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Abstract

Accurate estimation of the model parameters is required to obtain reliable predictions of the
products end-use properties. However, due to the mathematical model structure and/or to a pos-
sible lack of measurements, the estimation of some parameters may be impossible. This paper
will focus on the case where the main limitations to the parameters estimability are their weak
effect on the measured outputs or the correlation between the effects of two or more parameters.
The objective of the method developed in this paper is to determine the subset of the most influ-
encing parameters that can be estimated from the available experimental data, when the complete
set of model parameters cannot be estimated. This approach has been applied to the mathemat-
ical model of the emulsion copolymerization of styrene and butyl acrylate, in the presence of
n-dodecyl mercaptan as a chain transfer agent. In addition, a new approach is used to better
assess the true confidence regions and evaluate the accuracy of the parameters estimates in more
reliable way.

Keywords: emulsion copolymerization model, estimability analysis, parameter ranking,
confidence regions.

1. Introduction

Building reliable mathematical models can be a very challenging task, particularly for com-
plex systems which are commonly encountered in the fields of polymer engineering, system
biology, and wastewater treatment. The common feature exhibited by this kind of models is
the large number of parameters to be estimated. An accurate estimation of the whole set of pa-
rameters is usually impossible and the set is often reduced due to the insufficient information
contained in the available experimental data or because the model structure.
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A first step in the development of a reliable mathematical model, prior to the parameter iden-
tification problem, is to evaluate the structural identifiability and estimability (i.e. practical iden-
tifiability) of the model parameters. The first approach is exclusively based on the structure of
the mathematical model and aims at investigating whether or not the model parameters are glob-
ally or locally structurally identifiable (Walter and Pronzato (1997), Quaiser and Mönnigmann
(2009)). The estimability approach addresses a data problem. The objective is to determine
the subset of parameters with the highest estimabililty potential, based on a predefined experi-
mental design or available data. Due to the lack of measurements, accurate estimation of some
parameters may be impossible. The main limitation to the parameters estimability is their weak
influence on the measured outputs and/or the correlation between the parameters effects. Due to
their poor accuracy, the estimation of these parameters can lead to significant degradation in the
predictive capability of the model.

Different selection methods based on the estimability principle have been developed as re-
ported in the literature, including the principal component method (Degenring et al. (2004),
Turanyi (1990)), the singular value decomposition (Velez-Reyes and Verghese (1995)), the cor-
relation methods (Jacquez and Greif (1985)) and the eigenvalue method (Vajda et al. (1989)). A
good review of the most important methods can be found in Quaiser and Mönnigmann (2009)
and McLean et al. (2011). The orthogonalization-based methods developed by Yao et al. (2003)
and Lund and Foss (2008), are particularly efficient to rank the parameters with the highest es-
timability potential. Those methods have been widely used over the last five years in different
research areas (Benyahia (2009), Jayasankar et al. (2009), Quiniou (2009), Ngo (2009), Surisetty
et al. (2010)). In addition, the orthogonalization-based methods are relatively straightforward and
can be used prior to the experimental campaign to identify the best parameter candidate to be es-
timated, based on the model predictions and an initial guess of the parameters vector, obtained
generally from literature or previous identification procedure. When a parameter of interest is
not estimable according the experimental design adopted, the latter may be modified to include
sampling times corresponding to the highest influence of the parameter, which may potentially
improve the estimability of this parameter if it is not correlated with another parameter.

In the first part of this two-part series, we presented the mathematical model of the emul-
sion copolymerization of styrene and butyl acrylate in the presence of a chain transfer agent.
This model consisted of a system of differential algebraic equations (DAEs), derived from mass,
population and moment equations (Benyahia et al. (2010)). In this paper, we implement the se-
quential orthogonalization method developed by Yao et al. (2003). Thanks to this approach, a
subset of the most influential and linearly independent parameters is selected to the identification
stage. On the other hand, it is highly desirable to assess the accuracy of the parameters estimates
through the confidence intervals, which can be as important for the construction of a reliable
model as the identification of the most likely parameters estimates.

The evaluation of uncertainties is key in process design, control, and optimization. The con-
fidence regions provide a powerful tool to evaluate uncertainty. Traditionally, the confidence
regions are obtained by methods based on the Fisher-Information-Matrix, under the assumption
that the process model is linear in its parameters, and the experimental errors are Gaussian. This
approach provides symmetric iso-contours (i.e., ellipsoids) centered by the parameters estimates.
However, most of real systems exhibit high nonlinearities in parameters and show non-normal
distribution errors. As a result, the elliptical confidence region may not be accurate enough to
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capture the actual model parameter or may underestimate the true confidence regions (Rooney
and Biegler (2001)). The true confidence regions can be asymmetric, non-centered, unbounded,
and even composed of unconnected parts depending on the model structure (Schwaab et al.
(2008)). Different methods have been proposed in the literature to evaluate the true confidence
regions starting by the Bootstrap and Monte-Carlo methods (Joshi et al. (2006)), (van Boekel
(1996), Walter and Pronzato (1997)). Campi and Weyer (2005) proposed a method called the
leave-out sign-dominant correlation regions. The method was applied to linear systems and as-
sumes that the noise has zero mean without any restriction on the type of noise distribution (i.e.,
gaussian or non-gaussian) and the size of the data set. Varziri et al. (2008a) and Varziri et al.
(2008b) used an approximate maximum likelihood estimation algorithm for parameter estima-
tion in nonlinear dynamic models with model uncertainties and stochastic disturbances. They
used the inverse of the Fisher information matrix as an approximation of the covariance matrix
of the combined vector of states and parameters and derived a linearization-based expressions
for the confidence regions. They also considered both cases: known and unknown variances
of the disturbance intensities and measurement-noise. Schwaab et al. (2008) combined a par-
ticle swarm optimization procedure with the likelihood confidence region method to construct
the true confidence regions for linear and non-linear systems. Yeh and Singh (1997) evaluated
bootstrap confidence regions based on data depth, which is a geometric concept of ordering data
from the center outwardly in higher dimensions. A good review of other methods can be found
in Schwaab et al. (2008), Gallant (1987), and Seber and Wild (1989).

In this paper we present a new approach by witch the true confidence regions can be evalu-
ated. The method is combined with the estimability analysis and provides a more reliable and
robust approach to rank and select the model parameters. Indeed, monestimability can be iden-
tified by unrealistically large confidence intervals, while narrow ones indicate that the parameter
estimate is accurate and consequently highly estimable. This statement supposes high accuracy
in the evaluation of the confidence regions.

This paper is organized as follows: first the estimability method is described and discussed
flowed by the description of the novel confidence region method. The two approaches are finally
compared and discussed.

2. Estimability analysis

The process model developed in the first part of this series, describes a fed-batch process of
the emulsion copolymerization of styrene and butyl acrylate in the presence of a chain transfer
agent (Benyahia et al. (2010)). It was highly desirable to give a detailed and accurate description
of underlying phenomena. The model describes different effects such as influence of the chain
transfer agent on the polymerization kinetics and the glass and the gel effects. It also provides the
population balance equations with respect to the number of radicals within the particles, and the
equations of moments inherent to the macromolecules distributions. Although the number of the
population balance equations has been reduced, the mathematical model is still large, complex,
and nonlinear with respect to both states and parameters. The main challenge is to build a satis-
factory predictable model with respect to the overall conversion Xove, the residual mass fraction
of styrene F2, the number and weight average molecular weights (M̄n, M̄w), and the average par-
ticles diameters (dp). Those outputs are closely related to the products end-use properties (both
latex and polymers). As a consequence, any degradation in the model prediction capability may
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cause a poor control and/or optimization of the product quality.

The mathematical model which involves 49 parameters can be described by the general form
of DAEs:

ẋ(t) = f (x(t), z(t), p, t) , x(t = 0) = x0 (1)
0 = g (x(t), z(t), p, t)

where x is the vector of the differential state variables, z is the vector of the algebraic state vari-
ables, and p is the vector of the model parameters.

The nonlinear regression model has the following form:

yi j = ŷi(p, ti j) + εi j (2)

where yi j the jth measurement of the ith output, ŷi is the corresponding model predictions, εi j

represents the data uncertainty (i.e,. noise) and ti j is the jth sampling time of the ith output.

Although noise can be in different forms such as human errors, random errors, unexpected
disturbance, and measurements errors, only measurements errors are considered here and as-
sumed to be uncorrelated, Gaussian distributed, additive, with zero mean.

The development of an effective solution to the parameter selection problem requires the
quantification of the influence of each parameter on the measured outputs. This approach indi-
cates which parameters are the most important and most likely to affect predictions of the model.
The first step of the estimability analysis method is the evaluation of the sensitivity coefficients
as follows,

si j =
∂ŷi

∂p j
j = 1, 2, . . . np (3)

where np is the number of parameters.

The model parameters as well as the outputs have different units and span several orders
of magnitude. A typical example of such case is the particle average diameter and the average
molecular weights. To make a reliable comparison between the effects of the different parameters
on the predictions of the model, the sensitivity coefficients are normalized with respect of the
nominal values of the parameters and their corresponding output predicted by the mathematical
model.

si j

∣∣∣
t=tk

=
p̄ j

ȳi|t=tk

∂ŷi

∂p j

∣∣∣∣∣∣
t=tk

(4)

where p̄ j is the nominal value of the jth parameter and ȳi|t=tk is the model prediction of the ith
output evaluated at a sampling time tk using the nominal vector of the parameters (p̄).

The overall sensitivities of the different outputs with respect to whole set of parameters, at
different sampling times, can be summarized in a matrix of the sensitivity coefficients (S). Each
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column of this matrix evaluates the global effect of a given parameter on the process outputs at
different measurement times, whereas each row represents the effect of the whole set of parame-
ters on a given output at a fixed time of measurement.

S =



s11|t=t1 · · · s1np

∣∣∣
t=t1

...
. . .

...

sny1
∣∣∣
t=t1

· · · snynp

∣∣∣
t=t1

s11|t=t2 · · · s1np

∣∣∣
t=t2

...
. . .

...

sny1
∣∣∣
t=tnm

· · · snynp

∣∣∣
t=tnm


(5)

If two columns of the matrix are linearly dependent, an accurate estimation of the correspond-
ing parameters is not possible simultaneously, as the effect of one parameter can be modified or
compensated by the effect of the other. Yao et al. (2003) used a modified Gram-Schmidt orthogo-
nalization sequentially, to exclude the correlated parameters. In addition, the method provides an
efficient way to distinguish the most influential parameters. When two parameters are correlated,
the method makes it possible to select the one with the highest effect and exclude the other.

After the selection of the nominal values of the parameters, the sensitivity matrix can be
computed analytically or by numerical approximation. The algorithm of the sequential orthogo-
nalization estimability analysis is described as follows:

Let si be the sensitivity vector corresponding to the parameter pi, ri the orthogonal projection
of si, X j the matrix of the selected parameters vectors at the jth stage, P the set of estimable
parameters and λ a cut-off value.

1. Selection of the parameter with the highest effect:
find the index k such that,

k = arg max
i

(si)T si, i ∈ I0 = {1, . . . , np}

if (sk)T sk ≥ λ set P1 = {pk} and X1 = sk

otherwise stop

2. Orthogonalization:
compute the orthogonal projection of the matrix S,

R j = (I − X j(XT
j X j)−1XT

j ) S

3. Selecting the next parameter with the highest effect:

l = arg max
i

(r j
i )

T r j
i , i ∈ I j =

(
I j−1 − {k, . . .}

)
if (r j

l )
T r j

l ≥ λ set P j =
(
P j−1, pl

)
and X j+1 =

(
X j, sl

)
return to step 2
otherwise stop

After the selection of the first parameter, the vectors of the sensitivity matrix are projected se-
quentially on the space orthogonal to that spanned by the sensitivity vectors with the highest
magnitude (i.e,. Euclidean norm). As a result, the vector selected in the previous step as well as
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Table 1: Nominal values of the parameters part 1.

Parameter Value Units Reference
Ed 135 000 J · mol−1 Gilbert (1995)
Ep11 22 500 J · mol−1 Ginsburger et al. (2003)
Ep22 32 500 J · mol−1 Gilbert (1995)
Et22 9000 J · mol−1 Sgard (2000)
Etrm11 20 000 J · mol−1 Ginsburger et al. (2003)
md1, md2 39 Rawlings and Ray (1988)
ns 40 Ginsburger et al. (2003)
Ee 361 K Ginsburger et al. (2003)
δm1, δm2 0.03 Ginsburger et al. (2003)
δ1 31 Ginsburger et al. (2003)
δ2 22 Ginsburger et al. (2003)
Kp1 1/1050 Gugliotta et al. (1995)
Kp2 1/2512 Gugliotta et al. (1995)
rmic 2.5 nm Gilbert (1995)
rd 5000 nm Gilbert (1995)
Dw1, Dw2 4.1 · 10−7 m2 · s−1 Arzamendi et al. (1992)
agl

11 17.13 Martinet (1992)
agl

12, agl
21, agl

22 5.73 Martinet (1992)
bge 11.46 Martinet (1992)
bgl 3.78 Martinet (1992)
ae 0.75 nm2 Ginsburger et al. (2003)
kT A,dwAd 5/6 m3 · s−1 Salazar et al. (1998)
τ 2/3 Ginsburger et al. (2003)

all its linearly dependent vectors, will have a null vector as projection, and will have no influence
on the subsequent selection procedure which is based on the highest magnitude. This method
will consequently guarantee that the next selected vector will have the least correlation possible
with the previously selected parameters while exhibiting the highest relative effect on the mea-
surements.

The estimability method presented here, is however a local approach which requires a good
initial guess of the parameters vector. Unrealistic or highly inaccurate initial parameter values
can lead to unreliable parameter ranking which may cause a significant degradation of the model
prediction capabilities. Most of the parameter values used in the estimablity are obtained from
literature, particularly from similar systems as summarized in tables 1 and 2. Some of the pa-
rameters whose values are unknown or for which literature provides poor initial guesses required
a pre-identification. This is the case of the parameters related the chain transfer agent: ET Ap1,
ET Ap2, Kpta, kT Ap10, and kT Ap20. The identification procedure used is the maximum likelihood
approach in a global optimization framework. It required the use of the data available and the
nominal values of the remaining parameters. The reliability of this approach assumes that the
parameters at hand are poorly correlated.
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Table 2: Nominal value of the parameters part 2.

Parameter Value Units Reference
ET Ap1 78 800 K j/kmol Optimized
ET Ap2 36 200 K j/kmol Optimized
Et11 11 000 K j/kmol Ginsburger et al. (2003)
Etrm22 40 000 K j/kmol Ginsburger et al. (2003)
f0 0.92 Ginsburger et al. (2003)
Kpta 0.4 Optimized
KpZ 0.4 Ginsburger et al. (2003)
kd0 10−6 s−1 Ginsburger et al. (2003)
kp110 190 m3 · kmol−1 · s−1 Ginsburger et al. (2003)
kp220 34.9 m3 · kmol−1 · s−1 Ginsburger et al. (2003)
kT Ap10 515 m3 · kmol−1 · s−1 Optimized
kT Ap20 17.8 m3 · kmol−1 · s−1 Optimized
kt110 6·109 m3 · kmol−1 · s−1 Ginsburger et al. (2003)
kt220 7·109 m3 · kmol−1 · s−1 Ginsburger et al. (2003)
ktrm110 0.005 m3 · kmol−1 · s−1 Ginsburger et al. (2003)
ktrm220 0.011 m3 · kmol−1 · s−1 Ginsburger et al. (2003)
kzp 100 m3 · kmol−1 · s−1 Ginsburger et al. (2003)
rp21 0.65 Snuparek and Kleckova (1984)
rp12 0.25 Snuparek and Kleckova (1984)
ε 11.74 m Ginsburger et al. (2003)
σ 1.3 Arzamendi et al. (1992)

Cut-off P

21 σ
15 σ f0
12 σ f0 kd0
10 σ f0 kd0 rp21
1.8 σ f0 kd0 rp21 ET Ap1
1.3 σ f0 kd0 rp21 ET Ap1 kp220

0.72 σ f0 kd0 rp21 ET Ap1 kp220 Kpta
...

...
...

...
. . .

0.01 σ f0 kd0 rp21 ET Ap1 kp220 Kpta . . . kt220

Table 3: Subsets of the most estimable parameters obtained for different cut-off values.
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Parameter rank Parameter rank Parameter rank
σ 1 Kpta 8 ktrm110 15
f0 2 kT Ap20 9 kzp 16
kd0 3 ktrm220 10 Et11 17
rp21 4 Etrm22 11 kt110 18
rp12 5 kT Ap10 12 KpZ 19
ET Ap1 6 kp110 13 ε 20
kp220 7 ET Ap2 14 kt220 21

Table 4: Ranking of the parameters with the highest estimability potential.

Different parameters subsets can be obtained according to the cut-off values imposed, as
shown in table 3. The order of appearance gives the priority with respect to the estimability po-
tential. The orthogonalization method used in this work provides 21 parameters selected among
the 49 model parameters, Those parameters are ranked in table 4. Although the cut-off value is
of paramount importance, a unique and efficient approach to select its value is not reported in
the literature. Instead, the cut-off value can be specified arbitrarily a priori (Yao et al. (2003)) or
refined with respect to the value of the objective function for the parameter estimation (Wu et al.
(2011), Littlejohns et al. (2010)).

The effect of the cut-off value on the number of selected parameters is depicted in Figure
1. This seems to indicate that a number of parameters equal to 10 might be sufficient. The
practice shows that the objective function (maximum likelihood criterion) and consequently the
agreement between the model predictions and the measurements, can be further improved by
selecting more parameters. A satisfactory trade-off between a minimum number of parameters
and high accuracy of the model prediction, is finally met with 21 parameters ranked in table
4. An alternative approach to further improve the accuracy of the model might be obtained by
setting new experiments. However, the approach presented in this paper was restricted to the
experimental data available which gave satisfactory results.

The 21 parameters estimates were obtained by minimizing the maximum likelihood criterion
as explained in detail, in the first part of this series (Benyahia et al. (2010)).

Min J(p) =

ny∑
i=1

nmi · ln

 nmi∑
j=1

(
yi j − ŷi(x, p, ti j)

)2


s.t ẋ = f (x(t), z(t),u(t), p, t) x(t = 0) = x0 (6)
0 = g (x(t), z(t), p, t)
pin f ≤ p ≤ psup

pT = [σ, f0, kd0, rp21, rp12, ET Ap1, kp220,Kpta, kT Ap20,

ktrm220, Etrm22, kT Ap10, kp110, ET Ap2, ktrm110, kzp,

Et11, kt110,KpZ , ε, kt220]

After the parameters identification, the mathematical model undergone successfully series
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of validation under batch and fed-batch conditions. In addition, this model was used for the
multiobjective optimization of the process and showed again satisfactory prediction capabilities,
particularly when the optimal feeding profiles were implemented experimentally (Benyahia et al.
(2011)).
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Figure 1: Number of selected parameters vs. cut-off value.

3. Confidence regions

The confidence regions provide a useful tool to evaluate the accuracy of the parameter es-
timates. However, due to poor evaluations of the true confidence regions, the accuracy may be
overestimated which may alter the reliability of a mathematical model. The main limitation to
an accurate evaluation of the true confidence region is the high nonlinearity exhibited by most
real systems with respect to the parameters, and a non-normal distribution of the measurements
errors, particularly when the number of measurement is too low. Here we will describe an alter-
native to the traditional ellipsoidal centered (asymptotic) confidence regions.
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Figure 2: Simplified representation of the experimental measurements and the model predictions in the parameters space.

Figure 2 represents the model prediction in the measurements space. In this case: e is the
difference between the experimental measurements (y) and the model predictions based on the
vector of the true values of the parameters (ŷ(p∗)), b is the projection of e on a plan tangent to
the model predictions at ŷ(p∗), ĥ is the difference between the experimental measurements and
the model prediction based on the vector of the parameter estimates (ŷ(p̂)) and h is the vertical
distance between the experimental measurements and the tangent plan.

The error e can be expressed as,

e2 = b2 + h2 (7)

The square error between the experimental value and the model prediction of the jth measurement
of the ith output is given by,

ε2
i j = (yi j − ŷi(p∗, ti j))2 (8)

This error can be normalized with respect to the variance as follows:

e2
i j =

(yi j − ŷi(p∗, ti j))2

Vi
(9)
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where Vi is the true variance of the ith output measurements.

The previous approach can be generalized to all measurements of the ith output and for all
outputs,

e2
i =

nmi∑
j=1

ε2
i j =

nmi∑
j=1

(yi j − ŷi(p∗, ti j))2

Vi
(10)

e2 =

ny∑
i=1

e2
i =

ny∑
i=1

nmi∑
j=1

(yi j − ŷi(p∗, ti j))2

Vi
(11)

where nmi is the total number of measurements of the ith output and ny the total number of
outputs.

The overall errors between experimental measurements and the model predictions based on
the parameter estimates, can be obtained in a similar way.

ĥ2
i =

nmi∑
j=1

ĥ2
i j (12)

ĥ2 =

ny∑
i=1

ĥ2
i (13)

The variance of the ith output evaluated with respect to the parameter estimates (V̂i(p̂)) is
obtained by,

V̂i =
1

nmi

nmi∑
j=1

(
yi j − ŷi(p̂, ti j)

)2

=
1

nmi

nmi∑
j=1

ĥ2
i jVi (14)

thus

ĥ2
i =

nmiV̂i

Vi
(15)

In a similar way, the variance of the ith output evaluated with respect to the vector of the true
parameter (Ṽi(p∗)) gives,

e2
i =

nmiṼi(p∗)
Vi

(16)

The errors e and ĥ are both supposed Gaussian distributed with zero mean. This assumption is
not unrealistic, particularly when the number of measurements is large. The central limit theorem
provides us with the proof that even if the small sized density is not normal, it tends to be normal
when the number of elements increases asymptotically to infinity. As a consequence the square
errors have chi square distribution,
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e2 → χ2(nm)
ĥ2 → χ2(nm − np − ny + 1)

where χ2 is chi square distribution, nm is the total number of measurements and np the total
number of parameters.

There are nm (independent) measurements. The error e2 is therefore a chi square distribution
with nm degrees of freedom. On the other hand, ĥ2 is the result of an optimization where the
derivatives of the probability density with respect to the nm parameters and the ny variances are
set equal to zero. In addition, one variance can be used as a reference. As a result, ĥ2 is a chi
square distribution with nm − (np + ny − 1) degrees of freedom.

The difference (e2 − ĥ2) gives a chi square distribution with nm − (nm − np − ny + 1) degrees
of freedom,

e2 − ĥ2 → χ2(np + ny − 1) (17)

On the other hand, the following approximation is used.

b2

h2 =
e2 − h2

h2 �
e2 − ĥ2

ĥ2
(18)

b and h are independent (i.e,. orthogonal). As a ratio of two independent chi square distribu-
tion is a Fisher-Snedecor distribution, we obtain,

e2 − ĥ2

np + ny − 1

ĥ2

nm − np − ny + 1

→ Fα

(
np + ny − 1, nm − np − ny + 1

)
(19)

ny∑
i=1

nmiṼi(p∗)
Vi

−

ny∑
i=1

nmiV̂i

Vi

ny∑
i=1

nmiV̂i

Vi

→
np + ny − 1

nm − np − ny + 1
Fα

(
np + ny − 1, nm − np − ny + 1

)

where α is the level of confidence, (np + ny−1) and (nm−np−ny + 1) the degrees of freedom.

To evaluate the confidence regions with the Fisher-Snedecor test. Equation 19 will be ex-
pressed in terms of maximum likelihood criterion with respect to the vector of the true parameters
and the vector of the parameter estimates,

J(p∗) =

ny∑
i=1

nmi · ln
(
nmiṼi(p∗)

)
(20)
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By adding the term −Vi + Vi, the maximum likelihood leads to,

J(p∗) =

ny∑
i=1

nmi · ln
(
nmi

(
Ṽi(p∗) − Vi + Vi

))
=

ny∑
i=1

nmi · ln (nmiVi) +

ny∑
i=1

nmi · ln
(
1 +

Ṽi(p∗) − Vi

Vi

)
(21)

The term Ṽi(p)−Vi
Vi

is expected to be very low compared to 1. As a result,

J(p∗) ≈

ny∑
i=1

nmi · ln (nmiVi) +

ny∑
i=1

nmi ·

(
Ṽi(p∗) − Vi

Vi

)

=

ny∑
i=1

nmi · ln (nmiVi) − nm +

ny∑
i=1

nmi ·

(
Ṽi(p∗)

Vi

)
(22)

The equation 22 is rearranged as fiollows:

ny∑
i=1

nmiṼi(p∗)
Vi

= J(p∗) −
ny∑

i=1

nmi · ln (nmiVi) + nm (23)

Similarly the maximum likelihood criterion with respect to vector of the parameter estimates
is given by,

ny∑
i=1

nmiṼi

Vi
= J(p̂) −

ny∑
i=1

nmi · ln (nmiVi) + nm (24)

By substituting equations 23 and 24 in equation 19, we get,

J(p∗) − J(p̂)
ny∑

i=1

nmiV̂i

Vi

≤
np + ny − 1

nm − np − ny + 1
Fα

(
np + ny − 1, nm − np − ny + 1

)
(25)

Finally, by assuming that V̂i provides a good approximation to Vi (V̂i ≈ Vi), equation 19
reduces to,

J(p∗) − J(p̂) ≤
nm(np + ny − 1)
nm − np − ny + 1

Fα

(
np + ny − 1, nm − np − ny + 1

)
(26)

or

J(p∗) ≤ J(p̂) +
nm(np + ny − 1)
nm − np − ny + 1

Fα

(
np + ny − 1, nm − np − ny + 1

)
(27)

The Fisher-Snedecor test presented in equation 26 provides a statistical test to assess the pa-
rameter reliability. It indicates that the true parameters values are located within the confidence
regions at a given probability. Schwaab et al. (2008) derived an expression based on Fisher-
Snedecor test, where the objective function was expressed in terms of least-squares function and
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represent. the extension of the test derived by Beale (1960) to the nonlinear case.

The confidence regions are evaluated for a level of confidence equal to 90 % (α = 0.1), the
number of measurment nm is 161 (see Benyahia et al. (2010) for more detail about the number
of experiments and measurment), the number of outputs ny is 5 and the number of parameters
identified np is 21. In addition, the test requires the value of the maximum likelihood criterion at
the optimum, J(p̂) = 75.81.

A satisfactory construction of the confidence regions requires the evaluation of a very large
number of points to select those satisfying Fisher-Snedecor test (equation 26). The heuristic op-
timization methods, such as simulated annealing and particle swarm optimization and genetic
algorithms provide an efficient and easy way to address this problem (Schwaab et al. (2008)).
Those methods have the capability for solving high-dimensional, non-smooth, discontinuous,
and multi-modal problems easily compared to the gradient based methods. A genetic algorithm
is consequently used to construct the confidence regions. This algorithm can be used to evaluate
simultaneously the parameter estimate and their confidence regions. As the number of parame-
ters at hand is large, only a sample of joint confidence regions is presented in the paper, for the
sake of brevity. Nevertheless, the examples presented in figure 3 and 4, show parameters top
ranked (e.g. σ, kd0, kd0), from the middle (e.g. ktrm220, Etrm22) and from the bottom (e.g. KpZ ,
ε, kt220). This will provide an overview on the accuracy at different levels of the estimability
potential.

The confidence regions obtained by clusters of points in figures 3: A, B, and C, are ellipsoidal
and centered. However, the confidence regions depicted in figure 3: D and figures 3: C and D,
are asymmetric and non-centered. This is typically inherent to nonlinearities with respect to the
parameters. In addition, the confidence regions depicted in figures 3: A, B, C, and figures 4: A,
B, show that the parameters at hand, are not correlated as the confidence regions are not inclined.
However, no conclusion can be made for the remaining parameters with asymmetric confidence
regions. The evaluation of their correlation degree requires in this case, the calculation of their
correlation coefficients.

The confidence intervals of the 21 parameters are obtained by the projection of the confi-
dence region onto each parameter axis. In addition, the interval bounds are normalized with
respect to the optimal values of the parameters (i.e,. the parameter estimates) to evaluate their
relative accuracy (table 5). A narrow confidence interval indicates higher accuracy in the param-
eter estimate. This also means that a small change in the parameter value has a large effect on the
objective function, which in turn indicates a large effect on the output predictions. On the other
hand, unrealistically large confidence intervals are typically the consequence of a weak effect of
the parameter at hand, on the process outputs.

The normalized confidence intervals are represented in figure 5, to provide an efficient com-
parison between the relative accuracy of the 21 parameters. This overview reveals that the top
ranked parameters, particularly σ, kd0, rp12, and ET Ap1, have the highest relative accuracy, whilst
the last parameters (e.g. ktrm110, kzp, and KpZ) have the lowest. This indicates a good agreement
between the parameters outranking based on the estimability analysis, and the relative accuracy
of their estimates. However, the estimability analysis is a local approach and discrepancies be-
tween the two approaches are likely to occur. This is for instance the case of the sixth ET Ap1 for
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Figure 3: Joint confidence regions of A. f0 (a parameter related to the initiator efficiency) vs. σ (swelling parameters of
the particles), B. f0 vs. kd0 (kinetic coefficient of the initiator decomposition ), C. rp21 (reactivity ratio of styrene) vs.
rp12 (reactivity ratio of butyl acrylate), D. kp220 (propagation rate coefficient of styrene) vs. ET Ap1 (activation energy of
transfer to butyle acrylate).

rank Parameter Confidence rank Parameter Confidence
interval interval

1 σ [0.993, 1.013] 12 kT Ap10 [0.489, 1.383]
2 f0 [0.997, 1.034] 13 kp110 [0.573, 1.259]
3 kd0 [0.896, 1.153] 14 ET Ap2 [0.676, 1.353]
4 rp21 [0.987, 1.026] 15 ktrm110 [0.480, 1.900]
5 rp12 [0.983, 1.056] 16 kzp [0.227, 1.800]
6 ET Ap1 [0.841, 1.619] 17 Et11 [0.446, 1.154]
7 kp220 [0.593, 1.139] 18 kt110 [0.371, 1.126]
8 Kpta [0.909, 1.200] 19 KpZ [0.282, 2.470]
9 kT Ap20 [0.487, 1.174] 20 ε [0.669, 1.673]
10 ktrm220 [0.667, 1.222] 21 kt220 [0.254, 1.513]
11 Etrm22 [0.908, 1.124]

Table 5: Normalized confidence intervals of the 21 parameters.
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Figure 4: Joint confidence regions of A. Etrm22 (activation energy of transfer to styrene) vs. ktrm220 (transfer constant
of styrene), B. ktrm110 (transfer constant of butyle acrylate) vs. ET Ap2 (activation energy of transfer to styrene), C. kt220
(termination rate coefficient of styrene) vs. ε (ratio of inhibition in aqueous phase and capture rate coefficients), D. KpZ
(partition coefficient of the inhibitor between the droplets and the aqueous phase) vs. kt110 (termination rate coefficient
of butyle acrylate).
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Figure 5: Normalized confidence intervals of the 21 parameters.
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which the relative accuracy is low while the estimabililty potential is high. The parameter Etrm22
also provides a typical example of such discrepancy between the two approaches. A better match
between the estimability analysis and the confidence intervals approach requires a better guess of
the initial parameter values. Theoretically, this means to start from the neighborhood of the true
vector of parameters or to implement the estimability analysis in a feed-back procedure. This is
however beyond the scope of this paper.

4. Conclusions

An estimability analysis methodology based on a sequential orthogonalization procedure was
implemented to distinguish the parameters potentially estimable from a set of experimental data.
Thanks to this approach, 21 parameters of the most influential and the least correlated, were
selected among the 49 parameters of the mathematical model of the emulsion copolymerization
of styrene and butyl acrylate in the presence of a chain transfer agent.

A new method has been presented to better approximate the confidence regions of the 21
parameter estimates, as an alternative to the asymptotic confidence regions. This method can
be a valuable tool to determine confidence regions more accurately, particularly in the case of
non-linear systems with respect to the parameters. The relative accuracy of the 21 parameter
estimates showed a good agreement with the estimability analysis. A potential improvement of
the estimability analysis would be to implement it in a feed-back procedure to improve the quality
of the initial guesses and provide more robust parameter ranking. Nevertheless, the parameter
estimates of the 21 parameters selected by the estimbility analysis, provided a sufficient and
satisfactory results in terms of model prediction capabilities.

Notations

bge gel coefficient of termination reaction
bgl glass coefficient of termination reaction
Dpi diffusion coefficient of the free radicals i in the particles, m2 · s−1

Dwi diffusion coefficient of the free radicals i in the aqueous phase, m2 · s−1

Ed activation energy of the initiator, J · mol−1

Ee thermal expansion factor of a surfactant molecule, K
Ep11 activation energy of butyl acrylate propagation, J · mol−1

Ep22 activation energy of styrene propagation, J · mol−1

Et11 activation energy of butyl acrylate termination reaction, J · mol−1

Et22 activation energy of styrene termination reaction, J · mol−1

Etrm11 activation energy of butyl acrylate monomer transfer, J · mol−1

Etrm22 activation energy of styrene monomer transfer, J · mol−1

f efficiency factor of initiator decomposition
kd initiator decomposition constant, s−1

kpi j propagation rate coefficient of monomer j with a free radical ended by i, m3·kmol−1·s−1

kT A,dw mass transfer coefficient of the CTA between droplets and aqueous phase, m · s−1

kT Api transfer coefficient chain transfer agent to radical i in particles, m3 · kmol−1 · s−1

kti j termination rate coefficient (radical ended by i- radical ended by j), m3 · kmol−1 · s−1

ktrmi j transfer to monomer rate coefficient (radical ended by i- monomer j), m3 · kmol−1 · s−1
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kZpi inhibition rate coefficient of radicals i in the particles, m3 · kmol−1 · s−1

kZaq inhibition rate coefficient in the aqueous phase, m3 · kmol−1 · s−1

mdi equilibrium constant of free radicals ended by i between aqueous and particle phases

Greek letters

ωi fraction of radicals ended by monomer i formed only by one monomer unit
δ overall ratio of nucleation and capture rate coefficients
δi ratio of nucleation and capture coefficients due to monomer unit i
δmi ratio of transfer resistance in aqueous phase on overall transfer resistance of free radi-

cals ended by a monomer unit i
τ ratio of the termination rates by disproportionation and combination
σ coefficient related to the saturation degree of the particle
λk kth normalized moment of the macroradicals
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émulsion en présence d’un agent de transfert de chaı̂ne. Ph.D. thesis, National Polytechnic Institute of Lorraine,
Nancy-University, France.

Benyahia, B., Latifi M. A., Fonteix, C., Pla, 2011, Multicriteria dynamic optimization of an emulsion copolymerization
reactor. Computers & Chemical Engineering, 35(12), 2886-2895.

Campi, M.C., Weyer, E., 2005. Guaranteed non-asymptotic confidence regions in system identification. Automatica, 41,
1751-1764.

Chu, Y., Huang, Z., Hahn, J., 2009. Improving prediction capabilities of complex dynamic models via parameter selection
and estimation. Chemical Engineering Science, 64, 4178-4185.

DiCiccio, T.J., Efron B., 1996. Bootstrap confidence intervals. Statistic Science 11(3), 189-228.
Degenring, D., Froemel, C., Dikta, G., Takors, R., 2004. Sensitivity analysis for the reduction of complex metabolism

models. J Process Control, 14(7), 729-745.
Gaia Franceschini, G., Macchietto, S., 2008, Model-based design of experiments for parameter precision: State of the

art, Chemical Engineering Science, 63, 4846-4872.
Gallant, A. R., Nonlinear Statistical Models, Wiley, New York, 1987.
Gilbert, R. G. (Ed.), 1995. Emulsion polymerization. A mechanistic approach. New York: Academic Press.
Ginsburger, E., Pla, F., Fonteix, C., Hoppe, H., Massebeuf, S., Hobbes, P., Swaels, P., 2003. Modelling and simulation

of batch and semi-batch emulsion copolymerization of styrene and butyl acrylate. Chemical Engineering Science. 58,
4493-4514.

Gugliotta, L. M., Arzamendi, G., Asua, J. M., 1995. monomer partition model in mathematical modeling of emulsion
copolymerization systems. Journal of Applied Polymer Science. 55, 1017-1039.

Jayasankar, B.R., Ben-Zvi, A., Huang, B., 2009. Identifiability and estimability study for a dynamic solid oxide fuel cell
model. Computers Chemical Engineering, 33, 484-492.

Jacquez, J.A., Greif, P., 1985. Numerical parameter identifiability and estimability: Integrating identifiability, estimabil-
ity, and optimal sampling design, Mathematical Biosciences, 77(1-2), 201-227.

Joshi M, Seidel-Morgenstern A, Kremling A, 2006, Exploiting the bootstrap method for quantifying parameter confi-
dence intervals in dynamical systems, Metabolic Engineering, 8(5), 447-455.

Lee, K.B., Lee, J.M., Park, T. S., Lee, S.H., 2010, Construction of classical confidence regions of model parameters in
nonlinear regression analyses, Applied Radiation and Isotopes, 68, 1261-1265.

Li, R., Henson, M.A., Kurtz, M.J., 2004. Selection of model parameters for off-line parameter estimation. IEEE Trans-
actions on Control Systems and Technology, 12(3), 402-412.

18



Littlejohns, J.V., McAuley, K.B., Daugulis, A.J., 2010, Model for a solid-liquid stirred tank two-phase partitioning
bioscrubber for the treatment of BTEX, J. Hazardous Mat., 175, 872-882.

Lund, B.F., Foss, B.A., 2008. Parameter ranking by orthogonalization - Applied to nonlinear mechanistic models. Auto-
matica, 44, 278-281.

Martinet, F., 1992. Etude et modélisation du greffage de mélanges méthylstyrène / méthacryalyte de méthyle sur des
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INPL, Nancy, France.
Snuparek, J.J. and Kleckova, Z., 1984. Some factors affecting the particle growth in semicontinuous emulsion polymer-

ization of acrylic monomers, Journal of Applied Polymer Science, 29, 1-11.
Surisetty, K., Siegler, H.D.H., McCaffrey, W.C., Ben-Zvi, A., 2010. Model re-parameterization and output prediction for

a bioreactor system, Chemical Engineering Science, 65, 4535-4547.
Turanyi T., 1990. Reduction of large reaction mechanisms, New J Chemistry, 14, 795-803.
Vajda, S., Rabitz, H., Walter, E., Lecourtier, Y., 1989. Qualitative and quantitative identifiability analysis of nonlinear

chemical kinetic models, Chemical Engineering Communications, 83, 191-219.
van Boekel, M. A. J.S 1996, Statistical aspects of kinetic modeling for food science problems. Journal of Food Science,

61(3), 477-489.
Varziri, M. S., McAuley, K.B. McLellan, P. J., 2008. Parameter Estimation in Continuous-Time Dynamic Models in

the Presence of Unmeasured States and Nonstationary Disturbances. Industrial Engineering Chemical Research, 47,
380-393.

Varziri, M. S., McAuley, K.B. McLellan, P. J., 2008. Parameter and State Estimation in Nonlinear Stochastic Continuous-
Time Dynamic Models With Unknown Disturbance Intensity, The Canadian journal of Chemical Engineering, 86,
828-837.

Velez-Reyes, M. and Verghese, G.C., 1995. Subset selection in identification, and application to speed and parameter
estimation for induction machines, Proc. 4th IEEE Conf. Control Appl., 991-997.

Walter, E., Pronzato, L., 1994. Identification of parametric models from experimental data. Springer, Berlin.
Weijers, S. R., Vanrolleghem, P.A., 1997. Procedure for selecting best identifiable parameters in calibrating activated

sludge model no. 1 to full-scale plant data, Water Science and Technology, 36(5), 69-79.
Wu, S., McLean, K. A.P., Harris, T.J., McAuley, K.B., 2011. Selection of optimal parameter set using estimability

analysis and MSE-based model-selection criterion, International J Advanced Mechatronic Systems,3(3), 188-197.
Yao, K.Z., Shaw, B.M., Kou, B., McAuley, K.B., Bacon, D.W., 2003. Modelling ethylene/butene copolymerization with

multi catalyst: parameter estimability and experimental design, Polymer Reaction Engineering., 11(3), 563-588.
Yeh, A.B., Singh, K., 1997. Balanced Confidence Regions Based on Tukey’s Depth and the Bootstrap, Journal of the

Royal Statistical Society B-Statistical Methodology, 59(3), 639-652.

19


	Introduction
	Estimability analysis
	Confidence regions
	Conclusions

