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Electromagnetic guided waves on linear
arrays of spheres

C M Linton, V Zalipaev, and I Thompson, Department of Mathematical Sciences,
Loughborough University, Leicestershire, LE11 3TU, UK

Abstract

Guided electromagnetic waves propagating along one-dimensional arrays of dielec-
tric spheres are studied. The quasi-periodic wave field is constructed as a superposition
of vector spherical wave functions and then application of the boundary condition on
the sphere surfaces leads to an infinite system of real linear algebraic equations. The
vanishing of the determinant of the associated infinite matrix provides the condition
for surface waves to exist and these are determined numerically after truncation of the
infinite system. Dispersion curves are presented for a range of azimuthal modes and
the effects of varying the sphere radius and electric permitivity are shown. We also
demonstrate that a suitable truncation of the full system is precisely equivalent to the
dipole approximation that has been used previously by other authors, in which the
incident field on a sphere is approximated by its value at the centre of that sphere.

1 Introduction

Guided modes propagating along periodic structures have received considerable attention
and, depending on the physical contexts, are known variously as edge waves [1], Rayleigh-
Bloch surface waves [2], array-guided surface waves [3] or bound states [4]. Most of this
work has focused on two-dimensional problems. There have been previous studies of elec-
tromagnetic surface waves guided by periodic arrays, but these have concentrated on cases
where the spheres can be modelled by some combination of electric and magnetic dipoles
[5, 6, 7, 8].

The work described here is a complete analysis, based on the full Maxwell equations, of
travelling electromagnetic waves propagating along linear arrays of dielectric spheres in the
absence of any incident field. A theory for electromagnetic wave scattering by an infinite
planar array of spheres was developed in [9, 10] and our approach builds on the formalism
presented there; it would be straightforward to modify our analysis to consider the corre-
sponding scattering problem. A similar formalism for full vector problems in elasticity has
also been developed [11, 12, 13].

Our goal is to provide a thorough study of the modes that can exist. The problem is
a natural extension of the equivalent acoustic problem [14] and, as in that case, there is a
cut-off frequency below which waves cannot radiate energy away from the array. The modes
that we seek have frequencies below this cut-off and decay exponentially as one moves away
from the array. We do not address the far more difficult question of whether surface modes
exist at frequencies above the cut-off (in which case they are usually referred to as embedded
modes); a review of work on embedded modes in two dimensions can be found in [15].

In section 2 we formulate the general problem of electromagnetic waves traveling on
an arbitrary infinite periodic array of penetrable dielectric spheres and then the special
case of a one-dimensional array is treated in section 3. We derive a homogeneous infinite
system of real linear algebraic equations and the condition for the existence of a guided
wave is that the determinant of this system should vanish. The matrix associated with this
system is truncated and the determinant then computed numerically; results are presented
in section 4.
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2 Representation of the electromagnetic field

We assume time-harmonic fields with an exp(−iωt) (ω > 0) dependence throughout. Spher-
ical polar coordinates are (r, θ, φ) with unit vectors er, eθ, eφ. In an isotropic homogeneous,
source free medium Maxwell’s equations are

∇× E− iωµH = 0, ∇ · E = 0, (1)

∇×H+ iωǫE = 0, ∇ ·H = 0. (2)

Here E is the electric intensity, H is the magnetic intensity, ǫ is the electric permitivity, and
µ is the magnetic permeability. It follows that both E and H satisfy the vector Helmholtz
equation:

∇2E+ k2E = 0, ∇2H+ k2H = 0, (3)

in which k2 = ω2ǫµ. Our analysis is built around vector spherical wavefunctionsMm
n andNm

n ,
defined in Appendix A, which are divergence-free solutions to the vector Helmholtz equation.
Vector spherical wavefunctions which are regular at the origin (i.e. with the function zn(kr)
in Appendix A taken as the spherical Bessel function of the first kind, jn(kr)) will be denoted
by M̂m

n and N̂m
n and we will use the notation Mm

n and Nm
n for functions containing spherical

Hankel functions h(1)
n (kr) (which are singular at the origin and behave like outgoing waves

as kr → ∞).
To begin with we will consider an arbitrary periodic array Λ of dielectric spheres, centred

at the points Rj ∈ Λ. Without loss of generality we can assume that R0 = 0. Outside
the spheres we write ǫ and µ for the electric permitivity and the magnetic permeability,
respectively, whereas inside the spheres we use ǫ′ and µ′ with k′ = ω

√
ǫ′µ′. We seek a

quasi-periodic solution which satisfies

E(r+Rj) = eiβ·RjE(r), H(r+Rj) = eiβ·RjH(r) (4)

for some Bloch vector β. Let
rj = r−Rj. (5)

Assuming that there is no incident field, we can then represent the electric and magnetic
field outside the spheres via

E(r) =
∑

Rj∈Λ

eiβ·Rj

∑

n,m

(amn M
m
n (rj) + bmn N

m
n (rj)) , (6)

H(r) = −iζ
∑

Rj∈Λ

eiβ·Rj

∑

n,m

(amn N
m
n (rj) + bmn M

m
n (rj)) , (7)

where the complex coefficients amn and bmn are to be determined, ζ =
√

ǫ/µ is the admittance
of the medium and we have introduced the shorthand notation

∑

n,m

≡
∞
∑

n=1

n
∑

m=−n

.

Note that, unlike in the equivalent scalar problem, there is no monopole (n = m = 0) term.
Spherically symmetric solutions to the source-free Maxwell equations exist only in the static
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case k → 0 (see [16, §9.1]). Inside sphere j the field is given by

Êj(rj) = eiβ·Rj

∑

n,m

(

a′mn M̂′m
n (rj) + b′mn N̂′m

n (rj)
)

, (8)

Ĥj(rj) = −iζ ′eiβ·Rj

∑

n,m

(

a′mn N̂′m
n (rj) + b′mn M̂′m

n (rj)
)

. (9)

in which the primed quantities ζ ′, M̂′m
n and N̂′m

n are the same as their unprimed equivalents
except with ǫ and µ replaced with ǫ′ and µ′ appropriate for the medium inside the spheres.

It then suffices to consider the boundary conditions on a single sphere, which we take
to be that at the origin. We can separate the total field, given by (6) and (7), into parts
incident on and radiating from this particular sphere; the latter is given by

Erad
0 (r) =

∑

n,m

(amn M
m
n (r) + bmn N

m
n (r)) , (10)

Hrad
0 (r) = −iζ

∑

n,m

(amn N
m
n (r) + bmn M

m
n (r)) . (11)

The field incident on the sphere at the origin (which is made up from the radiated fields from
all the other spheres) can be expanded, in the vicinity of that sphere, in terms of regular
wavefunctions:

Einc
0 (r) =

∑

n,m

(

cmn M̂
m
n (r) + dmn N̂

m
n (r)

)

, (12)

Hinc
0 (r) = −iζ

∑

n,m

(

cmn N̂
m
n (r) + dmn M̂

m
n (r)

)

, (13)

and then comparing this with (6) and (7) and using the addition theorem (72) we find that

cµν =
∑

n,m

(amn Amµ
nν + bmn Bmµ

nν ) , dµν =
∑

n,m

(amn Bmµ
nν + bmn Amµ

nν ) , (14)

where we have defined the lattice sums

Amµ
nν =

∑′

Rj∈Λ

eiβ·RjAmµ
nν (−Rj), Bmµ

nν =
∑′

Rj∈Λ

eiβ·RjBmµ
nν (−Rj), (15)

with Amµ
nν (·) andBmµ

nν (·) given by (76) and (79), respectively. Here the dash on the summation
indicates that the j = 0 term is to be omitted.

The boundary conditions to be satisfied at r = a are that the tangential component
of both E and H must be continuous. In other words er × E and er × H need to be
continuous. Using vector spherical harmonics defined by (58), and (63), (66) and the fact
that er × (er ×Xm

n ) = −Xm
n , we see that continuity of er × E implies that

∑

n,m

(a′mn jn(k
′a)er ×Xm

n − b′mn D jn(k
′a)Xm

n )

=
∑

n,m

((amn hn(ka) + cmn jn(ka))er ×Xm
n − (bmn D hn(ka) + dmn D jn(ka))X

m
n ) (16)
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and continuity of er ×H gives

ζ ′
∑

n,m

(b′mn jn(k
′a)er ×Xm

n − a′mn D jn(k
′a)Xm

n )

= ζ
∑

n,m

((bmn hn(ka) + dmn jn(ka))er ×Xm
n − (amn D hn(ka) + cmn D jn(ka))X

m
n ) . (17)

Here D is the differential operator defined in (67).

Next we take the dot product of each of (16) and (17) with X
q
p and integrate over the

unit sphere to yield for each p = 0, 1, 2, . . . and q = −p, . . . , p, on account of (59) and (69),

b′qp D jp(k
′a) = bqpD hp(ka) + dqpD jp(ka) (18)

and
ζ ′

ζ
a′qp D jp(k

′a) = aqpD hp(ka) + cqpD jp(ka). (19)

Similarly, if we take the cross product of (16) and (17) with X
q
p and integrate over the unit

sphere we obtain, on account of (61) and (62),

a′qp jp(k
′a) = aqp hp(ka) + cqp jp(ka) (20)

and
ζ ′

ζ
b′qp jp(k

′a) = bqp hp(ka) + dqp jp(ka). (21)

Elimination of the interior coefficients a′qp and b′qp leads to the relations

aqp + Z(1)
p cqp = 0, bqp + Z(2)

p dqp = 0, (22)

where the so-called Lorenz-Mie coefficients Z
(i)
p are given by

Z(1)
p =

ζ ′ jp(ka)D jp(k
′a)− ζD jp(ka) jp(k

′a)

ζ ′ hp(ka)D jp(k
′a)− ζD hp(ka) jp(k

′a)
, (23)

Z(2)
p =

ζ ′D jp(ka) jp(k
′a)− ζ jp(ka)D jp(k

′a)

ζ ′D hp(ka) jp(k
′a)− ζ hp(ka)D jp(k

′a)
. (24)

(These are equivalent to the expressions given in [17, p. 565].) Finally, if we substitute from
(14) we obtain the coupled systems of homogeneous equations

aqp + Z
(1)
p

∑

n,m

(

amn Amq
np + bmn Bmq

np

)

= 0

bqp + Z
(2)
p

∑

n,m

(

amn Bmq
np + bmn Amq

np

)

= 0



















p ≥ 1, |q| ≤ p. (25)

For the purpose of making numerical computations we truncate this system. The crudest
such truncation is to insist that p = q = 1 (i.e. retain only the dipole terms). It is possible
(as in [5]) to restrict attention at the outset to fields consisting solely of dipoles and then to
replace the complicated machinery that results from the application of the addition theorem
and which leads to (14) by the much simpler process of matching the value of the incident
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field at the centre of the chosen sphere. It is not obvious that this approach is equivalent to
truncating (25) but this is the case, as we now demonstrate.

From (6), (7) we have, for dipole fields,

Einc
0 (0) =

∑′

Rj∈Λ

eiβ·Rj

1
∑

m=−1

(am1 M
m
1 (−Rj) + bm1 N

m
1 (−Rj)) , (26)

Hinc
0 (0) = −iζ

∑′

Rj∈Λ

eiβ·Rj

1
∑

m=−1

(am1 N
m
1 (−Rj) + bm1 M

m
1 (−Rj)) , (27)

and the key step is to note that, from (85),

Mm
1 (−Rj) =

1
∑

µ=−1

Bmµ
11 (−Rj)N̂

µ
1 (0), Nm

1 (−Rj) =
1

∑

µ=−1

Amµ
11 (−Rj)N̂

µ
1(0). (28)

On the other hand, from (12) and (13), using (70), we have

Einc
0 (0) =

1
∑

m=−1

dm1 N̂
m
1 (0), Hinc

0 (0) = −iζ
1

∑

m=−1

cm1 N̂
m
1 (0). (29)

Matching (29) with (26) and (27), using (15), thus yields

1
∑

µ=−1

dµ1N̂
µ
1(0) =

1
∑

m=−1

1
∑

µ=−1

(am1 Bmµ
11 + bm1 Amµ

11 ) N̂µ
1(0), (30)

1
∑

µ=−1

cµ1N̂
µ
1(0) =

1
∑

m=−1

1
∑

µ=−1

(am1 Amµ
11 + bm1 Bmµ

11 ) N̂µ
1(0), (31)

and this is clearly satisfied if

cµ1 =

1
∑

m=−1

(am1 Amµ
11 + bm1 Bmµ

11 ) , dµ1 =

1
∑

m=−1

(am1 Bmµ
11 + bm1 Amµ

11 ) , µ = −1, 0, 1 (32)

which is the truncated version of (14). In the general case this is a 6×6 system of equations.

3 Guided waves on linear arrays of spheres

The system of equations (25) applies equally well to a one-, two-, or three-dimensional
lattice Λ. In this section we consider the special case of a linear array of spheres, i.e. we take

Rj = js ez, j ∈ Z, (33)

where s is the spacing between the sphere centres. In this case the modes corresponding
to different values of m decouple, since if m 6= q, then Amq

np = Bmq
np = 0 (see Appendix B)

and without loss of generality we can assume that m ≥ 0. We take β = βez and since
exp(iβ · Rj) = exp(ijsβ) it is clear that we only need to consider βs ∈ (−π, π]. However,
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the symmetry of the geometry means that in fact we only need to consider βs ∈ [0, π]. Then
outside the spheres we have the representations

Em(r) =

∞
∑

j=−∞

eijsβ
∞
∑

n=m∗

(amn M
m
n (rj) + bmn N

m
n (rj)) , (34)

Hm(r) = −iζ
∞
∑

j=−∞

eijsβ
∞
∑

n=m∗

(amn N
m
n (rj) + bmn M

m
n (rj)) , (35)

where we have written m∗ = max(1, m). We have, from (83) and (84),

Amm
nν = 4π(−1)m

√

ν(ν + 1)

n(n+ 1)

n+ν
∑

p=|n−ν|
n+ν+p even

iν−n−pgnνpG(n,m; ν,−m; p)σp, (36)

Bmm
nν =

2π(−1)m
√

n(n + 1)ν(ν + 1)

n+ν−1
∑

p=|n−ν|+1
n+ν+p odd

iν−n−p

√

2p+ 1

2p− 1
H(n,m; ν,−m; p)σp, (37)

where σp is defined in (86).
For a particular value of m, the system of equations given by (25) reduces to

amν + Z
(1)
ν

∞
∑

n=m∗

(amn Amm
nν + bmn Bmm

nν ) = 0

bmν + Z
(2)
ν

∞
∑

n=m∗

(amn Bmm
nν + bmn Amm

nν ) = 0



















ν ≥ m∗. (38)

When 0 < ks < βs < π, which ensures no radiation away from the array, this system of
complex equations can be transformed into a real system as follows. We use (75), (78), (93)
and (94), to show that

Amm
nν = iν−n+1Ãm

nν − δnν , Bmm
nν = iν−n+1B̃m

nν , (39)

where

Ãm
nν = 4π(−1)m

√

ν(ν + 1)

n(n + 1)

n+ν
∑

p=|n−ν|
n+ν+p even

gnνpG(n,m; ν,−m; p)(−1)pηp, (40)

B̃m
nν =

2π(−1)m
√

n(n+ 1)ν(ν + 1)

n+ν−1
∑

p=|n−ν|+1
n+ν+p odd

√

2p+ 1

2p− 1
H(n,m; ν,−m; p)(−1)pηp (41)

and ηp is defined in (94). Thus (38) becomes

i−νamν +W
(1)
ν

∞
∑

n=m∗

i−n
(

amn Ãm
nν + bmn B̃m

nν

)

= 0

i−νbmν +W
(2)
ν

∞
∑

n=m∗

i−n
(

amn B̃m
nν + bmn Ãm

nν

)

= 0



















ν ≥ m∗, (42)
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where

W (i)
ν =

iZ
(i)
ν

1− Z
(i)
ν

, i = 1, 2, (43)

which depend on the product of the wavenumber k and the spheres radius a. The coefficients
Ãm

nν , B̃m
nν depend only on the two non-dimensional parameters ks and βs. Substituting the

definitions of the Lorenz-Mie coefficients (23), (24) shows that W
(i)
ν is real and so (42) is a

real system with unknowns i−νamν and i−νbmν .
The existence of guided waves along the array corresponds to values of k and β for which

this system admits non-trivial solutions for the unknowns amn , b
m
n . Thus, equating to zero

the determinant of the system we come to dispersion relations connecting k and β.
The special case m = 1, and a1n = b1n = 0 for n > 1, is worthy of consideration since this

corresponds to the dipole approximation considered in [5, 18]. (In fact, those papers consider
a particular polarization which is a linear combination of the m = 1 and m = −1 modes,
but the dispersion relation is identical.) The general 6 × 6 system given in (32) reduces to
a 2× 2 system in this case. From (42), dropping the superfluous sub- and superscripts n, ν
and m (which are all 1) we get the (real) dispersion relation

(1 +W (1)Ã)(1 +W (2)Ã)−W (1)W (2)B̃2 = 0 (44)

and Ã and B̃ can be determined using (40), (41), (75), (78), together with the results

G(1, 1; 1,−1; 2) = 1/
√
20π, H(1, 1; 1,−1, 1) = −1/

√
π. (45)

We obtain

Ã =
√
4π η0 +

√

π

5
η2, B̃ = −

√
3π η1. (46)

For convenience, we define

χ±
q = (Clq(ks+ βs)± Clq(ks− βs)) /(ks)q. (47)

Then, using (94), we have

Ã = −3

2

(

χ+
1 − χ+

2 − χ+
3

)

, B̃ =
3

2

(

χ−
1 − χ−

2

)

. (48)

To allow easy comparison with [5], we re-write the dispersion relation (44), using (43),
as

iZ(1)B̃
1 + Z(1)(iÃ − 1)

=
1 + Z(2)(iÃ − 1)

iZ(2)B̃
(49)

and define Σ1,2 and S± via

Σ1 = χ+
1 − χ+

2 − χ+
3 − 2i

3
, Σ2 = χ−

1 − χ−
2 , S+ = 3iZ(1)/2, S− = 3iZ(2)/2. (50)

Then (49) becomes
S+Σ2

1− S+Σ1
=

1− S−Σ1

S−Σ2
, (51)

which is equivalent to equation (18) of [5].
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Table 1: Comparison of values of β for 2.715 < k < 2.750 and m = 0, a = 0.47 and ǫ′ = 10
given for N = 1, 2, 4, 8

k β, 2× 2 β, 4× 4 β, 8× 8 β, 16× 16
2.715 2.718 2.843 2.897 2.899
2.720 2.733 2.859 2.917 2.920
2.725 2.750 2.875 2.940 2.942
2.730 2.770 2.893 2.965 2.967
2.735 2.793 2.912 2.994 2.997
2.740 2.820 2.933 3.031 3.034
2.745 2.851 2.956 3.063 3.059
2.750 2.888 2.927 2.869 2.866

4 Numerical results

Results are presented with the problem scaled so that the spacing between consecutive sphere
centres is unity (i.e. s = 1). To restrict the number of parameters in the problem we also
set ǫ = µ = µ′ = 1. This leaves three key parameters: the sphere radius a, the electric
permitivity of the spheres ǫ′, and the azimuthal mode number m. Extensive numerical
searches for guided waves with azimuthal mode numbers m = 0, . . . , 4 that can propagate
along linear arrays were carried out using program code written in Fortran 2003. The Gaunt
coefficients were computed using an updated version of the ‘Root-Rational-Fraction package’
described in [19] and the lattice sums were evaluated using the method described in [20].

For computational purposes the infinite linear system (42) (which converges exponen-
tially) is truncated to a 2N × 2N system. The choice of N is then a balance between speed
of computation and required accuracy. As the results which are presented below demon-
strate, in most cases the crudest of truncations (N = 1) yields accurate results. The most
challenging situation is when a is large (the spheres touch when a = 0.5) and m = 0 and to
illustrate the convergence as N is increased in such a situation we present in Table 1 results
of computed values of β ∈ (k, π) for various values of k in the interval 2.715 < k < 2.75 with
the parameters m = 0, a = 0.47 and ǫ′ = 10 for N = 1, 2, 4, 8, i.e. with system sizes 2 × 2,
4× 4, 8× 8 and 16× 16. Even in this case, it is clear that small truncation parameters still
yield extremely accurate results.

If the spheres are too small then we are unable to find any modes. In the absence of an
existence proof for these guided waves (unlike in the equivalent acoustic problem where such
proofs have recently been provided [21]) it is not possible to say whether this is because they
do not exist or whether it is just that the values of k and β are so close that we are unable
to resolve the difference. For ǫ′ = 10, the minimum values of a for which modes have been
computed are, approximately, a = 0.327 for m = 0, a = 0.205 for m = 1, and a = 0.463 for
m = 2. We have been unable to find any solutions for m > 2. It is not surprising, from a
physical perspective, that it is more challenging to find modes for the linear array of spheres
than in similar two-dimensional problems such as those mentioned in the first paragraph of
the introduction. This is because the waves have an extra dimension in which to leak energy
to infinity.

In Figure 1 we present the dispersion curves showing how β varies with k for s = 1,
ǫ = µ = µ′ = 1 and ǫ′ = 10. Continuous and dashed curves are for a = 0.4 and a = 0.47,
respectively, computed using a truncation parameter of N = 8, with the stars showing the
results computed using N = 1. Figure 1(a) shows axisymmetric modes (m = 0) while
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Figure 1: Dispersion curves for s = 1, ǫ = µ = µ′ = 1 and ǫ′ = 10, computed using N = 8. The dotted
diagonal line corresponds to β = k. Solid and dashed curves are for a = 0.4 and a = 0.47, respectively. In
(a) m = 0, whereas in (b) m = 1. In all cases the stars correspond to results computed using N = 1.

Figure 1(b) is for m = 1. Results for a = 0.4, m = 1, N = 1 are given in Figure 17 of [18]
and these agree with the stars approximating the solid curves in Figure 1(b). Results for
m = 2 (but with the other parameters as in Figure 1) are shown in Figure 2, this time for
a = 0.47 and a = 0.49 as it is only for these large spheres that we have been able to find
modes.

In Figure 3 we illustrate the effect of varying ǫ′ with s = 1, ǫ = µ = µ′ = 1. The
most obvious effect is that if ǫ′ is reduced sufficiently, modes cease to exist. As an example,
Figure 3(a) shows results for a = 0.49 and m = 0, with different curves corresponding to,
reading upwards, ǫ′ = 4.3, 4.2, 4.1, 4.0 and 3.9. For ǫ′ = 3.8 we do not find any modes.
On the other hand, increasing ǫ′ = 20 leads to the presence of more modes, as illustrated in
Figure 3(b) which shows results for ǫ′ = 20, a = 0.4 with the dashed curve for m = 0 and
the solid curve for m = 1.

5 Conclusion

Dispersion curves describing guided electromagnetic waves propagating along one-dimensional
arrays of dielectric spheres have been determined based on a full vector solution of Maxwell’s
equations. By writing the quasi-periodic wave field as a superposition of vector spherical
wave functions and then applying the boundary condition on the sphere surfaces we are able
to reduce the problem to an infinite system of real linear algebraic equations and surface
waves exist when the determinant of the associated infinite matrix vanishes. A truncation
procedure, with excellent convergence characteristics, has been used to enable these to be
determined numerically.

Previous work based on a dipole approximation has shown that such guided waves do
indeed exist. In this paper we have extended the understanding of these modes in two ways.
First, we have demonstrated that the dipole approximation is equivalent to a truncation of
the linear system that we derive from the full Maxwell equations and that the approximation
yields accurate solutions over a wide parameter range so that it can be used with confidence.
However, its accuracy diminishes as the sphere radius gets larger. This is because the higher
modes are excited more strongly for larger spheres and also that more modes are important

9
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Figure 2: Dispersion curves for s = 1, ǫ = µ = µ′ = 10 and m = 2, computed using N = 8. The dotted
diagonal line corresponds to β = k. The solid curve is for a = 0.47 while the dashed curve is for a = 0.49.
In both cases the stars correspond to results computed using N = 1.

in the interaction theory when the space between the spheres reduces. Secondly we have
shown that modes exist for azimuthal modes |m| = 0, 1, 2 (previously only the case |m| = 1
had been treated) but our computations suggest that there are no modes for |m| > 2.

A Vector spherical harmonics

Spherical harmonics are defined by

Ym
n (er) ≡ Ym

n (θ, φ) = (−1)mλnm Pm
n (cos θ) e

imφ, n ≥ |m| ≥ 0, (52)

where

λnm =

√

(2n+ 1)(n−m)!

4π(n+m)!
(53)

and the associated Legendre function is defined here, for non-negative order and |x| ≤ 1, by

Pm
n (x) = (1− x2)m/2 dm

dxm
Pn(x) =

(1− x2)m/2

2nn!

dm+n

dxm+n
(x2 − 1)n, n ≥ m ≥ 0. (54)

This is the convention adopted in [22]. If m > n, Pm
n (x) ≡ 0. The extension to negative

order is accomplished via

P−m
n (x) = (−1)m

(n−m)!

(n+m)!
Pm
n (x), n ≥ |m|. (55)

We note that

Ym
n (er) = (−1)mY−m

n (er), Ym
n (−er) = (−1)nYm

n (er) (56)

and
∫

Ω

Ym
n Yµ

ν dΩ = δnνδmµ, (57)

the integral being over the surface of the unit sphere.

10
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Figure 3: Dispersion curves for s = 1, ǫ = µ = µ′ = 1. computed using N = 8. The dotted diagonal line
corresponds to β = k. In (a) a = 0.49 and m = 0 and the different curves are, from bottom to top, for
ǫ′ = 4.3, 4.2, 4.1, 4.0 and 3.9. In (b) ǫ′ = 20, a = 0.4 with the dashed curve for m = 0 and the solid curve
for m = 1.

For n ≥ 1, we can define vector spherical harmonics by

Xm
n (θ, φ) =

∇Ym
n ×r

√

n(n+ 1)
=

(−1)mλnme
imφ

√

n(n+ 1)

(

im

sin θ
Pm
n (cos θ) eθ − ∂θ(P

m
n (cos θ)) eφ

)

. (58)

and it can be shown that
∫

Ω

Xm
n ·Xq

p dΩ = δnpδmq. (59)

(Note that no complex conjugation is implicit in the dot product.) Since X
q
p · er = 0, we

have
(er ×Xm

n )×X
q
p = −(Xm

n ·Xq
p)er (60)

and hence
∫

Ω

(er ×Xm
n )×X

q
p dΩ = −δnpδmqer. (61)

We also have
∫

Ω

Xm
n ×X

q
p dΩ = 0. (62)

Our first set of divergence free solutions of the Helmholtz equation are taken as

Mm
n = zn(kr)X

m
n (θ, φ) (63)

and we have
∫

Ω

Mm
n ·Xq

p dΩ = δnpδmq zn(kr). (64)

The second set of divergence free solutions of the Helmholtz equation is

Nm
n =

1

k
∇×Mm

n =
1

k
(zn(kr)∇×Xm

n −Xm
n ×∇ zn(kr)) (65)

=
zn(kr)

kr

√

n(n + 1)Ym
n er + D zn(kr) er ×Xm

n , (66)

11



where we have introduced the differential operator

Df(x) =
1

x

d

dx
(xf(x)). (67)

From the last of these we see that

Nm
n ·Xq

p = D zn(kr) er ×Xm
n ·Xq

p (68)

and we can show that
∫

Ω

Nm
n ·Xq

p dΩ = 0. (69)

For more details, see [17, Chapter 7] and [16, §9.7].
Note that

M̂m
n (0) = 0, N̂m

n (0) =
δn1
3

(√
2Ym

n (θ, φ) er + 2 er ×Xm
n

)

. (70)

If, for convenience, we introduce Cartesian unit vectors ex, ey, ez then we have

N̂0
1(0) =

ez√
6π
, N̂±1

1 (0) =
1√
12π

(∓ex − iey). (71)

B Addition theorems

The addition theorem for vector spherical harmonics [23, 24] that we need here takes the
form

Mm
n (c) =

∑

ν,µ

(

Amµ
nν (b)M̂

µ
ν (a) +Bmµ

nν (b)N̂µ
ν (a)

)

Nm
n (c) =

∑

ν,µ

(

Amµ
nν (b)N̂

µ
ν (a) +Bmµ

nν (b)M̂µ
ν (a)

)















, (72)

where c = a + b and |a| < |b|. Expressions for the Amµ
nν (b) and B

mµ
nν (b) are given in [24],

though care needs to be taken when converting his formulas to our notation, which is based
on that of [22]. The formulas make use of so-called Gaunt coefficients, G, which are integrals
of products of three spherical harmonics:

G(n,m; ν, µ; p) =

∫

Ω

Ym
n Yµ

ν Y
m+µ
p dΩ, (73)

the integration being over the surface of the unit sphere. These coefficients can also be
expressed in terms of Wigner 3-j symbols via

G(n,m; ν, µ; p) =
(−1)m+µ

√
4π

√

(2n + 1)(2ν + 1)(2p+ 1)

(

n ν p
m µ −m− µ

)(

n ν p
0 0 0

)

.

(74)
For future reference we note that

G(n,m; ν,−m; 0) =
(−1)mδnν√

4π
. (75)

Theorems I and II of [24] imply that

Amµ
nν (b) = 4π(−1)µiν−n

√

ν(ν + 1)

n(n+ 1)

n+ν
∑

p=|n−ν|
n+ν+p even

gnνpi
pG(n,m; ν,−µ; p) hp(kb) Y

m−µ
p (b̂), (76)
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where b = |b|, b̂ = b/b and

gnνp = 1 +
(n− ν + p+ 1)(n+ ν − p)

2ν(2ν + 1)
− (ν − n+ p+ 1)(ν + n+ p+ 2)

2(ν + 1)(2ν + 1)
. (77)

For future reference we note that

gnn0 = 1, g112 = −1/2. (78)

Similarly (note that there is a well-documented sign error in Cruzan’s paper [25, 26, 27])

Bmµ
nν (b) =

2π(−1)µiν−n

√

n(n+ 1)ν(ν + 1)

n+ν−1
∑

p=|n−ν|+1
n+ν+p odd

ip
√

2p+ 1

2p− 1
H(n,m; ν,−µ; p) hp(kb) Ym−µ

p (b̂), (79)

where

H(n,m; ν, µ; p) =
1

∑

j=−1

Gj(n,m; ν, µ; p) (80)

with

G0(n,m; ν, µ; p) = −2µ
√

p2 − (m+ µ)2 G(n,m; ν, µ; p− 1), (81)

G±1(n,m; ν, µ; p) = ∓
√

(ν ∓ µ)(ν ± µ+ 1)(p∓ (m+ µ))(p− 1∓ (m+ µ))

× G(n,m; ν, µ± 1; p− 1). (82)

For the case of a linear array we have a = r, b = −Rj = −js ez and c = rj. In this case
Amµ

nν (−Rj) = Bmµ
nν (−Rj) = 0 if m 6= µ, since Pm

n (±1) = (±1)nδm0. We then have

Amm
nν (−Rj) = 4π(−1)miν−n

√

ν(ν + 1)

n(n+ 1)

×
n+ν
∑

p=|n−ν|
n+ν+p even

gnνpG(n,m; ν,−m; p) hp(k|js|)λp0(−i sgn j)p (83)

and

Bmm
nν (−Rj) =

2π(−1)miν−n

√

n(n + 1)ν(ν + 1)

×
n+ν−1
∑

p=|n−ν|+1
n+ν+p odd

√

2p+ 1

2p− 1
H(n,m; ν,−m; p) hp(k|js|)λp0(−i sgn j)p. (84)

If we set c = r, b = r and a = 0 in (72) and use (70) we see that we must have

Mm
n (r) =

1
∑

µ=−1

Bmµ
n1 (r)N̂µ

1(0), Nm
n (r) =

1
∑

µ=−1

Amµ
n1 (r)N̂

µ
1(0). (85)

These relations (which can, with difficulty, be verified) serve as a useful check on the expres-
sions for Amµ

nν and Bmµ
nν .
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C Lattice sums

We are concerned here with the lattice sums

σp = λp0

∞
∑

j=1

hp(ksj)
(

eiβsj + (−1)pe−iβsj
)

(86)

with λp0 defined in (53). We introduce the quantities

βq = β + 2qπ/s, q ∈ Z (87)

and when |βq| ≤ k we define ψq ∈ [0, π] via cosψq = βq/k. Provided there is no integer q
such that |βq| = k, we then have (see [20] for the details)

σp = − δp0√
4π

+
πipλp0
ks

∑

|βq|<k

Pp(cosψq)

+ λp0(−i)p+1

p
∑

q=0

cpqΩq

(ks)q+1
[Clq+1(ks+ βs) + (−1)pClq+1(ks− βs)] , (88)

where

cpq =
(p+ q)!

2qq!(p− q)!
, Ωq =

{

iq q even,

iq+1 q odd,
(89)

and Clq(·) are the Clausen functions

Cl2m(x) =
∞
∑

j=1

sin jx

j2m
, Cl2m+1(x) =

∞
∑

j=1

cos jx

j2m+1
. (90)

The function Cl1 has the closed form

Cl1(x) = −1

2
ln(2− 2 cosx) (91)

and as a result the lattice sum σ0 has a particularly simple representation:

σ0 =
1

ks
√
4π

(Mπ − ks+ i log[2 | cosβs− cos ks| ]) , (92)

where M is the number of integers q for which |βq| < k.
If 0 < ks < βs < π, then |βq| > k for all integers q. In this case we have

ipσp = − δp0√
4π

+ iηp, (93)

where

ηp = −λp0
p

∑

q=0

cpqΩq

(ks)q+1
[Clq+1(ks+ βs) + (−1)pClq+1(ks− βs)] (94)

is real. We also have

η0 =
log[2(cos ks− cos βs)]

ks
√
4π

. (95)
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