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There exist two versions of the Kadomtsev-Petviashvili (KP) equation, related to the Cartesian and

cylindrical geometries of the waves. In this paper, we derive and study a new version, related to the

elliptic cylindrical geometry. The derivation is given in the context of surface waves, but the

derived equation is a universal integrable model applicable to generic weakly nonlinear weakly

dispersive waves. We also show that there exist nontrivial transformations between all three

versions of the KP equation associated with the physical problem formulation, and use them to

obtain new classes of approximate solutions for water waves. VC 2013 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4792268]

The “elliptic cylindrical Kadomtsev-Petviashvili (ecKP)

equation,”

Hs þ 6HHf þ Hfff þ
s

2ðs2 � a2ÞH�
a2�2

12r2ðs2 � a2ÞHf

� �
f

þ 3r2

s2 � a2
H�� ¼ 0;

where a is a parameter and r2 ¼ 61, is derived for sur-

face gravity waves with nearly elliptic front, generalis-

ing the cylindrical KP equation for nearly concentric

waves and describing the intermediate asymptotics. We

find transformations between the derived ecKP equa-

tion and two existing versions of the KP equation for

water wave problems, for nearly plane and nearly con-

centric waves, as well as the Lax pair for the ecKP

equation. The transformations are used to construct im-

portant classes of exact solutions of the derived ecKP

equation and corresponding new asymptotic solutions

for the Euler equations from the known solutions of the

KP equation. The ecKP equation is a universal integra-

ble model applicable to generic weakly nonlinear

weakly dispersive waves with nearly elliptic wave

fronts.

I. INTRODUCTION

There exist two classical versions of the KP equation1

associated with the surface wave problems for an incompres-

sible fluid, described by the full set of Euler equations with

free surface and rigid horizontal bottom boundary conditions

(see, Refs. 2–5 and references therein)

qðut þ uux þ vuy þ wuzÞ ¼ �px;

qðvt þ uvx þ vvy þ wvzÞ ¼ �py;

qðwt þ uwx þ vwy þ wwzÞ ¼ �pz � qg;

ux þ vy þ wz ¼ 0;

pjz¼hðx;y;tÞ ¼ pa

�C
ð1þ h2

yÞhxx þ ð1þ h2
xÞhyy � 2hxhyhxy

ð1þ h2
x þ h2

yÞ
3=2

;

wjz¼hðx;y;tÞ ¼ ht þ uhx þ vhy;

wjz¼0 ¼ 0:

(1)

Here, (u, v, w) are the three components of the velocity vec-

tor in Cartesian coordinates (x, y, z), t is the time, p the pres-

sure (pa is the constant atmospheric pressure at the surface,

and C is the coefficient of the surface tension), q is constant

density, g is the gravitational acceleration, z¼ 0 is the bot-

tom, and z¼ h(x, y, t) is the free surface. The original KP

equation,1

ðUs þ 6UUn þ UnnnÞn þ 3r2UYY ¼ 0; (2)

and the cylindrical KP (cKP) equation,3

Ws þ 6WWv þWvvv þ
W

2s

� �
v

þ 3r2

s2
WVV ¼ 0; (3)

are derived for the leading order term of the asymptotic

expansion of the free surface elevation in the appropriate

sets of fast and slow variables, and describe the weakly non-

linear evolution of long nearly plane and nearly concentric

waves, respectively. For surface gravity waves with no or

weak surface tension, one has r2 ¼ 1 (KP-II), while the case

r2 ¼ �1 (KP-I) can be obtained when surface tension effects

are large (see, for example, Ref. 6 and references therein).

Useful transformations mapping solutions of the cKP and

KP equations were independently found in Refs. 3, 5, and 7.

They have been used to construct some special solutions of

the cKP equation in Refs. 8 and 9. Indeed, the map

a)Author to whom correspondence should be addressed. E-mail:

K.Khusnutdinova@lboro.ac.uk. Tel.: þ44 (0)1509 228202. Fax: þ44

(0)1509 223969.
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Wðs; v;VÞ ! Uðs; n; YÞ :¼ W s; nþ Y2

12r2s
;
Y

s

� �
transforms any solution of the cKP Eq. (3) into a solution of

the KP Eq. (2). Conversely, the map

Uðs; n; YÞ ! Wðs; v;VÞ :¼ U s; v� sV2

12r2
; sV

� �
transforms any solution of the KP Eq. (2) into a solution of

the cKP Eq. (3). In Ref. 10, it was pointed out that the trans-

formations map rather general classes of evolution equations,

containing the KP and cKP equations (as well as mapping

their one-dimensional counterparts generalising the KdV and

cKdV equations into some classes of solutions of the two-

dimensional equations).

Another interesting transformation linking the cKP and

KP equations was found in Ref. 11 (see also Ref. 8). How-

ever, this transformation maps bounded solutions of the KP

equation into unbounded solutions of the cKP equation. We

do not consider transformations of this type in our paper.

In this paper, we derive a generalisation of the cKP Eq. (3)

for surface gravity waves, which can be written in the form

Hs þ 6HHf þ Hfff þ
s

2ðs2 � a2ÞH�
�2a2

12r2ðs2 � a2ÞHf

�
f

 

þ 3r2

s2 � a2
H�� ¼ 0; (4)

where r2 ¼ 61, describing waves with nearly elliptic front.

This ecKP equation is derived from the full set of Euler

equations for an incompressible fluid and free surface and

rigid bottom boundary conditions (1), written in the elliptic

cylindrical coordinate system. The linear long-wave equa-

tion, written in these coordinates, does not allow for exact
solutions describing waves with elliptic front. However,

there exists an asymptotic reduction to the necessary equa-

tion, and we show that this allows one to derive a generalisa-

tion of the cKP equation.

We chose to derive the ecKP equation from the Euler

equations rather than using the velocity potential formula-

tion, since this opens the way to the study of internal and sur-

face waves on a current for a fluid with arbitrary

stratification, as well as accounting for the effects of a vari-

able background and Earth’s rotation (see, Refs. 13 and 14

and references therein, for studies in the Cartesian geome-

try), which constitute rotational flows.

We find transformations between KP, cKP, and ecKP

equations, generalising the transformations between KP and

cKP equations in Refs. 3, 5, and 7, and use them to construct

some important special classes of solutions of the derived

version of the Kadomtsev-Petviashvili equation for both

cases (i.e., for ecKP-I and ecKP-II). Indeed, the map

Uðs; n; YÞ ! Hðs; f; �Þ :¼ U s; f� s�2

12r2
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � a2
p

�

� �
transforms any solution of the KP equation into a solution of

the ecKP equation. Conversely, the map

Hðs; f; �Þ !

Uðs; n; YÞ :¼ H s; nþ 1

12r2

sY2

s2 � a2
;

Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � a2
p

� �
transforms any solution of the ecKP equation into a solution

of the KP equation.

The ecKP Eq. (4) derived in our paper is an integrable

model, which can be obtained as a compatibility condition of

the following linear problem (Lax pair)

rw� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � a2
p

wff þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � a2
p

Hðs; f; �Þ

� sf

12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � a2
p þ a2�2

144r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � a2
p

�
w; (5)

ws ¼ �4wfff � 6Hðs; f; �Þ � a2�2

12r2ðs2 � a2Þ

� �
wf

� 3Hfðs; f; �Þ þ
3r eHðs; f; �Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � a2
p � a2f�

12rðs2 � a2Þ3=2

 !
w:

(6)

Indeed, the compatibility conditions have the formeHf ¼ H�;

Hs þ 6HHf þ Hfff þ
s

2ðs2 � a2ÞH

� a2�2

12r2ðs2 � a2ÞHf þ
3r2

s2 � a2
eH� ¼ 0:

When a¼ 0, we recover the Lax pair of the cKP equation12

(see also Ref. 9).

A solution wecKPðs; f; �Þ of the linear system (5) and (6)

is expressed via the solution wKPðs; n; YÞ of the linear sys-

tems of the KP equation ( eUn ¼ UY)

rwY ¼ wnn þ Uðs; n; YÞw;
ws ¼ �4wnnn � 6Uðs; n; YÞwn

�ð3Unðs; n; YÞ þ 3r eUðs; n; YÞÞw
as follows:

wecKPðs; f; �Þ ¼ wKP s; f� s�2

12r2
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � a2
p

�

� �
� exp � fs�

12r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � a2
p þ �3ðs2 þ a2Þ

432r3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � a2
p

� �
:

Let us also note that the functions eH and eU are related by

eHðs; f; �Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � a2
p eUðs; n; YÞ � s�

6r2
Uðs; n; YÞ:

The Jacobian of the transformation

n ¼ f� s�2=ð12r2Þ; Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � a2
p

�;

used to construct some special solutions of the ecKP in the

following sections, is equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � a2
p

. It is positive and

bounded for all s > a. (This condition is automatically satis-

fied for our derivation.)

The ecKP equation is an integrable equation containing

an arbitrary parameter a, and it reduces to the cKP equation

013126-2 Khusnutdinova et al. Chaos 23, 013126 (2013)
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both when this parameter tends to zero, and when s� a.

The latter is the mathematical manifestation of the intuitively

clear physical phenomenon: wave fronts will become nearly

concentric far away from the wave sources or boundaries,

while they will “remember” their geometrical shape during

the intermediate evolution.

The KP and cKP equations belong to the family of universal
integrable models of modern nonlinear physics (see, for example,

Refs. 4 and 15). As well as for surface waves, these equations

have been derived in many physical settings (see, for example,

Ref. 6), including internal waves in a stratified fluid16,17 and,

most recently, matter waves in Bose-Einstein condensates (BEC)

(see, Refs. 18 and 19 and references therein) and cosmic dust-

ion-acoustic waves.20 Thus, the new version of the equation

derived in this paper could find many useful applications to the

description of the wave motion in problems where sources, boun-

daries, and obstacles have elliptic or nearly elliptic geometry.

Our paper is organised as follows. In Sec. II (with

Appendix A), we describe the derivation of the ecKP equation

in the context of the classical surface gravity waves problem for

an incompressible fluid. From mathematical perspective, the

derivation for water wave problems is more challenging than

similar derivations for problems where nonlinear and dispersive

terms are present in the equations, rather than originating from

the free surface boundary conditions. The equation can be read-

ily derived in other physical contexts. In Sec. III, we find trans-

formations between arbitrary solutions of the derived version of

the KP equation and the original KP equation. Section IV (with

Appendix B) is devoted to the lumps, line solitons, and quasi-

periodic solutions of the ecKP-I and ecKP-II equations. In

Sec. V, we discuss the approximate solutions for surface waves

described by the derived equation. We conclude in Sec. VI by

outlining possible applications and generalisations of our results.

II. DERIVATION OF THE ELLIPTIC CYLINDRICAL
KP EQUATION

We consider the classical water wave problem for an

incompressible fluid, described by the full set of Euler equa-

tions with free surface and rigid horizontal bottom boundary

conditions (1). Since we aim to consider waves with the

nearly elliptic front, we write this set of equations in the

elliptic cylindrical coordinate system

x ¼ d cosh a cos b;

y ¼ d sinh a sin b;

z ¼ z;

where the dimensional parameter d has the meaning of half

of the distance between the foci of the coordinate lines, and

change the two horizontal components of the velocity vector

appropriately

u! u cos b� v sin b; v! u sin bþ v cos b:

Here, we keep the same notations (u, v, w) for the projections

of the velocity vector on the new coordinate lines.

Let z ¼ h0 be the unperturbed fluid depth, k be the char-

acteristic wavelength, pa the atmospheric pressure, and hs the

characteristic free surface elevation. We nondimensionalise

the variables

x! kx; y! ky; z! h0z; t! kffiffiffiffiffiffiffi
gh0

p t;

u!
ffiffiffiffiffiffiffi
gh0

p
u; v!

ffiffiffiffiffiffiffi
gh0

p
v; w! h0

ffiffiffiffiffiffiffi
gh0

p

k
w;

h! h0 þ hsg; p! pa þ qgðh0 � zÞ þ qgh0p;

which leads to the appearance of two usual nondimensional

parameters in the problem: the long wavelength parameter

d ¼ h0

k ; and the small amplitude parameter � ¼ hs

h0
; as well as

a new nondimensional parameter c ¼ d
k ; which is not neces-

sarily small. Scaling the dependent variables

u! �u; v! �v; w! �w; p! �p;

we bring the full set of Euler equations in the elliptic cylin-

drical coordinates to the form

ut þ � wuz þ
Eðuua þ vub � v2Þ þ Fðvua � uub þ uvÞ

2ceaG

� �
¼ �Epa � Fpb

2ceaG
; (7)

vt þ � wvz þ
Eðuva þ vvb þ uvÞ þ Fðvva � uvb � u2Þ

2ceaG

� �
¼ �Epb þ Fpa

2ceaG
; (8)

d2 wt þ � wwz þ
Eðuwa þ vwbÞ þ Fðvwa � uwbÞ

2ceaG

� �� �
¼ �pz;

(9)

wz þ
Eðua þ vb þ uÞ þ Fðva � ub þ vÞ

2ceaG
¼ 0; (10)

pjz¼1þ�gða;b;tÞ ¼ g�We d2

(
gaa þ gbb þ �2 d2

c2

g2
bgaa þ g2

agbb � 2gagbgab

G

"

þ
ga sinh 2aþ gb sin 2b

2G2
�
),

c2G 1þ �2 d2

c2

g2
a þ g2

b

G

 !3=2
8<:

9=;; (11)

wjz¼1þ�gða;b;tÞ ¼ gtþ �
Eðugaþ vgbÞþFðvga�ugbÞ

G
; (12) wjz¼0 ¼ 0: (13)

013126-3 Khusnutdinova et al. Chaos 23, 013126 (2013)
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Here, We ¼ C
qgh2

0

is the Weber number, and we denoted

E ¼ e2a � cos 2b; F ¼ sin 2b;

G ¼ sinh2 aþ sin2 b:

This set of equations reduces to the Euler equations writ-

ten in cylindrical coordinates in the limit

a!1; c! 0 with
1

2
cea ! r being finite: (14)

The equation for linear waves (in the long-wave approxi-

mation) is easily obtained from Eqs. (7)–(13) with � ¼ d¼ 0 as

gtt ¼
gaa þ gbb

c2ðsinh2a þ sin2 bÞ
: (15)

Note that Eq. (15) indeed reduces to the equation

gtt � grr þ
1

r
gr þ

1

r2
gbb

� �
¼ 0 (16)

for the long linear waves in the polar cylindrical coordinates

in the limit (14). The derivation of the cylindrical KP (cKP)

equation (also known as the nearly concentric KP equa-

tion3,5) is based on the existence of solutions of Eq. (16),

which do not depend on b, i.e., there exists an exact reduc-

tion of the Eq. (16) to the equation

gtt � grr þ
1

r
gr

� �
¼ 0:

Unlike Eq. (16), Eq. (15) does not have an exact reduction to

the equation with no dependence on b, which would seem

necessary in order to derive a version of the KP equation for

waves with nearly elliptic front. Nevertheless, such an equa-

tion exists as an asymptotic reduction, and it turns out that this

allows for a generalisation of the cKP equation to be derived.

Next, we introduce the variables

f ¼ �2

d2
ðc cosh a� tÞ;

R ¼ �6

d4
c cosh a; � ¼ d

�2
sin b;

u ¼ �3

d2
U; v ¼ �5

d3
V; w ¼ �5

d4
W;

g ¼ �3

d2
H; p ¼ �3

d2
P;

which generalise a change of variables for the cylindrical

coordinates.3 We use a large distance variable R in prefer-

ence to large time, but one can also work throughout using

an analogous large time variable, T ¼ �6

d4 t. Here, 2c cosh a is

the nondimensional sum of the distances from a point on an

ellipse to its foci. Thus, f is an asymptotic characteristic

coordinate for waves with nearly elliptic front, and it

becomes the characteristic coordinate for the concentric

waves in the limit (14). Note that in this derivation, the

variable � is proportional to sin b and not just b, unlike the

derivation for the concentric waves.3,5 This increases the

range of the formal asymptotic validity of the model.

In these variables, the problem formulation (7)–(13)

assume the form containing a single small parameter D ¼ �4

d2 ;
and a non-dimensional parameter A ¼ c �

6

d4 ; which is not nec-

essarily small. The equations are given in Appendix A.

We now seek an asymptotic solution of this system of

equations and boundary conditions in the form

H ¼ H0 þ DH1 þ OðD2Þ;

with similar expansions for U, V, W, and P. At leading order

(O(1)), we obtain

U0f ¼ P0f;

V0f ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � A2
p P0� þ

R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � A2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � A2
p �P0f;

P0z ¼ 0; U0f þW0z ¼ 0;

P0jz¼1 ¼ H0; W0jz¼1 ¼ �H0f; W0jz¼0 ¼ 0;

which yields, imposing the condition that the perturbation in

U is caused only by the passing wave,

P0 ¼ H0; U0 ¼ H0; W0 ¼ �H0fz; (17)

V0f ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � A2
p H0� þ

R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � A2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � A2
p �H0f: (18)

At the next order (OðDÞ), we obtain the following equa-

tions and boundary conditions:

U1f � P1f ¼ P0R þ U0U0f þW0U0z

�R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � A2
p

R2 � A2
ð�P0� þ R�2P0fÞ; (19)

V1f �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � A2
p P1� �

R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � A2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � A2
p �P1f

¼ U0V0f þW0V0z þ
R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � A2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � A2
p �P0R

þðR�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � A2
p

ÞðR2 þ A2Þ
2ðR2 � A2Þ3=2

�3P0f

�ðR�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � A2
p

Þ2 þ R2

2ðR2 � A2Þ3=2
�2P0�; (20)

P1z ¼ W0f; (21)

U1fþW1z¼�U0Rþ
R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�A2
p

R2�A2
ðR�2U0fþ�U0�Þ

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�A2
p

	
ðR�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�A2
p

Þ�V0fþV0�þU0



;

(22)

P1jz¼1 þ H0P0zjz¼1 ¼ H1 �We H0ff; (23)

W1jz¼1 þ H0W0zjz¼1 ¼ �H1f þ U0H0f; (24)

W1jz¼0 ¼ 0: (25)
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Then, Eqs. (17), (21), and (23) yield

P1 ¼ �H0ff
z2 � 1

2
þWe

� �
þ H1;

hence from Eqs. (19), (22), and (25), we find, using Eq. (17), that

W1 ¼ H0fff
z3

6
þ We �

1

2

� �
z

� �
� H1f þ 2H0R þ H0H0f �

R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � A2
p

R2 � A2
ð2�H0�

"

þ 2R�2H0fÞ þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � A2
p

	
ðR�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � A2
p

Þ�V0f

þV0� þ H0Þ�z: (26)

Finally, substituting W1 into the remaining boundary

condition (24), differentiating with respect to f and using Eq.

(18), we obtain ecKP equation

2H0R þ 3H0H0f þ
1

3
�We

� �
H0fff þ

R

R2 � A2
H0

�
�A2 �2

R2 � A2
H0f

�
f

þ 1

R2 � A2
H0�� ¼ 0: (27)

Note that Eq. (20), written for the completeness of the set of

equations, allows one to find V1 and is not used in the deriva-

tion of the ecKP equation.

The scaling transformation

eaR! s; ebf! f; ec� ! �; H0 ! edH;

where ea is a free parameter and

eb ¼ 2ea
1

3
�We

0B@
1CA

1=3

;

ec ¼ ð6eaebr2Þ1=2;

ed ¼ 4
eaeb ;

r2 ¼ sign ðeaebÞ
brings the derived Eq. (27) to the form

Hs þ 6HHf þ Hfff þ
s

2ðs2 � a2ÞH
�
� a2�2

12ea2r2ðs2 � a2Þ
Hf

�
f

þ 3r2

s2 � a2
H�� ¼ 0;

shown in the Introduction. Here, a ¼ eaA. If we let ea ¼ 1,

then a¼A and r2 ¼ sign 1
3
�We

� �
. For typical water waves,

r2 ¼ 1 ðWe <
1
3
Þ. However, r2 ¼ �1 if the effects of surface

tension are strong (We >
1
3
). It is natural to call the corre-

sponding equations ecKP-II and ecKP-I, respectively, simi-

larly to the terminology used in the Cartesian geometry.

III. TRANSFORMATIONS BETWEEN KP, CKP, AND
ECKP EQUATIONS

Considerations used to find the mapping from the solu-

tions of the KdV equation to the class of solutions of the

cKP equation3,5 can be extended to obtain transformations

between arbitrary solutions of all three versions of the KP

equation, related to the Cartesian, cylindrical, and elliptic cy-

lindrical coordinates, respectively. The resulting transforma-

tions generalise the transformations between the KP and cKP

equations,3,5,7 discussed in the Introduction.

Indeed, the geometry of a wave with nearly elliptic front,

considered simultaneously in the Cartesian and elliptic cylin-

drical coordinates, suggests the introduction of the sum and

the difference of the nondimensional distances from a point

on the wave front to the two foci of the coordinate system

d1 þ d2 ¼ 2c cosh a;
d1 � d2 ¼ 2c cos b;

where the foci have the following Cartesian coordinates:

F1ð�c; 0Þ and F2ðc; 0Þ: We recall that the variables have been

nondimensionalised, as discussed in Sec. II, and c ¼ d
k. Note

that 1
2
ðd1 þ d2Þ � t corresponds, up to the scaling, to the as-

ymptotic characteristic variable f, introduced in Sec. II.

Then, for the area satisfying y
x�c ;

y
xþc! 0, we obtain the

following asymptotic behaviour:

1

2
ðd1 þ d2Þ � t ¼ 1

2

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ cÞ2 þ y2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� cÞ2 þ y2

q 

� t

�x� tþ 1

4
y2 1

xþ c
þ 1

x� c

� �
:

Next, for sufficiently large a and small b, our nondimen-

sional variable x ¼ c cosh a cos b � d4

�6 R; and the previous

asymptotics can be rewritten as

1

2
ðd1 þ d2Þ � t � nþ 1

2
Y2 R

R2 � A2
;

where n ¼ x� t; Y ¼ �3

d2 y, and A ¼ c �
6

d4. Similarly,

1

2
ðd1 � d2Þ � c� A

2

Y2

R2 � A2
:

This asymptotic behaviour of the geometrically meaningful

objects motivates the change of variables

H0ðR; f; �Þ ¼ gðR; n; YÞ;

where

f ¼ nþ 1

2
Y2 R

R2 � A2
; � ¼ Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � A2
p :

It is then verified by direct calculation that this transforma-

tion maps the ecKP Eq. (27) to the KP equation, written in

the form

2gR þ 3ggn þ
1

3
�We

� �
gnnn

� �
n

þ gYY ¼ 0:
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To finish this section, let us summarise the transforma-

tions between all three versions of the KP equation. We write

the KP equation in the canonical form

ðUs þ 6UUn þ UnnnÞn þ 3r2UYY ¼ 0; (28)

the cKP equation in the similar form

Ws þ 6WWv þWvvv þ
1

2s
W

� �
v

þ 3r2

s2
WVV ¼ 0;

and the ecKP equation as�
Hs þ 6HHf þ Hfff þ

s
2ðs2 � a2ÞH�

a2�2

12r2ðs2 � a2ÞHf

�
f

þ 3r2

s2 � a2
H�� ¼ 0: (29)

Then, the map

Uðs; n; YÞ ! Wðs; v;VÞ :¼ U s; v� sV2

12r2
; sV

� �
transforms any solution of the KP equation into a solution of

the cKP equation, and the map

Uðs; n; YÞ ! Hðs; f; �Þ :¼ U s; f� s�2

12r2
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � a2
p

�

� �
(30)

transforms any solution of the KP equation into a solution of

the ecKP equation. Note that the second transformation

reduces to the first in the limit a! 0. The map (30) also

shows that for small a and small values of s, any solution of

the ecKP equation approaches some Y-independent solution

of the KP equation. These transformations can be inverted,

and they can also be used to obtain the direct transformations

between the cKP and ecKP equations.

Indeed, the map inverting (30) has the form

Hðs; f; �Þ !

Uðs; n; YÞ :¼ H s; nþ 1

12r2

sY2

s2 � a2
;

Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � a2
p

� �
:

It transforms any solution of the ecKP equation into a solution

of the KP equation. In particular, this map shows that for very

large values of s and finite values of Y, any solution of the ecKP

equation will approach a Y-independent solution of the KP equa-

tion (possibly, a constant or zero). However, such large values

of s are likely to lie outside of the range of applicability of the

derived model, and we do not discuss this limit any more.

The map

Wðs; v;VÞ !

Hðs; f; �Þ :¼ W s; f� a2�2

12r2s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � a2
p

s
�

 !

transforms any solution of the cKP equation into a solution

of the ecKP equation, and the map

Hðs; f; �Þ !

Wðs; v;VÞ :¼ H s; vþ a2sV2

12r2ðs2 � a2Þ ;
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � a2
p V

� �

transforms any solution of the ecKP equation into a solution

of the cKP equation.

IV. SPECIAL SOLUTIONS OF ecKP-I AND ecKP-II
EQUATIONS

In this section, we will consider some special solutions to

the ecKP Eq. (29) per se, to illustrate the characteristic features

of the equation. The considered examples are exact solutions to

the KP-I and KP-II equations: lumps, line solitons, and quasi-

periodic solutions (see, Refs. 21 and 22), which become solu-

tions to the ecKP-I and ecKP-II equations under the map (30).

If the a in Eq. (30) vanishes, the ecKP solution reduces to

the corresponding cKP solution. For small “times” s, the cKP

solutions look like solutions to the KdV equation (essentially

no dependence on the transversal variable), whereas they de-

velop horseshoe-type profiles for larger s. The ecKP solutions

on the other hand show such profiles already for small s� a if

a > 0. For large s (s� a), the solutions tend asymptotically

FIG. 1. Solution to the ecKP-I equation obtained as the image of the lump

(31) with j ¼ 1 under the action of the map (30) for a¼ 0.01 and several

values of s.

FIG. 2. Solution to the ecKP-I equation obtained as the image of the lump

(31) with j ¼ 1 under the action of the map (30) for a¼ 1 and several values

of s.
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to the corresponding cKP solutions. We will illustrate this

behaviour at several examples.

The first example we consider is the KP-I lump solution,

Uðn; Y; sÞ ¼ 4jð1� jðn� 3jsÞ2 þ j2Y2Þ
ð1þ jðn� 3jsÞ2 þ j2Y2Þ2

; (31)

with j ¼ 1, under the map (30). It is visible that when s! a
and a are close to zero, the solution Hðf; �; sÞ is essentially

independent of the coordinate �. This can be seen for

a¼ 0.01 in Fig. 1. For larger values of a, the solution has a

parabolic shape for small s� a as can be seen in Fig. 2.

Next, we consider the 2-soliton solution of the KP-II

equation in the form

Uðn; Y; sÞ ¼ 2@2
x ln Wðe#1 þ e#2 ; e#3 þ e#4Þ; (32)

where hj ¼ kjnþ k2
j Y � 4k3

j s, kj are arbitrary constants, and

W is the Wronskian of the two functions. It can be seen for

a¼ 0.01, i.e., close to the cKP case, in Fig. 3 where the for-

mation of horseshoe waves can be clearly recognised. The

corresponding ecKP solution for a¼ 1 is shown in Fig. 4

where the curved profiles are already present for small s� a.

Quasi-periodic (multiphase) solutions of the ecKP equa-

tion can be obtained as the image of the known theta-

functional solutions of the KP equation under the map (30).

The solutions are shown in Appendix B.

While the solutions of the ecKP equation are qualita-

tively similar to the solutions of the cKP equation, significant

differences can be seen at the level of approximate solutions

for the Euler equations, as shown in Sec. V.

V. APPROXIMATE SOLUTIONS FOR SURFACE WAVES

Exact solutions of the derived equation allow us to obtain

new asymptotic solutions for the classical water wave problem

(1). In order to do that we return to the original nondimensional

variables x, y, t and re-parametrise our solution as follows:

x ¼ c cosh a cos b; y ¼ c sinh a sin b;

g ¼ 4

61=3
ð1� 3WeÞ1=3

ffiffiffi
a

c

r
Hðs; f; �Þ;

where�
Hs þ 6HHf þ Hfff þ

s
2ðs2 � a2ÞH�

a2�2

12r2ðs2 � a2ÞHf

�
f

þ 3r2

s2 � a2
H�� ¼ 0; (33)

r2 ¼ sign ð1� 3WeÞ and s ¼ R ¼ a cosh a;

f ¼ 61=3a

cDð1� 3WeÞ1=3
ðc cosh a� tÞ;

� ¼ 62=3

D1=2j1� 3Wej1=6
sin b:

Here, t is the physical time (nondimensional). Below, we assume

that t � 0 and consider the initial stages of the evolution. We

also have � ¼
ffiffi
c
a

q
D and d ¼ c

a D3=2. Since asymptotic long-

wave models usually provide a good qualitative (often quantita-

tive) description even outside of the range of their formal as-

ymptotic validity (i.e., the physical applicability of such models

is usually wider than their formal asymptotic validity), we plot

the solutions for all 0 � b < 2p and a � 0. Unless it is explic-

itly stated otherwise, at least parts of the shown solutions belong

to the range of the formal validity of the asymptotic model

(defined by s � Oð1Þ; f � Oð1Þ; and � � Oð1Þ as D! 0).

The 1-soliton solution of the ecKP-II equation (i.e., the

image of the 1-soliton solution of the KP-II equation under

the map (30)) is explicitly written in the form

Hðs;f;�Þ¼K2

2
sech2

K

2
f� s�2

12
þL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2�a2
p

��ðK2þ3L2Þsþd0


�
;

��
(34)

where K; L; and d0 are arbitrary constants. In the examples

shown below, we let the Weber number We ¼ 0 and the

phase shift d0 ¼ 0. It turns out that this single formula

FIG. 3. 2-soliton solution of the ecKP-II equation for a¼ 0.01 with k1 ¼ 1:5;
k2 ¼ 0:5; k3 ¼ �2; and k4 ¼ 0 for several values of s.

FIG. 4. 2-soliton solution of the ecKP-II equation for a¼ 1 with k1 ¼ 1:5;
k2 ¼ 0:5; k3 ¼ �2; and k4 ¼ 0 for several values of s.
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describes a variety of wave fronts. In what follows we pro-

vide the complete classification of these wave fronts, obtain-

ing characteristic conditions on the parameters of the

solutions (34) distinguishing various cases. We illustrate

most of the wave fronts, plotting the corresponding surface

wave elevation g for c ¼ 1; a ¼ 2; and D ¼ 1=2. Similar sol-

utions exist for the ecKP-I equation, as the image of an

(unstable) line-soliton of the KP-I equation. We also note

that an analogue of the solution (34) in cylindrical geometry

(cKP) describes only a single type of a wave front (the pic-

ture is qualitatively similar to a part of the wave front shown

in Fig. 5 above), and it can be plotted only for the limited

values of the polar angle (even formally).

The wave obtained when K¼ 1 and L¼ 0 is compact

and symmetric, it is shown in Fig. 5 above.

For L 6¼ 0, the solution has no symmetry with respect to

the y-coordinate, as one can see in Fig. 6 for K¼ 1 and

L¼ 0.1. The change L! �L yields the reflection of the

wave front with respect to the x-axis

gð�L; x; yÞ ¼ gðL; x;�yÞ: (35)

Therefore, it suffices to consider L > 0 or L < 0.

When jLj increases further, the compact nearly elliptic

wave shape disappears. The wave becomes non-compact,

and it rather describes the deformed line soliton, featuring an

elliptic inhomogeneity in the central part of the wave. The

solution is shown in Fig. 7 for K¼ 1 and L¼ –0.5.

For sufficiently large jLj solution is localised in the vi-

cinity of some point satisfying the relation L sin b ¼ jLj and

strongly attenuates with time. (The large values of L lie out-

side of the range of validity of the model.)

In order to explain the observed features of the solution

(34) and to obtain the corresponding conditions for the pa-

rameters of the solution, let us note that the maximum of its

amplitude is attained when the argument of sech2 is equal to

zero (if this is possible)

f� s�2

12
þ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � a2
p

� � ðK2 þ 3L2Þs ¼ 0:

This condition can be written either as

2� sin2 b� 2D

61=3
½K2 þ 3L2�

� �
cosh a

þ 2D1=261=3L sin b sinh a� 2t

c
¼ 0 (36)

or as

sin2 b� 2D1=261=3L tanh a sin b

þ 2D

61=3
½K2 þ 3L2� � 2þ 2t

c
sech a ¼ 0: (37)

Let us first consider the case L¼ 0. For

K2 � 61=3

2D
;

the solution has the form of a compact nearly elliptic wave

of narrowing width (as shown in Fig. 5). Indeed,

1� 2D

61=3
K2 � 2t

c
sech a � 2� 2D

61=3
K2:

We note that although the width of the wave clearly changes,

the amplitude is constant, which can be viewed as the mani-

festation of the solitonic nature of this solution.

For

61=3

2D
� K2 � 61=3

D
	 3:63 for D ¼ 1

2

� �
;

the condition (37) is satisfied for

FIG. 5. Surface wave corresponding to the one-soliton solution (34) of the

ecKP-II equation with K¼ 1 and L¼ 0 for t¼ 0 (top left), t¼ 0.25 (top

right), t¼ 0.5 (bottom left), and t¼ 1 (bottom right).

FIG. 6. Surface wave corresponding to the one-soliton solution (34) of the

ecKP-II equation with K¼ 1 and L¼ 0.1 for t¼ 0 (top left), t¼ 0.25 (top

right), t¼ 0.5 (bottom left), and t¼ 1 (bottom right).

FIG. 7. Surface wave corresponding to the one-soliton solution (34) of the

ecKP-II equation with K¼ 1 and L¼ –0.5 for t¼ 0 (top left), t¼ 0.25 (top

right), t¼ 0.5 (bottom left), and t¼ 2 (bottom right).
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jsin bj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2D

61=3
K2 � 2t

c
sech a

s
;

and the wave splits into two deformed line solitons (shown

in Fig. 8).

If

K2 >
61=3

D
;

then the argument of Eq. (34) cannot be equal to zero, and

the wave continuously attenuates with time. (The large val-

ues of K lie outside of the range of validity of the model.)

Similarly, we can consider the case L 6¼ 0 (without loss

of generality, we assume that L > 0, see Eq. (35)). If

D

61=3
½K2 þ 3L2� > 1;

then the argument (36) of sech2 is negative for Lsin b < 0 al-

ready at t¼ 0, and it decreases with the increase of t. For

Lsin b ¼ jLj, the argument is closer to zero than for other

values of b. Therefore, g has a maximum for Lsin b ¼ jLj as

a function of b. However, as we mentioned above, such large

values of K and L are likely to be outside of the range of va-

lidity of the model, we mention them here only for the com-

pleteness of our analysis.

For sufficiently small K and L, Eq. (37) yields

sin b ¼ D1=261=3L tanh a6
ffiffiffiffi
D
p

;

where

D ¼ 2� 2D

61=3
K2 � D61=3L2sech2a� 2t

c
sech a:

Then, for a!1, we obtain

sin b ¼ D1=261=3L6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2D

61=3
K2

s
:

Therefore, there exist several natural domains for the

values of the parameters K and L. Let us note that if

2� 2D
61=3 K2 < 0, then the solution (34) continuously attenu-

ates, and we do not consider this range of values. Let

2� 2D
61=3 K2 > 0. Then, there are several cases.

(i) If D1=261=3L6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2D

61=3 K2
q  > 1, the solution (34)

has the form of a deformed nearly elliptic wave (shown in

Fig. 6). Indeed, in this case, the argument of solution (34)

cannot be equal to zero for sufficiently large a, and, there-

fore, the solution is localised. For sufficiently small L, the

above inequality implies

D1=261=3Lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2D

61=3
K2

s
> 1 and

D1=261=3L�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2D

61=3
K2

s
< �1;

which yields ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2D

61=3
K2

s
> 1þ D1=261=3L

and

K2 þ 3L2 þ 62=3

D1=2
L <

61=3

2D
: (38)

It is easy to see that if inequality (38) holds, then for any b

2� sin2 b� 2D

61=3
½K2 þ 3L2� > 2D1=261=3Ljsin bj:

Therefore, we can introduce the notations

2� sin2 b� 2D

61=3
½K2 þ 3L2� ¼ AðbÞcoshða0Þ;

2D1=261=3Lsin b ¼ AðbÞsinhða0Þ;

where

AðbÞ ¼ 2� sin2b� 2D

61=3
½K2 þ 3L2�

� �2
(

�4D62=3L2sin2b

)1=2

;

tanh a0 ¼
2D1=261=3L sin b

2� sin2 b� 2D

61=3
½K2 þ 3L2�

:

In these notations, Eq. (36) takes the form

coshðaþ a0Þ ¼
2t

AðbÞc : (39)

Therefore, in this case, for any b and for sufficiently large

t, there exists the value of the parameter a such that the

argument (36) will be equal to zero. Because all functions

are continuous and differentiable, the maximum of Hðs; f; �Þ
will be attained along some smooth closed curve. For suffi-

ciently small t and for any a; b, the value of the function

Hðs; f; �Þ will be less than K2=2. Since the sign of a0

depends on the sign of b, for L 6¼ 0, it follows that the solu-

tion will be asymmetric with respect to b. For Lsin b < 0,

the wave will be wider than for Lsin b > 0 (shown in Fig. 6).

FIG. 8. Surface waves corresponding to the one-soliton solution of the

ecKP-II Eq. (34) with K¼ 1.5 and L¼ 0 for t¼ 0 (left) and t¼ 2 (right).
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(ii) If D1=261=3Lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2D

61=3 K2
q

> 1 and 1 > D1=261=3L

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2D

61=3 K2
q

> �1, the nearly elliptic wave breaks for

negative y, producing a single deformed line-soliton (shown

in Fig. 7).

(iii) If jD1=261=3L6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2D

61=3 K2
q

j < 1, the nearly elliptic

wave breaks both for negative and positive y, producing a

pair of deformed line-solitons (shown in Fig. 9).

Apart from these generic cases, there are also some

exceptional cases (corresponding to the boundaries between

the generic cases). To illustrate that we show a solution cor-

responding to the condition

D1=261=3Lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2D

61=3
K2

s
¼ 1; (40)

which is the borderline case in between the last two generic

cases. The solution is shown in Fig. 10, and it can be inter-

preted as describing the splitting of the wave looking like a

resonant Y-soliton (or “Miles soliton”23), known from the

theory of the original KP equation, into two deformed line

solitons. The existence of such solutions might indicate the

instability of the Y-soliton with respect to perturbations in

the area of the crossing.

Let us note that the one-soliton solution of the KP-II

equation used to obtain the solution (34) of the ecKP-II equa-

tion above can be written in the form of the "canonical" soli-

ton for the KP-II equation

Uðs; n; YÞ ¼ 2@2
n lnðw1 þ w2Þ; where

wj ¼ expðkjnþ rk2
j Y � 4k3

j sÞ;

if K ¼ k1 � k2 and L ¼ ðk1 þ k2Þr (we let d0 ¼ 0). Then, the

conditions on kj follow from the conditions on K and L,

discussed above. We show in Fig. 11 the surface wave corre-

sponding to the solution of ecKP-II equation obtained as

the image of the canonical one-soliton solution of KP-II equa-

tion with r ¼ 1; k1 ¼ 0:5; and k2 ¼ �0:4 under the map (30).

Using Darboux transformations, one can obtain the ca-

nonical two-soliton solution of the KP-II equation in the

form

Uðs; n; YÞ ¼ 2@2
n lnð/1/2n � /2/1nÞ; where

/1 ¼ w1 � w2; /2 ¼ w3 þ w4 (41)

(up to the phase shifts, which can be added to the phases).

Some particular surface waves corresponding to the two-

soliton solutions of the ecKP-II equation (obtained as the

image of solution (41) under the map (30)) are shown in

Figs. 12 and 13 (asymmetric and symmetric two-soliton

nearly elliptic waves, respectively).

Finally, let us choose We ¼ 2=3 and consider the ecKP-I

lump solution (the image of the KP-I lump under the map (30))

Hðs; f; �Þ ¼ 4jð1� jðfþ s�2=12� 3jsÞ2 þ j2ðs2 � a2Þ�2Þ
ð1þ jðfþ s�2=12� 3jsÞ2 þ j2ðs2 � a2Þ�2Þ2

:

FIG. 10. Surface waves corresponding to the exceptional one-soliton solu-

tion of the ecKP-II Eq. (34) with K¼ 1.5 and L defined by Eq. (40)

(L 	 0:1) for t¼ 0 (left) and t¼ 1 (right).

FIG. 9. Surface waves corresponding to the one-soliton solution of the

ecKP-II Eq. (34) with K¼ 1.6 and L¼ 0.1 for t¼ 0 (left) and t¼ 2 (right).

FIG. 11. Surface wave corresponding to the solution of the ecKP-II equation

obtained from the canonical KP-soliton with k1 ¼ 0:5 and k2 ¼ �0:4 for

t¼ 0.5 (left) and t¼ 1 (right).

FIG. 12. Surface waves corresponding to the two-soliton solution of the

ecKP-II equation with k1 ¼ 0:5; k2 ¼ �0:4; k3 ¼ 0:4; and k4 ¼ �0:3 for

t¼ 1 (top left), t¼ 2 (top right), t¼ 3 (bottom left), and t¼ 4 (bottom right).

FIG. 13. Surface waves corresponding to the two-soliton solution of the

ecKP-II equation with k1 ¼ 0:5; k2 ¼ �0:5; k3 ¼ 0:4; and k4 ¼ �0:4 for

t¼ 0 (top left), t¼ 0.5 (top right), t¼ 1 (bottom left), and t¼ 2 (bottom

right).
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It is easy to see that for sin b ¼ 0, the wave elevation g has

the form

g ¼ � 4

61=3

ffiffiffi
a

c

r
f ðf� 3jsÞ;

where the function

f ðXÞ ¼ 4jð1� jX2Þ
ð1þ jX2Þ2

has one high maximum for X¼ 0 and two weak minima for

X ¼ 6
ffiffiffiffiffiffiffiffi
3=j

p
, where

f ð0Þ ¼ 4j; f ð6
ffiffiffiffiffiffiffiffi
3=j

p
Þ ¼ �j=2:

Therefore, for sufficiently large values of t, the wave

elevation g has two deep minima

gmin ¼ �
16j

61=3

ffiffiffi
a

c

r
for

sin b ¼ 0; cosh a ¼ t

c 1þ 3jD

61=3

� � :
The corresponding surface wave elevation g is plotted in

Fig. 14 for c ¼ 1; a ¼ 2;D ¼ 1=2;We ¼ 2=3, and j ¼ 0:25.

VI. CONCLUDING REMARKS

In this paper, we have derived and studied a new integra-

ble version of the Kadomtsev-Petviashvili equation associated

with the elliptic-cylindrical geometry of the wave fronts. The

derivation was given in the context of surface gravity waves,

but the equation can be readily derived in other physical con-

texts. We found transformations linking the derived model

with the two classical versions of the KP equation, associated

with the Cartesian and cylindrical geometries of the wave

fronts, and the Lax pair for the new equation. We also com-

pletely classified approximate solutions for the surface gravity

waves corresponding to the one-soliton solution of the ecKP

equation, as well as discussing some other solutions.

In our derivation, a large distance variable has been

used in preference to large time, although one can also use

the large time variable. The dimensional form of the derived

equation is given by

�
2 gt þ

c

d
g/

	 

� 3

h0

ggt �
h2

0

c2

1

3
�We

� �
gttt

þ c

d

/

/2 � 1
gþ w2

/2 � 1
gt

�
t

� c2

d2

1

/2 � 1
gww ¼ 0;

where g is the free surface elevation, t is time, / ¼ cosh a
and w ¼ sin b are variables related to the elliptic cylindrical

coordinates, h0 is the unperturbed fluid depth, c ¼
ffiffiffiffiffiffiffi
gh0

p
is

the linear long-wave speed, d is half of the distance between

the foci of the coordinate lines (say, the boundary of the

wave source), and We is the Weber number. The key non-

dimensional parameters used in the paper are expressed via

the dimensional parameters as follows:

A ¼ dk3h6
s

h10
0

; c ¼ d

k
; D ¼ k2h4

s

h6
0

;

where k is the wave length, while d ¼ h0

k and � ¼ hs

h0
. To

derive the ecKP equation, we required that D is a small pa-

rameter. We also note that for any given values of A; c, and

D, there exists a range of the physical validity of the model,

as can be seen from the expressions above.

The importance of the model to particular applications has

not been discussed in this paper, and it is an open question at

the moment. Another open question is the study of the wave

instabilities within the framework of the ecKP equation, con-

tinuing the lines of research for the KP24 and cKP equations.25

In our paper, we considered only some simple solutions

of the derived equation. Recently, there has been significant

progress in the classification of soliton solutions of the KP

equation with applications to water wave problems (see, Refs.

26–29 and references therein). It would be interesting to see

the counterpart of this classification for the derived equation,

and for the approximate solutions for surface waves.

The derivation of the ecKP equation from the full set of

Euler equations opens the way to the study of internal and sur-

face waves on a current for a stratified fluid, as well as account-

ing for the effects of variable background and Earth’s rotation,

which will be reported elsewhere. It paves the way for other

applications, for example, in the context of matter waves in

Bose-Einstein condensates (e.g., Refs. 18 and 19), since the

hydrodynamic form of the Gross-Pitaevskii equation is similar

to the problem formulation (1). Also, recent studies of

“spherical nebulons,”30 based on the spherical KP equation, can

be extended since the ellipsoidal KP equation, associated with

the ellipsoidal coordinates, can be derived from the equations

for “a dusty plasma” along the lines discussed in this paper.

Finally, it is natural to ask a question whether one can

derive other versions of the KP equation, associated with

other coordinate systems (i.e., with other wave geometries),

and whether one can find the general description of all ad-

missible maps of the type discussed in Sec. III, associated

with the problem formulation (1).
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APPENDIX A: PROBLEM FORMULATION

In the variables

f ¼ �2

d2
ðc cosh a� tÞ;

R ¼ �6

d4
c cosh a; � ¼ d

�2
sin b;

u ¼ �3

d2
U; v ¼ �5

d3
V; w ¼ �5

d4
W;

g ¼ �3

d2
H; p ¼ �3

d2
P;

the problem formulation (7)–(13) assumes the form

�Uf þ Pf þ D½UUf þWUz þ PR

�R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � A2
p

R2 � A2
ð�P� þ R�2PfÞ� þ OðD2Þ ¼ 0;

�Vf þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � A2
p P� þ

R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � A2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � A2
p �Pf

þD UVf þWVz þ
R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � A2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � A2
p �PR

"

þðR�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � A2
p

ÞðR2 þ A2Þ
2ðR2 � A2Þ3=2

�3Pf

�ðR�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � A2
p

Þ2 þ R2

2ðR2 � A2Þ3=2
�2P�

#
þ OðD2Þ ¼ 0;

Pz � DWf þ OðD2Þ ¼ 0;

Uf þWz þ D UR �
R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � A2
p

R2 � A2
ðR�2Uf þ �U�Þ

"

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � A2
p

	
ðR�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � A2
p

Þ�Vf þ V� þ U

#

þOðD2Þ ¼ 0;

Pjz¼1þDHðf;R;lÞ ¼ H � DWe Hff þ OðD2Þ;

Wjz¼1þDHðf;R;lÞ ¼ �Hf þ DUHf þ OðD2Þ;

Wjz¼0 ¼ 0;

where D ¼ �4

d2 and A ¼ c �
6

d4 : Here, we have not shown the

explicit form of the higher-order terms in the small parame-

ter D (denoted by OðD2Þ) since these terms are not needed in

the derivation of our asymptotic equation.

APPENDIX B: QUASI-PERIODIC SOLUTIONS

Quasi-periodic (multiphase) solutions to the KP equa-

tion can be given in terms of multi-dimensional theta func-

tions on compact Riemann surfaces of arbitrary genus n (see,

Ref. 31) in the form

Uðn; Y; sÞ ¼ 2@2
x ln H½npþ Yvþ sqþ l� þ C; (42)

where H is the Riemann theta function, p, v, q, and l are peri-

ods of certain integrals on this surface, and C is constant

with respect to the coordinates n, Y, and s (see Refs. 22 and

33 for details). For a given Riemann surface and a given

point on it, these quantities are uniquely determined.

In genus 2, all such surfaces are hyperelliptic. In this

case, we consider the hyperelliptic curve with branch points

�1, �2, �3, 0, 1, and 2. These solutions are numerically

evaluated with the spectral code by Frauendiener and

FIG. 15. Genus 2 solution (42) to the ecKP-II equation for a¼ 0.01 gener-

ated by the curve w2 ¼
Q6

i¼1ðz� eiÞ; e1 ¼ �3; e2 ¼ �2; e3 ¼ �1; e4 ¼
0; e5 ¼ 1; e6 ¼ 2 for several values of s.

FIG. 16. Genus 2 solution (42) to the ecKP-II equation for a¼ 1 generated

by the curve w2 ¼
Q6

i¼1ðz� eiÞ; e1 ¼ �3; e2 ¼ �2; e3 ¼ �1; e4 ¼ 0; e5 ¼
1; e6 ¼ 2 for several values of s.
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Klein.32,33 The related solutions to the ecKP-II equation are

generated from the corresponding solutions of the KP-II

equation via the map (30) with a¼ 0.01. We clearly see in

Fig. 15 the formation of intersecting families of parabolic

fronts.

In the same setting with a¼ 1, i.e., a theta-functional

solution to the ecKP-II equation, the formation of curved

profiles is already present for small s� a as can be seen in

Fig. 16. Both cases asymptotically coincide for s!1.

In higher genus, the solutions are g-phase solutions, i.e.,

they have more structure as can be seen in Fig. 17. We con-

sider here again hyperelliptic surfaces. The close to cKP sol-

utions are for small time essentially independent of the

transversal coordinate.
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