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Introduction   The dynamics of a family of simple, but extremely useful structural elements is governed by 
a second order Sturm-Liouville equation.  This equation allows for the uniform distribution of mass and 
stiffness and enables the motion of strings and shear beams, together with the axial and torsional motion of 
bars to be described exactly.  As a result, each member type in this family has been treated exhaustively 
when considered as a single member or when joined contiguously to others.  However, when such members 
are linked in parallel by uniformly distributed elastic interfaces, their complexity becomes significantly more 
intractable and it is this class of structures that has led to renewed interest and which forms the basis of the 
work that follows. 
 
Initially, differential equations governing the coupled motion of the system are developed from first 
principles.  These are organised into the form of a generalised linear symmetric eigenvalue problem, from 
which a family of uncoupled differential operators can be established.  These operators define a series of 
exact substitute systems that together describe the complete motion of the original structure.  These 
equations can then be used in either of two ways.  In their most powerful form they can be developed into 
exact dynamic stiffness matrices that enable all the powerful features of the finite element method to be 
utilised.  This subsequently enables sets of members carrying point masses and subject to point spring 
supports to be analysed easily.  Alternatively, the equations are able to yield an exact relational model that 
links any uncoupled frequency of an original member to the corresponding set of coupled system 
frequencies.  This approach enables ‘back of the envelope calculations’ to be undertaken quickly and 
efficiently.  The exact mode shapes of the original structure can be recovered in either case.  Due to space 
limitations, only aspects of the first technique are described briefly herein, but both are covered exhaustively 
elsewhere [1]. 
 
Theory   The theory below has been developed for an easily envisioned set of taut string members that are 
connected to each other by elastic interfaces of unequal stiffness, with the top (i = 1) and bottom (i = n) 
members being additionally connected to foundations.  However, the approach applies equally to all the 
member types previously mentioned.  Thus, adopting the assumptions of classical string theory, limiting 
attention to free vibration and introducing the non-dimensional length parameter, Lx /=ξ , the equation of 
motion for a typical elemental length of string, i, and its corresponding constitutive relationship are easily 
shown to be 
 
             0)()( 22

1111 =++++− +++− iiiiiiiiii VDrVkVkkVk ωγ      and     ξddVLrQ iii /=                (1a,b) 
 
where 1and +ii kk  are the stiffness / unit length of the elastic interfaces connecting adjacent strings or 
foundations and ii QV and  are the amplitudes of the lateral displacement and vertical component of string 

tension, respectively, 222 / ξddD = , 2/ LTr ii = , iii rm /=γ , im  is the mass / unit length, L is the length 
of all members comprising the set and ω  is the circular frequency.  It is now assumed that ii Tm /  is 
constant for all i and hence that  
                                                              TmLi /2== γγ  = constant                                                             (2) 
 
This enables the governing equations for the first, last and typical members to be written, respectively, as 
 



                                 0)( 1122121 =−−+ VrVkVkk λ ,        0)( 11 =−++− +− nnnnnnn VrVkkVk λ           (3a,b) 
and 
                                               0)( 1111 =−−++− +++− iiiiiiiii VrVkVkkVk λ                                                  (3c) 
where 
                                                                         22 γωλ += D                                                                         (4) 
 
and 1k  and 1+nk can be zero or non-zero in any combination, thus defining the longitudinal boundary 
conditions. 
 
Eqs.(3) enable a complete set of equations to be assembled for an n level system, as indicated by Eq.(5a) 
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where zeros have been omitted for clarity.  Eq.(5a) can then be written concisely as 
 
                                                                           ( ) 0Vrk =−λ                                                                     (5b) 
 
The form of Eqs.(5) is that of a generalized symmetric linear eigenvalue problem, for which a number of 
standard routines are available for calculating the eigenvalues, λ , and corresponding modal vectors, V . 
 
Substitute systems The n values of λ  that satisfy Eqs.(5) define a family of second order differential 
operators that satisfy the original problem and which are given by Eq.(4) as 
 
                                                               iD λγω =+ 22          i = 1,2,……n                                                  (6) 
 
Eq.(6) can be assigned a physical context by noting that it is a property of such differential operators that 
they can be written as 
                                                            iii VVD λγω =+ )( 22          i = 1,2,…n                                               (7) 
and hence that 
                                                               0)( 22 =+ ii VD χ           i = 1,2,…n                                                  (8) 
where 
                                                                                ii λγωχ −= 22                                                                  (9) 
 
and iV  is a typical lateral displacement amplitude.  In this case, each equation now describes the free 
vibration of a single unified member, but supported on a Winkler foundation of different magnitude in each 
case.  Eqs.(8) therefore represent n substitute systems, each of which yield an infinite number of frequencies 
that, when arranged in ascending order, comprise the complete spectrum of frequencies of the original 
problem.  It therefore follows that the fundamental frequency of the original problem is given by the single 
substitute system that yields the lowest frequency, namely the one that incorporates the lowest linear 
eigenvalue derived from Eqs.(5). 
 
An exact stiffness formulation (exact finite element) is now adopted to solve the ith substitute system and can 
be expressed as 
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where 
 
    0forsinandcos 2 >== iiiii SC χχχ   and  0forsinhandcosh 2 <== iiiii SC χχχ      (11a,b) 
 
and the subscripts 0 and 1 relate to the left and right hand end of the unified member, respectively. 
 
Identical boundary conditions are now imposed on each substitute system in turn by adding spring supports 
and/or nodal masses at both 1and0 == ξξ .  There is no requirement for the masses to be the same at each 
end and the stiffnesses can be assigned any value between zero (free support) and ∞+ (clamped support).  
The required natural frequencies stemming from each of the n substitute systems can then be converged upon 
to any desired accuracy using the Wittrick-Williams algorithm.  All the frequencies thus calculated are 
natural frequencies of the original system and can be arranged in ascending order to cover any frequency 
range of interest, which will be guaranteed to be fully populated if the highest frequency is bounded above in 
each of the substitute systems. 
 
Example   Consider now the problem of two identical and parallel taut strings of length 1 m that are linked 
by an elastic interface of stiffness k = 200 N/m2.  The mass/unit length and string tension for both members 
are 0.01 kg/m and 50 N, respectively.  The results are presented in Table 2, where they are compared with 
those of Oniszczuk [2].  It is interesting to note that in this example the natural frequencies corresponding to 
anti-symmetric modes are identical to the uncoupled frequencies of the two members, since both members 
move identically in the same direction and do not extend the massless elastic interface that connects them.  
Hence 0.01 =λ . 
 
Table 2   Comparison between the natural frequencies given by Oniszczuk [2] and the presented theory for 
the parallel string problem described above.  The frequencies correspond to either A/S (Anti-Symmetric) or 
S (Symmetric) modes about the horizontal axis of symmetry.  * This value has been confirmed as a typing 
error in the original paper and should be 222.1. 
 

Modal 
No. 

Natural frequencies (rad/sec) 
[2] Presented theory 

 A/S S Substitute 
system 1 

Substitute 
system 2 

   0.01 =λ  0.82 =λ  
     
1 221.1* 298.9 222.144 298.911 
2 444.3 487.2 444.288 487.229 
3 666.4 695.8 666.432 695.796 
4 888.6 910.8 888.577 910.806 
5 1110.7 1128.6 1110.72 1128.58 
6 1332.9 1347.8 1332.86 1347.80 
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