of the 

neuromuscular system to develop force rapidly. This inter-individual variability appears to be 

higher during the early phases of explosive force development. MVF appears to be the main 

determinant of late, but not early phase RFD. Agonist EMG and twitch properties appear to 

be important determinants of the development of force (50 ms), with increasing more of an 

important role for MVF as the time from onset increases. The individual roles of MTU 

stiffness and fibre type proportions are relatively unknown. It is likely that a stiff MTU 

system and high proportion of fast twitch fibres would benefit RFD, but there is lack of 

available evidence. When taken together it appears that the early development of force (50 

ms) is a function of the ability to initiate and produce high levels of activation (agonist EMG), 
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and a high response to sub-maximal levels of stimulation (twitch force responses) and the late 

phase of RFD (100 ms plus) is related to MVF capability. More research is required to begin 

to further understand the determinants of RFD, particularly beginning to understand how 

these isolated determinants of single joint isometric RFD explain functional movement 

involving multiple degrees of movement freedom.  

 

2.7. Muscle Fatigue  

Fatigue can be defined as a reduction in muscle performance following muscle contractions, 

which largely recovers after a period of rest (see Allen et al., 2008 for a comprehensive 

review of muscle fatigue). The acute changes that occur with muscle fatigue negatively affect 

muscle performance, and therefore the ability to produce maximal and explosive force. 

Muscle fatigue is negatively associated with performance of explosive sporting actions (Mohr 

et al., 2003; Krustrup et al., 2006) and is thought to be an influential risk factors for sports 

related injuries (Hawkins et al., 2001). Voluntary contraction of skeletal muscle occurs 

following complex processes arising at the cerebral cortex, and eventually leading to 

activation of skeletal muscle following the E-C coupling process. Fatigue can arise at many 

different points in the pathway and can usually be defined as central and peripheral fatigue. 

Peripheral fatigue is defined as the loss of force caused by processes occurring distal to the 

neuromuscular junction. It is universally accepted that much of the fatigue arises in the 

muscles and therefore, a large volume of fatigue research has been studied using isolated 

muscle tissues. However, there is often a substantiated central component to fatigue (see 

Gandevia, 2001), defined as a progressive exercise-induced reduction in voluntary activation 

or neural drive to the muscle (Taylor et al., 2006).  

Muscle fatigue is a complex phenomenon, which has important implications for not only 

athletic performance and injury prevention, but also daily living and health and disease and 

therefore significant scientific investigation has been conducted in the area. Thus, there is a 

considerable level of information available on the topic. A complete discussion of muscle 

fatigue is beyond the scope of this review. Therefore, the present discussion will consider the 

mechanisms responsible for the reduction in maximal muscle performance during isometric 

contraction, from either maximal electrically evoked contractions or voluntary contractions.  
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2.7.1 Effect of Fatigue on Maximal Muscle Performance 

Muscle fatigue has been defined as ‘an exercise-induced reduction in maximal muscle force’. 

The majority of research has considered the influence of fatigue on MVF production, with a 

lack of research addressing the influence of fatigue on functional muscle performance, or 

explosive neuromuscular performance. Muscle fatigue has been reported to negatively 

influence the performance of explosive sporting actions (for a review of fatigue and soccer, 

see Mohr et al., 2003). Furthermore, it is thought that muscle fatigue is an influential factor in 

sports injuries (Hawkins et al., 2001), but this link has never been experimentally reported. 

RFD is considered functionally more important than MVF during explosive movements, such 

as sprinting, jumping or restabilising the body following a loss of balance (de Ruiter et al., 

1999; Aagaard et al., 2002a; Tillin et al., 2010). Therefore, an understanding of how fatigue 

affects explosive neuromuscular performance would seem important in understanding its 

influence on athletic performance and injury risk.  

 

Fatigue has been reported to be strongly influence EMD, and in certain cases reported to 

elongate EMD by up to 70% (Zhou et al., 1996). During less strenuous fatigue protocols, 

fatigue has been shown to elongate EMD in females but not male participants (Minshull et al., 

2007). Furthermore, fatigue has actually been shown to positively enhance magnetically 

evoked EMD in both males and females (21% decrease in EMD). The exact mechanisms for 

the differential influence of fatigue on voluntary and evoked EMD is not clear, but it was 

suggested by the authors that the shortened evoked EMD, might indicate a dormant capability 

for optimal muscle responses during acute stressful exercise and an improved capacity to 

maintain dynamic joint stability during critical episodes of loading (Minshull et al., 2012). 

There appears to be no research that has examined the effects of fatigue on explosive strength. 

Although, it could be expected that fatigue may exert negative influences on RFD, in line 

with declines in MVF, as previously discussed in this review, the determinants of RFD 

appear to change throughout the rising force-time curve (Andersen & Aagaard 2006; Tillin et 

al., 2010), and therefore, fatigue could differentially affect the development of force 

throughout the time course of an explosive contraction. It is possible that fatigue may exert 

more pronounced influences on RFD than MVF production, and this may be due to neural 

and/ or contractile mechanisms. For instance, Type II skeletal muscle fibres have a 

substantially higher RFD (Brenner et al., 1986; Metzger & Moss, 1990; Harridge et al., 1996), 

but arguably similar specific tension (isometric peak force/cross-sectional area; (Larsson & 
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Moss, 1993; Gilliver et al., 2009)) than type I fibres. Therefore, given the lower fatigue 

resistance of the type II fibres, a greater influence of fatigue on explosive than maximal 

phases of the evoked contraction could be expected. Furthermore, as previously discussed the 

MUFFs achieved during explosive force development appears to exceed the MUFF during 

the plateau phase of contraction which includes MVF (explosive phase, 100-200 Hz vs. 

plateau phase, 30-50 Hz, Monster & Chan, 1977; Kukulka & Clammann, 1981; Bellemare et 

al., 1983; Van Cutsem et al. 1998), and therefore, a decline in MUFF with fatigue could be 

expected to exert a more pronounced effect on explosive than MVF production. It is 

important to ascertain the influence of fatigue on explosive force capabilities and report the 

neural and/or contractile mechanisms which may be influential. Fatigue is common during 

sport and could play a vital role in injury occurrence, and therefore the topic is of 

considerable interest to applied sport and exercise science as a whole. 

 

2.7.2 Peripheral Contributions to Muscle Fatigue   

Fatigue of fast twitch muscle fibres following electrically evoked tetanic contractions is 

characterised to proceed in three phases. Phase 1 is characterised by a decline of tetanic force 

by 10–20%, which is accompanied by an increase in tetanic Ca2+; phase 2 is a period of 

relatively constant tetanic force; and phase 3 is described as a rapid decline of both tetanic 

force and myoplasmic Ca2+. The following section will briefly discuss the metabolic changes 

which occur with skeletal muscle and discuss how force is influenced by these changes.  

 

Acute transition from rest to exercise is accompanied by greatly increased demand for energy 

by the working muscle and the muscle attempts to balance this demand utilising various 

energy systems. A feature of fast twitch muscle fibres, particularly type IIx is that they can 

consume adenosine triphosphate (ATP), producing adenosine diphosphate (ADP) and 

inorganic phosphate (Pi), much faster than they regenerate it. During the early stages of 

contraction, ATP content is maintained by the breakdown of phosphocreatine (PCr), which 

causes a rise in free Creatine (Cr) and Pi. Later on, when PCr falls to low levels, ATP begins 

to fall and a rise in ADP occurs. As ADP rises, adenosine monophosphate (AMP) becomes 

important and forms ATP through AMP deaminase. Although, it is believed that in muscle 

fatigue ATP does not fall to low levels (> 60%), the values reflect whole muscle 

measurements. However, research using muscle biopsy techniques suggest that ATP levels in 

certain fibres drop considerably more than this. Karatzaferi et al. (2001) reported that when 
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PCr dropped to 11% of its initial value, ATP dropped to 20% of its initial value, thus it is 

possible a decline in ATP could exert significant effects on muscle fatigue. However, during 

fatigue from high intensity exercise, a major challenge in the intracellular milieu of skeletal 

muscle is not ATP depletion but metabolite accumulation that affects acto-myosin cross-

bridge interaction. The metabolic changes which accompany intense muscle contraction 

include an increase in ADP, Pi, AMP and inosine monophosphate (IMP). An important 

consideration to the drop in ATP is a rise in moyplasmic magnesium (Mg+). ATP has a 

stronger affinity with Mg+ than ADP, AMP, IMP and thus a decrease in ATP results in 

parallel increase in Mg+ which has been suggested to play a role in muscle fatigue. Further 

pathways to resynthesize ATP include anaerobic glycogenolysis and the aerobic breakdown 

either of glycogen, glucose, or fat. Anaerobic glycolysis is of central importance in muscle 

fatigue because it is turned on rapidly during activity, and the net reaction is breakdown of 

glucose units to lactate ions and protons causing the early acidosis associated with rapid-

onset muscle fatigue. 

 

A detailed review of the underlying fatigue mechanisms which contribute to the decline in 

force goes beyond the scope of the present review. For an excellent review of the topic, 

readers are recommended to consult Allen et al. (2008a). In short, when considering a fall of 

50% in tetanic force of type II fibres, the early fall in force (phase 1), which is usually a 10% 

reduction, is likely to be caused by a reduction in force due to increased inorganic phosphate 

(Pi). The remaining 40% was attributed to reduced Ca2+ sensitivity of the contractile proteins 

and reduced sarcoplasmic reticulum (SR) Ca2+ release (Allen et al., 2008a). Although, the 

exact mechanisms responsible are not fully known, it is thought that the reduced Ca2+ 

sensitivity could have contributions both from metabolites such as Pi and from the effects of 

reactive oxygen species (ROS). Further, it is suggested that the most likely causes for reduced 

SR Ca2+ release appear to be precipitation of Ca2+ phosphate in the SR with a contribution 

from reduced ATP and raised Mg2+. It is important to note that this evidence has arisen 

largely from experiments on isolated animal muscle preparations.  

 

2.7.3 Neural Contributions to Muscle Fatigue 

Central fatigue can be described as a progressive exercise-induced reduction in voluntary 

activation or neural drive to the muscle (Taylor et al. 2006). The ITT has been used widely to 

report declines in voluntary activation with fatigue. In response to both intermittent and 
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sustained MVCs there is a decline in voluntary activation. The contribution of central fatigue 

to the decline in MVF has been studied extensively (for a review see Gandevia, 2001), and 

found to contribute up to ~20-25% of the decrease in MVF (Taylor et al. 2006). A reduction 

in neural activation with fatigue could be due to either a decline in motor recruitment or 

MUFF.  

 

A detailed examination of the underlying mechanisms responsible for the reduction in MUFF 

is beyond the scope of this review, but has been excellently reported elsewhere (Gandevia, 

2001). To provide a summary, both spinal and supraspinal mechanisms are thought to be 

responsible for the decline in force due to ‘central’ mechanisms. At the spinal level, factors 

include intrinsic behaviour of the motor neurons, recurrent inhibition, reflex inputs and their 

pre-synaptic modulation, and other neuromodulatory influences acting upon the motor 

neurons and or spinal circuitry. At the supraspinal level, the outputs of descending tracts to 

the motor neurons and that factors which control descending drive are thought to be 

important (Gandevia, 2001).  

 

2.7.4 Summary of Fatigue and Muscle Performance 

In summary, muscle fatigue has been shown to negatively impact on muscle performance and 

therefore the ability to produce maximal and explosive force. Muscle fatigue is negatively 

associated with performance of explosive sporting actions and is thought to be influential risk 

factors for sports related injuries. However, despite a substantial amount of research assessing 

the influence of fatigue on MVF, there is a paucity of research on fatigue and explosive 

neuromuscular performance. Contractile and neural mechanisms are responsible for the 

decline in MVF, but there is however, no documented mechanistic evidence for fatigue and 

explosive strength. Fatigue could be expected to exert a more pronounced influence on 

explosive than maximal muscle strength, which could be due to both contractile and neural 

mechanisms, but this needs to be established. Given the separate associations of both 

explosive strength characteristics and fatigue with muscle performance and injury risks, it 

would seem important and relevant to establish the influence of fatigue on explosive strength.  
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2.8 Main Aims of the Thesis 

There has been no comprehensive investigation of the reliability of RFD. Furthermore, the 

octet could provide an effective technique to examine the MTU capacity for explosive force 

production, and when considered alongside RFD, could provide an alternative measure of 

neural drive during the initial stages of contraction. But its reliability needs to be established. 

Considering the reliability of EMG during explosive force development and contrasting the 

different normalisation methods needs to be established. Therefore, the first aim of the thesis 

was to establish the reliability of explosive force/RFD and documenting the reliability of 

EMG and evoked force responses. 

Agonist EMG over 50 ms has been reported to be the primary determinant of voluntary force 

production (relative force after 50 ms), but its association with voluntary EMD is unknown. 

As voluntary EMD is considerably longer than evoked EMD, and previous research has 

reported low relationships between the two variables, agonist EMG could be an important 

determinant. If EMG is also a strong determinant of voluntary EMD, then this would further 

highlight the importance of the ability to increase EMG rapidly over the early phases of 

contraction (initial 50 ms). Therefore, the second aim of the thesis was to establish the 

relationship of the ability to activate skeletal muscle during the early phase of contraction 

(EMG 0-50 ms) with the ability for voluntary EMD.  It was hypothesised that the ability to 

activate agonist EMG (0-50 ms) would be an important determinant of voluntary EMD. 

It is not clear if the determinants of RFD in single joint situations reflect more complex 

functional situations. If there is a large BLD for explosive force, and this is due to neural 

inhibition then the determinants of single joint RFD may not so readily explain more complex 

situations. There is considerable research required before the determinants of functional 

sporting actions are fully understood, but assessing the BLD for RFD and documenting the 

neural contributions to BL single joint RFD would improve our understanding of the neural 

contributions to RFD, and help begin to bridge the gap between isolated single joint 

situations and more functional movement. It was hypothesised that there would be a more 

substantial BLD for explosive force/RFD than MVF, which would be accompanied by a 

pronounced reduction in agonist activation during explosive force development.  

Marked increases in muscle strength during the early phase of a RT program have been 

observed and these changes appear to be highly specific to the nature of the training task.  

The specificity of training phenomenon is taken as strong indirect evidence for neural 
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adaptations; however, there is minimal direct evidence for either neural or morphological 

mechanisms that might explain this training task specificity. Early adaptations to RT are 

thought to be primarily explained by neural adaptations such as agonist and antagonist 

activation, as opposed to peripheral adaptations. Therefore, documenting training specific 

adaptations over a short term training period may distinguish between the neural and 

morphological explanations for the task specificity phenomenon.  

The role of conventional RT on RFD is equivocal. There is strong evidence that increasing 

force rapidly from a low or resting force value up to high level of force is effective at training 

agonist activation during the early phase of contraction. It is possible that conventional RT 

would not provide this necessary stimulus to train agonist EMG rise and RFD. Therefore, an 

aim of the thesis was to investigate the influence of conventional RT, with an explosive 

strength component included (maximal intention to lift the weight as quickly as possible), and 

document the possible associated neural adaptations. It was hypothesised that conventional 

RT with maximal intention to lift the weight, despite this gradual lowering would be 

sufficient to enhance RFD, which would be accompanied by increased agonist activation 

during the early phases of contraction. 

Although, movement is due to a complex cooperation between agonist, antagonist, stabiliser 

and synergist muscles, there has to date being a relatively isolated approach to investigating 

the neural contributions to muscle performance and adaptations to training. Stabiliser muscle 

activation is considered important for the expression of strength and could explain a 

proportion of the unexplained variability in gains in strength following RT, but has received 

very little attention. An aim of the thesis was to try to broaden the approach to investigating 

neural mechanism in muscle performance and consider stabiliser activation alongside agonist 

and antagonist activation. A further aim was to establish the role of stabiliser activation on 

isometric explosive force production. It was hypothesised that stabiliser activation would 

adapt following RT and this may help explain the task specificity phenomenon following 

isoinertial training. It was further hypothesised that stabiliser activation would not make an 

independent significant contribution to isolated isometric explosive force production, but may 

indirectly contribute to performance through a role on inter-muscular coordination.   

 

Fatigue has been reported to be an influential risk factor for sports injuries. Given the 

presumed role of RFD and EMD on the ability to activate and develop force during the early 
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phase of the contraction, it would seem relevant to have an understanding of the role of 

fatigue on EMD and RFD and the associate mechanisms. However, no study has actually 

examined the influence of fatigue on explosive force production, and there is no mechanistic 

evidence of how fatigue could comprise explosive force production. Therefore, the final aim 

of the thesis was to document the influence of fatigue on explosive force production and 

EMD and document the accompanying neural and contractile mechanisms. It was 

hypothesised that explosive force production would exhibit a greater decline than MVF with 

fatigue, and that this could be due to neural and/or contractile mechanisms.   
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3.1 Introduction 

The ability to rapidly develop muscular force is an important aspect of muscle performance 

that is fundamental to sports activities such as sprinting, jumping and punching and is also 

considered important for preventing injuries after mechanical perturbation (Aagaard et al., 

2002a; Minshull et al., 2007; Tillin et al., 2010). These explosive movements involve 

contraction times on the order of 50-250 ms (Haff et al. 1997) which is shorter than the time 

required for development of maximum voluntary force (MVF, ≥ 300 ms, Thorstensson et al., 

1976). Therefore, it is important to be able to reliably assess neuromuscular function during 

explosive contractions.  

Explosive muscle strength is typically assessed by measuring either the rate of force 

development (RFD) or area beneath (force-time integral) the force–time curve during 

isometric explosive voluntary contractions. Although MVF has been documented widely to 

have excellent reliability (ICC > 0.95; coefficient of variation [CV] < 4%, Thorstensson et al., 

1976; Strass, 1997; Kollmitzer et al., 1999; de Ruiter et al., 2004; Place et al., 2007) the 

between-session reliability of explosive force production has received little attention. The 

between-session reliability of RFD in the plantar flexors has been documented, but only in 

the early phase of the contraction (5- 40% MVF, Clark et al., 2007). Others have noted some 

reliability data for knee extensor RFD during intervention or comparative studies (Clark et al., 

2007; Place et al., 2007; Tillin et al., 2010) but there has not been a comprehensive attempt to 

assess the reliability of RFD measurements.  

Assessment of involuntary RFD in response to evoked contractions can give insight into the 

intrinsic capacity of the muscle-tendon unit (MTU) for explosive force production without 

the influence of voluntary control and is therefore thought to reflect muscle morphology and 

tissue mechanics (Almeida et al., 1994; Harridge et al., 1996; Oda et al., 2007). These 

intrinsic contractile properties have often been investigated by examining the response to a 

single electrical impulse and subsequent twitch contractions (Van Cutsem et al., 1998; Rich 

& Cafarelli, 2000; Andersen & Aagaard, 2006; Pucci et al., 2006). However, research has 

shown that maximal RFD can only be achieved at high frequencies of stimulation (Buller & 

Lewis, 1965). Therefore, single twitch contractions may provide less insight into the intrinsic 

explosive capacity of the MTU than high frequency contractions such as an evoked octet (8 

pulses at 300 Hz), which has been found to evoke the maximum capacity for RFD (de Ruiter 

et al., 2004, 2006). Although, the reliability of supramaximal twitch contractions has been 
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examined (Clark et al., 2007; Place et al., 2007; Tillin et al., 2011), the reliability of 

supramaximal evoked octet contractions for determining maximal RFD is unknown.  

Volitional neural drive to skeletal muscle is considered a crucial determinant of maximal and 

explosive muscle performance that is often assessed by measuring the amplitude of the 

surface electromyographic (EMG) signal (Hakkinen et al., 1995; Van Cutsem et al., 1998; de 

Ruiter et al., 2004, 2006; Tillin et al., 2010). While the between-session reliability of EMG 

amplitude has been assessed during maximal, submaximal and sustained isometric 

contractions (Yang & Winter, 1983; Rainoldi et al. 2001; Mathur et al. 2005; Clarke et al., 

2007), its reliability during explosive isometric contractions has not been documented. The 

absolute EMG amplitude is influenced by a multitude of intrinsic and extrinsic factors that 

are unrelated to the level of muscle activation (de Luca, 1997), therefore, normalisation of the 

EMG signal is considered essential for comparisons between participants as well as for 

repeated measurement sessions with the same individual. The EMG amplitude during a task 

of interest has typically been normalised to the amplitude obtained from a reference 

contraction, although there is no general agreement as to the best normalisation method 

(Perry, 1992). 

Isometric maximum voluntary contractions (MVC) are the most widely used (De Luca, 1997) 

and advocated (Burden, 2010) reference method. There is however, no standard procedure for 

assessing the EMG during MVCs in order to provide a reliable reference for normalisation. 

Some authors have used the peak EMG (Bruhn et al., 2006) irrespective of the time it occurs, 

whereas others have used EMG at MVF (Gruber & Gollhofer, 2004), but there appears to be 

no evidence as to which is superior. Additionally, there is no consensus on the optimal 

window length that should be used when processing the amplitude of the EMG signal during 

MVCs, and a range of window lengths has been reported (100 ms, de Ruiter et al., 2004, 

2006; 200 ms, Gruber & Gollhofer, 2007; 500 ms, Place et al., 2007). 

Alternatively, de Luca (1997) suggested that sub-maximal contractions at ≤ 80% MVF may 

provide more stable EMG amplitude than MVCs, and there is evidence that the EMG 

amplitude during sub-maximal contractions exhibits superior between-session reliability 

(Yang & Winter, 1983; Rainoldi et al., 1999). Furthermore, the EMG response to an evoked 

maximal compound muscle action potential (Mmax) has also been suggested as an alternative 

normalisation method (Araujo et al., 2000; Gandevia et al., 2001). As the Mmax response is 

not confounded by volitional activation, it may provide superior reliability to traditional 
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normalisation techniques (i.e. to EMG during MVCs). The peak-to-peak amplitude of Mmax 

(Mmax P-P) has been used to normalise EMG during explosive and maximum voluntary 

contractions (Van Cutsem et al., 1997; Tillin et al., 2010; Tillin et al., 2011). Although, the 

reliability of EMG normalised to Mmax P-P has been investigated during MVCs (CV, 12.1-

13.4%, ICC, 0.45-0.90, Place et al., 2007) there has been no investigation during explosive 

contractions. Recent research has also suggested that the cumulative area of the Mmax (Mmax 

Area) may provide a more reliable measurement parameter than Mmax P-P (Tucker & Turker, 

2007), but the reliability of this parameter in either absolute terms, or when used as a 

normalisation method for volitional EMG has not been assessed.  

The aim of this study was to determine the between-session reliability of: (i) knee extensor 

measurements of voluntary and evoked explosive force production, and (ii) agonist EMG at 

maximal force and during the initial explosive phase of contraction, with consideration of the 

most reliable method of EMG normalisation. Specifically, the reliability of absolute EMG 

from maximal, sub-maximal and explosive contractions was determined, and the influence of 

EMG window length and selection of EMG epoch during MVCs (at peak EMG vs. EMG at 

MVF) was considered. Finally, the reliability of using different reference methods for EMG 

normalisation was compared, including Mmax P-P, Mmax Area, and volitional EMG during 

maximum and sub-maximum contractions. 

 

3.2 Methods 

3.2.1 Participants 

Thirteen healthy male participants gave written informed consent prior to participating in this 

study, which had local ethics committee approval (mean ± SD: age, 22 ± 3 yr; height, 1.78 ± 

0.04 m; body mass, 70.6 ± 9.2 kg).  The participants were physically active, healthy, injury 

free and had not taken part in any form of lower body resistance exercise in the previous 12 

months.  

 

 

 



                                                     Chapter 3: Reliability of exploisive neuromuscular performance  

68 
 

3.2.2 Overview 

Each participant attended the laboratory on four separate occasions, once for familiarisation 

and then for a further three main trials, during which measurements were recorded from the 

preferred leg. Trials were seven days apart and at a consistent time of day for each participant. 

The three trials involved the same protocol with measurements of isometric knee extension 

force and surface EMG of the superficial quadriceps during maximal, sub-maximal and 

explosive voluntary efforts, as well as evoked twitch and octet contractions.  

 

3.2.3 Measurement Trials 

3.2.3.1 Measurements 

Participants were firmly secured in the strength testing chair (Parker et al., 1990; Bosjen-

Moller et al., 2005) with waist and shoulder straps. The hip and knee angle were fixed at 100° 

and 85° respectively. An ankle strap was placed 2 cm proximal to the medial malleolus, in 

series with a calibrated U-shaped aluminium strain gauge (linear response up to 1000 N, 

Jones & Parker, 1989) that was positioned perpendicular to tibial alignment. The force signal 

was amplified (x 500), interfaced with an analogue to digital converter (CED micro 1401, 

CED, Cambridge, UK), and sampled at 2000 Hz with a PC utilizing Spike 2 software (CED, 

Cambridge, UK). Real-time biofeedback of the force response was provided on a computer 

monitor.  

The femoral nerve was stimulated electrically (via a constant current, variable voltage 

stimulator; DS7AH, Digitimer Ltd., UK) with square wave pulses (0.1 ms in duration) to 

elicit: (i) single pulse twitch contractions, to facilitate measurement of compound muscle 

action potentials (M-waves); and (ii) octet stimulation (8 pulses at 300 Hz) to determine the 

muscle’s maximal capacity for RFD. The anode (carbon rubber electrode, 7 x 10 cm; Electro-

Medical Supplies, Greenham, UK) was taped to the skin over the greater trochanter. The 

cathode, a custom-adapted stimulation probe 1 cm in diameter (Electro-Medical Supplies, 

Wantage, UK), which protruded 2 cm perpendicular from the centre of a plastic base (4 x 5 

cm), was taped to the skin over the femoral nerve in the femoral triangle. The precise location 

of the cathode was determined as the position which elicited the greatest twitch response for a 

particular submaximal current.    
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Surface EMG was recorded from the rectus femoris (RF), vastus lateralis (VL) and vastus 

medialis (VM) using a Delsys Bagnoli-4 EMG system (Input impedance, > 1015Ω ; common 

mode rejection ratio, 93 dB, Delsys, Boston, USA). Following preparation of the skin 

(shaving, light abrading and cleansing with 70% ethanol), double differential electrodes (1 

cm inter-electrode distance, DE-3.1, Delsys) were attached over each muscle using adhesive 

interfaces. To standardise position between sessions and normalise across individuals, the 

electrodes were positioned in the centre of the muscle belly parallel to the presumed 

orientation of the muscle fibers at specific lengths along the thigh (from the lateral epicondyle 

of the femur to the greater trochanter: VM, 20%; VL, 40%; RF, 60%). Skin-electrode 

impedance was assessed on each occasion and maintained at a consistent level (within 0.5 

MΩ) within individuals and at a value < 5 MΩ for all participants. The reference electrode 

was placed on the patella of the same limb. EMG signals were amplified (x1000; differential 

amplifier, 20 – 450 Hz) and synchronized with force data by recording at 2000 Hz with the 

same analogue to digital converter and PC as the force signal. During off-line analysis the 

signals were band-pass filtered in both directions between 6-500 Hz using a 2nd order 

Butterworth digital filter.  

 

3.2.3.2 Protocol  

Once the participants were firmly secured in the testing chair they performed a series of 

voluntary isometric contractions of the knee extensors: (i) MVCs to assess maximum 

voluntary force (MVF) (ii) submaximal contractions at 80%MVF; and (iii) explosive 

contractions to assess explosive force production. MVCs and explosive contractions were 

separated, as each has a distinct purpose which requires different instructions and participant 

attention that can influence the performance outcome (Sahaly et al., 2001).  

Therefore, following a warm-up of progressive sub-maximum contractions, participants 

performed four MVCs, each separated by ≥ 30 s, in which participants were instructed to 

push ‘as hard as possible’ for 3 s. Biofeedback was provided by displaying the force trace on 

a monitor with an on-screen cursor used to mark maximum force. Participants were 

encouraged to exceed this target on subsequent attempts, and verbal encouragement was 

provided during and between each maximal contraction. Knee extensor MVF was the greatest 

force achieved by the participant in any of the MVCs. The EMG signal of the three agonist 

muscles was assessed with: (i) a 500 ms root mean square (RMS) epoch around MVF (250 
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ms either side, ‘EMG@MVF’); and (ii) the 500 ms epoch that provided the highest RMS 

value of each muscle irrespective of force ‘peak EMG’. RMS EMG values for each muscle 

were normalised to both Mmax P-P and Mmax Area (detailed below). Absolute and normalised 

EMG values from the three agonist muscles were averaged to give a mean for the whole 

quadriceps.  

The effect of window length on the measured variability between trials of the EMG was 

examined using repeated measures on single trials. When comparing between random signals 

as the window length increases mean variability between the signals should decrease 

according to a power law. However, the EMG signal is only pseudo-random and non-

stationary, so variability may increase on longer time scales.  A flat 1.5 s segment of the 

force-time curve was selected for a single trial and divided up into multiple non-overlapping 

windows. This was done on the same signal for 14 different window lengths (25, 50, 75, 100, 

125, 150, 200, 250, 300, 350, 400, 500, 600, 700 ms). A custom MATLAB script 

(MathWorks Natick, Massachusetts, U.S.A) then computed the coefficient of variation (CV) 

between windows for groups of the same window length. This meant that the CV was 

calculated from the same signal with different window lengths as the only variable. This was 

repeated for each of the MVC attempts with the highest force, for all participants, from each 

of their three measurement session, and the mean CV for each window length was calculated. 

A power curve of the form y = a × bx + c was fitted to the mean data using a least squares 

technique in MATLAB. 

Participants then performed 3-4 submaximal isometric contractions at 80% MVF. The desired 

force level was displayed on a computer screen, and participants were instructed to maintain 

this level of force as steadily as possible for 4-5 s. Mean force and EMG of the agonist 

muscles during these contractions were assessed with a 500 ms epoch (‘EMG@80%MVF’) 

during a stable segment of the force-time curve, where force was ~80% MVF. 

Participants then performed 10 explosive voluntary contractions (separated by 20 s). For each 

contraction, participants were instructed to extend the knee as ‘fast’ and as hard as possible, 

with an emphasis on fast, for ~1 s from a relaxed state (Sahaly et al., 2001). Participants were 

instructed to avoid any countermovement or pre-tension. To determine if countermovement 

had occurred, the resting force level was displayed on a sensitive scale. In order to provide 

biofeedback on their explosive performance, the slope of the force time curve (2 ms time 

constant) was displayed throughout the explosive contractions, and the peak slope of their 
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best attempt was highlighted with an on-screen cursor. Finally, a visual marker on the screen 

depicted 80% of MVF during the contractions, and participants were expected to achieve this 

level of force during each explosive contraction. The three contractions with the highest peak 

slope and no discernible countermovement or pre-tension (change in force of > 0.5 N in the 

preceding 100 ms) were used for analysis, and all measurements were averaged across these 

three contractions. Force was assessed at 50, 100, and 150 ms, from the onset of contraction. 

RFD was measured as the peak slope (pRFD) and in time windows of 0-50, 50-100 and 100-

150 ms from the onset of force. The force-time integral (the area beneath the force-time curve) 

was also assessed in windows of 0-50, 0-100 and 0-150 ms from the onset of force. Force 

was reported in absolute terms and normalised to MVF i.e., force/MVF. The RMS EMG was 

measured in windows of 0-50, 0-100 and 0-150 ms from the onset of EMG activity in the first 

agonist muscle to be activated. The RMS EMG values for each muscle were normalised to 

each of the different reference measurements [Mmax P-P, Mmax Area (detailed below), 

EMG@MVF, EMG@80%MVF] before being averaged across the muscles to give a mean 

value for the quadriceps.  

Twitch contractions were elicited at incremental current intensities until a simultaneous 

plateau in the force and M-wave response was observed. Thereafter, the current was 

increased by 20%, and three supra-maximal twitches were elicited (separated by 12 s). The 

average peak-peak amplitude (Mmax P-P) and total Mmax area (Mmax Area) of these three 

supramaximal M-waves was determined for each muscle and was used for normalisation. The 

Mmax area was calculated as the total cumulative area of the Mmax response from the onset of 

EMG following the stimulation artefact, to the point at which the EMG signal returned to 

baseline value (visually identified). The twitch force response was analyzed for peak force 

(PF), force at 50 ms, pRFD (2 ms time constant), force-time integral (0-50 ms), time to peak 

force (TPF), and half relaxation time (HRT) and was averaged across the three contractions.  

Octet contractions were then elicited at incremental intensities up to the supramaximal 

current level used for Mmax measurements. Three supramaximal octet contractions (separated 

by 12 s) were elicited, and the average of the three was taken for analysis. Analysis included 

measurement of PF, force at 50 ms, pRFD (2 ms time constant) and force-time integral (0-50 

ms). As an additional measure of overall neural efficacy, force production during the 

voluntary explosive contractions was compared to octet force and force-time integral over 50 

ms to assess the participant’s voluntary activation capacity and was reported as voluntary 

percentage of octet performance.  
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3.2.4 Data Analysis  

For the explosive voluntary and electrically-evoked contractions, identification of force and 

EMG onsets was made manually (visual identification). The same investigator identified 

signal onsets with a constant y-axis scale of ~ 1 N and 0.1 mV, for force and EMG 

respectively, and an x-axis scale of 500 ms. A vertical cursor was then placed on the onset 

and viewed at a higher resolution to determine its exact location (~ 0.5 N and 0.05 mV for 

force and EMG axes, respectively using an x-axis of 25 ms). Manual identification of signal 

onsets is considered the “gold standard” method (Allison, 2003; Moretti et al., 2003; Pain & 

Hibbs 2007; Pulkovski et al., 2008).  

To determine the level of reliability of all the aforementioned measurement parameters the 

intraclass correlation coefficient (ICC) (two-way random effects model, single measure 

reliability) was employed. Within-participants reliability was calculated using the mean intra-

participant coefficient of variation [(SD ÷ Mean) × 100, CVW]. Both the ICC and CVW have 

been widely used to assess reliability, as they both offer different measures of reliability. The 

CVW is a measure of within-participant reliability which provides a measure of variability of 

an individual’s value, while the ICC indicates the percentage of the global variance that can 

be attributed to the variability between participants. ICC values were interpreted as ‘excellent’ 

0.80 – 1, ‘good’ 0.6 – 0.8 and poor < 0.60 (Bartko, 1966). The between-participant 

coefficient of variation [(group SD ÷ group mean) × 100, CVB] was identified for each single 

session and then averaged across the three sessions, before being used to determine the 

impact of EMG normalisation on the variability of EMG measurements between participants.  

To determine if there was a significant difference between testing days, a one-way repeated 

measures analysis of variance (ANOVA) was performed for each measurement parameter. If 

sphericity was violated, then Huynh-Feldt corrected values were used. To determine if 

differences in CVW values between measurement parameters were significant, one-way 

ANOVA with Bonferroni post-hoc adjustments or paired t-tests were performed. One way 

ANOVA or paired t-tests were performed to examine if the within-participant reliability was 

different when comparing: i) voluntary explosive force/RFD at different time points/periods 

(e.g. 50 vs. 100 vs. 150 ms); ii) evoked octet vs. voluntary measures of force and force-time 

integral over 50 ms; (iii) the twitch vs. octet force responses; iv) voluntary vs. electrically-

evoked EMG measures; v) EMG measured across different time windows (0-50 vs. 0-100 vs. 

0-150 ms) and vi) absolute EMG vs. different normalisation methods (Mmax P-P vs. Mmax 
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Area vs. EMG@MVF vs. EMG @80% MVF). Data are reported as mean ± SD, and an alpha 

level of 5% was accepted as statistically significant. 

 

3.3 Results  

3.3.1 Force 

3.3.1.1 Maximal and Submaximal Voluntary Contractions 

The MVF values showed a very high level of reliability across measurement sessions (551 ± 

92 vs. 566 ± 86 vs. 567 ± 93 N, CVW, 3.3%, ICC, 0.95). For the submaximal contractions the 

assessed 500 ms epoch was very close to the intended contraction intensity (80% MVF) and 

was a consistent proportion of MVF across the three sessions (79.8 ± 0.5 vs. 80.1 ± 0.4 vs. 

79.6 ± 1.3 % MVF, CVW, 5.0%).  

 

3.3.1.2 Voluntary Explosive Force Production 

Force, relative force and force-time integral measurements at all 3 time points were consistent 

across the three sessions (50, 100 and 150 ms; P > 0.35; Table 3.1). For these three 

parameters the reliability of the very early phase of explosive force development (50 ms) 

demonstrated poor CVW values (16.6-18.7%), which were significantly higher than for the 

CVW values for 100 (6.4-9.8%, all P < 0.005) and 150 ms (5.1-8.4%, all P < 0.001). However, 

the ICC values for these three parameters during the initial 50 ms period were good (0.75-

0.80). The RFD between 50-100 ms was the most reliable RFD window. The CVW values 

were good (6.8%) and were significantly lower than during 0-50 (16.6%, P < 0.0005) and 

100-150 ms (10.5%, P = 0.026). 
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Table 3.1 Reliability of voluntary explosive force production. Group data are reported as 
mean ± SD (N =13) for each of three measurement sessions. 

       Session         

  1 2 3 CVW ICC P 

Force (N)             

50 ms 90 ± 45 91 ± 33 83 ± 42 16.6 0.80 0.494 

100 ms  301 ± 79 308 ± 67 300 ± 68 6.4 0.91 0.616 

150 ms  404 ± 77 418 ± 68 414 ± 81 5.1 0.90 0.352 

Relative force       

50 ms (% MVF) 16.5 ± 7.5 16.7 ± 5.7 15.1 ± 6.9 18.0 0.75 0.465 

100 ms (% MVF) 55.6 ± 9.6 55.9 ± 7.7 54.7 ± 6.8 7.1 0.69 0.782 

150 ms (% MVF) 75.2 ± 7.9 76.2 ± 6.5 75.5 ± 6.9 5.1 0.59 0.847 

50 ms (% octet) 41.4  ± 19.1 45.8  ± 16.8 37.2  ± 18.2 18.8 0.80 0.063 

RFD (N.s-1)       

 0-50 ms  1778 ± 891 1829 ± 653 1664 ± 844 16.6 0.80 0.494 

50-100 ms  4237 ± 1073 4324 ± 1042 4343 ± 926 6.8 0.90 0.683 

100-150 ms  2074 ± 315 2200 ± 369 2277 ± 463 10.5 0.62 0.110 

 pRFD  6292 ± 1624 6413 ± 1430 6190 ± 1289 7.2 0.90 0.352 

Force-time integral (N.s)       

0-50 ms   1.12 ± 0.56 1.16 ± 0.48 1.08 ± 0.58 18.7 0.77 0.731 

0-100 ms   11.0 ± 3.1 11.3 ± 2.7 11.0 ± 3.4 9.8 0.82 0.836 

0-150 ms  28.1 ± 6.2 29.2 ± 6.1 29.2 ± 6.8 8.4 0.77 0.594 

50 ms (% octet) 24.6  ± 12.3 27.1  ± 12.0 22.2  ± 12.0 22.0 0.77 0.175 

CVW, within-participant coefficient of variation; ICC, intraclass correlation coefficient; P, one-way ANOVA p 
value; N, newtons; MVF, maximum voluntary force; RFD, rate of force development; pRFD, peak rate of force 
development. 

 

3.3.1.3 Electrically-evoked Explosive Force Production and Mmax  

For the evoked force responses, one participant did not complete the octet measurements in 

all three sessions, therefore, evoked force responses are reported as N = 12. Evoked octet 

force responses were consistent across measurement sessions (all, P > 0.182) with very good 

CVW values (5.4-7.3%) and good ICC values (0.71-0.83; Table 3.2). The octet CVW 

demonstrated significantly lower CVW values than voluntary measures of explosive force 

production at 50 ms (force, 5.4 ± 3.8 vs. 16.6 ± 7.4%, P = 0.001; force-time integral, 6.7 ± 4.8 

vs. 18.7 ± 9.7%, P = 0.001), but was not different for pRFD (Octet, 7.3 ± 3.7 vs. voluntary, 

7.2 ± 3.5%, P = 0.739). 
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Twitch force responses were less stable; pRFD changed significantly across measurement 

sessions (P = 0.023), with a tendency for PF (P = 0.072) and force at 50 ms (P = 0.075) to 

also differ between sessions (Table 3.2). Twitch pRFD was less reliable than octet pRFD 

(CVW, 11.3 ± 4.6 vs. 7.3 ± 3.7%, P = 0.017), however twitch and octet measures of peak 

force, force at 50 ms and force-time integral 0-50 displayed similar reliability (CVW all, P ≥ 

0.41). The time course of the twitch response was stable across measurement sessions with 

very low CVW values for TPF and HRT (3.6 & 4.9%, respectively) and excellent ICC values 

(0.89 & 0.86, respectively).  

Mmax P-P and Mmax Area differed significantly across measurement sessions (P = 0.025, and P 

= 0.033, respectively), and CVW values were moderate to poor (14.1 & 13.7 %, respectively). 

The ICC (0.95 & 0.93, respectively) and CVB (58.7 & 54.8 %, respectively) values were high 

for both measures.  
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Table 3.2 Reliability of evoked responses to supramaximal twitch and octet stimulation. 
Group data are reported as mean ± SD (N = 12) for the three measurement sessions. 

  Session     

  1 2 3 CVW ICC       P 

OCTET       

PF (N)  351 ± 62 350 ± 53 371 ± 53 7.2 0.76 0.149 

Force 50  (N) 213 ± 34 213 ± 33 223 ± 31 5.4 0.83 0.240 

F-T integral 0-50  (N.s) 4.59 ± 0.85 4.53 ± 0.81 4.69 ± 0.70 6.7 0.77 0.632 

pRFD (N.s-1) 8534 ± 1616 8356  ± 1170 8922  ± 933 7.3 0.71 0.181 

TWITCH       

Force        

PF (N) 109 ± 23 107 ±  18 115 ±  21 7.6 0.83 0.072 

Force 50 (N) 88 ±  16 86 ±  14 93 ±  14 8.3 0.76 0.075 

F-T Integral 0-50 (N.s) 1.89 ± 0.42 1.84 ± 0.33 1.98 ± 0.39 8.0 0.75 0.225 

pRFD (N.s-1) 3013 ±  771 2834 ± 654 3228 ±  671 11.3 0.80 0.021 

Time course       

HRT (ms) 73 ±  12 73 ±  14 76 ±  13 4.9 0.86 0.175 

TPF (ms)  82 ±  11 85 ±  9 83 ±  9 3.6 0.89 0.142 

Mmax       

P-P amplitude (mV) 3.02 ±  2.01 3.33 ±  1.82 3.58 ±  1.97 14.1 0.95 0.025 

Area (mV.s) 0.014 ±  0.008 0.016 ±  0.008 0.017 ±  0.010 13.7 0.93 0.033 

CVW, within-participant coefficient of variation; ICC, intraclass correlation coefficient; P, one-way ANOVA p 
value; PF, peak force; N, newtons; Force50, force at 50 ms; F-T integral 0-50, Area beneath the force-time 
curve from 0 to 50 ms; pRFD, peak rate of force development; HRT, half relaxation time; TPF, time to peak 
force; Mmax, maximum compound action potential;  P-P, peak to peak; mV, millivolts. 

                               

3.3.1.4 Voluntary Activation Capacity (voluntary: octet performance) 

The CVW values for measures of voluntary activation capacity (i.e. voluntary performance 

compared to the octet) using either force (18.8%) or force-time integral (22.0%) were poor 

even though the evoked force production from the octet was very reliable. There was also a 

tendency for the percentage of octet force achieved voluntarily at 50 ms to be significantly 

different across sessions (P = 0.063). However, the ICCs were good (force, 0.77, force-time 

integral, 0.80). 
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3.3.2 EMG 

3.3.2.1 EMG Window Length 

The variability of EMG (CVW) measured with different window lengths was plotted in Figure 

3.1, and the bin to bin CV data for EMG fit almost perfectly with a power function (r2 = 

0.999, Sum of Squared Errors 0.2297):   

                                                      y = 101.2.x-0.577+ 3.451  

 

The variability for 25 ms window length was high (CVW, 19.3 ± 4.2%) and was significantly 

greater than all other window lengths (P < 0.001). Increasing the window length resulted in a 

significant decline in EMG variability for all window lengths up to 200 ms (8.2 ± 3.4%), 

which was the shortest window length in which there was no further significant reduction in 

EMG variability for any increase in EMG window length (all, P > 0.108). 

 
Figure 3.1 Variability of EMG amplitude during MVCs as a function of EMG window 
length. Data are mean within-contraction coefficient of variation from 37 MVCs. Solid 
markers represent mean CV values for each respective EMG window length. The solid curve 
represents the power function (r2 = 0.999), and the dotted lines represent the 95% confidence 
intervals.   
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3.3.2.2 Absolute EMG during Reference Measures 

Absolute EMG amplitude during the maximum (EMG@MVF, peak EMG) and sub-

maximum contractions (EMG@80%MVF) was consistent across measurement sessions 

(Table 3.3). The reliability of EMG@MVF and peak EMG were very similar, as in fact was 

EMG@80%MVF (CVW, 16.6-17.1%; ICC, 0.89-0.91). Furthermore, the reliability of these 

three reference EMG measures and evoked Mmax P-P and Mmax Area responses were similar 

(P = 0.466).  

 

3.3.2.3 Normalisation of EMG@MVF 

Given the similar reliability of EMG@MVF and peak EMG, for simplicity, only the former 

was normalised to Mmax parameters. EMG@MVF normalised to Mmax P-P differed across the 

three sessions (P = 0.034), but this was not the case when it was normalised to Mmax area (P = 

0.103). The reliability of EMG@MVF normalised to either Mmax P-P (CVW, 15.5 ± 9.0%) or 

Mmax area (15.5 ± 8.3%) was no better than absolute EMG@MVF (16.6 ± 7.8%,  P = 0.699).  

Normalisation of EMG@MVF did, however, dramatically reduce the between-participant 

variability (CVB absolute, 62.5%; normalised to Mmax P-P, 33.6%; normalised to Mmax Area, 

27.0%).  
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Table 3.3 Reliability and inter-participant variability of absolute EMG RMS amplitude 
during volitional reference measures (maximum and submaximum voluntary contractions). 
During maximum contractions peak EMG and EMG @ MVF were assessed. EMG @ MVF 
was also normalised to Mmax parameters. Data are reported as mean ± SD (N = 13) for each of 
the three measurement sessions. 

   Session          

            1          2            3 CVW ICC P CVB 

Absolute  EMG during volitional reference measures (mV)      

  Peak EMG  0.20 ± 0.12 0.24 ± 0.12 0.23  ± 0.15 16.6 0.89 0.092 60.0 

  EMG@MVF  0.19 ± 0.12 0.21  ± 0.12 0.21  ± 0.14 16.6 0.90 0.503 62.5 

  EMG@80% MVF 0.12 ± 0.07 0.13  ± 0.06 0.13  ± 0.08 17.1 0.91 0.236 54.5 

EMG @ MVF normalised to:         

  Mmax P-P (%) 8.9 ± 3.0 8.7  ± 3.2 7.5  ± 2.3 15.5 0.80 0.034 33.6 

  Mmax Area.s-1   17.9 ± 4.4 17.2 ± 5.5 15.6 ± 3.9 15.5 0.69 0.103 27.0 

CVW, within-participant coefficient of variation, ICC, intraclass correlation coefficient; P, one way ANOVA p 
value; CVB, between participant coefficient of variation; Absolute EMG, un-normalised root mean squared 
EMG amplitude; peak EMG, maximum 500ms root mean squared EMG epoch during the maximum voluntary 
contraction; EMG@MVF, 500ms epoch of EMG around maximum voluntary force; Mmax, maximum compound 
action potential; P-P, peak to peak 

 

3.3.2.4 EMG during Explosive Voluntary Contractions 

There were tendencies for absolute EMG values during the explosive voluntary efforts to be 

different across measurement sessions for all three time periods from EMG onset (0-50 ms, P 

= 0.053; 0-100 ms, P = 0.088; 0-150 ms, P = 0.059). When EMG values were normalised to 

EMG@MVF, EMG@80%MVF or Mmax Area there were no changes across the 3 

measurement sessions, however normalisation of EMG during the shortest time period (0-50 

ms) to Mmax P-P was not stable across the sessions (P = 0.025). Absolute and normalised 

methods of expressing EMG amplitude produced similar CVW values for all 3 time windows, 

with no differences between any of the methods (P > 0.85). Collapsing individual CVW 

values for EMG from all four normalisation methods across the different time windows (0-50 

vs. 0-100 vs. 0-150 ms) demonstrated that the averaged CVW values were significantly higher 

during 0-50 (19.6 ± 9.3%)  than for 0-100 (15.4 ± 6.9%, P = 0.001) or 150 ms (15.7 ± 6.7%, 

P = 0.001).    
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Table 3.4 Reliability and inter-participant variability of EMG RMS amplitude during 
explosive voluntary contractions assessed in 3 time windows from EMG onset (0-50, 0-100 
and 0-150 ms). Absolute values are presented and normalised to four reference measures: 
EMG during maximum (EMG@MVF) and submaximal voluntary (EMG@80% MVF) 
contractions, and evoked Mmax peak-to-peak amplitude (Mmax P-P) and cumulative area (Mmax 
Area). Data are reported as mean ± SD (N = 13) for each of the three measurement sessions.  

  Session      

 1 2 3 CVW ICC P CVB 

0-50 ms        

Absolute EMG (mV) 0.093 ± 0.084 0.105 ± 0.095 0.091 ± 0.082 17.6 0.97 0.053 101.5 

Normalised to:         

EMG@MVF (%) 46.6 ± 24.6 47.5 ± 23.9 44.0 ± 22.5 20.5 0.80 0.690 51.4 

EMG@80% MVF (%) 62.8 ± 33.7 65.6 ± 35.9 64.2 ±  33.5 19.1 0.81 0.894 53.5 

Mmax P-P (%) 3.54 ± 1.68 3.74 ± 1.80 2.95 ± 1.61 19.8 0.84 0.025 50.0 

Mmax Area. s-1     7.69 ± 4.40 7.89 ± 4.64 6.45 ± 4.14 21.2 0.85 0.096 60.1 

0-100 ms        

Absolute EMG (mV) 0.143 ± 0.090 0.159 ±  0.080 0.154 ± 0.085 14.5 0.95 0.088 56.1 

Normalised to :        

EMG@MVF (%) 73.3 ± 22.6 75.7 ± 17.4 77.7 ± 22.9 16.8 0.55 0.740 27.7 

EMG@80% MVF (%) 98.7 ± 28.4 102. ± 21.4 114 ± 33.6 16.3 0.58 0.113 26.4 

Mmax P-P (%) 5.86 ± 1.98 6.16 ± 1.56 5.49 ± 1.77 14.6 0.68 0.248 30.5 

Mmax Area. s-1  12.4 ± 4.6 12.4 ± 3.8 11.8 ± 4.7 14.4 0.78 0.703 35.5 

0-150 ms        

Absolute EMG (mV) 0.161 ± 0.094 0.186 ± 0.086 0.178 ± 0.102 16.0 0.92 0.059 54.1 

Normalised to :        

EMG@MVF (%) 82.3 ±  20.5 87.7 ± 17.7 86.3 ± 20.9 14.1 0.53 0.582 23.1 

EMG@80% MVF (%) 111 ± 24.1 118 ± 17.5 126 ± 26.8 13.5 0.55 0.072 19.3 

Mmax P-P (%) 6.71 ± 2.05 7.18 ± 1.70 6.14 ± 1.66 16.0 0.57 0.114 27.1 

Mmax Area. s-1    14.0 ± 4.4 14.4 ± 3.8 13.1 ± 4.3 13.5 0.74 0.365 30.1 

CVW, within-participant coefficient of variation, ICC, intraclass correlation coefficient; P, one way ANOVA p 
value; CVB, between participant coefficient of variation; EMG, surface electromyography root mean squared 
amplitude; Absolute EMG, un-normalised EMG; MVF, maximum voluntary force; Mmax, maximum compound 
action potential; P-P, peak to peak amplitude;   

 

 

 



                                                     Chapter 3: Reliability of exploisive neuromuscular performance  

81 
 

3.4 Discussion 

The aim of this investigation was to examine the reliability of explosive voluntary and 

evoked force production and to consider the reliability of absolute and normalised EMG 

during maximal and explosive voluntary contractions in order to determine the optimal 

normalisation method. The main findings of the study were that the early phase of voluntary 

explosive force production was highly variable for an individual but became more consistent 

from 100 ms onwards. On a group level, explosive voluntary force measurements at all time 

points were stable and consistent between sessions. The absolute EMG amplitude was highly 

variable for individuals between measurement sessions for both maximal and explosive 

voluntary contractions and electrically-evoked measurements. Surprisingly, none of the 

normalisation techniques improved significantly the within-participant reliability (CVW) of 

EMG amplitude measurements for either maximal or explosive contractions. However, all the 

EMG normalisation techniques reduced the between-participant variability (CVB) compared 

to absolute values. Normalised group EMG values were consistent during both maximal and 

explosive contractions, providing Mmax P-P was not used as the normalisation method. The 

octet was a reliable method of examining the maximal evoked explosive performance of the 

MTU and was more reliable than the twitch for assessing peak RFD. Voluntary activation 

using explosive voluntary compared to octet force/ force-time integral was not more reliable 

than normalised EMG amplitude during explosive voluntary contractions. 

 

3.4.1 Reliability of Force Measurements 

The between-session reliability of MVF was excellent (CVW, 3.3%, ICC, 0.95), which further 

supports previous research that has demonstrated similar findings (Kollmitzer et al., 1999; 

Thorstensson et al., 1977; Place et al., 2007). The different measures of explosive force 

production (force, relative force, force-time integral) demonstrated consistent group values 

across the measurement sessions with similar within-participant (CVW) reliability. These 

measures of explosive force production on an individual basis were most variable in the very 

early phase (e.g. force 50 ms, CVW 16.6%) but became more reliable at 100 (6.4%) and 150 

ms (5.1%). The pattern and magnitude of these reliability values was similar to another recent 

report (Force: 50 ms, 12.8%; 100 ms, 5.3% and 150 ms, 4.8%, Tillin et al, 2011). Therefore, 

we conclude that the early phase of explosive force production (50 ms) is variable on an 
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individual level across measurement sessions, but there is good reliability from 100 ms 

onwards. When an individual’s explosive strength is assessed over the initial 50 ms with the 

intention of determining longitudinal changes (e.g. following an intervention), the findings 

should be interpreted with caution. 

Evoked responses using the octet were highly reproducible on a group and individual level 

(CVW, 5.4-7.3%), thus this measurement offers a reliable method of examining the explosive 

evoked capacity of the knee extensors. Octet force and force-time integral CVW values at 50 

ms were lower than for the respective voluntary measures, thus evoked explosive force 

production in the first 50 ms is more reliable than voluntary performance during this early 

phase of contraction. The CVW values of the twitch force responses were in line with those 

previously reported for the knee extensors (Place et al., 2007; Tillin et al., 2011) and lower 

than those reported for the plantar flexors (Clarke et al., 2007). The time course of the evoked 

twitch response was very reliable across measurement sessions, but the amplitude was less 

stable, with tendencies for changes in PF and force after 50 ms. Octet pRFD was more 

reliable than twitch pRFD on an individual basis (CVW, 7.3 vs. 11.3%), and it was more 

stable on a group basis (twitch pRFD differed across measurement sessions). Therefore, the 

octet provides a more reliable method for examining the intrinsic contractile properties of the 

MTU and is recommended for future research. 

 

3.4.2 Reliability of EMG during Reference Measures and Normalisation of EMG during 

MVCs 

The window length analysis data fit a declining power function almost perfectly, 

demonstrating that a longer EMG window length reduces the EMG variability. In this study 

sample, from 200 ms onwards there was no further significant decline in EMG variability 

with increasing window length, which is in agreement with a previous report (Vint & 

Hinrichs, 1999). This indicates that, where possible, a minimum 200 ms window length 

should be employed during isometric voluntary contractions to maximize the reliability of 

EMG measurements. 

As force and EMG are related, stable and reliable force measurements are required for 

reliable EMG measurements, and these criteria were satisfied for the volitional maximal and 

submaximal reference contractions in this study. The absolute measures of group EMG 



                                                     Chapter 3: Reliability of exploisive neuromuscular performance  

83 
 

amplitude during maximum (peak EMG, EMG@MVF) and sub-maximum contractions 

(EMG@80%MVF) were consistent across measurement sessions. However, unlike MVF, 

individual absolute EMG values were highly variable between measurement sessions (CVW 

16.6 – 17.1%), which is similar to previous reports (Kollmitzer et al., 1999; Clarke et al., 

2007). During maximal contractions the choice of measuring EMG amplitude at MVF or 

peak EMG had no influence on reliability. Additionally, EMG amplitude during submaximal 

contractions was no more reliable than during maximal efforts, which is in contrast to early 

work (Yang & Winter, 1983; Rainoldi et al., 1999) but supports more recent research (Netto 

et al., 2006; Burnett et al., 2007; Norcross et al., 2010). Therefore, on the basis of 

measurement reliability, we cannot conclude that any of these reference measures is superior. 

The group data for the Mmax parameters (P-P and Area) were not consistent across 

measurement sessions and demonstrated similarly high individual variability between 

sessions as absolute volitional EMG measures. The Mmax P-P ICC value was excellent (0.95) 

and similar to a previous report (Netto et al., 2006) which is likely a function of the high 

variability observed between participantss (CVB, 58.7%). Within-participant reliability of  

Mmax P-P was variable (CVW, 14.1%), which contrasts with one study (CVW, 7.5%, Clarke et 

al., 2007) but is similar to another (CVW, 14.6-18.8, Place et al., 2007). The voluntary EMG 

signal amplitude depends on the membrane properties of the muscle fibers as well as the 

timing of the motor unit action potentials. Thus, it reflects both peripheral and central 

properties of the neuromuscular system. The features of the EMG signal depend on a myriad 

of non-physiological factors that are unrelated to neural activation (e.g. subcutaneous tissue, 

skin-electrode impendence, electrode location, motor unit synchronization, signal 

cancellation, Farina et al., 2004)  and changes in some of these factors from session-to-

session may explain the reliability findings. It is important to note that although every effort 

was made to ensure identical EMG repositioning prior to all repeat measurement sessions, in 

a couple of circumstances the markings from the previous session were not identifiable, and 

thus the positioning had to be re-measured. These slight changes in electrode location might 

have influenced the reliability of the absolute EMG signal.  

Importantly, normalisation of absolute EMG amplitude at MVF to the evoked reference 

measures (Mmax Area and P-P) did not improve the reliability of individual data, which has 

not previously been documented. Furthermore, group data for EMG@MVF normalised to 

Mmax P-P was not consistent across sessions, although normalisation to Mmax Area was stable 

between sessions. Place et al. (2007) also found EMG during MVCs normalised to Mmax P-P 
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to vary significantly between sessions for one of the superficial quadriceps muscles (RF), but 

not the other two (VM and VL). However, normalisation to either Mmax parameter 

substantially reduced the between-participant variability (~50%, Yang & Winter, 1984).  

Despite the absence of improved individual reliability values, normalisation of EMG during 

maximum isometric efforts to Mmax Area is recommended for evaluating group comparisons 

or responses, as it substantially reduces between-participant variability.    

It is unclear why normalising the absolute EMG signal did not improve the within-participant 

reliability. Although the issues discussed would be expected to influence the variability in 

EMG signal amplitude, normalisation of the EMG signal is expected to remove some of these 

factors (e.g., skin-electrode impedance, electrode placement). Therefore, the fact that 

normalisation does not reduce the within-participant variability suggests that the M-wave 

varies in a manner that is not associated with the variability in volitional EMG. 

 

3.4.3 Reliability of EMG during Explosive Contractions 

As with the maximal contractions, normalisation of EMG during explosive efforts to a range 

of reference measures (EMG during volitional maximum and submaximum contractions and 

evoked Mmax parameters) did not significantly reduce the within-participant reliability. The 

CVW values were lower for EMG over 0-100 and 0-150 ms compared to 0-50 ms, which 

could be explained by either more reliable neural function or as a consequence of the longer 

EMG window length. All methods of normalisation significantly reduced the CVB values to a 

similar extent (~50%) compared to CVB for absolute EMG amplitude, while not significantly 

impacting the within-participant reliability. This reduction in between-participant variation 

would be expected to increase the effect size and power of statistical comparisons between 

groups or repeated measures of the same group compared to absolute EMG, making 

normalised EMG a more sensitive measurement tool. Consequently, in terms of reliability it 

does not seem to be important which method of normalisation is used, providing the EMG is 

normalised. The exception however, was Mmax P-P which resulted in the only significant 

difference across sessions. Therefore, based on this reliability data, and given the relative 

simplicity of collecting EMG@MVF (i.e. no electrical stimulation is required), this reference 

measure may be the normalisation method of choice for EMG recorded during explosive 

contractions. Although, in the present study we have not considered the validity of different 

normalisation techniques, when differences in neural activation at MVF might be expected 
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(e.g. strength training or following injury) then normalisation to Mmax Area could be more 

appropriate. 

Comparing voluntary and evoked explosive force production during the early phase of 

contraction has been used as a measure of assessing voluntary activation capacity (de Ruiter 

et al., 2004, 2006). It was thought that this may offer a more reliable measure of neural 

activation in the early phase of the contraction than surface EMG. We found that, although 

the octet was reliable, its use as a reference for voluntary performance did not offer a more 

reliable measurement method than EMG amplitude over the first 50 ms. Therefore, it appears 

that the early phase of voluntary activation and force production during explosive 

contractions is highly variable on an individual level regardless of the measurement methods 

used. As evoked explosive force was reliable, this likely reflects an inherent variability in 

neural drive. 

In summary, explosive voluntary force production was reliable on a group level, but variable 

for an individual during the very early phase (50 ms) of contraction. From 100 ms onwards, 

voluntary explosive force production is reliable across measurement sessions. EMG during 

both voluntary maximal and explosive contractions was consistent across sessions for the 

group but was variable for individuals. Surprisingly normalisation of EMG did not improve 

this within-participant variability, but, as expected, it substantially reduced the variability 

between participants. The high intra-individual variability of EMG amplitude may limit its 

use to measuring group as opposed to individual responses to an intervention. For group 

comparisons, normalisation of EMG amplitude is recommended, specifically to Mmax Area 

for EMG recorded during maximum contractions and to EMG@MVF for recordings made 

during explosive efforts. The evoked octet is recommended as a stable and reliable 

measurement tool for assessing maximal evoked explosive force capacity. However, use of 

the octet to calculate voluntary activation capacity during the initial phase of explosive efforts 

was no more reliable than absolute EMG amplitude.  
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4.1 Introduction 

The capacity of the neuromuscular system for explosive force production is considered to be 

important for the performance of sporting movements such as jumping (Marcora & Miller, 

2000; de Ruiter et al., 2006) and sprint running (Tillin et al., 2013), and in providing dynamic 

joint stability and ligament protection (Shultz & Perrin, 1999). There is evidence that injuries 

such as an anterior cruciate ligament rupture can occur within 50 ms of ground contact 

(Krosshaug et al., 2007). Consequently, time allowed for joint re-stabilisation following 

mechanical perturbation is limited. As such electromechanical delay (EMD, the time delay 

between the onset of myoelectrical activity and onset of force generation; Zhou et al., 1995) 

represents an important aspect of neuromuscular reaction time, during which there could be 

unrestrained development of forces of sufficient magnitude to damage ligamentous tissue in 

synovial joints (Huston & Wojtys 1996; Mercer et al. 1998; Shultz et al. 2001). Despite the 

apparent importance of EMD, its exact determinants are not fully understood.  

EMD has been suggested to be due to several neuromechanical processes, specifically the 

time involved in: the propagation of the action potentials along the muscle fibre membrane; 

excitation contraction-coupling; and the stretching of the series elastic component (SEC) by 

the contractile component (Cavanagh & Komi, 1979). Using high speed ultrasound, Nordez 

et al. (2009) demonstrated that the time taken to stretch the SEC accounted for ~50% of EMD 

(Nordez et al., 2009). Any of these factors could contribute to inter-individual differences in 

EMD. Some preliminary research into the determinants of EMD has been undertaken, 

examining the morphological contributions to the variability in EMD and demonstrated EMD 

to be linked with inter-individual differences in muscle-tendon mechanics [e.g. tendon slack 

(Muraoka et al., 2004), tendon stiffness (Kubo et al., 2001)] and skeletal muscle composition 

[e.g. fiber type (Viitasalo & Komi, 1978)]. However, no study has investigated if neural 

factors may contribute to the variability in EMD. Voluntary EMD of the quadriceps has been 

shown to be 100% longer (16-25 ms) than electrically evoked EMD (Zhou et al., 1996; Tillin 

et al., 2010), which suggests that the ability to voluntarily activate skeletal muscle has a 

contribution on the variability in EMD. Additionally, previous research has considered the 

potential contribution of single independent variables in isolation, with no study attempting to 

comprehensively assess the determinants of EMD within the same study. 

Assessment of involuntary RFD in response to evoked contractions can give insight into the 

intrinsic capacity of the MTU for explosive force production without the influence of 
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voluntary control and is therefore thought to reflect muscle morphology and tissue mechanics 

(Almeida et al., 1994; Harridge et al., 1996; Oda et al., 2007). Thus, the combined influence 

of morphological factors to voluntary EMD can be assessed by examining the intrinsic 

contractile properties in response to an evoked contraction. Assessment of normalised surface 

EMG amplitude during the early phase of an explosive voluntary contraction could provide 

information of the importance of the capability to activate skeletal muscle during the very 

early phase of force development and if examined alongside the intrinsic contractile 

properties can provide the necessary information concerning the factors which may 

contribute to the inter-individual EMD. The aim of the study was to determine the neural 

(agonist neuromuscular activation) and the intrinsic muscle contractile properties (evoked 

EMD, twitch and octet responses) contributions to EMD.  

 

4.2 Methods 

4.2.1 Participants 

Twenty-four healthy male participants (mean ± SD: age 22 ± 3 yr; height, 1.79 ± 0.05 m; 

body mass, 71.8 ± 9.6 kg), with low to moderate activity status, and no history of lower body 

resistance or power training in the preceding 12 months, volunteered to participate in the 

study. Participants provided written informed consent prior to their involvement in the study, 

which complied with the Declaration of Helsinki and was approved by the Ethical Advisory 

Committee of Loughborough University.  

 

4.2.2 Study Design 

Participants attended the laboratory on two separate occasions, once for familiarisation and 

then for a main trial one week later. The two trials involved the same protocol and were 

completed at a consistent time of day for each patient. The main session involved the 

measurement of force and surface EMG during a series of voluntary (maximal and explosive) 

and electrically-evoked (twitch and octet) contractions of the knee extensors of the preferred 

limb.  
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4.2.3 Measurements 

Participants were firmly secured into an isometric dynamometer (Bosjen-Moller et al., 2005; 

Parker et al., 1990) with waist and shoulder straps, with hip and knee angles fixed at 100° and 

85° (full extension = 180°), respectively. An ankle strap was placed 2 cm proximal to the 

medial malleolus, in series with a calibrated U-shaped aluminium strain gauge (linear 

response up to 1000 N; Jones & Parker, 1989) that was positioned perpendicular to tibial 

alignment. The force signal was amplified (x 500) interfaced with an analogue to digital 

converter (CED micro 1401, CED, Cambridge, UK) and sampled at 2000 Hz with a PC 

utilising Spike 2 software (CED, Cambridge, UK). Real-time biofeedback of the force 

response was provided on a computer monitor.  

Surface EMG was recorded from the rectus femoris (RF), vastus lateralis (VL) and vastus 

medialis (VM) using a Delsys Bagnoli-4 EMG system (Input impedance, > 1015 Ω common 

mode rejection ratio, 93, Delsys, Boston, USA). Following preparation of the skin (shaving, 

lightly abrading and cleansing with 70% ethanol), double differential electrodes (1 cm inter-

electrode distance, DE-3.1, Delsys) were attached over each muscle using adhesive interfaces. 

To standardise position between sessions and normalise across individuals, the electrodes 

were positioned in the centre of the muscle belly parallel to the presumed orientation of the 

muscle fibers at specific lengths along the thigh (from the lateral epicondyle of the femur to 

the greater trochanter: VM, 20%; VL, 40%; RF, 60%). Skin-electrode impedance was 

assessed to ensure a value < 5 MΩ for all participants. The reference electrode was placed on 

the patella of the same limb. EMG signals were amplified (x1000; differential amplifier, 20 – 

450 Hz) and synchronised with force data by recording at 2000 Hz with the same analogue to 

digital converter and PC as the force signal. During off-line analysis the signals were band-

pass filtered between 6 and 500 Hz using a 4th order zero-lag Butterworth filter prior to 

analysis.  

 

4.2.4 Protocol  

Participants performed a series of warm-up contractions at ~50 and ~75% of MVF followed 

by three MVCs each lasting 3-s and preceded by ≥30 s rest. Participants were instructed to 

contract as hard as possible in response to an auditory signal. Biofeedback was provided by 

displaying the force trace on a monitor with an on-screen cursor used to mark maximum 
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force. Participants were encouraged to exceed this target on subsequent attempts and strong 

verbal encouragement was provided during and between each maximal contraction. Knee 

extensor maximal voluntary force (MVF) was the greatest force achieved by the participant 

in any of the MVCs or explosive voluntary contractions (see below).  

Participants then performed 10 explosive voluntary isometric contractions each separated by 

20 s. Participants were instructed to extend their knee as ‘fast’ and as hard as possible in 

response to an auditory signal, with an emphasis on fast, for ~1 s from a relaxed state (Sahaly 

et al., 2001). Participants were instructed to avoid any countermovement or pre-tension. To 

determine if a countermovement had occurred, the resting force level was displayed on a 

sensitive scale. In order to provide biofeedback on their explosive performance, the slope of 

the force time curve (2 ms time constant) was displayed throughout the explosive 

contractions and the peak slope of their best attempt highlighted with an on-screen cursor. 

Finally, a visual marker on the screen depicted 80% of MVF during the contractions, and 

participants were expected to achieve this level of force during each explosive contraction. 

The three contractions with the highest peak slope and no discernible countermovement or 

pre-tension (change in force of < 0.5 N in the preceding 100 ms) were used for analysis, and 

all measurements were averaged across these three contractions. Signal onsets of all 

voluntary and evoked contractions were visually identified (Allison, 2003; Moretti et al., 

2003; Pain & Hibbs 2007; Pulkovski et al., 2008) according to previous research from our 

laboratory (see Tillin et al., 2010; Buckthorpe et al., 2012). The root mean square (RMS) of 

the EMG signal for each muscle (RF, VM, VL) was calculated over the initial 50 ms from 

EMG onset – defined as the onset of the first muscle to be activated. EMG values from the 

agonist quadriceps (RF, VM, VL) were normalised to the maximal M-wave Area (Mmax Area, 
see below) before being averaged across the three muscles to provide an overall value for the 

quadriceps.  

The time difference between the onset of EMG and force was determined for each of the 

three superficial knee extensors and this defined EMD in this study. The greatest EMD 

irrespective of the muscle was taken as maximum EMD (EMDmax) during each contraction 

and averaged across the three contractions. Voluntary EMDmax was also expressed as a 

percentage of evoked EMDmax recorded during twitch contractions (detailed below: voluntary 

EMDmax / evoked EMDmax) to investigate the voluntary neural component of the delay (Tillin 

et al., 2010).   
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Using previously published methods (Buckthorpe et al., 2012), supramaximal electrical 

stimuli were delivered to the femoral nerve to elicit twitch and octet (8 pulses at 300 Hz) 

contractions. Square wave pulses (0.1 ms in duration) were delivered via a variable voltage 

stimulator (Model DS7AH, Digitimer, Ltd, Welwyn Garden City, UK). Incremental twitch 

contractions were elicited until a simultaneous plateau in the force and M-wave response was 

observed. Thereafter, the current was increased by 20% and three supra-maximal twitches 

were elicited (separated by 12 s). The average total Mmax Area of these three supramaximal 

M-waves was determined for each muscle according to previous published methods and used 

for normalisation purposes (Buckthorpe et al., 2012). The twitch force response was analysed 

for peak force (PF), peak RFD (pRFD; 2 ms time constant), time to peak force (TPF), and 

half relaxation time (HRT) and was averaged across the three contractions. EMDmean and 

EMDmax were calculated in the same manner as for voluntary explosive contractions. 

For the evoked octet contractions the current was once again reduced and step wise 

increments were delivered 15 s apart until the same supramaximal current intensity was 

achieved (typically 4-5 increments were performed). Thereafter, three maximal octet 

contractions were elicited (separated by 12 s) and the average of the three taken for analysis. 

Analysis included measurement of octet PF, F50, and pRFD (2 ms time constant).   

 

4.2.5 Statistical Analysis 

Descriptive statistics are presented as mean ± SD. Primary analysis involved performing 

Pearson’s product moment bivariate correlations between voluntary EMDmax and evoked 

EMDmax, neural (EMG normalised to Mmax Area) and contractile variables (Twitch, PF, HRT, 

TPF, pRFD; Octet F50, PF, pRFD). The relationship between evoked EMDmax and contractile 

variables was assessed. Secondary analysis included splitting the sample into two separate 

groups (N = 12) based upon voluntary EMDmax values, with the groups representing the half 

of the sample with the shortest and longest EMDmax values. Independent samples t-test were 

then computed on all measured variables to identify significant differences between the 

groups, whilst effect sizes were reported to interpret the magnitude of these changes. 

Statistical analyses were performed using SPSS version 16 (SPSS inc., Chicago, IL, U.S.A.) 

and statistical significance was set at P < 0.05.  Effect sizes (ES) were interpreted according 

to Cohen’s d, where 0.2 is a small effect, 0.5, a moderate effect and > 0.8 a large effect.  

 



                                                                                                       Chapter 4: Neural contributions to EMD  

92 
 

4.3 Results 

Agonist EMG amplitude was moderately related to voluntary EMDmax (r = 0.64, P < 0.01, 

Figure 4.1). Furthermore, this relationship was similar when considering only the volitional 

component of the delay (r = 0.61, P < 0.01). There was a significant albeit weak relationship 

between voluntary and evoked EMDmax (r = 0.42, P = 0.037, Figure 4.1). Voluntary EMDmax 

was not related to any of the evoked twitch performance measures (r ≤ 0.20, P ≥ 0.354) or 

octet PF or F50 (r ≤ 0.27, P ≥ 0.202). There was a tendency for voluntary EMDmax to be 

related to octet pRFD (r = 0.397, P = 0.061). Additionally, there was no relationship between 

evoked EMDmax and the twitch and octet contractile properties (twitch, r ≤ 0.217, P ≥ 0.308; 

Octet, r ≤ 0.40, P ≥ 0.654).  

There was a significant difference between the top 12 and bottom 12 participants for 

voluntary EMDmax (15.6 ± 2.2 vs. 22.0 ± 4.5 ms, P < 0.001, Table 4.1). Furthermore, this 

group demonstrated a significantly lower volitional component of the delay (229 ± 32 vs. 311 

± 60%, P < 0.001, Table 4.1). Agonist EMG amplitude was the only variable which separated 

the groups, with evoked EMDmax and twitch and octet contractile properties being similar 

between groups (Table 4.1). 

 

  

Figure 4.1 Bivariate relationship between voluntary EMDmax and A) agonist EMG amplitude 
and B) evoked EMDmax. N = 24.  
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Table 4.1 Electromechanical delay, neural (EMG normalised to Mmax Area) and twitch and 
octet contractile properties for the mean sample, as well as the top and bottom halves of the 
sample (determined as median voluntary EMDmax values). Data are reported as mean ± SD. 
Mean group N = 24. 

Variable  Mean Group Top 12 Bottom 12 P-value Effect Size 

EMDmax (ms) 
 

    

  Voluntary 18.5 ± 4.6 15.6 ± 2.2 22.0 ± 4.5 < 0.001 1.91 

  Evoked 6.9 ± 0.7 6.8 ± 0.5 7.1 ± 0.9 0.266 0.43 

  % Voluntary/ Evoked 268 ± 61 229 ± 32 311 ± 60 < 0.001 1.78 

EMG (RMS/Mmax Area) 8.0 ± 3.8 11.0 ± 2.7 4.7 ± 1.1 < 0.001 3.32 

TWITCH 
 

    

  pRFD (N.s-1) 2984 ± 659 3070 ± 534 3049 ± 639 0.659 0.04 

  PF (N) 110 ± 22 113 ± 20 112 ± 17 0.609 0.05 

  TPF (ms) 83 ± 10 82 ± 8 81 ± 11 0.641 0.11 

  HRT (ms) 74 ± 16 73 ± 18 74 ± 16 0.967 0.06 

OCTET 
 

    

  F50 (N) 208 ± 33 204 ± 20 217 ± 44 0.280 0.41 

  pRFD (N.s-1) 8203 ± 1417 8026 ± 1119 8693 ± 1619 0.183 0.49 

  PF (N) 339 ± 62 334 ± 54 349 ± 69 0.294 0.24 

EMDmax, maximum electromechanical delay; EMG, electromyography; RMS, root mean square; Mmax Area, 
cumulative are of evoked maximum compound action potential; N, newtons; pRFD, peak rate of force 
development; ; PF, peak force; TPT, time to peak force; HRT, half relaxation time; F50, force at 50 ms after 
onset of force;  

 

4.4 Discussion 

The study found that the ability for neuromuscular activation (normalised surface EMG) 

explained 41% of the inter-individual variability in voluntary EMDmax. Electrically evoked 

EMDmax was only weakly related to voluntary EMDmax (18%). Furthermore, the intrinsic 

contractile properties evoked by twitch and octet stimulation did not significantly contribute 

to either voluntary or evoked EMDmax. The sample was split in to two groups and the best 12 

participants had a 29% shorter voluntary EMDmax than the worst 12 participants. Agonist 

EMG amplitude was the only variable statistically different between the groups, reporting a 

very large effect (3.3), with no statistical difference between groups for evoked EMDmax, 

twitch or octet contractile properties.  
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Voluntary EMDmax was 168% longer than evoked EMDmax which is similar to other research 

(Tillin et al., 2010) and suggests a substantial neural contribution to voluntary EMDmax. 

Agonist EMG 0-50 ms explained 41% of the inter-individual variability in voluntary EMDmax. 

Furthermore, the best 12 participants for voluntary EMDmax (-29% shorter EMD, ES = 1.9) 

had significantly superior ability to activate the agonist muscles (+134%, ES = 3.3) over the 

initial 50 ms of contraction. The large differences in EMG (0-50 ms) between groups suggest 

that much larger changes in EMG may be necessary to elicit improved EMD performance. 

Recent cross-sectional studies have confirmed a strong relationship (r2 = 0.75-0.83) between 

agonist muscle activation, assessed with normalised EMG and the torque-time integral in the 

first 40 ms of an explosive contraction, i.e. 40 ms from torque onset (de Ruiter et al. 2004, 

2006, 2007). Further work has supported agonist EMG during the initial 50 ms of contraction 

following force onset as the primary determinants (r2 = 0.51) of relative explosive force 

capability after 50 ms. Therefore, the current study provides further compelling evidence as 

to the importance of neuromuscular activation during the early phase of contraction to 

explosive neuromuscular performance.  

The relationship between neuromuscular activation and the voluntary component of the delay 

(ratio voluntary/evoked, was not higher than for agonist EMG and voluntary EMDmax (r2 = 

0.38 vs. 0.41). This suggests that neural factors other than that of the level of neuromuscular 

activation contribute to this volitional component. In theory, supra-maximal stimulation of a 

motor nerve results in the synchronised activation of the whole motor unit pool, and may 

result in a reversal of the recruitment order of motor units whereby larger, fast contracting 

motor units are recruited first (Bickel et al. 2011). However, motor unit recruitment during 

voluntary explosive contractions appears to follow the size principle (Henneman et al., 1965; 

Van Cutsem et al., 1998). Therefore, even with maximal voluntary activation at onset, it is 

unlikely that a participant would be able to attain their evoked EMDmax values.  

An important finding of chapter three of this thesis was that window length had a substantial 

influence on EMG amplitude variability. The curve between EMG variability and window 

length almost perfectly fit that of a declining power function, in which EMG amplitude 

became increasingly more unreliable as window length decreased to short values. Analysis of 

the research reveals that voluntary EMDmax has superior reliability to agonist EMG amplitude 

for explosive isometric contractions (Tillin et al., 2010; Buckthorpe et al., 2012). Thus, it was 

decided that rather than matching the EMG window length to that of EMD time (~20 ms), 

that a more reliable EMG time window would be used. A further consideration is validity in 
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which a time window needs to reflect the ability to rapidly activate agonist EMG at onset. 

Consequently, a window length of 50 ms was chosen, as this is more reliable than for 25 ms 

(Buckthorpe et al., 2012), but reflects this capability of the neuromuscular system for agonist 

EMG during the very early phase of contraction. Therefore, although it can be argued that the 

majority of agonist activation assessed within the current study occurs after EMD, and 

therefore, the exact correlations may not fully reflect the role of agonist EMG as a 

determinant of EMD, it is thought that the current method provides a more reliable reflection 

of the importance of the ability to activate the agonist muscles during the early phase of 

contraction on EMD.  

In the present study there was a weak relationship between evoked EMDmax and voluntary 

EMDmax (r2 = 0.18), which suggests a significant (P = 0.04) albeit small morphological and 

mechanical contribution. Other studies did not find significant relationships for voluntary and 

evoked EMD (Zhou et al., 1995; Minshull et al., 2007). Despite this, there was no 

relationship between either voluntary or evoked EMDmax and the intrinsic twitch or octet 

contractile properties. There was a strong tendency for octet pRFD to be related (r2 = 0.16, P 

= 0.06) to voluntary EMDmax, which could suggest a minor role of contractile RFD to 

influence voluntary EMDmax, and might contribute the majority of the relationship between 

evoked and voluntary EMDmax. Octet RFD is thought to reflect the muscles maximal 

contractile RFD (de Ruiter et al., 1999, 2004). As about half of EMD constitutes the time to 

stretch the SEC (Nordez et al., 2009), a higher RFD would be expected to decrease the time 

required to stretch the SEC and benefit EMD performance. Surprisingly, the split group 

comparisons revealed, that there was no difference between groups for evoked EMDmax, 

twitch or octet contractile properties. The low values of evoked EMDmax and limited 

relationship of these measures to voluntary EMDmax may, in part, reflect the knee angle 

utilised during the present investigation. Tendon slack has shown to influence EMD values 

(Muraoka et al., 2004), but only at shorter muscle tendon lengths. Thus, the long muscle 

tendon length used within the present study may have shortened the time to stretch the SEC, 

which may have decreased the contribution peripheral factors (tendon slack) on voluntary 

and/ or evoked EMD.  

In conclusion, the level of neuromuscular activation during the early phase of the contraction 

was a moderate determinant in voluntary EMDmax (41%). There was a significant albeit small 

relationship between evoked and voluntary EMDmax (18%). However, the top 50% of 

participants for voluntary EMDmax reported superior agonist EMG amplitude only (+ 134%), 
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with no differences between groups for evoked EMDmax or twitch and octet contractile 

properties. Consequently, it appears voluntary EMDmax is strongly related to the ability to 

activate agonist muscles during the very early phase of contraction (0-50 ms).  
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5.1 Introduction 

Bilateral deficit (BLD) has been used to describe the phenomenon of a reduction in 

performance during synchronous bilateral (BL) movements when compared to the sum of 

identical unilateral (UL) movements. A large body of research concerning BLD has been 

conducted using isometric and isokinetic tests of maximal voluntary force (MVF) production 

(for a review see Jakobi & Chilibeck, 2001). BLD and has been reported with deficits of up 

to ~25% (Koh et al., 1993; Van Dieen et al., 2003; Magnus & Farthing, 2008) and therefore 

represents a potentially influential factor in the expression of BL muscle strength. However, 

as consistently highlighted within this thesis, explosive strength is often considered 

functionally more important than MVF during explosive movements, such as sprinting and 

jumping or restabilising the body following a loss of balance (Aagaard et al., 2002a; de 

Ruiter et al., 2004; Tillin et al., 2010, 2013b). There is though, a paucity of research 

examining BLD in explosive strength with equivocal findings and limited mechanistic 

evidence. A BLD in peak rate of force development (RFD) has been reported to range 

between 0–24% (Howard & Enoka, 1991; Koh et al., 1993; Van Dieen et al., 2003; Magnus 

& Farthing, 2008), with some studies indicating a greater BLD in RFD than MVF (Sahaly et 

al., 2001; Van Dieen et al., 2003), whereas others have not (Koh et al., 1993; Sahaly et al., 

2001).  

Despite a large body of research examining BLD, the exact mechanisms explaining the 

phenomenon are unresolved. The primary explanation for BLD during maximum isometric 

and isokinetic contractions is reduced neural drive to the agonist muscles. However, the 

evidence is equivocal, with several studies documenting parallel reductions in force and 

agonist activation during bilateral tasks (Oda & Moritani, 1995; Van Dieen et al., 2003; Post 

et al., 2007), whereas others have not (Schantz et al., 1989; Howard & Enoka, 1991; Herbert 

& Gandevia, 1996; Magnus & Farthing, 2008). In the context of explosive strength, agonist 

activation has been found to be an important determinant of explosive force production (de 

Ruiter et al., 2004; Del Balso & Cafarelli, 2007; Tillin et al., 2010). Therefore, explosive 

force may be more susceptible to any reduction in agonist neural drive during explosive 

contractions than at MVF, and thus, a more pronounced BLD for explosive than MVF could 

be expected. However, during the explosive phase of BL vs. UL contractions only one study 

has assessed agonist, and none have documented antagonist, neuromuscular activation. Van 
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Dieen et al. (2001) reported no change in agonist activation, despite a 13% decline in peak 

RFD. 

The equivocal evidence for agonist activation contributing to BLD might relate to the 

sensitivity of EMG measures, which have been questioned for their ability to detect small 

differences (Jakobi & Cafarelli, 1998). The absolute EMG amplitude is influenced by a 

multitude of intrinsic and extrinsic factors that are unrelated to the level of muscle activation 

(de Luca, 1997). Normalisation of the surface EMG amplitude to a maximal compound 

muscle action potential (Mmax) is considered a more sensitive measurement tool, but it has not 

previously been used to investigate the mechanistic basis of any BLD. The assessment of 

evoked explosive contractions can give insight into the capacity of the muscle-tendon unit 

(MTU) for explosive force production without the influence of voluntary commands. 

Identification of BLD in electrically evoked force would indicate BLD mechanism(s) 

exclusive of voluntary neural drive to the agonist muscles. However, the possibility of a BLD 

in evoked force production has not been investigated. Furthermore the comparison of 

volitional to evoked explosive force may also provide an alternative measure of the volitional 

neural efficacy. 

Other potential mechanisms not previously considered that may contribute to a BLD in 

explosive strength include methodological artefacts associated with the measurement of BLD. 

For example, a BLD in explosive voluntary force could be due to a lack of synchronisation of 

agonist activation and force onset from the two limbs. Any offset or delay in the activation 

and force development from the second limb could compromise combined BL performance 

and contribute to BLD even if performance of each individual limb in this BL situation were 

equivalent to UL performance. An additional potential contributory factor arises from the fact 

that investigators typically utilise a small number of UL and BL contractions, and take the 

best UL and BL contractions for analysis and comparison (e.g. Jakobi & Cafarelli, 1998; 

Sahaly et al., 2001; Van Dieen et al., 2003). However, this comparison may involve a 

statistical bias in favour of UL performance. BL performance relies on the simultaneous 

performance of two limbs, and statistically it is unlikely that both limbs will produce their 

highest UL performance during the same BL contraction. This simple measurement artefact 

could contribute to any apparent BLD irrespective of any physiological effects. Furthermore, 

as explosive force/RFD is less reliable than MVF (Buckthorpe et al., 2012), this measurement 

artefact might exert a greater bias on the BLD during explosive contractions. Essentially, 

whilst combined BL performance (i.e. the best effort of both legs when measured together) is 
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clearly the actual and criterion measure of BL capability, due to possible measurement 

artefacts it may under represent the best effort of either leg in the BL situation. Comparison 

of UL performance to both combined BL performance, and performance of each limb during 

BL contractions, may highlight the influence measurement artefacts. 

The aim of the study was to assess whether a BLD exists in voluntary and evoked explosive 

force production of the knee extensors, and document the contribution of agonist and 

antagonist neuromuscular activation, as well as measurement issues to any BLD in voluntary 

explosive force production. It was hypothesised that there would be a more substantial BLD 

for explosive force/RFD than MVF. This could be due to a more pronounced reduction in 

agonist neuromuscular activation and a stronger influence of methodological factors during 

explosive than maximum voluntary contractions. 

 

5.2. Methods 

5.2.1 Participants 

Twelve healthy asymptomatic male participants completed the study (mean ± sd: age, 24 ± 4 

yr; height, 1.69 ± 0.04 m; body mass, 77.3 ± 6.9 kg). Data from previously published 

research (Van Dieen et al., 2003) was used to estimate the effect size for estimated BLD of 

explosive force/RFD. Cautiously, we aimed to detect a standardized effect size of 1.1. This 

standardized effect size, a statistical power of 80% (1 – β = 0.80) and α = 0.05 were used to 

determine the necessary sample size of 11 participants. The participants were recreationally 

active (up to three activity sessions per week), but had not been involved in any systematic 

physical training during the preceding 12 months. All participants provided written informed 

consent prior to their involvement in the study, which complied with the Declaration of 

Helsinki and was approved by the Ethical Advisory Committee of Loughborough University.  

 

5.2.2 Overview 

Participants attended the laboratory on two separate occasions, once for familiarisation and 

then for a main trial one week later. The two trials involved the same protocol and were 

completed at a consistent time of day. The main session involved the measurement of force 

and surface EMG during a series of voluntary (maximal and explosive) and electrically-
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evoked (twitch and octet) contractions of the knee extensors performed during either UL or 

BL contractions. In addition UL knee flexor maximum voluntary contractions (MVCs) with 

each leg were also performed for normalisation of antagonist EMG. To control for the 

influence of possible order effects, the order of voluntary contractions, involved first UL 

contraction(s) (either dominant or non-dominant leg, contraction order was randomly 

assigned), then BL contraction(s), and finally UL contraction(s) with the remaining limb (i.e. 

UL-BL-UL). Evoked measures began with the same limb that commenced the voluntary 

contractions followed by UL contractions of the remaining limb, and finally BL contractions 

(UL-UL-BL). Electrically evoked contractions can cause discomfort, and are not tolerated 

well by all participants. Therefore, it was decided to elicit single twitch and octet (8 pulses at 

300 Hz) contractions unilaterally on both legs first before BL contractions to ensure as many 

participants completed the evoked measures as possible. In order to assess the BLD of 

voluntary and evoked contractions, performance during UL contractions were averaged and 

compared to the genuine BL performance, which involved the simultaneous averaged 

performance of both limbs obtained from a mutual onset during the same BL contractions 

(BLBL). Furthermore, the contribution of methodological artefacts (e.g. synchronisation of 

force onset) was also assessed. This involved comparing UL contractions with single limb 

performance measured during BL contractions. In practice this was facilitated by the discrete 

recording (i.e. two independent force transducers) and analysis (i.e. separate force onset) of 

each limb during BL efforts before averaging across both limbs (BLUL). This allowed for 

assessment of UL vs. BLUL without the potentially confounding influence of methodological 

artefacts. 

 

5.2.3 Measurement Trials 

5.2.3.1 Measurements 

Participants were firmly secured in a custom built strength testing chair with straps across the 

pelvis and shoulders to minimise extraneous movement. The hip and knee angles were fixed 

at 100 and 120° (full extension = 180°), respectively. An ankle strap was placed 2 cm 

proximal to the medial malleolus of each limb in series with two separate S-Beam 

tension/compression load cells (one for each limb, linear response up to 1500 N, Force Logic 

UK, Berkshire, UK) positioned perpendicular to tibial movement. The force signal was 

amplified (x500) and interfaced with an analogue to digital converter (CED micro 1401, CED, 
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Cambridge, UK) and sampled at 2000 Hz with a PC utilising Spike 2 software (CED, 

Cambridge, UK). Real-time biofeedback of the force response was provided on a computer 

monitor. During off-line analysis the force signals were notch filtered at 50 Hz (to remove 

mains harmonics) and low pass filtered at 500 Hz using a fourth order zero-lag Butterworth 

digital filter. 

The femoral nerve of each leg was electrically stimulated (via two constant current, variable 

voltage stimulators; DS7AH, Digitimer Ltd., UK) with square wave pulses (0.2 ms in 

duration) to elicit i) single twitch contractions and ii) octet contractions (8 pulses at 300 Hz) 

to determine the muscle’s maximal capacity for RFD. An anode (carbon rubber electrode, 7 x 

10 cm; Electro-Medical Supplies, Greenham, UK) was taped to the skin over the greater 

trochanter of each limb. A cathode was taped to the skin over the femoral nerve in the 

femoral triangle of each leg. Both cathodes were identical custom-adapted stimulation probes 

1 cm in diameter (Electro-Medical Supplies, Wantage, UK) which protruded 2 cm 

perpendicular from the centre of a plastic base (4 x 5 cm). The precise location of the each 

cathode was determined as the position which elicited the greatest twitch response for a 

particular submaximal current during UL contractions. During BL evoked contractions both 

stimulators were triggered simultaneously via the Spike 2 software.  

Surface EMG was recorded from the superficial quadriceps [rectus femoris (RF), vastus 

lateralis (VL) and vastus medialis (VM)] and a knee flexor [bicep femoris (BF)] of both legs 

using two Delsys Bagnoli-4 EMG systems (Delsys, Boston, USA). Following preparation of 

the skin (shaving, lightly abrading and cleansing with 70% ethanol), double differential 

electrodes (1 cm inter-electrode distance, DE-3.1, Delsys) were attached over each muscle 

using adhesive interfaces. To normalise the placement across individuals, the electrodes were 

positioned in the centre of the muscle belly parallel to the presumed orientation of the muscle 

fibers at specific lengths along the thigh (from the lateral epicondyle of the femur to the 

greater trochanter: VM, 25%; VL, 50%; RF, 60%; BF, 50%). The reference electrode was 

placed on the patella of the same limb. EMG signals were amplified (x1000; differential 

amplifier, 20 – 450 Hz) and synchronised with force data by recording at 2000 Hz with the 

same analogue to digital converter, PC and software (Spike 2). During off-line analysis the 

EMG signals were band-pass filtered between 6 and 500 Hz using a 4th order zero-lag 

Butterworth digital filter. 
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5.2.3.2 Protocol  

Once the participants were firmly secured in the testing chair they performed a warm-up, 

which consisted of two UL (with each limb) and BL contractions of the knee extensors at 50 

and 75% presumed MVF. Participants then performed eight successful explosive voluntary 

contractions (separated by 20 s rest) of each contraction type (UL-BL-UL, with 2 min 

between each series, see Figure 5.1). For each contraction participants were instructed to 

extend their knee(s) as ‘fast’ and as hard as possible for ~1 s from a relaxed state (Sahaly et 

al., 2001). Contractions that had any pre-tension or countermovement were discarded and 

another attempt was made. To determine if a countermovement or pre-tension had occurred, 

the resting force level was displayed on a sensitive scale. The slope of the force time curve 

(10 ms time constant) was displayed throughout testing and the peak slope was used to 

provide visual performance feedback to participants after each contraction. Furthermore, 

participants were required to exceed 80% MVF during these explosive contractions, specific 

to that leg(s) which was depicted with a horizontal cursor on the screen. For the BL explosive 

contractions identical criteria and feedback were used based on the averaged force signal 

from both load cells.  
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Figure 5.1 Schematic diagram of the protocol. 

 

The three contractions in each condition with the highest peak slope and no discernible 

countermovement or pre-tension (change in force of <0.5 N in the preceding 100 ms) were 

used for analysis. We have previously demonstrated that using the best three contractions 

from a series of explosive voluntary contractions following sufficient familiarisation provides 

reliable group explosive force and EMG measures (see Chapter 3, Buckthorpe et al., 2012). 

Force and EMG measurements were taken at specific time points/periods and all 

measurements were averaged across these three contractions. Signal onsets of all voluntary 

and evoked contractions were visually identified (Allison, 2003; Moretti et al., 2003; Pain & 

Hibbs, 2007; Pulkovski et al., 2008) according to previous methods from our laboratory (see 

Tillin et al. 2010; Buckthorpe et al., 2012). Force was measured at 50, 100, and 150 ms 

(defined as F50, F100, F150), from the onset of contraction. RFD was measured over three 

consecutive 50 ms time periods from the onset of force (RFD0-50, RFD50-100, RFD100-150). For 

evaluating purely BL performance (i.e. the average combined ability of the two legs, BLBL) 

force onset was defined as the deflection of the averaged force signal from baseline. However 

for assessing UL performance during BL efforts (BLUL) force onsets were specific to that leg. 
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EMG signal amplitude was quantified as the RMS measured in consecutive windows 0-50, 

50-100, and 100-150 ms from the onset of EMG activity in the first agonist muscle to be 

activated within that limb(s). EMG from each agonist muscle was normalised to the peak-to-

peak amplitude of a maximum compound action potential (Mmax P-P) of that muscle during 

UL contractions (see below) and averaged across the three superficial quadriceps muscles to 

give a mean value for the quadriceps. EMG from the BF was normalised to EMG at knee 

flexor MVF (see below) of that muscle (antagonist EMG). Although, the study was a within 

session design, the EMG was normalised to reduce the between participant variation 

(Buckthorpe et al., 2012) which would be expected to increase the effect size and power of 

statistical comparisons between the conditions. EMG onsets were identified from the first 

agonist muscle to be activated specific to each leg during UL and BLUL conditions and the 

first muscle to be activated irrespective of the leg during the BLBL condition. Additionally, 

the difference between the onsets of force of the two limbs in the BL contractions was 

identified. The time between the first agonist muscle to be activated and onset of force was 

determined as the maximum electromechanical delay (EMDmax). 

Following two minutes rest, participants performed three sets of a single MVC of each type 

in the specified order (UL-BL-UL) with ≥ 30 s between MVCs and 2 min between sets. For 

each MVC they were instructed to push as hard as possible for 3 s with biofeedback and 

verbal encouragement provided during and between each maximal contraction. Knee 

extensor maximal voluntary force (MVF) was the greatest instantaneous force achieved by 

the participant in any of the MVCs specific to each condition. The root mean square (RMS) 

of the EMG signal for each muscle (RF, VM, VL and BF) was calculated over a 500 ms 

epoch surrounding MVF (250 ms either side). Each individual agonist muscle EMG was 

normalised Mmax P-P (see below) before averaging across the three muscles to provide a 

mean value for the quadriceps (agonist EMG). BF EMG was expressed as a percentage of BF 

EMG at knee flexor MVF (see below).  

Five minutes separated the MVCs and evoked measurements. Evoked measures began with 

the same limb that commenced the voluntary contractions followed by UL contractions of the 

remaining limb, and finally BL contractions (UL-UL-BL). Twitch contractions were elicited 

at incremental current intensities until a simultaneous plateau in the force and M-wave 

response was observed. Thereafter, the current was increased by 20% and three supra-

maximal twitches were elicited (separated by 12 s) for each limb during UL contractions. For 

BL contractions, the current was reduced, and incremental (25, 50, 75% of the supramaximal 
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current used during UL contractions specific to that limb) evoked contractions were elicited, 

and three supramaximal BL twitch contractions were recorded. Two participants withdrew 

from the twitch measurements, therefore twitch responses are reported for N = 10. The mean 

Mmax P-P of these three supramaximal M-waves was determined for each muscle and used for 

normalisation purposes. The twitch force response was assessed at 50 ms after force onset 

(F50), peak force (PF), and pRFD (10 ms time constant) and averaged across the three 

contractions for each performance measure. 

For the evoked octet contractions the current was once again reduced and step wise 

increments were delivered 15 s apart until the same supramaximal current intensity was 

achieved (typically 4-5 increments were performed). Two maximal evoked octet contractions 

were then elicited. The order of contractions was the same as during evoked twitch 

contractions (i.e. UL-UL-BL). Three participants withdrew from the octet measurements, 

therefore octet responses are reported for N = 9. During analysis, the average of the two octet 

contractions for each contraction type was taken. Analysis included measurement of force at 

50 ms (F50), PF and pRFD. As an additional measure of overall neural efficacy, voluntary F50 

for the three different measurements was reported as a percentage of the equivalent octet F50 

to assess the participant’s voluntary activation capacity over the initial 50 ms of the 

contraction (Hannah et al., 2012; Tillin et al., 2012a).  

 

5.2.4 Data Analysis  

Data are reported as mean ± standard deviation (SD). One-way ANOVA was used to identify 

significant differences between voluntary performance measures across the three conditions. 

In the event of significant differences, paired t-tests were performed. For indices measured at 

two or more time points (EMG, force, RFD during explosive contractions) the effect of test 

condition (UL vs. BLBL vs. BLUL) was analysed using a two-way repeated measures ANOVA 

(condition [3] × time [3]). Pairwise comparisons with Bonferroni correction were performed 

to locate the significant difference between test conditions at specific time points. Effect sizes 

(ES) were performed to determine the magnitude of the sigfnificant differences and 

interpreted according to Cohen’s d, where 0.2 is a small effect, 0.5, a moderate effect and > 

0.8 a large effect. BLD was defined as a difference between the BLBL and UL conditions. 

Prior to performing the statistical analysis, confirmation of data normality was performed 

using Shapiro-Wilk test of normality. Statistical analysis was performed using SPSS version 
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19 and statistical significance was set at P < 0.05. Effect sizes (ES) were interpreted 

according to Cohen’s d, where 0.2 is a small effect, 0.5, a moderate effect and > 0.8 a large 

effect.  

 

5.3. Results 

5.3.1 Voluntary Contractions 

There was no difference in MVF (ANOVA, P = 0.551, Table 5.1) or agonist (ANOVA, P = 

0.269, Table 5.1) or antagonist (ANOVA, P = 0.987, Table 5.1) EMG at MVF between the 

three measurement conditions.  

There was a significant difference between conditions for force (ANOVA, P = 0.022) and 

RFD (ANOVA, P = 0.022) during the explosive voluntary contractions. Pairwise 

comparisons revealed F50 was similar for all three conditions (P > 0.90, Table 5.2). However, 

there was a BLD in F100 with BLBL values 11.2% lower than UL (P = 0.007, ES = 1.19), and 

with a tendency for BLUL to also be lower than UL (P = 0.067, ES = 0.90). There was a 

tendency for a BLD in F150 with BLBL lower than UL (P = 0.059, ES = 0.83), but there was no 

difference in F150 between BLUL and UL (P = 0.116, ES = 0.55, Figure 5.2). RFD50-100 was 

14.9% lower for BLBL (P = 0.004, ES = 1.30) and 12.5% lower for BLUL (P = 0.022, ES = 

1.19) compared to UL (Figure 5.2), with no differences in RFD0-50 or RFD100-150 between 

conditions (P > 0.90). Additionally, there were no significant differences in RFD between 

BLUL and BLBL (All, P > 0.90).  

 

Table 5.1 Force and EMG during maximum voluntary contractions performed unilaterally 
(UL) and bilaterally (BLBL, averaged simultaneous performance of both limbs; BLUL, single 
leg performance during BL contractions). Data are reported as mean ± SD (N = 12). 

 
UL BLBL BLUL 

MVF (N) 736 ± 83 739 ± 92 744 ± 89 

Agonist EMG (%Mmax) 8.2 ± 2.0 8.6 ± 2.5 8.3 ± 2.3 

Antagonist EMG (%EMGmax) 8.4 ± 6.8 8.5 ± 5.1 8.9 ± 6.4 
MVF, Maximum voluntary force; N, Newton; Mmax, peak to peak amplitude of maximum compound action 
potential; EMGmax, maximum RMS EMG obtained during knee flexor maximum voluntary contraction 
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Table 5.2 Force during explosive voluntary contractions during unilateral (UL) and bilateral 
contractions (BLBL, averaged simultaneous performance of both limbs; BLUL, single leg 
performance during BL contractions). Data are reported as mean ± SD (N = 12). 

Force (N) UL  BLBL BLUL 

50 ms  168 ± 45 159 ± 46 165 ± 57 

100 ms 442 ± 42 392 ± 37** 404 ± 56 

150 ms 580 ± 63 528 ± 51 543 ± 72 
N, Newton; ** denotes significant difference compared to UL (P < 0.01). 

 

 

 

Figure 5.2 Rate of force development (RFD) during explosive unilateral (UL, black bars) and 
bilateral contractions (BLBL, white bars, averaged simultaneous performance of both limbs; 
BLUL, grey bars, single leg performance during BL contractions) explosive contractions of 
the knee extensors. Data are reported as mean ± SD (N = 12). A significant difference 
between conditions is denoted by * P < 0.05 vs. UL, ** P < 0.01 vs. UL. 

 

There were no differences in agonist (two-way ANOVA, P = 0.233, Figure 5.3A) or 

antagonist (two-way ANOVA, P = 0.873, Figure 5.3B) EMG amplitude between the three 

measurement conditions during the explosive contractions. Additionally, neural efficacy, the 

percentage of evoked octet F50 achieved voluntarily was also similar for the three 

measurement conditions (UL, 55.5 ± 17.3; BLBL, 58.4 ± 18.7; BLUL, 61.3 ± 20.6%, ANOVA, 

P = 0.212).    
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Figure 5.3 A, Agonist EMG normalised to Mmax and B, Antagonist EMG normalised to EMG 
at knee flexor MVF during unilateral (UL, black bars)  and bilateral contractions (BLBL, white 
bars, averaged simultaneous performance of both limbs; BLUL, grey bars, single leg 
performance during BL contractions) explosive voluntary contractions. Data are reported as 
mean (SD) (N =12).   

 

The time difference in force onset between the two limbs during the BL explosive 

contractions was 3.2 ± 1.7 ms. There was no difference in EMDmax between UL and BL 

contractions (UL, 18.5 ± 3.6 vs. BLUL, 18.4 ± 4.1 ms, Paired t-test, P = 0.942). 

 

5.3.2 Electrically-evoked Contractions 

Twitch F50 and PF were lower for both BLUL and BLBL compared to UL (7.8-9.1%, P ≤ 0.002, 

ES = 0.38-0.44), with no difference for twitch pRFD between measurement conditions (Table 

5.3).  Additionally, there was no difference in Mmax P-P between measurement conditions 

(UL, 3.0 ± 1.1 vs. BLBL, 2.8 ± 1.0 mV, Paired t-test, P = 0.138). Octet F50 was lower for both 

BLUL (6.0%, ES = 0.58) and BLBL (6.3%, ES = 0.61) than UL (Both, P < 0.001, Table 5.3), 

but there were no differences for octet PF or pRFD (Table 5.3). There were also no 

differences between BLUL and BLBL for either twitch or octet measure (P ≥ 0.187).  
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Table 5.3 Force parameters during evoked twitch and octet contractions during unilateral 
(UL) and contractions (BLBL, white bars, averaged simultaneous performance of both limbs; 
BLUL, grey bars, single leg performance during BL contractions). Data are reported as mean 
± SD (Octet, N = 9; Twitch, N=10). 

  
Condition: 

 
 

 
UL BLBL BLUL P-value 

Octet     
 

F50 (N) 300 ± 30 281 ± 32 282 ± 32 < 0.001 
PF (N) 480 ± 52 477 ± 55 480 ± 54 0.585 
pRFD (N.s-1) 13511 ± 2785 13278 ± 2433 14164 ± 2892 0.243 
Twitch     
F50 (N) 115 ± 24 106 ± 24 105 ± 23 < 0.001 
PF (N) 134 ± 27 122 ± 26 123 ± 24 < 0.001 
pRFD (N.s-1) 3920 ± 1210 3709 ± 1227 3754 ± 1153 0.290 

UL, unilateral; BL, bilateral; F, force; N, newton; PF, peak force; pRFD, peak rate of force development; F50, 

force at 50 ms after force onset. P-value, One-way analysis of variance significance value.  

 

5.4 Discussion 

This study investigated BLD in voluntary and electrically-evoked explosive contractions of 

the knee extensors and considered the contribution of agonist neuromuscular activation and 

measurement issues to any BLD. We observed a BLD in voluntary explosive force/RFD but 

not MVF. The BLD in explosive force occurred at 100 ms only and reflected a BLD specific 

to RFD50-100. BLD measurement issues made only a minor contribution to the observed BLD 

and thus these results support an underlying physiological mechanism explaining BLD. 

However, the fact that we observed a BLD in evoked force production and no change in 

EMG during explosive voluntary efforts suggests the BLD was not solely attributable to 

reduced agonist or antagonist neural drive.  

The finding of no BLD in MVF is consistent with numerous reports (e.g. Schantz et al., 1989; 

Hakkinen et al., 1996; Jakobi & Cafarelli, 1998), but in contrast to an equal number that have 

shown a BLD in knee extensor MVF (e.g. Howard & Enoka, 1991; Van Dieen et al., 2003; 

Kuruganti et al., 2010). As there was no BLD in MVF, it is unsurprising that there was no 

difference in agonist or antagonist activation, evoked peak force measures with high force 

values, or influence of methodological factors. This is in accordance with previous findings 

of no BLD or mechanistic differences between BL and UL MVCs (Jakobi & Cafarelli, 1998) 



  Chapter 5: BLD in Explosive Strength  

111 
 

Despite no BLD for MVF, a BLD was observed in explosive force of 11.2% during these 

single joint voluntary contractions. The BLD was specific to F100, but there was a tendency 

for a BLD in F150. Furthermore, there was a 14.9% BLD for RFD50-100, with no BLD for 

RFD0-50 or RFD100-150. This is the first study to investigate the possibility of a BLD in 

explosive strength by analysing force/RFD throughout the rising force-time curve. Previously, 

only pRFD had been assessed in this context, and reported to range from 0-20% (Koh et al., 

1993; Jakobi & Cafarelli, 1998; Van Dieen et al., 2003). The mechanisms for the observed 

BLD in explosive force could have been due to measurement issues in the comparison of UL 

and BL performance, neuromuscular activation of agonist, antagonist muscles that were 

assessed in this study, or even activation of stabiliser muscles that we did not assess. 

The assessment of single limb performance during BL contractions allowed for the 

delineation of measurement artefacts that may have contributed to any observed BLD. 

Although, the BLUL measure reported only a tendency for a difference to UL for F100, there 

was a difference for RFD50-100, confirming a BLD due to a physiological effect exclusive of 

measurement issues. There were also no differences in explosive or maximal force/RFD 

between the two BL measures, indicating measurement artefacts played only a minor role in 

the observed BLD. Surprisingly, the onset of force discrepancy between the two limbs during 

BL contractions was relatively small (3.2 ms), which suggests that neuromuscular system is 

capable of near simultaneous activation of the knee extensor muscles of both legs during BL 

actions.  

The current study found no differences in agonist EMG between UL and BL explosive 

contractions. This is despite the widely suggested mechanism for BLD being a reduction in 

neural drive to the agonist muscles. Our findings support previous research demonstrating a 

BLD in RFD in the absence of a change in agonist EMG (Van Dieen et al., 2003). It is 

important to note that the sensitivity of EMG for assessing BLD has been questioned (Jakobi 

& Cafarelli, 1998). However, in the present study we normalised the EMG amplitude to Mmax, 

which would be expected to increase the effect size and power of statistical comparisons 

between the conditions. Additionally, we averaged across three quadricep muscles and across 

the best three contractions during the explosive efforts. These methods would be expected to 

improve the reliability and sensitivity of the EMG measurements. Furthermore, we also 

measured neural efficacy, which assesses agonist neuromuscular activation during the initial 

phase of the contractions (50 ms), and provided further evidence that agonist activation was 

not different during the early phase of UL and BL explosive contractions. Our study suggests 
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that the observed BLD in RFD was not attributable to agonist activation, and indicates a role 

for an alternative mechanism. 

Agonist and antagonist activation contribute simultaneously to net joint torque and thus the 

level of co-activation could account for any BLD. This is the first study to assess if antagonist 

activation influenced the BLD during explosive force production, and found that the observed 

BLD in RFD was not attributable to antagonist activation. A possible remaining explanation 

concerns stabiliser activation.  

BL evoked contractions were utilised within the present study to help establish if the BLD 

was influenced by a physiological mechanism(s) exclusive of voluntary neural drive to the 

agonist muscles. Interestingly, there was a BLD in evoked force production, which occurred 

in both twitch and octet F50 (8.7 and 6.3%, respectively), and twitch PF (9.0%) and was of a 

similar magnitude to the observed declines in explosive voluntary force/RFD (8.6 – 14.9%). 

This is the first study to investigate a potential BLD in evoked force production and provides 

further support that the BLD in voluntary explosive force production was due to mechanisms 

other than agonist neural drive. A possible explanation for the BLD in both evoked and 

voluntary force is a difference in postural stability/ stabiliser activation requirements during 

UL and BL actions. Stabiliser activation was not measured within the present study, but is 

thought to be important for optimal force expression (Folland & Williams, 2007a). For 

instance, Nozaki et al. (2007) demonstrated that even during a relatively simple task such as 

an isometric knee extension used within the current study, that there was a large variation, 

both between and within-participants in the ability to stabilise the adjacent joint torque 

through effective inter-muscular coordination. The greater postural requirement for BL than 

UL strength tasks has been proposed as the mechanism accounting for the BLD (Herbert & 

Gandevia, 1996). In support of this suggestion, the BLD has been observed to be higher in an 

action requiring greater activation of postural stabilising muscles (leg press versus hand grip, 

Magnus & Farthing, 2008). In the current study insufficient stabilisation during BL explosive 

contractions may have afforded greater movement of adjacent joints, particularly the hips, 

increasing biological compliance and reducing explosive force production. Whilst the BLD in 

evoked explosive force we have observed might appear to contradict this possibility (as only 

the agonists are activated by the stimulation), there is undoubtedly stabiliser activation in 

anticipation of, and/or in response to, the stimulation, and this could be similarly less 

effective in the BL compared to UL situation. The similarity of MVF across BL and UL 

contractions might also argue against a role of stabiliser activation in the BLD we have 
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observed, however during these longer contractions force production is unlikely to be 

influenced by compliance and hence stabilisation. Future research should consider the role of 

stabiliser muscle activation on the BLD.  

The observed 15% deficit in RFD, despite no influence of BL actions on MVF has important 

implications for sport and exercise training science and suggests specific training to offset 

this deficit should be performed in order to maximise the performance of BL explosive 

sporting tasks. The observed deficit could be explained by reduced inter-muscular 

coordination (lower stabiliser activation) during BL efforts and suggests that specific practice 

of coordinated explosive BL tasks and improved core/joint stability could be expected to 

improve the expression of BL explosive sporting tasks through reducing this RFD BLD.  

In summary, there was a BLD in explosive but not MVF of the knee extensors, which was 

specific to RFD50-100. Measurement issues played only a minor role on the observed BLD. 

The novel finding of a BLD in evoked force production and no change in agonist EMG 

during explosive voluntary efforts suggest the BLD in voluntary explosive force was not 

attributable to reduced agonist neural drive, but was explained by an alternative mechanism.  
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6.1 Introduction  

As alluded to throughout the PhD, explosive strength is considered an important 

characteristic of muscle performance (Marcora & Miller, 2000; Paasuke et al., 2001; de 

Ruiter et al., 2006) as well as for the stabilisation of the musculo-skeletal system following 

mechanical perturbation (Fleming et al., 1991; Izquierdo et al., 1999; Chang et al., 2005; 

Pijnappels et al., 2008), and thus the prevention of falls and injury. Therefore, it is of 

considerable importance to have a detailed understanding of the determinants of explosive 

strength.  

Numerous factors have been demonstrated to be associated with isometric explosive force 

capabilities such as isometric maximum voluntary force production (MVF; Andersen & 

Aagaard, 2006), morphological factors such as fibre type composition (Harridge et al., 1996; 

Viitasalo et al., 1978) and muscle-tendon unit (MTU) stiffness (Bosjen-Moller et al., 2006), 

as well as neural factors such as the level of agonist neuromuscular activation (de Ruiter et al., 

2004; Del Balso & Cafarelli, 2007; Tillin et al., 2010). However, no study has considered the 

relative importance of the level of stabiliser neuromuscular activation on explosive force 

production. The effective stabilisation of joints is thought to be important for optimal force 

production (Sale, 1993; Folland & Williams, 2007a). A key finding from chapter 5 was that 

the BLD in explosive force observed was not explained by the level of agonist or antagonist 

activation and may possibly be explained by differences in stabiliser activation requirements 

between tasks. However, no study has actually investigated if stabiliser activation may 

influence explosive isometric strength.   

The contribution of neural activation of particular types of muscle groups (agonists, 

antagonist, stabilisers) to joint performance is typically quantified by examining either the 

relationship between muscle activation of particular muscle groups and force output of the 

respective joint (i.e., de Ruiter et al., 2004, 2010; Del Balso & Cafelli, 2007) or by 

documenting the change in muscle activation and strength following particular interventions 

such as resistance training (i.e., Aagaard et al., 2002a; Tillin et al., 2011, 2012). The 

contribution of muscle activation to joint performance has to date only been examined by 

considering the respective muscle groups in isolation, with no consideration of the possible 

inter-relations between agonist, antagonist and stabiliser muscle activation during explosive 

actions. Muscles require sufficient stability at the origin to appropriately contract and apply 

force to contribute to torque production at the required joint. Mono-articular muscles such as 
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the brachialis fixate to bony processes and thus have sufficient base of support. However, bi-

articular muscles such as the biceps brachii originate from the adjacent joint and therefore 

would be expected to require sufficient adjacent joint stability to provide a solid base in order 

to effectively apply force at the tendon insertion (i.e., act at the elbow as an agonist). It is 

possible therefore, that poor adjacent joint stability (i.e., low stabiliser muscle activity), may 

compromise activation of the bi-articular agonist muscle group and consequently, indirectly 

impact on the force capabilities about the primary joint. It is important to examine the 

relationship between agonist activation and stabiliser activation during explosive isometric 

efforts to help fully elucidate a possible role of stabiliser activation on isometric explosive 

strength. 

The aim of this study was to investigate the relationship between the level of stabiliser 

activation and explosive isometric force production and then consider the inter-relationships 

between agonist, antagonist and stabiliser activation across the rising force-time curve. It was 

hypothesised that the level of stabiliser activation would be related to the level of explosive 

force production. It was further hypothesised that a relationship would also exist between the 

level of stabiliser activation and activation of the bi-articular agonists and once this 

relationship was accounted for, there would be no independent contribution of stabiliser 

activation to the explained variance in explosive force capabilities.  

 

6.2 Methods 

6.2.1 Participants 

Thirty-six male participants (age, 23 ± 2 yr; height, 1.77 ± 0.08 m; mass, 73.7 ± 9.9 kg) 

completed the study. The participants were physically active, healthy, injury free and had not 

taken part in any form of strenuous upper body exercise for the previous 12 months prior to 

the study. All participants provided written informed consent prior to their involvement in the 

study, which was approved by the Loughborough University ethical advisory committee. 
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6.2.2 Overview  

Participants attended the laboratory on two occasions, once for familiarisation and then for a 

main trial one week later. The two trials involved the same protocol and were completed at a 

consistent time of day for each patient. The measurement sessions involved the assessment of 

force and surface EMG during maximal and explosive isometric contractions of the elbow 

flexors. EMG was recorded over the agonist, antagonist and stabiliser muscles throughout 

these volitional contractions. EMG obtained during explosive isometric efforts was 

normalised to the maximal EMG obtained from each muscle during reference contraction 

whilst acting as an agonist maximum isometric elbow flexion (agonists); maximum isometric 

elbow extension (antagonist); and maximum isometric bench press (stabilisers). 

 

6.2.3 Measurements 

Participants sat upright (hip joint angle of 90°) in a custom built strength testing chair and 

were strapped at the hip and chest to the seat and back of the chair to prevent movement of 

the body (Figure 6.1). The elbow and shoulder joints were flexed to 60 and 90°, respectively 

(0° being full elbow extension), with the upper arm placed on a horizontal board, and 

externally rotated with the elbow position maintained by blocks anterior and lateral to the 

joint. The forearm was supinated and the wrist was attached to an S-Beam tension-

compression load cell (Applied Measurements Ltd, Berkshire, UK) positioned perpendicular 

to the forearm during elbow flexion/extension. The force signal was amplified (× 500) 

interfaced with an analogue to digital converter (CED micro 1401, CED, Cambridge, UK) 

and sampled at 2000 Hz with a PC utilising Spike 2 software (CED, Cambridge, UK). During 

off-line analysis the force signal was low-pass filtered (500 Hz cut-off) with a fourth order 

zero-lag Butterworth digital filter. Real-time biofeedback of the force response was provided 

on a computer monitor.   
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Figure 6.1 The isometric strength testing apparatus used to measure elbow flexion/extension 
force. 

 

EMG was recorded using two Delsys Bangnoli-4 EMG systems (Delsys, Boston, USA) from 

two agonist muscles (short and long heads of the biceps brachii, BBS and BBL), the 

antagonist (triceps brachii lateral head, TB) and two stabilisers (anterior deltoid, AD; 

clavicular head of the pectoralis major, PM). Following preparation of the skin (shaving, 

abrading and cleansing with 70% ethanol), the same investigator attached double differential 

surface electrodes (1 cm inter-electrode distance, DE-3.1, Delsys) to the skin over each of the 

muscles using adhesive interfaces. The electrodes were positioned at specific measured sites 

along the arm, in the centre of the muscle belly and parallel to the presumed orientation of the 

muscle fibers. BBS and BBL electrodes were positioned distally 75% of the distance between 

the coracoid process and medial epicondyle of the humerus (Lee et al., 2010). AD, PM and 

TB were positioned according to SENIAM guidelines. The EMG reference electrodes were 

placed on the contralateral clavicle. EMG signals were amplified (× 100, differential 

amplifier 20-450 Hz) and sampled at 2000 Hz with the same analogue to differential 

converter and PC as the force signal. During off-line analysis the EMG signals were band-

pass filtered in both directions (6-500 Hz) using a 4th order zero-lag Butterworth digital filter. 

 

6.2.4 Protocol 

Participants began the trial by first completing a warm up of submaximal isometric voluntary 

contractions. They then performed three elbow flexion isometric maximum voluntary 

contractions (iMVCs) (separated by 1 min) followed by three elbow extension iMVCs, in 
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which participants were instructed to pull or push as hard as possible for ~3 seconds. 

Biofeedback and verbal encouragement were provided during and between each iMVC. 

Elbow flexor isometric maximal voluntary force (iMVF) was the greatest instantaneous force 

achieved by the participant in any of the iMVCs. EMG from all muscles recorded during 

explosive elbow flexion was normalised to the maximal EMG (EMGmax) achieved during 

reference tasks when each muscle group was acting as an agonist. Biceps Brachii EMGmax 

was recorded during the elbow flexor MVCs and assessed as the RMS of a 500 ms epoch 

around MVF (250 ms either side; BB EMGmax). EMGmax of the TB (TB EMGmax) was 

assessed as a 500 ms epoch at elbow extension iMVF (250 ms either side). Participants then 

performed 10 isometric explosive voluntary contractions (separated by 20 s). For each 

contraction participants were instructed to flex their arm as ‘fast’ and as hard as possible for 

~1 s from a relaxed state (Sahaly et al., 2001) and achieve at least 80% iMVF. Participants 

were instructed to avoid any countermovement or pre-tension. To determine if 

countermovement had occurred, the resting force level was displayed on a sensitive scale. 

The slope of the force time curve (10 ms time constant) was displayed throughout and the 

peak slope was used to provide visual feedback to participants after each contraction. The 

three contractions with the highest peak slope, no discernible countermovement or pre-

tension (change in force of < 0.5 N in the preceding 100 ms), and with a peak force of at least 

80% iMVF were used for analysis, and all measurements were averaged across these three 

contractions. Force was assessed at 50, 100, and 150 ms, from the onset of contraction and 

reported in absolute terms and normalised to iMVF. The RMS EMG was measured in 

windows of 0-50, 0-100 and 0-150 ms from the onset of EMG activity in the first agonist 

muscle to be activated. Agonist BBS and BBL RMS EMG were normalised to EMGmax. 

Stabiliser AD and PM RMS EMG were normalised to the EMGmax during the isometric 

maximum bench press (see below) and then averaged to give a mean value. Antagonist EMG 

was normalised to the TB EMGmax (antagonist EMG). 

Participants performed isometric bench press contractions to determine maximal EMG of the 

stabilising muscles (AD and PM EMGmax). Participants lay supine on an inclined bench (head 

up ~ 15° to the horizontal) with their shoulders aligned vertically below a fixed immovable 

bar and their knees bent and feet positioned on the end of the bench, which was positioned on 

a portable force plate (Quattro Jump, Type 9290 AD, Kistler, Switzerland). The height of the 

bar was adjusted so that when participants grasped the bar their upper arm was horizontal, 

whilst their forearms were vertical (i.e. shoulders abducted at 90° and elbows flexed at 90°). 
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Participants performed three iMVCs of 3 s duration with ≥ 30 s rest between efforts. Verbal 

encouragement was provided throughout the efforts and the recorded force during the effort 

was provided as feedback to the participants following each attempt. AD and PM EMGmax 

was recorded over the highest 500 ms epoch during the series of bench press iMVCs and used 

for normalisation of stabiliser EMG during elbow flexor strength tasks. 

 

6.2.5 Data Analysis  

For the explosive voluntary contractions, identification of force and EMG onsets were made 

manually (visual identification) as this is considered the “gold standard” method (Allison, 

2003; Moretti et al., 2003; Pain & Hibbs, 2007, Pulkovski et al., 2008). The same investigator 

identified signal onsets with a constant y-axis scale of ~ 2 N and 100 mV, for force and EMG 

respectively, and an x-axis scale of 500 ms. A vertical cursor was then placed on the onset 

and viewed at a higher resolution to determine its exact location (~ 0.5 N and 50 mV for 

force and EMG axes respectively using an x-axis of 25 ms).  

Descriptive statistics are presented as mean ± standard deviation (SD). Preliminary analysis 

involved calculating Pearson’s product moment bivariate correlations between explosive 

voluntary force and individual neural predictor variables (agonist, antagonist, stabiliser EMG) 

and between the individual predictor variables themselves. In the event of significant 

relationships between stabiliser activation and force parameters, stabiliser activation was 

entered into a stepwise multiple linear regression analysis alongside other neural factors to 

establish if it exerted an independent contribution once it’s possible association with other 

muscle groups was considered. Statistical analyses were performed using SPSS version 19 

(SPSS inc., Chicago, IL, USA) and statistical significance was set at P < 0.05. 

 

6.3 Results  

6.3.1 Neural Contributions to Explosive Force Production 

iMVF was 239 ± 42 N. Descriptive statistics for absolute and relative explosive force and 

EMG of the agonist, antagonists and stabilisers are displayed in Table 6.1. The level of 

neuromuscular activation of the stabilisers throughout the initial 150 ms was 28.9-41.6 % 

EMGmax (Table 6.1). Stabiliser EMG during the early phase of the contraction (0-50 ms) was 
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significantly related to both absolute and relative explosive force at 50 ms (r = 0.35-0.44, P ≤ 

0.033). There was no relationship between stabiliser activation and force production over 

longer time periods from EMG/force onset (r ≤ 0.230, P ≥ 0.170).  

Agonist EMG was related to absolute force at 50 (r = 0.60, P < 0.001) and 100 ms (r = 0.39, 

P = 0.016). Furthermore, agonist EMG over the respective time period was related to relative 

explosive force throughout the initial 150 ms of contraction (r = 0.37-0.50, P ≤ 0.025). There 

was no relationship between antagonist EMG and absolute or relative explosive force at any 

time point during the explosive efforts (-0.07 ≥ r ≤ 0.102, P ≥ 0.548). 

 

Table 6.1 Explosive force and normalised EMG of the agonists, antagonists and stabilisers 
during explosive isometric contractions of the elbow flexors. Data are displayed as mean ± 
SD (N = 36). 

  Time Point after force onset (ms) 

Variable  50 100 150 

Absolute Force (N)       60.2 ± 20.3 156.3 ± 29.5 190.9 ± 33.1 

Relative Force (%MVF) 25.5 ± 8.9 65.7 ± 8.1 80.2 ± 6.2 

Agonist EMG (%EMGmax) 59.2 ± 32.0 82.0 ± 28.7 90.1 ± 26.2 

Antagonist EMG (%EMGmax) 1.6 ± 1.7 3.3 ± 2.3 4.0 ± 2.5 

Stabiliser EMG (%EMGmax) 28.9 ± 19.5 39.7 ± 18.4 41.6 ± 16.9 

N, Newtons; MVF, maximum voluntary force; EMG, electromyography 

 

6.3.2 Inter-relations of EMG Amplitude during Explosive Efforts 

Agonist and stabiliser EMG were significantly related to one another throughout all time 

periods during the initial 150 ms of explosive force production (r = 0.51-0.70, P ≤ 0.001). 

Additionally, there was a negative relationship between stabiliser EMG0-150 and antagonist 

EMG0-150 (r = -0.33, P = 0.047). There was no relationship between agonist and antagonist 

EMG for either time period (-0.29 ≤ r ≤ –0.14, P ≥ 0.084). 

Multiple regression analysis confirmed that the level of stabiliser EMG did not further 

contribute to the explained variance of either absolute or relative force at 50 ms, or any other 

time point, once agonist EMG was accounted for (P ≥ 0.493). The explained variance of 
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agonist EMG for absolute and relative explosive force at 50 ms was 0.36 and 0.25 

respectively.  

 

6.4. Discussion 

The primary purpose of the present study was to establish the relationship of stabiliser muscle 

activation on explosive isometric force production of the elbow flexors and report the inter-

relationship of muscular activation from agonist, antagonist and stabiliser muscles during 

explosive isometric contractions. Stabiliser neuromuscular activation was significantly 

related to absolute and relative explosive force production over the initial phase (50 ms) of 

the contraction. Furthermore, Stabiliser EMG was also strongly associated with the level of 

agonist EMG amplitude at all time points after force onset. When the relationship between 

agonist and stabiliser EMG was accounted for (through multiple linear regression analysis) 

there was no independent contribution of stabiliser activation to the explained variance in 

either absolute or relative explosive force production. Additionally, although the level of 

antagonist activation was not associated with either absolute or relative explosive strength, or 

with the level of agonist activation, there was a small negative relationship with the level of 

stabiliser neuromuscular activation. 

 

6.4.1 Neural Contributions to Explosive Force Production 

A key finding of the study was the association of stabiliser EMG with early phase (50 ms) 

absolute and relative explosive force production, suggesting it was an important neural 

component in explaining the variability in explosive strength between participants. No 

previous research has attempted to document the relationship between stabiliser activation 

and explosive force capabilities. Similarly to previous research a significant relationship was 

observed between the level of agonist neuromuscular activation and explosive force during 

the early phase (50 ms) of the contraction (de Ruiter et al., 2004; Del Balso & Cafarelli, 2007; 

Hannah et al., 2012). This observed relationship was lower than previously reported by some 

of these studies (de Ruiter et al., 2004, 2007) but similar to others (Hannah et al., 2012; 

Folland et al., 2013). Although to a lesser extent, agonist EMG was also related to explosive 

force at 100 ms (r2 = 0.15), but there was no relationship with force at 150 ms. Furthermore, 
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there was a significant relationship between agonist EMG and relative explosive force at all 

time points (r2 = 0.14 – 0.25). Finally, there was no association between the level of 

antagonist EMG amplitude and either absolute or relative explosive force production. It is 

important to note that the current study only assessed the biceps brachii (short and long head) 

and single antagonist (triceps brachii lateral head) and therefore the muscles do not reflect the 

entire elbow flexor/extensors muscle group. The brachialis is a mono-articular elbow flexor 

muscle and is thought to be the main agonist of the elbow flexor muscle group, and therefore 

the relationships observed within the current study unlikely fully reflect the importance of 

agonist activation on elbow flexor explosive force production. 

 

6.4.2 Inter-relations of Muscle Activation during Explosive Force Production 

This is the first study to assess the inter-relations of neuromuscular activation of the agonist, 

antagonists and stabilisers during explosive contractions. A key finding of the study was the 

strong relationship observed between agonist and stabiliser EMG during the early phase of 

the contraction (r2 = 0.49). This relationship decreased as the time from onset increased, but 

there was still a strong relationship over 100 and 150 ms (r2 = 0.26 – 0.30). This finding may 

highlight the importance of effective joint stability for optimal agonist activation during the 

early phase of explosive isometric contractions. Once this relationship was accounted for 

(stepwise multiple linear regression analysis) there was no independent contribution of 

stabiliser EMG to the explained variance in early phase absolute and relative explosive force 

production. This suggests that the stabiliser muscle activation capability is not a direct 

determinant of isometric explosive force production, but instead may exert an indirect 

influence on explosive force production through its association with the capability to activate 

the agonist muscles during the early phase of the rising force time-curve. It is possible that 

stabiliser activation serves as a foundation for bi-articular agonist activation in that the bi-

articular bicep brachii require a base of support in which to appropriately act as an agonist at 

the elbow joint. The relationship observed in the present study could suggest that either a) the 

level of stabiliser neuromuscular activation is inter-linked with agonist neuromuscular 

activation, in that those with an enhanced capability to activate the agonists during the rising 

force-time curve require higher stabiliser activation or b) actually the level of agonist output 

during explosive force development is constrained by the ability to sufficiently stabilise the 

shoulder joint (stabiliser activation). From the current study design it is not possible to 



                                                                                       Chapter 6: Inter-muscular coordination and RFD  

124 
 

delineate which of these scenarios is valid. Further research is needed to consider how the 

level of stabiliser activation may influence the expression of agonist activation.  

It is important to note that the present study only assessed two of the stabilisers at the 

shoulder joint (pectoralis major and anterior deltoid), which may not fully reflect activation 

of all the stabilisers and therefore stability of the joint. Thus, further research replicating the 

study with a larger pool of stabiliser muscles may be required to fully elucidate these findings. 

However, the strong association observed in the presence of only a small number of 

stabilisers, performed utilising an isometric model, highlights a potentially influential role of 

stabiliser activation on muscle performance. Future research should begin to explore the role 

of the stabiliser muscle system on muscle performance during more functionally relevant 

tasks.  

The observed negative relationship between stabiliser activation and antagonist activation 

over 150 ms may suggest a superior muscle coordination strategy. Joint torque is a 

consequence of both agonist activation and antagonist activation, and therefore a lower level 

of antagonist activation would allow for a greater net joint torque. Stabiliser activation has 

been shown to increase following RT, with concomitant declines in antagonist activation 

during sub-maximal contractions (Cacchio et al., 2008), that has been suggested to be as a 

result of altered motor control strategy, re-organised to optimise force production. Therefore, 

optimal stabiliser activity could be a trained strategy indicative of enhanced neural control, 

designed to optimally enhance force capabilities.   

In summary, the study demonstrates an important role of stabiliser activation on explosive 

strength through its association with agonist activation. Once agonist activation was 

accounted for, stabiliser activation no longer independently influenced absolute or relative 

explosive force production. Furthermore, the study reporting a negative relationship between 

stabiliser activation and antagonist activation, potentially indicative of superior muscle 

control strategies. The current study provides stimulating findings which need to be further 

replicated and applied to more functionally relevant situations.  
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7.1 Introduction 

Marked increases in muscle strength during the early phase of a RT program have been 

observed (Abe et al., 2000; Pucci et al., 2006; Del Balso & Cafarelli, 2007) and these changes 

appear to be highly specific to the nature of the training task.  For example, conventional 

dynamic isoinertial RT has repeatedly been found to produce disproportionately greater 

increases in isoinertial lifting strength (one repetition maximum [1RM]) than isometric 

strength (Thorstensson et al., 1976, Rutherford & Jones, 1986). This specificity of training 

phenomenon is often taken as evidence for neural adaptations to RT (Folland & Williams, 

2007a). However at present there is minimal direct evidence for either neural or 

morphological mechanisms that might explain this training task specificity. Furthermore, as 

functional tasks generally require isoinertial strength, establishing the mechanisms that lead 

to a greater improvement in isoinertial versus isometric strength is important from both a 

sport and rehabilitation perspective. 

Early adaptations to RT are thought to be primarily explained by neural adaptations, e.g. 

adaptations in agonist, antagonist and stabiliser muscle activation (Folland & Williams 

2007a), with a greater contribution from morphological adaptations, such as selective 

hypertrophy and/or architectural changes, as training duration progresses (Narici et al., 1996). 

Therefore, documenting training specific adaptations over a short term training period may 

distinguish between the neural and morphological explanations for the task specificity 

phenomenon. Although numerous studies have reported an increase in absolute agonist EMG 

amplitude during isometric tasks following RT (Hakkinen et al., 1983, 1998; Kubo et al., 

2006; Tillin et al., 2011) only one investigation has found an increase in agonist EMG during 

an isoinertial task (Hakkinen et al., 1998). Moreover, the comparative changes in agonist 

activation during isometric and isoinertial tasks, or how these changes may explain the 

strength gains that occur, have not been elucidated. Furthermore, the evidence for RT-

induced changes in antagonist muscle co-activation is equivocal (Hakkinen et al., 1998; Pucci 

et al., 2006; de Boer et al, 2007; Tillin et al., 2011). Whilst an increase in antagonist co-

activation might attenuate gains in strength, for some joints this may be a necessary 

adaptation to maintain joint integrity in response to increased loading post-training (Tillin et 

al., 2011).  

In addition to agonist and antagonist activation, changes in stabiliser muscle activation could 

also influence strength gains and contribute to task specificity, but has not previously been 
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investigated in any strength tasks. Learning to effectively stabilise the adjacent joints through 

increased stabiliser activation may facilitate an increase in strength during the early phase of 

RT. Additionally, isoinertial lifting tasks involve more degrees of freedom within the 

musculo-skeletal system than isometric strength tasks, and therefore may require a greater 

degree of stabilisation. Although the influence of RT on stabiliser EMG during submaximal 

contractions has been investigated (Cacchio et al., 2008), the contribution of adaptations in 

stabiliser activation to the changes in maximum isoinertial or isometric strength after RT has 

not been examined.  

Explosive strength is also considered an important characteristic of muscle performance (de 

Ruiter et al., 2006; Tillin et al., 2013), as well as for the stabilisation of the musculoskeletal 

system following mechanical perturbation (Fleming et al., 1991; Izquierdo et al., 1999; 

Chang et al., 2005; Pijnappels et al., 2008), thus reducing the risk of falls and injury. The 

efficacy of RT for improving explosive isometric strength is controversial, with some reports 

finding an improvement (Hakkinen et al., 1998; Aagaard et al., 2002a) and others no change 

(Andersen et al. 2010; Tillin et al., 2011). Moreover, it is not known whether just three weeks 

of conventional RT will influence explosive strength, and if so, whether this effect is due to 

specific neural adaptations.  

 

The aim of the present study was to assess the task specific adaptations in isometric 

(maximum and explosive) and isoinertial strength following three weeks of isoinertial RT, 

and to document the concurrent neural changes in agonist, antagonist and stabiliser muscle 

activation. It was hypothesised that conventional isoinertial RT would induce greater 

increases in isoinertial, than isometric strength, and that this would be concomitant with 

greater changes in agonist and stabiliser muscle activation during the isoinertial task. 

 

7.2 Methods  

7.2.1 Participants 

Forty-five male participants (age, 23 ± 3 yr; height, 1.77 ± 0.08 m; mass, 73.7 ± 9.9 kg) 

completed the study. The participants were physically active, healthy, injury free and had not 

taken part in any form of strenuous upper body exercise for the previous 12 months prior to 

the study. All Participants provided written informed consent prior to their involvement in the 
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study, which complied with the Declaration of Helsinki and was approved by the Ethical 

Advisory Committee of Loughborough University.  

 

7.2.2 Overview  

Participants were tested twice pre (pre-1, pre-2) and once post three weeks of isoinertial 

elbow flexor RT. Pre-1 and Pre-2 training measurements were separated by seven days, with 

pre-2 measurements recorded 3-7 days prior to the commencement of training. Post-training 

measurements were collected 3-5 days after the last training session. The measurement 

sessions were all performed at a consistent time of day for each participant. The training 

involved participants performing elbow flexion exercises (unilateral and bilateral preacher 

curls) three times per week (Monday, Wednesday, Friday) for three weeks. Although 

participants trained both arms, measurements were only recorded from the dominant arm. 

During each measurement session participants performed a series of elbow flexion 

contractions to determine maximum isoinertial lifting strength (1RM), and isometric 

maximum and explosive strength. Surface EMG was recorded during pre-2 and post 

measurement sessions from the agonist, antagonist and stabiliser muscles throughout these 

volitional contractions as well as during reference tasks/measurements that were used for 

normalisation of EMG: a supramaximal evoked compound action potential (Mmax) of the 

biceps brachii (agonists); maximum isometric elbow extension (antagonist); and maximum 

isometric bench press (stabilisers). Muscle thickness of the short-head of the biceps brachii 

was also measured at rest using ultrasound during both the pre-2 and post- measurement 

sessions. The effects of training were determined by comparing pre-2 to post-training 

measurements.  

 

7.2.3 Training 

Each training session involved two similar elbow flexion exercises. Firstly, unilateral elbow 

flexion curls were performed with a dumbbell on a modified preacher bench (Body Solid, 

Forest Park, IL, USA; Figure 7.1A with participants performing alternate sets with the 

dominant and then the non-dominant arms. Secondly, participants performed bilateral elbow 

flexion exercises using a weights machine (Pro Club Line Bicep Curl; Body Solid, Forest 

Park, IL, USA).  Both exercises were performed with a load of 8-10RM. Two sets of each 
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exercise were performed, with two minutes rest between exercises involving the same muscle 

group. The training load was increased when participants could complete 10 repetitions on 

both sets. Participants were instructed to lower the weight in a controlled manner over 2-3 s 

during the eccentric phase, and then lift the weight as quickly as possible during the 

concentric phase, in order to maximise the rate of force development. They were also directed 

to move through a full range of motion (from ~15° to ~140°; 0° = full extension) throughout 

both exercises. 

 

7.2.4 Measurement Trials 

7.2.4.1 Measurements 

Participants sat upright (hip joint angle of 90°) in a custom built strength testing chair and 

were strapped at the hip and chest to the seat and back of the chair to prevent movement of 

the body (Figure 7.1A). The elbow and shoulder joints were flexed to 60 and 90°, 

respectively (0° being full elbow extension), with the upper arm placed on a horizontal board, 

and externally rotated with the elbow position maintained by blocks anterior and lateral to the 

joint.  The forearm was supinated and the wrist was attached to an S-Beam tension-

compression load cell (Applied Measurements Ltd, Berkshire, UK) positioned perpendicular 

to the forearm during elbow flexion/extension. The force signal was amplified (× 500) 

interfaced with an analogue to digital converter (CED micro 1401, CED, Cambridge, UK) 

and sampled at 2000 Hz with a PC utilising Spike 2 software (CED, Cambridge, UK). During 

off-line analysis the force signal was low-pass filtered (500 Hz) with a fourth order zero-lag 

Butterworth digital filter. Real-time biofeedback of the force response was provided on a 

computer monitor.   
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Figure 7.1 A, The modified preacher curl bench used for both training and testing of the 
elbow flexors and B, The isometric strength testing apparatus used to measure elbow flexion/ 
extension force. 

 

Surface EMG was recorded using two Delsys Bangnoli-4 EMG systems (Delsys, Boston, 

USA) from two agonist muscles (short and long heads of the biceps brachii, BBS and BBL), 

the antagonist (triceps brachii lateral head, TB) and two stabilisers (anterior deltoid, AD; 

clavicular head of the pectoralis major, PM). Following preparation of the skin (shaving, 

abrading and cleansing with 70% ethanol), the same investigator attached double differential 

surface electrodes (1 cm inter-electrode distance, DE-3.1, Delsys) to the skin over each of the 

muscles using adhesive interfaces. The electrodes were positioned at specific measured sites 

along the arm, in the centre of the muscle belly and parallel to the presumed orientation of the 

muscle fibers. BBS and BBL electrodes were positioned distally 75% of the distance between 

the coracoid process and medial epicondyle of the humerus (Lee et al., 2010). AD, PM and 

TB were positioned according to SENIAM guidelines. The EMG reference electrodes were 

placed on the contralateral clavicle. EMG signals were amplified (× 100, differential 

amplifier 20-450 Hz) and sampled at 2000 Hz with the same analogue to differential 

converter and PC as the force signal. During off-line analysis the EMG signals were band-

pass filtered in both directions (6-500 Hz) using a 4th order zero-lag Butterworth digital filter. 

The musculocutaneous nerve was electrically stimulated (via a constant current, variable 

voltage stimulator; DS7AH, Digitimer Ltd., UK) with square wave pulses (0.2 ms duration) 

to elicit twitch contractions, and facilitate measurement of compound muscle action 

potentials (M-waves) with EMG. The self-adhesive anode (5 x 5 cm; Verity Medical, 

Andover, UK) was attached to the skin over the triceps brachii. The cathode (1 cm diameter, 

 

B A 
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Electro Medical Supplies, Wantage, UK) was held in place over the nerve between both 

biceps brachii heads at ~25% of the distance between the coracoid process and medial 

epicondyle of the humerus (Lee et al., 2010). However, the precise location was determined 

as the position that evoked the greatest response for a particular electrical current (10-30mA).   

 

7.2.4.2 Protocol 

1RM was assessed with a series of incremental dumbbell lifts according to an adapted 

protocol (Baecke, 1982). Isoinertial strength was measured with the same modified preacher 

bench used during training (Figure 7.1A). Briefly, the preacher bench was modified with a 

horizontal rack at the end of the motion that provided a consistent starting point pre and post 

training for the isoinertial lifts. The height of the bench was adjusted according to the length 

of each participant’s arm, so that it was underneath the axilla, with the participant leaning 

forward on to the bench such that the shoulder was flexed at ~75º.  This position ensured the 

elbow was fully extended when each participant’s hand gripped the dumbbell on the rack. 

Participants were instructed to lift the dumbbell through the full range of motion, from full 

elbow extension to full flexion. The non-lifting hand rested on the knee of the same side, both 

feet remained flat on the floor and the knees were flexed at 90°. Participants warmed up by 

performing 10 reps at 40% of their previous 1RM (or estimated 1RM for pre-1). After 1 min 

rest, participants performed 3 repetitions at 80% of their previous 1-RM. Thereafter they 

performed a series of single lifts interspersed with 1 min rest intervals, firstly at the previous 

1-RM, and then at increments of +0.5 kg if the preceding lift was successful. The 1-RM was 

defined as the highest load lifted on that occasion, and was generally determined within 3-5 

attempts, although more attempts were completed if necessary. EMG amplitude of all the 

muscles during the 1-RM lift was assessed for a 500 ms epoch that gave the highest agonist 

RMS EMG during the concentric phase of the lift. BBS and BBL RMS EMG were 

normalised to Mmax peak-to-peak amplitude (see below) and then averaged to give a mean 

value for the biceps brachii (agonist EMG); AD and PM RMS EMG were normalised to the 

maximum value attained by each muscle during the isometric maximum bench press (see 

below) and then averaged to give a mean value for the stabiliser muscles (stabiliser EMG); 

and antagonist EMG was normalised to the TB EMG at elbow extension iMVF  (antagonist 

EMG; see below). 
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Participants were transferred to the isometric elbow flexion/extension apparatus (Fig. 7.1B) 

and completed a warm up of submaximal isometric voluntary contractions. They then 

performed three elbow flexion isometric maximum voluntary contractions (iMVCs) 

(separated by 1 min) followed by three elbow extension iMVCs, in which participants were 

instructed to pull or push as hard as possible for ~3 seconds. Biofeedback and verbal 

encouragement were provided during and between each iMVC. Elbow flexor isometric 

maximal voluntary force (iMVF) was the greatest force achieved by the participant in any of 

the iMVCs. The amplitude of the EMG signal was assessed as the RMS of a 500 ms epoch 

around peak force (250 ms either side) for each muscle. EMG was normalised in the same 

manner as for the 1RM efforts. Maximal EMG of the TB (EMGmax) was assessed as a 500 ms 

epoch at elbow extension iMVF (250 ms either side) and used for normalisation of antagonist 

EMG during elbow flexion tasks. 

Participants then performed 10 isometric explosive voluntary contractions (separated by 20 s). 

For each contraction participants were instructed to flex their arm as ‘fast’ and as hard as 

possible for ~1 s from a relaxed state (Sahaly et al., 2001) and achieve at least 80% iMVF. 

Participants were instructed to avoid any countermovement or pre-tension. To determine if 

countermovement had occurred, the resting force level was displayed on a sensitive scale. 

The slope of the force time curve (10 ms time constant) was displayed throughout and the 

peak slope was used to provide visual feedback to participants after each contraction. The 

three contractions with the highest peak slope, no discernible countermovement or pre-

tension (change in force of < 0.5 N in the preceding 100 ms), and with a peak force of at least 

80% iMVF were used for analysis, and all measurements were averaged across these three 

contractions. Force was assessed at 50, 100, and 150 ms, from the onset of contraction and 

reported in absolute terms and normalised to iMVF. Peak rate of force development (pRFD) 

was measured as the maximum slope (10 ms time constant), and the time at which it occurred 

was also recorded. The force-time integral (the area beneath the force-time curve) was 

assessed in windows of 0-50, 0-100 and 0-150 ms from the onset of force. The RMS EMG 

was measured in windows of 0-50, 0-100 and 0-150 ms from the onset of EMG activity in the 

first agonist muscle to be activated, and normalised in the same manner as during the 

maximal strength tasks. The time between the first agonist muscle to be activated and onset 

of force was determined as the maximum electromechanical delay (EMDmax).   

For the explosive voluntary contractions, identification of force and EMG onsets were made 

manually (visual identification) as this is considered the “gold standard” method (Allison, 
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2003, Moretti et al., 2003). The same investigator identified signal onsets with a constant y-

axis scale of ~ 2 N and 100 mV, for force and EMG respectively, and an x-axis scale of 500 

ms. A vertical cursor was then placed on the onset and viewed at a higher resolution to 

determine its exact location (~ 0.5 N and 50 mV for force and EMG axes respectively using 

an x-axis of 25 ms).  

Single twitch contractions were elicited by stimulation of the musculocutaneous nerve at 

incremental intensities until there was a plateau in the M-wave response of both heads of the 

bicep brachii. Thereafter, the current was increased by 20% and three supra-maximal twitches 

were elicited (separated by 12 s). The average M-wave peak to peak amplitude (Mmax) of 

these three supramaximal M-waves was determined for each muscle and used for 

normalisation of agonist EMG during elbow flexor strength tasks. Six participants were 

uncomfortable with the stimulation and thus EMG normalised to Mmax is reported for N = 39. 

Participants performed isometric bench press contractions to determine maximal EMG of the 

stabilising muscles (AD and PM). Participants lay supine on an inclined bench (head up ~15° 

to the horizontal) with their shoulders aligned vertically below a fixed immovable bar and 

their knees bent and feet positioned on the end of the bench, which was positioned on a 

portable force plate (Quattro Jump, Type 9290 AD, Kistler, Switzerland). The height of the 

bar was adjusted so that when participants grasped the bar their upper arm was horizontal, 

whilst their forearms were vertical (i.e. shoulders abducted at 90° and elbows flexed at 90°). 

Participants performed three iMVCs of 3 s duration with ≥ 30 s rest between efforts. Verbal 

encouragement was provided throughout the efforts and the recorded force during the effort 

was provided as feedback to the participants following each attempt. Maximal EMG of the 

AD and PM muscles was recorded over the highest 500 ms epoch during the series of bench 

press iMVCs (EMGmax) and used for normalisation of stabiliser EMG during elbow flexor 

strength tasks. 

In-vivo muscle thickness was examined prior to the start of each measurement session, using 

an ultrasound scanner (SSA-370A Power Vision 6000, Toshiba Corporation, Otawara-Shi, 

Japan) with a 6 cm (8 MHz) linear array transducer. Scans of the BBS were obtained from the 

dominant arm, whilst participants lay supine with the elbow fully extended and the shoulder 

abducted at 90°. Strips of surgical tape (50 mm long, 2 mm wide; 3M, Neuss, Germany) were 

placed at 50 mm intervals along the length of the upper arm from the cubital crease to the 

shoulder and acted as markers with which muscle length could be determined. Muscle 
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thickness was then assessed at 25, 50 and 75% BBS muscle length. The values at the three 

sites were averaged to give a mean BBS muscle thickness value. Reliability analysis was 

performed with N = 8 who performed measures in duplicate. For this, the surgical strips were 

removed, and the testing procedure was repeated. Due to technical reasons, nine of the 

participants were unable to complete both pre and post muscle thickness measurements.  

Therefore, muscle thickness data are reported for N = 36. 

 

7.2.5 Statistical Analysis 

Data are reported as mean ± standard error of the mean (SEM). Significant differences 

between pre-2 and post-training absolute measures (iMVF, 1RM and EMG during the 

respective contractions, muscle thickness, pRFD and time to pRFD during the explosive 

contractions) were determined using paired t-tests. Effect sizes were reported to interpret the 

magnitude of these differences according to Cohen’s d, where 0.2 is a small effect, 0.5, a 

moderate effect and > 0.8 a large effect. Relative changes in 1RM and iMVF were calculated 

as mean ± SEM of individual percentage changes, and compared with a paired t-test. Two-

way repeated measures ANOVA were performed to contrast the changes in EMG variables 

for iMVF and 1RM with training (task: MVF vs. 1RM; training, pre vs. post).  

Time-series data during the explosive contractions (force and EMG) were assessed with two-

way repeated measures ANOVA (training [pre vs. post] vs. epoch [0-50, 0-100, 0-150 ms]). 

Post-hoc pair-wise comparisons (Bonferroni corrected paired t-test) were used to determine if 

there were pre- vs. post-training differences at specific time points. Statistical analysis was 

completed using SPSS version 17, and the significance level was set at P < 0.05. Reliability 

analysis for strength data was performed using pre-1 and pre- 2 measurements in which 15 

participants were chosen at random from the data sets of 1RM, iMVF and explosive force 

production. Significance testing to assess the consistency of the mean values (as above) was 

determined and the within-participant coefficient of variation (CV) and intra class coefficient 

(ICC) used to further determine reliability.    
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7.3 Results 

7.3.1 Reliability 

There were no significant changes in iMVF (paired t-test, P = 0.473), 1RM (paired t-test, P = 

0.827) or explosive force production (ANOVA, P = 0.127) from pre-1 to pre-2 measurement 

sessions. Furthermore, these strength measures demonstrated moderate to excellent reliability 

(iMVF, CV 3.4%, ICC 0.97; 1RM, CV 3.5%, ICC 0.98; Explosive force, 50 ms, CV 14.6%,  

ICC 0.85; 100 ms, CV 4.1%, ICC 0.97; 150 ms, CV 3.5%, ICC 0.97). Additionally, muscle 

thickness measurements taken in duplicate before training were very consistent (paired t-test, 

P = 0.819) and showed high levels of reliability (CV 2.5%, ICC 0.94). There were no changes 

in EMG amplitude recorded during the reference tasks between the pre-2 and post-training 

measurement sessions: Mmax amplitude (pre, 11.6 ± 1.3 vs. post, 12.2 ± 1.3 mV, paired t-test, 

P = 0.280); TB EMGmax during elbow extension (pre, 0.27 ± 0.03 vs. post 0.25 ± 0.03 mV; 

paired t-test, P = 0.130); AD and PM EMGmax during bench press (AD pre, 0.65 ± 0.04 vs. 

post, 0.62 ± 0.05; PM, pre, 0.50 ± 0.13 vs. post, 0.35 ± 0.04 mV; both, paired t-test, P ≥ 

0.148). 

 

7.3.2 Maximum Isometric Strength and 1RM 

Elbow flexor iMVF increased from 240 ± 7 to 258 ± 8 N (paired t-test, P < 0.001, ES = 0.33) 

and 1RM lifting strength increased from 10.9 ± 0.4 to 12.6 ± 0.4 kg (paired t-test, P < 0.001, 

ES = 0.57) after three weeks of RT, with a greater percentage increase of 1RM than iMVF 

(17.0 ± 2.0 vs. 7.4 ± 1.4% , paired t-test, P < 0.001, Figure 7.2).  
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Figure 7.2 Percentage change in iMVF and 1RM following three weeks of resistance training. 
(Mean ± SEM, N = 45). ** indicates a significantly greater change in 1RM than isometric 
MVF (paired t-test, P < 0.001). 

 

There was a 15.7% increase in agonist EMG amplitude during the 1RM (paired t-test, P < 

0.001, ES = 0.44), with no change in agonist EMG at iMVF showed no changes after the RT 

(paired t-test, P ≥ 0.541; Figure 7.3A). The increase in agonist EMG amplitude was greater 

for the 1RM than MVF (ANOVA, task x training P = 0.005, respectively). Agonist EMG 

amplitude was also 32.6% higher during the 1RM than iMVF pre-training and 57.3% higher 

post-training (both, paired t-test, P < 0.001).  

Whilst, antagonist EMG during 1RM increased by 26.2% (paired t-test, P = 0.032, ES = 0.35) 

and co-activation at iMVF was unchanged (paired t-test, P = 0.701, Figure 7.3B), there was 

no difference between the changes in 1RM and iMVF (ANOVA, task x training, P = 0.143). 

Antagonist EMG was 52.9% higher during the 1RM than at iMVF pre-training and 84.9% 

higher post-training (both, paired t-test, P ≤ 0.001).  

Stabiliser EMG also increased during the 1RM (43.2%, paired t-test, P < 0.001, ES = 0.59, 

Figure 7.3C) and this reflected an increase for both the AD and PM (AD, pre, 56.0 ± 6.7 vs. 

post, 82.0 ± 6.5% EMGmax; PM, pre, 56.0 ± 5.3 vs. 80.7 ± 8.8% EMGmax, both, paired t-test, 

P ≤ 0.002). Similarly, at iMVF overall stabiliser EMG (+53.1%, paired, t-test, P < 0.001, ES 

= 0.84) and that of each of the stabiliser muscles was elevated post-training (AD, pre, 26.7 ± 

2.2 vs. post, 44.7 ± 3.9; PM, pre 41.5 ± 3.8 vs. post, 60.8 ± 4.6% EMGmax, both, paired t-test, 

P < 0.001). The training-induced changes in stabiliser EMG were similar for 1RM and MVF 
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(ANOVA, task x training, P ≥ 0.297).  Stabiliser EMG was 65.4% higher during the 1RM 

than at iMVF pre-training and 50.6% higher post-training (both, paired t-test, P ≤ 0.001).   

 

 

 

Figure 7.3 Agonist (A), antagonist (B) and stabiliser (C) muscle EMG amplitude measured at 
isometric maximum voluntary force (open circles) and during the 1RM (filled squares). Data 
are reported as mean ± SEM (N= 45, [N = 39 for agonist EMG normalised to Mmax]). A 
training effect is denoted by * (P < 0.05), ** (P < 0.001). 

6

8

10

12

14

16

Pre Post

Ag
on

is
t E

M
G

 
 (%

M
m

ax
) 

** 

4

6

8

10

12

14

16

Pre Post

An
ta

go
ni

st
 E

M
G

 
(%

EM
G

m
ax

) * 

0

20

40

60

80

100

Pre Post

St
ab

ili
se

r E
M

G
  

(%
EM

G
m

ax
) 

** 

** 

B 

C 



                                                                                       Chapter 7: Neural Contributions to RT  

138 
 

7.3.3 Explosive Isometric Contractions 

During the explosive contractions there was no training effect on absolute force production at 

any time point (ANOVA, training, P = 0.595, Figure 7.4A), peak RFD (pre, 3224 ± 108.4 vs. 

post, 3210 ± 124.3 N.s-1; paired t-test, P = 0.853) or the force-time integral produced over any 

of the time periods (ANOVA, training, P = 0.495). However, there was a training effect for 

explosive force production normalised to MVF (ANOVA, training, P = 0.008), with a 

significant decrease in % MVF achieved at 50 ms (-16.5%, ES = 0.47, Bonferroni, P = 0.003), 

but no change at 100 (ES = 0.29, Bonferroni, P = 0.123), or 150 ms (Bonferroni, P = 0.735; 

Figure 7.4B). Similarly, there was a decrease in relative peak RFD (pre, 13.5 ± 0.3 vs. post, 

12.6 ± 0.4 MVF.s-1, paired t-test, P = 0.005, ES = 0.39), and an increase in the time to reach 

peak RFD (pre, 57.2 ± 2.3 vs. post, 63.6 ± 2.3 ms, paired t-test, P = 0.004, ES = 0.45). 

Voluntary EMDmax remained unchanged after training (pre, 25.1 ± 0.8 vs. post, 24.5 ± 0.9 ms, 

paired t-test, P = 0.417).  

 

 

Figure 7.4 Absolute (A) and relative (B) force (relative to maximum voluntary force; MVF) 
during explosive isometric contractions of the elbow flexors pre (bold line, filled squares) and 
post (dashed line, open circles) training. Data are mean ± SEM for the group (N = 45). A 
training effect is denoted by ** (P < 0.01).   

 

The training did not influence the EMG amplitude during the explosive contractions for 

either the agonist (ANOVA, training, P = 0.133, Figure 7.5A) or antagonist muscles 

(ANOVA, training, P = 0.682; Figure 7.5B), but there was an increase in stabiliser muscle 
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activation (ANOVA, training, P < 0.001, Figure 7.5C) with significant increases over 0-50 

(45.3%, Bonferroni, P = 0.003, ES = 0.47) and 0-150 ms (26.2%, Bonferroni, P < 0.001, ES = 

0.60), but not 0-100 ms (Bonferroni, P = 0.201, ES = 0.28). 

 

 

 

Figure 7.5 Agonist (A), antagonist (B) and stabiliser (C) muscle EMG amplitude during 
explosive isometric contractions of the elbow flexors pre (black) and post (white) training. 
Date are reported as mean ± SEM for the group (N = 45). A training effect is denoted by * (P 
≤ 0.05), ** (P ≤ 0.001). 
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7.3.4 Muscle Thickness 

Thickness of the biceps brachii short-head increased from 15.0 ± 0.5 to 15.7 ± 0.6 mm 

(paired t-test, P = 0.003, ES = 0.21) following training, representing a change of 5.3 ± 1.4 %.  

 

7.4 Discussion 

This study investigated the changes in elbow flexion strength tasks (isoinertial, and isometric 

maximum and explosive strength), and evaluated the adaptations in agonist, antagonist and 

stabiliser neuromuscular activation that may contribute to improved strength following 3-wk 

RT. It was hypothesised that conventional isoinertial RT would induce greater increases in 

isoinertial, than isometric strength, and that this would be concomitant with greater changes 

in agonist and stabiliser muscle activation during the isoinertial task. After training there was 

more than a two-fold greater increase in training task specific isoinertial than isometric 

strength (17 vs. 7%) that appeared to be due to task specific neural adaptations during the 

1RM. Specifically, task-specific adaptations in agonist EMG during the 1RM (+16%) with no 

change in agonist EMG at iMVF. A novel finding of this study was that training increased 

stabiliser muscle activation during all elbow flexion strength tasks, but with no task specific 

training effects. After training there was no change in absolute explosive force production, 

but there was a decrease in relative early phase explosive force production.  

This study included a large cohort of participants (N = 45) and demonstrated good to 

excellent reliability of the strength and muscle thickness measurements. Furthermore, there 

was no change in any of the EMG reference measures following training. Normalisation of 

agonist, antagonist and stabiliser EMG during the elbow flexion contractions to these 

reference measurements would be expected to reduce measurement variability and enhance 

the statistical power of the experiment (Buckthorpe et al. 2012). These methodological 

strengths of the study provide confidence that the changes in performance and underlying 

physiological mechanisms are adaptations as a result of the short-term training.   

We observed a 17% increase in the 1RM following RT which is equivalent to the changes 

observed in another upper body RT study [chest press 1RM 17% increase after 4 weeks, (Abe 

et al., 2000)]. This increase in 1RM was more than two-fold greater than the 7% increase in 

iMVF and this differential response is similar in magnitude to previous longer duration 
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isoinertial RT studies [18 vs. 40% increase after 9 weeks, (Folland et al., 2002); 16 vs. 40% 

after 12 weeks (Hubal et al., 2005)]. This is the first study to provide strong evidence for 

neural mechanisms explaining this tasks specificity phenomenon. The task specific increase 

in agonist activation during the 1RM (no change in agonist EMG at iMVF) provides a ready 

explanation for the greater increase in isoinertial vs. isometric strength. Previous research has 

reported an increase in absolute agonist EMG during the 1RM after 12 weeks of RT [knee 

extensors, (Hakkinen et al., 1998)], but within the present study we also used the more robust 

method of normalised EMG (to Mmax +16%) and found strong evidence that increased agonist 

activation contributes to isoinertial strength gains after RT.  Considering isometric strength, 

evidence for changes in normalised agonist EMG (to Mmax) at iMVF following RT is 

equivocal (Van Cutsem et al., 1998; Pucci et al., 2006; Tillin et al., 2011). The conflicting 

findings may relate to the muscle group investigated, as Behm and colleagues (2002) found 

agonist activation at iMVF to vary between muscle groups for untrained participants. Using 

the interpolated twitch technique (ITT), activation of the elbow flexors even in untrained 

participants has been reported to be very high (> 98%, (Allen et al., 1998)), which may 

explain why training did not increase agonist activation at iMVF in the current study.  

Absolute agonist EMG during the 1RM was higher than at iMVF (pre, + 33%; post +57%), 

which might indicate a higher level of muscle activation during the 1RM or simply reflect 

methodological differences between these measurements. As discussed above, elbow flexor 

activation at iMVF assessed with the ITT has been reported to be very high/maximal. 

Therefore, if the ITT and EMG are valid measures of voluntary activation, it does not seem 

plausible for EMG during the 1RM to be over 50% higher than EMG at iMVF.  On the other 

hand, the validity of the ITT for providing a quantifiable measurement of agonist activation at 

iMVF is controversial (e.g. de Hann et al., 2009). Elbow flexor iMVF was recorded at 60º 

elbow flexion, whereas peak EMG during the 1RM typically occurred at a more extended 

joint angle, i.e. ~10-50°. There was also a subtle difference in shoulder flexion angle between 

the two tasks (1RM 75̊ vs. iMVF 90̊). Joint angle has been found to influence the amplitude 

of volitional EMG (Kasprisin & Grabiner, 2000) and thus angle specific differences in both 

shoulder and elbow angles could explain the task specific discrepancy in EMG amplitude we 

have found. Despite the issues surrounding the quantification of voluntary muscle activation, 

the present results suggest that the greater gains in isoinertial lifting strength were explained 

by task specific adaptations in agonist neuromuscular activation. 
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The consistency of antagonist co-activation values pre and post training at iMVF is in 

accordance with two previous studies (Hakkinen et al., 1998; Pucci et al., 2006), but conflicts 

with studies that have reported both increased (Simoneau et al., 2006; de Boer et al., 2007) 

and decreased (Hakkinen et al., 1998; Tillin et al., 2011) co-activation following RT. Tillin et 

al. (2011) recently found increased co-activation at iMVF following four weeks of RT, but a 

reduction in antagonist activation expressed as a ratio of agonist activation, across a range of 

contraction intensities up to iMVF post-training. It may be that in the present study the 

increase in iMVF was not large enough to require an increase in co-activation to maintain 

joint integrity, or that the elbow joint is sufficiently stable at iMVF not to require increased 

co-activation as strength increases. There was however a large increase in co-activation 

during the 1RM following RT (26%), which may have attenuated the overall gains in 

isoinertial strength, and might reflect a greater need to stabilise the elbow joint during the 

1RM (Cochrane et al., 2006, Tillin et al., 2011). There was no change in antagonist EMG 

during the explosive contractions, which may be due to the consistent force and agonist EMG 

of these contractions after training.  

Stabiliser muscle activation increased by a similar extent during both the 1RM and at iMVF 

(39 vs. 53%, respectively) and is a novel finding, which likely contributed to changes in 

strength during both tasks. The effective stabilisation of joints is thought to be important for 

optimal force production (Folland & Williams, 2007a), and the adaptation in stabiliser 

activation that was observed may help to explain the commonly observed discrepancy 

between muscle size and iMVF changes following RT (e.g. Narici et al., 1996). It was 

hypothesised that the greater increase in isoinertial, than isometric strength, would be 

concomitant with greater changes in stabiliser muscle activation during the isoinertial task.  

Whilst there was no task specific training effect on stabiliser activation, it is possible that 

increased stabiliser activation was of greater consequence during the 1RM that for iMVF. 

During isoinertial elbow flexion more movement is available at the shoulder than is the case 

during the isometric measurements where force production is constrained to the elbow joint 

by the apparatus and strapping. Therefore the elbow flexion 1RM may be more responsive to 

synergistic contributions from shoulder joint muscles or more effective stabilisation of the 

shoulder during this task. Thus the 1RM could be more responsive to enhanced stabiliser 

activation after training. Furthermore, increased stabiliser activation and shoulder joint 

stabilisation during the 1RM after RT may have facilitated an increase in agonist activation, 

particularly for the bi-articular bicep brachii. Thus the 1RM could be more responsive to 



                                                                                       Chapter 7: Neural Contributions to RT  

143 
 

enhanced stabiliser activation after training. It would be interesting for future work to 

consider the response of a wider range of stabiliser muscles after training. The 5% increase in 

muscle thickness we observed indicates the occurrence of hypertrophy after only three weeks 

of RT, and is in agreement with an earlier study that also found hypertrophy after only three 

weeks of training [knee extensors, + 3.5-5.2%, (Seynnes et al., 2007)]. Therefore, this study 

supports the notion that skeletal muscle hypertrophy can occur  during the initial 3 weeks, or 

9 sessions, of training, and might be expected to  have made a greater relative contribution to 

the observed gains in isometric than isoinertial strength.   

There was no change in absolute force and a decrease in early phase relative force production 

(50 ms) during the explosive voluntary contractions following RT, which further questions 

the efficacy of RT for enhancing explosive strength (Andersen et al., 2010, Tillin et al., 2011). 

There is some evidence that including an explosive strength component to RT (i.e., intending 

to lift the weight as quickly as possible) is sufficient to enhance early phase explosive 

strength and agonist neural drive (Behm & Sale, 1993; Van Cutsem et al., 1998; Del Balso & 

Cafarelli, 2007). However, during conventional isoinertial RT, the continuous, cyclic nature 

of the repetitions, with gradual controlled lowering (eccentric) immediately followed by 

lifting (concentric), may involve high levels of activation and force throughout each set. 

Therefore, even if attempting to perform the concentric phase of the lift as quickly as possible 

(as was the case in the present study) there may be no transition from low to high levels of 

activation/force that is required to enhance explosive force production. Alternatively, it is 

possible that adaptations in agonist neural drive and explosive force production with the 

training task may have been specific to the early concentric phase of the lift, i.e. at more 

extended joint angles than the angle used to measure isometric strength. Future investigation 

into angle-specific changes in explosive strength and associated mechanisms following 

isoinertial maximum and/or explosive strength training would have strong implications for 

athletic training.  

The large increase in stabiliser activation during the explosive contractions in the absence of 

any changes in absolute force further supports the findings of chapter 6, that the level of 

stabiliser activation does not exert a direct influence on explosive force production. Further 

research is required on the influence of stabiliser activation on explosive strength during 

isoinertial strength tasks. 
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In summary, task specific neural adaptations, particularly increased agonist activation during 

the 1RM, appeared to explain the greater increase in isoinertial than isometric strength. 

Increased antagonist co-activation during the 1RM was the likely result of an increased load 

lifted and may be a protective mechanism to maintain joint integrity. Changes in iMVF were 

thought to be explained by increased muscle size and stabiliser muscle activation rather than 

changes in agonist or antagonist muscle activation. Despite participants attempting to lift the 

weight as quickly as possible, three weeks of RT resulted in no change in absolute explosive 

force production and a decrease in relative early phase explosive force production, which 

questions the efficacy of conventional isoinertial RT for enhancing explosive strength. 
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8.1 Introduction 

Repeated high force contractions of skeletal muscle causes a decline in the force generating 

capacity, referred to as muscle fatigue, that negatively influences the performance of 

explosive sporting actions (Mohr et al., 2003; Krustrup et al., 2006) and is thought to be an 

important risk factor for sports injuries (Hawkins et al., 2001). Much of the research 

investigating the influence of fatigue on the functional capacity of the neuromuscular system 

has focused on the decline in maximum voluntary force (MVF). However, the ability to 

develop force rapidly, termed explosive strength, is considered functionally more important 

than MVF during explosive movements, such as sprinting, jumping or restabilising the body 

following a loss of balance (de Ruiter et al., 1999; Aagaard et al., 2002a; Tillin et al., 2010). 

Therefore, an understanding of how fatigue affects explosive strength would seem important 

in understanding its influence on athletic performance and injury risk. There is however, a 

paucity of research investigating the influence of fatigue on voluntary explosive strength with 

no documented mechanistic evidence. Furthermore as the determinants of explosive force 

production appear to change throughout the rising force-time curve (Andersen & Aagaard, 

2006; Tillin et al., 2010) fatigue may differentially affect the development of force 

throughout the time course of an explosive contraction.  

 

The underlying mechanisms of muscle fatigue can be broadly separated into central and 

peripheral components. Peripheral fatigue is defined as the loss of force caused by processes 

occurring distal to the neuromuscular junction, and is thought to be the main contributor to 

muscle fatigue during high-intensity exercise (for a review see Allen et al., 2008). The 

influence of fatigue on the contractile properties of the muscle tendon unit (MTU) has 

typically been quantified with evoked twitch contractions. However, a muscles’ maximal 

capacity for rate of force development (RFD) can only be achieved at high stimulation 

frequencies (Buller & Lewis, 1965; de Ruiter et al., 1999) such as an evoked octet (typically 

8 pulses at 300 Hz) in human skeletal muscle (de Ruiter et al., 1999, 2007). The influence of 

fatigue on the response to an evoked octet, and thus the intrinsic contractile capacity for 

explosive force production and underlying peripheral fatigue mechanisms, has not been 

investigated. Type II skeletal muscle fibres have a substantially higher RFD (Brenner et al. 

1986; Metzger & Moss, 1990; Harridge et al., 1996), but arguably similar specific tension 

(isometric peak force/cross-sectional area; (Larsson & Moss, 1993; Gilliver et al., 2009)) to 
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type I fibres. Given the lower fatigue resistance of the type II fibres, a greater influence of 

fatigue on explosive than maximal phases of the evoked contraction could be expected. 

 

Central fatigue can be described as a progressive exercise-induced reduction in voluntary 

activation or neural drive to the muscle (Taylor et al., 2006). The contribution of central 

fatigue to the decline in MVF has been studied extensively (for a review see Gandevia, 2001), 

and found to contribute up to ~20-25% of the decrease in MVF (Taylor et al., 2006). 

However, the contribution of central factors to the decline in explosive force with fatigue is 

unknown. A reduction in neural activation could be due to a decline in motor recruitment or 

motor unit firing frequency (MUFF). As the MUFFs during the explosive (rising) phase of 

force production appears to exceed the MUFF during the plateau phase of contraction which 

includes MVF (explosive phase, 100-200 Hz vs. plateau phase, 30-50 Hz, Monster & Chan, 

1977; Kukulka & Clammann, 1981; Van Cutsem et al., 1998), a decline in MUFF with 

fatigue could be expected to exert a more pronounced effect on explosive than maximum 

force production. Differential changes in neuromuscular activation during explosive and 

MVF production can be examined via measurement of surface EMG amplitude (normalised 

to a maximum compound action potential, Mmax to control for any changes in neuromuscular 

junction and sarcolemma excitation). Furthermore, reporting voluntary force achieved after 

50 ms as a percentage of octet force after 50 ms may give an additional index of the voluntary 

ability to utilise the available contractile capacity (de Ruiter et al., 2004; Buckthorpe et al., 

2012), and hence volitional neural drive to the muscle during the early phase of an explosive 

contraction.   

The aim of this study was to carefully document the influence of a fatiguing exercise protocol 

on the development of explosive force throughout the rising force-time curve, and contrast 

these changes with the influence of fatigue on MVF. The neural (EMG, voluntary/octet force) 

and contractile (evoked twitch and octet) contributions to impaired performance were 

assessed to determine the mechanisms for any functional changes. It was hypothesised that 

explosive force production would exhibit a greater decline than MVF with fatigue, and that 

this might be due to neural and/or contractile mechanisms.   
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8.2 Method 

8.2.1 Participants 

Eleven healthy male participants (mean ± SD: age, 24 ± 4 yr; height, 1.69 ± 0.03 m; body 

mass, 77.1 ± 6.8 kg) completed the study. This sample size is in accordance with previous 

studies on neuromuscular fatigue using similar measurement techniques (Matkowski et al. 

2011; Maffiuletti et al. 2013; Minshull & James, 2013). The participants provided written 

informed consent prior to their participation in this study that was approved by the Ethical 

Advisory Committee at Loughborough University to the standards set by the Declaration of 

Helsinki. The participants were recreationally active (up to three activity sessions per week), 

but not involved in any systematic physical training during the preceding 12 months. 

 

8.2.2 Overview 

Each participant attended the laboratory on two separate occasions, once for familiarisation 

and then for a main trial one week later. The main session involved isometric measurements 

of force and surface EMG from the dominant limb during a series of explosive maximum 

voluntary contractions (explosive MVCs) and evoked (twitch and octet) contractions of the 

knee extensors during a fatiguing protocol. Limb dominance was assessed according to de 

Ruiter et al. (2010). The fatigue protocol comprised 10 sets of five 3-s explosive MVCs. 

These volitional contractions were used to assess voluntary force production and induce 

fatigue. Force and EMG measurements were obtained from the explosive (rising) and 

maximal (plateau) phases of the explosive MVCs. The EMG measures were used to quantify 

changes in neural drive with fatigue. In between each set of volitional contractions twitch and 

octet contractions were evoked via electrical stimulation to document the intrinsic contractile 

changes that occurred with fatigue. Familiarisation involved participants practicing the 

explosive MVCs, experiencing the evoked twitch and octet contractions and performing a 

single set of the fatigue protocol.  

 

8.2.3 Measurements 
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Participants were firmly secured in a strength testing chair with straps across the pelvis and 

shoulders to minimise extraneous movement. The hip and knee angles were fixed at 100 and 

120° (full extension = 180°), respectively. An ankle strap was placed 2 cm proximal to the 

medial malleolus in series with an S-Beam tension/compression load cell (linear response up 

to 1500 N, Force Logic UK, Berkshire, UK) positioned perpendicular to tibial alignment. The 

force signal was amplified (x500) and interfaced with an analogue to digital converter (CED 

micro 1401, CED, Cambridge, UK) and sampled at 2000 Hz with a PC utilising Spike 2 

software (CED, Cambridge, UK). Real-time biofeedback of the force response was provided 

on a computer monitor. During off-line analysis the force signals were notch filtered at 50 Hz 

(to remove mains harmonics) and low pass filtered at 500 Hz using a fourth order zero-lag 

Butterworth digital filter. 

The femoral nerve was electrically stimulated (via a constant current, variable voltage 

stimulator; DS7AH, Digitimer Ltd., UK) with square wave pulses (0.2 ms in duration) to 

elicit i) single twitch contractions and ii) octet contractions (8 pulses at 300 Hz) to determine 

the MTUs maximal capacity for explosive force production. The anode (carbon rubber 

electrode, 7 x 10 cm; Electro-Medical Supplies, Greenham, UK) was taped to the skin over 

the greater trochanter. The cathode, a custom-adapted stimulation probe 1 cm in diameter 

(Electro-Medical Supplies, Wantage, UK) which protruded 2 cm perpendicular from the 

centre of a plastic base (4 x 5 cm), was taped to the skin over the femoral nerve in the femoral 

triangle. The precise location of the cathode was determined as the position which elicited the 

greatest twitch response for a particular submaximal current. 

Surface EMG was recorded from the superficial quadriceps [rectus femoris (RF), vastus 

lateralis (VL) and vastus medialis (VM)] of the participants’ dominant limb using two Delsys 

Bagnoli-4 EMG systems (Delsys, Boston, USA). To improve the reliability of the EMG 

signal two EMG electrodes were placed over the surface of each of the superficial quadriceps. 

Following preparation of the skin (shaving, lightly abrading and cleansing with 70% ethanol), 

double differential electrodes (1 cm inter-electrode distance, DE-3.1, Delsys) were attached 

to the skin using adhesive interfaces. To normalise the placement across individuals, the 

medial (M) and lateral (L) EMG electrodes on each muscle were positioned at specific 

distances along the thigh (VMM, 20%, VML, 30%; VLM, 45%; VLL, 55%; RFM, 55%; RFL, 65% 

from the lateral epicondyle of the femur to the greater trochanter), with 1 cm of medio-lateral 

separation (0.5 cm either side of mid-muscle belly), and in parallel to the presumed 

orientation of the muscle fibers. The reference electrode was placed on the patella of the same 
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limb. EMG signals were amplified (x1000; differential amplifier, 20 – 450 Hz) and 

synchronised with force data by recording at 2000 Hz with the same analogue to digital 

converter and PC as the force signal. During off-line analysis the EMG signals were band-

pass filtered between 6 and 500 Hz using a 4th order zero-lag Butterworth digital filter. 

 

8.2.4 Protocol 

Following preparation of the skin for EMG placement, participant’s performed a standardised 

warm up on a cycle ergometer (10 minutes at 1.33 W.kg-1 body mass, Monark Ergomedic 

874E). Following this the skin was re-cleaned and EMG electrodes attached. Once the 

participants were firmly secured in the testing chair they performed a series of submaximal 

voluntary contractions of the knee extensors. Participants then performed 2-3 short explosive 

contractions to re-familiarise themselves with the explosive MVCs prior to the main protocol. 

Next a series of incremental twitch contractions were elicited until there was a simultaneous 

plateau in the force and M-wave response of the agonists. A supramaximal current of ≥125 % 

of this level was used to evoke twitch and octet contractions during the fatigue protocol. 

Participants were then briefly re-familiarised with the octet contractions prior to the 

commencement of the fatigue protocol.   

The fatigue protocol comprised 10 sets of five explosive MVCs, each lasting 3-s separated by 

2-s rest (see Figure 8.1). This protocol is similar to previously adopted using voluntary 

maximal contractions (Zhou et al., 1996). In response to an audio and visual signal 

participants were instructed to push as fast and hard as possible and maintain this throughout 

the contraction for 3-s (Aagaard et al., 2002a). Participants were provided with strong verbal 

encouragement and instructed to avoid countermovement or pre-tension. Following each 

explosive MVC they were instructed to relax quickly in order to return to the resting baseline 

force. To provide participants with feedback on the occurrence of any countermovement, the 

resting force level was displayed on a sensitive scale. The slope of the force time curve (10 

ms time constant) and the maximal force achieved were displayed throughout to provide 

feedback on the explosive and maximal phases of each contraction. Five seconds separated 

each set of volitional contractions and during this time twitch (2-s after voluntary 

contractions) and octet (1-s after twitch contraction) contractions were evoked. The total 
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duration of the fatigue protocol was five minutes, including ~150 s of maximal voluntary 

effort. 

 

Figure 8.1 The exercise protocol used to induce fatigue and assess changes in neuromuscular 

function.  

 

 
 Figure 8.2 Presentation of actual force data from set 1 and set 10 of a single participant (to 

scale). The data shows the 5 MVCs, followed by a twitch and octet contraction. 
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8.2.5 Data Analysis  

The three contractions in each set with the highest peak slope and no discernible 

countermovement or pre-tension (change in force of < 0.5 N in the preceding 100 ms) were 

used for analysis of explosive force measurements, which were averaged across these three 

contractions. Explosive force was measured at 50, 100, and 150 ms (defined as F50, F100, F150), 

from force onset. Rate of force development (RFD, change in force divided by change in time) 

was quantified for consecutive 50 ms time periods (0-50, 50-100 and 100-150 ms). Peak RFD 

(pRFD) was measured as the maximum slope (10 ms time constant). Both force and RFD 

were measured in absolute terms (N and N.s-1, respectively) and normalised to MVF 

(assessed within the same set of contractions, %MVF and MVF.s-1, respectively). The three 

contractions within each set with the highest instantaneous force were averaged to determine 

knee extensor MVF. 

 

The amplitude of the EMG signal was assessed as the root mean square (RMS) for each 

recording site (RFM, RFL, VMM, VML, VLM, and VLL) during explosive (0-50, 0-100 and 0-

150 ms from the onset of EMG activity, denoted as EMG0-50, EMG0-100, EMG0-150) and 

maximal (500 ms epoch around MVF, 250 ms either side, EMGMVF) aspects of the force time 

curve. EMG onset was defined as the onset of the first agonist muscle/site to be activated. 

Furthermore, volitional EMG amplitude values from each recording site (RFM, RFL, VMM, 

VML, VLM, VLL) were expressed in relation to their respective maximal M-wave area (Mmax 

Area; see below) in response to the evoked twitch contraction following that specific set of 

volitional contractions, and averaged across the six sites to provide a value for the quadriceps. 

The median frequency of each agonist EMG recording was calculated during the initial 150 

ms after signal onset during the explosive phase of contraction (MF0-150) and for the same 500 

ms epoch associated with MVF (MFMVF). Measurements were obtained at a frequency 

resolution of 7.8 Hz and averaged across sites to provide a mean knee extensor value. The 

time between the earliest EMG onset (agonist muscle activation) and the onset of force was 

determined as the maximum electromechanical delay (EMDmax).  

 

 Signal onsets of all voluntary and evoked contractions were visually identified (Allison, 

2003; Moretti et al., 2003; Pain & Hibbs, 2007, Pulkovski et al., 2008). Details of this method 

and its reliability have previously been published (Tillin et al., 2010). Briefly, force and EMG 

recordings were initially viewed with consistent y-axis scales of 1 N and 0.1 mV, and an x-
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axis scale of 500 ms. These scales provided sufficient resolution for the accurate 

discrimination of signal onset, which was defined as the last peak or trough before the signal 

deflected away from baseline noise. A vertical cursor was then placed on the onset and 

viewed at a higher resolution to determine its exact location (0.5 N and 0.05 mV for force and 

EMG axes, respectively using an x-axis of 25 ms). 

Each twitch force response was analysed for pRFD (10 ms time constant), peak force (PF), 

time to achieve pRFD and PF after force onset, and half relaxation time (HRT). Mmax Area 

was recorded as previously in our laboratory (Buckthorpe et al., 2012). Analysis of octet 

force included pRFD, F50, PF, and time to achieve PF and pRFD. As an additional measure of 

overall neural efficacy (Neural Efficacy 0-50), voluntary F50 was compared to octet F50 to 

assess the participant’s voluntary activation capacity over the initial 50 ms of the contraction 

(Hannah et al., 2012; Tillin et al., 2012) and was reported as voluntary percentage of octet 

performance. Both twitch and octet force and RFD were measured in absolute terms (N and 

N.s-1, respectively) and normalised to their respective maximal values (i.e., %octet PF and 

octet PF.s-1, respectively).   

Data are reported as group mean ± standard deviation (SD). Primary analysis compared set 1 

and 10. Absolute measures from these sets (iMVF and EMG at MVF, MF, pRFD and time to 

pRFD for the voluntary explosive, evoked twitch and octet contractions) were compared for 

significant differences using paired t-tests. Effect sizes (ES) were reported to quanify the 

magnitude of differences between measures and interpreted according to Cohen’s d, where 

0.2 is a small effect, 0.5, a moderate effect and > 0.8 a large effect. Time-series data during 

the explosive contractions (force and EMG) were assessed with two-way repeated measures 

ANOVA (exercise set (1, 10) x measurement time point/period (e.g. 50, 100, 150 ms)). If 

sphericity was violated then Huynh-Feldt corrected values were used. Significant main 

effects of exercise set were further investigated with post-hoc pair wise comparisons 

(Bonferroni corrected paired t-test) for specific time points/periods. Secondary data analysis 

included relative changes which were calculated as mean ± SD of individual percentage 

changes. In order to quantify and contrast voluntary force changes throughout the 10 sets of 

the exercise protocol an exponential of the form a·exp(b·x)+c was fitted to the relative 

change data for MVF and for F50, F100, F150, pooled from all participants (N = 11), using the 

custom fitting tool in Matlab (The MathWorks Inc., Natick, MA, USA). Significant 

differences between the exponential curves for MVF and measures of explosive force (F50, 

F100, F150) were assessed using the extra-sum-of-squares F-test as described in Motulsky and 
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Christopoulos (2004). One-way ANOVA was used to compare relative changes in voluntary 

and involuntary measures of pRFD (voluntary, twitch and octet) as well as different measures 

of neural drive (Neural Efficacy 0-50, EMG0-50, EMG0-100, EMG0-150, EMGMVF), with 

Bonferroni post-hoc comparison where required. Statistical analysis was performed using 

SPSS version 19 and statistical significance was set at P < 0.05. 

 

8.3 Results 

8.3.1 Voluntary Force   

MVF declined throughout the exercise (see Figure 8.3) and was 42% lower by set 10 (paired 

t-test, P < 0.001, ES = 2.64, vs. Set 1). Explosive force during the initial 150 ms of 

contraction declined by 47-56% by set 10 (ES = 1.25-3.93, Figure 8.4A). Likewise absolute 

RFD declined by 39-56% across the three consecutive 50 ms time periods (ES = 1.25-2.49, 

Figure 8.4C). pRFD also declined (set 1, 12100 ± 2859 vs. set 10, 5322 ± 1745 N.s-1; 56%, 

paired t-test, P < 0.001, ES = 2.37), but the time to voluntary pRFD remained unchanged (set 

1, 54.8 ± 17.6 ms vs. set 10, 62.7 ± 17.1 ms, paired t-test, P = 0.180, ES = 0.45).  

There was a reduction in normalised explosive force (to MVF) at 50 (29%, ES = 0.61), 100 

(17%, ES = 0.85) and 150 ms (11%, ES = 1.07), with reductions in normalised RFD during 

the initial 50 ms (29%, P = 0.038, ES = 0.61) but no change for RFD50-100 or RFD100-150 (P ≥ 

0.178, ES = 0.24-0.51, Figure 8.4D). Normalised pRFD was 26% lower at set 10 (set 1, 13.6 

± 3.5 vs. set 10, 10.0 ± 2.9 MVF.s-1, paired t-test, P = 0.002, ES = 1.03). Explosive force 

measurements (F50, F100 and F150) all had a greater exponential decay, or a lower plateau than 

MVF (all, F-test, P < 0.001, Table 8.1).  
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Figure 8.3 The decline in MVF (solid line, stars), and explosive force at 50 (dashed line, 
open circles), 100 (dotted line, black circles) and 150 ms (dashed and dotted line, open 
triangles) after force onset over the course of the fatigue protocol. Data are reported as mean 
individual percentage changes in relation to set 1. (N = 11). Force changes with set/time are 
fitted with an exponential of the form: a·exp(b·x)+c. 
 

 

Table 8.1 Mean half-life and goodness of fit (r2) evaluated from the exponential fits to the 
group force response data across the 10 sets of contractions.  The values are presented for 
force at 50, 100 and 150 ms and for MVF. 

 
Equation Half life (sets) r2 

F50 = 55.7·exp(-0.394·x) +43.8 1.76 0.963 

F100 = 57.8·exp(-0.307·x) +43.7 2.26 0.991 

F150 = 57.0·exp(-0.263·x) +45.0 2.64 0.989 

MVF = 46.6·exp(-0.262·x) +54.2 2.65 0.997 

F50, force at 50 ms; F100, force at 100 ms; F150, force at 150 ms; MVF, maximum voluntary force; exp, 
exponential. 
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Figure 8.4. Absolute and normalised (to MVF) force (A and B) and rate of force 
development (C and D) at set 1 (bold line, filled squares/black bars) and set 10 (dashed line, 
open circles/white bars) during the initial 150 ms of isometric explosive MVCs of the knee 
extensors. Data are mean ± SD for the group (N = 11). Significant Bonferroni post-hoc 
comparisons are denoted by * (P < 0.05), ** (P < 0.01).   

 

8.3.2 Intrinsic contractile properties 

There was no change in Mmax Area throughout the fatigue protocol (Table 8.2). At the end of 

the fatigue protocol (set 10) octet PF, F50 and pRFD were all lower than set 1 (23-28%, ES = 

0.63-0.73, Table 8.2). There was no change in normalised octet pRFD (Table 8.2), and 

actually an increase in normalised octet F50 (7.2%, ES = 0.78). Twitch PF and pRFD both 

declined with no change in the time taken to reach PF or pRFD (Table 8.2). However, there 

was a decrease in normalised twitch pRFD (-20.8%, paired t-test, P = 0.001, ES = 1.53). 

A 

** 

** 

** 

* 

* 

** 

** 

** 

** 

C D 

B 

* 



                                                                                  Chapter 8: Fatigue & RFD 

157 
 

Differential changes were observed between voluntary and evoked twitch and octet pRFD 

(ANOVA, P < 0.001), specifically, voluntary (-55.4 ± 13.8%) and twitch (-65.6 ± 18.3%) 

pRFD both declined more substantially than octet pRFD (Octet, -26.7 ± 20.8%, both, 

Bonferroni, P < 0.01). 

 

Table 8.2 Evoked force and time characteristics in response to twitch and octet stimulation 
before (set 1) and after (set 10) fatigue. Group data are reported as mean ± SD (N =11).  

 
Set 1 Set 10 P value Effect size 

OCTET     

PF (N) 595 ± 230 427 ± 180 < 0.001 0.73 

pRFD (N.s-1) 16701 ± 6256 12291 ± 5971 0.004 0.70 

Normalised pRFD (PF.s-1) 28.4 ± 3.3 28.6 ± 3.6 0.804 0.06 

F50 (N) 394 ± 145 303 ± 122 < 0.001 0.63 

Normalised F50 (%PF) 66.9 ± 5.8 71.4 ± 4.9 0.003 0.78 

TWITCH 
   

 

Force 
   

 

PF (N) 301 ± 55 124 ± 47 < 0.001 3.21 

pRFD (N) 11645 ± 2271 3981 ± 2316 < 0.001 3.37 

Normalised pRFD (PF.s-1) 39.0 ± 5.3 30.9 ± 5.2 0.001 1.53 

EMG 
   

 

Mmax Area (mV.s) 0.013 ± 0.005 0.014 ± 0.005 0.319 0.20 
PF, peak force; N, newtons; pRFD, peak rate of force development; HRT, half relaxation time; Mmax Area, Area 
of evoked maximum compound action potential; F50, force at 50 ms after force onset; %∆, percentage change 
from set 1; P value; paired t-test significance value set 1 versus set 10. Bold indicates significance level < 0.05. 

 

8.3.3 Neuromuscular Activation  

Neural Efficacy 0-50 declined by set 10 (set 1, 47.7 ± 20.7 vs. set 10, 29.5 ± 15.4 %, P = 

0.002, ES = 0.88). Furthermore, explosive agonist EMG (all time periods, 20-30%, 

Bonferroni, P < 0.001, ES = 0.53-0.93, Figure 8.5A) and EMGMVF (15%, t-test, P < 0.001, ES 

= 0.57, Figure 8.5A) also declined by set 10. Although, the relative decline in measures of 

early phase neuromuscular activation appeared to be greater than EMGMVF (Neural Efficacy 

0-50, 34.1 ± 22.5 and EMG0-50, 28.1 ± 29.0 vs. EMGMVF, 14.6 ± 11.9%, Figure 5.5B), there 
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was in fact no significant difference in the relative decline between different measures of 

neural drive (ANOVA, P = 0.250). By set 10 MFMVF had decreased by 10.0% (108.9 ± 19.4 

to 98.0 ± 18.5 Hz, t-test, P < 0.001, ES = 0.56) but MF0-150 showed only a tendency to decline 

(105.3 ± 16.5 to 99.0 ± 14.7 Hz, t-test, P = 0.073, ES = 0.38).  

    

 

Figure 8.5. A) Agonist normalised EMG during set 1 (black) and set 10 (white) of isometric 
explosive MVCs of the knee extensors; B) Percentage change in different measures of 
neuromuscular activation (EMG; Neural Efficacy) at set 10 compared to set 1. EMG 
amplitude was measured as the root mean square of the EMG signal normalised to maximal 
M-wave area (Mmax Area.s-1) during the explosive phase of contraction (0-50, 0-100, 0-150) 
and at MVF. Neural Efficacy (NE 0-50) was defined as voluntary force as a percentage of 
octet force at 50 ms. Data for reported as mean ± SD for group data (A) and individual 
percentage changes from set 1 (B). An effect of time is denoted by ** (P ≤ 0.001). 

 

8.3.4. Electromechanical Delay   

Voluntary EMDmax was not different at the end of the protocol (set 1, 20.8 ± 3.0 vs. set 10, 

20.2 ± 5.2 ms, paired t-test, P = 0.775), but there was a 51% elongation of evoked EMDmax by 

set 10 (set 1, 6.5 ± 1.5 vs. set 10, 8.8 ± 1.4 ms, paired t-test, P < 0.001, ES = 1.53).  

 

 

 

* 

** ** ** 
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8.4 Discussion 

The current study is the first to assess the influence of fatigue on explosive force production 

throughout the rising force-time curve. MVF and explosive voluntary force declined 

substantially (42%, 47 to 57% respectively), confirming that the protocol was sufficient to 

produce marked impairments in voluntary force. There was a reduced ability to express the 

available force generating capacity explosively, particularly during the early phase of 

contraction (normalised RFD0-50, 29%) and this resulted in a lower normalised explosive 

force (to MVF) throughout the first 150 ms of contraction. The mechanistic measurements 

revealed evidence for neural fatigue during both the explosive and maximal phases of 

contraction. In addition there was demonstrable contractile fatigue with reduced explosive 

and peak octet (23-28%) and twitch force responses (59-66%). Although, normalised pRFD 

of the octet remained unchanged, it was reduced for the twitch after fatigue (21%).  

Explosive force declined more rapidly and markedly than MVF throughout the fatigue 

protocol as evidenced by a shorter half-life or lower plateau for all explosive force curves 

versus MVF (Figure 8.2). Therefore, as hypothesised there was a more pronounced influence 

of fatigue on explosive than MVF throughout a range of fatigue levels. Additionally, fatigue 

caused lower normalised voluntary explosive force throughout the initial 150 ms of 

contraction (11-29%) and thus compromised the ability to express the available force 

generating capacity explosively. This was due to a lower normalised RFD during the initial 

50 ms (-29%) as the normalised RFD during later time periods was unaffected by fatigue. 

Explosive force production is considered functionally more relevant than MVF during 

explosive dynamic movements, such as sprinting and jumping (de Ruiter et al., 2006; Tillin et 

al., 2013). Furthermore, it has been suggested that sports related injuries such as anterior 

cruciate ligament ruptures occur within 50 ms after ground contact (Krosshaug et al., 2007). 

Therefore, the fatigue induced reduction in explosive force capabilities that we have observed, 

particularly during the first 50 ms of contraction, would be expected to contribute to the 

increased incidence of injury with fatigue in team sports (Hawkins et al., 2001) and the 

decline in performance of dynamic explosive sporting actions with high intensity fatigue (e.g. 

Mohr et al., 2003; Krustrup et al., 2006).   

This is the first study to assess and report a decline in neural activation during rapid force 

development with fatigue. The reduction in NE0-50 (34%) suggests there was a substantial 

neural contribution to fatigue. Furthermore, the greater relative reduction in voluntary pRFD 
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(55%) than octet pRFD (27%) and greater relative reduction in MVF (42%) than octet PF 

(28%) also suggests central fatigue occurred. In support of this, EMG was shown to decline 

by 20-28% during explosive force development and by 15% during MVF production. 

Interestingly, despite the decline in neuromuscular activation during the initial 50 ms (EMG0-

50, 28%; NE0-50, 34%) being two-fold more than at MVF (EMGMVF, 15%), the difference 

between changes in neuromuscular activation during the early phase of explosive force 

development and at MVF were not statistically different.  It is possible that despite taking 

great care with the measurements of EMG (e.g. recording from 6 sites on the quadriceps 

muscle and using Mmax Area normalisation) that this lacked the sensitivity to contrast 

activation changes during the different phases of contraction. For example, the inter-

individual variability in the changes in EMG amplitude with fatigue were very high (EMG0-50, 

relative changes, range, +16% to -83%), thus, potentially limiting our ability to contrast the 

changes in EMG during different phases of contraction. Therefore, the non-significant two-

fold greater decline in neural drive during the initial 50 ms of contraction may have 

contributed to the 29% decline in normalised RFD0-50.  

 

Octet RFD is thought to reveal the MTUs maximal capacity for explosive force production 

(de Ruiter et al., 2004), and therefore a 23-28% decline in octet responses (F50, pRFD) clearly 

demonstrated a marked reduction in the intrinsic contractile capacity for explosive force 

production. Evoked twitch responses were also included within the study to provide further 

information on the contractile mechanisms of fatigue. The substantial decrease in twitch force 

responses (59-66%) reinforced the impairment of contractile function with fatigue. In a recent 

review, Allen and colleagues (2008) suggested that the underlying mechanisms of contractile 

fatigue are largely attributed to reduced Ca2+ sensitivity of the contractile proteins and 

reduced sarcoplasmic reticulum (SR) Ca2+ release. These mechanistic changes would be 

expected to exert a more pronounced influence at low than high frequencies of stimulation 

(see Balog, 2010), and thus likely explains the observed discrepancies between twitch and 

octet force responses. Normalised octet pRFD (to octet PF) was unchanged throughout the 

protocol, indicating no disproportionate effect of contractile fatigue on explosive force 

production. Thereby, it appears that the disproportionate drop in volitional explosive than 

MVF, typified by the reduction in normalised RFD0-50, was not due to contractile fatigue per 

se.  
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Within the current study neuromuscular activation during the early phase of explosive 

contraction (0-50 ms) measured using either the neural efficacy technique (30-40% activation) 

or surface EMG (~50% EMGMVCF) was low and likely indicates on average a sub-maximalr 

level of intracellular Ca2+ saturation during this period.  Early phase explosive voluntary 

force production (0-50 ms) has been found to be related to the evoked twitch response (peak 

twitch RFD, Andersen & Aagaard, 2006; twitch force at 50 ms, Folland et al. 2013), and may 

reflect a common response to sub-maximal activation and incomplete Ca2+  saturation 

(Andersen & Aagaard, 2006). Therefore, the decline in early phase normalised voluntary 

explosive force/RFD with fatigue in this study could in part be due to a more pronounced 

decline in the contractile response to sub-maximal activation (as shown by the substantial 

decrease in the evoked twitch response), than is the case for maximal activation. 

 

To conclude, it was found that explosive force declined more rapidly and in a more 

pronounced manner than MVF. Both neural and contractile fatigue mechanisms appeared to 

contribute to the decline in absolute explosive force and MVF. The early phase of explosive 

force development (0-50 ms) was particularly susceptible to fatigue, and the reduction in 

normalised explosive force compromised force development throughout the rising force-time 

curve. The decline in normalised explosive voluntary force in the early phase of contraction 

was likely due to the greater impairment of explosive neural drive, and/or the more marked 

reduction in the explosive contractile response to sub-maximal activation (reflected by an 

evoked twitch).  



                                                                                  Chapter 9: General Discussion 

162 
 

 

 

 

 

CHAPTER 9 

 

General Discussion  

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                  Chapter 9: General Discussion 

163 
 

The aim of the thesis was to further understand the contribution of neural factors such as the 

level of agonist, antagonist and stabilisr muscle activation to maximal muscle performance, 

with a specific focus on explosive neuromuscular performance, and document how these 

change with RT and high intensity fatigue. The aim of the thesis was achieved using six 

experimental investigations and the main findings of these investigations are summarised 

below:  

 

• Chapter 3 reported that the within-participant between session reliability of explosive 

force/RFD over 50 ms was highly variable, but reliable for time points/periods greater 

than 50 ms. On a group level, explosive voluntary force measurements at all time 

points were stable and consistent between sessions. The absolute EMG amplitude was 

highly variable for individuals between measurement sessions for both maximal and 

explosive voluntary contractions, and this was not improved by normalisation of the 

signal to any reference technique used. Electrically-evoked measurements were 

typically reliable for individuals and the group between sessions. 

• Chapter 4 reported that the ability for agonist neuromuscular activation during the 

early phase of contraction explained 41% of variability in voluntary EMDmax, whilst 

evoked and voluntary EMDmax had only a small relationship with one another (18%).  

• Chapter 5 reported a BLD in explosive but not MVF production. The BLD in 

explosive force occurred at 100 ms only and reflected a BLD specific to RFD during 

the 50-100 ms time window. The deficit was thought to be due an underlying 

physiological mechanism, as methodological factors accounted for little of this deficit. 

The BLD was not solely attributable to reduced agonist or antagonist neural drive, and 

could have been explained by the level of stabiliser activation during explosive force 

production.  

• Chapter 6 revealed that stabiliser neuromuscular activation was not an independent 

determinant of explosive strength for any time point, but did have a strong indirect 

association with explosive strength, through its high shared variance with agonist 

activation during the early phase of contraction (0-50 ms).  

• Chapter 7 reported a more than two-fold greater increase in training-task specific 

isoinertial than isometric strength, which appeared to be due to task specific increase 

in agonist activation. A key finding was the increased stabiliser activation during all 

elbow flexion tasks post training. Isoinertial RT even with maximal intention to lift 



                                                                                  Chapter 9: General Discussion 

164 
 

the weight as quickly as possible was not sufficient to elicit adaptations in explosive 

strength, despite a large increase in stabiliser activation during explosive force 

production.  

• Chapter 8 reported that fatigue exerted a more rapid and pronounced influence on 

explosive than maximal isometric strength. This decline was most pronounced during 

the very early phase (0-50 ms) which may have implications for injury risk. Fatigue 

had no effect on voluntary EMDmax, but substantially elongated evoked EMDmax. 

Neural and contractile mechanisms were thought responsible for the reduction in 

explosive strength with fatigue.   

 

9.1 Implications for Assessment of Neuromuscular Function 
The low within-participant reliability of early phase explosive force and EMG amplitude 

throughout the rising force time curve and at MVF limits the ability to assess inter-individual 

changes in following an intervention. Poor reliability for force was only observable at 50 ms, 

and actually force at 100 and 150 ms had very good reliability. Chapter three shaped the 

analytical techniques of the latter chapters and suggests that we need to be cautious with 

EMG and early phase explosive force as measurement techniques, and thus, when 

interpreting individual changes between measurement sessions. As a main focus of the PhD 

was specifically early phase explosive strength, an individual response was not adopted 

throughout the PhD. If the focus of research is specifically on early phase explosive strength 

or EMG, then group as opposed to individual responses are recommended. This high inter-

individual variability of EMG and early phase explosive strength would undoubtedly limit the 

applicability of these techniques within an applied setting, in which applied scientists are 

typically interested in individual adaptations to training and rehabilitation or identifying 

individual strength or activation weaknesses. Normalisation of the EMG signal did not 

improve the EMG reliability but did reduce the between participant variability, and therefore 

should still be utilised where possible to enhance the statistical power of a research study. An 

approach to try to enhance the reliability of EMG within this thesis was to use duplicate EMG 

electrodes on each muscle where possible. Although, I did not directly assess if this approach 

enhances the reliability or validity of EMG, it could be expected to enhance its use for 

assessment of neuromuscular activation. However, despite recording from six sites on the 

quadriceps muscle and normalising EMG to Mmax within chapter five, there were still 

concerns as to the ability of the method to contrast activation changes during the different 
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phases of contraction. Neural Efficacy was shown not to be a more reliable measurement 

technique than EMG, and may in part relate to a high variability in agonist activation during 

the early phase of contraction, which would be high regardless of the measurement technique. 

The much higher variability in early phase explosive force (0-50 ms) than later phase 

explosive force (100, 150 ms), could be due largely to a much stonger influence of agonist 

activation on early than late phase force production.  

 

An approach adopted to improve our understanding of RFD within this thesis was the use of 

separate time windows during the rising force-time curve. Tillin et al. (2012) suggested this 

method to be superior and use of this analysis technique undoubtedly contributed to a 

superior insight into the understanding of RFD and associated mechanisms throughout this 

thesis. The use of separate windows allowed for more detailed reporting of how the 

interventions differentially affected RFD throughout the rising force-time curve. For instance, 

fatigue was shown to exert a reduction in relative RFD during the initial time period only (0-

50 ms), which resulted in the declines in explosive force at 50, 100 and 150 ms, whilst the 

use of BL actions in chapter 5 negatively affected relative RFD for 50-100 ms only. 

Continued use of separate windows across the force-time curve during explosive contractions 

is recommended to other scientists conducting scientific research on explosive neuromuscular 

function. 

 

The relative importance of stabiliser activation found within the current thesis suggests that 

the stabiliser muscle system should receive further investigation in future research studies 

when the focus is to understand the neural contributions to expression of maximal muscle 

performance. This research is the first to assess stabiliser activation during explosive 

contractions as well as documenting how stabiliser EMG changes following RT during 

maximal strength tasks. Implications from this thesis, such as the inter-relationship between 

stabiliser and agonist activation during explosive force production suggest that the level of 

stabiliser muscle activation should be measured alongside that of agonist activation when 

assessing the human neuromuscular systems control strategies.  
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9.2 Neural Contributions to Maximal Muscle Performance  
9.2.1 Maximal Strength 

A key contribution of this thesis was the findings of task specific adaptations in muscle 

strength following short term (three weeks) RT. For years, training specificity has been 

suggested to provide strong indirect evidence for neural adaptations to RT, and thus a 

contributor to the expression of muscle strength (Sale, 1988; Folland & Williams, 2007a). 

However, no study until now had actually demonstrated this phenomenon to be due to neural 

or morphological mechanisms. Early adaptations to RT are thought to be primarily explained 

by neural adaptations, e.g. enhanced agonist, antagonist and stabiliser muscle activation 

(Folland & Williams 2007a), with a greater contribution from morphological adaptations, 

such as selective hypertrophy and/or architectural changes, as training duration progresses 

(Narici et al., 1996). This task specificity phenomenon was accompanied by greater increase 

in agonist activation during the isoinertial strength task than at iMVF. Although, stabiliser 

activation increased during the training task this was not a task-specific adaptation.  Thus, 

strong support now exists to suggest that training specific changes following RT, are likely 

explained by task specific increases in agonist activation.  

 

An unanswered question from chapter six was ‘how the changes in stabiliser activation may 

have i) contributed to changes in isometric and isoinertial strength and ii) contributed to the 

task specific changes in strength observed?’ During isometric strength tasks, the requirement 

for stabiliser activation is limited as the joint is constrained in place to limit extraneous 

movement from adjacent joints and simplify the task to allow for a more precise examination 

of the joint at hand. Thus, increased stabiliser activation might be expected to contribute 

minimally to this type of task. Cacchio et al. (2008) reported a greater cross over training 

effect from constrained training to unconstrained path chest press strength than vice versa, 

and suggested that the motor pattern improvements from isoinertial type training cannot be 

utilised during constrained path strength analysis. On the other hand given the greater number 

of degrees of freedom and requirement to voluntarily stabilise joint complexes during the 

isoinertial task, it is possible this increased stabiliser activation, may have facilitated 

increased strength, thereby contributing to the observed training specificity.  

 

A further question arising from chapter seven was a) ‘does an increase in agonist activation 

and resultant increase in strength place an increase demand on the stabiliser muscles, due to a 
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greater load being lifted, or b) that the enhanced joint stability, through elevated stabiliser 

activation actually facilitated an increased level of agonist activation, and thereby increased 

isoinertial strength?’. The agonist muscles assessed with chapter six and seven were that of 

the biceps brachii, which are bi-articular muscles originating at the shoulder and inserting 

into the elbow. Optimal muscle activation requires a sufficient base of support, thereby in the 

context of these muscles, a sufficient level of shoulder stability. Chapter six reported an 

association between the level of agonist and stabiliser muscle activation which confirmed 

they were inter-related, and although MVF was not specifically measured, there was a 

relationship over the initial 150 ms of contraction. It is possible that poor shoulder stability, 

i.e. low stabiliser muscle activation prior training could have acted as a constraint to the level 

of bi-articular agonist activation. There was limited increase in maximal and no change in 

absolute explosive force during isometric elbow flexion tasks following training, despite a 

large increase in stabiliser acitvation, which would suggest that stabiliser activation does not 

constrain the level of agonist activation during these tasks. However, important 

considerations of this study were that these measurements were made isometrically and 

therefore, it is possible that enhanced inter-muscular coordination (increased stabiliser 

activation) could not effectively be utilised during these tasks (Cacchio et al., 2008). There 

was increased strength and stabiliser and agonist activation during the isoinertial strength 

tasks and therefore, further research is needed to fully understand the role of stabiliser 

activation on muscle performance, but particularly during isoinertial strength tasks.  

 

Finally, a key finding from chapter 7 was that isoinertial agonist EMG during the 1RM was 

substantially higher that agonist EMG at iMVF. Activation of the elbow flexors, as assessed 

via the ITT, during an isometric MVC is thought to be very high/ maximal (98-100%, Allen 

et al., 1998; Behm et al., 2002). The validity of the ITT has been questioned (see de Hann et 

al., 2009), but such a substantial increase in EMG does seem contradictory to the current 

research. It is important to assess the level of agonist EMG during isoinertial and isometric 

maximal tasks, as well as further research the validity of various methods of assessing 

voluntary activation during muscle contractions.  
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9.2.2 Electromechanical Delay 

A novel finding of the thesis was the association reported between early phase agonist 

activation capability and voluntary EMDmax (41%) in chapter 4, which further emphasises the 

role of agonist activation on explosive neuromuscular performance. Evoked EMDmax 

explained only a small proportion of the variability in voluntary EMDmax (18%). Other 

studies have failed to report an association between evoked and voluntary EMD (Zhou et al., 

1996; Minshull et al., 2007), but these studies did not assess EMDmax, but instead EMD of the 

individual constituent muscles within the quadricep muscles. Together it appears that evoked 

EMD capabilities do not exert a strong influence on the variability in voluntary EMD 

performance. Despite a decline of ~30% of agonist activation during the initial 50 ms and 50% 

elongation in evoked EMDmax, voluntary EMDmax was unchanged with fatigue in chapter 8. 

The split group analysis performed in chapter 4 did reveal that although agonist EMG was the 

only variable which differed between the groups, there was a large difference in EMG 

compared to voluntary EMDmax between groups (EMG, 134% vs. EMD, 29% difference), 

which may suggest very large changes in agonist EMG are required to elicit changes in 

voluntary EMDmax.  

 

9.2.3 Explosive Strength  

9.2.3.1 Agonist Activation 

There is now considerable evidence available on the importance of agonist EMG on early 

phase explosive isometric force production. For instance, numerous studies have investigated 

the relationship between agonist EMG and force during explosive force production over the 

initial 40-50 ms after contraction onset, and have reported explained variance ranging from 

33 up to 75% (de Ruiter et al., 2004; Del Balso & Cafarelli, 2007; Klass et al., 2008; Hannah 

et al. 2012; Folland et al., 2013). However, it is unclear if the variability in agonist activation 

exerts a strong influence on the expression of explosive strength over latter time points (> 50 

ms). Chapter 3 observed a similar variability in force and agonist EMG for the early phase of 

contraction (50 ms), but a substantially different level of between session within participant 

reliability for latter time points (100 and 150 ms and at MVF). If agonist EMG is a strong 

determinant of force production, then you would expect the two variables to fluctuate 

similarly. Further interventions as well as cross-sectional studies investigating the 

relationship between activation and force were carried out to elaborate the role of agonist 

activation on explosive force production.  
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Chapter 6 reported a moderate relationship between agonist EMG and isometric explosive 

force production (r2 = 0.36), but only a tendency for a relationship over 100 ms (r2 = 0.15). 

EMG during this study was sampled from EMG onset, and therefore EMG over 100 ms also 

included the 0-50 ms time window. Therefore, it could be argued that there was little 

contribution of agonist EMG to explosive force production over 50-100 ms. In deed, recent 

research investigating the determinants of RFD, reported virtually identical relationship 

between agonist EMG of the quadriceps and knee extensors force production after 50 ms (r2 = 

0.37), but observed no contribution of agonist EMG to the variability in RFD for time points 

greater than 50 ms (50-100 or 100-150 ms, P > 0.05, Folland et al., 2013).  

 

The early phase of explosive force development (0-50 ms) was particularly susceptible to 

fatigue, and the reduction in normalised explosive force compromised force development 

throughout the rising force-time curve. The decline in normalised explosive voluntary force 

in the early phase of contraction was likely due to the greater impairment of explosive neural 

drive, and/or the more marked reduction in the explosive contractile response to sub-maximal 

activation (reflected by an evoked twitch). There is good evidence that the twitch properties 

are important determinants of early phase explosive force. Andersen and Aagaard (2006) 

reported that twitch pRFD explained 20-36% of the variability in RFD during the early phase 

of contraction from force onset (0-50 ms). This has been supported by Folland et al. (In Press) 

who reported that twitch force properties explained 40% of the variability in RFD over the 

initial 50 ms of contraction. Taken together, it appears that the level of agonist activation and 

response to a given level of stimulation (twitch force responses) are major determinants of 

early phase explosive force production. As a whole, key findings from this thesis alongside 

the literature would appear to indicate that the level of agonist activation and twitch 

properties are important determinants of explosive strength during the early phase of force 

production, in which the levels of activation are low, but they do not exert a strong influence 

on the variability in force output at latter time period after force onset, when activation is 

high/maximal (> 50 ms). 

 

9.2.3.2 Stabiliser Activation 

Chapters 6 and 7 aimed to begin to elucidate the role of stabiliser activation on maximal 

muscle performance. Key findings from chapter six was that the level of stabiliser activation 

did not directly influence explosive force, but there was a strong relationship between the 

level of stabiliser activation and agonist EMG, indicating that stabiliser activation had a 
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strong indirect role on explosive strength. The work was supported by chapter 7 which 

reported no change in explosive strength, despite large changes in stabiliser activation.  

 

However, from chapter 5 it does appear that the level of stabiliser activation may directly 

influence the expression of explosive strength. The BLD in RFD observed in chapter 5 was 

reported in the absence of changes in agonist and antagonist activation, and was suggested 

that the BLD was due to different postural stabiliser requirements between UL and BL tasks. 

Jakobi and Chilbeck (2001) reported that greater BLDs can be observed during multiple joint 

than single joint tasks. Furthermore the BLD has been shown to be higher for tasks requiring 

greater activation of postural stabilising muscles (leg press versus hand grip, Magnus & 

Farthing, 2008).  As Chapter 5 only utilised a relatively simple task (isometric single joint 

action), it is possible even more pronounced BLD could be observed for explosive than 

maximal strength during more complex tasks, involving a greater postural stability.  

 

9.2.3.3 Antagonist Activation 

Chapter 6 reported that the level of antagonist co-activation was not related to either the level 

of force or agonist EMG during explosive force production. It was negatively related to the 

level of stabiliser activation over the initial 150 ms. It does appear the relationship between 

antagonist co-activation is complicated. Antagonist EMG has been suggested to be important 

for joint stability. During isometric contractions of an agonist muscle, the level of antagonist 

activation appears to scale to agonist activation with increments in force (Krishnan & 

Williams, 2009) and it is thought that the level of antagonist co-activation is mediated by a 

central descending common drive to the agonist-antagonist motoneuron pools (Krishnan & 

Williams, 2009). Furthermore, Tillin et al. (2011) has reported that RT elicited an increase in 

antagonist activation, but reduced level of antagonist activation for any given level of agonist 

activation. Finally, Cacchio et al. (2008) reported that RT enhanced stabiliser activation, 

which allowed for a lower level of antagonist and agonist activation during sub-maximal 

strength tasks. Collectively, it would appear that those with higher capacity for explosive 

force production, would be expected to have a higher level of agonist activation and resultant 

higher level of antagonist activation. Therefore, a positive relationship with antagonist 

activation and force could be expected. The fact they are unrelated would appear to support 

that those with enhanced motor control strategies may be able to achieve a lower level of 

antagonist co-activation for any given level of agonist activation and force and thereby, there 

was no relationship between force and the level of co-activation. Consequently, when 
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examining the level of co-activation, consideration of agonist and stabiliser activation and the 

level of force appear important. 

 

9.3 Implications for Athletic Training 
There are various implications from this thesis for athletic training. Firstly, from both this 

thesis and from the literature as a whole, it is clear that the ability to increase agonist EMG 

during the very early phase of contraction (0-50 ms) appears to be important for explosive 

neuromuscular performance (EMD and RFD 0-50 ms). As time from force onset increases 

EMG becomes high/maximal and other factors than the level of agonist activation appear to 

largely influence explosive force production. Chapter 6, as well as an array of other studies 

has reported that the level agonist activation explains about half of the variability in explosive 

force capabilities during the early phase of contraction (40-50 ms, de Ruiter et al., 2004; Del 

Balso & Cafarelli, 2007; Klass et al., 2008; Hannah et al., 2012; Folland et al., 2013). The 

response to a given level of activation (i.e., twitch force responses) likely explains the 

majority of the remaining variance (Andersen & Aagaard, 2006; Folland et al., 2013; Chapter 

5). Therefore, training to enhance the level of agonist activation during the early phase of 

contraction appears to be an important aspect of enhancing explosive neuromuscular 

performance. This component of activation can be considered as EMG rise, the ability to 

increase agonist activation up to maximal levels as quickly as possible. As time is limited 

during explosive sporting tasks such as sprint running and injury avoidance situations, this 

can be considered an essential component of explosive sporting performance and injury risk. 

 

At present it is not clear as to the best methods of training for EMG rise. It has been 

suggested that addition of an explosive strength to conventional strength training is sufficient 

to train the level of agonist EMG during explosive force production and subsequent explosive 

strength. However, chapter six reported that conventional isoinertial RT, even with maximal 

intention to lift the weight as quickly as possible did not improve RFD through neural 

adaptations. It is thought that exercises that involve transition from low to high force levels is 

required to develop this component of muscle performance. The majority of research that has 

reported increased EMG and force following strength training has used isometric contractions 

with maximum RFD (i.e., Rich & Cafarelli, 2000; Pucci et al., 2006; Del Balso et al., 2007; 

Tillin et al., 2012a) or ballistic contractions using low loads (i.e., Van Cutsem et al., 1998) 

and therefore there is no or low EMG either prior to force production (isometric rest period or 
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low EMG during the eccentric phase of ballistic actions). Equivocal findings are typically 

observed with those studies adopting conventional isoinertial type models (although have not 

included the maximal intention to lift the weight) (i.e., Aagaard et al., 2002a; Bruhn et al., 

2007; Andersen et al., 2010). In the light of the current thesis an available evidence it is 

suggested that separate specific training targeted specifically at training the ability to increase 

agonist EMG at onset (EMG rise) be included in athletic development programmes.  

 

As it was reported that fatigue may exert more pronounced effects on explosive than maximal 

strength, this indicates that there is a requirement to avoid high levels of fatigue, to maintain 

the levels of neuromuscular performance which are essential for joint stability and injury 

avoidance. Fatigue is thought to be an important risk factor for injury and an enhanced EMD 

and reduced RFD would be expected to increase the time required for joint stability following 

mechanical perturbation and therefore increased injury risk. The decline in explosive 

neuromuscular performance was thought to be due to both neural and contractile mechanisms. 

Advice from chapter 8 would be that avoidance of high levels of fatigue is an essential aspect 

of injury prevention. As RT did not enhance explosive neuromuscular performance, fatigue 

resistance would appear to be an essential component of athletic training to reduce injury risk.   

 

The observed 15% deficit in RFD, despite no influence of BL actions on MVF suggests 

specific training to offset this deficit should be performed in order to maximise the 

performance of BL explosive sporting tasks. The BLD observed was thought to be explained 

by reduced inter-muscular coordination (lower stabiliser activation) during BL efforts and 

suggests that specific practice of coordinated explosive BL tasks and improved core/joint 

stability could be expected to improve the expression of BL explosive sporting tasks through 

reducing this explosive force/RFD BLD.  

 

Although there is limited research available, greater consideration of stabilising muscles for 

athletic development and injury prevention may be sought. It is possible that stabiliser 

activation could act as a constraint to optimal agonist activation and therefore exert strong 

indirect effects on muscle performance. It is apparent that instability creates a reduced force 

output (for a review see Behm & Anderson, 2005). Therefore, insufficient joint stability 

through low levels of stabiliser activation could exert similar intrinsic influence on adjacent 

muscle performance. Including specific training to enhance the stabiliser muscle system may 
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be expected to benefit neuromuscular performance and thus sports performance as well as 

reduced injury risk. 

 

9.4 Directions for Future Research 

1. The findings of stabiliser activation from this thesis are intriguing, but the assessment 

of stabiliser activation and muscle performance during isometric single joint situations, 

unlikely reveals the full contribution of the stabiliser muscle system to muscle 

performance during more functional situations. A body of research investigating the 

importance of stabiliser activation on maximal and explosive strength, during 

isoinertial situations would appear to be important in order to fully understand the 

contributions of muscle activation strategies to maximal muscle performance.  

2. As isoinertial RT did not enhance agonist EMG during explosive muscle actions, 

further research into the influence of RT on explosive neuromuscular performance is 

required. It is possible that this type of exercise does not offer the transition in EMG 

from low to high levels required to train this aspect of neural function. Documenting 

the EMG patterns during conventional isoinertial lifting tasks throughout the eccentric 

and concentric phases, and reporting the changes in EMG rise during this concentric 

phase would improve our understanding as to why isoinertial RT with maximal 

intention to lift the weight as quickly as possible did not enhance agonist EMG during 

the early phase of contraction.  

3. Chapter six was the higher agonist EMG observed during isoinertial 1RM than at 

iMVF. The exact reasons are not known, but it is thought that activation is maximal or 

at least close to maximal during isometric MVC of the elbow flexors. Research 

comparing activation during isometric and isoinertial tasks, and understanding the 

possible mechanisms associated is sought. 

4. Research to examine the BLD during explosive multiple joint tasks and document the 

neural, methodological factors which might explain this including assessment of 

agonist, antagonist and stabiliser muscle activation of major muscle groups is needed.  

5. Research examining if duplicate EMG electrodes improves the reliability of 

normalised EMG amplitude should be undertaken.  
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