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The existence of a band-gap structure associated with water waves propagating over
infinite periodic arrays of submerged horizontal circular cylinders in deep water is
established. Waves propagating at right angles to the cylinder axes and at an oblique
angle are both considered. In each case an exact linear analysis is presented with
numerical results obtained by solving truncated systems of equations. Calculations for
large finite arrays are also presented, which show the effect of an incident wave having
a frequency within a band gap – with the amount of energy transmitted across the
array tending to zero as the size of the array is increased. The location of the band gaps
is not as predicted by Bragg’s law, but we show that an approximate determination
of their position can be made very simply if the phase of the transmission coefficient
for a single cylinder is known.
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1. Introduction
When a plane wave is incident upon a periodic structure (periodic in the x-direction

with period d , say), a resonance can occur when the component of the wavenumber in
the x-direction is an integer multiple of π/d . This is known as Bragg’s law, following
William Lawrence Bragg’s discovery of the phenomenon in the context of X-ray
diffraction in 1912 (Hunter 2004, chapter 2). If we denote the angle that the wave
makes with the x-axis by ϕ, then this is equivalent to the condition 2d cosϕ = nλ,
where λ is the incident wavelength. For incident waves in the x-direction this leads
to the idea that resonances may occur when the wavelength is twice the period, with
higher-order resonances for λ= 2d/n, n= 2, 3, . . . .

In the context of water waves (and for the purposes of this paper we exclude cases
in which the depth variation can be factored out leading to an equivalent acoustics
problem) Bragg resonance has been used to help explain the formation of longshore
sandbars which can often be found on gently sloping beaches (see, for example, Mei,
Stiassnie & Yue 2005, chapter 7). The particular theoretical problem that has been
the focus of most attention is the scattering of surface waves by a finite patch of
sinusoidally varying topography in an otherwise flat ocean (see Davies 1982; Davies
& Heathershaw 1984; Mei 1985; Mei, Hara & Naciri 1988; Chamberlain & Porter
1995). The inclusion of an elastic plate on the free surface (modelling an ice sheet)
has also been considered (Bennetts, Biggs & Porter 2009). More recently, the effect
of Bragg resonance on the efficiency of certain types of wave-energy device has been
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investigated by Garnaud & Mei (2010). The analysis in these papers is predicated on
the scatterers (bed ripples in the former case and floating buoys in the latter) being
small, which then allows for some form of approximation to be made. By contrast, in
this paper we consider a periodic array made up of structures whose dimensions are
of a size comparable to the wavelength.

Specifically, we consider wave interaction with a periodic array of horizontal
circular cylinders of radius a submerged below the free surface in water of infinite
depth. Everything that follows could easily be adapted to the case of constant finite
depth. The undisturbed free surface is z = 0, and the cylinder centres are at x = jd ,
z = −f , where j ∈ � in the case of an infinite array or j = 0, . . . , M − 1 if there are
M cylinders. Polar coordinates centred at x = jd , z = −f are (rj , θj ) with θj measured
from the downward vertical so that

rj sin θj = x − jd, rj cos θj = −z − f. (1.1)

We will write (r, θ) for (r0, θ0) where convenient. The analysis is based on linear water
wave theory in which the fluid is assumed to be inviscid and incompressible and its
motion assumed to be irrotational. A time factor of e−iωt is suppressed throughout.
We assume an ei�y (� � 0) dependence for the velocity potential so that in the region
z < 0, rj > a we have to solve the two-dimensional modified Helmholtz equation
∇2

xzφ −�2φ =0. The free-surface boundary condition is φz = Kφ on z = 0 (K =ω2/g, g

being the acceleration due to gravity), and we require decay as z → −∞. The cylinders
are assumed to be rigid so that ∂φ/∂rj = 0 on rj = a.

The primary aim of this paper is to illustrate the link between resonant behaviour
associated with scattering by finite periodic structures and the concept of stop bands
in wave propagation through an infinite periodic array. The existence of ranges of
frequencies for which wave propagation through a periodic array is not possible is
well known and of great practical importance in a host of physical contexts. In water
waves the most thorough investigations, in which the full linear problem including
evanescent interactions is included, appear to be those by Chou (1998), McIver (2000)
and Porter & Porter (2003). There are many other studies, e.g. An & Ye (2004),
Chen et al. (2004) and Yang et al. (2006), in which the evanescent contributions are
ignored. If an infinite periodic array has a stop band, then one would expect that this
would lead to enhanced reflection when a plane wave is incident on a finite array at
a frequency within such a stop band. Moreover, under such circumstances one would
expect that as the size of the finite array increases, the amount of energy transmitted
across the array should tend to zero.

If one assumes that the scatterers are widely spaced so that the interaction between
them is governed solely by the modes propagating along the surface and not the
evanescent field, then the problem is greatly simplified, and the overall effect of an
array of M cylinders can be determined in terms of the scattering characteristics of a
single cylinder, using a transfer matrix approach. This is described briefly in § 2, and
it leads to a very simple condition which can be used to determine the stop and pass
bands for an infinite array. One of the motivations for considering submerged circular
cylinders in this context is that in the case � = 0 (in deep water) the wide-spacing
argument suggests that stop bands do not exist, essentially because the reflection
coefficient for a single cylinder is identically zero (Dean 1948). The full linear theory,
based on multipole expansions (first used for a single cylinder by Ursell 1950), is
described in § 3 for the case � =0 and in § 4 for � > 0. Numerical results are presented
in § 5, showing that stop bands do exist for all � � 0, leading to the possibility of
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enhanced reflection for large finite arrays when an incident wave has a frequency
which lies within one of these bands.

2. Finite array of widely spaced cylinders
The analysis in this section is described in terms of infinite depth, but the results

are equally valid for the case of constant finite depth with the appropriate change in
wavenumber. We consider an array of scatterers at x = jd , j = 0, . . . , M − 1. They
need not be rigid circular cylinders; the only requirement for what follows is that
they are identical. The results are equivalent (though expressed in a somewhat simpler
form) to those given in Evans (1990); see also Linton & Mclver (2001, § 6.3).

First we consider a single scatterer at x = 0 and assume that for a wave with x-
variation eiαx , where α = (K2 −�2)1/2 > 0, incident from x = −∞ we have the reflection
and transmission coefficients R and T , respectively. In other words, an incident wave
with unit complex amplitude gives rise to a reflected (transmitted) wave with complex
amplitude R (T ). Similarly, for a wave e−iαx incident from x = ∞ we have the reflection
and transmission coefficients r and t , respectively. From standard linear water wave
theory we have (Linton & McIver 2001, § 1.4)

t = T , |r | = |R|, |R|2 + |T |2 = |r |2 + |t |2 = 1, Rt + rT = 0. (2.1)

We proceed as if these quantities are all known, though their determination will, in
practice, require some numerical computation. If the scatterer is at x = jd , then we
label the reflection and transmission coefficients as Rj , rj and Tj , tj , respectively, and

Tj = tj = T , Rj = R e2ijαd, rj = r e−2ijαd . (2.2)

For a single scatterer at x = jd we define the transfer matrix Sj by(
Aj+1

Bj+1

)
= Sj

(
Aj

Bj

)
, (2.3)

which relates the amplitudes of the waves to the right of the scatterer (Aj+1

propagating to the right and Bj+1 to the left) to those on the left (Aj propagating
to the right and Bj to the left). The definitions of the reflection and transmission
coefficients imply that (

Tj rj

0 1

)
= Sj

(
1 0

Rj tj

)
(2.4)

from which

Sj =
1

tj

(
Tj tj − Rjrj rj

−Rj 1

)
=

(
1/t (r/t) e−2ijαd

(r/t) e2ijαd 1/t

)
(2.5)

on use of (2.1) and (2.2). If we write r = ρ e2iδr and t = τ e2iδt we obtain

Sj =

(
eiαj 0

0 e−iαj

) (
1/τ ρ/τ

ρ/τ 1/τ

) (
eiβj 0

0 e−iβj

)
= AjRBj , (2.6)

say, where

αj = δr − jαd, βj = 2δt − δr + jαd. (2.7)

For an array of scatterers at x = jd , j = 0, . . . , M − 1 and an incident wave from
the left with x-dependence eiαx , we denote the overall reflection and transmission



Water waves over arrays of horizontal cylinders 507

coefficients by RM and TM , respectively. If we treat the scatterers as widely separated
so that multiple scattering effects are limited to the propagating waves, then we have(

TM

0

)
= AM−1RBM−1AM−2RBM−2 . . .A1RB1A0RB0

(
1

RM

)
. (2.8)

Let χ = βj+1 + αj = 2δt + αd , which is independent of j . Then

Bj+1AjR =

(
eiχ/τ ρ eiχ/τ

ρ e−iχ/τ e−iχ/τ

)
= W, say, (2.9)

and (
TM

0

)
= B−1

M WMB0

(
1

RM

)
. (2.10)

Sicne ρ2 + τ 2 = 1, it is clear that detW =1 and traceW= (2/τ ) cos χ which is real.
Hence the eigenvalues of W are

λ1 = eiq and λ2 = e−iq, (2.11)

where cos q = (1/τ ) cos χ and q will be real or complex depending on whether
τ > | cosχ | or τ < | cosχ |. (Note that q = π + iy, with y real, if cos χ < −1.) We
then have (Markoš & Soukoulis 2008, § 1.5.2)

Wn =

(
(1/τ ) eiχUn−1 − Un−2 (ρ/τ ) eiχUn−1

(ρ/τ ) e−iχUn−1 (1/τ ) e−iχUn−1 − Un−2

)
, (2.12)

where

Un ≡ Un(cos q) =
sin(n + 1)q

sin q
(2.13)

is a Chebyshev polynomial of the second kind. It can then be shown, from (2.10),
that

TM =
τ e−iMαd

e−iχUM−1 − τUM−2

, (2.14)

and a straightforward calculation (using the identities Un−2 − 2 cos q Un−1 + Un =0
and UnUn−2 =U 2

n−1 − 1) reveals that

|TM |2 =
τ 2

τ 2 + ρ2U 2
M−1

. (2.15)

If q is real, then clearly |TM |2 oscillates as M varies. (It is still possible to take
the limit of RM as M → ∞ by introducing some artificial damping first; see Porter &
Evans 2006). However, if q is complex, which happens if

τ < | cosχ |, (2.16)

then |TM | → 0 as M → ∞. Hence, in the context of water waves, (2.16) is the condition
for a stop band in an infinite array of widely spaced scatterers (a result which appears
to have been given first by McIver 2000). Some general conclusions follow from (2.16).
The smaller the value of τ is (i.e. the stronger the individual elements of the array are
at reflecting waves), the larger the band gaps are likely to be, and one would expect
the band gaps to be centred around the points χ = nπ. If the phase of the transmission
coefficient is small, then these points are approximately αd = nπ, which is Bragg’s law.
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The fact that band gaps are sometimes shifted away from the Bragg values has been
observed previously in related problems; e.g. see Porter & Porter 2003 and Bennetts
et al. 2009, and the former of these papers provides an alternative explanation for
this drift. A classic example of a scatterer for which δt is not negligible even though
it is very poor at reflecting waves is a submerged horizontal circular cylinder in deep
water, for which ρ ≡ 0 if � = 0, and the rest of the paper deals with arrays of such
scatterers.

It is possible to extend the transfer matrix approach to include evanescent wave
interactions (Devillard, Dunlop & Souillard 1988), and this has been done in the
context of periodic bed topographies in Porter & Porter (2003). Here we take a
different approach to solving the full linear problem.

3. Full linear theory: waves perpendicular to the cylinders
When � =0 the modified Helmholtz equation reduces to Laplace’s equation. In this

case, the ingredients for treating an array of submerged circular cylinders through
mutipole expansions can be found in O’Leary (1985) and Linton & McIver (2001,
§ 3.2). Multipoles singular at rj =0 and symmetric in θj are (Linton & McIver 2001,
(B.17))

φj
n =

cos nθj

rn
j

+
(−1)n

(n − 1)!

∫ ∞

0


µ + K

µ − K
µn−1 exp[µ(z − f )] cosµ(x − jd) dµ, n � 1,

(3.1)

and multipoles singular at rj = 0 and antisymmetric in θj are (Linton & McIver 2001,
(B.26))

ψj
n =

sin nθj

rn
j

+
(−1)n+1

(n − 1)!

∫ ∞

0


µ + K

µ − K
µn−1 exp[µ(z − f )] sin µ(x − jd) dµ, n � 1.

(3.2)

The integrals here are contour integrals indented so as to pass beneath the poles that
exist on the real axis at µ = K , which ensures that they behave like outgoing waves
as |x| → ∞. For z > −f we also have (Linton & McIver 2001, (B.3))

φj
n =

2(−1)n

(n − 1)!

∫ ∞

0


µn−1 e−µf

µ − K
(µ coshµz + K sinhµz) cos µ(x − jd) dµ, (3.3)

and for ψj
n one simply replaces cos by − sin in this expression. Derivations of these

formulae can be found in Thorne (1953).
We can develop series expansions for these multipoles about the point x = kd ,

z = −f . Thus, for all j, k and for rk < 2f ,

φj
n =

cos nθj

rn
j

+

∞∑
m=0

P jk
mnr

m
k cosmθk −

∞∑
m=1

Qjk
mnr

m
k sinmθk, (3.4)

ψj
n =

sin nθj

rn
j

+

∞∑
m=0

Qjk
mnr

m
k cosmθk +

∞∑
m=1

P jk
mnr

m
k sinmθk, (3.5)

where {
P jk

mn

Qjk
mn

}
=

(−1)m+n

m!(n − 1)!

∫ ∞

0


µ + K

µ − K
µm+n−1 e−2µf

{
cosµ(j − k)d

sinµ(j − k)d

}
dµ (3.6)
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in an obvious notation. For computational purposes we note that the integral in (3.6)
can be written as the sum of a principal-value integral and a contribution from the
residue at the pole. This can be manipulated to yield

am+nP jk
mn =

(−1)m+n

m!(n − 1)!

[ ∫ 2Ka

0

(
(u + Ka)um+n−1 e−2uf/a cos u(j − k)d/a

− 2(Ka)m+n e−2Kf cos Kd(j − k)
) du

u − Ka

+

∫ ∞

2Ka

u + Ka

u − Ka
um+n−1 e−2uf/a cos u(j − k)d/a du

+ 2πi(Ka)m+n e−2Kf cos Kd(j − k)

]
, (3.7)

where we have evaluated the principal-value integral∫ 2Ka

0

− du

u − Ka
= 0. (3.8)

Similarly for Qjk
mn, just replace cos by sin.

To re-expand the singular terms about x = kd , z = −f we use the technique described
in Linton & McIver (2001, § 3.2.1); see also the Appendix to O’Leary (1985). We can
thus show that for j �= k, rk < min(2f, |j − k|d),

φj
n =

∞∑
m=0

(
P jk

mn + Cjk
mn

)
rm
k cos mθk −

∞∑
m=1

(
Qjk

mn + Sjk
mn

)
rm
k sinmθk, (3.9)

ψj
n =

∞∑
m=0

(
Qjk

mn − Sjk
mn

)
rm
k cos mθk +

∞∑
m=1

(
P jk

mn − Cjk
mn

)
rm
k sinmθk, (3.10)

where {
Cjk

mn

Sjk
mn

}
=

(n + m − 1)!

((j − k)d)n+mm!(n − 1)!

⎧⎪⎨
⎪⎩

cos
[
(n − m)

π

2

]
sin

[
(n − m)

π

2

]
⎫⎪⎬
⎪⎭ . (3.11)

3.1. Infinite array

The case of an infinite array of identical submerged circular cylinders has been
treated previously by Schnute (1967) using an integral equation formulation as in
Levine (1965). The method presented below is much simpler than that given in
Schnute’s work. We seek a solution in the form

φ =

∞∑
j=−∞

eiβjd

∞∑
n=1

an
(
ξnφ

j
n + ηnψ

j
n

)
, (3.12)

where, without loss of generality, we can assume that 0 � βd < 2π, and ξn and ηn

are complex unknowns that we need to determine. It is straightforward to show that
φ(x + d, z) = eiβdφ(x, z), and therefore φ is quasi-periodic. Because of the symmetry
of the geometry about x =0 we can also show that if there is a non-trivial solution
for a particular value of βd , there will also be a solution with βd replaced by 2π −βd

corresponding to a wave travelling in the opposite direction. Hence we can restrict
attention to 0 � βd � π.
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On the assumption that there is a solution of this form, from (3.3), for z > −f ,

φ =

∞∑
n=1

an(−1)n

(n − 1)!

∞∑
j=−∞

exp(iβjd)

∫ ∞

0


µn−1 exp(−µf )

µ − K
(µ coshµz + K sinhµz)

× ((ξn + iηn) exp[iµ(x − jd)] + (ξn − iηn) exp[−iµ(x − jd)]) dµ, (3.13)

which after application of the Poisson summation formula, writing βj = β + 2jπ/d ,
yields

φ =

∞∑
j=−∞

Aj

(|βj | coshβjz + K sinh |βj |z)
|βj | − K

exp(iβjx − |βj |f ), (3.14)

where

Aj =

∞∑
n=1

2πan(−1)n

d(n − 1)!
|βj |n−1(ξn + sgn(βj )iηn). (3.15)

This requires that we assume |βj | �= K for any j . However, we will see later that there
is no singularity when this occurs because Aj then vanishes. The solution can thus
be represented as an infinite sum of modes, each having a different wavenumber and
a different amplitude. The free-surface elevation, which is given by (iω/g)φ|z=0, can
be obtained from (3.14).

The form of the potential given by (3.12) satisfies all the conditions of the problem
except the boundary condition on the cylinders. In fact, we need to satisfy only the
boundary condition on one cylinder (which we take to be the one at the origin), and
then all the others are satisfied because of quasi-periodicity. If we write{

P̂mn

Q̂mn

}
= an+m

∞∑
j=−∞

eiβjd

{
P j0

mn

Qj0
mn

}
,

{
Ĉmn

Ŝmn

}
= an+m

∞∑′

j=−∞
eiβjd

{
Cj0

mn

Sj0
mn

}
(3.16)

(the j = 0 term is included in the definition of Q̂mn even though it is zero, and the
dash on the summation indicates that the j = 0 term should be omitted), then setting
∂φ/∂r = 0 on r = a yields

ξm −
∞∑

n=1

(ξn(P̂mn + Ĉmn) + ηn(Q̂mn − Ŝmn)) = 0, m � 1, (3.17)

ηm +

∞∑
n=1

(ξn(Q̂mn + Ŝmn) − ηn(P̂mn − Ĉmn)) = 0, m � 1. (3.18)

These equations will later be used, in truncated form, to determine numerical
approximations to ξn and ηn.

The quantities P̂mn, Q̂mn, Ĉmn and Ŝmn can all be evaluated simply. In the case of
Ĉmn and Ŝmn the series in (3.16) can actually be summed explicitly. If n + m is odd,
then Ĉmn = 0. On the other hand, if n + m is even (�2) we have

Ĉmn =
(−1)n+1(2πa/d)n+m

m!(n − 1)!(n + m)
Bn+m(βd/2π), (3.19)

where Bn(·) is a Bernoulli polynomial and we have used Abramowitz & Stegun (1965,
(23.1.18)). This is valid for all βd in the interval [0, 2π] and hence for all βd under
consideration here. Similarly if n + m is even, then Ŝmn = 0, whereas if n + m is odd
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(�1) we have

Ŝmn =
i(−1)n(2πa/d)n+m

m!(n − 1)!(n + m)
Bn+m(βd/2π) (3.20)

(Abramowitz & Stegun 1965, (23.1.17)). Equation (3.20) is not valid when m + n=1
and βd = 0, but this case is covered by the fact that Ŝmn = 0 when βd = 0 or π,
and (3.20) is valid for all other βd in the interval (0, 2π). The fact that Ĉmn and
Ŝmn can be expressed so simply is a particularly attractive feature of the solution
procedure.

Next P̂mn and Q̂mn can be expressed as exponentially convergent series, using the
Poisson summation formula. We obtain

P̂mn =
(−a/d)m+nπ

m!(n − 1)!

∞∑
j=−∞

|βj | + K

|βj | − K
|βjd|m+n−1 e−2|βj |f , (3.21)

Q̂mn =
(−a/d)m+nπi

m!(n − 1)!

∞∑
j=−∞

sgn(βj )
|βj | + K

|βj | − K
|βjd|m+n−1 e−2|βj |f . (3.22)

It is worth noting that the contribution from the pole at µ = K plays no role, and
this is consistent with the fact that the radiation condition which stipulates that the
contour must pass beneath the pole is no longer relevant when there is an infinite
array extending to x = ± ∞. In deriving (3.21) and (3.22) we have to assume that
|βj | �= K for any j . However, as |βj | → K for a particular j , P̂mn and Q̂mn clearly
dominate in (3.17) and (3.18), and if we substitute the leading-order behaviour from
(3.21) and (3.22) (i.e. retain only the singular terms) it is straightforward to show that
(3.17) and (3.18) each reduce to

ξn + i sgn(βj )ηn = 0, n � 1, (3.23)

which shows that Aj , given by (3.15), is then zero.
To formulate (3.17) and (3.18) as a finite linear system we write

(x1, x2, . . . , x2N ) = (ξ1, iη1, ξ2, iη2, . . . , ξN, iηN ). (3.24)

In other words ξm = x2m−1 and ηm = −ix2m. Then (3.17) and (3.18) become

x2m−1 −
N∑

n=1

(x2n−1(P̂mn + Ĉmn) − ix2n(Q̂mn − Ŝmn)) = 0, 1 � m � N, (3.25)

x2m +

N∑
n=1

(ix2n−1(Q̂mn + Ŝmn) − x2n(P̂mn − Ĉmn)) = 0, 1 � m � N, (3.26)

and therefore we require the determinant of the 2N × 2N matrix M = (Mij )
2N
i,j=1 to

vanish, where

M2m−1,2n−1 = δmn − P̂mn − Ĉmn, M2m−1,2n = iQ̂mn − iŜmn,

M2m,2n−1 = iQ̂mn + iŜmn, M2m,2n = δmn − P̂mn + Ĉmn,

}
(3.27)

in which all the entries are real. Numerical solutions to these equations are presented
in § 5.
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3.2. Finite array

We now seek a solution in the form

φ = φinc + φsc = φinc +

M−1∑
j=0

∞∑
n=1

an
(
ξ j
n φj

n + ηj
nψ

j
n

)
, (3.28)

in which

φinc = eiKx eKz = eikKd e−Kf

∞∑
n=0

(−Krk)
n

n!
e−inθk . (3.29)

Re-expanding about rk = 0 and then setting ∂φ/∂rk = 0 on rk = a give rise to

ξk
m −

∞∑
n=1

M−1∑
j=0

am+n
(
ξ j
n

(
P jk

mn + Cjk
mn

)
+ ηj

n

(
Qjk

mn − Sjk
mn

))
= eikKd e−Kf (−Ka)m

m!
, (3.30)

ηk
m +

∞∑
n=1

M−1∑
j=0

am+n
(
ξ j
n

(
Qjk

mn + Sjk
mn

)
− ηj

n

(
P jk

mn − Cjk
mn

))
= −i eikKd e−Kf (−Ka)m

m!
, (3.31)

with m � 1, k = 0, . . . , M − 1 in each case. For convenience, we have defined
Ckk

mn = Skk
mn = 0. This can be truncated easily by restricting m and n to range between 1

and N , which yields a 2MN × 2MN system of equations. Again, numerical solutions
to these equations are presented in § 5.

From (3.28) and Linton & McIver (2001, (B.18) and (B.27)), we have that as
x → ±∞,

φ ∼ eiKx eKz + 2π exp(±iKx) exp[K(z − f )]

M−1∑
j=0

∞∑
n=1

(−Ka)n

(n − 1)!
exp(∓iKjd)

(
iξ j

n ∓ ηj
n

)
.

(3.32)
Hence the reflection and transmission coefficients are

RM = 2π e−Kf

M−1∑
j=0

∞∑
n=1

(−Ka)n

(n − 1)!
eiKjd

(
iξ j

n + ηj
n

)
, (3.33)

TM = 1 + 2π e−Kf

M−1∑
j=0

∞∑
n=1

(−Ka)n

(n − 1)!
e−iKjd

(
iξ j

n − ηj
n

)
. (3.34)

Alternative expressions for these coefficients can be obtained by determining the
horizontal and vertical exciting forces on the cylinders and then using standard
reciprocity relations (as described in, for example, Newman 1975 or Linton & McIver
2001, § 1.4). The array is not symmetric about x =0, but if this is accounted for we
can show that

RM = 1
2
(Z/Z + X/X), TM = 1

2
exp[−i(M − 1)Kd](Z/Z − X/X), (3.35)

where we have written

X =

M−1∑
j=0

η
j

1, Z =

M−1∑
j=0

ξ
j

1 . (3.36)

The quantities X and Z are proportional to, respectively, the horizontal and vertical
exciting forces on the cylinder array. To see this, note that the horizontal force on
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cylinder k is proportional to ∫
rk=a

φ sin θk dθk = 2πηk
1, (3.37)

the integral being evaluated by substituting for φ from (3.28), suitably re-expanded
about rk = 0, and then using (3.31) with m =1. Similarly for the vertical force, replace
sin θk by − cos θk , and then the integral evaluates to −2πξk

1 .
For a single cylinder, it follows from (3.33) that R1 = 0, since in that case (3.30) and

(3.31) yield η0
m = −iξ 0

m for all m. The fact that in general RM �= 0 for M > 1 is hardly
surprising, though this seems to have been established first in Schnute (1971), where
the case M = 2 was considered. An analysis based on matched asymptotic expansions
was performed in McIver (1990) under the assumption that the wavelength is much
greater than the cylinder spacing which in turn is much greater than the cylinder
radius, leading to the conclusion that RM = O((Kd)2(a/d)4) in this limit.

4. Full linear theory: oblique waves
Multipole expansions have been used previously to solve scattering problems

involving oblique wave interactions with finite arrays of submerged, horizontal circular
cylinders in Shen & Zheng (2007). In fact that paper considered the case of finite
water depth. Nevertheless much of the detail remains the same, and only brief details
will be given here, focusing on the infinite array case.

In the case of a finite array we will take as our incident field a plane wave making
an angle ϕ ∈ (0, π/2) with the positive x-axis, given by

φinc = eiαx eKz (4.1)

(having suppressed the ei�y dependence), where

α = K cosϕ, � = K sin ϕ. (4.2)

In particular, we note that in this case 0< � < K . However, for an infinite array there
is no such upper limit for �. For a finite array we could also consider the case of � > K

with no incident wave and look for trapped modes, as in Porter & Evans (1998).
Multipoles singular at rj =0 and symmetric in θj are now (Linton & McIver 2001,

(B.111))

φj
n = Kn(�rj ) cos nθj + (−1)n

∫ ∞

0


ν + K

ν − K
cosh nµ cos(λ(x − jd))

× exp[ν(z − f )] dµ, n � 0, (4.3)

where ν = � coshµ and λ= � sinhµ, and multipoles singular at rj = 0 and
antisymmetric in θj are (Linton & McIver 2001, (B.117))

ψj
n = Kn(�rj ) sin nθj − (−1)n

∫ ∞

0


ν + K

ν − K
sinh nµ sin(λ(x − jd))

× exp[ν(z − f )] dµ, n � 1. (4.4)

Here Kn(·) (and In(·) which appears below) are modified Bessel functions. For z > −f

we also have (Linton & McIver 2001, (B.101))

φj
n = 2(−1)n

∫ ∞

0


e−νf

ν − K
(ν cosh νz + K sinh νz) cosh nµ cos(λ(x − jd)) dµ, (4.5)
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with ψj
n given by the same expression after replacing cosh nµ by sinh nµ and cos by

− sin. The method by which these multipoles are derived is described in (Ursell 1951,
Note A).

As before we can develop series expansions for these multipoles about the point
x = kd , z = −f . For all j, k we have, for r < 2f ,

φj
n = Kn(�rj ) cos nθj +

∞∑
m=0

P jk
mn Im(�rk) cosmθk −

∞∑
m=1

Qjk
mn Im(�rk) sinmθk, (4.6)

ψj
n = Kn(�rj ) sin nθj +

∞∑
m=0

Rjk
mn Im(�rk) cosmθk +

∞∑
m=1

Sjk
mn Im(�rk) sinmθk, (4.7)

where

P jk
mn = εm(−1)m+n

∫ ∞

0


ν + K

ν − K
coshmµ cosh nµ cos[λd(j − k)] e−2νf dµ, (4.8)

Qjk
mn =

2

εn

Rjk
nm = 2(−1)m+n

∫ ∞

0


ν + K

ν − K
sinhmµ cosh nµ sin[λd(j − k)] e−2νf dµ, (4.9)

Sjk
mn = 2(−1)m+n

∫ ∞

0


ν + K

ν − K
sinhmµ sinh nµ cos[λd(j − k)] e−2νf dµ. (4.10)

Here ε0 = 1, εn = 2 for n � 1. For computational purposes we note that

P jk
mn = εm(−1)m+n

[ ∫ b

0

(
(ν + K)λ−1 coshmµ cosh nµ cos[λd(j − k)] e−2νf

− 2(K/α) cosh mγ cosh nγ cos[αd(j − k)] e−2Kf
) λdµ

ν − K

+

∫ ∞

b

ν + K

ν − K
coshmµ cosh nµ cos[λd(j − k)] e−2νf dµ

+ 2πi(K/α) cosh mγ cosh nγ cos[αd(j − k)] e−2Kf

]
, (4.11)

where K = � cosh γ and cosh b =(2K/�) − 1. Similar expressions can be derived for
Qjk

mn, Rjk
mn and Sjk

mn.
To re-expand the singular terms about x = kd , z = −f we use Graf’s addition

theorem which here takes the form

Kn(�rj ) exp(inθj ) =

∞∑
m=−∞

im+n Kn−m(|j − k|�d) exp[i(n − m)χjk]

× Im(�rk) exp(imθk), j �= k. (4.12)

We can thus show that, for j �= k and rk < min(2f, |j − k|d),

φj
n =

∞∑
m=0

(
P jk

mn + Djk
mn

)
Im(�rk) cosmθk +

∞∑
m=1

(
Ejk

mn − Qjk
mn

)
Im(�rk) sinmθk, (4.13)

ψj
n =

∞∑
m=0

(
Rjk

mn + F jk
mn

)
Im(�rk) cosmθk +

∞∑
m=1

(
Sjk

mn + Gjk
mn

)
Im(�rk) sinmθk, (4.14)
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where, with Kjk
n = Kn(|j − k|�d),

Djk
mn =

εm

2

(
cos

[
(n + m)

π

2

]
Kjk

n−m + cos
[
(n − m)

π

2

]
K

jk
n+m

)
, (4.15)

Ejk
mn = sgn(k − j )

(
− sin

[
(n + m)

π

2

]
Kjk

n−m + sin
[
(n − m)

π

2

]
K

jk
n+m

)
, (4.16)

F jk
mn =

εm

2
sgn(k − j )

(
sin

[
(n + m)

π

2

]
Kjk

n−m + sin
[
(n − m)

π

2

]
K

jk
n+m

)
, (4.17)

Gjk
mn = cos

[
(n + m)

π

2

]
Kjk

n−m − cos
[
(n − m)

π

2

]
K

jk
n+m. (4.18)

Note that Djk
mn = Gjk

mn = 0 if m + n is odd, while Ejk
mn =F jk

mn = 0 if m + n is even.

4.1. Infinite array

We seek a solution in the form

φ =

∞∑
j=−∞

eiβjd

( ∞∑
n=0

ξ̃nφ
j
n +

∞∑
n=1

η̃nψ
j
n

)
, (4.19)

with ξ̃n and η̃n to be determined and 0 � βd � π as before. Incorporating (4.5) and
using the Poisson summation formula shows that, for z > −f , provided νj �= K for
any j ,

φ =

∞∑
j=−∞

Aj

νj cosh νjz + K sinh νjz

νj (νj − K)
exp(iβjx − νjf ), (4.20)

where

Aj =

∞∑
n=0

2π

d
(−1)n(ξ̃n cosh nµj + iη̃n sinh nµj ). (4.21)

Here

µj = sinh−1(βj/�) = ln

⎡
⎣βj

�
+

(
β2

j

�2
+ 1

)1/2
⎤
⎦, (4.22)

and we have written

νj = � coshµj = (�2 + β2
j )

1/2. (4.23)

The apparent singularities at νj = K are removable, since it can be shown that if
νj = K for a particular j , then Aj = 0.

As in the � = 0 case, we need to satisfy only the boundary condition on one cylinder
(which we take to be the one at the origin), and then all the others are satisfied
because of quasi-periodicity. We define

P̂mn =

∞∑
j=−∞

eiβjdP j0
mn, (4.24)

and we also similarly define Q̂mn, R̂mn and Ŝmn. Further, we define

D̂mn =

∞∑′

j=−∞
eiβjdDj0

mn, (4.25)
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and we similarly define Êmn, F̂mn and Ĝmn. Setting ∂φ/∂r = 0 on r = a then
yields

ξm +

∞∑
n=0

Zmnξn(P̂mn + D̂mn) +

∞∑
n=1

Zmnηn(R̂mn + F̂mn) = 0, m � 0, (4.26)

ηm +

∞∑
n=0

Zmnξn(Êmn − Q̂mn) +

∞∑
n=1

Zmnηn(Ŝmn + Ĝmn) = 0, m � 1, (4.27)

where we have written ξm = ξ̃m K′
m(�a), ηm = η̃m K′

m(�a) and Zmn = I′
m(�a)/ K′

n(�a).
Truncated versions of these equations will be used in § 5 to determine numerical
approximations to ξm and ηm.

It is helpful to define

K̂n =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2

∞∑
j=1

Kn(j�d) cosβjd, n even,

−2i

∞∑
j=1

Kn(j�d) sinβjd, n odd.

(4.28)

If n + m is odd, then D̂mn = Ĝmn = 0. On the other hand, if n + m is even we have

D̂mn =
εm

2

[
(−1)(n+m)/2K̂n−m + (−1)(n−m)/2K̂n+m

]
, (4.29)

Ĝmn = (−1)(n+m)/2K̂n−m − (−1)(n−m)/2K̂n+m, (4.30)

and these are clearly real. Similarly if n + m is even, then Êmn = F̂mn = 0, whereas if
n + m is odd we have

Êmn = −(−1)(n+m−1)/2K̂n−m + (−1)(n−m−1)/2K̂n+m, (4.31)

F̂mn =
εm

2

[
(−1)(n+m−1)/2K̂n−m + (−1)(n−m−1)/2K̂n+m

]
, (4.32)

which are imaginary. Application of the Poisson summation formula shows that

P̂mn = εmπ(−1)m+n

∞∑
j=−∞

νj + K

νj − K
coshmµj cosh nµj

e−2νj f

νjd
, (4.33)

Q̂mn =
2

εn

R̂nm = 2πi(−1)m+n

∞∑
j=−∞

νj + K

νj − K
sinhmµj cosh nµj

e−2νj f

νjd
, (4.34)

Ŝmn = 2π(−1)m+n

∞∑
j=−∞

νj + K

νj − K
sinhmµj sinh nµj

e−2νj f

νjd
. (4.35)

All the quantities in (4.26) and (4.27) are then given in terms of exponentially
convergent series.

To truncate (4.26) and (4.27) to a finite linear system we write

(x1, x2, . . . , x2N ) = (ξ0, iη1, ξ1, iη2, . . . , ξN−1, iηN ). (4.36)
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In other words ξm = x2m+1 and ηm = −ix2m. Then (4.26) and (4.27) become

x2m+1 +

N−1∑
n=0

Zmnx2n+1(P̂mn + D̂mn) − i

N∑
n=1

Zmnx2n(R̂mn + F̂mn) = 0,

0 � m � N − 1, (4.37)

x2m + i

N−1∑
n=0

Zmnx2n+1(Êmn − Q̂mn) +

N∑
n=1

Zmnx2n(Ŝmn + Ĝmn) = 0,

1 � m � N. (4.38)

Thus we require the determinant of the 2N × 2N matrix M = (Mij )
2N
i,j = 1 to vanish,

where

M2m−1,2n−1 = δmn + Zm−1,n−1(P̂m−1,n−1 + D̂m−1,n−1),

M2m−1,2n = −iZm−1,n(R̂m−1,n + F̂m−1,n),

M2m,2n−1 = iZm,n−1(Êm,n−1 − Q̂m,n−1),

M2m,2n = δmn + Zmn(Ŝmn + Ĝmn),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.39)

in which all the entries are real. It can be shown that as � → 0 the system for oblique
waves reduces to that for � =0.

4.2. Finite array

We seek a solution in the form

φ = φinc + φsc = φinc +

M−1∑
j=0

( ∞∑
n=0

ξ̃ j
n φj

n +

∞∑
n=1

η̃j
nψ

j
n

)
, (4.40)

in which (see Linton & McIver 2001, (3.21))

φinc = eiαx eKz = eikαd e−Kf

∞∑
n=0

εn(−1)n In(�rk) cos n(θk + iγ ). (4.41)

Setting ∂φ/∂rk = 0 on r = ak then yields

ξk
m +

M−1∑
j=0

( ∞∑
n=0

Zmnξ
j
n

(
P jk

mn + Djk
mn

)
+

∞∑
n=1

Zmnη
j
n

(
Rjk

mn + F jk
mn

))

= −εm(−1)m eikαd e−Kf I′
m(�a) cosh mγ, m � 0, k = 0, . . . , M − 1, (4.42)

ηk
m +

M−1∑
j=0

( ∞∑
n=0

Zmnξ
j
n

(
Ejk

mn − Qjk
mn

)
+

∞∑
n=1

Zmnη
j
n

(
Sjk

mn + Gjk
mn

))

= 2i(−1)m eikαd e−Kf I′
m(�a) sinh mγ, m � 1, k = 0, . . . , M − 1, (4.43)

where we have defined Dkk
mn =Ekk

mn = F kk
mn =Gkk

mn = 0. This can readily be truncated to
a 2MN × 2MN system by restricting m and n in (4.42) and (4.43) to range between
0 and N − 1 or 1 and N as appropriate.
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From (4.40) and Linton & McIver (2001, (B.112) and (B.118)), we have that as
x → ±∞,

φsc ∼ 2πK

α
exp[K(z − f )]

M−1∑
j=0

exp[±iα(x − jd)]

×
( ∞∑

n=0

i(−1)nξ̃ j
n cosh nγ ∓

∞∑
n=1

(−1)nη̃j
n sinh nγ

)
. (4.44)

Hence the reflection and transmission coefficients are

RM =
2πK

α
e−Kf

M−1∑
j=0

eijαd

( ∞∑
n=0

i(−1)nξ̃ j
n cosh nγ +

∞∑
n=1

(−1)nη̃j
n sinh nγ

)
, (4.45)

TM = 1 +
2πK

α
e−Kf

M−1∑
j=0

e−ijαd

( ∞∑
n=0

i(−1)nξ̃ j
n cosh nγ −

∞∑
n=1

(−1)nη̃j
n sinh nγ

)
. (4.46)

As in § 3, alternative expressions for the reflection and transmission coefficients can
be obtained in terms of the horizontal and vertical exciting forces on the cylinders. In
fact (3.35) remains true in this case if Kd is replaced by αd in the expression for TM .

5. Numerical results
The size of the systems of equations derived in §§ 3 and 4 involve the truncation

parameter N . In all the results presented below we have used N =8. This means that
16 multipoles are used to represent the scattered field generated by each cylinder. For
all the parameter values that we consider, which does not include the cases of high
frequencies or cylinders very close to the free surface or to each other, this is more
than sufficient to guarantee high accuracy. As an example, corresponding to Ka = 0.6
on the M = 10 curve in figure 1, truncation parameters of N = 2, 4, 8 and 16 give
values of the reflected energy as, respectively, |R|2 ≈ 0.21642, 0.17257, 0.17251 and
0.17251. Results are presented for up to 60 cylinders, a case which thus requires the
solution to a 960 × 960 system of equations. Reflection and transmission coefficients
were always checked by calculating them both from the series expressions and in
terms of the exciting forces, and energy conservation was always satisfied to a great
degree of accuracy.

We begin with the � = 0 case. The transfer matrix analysis in § 2 (based on a wide-
spacing approximation) suggests that Bragg-type resonance is unlikely for submerged
cylinders in deep water because, as is well known, |R| =0 for a single submerged
cylinder for any submergence depth and any frequency (Dean 1948). That resonant
reflection does occur is clear from figure 1 which shows the modulus of the reflection
coefficient as a function of Ka for 5, 10 and 20 cylinders when f/d = 0.375 and
a/d = 0.25. A wavelength of twice the geometrical period would correspond to
Ka = π/4 in this case, whereas the figure shows that the first resonance actually
occurs for Ka ≈ 0.57, which corresponds to a wavelength of roughly 2.75 times the
geometrical period. This shift is consistent with (2.16) if we interpret this condition as
suggesting that resonance is most likely to occur when | cosχ | = 1. When Ka = 0.57
we can compute the phase of the transmission coefficient as approximately 0.93,
which leads to a value of χ which is just greater than π. A similar calculation can
be performed for the higher resonances, which according to Bragg’s law correspond
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Figure 1. Modulus of reflection coefficient as a function of Ka for f/d = 0.375, a/d =0.25.
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Figure 2. Dispersion curves showing βd as a function of Kd . The thin solid lines are βd = Kd ,
βd = 2π − Kd and βd = Kd − 2π. The dotted lines are for f/d = 0.5, a/d = 0.25; the shorter
dashed lines are for f/d = 0.375, a/d =0.25; the longer dashed lines are for f/d = 0.375,
a/d =0.2; the dash-dotted lines are for f/d = 0.225, a/d = 0.15.

to λ= 2d/n, n= 2, 3, . . . . From figure 1 the second resonance occurs at Ka ≈ 1.38
(Kd ≈ 5.52) which is consistent with χ = arg T + Kd = 2π, since arg T ≈ 0.72 when
Ka = 1.38.

To see whether it is possible to have |TM | → 0 as M → ∞ we compute dispersion
curves based on solving (3.25) and (3.26). We fix Kd and search for values of
βd ∈ [0, π] for which a non-trivial solution to this coupled system exists. Results for
four pairs of values of f/d and a/d are shown in figures 2 and 3 and in table 1.
Figure 2 shows dispersion curves over the range 0 <Kd < 8, together with the zigzag
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f/d a/d Gap 1 (Kd) Gap 2 (Kd)

0.5 0.25 (2.687, 2.794) (6.105, 6.130)
0.375 0.25 (2.210, 2.328) (5.457, 5.569)
0.375 0.2 (2.587, 2.640) (5.904, 5.951)
0.225 0.15 (2.402, 2.446) (5.257, 5.347)

Table 1. Computed values for the band gaps shown in figures 2 and 3.
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βd

Figure 3. Close-up of the first two band gaps.

line made up by the curves βd = Kd , βd = 2π − Kd (β−1 = −K) and βd = Kd − 2π
(β1 = K), which all the other curves essentially follow. The first ‘point’ on this zigzag
line is at Kd = π which corresponds to a wavelength of exactly twice the geometrical
period. All the curves shown exhibit band gaps. In other words there are ranges of
values of Kd for which there are no allowable values of βd , and these intervals are
shown in close-up in figure 3 and collected together in table 1. If we consider the
case f/d = 0.375, a/d =0.25 (which corresponds to the parameters in figure 1), then
we see that the resonances in figure 1 occur at values of Kd ( ≈ 2.28 and 5.5) in the
middle of the band gaps.

The existence of these band gaps means that we would expect |TM | → 0 as M → ∞
whenever Kd lies in one of the gaps, and this is indeed the case, as shown in figure 4,
which in fact shows the transmitted energy |TM |2 as a function of M for a range of
values of Kd (and with f/d = 0.375 and a/d = 0.25 as in figure 1). Three of these
Kd values lie within the band gap (see table 1), and for these the energy decays
monotonically as M increases. For all the other values of Kd the transmitted energy
oscillates between 1 and some finite value, that value (and the frequency of the
oscillations) decreasing as the edge of the band gap is approached.

Next we turn to the case � > 0. Figure 5 shows dispersion curves βd as a function
of Kd for various values of �d based on solving (4.37) and (4.38). The most obvious
difference between this and the case � = 0 (figure 2) is that as � increases from zero
a gap appears at the origin. Thus, for a given � > 0 there is a minimum value of
the frequency for which modes are possible. However, the minimum value of Kd is
less than �d in all cases that we have computed, and therefore it is not possible to
consider a scattering problem corresponding to a frequency in this gap. Computed
values for the band gaps shown in figure 5 are shown in table 2. For the second and
third band gaps we also show the intervals of Kd in which the approximate condition
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Figure 4. Transmitted energy as a function of the number of cylinders in the array for
f/d = 0.375, a/d = 0.25.
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Figure 5. Dispersion curves showing βd as a function of Kd . The dotted lines are for �d = 0.5;
the shorter dashed lines are for �d = 1; the dash-dotted lines are for �d = 2; the longer dashed
lines are for �d = 4. In all cases f/d = 0.375, a/d = 0.25.

for stop bands (2.16) is satisfied. This can only be done when K >�, which is why no
approximate values appear for the first band gap. The transfer matrix analysis clearly
provides an excellent guide as to the location of the band gaps.

The relation between these band gaps and scattering problems for oblique waves
in which |TM | → 0 as M → ∞ is less clear than in the case � =0. This is because in
such a scattering problem one would usually treat either the incident wave angle or
the frequency as fixed and then vary the other of these two parameters, in which case
� = K sinϕ is not constant. Nevertheless, the association can still be made. Figure 6
shows the transmitted energy |TM |2 as a function of M for a range of values of
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�d Gap 1 (Kd) Gap 2 (Kd) Gap 3 (Kd)

0.5 (0, 0.396) (2.266, 2.358) (5.535, 5.592)
(2.262, 2.270) (5.592, 5.595)

1 (0, 0.728) (2.429, 2.448) (5.635, 5.661)
(2.377, 2.431) (5.661, 5.671)

2 (0, 1.450) (2.798, 3.000) (5.930, 5.931)
(2.765, 3.001) (5.931, 5.943)

4 (0, 3.240) (4.061, 4.644) (6.893, 6.911)
(4.057, 4.645) (6.896, 6.910)

Table 2. Computed values for the band gaps shown in figure 5. Where there are two
intervals listed, the lower values are computed from the approximate condition (2.16).
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Figure 6. Transmitted energy as a function of the number of cylinders in the array for
f/d = 0.375, a/d = 0.25 and ϕ = 45◦.

Kd when f/d = 0.375 and a/d = 0.25 and when the incident wave angle ϕ is fixed
at 45◦. Two of the values of Kd used in the figure appear to lead to a decaying
transmission coefficient, namely Kd =2.8 and Kd = 3. For the former of these we
have �d =2.8/

√
2 ≈ 1.98, and if we compute the band gap for �d = 1.98 we find

that it is (2.783, 2.991), which includes Kd = 2.8, whereas for the latter we have
�d =3/

√
2 ≈ 2.12, and if we compute the band gap for �d =2.12 we find that it is

(2.854, 3.084), which includes Kd = 3.
We can also plot dispersion curves showing βd as a function of �d for various

values of Kd . From the general structure of the dispersion curves shown in figure 5
we can expect that there will be a different structure to the βd–�d curves, depending
on the size of Kd , with more band gaps appearing as Kd increases. This is borne out
by the curves shown in figure 7, which is for the case f/d = 0.5, a/d = 0.25. When
Kd = 2 there are no band gaps; for Kd = 3, 4, 5 and 6 there is one band gap, while
for Kd = 7 there are two.
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Figure 7. Dispersion curves showing βd as a function of �d for various values of Kd when
f/d = 0.5, a/d = 0.25. The solid line is for Kd = 2, the dotted line is for Kd = 3, and continuing
to the right we have curves for Kd = 4, 5, 6 and 7.
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Figure 8. Transmitted energy as a function of the number of cylinders in the array for
Ka = 1, f/d = 0.5, a/d = 0.25.

The curves in figure 7 allow us to determine the direction in which the energy
associated with these modes travels. If we write k = (β, �) for the wavenumber vector,
then the group velocity for any mode is simply dω/dk, and since the curves in
figure 7 are constant-frequency contours, the group velocity is always perpendicular
to these curves, in the direction of increasing Kd . All the curves hit the �d = 0 axis
at right angles, as they must because then there is no y-variation and the modes
propagate along the x-axis. (The figure shows only half the picture; one needs to
reflect about either βd = 0 or βd = π to see all the possible modes.) When Kd = 2 the
direction of the modes gradually shifts round until the mode cuts off, at which point
the propagation is entirely in the y-direction. For higher values of Kd we can have
fundamentally different modes which have the same frequency and which propagate
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in the same direction. Thus, for example, when Kd = 4 there are three modes for
which the energy propagates in the y-direction, two for which βd = π (on either side
of the band gap) and one for which βd = 0.

In figure 7, the band gap for Kd = 4 corresponds to �d ∈ (2.808, 3.017), which is
equivalent to ϕ ∈ (44.6◦, 49.0◦). Thus if we fix the frequency at Kd =4 and vary the
incident wave angle we would expect |TM | → 0 as M → ∞ if ϕ lies in this interval, but
not otherwise. That this is the case is shown in figure 8.

6. Conclusion
The existence of separate pass and stop bands associated with wave propagation

through periodic media is a common phenomenon, though it appears to have received
rather little attention in the context of the full linear theory of water waves. In this
paper we have focused on water waves propagating over periodic arrays of submerged
horizontal circular cylinders in deep water, considering waves travelling at an oblique
angle as well as normal to the cylinder axes.

The fact that submerged circular cylinders are weak reflectors makes this
configuration particularly interesting. In a sense they are the weakest of all reflectors,
since the reflection coefficient for a single cylinder (with normal incidence) is zero for
all frequencies. Thus it is not obvious that there will be any stop bands. The fact that
these are there, as we have shown, indicates that the evanescent interactions between
the cylinders must play a crucial role in their creation, and heuristic arguments that
are often put forward to explain Bragg resonance are inadequate in this case. A zero
reflection coefficient does not imply that the waves are unaffected by the cylinder,
and it is well known that there is a phase shift as the wave propagates over such a
structure. The existence of this phase shift means that the standard Bragg law, which
can be thought of as a first approximation to the location of a band gap, needs to be
modified.

The multipole expansion technique has been used to solve both the case of an
infinite array and that of a finite array of cylinders. This approach appears to work
particularly well for the infinite-array case and normal incidence, since some of the
infinite sums that are required can be evaluated in closed form. The infinite linear
systems that are obtained must be truncated in order to compute the numerical
results, but in principle, we can determine the solution to the full linear problem
with any desired accuracy. Numerical results show that band gaps do exist for both
normally propagating and oblique waves, and we have shown how this corresponds
to cases in which the energy which is transmitted across a finite array tends to zero
as the size of the array increases.

Apart from examining the behaviour of |TM | as M → ∞ we have not considered
the problem of a semi-infinite array of cylinders in any detail. This could be done
using the methods described in Porter & Evans (2006) and would be an interesting
extension to the current analysis.

Thanks are due to Paul Martin for bringing the work of Schnute (1967) to the
attention of the author.
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Markoš, P. & Soukoulis, C. M. 2008 Wave Propagation: From Electrons to Photonic Crystals and
Left-Handed Materials . Princeton University Press.

McIver, P. 1990 The scattering of long water waves by a group of submerged, horizontal cylinders.
Q. J. Mech. Appl. Math. 43 (4), 499–515.

McIver, P. 2000 Water-wave propagation through an infinite array of cylindrical structures. J. Fluid
Mech. 424, 101–125.

Mei, C. C. 1985 Resonant reflection of surface water waves by periodic sandbars. J. Fluid Mech.
152, 315–335.

Mei, C. C., Hara, T. & Naciri, M. 1988 Note on Bragg scattering of water waves by parallel bars
on the seabed. J. Fluid Mech. 186, 147–162.

Mei, C. C., Stiassnie, M. & Yue, D. K.-P. 2005 Theory and Applications of Ocean Surface Waves.
Part 1. Linear Aspects . World Scientific.

Newman, J. N. 1975 Interaction of waves with two-dimensional obstacles: a relation between the
radiation and scattering problems. J. Fluid Mech. 71, 273–282.

O’Leary, M. 1985 Radiation and scattering of surface waves by a group of submerged, horizontal,
circular cylinders. Appl. Ocean Res. 7, 51–57.

Porter, R. & Evans, D. V. 1998 The trapping of surface waves by multiple submerged horizontal
cylinders. J. Engng Math. 34, 417–433.

Porter, R. & Evans, D. V. 2006 Scattering of flexural waves by multiple narrow cracks in ice sheets
floating on water. Wave Motion 43, 425–443.

Porter, R. & Porter, D. 2003 Scattered and free waves over periodic beds. J. Fluid Mech. 483,
129–163.

Schnute, J. T. 1967 Scattering of surface waves by submerged circular cylinders. Part II. Scattering by
an infinite array of cylinders. Tech. Rep. 11. Department of Mathematics, Stanford University.

Schnute, J. T. 1971 The scattering of surface waves by two submerged cylinders. Proc. Camb. Phil.
Soc. 69, 201–215.

Shen, Y. & Zheng, Y. 2007 Interaction of oblique waves with an array of long horizontal circular
cylinders. Sci. China E 50 (4), 490–509.

Thorne, R. C. 1953 Multipole expansions in the theory of surface waves. Proc. Camb. Phil. Soc. 49,
707–716.



526 C. M. Linton

Ursell, F. 1950 Surface waves on deep water in the presence of a submerged circular cylinder. Part I.
Proc. Camb. Phil. Soc. 46, 141–152.

Ursell, F. 1951 Trapping modes in the theory of surface waves. Proc. Camb. Phil. Soc. 47,
347–358.

Yang, S., Wu, F., Zhong, H. & Zhong, L. 2006 Large band gaps of water waves through two-
dimensional periodic topography. Phys. Lett. A 352, 426–430.


