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Abstract—A Hamiltonian system on a Poisson manifold M is called integrable if it possesses
sufficiently many commuting first integrals f1, . . . fs which are functionally independent on
M almost everywhere. We study the structure of the singular set K where the differentials
df1, . . . , dfs become linearly dependent and show that in the case of bi-Hamiltonian systems
this structure is closely related to the properties of the corresponding pencil of compatible
Poisson brackets. The main goal of the paper is to illustrate this relationship and to show
that the bi-Hamiltonian approach can be extremely effective in the study of singularities of
integrable systems, especially in the case of many degrees of freedom when using other methods
leads to serious computational problems. Since in many examples the underlying bi-Hamiltonian
structure has a natural algebraic interpretation, the technology developed in this paper allows
one to reformulate analytic and topological questions related to the dynamics of a given system
into pure algebraic language, which leads to simple and natural answers.
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Since the pioneering work by Franco Magri [1] it has been well known that integrability of many
systems in mathematical physics, geometry and mechanics is closely related to their bi-Hamiltonian
nature [2–7]. The bi-Hamiltonian structure has been observed in many classical systems and, at the
same time, by using the bi-Hamiltonian technics, many new interesting and non-trivial examples of
integrable systems have been discovered [8–13]. Moreover, this approach, based on a very simple,
natural and elegant notion of compatible Poisson structures, proved to be very powerful in the
theory of integrable systems not only for finding new examples, but also for explicit integration
and description of analytical properties of solutions.

In our paper we would like to show that the bi-Hamiltonian approach might also be extremely
effective in the study of singularities of integrable systems, especially in the case of many degrees
of freedom when using other methods often leads to serious computational problems.

Speaking of singularities of integrable Hamiltonian systems, we mean those integral trajectories
which lie outside the set of Liouville tori or, in other words, which belong to the singular set
that corresponds to those points where the first integrals of a given system become functionally
dependent. The analysis of the system on this set and in its neighborhood is undoubtedly very
important because the singular set usually contains the most interesting trajectories, in particular,
equilibrium points, and its topological structure is closely related to the bifurcations of Liouville
tori, monodromy phenomena and other global effects.

The main idea of the present paper can be formulated as follows: the structure of singularities
of a bi-Hamiltonian system is determined by that of the corresponding compatible Poisson
brackets. Since in many examples the underlying bi-Hamiltonian structure has a natural algebraic
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432 BOLSINOV AND OSHEMKOV

interpretation, the technology developed in this paper allows one to reformulated rather non-trivial
analytic and topological questions related to the dynamics of a given system into pure algebraic
language, which often leads to quite simple and natural answers.

In this paper, we decided to focus on ideas, informal explanations and examples. Details of
proofs are sometimes omitted. As main illustrating examples we consider the Euler–Manakov top
on so(n) and Mischenko–Fomenko systems on real semisimple Lie algebras. Some results about these
systems we mention below were obtained earlier by other methods in [14–18] and we just give them
a bi-Hamiltonian interpretation. The paper however contains a number of new results obtained
by applying consistently the bi-Hamiltonian approach which, as we believe, will work efficiently in
many other cases. We also would like to emphasize that almost all of these new results could be
obtained in a more straightforward way by using various (sometimes mysterious) computational
tricks. Our approach can be considered as their conceptual explanation.

1. BASICS OF TOPOLOGY OF INTEGRABLE HAMILTONIAN SYSTEMS

By an integrable Hamiltonian system we mean a Hamiltonian system ẋ = sgrad H(x) on
a symplectic manifold (M2n, ω) which admits n = 1

2 dim M independent integrals F1, . . . , Fn

commuting with respect to the Poisson bracket defined by the symplectic structure ω.
Here sgrad H is the Hamiltonian vector field on M associated with a smooth Hamiltonian

function H : M → R; in coordinates, (sgrad H)i = (ω−1)ij
∂H

∂xj
. If sgrad H is complete, it generates

a one-parameter group of diffeomorphisms, which is called the Hamiltonian flow of the function H.
We say that F1, . . . , Fn are independent if their differentials dF1, . . . , dFn are linearly independent

on an open everywhere dense subset in M .
To each integrable Hamiltonian system we can assign the following important objects:

• the momentum mapping Φ : M2n → R
n, where Φ(x) = (F1(x), . . . , Fn(x));

• the Poisson action of the Abelian group R
n generated by the Hamiltonian flows of the

integrals F1, . . . , Fn;
• the commutative Poisson algebra of integrals F generated by F1, . . . , Fn;
• the singular Lagrangian fibration L on M (sometimes also called Liouville foliation)

whose fibers are connected components of common levels {F1(x) = a1, . . . , Fn(x) = an}, or
equivalently, connected components of Φ−1(a), inverse images of points a = (a1, . . . , an) ∈ R

n

under the momentum mapping.
The most important object for this paper is the Lagrangian fibration L.
We shall assume that all regular fibers of L are compact and, therefore, are Lagrangian tori of

dimension n usually called Liouville tori.
The singular fibers of L correspond to those points x ∈ M where the differentials dF1(x), . . . ,

dFn(x) become linearly dependent, or which is the same, where the rank of dΦ(x) is less than n.
Thus, the singularities of L are essentially the same as those of the momentum mapping Φ.

Consider the set of critical points of the momentum mapping:

K = {x ∈ M | rank dΦ(x) < n}.
Its image Σ = Φ(K) ⊂ R

n is called the bifurcation diagram of Φ.
If a /∈ Σ, then its preimage Φ−1(a) is a disjoint union of Liouville tori. These tori transform

smoothly in M under any continuous change of a outside Σ; however, if a passes through Σ, the
Liouville tori undergo a bifurcation.

It is clear that the topological properties of the momentum mapping Φ, its singular set K,
and bifurcation diagram Σ keep very important information about qualitative behavior of a given
dynamical system both in local and in global. Roughly speaking, they help us to understand and to
describe the structure of the fibration L, which, in turn, can be viewed as a portrait of the system
and contains almost all qualitative information we usually want to know about the system (number
and types of equilibrium points, stability of solutions, bifurcations of tori, Hamiltonian monodromy
and so on).
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Let us recall some basic notions and terminology related to this subject.
We say that x ∈ M is a critical point of corank k (or, equivalently, of rank (n− k)) if rank dΦ(x) =

n− k. This condition is equivalent to the fact that the orbit O(x) of the R
n-action generated by the

integrals passing through x has dimension n − k. A singular fiber L of the Lagrangian fibration L
may contain several orbits of different dimension (the standard situation is that this fiber is a
stratified manifold whose strata are those orbits). If n − k = min

x∈L
dimO(x), we shall say that L is

a singularity of corank k.
First of all, as usual in singularity theory, one distinguishes the class of generic (or non-

degenerate) singularities.
We recall this definition first for critical points x ∈ M of corank n. In other words, we assume

that the Hamiltonian vector fields of the integrals F1, . . . , Fn all vanish at x. From the dynamical
viewpoint, such points can usually be characterized as isolated equilibria of the system.

Definition 1. Let rank dΦ(x) = 0. Then the critical point x is called non-degenerate if the Hessians
d2F1(x), . . . , d2Fn(x) are linearly independent and there exists a linear combination λ1d

2F1(x) +
· · · + λnd2Fn(x) such that the roots of its “characteristic polynomial”

χ(t) = det
(

n∑
i=1

λi d
2Fi(x) − t · ω

)

are all distinct. In a more abstract terminology, the non-degeneracy condition (for a critical point
of corank n) means that the linearizations of the Hamiltonian vector fields sgrad F1, . . . , sgrad Fn

at the point x generate a Cartan subalgebra in the symplectic Lie algebra sp(TxM,ω).

It is not hard to generalize this definition to the case of arbitrary rank of dΦ(x) (see, for example,
[19, 20]). In this paper we shall discuss the non-degeneracy property only for critical points of
corank n and 1 (Sections 8 and 9 respectively). In the case of corank 1 singularities, one can use
the following

Definition 2. Let x ∈ K be a critical point of corank 1, i.e., rank dΦ(x) = n − 1. This point is
called non-degenerate if there exists a function f ∈ F such that df(x) = 0 and the linearization of
the Hamiltonian vector field sgrad f at x has at least one non-zero eigenvalue.

Equivalently, this condition means that the restriction of f onto the common level of arbitrary
n − 1 independent integrals f1, . . . , fn−1 ∈ F passing through x is a Bott function.

Non-degenerate critical points of the momentum mapping possess a number of remarkable
properties. One of them is the existence of a very simple and natural local normal form, see [21].

Eliasson Theorem. Let x be a non-degenerate critical point of rank l. Then in a neighborhood
of x, there exist symplectic coordinates p1, . . . , pn, q1, . . . , qn and a diffeomorphic transformation of
the integrals

F̃1 = F̃1(F1, . . . , Fn), . . . , F̃n = F̃n(F1, . . . , Fn)

such that

F̃1 = p1, . . . , F̃l = pl,

and F̃i for i = l + 1, . . . , n has one of the following forms:

1) F̃i = p2
i + q2

i (elliptic case),

2) F̃i = piqi (hyperbolic case),

3)
F̃i = piqi+1 − pi+1qi

F̃i+1 = piqi + pi+1qi+1

(focus-focus case).
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It follows from this theorem that the tangent space TxM naturally splits into the direct sum of
subspaces:

TxM = V0 ⊕ (V1 ⊕ · · · ⊕ Vs).

Here V0 is the 2l-dimensional “non-singular” subspace that corresponds to the coordinates p1, . . . , pl,
q1, . . . , ql, and V1, . . . , Vs are either two- or four-dimensional subspaces. The two-dimensional
subspaces can be of two types: hyperbolic and elliptic. The four-dimensional subspaces correspond
to the focus-focus type.

From the point of view of dynamics, these subspaces Vi, i �= 0, have a very natural characteriza-
tion. If F̃ = F̃ (F1, . . . Fn) is an integral of the system such that dF̃ (x) = 0, then Vi is an invariant
subspace for the linearization of the Hamiltonian vector field sgrad F̃ at the point x. It is important
that Vi is a common invariant subspace for all such integrals F̃ . Moreover, Vi is the tangent space
for a symplectic submanifold invariant under all Hamiltonian flows sgrad F̃ . Elliptic, hyperbolic and
focus-focus cases are distinguished by the type of non-zero eigenvalues of the linearized systems on
Vi:

1) real λ,−λ (hyperbolic type),

2) pure imaginary iμ,−iμ (elliptic type),

3) complex λ + iμ, λ − iμ,−λ + iμ,−λ − iμ (focus-focus).

Thus, the Eliasson theorem shows that the local structure of non-degenerate singularities (up to
a symplectomorphism) can be uniquely characterized by its type, i.e., its (co)rank and the number
of elliptic, hyperbolic and focus-focus components.

The analysis of concrete examples of various integrable Hamiltonian systems in physics, geometry
and classical mechanics shows that almost all critical points of Φ satisfy the non-degeneracy
condition.

We shall say that a singular fiber L of a Lagrangian fibration L is non-degenerate if all of its
critical points are non-degenerate. It is a remarkable fact due to Nguyen Tien Zung [20, 22] that
non-degenerate singularities admit a very simple topological description in terms of almost direct
products.

Before starting any global topological analysis for a specific integrable system we have, as a rule,
to deal with the following tasks:

1) describe the set of critical points;

2) verify the non-degeneracy condition for observed singularities;

3) find the type of non-degenerate singularities.

The straightforward approach is just to take the Jacobi matrix

dΦ(x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂F1
∂x1

· · · ∂F1
∂x2n

∂F2
∂x1

· · · ∂F2
∂x2n

· · · · · · · · ·
∂Fn
∂x1

· · · ∂Fn
∂x2n

⎞
⎟⎟⎟⎟⎟⎟⎠

, (1.1)

compute all its (n × n)-minors, and then find those points where all of them vanish. Then for each
critical point we need to analyze the Hessians of the integrals in order to verify non-degeneracy
and determine the type of the corresponding singularity.

For two degrees of freedom systems this straightforward approach turned out to be quite
successful, but in the case of many degrees of freedom we obviously need to use some additional
ideas and structures. It turns out that the property of being bi-Hamiltonian affects the structure
of singularities of a system and helps to simplify its topological analysis by reformulating many
questions in terms of compatible Poisson brackets.
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2. BASIC “BI-HAMILTONIAN” NOTIONS

Recall that a skew-symmetric tensor field A = (Aij) of type (2, 0) on a smooth manifold M is
called a Poisson structure if the operation on C∞(M) defined by

{f, g} = Aij ∂f

∂xi

∂g

∂xj

satisfies the Jacobi identity:

{f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0 for any f, g, h ∈ C∞(M).

In such a situation, the space of smooth functions C∞(M) receives the natural structure of an
infinite-dimensional Lie algebra, and { , } is called a Poisson bracket.

The rank of the Poisson structure (bracket) A at a point x is the rank of the skew-symmetric
matrix Aij(x). Speaking of the rank of A on the manifold M as a whole, we mean its rank at a
generic point, i.e.,

rankA = max
x∈M

rankAij(x).

Below we confine ourselves with real-analytic Poisson structures so that generic points always form
an open everywhere dense subset in M .

A function f : M → R is a Casimir function of a Poisson structure A if {f, g} ≡ 0 for any smooth
function g. We shall denote the space of such functions by Z(A).

A Casimir function f can be characterized by the following condition: df(x) ∈ KerA(x) at each
point x ∈ M .

If the Poisson structure A is degenerate, i.e., rankA < dim M , then locally in a neighborhood
of a generic point, Casimir functions always exist and the number of functionally independent
Casimir functions is exactly the corank of the Poisson structure corankA = dimM − rankA, i.e.,
the differentials of Casimir functions generate the kernel of A(x) at generic points x.

Definition 3. Two Poisson structures A and B are compatible if their sum A+B (or, equivalently,
an arbitrary linear combination with constant coefficients) is again a Poisson structure.

The essential and non-trivial part of the compatibility condition is that A + B satisfies the
Jacobi identity. Being rewritten in analytical form, this condition means that the so-called Schouten
bracket {{A,B}} of the Poisson structures A and B identically vanishes, which amounts to a rather
non-trivial system of PDEs. A local description of compatible Poisson brackets can be found in
(see [23–25]).

Many integrable dynamical systems in mathematical physics and mechanics possess the property
of being bi-Hamiltonian, i.e., Hamiltonian with respect to two compatible Poisson brackets A and B
(or with respect to any non-trivial combination λ′A + λB). This property can be understood as an
additional symmetry of a given system which leads to the existence of a big algebra of commuting
first integrals. These integrals can be constructed by using the so-called Magri–Lenard scheme
(see [1, 6]). In this paper, we discuss one of its versions.

Consider a family (pencil) of compatible Poisson brackets P = {λ′A + λB | λ′, λ ∈ R} on a
manifold M .

Convention. In this theory, one considers linear combinations λ′A + λB up to proportionality, so
that we may assume that λ′ = 1, but λ may have value ∞. Thus we shall use notation Aλ = A+ λB
(assuming that λ ∈ R or λ ∈ C) and shall sometimes refer to B as A∞.

Assume that all Aλ ∈ P are degenerate, i.e. rankAλ < dimM . By definition, we set the rank of
the pencil P to be

rankP = max
λ∈R

rankAλ.

If rankAλ is maximal in the family P, i.e., rankAλ = rankP, we shall say that Aλ is generic.
Similarly for a point x ∈ M , we can introduce rankP(x) as max

λ∈R

rankAλ(x) and speak about generic
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Poisson structures at a given point x. Since the rank of Aλ may vary on M , “being generic at x” is
not the same as “being generic on M”. (Usually we shall write Aμ for a generic Poisson structure
and Aλ for an arbitrary Poisson structure in the pencil.)

The next statement gives a recipe for constructing a large family of commuting functions on M .

Proposition 1. Let FP be the algebra generated (with respect to usual multiplication of functions)
by Casimir functions of all generic Poisson structures Aμ ∈ P.

1) FP is commutative with respect to every Poisson structure Aλ ∈ P.

2) If ẋ = v(x) is a dynamical system which is Hamiltonian with respect to every generic Poisson
structure Aμ ∈ P, then each function from FP is its first integral.

This statement, however, say nothing about the number N of functionally independent integrals
in the family FP . Recall that the completeness condition for FP that guarantees the Liouville
integrability of ẋ = v(x) on M is N = 1

2(dim M + corankP). This means that the subspace
dFP (x) ⊂ TxM generated by the differentials df(x), f ∈ FP , is maximal isotropic w.r.t. generic Aμ

almost everywhere on M .

Another question, even more important in the context of our paper, is to describe those points
x ∈ M where the completeness condition fails, i.e., the dimension of dFP (x) ⊂ TxM drops.

A simple and efficient tool which allows us to answer both questions is the following Linear
Algebra theorem that describes the canonical form for a one-parameter family (pencil) of skew-
symmetric forms (see [26, 27]).

Jordan–Kronecker Theorem. Let A and B be skew-symmetric bilinear forms defined on a
finite-dimensional complex vector space V . Then there exists a basis in V in which the pencil
P = {A + λB} takes a block-diagonal form

A + λB =

⎛
⎜⎜⎜⎜⎜⎜⎝

A1(λ)

A2(λ)
. . .

Ak(λ)

⎞
⎟⎟⎟⎟⎟⎟⎠

with the blocks Ai(λ) of three following types:

0

λi−λ 1

λi−λ
. . .
. . . 1

λi−λ

λ−λi

−1 λ−λi

. . . . . .

−1 λ−λi

0

Jordan block for λi ∈ C

0

1 λ

1
. . .
. . . λ

1

−1

−λ −1
. . . . . .

−λ −1

0

Jordan block for λi = ∞
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0

1 λ

1 λ

. . . . . .

1 λ

−1

−λ −1

−λ
. . .
. . . −1

−λ

0

Kronecker block

We also allow trivial (1 × 1)-blocks Ai(λ) = (0).

If rankAμ = max
λ∈C

rankAλ, then the form Aμ is generic. It is clear, that almost all forms in P are

generic except for a finite number of singular values of λ for which the rank of Aλ drops. It is easy
to see that these singular values of λ, called the characteristic numbers of the pencil, are exactly
the numbers λi (including λi = ∞) that appear in the above theorem. In this theory, characteristic
numbers play the same role as eigenvalues in the theory of linear transformations. Moreover, in
the “symplectic case” when B is non-degenerate, they are just the eigenvalues of the operator
Q = −AB−1. Following this analogy, we can naturally introduce the multiplicity of each λi as the
sum of the sizes of those Jordan blocks where λi appears (some of λi in the Jordan–Kronecker
theorem may, of course, coincide). Notice that the multiplicity is an even number here.

We shall say that the (“Jordan” part of the) pencil P = {A + λB} is diagonalizable if the
Jordan blocks in the Jordan–Kronecker decomposition are all of minimal size, i.e., 2× 2. A sufficient
condition for diagonalizability is that the multiplicity of each characteristic number is 2.

Jordan–Kronecker theorem has two simple corollaries important for applications.

Proposition 2. Let Z be the subspace in V generated by the kernels of all generic forms Aμ ∈ P :

Z = span{Ker Aμ | Aμ is generic}.

Then Z is isotropic with respect to any form Aλ ∈ P .

Notice that Proposition 1 is a straightforward corollary of this purely algebraic fact.

The next statement gives us necessary and sufficient conditions for Z to be maximal isotropic.

Proposition 3. The following properties of the pencil P are equivalent :

1) Z is a maximal isotropic subspace w.r.t. one (distinguished) form Aλ0 ∈ P ;

2) Z is a maximal isotropic subspace w.r.t. any form Aλ ∈ P , λ ∈ C;

3) the Jordan–Kronecker decomposition contains Kronecker blocks only (i.e., no Jordan blocks
appear);

4) Aλ ∈ P has the same rank for every λ ∈ C (in other words, Aλ’s are all generic).
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3. STATEMENT OF THE PROBLEM
In this paper, we discuss the following situation. There is a manifold M with a pencil P = {Aλ =

A+ λB} of compatible Poisson brackets. We assume that rankP < dim M and consider the family
FP generated by the Casimir functions of all generic Poisson brackets Aμ ∈ P. This family consists
of first integrals of dynamical systems which are bi-Hamiltonian w.r.t. P (see Proposition 1).

Throughout the paper we suppose that M and P are real-analytic and satisfy several natural
assumptions listed below.

The Casimir functions of every Poisson structure Aλ are globally defined and they distinguish
all symplectic leaves of maximal dimension. Sometimes the explicit description of Casimir functions
for particular Poisson structures from our pencil may not be so easy. For our purposes it is however
sufficient that the above property holds for almost all brackets and even for sufficiently many
brackets. To be more precise, in this paper we shall assume that at least for one generic bracket,
say A = A0, there exist global Casimir functions f1, . . . , fk whose differentials generate the kernel
of A(x) at every point x ∈ M of maximal rank, i.e.,

KerA(x) = span{df1(x), . . . , dfk(x) | fi ∈ Z(A)} if rankA(x) = rankP.

Moreover, each of these functions fi ∈ Z(A) can be deformed fi(x) 	→ fi,λ(x) in such a way that
fi,λ(x) is a globally defined Casimir function for Aλ = A + λB at least for small λ with the same
property:

KerAλ(x) = span{df1,λ(x), . . . , dfk,λ(x) | fi,λ ∈ Z(Aλ)} if rankAλ(x) = rankP.

The functions fi,λ depend on λ smoothly. In particular, we can expand them into Taylor series
in λ:

fi,λ(x) 
 Fi,0(x) + λFi,1(x) + λ2Fi,2(x) + · · · + λmFi,m(x) + . . .

and then take the coefficients Fi,m as generators of the commutative family FP .
This assumption guarantees that at each point x ∈ M (such that rankP = rankP(x)) the

subspace dFP (x) = span{df(x) | f ∈ FP} generated by the differentials of our first integrals
coincides with the subspace in T ∗

xM spanned by the kernels of generic Aμ(x)’s. This property
is crucial in all our considerations and allows us to reformulate many phenomena related to bi-
Hamiltonian systems in the language of Linear Algebra.

Let us comment on the additional assumption rankP = rankP(x) that we have just made about
a point x ∈ M . All points in M can be divided into three types depending on which of the following
conditions holds:

1) rankAλ(x) = rankP for all λ ∈ C;

2) rankAλ(x) = rankP for almost all λ ∈ C except for a finite number of parameter values
λ1, . . . , λs (recall that these values are called characteristic numbers of the pencil P at the
point x);

3) rankAλ(x) < rankP for all λ ∈ C.

As we shall see below, points of the first type are exactly those where FP is complete (i.e., contains
sufficiently many independent first integrals). Points of the second type are critical in the sense
that the differentials of the functions f ∈ FP become linearly dependent, but we can control the
structure and dimension of the subspace in T ∗

x M generated by these differentials. Such points are
the main subject of the present paper. Finally, a point x ∈ M of the third kind is even more
singular: the rank of all generic Poisson structures Aλ drops at this point and, therefore, in general
we can say nothing about the behavior of Casimir functions in its neighborhood. The analysis of
such points is beyond the scope of this paper. By assuming rankP = rankP(x), we exclude them
from our considerations.

The questions we would like to discuss in this paper are:
• Completeness. Is FP complete in the sense that the number of independent commuting

integrals in FP is sufficient for Liouville integrability?
• Singular set. Assume FP is complete. What is the set of those points where the first integrals

from FP become dependent?
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• Common equilibria. What are those points x ∈ M , where all Hamiltonian vector fields
sgrad f(x) vanish simultaneously (i.e., rank 0 singularities in the sense of Section 1)?

• Non-degeneracy of equilibrium points. If x is a common equilibrium, how can we check
whether or not it is non-degenerate?

• Corank 1 singularities. These are the most typical singularities which correspond to generic
bifurcations of Liouville tori. How can we check the non-degeneracy condition and recognize
their type (elliptic or hyperbolic)?

4. TWO BASIC EXAMPLES

In subsequent sections we give answers to all questions formulated at the end of the previous
section both in general situation and for Examples A and B described below. So, these examples
are “continued” in subsequent sections, and the explanation is organized as follows: each of the next
sections contains an answer to the corresponding question in general situation (Theorems 1–5) and
“continuations” of Examples A and B with a more concrete form of that answer (Theorems 1A–5A
and 1B–5B respectively).

In this section we start our model examples by describing two classical integrable systems, their
bi-Hamiltonian structures and integrals.

Example A (Description). The first construction, called argument shift method, was sug-
gested by A.T. Fomenko and A.S.Mischenko [17] as a generalization of S.V.Manakov’s idea [16],
which will be also discussed below (see Example B).

Let g be a finite-dimensional (real) Lie algebra and g∗ its dual space endowed with the standard
Lie–Poisson bracket:

{f, g}(x) = x
(
[df(x), dg(x)]

)
, x ∈ g∗, df(x), dg(x) ∈ (g∗)∗ = g, (4.1)

where f, g : g∗ → R are arbitrary smooth functions. Equivalently, in local coordinates this bracket
can be written as

{f, g}(x) = ci
jkxi

∂f

∂xj

∂g

∂xk
,

where ci
jk are the structure constants of g with respect to the basis associated with the coordinates

x1, . . . , xn.
The Casimir functions of the Lie–Poisson bracket (4.1) are exactly invariants of the coadjoint

representation of the corresponding Lie group G, and the coadjoint orbits are symplectic leaves
of (4.1). Recall that the codimension of generic orbits (or equivalently, the corank of bracket (4.1))
is called the index of g and is denoted by ind g.

Besides the standard Lie–Poisson bracket, on the dual space g∗ we can define a constant
bracket { , }a for any a ∈ g∗ by

{f, g}a(x) = a
(
[df(x), dg(x)]

)
= ci

jkai
∂f

∂xj

∂g

∂xk
. (4.2)

It can be easily verified that (4.1) and (4.2) are compatible. The Casimir functions of a linear
combination { , } + λ{ , }a are of the form f(x + λa), where f is an invariant of the coadjoint
representation. Thus we have a family of commuting functions on g∗:

Fa = {f(x + λa) | f ∈ IAd∗(G), λ ∈ R},
where IAd∗(G) denotes the ring of coadjoint invariants.

Below we discuss the properties of Fa for semisimple Lie algebras. In this case g and g∗

can naturally be identified by means of the Killing form so that the adjoint and coadjoint
representations will just coincide. It is well known that IAd(G) admits a basis which consists of
homogeneous polynomials f1, . . . , find g such that

∑
deg fi = 1

2(dim g + ind g). Thus, if we expand
each of fi(x + λa) in powers of λ and take the coefficients as new functions of x, we obtain a
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collection of s = 1
2(dim g + ind g) commuting homogeneous polynomials (we keep the same notation

as above):

Fa = {F1, . . . , Fs}. (4.3)

By construction, these functions are first integrals of any dynamical system which is Hamiltonian
w.r.t. every bracket { , } + λ{ , }a. The most interesting examples of such systems related to left-
invariant geodesic flows on Lie groups were described by A.T.Fomenko and A.S.Mischenko in [17].
One of our goals is to describe the singularities of the momentum mapping

Φa : g → R
s, Φa(x) = (F1(x), . . . , Fs(x)), s =

1
2
(dim g + ind g)

associated with the brackets (4.1) and (4.2).

Example B (Description). Let g = so(n) be considered as the space of skew-symmetric
(n × n)-matrices. As usual, we identify so(n) and so(n)∗ by means of the Killing form. Along
with the standard commutator [X,Y ] = XY − Y X we introduce on so(n) another operation:

[X,Y ]C = XCY − Y CX,

where C is a symmetric matrix.
It is easy to see that [X,Y ]C satisfies the Jacobi identity and is compatible with the standard

commutator in the sense that any of linear combinations λ[ , ] + λ′[ , ]C = [ , ]λE+λ′C still defines
a Lie algebra structure on so(n) (considered as the space of skew-symmetric matrices).

Interpreting this observation into the dual language, we may say that on so(n) = so(n)∗ there
is a pencil of compatible Poisson brackets { , }C+λE related to the commutators [ , ]C+λE .

It is an interesting fact that one of the most famous Hamiltonian systems on so(n), which
describes the n-dimensional rigid body dynamics,

Ẋ = [φ(X),X], (4.4)

where φ(X) is defined by the relation [φ(X), C] = [X,B] for some symmetric matrices B and C
(where C is assumed to be regular), is Hamiltonian w.r.t. any bracket from the pencil { , }C+λE

(see [3, 28]) and, therefore, possesses the Casimir functions of { , }C+λE as its first integrals.
It can be easily seen [28, 29] that these Casimir functions can be taken of the form

Tr
(
X(C + λE)−1

)k
,

and this family of commuting functions in the sense of functional dependence is equivalent to the
standard integrals

Tr(X + λC)k

found by S.V.Manakov [16]. Similarly to the argument shift method, this family admits a natural
basis that consists of homogeneous polynomials obtained by expanding Tr(X + λC)k in powers
of λ, where k = 2, . . . , n. It is not hard to see that the coefficients of odd degrees in X vanish and
this procedure gives us exactly s = 1

2(dim so(n) + ind so(n)) non-trivial commuting polynomials.
(Remark: Among these functions there is Tr Xn. If n is even, Tr Xn should be replaced by the
Pfaffian of X, that is,

√
detX). We denote the collection of homogeneous polynomials so obtained by

FC = {G1, . . . , Gs}. (4.5)

Let us emphasize once again that FC can, in fact, be treated as the collection of the Casimir
functions associated to the pencil { , }C+λE , in particular, each Fi is a first integral of (4.4).

For the integrable system (4.4), our goal is the same as before, i.e., the analysis of singularities
of the momentum mapping:

ΦC : so(n) → R
s, ΦC(X) = (G1(X), . . . , Gs(X)), s =

1
2
(dim so(n) + ind so(n)). (4.6)
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Notice that FC looks quite similar to the family of shifts of Ad∗-invariants Fa. The only difference
is that the matrix C in the case of n-dimensional rigid body lies outside the (co)algebra so(n),
whereas in the classical argument shift method a ∈ g∗. However, as we shall see below, from the
topological point of view these two classes of dynamical systems are not similar at all. The reason
is hidden in the different nature of the two pencils { , }C+λE and { , } + λ{ , }a.

5. COMPLETENESS

By the completeness of a family F of commuting first integrals of a given Hamiltonian system
ẋ = sgrad H(x) on a symplectic manifolds (M,ω) we mean that F contains n = 1

2 dimM functions
which are independent on M almost everywhere. If M is not symplectic but Poisson, then for
Liouville integrability one needs more integrals. Every Hamiltonian system, of course, possesses
Casimir functions as standard integrals, but apart of them we need to find 1

2 rankA non-trivial
integrals so that the total number of independent first integrals is 1

2(dim M + corankA). Speaking
more precisely, this condition guarantees the Liouville integrability on generic symplectic leaves.
For our purposes it is convenient to use the following equivalent definition of completeness.

Definition 4. A family F of commuting functions on a Poisson manifold (M,A) is complete if the
subspace dF(x) ⊂ T ∗

xM generated by the differentials df(x), f ∈ F , is maximal isotropic w.r.t. A
for almost all x ∈ M .

In our bi-Hamiltonian situation, the completeness criterion for the family FP introduced in
Proposition 1 is just a translation of Proposition 3 from Linear Algebra to Poisson Geometry.

Theorem 1. The family FP is complete if and only if for a generic point x ∈ M the following
maximal rank condition holds:

rankAλ(x) = rankP for all λ ∈ C. (5.1)

As we know (see Proposition 1), the family FP is commutative w.r.t. any Poisson structure
Aλ ∈ P. A priori, the completeness of FP (in the sense of Definition 4) might depend on the choice
of Aλ. So in order to be more precise, we should have specified a particular Poisson structure Aλ0

in the statement of Theorem 1. The conclusion of the theorem, however, says that the completeness
condition does not depend on the particular choice of Aλ0 . In other words, the statement of the
theorem holds for any Aλ ∈ P.

There is a natural and efficient principle that allows us to verify the above necessary and sufficient
completeness condition. To formulate it, we first notice that if the family FP is complete, then all
the structures Aλ must be of the same rank on M , but, for each λ, the rank of Aλ(x) may drop
on a certain singular set Sλ = {x ∈ M | rankAλ(x) < rankP}. From the viewpoint of completeness
these points are “bad”. Condition (5.1) simply says that for completeness there must exist “good”
points which belong to none of Sλ’s. For such points to exist, it is sufficient to require that singular
sets Sλ have codimension at least two. Then the union of sets Sλ over all λ’s will have codimension
at least one and its complement will consist of “good” points, as needed. This argument shows that
a technically rather difficult problem of computing the rank of the Jacobi matrix (1.1) in the case
of bi-Hamiltonian system can be reduced to the question about singular sets of the corresponding
Poisson pencils.

In this “codimension two principle” there is a subtle point: we consider a real manifold M ,
but the parameter λ is complex so that from the real point of view, the “space of parameters” is
not one-, but two-dimensional. However, in concrete examples we have to deal with, the difference
between “real” and “complex”, in fact, disappears. The point is that we usually work with algebraic
objects (manifolds, Poisson structures, Casimir functions) which can be naturally complexified: we
can introduce a new complex manifold MC endowed with the complex Poisson pencil PC and
construct the corresponding family of complex functions FC

P . In all natural situations, the complex
functions that generate FC

P are obtained from the real functions f(x1, . . . , xn) generating FP just
by replacing real variables xi with complex ones zi ∈ C. If such a complexification is well-defined,
then we have the following
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Codimension Two Principle. Let all the brackets Aλ, λ ∈ C, have the same rank and codim Sλ �
2 for almost all λ ∈ C. Then FC

P is complete. The completeness of FC

P is equivalent to the
completeness of FP .

We are going to illustrate now how this bi-Hamiltonian technology works in our two examples
(argument shift method and n-dimensional rigid body dynamics).

Example A (Completeness). Let g be a finite-dimensional Lie algebra and a ∈ g∗ an
arbitrary regular element. For the complexified Lie algebra gC, we consider the set of singular
elements in its dual:

Sing = {x ∈ (gC)∗ | rank
(
ck
ijxk

)
< dim g − ind g} ⊂ (gC)∗.

In terms of Poisson geometry, Sing is the set of singular points where the rank of the standard
Lie–Poisson bracket is not maximal. From the algebraic point of view, Sing can be characterized
as the union of singular coadjoint orbits (i.e., orbits of dimension smaller than dim g − ind g).

Applying the Codimension Two Principle to the argument shift method immediately gives the
following completeness criterion for Fa [2]: the family of shifts Fa is complete on g∗ if and only if
codim Sing � 2.

As a simple corollary of this criterion we get the classical result by A.S. Mischenko and
A.T. Fomenko, the original proof of which was absolutely different.

Theorem 1. If g is semisimple and a ∈ g is regular, then the collection of commuting polynomi-
als Fa is complete on g 
 g∗. In other words, the basic shifts (4.3) are functionally independent
on g.

The “bi-Hamiltonian” proof consists in noticing that for semisimple complex Lie algebras
codim Sing = 3 � 2.

Example B (Completeness). A similar result holds for Manakov integrals (4.5).

Theorem 1. Let the eigenvalues of C be all distinct. Then the collection of commuting polynomials
FC is complete on so(n).

Proof. According to the general bi-Hamiltonian construction we need to verify two conditions.
The first condition is that the ranks of all the brackets { , }C+λE must be the same. This
means that all the Lie algebras gλ given by the commutators [ , ]C+λE on the space of skew-
symmetric matrices must be of the same index. To verify this condition, we notice that if
det(C + λE) �= 0, then gλ is semisimple and its index is constant by continuity (if we change λ
slightly, the algebra remains isomorphic to itself). Since the eigenvalues ci of C are all distinct, in our
family there are n non-semisimple Lie algebras that correspond to the combinations Ci = C − ciE.
The rank of the matrix Ci is n − 1, and it is not hard to see that the Lie algebra with the
commutator [ , ]Ci is isomorphic to the semidirect sum e(n − 1) = so(n − 1) +ρ R

n−1, where ρ

is the natural representation. It is well known that the index of e(n− 1) is equal to
[

n
2

]
= ind so(n),

i. e., all brackets in the family are of the same rank.

The second condition is about the codimension of the set of singular elements for a generic bracket
{ , }C+λE . But generic brackets are semisimple so that this codimension is 3 � 2, as needed.

We emphasize once again that from the theory of Lie algebras in this statement we only used the
fact about the codimension, the rest follows immediately from the bi-Hamiltonian interpretation
of the Jordan–Kronecker theorem. More precisely, the bi-Hamiltonian approach allows us to
reformulate the facts we are interested in (in the present case, this is the functional independence of a
rather complicated collection of polynomials) into an absolutely different language which essentially
simplifies the verification. The further content of our paper is just an illustration of this idea. The
bi-Hamiltionian approach serves here as a bridge between two equivalent formulations.
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6. SET OF SINGULARITIES

As was already noticed, the structure of the set of critical points of the momentum mapping
plays an important role in the study of topological properties of integrable Hamiltonian systems.

The standard situation is that we have n commuting independent (almost everywhere) integrals
F1, . . . , Fn : M → R on a symplectic manifold (M2n, ω), and we want to find the set of those points
where the rank of the corresponding Jacobi matrix is less than n.

In real problems we have to deal with, the situation may often be slightly different. That is why
we define the set of critical points in more general terms.

First of all, the phase space of a system is often not symplectic, but Poisson. In this case, it
is natural to add Casimir functions to a given family F of first integrals and consider them all
together. Also, for some families F there is no canonical method for choosing a basis. To avoid this
ambiguity, it is convenient to work with the Poisson algebra generated by the given commuting
integrals and Casimir functions. Since we do not add any essentially new integrals, we will use the
same notation F for this “wider” algebra of first integrals.

Definition 5. Let (M,A) be a Poisson manifold and let F ⊂ C∞(M) be a commutative Poisson
algebra of functions on M which is complete in the sense of Definition 4. We will say that a point
x ∈ M is a critical point for F if the subspace dF(x) ⊂ T ∗

xM generated by the differentials df(x)
of all functions f ∈ F is not maximal isotropic with respect to A.

It is clear that the standard definition of a critical point of the momentum mapping is a particular
case of Definition 5. The reason for such a modification is that now we don’t need to fix any universal
basis in the algebra of integrals, but may chose appropriate basis integrals depending on a point
x ∈ M under consideration which can be quite convenient.

It follows from this definition that those points at which the rank of the Poisson structure drops
are automatically critical.

We now consider a bi-Hamiltonian dynamical system and take the algebra FP of its integrals
generated by the Casimir functions of the pencil of Poisson brackets P = {A+ λB | λ ∈ R}. Suppose
that this algebra is complete and therefore according to our general construction, all the brackets
in the pencil are of the same rank.

Our goal is to find the critical points of FP . Under the natural assumptions (see Section 3), the
set of critical points for the family FP

KP =
{
x ∈ M

∣∣ dim dFP (x) < 1
2(dim M + corankP)

}
can be described as follows.

As before, for each λ ∈ C, we consider the set of singular points of the Poisson structure Aλ
in M

Sλ = {x ∈ M | rank(A(x) + λB(x)) < rankP}.
In addition, we formally set S∞ = {x ∈ M | rankB(x) < rankP}. Also consider the set of singular
points of the pencil P:

SP =
⋃
λ∈C

Sλ.

Theorem 2. A point x ∈ M is a critical point for FP if and only if there exists λ ∈ C such that
x ∈ Sλ. In other words, KP = SP .

Since even in the real situation we have to consider complex values of the parameter λ, it is often
convenient to complexify all the objects from the very beginning. If we do so, then the set SC

λ of
singular points of the complex Poisson bracket AC

λ can be considered as a subset in the complexified
Poisson manifold MC. Then the set of singular points of the (complexified) pencil P

SC

P =
⋃
λ∈C

SC

λ
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is the set KC

P of critical points for the family of complex functions FC

P on the complex manifold MC,
and to turn back to the real case, we just need to take the real part of it:

KP = Re(KC

P ) = KC

P ∩ M.

This point of view is natural because SC

λ ⊂ MC usually has a simpler geometric structure than
its real part Sλ = Re(SC

λ ) = SC

λ ∩ M .
Thus, in the case of bi-Hamiltonian systems the set of critical points of the momentum mapping

has a natural description in terms of the singular sets of the Poisson structures Aλ, λ ∈ C. Here
we see the following general principle: the singularities of the Lagrangian fibration associated with
a bi-Hamiltonian system are defined by the singularities of the pencil P.

Example A (Singularities). Let g = g∗ be a real semisimple Lie algebra identified with its
dual space by means of the Killing form. Let Sing ⊂ gC be the set of singular points in the sense
of the adjoint representation and a ∈ g a regular element. The next theorem describes the set of
critical points Ka for the commutative collection of polynomials Fa obtained by the argument shift
method.

Theorem 2. An element x ∈ g is a critical point of Fa (or, equivalently, of the momentum
mapping Φa) if and only if there exists λ ∈ C such that x + λa is a singular element in gC.

In other words, the set of critical points Ka of Fa is the (real part of the) cylinder over the set
of singular elements Sing with the generating line parallel to a, that is:

Ka = (Sing + C · a) ∩ g.

Remark. The same result holds for any finite-dimensional Lie algebra: Ka = (Sing + C · a) ∩ g∗,
where a ∈ g∗ is regular and Sing denotes the set of singular elements in (gC)∗. In particular, if
codim Sing = 1, then Ka coincides with the whole coalgebra g∗, which means that all points are
critical and, therefore, the family Fa is not complete.

Notice that the description of the singular set Sing for a semisimple Lie algebra is quite
simple. For instance, in the case of sl(n, C) the regularity condition can be formulated as follows:
an (n × n)-matrix x ∈ sl(n, C) is regular if and only if for each its eigenvalue there is exactly one
eigenvector. Equivalently, x is regular if and only if its minimal polynomial coincides with the
characteristic one. Correspondingly, x ∈ sl(n, C) is singular if x has an eigenvalue with at least two
linearly independent eigenvectors.

Example B (Singularities). We now want to describe the set KC of skew-symmetric matrices
X ∈ so(n) where the differentials of the Manakov integrals (4.5) are linearly dependent or, which
is the same, the set of critical points for the momentum mapping (4.6):

ΦC : so(n) → R
s, s =

1
2
(dim so(n) + ind so(n)).

The bi-Hamiltonian answer to this question is very simple:

Theorem 2. A skew-symmetric (n× n)-matrix X is a critical point of FC (or, equivalently, of the
momentum mapping ΦC) if and only if there exists λ ∈ C such that X ∈ Sλ, where Sλ ⊂ so(n) is
the singular set of the bracket { , }C+λE. In other words,

KC =
⋃
λ∈C

Sλ.

Since the Lie algebras gλ (skew-symmetric matrices with the commutator [ , ]C+λE) are almost
all isomorphic (after complexification), we are able to describe the singular set for each of them
by using an appropriate isomorphism with the “model Lie algebra” so(n, C). If C + λE is non-
degenerate, then such an isomorphism can be defined by

X 	→ (C + λE)1/2X(C + λE)1/2,
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where (C + λE)1/2 is a symmetric matrix (in general, complex). Using this observation, it is easy
to see that the singular set Sλ for the bracket { , }C+λE can be described as

Sλ = Re
(
(C + λE)1/2 Sing (C + λE)1/2

)
,

where Sing ⊂ so(n, C) is the union of all singular orbits (algebraic variety of codimension 3).
Thus, the statement of Theorem 2B can be reformulated as follows: A skew-symmetric (n × n)-

matrix X is a critical point of FC (or, equivalently, of the momentum mapping ΦC) if and only if
one of the two condition holds:

1) there exists λ ∈ C such that det(C + λE) �= 0 and the skew-symmetric matrix (C + λE)−1/2 ×
X(C + λE)−1/2 is a singular element in so(n, C);

2) X is a singular covector in the sense of the Lie algebra defined on the space of skew-symmetric
matrices by the commutator [ , ]C−ciE, where ci ∈ R is one of the eigenvalues of C.

In the case of dimension 4, this description becomes much clearer if we notice that the set Sing is
just the union of two transversally intersecting 3-dimensional subspaces (these subspaces are exactly
the components of the standard decomposition so(4) = so(3) ⊕ so(3)): namely, Sing ⊂ so(4, C) is
the union of two 3-dimensional subspaces

P1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 z3 −z2 z1

−z3 0 z1 z2

z2 −z1 0 z3

−z1 −z2 −z3 0

⎞
⎟⎟⎟⎟⎟⎟⎠

and P2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −z3 z2 z1

z3 0 −z1 z2

−z2 z1 0 z3

−z1 −z2 −z3 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Hence, the set of critical points of the Manakov integrals FC is

KC =
⋃
λ∈C

(P λ
1 ∪ P λ

2 ),

where P λ
i = Re

(
(C + λE)1/2 Pi (C + λE)1/2

)
. Thus, in the case of dimension 4, we obtain a very

natural parametrization of the set of critical points KC by means of 4 parameters z1, z2, z3, λ.

7. EQUILIBRIUM POINTS
As before, P = {Aλ} denotes a pencil of compatible Poisson structures on a manifold M , and

FP is the corresponding algebra generated by the Casimir functions of generic brackets Aμ ∈ P
(which is assumed to be complete on M).

Let x belong to a regular symplectic leaf of the Poisson structure A = A0. We say that x
is a common equilibrium point for FP if sgradA f(x) = 0 for any f ∈ FP , where sgradA f(x) is,
by definition, the Hamiltonian vector field related to f(x), i.e., A·df(x).

Theorem 3. A point x ∈ M is a common equilibrium point for FP if and only if the kernels
KerAμ(x) of all brackets which are generic at this point coincide.

Equivalently, for x to be a common equilibrium it is sufficient to require that the kernels of just
two brackets (generic at this point) coincide: KerAμ(x) = KerAμ′(x), μ �= μ′.

Proof is obvious. If all the kernels coincide, then for any f ∈ Z(Aμ) we have df(x) ∈ KerAμ(x) =
KerA(x) and, therefore, sgradA f(x) = 0. Since FP is generated by the Casimir functions of generic
brackets, we have sgradA f(x) = 0 for any f ∈ FP . Conversely, if x is a common equilibrium point
for FP , then df(x) ∈ KerA(x) for any f ∈ FP , i.e., span{df(x) | f ∈ FP} = KerA(x). But FP is
generated by the Casimir functions, so that the span of all df(x)’s contains all (regular) kernels.
Hence, KerAλ(x) = KerA(x) for each (generic) λ.

It is interesting to notice that the bi-Hamiltonian nature of the family FP implies that being
a common equilibrium in the sense of a particular Poisson structure Aλ0 ∈ P, the point x will be
a common equilibrium for every Aλ ∈ P.
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Remark. Notice that the study of common equilibria may look a bit artificial problem because
we are usually interested in equilibrium points for a specific Hamiltonian rather than for all
first integrals. However, this setting does not restrict the generality much: the most natural,
namely, isolated equilibrium points are always common. Non-isolated equilibria, of course, appear
in integrable systems too, but they have different nature and should be treated separately.

Theorem 3 makes finding common equilibria almost trivial. We shall demonstrate this for our
two models.
Example A (Equilibria). We would like to describe those points x ∈ g = g∗ for which
sgrad f(x) = 0 for any f ∈ Fa. To that end, we simply need to compare two objects: the kernel
of the standard Lie–Poisson bracket { , } and the kernel of the “frozen” bracket { , }a at x.

In the semisimple case, these kernels are respectively the centralizers of x and of a in g. If a is
semisimple and regular, then its centralizer is a Cartan subalgebra ha. It is easy to see that the
centralizer of x is the same if and only if x ∈ ha. Thus, we have
Theorem 3. A point x is a common equilibrium point for Fa if and only if x ∈ ha.

Remark. A similar statement obviously holds for an arbitrary element a ∈ g (not necessarily
regular and semisimple); instead of the Cartan subalgebra ha we simply take the centralizer of a.
Moreover, this statement can naturally be generalized to the case of an arbitrary finite-dimensional
Lie algebra: x ∈ g∗ is a common equilibrium point for Fa (for a ∈ g∗ being regular) if and only if
Ann(a) ⊂ Ann(x).

Example B (Equilibria). The common equilibrium points for the Manakov integrals can be
found in a similar way. We shall assume here for simplicity that X ∈ so(n) is a regular element.

According to Theorem 3, X is a common equilibrium point if and only if the kernel of
{ , } = { , }E coincides with (more precisely, is contained in) the kernel of { , }C .

The kernel of { , } at the point X is a Cartan subalgebra hX ⊂ so(n) generated by X (or
equivalently, the centralizer of X). It is described by the equation

XY − Y X = 0. (7.1)
The kernel of { , }C is defined as the solution to the following matrix equation:

CY X − XY C = 0, (7.2)
where Y is unknown.

It is not hard to describe those X’s for which the solution sets of (7.1) and (7.2) are the same. The
answer is almost obvious. But since such a situation (the so-called Lie pencil) is quite interesting
in a more general setting, we would like to suggest the following idea.

The kernel of any bracket { , }C+λE from our pencil at a given point X is a subalgebra w.r.t.
[ , ]C+λE . Moreover, for generic λ and X this subalgebra is commutative.

We want to describe the case when all these subalgebras coincide for generic λ’s. In particular,
we see that this subalgebra is commutative w.r.t. to all brackets simultaneously, which is a very
strong restriction.

In our case this condition means that the Cartan subalgebra hX generated by X is commutative
with respect to the commutator [ , ]C (and therefore, automatically with respect to any
commutator [ , ]C+λE). The description of the Cartan subalgebras satisfying this property leads to
the following
Theorem 3. A matrix X ∈ so(n) is a common equilibrium point for FC if and only if there exists
an orthonormal basis with respect to which C is diagonal and X has the standard block diagonal
form:

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 x12

−x12 0

0 x34

−x34 0
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Equivalently, the set of common equilibrium points for FC (with C diagonal) is the union of the
standard block-diagonal Cartan subalgebra

h0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 x12

−x12 0

0 x34

−x34 0
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, xi,i+1 ∈ R

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

and all the subalgebras obtained from h0 by conjugations h 	→ PhP−1, where P is a permutation
matrix.

These two results admits the following more general interpretation. Assume that we have a Lie
pencil P = {[ , ]λ, λ ∈ R} defined on a semisimple Lie algebra g. Following the standard procedure,
we can construct a commutative family of polynomials FP on g∗ = g and then ask the question
about common equilibria for FP .

Proposition 4. The set of common equilibrium points is the union of Cartan subalgebras h ⊂ g

which can be characterized by the following property : h is a common Cartan subalgebra for all gλ
corresponding to “generic” λ ∈ C.

8. NON-DEGENERACY CONDITION FOR EQUILIBRIUM POINTS

The next problem is to verify the non-degeneracy condition and to determine the types of
equilibrium points.

Let x be a common equilibrium point for FP . As has just been shown, this means that we
have the following condition: all generic kernels of Aλ(x) are the same and we shall denote this
common kernel by Z ⊂ T ∗

x M . In particular, this means that after taking quotient with respect to Z
we obtain a non-degenerate pencil of skew-symmetric forms Aλ = A + λB on T ∗

xM/Z. Notice that
T ∗

xM/Z can naturally be considered as the dual to the tangent space TxO to the symplectic leaf O
through x (recall that at a common equilibrium point the tangent space TxO does not depend on
the choice of a generic Poisson structure Aμ ∈ P).

Consider a Hamiltonian vector field sgradA f , where A ∈ P and f ∈ FP . It vanishes at x ∈ M ,
and we may consider its linear part as the linear operator A·d2f(x) acting on the tangent space TxM .
Clearly, TxO is an invariant subspace for such operator, and we shall denote the corresponding
restriction by Pf : TxO → TxO. The operators Pf belong to the symplectic Lie algebra sp(TxO, A)
and generate a commutative subalgebra k in it.

The bi-Hamiltonian structure comes into play if we notice that FP is generated by functions
f ∈ FP for each of which we can find another function f ′ ∈ FP satisfying

A·df = B·df ′. (8.1)

Since A and B are both well-defined and non-degenerate on T ∗
xO = T ∗

xM/Z, we can naturally define
the usual recursion operator Q = BA−1 : TxO → TxO. It is easy to see that (8.1) gives QPf = Pf ′

for the corresponding linearizations.

This immediately implies

Proposition 5. Each Pf ∈ sp(TxO, A) belongs at the same time to the symplectic Lie algebra
sp(TxO, B). In particular, k ⊂ sp(TxO, A) ∩ sp(TxO, B). Moreover, this subalgebra k is invariant
with respect to the recursion operator Q in the sense that for any element P ∈ k we have QP ∈ k.
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According to Definition 1, the non-degeneracy of x means that k is a Cartan subalgebra in
sp(TxO, A) (and in sp(TxO, B) too!). It is not hard to see that this condition imposes rather strong
(purely algebraic) restrictions on the triple (k, A,B).

Below we give two (abstract) algebraic statements which describe some properties of (k, A,B),
where A and B are non-degenerate skew-symmetric bi-linear forms on a vector space V and k is
a common commutative subalgebra in sp(V,A) and sp(V,B) (we may think of V as the tangent
space TxO).

Proposition 6. Let k be a common Cartan subalgebra for two symplectic Lie algebras sp(V,A) and
sp(V,B). Then there exists a (complex ) basis in V C such that the pencil A + λB and the subalgebra k

can be simultaneously “diagonalized”, that is:

A+λB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 λ1+λ

−λ1−λ 0

0 λ2+λ

−λ2−λ 0
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1 0

0 −h1

h2 0

0 −h2

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(where some of λi’s may coincide).

The “converse” statement is

Proposition 7. Let k be a common commutative subalgebra in sp(V,A) and sp(V,B) which is
invariant with respect to the recursion operator Q = AB−1 : V → V (i.e., for any P ∈ k we have
QP ∈ k). If the “characteristic polynomial” det(A + λB) has only roots of multiplicity 2 and k

contains a non-degenerate operator P (i.e., detP �= 0), then k is a common Cartan subalgebra
in sp(V,A) and sp(V,B).

Coming back to our discussion about the non-degeneracy condition, we can reformulate the
above algebraic statements as follows:

Theorem 4. Let x be a common equilibrium point for FP .
1) If x is non-degenerate, then the Jordan–Kronecker decomposition for the pencil Aλ(x) =

A(x) + λB(x) at the point x consists of one trivial (r × r)-block (corresponding to the common
kernel Z = KerA(x) = KerB(x)) and (2 × 2)-blocks of the form⎛

⎝ 0 λi + λ

−λi − λ 0

⎞
⎠ , i = 1, . . . ,

1
2
(dim M − corankA).

In other words, the pencil is diagonalizable (over C).

2) Suppose that the rank of Aλ(x) = A(x) + λB(x) drops for λ1, . . . , λq ∈ C, q = 1
2 (dim M −

corank A), where all λi’s are distinct, and there exists f ∈ FP such that the corresponding
linearization Pf : TxO → TxO has no zero eigenvalues (or, equivalently, detPf �= 0). Then x is
non-degenerate.

In fact, this theorem says that the Jordan–Kronecker decomposition (in the case of a nonde-
generate singularity) is essentially the same as the decomposition given by the Eliasson theorem
(see Section 1). Now we are going to see how (the second part of) Theorem 4 works in our two
examples.

Example A (Non-Degeneracy). Let ha be the Cartan subalgebra generated by the element
a ∈ g∗ = g and x ∈ ha. As we know, x is a common equilibrium point for Fa. The following statement
gives sufficient non-degeneracy conditions for x.
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Theorem 4. Let α1, . . . , αq be the positive roots associated with the complexification hC
a ⊂ gC,

q = 1
2(dim g − ind g). Consider the collection of numbers

λi =
αi(x)
αi(a)

, i = 1, . . . , q.

If all these numbers are distinct, then x is a non-degenerate equilibrium point.

Proof. The rank of the linear combination { , } + λ{ , }a at the point x is not maximal if and only
if x + λa is a singular element of gC. Since x + λa belongs to the Cartan subalgebra hC

a , “being
singular” for this element means that there exists a root αi such that αi(x + λa) = 0 or, equivalently

λ = −λi = −αi(x)
αi(a)

. Thus, the condition of our theorem is equivalent to the fact that the rank of

{ , } + λ{ , }a at the equilibrium point x drops for q distinct values of λ (geometrically this means
that the affine line x + λa is in a generic position w.r.t. the Weyl chambers).

According to Theorem 4, to complete the proof we only need to find a function f ∈ Fa for which
the linear part of the corresponding Hamiltonian vector field sgrad f(y) = [y, df(y)] at the point x
would be non-degenerate on the tangent space to the adjoint orbit Ox. First of all, we notice that
TxOx is the orthogonal complement to the Cartan subalgebra hx generated by x, but ha = hx, i.e.,
TxOx = h⊥a .

Now let f(y) = 〈a, y〉 where 〈 , 〉 denotes the Killing form. This is a Casimir function of { , }a and,
therefore, f ∈ Fa. The vector field sgrad f(y) = [y, a] = − ada y is linear and the kernel of − ada

coincides with the Cartan subalgebra ha so that the restriction of − ada onto h⊥a = TxOx is non-
degenerate, as required.

Example B (Non-Degeneracy). For simplicity we consider the even-dimensional case
so(2n). Let

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 x12

−x12 0

0 x34

−x34 0
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1

c2

c3

c4

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For each pair xi,i+1, xj,j+1, we consider the following quadratic equation

x2
i,i+1

x2
j,j+1

=
(ci + λ)(ci+1 + λ)
(cj + λ)(cj+1 + λ)

(8.2)

in λ. Let λij and λ′
ij be its roots.

Theorem 4. If λij , λ
′
ij (i �= j, i, j = 1, 3, . . . , 2n − 1) are all distinct, then X is a non-degenerate

equilibrium point of FC .

Proof. We use the same idea. First of all, we would like to describe those values of λ for which the
rank of { , }C+λE drops at the point X or, equivalently, X is a singular point in the sense of the
Lie algebra gλ (defined by the commutator [ , ]C+λE on the space of skew-symmetric matrices).
Since gλ is isomorphic to so(n, C) for λ �= −ci, we may use the corresponding isomorphism to see
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that X is singular for gλ if and only if the matrix

X ′ = (C + λE)−
1
2 X(C + λE)−

1
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 x′
12

−x′
12 0

0 x′
34

−x′
34 0

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where x′
i,i+1 =

xi,i+1√
(ci + λ)(ci+1 + λ)

, is singular for the standard so(n, C); see Section 6. The latter

is equivalent to the relation
x′2

i,i+1 = x′2
j,j+1,

which is exactly (8.2). Thus, the solutions λij , λ′
ij of (8.2) are exactly the characteristic numbers

of the pencil { , }C+λE at the equilibrium point X.
All these numbers λij , λ′

ij are distinct. It remains to apply Theorem 4, according to which we
need to find a function f ∈ FC such that the corresponding linearization Pf is non-degenerate (on
the tangent space to the orbit OX).

We take f(Y ) = Tr CY 2 ∈ FC . The corresponding Hamiltonian equation is

Ẏ = [df(Y ), Y ] = [CY + Y C, Y ] = [C, Y 2].

The linearized equation at the point X is

Ẏ = [C, Y X + XY ]. (8.3)

We need to show that the operator Y 	→ [C, Y X + XY ] is non-degenerate on TXOX . But this fact is
almost obvious. Indeed, since C is regular, the kernel of this operator consists of those Y for which
Y X + XY is diagonal. But this happens if and only if Y belongs to the Cartan subalgebra hX

generated by X. Clearly hX ∩ TXOX = {0}, so the linearized system (8.3) is non-degenerate
on TXOX , as needed. This completes the proof.

9. CORANK 1 SINGULARITIES

Assume that x ∈ M is a critical point of corank 1. This means that the dimension of the subspace
dFP (x) is k − 1, where k is the dimension of the maximal isotropic subspace in T ∗

xM . It follows from
the Jordan–Kronecker decomposition theorem that there exists a unique λ ∈ R such that the rank
of A(x) + λB(x) is not maximal. Moreover, the multiplicity of λ is minimal, i.e., equals 2. In other
words, this characteristic number λ gives a single (2 × 2) Jordan block in the Jordan–Kronecker
decomposition and dim KerAλ(x) = corankP + 2.

It turns out that the structure of the singularity at the point x is determined by two things:
• the singularity of the Poisson structure Aλ at this point;
• the behavior of the other Casimir functions with respect to this singularity.

According to the Weinstein theorem [30], the Poisson structure Aλ in a small neighborhood
of x splits into direct product of the transversal Poisson structure and the non-degenerate Poisson
structure defined on the symplectic leaf through x. For our purposes we need to understand the
properties of the transversal structure. In general, we cannot say much about it. That is why in
this section from the very beginning we shall assume that the Poisson structure Aλ is semisimple
in the sense that M has a natural identification with a real semisimple Lie algebra g = g∗ endowed
with the standard Lie–Poisson bracket.

Then x is a singular element in the semisimple Lie algebra g and the dimension of its centralizer
(which, as we know, coincides with the kernel of Aλ(x)) is ind g + 2. For simplicity, we shall assume
that x ∈ g is a semisimple element (this is obviously a generic case). Then the centralizer of x in g

is a Lie subalgebra of the form u⊕ R
l−1, where u is a three-dimensional real semisimple Lie algebra

and l = ind g.
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Without loss of generality in a neighborhood of x, we may assume that the Casimir functions
of Aλ are some of basis functions from FP that define the structure of the Lagrangian fibration
in a neighborhood of x. It is easy to see that these functions can be naturally identified with the
coadjoint invariants of the centralizer u ⊕ R

l−1. One can show (see [2]) that in a neighborhood of x
we can chose a local coordinate system z1, . . . , zl−1, u1, u2, u3, p1, . . . , ps, q1, . . . , qs in such a way
that

• p1, . . . , ps, q1, . . . , qs are symplectic coordinates on the singular orbit passing through x and
z1, . . . , zl−1, u1, u2, u3 are coordinates on the transversal section to this orbit so that these
two groups of functions provide the splitting of Aλ in the sense of the Weinstein theorem,

• the Casimir functions of Aλ are z1, . . . , zl−1 and f(u1, u2, u3), where f is a non-degenerate
quadratic form in u1, u2, u3, which can be naturally identified with the quadratic Casimir of
the Lie algebra u,

• p1, . . . , ps belong to FP ,
• if f ∈ FP , then ∂f

∂qi
≡ 0, i.e., f = f(z, u, p),

• there exists a function g ∈ FP such that
( ∂g

∂u1
, ∂g

∂u2
, ∂g

∂u3

)
�= 0.

It follows immediately from this description that the Lagrangian fibration associated with the
commuting family FP is locally given by very simple functions z1, . . . , zl−1, p1, . . . , ps, f(u1, u2, u3),
and g(z, u, p). Hence, the structure of the singularity at x is completely determined by the quadratic
form f(u1, u2, u3) and 3-vector

( ∂g
∂u1

, ∂g
∂u2

, ∂g
∂u3

)
�= 0.

We now give a more algebraic interpretation of this construction and a sufficient non-degeneracy
condition for x ∈ M .

Consider another bracket Aμ from P, μ �= λ, and take the restriction of Aμ(x) to KerAλ(x) =
u ⊕ R

l−1. It follows easily from the Jordan–Kronecker theorem that Ker
(
Aμ(x)|KerAλ(x)

)
has

codimension 2 in KerAλ(x) = u ⊕ R
l−1. It can be easily checked that the center R

l−1 belongs
to Ker

(
Aμ(x)|KerAλ(x)

)
. This means that the restriction of Aμ to u has rank 2 and Ker(Aμ(x)|u)

is generated by some vector ξ ∈ u. It turns out that non-degeneracy condition can be naturally
formulated in terms of this vector ξ (in fact, this ξ is an analog of the 3-vector

( ∂g
∂u1

, ∂g
∂u2

, ∂g
∂u3

)
�= 0

mentioned above).

Theorem 5. Let x be a corank 1 critical point of FP . Suppose that

1) there exists unique λ ∈ R such that rankAλ(x) < rankP,
2) the bracket Aλ is semisimple, i.e., (M,Aλ) has a natural identification with the dual space g∗

of a real semisimple Lie algebra g endowed with the standard Lie–Poisson bracket,
3) x is a semisimple singular element in g∗ = g, and KerAλ(x) = u ⊕ R

l−1, where u is a three-
dimensional semisimple subalgebra, l = ind g,

4) Ker(Aμ(x)|u) is generated by ξ ∈ u, ξ �= 0, μ �= λ.

If ξ is semisimple element in u, then x is non-degenerate. Moreover, if 〈ξ, ξ〉 > 0, then the singularity
is hyperbolic, and if 〈ξ, ξ〉 < 0, then the singularity is elliptic, where 〈 , 〉 is the Killing form on u.

To prove this statement we use the following modification of Definition 2.
Let F be a complete commutative family of functions on a Poisson manifold (M,A). Let x

be a regular point in M in the sense that x /∈ SA. Suppose that x is a corank 1 singularity,
i.e., dim dF(x) = 1

2(dim M + corankA) − 1. Assume that there exists a function f ∈ F such that
df(x) = 0. Consider the linearization of the Hamiltonian vector field sgradA f at the point x, i.e.,
the linear operator defined as A·d2f(x). If this linearization has a non-zero eigenvalue, than x is
non-degenerate.

In our case the commutative family FP possesses a very nice function f which can be considered
as the quadratic Casimir for the subalgebra u.

This function can be described explicitly as follows. Each semisimple Lie algebra g possesses one
remarkable Casimir function f , which is the product of all the roots (both positive and negative).
It is easy to see that this function vanishes on the set Sing of singular elements of g. Moreover, its
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differential vanishes on Sing as well. We shall use f to verify the non-degeneracy of x by computing
the corresponding linearized Hamiltonian vector field Aμ·d2f(x).

It is easy to see that under the assumptions of Theorem 5, the set of singular points Sing in
a neighborhood of x is a smooth submanifold in g of codimension 3, and the Lie algebra g can
be presented as the direct (orthogonal) sum of the 3-dimensional semisimple subalgebra u and the
tangent space Tx Sing. The Hessian of f at x ∈ Sing is very simple: its kernel is Tx Sing and the
restriction of d2f(x) to u is the Killing form on u (up to a non-zero factor).

The question we are interested in is about the non-zero eigenvalues of the operator Aμ·d2f(x).
Since Tx Sing is the kernel of d2f(x), this question can be naturally reformulated for the restriction
of the form Aμ(x) to u. Namely, we now have the following situation: u is a three-dimensional
Lie algebra, A is a non-trivial skew-symmetric bilinear form on u and f is the quadratic Casimir
function on u∗ which coincides with the Killing form 〈 , 〉 on u under the standard identification
u∗ ∼ u. We wonder if the operator A·d2f has a non-zero eigenvalue. The answer is given by the
following simple

Proposition 8. Let ξ ∈ u be a vector that generates the kernel of A. Then

1) A·d2f has two non-zero eigenvalues if and only if ξ is semisimple (equivalently, 〈ξ, ξ〉 �= 0),
2) the eigenvalues of A·d2f are pure imaginary iα,−iα, α �= 0, if and only if 〈ξ, ξ〉 < 0,
3) the eigenvalues of A·d2f are real α,−α, α �= 0, if and only if 〈ξ, ξ〉 > 0.

This statement immediately implies Theorem 5.
Notice that the real three-dimensional Lie algebra u can be of two different types: either so(3)

or sl(2, R). In the first case, all non-zero vectors ξ ∈ so(3) are semisimple and 〈ξ, ξ〉 < 0. Thus, in
this situation a critical point x of corank 1 is automatically non-degenerate and of elliptic type.
For u = sl(2, R) all situations are possible: x can be either elliptic, or hyperbolic, or degenerate.

We now apply the sufficient non-degeneracy condition given by Theorem 5 to our two model
examples.

Example A (Corank 1 Singularities). Let x ∈ g be a corank 1 critical point for the mo-
mentum mapping Φa : g → R

s. Then, as we know from the general construction discussed above,
there exists unique λ ∈ R such that x + λa is a singular element in g.

Assume that x is semisimple, take its centralizer gx+λa = {ξ ∈ g | [ξ, x + λa] = 0}, and extract
its semisimple part u ⊂ gx+λa. We are interested in the restriction of the bracket { , }a to u:

A(ξ1, ξ2) = 〈a, [ξ1, ξ2]〉, ξ1, ξ2 ∈ u.

In this expression we can replace a by its orthogonal projection b = pru a �= 0 onto u:

A(ξ1, ξ2) = 〈a, [ξ1, ξ2]〉 = 〈b, [ξ1, ξ2]〉
It is easy to see that the kernel of this form is generated by b ∈ u. Thus, the general construction
implies the following

Theorem 5. Let x ∈ g be a critical point of corank 1, and λ ∈ R the unique value of the parameter
such that x + λa is a singular element in g. Assume that x + λa is semisimple and u is the
semisimple part of the centralizer gx+λa. Consider the natural orthogonal projection b = pru a of a
onto u. If b is semisimple and non-zero, then x is non-degenerate. Moreover, if 〈b, b〉 > 0, then the
singularity is hyperbolic, and if 〈b, b〉 < 0, then the singularity is elliptic, where 〈 , 〉 is the Killing
form on u.

In particular, in the case of a compact Lie algebra g, all corank 1 singularities are non-degenerate
and of elliptic type.

Example B (Corank 1 Singularities). For the Manakov case, the situation is a bit more
complicated. Let X ∈ so(n) be a corank 1 critical point. For definiteness we assume that the
standard bracket { , }E has maximal rank at X (in other words, X is a regular element in so(n)).

Among all values of the parameter, there is exactly one λ ∈ R such that the rank of the
bracket { , }C+λE at the point X drops by 2. If det(C + λE) �= 0, then the corresponding Lie
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algebra gλ (which is the space of skew-symmetric matrices with the commutator [ξ1, ξ2]Cλ
=

ξ1Cλξ2 − ξ2Cλξ1, where Cλ = C + λE) is naturally isomorphic to the Lie algebra of the group
of linear transformations preserving the form Cλ. By definition, the latter Lie algebra, which we
denote by so(Cλ), consists of matrices η satisfying the equation η�Cλ + Cλη = 0.

Consider the mapping

ϕ : gλ → so(Cλ), ϕ(ξ) = ξCλ = η.

It is easy to see that ϕ establishes an isomorphism between gλ and so(Cλ):

ϕ[ξ1, ξ2]Cλ
= (ξ1Cλξ2 − ξ2Cλξ1)Cλ = [ξ1Cλ, ξ2Cλ] = [ϕ(ξ1), ϕ(ξ2)].

Consider another mapping between the same spaces:

ψ : gλ → so(Cλ), ψ(X) = C−1
λ X = Y.

This mapping gives a natural identification between the dual spaces g∗λ and so(Cλ)∗ and can be
treated, in fact, as (ϕ∗)−1.

The kernel of { , }Cλ
at the point X is given by the equation CλξX − XξCλ = 0. Using the

above transformations X = CλY , ξ = ηC−1
λ , we rewrite it as

η Y − Y η = 0.

Thus, η belongs to the centralizer of Y in the Lie algebra so(Cλ) (as expected, of course!). If
we assume that Y is a semisimple element in so(Cλ), then its centralizer contains a well-defined
semisimple subalgebra u of dimension 3. We now need to restrict the standard 2-form related to
the bracket { , }E onto u and find the kernel of this restriction.

In the original notation, this restriction can be written as

A(ξ1, ξ2) = Tr(X[ξ1, ξ2]) = Tr(ξ1ξ2X − ξ2ξ1X), ξi ∈ ϕ−1(u).

Passing to the Lie algebra so(Cλ) (i.e., from ξ and X to η and Y ), we obtain

A(ξ1, ξ2) = Tr(η1C
−1
λ η2Y − η2C

−1
λ η1Y ) = Tr(η1C

−1
λ Y η2 − η2C

−1
λ Y η1) = Tr((η2η1 − η1η2)C−1

λ Y ).

Let π(C−1
λ Y ) denotes the orthogonal projection of the matrix C−1

λ Y onto the Lie subalgebra u

(with respect to the standard form 〈A,B〉 = Tr AB defined on gl(n, R)). It is clear that

A(ξ1, ξ2) = Tr((η2η1 − η1η2)π(C−1
λ Y )) = Tr(η2[η1, π(C−1

λ Y )]).

Thus, the kernel of { , }E restricted to u is simply the centralizer of the π(C−1
λ Y ) in u. Since X

is a corank 1 singularity, this kernel is one-dimensional and therefore is generated by the element
π(C−1

λ Y ) �= 0 itself. Thus, we come to the following conclusion.

Theorem 5. Let X be a corank 1 critical point for FC . Then there exists a unique value λ ∈ R

such that X ∈ Sλ. Assume that the following conditions are fulfilled :
1) det Cλ �= 0 so that gλ is semisimple,

2) Y = C−1
λ X is semisimple in so(Cλ) (this element is automatically singular),

3) the orthogonal projection of C−1
λ Y = C−2

λ X onto u is semisimple, where u is the semisimple
(3-dimensional) part of the centralizer of Y = C−1

λ X in so(Cλ).

Then X is non-degenerate. Moreover, if Tr(π(C−1
λ Y ))2 > 0, then X is hyperbolic, and if

Tr(π(C−1
λ Y ))2 < 0, then X is elliptic.
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