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We consider the propagation of a shallow-water undular bore over a gentle monotonic

bottom slope connecting two regions of constant depth, in the framework of the variable-

coefficient Korteweg – de Vries equation. We show that, when the undular bore advances

in the direction of decreasing depth, its interaction with the slowly varying topography

results, apart from an adiabatic deformation of the bore itself, in the generation of a

sequence of isolated solitons — an expanding large-amplitude modulated solitary wave-

train propagating ahead of the bore. Using nonlinear modulation theory we construct an

asymptotic solution describing the formation and evolution of this solitary wavetrain. Our

analytical solution is supported by direct numerical simulations. The presented analysis

can be extended to other systems describing the propagation of undular bores (dispersive

shock waves) in weakly non-uniform environments.

1. Introduction

Description of the interaction of a shallow water wave with variable topography is a

classical and fundamental problem of fluid mechanics. This problem has been thoroughly

studied for linear waves (see, e.g. Johnson (1997) and references therein) as well as for

isolated solitary waves (see e.g. Grimshaw (2007a) and references therein). Much less is

known about the propagation of nonlinear wavetrains over obstacles. In spite of being

of considerable interest for applications, in particular, in coastal oceanography (see e.g.
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Scotti et al. (2008), Tissier et al. (2011) and references therein) this problem remains

almost unexplored theoretically except for very special model cases where exact analytic

solutions are available (see Ostrovsky & Pelinovsky (1975), Miles (1983a), and Grimshaw

(2007a)).

Nonlinear wavetrains are often generated in the form of unsteady undular bores con-

necting two different basic flow states and exhibiting solitary waves at one of the edges.

Undular bores are usually formed as a result of dispersive resolution of a shock or an

initial discontinuity in fluid depth/velocity (see e.g. Smyth & Holloway (1988), El et al.

(2006), Esler & Pearce (2011)) or due to the resonant interaction of a fluid flow with vari-

able topography (see e.g. Grimshaw & Smyth (1986), Baines (1995), El et al. (2009)).

In the framework of a weakly nonlinear long wave paradigm, the propagation of a

shallow-water undular bore over a flat bottom, in the absence of dissipation effects,

is asymptotically described by the slowly modulated periodic solution of the constant-

coefficient KdV equation. The evolution of the modulation parameters (such as mean

value, amplitude, wavenumber etc.) in the undular bore is then described by an expansion

fan solution of the Whitham averaged equations (Gurevich & Pitaevskii (1974), Fornberg

& Whitham (1978)).

In the presence of variable topography, the relevant model for the weakly nonlinear

long-wave propagation is the variable-coefficient KdV equation which, for slow topogra-

phy variations can be asymptotically reduced to the perturbed constant-coefficient KdV

equation. The corresponding perturbed modulation equations were derived in El et al.

(2007). They take into account variations of the undular bore parameters due to varying

environment and bottom friction, in addition to the modulations resulting from spatial

non-uniformity of the initial or boundary conditions. Analysis of the behaviour of the

characteristics of the modulation system for the perturbed KdV equation in the vicinity
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of the leading edge of the undular bore in El et al. (2007) has enabled one to identify

two possible scenarios of the undular bore evolution with respect to the behaviour of its

leading solitary wave:

(i) “Weak interaction” (local) scenario. In this scenario, the undular bore propagates

so that its lead soliton evolves as an isolated, adiabatically varying solitary wave;

(ii) “Strong interaction” (nonlocal) scenario. The undular bore evolves so that its lead

soliton evolution is determined not only by the local variations of the topography or/and

the presence of bottom friction but also by the interaction with the entire nonlinear

wavetrain behind it.

The actual scenario of the propagation of an undular bore over a slope depends on the

slope polarity and on the relative values of the characteristic scales in the problem (the

typical slope value, the bottom friction coefficient, the typical wavelength in the bore

and the typical spatial scale for modulations).

In this paper, we further explore the undular bore on a slope problem by considering

in detail a special case when the undular bore propagation occurs over a broad but

finite region of decreasing depth. Such a configuration is relevant to the modelling of

the near-shore tsunami propagation (see e.g. Madsen et al. (2008), Tissier et al. (2011)

and references therein) but is also of a broader significance in the context of the general

description of the dispersive shock wave propagation in weakly inhomogeneous media.

The main result of the paper is that, if the undular bore advances in the direction

of decreasing depth, its interaction with the slowly varying topography results in the

formation of a sequence of isolated solitons – an expanding modulated solitary wavetrain

attached to and propagating ahead of the bore. Importantly, this solitary wavetrain is not

part of the bore and its generation constitutes a non-adiabatic response of the undular

bore to the slow topography variations, which is not captured by the classical Gurevich-



4 G.A. El, R.H.J. Grimshaw and W.K. Tiong

Pitaevskii type solutions assumed in El et al. (2007). Here we construct an appropriate

extension of the traditional undular bore modulation theory to include an asymptotic

description of the generation and evolution of the advancing solitary wavetrains. Our

analytical solution is supported by direct numerical simulations.

2. Problem formulation

We start with the canonical model for a weakly nonlinear unidirectional shallow-water

wave propagation over uneven bottom, which is the variable-coefficient KdV equation

(Kawahara (1975), see also Grimshaw (2007b) and references therein)

At + cAx +
cx
2
A+

3c

2h
AAx +

ch2

6
Axxx = 0 . (2.1)

This is written here in non-dimensional form, based on a length scale h0, a representative

depth, and a time scale
√

h0/g. Here A(x, t) is the free surface elevation above the undis-

turbed non-dimensional depth h(x), while c(x) =
√

h(x) is the non-dimensional linear

long wave phase speed. The variable-coefficient KdV equation in the form asymptotically

equivalent to (2.1) was first systematically derived for surface gravity waves by Kakutani

(1971) and Johnson (1973), and an analogous equation for internal waves by Grimshaw

(1981). The first two terms in (2.1) are the dominant terms, and by themselves describe

the propagation of a linear long wave with speed c. The remaining terms represent, re-

spectively, the effect of varying depth, weakly nonlinear effects and weak dispersion. The

KdV equation for constant depth can be derived as an asymptotic shallow-water small-

amplitude reduction of the full Euler system for irrotational flows using the usual balance

in which ∂/∂t ∼ ∂/∂x ∼ ǫ ≪ 1, A ∼ ǫ2 (see, e.g., Johnson (1997)). In the derivation of

(2.1) weak inhomogeneity is added to this balance so that cx/c scales as ǫ
3. For simplicity

we ignore here the term describing effects of bottom friction (see e.g. Miles (1983b) or

El et al. (2007)), this could be introduced later.
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We can cast (2.1) into the asymptotically equivalent form

Aτ +
hτ

4h
A+

3

2h
AAX +

h

6
AXXX = 0 , (2.2)

where τ =

∫ x

0

dx
′

c(x′)
, X = τ − t. (2.3)

Here h = h(τ) explicitly depends on the variable τ which describes evolution along the

path of the wave. Formally we write A(x, t) = Ã(X, τ) and h(x) = h̃(τ) but then omit

the “tilde” in (2.2). The balance of terms in (2.2) is ensured by ∂/∂τ ∼ ǫ3, ∂/∂X ∼ ǫ,

A ∼ ǫ2. Thus, unlike in the original variable-coefficient KdV equation (2.1), where both

independent variables x and t vary on the same scale ∼ 1/ǫ, in (2.2) the “time” τ is a

slow variable relative to the “spatial” coordinate X . We stress that equations (2.1) and

(2.2) are asymptotically equivalent: they differ with respect to terms of O(ǫ7), which is

the same as the error term in both equations.

We shall suppose that

h(x) = 1 for x < 0 , h(x) = h1 for x > x1 , (2.4)

and varies monotonically in 0 ≤ x ≤ x1. We assume that x1 ≫ 1. Then for times t < 0

we shall suppose that we have an initial condition imposed in x < 0, that is

A(x, t = 0) = A0(x) for x < x0 < 0 , A(x, t = 0) = 0 for x > x0 . (2.5)

Thus initially we generate a solution of the constant coefficient KdV equation, and the

aim is to see how this develops in x > 0. The special case when A0 is a constant for x < x0

generates an undular bore. In this paper we study the propagation of an undular bore

over a decreasing depth region, i.e. h1 < 1. The setting under consideration is illustrated

in Figure 1. In terms of the “signalling” variables (2.3) the initial condition (2.5) becomes

Ã(X(t = 0) = τ, τ) = A0(x) , (2.6)

where x(τ) is given by (2.3). However, because τ is a slow variable relative to X , we have
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h0 = 1
h1

x0 0 l x

A0

Figure 1. Propagation of an undular bore over sloping bottom: problem setting

Ã(X, τ) = Ã(X, 0) +O(ǫ3) so asymptotically, the initial condition for (2.2) is

A(X, τ = 0) = A0(X) , (2.7)

where we have again omitted the “tilde” for A and used the fact that A0(x) is only

non-zero in x < 0 where τ = x, and so X = x at t = 0.

The governing equation (2.2) can be cast into several equivalent forms. That most

commonly used is the variable-coefficient KdV equation, obtained here by putting

B = h1/4A , so that Bτ +
3

2h5/4
BBX +

h

6
BXXX = 0 (2.8)

This form shows that equation (2.2) has two integrals of motion with the densities pro-

portional to B = h1/4A and B2 = h1/2A2. These are often referred to as laws for the

conservation of “mass” and “momentum”.

It is often convenient to recast (2.2) into the standard KdV equation form with con-

stant coefficients, modified by a certain perturbation terms. Thus we introduce the new

variables (see e.g. Newell (1985) or El et al. (2007))

u =
3

2h2
A =

3

2h9/4
B , S =

1

6

∫ τ

0

h(τ
′

)dτ
′

=
1

6

∫ x

0

h(x′)1/2dx′. (2.9)
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so that uS + 6uuX + uXXX = −9hS

4h
u . (2.10)

In this form, the governing equation (2.10) has the structure of the integrable KdV

equation on the left-hand side, while the effect of varying depth is on the right-hand side.

This structure enables one to use the modulation theory for perturbed integrable systems

developed in Kamchatnov (2004). Yet another convenient form for (2.2) is obtained by

putting

T =
1

6

∫ τ

0

dτ
′

h5/4(τ ′ )
=

1

6

∫ x

0

dx′

h7/4(x′)
(2.11)

U =
3B

2
so that UT + 6UUX + β(T )UXXX = 0 where β(T ) = h9/4 . (2.12)

In this formulation we assume that β(T ) = 1 for 0 < T < T0 and β(T ) = β1 for T > T1

with a monotonic variation in T0 ≤ T ≤ T1. Note that the equations (2.2, 2.8, 2.10, 2.12)

are exactly equivalent. The initial condition for (2.10, 2.12) are

u(X,S = 0) = u0(X) = U(X,T = 0) = U0(X) =
3

2
A0(X) . (2.13)

Note that in all the equations (2.2, 2.8, 2.10, 2.12) we shall refer to τ, S, T respectively

as “time”, although they are in fact a variable describing evolution along the path of the

wave.

3. Undular bore transformation over the slope

When the bottom is flat, so that β = 1 in (2.12), we assume that the initial condition is

that U(X,T = 0) = H(−X)U0 , U0 = 3A0/2. Then the decay of the initial discontinuity

at X = 0 leads to the development of an undular bore, an expanding slowly modulated

periodic wavetrain, asymptotically described by the Whitham modulation theory. The
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local wave form of the undular bore is given by the periodic KdV solution

U = a{b(m) + cn2(
q

β1/2
(X −X0 − V T );m)}+ d , (3.1)

where b =
1−m

m
− E(m)

mK(m)
, a = 2mq2 ,

and V = 6d+ 2a

{

2−m

m
− 3E(m)

mK(m)

}

. (3.2)

Here cn(x;m) is the Jacobi elliptic function of modulus m (0 < m < 1) and K(m), E(m)

are the elliptic integrals of the first and second kind respectively, a is the wave amplitude,

d is the mean level, V is the wave speed, and X0 is a constant defining the initial phase.

Note that we have retained β in (3.1) and (3.3), in order to include the case when β 6= 1

on the shelf. Also, if the characteristic scale for slow variations of β with time is much

greater than that of the modulation parameters in the undular bore, expression (3.1)

remains asymptotically valid for βT 6= 0. The value β1/2/q can be identified as a measure

of the width of the wave humps while their spatial period (wavelength) is

L =
2K(m)β1/2

q
. (3.3)

Note that for 1−m ≪ 1, we have L ≫ β1/2/q. This family of solutions contains three free

parameters, which are chosen from the set {a, q, V, d,m}. As m → 1, cn(x;m) → sech(x)

and then the cnoidal wave (3.1) becomes a solitary wave, riding on a background level d.

On the other hand, as m → 0, cn(x;m) → cosx and so the cnoidal wave (3.1) collapses

to a linear sinusoidal wave (note that in this limit a → 0).

The Whitham modulation theory assumes that the expression (3.1) describes a mod-

ulated wave in which the amplitude a, the mean level d, the speed V and the modulus

m are all slowly varying functions of X and T . The outcome is a set of three nonlin-

ear hyperbolic equations for three of the available free parameters, chosen from the set

(a, q, V, d,m), or rather better, from an appropriate combination of them. These equa-

tions are often called the Whitham equations.
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The relevant asymptotic solution is then constructed in terms of the similarity variable

X/T , and is given by

X

T
= 2U0

{

1 +m− 2m(1−m)K(m)

E(m)− (1−m)K(m)

}

for − 6U0 <
X

T
< 4U0 , (3.4)

a = 2U0m, d = U0

{

m− 1 +
2E(m)

K(m)

}

, q = U0
1/2 . (3.5)

Note that this solution does not depend on the value of β, the latter affects only the

wavelength of the underlying periodic wave (3.1). The wavenumber distribution in the

undular bore is then given by

k =
2π

L
=

πU
1/2
0

β1/2K(m)
. (3.6)

Ahead of the wavetrain where X/T > 4U0 , U = 0 and at this end, m → 1, a → 2U0

and d → 0; the leading wave is a solitary wave of amplitude 2U0 relative to a mean level

of 0. Behind the wavetrain where X/T < −6U0, U = U0 and at this end m → 0, a → 0,

and d → U0; the wavetrain is now sinusoidal with the wavelength L = π(β/U0)
1/2, which

holds throughout the wavetrain, so all waves behind the undular bore have the same

spatial wavelength (for β = const, otherwise the wavelength slowly varies with T ).

The solution (3.4), (3.5) is due to Gurevich & Pitaevskii (1974) (see also Fornberg

& Whitham (1978)), where it was obtained in terms of the Riemann invariants of the

Whitham modulation equations (Whitham (1965)). It is important to note that the lead-

ing solitary wave in the undular bore developing from an initial step represents asymp-

totically, as T → ∞, a genuine isolated KdV soliton, not constrained by the interactions

with the remainder of the bore (see Khruslov (1976) or more recent investigation by

Claeys & Grava (2010)). We also note that the asymptotic behaviour of the wavenumber

k (3.6) near the leading edge X = X+ implied by solution (3.4), (3.5) is k ∼ 1/ln(1/δ),

where δ = (X+−X)/(X+−X−) ≪ 1, X− being the trailing edge of the undular bore (see
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Gurevich & Pitaevskii (1974), El (2005)). This behaviour can be viewed as a “threshold”

between the “weak interaction” and “strong interaction” scenarios arising in the con-

sideration of the propagation of undular bores over variable topographies (see El et al.

(2007)): if k . 1/ln(1/δ) then the solitary wave interactions near the leading edge are

weak, and the lead solitary wave of the undular bore behaves as an isolated soliton; how-

ever, if k ≫ 1/ln(1/δ) near the leading edge, then the propagation of the lead solitary

wave is strongly affected by its interaction with the remainder of the wavetrain.

If U0 < 0 in the initial condition (3.1), then an “undular bore” solution analogous

to that described by (3.1, 3.4) does not exist. Instead, the asymptotic solution is a

rarefraction wave,

U = 0 for X > 0 ,

U = − X

6T
for 6U0 <

X

T
< 0 ,

U = U0, for
X

T
< 6U0(< 0) . (3.7)

Small oscillatory wavetrains are needed to smooth out the discontinuities in UX at the

corners.

We concentrate here on the case U0 > 0 producing an undular bore. If the slope is

sufficiently gentle, one could expect that the undular bore would undergo some adiabatic

change during the interaction with varying topography while retaining its structure as

a slowly modulated nonlinear periodic wavetrain with a soliton at the leading edge and

the linear vanishing amplitude wavepacket at the trailing edge. This initial assumption

that the interaction with the topography does not change the structure of the bore has

an immediate implication that the amplitude of the leading soliton for T > T1 has the

same value a = 2U0 as in the initial bore.

Indeed, one can readily infer from the KdV equation (2.12) that the jump [U ] across the
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whole propagating nonlinear wave structure is unaffected by the depth variations. Let the

structure be confined to some intervalXa(T ) < X < Xb(T ) so that [U ] = U(Xb)−U(Xa).

Then it follows from (2.12) that [U ]T = ∂
∂T

∫Xb

Xa
UXdX = 0 provided UX = UXXX = 0

at X = Xa,b(T ). Thus, since the wavetrain advances into the undisturbed depth region,

U(Xb) = 0, one has

[U ] = −U0 for all T > 0 . (3.8)

Note that this result is not only unaffected by the varying coefficient β(T ) but is also

independent of the actual form of the structure. Now, if it is assumed that a single undular

bore emerges onto the shelf with β = β1 then (3.8) implies that relevant modulation

solution for T > T1 will have the same form (3.4) but with X generally replaced by

X−χ(m), where χ(m) is some function, since, due to the presence of the variable region,

the modulation solution cannot remain a centred fan but must become a more general,

simple-wave solution of the Whitham equations. As a matter of fact, the form of the

function χ(m) depends on the variable coefficient β(T ) and can be found only from the

full solution of the perturbed Whitham equations derived in El et al. (2007). Further, the

constant initial phase X0 entering the travelling wave solution (3.1) also should become

the function X0(m) in the transformed undular bore and can be viewed as a “modulation

phase shift” acquired by the undular bore due to its interaction with variable topography.

We note that a similar phase shift arises in the interactions of dispersive shock waves

with rarefaction waves (Ablowitz et al. (2009); El et al. (2011)), which is to some degree

analogous to the present problem of the transformation of the undular over sloping

bottom (see the end of this Section). Importantly, the mentioned phase shifts do not affect

relationships (3.5) between the modulation parameters in the periodic solution, which

implies that amplitude of the leading solitary wave of the transformed bore would then

be 2U0, that is, unchanged from the value before the variable depth region is encountered.
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However, if one now accepts that the leading solitary wave in the undular bore evolves

over a slope as an isolated soliton (the “weak interaction scenario”, an assumption to

be confirmed in Section 6 by the analysis of the behaviour of the modulation Riemann

invariants near the leading edge of the undular bore), its amplitude must vary adiabat-

ically, a = 2U0β
−1/3 to conserve the action flux

∫

U2dX (see Section 4), so that for

T > T1 the leading solitary wave amplitude is 2U0β
−1/3
1 > 2U0 for the decreasing depth

profile, which is clearly inconsistent with the described above evolution scenario based

on the assumption of a single undular bore emerging onto the shelf. To resolve the above

inconsistency an additional solitary wavetrain at the front of the undular bore is needed

to provide the gradual increase of the amplitude from 2U0 at the undular bore leading

edge to the value 2U0β
−1/3
1 implied by the action flux conservation for an isolated soliton.

Thus, the propagation of an undular bore over a broad region of slowly decreasing

depth leads to a non-adiabatic effect, the generation of a solitary wavetrain in front of

the bore. The adiabatic deformation of the bore itself is twofold: (i) the change of the

characteristic scale of the oscillations in the bore due to the change of the dispersion

coefficient β in (2.12); (ii) the occurrence of the additional slow ‘modulation phase shift’

X0(m) throughout the bore so that the relevant modulation solution generally represents

a non-centred simple wave of the Whitham equations.

The outlined undular bore transformation can be clearly seen in Figure 2 (right

panel) where we present the results of the numerical simulations of the original variable-

coefficient KdV equation (2.1) with the following equilibrium depth profile

h(x) =































1 x < 0,

1− αx 0 < x < 400,

0.64 x > 400.

α = 0.0009 (3.9)

The initial condition for (2.1) was taken in the form A(x, 0) = 1
5 (1−tanh(x+400)) so that
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the wave breaking and formation of an undular bore occurs for x < 0. For comparison,

the left panel of Figure 2 presents the evolution of the undular bore generated by the

same initial condition but propagating over flat bottom, h(x) = 1. We need to stress that

the plots in Figure 2 are made primarily for the illustration purposes as they provide

only a qualitative picture of the evolution of a shoaling shallow-water undular bore.

Indeed, the initial surface elevation jump value 0.4 assumed in the numerical simulations

is way beyond the range of validity of the variable-coefficient KdV equation (2.1) in the

present context of shallow-water surface gravity waves. Such a large value of the initial

jump was chosen to decrease the (quite significant) computational time necessary for the

undular bore to reach the stage when it entirely propagates in the shelf region after the

sloping segment. The undular bores generated by smaller initial steps (within the range

of applicability of the KdV equation) require much longer numerical time to reveal the

same salient features of the propagation over slowly varying topography.

Another point to be made here is that the numerical solutions of equation (2.1) pre-

sented in Figure 2 show the evolution in physical (x, t)-space, while all our subsequent

analyses will be made for the asymptotically equivalent forms (2.12) or (2.8) of the

variable-coefficient KdV equations, in which the role of the evolution variable is essen-

tially played by the coordinate x, while the “retarded” time X = τ − t plays the role

of the spatial variable. These latter modifications of the KdV equation are necessary

for the analytical progress to be made possible, although the results they provide for

undular bores are not always have an intuitively transparent form. Having this in mind,

we have undertaken numerical simulations of the decay of an initial discontinuity for

the variable-coefficient KdV equation in the form (2.12) to see that all the qualitative

features of the undular bore transformation observed in Figure 2 are preserved under

the transition to the asymptotically equivalent formulations of the problem (2.12), (2.8),
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(2.6). The detailed analysis of our simulations will be presented in Section 5; here (see

Figure 3) we only show the boundaries X±(T ) of the undular bore along with the leading

edge Xs(T ) of the solitary wavetrain. The plot in Figure 3 corresponds to the numerical

solution of the KdV equation (2.12) with the variable coefficient β(T ) in the form of a

very smooth transition between β = 1 and β ≈ 0.367 over the interval ∆T ≈ 1300, and

the initial condition in the form of a step U(X, 0) = 0.5H(−X).

Along with the generation of the advancing solitary wave train, this plot reveals another

feature of the undular bore propagation on a slope, which is not obvious from the plots

of the oscillating wave field in Figure 2 and is related to the dynamics of the trailing edge

X−(T ). One can observe a non-monotonic behaviour of the curve X−(T ) in the interval

300 . T . 3000, which apparently is related to the occurrence of the earlier mentioned

spatial shift χ(m) in the modulation solution (3.5) leading to the “de-centring” of the

expansion fan. This results, for large T , in the stationary shift for the curve X−(T )

relative to its initial behaviour. One can also observe the multiphase dynamics occurring

in the rear part of the bore while it propagates over the sloping region. The multiphase

behaviour continues for some time after the bore emerges onto the shelf (cf. plot 3

in the right panel of Figure 2) and, at sufficiently large times, T & 3000 the single-

phase slowly modulated wave behaviour throughout the whole wavetrain restores. The

described transient multiphase dynamics near the trailing edge does not affect the front,

“soliton”, part of the bore which retains its regular single-phase structure at all times.

One can clearly see the confirmation of the three main conclusions following from our

analysis so far: (i) the propagation of the shallow water undular bore into the region of

slowly decreasing depth leads to the generation of the large-amplitude solitary wavetrain

ahead of the bore; (ii) the undular bore edge speeds, X ′
±(T ), asymptotically restore their

original values X ′
−(T ) = cot(θ1) and X ′

+ = cot(θ2) upon the emergence of the bore onto
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the shelf at T > T1; (iii) there are spatial shifts in the positions of the transformed

undular bore edges X±(T ) relative to those that would have taken place in the original

bore in the absence of the variable topography.
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Figure 2. Numerical solution of the variable-coefficient KdV equation (2.1) with the initial condition A(x, 0) = 1

5
(1− tanh(x+ 400)).

Left panel: an undular bore propagating over a flat bottom h(x) = 1; Right panel: propagation of the same (initially) undular bore



Transformation of a shoaling undular bore 17

−6000 −4000 −2000 0 2000 4000 6000 8000 10000 12000
0

500

1000

1500

2000

2500

3000

3500

4000

X

T

Before slope

On slope

After slope

X
s

X
+X

−

θ
1

θ
2

θ
1

θ
2

Figure 3. X-T plane of the evolution of an undular bore according to the KdV equation (2.12)

with variable dispersion coefficient β(T ) = h9/4(T ) where h(T ) = 9

50

(

1− tanh
(

T−450

150

))

+ 0.64

and the initial condition U(X, 0) = 0.5H(−X): numerical simulation data. The undular bore

and the solitary wavetrain are confined to [X
−
(T ),X+(T )] and [X+(T ),Xs(T )] respectively. The

dashed line shows an extrapolation of the leading edge X+(T ) of the initial undular bore so one

can see the spatial shift of X+(T ) due to the interaction with the slope.

It is interesting to note that the generation of an advancing soliton train in front of the

undular bore was recently observed in Ablowitz et al. (2009) for one of the cases of the

overtaking interaction of a dispersive shock wave with a rarefaction wave studied in the

framework of the constant-coefficient KdV equation. Another interesting feature seen in

the corresponding numerical plots in the Ablowitz et al. (2009) paper is the presence of

a transient multi-phase behaviour for the undular bore interacting with the rarefaction

wave. This behaviour can also be clearly seen in Figure 2 (plot 3 in the right panel).

These similarities between two apparently different problems are not surprising when one

observes that, in our present formulation the undular bore essentially propagates through

the “rarefaction region” of decreasing depth. The essential difference is, of course, that
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in our problem the profile h(x) of the “rarefaction region” is fixed and described by

variable coefficients in the KdV equation while the evolving profile of the hydrodynamic

rarefaction wave in Ablowitz et al. (2009) is given by the relevant solution (3.7) of the

constant-coefficient KdV equation.

4. Formation and evolution of the solitary wavetrain

In this section we construct an asymptotic description of the solitary wavetrain forming

in front of the undular bore that advances into the decreasing depth region. We start

with the standard results for the adiabatic evolution of a single soliton in a slowly varying

environment and then proceed with the analysis of the sequence of solitary waves attached

to the leading edge of the undular bore.

It is well-known (Boussinesq (1872)) that a solitary wave propagating over a slowly

varying bottom will deform adiabatically so that its amplitude varies as h−1 . To demon-

strate this it is best to use (2.2), (2.8) or (2.12) as these have the conservation law for

wave action flux. Thus, for instance,

d

dT

∫ ∞

−∞

U2dX = 0 . (4.1)

The slowly varying solitary wave for (2.12) is

U ∼ a sech2{γ(X − Φ(T ))} , V = ΦT = 2a = 4βγ2 , (4.2)

where the amplitude a etc. are slowly varying function of T . Substitution into (4.1) gives

a2

γ
= 2β2γ3 = constant , (4.3)

and so γ ∼ β−2/3 and a ∼ β−1/3. Thus, since β = h9/4, we have a ∼ h−3/4 and noting

that U ∼ h1/4A, the result follows. The leading wave in the undular bore is a solitary wave

whose amplitude for 0 < T < T0 is 2U0. We will assume, as the undular bore propagates

and deforms over the slope, this leading solitary wave will behave as if detached from
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the undular bore (the ‘weak interaction scenario’, El et al. (2007) and Section 5 below).

Then its amplitude a = 2U0β
−1/3 and it will emerge onto the shelf region T > T1 with

an amplitude 2U0β
−1/3
1 . Its trajectory is

X = Φ(T ) =

∫ T

0

4U0β(T
′

)−1/3 dT
′

, (4.4)

and it reaches T = T1 at X = X1 = Φ(T1).

More generally, a slowly-varying solitary wavetrain propagating over a zero background

can be constructed as a modulated periodic “lattice” of solitary waves (4.2) with a large

spatial period so that the solitons overlap only in the regions of their tails, where the

functions are exponentially small, and thus can be regarded as non-interacting. We note

that in fact, a periodic lattice of solitons ∼ ∑

n∈Z

sech2(λ(x + nL)), where λ is the inverse

“half-width”, converges pointwise to the cnoidal wave solution (3.1) for any period L > 0

(see e.g. Whitham (1984)). The condition L ≫ λ−1 for such a soliton lattice is equivalent

to the condition 1 − m ≪ 1 in the more conventional representation of the periodic

solution (3.1) in terms of the Jacobi elliptic function).

Thus, locally, the solitary wavetrain can be described, up to a constant phase shift, by

an asymptotic expression

0 < X < 1/κ : U ∼ a sech2(γΘ) , ΘT = −κV , ΘX = κ , (4.5)

where V = 2a = 4βγ2κ2 ; (4.6)

U(Θ + 1) = U(Θ) .

The term “locally” here implies distances comparable with a single spatial period L =

1/κ. In a modulated solitary wavetrain, a and κ are slowly varying functions of X and

T (i.e. they vary on the scale much larger than 1/κ) so that (4.5) can be viewed as a

natural extension of (4.2) for a single slowly varying soliton, and it reduces (within each

period) to that expression when one sets κ = 1. The fact that the initial phase is not
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fixed in (4.5) is not essential for our consideration as we shall be interested only in the

behaviour of slow modulations a(X,T ), κ(X,T ). Also note that expression (4.5) agrees

with (3.1) in the limit when m → 1 if one assumes q = κγβ1/2.

The modulation equations for the amplitude a and the soliton train wavenumber κ

then follow:

{

a2

κγ

}

T

+ V

{

a2

κγ

}

X

= 0 , (4.7)

κT + (V κ)X = 0 . (4.8)

The system (4.7), (4.8) was obtained by Grimshaw (1979) (see the zero mean, A = 0,

reduction of equation (2.19)) using a multiple-scale expansion of the variable-coefficient

KdV solution with the leading term in the form (4.5). The amplitude equation (4.7)

can also be obtained directly, using averaging of the KdV “mass” conservation law over

the periodic soliton lattice (4.5) or via the averaged Lagrangian approach (Whitham

(1974)). It can also be shown to be consistent with the soliton (m → 1) limit of the full

Whitham modulation system derived in El et al. (2007) for the perturbed KdV equation

(2.10). It should be stressed that, while the amplitude equation (4.7) represents an exact

reduction of the full modulation system where one sets m = 1, equation (4.8) is valid

only asymptotically for 1 −m ≪ 1 i.e within the range of validity of the approximation

(4.5).

Using the relations (4.5), equations (4.7), (4.8) can be written in the form

Aσ + 2AAX = 0 , A =

{

a2√
2κγ

}2/3

= aβ1/3 , (4.9)

κσ + (2Aκ)X = 0 , (4.10)

where σ =

∫ T

0

β(T
′

)−1/3dT
′

. (4.11)

Remarkably, the system (4.9, 4.10) for A(X, σ) and κ(X, σ) has the same form as system
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(4.7, 4.8) for a(X,T ) and κ(X,T ) in the case when β = β0 = constant (and so a =

4β0γ
2κ2), i.e. for the constant-coefficient KdV equation – see Whitham (1974), Ch. 16.

When there is no X-variation, A, κ are constants, and the result (4.3) is recovered.

The general solution of (4.9, 4.10) is found by using characteristics,

A = constant , on
dX

dσ
= 2A , (4.12)

and
dκ

dσ
= −2AXκ =

Aσ

A κ . (4.13)

Note that the system (4.12), (4.13) has only one multiple characteristic family and all

the characteristics are straight lines in the X-σ plane.

We define the position of the trailing edge of the solitary wavetrain as the line X =

X+(T ) where a = 2U0. This definition is consistent with the location of the leading edge

of the undular bore for the flat bottom propagation case, and initially X ′
+(T0) = 4U0.

However, for the varying bottom case the line X = X+(T ) is not associated with the

trajectory of a particular solitary wave as the solitary waves must be allowed to cross

this boundary to enable the formation of the advancing modulated solitary wavetrain;

therefore

0 < X ′
+(T ) < 4U0 for T0 < T < T1 . (4.14)

Thus, the following boundary condition must be satisfied for the solitary wavetrain am-

plitude equation (4.9),

A = 2U0β
1/3 on X = X̄(σ) , (4.15)

where X̄(σ) = X+(T (σ)); T (σ) being the inverse relation of (4.11), so that σ(T (σ)) = σ.

The latter relationship requires that β(T ) varies monotonically from 1 at T = T0 to β1

at T = T1.

The solution for A is

A = A0(σ0) = 2U0β
1/3(T (σ0)) , X − X̄(σ0) = 2A0 · (σ − σ0) , (4.16)
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σ0 ∈ [0, σ1] being a parameter on the curve X = X̄(σ). Formally, elimination of the

parameter σ0 from (4.16) yields A as a function of X, σ. The solution (4.16) is defined

for X̄(σ) < X < Xs, where Xs = 4U0σ is the trajectory of the leading soliton in the

solitary wavetrain (see (4.4)), having the amplitude a = 2U0β
−1/3, i.e. A = 2U0. For

X > 4U0σ we have A = 0. Calculating the derivative AX we obtain:

AX =
A′

0(σ0)

2A′
0(σ0)(σ − σ0) + [X̄ ′(σ0)− 2A0(σ0)]

. (4.17)

Owing to (4.14) [X̄ ′(σ0) − 2A0(σ0)] < 0, therefore to guarantee the existence of the

obtained solution for all X, σ one must have A′
0 < 0. This, by (4.16), (4.11) implies

β′(T ) < 0. Then our solution represents a rarefaction fan emanating from the curve

X = X̄(σ0). The condition β′(T ) < 0 (decreasing depth) thus can be viewed as the

condition of the formation of an expanding solitary wavetrain in front of the bore. One

can say that the decreasing depth ‘promotes’ the detachment of solitary waves at the

leading edge of the undular bore. This also confirms our initial assumption that the

leading solitary wave of the undular bore behaves as an isolated KdV soliton when

the bore advances into decreasing depth region. A direct numerical confirmation of this

assumption will be presented in Section 5.

Using A(X, σ) defined by (4.16) the corresponding general solution for κ is then found

from (4.13), that is

κ = κ0

{

1 +
2A′

0(σ0)(σ − σ0)

X̄ ′(σ0)− 2A0(σ0)

}−1

. (4.18)

where κ0 is the value of κ on the curve X = X+(T (σ0)) = X̄(σ0) and σ0(X, σ) is defined

by (4.16).

Generally, to find the curve X = X+(T ) for T0 < T < T1 one needs to solve the full

perturbed modulation system from El et al. (2007). However, it is instructive to assume
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that

X ′
+(T ) ≪ 4U0 for T0 < T < T1 , (4.19)

and thus X̄ ′(σ0) ≪ 2A0(σ0). This behaviour can be formally justified for functions β(T )

varying sufficiently fast on a typical time scale of the solitary wavetrain modulations (but

still being slow functions on the time scale of a single soliton). Indeed, since X ′
+(T0) =

4U0, in order to satisfy (4.14) one must have X ′′
+(T ) < 0 ( it is clear that signX ′′

+(T ) =

signβ′(T )), then the result follows as an asymptotic behaviour of X+(T ) for sufficiently

large T . Thus we have

X+(T ) ≃ X+(T0) = 4U0T0 for T0 < T < T1. (4.20)

Our numerical simulations show that behaviour (4.20) establishes itself quite quickly even

for rather slow functions β(T ). One can see this in the numerical plot corresponding to

βT ∼ 5 · 10−4 shown in Figure 3. For larger values of βT , say βT ∼ 10−3 − 10−2, the

boundary X+(T ) becomes stationary almost immediately as variations of β begin at

T = T0; X+ resumes its motion at T = T1 and gradually restores its initial velocity

4U0. Thus (4.19) and (4.20) can be safely used in the solution (4.18), (4.16) for a broad

range of the slope values specified in terms of β(T ). The schematic behaviour of the

boundaries X+(T ) and Xs(T ) illustrating the asymptotic formulation of the problem of

the generation of the solitary wavetrain on the given boundary X = X+(T ) = X+(T0)

for T0 < T < T1 is shown on Figure 4. Thus, using (4.19) we have to leading order

κ ≃ κ0

{

1− A′

0(σ0)(σ − σ0)

A0(σ0)

}−1

= κ0

{

1− 2

3

β′(σ0)

β(σ0)
(σ − σ0)

}−1

, (4.21)

where β(σ0) ≡ β(T (σ0)) so that β′(σ0) = βTβ
1/3(σ0) < 0 and therefore solution (4.21)

exists for all X, σ. Then the leading edge of the undular bore, that is also the trailing

edge of the solitary wavetrain, emerging on the shelf is X+(T ) ≃ 4U0T0 + 4U0(T − T1)

for T > T1 and the phase shift ∆+ = χ(1) (see Section 3 for the definition of χ(m)) can
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Figure 4. Schematic behaviour of the boundaries X+ and Xs of the solitary wavetrain

generated at the leading edge of the undular bore on a slope.

be estimated as ∆+ ≃ −4U0(T1−T0). Of course, one can guarantee the linear behaviour

of X+(T ) ∼ 4U0T only for T ≫ T1 when the slowly modulated structure of the undular

bore fully adjusts itself to the shelf region with β = β1.

Let σ1 = σ(T1). Then on the shelf where T > T1 , σ > σ1 we have β = β1 , σ =

σ1 + (T − T1)β
−1/3
1 . The leading edge of the solitary wavetrain on the shelf is Xs =

4U0σ = 4U0(σ1 +(T −T1)β
−1/3
1 ). We note that for T > T1 both both boundaries X+(T )

andXs(T ) confining the expansion fan are characteristics and the total number of solitary

waves in the train for T > T1 does not change with time. The value

κ0(σ0) ≃
U

1/2
0

4β1/2(σ0)
I , where I ≈ 0.6569, (4.22)

is found by examining the undular bore structure near its leading edge (see Appendix).

Now, from (4.6), (4.9) we have γ(X,T ) = κ−1β−1/3(A/2)1/2 and so the slowly varying

solitary wavetrain (4.5) is fully defined. As T → ∞, σ ∼ Tβ
−1/3
1 , X+ ∼ 4U0T , Xs ∼

4U0β
−1/3
1 T and the asymptotic solution is,

4U0T < X < 4U0β
−1/3
1 T : A ∼ X

2σ
, or a ∼ X

2T
, (4.23)

κ ∼ g(X/(2T ))

σ
∼ g(A)

σ
, or κ ∼ G(a)

T
. (4.24)
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Here g(A) = 3κ0β(σ0)/(2β
′(σ0)), where σ0(A) is found from the solutionA = 2U0β

1/3(σ0)

(see (4.16)). As a matter of fact, g(A) is only defined for the variable coefficient region

0 < σ0 < σ1, where β
′(σ) 6= 0 and where the generation of the solitary wavetrain occurs.

Note that the asymptotic behaviour of the wavenumber (4.24) in the solitary wavetrain

is markedly different from that in the undular bore in the vicinity of the leading edge

(see formula (6.3) in the Appendix).

The function G(a) = g(aβ
1/3
1 ) in (4.24) has the meaning of the distribution function

over amplitude in the solitary wavetrain so that G(a)da is the number of solitons with

amplitudes in the interval [a, a + da] (see Whitham 1974). Since the total number of

solitons N in the train remains constant for T > T1 it can be estimated by the formula

N ≃
∫ 2U0β

−1/3
1

2U0

G(a) da . (4.25)

In concluding this section we note that if β′(T ) > 0 (increasing depth) our solution

(4.21) yields that the interaction of the solitary wavetrain with the increasing depth

bottom profile topography would result in an increase of the density of solitary waves

enhancing thus their interaction and eventually rendering invalid the basic assumption

about the isolated character of solitary waves in the train. Also, the amplitude profile

specified by the solution (4.16) with β′(T ) > 0 will develop a breaking singularity at some

σ = σc also making this solution physically invalid. All this suggests that one should not

expect the generation of the chain of individual non-interacting solitons in front of the

bore if β′(T ) > 0. Instead, this case appears to be relevant to the realisation of the

second (nonlocal) “strong interaction” scenario of the undular bore evolution discussed

in El et al. (2007) and outlined in the Introduction. We plan to study this case in our

future publications.

The obtained description of the transformation of an undular bore over a slope is most

readily illustrated using a diagram showing the behaviour of the Riemann invariants
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Figure 5. Schematic behaviour of the Riemann invariants in the modulation solution. Left:

regular undular bore (before the slope, T < T0); Right: undular bore with an advancing soliton

train confined to [X+, Xs] (after the slope, T ≫ T1)

λj(X,T ), j = 1, 2, 3 of the Whitham equations in the combined modulation solution

obtained in Sections 3 and 4. These Riemann invariants λ1 ≤ λ2 ≤ λ3 can be ex-

pressed as certain functions of any three independent modulation parameters from the

set {a, q, V, d,m} introduced in Section 3 but they are most conveniently represented in

terms of the roots b1 ≤ b2 ≤ b3 of the polynomial, defining the Riemann surface associ-

ated with the cnoidal wave periodic solution (3.1) (Whitham 1965), see formulae (5.4) in

the next section. The periodic solution parameters a, q, V and d are expressed in terms

of these Riemann invariants as

a = 2(λ2−λ1) , q =
√

λ3 − λ1 , V = 2(λ1+λ2+λ3) , d = λ1+λ2−λ3+4(λ3−λ1)
E(m)

K(m)
.

(4.26)

Then the Gurevich-Pitaevskii modulation solution for the undular bore is given by λ1 = 0,

λ3 = U0, while λ2 = U0m is defined by the same expression (3.4). In the solitary wavetrain

we have λ2 = λ3 to leading order so the asymptotic solution (4.23) as T → ∞ assumes

the form λ3 ∼ X/(4T ) in the interval 4U0T ≤ X ≤ 4U0Tβ
−1/3
1 .

The outlined behaviour of the Riemann invariants in the modulated solutions before
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and after the slope, is schematically shown in Fig 5. This behaviour will be confirmed by

direct numerical simulations in the next Section.

5. Numerical simulations

In this section we shall describe the numerical confirmation of the three main assump-

tions used in the modulation analysis of Sections 3 and 4: (i) the assumption that the

undular bore on a slope can be described by a slowly modulated periodic solution of

the KdV equation; (ii) the “weak interaction scenario” ensuring the behaviour of the

leading solitary wave in the undular bore on a slope as an isolated KdV soliton; (iii)

the assumption that the wave structure forming in front of the undular bore is indeed

a solitary wavetrain (rather than part of a traditional “cnoidal” bore described by the

standard Gurevich-Pitaevskii solution).

For the numerical simulations we shall be using the variable-coefficient KdV equation

in the form (2.8),

Bτ +
3

2h5/4
BBX +

h

6
BXXX = 0 (5.1)

with the dependence h(τ) corresponding to the depth profile (3.9),

h(τ) =































1.0 : τ < 400

(

1− α(τ−400)
2

)2

: 400 < τ < 844.44

0.64 : τ > 844.44

, α = 0.0009. (5.2)

As was already mentioned, equation (5.1) is exactly equivalent to the equation (2.12)

used for our asymptotic analysis. The present form (5.1) is slightly more convenient for

numerical simulations as it produces fewer waves for the same running time interval. The

initial condition is taken in the form of a smooth step,

B(X, 0) =
1

4
(1− tanh(X/10)) (5.3)
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Equation (5.1) was solved using the method of lines where the spatial derivatives are

discretised using second order accurate finite difference approximation to reduce the

governing partial differential equation to a system of ordinary differential equations.

This system is then solved using the fourth order Runge-Kutta method (see e.g. Schiesser

(1991)).

Assuming that locally, undular bore can be described by the periodic solution (3.1)

we shall use the numerical solutions to extract the parameters corresponding to the

modulation Riemann invariants λj introduced in (4.26), which are expressed in terms of

the basic wave parameters b1, b2 and b3 as (see Whitham (1965))

λ3 =
b2 + b3

2
λ2 =

b1 + b3
2

λ1 =
b1 + b2

2
(5.4)

Here b2 ≡ Bmin and b3 ≡ Bmax are easily found from the numerical data. The third

parameter b1 can be obtained from the numerical values of the local spatial period

(wavelength) L, which for the variable-coefficient KdV equation (5.1) is given by the

formula

L =
4h9/8K(m)
√

3(b3 − b1)
where m =

b3 − b2
b3 − b1

. (5.5)

We expect that the variables λj will demonstrate the qualitative behaviour shown in

Figure 5 which will be a confirmation of the validity of the modulation analysis presented

in Sections 3 and 4.

The results of our numerical simulations are presented in Figures 6 – 10. Each of the

Figures 6 – 9 corresponds to a particular value of time, τ = τi and consists of three

plots: the top plot shows the numerical solution for B(X, τi), the middle plot shows

spatial behaviour of the numerical “Riemann invariants” λj and the bottom plot shows

the behaviour of the numerically determined value of the modulus m.

Figure 6 corresponds to the initial undular bore, τ = 400, with the numerical values
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of the Riemann invariants λj (the middle plot) distributed according to the Gurevich-

Pitaevskii solution (3.4) with β = 1 and the modulus running from 0 to 1 across the

bore (see the bottom plot). The Riemann invariant distribution agrees with the diagram

shown on Fig. 5a.

Figure 7 corresponds to the bore propagating over the slope, τ = 800, and one can

observe the presence of the region with λ2 = λ3 in front of the bore. Since we have m = 1

in this region (see the bottom plot), the corresponding wave structure should be identified

with the solitary wavetrain. The amplitude a = λ3−λ1 in this solitary wavetrain increases

towards the leading edge as predicted by our analysis (the comparison for the amplitude

of the leading solitary wave is presented in Figure 10).

In Figure 8 we present the distributions corresponding to τ = 1400, i.e. “after” the

slope. While the front part of the bore and the advancing solitary wavetrain retain their

structure presented in Figure 7 one can observe the occurrence of the new multi-phase

(presumably, two-phase) region in the rear part of the bore. As a matter of fact the

modulus m is not defined for this region (see the bottom plot).

Figure 9 shows the plots at τ = 3400 corresponding to the long-time behaviour of the

transformed wavetrain. The distribution of the Riemann invariants agrees with diagram

in Figure 5b, confirming our theoretical predictions. One can see that the behaviour

of the upper envelope in the solitary wavetrain is markedly different from that in the

undular bore behind it and agrees with the asymptotic formula (4.23).

Note the behaviour of the Riemann variables λ2 and λ3 near the leading edge of

the undular bore in all plots. One can see that d
dX λ2 < ∞ and d

dX λ3 < ∞, which

corresponds to the “weak interaction” scenario identified in El et al. (2007). This confirms

our main assumption that the leading soliton in the undular bore behaves as an isolated

solitary wave in the propagation over the decreasing depth region. The direct quantitative
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confirmation of this assumption can be seen in Figure 10 where we present the comparison

for the amplitude of the adiabatically varying isolated solitary wave on a slope with

the numerical values of the leading solitary wave amplitude in the modulated wavetrain

(initially a single undular bore) propagating over the same slope. In both cases the initial

value of the amplitude was the same, a = 1. For the variable-coefficient KdV equation

(5.1) the adiabatic variations of the solitary wave amplitude are given by formula (see

(4.3))

a = a0

(

h0

h(τ)

)3/4

, (5.6)

where h0 and a0 are the initial depth and the solitary wave amplitude respectively.

Relationship (5.6) follows from (4.3) for the slowly varying solitary wave of the variable-

coefficient KdV equation in the form (2.12). One can see an excellent agreement which

provides direct quantitative confirmation our assumption that the leading solitary wave

of the undular bore evolves as an isolated solitary wave over the variable depth region

when h′(x) < 0.

In conclusion of this section we note that, although in our analysis it was assumed

that the undular bore is fully developed by the moment it enters the slope region, this

requirement is not a pre-requisite for the formation of the solitary wavetrain ahead of

the undular bore. Indeed, our numerical simulations show that most of the key features

of the shoaling undular bore transformation described above remain present in the case

when the initial discontinuity is placed right at the beginning of the shoal so that the

formation of the undular bore and the generation of the solitary wavetrain initially occur

simultaneously, while the the whole structure is propagating over the slope.



Transformation of a shoaling undular bore 31

−300 −250 −200 −150 −100 −50 0 50 100 150 200

0

0.2

0.4

0.6

0.8

1

1.2

X

B

τ = 400

−300 −250 −200 −150 −100 −50 0 50 100 150 200
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

X

 

 

λ
1

λ
2

λ
3

−300 −250 −200 −150 −100 −50 0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

X

m

Figure 6. Initial undular bore (before slope), τ = 400. Upper plot: B(X); Middle plot: the

modulation Riemann variables λ1 ≤ λ2 ≤ λ3 obtained from the plot for B(X) assuming a local

representation of the wave in the form of a cnoidal periodic solution of the constant-coefficient

KdV equation; Bottom plot: the modulus m = (λ2 − λ1)/(λ3 − λ2) as function of X.
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Figure 7. Same as in Figure 7 but for τ = 800 (undular bore on the slope). One can see the

solitary wavetrain (m → 1) forming between X ≈ 350 and X ≈ 500.
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Figure 8. Same as in Figures 6,7 but for τ = 1400 (after the slope). The solitary wave train is

located between X ≈ 700 and X ≈ 1200. A multiphase behaviour can be seen around X = 100.
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Figure 9. Same as in Figures 6,7,8 but for τ = 3400 (long-time behaviour after the slope). The

linear behaviour of the envelope in the solitary wavetrain agrees with the asymptotic prediction

(4.23).
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Figure 10. Comparison for the amplitude of the adiabatically varying solitary wave on a slope

(formula (5.6) with h0 = 1, a0 = 1 ) – solid line; and the numerical data (circles) for the leading

solitary wave in the modulated wavetrain (initially, a single undular bore on the same slope).

6. Discussion

In this paper, we have considered a shallow water undular bore propagation over a

sloping bottom in the framework of the appropriate variable-coefficient KdV equation.

We have shown that, when the undular bore advances into the decreasing depth region its

interaction with the varying topography results in the formation of a sequence of isolated

solitary waves, an expanding modulated solitary wavetrain propagating ahead of the bore

and having the amplitude greater than that of the leading solitary wave in the undular

bore. Unlike other mechanisms of the soliton train generation in the variable-coefficient

KdV equation, such as soliton fission (Madsen & Mei (1969), Johnson (1973)), soliton

caustics (Malomed & Shrira (1991)) or the formation of secondary solitons in the trailing

shelves (Kaup & Newell (1979), Kivshar & Malomed (1989), El & Grimshaw (2002)),

the presented new mechanism is essentially related to non-adiabatic deformations of

modulated cnoidal waves rather than transformations/decay of individual solitons.

Using several assumptions (confirmed by detailed numerical simulations) about the
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structure of the undular bore propagating on a slope we have constructed an asymptotic

modulation solution describing the generation and propagation of the solitary wavetrain

ahead of the undular bore. Our analysis can be extended to include the effects of small

dissipation (e.g. turbulent bottom friction).

Importantly, our general approach is not confined to the KdV dynamics and can be

applied to other systems describing the propagation of undular bores (or, more generally,

dispersive shock waves) through weakly non-uniform environments. In particular, it could

be used for the description of the generation of solitary wavetrains by internal undular

bores in the ocean where the waves typically are propagating on a background whose

properties vary in the wave propagation direction. The relevant model here is an extended

KdV (Gardner) equation which is often used to model oceanic internal solitary waves

over bottom shelves (see e.g. Grimshaw et al. (2004)). We also stress that the availability

of the full modulation solution (an analog of the Gurevich-Pitaevskii solution (3.4))

for the initial “flat-bottom” undular bore is not a pre-requisite in our analysis, and a

similar study can be undertaken for the systems where the initial evolution of the undular

bore is described by a non-integrable dispersive equation (see El (2005) for the relevant

generalisation of the Gurevich-Pitaevskii problem). In particular, one can consider the

propagation of a fully nonlinear shallow water undular bore over a slope in the framework

of the appropriate variable-coefficient Su-Gardner (Green-Naghdi, or Serre) equations

(see El et al. (2006) for the corresponding flat-bottom undular bore theory).

Appendix: Determination of κ0

We assume here that function β(T ) is sufficiently slow so that for each T the undular

bore can be locally described by a single-phase solution (3.1). As our numerical simula-

tions show, this is not entirely true for the whole wavetrain but definitely holds for the
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front part of the bore. The wavenumber in the bore is given by the formula (3.6),

k =
πU

1/2
0

β1/2K(m)
. (6.1)

If we consider the solitary wavetrain as a small wavenumber asymptotic of the modulated

cnoidal wave we must have (see Whitham (1974))

1−m ≪ 1 : κ ≃ k

2π
, (6.2)

which suggests a continuous matching between k/(2π) in the undular bore and κ = κ0 in

the solitary wavetrain at the leading edge X+(T ) of the undular bore. This continuous

matching, however, is not possible for the following reason.

The asymptotic behaviour of k in the modulation solution (3.4) near the leading edge

X = X+(T ) is (Gurevich & Pitaevskii (1974))

k ∼ 2π

β1/2

U0
1/2

ln(1/(s+ − s))
, (6.3)

where s = X/T , s+ = X+/T = 4U0. This implies that |kX | → ∞ while k → 0 when

X → X+. Thus the wavenumber varies rapidly near X = X+. On the other hand, the

typical spatial scale of the variations of modulations in the advancing solitary wavetrain

is much greater than that in the undular bore. Therefore it is natural to require matching

of κ with the mean value of k/(2π) across the undular bore front, which one can naturally

define as the (soliton) part of the bore propagating to the right, i.e. 0 < X < X+ (note

that X = 0 is the characteristic of the modulation system separating the “rightward and

leftwards propagating” parts of the characteristic fan (3.4)). The mean value of k across

the bore front is then

k =
1

X+

X+
∫

0

kdX =
1

4U0

1
∫

m∗

k(m) ·
(

ds

dm

)

dm , (6.4)

where s(m) is given by the modulation solution (3.4) and m∗ ≈ 0.6415 — the value of

m on the characteristic X = 0 — is the root of the equation s(m) = 0. Then, using (6.1)
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we obtain

k =
πU

1/2
0

2β1/2
I, (6.5)

where

I =

1
∫

m∗

W ′(m)

K(m)
dm ≈ 0.6569 , (6.6)

W (m) = 1 +m− 2m(1−m)K(m)

E(m)− (1−m)K(m)
. (6.7)

Thus we have

κ0 =
k

2π
=

U
1/2
0

4β1/2
I . (6.8)
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