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Abstract

The scattering of water waves by a long, array of evenly spaced rigid vertical circular

cylinders is analysed under the usual assumptions of linear theory. These assump-

tions permit the reduction of the problem to that of solving the Helmholtz

equation in two dimensions, with appropriate circular boundaries. Our pri-

mary goal is to show how solutions obtained for semi-infinite arrays can be combined

to provide accurate and numerically efficient solutions to problems involving long, but

finite, arrays. The particular diffraction problem considered here has been chosen both

for its theoretical interest and its applicability. The design of offshore structures sup-

ported by cylindrical columns is commonplace and understanding how the multiple

interactions between the waves and the supports affect the field is clearly important.

The theoretical interest comes from the fact that, for wavelengths greater than twice

the geometric periodicity, the associated infinite array can support Rayleigh–Bloch

surface waves that propagate along the array without attenuation. For a long finite

array we expect to see these surface waves travelling back and forth along the array

and interacting with the ends. For particular sets of parameters, near trapping has pre-

viously been observed and we provide a quantitative explanation of this phenomenon

based on the excitation and reflection of surface waves by the ends of the finite array.

1 Introduction

Phenomena associated with scattering by large finite arrays are of practical importance in
many physical contexts. Examples include the design of photonic and phononic band-gap
materials, the performance of phased-array antennas, and the hydrodynamic characteristics
of structures supported on an array of columns. The relevant scattering problems can often
be solved directly, but the computational cost increases rapidly as the number of elements
in the array increases.

In some cases it may be appropriate to model the large finite array as an infinite array
so that the resulting geometrical periodicity can be used to greatly simplify the necessary
analysis. One might expect that this would lead to solutions that are valid in the interior
of the array, far from any ends or edges. Thus, for example, the claim is made in [1] (in
the context of electromagnetic scattering) that “finite periodic structures behave like their
infinite counterparts”. However, in this article we are concerned with a situation where
this is manifestly not the case due to the excitation of surface waves that propagate along
the array without decay. Array guided surface waves have been observed numerically in
arrays of dipoles [2], and microstrip antennas are designed so as to suppress surface wave
production [3], but theoretical techniques for studying the excitation of such waves by array
edges are few and far between. Recently [4], accurate techniques for the determination of the
amplitude of surface waves excited by the end of a semi-infinite array have been developed
and this article builds on that work.
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The particular problem that we consider is that of water-wave scattering by an array of
vertical circular cylinders which, once the depth dependence has been factored out, is equiv-
alent to two-dimensional acoustic scattering by a one-dimensional finite array of circles. The
direct computation of the solution is fairly straightforward in this example but, as we shall
demonstrate, the approximation described below significantly reduces execution time when
large numbers of scatterers are involved. Moreover, we are able to shed considerable light on
the phenomenon of near-trapping, first reported for this type of array in [5]. The frequencies
at which surface waves (known as Rayleigh–Bloch waves in this context) propagate along
an infinite periodic array of such structures were computed in [6, 7]; these are a generic
phenomenon associated with rigid periodic structures [8, 9].

The idea behind our approximation method is simple. We assume the array is sufficiently
long that any fields generated at one end which decay along the array do not interact with
the other end. Surface waves that are excited do not decay and so their interactions with
the other end of the array are included. We thus construct the solution to the finite array
problem from those to a number of canonical problems, all formulated on infinite or semi-
infinite arrays. Of course, for this approach to be of use, it is vital that the solutions to these
canonical problems can be computed accurately and efficiently.

An example of some of the interesting effects that we seek to explain is shown in Fig-
ure 1; these were originally reported in [5]. Here, the scattering of a plane wave by
a 101-cylinder array is considered, the incident field being aligned with the array (head-on
incidence). All lengths are scaled so that the distance between the centres of consecutive
elements is unity; according to this scaling, the radius of the circles is 0.25. The geometry
is the same as that shown in figure 2, with ψ0 = 0; i.e. the scatterers are labelled
0, 1, . . . starting from the left, and the incident field propagates to the right. The
two graphs in Figure 1 show the magnitude of the horizontal forces (i.e. the integral of the
pressure times the component of the normal to the cylinders along the array) acting on
cylinders 0 (F0

x) and 50 (F50
x ) compared with those computed for a semi-infinite array, plot-

ted against the wavenumber k (= 2π/λ). The forces are normalised so that they would be
unity for a scatterer in isolation. Since there is no direct excitation of the right end by the
incident field, one might naively expect the results to be similar, and this is indeed the case
for small k, and also for k & 2.8. However, as k increases toward 2.8, an oscillation builds
up in the forces on the finite array, and the semi-infinite array solution fails to capture this
effect. In particular, there is a value of k close to 2.8 about which the oscillations become
so large that the force on scatterer 50 is around 35 times that on an isolated scatterer.

The structure of the paper is as follows. The problem is formulated in §2 and then
reduced to a series of canonical problems. The accuracy of the approach is discussed in §3
and then in §4 we show how the excitation of surface waves by the array ends can lead to
constructive interference and a near-trapping phenomenon.

2 Formulation

We consider the scattering of time-harmonic water waves by vertical circular cylinders in
water of constant depth under the usual assumptions of linear theory. The cylinders extend
throughout the fluid depth, and the motion is governed by a velocity potential Φ which
satisfies the three-dimensional Laplace equation but this can be reduced to a two-dimensional
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Figure 1: Horizontal force exerted on scatterer p (p = 0 upper, p = 50 lower) at head-on
incidence for a 101-cylinder array plotted against wavenumber.

boundary-value problem by writing

Φ(x, y, z) = Re[φ(x, y) cosh k(z + h)e−iωt]. (1)

Here, h is the quiescent water depth, and ω is the angular frequency. The function φ
satisfies the two-dimensional Helmholtz equation (∇2 + k2)φ = 0 in the region exterior
to the scatterers, and these are now circles in the (x, y)-plane. The wavenumber k is the
positive solution to the dispersion relation k tanh kh = ω2/g, where g is the acceleration
due to gravity. With a different definition of k exactly the same problem governs two-
dimensional scattering of acoustic waves by an array of circles. The scatterers are assumed
to be rigid so that the appropriate boundary condition on their surface is ∂φ/∂n = 0, where
∂n is an element of the outgoing normal.

The subject of our investigation is the scattering of a plane wave

φinc = eik(x cosψ0+y sinψ0), (2)

by a long linear array of circular scatterers, each of which has radius a. All lengths in the
problem are scaled so that the centre of scatterer p is located at the point (p, 0), where
p ∈ {0, 1, . . . , P}; see figure 2. We treat this problem by assuming that P is sufficiently large
so that the ends x = 0 and x = P can be treated independently, except in situations where
Rayleigh–Bloch surface waves are excited. Such waves are excited at low-frequencies by the
end of a semi-infinite array and methods for accurately determining their amplitude have
been developed in [4].

To construct the solution, we must consider several canonical array problems. For brevity,
we introduce the term ‘{p0, p1} array’ to refer to the array that consists of scatterers centred
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Figure 2: Schematic diagram showing a plan view of the finite array.

at (p, 0) where p ∈ {p0, . . . , p1}. The solution to such a problem can be written in the form
φ = φinc + φsc, where

φsc =

p1∑

p=p0

∞∑

m=−∞

Up
mZm Hm(krp)e

imθp. (3)

Here, Hm ≡ H(1)
m is a Hankel function of the first kind, (rp, θp) is a set of polar co-ordinates

with its origin at the centre of scatterer p, and the factors Zm = J′
m(ka)/H′

m(ka) have been
introduced for convenience. The coefficients Up

n satisfy the linear system [10]

Up
m +

∞∑

n=−∞

Zn

p1∑

j=p0
6=p

U j
nX

p−j
n−m Hn−m(k|j − p|) = Rp

m p = p0, . . . , p1, m ∈ Z, (4)

in which Xj
n = (sgn j)n. The quantity Rp

m appearing on the right-hand side is determined
by the expansion of the incident field about the centre of the pth cylinder, i.e.

φinc =

∞∑

m=−∞

Rp
mZm Jm(krp)e

imθp . (5)

For a plane wave incident at angle ψ0 we have

Rp
m = −eipk cosψ0 ime−imψ0 . (6)

A system of equations of the form (4) originally appeared in [11]. Essentially,
it is obtained by choosing an arbitrary cylinder in the array labelled by p, and
re-expanding all fields propagating toward it (i.e. the incident wave and the
radiation from all of the other cylinders) as a series of the form (5). Applying
the boundary conditions and exploiting orthogonality then gives (4). The same
method can be used for scatterers of more general shapes, although in this case,
orthogonality does not apply, and a transfer matrix is required to relate the
wavefields incoming toward and radiating from each array element; see [12] for
example.

2.1 The infinite array

We will make explicit the dependence of the unknown coefficients on the angle of incidence;
thus for the {−∞,∞} array, we have

Up
m = Bm(ψ0)e

ipk cosψ0 , (7)
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and the coefficients Bm(ψ0) are easily obtained, see [13], [14]. Due to the symmetry of the
array about x = 0, we have

B−m(π − ψ0) = Bm(ψ0). (8)

We will refer to (7) as the solution to the {−∞,∞} problem. This solution is said to be
right (left) resonant if there exists j ∈ Z such that ψj = 0 (ψj = π), where

cosψj = cosψ0 + 2jπ/k, j ∈ Z. (9)

The finite set of real values for ψj corresponds to the angles at which plane waves are scattered
by the array. Resonance implies that one of these scattered waves propagates exactly parallel
to the array. This is an important special case which has some bearing on the accuracy of
our method. Note that, if ψ0 = 0 (or π), then Bm = 0 for all m; in this case the scattered
field simply cancels the incident wave [14].

The {−∞,∞} array can also support periodic homogeneous solutions known as Rayleigh–
Bloch waves. Thus, if we take Rp

m = 0 and write

Up
m = B̃meipeβ, (10)

then (4) reduces to

B̃m +

∞∑

n=−∞

B̃nZnσn−m(β̃) = 0, m ∈ Z, (11)

where σn is the Schlömilch series of order n, i.e.

σn(λ) =
∞∑

j=1

[
(−1)neiλj + e−iλj

]
Hn(kj). (12)

These series can be evaluated efficiently using formulae in [15] and [16]. The values of β̃ for
which (11) possesses a nontrivial solution can easily be determined (the system can in fact
be reduced to one with real coefficients), as can the nontrivial solution itself; see [7]. This is
normalised so that

∞∑

m=−∞

|B̃mZm|
2 = 1. (13)

Equations (11) and (13) define the coefficients B̃m up to a common phase factor, which is
unimportant provided that the same value is used consistently. Computations show that for
a given frequency and scatterer radius, up to two values of β̃ can exist in the interval (0, π).
One of these corresponds to a Rayleigh–Bloch wave that is symmetric about y = 0, the other
to an antisymmetric mode. Both are represented by a potential of the form

φrb(β̃) =

∞∑

p=−∞

∞∑

m=−∞

B̃meipeβZm Hm(krp)e
imθp. (14)

A method based on the use of Green’s theorem was used in [17] to show that
these modes transport energy, and hence propagate, to the right. Now it follows
from (12) that σn(−λ) = (−1)nσn(λ) and hence if there is a solution to (11) for β̃ > 0,



January 22, 2008 6

then there is a solution for −β̃ with B̃m(−β̃) = (−1)mB̃m(β̃). These represent equivalent
left-propagating modes which we will choose to write as

φrb(−β̃) = ±
∞∑

p=−∞

∞∑

m=−∞

(−1)mB̃me−ipeβZm Hm(krp)e
imθp . (15)

Here, the upper and lower signs refer to the symmetric (about y = 0) and antisymmetric
cases, respectively. This sign convention is purely for later algebraic convenience and will
be used throughout. Note that B̃m will always be used to refer to the solution to (11) for

β̃ ∈ (0, π). Due to the periodicity in (10), there are no distinct solutions for other real values

of β̃.
The mode which is symmetric about y = 0 exists for all scatterer sizes, but the anti-

symmetric mode only exists for 0.403 . a ≤ 0.5. For a given value of a, Rayleigh–Bloch
waves exist for a range of values of k; symmetric modes in the range 0 < k < ks

max < π and
antisymmetric modes in the range ka

min < k < ka
max < π. It turns out that there are three

distinct regimes: for a . 0.403 only symmetric modes are possible; for 0.403 . a . 0.459 we
have ks

max < ka
min and so it is possible to have symmetric and antisymmetric modes, but not

for the same value of k; finally when 0.459 . a < 0.5 we have ks
max > ka

min and hence it is
only in this parameter range that it is possible to excite both symmetric and antisymmetric
modes at the same time. Curves showing how ks

max, k
a
min and ka

max vary with scatterer radius
a can be found in [4].

Henceforth, we shall assume that only one Rayleigh–Bloch wave is present, cases in
which both modes are excited can be treated by separating the vertically symmetric and
antisymmetric parts of the problem and solving these individually. For any array solution
that has been decomposed in this way, we have

Up
m = ±(−1)mUp

−m. (16)

2.2 Semi-infinite arrays

Methods for computing the solution for the {0,∞} array have been developed in [4]. In this
case we write Up

m = Apm(ψ0), where Apm(ψ0) is composed from a sum of three terms; thus

Apm(ψ0) = eipk cosψ0Bm(ψ0) + α(ψ0)e
ipeβB̃m + Cp

m(ψ0). (17)

The first contribution on the right hand side is the equivalent coefficient for the {−∞,∞}
array, and the second is due to a right propagating Rayleigh–Bloch wave. If we were to make
a different choice for the coefficients B̃m (recall that these are defined up to a multiplicative
phase factor by (11) and (13)), then the value of α would also change, so that the product

αB̃m remains the same. The final term, Cp
m(ψ0), decays as p → ∞; its contribution to

the field is a circular wave radiating from the end. Note that decomposing the coefficients
in this way is not the same as decomposing the potentials, since the solutions to problems
for different arrays exist on different fluid domains. The leading order behaviour of the
coefficients Cp

m as p→ ∞ is given by

Cp
m(ψ0) ∼ Cm(ψ0)e

ikpp−u, (18)

with u = 3/2 in all cases except that of right resonance, when u = 1/2 [4]. This increase in
the significance of the decaying end effects is the most important consequence of resonance
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in the context of the large array approximation. Head-on incidence (ψ0 = 0) always leads to
right resonance, regardless of the value of k (see equation(9) and subsequent discussion).

We also require the solution for the {−∞, P} array under plane-wave excitation. Here
we write Up

m = Âpm, and these coefficients can be obtained in terms of Apm as follows. In (4)
we can take p0 = 0, let p1 → ∞ and replace j and P with P − j and P − p, respectively.
Note that X

(P−j)−(P−p)
n = (−1)nXj−p

n and so we also make the transformations n→ −n and
m → −m. The left-hand side of (4) is now identical to that which occurs in the {0,∞}
array problem, with Apm(ψ0) replaced by ÂP−p

−m (ψ0). From (6), we have

RP−p
−m (ψ0) = −ei(P−p)k cosψ0(−i)meimψ0 . (19)

It therefore follows that

Âpm(ψ0) = eiPk cosψ0AP−p
−m (π − ψ0), p = P, P − 1, . . . (20)

Substituting this into (17) and then making use of (8) and (16) yields

Âpm(ψ0) = eipk cosψ0Bm(ψ0) ± α̂(ψ0)e
−ipeβ(−1)mB̃m + Ĉp

m(ψ0), (21)

where

α̂(ψ0) = α(π − ψ0)e
iP (k cosψ0+eβ) and Ĉp

m(ψ0) = eiPk cosψ0CP−p
−m (π − ψ0). (22)

This is as we should expect; Âpm includes the same term involving Bm as does Apm, whereas
the other contributions are determined from the {0,∞} solution with a plane wave incident
at angle π − ψ0 and appropriate phase shifts. From equation (9), we see that if the angle
of incidence ψ0 gives rise to a right resonance, then π − ψ0 leads to a left resonance, and
vice-versa. Left resonance affects the coefficients Ĉp

m in the same way that right resonance
affects Cp

m (see equation (18) and subsequent discussion). Where no ambiguity can occur,
we will dispense with writing the dependence of the coefficients on ψ0.

Next we consider the {0,∞} array under excitation of a left propagating Rayleigh–Bloch
wave incident from the far field, and in this case we set Up

m = Qp
m. Since Up

m are the
coefficients in the expansion of the scattered potential, each one will include a contribution
from a right-propagating Rayleigh–Bloch wave, therefore we write

Qp
m = ρeipeβB̃m + T pm, (23)

where T pm ∼ Tmeikpp−3/2 for some set of constants Tm as p → ∞, and ρ is the end reflection
coefficient. As before, the contribution from the terms that decay as p is increased represents
a circular wave radiating from the end. The incident field for this problem can be taken,
from (15), as

φinc = ±

∞∑

p=0

∞∑

m=−∞

(−1)mB̃me−ipeβZm Hm(krp)e
imθp. (24)

Note that the sum over p could actually start at any non-negative integer, the difference
between the incident fields is simply a finite sum of circular waves which would be absorbed
in the coefficients T pm. Expanding (24) about the centre of cylinder p using Graf’s addition
theorem shows that

Rp
m = ∓(−1)me−ipeβB̃m ∓

∞∑

n=−∞

Zn

∞∑

j=0
6=p

e−ijeβ(−1)nB̃nX
p−j
n−m Hn−m(k|j − p|). (25)
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Since the Rayleigh–Bloch wave is a homogeneous solution to the {−∞,∞} problem, this
can be simplified to yield

Rp
m = ±e−ipeβ

∞∑

n=−∞

(−1)nZnB̃n

∞∑

j=1+p

eijeβ Hn−m(kj). (26)

The slowly convergent sums over j can be calculated efficiently using expressions in [16] and
then ρ and T pm can be calculated using the filtering methods developed in [4]. The cut-off
frequency k = kmax is a special case in which exact values can be deduced. Here, we have
β̃ = π, so that the Rayleigh–Bloch wave ceases to propagate and takes the form of a standing
wave. Furthermore, σ2m−1(π) = 0, and this causes the system of equations for B̃m (11) to
decouple into two components:

B̃2m +

∞∑

n=−∞

Z2nB̃2nσ2(n−m)(π) = 0, (27)

B̃2m+1 +
∞∑

n=−∞

Z2n+1B̃2n+1σ2(n−m)(π) = 0. (28)

Numerical results have shown that, in the vertically symmetric case, (28) has a nontrivial

solution, and B̃2m = 0 for all m when β̃ = π. The opposite is true in the antisymmetric
case, i.e. (27) has a nontrivial solution, and B̃2m+1 = 0 for all m. For a system decoupled in
this way we have, from (14) and (15),

φrb(π) = −φrb(−π). (29)

Equation (4) with the right-hand side (25) can therefore be solved by taking ρ = 1 and
T pm = 0; note that this is the trivial solution, i.e. the reflected mode exactly cancels the
incident field. This cancellation is only possible when the Rayleigh–Bloch modes are standing
waves (i.e. when β̃ = π).

Finally, we consider excitation of the {−∞, P} array by a right-propagating Rayleigh–
Bloch wave; in this case we denote the unknown coefficients Q̂p

m. The right-hand side can
be determined as in the previous case, and after rewriting (4) so that p ranges from 0 to ∞,
we find that

Q̂p
m = eiP eβQP−p

−m . (30)

Substituting this into (23) yields

Q̂p
m = ±ρ̂e−ipeβ(−1)mB̃m + T̂ pm (31)

with
ρ̂ = ρe2iP eβ and T̂ pm = eiP eβT P−p

−m . (32)

Again, this is as we should expect; the amplitude of the Rayleigh–Bloch wave is precisely
that which occurs in the {0,∞} array, with an appropriate phase shift.

2.3 Long finite arrays

We now construct the solution for the {0, P} array in the form (3) according to the large
array approximation. Thus, we write Up

m = F p
m, where

F p
m = eipk cosψ0Bm + χReipeβB̃m ± χLe−ipeβ(−1)mB̃m +Gp

m + Ĝp
m. (33)
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The coefficients are thus composed from the solution of the {−∞,∞} problem, Rayleigh–
Bloch waves travelling to the right and left with amplitudes χR and χL, respectively, and
extra terms representing the local effects of the two ends (as usual the hatted coefficients
refer to the end at x = P ). The large array approximation is now obtained by assuming
that the total amplitude of the right-propagating Rayleigh–Bloch wave is due to interactions
of the incident plane wave and the left-propagating Rayleigh–Bloch mode with the left
end. Similarly the left-propagating Rayleigh–Bloch mode comes from the interactions of
the incident plane wave and the right-propagating Rayleigh–Bloch mode with the right end.
This yields a pair of equations for χL and χR; thus

χR = α + ρχL, χL = α̂ + ρ̂χR, (34)

and from these we obtain

χR =
α + ρα̂

1 − ρρ̂
, χL =

α̂ + ρ̂α

1 − ρρ̂
. (35)

Likewise, for the circular waves that are excited, we have

Gp
m = Cp

m + χLT pm, Ĝp
m = Ĉp

m + χRT̂ pm. (36)

The finite array problem has thus been reduced to solving the infinite array problem and
determining the appropriate Rayleigh–Bloch mode, then finding α and ρ using the methods
from [4]. The quantities α̂ and ρ̂ follow from (22) and (32), respectively. Finally, Gp

m and
Ĝp
m are determined from (36) and the unknowns F p

m constructed via (33).

3 Accuracy & Performance

At the time of writing, exact results for semi-infinite arrays are not available, except in the
case of isotropic point scatterers [18]. For the finitely large scatterers that are of interest
here, we must use the filtering methods developed in [4]. These are approximate in that some
decaying end effects are always discarded. The filtering methods yield approximate values for
Cp
m (also T pm) for p ≤ Pc, where Pc is a parameter known as the spatial truncation. Increasing

Pc leads to improved accuracy at the cost of greater execution time. For an individual
calculation, gains in terms of performance are lost if Pc is chosen to be equal to
the size of the long finite array, P , although solutions to the canonical problems
can of course be reused for different array sizes. On the other hand, if Pc < P , then
we must introduce a further approximation so as to obtain values for Cp

m when Pc < p ≤ P .
A simple means of achieving this is to assume that CPc

m has reached its asymptotic limit so
as to obtain approximate values for the coefficients Cm appearing in (18); thus

Cm = CPc

m e−ikPcP u
c . (37)

The coefficients T pm can be treated in exactly the same way. Clearly the use of (37) in those
resonant cases where u = 1/2 will introduce greater errors than it does when u = 3/2, which
is more usual. The sums over order must also be truncated, that is we must use a finite
number of modes −N . . .N to represent the field radiating from each individual scatterer.
The truncation parameter N must be chosen to be large enough to yield accurate results, but
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ka < 0.001 < 0.35 < 0.5 < 0.8 < 1.5 < 2.0 > 2.0
N 2 3 5 8 10 12 15

Table 1: Order truncation N for numerical computations.
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Figure 3: Percentage errors; shaded points are calculated using the {−∞,∞} array, un-
shaded points use the large array approximation.

not so large as to unnecessarily increase program execution time or generate near singular
linear systems. The values used shown in table 1 have been found to satisfy these criteria.

If we define the percentage error on scatterer p via

Ep = 100 ×

∑N
n=−N |Zn(F

p
n −Dp

n)|∑N
n=−N |ZnD

p
n|

, (38)

where Dp
n is the coefficient that occurs when the {0, P} array problem is solved directly by

inverting (4), then this gives a stringent measure of the accuracy achieved by the large array
approximation. Figure 3 shows logarithmic plots of Ep against p for a 101 scatterer array
with various parameters. The canonical problems are solved using the filtering methods
developed in [4], with spatial truncation Pc = 50. Results calculated using the {−∞,∞}
array solution (i.e. by replacing F p

n with eikp cosψ0Bn in (38)) are included for comparison
with those obtained via the large array approximation. No such results are available
if ψ0 = 0; excitation of an infinite array at head-on incidence is not possible. In
figure 3(a), square data points have been used to indicate percentage errors for a = 0.25,
k = 5.0 and ψ0 = π/4. Close to the centre of the array, the solution to the {−∞,∞}
problem exhibits an error around the 1% level, however this rises to around 10% near the
ends. As there are no Rayleigh–Bloch waves in this case, the large array approximation
improves on this by simply including decaying effects due to each end. The agreement is
now very good, with the error falling to around 0.1% close to the ends, and lower elsewhere.
It was noted in [14] that in a resonant case, the solution to the {−∞,∞} problem bears
less resemblance to the large finite array. This is now understood to be caused by the slower
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(Pc = 50) (Pc = 100)
P Tex(s) Tla(s) Emax(%) Tla(s) Emax(%)

100 7.2 4.1 1.3 25.8 0.38
200 48.4 4.1 1.9 25.8 0.51
300 179.8 4.2 1.8 25.9 0.59

Table 2: Computation times (in seconds) and maximum percentage errors for various array
sizes using a = 0.25, k = 2.5 and ψ0 = π/10. Symmetric Rayleigh–Bloch waves are present
in the solution.

rate of decay exhibited by the end effects in such cases. Round data points have been used
in figure 3(a) to indicate percentage errors for a = 0.25, and ψ0 = π/4 with k chosen so as
to create a left resonance with j = −1 in (9); thus k ≈ 3.681. The errors in the {−∞,∞}
solution are indeed considerably larger than in the previous case, around 10% at best, rising
to over 100% close to the right end. The large array approximation again offers a significant
improvement, in particular for p > 50, where the errors are around 0.3%. There are two
important points to note here. First, the errors are greater than in the previous case, because
the large array approximation discards more significant effects in a resonant case. Secondly,
the errors are greater on the left half of the array because for p < 50, Ĉp

m must be calculated
by approximating Cp

m in (22) via (37), with u = 1/2. Triangular points have been used to
indicate errors for the case a = 0.25, k = 3.0, ψ0 = 0. Since head-on incidence is a type of
right-resonance, an increase in Ep occurs for p > 50. For p < 50, the errors are negligible,
whereas for p > 50, the actual coefficients F p

m are small, but the most significant effect is
caused by the fact that the array does not extend to infinity on the right side, and this is
neglected by the large array approximation. Consequently, the errors are relatively large.

Figure 3(b) shows some examples where Rayleigh–Bloch waves are present. The tri-
angular data points correspond to the parameters a = 0.25, k = 2.0, ψ0 = 0, for which
symmetric Rayleigh–Bloch waves are present, and the error is seen to be around the 1%
level. Round data points were computed using a = 0.25, k = 2.5 and ψ0 = π/10. Symmetric
Rayleigh–Bloch waves are again present, causing large errors to occur on all scatterers when
the solution is approximated using the infinite array. This is corrected by the large array
approximation, where the errors are now around 1%, at worst. Interestingly, the pattern of
oscillations in Ep is similar to that which occurs in the infinite array solution, indicating that
the remaining error is due to inaccuracies in computing the Rayleigh–Bloch wave amplitudes
α(ψ0) and α(π−ψ0), and reflection coefficient ρ. Finally, square data points have been used
to represent the case where a = 0.49, k = 2.97 and ψ0 = π/10. Antisymmetric Rayleigh–
Bloch modes now occur and large errors are evident when the infinite array solution is used.
Again, these are corrected by the large array approximation where the error reaches around
3% at the right end, and is lower elsewhere.

The time required to construct the large array approximation is generally much shorter
than that required to solve the {0, P} array problem directly by inverting (4). Table
2 shows computation times (using Fortran 2003 on a 2.5GHz Macintosh running OS X)
with a typical set of parameters, for various array sizes. Symmetric Rayleigh–Bloch waves
are present in the solution. The computation time for the direct solution, Tex increases
rapidly with the array size, P . In contrast, solving the canonical problems is the most
expensive procedure required for the construction of the large array approximation; Tla is
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largely unaffected by the actual array size. The maximum percentage error, defined as

Emax = max{Ep : p ∈ {0, P}}

is also shown. This is reduced by increasing Pc from 50 to 100, at the expense of increasing
computation time. For Pc = 50, we have Emax < 2% for all of the array sizes shown; this is
sufficiently accurate for many purposes.

4 Near-trapping

One of the motivations behind this present article is the association between trapped modes
for cylinders in channels and large responses in the scattering by a long finite array in the
open sea, first discovered by Maniar & Newman [5]. The trapped modes that they studied
were for a single cylinder in a channel, but subsequently it was shown numerically [19, 20]
(and later proved analytically [21]) that a number of different modes exist when the {0, P}
array (with P > 0) is situated in a channel with walls located at x = −1/2 and x = P +1/2.
For either Dirichlet or Neumann boundary conditions on the channel walls, the frequencies
at which these modes can occur are given by

β̃ = [1 − q/(P + 1)]π, q ∈ {0, 1, . . . P}; (39)

this is an exact result. It has been noted that the frequencies at which large responses can
occur in the problem of scattering by a long array in the open sea [7] are predicted by (39),
with 0 < q ≪ P + 1. In this case it is an (albeit very accurate) approximation, as we shall
see.

Now the large responses observed by Maniar & Newman in [5] do not occur in the case
of scattering by an infinite or semi-infinite array. Furthermore, these effects have only been
observed when the wavenumber k is such that Rayleigh–Bloch waves can exist. It therefore
follows that a key role is played by interactions between the ends of the finite array, and
in particular the reflection coefficient ρ. Figure 4 shows values of |ρ| for different scatterer
sizes and varying k, in both the symmetric and antisymmetric cases. In all cases, |ρ| remains
small, until k approaches kmax, and then the magnitude increases sharply toward the limiting
value |ρ| = 1. The fact that |ρ| → 1 as k → kmax shows that as the cut-off for Rayleigh–
Bloch waves is approached the amount of energy scattered away from the array by reflections
decreases. Coupled to this is the observation from [4] that |α| increases to its maximum value
as k → kmax. Hence in the long finite array problem we should expect that large responses
can only occur at or near k = kmax.

In fact, taking k = kmax exactly (and therefore β̃ = π) does not produce a large response.

Although the denominator 1 − ρρ̂ in (35) vanishes in the limit β̃ → π, cancellation effects
due to the standing wave nature of the Rayleigh–Bloch waves (see §2.2) cause their total

contribution to (33) (i.e. χR exp(ipβ̃)B̃m ± χL exp(−ipβ̃)(−1)mB̃m) to remain finite. If k
is slightly less than kmax, so that |ρ| ≈ 1, then we must consider the effect of interference
between the left and right propagating Rayleigh–Bloch waves and their respective multiple
reflections. Thus, a large response is expected to occur when the interference is purely
constructive, and this corresponds to situations where the phase of the Rayleigh–Bloch wave
is unchanged after traversing the array once in each direction, and so undergoing a single
reflection by each end. That is, the quantity

ρρ̂ = ρ2e2iP eβ (40)
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Figure 4: Modulus of the reflection coefficient ρ for (a) symmetric and (b) antisymmetric
Rayleigh–Bloch waves.
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Figure 5: Imaginary parts of ρ and c for (a) symmetric and (b) antisymmetric Rayleigh–
Bloch waves.

must be positive real. Given that ρ = 1 when k = kmax (see §2.2), an approximate formula

for the values of β̃ near the cut-off at which pure constructive interference occurs is obtained
by simply assuming that Im[ρ] = 0. However, in many cases of physical interest, including
that investigated by Maniar & Newman (a = 0.25 in our notation), a better approximation is

achieved by assuming that Im[c] = 0, where c = ρe−ieβ ; in fact this yields precisely (39). That
is, pure constructive interference occurs at or very close to those frequencies for which the
Rayleigh–Bloch wave is 2(P + 1) periodic. Since 2(P + 1) periodicity of the Rayleigh–Bloch
wave is a necessary and sufficient condition for the existence of a trapped mode in a channel
containing the {0, P} array, the connection between these phenomena and near-trapping on
arrays in the open sea is now clear. However, we reiterate that 2(P + 1) periodicity is not a
sufficient condition for near-trapping; we must also have |ρ| ≈ 1, which in turn requires that
k ≈ kmax. The imaginary parts of ρ and c for symmetric and antisymmetric Rayleigh–Bloch
waves are shown in figure 5. The magnitude of the imaginary parts of both ρ and c are always
relatively small, but for symmetric Rayleigh–Bloch waves on arrays of small scatterers, we
have | Im(c)| ≪ | Im(ρ)| for k close to kmax, the difference decreasing as the scatterer radius
is increased. When a = 0.45 we have | Im(c)| ≈ | Im(ρ)| and for larger values | Im(c)| can
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exceed | Im(ρ)|. Accurate values for antisymmetric waves are difficult to obtain. This is due
to a combination of two factors. First, the size of the scatterers means that a large number
of modes must be used in order to accurately represent the field. Secondly, the ratio of Re[ρ]
to Im[ρ] is greater in this case, and, given that the filtering method in [4] can achieve only a
limited number of significant figures, we should expect some numerical inaccuracies. Indeed,
it is likely that these are responsible for the cusp in the curve for a = 0.45 in figure 5(b),
despite the use of a large spatial truncation (Pc = 300) in generating the data. Nevertheless,
it is evident from the figure that | Im(c)| < | Im(ρ)| when k is close to kmax, but the difference
is small. Whatever approximation we use, i.e. Im[c] = 0 (which leads to (39)) or Im[ρ] = 0
(which leads to the same formula but with P + 1 replaced by P ), it is clear that increasing
P allows constructive interference to occur closer to the cut-off, and hence with an increased
value for |ρ|. That is, near-trapping is enhanced on larger arrays.

One of the most significant effects of near-trapping is the possibility that large forces
may be exerted on certain elements of the array, as in figure 1. Now the force exerted in the
x and y directions on scatterer p, normalised using the force on a cylinder in isolation, are
given by

Fp
x = 1

2

∣∣Up
1 − Up

−1

∣∣ , and Fp
y = 1

2

∣∣Up
1 + Up

−1

∣∣ , (41)

respectively [10, §3]. Thus, as we should expect, Fp
x = 0 for a field that is antisymmetric

about y = 0, whereas Fp
y = 0 for a symmetric field (see equation (16)). It turns out that

near-trapping of the symmetric Rayleigh–Bloch mode has the greater physical significance in
this context. There are two reasons for this. First, as discussed in §2.2, for an antisymmetric
wave B̃1 = B̃−1 → 0 as k → ka

max. Furthermore, results in [4] show that the largest value
for α(ψ0) occurs at head-on incidence, when there is no antisymmetric field. In fact, the
peak value of α is sufficiently large that the strongest near-trapping effects generally occur
for ψ0 = 0, despite the fact that α(π − ψ0) = 0 in this case.

Figure 6 shows logarithmic plots of the force on the center cylinder of a 101 scatterer
array at head-on incidence, with a = 0.25 and varying k. The forces are calculated from (41)
using either Up

n = F p
n for the large array approximation, or Up

n = Dp
n where, as before Dp

n

is the coefficient obtained when the {0, P} array problem is solved directly. The accuracy
achieved by the large array approximation is very good, and the plots are almost in-
distinguishable, except when k is slightly larger than the cut-off value ks

max. Here there

is a small discrepancy caused by the fact that β̃ moves off the real line as k increases
beyond the cut-off. Thus, in place of the Rayleigh–Bloch wave there is now a mode which is
evanescent in x, and this can still cause interactions between the ends when the imaginary
part of β̃ is small. The locations at which at which peaks and troughs occur in the force
plots can be predicted by the following considerations. From equations (33), (35) and (41),
it can be seen that the forces due to the left- and right-propagating Rayleigh–Bloch waves
act in the same direction when the quantity 1 − ρ exp(2i(P − p)β̃) is maximised, whereas
they act directly against each other when it is minimised. Retaining the assumption that,

to a good approximation, c = ρe−ieβ is negative real, and applying (39) (so as to achieve
near-trapping), we find that

1 − ρe2i(P−p)eβ ≈ 1 − |ρ|eiqπ(2p+1)/(P+1). (42)

If, as is the case here, we are concerned with the force at the centre of the array then, since
p = P/2, odd and even values for q cause the forces to act in support of, and against each
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Figure 6: Force on cylinder 50 of a 101 scatterer array, at head-on incidence with a =
0.25 and varying k. Legend: × cut-off for symmetric Rayleigh–Bloch modes, • (�): peak
(minimum) predicted by (39) and (42). The dotted line is the full linear solution calculated
by inversion of (4), and the data for the solid line are obtained using the large array
approximation. The lower plot is an expanded version of the upper plot near to k = ks

max.

other, respectively. The corresponding frequencies are shown in figure 6 and the agreement
is excellent.

Figure 7 shows the forces along the array, for fixed values of k. Shaded data points
are obtained by solving the {0, 100} problem directly; unshaded points use the large array
approximation. The maxima and minima evident in the plots can be interpreted according
to (42). Thus, data plotted with square points have been obtained by taking ψ0 = 0, and
setting q = 1 in equation (39), so that k ≈ 2.781 as in Maniar and Newman [5, figure 2b].
Here, equation (42) predicts that the forces due to the left and right Rayleigh–Bloch waves
act in the same direction at centre of the array, and largely cancel eachother at the ends. This
behaviour is clearly evident in the plot. For comparison, data using the same parameters,
but with ψ0 = π/10 have been plotted using triangular data points. Here the agreement
between the directly obtained solution and the large array approximation is such that the two
sets of points are indistinguishable. The forces exhibit qualitatively similar behaviour to the
head-on incident case, except that their magnitudes have been reduced, and the excitation of
Rayleigh–Bloch waves by the incident field at the right end (which does not occur at head-on
incidence) causes some interference. Similarly, the data plotted using circular points are also
obtained at head-on incidence, but now setting q = 2 in equation (39), so that k ≈ 2.800.
In this case, equation (42) predicts maximum forces at p = 25 and p = 75, and a minimum
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obtained by solving (4) directly, unshaded points are calculated using the large
array approximation. k ≈ 2.781, ψ0 = 0 (�), ψ0 = π/10 (△); k ≈ 2.800, ψ0 = 0 (◦).

at p = 50. Again, this behaviour is clearly evident in the plot.
As noted above, (39) is an approximation that is less good for larger scatterers. Figure 8

shows the horizontal force on cylinder 50 of a 101 scatterer array, with a = 0.49 at head-on
incidence with varying k. As before, the agreement between the large array approximation
and the direct inversion of (4) is excellent, except for a small discrepancy which occurs
when k is slightly greater than ks

max, so that the Rayleigh–Bloch wave is replaced by a mode
that is weakly evanescent in x. The predictions made by (39) for the frequencies at which
maximum and minimum forces occur are less accurate than for a = 0.25, though the errors
are small.

Somewhat remarkably, both the near-trapping effect and the accuracy of the
large array approximation persist for small (P ≈ 10) arrays. Figure 9 shows
two such examples, using the {0, 6} and {0, 20} arrays, with a = 0.25, ψ0 = 0
and Pc = 50. As before, normalised force on the centre cylinder is shown as a
function of wavenumber. In both cases there is very good qualitative agreement
between the directly obtained solution and the large array approximation for
k < ks

max ≈ 2.783. In particular, the peaks that occurs at k ≈ 2.645 in (a) and
k ≈ 2.753 in (b) are correctly predicted, and the amplification is much smaller
than in previous cases; again this is consistent with the theory. It should be
noted that (39) fails in this latter case; setting q = 1 leads to a predicted peak at
k ≈ 2.526. The fact that the quantitative agreement is less good than for larger
arrays is to be expected. For k > ks

max the large array approximation fails, for
the seven cylinder array, and in particular, there is an erroneous peak in the
force slightly above the cut-off value. The reason for this breakdown is obvious.
As discussed above, in this regime the Rayleigh–Bloch wave is replaced by a
mode that is evanescent in x, and this has not been included in the large array
approximation. Since the array is now small, this evanescent mode can cause
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Figure 8: Force on cylinder 50 of a 101 scatterer array, at head-on incidence with a =
0.49 and varying k. Legend: × cut-off for symmetric Rayleigh–Bloch modes, • (�): peak
(minimum) predicted by (39) and (42). The dotted line is the full linear solution, calculated
by inversion of (4) and the data for the solid line are obtained using the large array
approximation.

significant interaction effects between the ends.

5 Conclusion

We have shown in this article how the response of a long finite array to an incident plane
wave can be modelled accurately and efficiently by decomposing it into a set of canonical
problems formulated on infinite and semi-infinite arrays. This can lead to considerable
computational savings. Moreover, the decomposition provides a powerful explanation of the
near-trapping phenomenon that has been observed for this type of array, and shows that
Rayleigh–Bloch surface waves are the principle cause. At a certain wavenumber
that depends on the size of the scatterers, these Rayleigh–Bloch waves cut off,
and are replaced by an evanescent mode. Inaccuracies that were observed in our
numerical results for wavenumbers just above the cut-off could be corrected by
locating this mode in complex plane; it is then straightforward to incorporate it
into the theory.

We have formulated the problem as a water-wave scattering problem involving an array
of vertical circular cylinders, but exactly the same mathematical problem arises in certain
applications in acoustics, electromagnetism and elasticity involving circular scatterers. The
same theory can be applied to arrays made up of more general shapes of scatterer, provided
the canonical problems for these scatterers can be solved.

Acknowledgements

IT is supported by EPSRC under grant EP/C510941/1.



January 22, 2008 18

(a)

kk

lo
g

1
0
F

3 x
lo

g
1
0
F

3 x
0.60.6

0.40.4

0.20.2

−0.2−0.2

−0.4−0.4
0

0

0

0

11 22 33 44 55

direct

LAA

(b)

kk
lo

g
1
0
F

3 x
lo

g
1
0
F

3 x

0.80.8

0.60.6

0.40.4

0.20.2

−0.2−0.2

−0.4−0.4

−0.6−0.6

0

0

0

0

11 22 33 44 55

direct

LAA

Figure 9: Force on the centre cylinder with a = 0.25, ψ0 = 0 and varying k. (a) 7 cylinder
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