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Abstract

The Transmission Line Matrix (TLM) method is an existing and established mathem-

atical method for conducting computational electromagnetic (CEM) simulations. TLM

models Maxwell’s equations by discretising the contiguous nature of an environment

and its contents into individual small-scale elements and it is a computationally in-

tensive process. This thesis focusses on parallel processing optimisations to the TLM

method when considering the opposing ends of the contemporary computing hardware

spectrum, namely large-scale computing systems versus small-scale mobile computing

devices.

Theoretical aspects covered in this thesis are:

• The historical development and derivation of the TLM method.

• A discrete random variable (DRV) for raindrop diameter, allowing generation of a

rain-field with raindrops adhering to a Gaussian size distribution, as a case study

for a 3-D TLM implementation.

• Investigations into parallel computing strategies for accelerating TLM on large

and small-scale computing platforms.

Implementation aspects covered in this thesis are:

• A script for modelling rain-fields using free-to-use modelling software.

• The first known implementation of 2-D TLM on mobile computing devices.

• A 3-D TLM implementation designed for simulating the e↵ects of rain-fields on

extremely high frequency (EHF) band signals.

By optimising both TLM solver implementations for their respective platforms, new

opportunities present themselves. Rain-field simulations containing individual rain-

drop geometry can be simulated, which was previously impractical due to the lengthy

computation times required. Also, computationally time-intensive methods such as

TLM were previously impractical on mobile computing devices. Contemporary hard-

ware features on these devices now provide the opportunity for CEM simulations at

speeds that are acceptable to end users, as well as providing a new avenue for educating

relevant user cohorts via dynamic presentations of EM phenomena.
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Chapter 1

Introduction

In recent years, much of the investigations into accelerating the performance of compu-

tational electromagnetic (CEM) solver software applications has focussed on strategies

specific to commodity desktop computer systems. Many of these recent implementa-

tions utilise graphics processing units (GPUs) in order to improve the solver perform-

ance past that which is achievable from the central processing unit (CPU) alone. Such

implementations are however relatively di�cult to port to di↵erent hardware archi-

tectures, and also have limited performance expandability. This is due to the physical

space limitations inherent with the use of several GPUs in a single system.

Traditional parallel computing strategies for accelerating the performance of CEM

solver applications therefore present an opportunity to investigate a software imple-

mentation that is flexible, and easily portable between desktop and larger-scale distrib-

uted computing systems. Developing a CEM solver application with such expandab-

ility allows users access to much greater processing power for simulation execution,

and therefore simulations may be modelled with a much higher resolution and max-

imum frequency features. Utilising parallel processing in this way allows simulation

execution time frames to remain practical for end users.

Modern mobile computing devices available in recent years, such as smartphones and

tablets are increasing in performance and features in much a similar fashion to desktop

computing in throughout the 1990s - 2000s. Similar parallel processing strategies to

those employed for a desktop CEM solver implementation can be carried over to these

1
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small-scale computing devices in order to execute relatively complex simulations in a

timely fashion.

This thesis explores TLM solver implementations acclerated by varying parallel pro-

cessing techniques, selected based on the selected desktop and mobile hardware plat-

forms in use. These investigations were carried out in the context of these two extremes

of the modern computing spectrum, and relevant case study applications were selected

in each case.

1.1 Novel aspects of the research

There is a need for a new perspective concerning TLM implementations that are op-

timised for parallel-computing architectures in both the large-scale and small-scale

computing cases. It is therefore desirable for the research to work towards the imple-

mentation of parallelised TLM solver applications that are specialised for a simulating

a particular class of CEM problem, dependent on whether the solver is to be run on a

large-scale or small-scale computing platform. Optimising performance and function-

ality for a specific class of problem also presents the possibility to produce results more

e�ciently than the commercial alternatives, which are generally designed to operate

on much wider types of scenarios.

There are a number of simulation applications that would benefit greatly from the per-

formance increases inherent in the implementation of a parallelised CEM solver. One

such class of problems that has been identified for a problem-specific TLM solver is

millimetre wave attenuation and depolarisation due to rain fields. EM transmissions

using frequencies in the Super High Frequency (SHF) band and Extremely High Fre-

quency (EHF) band (corresponding to frequencies of 3 – 30 GHz, and 30 – 300 GHz

respectively) have extremely short wavelengths. Increasing the frequencies of EM

transmission through these two bands results in an increasing dominance of the size of

individual raindrops with respect to the signal transmission wavelength. This in turn

produces increasingly adverse e↵ects on signals as transmission wavelengths approach

the same order of magnitude as the dimensions of raindrops, and even more so as the

drop dimensions become significantly larger than the transmission wavelengths in the
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EHF band.

A highly-optimised parallel TLM solver with specific configuration options for generat-

ing and testing EM wave depolarisation e↵ects within di↵erent rain field distributions

or due to individual drops is therefore an appropriate research goal. In order to model

the small-scale geometries of raindrops, a finely discretised mesh is required for the

TLM simulation. The increased amount of nodes in fine-mesh simulations increases

overall simulation time in traditional solvers. Implementing a new TLM solver using

a parallel computing architecture will allow increased simulation speed with respect

to general purpose solvers, despite the increase in the complexity of the simulations

to be carried out. The resulting software should be a high-performance, parallelised,

problem-specific TLM solver o↵ering comprehensive configuration options tailored to-

wards rain field and individual drop simulations, and other problems which necessitate

a brute-force approach.

1.2 Development of the research methodology

The project aims to develop and investigate strategies for obtaining the best performance

when conducting CEM-based simulations using TLM on parallel computing platforms.

The project will analyse results to quantitatively demonstrate that the solver software

to be implemented for use on HPC cluster architectures is significantly faster for a

given simulation set-up than the same simulation running on a commercial solver

in a normal desktop environment. By gathering results using varied parallelisation

techniques, the optimum performance set up will be identified, and its characteristic

will be analysed. In order to verify the final 3-D TLM solver software, there is a need for

a suitable benchmark in order to compare the simulation results of the software with a

commercial software package. During the testing phase of the software development,

equivalent simulations will be undertaken in CST MicroStripes, a popular commercial

CEM solver. This will produce a set of results that can be treated as a benchmark for

both result accuracy and simulation time for each simulation to be completed.
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1.3 Research objectives

The research goals which have been referred to in the above section can be summarised

as follows:

1. Produce two implementations for TLM solvers that are optimised for desktop/HPC

systems and mobile computing devices respectively.

2. Verify both TLM implementations for their mathematical accuracy utilising ac-

cepted empirical techniques for time and frequency-domain verification.

3. Benchmark the performance gains observed when using di↵erent parallel pro-

cessing strategies to optimise the TLM solver implementations in both cases.

4. Based on benchmark observations, utilise suitable parallel processing paradigms

that will o↵er the best performance when using typical cluster computer archi-

tectures (in the large-scale case) or typical mobile computing processors (in the

mobile device case).

5. Study the depolarisation e↵ects on single raindrops at various frequencies, com-

paring the implemented solver with an equivalent simulation using CST Mi-

croStripes or similar software to validate the results produced by the implemented

solver.

6. Identify an area of the EM spectrum between 6 – 300 GHz that warrants fur-

ther investigation in terms of the depolarisation e↵ects due to rain, and use the

implemented solver to conduct the investigation.

1.4 Case study introductions

1.4.1 Desktop/HPC case study

In the Extremely High Frequency (EHF) range of 30 – 300 GHz, EM radiation has

wavelengths between 10–1 mm, giving rise to the name ‘millimetre waves’. At these

frequencies, signals are very susceptible to attenuation due to atmospheric conditions,

limiting applications by distance and line of sight. Attenuation due to rain and humidity
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levels has a dramatic e↵ect even over relatively short distances (when compared to radio

signals operating in the lower frequency bands). There is also an added complication

in the band between 57 – 64 GHz, where the resonance of oxygen molecules present in

the atmosphere attenuates signals to an even greater extent.

To simulate the attenuation and depolarisation e↵ects on radio signals that are caused

by rain fields, the simulation must recreate the characteristics of rain as accurately as

possible. To achieve this, firstly the geometry of individual drops must be recreated

based on previous investigations [1.1, 1.2, 1.3]. To complete the modelling process,

a representative size distribution must also be implemented within the simulating

environment. The final consideration that must be taken into account is the relative

permittivity of water, which changes as a function of the EM signal frequency that it

is subject to. Accurately recreating all of these factors should result in a model, which

behaves in a very similar way to experimental observations.

1.4.2 Mobile device case study

Any TLM implementation for mobile computing devices will be limited in performance

compared to a typical desktop implementation. However, it is also likely that the high

resolution touch-sensitive screens present on the majority of such devices should also

be utilised for user interactivity and dynamic visual feedback. For these reasons,

the number and complexity of the TLM-related calculations should be minimised in

order to maximise perceived software performance. A 2-D TLM implementation is

an obvious solution to address these performance limitations. This however restricts

the complexity of the environments that are to be modelled with a mobile device

implementation.

An educational learning-aid application presents an ideal use case for such an imple-

mentation, as a range of simple to intermediate phenomena can be demonstrated to

students at a high school or undergraduate level in a dynamic and engaging manner,

whilst also providing user interactivity via the touch-screen on the mobile device.
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1.5 Thesis summary

Chapter 2

An introduction to the TLM method, including the analogies to Maxwell’s equations.

Derivations of the various properties of 2-D and 3-D methods are given, as well as

discussion concerning boundary condition implementations. Finally, discussion is

included on optimisations that can be made to the TLM algorithm in order to reduce

the number of mathematical operations that occur during a simulation.

Chapter 3

A review of the parallel computing strategies suitable for use with the TLM method,

including discussion of previous work investigating the use of the TLM method with

the di↵erent parallel computing methods. Based on these findings, a research strategy

is discussed centring on investigations using mobile device and Desktop & HPC cluster

platforms.

Chapter 4

A number of techniques for modelling raindrops on the individual, geometric level are

reviewed based on previous work in the field. Discussion of previous investigations

using the models is given, as well as an assessment of the overall accuracy of each model

as compared to real-world observations. A novel method for generating randomised

raindrop fields is presented, adhering to size distribution constraints whilst avoiding

raindrop intersections during their random placement.

Chapter 5

A highly-optimised 3-D TLM solver utilising a hybrid parallel processing approach

is presented. A discussion of its implementation is included, discussing limitations

and considerations, benchmarking results and performance analysis. A summary of
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the features of the solver is also included, focussing on optimisations allowing for the

modelling of raindrop fields in the EHF band and above.

Chapter 6

The first implementation of the 2-D TLM algorithm on mobile computing devices is

presented. A discussion of its implementation using the iOS platform is presented,

including limitations and considerations, benchmarking results and performance ana-

lysis. A summary of the features of the solver is also included, focussing on its use as

an educational learning aid. Finally, a summary is given discussing the potential for

CEM solver applications on mobile devices in the future.

Chapter 7

A conclusion of the findings and work undertaken for this thesis, as well as proposals

for areas that warrant further investigation. A set of final conclusions are also given.
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Chapter 2

The TLM method

The TLM method was originally developed in the early 1970s [2.1], and since its intro-

duction it has been the subject of much research. It is now a well-established numerical

method for modelling wave propagation, and it is often used in research regarding com-

putational electromagnetics, as well as acoustics. This chapter presents an overview of

the TLM method, including derivation of 2-D and 3-D node types; wave propagation

and generation; modelling lossy and inhomogeneous materials; discussion of boundary

conditions; and computational optimisations to the TLM algorithm that can be made

before applying parallel processing techniques to it.

2.1 Introduction to the TLM method

Initial attempts to map Maxwell’s equations to a set of equivalent electrical circuits

were first published in the 1940s [2.2], however further investigations at the time were

limited due to the nascent nature of the digital computer industry. By the early 1970s,

the performance of commercially-available computers had risen to a point where it

was practical to use them to conduct the calculations required to model Maxwell’s

equations. Peter Johns was the originator of the TLM method, for the study of wave

scattering [2.1]. A proposal for a formal definition of a TLM node, first came in the form

of 2-D shunt and series nodes [2.3].

The TLM method is a time-domain technique for numerical modelling of wave propaga-

9
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tion, and associated e↵ects such as di↵raction, dispersion, attenuation and depolarisa-

tion. Wave propagation is simulated in agreement with Huygen’s Principle [2.4]. TLM

models a given environment discretely in both space and time, in which the contents

of the model can be solved precisely, whilst presenting an algorithm that is inherently

stable. Electromagnetic field components are modelled by taking advantage of the

analogous behaviour of materials with a mesh of intersecting simulated transmission

lines.

Each point in the mesh where sectional lengths of transmission lines, or link-lines

intersect, is called a node [2.5]. Modelling wave propagation is achieved in a two-step

process, firstly by monitoring incident voltage pulses towards each node from each

link-line. Based on the link-line characteristics, these voltage pulses are then scattered

back outwards from each node towards its neighbouring nodes.

Modelling environments using TLM is possible in both 2-D and 3-D, where 3-D nodes

build upon the derivation of 2-D nodes, in order to model more complex environments

in three-dimensional space. It should be noted that whilst some 3-D node types do

not have a simple circuit analogue, they instead exploit the behaviour of basic physical

laws such as the conservation of energy, in their derivations.

2.2 Two-dimensional nodes

If we assume that link-lines in a 2-D mesh all have an equal characteristic impedance ZTL,

then all voltage pulses incident on a node via a link-line will experience an impedance

mismatch. In the case of 2-D TLM, a voltage pulse incident on any one of the four node

link-lines will see the three remaining link-lines in parallel, with a total impedance of
ZTL

3 , as shown in Fig. (2.1). The transmission and reflection coe�cients for 2-D TLM for

a pulse incident on a single link-line are obtained via the methods shown in (2.1) and

(2.2).

⇢ =
ZTL

3 � Z
ZTL

3 + Z
= �0.5 (2.1)
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Vrxp 

Vryp 

Vryn 

Vrxn 

Viyn 

Figure 2.1: An incident pulse Vi, arriving at the centre of a 2-D TLM node.

⌧ =
2( ZTL

3 )
ZTL

3 + Z
= 0.5 (2.2)

The scatter and connect process of a 2-D simulation is illustrated in Fig. (2.2), where a

1 V pulse is injected into the "south-facing" link-line of the centre node. This behaviour

is in agreement with Huygens’ principle, as it is shown that each node is a secondary,

isotropic radiator for energy within the mesh [2.4]. The net e↵ect is circular, symmetrical

wave-front propagation across the mesh from the original point source.

 

Vi = 1V 

1 2Τ  

1 2Τ  1 2Τ  

 െ 1 2Τ  

1 4Τ  

1 4Τ  1 4Τ  

െ1 4Τ  

Figure 2.2: An incident pulse of 1 V, followed by two time-steps and the associated
scattered port pulse values.

When a 2-D TLM node is taken in isolation, removing it from its surrounding neigh-
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bours, it is a trivial task to derive the fundamental properties of the node. In order to do

this, a lumped element model of a length of transmission line must first be considered.

Fig. (2.3) shows an illustration of such a model, where C and L denote a capacitance

per unit length and inductance per unit length respectively.

 

 ݈߂ܥ

ο݈ܮ
2  

 ݈߂

ο݈ܮ
2  

Figure 2.3: A lumped element model of a section of transmission line of length �`.

As shown above, the length of link-lines within the node is equal to the node size �`. If

a voltage pulse is injected into one of these lines, it will take some small amount of time,

�t to propagate from one end of the line to the other. This will also induce a current in

the line, which can be expressed as in (2.3).

i =
�Q
�t
= CVp

�`
�t

(2.3)

From this the propagation velocity of the line, u can be derived. The magnetic flux, �

relates to the line inductance and current as shown in (2.4). Using Faraday’s law, the

rate of change of flux and line voltage are equivalent, as shown in (2.5). This can then

be rearranged to solve for the pulse propagation velocity, uTL as shown in (2.6).

� = L�`i (2.4)

Vp =
��

�t
= LCVpu2 (2.5)

uTL =
1p
LC

(2.6)

Related to this is the characteristic impedance of the link-lines in the mesh, which is as
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shown in (2.7).

ZTL =

r
L
C

(2.7)

2.2.1 2-D shunt nodes

When using the shunt configuration, the link-lines that form the node at their central

intersection are connected in parallel. An illustration of this is shown in Fig. (2.4).

For simulations that are executed on a shunt node mesh, TM-mode propagation is

modelled. That is, the only non-zero components of the waves are Hx, Hy and Ez.

However, it should be noted that this is based on the convention that Vz
�z ! Ez, and

mapping this quantity to di↵erent field components allows for modelling of TE modes.

Using a Cartesian coordinate system, the partial di↵erential equations governing the

2-D shunt node mesh can be expressed as shown in (2.8), with the relevant Maxwell

equivalents (2.9).

̇� 

̇� 

Figure 2.4: A 2-D shunt node assembled from coaxial tranmission line sections. [2.6]
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@Ez

@y
= �µ@Hx

@t

@Ez

@x
= �µ

@Hy

@t

@Hy

@x
� @Hx

@y
= ✏
@Ez

@t

(2.8)

@Vz

@y
= �L

@Ix

@t

@Vz

@x
= �L

@Iy

@t

@Ix

@x
+
@Iy

@y
= �2C

@Ez

@t

(2.9)

Di↵erentiating each equation along with the Maxwell equivalent, with respect to x, y

and t in turn then removing magnetic field components, results in a pair of scalar wave

equations that are equivalent, as shown in (2.10).

@2Ez

@x2 +
@2Ez

@y2 = µ✏
@2Ez

@t2

@2Vz

@x2 +
@2Vz

@y2 = 2LC
@2Vz

@t2

(2.10)

This pair of equivalent equations can be used to derive an expression for the propagation

velocity, both in the medium that is being modelled, and the 2-D shunt node TLM mesh,

as shown in (2.11).
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u =
1p
µ✏

uTLM =
1p
2LC

=
1p
2
· 1p

LC

(2.11)

It is therefore apparent that the propagation velocity of the 2-D TLM mesh is 1p
2

times

greater than that of the actual medium that is to be modelled. Providing the node size

�` is su�ciently small, a network will behave in agreement with Maxwell’s equations,

and model wave interactions accurately. In the mesh, C is equivalent to ✏ and L is

equivalent to µ. The relationships between the field components Ez, Hx and Hy, and

the port voltages within a particular node are shown in (2.12).

Ez $ �
Vz

�`
= � 1

2�`
· (Vi

xn + Vi
xp + Vi

yn + Vi
yp)

Hx $ �
Iy

�`
= � 1

ZTL�`
· (Vi

yp � Vi
yn)

Hy $ �
Ix

�`
= � 1

ZTL�`
· (Vi

xp � Vi
xn)

(2.12)

These equivalences between the port voltages and field components are central to the

scattering procedure, as shown earlier in (2.8) and (2.9). In the 2-D shunt node case, the

scattering procedure that produces a vector of reflected voltages Vr, can be expressed

as a multiplication of a scattering matrix S with a vector of incident voltage pulses Vi,

as shown in (2.13). For a 2-D shunt node mesh, the scattering matrix, S is defined as

shown in (2.14). The incident voltages vector, Vi is defined by the voltages present at

the relevant ports immediately neighbouring the current node to the north, south, east

and west, as shown in (2.15).
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Vr = S ·Vi (2.13)

S =
1
2

2
66666666666666666666664

�1 1 1 1

1 �1 1 1

1 1 �1 1

1 1 1 �1

3
77777777777777777777775

(2.14)

Vi =

2
66666666666666666666664

Vi
xn

Vi
xp

Vi
yn

Vi
yp

3
77777777777777777777775

(2.15)

2.2.2 2-D series nodes

It is possible to implement a similar Cartesian 2-D mesh using transmission lines that

are connected in series instead of parallel, as has been shown previously. An illustration

of this arrangement, as well as the Thévenin equivalent circuit, is shown in Fig. (2.5).

The mesh partial di↵erential equations and their Maxwell equivalents are derived in a

similar fashion as in the 2-D shunt node case, as shown in (2.16) and (2.17). However,

it is noted in the series node case that ⌃V = �L dI
dt and I = �C dV

dt in each direction

of propagation. In the series node case, a TE field is presented, (i.e. non-zero field

components Ex, Ez and Hy are modelled).
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̇� 

̇� 

Figure 2.5: A 2-D series node, assembled from coaxial tranmission line sections. [2.6]

@Ex

@z
� @Ez

@x
= �µ

@Hy

@t

�
@Hy

@z
= ✏
@Ex

@t

@Hy

@x
= ✏
@Ez

@t

(2.16)

@Vx

@z
+
@Vz

@x
= �2L

@Iy

@t

@Iy

@z
= �C

@Vx

@t

@Iy

@x
= �C

@Vz

@t

(2.17)
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A pair of scalar wave equations are derived in a similar fashion to that used for 2-

D shunt node networks. For series node networks, the electric field components are

eliminated, as shown in (2.18).

@2Hy

@x2 +
@2Hy

@z2 = µ✏
@2Hy

@t2

@2Iy

@x2 +
@2Iy

@y2 = 2LC
@2Iy

@t2

(2.18)

The propagation velocity equation is identical to that shown for 2-D shunt node net-

works. The equivalence between the port voltages associated with each node and

the modelled field components is also derived similarly to those for 2-D shunt node

networks, as shown in (2.19).

Hy $ �
Iy

�`
=

1
4ZTL�`

· (Vi
znx + Vi

xpz � Vi
zpx � Vi

xnz)

Ex $ �
Vx

�`
=

1
�`
· (Vi

znx + Vi
zpx)

Ez $ �
Vz

�`
= � 1
�`
· (Vi

xpz + Vi
xnz)

(2.19)

The scattering matrix, S for series node networks, is defined as shown in (2.20). Simil-

arly, the incident voltage vector Vi contains di↵erent values, due to the altered arrange-

ment of the equivalent circuit, as shown in (2.22).

S =
1
2

2
66666666666666666666664

1 1 1 �1

1 1 �1 1

1 �1 1 1

�1 1 1 1

3
77777777777777777777775

(2.20)
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Vi =

2
66666666666666666666664

Vi
xnz

Vi
xpz

Vi
zn

Vi
zpx

3
77777777777777777777775

(2.21)

2.2.3 Wave generation and propagation

Wave generation

Waveforms can be generated in a TLM mesh by adding, or injecting voltage pulses into

the mesh at the desired node locations. These voltage impulses are added to those

already present within the mesh at the location of interest. Non-trivial waveform beha-

viours of specific frequencies can be simulated by appropriately varying the amplitude

of the injected voltage pulses over a number of subsequent time-steps.

It should be noted that care must be taken in the process of attempting to drive waveform

propagation in a TLM mesh. Undesirable (and as a result, inaccurate) results are easily

obtained if attention is not paid to the range of potential frequency components of

specific waveforms that are injected into a mesh.

As explained previously in Section (2.2.1), there are limits on the wave propagation

velocity within a TLM mesh that are directly dependent on the frequencies of any

propagating wave-fronts within the mesh. As an example, injecting a step-change

impulsive waveform moving between 0 V to 1 V and back to 0 V over subsequent time-

steps (i.e. giving the waveform a period of �t) would result in a broadband waveform

with many high-frequency components. Many of these frequencies would likely be

above the threshold of acceptability in order to guarantee accurate results with few

dispersive artefacts present during propagation.

When generating waveforms for TLM simulations, band-limited energy sources are

used to minimise the excitation of spurious modes within the simulation. The follow-

ing section discusses the derivation of the mesh frequency limits which are typically

adhered to during TLM simulations.
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Wave propagation

Due to the Cartesian nature of the TLM mesh, the distance required to travel along

link-lines in order to reach the equivalent point in space represented by a node location

is dependent on the angle of propagation away from a wave-front source. This gives

rise to dispersive e↵ects which vary in severity with the propagation angle.

In the case of wave propagation at 45� relative to the x and y axes, the TLM mesh

propagation velocity can be shown to be:

u45� =
distance

time
=

p
2�`

2�t
=

up
2

(2.22)

This agrees with the expressions for mesh propagation velocity shown previously in

Section (2.2.1).

It was shown previously that in the case of fine-mesh simulations, a relationship

between the mesh velocity, uTLM and the propagation velocity of the actual medium, u

can be expressed as in the form shown in (2.23).

uTLM =
1p
2

u (2.23)

Comparing these two results illustrates that wave-fronts propagating at 45� travel at

the same velocity as the mesh propagation velocity.

However, waves propagating at 0� relative to the x or y axis behave much di↵erently.

When analysing the propagation of waves parallel to a single axis, an association

between uTLM and u can be derived as shown below in (2.24) [2.7].

uTLM

u
=

⇡
⇣
�`
�0

⌘

asin
hp

2sin
⇣
⇡�`�0

⌘i (2.24)

The ratio between uTLM and u is shown to be dependent upon �` and �0. A dramatic

di↵erence in the ratio between mesh velocity and medium velocity is observed when

comparing the 45� result with a 0� result across a range of values of �`�0
. This is illustrated

below in Fig. (2.6).
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Figure 2.6: A comparison of the mesh propagation velocity at 0� relative to a single
axis, with respect to actual medium velocity.

The results show that as expected, a finer mesh (i.e. a higher value of nodes/�) allows

for a closer approximation to the actual medium propagation velocity in directions

other than 45�, of which the 0� case is the worst case scenario. At 10 nodes/�, the mesh

propagation velocity anomaly is less than 1.8 percent, and this reduces further to less

than 0.5 percent at 20 nodes/�.

In typical simulations, the intended nodes/� value of the mesh therefore dictates the

maximum frequency component that can be modelled within the simulation to the

desired level of accuracy. A value of 10 nodes/� limit is often used, as the average

velocity anomaly across all frequencies in a simulation will be lower than the quoted

maximum of 1.8 percent, which only occurs at the cut-o↵ frequency and a 0� propagation

direction. The 10 nodes/� limit also represents a sensible compromise when considering

the nodes/� value of a simulation mesh directly impacts the equivalent real-world

volume that can be represented for a given amount of RAM available for use.

2.2.4 Thévenin equivalent circuits

In order to aid the analysis of the scattering process, both internally within the node

and in-between nodes, a simplified version of the node circuit is required. One such

method is the construction of a Thévenin equivalent circuit.
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Fig. (2.7) shows a length of transmission line connected to an arbitrary network, N. In

this context, the transmission line will be replaced by a Thévenin equivalent circuit of

a voltage source coupled with a series-connected impedance which allows the voltage

and current solutions within network N to be determined.

 

N VXY 

X 

Y 

ZTL 

Figure 2.7: A transmission link-line terminated by arbitrary network N. [2.6]

A reference point is chosen (terminals X and Y in Fig. (2.7)) as the observation point.

Firstly, the open circuit voltage Voc is found across these terminals. This is the Thévenin

voltage source. In this case when the transmission line is un-terminated, the current

flowing at XY is equal to zero. Therefore, the magnitude of the reflected current must

be equal to the incident current, as shown in (2.25).

Vi

ZTL
=

Vr

ZTL
(2.25)

At this stage, applying Kircho↵’s Voltage Law gives the relationship between Voc, Vi

and Vr, as shown in (2.26).

Vr = Voc � Vi (2.26)

The open circuit voltage, Voc can now be determined by substituting for Vr in terms of

Vi into (2.26). Re-arranging this expression results in a value for Voc as shown in (2.27).

Voc = 2Vi (2.27)

The value for the Thévenin impedance is determined by observing the impedance

at terminals XY, which in this case is equal to the characteristic impedance of the
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transmission line, ZTL.

The resulting Thévenin equivalent circuit is shown in Fig. (2.8). The same procedure

can be applied to the four link-lines present in both shunt and series 2-D nodes in order

to derive an equivalent circuit for both nodes, as shown in Fig. (2.9) and (2.10). It

should be noted that arbitrary values are stated for the link-line admittances (Yxz and

Yyz) and the characteristic impedances (Zxz and Zzx).

 

N VXY 

X 

Y 

ZTL 

2Vi 

Figure 2.8: The Thévenin equivalent circuit for the link-line shown in Fig. (2.7). [2.6]

During the scattering procedure, reflected voltages can be calculated by assuming the

Thévenin equivalent circuit model and using the expression shown previously in (2.26).

(a) 

y 

x 

z 

Yyz 

Yxz 
Yyz 

2 Viynz 

Yxz 

Vz 

2 Vixpz 

2 Vixnz 

2 Viypz 

Figure 2.9: Thévenin equivalent circuit for the 2-D shunt node. [2.6]
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(b) 

y 

x 

z 

Zsx 

Zsx 

Zsx 

Zsx Vzpx 

Vznx 
Vxpz 

Vxnz 

2 Vixpz 

2 Vixnz 

2 Vizpx 

2 Viznx 

Iy 

Figure 2.10: Thévenin equivalent circuit for the 2-D series node. [2.6]

2.3 Three-dimensional nodes

Following the early developments of the TLM method (which concentrated on 2-D

problem spaces), e↵orts turned to a suitable 3-D TLM implementation. An expanded

node was proposed [2.8] [2.9], with its disadvantage being that the field components

were spatially separated, despite being trivial to calculate. Development of a condensed

node followed [2.10], moving all scattering and field component values to one and the

same point in space. The disadvantage of the condensed node was that depending on

the direction of observation, the first connection of each node is either shunt or series.

This presents small discrepancies in calculated values, which for example become ap-

parent when observing boundary behaviour at high frequencies. In a significant step

forwards, Johns proposed a symmetrical condensed node (SCN) [2.11], which elimin-

ated the asymmetric nature of the original condensed node, optimised the number of

arithmetic operations involved, and retained the single spatial point as the node centre.

Since its development, the SCN is the most commonly implemented node for 3-D TLM

simulations, and both it and its variations are used exclusively throughout this thesis

for the 3-D desktop and cluster simulations. This section describes two di↵erent forms

of SCNs, and gives a concise derivation of their scattering matrices.
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2.3.1 The SCN

Previously, TLM node behaviour such as the node scatter matrix has been derived by

constructing an equivalent Thévenin circuit. This methodology is not possible with the

SCN, since its structure can no longer be represented in such a way. Fig. (2.11) shows

the structure of the basic SCN without stubs1. In each direction of propagation into and

out of the node, there are a pair of link-lines which carry the two relevant polarisations

of any waves present in the mesh. Each of the 12 link-lines have the same characteristic

impedance, which is equal to free-space impedance Z0. This node structure allows the

modelling of homogeneous meshes, where altering other mesh properties (such as the

dielectric properties of nodes) is unnecessary.
 

 ݕ

 ݔ

 ݖ

௬ܸ௫( ଵܸଶ) 

௬ܸ௭( ܸ) 

௬ܸ௫( ଵܸ) 
௬ܸ௭( ହܸ) 

௫ܸ௬( ଵܸଵ) 

௫ܸ௭( ଵܸ) 

௭ܸ௫( ଽܸ) 

௭ܸ௬(଼ܸ ) 

௫ܸ௬( ଷܸ) 

௫ܸ௭( ܸ) 

௭ܸ௬( ସܸ) 

௭ܸ௫( ଶܸ) 

Figure 2.11: A non stub-loaded SCN, with Trenkić port notation (Johns’ notation in
parentheses).

The 12 ⇥ 12 scattering matrix of the SCN, S can be derived by first examining which

port values are associated with the calculation of each field component. As an example,
1The use of stubs allows the modelling of materials with di↵ering dielectric properties within the same

mesh volume
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a voltage pulse Vi = 1 is incident upon port Vynx of the SCN. This pulse has field

components Ex and Hz associated with it. One of the corresponding Maxwell equations

involving these two field components is shown in (2.28).

@Hz

@y
�
@Hy

@z
= ✏
@Ex

@t
(2.28)

The equation in (2.28) shows that the incident pulse on Vynx scatters into ports Vynx,

Vznx, Vzpx and Vypx, as all ports share x-axis polarised components. Due to the symmetry

of the SCN, the amplitude of the pulses scattered to ports Vynx and Vypx shall both be

equal, and set to a and c respectively. Similarly, the pulses scattered to Vznx and Vzpx

shall also be equal, and set to b. The second Maxwell’s equation that concerns field

components Ex and Hz is shown in (2.29).

@Ey

@x
� @Ex

@y
= �µ@Hz

@t
(2.29)

This accounts for the remaining pulses that should be scattered into ports Vxny and

Vxpy, which both have x-axis directed components. These quantities will be equal and

opposite in sign, and shall be assigned the value d and �d respectively. The same

procedure can be applied to each port in turn, resulting in the scattering matrix, as

shown in (2.30) [2.11].
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S =

2
6666666666666666666666666666666666666666666666666666666666666666666666666666666664

a b d 0 0 0 0 0 b 0 �d c

b a 0 0 0 d 0 0 c �d 0 b

d 0 a b 0 0 0 b 0 0 c �d

0 0 b a d 0 �d c 0 �0 b 0

0 0 0 d a b c �d 0 b 0 0

0 d 0 0 b a b 0 �d c 0 0

0 0 0 �d c b a d 0 b 0 0

0 0 b c �d 0 d a 0 0 b 0

b c 0 0 0 �d 0 0 a d 0 b

0 �d 0 0 b c b 0 d a 0 0

�d 0 c b 0 0 0 b 0 0 a d

c b �d 0 0 0 0 0 b 0 d a

3
7777777777777777777777777777777777777777777777777777777777777777777777777777777775

(2.30)

Scattering properties

In order to derive the true scattering matrix, the values of a, b, c and d must firstly be

found. The total capacitance associated with the link-lines governing ports Vynx, Vznx,

Vzpx and Vypx, Cx is defined as shown in (2.31).

Cx = ✏
wv
u

(2.31)

The field components associated with these link-lines are defined as shown in (2.32).

Ex =
Vx

�x

Hy =
Iz

�y

Hz = �
Iy

�z

(2.32)

Where Vx is the voltage drop across the link-lines in the x-axis direction, Iy and Iz are



CHAPTER 2. THE TLM METHOD 28

circulating currents in the y and z-axis directions respectively and�x, �y and�z denote

the x, y, z dimensions of a given node. Let Iynx, Iznx, Izpx and Iypx be the currents entering

their respective ports. The discrete form of (2.28) is then shown as in (2.33), which can

be simplified to (2.34).

Iypx + Iynx

wv
+

Izpx + Iznx

wv
=

Cxu
wv
@
@t

Vx

u
(2.33)

Iypx + Iynx + Izpx + Iznx = Cx
@Vx

@t
(2.34)

This demonstrates the fact that there will be no loss of current within the node, and

that the only current loss in the system will be due to the rate of change of voltage

across the capacitance of the link-lines outside the node centre. The scattering matrix

is expressed in terms of voltages present on link-lines. The conservation of current at

the node centre can be expressed in terms of port link-line voltages, as shown in (2.35).

1 � a = 2b + c (2.35)

The z-axis directed inductance, Lz is associated with ports Vynx, Vxny, Vxpy and Vypx. Lz

is defined as shown in (2.36), with the associated field components shown in (2.37).

Lz = µ
uv
w

(2.36)

Ex =
Vx

u

Ey =
Vy

v

Hz = �
Iz

w

(2.37)

The discrete form of the Maxwell equation (2.29), governing the relationship between
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z-axis directed inductance and the relevant port voltages is given as (2.38), which can

be simplified to (2.39).

Vxny � Vxpy

uv
�

Vypx � Vynx

uv
= �Lz

w
uv
@
@t

IA

w
(2.38)

Vxny + Vypx � Vxpy � Vynx = Lz
@IA

@t
(2.39)

This demonstrates the fact that there will be no loss of voltage within the node, and

that the only voltage loss in the system will be due to the rate of change of current in

the inductance of the link-lines outside the node centre. This results in the port voltage

equation (2.40).

1 + a = 2d + c (2.40)

A SCN must conserve energy in any incident pulse configuration present within the

mesh. This shows that the scattering matrix, S must be a unitary matrix satisfying

STS = I. This gives rise to the fact that ⌃SnrSrs = 1 where r = s, and that ⌃SnrSrs = 0

where r , s. These properties of the scattering matrix result in the following equations

relating the port voltage quantities a � d, as shown in (2.41).

a2 + 2b2 + c2 + 2d2 = 1

2ab + 2bc = 0

2ad � 2cd = 0

2ac + 2b2 � 2d2 = 0

(2.41)

Solving the simultaneous equations (2.35), (2.40) and those included in (2.41) results in



CHAPTER 2. THE TLM METHOD 30

the following result: a = 0, b = 1
2 , c = 0 and d = 1

2 . The scattering matrix, S can then be

redefined as shown in (2.42), appearing in a similar format to the scattering matrices

constructed for both 2-D node schemes.

S =
1
2

2
6666666666666666666666666666666666666666666666666666666666666666666666666666666664

0 1 1 0 0 0 0 0 1 0 �1 0

1 0 0 0 0 1 0 0 0 �1 0 1

1 0 0 1 0 0 0 1 0 0 0 �1

0 0 1 0 1 0 �1 0 0 0 1 0

0 0 0 1 0 1 0 �1 0 1 0 0

0 1 0 0 1 0 1 0 �1 0 0 0

0 0 0 �1 0 1 0 1 0 1 0 0

0 0 1 0 �1 0 1 0 0 0 1 0

1 0 0 0 0 �1 0 0 0 1 0 1

0 �1 0 0 1 0 1 0 1 0 0 0

�1 0 0 1 0 0 0 1 0 0 0 1

0 1 �1 0 0 0 0 0 1 0 1 0

3
7777777777777777777777777777777777777777777777777777777777777777777777777777777775

(2.42)

2.3.2 The stub-loaded SCN

In order to model lossy or inhomogeneous materials (for example modelling a material

with a dielectric constant di↵erent to free-space), it is necessary to construct a version

of the SCN which can accommodate these features. Johns proposed the addition of

6 additional stub ports to the 12-port SCN. As before, ports 1-12 are the same and

interface with the corresponding ports in neighbouring nodes of the mesh. The stub

ports 13-18 couple with the field components Ex,Ey,Ez,Hx,Hy and Hz. The E-field

ports are open-circuit stubs that allow for additional node capacitance, while the H-

field ports are short-circuit stubs adding additional inductance to the node. As before,

the propagation time from the outer edge of each port to the centre of the node is defined

as �t
2 , where �t is the time-step of the mesh.
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Open-circuit stub parameters

The capacitance value of the region of space defined by the stub-loaded SCN in the

x-axis direction, Cx is defined in terms of a capacitance present on the corresponding

x-directed link-lines using an open-circuit stub value of Cs
x. The definition of Cx is

shown in (2.43). We can rearrange this equation, noting the relationship between the

impedance of free-space, Z0 and ✏0, as shown in (2.44). This results in a definition of

the stub value Cs
x, as shown in (2.45).

Cx = ✏�` = 2Y0�t + Cs
x (2.43)

Z0 =
|E|
|H| = µ0c =

r
µ0

✏0
=

1
✏0c
) ✏0 =

Y0

c
(2.44)

Cs
x = Y0

✓✏r
c
�` � 2�t

◆
(2.45)

The time for an impulse to be scattered into, and then back out of a stub, is set to be the

same as the time-step of the mesh �t, and the stub length is therefore 1
2�`. The stub

admittance value can be calculated as shown in (2.46), normalised to the admittance of

free-space, Y0.

Ŷs
x =

2Cs
x

Y0�t
= 2
✓✏r

c
�`
�t
� 2
◆

(2.46)

The stub value is modelled as a passive component within the SCN. Therefore, to

ensure the stability of the simulation, the stub must always have a positive value. This

is governed by ensuring the time-step �t is calculated based on the lowest value of ✏r of

any node in the mesh. Equation (2.46) can be simplified further by noting that �t = �`2c ,

and is shown in (2.47).

Ŷs
x =

8>>>>><>>>>>:

4(✏r � 1) if ✏0 = 1,

4( ✏r✏0 � 1) otherwise.
(2.47)
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The same procedure is applied for calculating the y and z-axis directed stub values, Ŷs
y

and Ŷs
z.

Short-circuit stub parameters

The inductance value of the region of space defined by the stub-loaded SCN in the

x-axis direction, Lx is defined in terms of an inductance present on the corresponding

x-directed link-lines using a short-circuit stub value of Ls
x, which is derived as shown

in (2.48).

Lx = µ�` = 2Z0�t + Ls
x

) Ls
x = Z0

✓µr

c
�` � 2�t

◆
(2.48)

The stub impedance value, normalised to the free-space impedance Z0 for a x-axis

directed stub, is derived as shown in (2.49).

Ẑs
x =

2Ls
x

Z0�t

=

8>>>>><>>>>>:

4(µr � 1) if µ0 = 1,

4( µr
µ0
� 1) otherwise.

(2.49)

It should be noted that since this stub is short-circuited, the reflected pulse observed

after time �t will be opposite in sign.

Modelling inhomogeneous materials

In order to model materials of varying electrical and magnetic properties, as well as

anisotropic materials, it is necessary to first generalise our mesh node definition to take

account of non-cubic mesh nodes. An example of an anisotropic, non-cubic block of
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space is shown in Fig. (2.12).

 

̇x 

̇y ̇z 

x 

y 

z 

Figure 2.12: An arbitrary, non-cubic block of space of dimensions �x, �y, �z. [2.6]

Using this generalised node definition, it is possible to determine expressions for the ca-

pacitance, inductance, electric conductivity and magnetic conductivity. These direction-

dependent expressions are as follows:

Ci = ✏i
� j�k
�i

(2.50)

Li = µi
� j�k
�i

(2.51)

Gi = �ei
� j�k
�i

(2.52)

Ri = �mi
� j�k
�i

(2.53)

Where i, j, k are interchangeably equivalent to x, y, and z directions. Ci, Li, Gi and Ri

are the respective total node quantities in the i direction. Now that a set of generalised

expressions have been presented, it is possible to consider the case of a mesh of cubic

nodes. In this case, �x = �y = �z = �` and therefore the above expressions can be

simplified as follows:

Ci = ✏i�` (2.54)

Li = µi�` (2.55)
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Gi = �ei�` (2.56)

Ri = �mi�` (2.57)

Electric losses can be modelled with no additional storage at the individual node level.

This is due to the fact that as an open-circuit stub, any pulses incident on the electric

loss stubs during the scatter process will be absorbed, with no reflected pulses being

emitted. The loss tangent for a material of complex permittivity ✏ and conduction

conductivity �, is given in (2.58).

tan�e =
�e

!✏r✏0
(2.58)

The stub admittance, normalised with respect to free-space impedance Z0 for a i-axis

directed stub, is derived as shown in (2.59).

Ĝi = Z0Gi (2.59)

Magnetic losses are modelled in a similar fashion; however the energy removed from

the node is proportional to the magnetic field instead of the electric field. The stub

impedance, normalised to the admittance of free-space Y0 is shown in (2.60). An-

other method for modelling magnetic losses, that more accurately approximates the

behaviour of real ferrite materials, has previously been described [2.12].

R̂i = Y0Ri (2.60)

Scattering Properties

The scattering matrix, S is derived in a similar fashion to the non stub-loaded SCN

described previously. With consideration to the x-axis directed component of the electric

field, the relationship between incident and reflected pulses across the relevant link-

lines is shown in (2.61). Vox and Vex denote the open-circuit and electric loss stubs,

respectively.
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Vi
ynx + Vi

ypx + Vi
znx + Vi

zpx + Ŷs
xVi

ox = Vr
ynx + Vr

ypx + Vr
znx + Vr

zpx + Ŷs
xVr

ox + ĜxVr
ex (2.61)

With consideration to the x-axis directed component of the magnetic field, the relation-

ship between incident and reflected flux across the relevant link-lines is shown in (2.62).

Vsx and Vmx denote the short-circuit and magnetic loss stubs, respectively.

Ii
ynz + Ii

zpy � Ii
ypz � Ii

zny + Ẑs
xIi

sx = Ir
ynz + Ir

zpy � Ir
ypz � Ir

zny + Ẑs
xIr

sx + R̂xIr
mx

) Vi
ynz + Vi

zpy � Vi
ypz � Vi

zny + Vi
sx = �(Vi

ynz + Vi
zpy � Vi

ypz � Vi
zny + Vi

sx + Vr
mx)

(2.62)

The electric and magnetic field continuity is ensured in an identical fashion as described

for the non stub-loaded SCN. In the stub-loaded case, the stubs themselves do not form

part of the calculations, as they do not have an associated direction.

For the electric field stubs, the derivation of the pulses reflected out of the open-circuit

and electric loss stubs is shown in (2.63) and (2.64).

Vr
ox = Vx � Vi

ox (2.63)

Vr
ex = Vx (2.64)

Note here that Vx is the total voltage across the node. Therefore, Vr
ex is a redundant

quantity, and does not require calculation unless its magnitude is necessary. Vx can

be defined as the voltage across the total node capacitance, Cx. This gives rise to the

definition, as shown in (2.65).

Vx =
Vynx + Vypx + Vznx + Vzpx + Ŷs

xVox

4 + Ŷs
x

(2.65)

Vx can also be re-defined in terms of the relevant incident pulses on the node. This
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is convenient, since they are known quantities during the scatter and connect process.

This re-definition is shown in (2.66).

Vx =
2

4 + Ŷs
x + Ĝx

(Vi
ynx + Vi

ypx + Vi
znx + Vi

zpx + Ŷs
xVi

ox) (2.66)

For the magnetic field stubs, the derivation of the pulses reflected out of the short-circuit

and magnetic loss stubs is shown in (2.67) and (2.68).

Vr
sx = Z0Ẑs

xIx + Visx (2.67)

Vr
mx = Z0R̂xIx (2.68)

Ix is the total current circulating around the node, the sign of which is set to be consistent

with that of the magnetic field. Ix can be defined as shown in (2.69), relating the flux

linkage on the total node inductance, Lx with the sum of the flux linkage on the relevant

link-lines.

Ix =
Iypz + Izny � Iynz � Izpy � Ẑs

xIsx

4 + Ẑs
x

(2.69)

Ix may also be re-defined in terms of the relevant incident pulses on the node. As

before, this is convenient since these are known quantities. This re-definition is shown

in (2.70).

Ix =
2

Z0(4 + Ẑs
x + R̂x)

(Vi
ypz + Vi

zny � Vi
ynz � Vi

zpy � Vi
sx) (2.70)

2.4 Boundary conditions

Boundary conditions are a fundamental component of any numerical modelling tech-

nique. They allow for various di↵erent materials to be modelled within the mesh, as

well as ensuring the mesh is terminated at its edge extents. This is often necessary
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since a simulation always represents a finite volume of space, which is often used to

represent a problem in an infinite volume. This section discusses the various boundary

conditions utilised throughout this thesis.

2.4.1 Reflective boundaries

A reflective boundary, or one that is a perfect electric conductor (PEC), reflects incident

electromagnetic waves perfectly with no loss and a phase inversion. PEC boundaries

can be used to represent conducting metal objects within the mesh. This is clearly a

useful component to any numerical modelling technique, as it can be used to model

antennas, cavities and other metallic structures of interest for RF engineers.

From a conceptual viewpoint, the basic requirement for a boundary node of this type

is that it must return any pulses incident on it back into the mesh in the exact opposite

direction. As it is also a perfect reflective boundary, these reflected pulses will be of

the same magnitude as the original incident pulses, without any loss factor. This is

electrically equivalent to a short-circuit, and as such the reflection coe�cient for the

waves reflected from a PEC boundary is -1.0. An example of the comparison between

the scatter equation for a port in a normal non stub-loaded SCN, and a PEC boundary

node, is shown in (2.71).

Vr
ynx =

1
2

⇣
Vi

znx + Vi
zpx + Vi

xny � Vi
xpy

⌘

Vr
ynx = �Vi

ynx

(2.71)

2.4.2 Absorbing boundaries

Implementations of absorbing boundaries are commonplace within TLM software ap-

plications, and indeed most numerical methods. This is due to the fact that they allow

the approximation of an infinite space outside of the model boundaries, which is useful

in many cases. A popular approach, named matched termination, is based on the as-

sumption of connecting an infinitely long transmission line to each node of a boundary

face of the mesh. In practice this is impossible; however within the model the electrical
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properties of these terminating lines are selected so as to eliminate reflections back into

the mesh, as much as possible. The result is a face of nodes that will largely absorb any

energy observed at their location. In order to derive an expression for the reflection

coe�cient of a MTBC, the characteristic impedance of the link-lines is first expressed

in terms of quantities determined previously in Section (2.3.2). For example, the char-

acteristic impedance of a z-directed line in x-polarisation can be expressed as shown in

(2.72).

Zznx =

s
Ly

Cx
=

s
µry�x�z
�y

�x
✏rx�z�y

= Z0

r
µry

✏rx

�x
�y

(2.72)

As implied by the name, the terminating resistance for a node that is to possess a

MTBC should be matched to that of the link-line it is connected to, as far as possible.

Therefore, as with the previous example for calculating the characteristic impedance,

the terminating resistance for the link-line is as shown in (2.73).

RMTBC = Z0

r
µry

✏rx

�x
�y

(2.73)

This expression can be generalised using the same methods as when generalising node

quantities in Section (2.3.2). This gives a definition for the termination resistance on an

i-oriented link-line, as shown in (2.74).

RMTBC = Z0

r
µrk

✏rj

� j
�k

(2.74)

The reflection coe�cient for the MTBC to be applied during the TLM simulation can

therefore be expressed as shown in (2.75).

�i j =
RMTBC � Zij

RMTBC + Zij
(2.75)

It should be noted, that in the case of all 3-D SCN nodes that share a link-line impedance

equal to Z0, the above expression will result in a value of 0 for the MTBC reflection

coe�cient.
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2.4.3 Periodic boundaries

The periodic boundary condition is a special case, where the pulses incident on the node

are not modified per se by a coe�cient (as shown previously), but are transmitted to be

incident on non-adjacent nodes within the mesh volume. In the typical implementa-

tion, periodic boundaries are placed on the edge extents of a mesh to allow periodic,

symmetrical modelling of the geometry within a mesh. In this arrangement, pulses

arriving at a boundary node will be transmitted to become incident on the equivalent

node at the opposite face of the mesh. By placing wrap-around boundaries on all ex-

ternal faces of the mesh, the e↵ect will be that any wave pulses will e↵ectively observe

a periodic array of the objects present within the mesh. This is shown in Fig. (2.13).

 
x 

y 

z 

Figure 2.13: An illustration of periodic boundaries in operation on all six faces of a TLM
mesh volume.

Periodic boundaries arranged as in the figure above, are useful for the modelling of

periodic and quasi-periodic structures, without resorting to increasing the overall mesh

volume. This ensures that simulation times are kept to a minimum, whilst analysing

periodic e↵ects.
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2.5 Optimisations to the 3-D TLM algorithm

As discussed previously in this chapter, both the SCN and stub-loaded SCN have a

scattering matrix as the foundation of the TLM algorithm for distributing wave-front

pulse components throughout the mesh for the subsequent time step. Whilst this is

useful as part of a convenient representation of the scatter and connect process, it is not

optimised to reduce computation time when implementing TLM as part of a software

application. Before considering strategies for implementing a parallelised version of

the TLM algorithm, it is pertinent to ensure that the algorithm itself is optimised to

reduce computational operations. It has been shown previously [2.13] that it is possible

to significantly reduce computations with respect to the scattering matrix proposed by

Johns [2.11], as well as other alternative methods [2.14]. This section discusses these

di↵erences in depth, and presents expressions for computational time per node in each

case.

2.5.1 SCN computational optimisations

A first approach to implementing the 3-D TLM algorithm within a software application

would be to replicate the original scattering matrix, S that is presented in (2.3.1). The

scattering matrix can be re-expressed using Herring node port notation, in the form

shown in (2.76).
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Vr
ynx =

1
2

⇣
Vi

znx + Vi
zpx + Vi

xny � Vi
xpy

⌘

Vr
ypx =

1
2

⇣
Vi

znx + Vi
zpx + Vi

xpy � Vi
xny

⌘

Vr
znx =

1
2

⇣
Vi

ynx + Vi
ypx + Vi

xnz � Vi
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⌘

Vr
zpx =

1
2

⇣
Vi

ynx + Vi
ypx + Vi

xpz � Vi
xnz

⌘

Vr
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1
2

⇣
Vi

xny + Vi
xpy + Vi

ynz � Vi
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⌘

Vr
zpy =

1
2

⇣
Vi

xny + Vi
xpy + Vi

ypz � Vi
ynz

⌘

Vr
xny =

1
2

⇣
Vi

zny + Vi
zpy + Vi

ynx � Vi
ypx

⌘

Vr
xpy =

1
2

⇣
Vi

zny + Vi
zpy + Vi

ypx � Vi
ynx

⌘

Vr
xnz =

1
2

⇣
Vi

ynz + Vi
ypz + Vi

znx � Vi
zpx

⌘

Vr
xpz =

1
2

⇣
Vi

ynz + Vi
ypz + Vi

zpx � Vi
znx

⌘

Vr
ynz =

1
2

⇣
Vi

xnz + Vi
xpz + Vi

zny � Vi
zpy

⌘

Vr
ypz =

1
2

⇣
Vi

xnz + Vi
xpz + Vi

zpy � Vi
zny

⌘

(2.76)

The total mathematical operations for this implementation are 36 additions/subtractions

and 12 multiplications. By examining the group of equations presented above, it

becomes apparent that portions of each equation share calculation components when

pulses that arrive at the node share a common direction and polarisation (e.g. the

equations for Vr
ynx and Vr

ypx). When implementing this as a piece of software, it is

sensible to cache these partial sums and di↵erences in temporary variables, an example

implementation is shown below (in pseudo-code):

float vSum, vDiff;

//Scatter (using cached partial sum and differences for each port)

vSum = Vznx + Vzpx;

vDiff = Vxny - Vxpy;

Vynx = 0.5 * (vSum + vDiff);

Vypx = 0.5 * (vSum - vDiff);

vSum = Vynx + Vypx;

vDiff = Vxnz - Vxpz;

Vznx = 0.5 * (vSum + vDiff);

Vzpx = 0.5 * (vSum - vDiff);
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vSum = Vxny + Vxpy;

vDiff = Vynz - Vypz;

Vzny = 0.5 * (vSum + vDiff);

Vzpy = 0.5 * (vSum - vDiff);

vSum = Vzny + Vzpy;

vDiff = Vynx - Vypx;

Vxny = 0.5 * (vSum + vDiff);

Vxpy = 0.5 * (vSum - vDiff);

vSum = Vynz + Vypz;

vDiff = Vznx - Vzpx;

Vxnz = 0.5 * (vSum + vDiff);

Vxpz = 0.5 * (vSum - vDiff);

vSum = Vxnz + Vxpz;

vDiff = Vzny - Vzpy;

Vynz = 0.5 * (vSum + vDiff);

Vypz = 0.5 * (vSum - vDiff);

This optimisation reduces the amount of additions/subtractions from 36 to 24 per node,

and the multiplications remain constant at 12 per node. The algorithm can be optimised

further by utilising the identity shown in (2.77), to express the second port of each

direction/polarisation pair in terms of the first. This reduces the multiplications from

12 to 6 per node, as follows:

float vDiff;

//Scatter (using cached partial differences for each port and equivalence

identity)

vDiff = Vxny - Vxpy;

Vynx = 0.5 * (Vznx + Vzpx + vDiff);

Vypx = Vynx - vDiff;

vDiff = Vxnz - Vxpz;

Vznx = 0.5 * (Vynx + Vypx + vDiff);

Vzpx = Vznx - vDiff;

vDiff = Vynz - Vypz;

Vzny = 0.5 * (Vxny + Vxpy + vDiff);

Vzpy = Vzny - vDiff;

vDiff = Vynx - Vypx;

Vxny = 0.5 * (Vzny + Vzpy + vDiff);

Vxpy = Vxny - vDiff;

vDiff = Vznx - Vzpx;
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Vxnz = 0.5 * (Vynz + Vypz + vDiff);

Vxpz = Vxnz - vDiff;

vDiff = Vzny - Vzpy;

Vynz = 0.5 * (Vxnz + Vxpz + vDiff);

Vypz = Vynz - vDiff;

1
2

(a � b) =
1
2

(a + b) � b (2.77)

The optimisation methods that have been discussed are summarised in Table (2.1). It is

possible to use these figures to construct expressions that allow developers to produce

estimates of the amount of real-world time that the scatter process will take to operate

on a single node. Using the Trenkić method as an example, we assign the computational

time for a single floating point addition, subtraction and multiplication the values `,

m and n respectively. It is then trivial to construct an expression representing the total

time to operate on a single node, as shown in (2.78), assuming constant time complexity

on read and write operations to variables in memory.

Component Johns [2.11] Naylor [2.14] Trenkić [2.13]

Add/Sub 36 42 24
Multiply 12 6 6

Total 48 48 30

Table 2.1: Operations per node for di↵erent optimisation techniques of the scatter
process within TLM. [2.13]

tsc = 12` + 12m + 6n (2.78)

2.5.2 Stub-loaded SCN computational optimisations

As discussed earlier in this chapter, in order to model lossy materials of di↵erent

dieletric properties, it is necessary to use stub-load SCNs. The scattering method

discussed earlier presented a 18 ⇥ 18 scattering matrix, S. Determining this matrix

is a complex task, requiring the solution of non-linear simultaneous equations. As

previously discussed, Naylor and Ait-Sadi [2.14] have demonstrated that it is possible

to execute the scattering procedure without the need to first determine a scattering
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matrix. Instead, the scattering process is reduced to three equations for node voltages,

and three equations for node loop currents; these are summarised in (2.79).

Vx = kVx
⇣
Vynx + Vypx + Vznx + Vzpx + Vox

⌘

Vy = kVy
⇣
Vzny + Vzpy + Vxny + Vxpy + Voy

⌘

Vz = kVz
⇣
Vxnz + Vxpz + Vynz + Vynz + Voz

⌘

Ix = kIx
⇣
Vynz � Vypz + Vzpy � Vzny + Vsx

⌘

Iy = kIy
⇣
Vznx � Vzpx + Vxpz � Vxnz + Vsy

⌘

Iz = kIz
⇣
Vxny � Vxpy + Vypx � Vynx + Vsz

⌘

(2.79)

The constants kVx� kVz and kIx� kIz are calculated once, and stored for future reference

at the start of the simulation. An example of this is demonstrated as follows (in pseudo-

code), where G is the normalised electric loss stub admittance and Z is the normalised

magnetic loss stub impedance:

kVx = 2.0 / (4.0 + Yox + Gx);

kVy = 2.0 / (4.0 + Yoy + Gy);

kVz = 2.0 / (4.0 + Yoz + Gz);

kIx = 2.0 / (4.0 + Ysx + Zx);

kIy = 2.0 / (4.0 + Ysy + Zy);

kIz = 2.0 / (4.0 + Ysz + Zz);

Using the equations in (2.79), the scatter process for the stub-loaded SCN is now sig-

nificantly simpler than in the case of using the scattering matrix directly. Firstly, each

non-stub port is scattered into, as in the non stub-loaded SCN case. An example of this

is as follows (in pseudo-code):

//Scatter into non-stub ports of the SCN

Vxny = Vy - ZIz - Vxpy;

Vxnz = Vz + ZIy - Vxpz;

Vxpy = Vy + ZIz - Vxny;

Vxpz = Vz - ZIy - Vxnz;

Vynz = Vz - ZIx - Vypz;

Vynx = Vx + ZIz - Vypx;

Vypz = Vz + ZIx - Vynz;
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Vypx = Vx - ZIz - Vynx;

Vznx = Vx - ZIy - Vzpx;

Vzny = Vy + ZIx - Vzpy;

Vzpx = Vx + ZIy - Vznx;

Vzpy = Vy - ZIx - Vzny;

Finally, the open and short-circuit stubs are updated at the end of the scatter process

for each node. An example of this is as follows (in pseudo-code):

//Update the node stub values

VoxYox = (Yox * Vx) - VoxYox;

VoyYoy = (Yox * Vy) - VoyYoy;

VozYoz = (Yox * Vz) - VozYoz;

Vsx = (Zsx * ZIx) - Vsx;

Vsy = (Zsy * ZIy) - Vsy;

Vsz = (Zsz * ZIz) - Vsz;

It should be noted that for the open-circuit stub values, the product of the voltage and

the normalised admittance is stored for convenience, and to avoid duplicate calculations

during the program execution as this quantity is required more than once.

2.5.3 Computational optimisations summary

It has been demonstrated that there is significant potential for performance gains when

using the TLM method without first adapting it for parallel computation. Previous

investigations [2.13] have demonstrated that optimisations are indeed possible which

significantly reduce the number of numerical operations present during the scattering

process of the TLM algorithm. This is achieved by re-thinking the canonical derivation

[2.11] of the process in terms of a software function, and identifying repeated partial

sums and calculated quantities which are stored for access later.

These optimisations to the TLM method whilst the algorithm is still in a serially-

processed format are critically important in order to achieve the optimum processing

performance when a solver has been implemented using a fully-developed parallel

computing strategy. The importance of considering the algorithm from a software

developer’s perspective has been identified, and allows additional performance gains

from the beginning of the implementation of the solver application. A method for
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easily quantifying these initial performance gains based on the number of mathematical

operations present has also been presented.

2.6 Conclusion

This chapter has presented an overview of the TLM method; including a brief history,

its analogies to Maxwell’s equations and its limitations. The relationship between 3-D

and 2-D node types has also been highlighted, and the 3-D SCN has been identified as

the favoured node type for the project.

The main features of the method have been discussed, including derivations and im-

plementation details for the modelling of excitation sources, boundaries and inhomo-

geneous materials.

Periodic boundaries were highlighted as having particular usefulness for the project by

allowing for the modelling of larger quasi-periodic raindrop fields, without needing to

expand the mesh volume.

Optimisations to the 3-D TLM algorithm to improve solver performance were discussed

based on previous investigations. The importance of algorithm optimisation prior to

considering parallel processing was highlighted.
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Chapter 3

Parallel computing strategies for TLM

3.1 Review of current parallel computing strategies

For several decades, parallel computing has been utilised to distribute the computa-

tion of complex and time-consuming calculations that would otherwise require vast

amounts of time to be completed, even with the cutting edge technology on hand at the

time. An example of this is the rendering of Computer Generated Imagery (CGI) used

in films and television to add special e↵ects, or in the case of computer animated me-

dia, the entire film. With the use of distributed parallel computing systems, during the

production of computed animated films, typically several hours are required to render

each frame, equating to several hundred-thousand computing hours for a complete

film to be completed.

This chapter analyses several di↵erent schemes for implementing parallel processing

(both with local and distributed systems) within software applications in order to

improve the performance of the application in question.

3.1.1 Message passing interface (MPI)

MPI is not a programming language in itself, but rather it is a specification for how

parallel processing libraries adhering to the MPI standard should behave. MPI com-

puting libraries are available for the vast majority of programming languages that are

49
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in use today, and despite not being endorsed as by any standards organisation, MPI has

become the de facto choice for many parallel processing applications for distributed-

memory systems [3.1][3.2].

Applications using MPI take advantage of parallel computing by executing a copy

of the application on each computing node of a parallel computing system. Because

each node is executing a copy of the program, local calculation results at the node

level are stored in local RAM. Globally-required data is then broadcast as needed to

the co-ordinating, or master process over the network, which then collates the received

data as required. This is a major advantage of the MPI specification, since it provides

a straightforward method of passing data between computing nodes on a distributed

memory system, such as a HPC cluster.

3.1.2 OpenMP

As with MPI, OpenMP [3.3] is not a language, but an Application Programming Inter-

face (API) that is freely available for use with the C/C++ and FORTRAN programming

languages. OpenMP support is included with many popular compilers, such as GCC

and within Microsoft Visual Studio C++ 2005, 2008 and 2010. Unlike MPI, where MPI

calls are made in-line, OpenMP calls are in the form of #pragma pre-processor direct-

ives which are then dealt with at compile time depending on the specific compiler

implementation of the OpenMP specification.

OpenMP is useful in shared memory multiprocessor scenarios, where several processors

are able to address the same shared memory space. Modern desktop computers are

often multi-core machines, where a single physical CPU in fact contains two or more

physical processing cores on the same piece of silicon. Each of these cores is able to

compute information independently and access the installed RAM, which is shared

between the cores at the hardware level. Whilst increasing processor speeds was

previously the driving force behind increasing computer performance, computers today

and in the future use increasing numbers of processing cores sharing the load to improve

performance further.

Utilising OpenMP calls allows the developer to divide any time intensive sections of an
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application between the available processing cores on a machine, with each working

on a portion of the problem at the same time. In the case of loops, each processor will

work on an approximately equal number of iterations of the loop at the same time in

order to complete calculations for that section of the application faster.

3.1.3 Hybrid parallelisation

It has been shown that MPI is very useful for a networked cluster of machines, since

copies of an application are run on each node, with data being sent between nodes

as required. However, this does not make sense when attempting to parallelise an

application that will be run on a single multi-core machine. Firstly in this case, since all

memory is local and shared, there is no need for each processor to be executing a copy

of the application keeping redundant copies of local data. Secondly, using MPI to pass

messages between instances of the application being executed introduces an overhead,

which in this case is largely redundant since OpenMP could be used to address the

shared memory directly with a lower overhead. Conversely, OpenMP is not suitable

in the networked cluster scenario, since it is not designed for dealing with non-shared

memory spaces. This restricts its use to local systems with a single shared block of

RAM.

Many modern cluster implementations utilise multi-core CPUs at the computing node

level. These extra cores would be made redundant in a MPI implementation that ran

one instance of an application per node, on a single core. In the case of one instance of

a program running per core thread, a pure MPI implementation would still have room

for improvement as discussed above. The accepted strategy for modern clusters is to

execute one application instance per node, using MPI to communicate between nodes,

and to use OpenMP at the processor core thread level to further parallelise computations

and maximise the performance gains observed overall [3.1][3.2]. In fact, this is the

implementation method used with many of the most powerful supercomputers in the

world.
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3.1.4 Open computing language (OpenCL)

OpenCL is a low-level API for parallel processing using heterogeneous combinations of

processors such as CPUs, GPUs or other processors. It is an open standard maintained

by the Khronos Group [3.4], however commercial implementations have also been

made available by several technology companies such as Apple [3.5] and NVIDIA [3.6].

The OpenCL API consists of a language (based on C99 [3.7]) that is used to write ker-

nels, or functions designed to run in parallel on OpenCL-compatible devices. These

kernels can accelerate software performance by focussing on either task or data-based

parallelism, or a combination of both approaches. One advantage of OpenCL is the

portability of the implemented kernel programs across a number of di↵erent hard-

ware platforms and architectures without modification to the code. This is achieved

by platform-specific parallel computing technologies being abstracted away from the

developer. Another advantage of the API is that applications are able to utilise the GPU

for parallel processing that is unrelated to graphics operations, in a similar fashion to

CUDA on NVIDIA devices. However unlike CUDA, the OpenCL abstracted memory

and execution model simplifies software development to an extent as well as ensuring

cross-platform compatibility.

On computing systems with a combination of relatively performant CPU and GPU

processors, utilising OpenCL if possible o↵ers a method of maximising processing

performance when compared to the performance of either processor in isolation.

3.2 Parallel computing & the TLM method

Over the years, there has been an increasing interest in taking advantage of parallel

processing strategies in order to improve the performance of the TLM algorithm. Tra-

ditionally the scatter and connect process takes place sequentially across all nodes in a

mesh, but the nature of the TLM algorithm means that computations may be carried

out simultaneously on all node elements to process the results for the subsequent time

step. It is possible to implement an approach where the simulation mesh is divided into

smaller portions during parallel computation, with each sub-mesh being worked by a
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discrete processor. Calculations for these sub-meshes can therefore be worked upon

for subsequent time steps simultaneously, and information at the sub-mesh boundaries

exchanged with neighbouring sub-meshes at the relevant time during the connect phase

of the TLM algorithm.

3.2.1 Graphics processing unit (GPU) strategies

GPUs are specialised microprocessors that are traditionally highly-optimised for the

parallel computation of graphics data for use in applications such as rendering frames

in video games and video encoding/decoding. Floating-point support was introduced

in DirectX 9.0 onwards, and the Nvidia CUDA API was released in 2006 to allow

code written in C to execute in parallel on supported GPUs. This allowed ‘traditional’

computations that were intended for CPU processing to be executed in parallel on the

GPU for improved performance. The typical internal GPU architecture is optimised

to execute calculations on large datasets in parallel with low interdependency, as seen

in typical graphics rendering scenarios. Since TLM meshes for complex problems

often contain large numbers of nodes, and the scatter and connect process is easily

parallelised, TLM is an ideal candidate for execution on a GPU.

One of the first investigations of the use of CUDA to parallelise a 2D-TLM solver

showed that by utilising one of the most powerful commercially-available GPUs at the

time of publication (2008) a 570% improvement was demonstrated over the solver when

running on the desktop machine using only one core for processing [3.8]. The CUDA

implementation had a peak performance of 200 million nodes.s�1 on a mesh containing

approximately 15 000 000 2-D nodes. This equates to a single time step taking 0.075s with

the CUDA version of the solver, and nearly 2.0s using the non-parallel implementation

[3.8].

3.2.2 Multicore & symmetric multiprocessor strategies

Rossi has given an example of a SMP TLM system, implemented using OpenMP [3.9].

As an extension of the work described above in section 3.2.1 [3.8], the 2-D TLM solver

that had been implemented was also modified to implement OpenMP parallelisation
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strategies, and full benchmarking was conducted between the ‘serial’ version running

using just one core for processing, along with the OpenMP version using all 4 available

cores for processing in parallel. Finally these results were also compared with the same

2-D solver being run using the GPU method described previously.

As expected, both parallelised versions of the solver showed better performance than

the serial version. The results demonstrated that the parallelised version of the solver

using OpenMP showed on average a 165% performance improvement when compared

to the serial version of the solver. Furthermore, the GPU version was 150% faster

still when compared to the OpenMP version [3.9], or approximately 413% faster when

compared to the serial version.

3.2.3 High performance computing (HPC) cluster strategies

Lorenz et al. gives an example of a fully implemented cluster-based TLM solver [3.10].

This implementation demonstrates a working TLM solver optimised for microwave

frequencies operating on both homogeneous and heterogeneous clusters of computers

connected via a LAN. Analysis of the solver provides verification of results by compar-

ing the observed simulated resonant frequency of a cavity resonator with theoretical val-

ues. In the paper, Lorenz proved that di↵erent structures measuring many wavelengths

in size could be modelled using di↵erent configurations of commodity level distributed

computing systems by executing simulations on large-scale 3D models of vehicles and

analysing the results.

TLM is inherently suited to parallelisation due to the nature of the underlying al-

gorithm. Within the calculations for any given time step to be processed, the output

port values for each node are completely independent from the output values of all

other nodes present in the mesh. This allows the scatter and connect calculations to be

processed simultaneously without introducing additional computational complexity

or undesirable e↵ects to the simulation. There has therefore been much scrutiny of

contemporary e↵orts towards producing e�cient parallel implementations of the TLM

method. Stothard completed one such review of previous attempts at parallelising

the TLM method in his Thesis [3.11]. In this review, a number of papers concerning

implementations are discussed [3.12, 3.13, 3.14, 3.15, 3.16, 3.17, 3.18], and comparisons
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between the di↵erent methods are also given. Each paper identifies and confirms the

large potential for performance increases made possible by parallelising a TLM-based

solver. Performance increases from 3.5 – 70 times normal were observed during testing

of the various implementations by their respective authors. Despite this, it was also

shown that communications with the mesh during simulation execution had a large

bearing on the specific speed-up factor observed. So et al. [3.13, 3.14] demonstrated that

by injecting a Gaussian-based pulse into their mesh over several time steps instead of a

single impulse, the overall performance increase when compared to a single processor

dropped approximately 50%.

In his review, Stothard identified the maximum mesh dimensions as a major limiting

factor of the implementations that were critiqued (except for the implementation dis-

cussed by Parsons et al. in [3.17]). In every other implementation [3.12, 3.13, 3.14, 3.15,

3.16] and [3.18], the approach was to map a single node to each processor available

in the specific cluster computer used. It is quite clear, especially with the advances in

modern processors and the amount of RAM available on a typical system since these

papers were published, that this is not a practical approach for a modern parallel TLM

solver implementation. Modern cluster-based parallel computers are almost exclus-

ively based on multi-processor and/or multi-core technology at the computing node

level. It is apparent therefore, that a modern parallel implementation of a TLM-based

solver can take advantage of the hybrid approach as discussed previously in Section

(3.1.3). With this approach, the simulation mesh is divided into N sub-meshes (where N

is the number of computing nodes available for use on a cluster system). This e�cient

use of computing resources by placing several nodes on each computing node allows

for large, complex full-field problems to be simulated. As well as being parallelised

at the computing node level via MPI or a similar message-passing scheme, further

performance improvements through parallelisation can be achieved by simultaneous

computation of sub-meshes at the processor core level via the use of the OpenMP library

to divide the scatter and connect loop iterations for the sub-mesh between cores to be

worked upon at the same time.
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3.3 Conclusions & impact on research strategy

It has been the aim of this chapter to provide a review of the current literature relating

to the research that is currently under way. The review of the literate has allowed

several considerations concerning the specifics of the research strategy to be formed,

with each being based upon previous work in the field. This approach should help

result in a well-informed research strategy that bears direct relevance to the previous

studies published, building upon them in a logical fashion. The following conclusions

and observations have been drawn from conducting the literature review:

In considering the various options for the utilisation of a parallel computing archi-

tecture, it quickly became apparent that a hybrid approach that combined the use of

both MPI and OpenMP would present the best potential for maximising performance

increases when running the solver on HPC cluster systems. This conclusion came

from the fact that OpenMP is designed only for use with SMP architectures and that

a purely MPI-based implementation of parallelisation would be introducing unneces-

sary overheads at the computing node level. By design, a cluster is not a SMP system

since each computing node executes a copy of the program, with no shared memory

between nodes, and MPI communication between processor cores within a node would

be slower than using OpenMP to parallelise a program and have each processor core

thread address the on-board shared RAM.

Whilst also being supported by the literature [3.1][3.2], this hybrid approach is also jus-

tified by its use in many of the supercomputers in the TOP500 list of the five hundred

most powerful supercomputers in the world. Using a GPU as an alternative method

to produce performance increases was also explored within the review of studies con-

cerning parallel implementations of the TLM algorithm [3.8]. Whilst the studies to date

in this area have demonstrated significant performance improvements on a single com-

puter basis when compared to MPI or MPI/OpenMP implementations, it must be said

that computing clusters do not contain high-end GPUs, so the performance gains are

most often limited to a single machine. Also, using CUDA or OpenCL in order to use

the GPU for general purpose computing operations requires extra development e↵ort

with regards to memory management in order to maximise the use of the faster in-
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ternal memory available within the GPU, which in turn maximises performance gains.

Finally, using the GPU method goes against the original intention to produce a solver

that is as platform independent as possible, with the option of making portions of the

code open source for community modification and improvement.
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Chapter 4

Geometric modelling of raindrops

The example case study of accurate modelling of rain-fields for use with a 3-D TLM

implementation was introduced previously in section (1.4). As discussed earlier, accur-

ately modelling the behaviour of EM signals propagating through rainfall is of interest

for a number of applications, for example line-of-sight EHF transmission links. With

this class of application, accurate predictions of the link performance are crucial to the

viability of the end product. It is therefore clear that improvements to the accuracy of

rain-field modelling are of interest both academically and commercially.

Previous studies into the depolarisation and attenuation due to rainfall have mainly

focussed on approximation models, measured results or verification of a model against

measured results [4.1, 4.2, 4.3, 4.4]. Any approximation model of raindrop behaviour

will be based on one or more assumptions, and therefore the model will inherently

possess limitations in certain cases when compared to real-world observations of de-

polarisation and attenuation due to rainfall. Conversely, any real-world data will have

its own limitations due to its inflexibility and the di�culty in being able to tailor a

dataset to a particular end user application.

In this case, the proposed compromise is to model the geometry of individual raindrops

within a given rain-field. This provides flexibility in the parameters of the rain-field

model, such as raindrop size range and drop density. Modelling individual raindrops

whilst placing them randomly also allows the rain-field model to more closely approx-

imate a rain-field that might be observed in nature.

60
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Before a rain-field can be successfully simulated, a geometrical model for individual

raindrops must first be researched, and a suitable discretisation method chosen. This

forms the first part of the process of preparing discretised mesh information ready for

interpretation by a 3-D solver.

To be successful, any method for generating rain-fields should attempt to adhere to the

following criteria:

• The geometrical raindrop model should closely approximate real-world observa-

tions.

• The simulated raindrops within a rain-field should adhere to a suitable size dis-

tribution.

• The simulated raindrops should be randomly sized and placed within the rain-

field.

• However, the simulated raindrops should also avoid intersecting with one-another.

• The discretisation method should be accurate and flexible.

This chapter presents solutions to the above criteria, demonstrating a comprehensive

method for generating randomly-generated rain-fields ready for use with a 3-D solver.

4.1 Review of raindrop geometry modelling techniques

4.1.1 Review of available models

In order to produce accurate attenuation and depolarisation results when injecting a

given signal into the simulated rain field environment, there must also be an accurate

representation of both drop geometry and size distribution. There are several examples

of papers that have been published over the last several decades [4.5, 4.6, 4.7] con-

cerning the geometry and sizes of raindrops with subsequent papers demonstrating

improvements and refinements to the models that have been presented previously.

In popular art and literature, raindrops are frequently depicted as teardrop shaped.

The fundamental e↵ects of surface tension on liquids counter this popular opinion,
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and in fact studies into raindrop geometry have conclusively proven that this is not

the case [4.5, 4.6, 4.7]. Experimental data from multiple studies using devices such

as disdrometers to measure the size and shape of drops has demonstrated that in the

case of small raindrops (<2.0 mm in diameter) the drops appear to be approximately

spherical in shape. This shows that in the case of drops of this size and smaller, the

surface tension and internal hydrostatic pressure are the dominant factors dictating the

drop geometry, and not the air pressure on the bottom surface of the drop as it falls

through the air.

Many di↵erent studies have attempted to produce a suitable geometrical model for

drops larger than 2.0 mm in diameter. In these papers, the volume of the raindrop is

the limiting factor, and as such, the diameter figures that are stated are the equivalent

undistorted diameters of a drop if it were to retain its spherical in shape as it fell. Prup-

pacher & Pitter [4.5] having conducted one such study, produced a model for raindrops

up to 8.0 mm in diameter. A later study by Beard & Chuang [4.6] demonstrated an

improvement to this model, with verification of results based on photographic observa-

tions from a two-dimensional video disdrometer to validate the accuracy of the model

against their observations. This model has also been utilised in several subsequent

related studies, such as [4.8]. The main improvement of the Beard & Chuang Model

over previous models was the fact it addressed the inverse curvature of the underside

of the drop in the Pruppacher & Pitter Model, which increased as a function of drop

size. The photographic observations by Beard & Chuang showed no evidence of such

an indentation within photographed drops as they fell [4.6, 4.7]. In fact, even at very

large drop sizes (8.0 mm+) despite significant flattening to the underside of the drop,

the overall curvature of the drop surface at any given point remained positive. During

computer modelling, this fact produced two e↵ects when coupled with the symmetry

of the drop in the vertical plane. Firstly, only half of the drop edge outline needs to

be computed, before a rotational sweep is applied to produce a solid model of a given

drop. Secondly, due to the overall positive curvature of the drop at any given point, the

cross section of the drop through its centre can also be considered to be a profile image

of the drop when viewed side on.
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4.1.2 Previous investigations to date

Following the investigations into the shape of raindrops whilst in an equilibrium state,

subsequent papers have attempted to gain an in depth understanding of the oscillation

of raindrops during their fall to the earth in both laboratory and real-world conditions.

Recent research has investigated how the possible causes for these oscillations, where

wind and collisions factors have previously been ruled out as a cause for the oscillations

observed in drops larger than 1.0 mm in diameter [4.7]. In this paper, the mechanics of

raindrop geometry are discussed. The factors causing increasing deformation as drop

diameter increases are identified as both the increasing weight and also an increased

di↵erential between air pressure above and beneath the drop as it falls. The paper then

discusses observations of simulated rain in calm wind conditions using an 80m fall to

allow drops to stabilise and achieve terminal velocity. Raindrop shape measurements

were also obtained from rain events in several real-world locations, and comparisons

were then made with the experimental results.

Regarding the intended application for the solver software, from reviewing the literat-

ure it is clear that extensive research has been undertaken over the last decades towards

understanding raindrop geometry. Increasing use of the EHF portion of the EM spec-

trum has led to a need for a better understanding of the attenuation and depolarising

e↵ects of rain on EM radiation at these extremely high frequencies. Following a re-

view of the di↵erent raindrop models available, the Beard and Chuang Model [4.6] was

selected for use in the solver to generate raindrop geometries within the TLM mesh.

This was based upon the accuracy of the model when compared to photographic ob-

servations of both simulated and real-world raindrops. This model also demonstrated

improvements upon earlier models such as the Pruppacher and Pitter Model [4.5]. Fi-

nally, whilst recent papers have discussed the oscillations present in larger drops, the

focus for the solver will be to implement steady-state drops in order to avoid overcom-

plicating the solver software. If time allows at a later date, there will be the potential to

implement drops with oscillations present during their fall based upon the observations

from the latest literature [4.7].
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4.1.3 Summary of the Beard & Chuang model

As well as o↵ering a detailed, parameterised model, Beard & Chuang [4.6] also describe

a simplified approximation to their model which requires much less e↵ort to implement.

This was chosen as the basis of implementing the model within this thesis. The model

approximation is in the form of a cosinusoidal distortion of a circle representing the

cross-section of a given raindrop. The method for calculating the drop radius, r at any

given point along its cross-sectional circumference is given in polar form by Equation

(4.1). This distortion is computed from a table representing the relative weights given

to 0th to 10th order cosinusoidal calculations relative to the angular position along the

circumference of the drop. This adjustment factor is then applied to the equivalent

unmodified radius of the raindrop, a to be modelled. The distortion coe�cients, Cn

are shown in Table (4.1). The coe�cients have been scaled up by a factor of 104 for

tabulation.

Distortion coe�cients, (Cn ⇥ 104)

d(mm) n = 0 1 2 3 4 5 6 7 8 9 10

2.0 -131 -120 -376 -96 -4 15 5 0 -2 0 1
2.5 -201 -172 -567 -137 3 29 8 -2 -4 0 1
3.0 -282 -230 -779 -175 21 46 11 -6 -7 0 3
3.5 -369 -285 -998 -207 48 68 13 -13 -10 0 5
4.0 -458 -335 -1211 -227 83 89 12 -21 -13 1 8
4.5 -549 -377 -1421 -240 126 110 9 -31 -16 4 11
5.0 -644 -416 -1629 -246 176 131 2 -44 -18 9 14
5.5 -742 -454 -1837 -244 234 150 -7 -58 -19 15 19
6.0 -840 -480 -2034 -237 297 166 -21 -72 -19 24 23

Table 4.1: Cosinusoidal distortion coe�cients for the Approximated Beard & Chuang
model.

r = a

0
BBBBB@1 +

10X

n=0

Cn cos(n✓)

1
CCCCCA (4.1)

4.2 A rain-field modelling strategy

A robust raindrop modelling method had to be developed as part of the overall objective

of having a parallelised, cluster-based 3-D TLM solver which is specialised for the

analysis of the e↵ects of rainfall on EHF signals. Following the selection of a suitable
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raindrop geometry model (as discussed in section 4.1.), the modelling scheme can be

designed and implemented. A suitable software package was required that could

model a set of raindrops and then mesh them, converting them to node placement

information files to be used by the solver and inserted into its TLM node mesh at a later

date. SketchUp [4.9] was utilised as it is a free Computer Aided Design (CAD) software

package that o↵ers customisability via the optional use of custom script files written in

the Ruby [4.10] language that can be used to automatically generate specific geometry.

To this end, a script was implemented that was designed to generate random “blocks”

of rainfall adhering to the following criteria:

1. The raindrop diameter is randomised according to a discretised normal distribu-

tion based on the possible values provided by the Beard & Chuang model (2.0mm

– 6.0mm in 0.5mm steps).

2. Randomised X, Y, Z co-ordinates are generated for each drop centre position,

provided:

(a) The drop would not intersect another that has already been placed (in the

real-world these two drops would coalesce into a larger drop)

(b) The drop would not intersect the edge of the simulation volume (as this could

produce undesirable results during a simulation since a partial raindrop

would be present in the mesh).

3. Raindrops are added within the desired volume until a given volume ratio is

reached (this ratio can be equated to a real-world rainfall rate via a simple calcu-

lation).

4.2.1 Calculating raindrop size occurence probabilities

The approximated Beard & Chuang raindrop model provides raindrop geometry in-

formation for raindrops of an equivalent diameter between 2.0 - 6.0mm inclusive at

0.5mm intervals. This forms a discrete set of raindrop sizes that can be modelled, as

compared to a truly continuous size distribution in the real-world. The size distribution

for the raindrops to be modelled is assumed to be normally-distributed. A suitable nor-

mal distribution curve for the approximated Beard & Chuang model can be constructed
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by first calculating the variance, �2 of the sample set as in equation (4.2). Knowing the

value of �2, it is possible to construct a standard normal distribution for the raindrop

geometry model by calculating Z scores using equation (4.3). The resulting distribution

with a mean value µ, of 4 and a standard deviation �, of 1.36931 is shown in Fig. (4.1).

�2 =
1
n

nX

i=1

|xi � µ|2 (4.2)

Z =
X � µ
�

(4.3)
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Figure 4.1: Normal distribution for the approximated Beard & Chuang raindrop geo-
metry model. The x-axis shows the raindrop diameter (mm), and the y-axis shows the
probability of occurrence.

An important consideration is the need to calculate the occurrence probabilities for each

di↵erently sized raindrop in the approximated Beard & Chuang model. It is possible to

compute these probabilities by dividing the standard normal distribution into "bins",

or slices each of which represents a probability of observing a raindrop of a particular

diameter. As the model has an interval of 0.5mm in diameter between raindrop sizes,

it is possible to centre the bins around each allowable raindrop size by calculating the

cumulative probability+/-0.25mm from a particular diameter. Z scores relating to these

intervals are calculated from equation (4.3) and a typical standard normal distribution

look-up table provides the equivalent cumulative probability values. Subtracting one

probability from the other allows the occurrence probability for each raindrop to be
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determined. A summary of the calculated occurrence probability values is shown in

Table (4.2).

d(mm) P(d)

< 2.0 0.0502
2.0 0.0504
2.5 0.0801
3.0 0.1112
3.5 0.1357
4.0 0.1448
4.5 0.1357
5.0 0.1112
5.5 0.0801
6.0 0.0504
> 6.0 0.0502

Table 4.2: Occurence probability P(d) for raindrops of diameter d.

4.2.2 Generating a discrete random variable for raindrop diameter

Constructing a discrete random variable (DRV) is a method for generate randomised

values which occupy specific discrete values that follow a particular probability dis-

tribution. A typical method for generating a discrete random variable is to utilise a

random number generator that produces uniformly-distributed random numbers and

apply a suitable algorithm or other transformation in order to generate discrete values

of the required distribution.

In this case we already know the discrete values of our set (2.0 - 6.0mm inclusive at

0.5mm intervals) that should be the possible outputs of the discrete random variable.

The required probability distribution has previously been calculated in section (4.2.1)

with the occurrence probabilities shown in Table (4.2). A typical maths library within

a programming language will o↵er a random number generator that is capable of

producing numbers within any specified range. Random numbers can also be generated

using other methods, such as an XOR shift method proposed previously [4.11]. Two

approaches to constructing a discrete random variable are shown below.
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An initial approach

An initial approach to the problem would be to hold multiple copies of every raindrop

diameter from the set in an array (including the outliers, which will be stored as 0.0 and

9.0 for recognition purposes so that they can be discarded later in the software) and then

pick from the array using a random number generator. The number of copies of each

diameter value is determined by the precision at which the occurrence probabilities

have been calculated. In this case, the probability values are to 4 decimal places, so a 10

000 element array is required. In this case the random number generator is configured

to produce integers in the interval 0 - 9 999 and the generated value is then used as the

index for the Vd array to select a stored raindrop diameter value for use in modelling.

A representation of the array in this case is shown in Table (4.3).

Vd array index Diameter (mm)

[0]. . . [501] 0.0
[502]. . . [1005] 2.0
[1006]. . . [1806] 2.5
[1807]. . . [2918] 3.0
[2919]. . . [4275] 3.5
[4276]. . . [5723] 4.0
[5274]. . . [7080] 4.5
[7081]. . . [8192] 5.0
[8193]. . . [8993] 5.5
[8994]. . . [9497] 6.0
[9498]. . . [9999] 9.0

Table 4.3: A representation of the array holding the discrete random variable Vd using
a naive construction approach.

A more memory-e�cient approach

A large array holding multiple duplicate raindrop diameter values is not an optimal

solution to the problem of producing a discrete random variable for modelling raindrops

of di↵erent sizes. Whilst a 10 000 element array may not be particularly large by modern

standards, the storage requirements grow by a factor of 10 for every extra decimal place

of precision in the probability distribution. This means for applications requiring

additional precision, the array quickly becomes very large, and will consume large

amounts of available RAM.
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It was evident in the naive approach that there is significant duplication of data in

the form of raindrop diameter values stored in the array. However, it is possible to

preserve the overall probability distribution whilst significantly reducing the memory

requirements to produce the discrete random variable. The algorithm for implementing

this memory-e�cient version of the discrete random variable is detailed below, and

based on methods proposed previously [4.12, 4.13].

1. Reorganise the 10000 element array so that the raindrop diameter values are stored

in order of the decimal place digits present in each occurrence probability value,

I.e.

• 1000⇥3.0, 1000⇥3.5, 1000⇥4.0, 1000⇥4.5, 1000⇥5.0

• 500⇥0.0, 500⇥2.0, 800⇥2.5, 100⇥3.0, 300⇥3.5, 400⇥4.0, 300⇥4.5, 100⇥5.0, 800⇥5.5,

500⇥6.0, 500⇥9.0

• 10⇥3.0, 50⇥3.5, 40⇥4.0, 50⇥4.5, 10⇥5.0

• 2⇥0.0, 4⇥2.0, 1⇥2.5, 2⇥3.0, 7⇥3.5, 8⇥4.0, 7⇥4.5, 2⇥5.0, 1⇥5.5, 4⇥6.0, 2⇥9.0

2. It is now evident that the start of the array contains 5 blocks of 1000 identical

values. This could be replaced by simply select a number from an array containing

{3.0, 3.5, 4.0, 4.5, 5.0} if the random number generator produces an output < 5000.

The array index, i would calculated by i = (int)RNG/1000, where ’RNG’ is a

random number between 0-9 999. A similar algorithm can be applied to the

subsequent blocks of duplicate values representing the hundredths, thousandths

and ten-thousandths decimal places.

With this scheme, the discrete random variable for raindrop diameter, Vd can be imple-

mented as follows in Ruby:

#Raindrop diameter values - 0.0 and 9.0 for N-dist tails

r = [0.0, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 9.0]

#Memory-efficient arrays for occurrence probabilities up to 4 decimal place

precision

tenths = [r[3], r[4], r[5], r[6], r[7]]

hundredths = [r[0], r[0], r[0], r[0], r[0], r[1], r[1], r[1], r[1], r[1], r

[2], r[2], r[2], r[2], r[2], r[2], r[2], r[2], r[3], r[4], r[4], r[4], r
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[5], r[5], r[5], r[5], r[6], r[6], r[6], r[7], r[8], r[8], r[8], r[8], r

[8], r[8], r[8], r[8], r[9], r[9], r[9], r[9], r[9], r[10], r[10], r[10],

r[10], r[10]]

thousandths = [r[3], r[4], r[4], r[4], r[4], r[4], r[5], r[5], r[5], r[5], r

[6], r[6], r[6], r[6], r[6], r[7]]

tenThousandths = [r[0], r[0], r[1], r[1], r[1], r[1], r[2], r[3], r[3], r[4],

r[4], r[4], r[4], r[4], r[4], r[4], r[5], r[5], r[5], r[5], r[5], r[5],

r[5], r[5], r[6], r[6], r[6], r[6], r[6], r[6], r[6], r[7], r[7], r[8], r

[9], r[9], r[9], r[9], r[10], r[10]]

#return a N-distributed , randomly generated drop diameter value

until (randDiameter > 0.0 && randDiameter < 9.0) do

diameterRNG = rand(10000)

if (diameterRNG >= 9960)

randDiameter = tenThousandths[diameterRNG -9960]

elsif (diameterRNG < 9960 && diameterRNG >= 9800)

randDiameter = thousandths[(diameterRNG -9800)/10]

elsif (diameterRNG < 9800 && diameterRNG >= 5000)

randDiameter = hundredths[(diameterRNG -5000)/100]

else (diameterRNG < 5000)

randDiameter = tenths[diameterRNG/1000]

end

end

The result for this particular application is that the memory usage has been reduced

from a single 10 000 element array to four separate arrays totalling 109 elements.

This represents a 98.9% reduction in memory usage as compared to the naive scheme,

whilst retaining almost the same level of performance (at the expense of 4 conditional

statements during raindrop diameter value look-up).

Verification of the discrete random number variable implementation

The implementation of the DRV for generating raindrop diameter values was tested by

using it to generate a large sample set of 10000 diameter values at random. These were

sorted and counted to determine observed occurrence frequency values, Po(d) for each

diameter and then converted to an equivalent probability value. These values were

then compared with the expected values, Pe(d) calculated previously in section (4.2.1).
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A summary of the verification results showing absolute probability values and relative

error values, Er is shown in Table (4.4). A graphical comparision is also shown in Fig.

(4.2).

d(mm) Pe(d) Po(d) Er

< 2.0 0.0502 0.0504 +0.40
2.0 0.0504 0.0486 -3.57
2.5 0.0801 0.0786 -1.87
3.0 0.1112 0.1102 -0.90
3.5 0.1357 0.1313 -3.24
4.0 0.1448 0.1426 -1.52
4.5 0.1357 0.1410 +3.91
5.0 0.1112 0.1169 +5.13
5.5 0.0801 0.0821 +2.50
6.0 0.0504 0.0453 -10.12
> 6.0 0.0502 0.0530 +5.58

Table 4.4: Discrete random variable verification results comparing observed and expec-
ted occurrence probability values, and showing relative error values.
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Figure 4.2: Comparison of the implemented discrete random variable (executed 10 000
times) with expected occurrence probability values calculated from section (4.2.1).

4.2.3 Discretising the raindrop geometry

A complete modelling strategy has now been outlined. This includes the overall ap-

proach (Section (4.2)), the calculation of occurrence probabilities of di↵erently-sized

drops (Section (4.2.1)), and the construction of a discrete random variable for use dur-
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ing modelling (Section (4.2.2)). Suggested methods for discretising1 the individual

raindrop geometry are the subject of this section of the thesis.

Stacked circles

One method for discretising the drop geometry is that when slicing the drop along

the Z-axis in single node steps, the cut-through sections formed as XY planes present

themselves as perfect circles. By using the Beard & Chuang model, it is possible to

compute the radius of each of these stacked circles that constitute a single drop. From

this, the co-ordinates of the positions along the edge of each circle can be interpolated

to the nearest node, and all nodes within the circular XY plane can be set to behave as

a water-occupied node. Each of these steps can be accomplished by iterating across a

square XY which exactly encompasses the desired circular plane of nodes. During the

iteration across the square plane, a series of tests are conducted to test whether the node

in question resides within the circle. This is summarised below in pseudo-code:

//Position variables...

x = nodePosX;

y = nodePosY;

xDist = abs(x - centerX);

yDist = abs(y - centerY);

R = radius;

stX = centreX - (R/2);

eX = centreX + (R/2);

stY = centreY - (R/2);

eY = centreY + (R/2);

for (int y = stY; y <= eY; y++) {

for (int x = stX; x <= eX; x++) {

//First test a square diamond which the circle would

encompass exactly...

if (xDist + yDist <= R)

setNodeBehaviour(WATER_BEHAVIOUR , x, y);

//Else, use Pythagoras to test region between the diamond and

circle arc...

1Discretising in this context is the act of taking a precisely-defined model of an object and then sub-
dividing it into discrete, parallelepipic blocks of matter of a given size, based on a chosen value of �`,
which represents the mesh resolution, equivalent to the node size in a TLM mesh.
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else if (xDist^2 + yDist^2 <= R^2)

setNodeBehaviour(WATER_BEHAVIOUR , x, y);

else

setNodeBehaviour(AIR_BEHAVIOUR , x, y);

}

}

This set of tests for the construction of one of a series of stacked circles used to form

a discretised equivalent of a drop is shown in Fig. (4.3). A test is shown where an

arbitrary point, P at some co-ordinates, (x, y) is tested using radius r and centre-point

C.
 

C 
r 

P 

2r 

2r 

Figure 4.3: An illustration of the test used for drawing a circle of water-based nodes in
the XY plane within the 3-D solver, showing center-point C, test-point P and radius r.

A custom Ruby script for SketchUp

In order to transform a piece of real-world geometry into mesh information suitable

for use in a TLM solver, it must firstly be discretised. The basic premise is the act of

sampling the object to be transformed at a particular spacings in all dimensions. This
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sample spacing should be equal to the required �` value for the mesh node size. If the

centre-point of the space bounded by the test region is occupied by part of the object,

the entire voxel is deemed to be occupied, regardless of any partial occupancy in the

real-world. This concept is illustrated in Fig. (4.4).

̇� 

̇� 

̇� 

Vp 

C 

x 

y 

z 

Figure 4.4: An illustration of the Voxelise process in operation, showing the voxel
volume (�`3), as well as the probing vector Vp, used to test the centre-point of the voxel,
C.

An open-source Ruby script for discretising 3-D objects that was designed to work with

SketchUp was found and adapted to interface with the rest of the raindrop modelling

script authored for this thesis [4.14]. A high-level description of operation of the script,

Voxelize is included below (in pseudo-code):

# Create probing vector (in each axis direction)

xVect = Geom::Vector3d.new(corners[0],corners[1])

nx = (xVect.length/vSizeLength).round

xVect.length = vSizeLength

yVect = Geom::Vector3d.new(corners[0],corners[2])

ny = (yVect.length/vSizeLength).round

yVect.length = vSizeLength

zVect = Geom::Vector3d.new(corners[0],corners[4])

nz = (zVect.length/vSizeLength).round

zVect.length = vSizeLength
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#Main loop

for yy in (0..(ny-1))

for zz in (0..(nz-1))

for xx in (0..(nx-1))

pos = xVect.length * (xx+0.5)

for nDist in intDist[yy][zz]

if pos >= nDist

binCubes[xx][yy][zz] = 1

else

binCubes[xx][yy][zz] = 0

end

end

end

end

end

The occupancy test method shown above iterates across a virtual bounding box, sur-

rounding the raindrop model. A nested loop moves through an integer number of

voxel spaces in each axis, testing for occupancy in each voxel space. An illustration of

the resulting discretisation of part of a particular raindrop model is shown in Fig. (4.5)

and Fig. (4.6).

Figure 4.5: A raindrop model, shown with a bounding box and one row of the virtual
mesh used during discretisation for an arbitrary value of �`.
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Figure 4.6: Raindrop geometry, shown with one row of the virtual mesh used during
discretisation for an arbitrary value of �`. Voxels set to behave as water are highlighted
in dark red.

The above demonstrates that the accuracy of any discretised geometry is directly de-

pendent on the desired node size, and hence the �` value used for the voxel dimen-

sions during discretisation. A smaller �` results in mesh geometry which more closely

approximates the original model, at the expense of higher memory occupancy and in-

creased simulation time. An example of a single raindrop being meshed for a relatively

high Fmax value, allowing for a reasonable approximation, is shown in Fig. (4.7) and

Fig. (4.8).

4.2.4 Collision detection strategies

As discussed in section (4.2.3), raindrops must not intersect, or “collide” during the

simulation, to avoid spurious e↵ects due to the irregular shape resulting from the

collision. In the real world, such raindrops would in fact coalesce into one larger drop.

To prevent this, a robust collision detection algorithm is needed based to check whether

two drops will intersect if the new drop is placed in the environment with the current

randomly-generated drop centre co-ordinates. A naïve approach is to simply consider

a perfect sphere which encloses the raindrop. The radius of the sphere will be equal

to the maximum radius of the raindrop from its centre of mass. This can be used in
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Figure 4.7: The same raindrop from Fig. (4.5) with its equivalent TLM mesh overlayed,
meshed for a Fc of 10.053GHz.

a simple distance check by comparing the maximum radius of the current drop and

the one it is being checked against, with the distance observed between the two drop

centres. If the sum of the radii is larger than the distance computed, the raindrops are

considered to have intersected, and the centre co-ordinates for the current drop will be

re-generated by random number generators. This method results in no false-negative

events, satisfying the modelling criteria set by ensuring drops never intersect each other.

However, the use of the maximum radius of a given drop during computations does

mean that occasional false-positive collision events will occur. Clearly, a more robust

collision algorithm is required.

4.2.5 Implemented collision detection algorithm

Two vectors are constructed in order to find the angle between two raindrops that are

to be checked for potential collisions. The first is a vector, v that joins the two drop

centres (points A and B in Fig. (4.9)) with the second being a unit vector, z on the

Z-axis (assuming the Z-axis is parallel to the direction of free-fall due to gravity). The

acute angle between these two vectors, ✓ is found using equation (4.4) utilising the dot

product of the vectors in the calculation. The corresponding angle for the other drop, ↵

is also calculated, as in equation (4.5). These two angles can be utilised as inputs to the
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Figure 4.8: The raindrop TLM mesh data for the raindrop in Fig. (4.5) as it will appear
in the simulation, meshed for a Fc of 10.053GHz.

Beard & Chuang raindrop model to calculate the exact drop radii, r1 and r2 at that point

on their surfaces. These radii can then be used to conduct an accurate collision test,

outputting a Boolean collision variable, C as shown in equation (4.6). This method will

not generate false-positive results, as demonstrated with the maximum radius method

detailed previously in section (4.2.4). An illustration of the vector collision detection

method is shown in Fig. (4.9).

✓ = arccos(v̂ · ẑ), where v̂ =
v
kvk (4.4)

↵ = ⇡ � ✓ (4.5)

C =

8>>>>><>>>>>:

1 if kvk < (r1 + r2),

0 if kvk � (r1 + r2).
(4.6)

The result is that this method can be used to ensure several raindrops can be placed

randomly within a simulation environment quickly and e�cently, whilst no two drops

intersect with oneanother, as well as not intersecting with the edges of the simulation

volume. An example execution of the raindrop modelling script is shown in Fig. (4.10).
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Figure 4.9: Collision detection between raindrops in close proximity using vectors.

4.2.6 Summary of raindrop modelling method

As referenced previously (in Section (4.2)), SketchUp was chosen as the CAD software

used to model the raindrops within the required environment volume, and then discret-

ise the geometry before outputting the mesh information for import into the desktop

solver. The main considerations that informed this descision were:

1. SketchUp is free to download, allowing ubquitous adoption of any implemented

modelling scheme with other interested parties.

2. Custom additional functionality and/or automatic geometry generation, com-

monly referred to as macros, can be implemented easily via authoring script files

in the Ruby programming language.

A custom Ruby script for modelling raindrops

The methods described previously in this section for generating the DRV describing the

raindrop size distribution, discretising the raindrop geometry, and collision detection

during meshing, were combined to form a custom script to complete the rain-field

modelling process with SketchUp. A flow diagram showing the steps executed by the

script is shown in Fig. (4.11).

The result of executing the script is a collection of plain-text files that are used by the
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Figure 4.10: An example of several raindrops in close proximity, modelled using
SketchUp.

3-D solver to initialise the environmental conditions of the TLM node mesh, as well as

import the raindrop geometry information into the mesh itself. The files generated by

the SketchUp script are as follows:

• config.txt - This file contains the physical dimensions (in metres) of the simula-

tion environment, along each axis. It also contains the value to use for �`, the

equivalent size of each individual node within the mesh, as well as the number

of raindrops, Nd present within the simulated volume.

• proto[0-8].txt - These files contain the geometry information for each of the nine

prototype raindrop models, discretised at the selected �` resolution. Storing the

geometry information in these files avoids several duplicate geometry datasets

that would otherwise by stored during execution of the script.

• drop[0-(Nd � 1)].txt - These files contain the positional information for the centre-

point of each raindrop within the mesh, listed in terms of the physical centre-point

location (in metres) relative to the origin point of the mesh.

An example of the layout of each of these files is shown below:

//config.txt

0.02 //X-axis mesh dimension (m)

0.02 //Y-axis mesh dimension (m)
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0.02 //Z-axis mesh dimension (m)

0.000100023323669017 //Cubic node side length, dL (m)

18 //Number of raindrops to model

//proto0.txt

2.0 //Diameter (mm)

PROTOTYPE //Drop-type flag

2 //Number of nodes along X-axis

2 //Number of nodes along Y-axis

2 //Number of nodes along Z-axis

0 //Raindrop mesh information

1 //(’0’ for free-space, ’1’ for water)

1

0

1

0

1

1

//drop0.txt

3.5 //Diameter (mm)

STANDARD //Drop-type flag

0.0134874919709937 //Raindrop centre-point, X

0.0159936447518827 //Raindrop centre-point, Y

0.00815280856082843 //Raindrop centre-point, Z

4.3 Conclusion

This chapter has presented a comprehensive strategy to allow for the generation of rain-

fields of arbitrary volumes. Based on the literature, a geometrical model for individual

raindrops was selected that was shown to o↵er an accurate replication of real world

raindrops.

Based on the selected geometrical model, a normal distribution was calculated for

the available raindrop sizes within the model. A discrete random variable to allow

raindrops to be generated of random diameter which would adhere to the normal
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distribution calculated previously. Testing showed the DRV to be in good agreement

with the theoretical result.

The free-to-use CAD modelling software SketchUp was identified for use as the integral

component of the rain-field modelling procedure, due to its custom scripting ability

and its ease of use. An open-source script to allow SketchUp objects to be discretised

was adapted in order to convert individual raindrop models into their equivalent 3-D

SCN mesh position co-ordinates.

A robust collision detection method was also demonstrated, utilising features of the

geometrical raindrop model to ensure that randomly-placed raindrops would not in-

tersect with one-another during the rain-field generation process.

More in-depth details for this script are available as a source code listing of the exact

implementation of the Ruby script for SketchUp, which is included at the end of this

thesis (Appendix A).

All of the above represents a method for modelling rain-fields of arbitrary volumes,

where the variables for node dimensions (and therefore the desired Fmax value) can be

chosen by the user. The plain-text output files generated as a result are suitable for

interpretation by a 3-D SCN solver, an implementation of which is described in the

following chapter.
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Chapter 5

TLM on large-scale computing plat-

forms

5.1 Introduction

This chapter presents an implementation of a 3-D SCN solver, with specialisations for

the modelling of rain-fields using parallel computing to optimise simulation perform-

ance. The solver represents an integration of the Beard and Chuang raindrop geometry

model [5.1, 5.2], as well as the techniques for randomly modelling a rain-field as de-

scribed previously in section (4.2). Based on the investigations into parallel processing

strategies, a hybrid approach utilising MPI and OpenMP has been taken in order to

maximise the simulation performance. This strategy allows simulations to be targeted

at EHF frequencies and above whilst retaining relatively short real-world simulation

times on most platforms.

Included in this chapter are implementation details, which are given at both a high-level

as well as a lower-level discussion of portions of the application relevant to meshing

drops, parallelisation techniques and analysis of simulation data. The solver was val-

idated by executing simulations with known empirical results, as well as by validating

against previous studies into EHF interactions with rainfall. Finally, an analysis of

simulation performance across di↵erent hardware configurations was undertaken and

is also included.
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5.2 Large-scale computing limitations & considerations

As discussed in previous sections of this thesis, the TLM method is inherently suited

to parallel processing approaches due to data independence across the mesh within

the confines of a single time-step. This section aims to discuss each of the methods

considered for implementing parallel-processing within the solver, giving a summary

of the advantages and countering with considerations to be made for each method.

It is clear that the choices made regarding the underlying hardware methods for en-

abling parallel-processing of the TLM algorithm will have a large overall impact on the

processing performance of the solver. Below is a summary of the options that were

considered.

5.2.1 General purpose computing on graphics processing units

It is possible to utilise graphics processing units (GPUs) for computations that are

conventionally handled by the central processing unit (CPU) of a computer. General-

purpose computing on GPUs (GPGPU) takes advantage of the fact that GPUs have a

massively parallel hardware architecture, allowing several values held in memory to be

modified simultaneously by the same mathematical operation. The use of GPUs for a

parallel computing application is restricted to the stream processing1 class of problems,

due to this same hardware architecture. In the case of the TLM method, this does not

necessarily present a problem, depending on the design of the solver in software.

However, obtaining the best performance for a TLM solver depends (in large part) on

storing simulation mesh data inside RAM. This is due to the large amount of repetitive

read and write operations which take place during the scatter and connect process,

where involving additional transient caching of the mesh data to other media such as

harddrives would prove too costly to simulation performance. It should be noted that

whilst GPUs possess very fast, low-latency RAM which is used during calculations, it

is also finite and not expandable by end users. For the proposed use-case, this would

limit the size of the simulation mesh that could be held on any one machine.
1Stream processing is the act of performing the same operation on a set of values held in memory.
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5.2.2 Single instruction, multiple data (SIMD)

SIMD architecture is a class of parallel processing whereby multiple processing elements

execute the same operation on multiple data values simultaneously. Many modern

CPUs contain hardware support for SIMD operations. This is a similar architecture

to GPGPU, however SIMD is less restricted in the applications that it can be utilised

with due to the fact it does not depend on the RAM configurations typical to GPUs.

Using SIMD, parallelisation can occur at both the computation and memory I/O stages

of an application. For example, assuming the data to be operated on is contiguous in

memory, several values can be loaded into the SIMD arithmetic blocks at once before

also being operated on simultaneously during calculations. SIMD is often used in

multimedia applications such as image manipulation or digital signal processing (DSP)

applications, where the same operation is taking place on all elements, and can happen

simultaneously and in any order.

5.2.3 High-performance computing (HPC) clusters

A HPC cluster is the approach of utilising multiple processing units connected together

across a network in order to work on a large problem by dividing it across all the pro-

cessing units, each operating on a subset of the problem data. HPC cluster architecture

usually assumes one of two architectures for dividing the processing. The first takes

a distributed computing model, where several heterogeneous computers of varying

specification are connected across a network (e.g. the internet). A central server then

distributes packets of data for each client machine to operate on, utilising some or all

of the processing time available on each client to complete the processing. The client

machines then communicate the results back to the server for the overall result to be

generated from the collated data.

Another approach to HPC clusters is to utilise a collection of homogeneous processing

units located in close physical proximity, connected together via a specialised high-

speed network in a cluster configuration. This reduces communication latency between

processing units, and is more ideal for applications requiring a large amount of data to

be stored as part of their computational processes. Commercial HPC cluster systems
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often use this approach due to the increased data security as computational data is

only broadcast across a local network during the simulation, as well as the improved

stability of hosting several homogeneous processing units in the same location.

This strategy is certainly more flexible than the use of GPGPU computing when consid-

ering simulations requiring a large quantity of RAM in order to contain the entire mesh

during program execution. Clusters can be configured to use as many compute nodes

as needed and they can also run several di↵erent simulations or "jobs" simultaneously

by sharing resources, as required by the end users.

5.2.4 Symmetric multiprocessing (SMP) hardware

A SMP hardware architecture is a parallel computing approach where two or more

processors are interfaced with a single shared memory pool. Modern multi-core CPUs

are an example of this architecture, where each core is a discrete processor having

full I/O access to connected devices and is controlled by the same OS instance. SMP

systems are able to execute di↵erent applications and tasks on each processor, and share

a RAM memory pool whilst being interconnected via a system bus. It is also possible

to have an SMP system execute the same application on each processor simultaneously.

In this case, if the application has high levels of data independence, the performance

of the application can be increased by dividing processing work across the available

processors, each of which modifies the application data which is stored in the shared

memory pool of the SMP system. However, in modern high-performance parallel

computing, SMP systems are less common than HPC or GPGPU systems.

5.2.5 Symmetric multiprocessing (SMP) software

In order for a system using a SMP architecture to be taken advantage of when executing

an application, it is necessary to utilise some form of SMP application programming

interface (API) in order to maximise parallel computations within the application.

An example use of such APIs allows global variables such as loop iteration counters

to be properly managed across multiple processors. This is achieved by ensuring

each instance of the application makes private copies of such variables to ensure loop



CHAPTER 5. TLM ON LARGE-SCALE COMPUTING PLATFORMS 90

iterations are divided as equally as possible amongst the processors and that the same

loop iterations are not computed twice. The result is that processing performance is

improved by dividing these loop iterations across all the available processors on the

SMP system.

5.2.6 Message passing interface (MPI)

As described previously in Section (3.2.3), the MPI programming standard allows for

parallel computation across multiple processing cores or compute nodes via the ex-

change of relevant program data between the entities carrying out computations. These

exchanges can occur locally, or across a network.

Two major considerations when implementing parallel processing schemes using MPI

are deadlock2 and load balancing3.

In the context of a 3-D TLM solver, implementation issues relating to deadlock can be

avoided by restricting any MPI communications between processing units to a single

axis of the mesh. This significantly reduces implementation complexity and also has

the added benefit of improving the compute to I/O ratio for each sub-mesh within the

application. In the context of the proposed use-case of rain-field modelling, objects in

mesh are distributed randomly, as detailed previously. This should result in compu-

tation times for each sub-mesh for each individual time-step that are approximately

equal (assuming processing units of equal performance). This in turn should provide

implicit load balancing within a 3-D TLM solver, and processing unit utilisation should

therefore be maximised. When simulating enclosed metallic objects (especially large

objects unevenly distributed in a simulation volume), computation times become more

varied since nodes within enclosed metallic objects do not require scatter and connect-

ing. Therefore load balancing becomes harder to manage in this case, and it would be

pertinent to implement some form of dynamic sub-mesh resizing scheme for a parallel

3-D TLM solver in this case.
2Deadlock is the term for when a process becomes blocked waiting for a condition that will never

become true.[5.3][5.4]
3Load balancing is the practice of ensuring that each processing unit within a parallel application is

being utilised to similar levels. This ensures idle time waiting for other processes to finish computation is
minimised.
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5.3 Methodology

The design and development of the 3-D SCN solver represents a software application

of non-trivial size and complexity. In order to discuss the operation of the solver,

this section breaks down the application in terms of the di↵erent functionality that is

present. An overall theory of operation is given, describing the solver operations on

a high-level. This is then followed by a more in-depth discussion of specific portions

of the software which manage parallel execution of the TLM algorithm, as well as

analysing and visualising simulation data.

5.3.1 Theory of operation

The operation of the 3-D solver application can be divided in to three major sections:

1. Prototype drop meshing.

2. Simulated drop meshing.

3. Simulation execution.

An overview of the application execution for the drop meshing is shown in Fig. (5.1),

and the methods for conducting both the prototype and simulated drop meshing are

detailed below.

Prototype drop meshing

As discussed previously in Section (4.2.1), the Beard & Chuang raindrop model provides

a set of geometry models at fixed dimensions. Therefore, it is possible to optimise the

performance of the meshing stage of the execution of a simulation using the solver by

producing a static set of prototype raindrop geometry models which can be copied into

the mesh at the locations dictated by the configuration files output by the Sketchup

script. This is possible since the generated raindrop models cannot vary continuously

in size.

The prototype drop geometry information for each drop is held in an array which is

populated with relative permittivity information for each node within the mesh region
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encompassing the drop. This is read in from the series of prototype drop plain-text

configuration files generated by the Sketchup script. The layout and quantity of this

per-node information is directly dependent on the required cut-o↵ frequency of the

simulation, which directly impacts the �` value, and in turn the mesh resolution.

Simulated drop meshing

Once the prototype drop files have been imported and converted to node information

data, the solver is able to import the series of drops that must be placed inside the mesh

volume. As shown in Section (4.2.6), the drop configuration files contain information on

which drop size to use, as well as the absolute location of the centre of the drop within

the simulated environment. Using this information, the solver selects the appropriate

prototype drop to use. From this, the per-node dielectric properties are copied from the

prototype drop array into the mesh at the appropriate position.

5.3.2 Compute-node boundary data exchange

As discussed previously in Section (5.3.1), the SCN mesh representing the simulated

environment is divided between compute-nodes in order to take advantage of parallel

computing, reducing the overall simulation time. However, it is necessary to implement

a method for transferring the relevant node port voltage values across the boundary in-

terfaces of these sub-meshes once per simulated time-step. This data exchange between

sub-meshes then becomes equivalent to a single, contiguous mesh volume present on

a single compute-node.

The specific port voltage values that are exchanged across a sub-mesh boundary is

dependent on the axis on which the boundary interface lies. The ports used in each

interface orientation can be determined easily from examining the topology of a SCN,

as shown previously in Fig. (2.11).

The time taken to compute all node port values for a given time-step within a given sub-

mesh will be influenced by the total number of nodes in the sub-mesh in comparison

to the number of nodes in total on any boundary interfaces with neighbouring sub-

meshes. This is known as the compute-to-I/O ratio. The number of nodes present on
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boundary interfaces will in turn be influenced by the topology of the compute-node

interconnections, and the geometry of the sub-meshes themselves. If some sub-meshes

communicate on fewer boundary faces than others, it is possible for sub-meshes node

calculations for a particular time-step to complete in slightly di↵erent amounts of time,

even in the case of an uniform or empty mesh volume.

Assuming a cuboid sub-mesh configuration, with the sub-meshes themselves laid out

as a cube, the boundary interfaces between neighbouring sub-meshes will occur in the

X, Y and Z axes. However, the sub-meshes that are present adjacent to external mesh

boundary faces, edges and vertices will not communicate on each of their six faces.

This will influence the compute-to-I/O ratio as discussed previously. In this case, a set

of expressions for calculating the number of sub-meshes in each category (internal, face

adjacent, edge, and vertex) is shown in (5.1).

Ni = (n � 2)3

N f = 6(n � 2)2

Ne = 12(n � 2)

Nv = 8

(5.1)

The data exchange of port voltage values between sub-mesh boundary interfaces can be

thought of as an extension of the similar operations that occur in the connect phase of the

TLM algorithm. This allows the individual sub-meshes across several compute-nodes

to behave as a single mesh volume. The MPI library is used in order to exchange the

relevant port values across the sub-mesh boundary interfaces, in the same form as local

exchanges between nodes during the the local connect operations. The overall process

is shown below, considering sub-mesh boundary interfaces along the Y-axis only (in

pseudo-code):

//Loop control...

int x, y, z;

//Connect temp variables...



CHAPTER 5. TLM ON LARGE-SCALE COMPUTING PLATFORMS 95

float Vc;

SCNNode *nA, *nB;

//MPI START!

//MPI buffering for Tx

for (z = 0; z < ZDIM; z++) {

for (x = 0; x < XDIM; x++) {

//Node at X = x, Y = YDIM-1, Z = 1...

nA = &mesh[(x*YDIM+(YDIM-1))*ZDIM+z];

yTxNorthBuffer[(z*XDIM+x)*2+0] = nA->Vypx;

yTxNorthBuffer[(z*XDIM+x)*2+1] = nA->Vypz;

//Node at X = x, Y = 0, Z = 1...

nA = &mesh[(x*YDIM+0)*ZDIM+z];

yTxSouthBuffer[(z*XDIM+x)*2+0] = nA->Vynx;

yTxSouthBuffer[(z*XDIM+x)*2+1] = nA->Vynz;

}

}

//Start Persistent Communication - (MPI requests already initialised to

reduce overhead)...

MPI_Startall(2, reqSend);

MPI_Startall(2, reqRecv);

//Connect locally...

#pragma omp parallel for private (y,x,z,Vc,nA,nB)

for (y = 0; y < YDIM; y++)

{

for (x = 0; x < XDIM; x++)

{

for (z = 0; z < ZDIM; z++)

{

//Current node...

nA = &mesh[(x*YDIM+y)*ZDIM+z];

//x

nB = &mesh[((x+1)*YDIM+y)*ZDIM+z];

Vc = nA->Vxpy;

nA->Vxpy = nB->Vxny;

nB->Vxny = Vc;
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Vc = nA->Vxpz;

nA->Vxpz = nB->Vxnz;

nB->Vxnz = Vc;

//y

//(only locally connect in Y if not on a submesh

boundary)...

if (y < YDIM-1) {

nB = &mesh[(x*YDIM+(y+1))*ZDIM+z];

Vc = nA->Vypx;

nA->Vypx = nB->Vynx;

nB->Vynx = Vc;

Vc = nA->Vypz;

nA->Vypz = nB->Vynz;

nB->Vynz = Vc;

}

//z

nB = &mesh[(x*YDIM+y)*ZDIM+(z+1)];

Vc = nA->Vzpx;

nA->Vzpx = nB->Vznx;

nB->Vznx = Vc;

Vc = nA->Vzpy;

nA->Vzpy = nB->Vzny;

nB->Vzny = Vc;

}

}

}

//Wait until all requests have completed...

MPI_Waitall(2, reqSend, statusSend);

MPI_Waitall(2, reqRecv, statusRecv);

//Unpack MPI buffer into mesh...

for (z = 0; z < ZDIM; z++) {

for (x = 0; x < XDIM; x++) {

//Node at X = x, Y = 0, Z = 1...

nA = &mesh[(x*YDIM+0)*ZDIM+z];

nA->Vynx = yRxSouthBuffer[(z*XDIM+x)*2+0];

nA->Vynz = yRxSouthBuffer[(z*XDIM+x)*2+1];

//Node at X = x, Y = YDIM-1, Z = 1...
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nA = &mesh[(x*YDIM+(YDIM-1))*ZDIM+z];

nA->Vypx = yRxNorthBuffer[(z*XDIM+x)*2+0];

nA->Vypz = yRxNorthBuffer[(z*XDIM+x)*2+1];

}

}

5.3.3 SMP acceleration strategy

Modern desktop and HPC cluster systems often utilise multi-core processors in their

hardware architecture. By exploiting multiple processors on a system, additional per-

formance gains can be achieved in software applications already designed for paral-

lel computations using other schemes such as MPI, described in the previous Section.

OpenMP was previously identified as a suitable candidate for exploiting multiple phys-

ical processing cores, as shown in Sections (3.1.2) and (3.1.2).

To reiterate; OpenMP is a SMP API that supports shared-memory multiprocessing

on a number of platforms. During program execution, preprocessor directives before

functions or sections of the code intended to be run in parallel instruct the creation

of slave threads forked o↵ of the master thread. This allows the parallel execution of

that section of the application across the number of physical cores on the system by

spawning slave threads equal to the number of cores.4

In the context of the 3-D desktop TLM solver presented, several computationally time

intensive loops can be parallelised using the #pragma omp parallel for preprocessor

directive. This is simply placed above the loop to be parallelised, and the loop iterations

to be executed are divided between the slave threads that are spawned by the compiler.

Performance gains from utilising OpenMP vary, with the most noticeable increases seen

with highly computationally-intensive operations executing on systems with several

physical cores.
4Sometimes, the number of slave threads generated can be greater than the number of physical cores

present on the system if the CPU supports multi-threading.
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5.3.4 Extracting simulation data

During the execution of the solver, one or more mechanisms for viewing the EM field

information are necessary in order to analyse the behaviour of any simulations that are

executed. This access to the mesh data can typically be categorised into either informal

or formal observations, depending on the requirements of the user.

In the informal observation case, the EM field information can be presented as an

intensity colour map on a 2-D image. This allows for generalised observations of mesh

behaviour, where knowledge of specific field component values is not required. In the

formal observation case, individual nodes can be observed, and the EM field component

values are outputted to a plain-text file after each time-step for post-simulation analysis.

The following sections describe both observation cases in greater detail.

Visualising the mesh

An informal analysis of the EM field within the mesh during the simulation is achieved

by generating a series of 2-D images representing the mesh. Firstly, images are generated

in the XY plane (Fig. (5.2) (a)), each representing a one node thick slice through the

mesh along the Z-axis (Fig. (5.2) (b)). This image set is generated for each time-step,

allowing analysis of wave propagation throughout the mesh for the duration of any

simulation that is executed (Fig. (5.2) (c)).

The EM field information is represented in these images by mapping the field compon-

ent chosen for visualisation from each node to an equivalent colour using a RGB colour

map algorithm, which gives an at-a-glance visual indication of wave behaviour and

intensity to the user examining the resulting image files. In order to improve perform-

ance of the visualisation functionality, the colour map values are pre-calculated at the

start of simulation execution, and stored in a look-up table. The colour map algorithm,

assuming 8-bits per channel is shown in (5.2):
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n = 1 n = 2 n = 3… 

(a) (b) 

(c) 

x 

y 

x y 

z 

Figure 5.2: An overview of the mesh visualisation scheme, where individual slices
through a 3-D mesh (a) are converted into a multi-page image (b) in order to represent
the mesh at each time-step (c). The mesh dimensions are given by x, y and z and the
time-step number is given by n.

pr =
256 ⇥ (109 � (219 � (i ⇥ 256)))

73

pg =
256 ⇥ (109 � (146 � (i ⇥ 256)))

73

pb =
256 ⇥ (109 � (73 � (i ⇥ 256)))

73

(5.2)

where i is a EM field component value normalised to be between 0.0 - 1.0, and pr, pg,

and pb are the RGB pixel component values. A visualisation of the resulting colour map

is shown in Fig. (5.3).

Figure 5.3: A visualisation of the colour map that results from the calculations shown
in (5.2).

During image generation, boundary nodes are represented as entirely white pixels (i.e.
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a RGB value of 255, 255, 255). Also, any nodes with dielectric properties other than

free-space have their RGB values o↵set by +64, +64, +64, which allows objects within

the mesh to be visible in the generated images as well as the wave information.

To compile the contents of each image slice, MPI is exploited once more to improve the

performance of the image output scheme. Initially, the fact that the mesh is divided

between di↵erent processing units could be viewed as a complication where generation

of an image representing the mesh contents is concerned. This is because each image

should represent the entire mesh as a whole, and not individual sub-meshes.

One method for collating the mesh data would be to transmit the contents of each

submesh-slice to a single processing unit, before outputting the entire mesh-slice to an

image. An obvious disadvantage to this method is that large amounts of data would

be transmitted, reducing the performance of the image output function. However, this

potential problem can be avoided by utilising the parallel file I/O functionality of MPI,

which allows data from each sub-mesh to be written to one image file at the same

time, forming a representation of the mesh as a whole. This also has the added benefit

of reducing the time taken to generate images, and removes the need to transmit all

sub-mesh data to a single processing unit before generating the image file.

MPI is able to write to the same file across multiple processing units by specifying a

o↵set for the start-position for the write operation within the memory allocated for

the image file. This allows multiple write operations to occur simultaneously without

resulting in corrupted memory. This process is shown in Fig. (5.4).

As shown in the above figure, calculating the value for the o↵set variable is trivial, and

is related to the X and Y dimensions of the submesh, as well as the processing unit ID

number, r. It should also be noted that a full-colour image is generated hence the 030 in

the calculation, as one value is stored for each channel in the RGB colourspace.

Observing single nodes

In order to obtain a more accurate analysis of the simulation behaviour, precise EM field

component information must be obtained on an individual node basis from within the

mesh. This allows for the frequency response of the simulation environment to be
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Figure 5.4: An illustration of how MPI is used to improve performance via parallel
file I/O, in an example system with four processing units. XDIM and YDIM are sub-
mesh dimensions and r is the processing unit number. The black squares represent file
pointers which move concurrently as each processing unit writes to the file in parallel.

computed throughout the execution of the simulation.

AMeasurementPoint class was created in order to fulfil this functionality. The frequency

response at the node location that is observed is calculated by computing a Discrete

Fourier Transform (DFT) at every time-step. The DFT algorithm can be adapted for this

case, where the number of samples is not fixed, and in fact increases by one sample

after every time-step. This modification to the DFT equation is shown in (5.3).

X(n) =
N�1X

n=0

x(n)e� j2⇡ f n�t (5.3)

where X(n) is the DFT of the original signal x(n) at frequency f and time-step n, with a

time-step of �t.

For the 3-D solver application, the MeasurementPoint class is specified to have a start

and stop frequency, as well as a frequency step value. This means that several DFTs
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for frequencies of interest can be calculated during the simulation run. A <vector>

array of complex number values stores the running-total DFTs for each frequency, and

these are updated every time-step during the simulation execution. It is possible to

optimise the DFT equation shown above in (5.3) to reduce the number of complex

exponent calculations that are executed during a given time-step. The equation can be

re-expressed to group together the values which remain constant for a given time-step

within a simulation, meaning a single complex exponent can be pre-calculated rather

than computing one for each frequency of interest. This is shown in (5.4).

X(n) =
N�1X

n=0

x(n)W f (5.4)

where W = e� j2⇡n�t, i.e. the constant-value complex exponential term for the current

time-step.

In the context of the 3-D solver, the x(n) term is represented by one or more field

component values that are of interest when computing the DFT values. That is to say

that any single field component may be observed, or a vector representing the total E

or H-field. If the overall E or H-field is to be observed, the vector values representing

these fields can be calculated easily in the form shown in (5.5).

F =
q

Fx
2 + Fy

2 + Fz
2 (5.5)

where F represents either the overall E or H-field vector, and Fx, Fy and Fz represent the

individual E or H-field components directed along each respective axis.

5.3.5 Summary

This section has described and discussed the methodology and implementation details

of a parallel computing optimised 3-D SCN TLM solver for desktop and HPC cluster

systems at a level appropriate for most readers. More in-depth details are available

within documentation that comprehensively details the exact software implementation,

which is included at the end of this thesis (Appendix B).



CHAPTER 5. TLM ON LARGE-SCALE COMPUTING PLATFORMS 103

5.4 Results

Implementation details for a 3-D SCN solver with parallel computing optimisations

have been discussed. Suitable methods for extracting simulation data have also been

proposed, again with optimisations for a parallel computing architecture. This section

presents the results of several example simulation environments designed to test and

verify the di↵erent elements of what makes a successful CEM solver application. An

in-depth analysis is provided in each case, and findings are summarised at the end of

the section.

5.4.1 Validation

For any CEM solver application, it is crucial that the implemented solver is working

correctly during the course of executing simulations. In the case of the TLM method, it

is a trivial process to ensure that node port voltages are correct. A subset of nodes in a

small scale simulation are observed, and when combined with an impulsive excitation

the node port voltages are recorded over a small number of time-steps and checked

against the expected results via manual calculations. Whilst this method is indeed useful

to minimise any potential software defects in the early stages of implementation, other

methods should be employed on the macro scale to ensure the accuracy of simulation

results.

Time-domain verification

The method previously presented for outputting PPM image files in order to repres-

ent time-domain data, in section (5.3.4) is also a useful approach to a second-stage

verification of the simulation accuracy of the 3-D TLM solver. Any mistakes in the

implementation of the scatter and/or connect functionality of the solver will be im-

mediately evident during examination of time-domain image outputs, even over the

course of a relatively small number of time-steps. Typically, software defects relating to

the node stub value calculations and/or time-step calculations can present themselves

as a continued increasing in overall mesh energy, indicating that the mesh becomes
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unstable. Software defects within the connect process can present as unsymmetrical

wave propagation behaviour, and problems with boundary condition implementations

are also easily diagnosed via visual inspection of the time-domain PPM image files.

Frequency-domain verification

The final stage in the verification of the 3-D TLM solver is to ensure that frequency-

domain results are su�ciently accurate to be within a suitable margin of error. A first

step is to implement a canonical problem within the solver, for which empirical results

can be calculated. A popular example is a cuboid cavity modelled with metallic walls

and dimensions of 1 m ⇥ 1 m ⇥ 1 m. Any lossless cavity such as this example will be

strongly resonant at specific frequencies, whilst being mostly unresponsive at others.

The frequencies at which a cavity resonates (also known as modes) are dependant on its

dimensions along each axis. An equation for calculating transverse electric (TE) modes

of such cavities is shown in (5.6) [5.5].

TEmnp =
c

2p✏rµr

0
BBBBB@

s
m

dimx

2
+

n
dimy

2
+

p
dimz

2
1
CCCCCA (5.6)

where TEmnp is the relevant TE mode frequency and m, n and p are the number of

standing waves present along the x, y and z axes inside the cavity, representing the

specific mode configuration. The dimensions of the cavity along each axis are given by

dimx, dimy, and dimz respectively. For a 1 m3 resonant cavity in a free-space environment,

the TE mode equation can be simplified to that shown in (5.7).

TEmnp =
c
2

✓q
m2 + n2 + p2

◆
(5.7)

The fundamental TE mode, TE110 for a 1 m3 resonant cavity is therefore calculated to

be 211.985 MHz. As stated previously, this provides a target known result to use when

executing the resonant cavity simulation on the 3-D TLM solver. Depending on the

frequency-domain analysis parameters that are chosen, other TE modes such as TE220

= 423.971 MHz may also be observed.

The 3-D TLM solver was validated against this example of a 1 m3 resonant cavity where
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�` = 0.01 m. The resulting mesh dimensions were therefore 1000 ⇥ 1000 ⇥ 1000 nodes,

and the simulation was executed for 40 000 time-steps (equivalent to a real-world time

of 6.673 ⇥ 10�7 s). This experimental configuration is similar to approaches utilised

previously by Herring and Flint. [5.6, 5.7]. The results of simulation are shown in Fig.

(5.5).
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Figure 5.5: Frequency domain results showing resonant frequencies in a simulated 1
m3 cavity.

In the above figure the TE110 mode is the most strongly excited, as is expected due to

the fact that it is a fundamental TE mode. Examining the results shows a frequency

of 214 MHz, an error of +0.95% from the calculated result. The amount of error in the

resolving of frequency responses when using DFT or FFT algorithms is dictated by the

intervals in the frequency domain between sampling points. This is turn is governed

by a combination of the time-step size and number of samples in the time domain. The

number of frequency domain samples, commonly referred to as bins, grows as their

interval narrows. An equation for the frequency domain interval, � f is shown in (5.8).

� f =
fc
N

(5.8)

where fc is the simulation cut-o↵ frequency (i.e. 1
�t ) and N is the number of samples

in the time domain. It should be noted that in the case of using the FFT algorithm to
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compute the frequency domain result, if N is not a power of 2, the time domain signal

is padded with zeros until the signal is the next highest power of 2 in length. This is

necessary for proper calculation using FFT.

5.4.2 Benchmarking

The benchmarking problem

In contemporary CEM applications, it is often the case that researchers require solver

applications that are able to model increasingly large volumes (for example when

modelling large anechoic chambers) and/or small geometry at increasingly high mesh

resolutions (for example, in the case of small antenna designs with intricate geometry).

For these and other applications requiring a large number of mesh nodes to be present

in the simulation volume, it is clear that a CEM solver that is optimised for parallel

computing architectures should be able to outperform a comparable solver running

on fewer processing units. This is advantageous to researchers aiming to complete

simulations as quickly as possible in terms of their wall-clock time.

Following the development of the rain-field modelling method presented in the pre-

vious chapter, a trivial example problem was devised based on a approximation of a

rain-field, to be utilised during the benchmarking tests detailed below. A rain-field

of dimensions 20 mm ⇥ 20 mm ⇥ 20 mm was simulated at a mesh resolution of 0.1

mm.node�1, for a total of 8⇥106 nodes. This was filled with modelled raindrops using

the methods detailed in the previous chapter, until the total raindrop volume was 10%

of that of the overall simulation volume. A step impulse of 1 V was injected into the

mesh at time-step 0, and the simulation was executed for 1 000 time-steps. The resulting

real-world simulation time was equivalent to 1.65⇥10�10 s.

Results

The baseline performance figure for a CEM solver would be the raw performance, or

the processing speed of the solver application during a simulation run without any I/O

operations to storage media. This is the theoretical peak performance of the CEM solver

for a given platform configuration, as real-world processing speeds will be lower than
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this due to the fact that some amount of I/O is necessary in order to obtain simulation

results (which is true in both the time or frequency domains). The raw performance

of a CEM solver is useful however in order to determine relative performance figures

when benchmarking other scenarios.

With any application that is optimised for parallel computing architectures, it is clear

that the main factor that determines performance is the number of available processing

units. In the context of the 3-D SCN TLM solver that has been implemented, raw

performance figures were obtained for an example simulation rain-field volume when

being executed on a typical desktop workstation computer5 with varying numbers of

processing cores being made available to the solver. These results are shown in Fig.

(5.6).
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Figure 5.6: The raw performance metrics of the 3-D SCN TLM solver when running on
varying numbers of processing cores with no write operations to disk. (An average of
three simulation runs).

It should be noted that these figures are the real-world times that the simulations took to

complete execution. In the case of CEM solvers, it is also useful to be able to demonstrate

processing performance in terms of a figure in the units nodes.s�1 as this allows a more

direct comparison across di↵erent solvers and simulation volumes than the wall-clock

time figures previously presented. The raw performance figures in nodes.s�1 are shown

in Fig. (5.7).
5In all benchmarking tests, the solver was run on a Windows 7 64-bit desktop workstation with the

following specifications: Quad-core Intel i5 650 3.2GHz CPU, 12GB 1066MHz RAM, 160GB HDD.
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Figure 5.7: The wall-clock execution times of the 3-D SCN TLM solver when running
on varying numbers of processing cores with no write operations to disk. (An average
of three simulation runs).

As discussed previously in section (5.3.4), the ability to extract simulation parameters

and resultant data is essential to a CEM solver application. Both time and frequency

domain results can prove useful in di↵erent simulation configurations, and in both

cases data output to a hard drive or other persistent storage medium will result in

a performance penalty. In the time domain case this data output happens at regular

intervals in the form of generated PPM image files, and the output interval width (or

stride) will have a direct bearing on the overall processing performance of the solver in

any given simulation run. The relationship between data output interval, the number

of processing cores utilised and the simulation time is shown in Fig. (5.8).

5.5 Performance analysis

It is evident from the results presented in the previous section that there are clear benefits

to a parallel processing approach when implementing a 3-D CEM solver application.

In order to better compare the raw performance of the solver, the normalised raw

performance figures of the solver are shown in Table (5.1).

When comparing the case of using two processing cores as opposed to a single pro-

cessing core, there is a large relative performance increase of 44.4%. Following this

in the cases of using three and four processing cores respectively, the relative solver
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Figure 5.8: The wall-clock execution times of the 3-D SCN TLM solver when running on
varying numbers of processing cores and with di↵erent stride values for the generated
PPM image outputs. (An average of three simulation runs for each number of cores
under test).

Normalised Performance
Cores Absolute Relative

1 1.000 1.000
2 1.444 1.444
3 1.506 1.043
4 1.573 1.045

Table 5.1: The absolute and relative normalised performance figures for the raw 3-D
SCN TLM solver based on the results as shown in Fig. (5.6).

performance increase slows to between 4.3 - 4.5% in each case. This could be an indic-

ation of the principles put forward by Amdahl [5.8] relating to software applications

and/or hardware systems that contain a mixture of both parallel and serial operations

in systems with varying numbers of processing units. Another explanation would be

a performance bottleneck due to CPU cache saturation. In this case whilst it still be-

neficial to increase the numbers of processing units during execution of the 3-D solver,

clearly it is a case of diminishing returns as the pace of performance increase slows and

becomes approximately linear.

The time-domain performance benchmarking shown previously in Fig (5.8) relates the

simulation performance of the solver to the PPM image file output interval (or stride)

as well as the number of processing cores in use. This is intended to demonstrate the

performance of the solver in a scenario closer to real-world usage. As noted previously
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in section (5.3.4), all PPM file write operations are being executed in parallel across

all processing cores via MPI. To reiterate, the reasoning for this was two-fold in order

to reduce implementation complexity (since sub-mesh image data would not need

assembling into a full mesh before the file write operation) and to improve simulation

performance by sharing write operations across processing cores.

It is interesting to note that the benchmarking results in this time-domain case demon-

strate behaviour that is not necessarily immediately intuitive. Firstly, the wall-clock

simulation time when using three or four processing cores is longer than when us-

ing just two cores (however, using a single core is the slowest as expected). This is

true in every test case when varying the stride value for PPM output. This is likely a

side-e↵ect of the fact that ultimately any write operation to a hard-drive happens in a

serial fashion. A unavoidable disadvantage of hard-drives is rotational latency6. Also,

ultimately each processing core will take it in turns to write their portion of each file to

disk, resulting in movements of the read/write head itself. Both of these phenomena

will impair simulation performance, and illustrates that in certain configurations it is

not always beneficial to utilise more processing cores when considering parallel file

write operations. In the case of other persistent storage options such as solid-state disks

(SSDs) that typically possess considerably faster read and write speeds, it is likely that

simulation performance would be closer to that shown as the raw performance figures

in Fig. (5.7). Due to the lack of mechanical parts, the behaviour when observing file

write operations with multiple processing cores is also likely to di↵er.

Finally, in the case of all of the performance benchmarking tests executed using four

processing cores will likely incurred an additional performance penalty as the test

workstation possessed only a quad-core CPU. This means that performance was not

likely to be at absolute peak potential due to the operating system also requiring CPU

time for lower level processes (which is true even if no other user-level software is

running). This provides an additional probable explanation for slower than expected

wall-clock execution times and normalised performance figures in the four core test

cases.
6Rotational latency is the delay caused by the hard-drive having to physically move the correct disk

sector into place under the read/write head during its rotation. It is a function of the rotational speed of a
hard-drive, and for a typical 7200pm consumer hard-drive the maximum delay is 4.17ms
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It has been shown that despite the impairments due to disk contention and mechanical

latencies, the use of two or more processing cores o↵ers better overall performance

characteristics with every tested stride value for PPM image outputs to disk. For real-

world applications this is the most relevant performance metric, since it demonstrates

that parallel computation and file write operations are indeed faster than execution

on a single processing core. It is however also pertinent to characterise the solver

performance in these cases relative to the demonstrated maximum raw performance

figures. These normalised performance figures are shown in Fig. (5.9).
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Figure 5.9: The performance figures of the 3-D SCN TLM solver when running on
varying numbers of processing cores and with di↵erent stride values for the generated
PPM image outputs, normalised to the raw performance figures shown in Fig. (5.7).

It is worthy noting that the normalised performance figures demonstrate that the single

core test case is more e�cient than when using two or more cores. This reinforces

the hypothesis that parallel file write operations to di↵erent portions of a PPM image

file in combination with the associated latencies of mechanical persistent storage are

impairing simulation performance. Indeed, even in the case of utilising two processing

cores where absolute simulation performance is shown to be the highest of all test

cases, normalised performance (and therefore e�ciency) is shown to be lower than in

the single core case.
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5.6 Summary

A 3-D SCN TLM solver application has been implemented based on a hybrid approach

to parallel computing, utilising a combination of the MPI and OpenMP software lib-

raries in order to maximise processing performance on both multi-core desktop and

HPC cluster systems. These computing platforms were favoured over GPU-based ap-

proaches for their ubquity in academic and commericial environments, as well as the

flexibility and expandability of available processing power when using these platforms.

A methodology for implementing the raindrop meshing functionality was proposed,

based on the raindrop modelling implementation presented in the previous chapter.

The discrete nature of the raindrop model (in terms of modelling raindrops of di↵erent

diameters) was exploited and for any given simulation a number of prototype raindrops

are generated by the Ruby script, which are imported and then re-used during rain-

drop meshing. This has a two-fold e↵ect of reducing computational overhead during

solver initialisation, as well as removing redudant data usage within the simulation

configuration files.

Strategies were also presented for the exchange of the relevant node port voltage inform-

ation between neighbouring processing units during solver execution, whilst avoiding

the issue of deadlock.

Time and frequency-domain methods for simulation observations have been proposed,

and methods discussed for utilising parallel computing architectures to also accelerate

the storage of this data, with focus to the time-domain case and the output of text and

image files representing the simulation volume.

The performance of the solver was mathematically validated using a model of a resonant

cavity, which is an accepted canonical problem within CEM applications and provides

a straightforward means of validating the solver as its frequency domain response is

empirically predicted. Performance of the solver on a typical desktop workstation was

also presented in a variety of processing configurations, and the results were discussed

and analysed.
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Chapter 6

TLM on mobile computing platforms

6.1 Introduction

Any TLM solver designed for mobile computing platforms must be highly-optimised

in order to maximise simulation performance. Due to the constraints on processing

power and quantity of memory available on such devices, a completely distinct use

case must be considered for any mobile solver, as full 3-D simulations would prove

impractical when attempting to provide instantaneous feedback to users.

This chapter discusses the limitations of mobile platforms, and the considerations that

must therefore be made when developing a TLM solver targeted for mobile devices

(section (6.3)). These factors inform the motivations for the application use case, which

is as an educational learning aid for undergraduate level students studying in the field

of communications and wave theory, as part of a higher-level education in electronic

and electrical engineering or physics, for example.

Implementation details are also discussed, including strategies for ensuring simulation

performance is maximised despite the constraints present in mobile platforms (section

(6.2)). These strategies are analogous to those presented in the previous chapter utilised

for the 3-D TLM implementation. However despite some similarities, platform-specific

solutions are also presented. Benchmarking results are also presented, with an in-

depth performance analysis also included (section (6.4) and (6.5)). Finally a summary
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of the mobile solver is given, including discussion on potential avenues for future

improvements (section (6.6)).

6.2 Methodology

Accelerating the performance of a TLM solver has been a topic for a wide variety of

research papers in recent years [6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7]. Much of the focus of

such research has been on parallel computing implementations focusing on medium to

large-scale computing platforms and applications. Many of these implementations have

focused on desktop multi-core and multi-threading strategies to achieve performance

gains with a particular solver, using either CPU, GPU or hybrid approaches with

several cores available. In contrast, modern small-scale computing platforms often

have a processor on board that contains 1, 2 or sometimes 4 processing cores. For these

platforms, it is now feasible for developers to embrace multi-core and multi-threaded

programming techniques in order to improve software performance. This strategy is

useful for the vast majority of commercial software, as tasks are normally defined at a

relatively high-level within source code.

The execution of such tasks can therefore be managed with relative ease when imple-

menting multi-threaded software architectures. However, algorithms for tasks such as

image filtering, video encoding, and similar tasks that are suited for parallel processing

are defined at a much lower-level, and traditional parallel processing techniques can

become harder to manage and implement in these cases. The vast majority of modern

small-scale computing platforms utilise CPUs that have an ARM core (or cores) as part

of the processor. Of these, most have support for the ARM NEON Media Processing En-

gine via the adoption of the ARMv7 hardware architecture [6.8]. This is a combination

of specialised hardware registers and a programming instruction set that is designed

for the vector processing of data values stored within the registers. It should be noted

that an orthogonal approach to SIMD processing is also available on desktop and HPC

computing systems via the Intel Streaming SIMD Extensions (SSE) architecture present

on the majority of Intel-produced CPUs [6.9]. This was extended with the availability

of Advanced Vector Extensions (AVX) in CPUs available from 2011 from both Intel and
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AMD [6.10]. Intel also provides a comprehensive set of intrinsic functions for both SSE

and AVX [6.11], in much the same way as is available for ARM NEON instructions.

This section presents an implementation of a 2-D TLM solver that uses ARM NEON

features to achieve a large performance increase without the need to implement tra-

ditional multi-core and multi-threaded parallel computing techniques. This reduces

implementation time and software complexity for the developer, and was chosen as the

preferred strategy for parallelisation before considering multi-threaded computing.

6.2.1 ARM NEON overview

Support for ARM NEON is included within Cortex-A8 processors (as well as optional

support within Cortex-A9 processors), which are designed to use the ARMv7 Advanced

Single Instruction, Multiple Data (SIMD) instruction set [6.12]. The majority of modern

mobile and embedded devices utilise System on Chip (SoC) processors which include

these ARM cores. This includes SoCs manufactured in-house, such as the Snapdragon

family of processors by Qualcomm [6.13]. In these cases, vendors license the use of

the ARMv7 architecture and instruction set. ARM NEON instructions make use of the

concept of vector processing, where the same mathematical operation is conducted on

multiple values at the same time. This is accomplished via the use of a register bank

within Cortex-A8 processors, which the ARM core can be instructed to view as follows

[6.14]:

• Thirty-two 64-bit registers

• Sixteen 128-bit registers

The ARM core views these large registers as collections of individual numerical values.

The number of di↵erent values that can be contained in each register is dictated by

the type and precision of the numerical values chosen. Table (6.1) shows some typical

configurations that can be chosen for data storage in a NEON register.

As shown in Table (6.1), higher precision values take up more space in memory, and

therefore fewer individual values can be stored in a NEON register. Also, as expected,

a 128-bit register will always hold twice the amount of values as a 64-bit register for

a given data-type. Once data has been loaded into one or more NEON registers, a
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Data type Precision Values stored in 64-bits Values stored in 128-bits

Signed int Byte 8 16
Signed int Short 4 8
Signed int Long 2 4
Float Single 2 4

Table 6.1: Typical ARM NEON register configurations for 64-bit & 128-bit registers.

developer can use the SIMD instruction set to carry out mathematical operations on

more than one value at the same time in order to improve performance of an algorithm.

An important note is that to date, most of the SIMD instructions can only operate on

64-bits at one time. This means that often, storing values in a 128-bit NEON register

before processing will not o↵er a performance improvement over using 64-bit registers,

however some recent versions of ARM cores typically utilised in mobile devices o↵er a

full 128-bit pipeline.

6.2.2 Two-dimensional TLM with ARM NEON

Typically when developing a TLM solver, floating point variables (commonly called

‘floats’ within many programming languages) are used to hold node port values for

use by the scatter and connect function during a simulation. Single precision floats

are su�cient for a typical TLM solver, which means each value occupies 32-bits of

memory. Therefore, when implementing the TLM solver, two values can be stored in

each 64-bit NEON register. This will allow two nodes to be worked on simultaneously.

An illustration of this is shown in Fig. (6.1).

 
Single precision float Single precision float 

0 31 32 63 

Figure 6.1: Illustration of the storage method within a 64-bit NEON register for two
single precision floats.

For 2-D TLM, each node has four port values associated with it. During the scatter and

connect phase of the simulation for a given node being processed, the four neighbouring

port values belonging to adjacent nodes to the north, east, south and west must be

accessed. Therefore, we must use an array of four individual NEON registers within

our program. Each register holds a particular neighbouring node’s port value for two
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consecutive nodes, ready for vector processing. This is illustrated in Fig. (6.2).

 

௫ܸಶబ ௫ܸಶభ 

௬ܸಿబ  ௬ܸಿభ 

௫ܸೈబ ௫ܸೈభ 

௬ܸೄబ  ௬ܸೄభ 

.ܰݓݐ  [0]݈ܽݒ

.ܰݓݐ  [1]݈ܽݒ

.ܰݓݐ  [2]݈ܽݒ

.ܰݓݐ  [3]݈ܽݒ

Figure 6.2: An array of NEON registers holding neighbouring port values for two
adjacent nodes to be processed.

Within a NEON register, individual values are given the name elements whilst using the

SIMD instruction set. The registers themselves are referred to as vectors. This alludes to

the parallel nature of the mathematics used during manipulation of the values residing

within the registers. The basic premise of vector programming is that contents of one

or more vectors are manipulated at the same time in order to speed up algorithms that

apply the same operations to large datasets. An example of a vector addition operation

using two NEON registers for operands and another as a result register is shown in Fig.

(6.3).

 

Result Vector 

3.2 5.4

2.8 3.6

9.06.0 

Vector Addition 

Figure 6.3: An example of vector addition with single precision floats using NEON
registers.

6.2.3 A SIMD approach to the TLM method

The investigations for this section of the thesis were conducted using an Apple iPhone

4S, iPad 2, iPad 3, iPhone 5 and iPad 4, in order of processor clock-speed. These modern

mobile computing devices contain SoC CPUs which contain a dual core ARM Cortex-

A8 or ARM Cortex-A15. Whilst development and benchmarking was conducted on

this family of devices, the source code for the vectorised scatter and connect function is

highly portable to other mobile and embedded systems using compatible ARM CPUs.
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This is due to the low-level nature of the code, as well as the use of NEON intrinsic

functions, which are included in the majority of ARM compatible compilers.

The vectorised version of the 2-D TLM algorithm is very similar to that of a traditional

serial solver. However, the end result with the NEON implementation is that the source

code is more verbose because most arithmetical vector operations can only work on two

registers at the same time. This means calculations that can be completed in a single

line in the serial version of the solver are split over several lines in the ARM NEON

code. After loading the array of registers with neighbouring port values as shown in

Fig. (6.2), the total node voltage, Vz, for two consecutive nodes can be vector computed

as shown in (6.1).

Vz =
3X

n=0

(hal f ⇥ twoN.val[n]) (6.1)

In (6.1) above, Vz is a result register which will hold the resulting total node voltage

for the two consecutive nodes. When computing Vz using NEON instructions, it is

necessary to initialise a separate NEON register named half, with a value of 0.5 in

floating point representation, ready for use with the vector multiplication operation.

The NEON instruction set provides a set of functions for initialising registers so that

a given value is duplicated the relevant amount of times across an entire register.

Computing E and H field values is accomplished in a similar fashion with vector

operations. Examples of these are shown in (6.2), (6.3) and (6.4).

Ez = �Vz (6.2)

Hx = hal f ⇥ (twoN.val[1] � twoN.val[3]) (6.3)

Hy = hal f ⇥ (twoN.val[0] � twoN.val[2]) (6.4)

The final step during the scatter and connect process is to vector compute the new port

values for both nodes for the subsequent time step. This uses the value of Vz which was
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computed earlier, along with the neighbouring port values in the register array. The

computation is in the form of (6.5) and repeated for all four ports.

twoNReordered.val[2] = Vz � twoN.val[0] (6.5)

It should be noted in (6.5) that the result of computing the new port value for each

of the two nodes being worked on is stored in a new register array, twoNReordered,

of the same dimensions as the original register array, twoN. Each result is stored to a

register in this new array, but at a di↵erent index. Reordering the new port values in

this way allows for the use of a vector store of the array to the data bu↵er which holds

the mesh port values for the subsequent time step. The NEON instruction set includes

the ability to populate registers from data bu↵ers and vice versa. Developers can also

use specialised load and store functions which operate using pointer o↵sets to allocated

blocks memory in order to load and store multiple values simultaneously. In this case,

the port values were reordered in the register array such that the parallel store function

vst4_f32 is used to write all eight port values for both nodes to the mesh array at once.

A representation of the internal operations of this function is shown in (6.6) and (6.6).

pTPlus1 + n = twoNReordered.val[n]0 (6.6)

pTPlus1 + n + 4 = twoNReordered.val[n]1 (6.7)

In (6.6) and (6.6) above, pTPlus1 is a pointer to the mesh port value array for the

subsequent time step. Specifically, the pointer is set to the first of the four port values

for the first of the two nodes being operated on concurrently by the NEON code. Within

the vst4_f32 function, the index n is incremented from 0 to 3 inclusive in order to access

all four port value registers in the twoNReordered array and store them at the correct

points in the TPlus1 data bu↵er. [n]0 refers to the first element in a given register and

[n]1 refers to the second element. In reality, these operations occur in parallel, and

therefore storing the port value data back to memory is sped up considerably.
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6.2.4 Multi-threaded optimisations

It has been shown that mobile devices present considerations for maximising perform-

ance of computationally-intensive algorithms, such as TLM. The previous sections have

illustrated that it is first necessary to fully utilise all available hardware acceleration

features of a mobile device CPU, in order to ensure maximimum algorithm perform-

ance during execution. Once any hardware acceleration features have been utilised, the

developement focus can be shifted to multi-threading strategies in order to fully utilise

processing hardware on mobile devices that possess more than one physical processor

core.

In this case, all of the mobile devices used for development and testing contained a CPU

with at least two cores, and indeed this is common place in commercially-available

mobile computing devices. Mobile device CPUs adhering to the ARM architecture

present identical hardware features across all available cores in the majority of cases.

This fact can be exploited to ensure that the performance of the 2-D TLM solver is truly

maximised by using multi-threaded computing to spread TLM computations across

several threads running on all available processor cores.

Using iOS development as an example, multi-threaded processing is most easily achieved

by using the Grand Central Dispatch (GCD) multi-threading library. One of the features

of GCD is its ease of use concerning executing functions concurrently across multiple

threads. A function which computes the scatter and connect process across a section of

the 2-D mesh can be executed concurrently, with each instance working on a di↵erent

section of the mesh in order to improve simulation performance.

Since creating threads and sending functions to them for execution takes a small amount

of processor time itself, the developer can experiment to find the optimum amount

of mesh which each instance of the scatter and connect function works on at a time.

Changing the amount of nodes processed in turn e↵ects the number of times the function

must be executed, and therefore the number of threads that must be spawned every

timestep. An example of this using a variable, stride to control the amount of Y-axis

rows of nodes processed at once, is shown below (in pseudo-code):

//GCD Queue, work count and stride variables
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dispatch_queue_t queue = dispatch_get_global_queue(

DISPATCH_QUEUE_PRIORITY_HIGH , 0);

int stride = 32;

//Dispatch the block (int)YDIM/stride times to the queue

//(asynchronous working but returns only when all blocks executed)

dispatch_apply(YDIM/stride, queue, ^(size_t blockIdx) {

int startY = blockIdx * stride;

[self scatterAndConnectNEONWithYStart:startY andYEnd:startY+stride];

});

//Remaining y-iterations (accounts for a remainder from (float)YDIM/stride)

[self scatterAndConnectNEONWithYStart:YDIM-(YDIM%stride) andYEnd:YDIM -1];

6.2.5 Summary

This section has described and discussed the methodology and implementation details

of a parallel computing optimised 2-D TLM solver for mobile computing devices at a

level appropriate for most readers. More in-depth details are available within docu-

mentation that comprehensively details the exact software implementation for the iOS

mobile platform, which is included at the end of this thesis (Appendix C).

6.3 Motivations for education as a use case

6.3.1 Limitations and considerations

Any software application designed for a mobile platform has a number of restrictions

placed upon it simply due to the nature of its execution on a small-scale computing

platform. In the case of a TLM solver, the mobile platform presents a number of

challenges that must be considered during the design and development stages, which

in turn influence potential use cases for the resulting solver.
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Hardware considerations

Most obviously, hardware limitations are at the forefront of these considerations. For

instance, a typical smartphone or tablet computer will have less (in some cases signific-

antly less) RAM available for applications to utilise during execution than an equivalent

desktop system. Depending on the mobile operating system, third-party applications

often have lower priority RAM privileges than OS processes and first-party applica-

tions. Sometimes hard limits are also enforced on the maximum RAM consumption.

For a TLM solver, this limitation results in two design choices; 3-D simulations and the

use of SCNs should be avoided to minimise RAM usage. The restriction to 2-D simu-

lations without stubs in turn reduces the complexity of problems that can be modelled

using the solver.

Processing performance is also often much lower than a typical desktop system. In

this case, the restriction to a 2-D non stub-loaded solver also reduces the number of

mathematical operations required per-node in the scatter and connect process. This

ensures that processing performance is maximised, even before considering additional

optimisation techniques such as SIMD mathematical operations or multi-threading.

User interface considerations

Smartphones and tablets have an established touch-screen interaction method between

user and software applications. Very often a physical keyboard is also not present. In

the context of the mobile solver, this means that precisely defining mesh objects and

pulse excitations is not possible due to a lack of a precision pointing device. A mixture

of pre-configured simulation environments and engaging free-form simulations based

on the touch-screen UI were favoured to reduce the complexity of use whilst the solver

is executed. Precisely configured user simulation environments should be restricted to

being authored on external computers and imported in via a webserver link or a similar

scheme.
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6.3.2 Education as a use case

The limitations and considerations discussed previously for a solver running on mobile

devices result in a 2-D simulation environment with a greatly simplified user interac-

tion method, via the touch-screen. Presenting the solver as an education learning aid

application ensures these limitations are not a hindrance to the use of the solver. Sev-

eral pre-configured 2-D simulations can be included to demonstrate specific principles

regarding wave theory within the scope of an Electronic and Electrical engineering or

physics degree. Free-form dynamic simulations can also be facilitated by allowing the

user to place point source excitations and boundaries simply by using their finger with

the touch-screen. Finally, additional pre-configured simulations can be specified by

lecturers or students by using a suitable XML scheme and having the application parse

files held on remote webservers.

Educational software for mobile computing devices must be multi-platform to remove

the need for dedicated devices to be provided to students. This ensures application

ubiquity amongst a student cohort. Recent smartphone market share figures show

that Android at 75%, with iOS at 14.9% and Windows Phone at 2% [6.15]. These three

platforms represent over 90% of the smartphones sold. Development of the application

therefore focused on supporting these platforms to ensure ubiquitous take-up of the

application.

The application has several pre-defined simulation modes that illustrate di↵erent prin-

ciples and phenomena from electromagnetic wave theory. End-users are also able to

interact with the application in a free-form manner, initiating point sources of both

Gaussian and sinusoidal types in response to finger presses on the screen. Custom

boundaries can also be placed by dragging a finger on the screen. Educators have flex-

ibility to implement simulations to their own design. These simulations are authored

using CEML [6.16], an XML-based configuration language designed by the authors

as a platform-agnostic standard for defining Computational Electromagnetic (CEM)

simulations.



CHAPTER 6. TLM ON MOBILE COMPUTING PLATFORMS 125

6.4 Benchmarking results

In order to test the performance of both the serial and SIMD versions of the solver, an

example problem will be used during execution of the simulation. We have chosen a

widely-used example, a 1 m2 cavity. In our case, we will model the cavity at a resolution

of 301 by 301 nodes (a total of 90,601 nodes), with boundaries configured to be a perfect

electric conductor (PEC). The final benchmarking was conducted without outputting

the results to the screen in order to obtain a peak performance figure, however for

clarity a screenshot of the simulated cavity is shown in Fig. (6.4).

Figure 6.4: A visualisation of the simulated 1 m2 cavity resonator used for benchmark-
ing.

Following the implementation of the SIMD scatter and connect function using the

NEON instruction set, a benchmarking test was conducted to compare the simulation

speed with that of the original serial TLM solver. Details of the resulting performance

metrics are included in Table (6.2).

With the results shown above in Table (6.2), all simulations were conducted using the
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Processing Speed (nodes.s�1 ⇥ 106)

Device Serial NEON SIMD

iPhone 4S 6.010 11.385
iPad 2 7.479 12.506
iPad 3 7.521 12.525
iPhone 5 17.766 29.393
iPad 4 18.965 34.962

Table 6.2: Benchmarking results comparing ARM NEON SIMD & serial-processing
TLM solvers on mobile devices.

same mesh dimensions in order to provide a fair comparison for benchmarking both

versions of the solver. The values that were obtained for processing speed in nodes.s�1

were calculated with time stamping code, with final speed calculations completed using

the method shown in (6.8).

vproc =
N
tsc

(6.8)

As shown above in (6.8), the processing speed in nodes.s�1 vproc, is calculated using

the time taken for each iteration of the scatter and connection function, tsc. This time

di↵erence is calculated using accurate time stamps both before and after each completed

iteration of the scatter and connect routine. To find proc, the total number of nodes in

the simulation, N, is also required. In practice, the value obtained for tsc was the mean

value taken over 10 iterations to reduce the e↵ect of any inaccuracies in the time stamp

values. Fig. (6.5) shows results of executing the benchmarking problem on a variety of

devices using ARM Cortex-A8 and A9 processors. All results are shown as the factor

of performance improvement, normalised to the performance of the serial code on the

iPhone 4S.

6.5 Performance analysis

A parallelised implementation of a traditional 2-D TLM solver has been demonstrated

on the iOS platform. ARM NEON hardware support was exploited, with the potential

for a maximum performance increase of 100% (i.e. a doubling of performance) in agree-

ment with the principles proposed by Amdahl [6.17]. Amdahl’s Law is a method for
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Figure 6.5: Normalised processing speed comparision between the ARM NEON SIMD
TLM solver and the serial TLM solver.

calculating the expected performance increase factor of a piece of software due to im-

provements in performance to a portion of the application. Originally, the relationship

represented a performance increase in terms of a ratio of improved to non-improved

code, as well as factoring in a specific speed up factor observed for the improved code.

It is trivial to modify Amdahl’s Law to illustrate the performance increase due to the

ratio of parallel to serial code present in a piece of software, whilst taking into account

the number of processing units available on the hardware running the application.

Equation (6.9) demonstrates this, with S being the performance increase factor, P being

the ratio of parallel code in the application, and N being the number of processing units.

Through benchmarking, the performance increase factor S was found for a number of

devices, with N equal to two in each case as ARM NEON vector operations occur on

two values at once. The original equation for Amdahl’s Law can be re-arranged to solve

for P to determine the exact ratio of parallel to serial code in the application. This is

shown in equation (6.10).

A comprehensive review of the relationship between the TLM method and general

approaches to adapting it for parallel computation has previously been conducted by

Stothard [6.18]. As stated previously, it is possible for both the scatter and connect pro-

cesses within the TLM algorithm to be completed by a parallel processing scheme due

to data independence across mesh nodes within a single time-step. This suggests that

in the case of two processing units, attainable performance increases should approach

100% as the scatter and connect processes form a large part of the computation time of
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the TLM algorithm.

As shown previously in Fig. (6.5), observations from benchmarking both versions of

the solver showed a maximum performance increase of 89% over the serial version of

the application, which was equivalent to the parallelised fraction of the solver code as

being 94%. This is very close to the theoretical limit for a system using two computing

units, and confirms an e�cient parallel TLM implementation aided by the potential for

the scatter and connect process to be almost completely parallelised. On the iPad 2 and

iPad 3, the performance increase observed when using the NEON SIMD solver is 67%.

It is interesting to note that the increased CPU clock speed of the iPad 2 and iPad 3 (at

1GHz) as compared to the iPhone 4S (at 800MHz) does not produce the same relative

performance increase factor as is observed with the iPhone 4S.

S =
1

(1 � P) + P
N

(6.9)

P =
N(S � 1)
S(N � 1)

(6.10)

6.6 Summary

Using devices containing SoCs leveraging the ARMv7 architecture and the NEON

instruction set, it has been shown that performance increases of nearly double the base

figures can be achieved. It has been demonstrated that the conversion of the scatter and

connect function of the solver to a version that uses ARM NEON intrinsic functions to

parallelise the algorithm requires a relatively low amount of e↵ort from the developer.

This is in contrast to utilising traditional parallel computing techniques for increasing

the performance of the solver, which require management of multiple threads and/or

parallel data transfer across multiple processing cores.

The observed large increases in performance observed on all devices that were bench-

marked, coupled with the low complexity of the parallelization method justifies the case

for altering the parallel computing strategy when implementing TLM solvers on mobile

and embedded platforms. Further research and testing is required to fully understand

the cause of the di↵erence in performance increase factors when comparing the iPhone
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4S results to those of the iPad 2 and iPad 3. The hypothesis was that a performance

increase factor that was similar to that of the iPhone 4S would be observed in the other

devices. For this to have been the case, NEON SIMD performance on the both iPads

should have achieved approximately 14.140 ⇥ 106 nodes.s�1. It is possible that when

running the solver on the iPad 2 and iPad 3 that a bottleneck has been reached with

regards to the memory hierarchy and the ARM NEON registers used for parallel vector

computation within the TLM mesh. This would explain why the expected increase in

the performance (approximately 25%) was observed with the serial solver when com-

paring the iPhone 4S and iPad results, as the serial solver does not utilise the NEON

registers, whereas the NEON SIMD solver does.
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Chapter 7

Conclusions

The aim of this thesis was to identify di↵erent approaches for conducting CEM sim-

ulations on both large and small-scale computing platforms. These aims have been

met by formulating a suitable case study for both classes of computing platform, and

focussing on optimisation techniques as part of the implementation for both platforms.

This chapter details the contributions of this thesis to the field, as well as suggesting

avenues that warrant further study.

7.1 Contributions to the field

It is clear that increasingly higher frequencies in the radio spectrum are being used across

the communications industry and this places new demands on high-performance CEM

applications. This thesis has explored the challenges and strategies required in order to

design and develop CEM solvers that are optimised for both small-scale and large-scale

computing platforms. Mobile computing devices (such as smartphones and tablets)

and desktop/HPC cluster systems have been addressed by the thesis.

A robust method for modelling randomly-generated rain-fields has been demonstrated

and validated. An existing geometrical model has been utilised in combination with

a DRV in order to generate raindrops of random sizes that adhere to a given size

distribution. A method for collision prevention was also demonstrated, ensuring the

randomly-placed raindrops do not intersect one another during placement. Two meth-

132
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ods for discretising the raindrop geometry were discussed, including a free-to-use tool

SketchUp which o↵ers flexible Ruby-based scripting to end users.

An implementation of a 3-D SCN TLM solver was presented, which was optimised

for desktop and HPC cluster systems and investigations in to rain-fields was chosen

as a case study problem for use with the solver. In order to execute simulations

using frequencies in the EHF band and above in a timely fashion, it was shown that

a hybrid approach to parallel computation was necessary. Optimisations to the TLM

algorithm in order to reduce the number of mathematical operations were also shown

to be of benefit in order to ensure maximum processing performance. A novel method

for estimating algorithm speeds when employing di↵erent implementations of the

same mathematical algorithm was presented. This allows a more direct comparison of

algorithmic implementations when exact low-level processor instruction timing is not

known for a given computing platform.

The first known implementation of 2-D TLM on mobile computing devices was presen-

ted, available on the iOS platform (iPhone, iPad and iPod touch devices). A case study

was devised for the application to be developed as an educational learning aid tar-

geted at undergraduate-level students studying electromagnetics, and their lecturers.

The challenges of developing a computationally time-intensive application such as this

have been discussed in-depth. Strategies for optimising the performance of a mobile

2-D TLM solver have been developed, utilising a combination of floating-point vector

mathematics and multi-threading in order to maximise the performance of the solver

on contemporary mobile computing devices.

7.2 Further work

The work carried out in this thesis has presented several areas for further research.

7.2.1 Rain-field modelling performance

An in-depth comparative study is required between the performance of a rain-field

volume utilising periodic boundaries and a larger volume discretised at the same
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resolution, with simulations executed for equivalent periods of time. The e↵ects on

excitation by multiple passes through the quasi-random rain-fields in meshes utilising

periodic boundaries, as compared to a larger truly-random meshes where excitation

passes through only once is an interesting problem. Any di↵erences in behaviour

should therefore be quantified.

7.2.2 Modelling performance study using large-scale platforms

Work in this thesis has demonstrated that it is possible to implement a 3-D TLM solver

that is optimised for parallel computation running on either high-performance desktop

workstations or HPC cluster systems depending on user requirements. Extending

this proof of concept implementation for rain-field modelling into a comprehensive

performance study is the logical next step. As identified in this thesis, the case study

topic of rain-field modelling provides ample opportunity for real-world simulations to

be conducted. An in-depth understanding of the performance characteristics of the 3-D

TLM solver across a number of di↵erent platforms would prove useful in this regard.

7.2.3 3-D simulations on mobile devices

It has been demonstrated that by using a hybrid approach to parallel computing on

mobile devices, it is possible to produce software for mobile computing devices which

can execute 2-D TLM at a more than adequate processing rate to allow for dynamic

simulations that an end user can interact with. The continually-improving processing

performances and hardware features available on such mobile devices suggest that the

same style of approach can be extended to explore the possibility of a full 3-D TLM

solver in the not too distant future. Any innovations along these lines will greatly extend

the potential for educational assistance by allowing a larger number of electromagnetic

principles and phenomena to be demonstrated to students. It should also be noted that

a full 3-D solver on mobile devices may also provide some use to industrial end users

in commercial applications.
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7.2.4 Mobile solver usage study

A large amount of anonymised usage data has been generated by the inclusion of an

analytics library to the iOS version of the 2-D TLM solver. After data collection began,

it became clear that any in-depth analysis of this data, or further study was outside of

the scope of this thesis. However, it is clear that a review of the usage data (as well as

expanding data collection to other mobile platforms) could inform future developments

in mobile CEM applications. It is also entirely possible that any study based on this

usage data could aid in the development and understanding of other mobile device

applications that are not necessarily directly related to CEM applications. A record of

this analytics data is included (Appendix D).

7.2.5 Ad-hoc cluster computing using mobile devices

Mirroring the approach taken in the development of the 3-D TLM solver application,

there is an opportunity to explore the use of the wifi networking hardware on almost all

modern smartphones and tablets for cooperative computation of larger mesh volumes.

The majority of smartphone operating systems allow for some form of ad-hoc network

connections between multiple devices, and therefore a software architecture to divide

a larger mesh between devices would present an interesting avenue for investigation.

Sub-mesh data could be exchanged in a similar fashion to that employed in the 3-D

implementation presented in this Thesis, with the exception of using a wireless link

between compute nodes instead of a physical one.

7.3 Overall conclusion

In order to produce e�cient and optimised solver applications, it is necessary to take a

very di↵erent approach when comparing small-scale mobile and desktop/HPC cluster

platforms. In both cases however, some form of parallel computing has been shown to

be required in order to achieve the best possible simulation performance figures.

Investigations with 3-D TLM solvers for desktop and HPC cluster systems have demon-

strated the ability for extremely large or extremely high frequency simulations to be
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possible, due to advances in modern parallel computing hardware and software. By

choosing a flexible software architecture, a parallel computing 3-D TLM solver can

keep pace with the ever-increasing requirements of industrial customers by employing

computers with larger numbers of compute nodes and more RAM per node in order to

execute larger, or more finely-graded simulations.

On the opposite end of the computing spectrum, mobile computing devices are now a

viable platform for CEM solver applications, and it is possible to o↵er a piece of multi-

platform software as an educational application that allows simulations to be rendered

at or above 60Hz. Viable optimisation techniques have been presented which allow

this high level of performance despite the restrictions of a mobile computing platform.



Appendix A

SketchUp raindrop meshing script

# First we pull in the standard API hooks.

require ’sketchup.rb’

# Add a menu item to launch our plugin.

UI.menu("PlugIns").add_item("Simulate Rain-field") {

prompts = ["R. rate (mm/h):", "Sim X (mm):", "Sim Y (mm):", "Sim Z (mm):",

"Fmax (GHz):", "Draw Voxels:"]

defaults = ["3178800", "20.0", "20.0", "20.0", "3.351", "NO"]

list = ["", "", "", "", "", "YES|NO"]

input = UI.inputbox prompts, defaults, list, "Randomised Rain-field Options

"

#Input variables and constants

#terminal velocity of raindrops in air (m/s)

vTDrop = 8.83

#calculate volume ratio, convert rainfall rate to m/h figure,

#then divide by the height a drop will fall in 1hr

volumeRatio = (input[0].to_f/1000)/(vTDrop*3600)

fieldX = input[1].to_f

fieldY = input[2].to_f

fieldZ = input[3].to_f

fMax = input[4]

if (input[5] == "YES")

shouldDrawVoxels = true

else

137
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shouldDrawVoxels = false

end

totalDropsVolume = 0.0

simVolume = fieldX*fieldY*fieldZ

fourThirdsPI = (4.0/3.0)*Math::PI

dropDistArray = []

fileNameCount = 0

#First drop occurence flags

firstDrops = [true, true, true, true, true, true, true, true, true]

#Raindrop size markers

rDrops = [0.0, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 9.0] #0.0

and 9.0 for N-dist tails

#maximum radii of each drop size, pre-computed from Beard and Chuang model

#maxRadius = [1.026, 1.299, 1.582, 1.876, 2.177, 2.487, 2.808, 3.138,

3.477]

maxRadiusAngle = [80, 80, 80, 81, 81, 82, 82, 82, 83]

#Decimal places arrays for creating a N-dist of raindrops when applying a

RNG

# p(0.0) = 0.0502 # p(2.0) = 0.0504 # p(2.5) = 0.0801 # p(3.0) = 0.1112

# p(3.5) = 0.1357 # p(4.0) = 0.1448 # p(4.5) = 0.1357 # p(5.0) = 0.1112

# p(5.5) = 0.0801 # p(6.0) = 0.0504 # p(9.0) = 0.0502

tenths = [rDrops[3], rDrops[4], rDrops[5], rDrops[6], rDrops[7]]

hundredths = [rDrops[0], rDrops[0], rDrops[0], rDrops[0], rDrops[0],

rDrops[1], rDrops[1], rDrops[1], rDrops[1], rDrops[1], rDrops[2],

rDrops[2], rDrops[2], rDrops[2], rDrops[2], rDrops[2], rDrops[2],

rDrops[2], rDrops[3], rDrops[4], rDrops[4], rDrops[4], rDrops[5],

rDrops[5], rDrops[5], rDrops[5], rDrops[6], rDrops[6], rDrops[6],

rDrops[7], rDrops[8], rDrops[8], rDrops[8], rDrops[8], rDrops[8],

rDrops[8], rDrops[8], rDrops[8], rDrops[9], rDrops[9], rDrops[9],

rDrops[9], rDrops[9], rDrops[10], rDrops[10], rDrops[10], rDrops[10],

rDrops[10]]

thousandths = [rDrops[3], rDrops[4], rDrops[4], rDrops[4], rDrops[4],

rDrops[4], rDrops[5], rDrops[5], rDrops[5], rDrops[5], rDrops[6],

rDrops[6], rDrops[6], rDrops[6], rDrops[6], rDrops[7]]

tenThousandths = [rDrops[0], rDrops[0], rDrops[1], rDrops[1], rDrops[1],

rDrops[1], rDrops[2], rDrops[3], rDrops[3], rDrops[4], rDrops[4],

rDrops[4], rDrops[4], rDrops[4], rDrops[4], rDrops[4], rDrops[5],



APPENDIX A. SKETCHUP RAINDROP MESHING SCRIPT 139

rDrops[5], rDrops[5], rDrops[5], rDrops[5], rDrops[5], rDrops[5],

rDrops[5], rDrops[6], rDrops[6], rDrops[6], rDrops[6], rDrops[6],

rDrops[6], rDrops[6], rDrops[7], rDrops[7], rDrops[8], rDrops[9],

rDrops[9], rDrops[9], rDrops[9], rDrops[10], rDrops[10]]

#Unit vector in z-axis (direction of freefall) for angle comparison

zAxisVect = Geom::Vector3d.new(0.0,0.0,1.0)

#Normalised drop vector for angle calculations

normalisedDropVect = Geom::Vector3d.new

currentDropRArray = []

previousDropRArray = []

dropMaxRArray = []

dropZeroDegRArray = []

drop180DegRArray = []

#Physical constants for water (worst case meshing)

epsilonR = 80.0

muR = 1.0

#Calculate the deltaL for node size & output it to the config file, along

with simulation environment dimensions (converted to metres)

dL = 299792458/(Math::sqrt(epsilonR*muR)*10*((fMax.to_f)*1000000000))

fileNameString = ’C:\Users\eldrb2\Personal Documents - Not Backed Up\

MyDropBox\Dropbox\Uni\PhD\Development\Sketchup Files\config.txt’

f = File.open(fileNameString , ’w’)

f.puts (fieldX/1000.0)

f.puts (fieldY/1000.0)

f.puts (fieldZ/1000.0)

f.puts dL

f.close

#RNG and relevant drop size selection

startTime = Time.now

while ((totalDropsVolume/simVolume) <= volumeRatio) do

xRNG = 0.0

yRNG = 0.0

zRNG = 0.0

randDiameter = 0.0
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distFlag = 0

comp = 0

simBoxFlag = 0

#return a N-distributed , randomly generated drop diameter value

until (randDiameter > 0.0 && randDiameter < 9.0) do

diameterRNG = rand(10000)

if (diameterRNG >= 9960)

randDiameter = tenThousandths[diameterRNG -9960]

elsif (diameterRNG < 9960 && diameterRNG >= 9800)

randDiameter = thousandths[(diameterRNG -9800)/10]

elsif (diameterRNG < 9800 && diameterRNG >= 5000)

randDiameter = hundredths[(diameterRNG -5000)/100]

else (diameterRNG < 5000)

randDiameter = tenths[diameterRNG/1000]

end

end

#compute the volume of current drop

dropRadius = randDiameter/2.0

dropVolume = fourThirdsPI*(dropRadius**3)

#add to total drops volume (only if adding drop would be nearer

volumeRatio target than not adding)

#if ((volumeRatio - ((totalDropsVolume += dropVolume)/simVolume)).abs

< (volumeRatio - (totalDropsVolume/simVolume)).abs)

totalDropsVolume += dropVolume

#end

#generate random X, Y, Z coordinates

#(making sure edge of drop inside simulated space + no drop overlap)

dropIndex = (randDiameter -2.0)*2.0

#Get radius, y and z co-ordinates for the drop at it’s maximum radius

extent

#As well as radius, y and z co-ordinates for drop parallel to z-axis

(gravity)

#(Used for simulation -bound testing to ensure drops are not out-of-

bounds)

dropMaxRArray = dropRadiusAtAngle(randDiameter , maxRadiusAngle[

dropIndex])



APPENDIX A. SKETCHUP RAINDROP MESHING SCRIPT 141

dropZeroDegRArray = dropRadiusAtAngle(randDiameter , 0)

drop180DegRArray = dropRadiusAtAngle(randDiameter , 180)

until (distFlag == 1 && simBoxFlag == 1) do

xRNG = rand()*fieldX

yRNG = rand()*fieldY

zRNG = rand()*fieldZ

simBoxFlag = 0

#check for out of bounds drops

if (xRNG > dropMaxRArray[1].abs && xRNG < (fieldX -

dropMaxRArray[1].abs) && yRNG > dropMaxRArray[1].abs &&

yRNG < (fieldY - dropMaxRArray[1].abs) && zRNG >

dropZeroDegRArray[2].abs && zRNG < (fieldZ -

drop180DegRArray[2].abs))

simBoxFlag = 1

else

simBoxFlag = 2

end

#check for overlapping drops

comp = 0

if (simBoxFlag == 1)

for ii in dropDistArray

#Vector joining current and previous drops

dropV = Geom::Vector3d.new(xRNG-ii[0], yRNG-

ii[1], zRNG-ii[2])

#distance between current drop and drop to be

checked against

#convert from model units to raw float

numerical value

dropVLength = dropV.length

dropVLength = dropVLength.to_f

normalisedDropVect.x = dropV.x / dropVLength

normalisedDropVect.y = dropV.y / dropVLength

normalisedDropVect.z = dropV.z / dropVLength

#dot product of the two vectors

vectDotProduct = normalisedDropVect.dot
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zAxisVect

#coerce dot product into -1 to +1 range for

acos

if (vectDotProduct < -1.0)

vectDotProduct = -1.0

end

if (vectDotProduct > 1.0)

vectDotProduct = 1.0

end

#Compute angle between two vectors for both

current and previous drops

currentDropAngle = Math::acos(vectDotProduct

)*(180/Math::PI) #Two unit vectors used

, so dot prod == cos(angle)

#the angle between the vector and the z-axis

on the previous drop being tested

#is the complementary angle on a straight

line to the angle calculated above

previousDropAngle = 180 - currentDropAngle

currentDropRArray = dropRadiusAtAngle(

randDiameter , currentDropAngle)

previousDropRArray = dropRadiusAtAngle(ii[3],

previousDropAngle)

#check whether radii sum of current +

previous drop is smaller than distance

between drop centres

#if so, collision has occured

if (dropVLength < (currentDropRArray[0]+

previousDropRArray[0]))

comp += 1

end

end

end

if (comp > 0)

distFlag = 2

else

distFlag = 1



APPENDIX A. SKETCHUP RAINDROP MESHING SCRIPT 143

end

end

#draw raindrops

dropStartTime = Time.now

#convert diameter value to index for array

dIndex = (randDiameter -2.0)*2.0

#IF first occurence of particular diameter, also write prototype

drop file

#ELSE draw a ’regular’ drop where prototype mesh info is not saved

to disk

if firstDrops[dIndex]

isPrototypeDrop = true

fileCounter = dIndex.to_i

#reset flag

firstDrops[dIndex] = false

else

isPrototypeDrop = false

fileCounter = fileNameCount

end

#draw raindrop, with shouldDrawVoxels and isPrototypeDrop options

decided previously

dropGroup = drawRaindrop(randDiameter , xRNG, yRNG, zRNG, fileCounter ,

isPrototypeDrop)

voxelize(dropGroup , dL, fileCounter , shouldDrawVoxels ,

isPrototypeDrop)

puts "Drop Draw Time: "+(Time.now-dropStartTime).to_s

#append to array

dropDistArray << [xRNG, yRNG, zRNG, randDiameter]

#increment fileNameCount

fileNameCount +=1

end
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#Write the total number of raindrops to the config.txt file

fileNameString = ’C:\Users\eldrb2\Personal Documents - Not Backed Up\

MyDropBox\Dropbox\Uni\PhD\Development\Sketchup Files\config.txt’

f = File.open(fileNameString , ’a’)

f.puts fileNameCount

f.close

puts "Rain-field Simulation Time: "+(Time.now-startTime).to_s

}

### ----------------------------------------------------------------- ###

#

# dropRadiusAtAngle(d, angle)

#

def dropRadiusAtAngle(d, angleInDegs)

#convert diameter value to index for array

dIdx = (d-2.0)*2.0

#original radius value for draw loop

originalRadius = d/2.0

#pi divided by 180 to save time in loop

piOver180 = Math::PI/180

#drop radius co-ordinates array

rCoords = []

#Distortion coefficients array for Beard & Chuang raindrop model

distCoefficients = []

#Nth order components 1 2 3 4 5 6

7 8 9 10 11

distCoefficients[0] = [-0.0131, -0.0120, -0.0376, -0.0096, -0.0004, 0.0015,

0.0005, 0.0000, -0.0002, 0.0000, 0.0001] #2.0mm

distCoefficients[1] = [-0.0201, -0.0172, -0.0567, -0.0137, 0.0003, 0.0029,

0.0008, -0.0002, -0.0004, 0.0000, 0.0001] #2.5mm

distCoefficients[2] = [-0.0282, -0.0230, -0.0279, -0.0175, 0.0021, 0.0046,

0.0011, -0.0006, -0.0007, 0.0000, 0.0003] #3.0mm

distCoefficients[3] = [-0.0369, -0.0285, -0.0998, -0.0207, 0.0048, 0.0068,

0.0013, -0.0013, -0.0010, 0.0000, 0.0005] #3.5mm

distCoefficients[4] = [-0.0458, -0.0335, -0.1211, -0.0227, 0.0083, 0.0089,

0.0012, -0.0021, -0.0013, 0.0001, 0.0008] #4.0mm

distCoefficients[5] = [-0.0549, -0.0377, -0.1421, -0.0240, 0.0126, 0.0110,
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0.0009, -0.0031, -0.0016, 0.0004, 0.0011] #4.5mm

distCoefficients[6] = [-0.0644, -0.0416, -0.1629, -0.0246, 0.0176, 0.0131,

0.0002, -0.0044, -0.0018, 0.0009, 0.0014] #5.0mm

distCoefficients[7] = [-0.0742, -0.0454, -0.1837, -0.0244, 0.0234, 0.0150,

-0.0007, -0.0058, -0.0019, 0.0015, 0.0019] #5.5mm

distCoefficients[8] = [-0.0840, -0.0480, -0.2034, -0.0237, 0.0297, 0.0166,

-0.0021, -0.0072, -0.0019, 0.0024, 0.0023] #6.0mm

#construct the radius by computing overall distortion to a spherical drop

distSum = 0.0

for i in 0..10

distSum += distCoefficients[dIdx][i]*Math.cos((i*angleInDegs)*

piOver180)

end

rCoords[0] = (originalRadius*(1.0+distSum))

#r

rCoords[1] = (rCoords[0]*Math.sin(angleInDegs*piOver180)) #y

rCoords[2] = (-(rCoords[0]*Math.cos(angleInDegs*piOver180))) #z

return rCoords

end

### ----------------------------------------------------------------- ###

#

# drawRaindrop(d, cX, cY, cZ, fCount, isProtoDrop)

#

def drawRaindrop(d, cX, cY, cZ, fCount, isProtoDrop)

# IF regular raindrop, write raindrop diameter and centre-point info to

file

# ELSE for Prototype raindrops , only write diameter (centre-point is

arbitrary)

if (isProtoDrop == false)

fileNameString = ’C:\Users\eldrb2\Personal Documents - Not Backed Up\

MyDropBox\Dropbox\Uni\PhD\Development\Sketchup Files\drop’ <<

fCount.to_s

fileNameString <<= ’.txt’

f = File.open(fileNameString , ’w’)

f.puts d
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f.puts "STANDARD"

f.puts (cX/1000.0)

f.puts (cY/1000.0)

f.puts (cZ/1000.0)

f.close

else

fileNameString = ’C:\Users\eldrb2\Personal Documents - Not Backed Up\

MyDropBox\Dropbox\Uni\PhD\Development\Sketchup Files\proto’ << fCount

.to_s

fileNameString <<= ’.txt’

f = File.open(fileNameString , ’w’)

f.puts d

f.puts "PROTOTYPE"

f.close

end

# Get "handles" to our model and the Entities collection it contains.

model = Sketchup.active_model

entities = model.entities

#Make a group to place raindrop into

group = entities.add_group

entities_group = group.entities

#placeholder array inits for pointsArray & dropRArray

pointsArray = []

dropRArray = []

#Create a pointsArray for coordinates for a drop outline curve

for degreesIdx in 0..180

#generate the radius, y and z co-ordinates for the given drop outline at

the current angle

dropRArray = dropRadiusAtAngle(d, degreesIdx)

#scale from inches to mm and also use a 1000x multiplier for

increased prescision when drawing drops

pointsArray[degreesIdx] = [(1000*(0.0+cX)).mm, (1000*(dropRArray[1]+

cY)).mm, (1000*(dropRArray[2]+cZ)).mm]
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end

# Make raindrop curve outline into a face

new_face = entities_group.add_face pointsArray

# Draw a circle perpendicular to the drop outline as a path for a

rotational sweep

center_point = Geom::Point3d.new(1000*(cX.mm),1000*(cY.mm),1000*(cZ.mm))

normal_vector = Geom::Vector3d.new(0,0,1)

radius = 800.mm

edgearray = entities_group.add_circle center_point , normal_vector , radius

first_edge = edgearray[0]

arccurve = first_edge.curve

# Do the rotational sweep

new_face.followme edgearray

#Set the model’s entities using the entities contained in the group

entities = group.entities

return group

end

### ----------------------------------------------------------------- ###

#

# voxelize(dGroup, dL, fCount, shouldDrawCubes , isProtoDrop)

#

def voxelize (dGroup, dL, fCount, shouldDrawCubes , isProtoDrop)

#standard model stuff

model = Sketchup.active_model

#Physical constants for water (worst case meshing)

epsilonR = 80.0

muR = 1.0

#convert to a voxel size scaled up by a factor of 1000 - since we are

drawing drops 1000x larger than normal due to Sketchup’s

precision issues

#convert to a string (seems to be the only way for length conversion

to work properly)

vSizeLString = (dL*1000).to_s

#convert to a length object for voxel Sketchup drawing use

vSizeLength = vSizeLString.to_l
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#Halfscale constant

halfScale = Geom::Transformation.scaling 0.5

#begin

t1 = Time.now

model.start_operation "Voxelize(cubegrid #{fCount})" ### 0.3.0 added

op number

# Get corners of group

bound = dGroup.local_bounds

corners = []

for ii in 0..7

corners[ii] = bound.corner(ii)

end

# Create probing vector (in x direction)

xVect = Geom::Vector3d.new(corners[0],corners[1])

nx = (xVect.length/vSizeLength).round

xVect.length = vSizeLength

yVect = Geom::Vector3d.new(corners[0],corners[2])

ny = (yVect.length/vSizeLength).round

yVect.length = vSizeLength

zVect = Geom::Vector3d.new(corners[0],corners[4])

nz = (zVect.length/vSizeLength).round

zVect.length = vSizeLength

diagVect = (xVect+yVect+zVect).transform! halfScale

diagTrans = (Geom::Transformation.translation(diagVect)).invert!

pPointInit = corners[0]

# puts init time

#puts "Init: "+(Time.now-t1).to_s

t1 = Time.now

# Get all faces

faces = []
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for ii in dGroup.entities

if ii.class == Sketchup::Face

faces << ii

end

end

#puts "Init Faces: "+(Time.now-t1).to_s

t1 = Time.now

binCubes = Array.new(nx).map!{ Array.new(ny).map!{ Array.new(nz) } }

intDist = Array.new(ny).map!{ Array.new(nz).map!{ Array.new() } }

nyVect = yVect.normalize.to_a

nzVect = zVect.normalize.to_a

orig = corners[0].to_a

frontPlane = [corners[0], xVect]

for ii in faces

miny = ny-1

maxy = 0

minz = nz-1

maxz = 0

for vv in ii.vertices

vertVect = orig.vector_to vv.position

yDist = nyVect.dot(vertVect)/vSizeLength

zDist = nzVect.dot(vertVect)/vSizeLength

# puts yDist

if yDist<miny then miny = yDist end

if yDist>maxy then maxy = yDist end

if zDist<minz then minz = zDist end

if zDist>maxz then maxz = zDist end

end # vv

#rounding of min and max values

miny = miny.floor

maxy = maxy.ceil

minz = minz.floor

maxz = maxz.ceil
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ns = 50

for jj in miny..maxy

yScale = Geom::Transformation.scaling(jj+0.5)

pPointInit1 = corners[0].offset(yVect.transform(yScale))

for kk in minz..maxz

zScale = Geom::Transformation.scaling(kk+0.5)

pPointInit2 = pPointInit1.offset(zVect.transform(zScale))

curPoint = Geom.intersect_line_plane([pPointInit2 ,xVect],ii.

plane)

# Ignore faces parallel to probing vector

next if curPoint == nil

# Check where point is relative to face

cPoint = ii.classify_point(curPoint)

# Point is on face, good

if (cPoint == Sketchup::Face::PointInside)

intDist[jj][kk] << pPointInit2.

distance(curPoint)

next

# If point isn’t on edge or vertex, go to

next

elsif ((cPoint != Sketchup::Face::

PointOnVertex) and

(cPoint != Sketchup::Face::

PointOnEdge))

next

end # if

# If point is on edge or vertex, begin spiral

algorithm

for ss in 1..ns

# shift probing point around a spiral

sPoint = pPointInit2.offset(yVect.

to_a.collect{|x| x*ss/ns*Math.cos
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(Math::PI*2*ss/ns)})

sPoint.offset!(zVect.to_a.collect{|x|

x*ss/ns*Math.sin(Math::PI*2*ss/

ns)})

curPoint = Geom.intersect_line_plane

([sPoint,xVect],ii.plane)

# Try to hit the face again

cPoint = ii.classify_point(curPoint)

# Probing vector hit the face!

if (cPoint == Sketchup::Face::

PointInside)

intDist[jj][kk] <<

pPointInit2.distance(

curPoint)

break

# Probing vector hit a vertex or edge

again, continue spiral

elsif ((cPoint == Sketchup::Face::

PointOnVertex) or

(cPoint == Sketchup::Face::

PointOnEdge))

next

# Probing vector does not intersect

face

else

break

end # if

end # ss

end # kk

end # jj

end # ii

for jj in 0..(ny-1)

for kk in 0..(nz-1)

# Solid is not intersected

next if intDist[jj][kk].empty?
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# Sort internal distances

intDist[jj][kk].sort!

# If inside the solid, cube should be made

inside = false

for ii in 0..(nx-1)

pos = xVect.length*(ii+0.5)

# Has solid been intersected?

for nDist in intDist[jj][kk]

if pos>=nDist

intDist[jj][kk] = intDist[jj][kk][1..-1]

inside = !inside

else

break

end

end # nDist

# Go to next iteration if not inside solid

# if not inside then next end

next if not inside

# Inside solid: cube should be made

binCubes[ii][jj][kk] = 1

end # ii

end # kk

end # jj

#puts "Get binCubes: "+(Time.now-t1).to_s

t1 = Time.now

if isProtoDrop then

fileNameString = ’C:\Users\eldrb2\Personal Documents - Not 

Backed Up\MyDropBox\Dropbox\Uni\PhD\Development\Sketchup 

Files\proto’ << fCount.to_s

fileNameString <<= ’.txt’

f = File.open(fileNameString , ’a’)

# write the voxel array dimensions to file

f.puts nx
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f.puts ny

f.puts nz

f.puts "\n"

for jj in 0..(ny-1)

for kk in 0..(nz-1)

for ii in 0..(nx-1)

if (binCubes[ii][jj][kk] == nil)

f.puts "0"

else

f.puts (binCubes[ii][jj][kk].

to_s)

end # if

end # ii

end # kk

end # jj

f.close

#puts "Write binCubes to file: "+(Time.now-t1).to_s

end

t1 = Time.now

cubes = nil

if shouldDrawCubes then

# Draw cubes

gTrans = dGroup.transformation

cubes = drawcubes(binCubes, corners[0],[xVect,yVect,zVect],diagTrans ,

gTrans)

puts "Draw Cubes: "+(Time.now-t1).to_s

t1 = Time.now

end

# End of operation

model.commit_operation

end

### ----------------------------------------------------------------- ###

#

# cubecomp()

#

# Make a cube component.
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#

def cubecomp(x,y,z)

model = Sketchup.active_model

entities = model.entities

selection = model.selection

orig = ORIGIN.clone

pts = []

pts[0] = orig

pts[3] = orig + x

pts[1] = orig + y

pts[2] = orig + x + y

cubeGroup = entities.add_group

ents = cubeGroup.entities

cubeface = ents.add_face pts

cubeface.pushpull -z.length, true

cubeface.reverse!

cubeinst = cubeGroup.to_component

cubedef = cubeinst.definition

entities.erase_entities cubeinst

return cubedef

end

### ----------------------------------------------------------------- ###

#

# drawcubes()

#

def drawcubes(binCubes, pPointInit , vect, diagTrans , gTrans)

model = Sketchup.active_model

entities = model.entities

selection = model.selection

cubedef = cubecomp(vect[0],vect[1],vect[2])

n = [binCubes.length, binCubes[0].length, binCubes[0][0].length]

cubes = []
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for jj in 0..(n[1]-1)

yScale = Geom::Transformation.scaling(jj+0.5)

pPointInit1 = pPointInit.offset(vect[1].transform(yScale))

for kk in 0..(n[2]-1)

zScale = Geom::Transformation.scaling(kk+0.5)

pPointInit2 = pPointInit1.offset(vect[2].transform(zScale))

for ii in 0..(n[0]-1)

if binCubes[ii][jj][kk] == 1

xScale = Geom::Transformation.scaling(ii+0.5)

pPoint = pPointInit2.offset(vect[0].transform(xScale)

)

trans = Geom::Transformation.translation pPoint.to_a

cubes << entities.add_instance(cubedef, trans)

end # if

end # ii

end # kk

end # jj

entities.transform_entities((gTrans*diagTrans), cubes)

return cubes

end
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Chapter 1

3DTLM

A 3D Computational Electromagnetics Solver designed for rainfall simulations.



2 3DTLM
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Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Field
A class describing a set of field components at a particular node location . . . . . . . . . . . . 5

GaussianPulse
A class describing a Gaussian point-source pulse event . . . . . . . . . . . . . . . . . . . . . 6

MeasurementPoint
A class describing a particular node to observe within the mesh . . . . . . . . . . . . . . . . 8

MeshPoint
A struct representing the location of a node within the mesh . . . . . . . . . . . . . . . . . . . 10

Pixel
A struct representing a pixel onscreen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

PointSource
A class describing a point-source of energy to be imparted to the mesh at a particular location 12

ProtoDrop
A class to describe a prototype raindrop, including its geometry information . . . . . . . . . . 14

Raindrop
A class to describe a simulated raindrop, including its size and location information . . . . . . 15

ScatterVariables
A struct storing temporary variables required for use during the scatter process . . . . . . . . 16

SCNNode
A class representing a SCN, a 3-D node for TLM . . . . . . . . . . . . . . . . . . . . . . . . 18

SimulationConstants
A struct storing mesh node dimensions, free-space and water timestep values, and free-space
and water max frequency values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Solver
A class which conducts all operations concerning simulation execution . . . . . . . . . . . . . 21

StubSCNProperties
A struct describing the stub properties for all the SCNs in the mesh . . . . . . . . . . . . . . . 39
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Chapter 3

Class Documentation

3.1 Field Class Reference

A class describing a set of field components at a particular node location.

#include <Field.h>

Collaboration diagram for Field:

�����

���	
���

����
���	
���

����

��������
���������

Public Attributes

• float Ex

The x-directed electric field component.
• float Ey

The y-directed electric field component.
• float Ez

The z-directed electric field component.
• float Hx

The x-directed magnetic field component.
• float Hy

The y-directed magnetic field component.
• float Hz



6 Class Documentation

The z-directed magnetic field component.

3.1.1 Detailed Description

A class describing a set of field components at a particular node location.

The documentation for this class was generated from the following files:

• 3D-TLM/Field.h
• 3D-TLM/Field.cpp

3.2 GaussianPulse Class Reference

A class describing a Gaussian point-source pulse event.

#include <GaussianPulse.h>

Collaboration diagram for GaussianPulse:

������������	


��

�

��

��������	���	�


�������������	��

�������������	��

������	����	��

������������������

��������������	��

Public Member Functions

• GaussianPulse (int, int, int, int, float, int)
• Field ⇤ updatePulse (void)
• float normalDistWithX (float, float, float)

Public Attributes

• int x
The x-axis co-ordinate position of the Gaussian pulse.

• int y
The y-axis co-ordinate position of the Gaussian pulse.

• int z
The z-axis co-ordinate position of the Gaussian pulse.

• bool hasPulseEnded
A Boolean flag to determine if the Gaussian pulse has ended.
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3.2 GaussianPulse Class Reference 7

3.2.1 Detailed Description

A class describing a Gaussian point-source pulse event.

3.2.2 Constructor & Destructor Documentation

3.2.2.1 GaussianPulse::GaussianPulse ( int xPos, int yPos, int zPos, int waveLength, float amplitude, int excitedFields )

Custom constructor for gaussian pulse object.

Parameters

xPos X position in mesh (nodes).
yPos Y position in mesh (nodes).
zPos Z position in mesh (nodes).

waveLength Wavelength of the pulse (nodes).
amplitude Maximum amplitude of the pulse (volts).

excitedFields Which field components should be excited.
⇤field Pointer to a field object.

3.2.3 Member Function Documentation

3.2.3.1 float GaussianPulse::normalDistWithX ( float x, float mean, float stdDev )

Generate a point along a Gaussian bell curve.

Parameters

x X value.
mean The mean value for the distribution.

stdDev The standard deviation value for the distribution.

Returns

Returns the Y-axis bell-curve value for the given x.

Here is the caller graph for this function:

������������	

���������
����� ������������	

�����	����	

3.2.3.2 Field ⇤ GaussianPulse::updatePulse ( void )

Update the pulse excitation value Update the pulse excitation value based on the current timestep since start, then
inject the pulse into the mesh at relevant location.
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8 Class Documentation

Returns

⇤f Returns a pointer to a Field object.

Here is the call graph for this function:

������������	

����	����	 ������������	

���������
����

The documentation for this class was generated from the following files:

• 3D-TLM/GaussianPulse.h
• 3D-TLM/GaussianPulse.cpp

3.3 MeasurementPoint Class Reference

A class describing a particular node to observe within the mesh.

#include <MeasurementPoint.h>

Collaboration diagram for MeasurementPoint:

����������	
���	

�������

�����������	
���	��
�����������	
���	��
�����������	
���	��
������	��������������	�����	����
������������	�	���
���	��	�������	��������
���	�����	��	��
���	�����	����
���	�����	����
������������	
���	��

Public Member Functions

• MeasurementPoint (unsigned int, float, float, float, double, SCNNode ⇤)
• MeasurementPoint (unsigned int, SCNNode ⇤)
• void computeDFTsForCurrentTimeStep (void)

Compute the DFT of the observed node (upto the current timestep), for the field components set in ’DFTMode’.
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3.3 MeasurementPoint Class Reference 9

• void recordNodeState (void)

• void outputNodeListToFile (string)

• double getFreqStart (void)

• double getFreqStop (void)

• double getFreqStep (void)

Public Attributes

• vector< complex< double > > DFTSum

A vector array of running sum values for the calculated DFTs.

3.3.1 Detailed Description

A class describing a particular node to observe within the mesh.

3.3.2 Constructor & Destructor Documentation

3.3.2.1 MeasurementPoint::MeasurementPoint ( unsigned int mode, float fStart, float fStop, float fStep, double tStep,
SCNNode ⇤ nodePointer )

Custom constructor to assign DFT mode, observed harmonic, and a pointer to the node to observe.

Parameters

mode Which field components to use in DFT calculations.
fStart Start frequency for DFT calculations.
fStop Stop frequency for DFT calculations.
fStep Frequency step for DFT calculations.
tStep The time step value that has been configured already for the simulation.

nodePointer A Pointer to the node to observe.

3.3.2.2 MeasurementPoint::MeasurementPoint ( unsigned int mode, SCNNode ⇤ nodePointer )

Custom constructor to assign DFT mode, observed harmonic, and a pointer to the node to observe.

Parameters

mode Which field components to use in DFT calculations.
nodePointer A Pointer to the node to observe.

3.3.3 Member Function Documentation

3.3.3.1 double MeasurementPoint::getFreqStart ( void )

Returns the frequency start value

Returns

The freqStart value.
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3.3.3.2 double MeasurementPoint::getFreqStep ( void )

Returns the frequency step value

Returns

The freqStep value.

3.3.3.3 double MeasurementPoint::getFreqStop ( void )

Returns the frequency stop value

Returns

The freqStop value.

3.3.3.4 void MeasurementPoint::outputNodeListToFile ( string fileName )

Outputs the nodeList data to a file for analysis.

Parameters

fileName The file name to use as the log file name.

3.3.3.5 void MeasurementPoint::recordNodeState ( void )

Add a node to the vector list of nodes.

Parameters

node Node to add to the list.

The documentation for this class was generated from the following files:

• 3D-TLM/MeasurementPoint.h

• 3D-TLM/MeasurementPoint.cpp

3.4 MeshPoint Struct Reference

A struct representing the location of a node within the mesh.

#include <Solver.h>
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3.5 Pixel Struct Reference 11

Collaboration diagram for MeshPoint:
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Public Attributes

• int x
X-axis location (in nodes).

• int y
Y-axis location (in nodes).

• int z
Z-axis location (in nodes).

3.4.1 Detailed Description

A struct representing the location of a node within the mesh.

The documentation for this struct was generated from the following file:

• 3D-TLM/Solver.h

3.5 Pixel Struct Reference

A struct representing a pixel onscreen.

#include <Solver.h>

Collaboration diagram for Pixel:
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12 Class Documentation

Public Attributes

• char r

Red component value (0-255).

• char g

Green component value (0-255).

• char b

Blue component value (0-255).

3.5.1 Detailed Description

A struct representing a pixel onscreen.

The documentation for this struct was generated from the following file:

• 3D-TLM/Solver.h

3.6 PointSource Class Reference

A class describing a point-source of energy to be imparted to the mesh at a particular location.

#include <PointSource.h>

Collaboration diagram for PointSource:
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Public Member Functions

• PointSource (int, int, int, float, int, double)
• void updatePointSource (int)

3.6.1 Detailed Description

A class describing a point-source of energy to be imparted to the mesh at a particular location.

3.6.2 Constructor & Destructor Documentation
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3.6 PointSource Class Reference 13

3.6.2.1 PointSource::PointSource ( int x, int y, int z, float sourceFrequency, int amplitudeMultiplier, double timeStepValue )

Custom constructor for a sinusoidal point source pulse.
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Parameters

x X position of the point source in the mesh (nodes).
y Y position of the point source in the mesh (nodes).
z Z position of the point source in the mesh (nodes).

source-
Frequency

Frequency of the sinusoidal wave emitted from the point source.

amplitude-
Multiplier

The amount by which to increase the default amplitude of the pulse.

timeStepValue The current amount of real-world time that has passed since the start of the simulation.

3.6.3 Member Function Documentation

3.6.3.1 void PointSource::updatePointSource ( int timeStepNumber )

Update the value of the field being emitted by the point source.

Computes the value along the sine wave to allow the point source to emit the correct field.

Parameters

timeStepNumber The current time step number since simulation start.

The documentation for this class was generated from the following files:

• 3D-TLM/PointSource.h
• 3D-TLM/PointSource.cpp

3.7 ProtoDrop Class Reference

A class to describe a prototype raindrop, including its geometry information.

#include <ProtoDrop.h>

Collaboration diagram for ProtoDrop:
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Public Member Functions

• ProtoDrop (float, int, int, int)
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3.8 Raindrop Class Reference 15

Public Attributes

• vector< SCNNode > mesh

A vector containing the mesh information for the prototype raindrop.

• int meshXDim

The number of mesh nodes in the x-axis direction.

• int meshYDim

The number of mesh nodes in the y-axis direction.

• int meshZDim

The number of mesh nodes in the z-axis direction.

3.7.1 Detailed Description

A class to describe a prototype raindrop, including its geometry information.

3.7.2 Constructor & Destructor Documentation

3.7.2.1 ProtoDrop::ProtoDrop ( float dropD, int meshX, int meshY, int meshZ )

Custom constructor for a prototype drop.

Parameters

dropD The raindrop diameter.
meshX The X position in the mesh (nodes).
meshY The Y position in the mesh (nodes).
meshZ The Z position in the mesh (nodes).

The documentation for this class was generated from the following files:

• 3D-TLM/ProtoDrop.h

• 3D-TLM/ProtoDrop.cpp

3.8 Raindrop Class Reference

A class to describe a simulated raindrop, including its size and location information.

#include <Raindrop.h>
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Collaboration diagram for Raindrop:
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Public Attributes

• float dropDiameter

• double centreX

• double centreY

• double centreZ

3.8.1 Detailed Description

A class to describe a simulated raindrop, including its size and location information.

The documentation for this class was generated from the following files:

• 3D-TLM/Raindrop.h

• 3D-TLM/Raindrop.cpp

3.9 ScatterVariables Struct Reference

A struct storing temporary variables required for use during the scatter process.

#include <Solver.h>
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3.9 ScatterVariables Struct Reference 17

Collaboration diagram for ScatterVariables:
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Public Attributes

• float Vx

Equivalent total voltages along each axis.

• float Vy
• float Vz
• float ZIx

Product of link-line impedance and equivalent total current.

• float ZIy
• float ZIz
• float tmpVxpz

Temporary copies of port voltages.

• float tmpVxpy
• float tmpVxnz
• float tmpVxny
• float tmpVypx
• float tmpVypz
• float tmpVynx
• float tmpVynz

Generated on Tue Feb 18 2014 09:56:03 for 3D-TLM by Doxygen



18 Class Documentation

• float tmpVzpx

• float tmpVzpy

• float tmpVznx

• float tmpVzny

• float tmpVoxYox

Temporary copies of the open-circuitproducts of stub voltages and their respective normalised admittance.

• float tmpVoyYoy

• float tmpVozYoz

• float tmpVsx

Temporary copies of short-circuit stub voltages.

• float tmpVsy

• float tmpVsz

3.9.1 Detailed Description

A struct storing temporary variables required for use during the scatter process.

The documentation for this struct was generated from the following file:

• 3D-TLM/Solver.h

3.10 SCNNode Class Reference

A class representing a SCN, a 3-D node for TLM.

#include <SCNNode.h>
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Collaboration diagram for SCNNode:
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Public Attributes

• float Vxpz

X-axis port voltages.

• float Vxpy
• float Vxnz
• float Vxny
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20 Class Documentation

• float Vypx

Y-axis port voltages.

• float Vypz

• float Vynx

• float Vynz

• float Vzpx

Z-axis port voltages.

• float Vzpy

• float Vznx

• float Vzny

• float VoxYox

Open-circuit products of stub voltages and their respective normalised admittance (convience variables instead of
repeating stuff later)

• float VoyYoy

• float VozYoz

• float Vsx

Short-circuit stub voltages.

• float Vsy

• float Vsz

• float Ex

Electric-field components.

• float Ey

• float Ez

• float Hx

Magnetic-field components.

• float Hy

• float Hz

• float boundaryCondition

• bool isBoundaryNode

• StubSCNProperties ⇤ props

Pointer to a struct holding simulation properties.

3.10.1 Detailed Description

A class representing a SCN, a 3-D node for TLM.

The documentation for this class was generated from the following files:

• 3D-TLM/SCNNode.h

• 3D-TLM/SCNNode.cpp

3.11 SimulationConstants Struct Reference

A struct storing mesh node dimensions, free-space and water timestep values, and free-space and water max
frequency values.

#include <Solver.h>
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3.12 Solver Class Reference 21

Collaboration diagram for SimulationConstants:
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Public Attributes

• double dx

X-axis node size (in metres).

• double dy

Y-axis node size (in metres).

• double dz

Z-axis node size (in metres).

• double dtFreeSpace

Free-space timestep value (in seconds).

• double dtWater

Water-based timestep value (in seconds).

• double fCutoffFreeSpace

Free-space cutoff frequency (in Hertz).

• double fCutoffWater

Water-based cutoff frequency (in Hertz).

3.11.1 Detailed Description

A struct storing mesh node dimensions, free-space and water timestep values, and free-space and water max
frequency values.

The documentation for this struct was generated from the following file:

• 3D-TLM/Solver.h

3.12 Solver Class Reference

A class which conducts all operations concerning simulation execution.

#include <Solver.h>
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Collaboration diagram for Solver:
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Public Member Functions

• void configMeshExcitation (void)
• void configMeshObservationType (int, float, float, float)
• void updateMeasurements (int)
• void outputMeasurements (int)
• void initRaindrops (void)
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3.12 Solver Class Reference 23

• void importSimulationConfigParameters (int, int)
• void importRaindropGeometryFromFile (string, int)
• void meshRaindrops (void)

Place the simulated raindrops imported previously into the mesh.

• void scatterMesh (void)

Run the ’scatter’ process of the TLM algorithm.

• void connectMesh (bool)
• void exciteMeshWithFieldAtCoordinates (Field ⇤, int, int, int)
• void outputZSlicesForTimeStep (int, bool)
• void outputMeshToPPMFile (int, int, bool)
• void createMeshEdgeBoundaries (float, float, float, float, float, float)
• void meshChamber (void)

Initialise a replica of the Holywell Park Anechoic Chamber.

• void meshSingleAbsorber (MeshPoint, MeshPoint, int, int, float)
• void createXYBoundaryFaceRect (MeshPoint, MeshPoint, float)
• void createYZBoundaryFaceRect (MeshPoint, MeshPoint, float)
• void createLineBoundary (MeshPoint, MeshPoint, float, int)
• void implementBoundaryNode (int, int, int)
• void initMeshNodesProperties (void)
• int calcStubSCNParams (StubSCNProperties ⇤, double)
• double calcMaxTimestep (StubSCNProperties ⇤)
• double calcMeshCutoff (StubSCNProperties ⇤)
• void createSingleTDMeasurementPoint (void)
• void updateSingleTDMeasurementPoint (void)
• void outputSingleTDMeasurementPointLog (void)
• void createXZMeasurementPointsPlane (int, int, int, int, int, float, float, float)
• void updateMeasurementPoints (void)
• void outputMeasurementPointLogs (void)

Write out the measurement point information to a log file.

• void createFDBinFiles (int, int)
• void createXZGaussianPlanewave (int, int, int, int, int)
• void updateGaussianPlanewave (void)

Inject the most recently calculated value of the Gaussian pulse into the mesh.

• void initMPIChannels (bool)
• char ⇤ convertSubPixelValuesToCharArray (int, bool)
• Pixel specMap (float)
• int numberOfDigits (const int)
• int roundToNearestInt (double)
• void swapInts (int ⇤, int ⇤)
• void setMeshPoint (MeshPoint ⇤, int, int, int)
• string itoa (int)

Public Attributes

• int XDIM
• int YDIM
• int YDIM_GBL
• int ZDIM
• SimulationConstants constants
• StubSCNProperties propsWater
• StubSCNProperties propsFreeSpace
• string configType
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3.12.1 Detailed Description

A class which conducts all operations concerning simulation execution.

3.12.2 Member Function Documentation

3.12.2.1 double Solver::calcMaxTimestep ( StubSCNProperties ⇤ props )

Calculate the maximum timestep value for the mesh. Calculates the maximum timestep value for material that keeps
all stubs positive...

Parameters

⇤props A pointer to a StubSCNProperties struct.

Returns

dt The maximum save timestep value for the mesh to ensure stability.

3.12.2.2 double Solver::calcMeshCutoff ( StubSCNProperties ⇤ props )

Calculate the mesh cutoff frequency to ensure accuracy of results.

Parameters

⇤props A pointer to a StubSCNProperties struct.

Returns

fcutoff The cutoff frequency for the simulation.

3.12.2.3 int Solver::calcStubSCNParams ( StubSCNProperties ⇤ props, double dt )

Calculate the mesh node stub parameter values. These stub values are dependent on the calculated timestep
value.

Parameters

⇤props A pointer to a StubSCNProperties struct.
dt The calculated timestep value for the mesh.

Returns

Success on completetion.

3.12.2.4 void Solver::configMeshExcitation ( void )

Configures the mesh excitation Exciation scheme dependent on simulation being executed (e.g. rainfield, rectangu-
lar chamber, tapered chamber).
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Here is the call graph for this function:
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3.12.2.5 void Solver::configMeshObservationType ( int measMode, float fStart, float fStep, float fStop )

Configures the mesh observation type Measurement type (time or frequency domain) is dependent on user input at
start of program execution.

Parameters

measMode The measurement mode requested by the user.
fStart Start frequency for DFT calculations.
fStop Stop frequency for DFT calculations.
fStep Frequency step for DFT calculations.

Here is the call graph for this function:
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3.12.2.6 void Solver::connectMesh ( bool shouldWrapAround )

Run the ’connect’ process of the TLM algorithm.

Parameters

shouldWrap-
Around

A flag to decided whether periodic boundaries should be used.

Here is the call graph for this function:
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3.12.2.7 char ⇤ Solver::convertSubPixelValuesToCharArray ( int z, bool drawBoundaries )

Convert an entire XY-slice through the mesh into RGB pixel values.

Parameters

z The Z-axis offset for the XY-slice through the mesh.
drawBoundaries A flag to decide whether to visualise boundary nodes as white pixels.

Returns

RGBSliceBuffer A 1-D char array representing the XY-slice pixel values.

Here is the call graph for this function:
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Here is the caller graph for this function:
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3.12.2.8 void Solver::createFDBinFiles ( int measMode, int rank )

Reformats the Frequency-domain measurement data. Seperates the original FD data file into seperate TXT files for
each bin (for both Magnitude and Phase).

Here is the call graph for this function:
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3.12.2.9 void Solver::createLineBoundary ( MeshPoint stPoint, MeshPoint ePoint, float cond, int mode )

Initialise a straight-line boundary with a particular condition.
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Parameters

stPoint The start point of the line (in nodes).
ePoint The end point of the line (in nodes).

cond The boundary condition for the line boundary.
mode Decides which plane to operate the line-drawing algorithm in.

Here is the caller graph for this function:
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3.12.2.10 void Solver::createMeshEdgeBoundaries ( float topCond, float bottomCond, float leftCond, float rightCond, float
frontCond, float backCond )

Initialise all the mesh-edge boundaries

Parameters

topCond The boundary condition for the top of the mesh.
bottomCond The boundary condition for the bottom of the mesh.

leftCond The boundary condition for the left of the mesh.
rightCond The boundary condition for the right of the mesh.
frontCond The boundary condition for the front of the mesh.
backCond The boundary condition for the back of the mesh.

Here is the call graph for this function:
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3.12.2.11 void Solver::createSingleTDMeasurementPoint ( void )

Initialise a single time-domain MeasurementPoint object.

Parameters

mode The measurement mode for field observations.
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nA A pointer to a SCNNode.

Here is the caller graph for this function:
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3.12.2.12 void Solver::createXYBoundaryFaceRect ( MeshPoint stPoint, MeshPoint ePoint, float cond )

Initialise a boundary plane rectangle in the XY plane.

Parameters

stPoint The start point of the base of the absorber (in nodes).
ePoint The end point of the base of the absorber (in nodes).

cond The boundary condition for the absorber material.

Here is the call graph for this function:
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Here is the caller graph for this function:
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3.12.2.13 void Solver::createXZGaussianPlanewave ( int sX, int sZ, int eX, int eZ, int yPlane )

Initialise a Gaussian planewave in the XZ-plane.
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Parameters

sX The start value along the X-axis (in terms of nodes).
sZ The start value along the X-axis (in terms of nodes).
eX The end value along the X-axis (in terms of nodes).
eZ The end value along the X-axis (in terms of nodes).

yPlane The Y-axis offset in which to place the XZ plane.

Here is the caller graph for this function:
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3.12.2.14 void Solver::createXZMeasurementPointsPlane ( int sX, int sZ, int eX, int eZ, int yPlane, float fStart, float fStep,
float fStop )

Initialise a plane of MeasurementPoints for DFT purposes in the XZ-plane.

Parameters

sX The start value along the X-axis (in terms of nodes).
sZ The start value along the X-axis (in terms of nodes).
eX The end value along the X-axis (in terms of nodes).
eZ The end value along the X-axis (in terms of nodes).

yPlane The Y-axis offset in which to place the XZ plane.
fStart Start frequency for DFT calculations.
fStop Stop frequency for DFT calculations.
fStep Frequency step for DFT calculations.

Here is the caller graph for this function:
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3.12.2.15 void Solver::createYZBoundaryFaceRect ( MeshPoint stPoint, MeshPoint ePoint, float cond )

Initialise a boundary plane rectangle in the YZ plane.

Parameters
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stPoint The start point of the base of the absorber (in nodes).
ePoint The end point of the base of the absorber (in nodes).

cond The boundary condition for the absorber material.

Here is the call graph for this function:
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Here is the caller graph for this function:
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3.12.2.16 void Solver::exciteMeshWithFieldAtCoordinates ( Field ⇤ f, int x, int y, int z )

Excite the mesh at a particular node with a given field.

Parameters

⇤F A pointer to a Field object.
x X-axis location of the node (specified in terms of nodes).
y Y-axis location of the node (specified in terms of nodes).
z Z-axis location of the node (specified in terms of nodes).

Here is the caller graph for this function:
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3.12.2.17 void Solver::implementBoundaryNode ( int x, int y, int z )

Applies the boundary node’s condition at a particular location in the mesh.
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Parameters

x The X-axis location of the boundary node (specified in terms of nodes).
y The Y-axis location of the boundary node (specified in terms of nodes).
z The Z-axis location of the boundary node (specified in terms of nodes).

Here is the caller graph for this function:
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3.12.2.18 void Solver::importRaindropGeometryFromFile ( string fileName, int dropNum )

Read-in a raindrop file and examine for drop-type. Import prototype raindrop geometry information or mesh simu-
lated raindrop using prototype information depending on file type.

Parameters

fileName The file name of the raindrop file to be imported.
dropNum The number of the current drop to be imported.

Here is the caller graph for this function:
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3.12.2.19 void Solver::importSimulationConfigParameters ( int numProcs, int rankProc )

Import simulation parameters from the config.txt file.

Parameters

numProcs The number of processors being used for program execution.
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Here is the call graph for this function:
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3.12.2.20 void Solver::initMeshNodesProperties ( void )

Initialise the mesh node properties for the entire mesh. The properties are set based on the imported values from
the config.txt file.

3.12.2.21 void Solver::initMPIChannels ( bool shouldWrapAround )

Initialise the MPI communication channels for the ’Connect’ process.

Parameters

shouldWrap-
Around

A flag to decide if a perodic boundary condition should be applied.

3.12.2.22 void Solver::initRaindrops ( void )

Initialise all the raindrops into the mesh Import all the prototype raindrops into the solver, then initialise the raindrops
to simulate based off imported location information.

Parameters

rankProc The ’rank’ number of the current processor being used for program execution.

Here is the call graph for this function:
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3.12.2.23 string Solver::itoa ( int i )

Create a string equivalent of an integer.
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Parameters

i The integer to convert to a string.

Returns

s The string equivalent of ’i’.

Here is the caller graph for this function:
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3.12.2.24 void Solver::meshSingleAbsorber ( MeshPoint stPoint, MeshPoint ePoint, int height, int absFace, float cond )

Initialise a single anechoic absorber in the mesh.

Parameters

stPoint The start point of the base of the absorber (in nodes).
ePoint The end point of the base of the absorber (in nodes).
height The height of the absorber (in nodes).

absFace The particular face of a cuboid object to place the absorber onto.
cond The boundary condition for the absorber material.

Here is the call graph for this function:
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Here is the caller graph for this function:
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3.12.2.25 int Solver::numberOfDigits ( const int number )

Calculates the number of digits present in an integer number.

Parameters

number The number to count the digits of.

Returns

The number of digits present in integer ’number’.

Here is the caller graph for this function:
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3.12.2.26 void Solver::outputMeasurements ( int measMode )

Output the mesh measurements Measurements are output dependent on the user-requested measurement mode.

Parameters

measMode The measurement mode requested by the user.

Here is the call graph for this function:
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3.12.2.27 void Solver::outputMeshToPPMFile ( int timeStep, int zSlice, bool drawBoundaries )

Output a given Z-axis slice to a PPM image file.

Parameters

timeStep The current timestep number.
zSlice The current Z-axis offset for the image slice.
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drawBoundaries A flag to decide whether to draw boundaries as white pixels.

Here is the call graph for this function:
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Here is the caller graph for this function:
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3.12.2.28 void Solver::outputSingleTDMeasurementPointLog ( void )

Output a record of the selected field information for every time-step of a simulation. Each field component that has
been requested is written to a log file in plaintext format.

Here is the caller graph for this function:
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3.12.2.29 void Solver::outputZSlicesForTimeStep ( int timeStep, bool drawBoundaries )

Write out all images for a given timestep. Outputs 1-node thick slices, spanning entire Z-axis range.

Parameters

timeStep The current timestep number.
drawBoundaries A flag to decide whether to draw boundaries as white pixels.

Generated on Tue Feb 18 2014 09:56:03 for 3D-TLM by Doxygen



36 Class Documentation

Here is the call graph for this function:
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3.12.2.30 int Solver::roundToNearestInt ( double number )

Rounds a double-precision float to the nearest integer.

Parameters

number The number to round.

Returns

The nearest integer to the number ’number’.

Here is the caller graph for this function:
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3.12.2.31 void Solver::setMeshPoint ( MeshPoint ⇤ p, int x, int y, int z )

Initialises a MeshPoint object location within the mesh.

Parameters

⇤p A pointer to a MeshPoint object.
x X-axis location of ⇤p within the mesh (in terms of nodes).
y Y-axis location of ⇤p within the mesh (in terms of nodes).
z Z-axis location of ⇤p within the mesh (in terms of nodes).
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Here is the caller graph for this function:
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3.12.2.32 Pixel Solver::specMap ( float intensity )

Convert a field intensity value into a set of RGB values along a colourmap. Out of range values are clipped for 8-bit
per channel visualisation.

Parameters

intensity The intensity value to convert.

Returns

p The pixel struct containing the RGB values to visualise.

Here is the caller graph for this function:
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3.12.2.33 void Solver::swapInts ( int ⇤ a, int ⇤ b )

Swap two integers.

Parameters

⇤a A pointer to one integer.
⇤b A pointer to a second integer.

3.12.2.34 void Solver::updateMeasurementPoints ( void )

Update the DFT value for each measurementPoint present. A DFT value is calculated for each frequency specified
for each measurementPoint object.
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Here is the caller graph for this function:
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3.12.2.35 void Solver::updateMeasurements ( int measMode )

Update the mesh measurements Measurements are updated dependent on the user-requested measurement
mode.

Parameters

measMode The measurement mode requested by the user.

Here is the call graph for this function:
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3.12.2.36 void Solver::updateSingleTDMeasurementPoint ( void )

Update the single time-domain node. Adds a copy of the node to a <vector> holding a SCNNode for each time-step
of the simulation.

Here is the caller graph for this function:
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The documentation for this class was generated from the following files:

• 3D-TLM/Solver.h
• 3D-TLM/Solver.cpp
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3.13 StubSCNProperties Struct Reference

A struct describing the stub properties for all the SCNs in the mesh.

#include <SCNNode.h>

Collaboration diagram for StubSCNProperties:
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Public Attributes

• float Yox

X-directed normalised admittance.

• float Yoy

Y-directed normalised admittance.

• float Yoz

Z-directed normalised admittance.

• float Zsx

X-directed short-circuit impedance.

• float Zsy

Y-directed short-circuit impedance.

• float Zsz

Z-directed short-circuit impedance.

• float sigma_e

Sigma-e.

• float sigma_m
• float mu_r

Relative permeability value.

• float epsilon_r
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Relative permittivity value.
• float kvx

X-directed constant for finding e.t.v ⇤ sum of voltages.
• float kvy

Y-directed constant for finding e.t.v ⇤ sum of voltages.
• float kvz

Z-directed constant for finding e.t.v ⇤ sum of voltages.
• float kix

X-directed constant for finding e.t.c ⇤ link-line impedance.
• float kiy

Y-directed constant for finding e.t.c ⇤ link-line impedance.
• float kiz

Z-directed constant for finding e.t.c ⇤ link-line impedance.

3.13.1 Detailed Description

A struct describing the stub properties for all the SCNs in the mesh.

The documentation for this struct was generated from the following file:

• 3D-TLM/SCNNode.h
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Chapter 1

Hierarchical Index

1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

MBProgressHUD() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
MGSplitViewController(MGPrivateMethods) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
<MGSplitViewControllerDelegate> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
NSObject

BoundaryNode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
InfoBox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
PulseObject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
SMXMLDocument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
SMXMLElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
TLMiPhoneAppDelegate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
TLMSolver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

<NSObject>
<ConfigViewDelegate> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

TLMiPhoneViewController . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
<SimListDelegate> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

ConfigureOptionsViewController . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
<NSXMLParserDelegate>

SMXMLDocument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
SMXMLElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
<UIApplicationDelegate>

TLMiPhoneAppDelegate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
<UIPopoverControllerDelegate>

ConfigureOptionsViewController . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
MGSplitViewController . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
TLMiPhoneViewController . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

UITableViewController
SimulationListViewController . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

UIView
MBProgressHUD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
MBRoundProgressView . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
MGSplitCornersView . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
MGSplitDividerView . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

UIViewController
ChangeBoundariesViewController . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
ConfigureOptionsViewController . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
EditServerAddressViewController . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
MGSplitViewController . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
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TLMiPhoneViewController . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
<UIViewControllerNSObject>

<EditServerAddressViewControllerDelegate> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
SimulationListViewController . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

<UIViewNSObject>
<MBProgressHUDDelegate> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
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Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

BoundaryNode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
ChangeBoundariesViewController . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
ConfigureOptionsViewController . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
<ConfigViewDelegate> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
EditServerAddressViewController . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
<EditServerAddressViewControllerDelegate> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
InfoBox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
MBProgressHUD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
MBProgressHUD() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
<MBProgressHUDDelegate> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
MBRoundProgressView . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
MGSplitCornersView . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
MGSplitDividerView . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
MGSplitViewController . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
MGSplitViewController(MGPrivateMethods) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
<MGSplitViewControllerDelegate> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
PulseObject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
<SimListDelegate> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
SimulationListViewController . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
SMXMLDocument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
SMXMLElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
TLMiPhoneAppDelegate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
TLMiPhoneViewController . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
TLMSolver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
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Chapter 3

Class Documentation

3.1 BoundaryNode Class Reference

Inheritance diagram for BoundaryNode:
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Collaboration diagram for BoundaryNode:
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Instance Methods

• (id) - initBoundaryAtXCoord:YCoordinate:withCondition:isEdge:

• (void) - resetNodeBoundaryCondition



6 Class Documentation

Protected Attributes

• TLMiPhoneAppDelegate ⇤ appDelegate

• NSInteger meshEdgeType

Properties

• NSInteger boundaryXCoord

• NSInteger boundaryYCoord

• float boundaryCondition

3.1.1 Method Documentation

3.1.1.1 - (id) initBoundaryAtXCoord: (NSInteger) x YCoordinate:(NSInteger) y withCondition:(BOOL) cond isEdge:(NSInteger)
meshEdge

Initialise a BoundaryNode object.

Parameters

x The x-axis mesh co-ordinate value.
y The y-axis mesh co-ordinate value.

cond The boundary condition (from BMODE enum in Defs.h).
meshEdge The mesh edge type (from BTYPE enum in Defs.h).

Returns

The initialised BoundaryNode object.

3.1.1.2 - (void) resetNodeBoundaryCondition

Resets the boundary condition based on the current mesh edge type.

Here is the caller graph for this function:
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The documentation for this class was generated from the following files:

• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/BoundaryNode.h

• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/BoundaryNode.m
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3.2 ChangeBoundariesViewController Class Reference 7

3.2 ChangeBoundariesViewController Class Reference

Inheritance diagram for ChangeBoundariesViewController:

��������	�
������������������

����������������

Collaboration diagram for ChangeBoundariesViewController:
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Instance Methods

• (IBAction) - topBoundaryConditionChanged:
• (IBAction) - bottomBoundaryConditionChanged:
• (IBAction) - leftBoundaryConditionChanged:
• (IBAction) - rightBoundaryConditionChanged:
• (IBAction) - drawPulsesOrBoundariesChanged:
• (IBAction) - meshLossSliderValueChanged:
• (IBAction) - returnFromChangeBoundariesView:

Protected Attributes

• TLMiPhoneAppDelegate ⇤ appDelegate

Properties

• IBOutlet UISegmentedControl ⇤ topBoundarySegmentedControl
• IBOutlet UISegmentedControl ⇤ bottomBoundarySegmentedControl
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• IBOutlet UISegmentedControl ⇤ leftBoundarySegmentedControl
• IBOutlet UISegmentedControl ⇤ rightBoundarySegmentedControl
• IBOutlet UISegmentedControl ⇤ drawPulsesOrBoundariesSegmentedControl
• IBOutlet UISlider ⇤ meshLossSlider
• IBOutlet UIButton ⇤ doneButton

3.2.1 Method Documentation

3.2.1.1 - (IBAction) bottomBoundaryConditionChanged: (id) sender

IBAction to handle when the bottom boundary condition has changed.

Parameters

sender IBOutlet representing the UISegmentedControl for the Bottom Boundary condition.

3.2.1.2 - (IBAction) drawPulsesOrBoundariesChanged: (id) sender

IBAction to handle when the Draw Pulses or Boundaries option has changed.

Parameters

sender IBOutlet representing the UISegmentedControl for the Draw Pulses or Boundaries option.

3.2.1.3 - (IBAction) leftBoundaryConditionChanged: (id) sender

IBAction to handle when the left boundary condition has changed.

Parameters

sender IBOutlet representing the UISegmentedControl for the Left Boundary condition.

3.2.1.4 - (IBAction) meshLossSliderValueChanged: (id) sender

IBAction to handle when the Mesh Loss slider value has changed.

Parameters

sender IBOutlet reprensting the UISlider for Mesh Loss.

3.2.1.5 - (IBAction) returnFromChangeBoundariesView: (id) sender

Dismiss the Change Boundaries view.

Parameters

sender IBOutlet representing the Done button.

3.2.1.6 - (IBAction) rightBoundaryConditionChanged: (id) sender

IBAction to handle when the right boundary condition has changed.
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Parameters

sender IBOutlet representing the UISegmentedControl for the Right Boundary condition.

3.2.1.7 - (IBAction) topBoundaryConditionChanged: (id) sender

IBAction to handle when the top boundary condition has changed.

Parameters

sender IBOutlet representing the UISegmentedControl for the Top Boundary condition.

The documentation for this class was generated from the following files:

• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/ChangeBoundariesViewController.-
h

• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/ChangeBoundariesViewController.-
m

3.3 ConfigureOptionsViewController Class Reference

Inheritance diagram for ConfigureOptionsViewController:
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Collaboration diagram for ConfigureOptionsViewController:
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Instance Methods

• (IBAction) - returnFromConfigureOptionsView:
• (IBAction) - changeBoundariesButtonTapped:
• (IBAction) - loadCustomSimulationsButtonTapped:
• (IBAction) - simulationModeValueChanged:
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• (IBAction) - excitationModeValueChanged:
• (void) - setButtonGradientFills
• (void) - animateBandwidthLabelsWithXOffset:

Protected Attributes

• TLMiPhoneAppDelegate ⇤ appDelegate

Properties

• id< ConfigViewDelegate > delegate
• IBOutlet UIButton ⇤ doneButton
• IBOutlet UIButton ⇤ changeBoundariesButton
• IBOutlet UIButton ⇤ loadCustomSimulationsButton
• IBOutlet UISegmentedControl ⇤ modeSelectionSegmentControl
• IBOutlet UISegmentedControl ⇤ excitationModeSegmentControl
• IBOutlet UITextField ⇤ bandwidthTextField
• IBOutlet UITextField ⇤ plainWaveWidthTextField
• IBOutlet UILabel ⇤ plainWaveWidthLabel
• IBOutlet UILabel ⇤ defaultLabel
• IBOutlet UILabel ⇤ copyrightLabel
• UIPopoverController ⇤ popOver

3.3.1 Method Documentation

3.3.1.1 - (void) animateBandwidthLabelsWithXOffset: (NSInteger) xOffset

Animate the presentation/hiding of two configuration UITextFields.

Parameters

xOffset The x-axis offset value for movement.

Here is the caller graph for this function:

��������	
���������������
����

������������������������������������

��������	
���������������
����

��� �������!������	����������

3.3.1.2 - (IBAction) changeBoundariesButtonTapped: (id) sender

Present the Change Boundaries view.

Parameters

sender IBOutlet representing the Change Boundaries button.

3.3.1.3 - (IBAction) excitationModeValueChanged: (id) sender

Update the current excitation mode.
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Parameters

sender IBOutlet representing the current excitation mode.

Here is the call graph for this function:
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3.3.1.4 - (IBAction) loadCustomSimulationsButtonTapped: (id) sender

Present the Load Custom Simulations view.

Parameters

sender IBOutlet representing the Load Custom Simulations button.

3.3.1.5 - (IBAction) returnFromConfigureOptionsView: (id) sender

Update simulation parameters when returning from the Configuration Options view to the main simulation view.

Parameters

sender IBOutlet representing the Done button.

3.3.1.6 - (void) setButtonGradientFills

Configure the gradient fills for all the UIButton objects in the view.

3.3.1.7 - (IBAction) simulationModeValueChanged: (id) sender

Update the current simulation mode.

Parameters

sender IBOutlet representing the current simulation mode button.

The documentation for this class was generated from the following files:

• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/ConfigureOptionsViewController.h

• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/ConfigureOptionsViewController.m
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3.4 <ConfigViewDelegate> Protocol Reference

Inheritance diagram for <ConfigViewDelegate>:
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Collaboration diagram for <ConfigViewDelegate>:
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Instance Methods

• (void) - swapMeshBuffersForModeTransition

• (void) - dismissPopOverView

• (void) - dismissConfigViewController

• (void) - updateLocalScatterAndConnectVariablesFromConfigView

The documentation for this protocol was generated from the following file:

• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/ConfigureOptionsViewController.h
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3.5 EditServerAddressViewController Class Reference

Inheritance diagram for EditServerAddressViewController:
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Collaboration diagram for EditServerAddressViewController:
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Instance Methods

• (IBAction) - cancelChangeServerAddressTapped:
• (IBAction) - saveChangeServerAddressTapped:
• (IBAction) - goToCEMLStandardWebpage:
• (void) - updateContentsAndDismissEditView

Protected Attributes

• TLMiPhoneAppDelegate ⇤ appDelegate

Properties

• IBOutlet UIToolbar ⇤ CEMLStandardToolbar
• IBOutlet UIBarButtonItem ⇤ CEMLStandardButton
• IBOutlet UIBarButtonItem ⇤ cancelButton
• IBOutlet UIBarButtonItem ⇤ saveButton
• IBOutlet UITextField ⇤ serverAddressTextField

Generated on Thu Feb 27 2014 10:41:29 for Loughborough Wave Lab - iOS by Doxygen



14 Class Documentation

• id
< EditServerAddressViewControllerDelegate > delegate

3.5.1 Method Documentation

3.5.1.1 - (IBAction) cancelChangeServerAddressTapped: (id) sender

IBAction to handle when the Cancel button has been pressed.

Parameters

sender IBOutlet representing the Cancel button.

3.5.1.2 - (IBAction) goToCEMLStandardWebpage: (id) sender

IBAction for handling when the Goto CEML Standard button has been pressed.

Parameters

sender IBOutlet representing the Goto CEML Standard button.

3.5.1.3 - (IBAction) saveChangeServerAddressTapped: (id) sender

IBAction for handling when the Save Server Address button has been pressed.

Parameters

sender IBOutlet representing the Save button.

Here is the call graph for this function:
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3.5.1.4 - (void) updateContentsAndDismissEditView

Update the server address URL and dismiss the Edit Server view.

Here is the caller graph for this function:
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The documentation for this class was generated from the following files:

• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/EditServerAddressViewController.h
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• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/EditServerAddressViewController.-
m

3.6 <EditServerAddressViewControllerDelegate> Protocol Reference

Inheritance diagram for <EditServerAddressViewControllerDelegate>:
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Collaboration diagram for <EditServerAddressViewControllerDelegate>:
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Instance Methods

• (void) - refreshXMLSimulationListTable

The documentation for this protocol was generated from the following file:

• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/EditServerAddressViewController.h
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3.7 InfoBox Class Reference

Inheritance diagram for InfoBox:

�������

��	
���

Collaboration diagram for InfoBox:
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Class Methods

• (id) + addToView:withInfoText:WhilstAnimating:

3.7.1 Method Documentation

3.7.1.1 + (id) addToView: (UIView⇤) view withInfoText:(NSString⇤) infoText WhilstAnimating:(BOOL) animate

Class method for adding an InfoBox object to a view.

Parameters

view The view to display the InfoBox within.
infoText The information text to display within the InfoBox.
animate A Boolean flag to determine if presentation of the InfoBox should be animated or not.
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Returns

The initialised InfoBox object.

Here is the caller graph for this function:
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The documentation for this class was generated from the following files:

• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/InfoBox.h
• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/InfoBox.m

3.8 MBProgressHUD Class Reference

#import <MBProgressHUD.h>

Inheritance diagram for MBProgressHUD:

����������	
�


����

Collaboration diagram for MBProgressHUD:
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Instance Methods

• (id) - initWithWindow:
• (id) - initWithView:
• (void) - show:
• (void) - hide:
• (void) - hide:afterDelay:
• (void) - showWhileExecuting:onTarget:withObject:animated:

Class Methods

• (MBProgressHUD ⇤) + showHUDAddedTo:animated:
• (BOOL) + hideHUDForView:animated:
• (NSUInteger) + hideAllHUDsForView:animated:
• (MBProgressHUD ⇤) + HUDForView:
• (NSArray ⇤) + allHUDsForView:

Properties

• MBProgressHUDMode mode
• MBProgressHUDAnimation animationType
• UIView ⇤ customView
• id< MBProgressHUDDelegate > delegate
• NSString ⇤ labelText
• NSString ⇤ detailsLabelText
• float opacity
• UIColor ⇤ color
• float xOffset
• float yOffset
• float margin
• BOOL dimBackground
• float graceTime
• float minShowTime
• BOOL taskInProgress
• BOOL removeFromSuperViewOnHide
• UIFont ⇤ labelFont
• UIFont ⇤ detailsLabelFont
• float progress
• CGSize minSize
• BOOL square

3.8.1 Detailed Description

Displays a simple HUD window containing a progress indicator and two optional labels for short messages.

This is a simple drop-in class for displaying a progress HUD view similar to Apple’s private UIProgressHUD class.
The MBProgressHUD window spans over the entire space given to it by the initWithFrame constructor and catches
all user input on this region, thereby preventing the user operations on components below the view. The HUD itself
is drawn centered as a rounded semi-transparent view which resizes depending on the user specified content.

This view supports four modes of operation:

• MBProgressHUDModeIndeterminate - shows a UIActivityIndicatorView

• MBProgressHUDModeDeterminate - shows a custom round progress indicator
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3.8 MBProgressHUD Class Reference 19

• MBProgressHUDModeAnnularDeterminate - shows a custom annular progress indicator

• MBProgressHUDModeCustomView - shows an arbitrary, user specified view (

See Also

customView)

All three modes can have optional labels assigned:

• If the labelText property is set and non-empty then a label containing the provided content is placed below
the indicator view.

• If also the detailsLabelText property is set then another label is placed below the first label.

3.8.2 Method Documentation

3.8.2.1 + (NSArray ⇤) allHUDsForView: (UIView ⇤) view

Finds all HUD subviews and returns them.

Parameters

view The view that is going to be searched.

Returns

All found HUD views (array of MBProgressHUD objects).

Here is the caller graph for this function:
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3.8.2.2 - (void) hide: (BOOL) animated

Hide the HUD. This still calls the hudWasHidden: delegate. This is the counterpart of the show: method. Use it to
hide the HUD when your task completes.

Parameters

animated If set to YES the HUD will disappear using the current animationType. If set to NO the HUD
will not use animations while disappearing.
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See Also

animationType

Here is the caller graph for this function:
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3.8.2.3 - (void) hide: (BOOL) animated afterDelay:(NSTimeInterval) delay

Hide the HUD after a delay. This still calls the hudWasHidden: delegate. This is the counterpart of the show:
method. Use it to hide the HUD when your task completes.

Parameters

animated If set to YES the HUD will disappear using the current animationType. If set to NO the HUD
will not use animations while disappearing.

delay Delay in seconds until the HUD is hidden.

See Also

animationType

3.8.2.4 + (NSUInteger) hideAllHUDsForView: (UIView ⇤) view animated:(BOOL) animated

Finds all the HUD subviews and hides them.

Parameters

view The view that is going to be searched for HUD subviews.
animated If set to YES the HUDs will disappear using the current animationType. If set to NO the HUDs

will not use animations while disappearing.

Returns

the number of HUDs found and removed.
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See Also

hideAllHUDForView:animated:
animationType

Here is the call graph for this function:
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3.8.2.5 + (BOOL) hideHUDForView: (UIView ⇤) view animated:(BOOL) animated

Finds the top-most HUD subview and hides it. The counterpart to this method is showHUDAddedTo:animated:.

Parameters

view The view that is going to be searched for a HUD subview.
animated If set to YES the HUD will disappear using the current animationType. If set to NO the HUD

will not use animations while disappearing.

Returns

YES if a HUD was found and removed, NO otherwise.

See Also

+ showHUDAddedTo:animated:
animationType

Here is the call graph for this function:

���������	

������	�����
��	��������	���

���������	

����������	���

���������	

������	��

Here is the caller graph for this function:
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3.8.2.6 + (MBProgressHUD ⇤) HUDForView: (UIView ⇤) view

Finds the top-most HUD subview and returns it.

Parameters

view The view that is going to be searched.

Returns

A reference to the last HUD subview discovered.

Here is the caller graph for this function:
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3.8.2.7 - (id) initWithView: (UIView ⇤) view

A convenience constructor that initializes the HUD with the view’s bounds. Calls the designated constructor with
view.bounds as the parameter

Parameters

view The view instance that will provide the bounds for the HUD. Should be the same instance as
the HUD’s superview (i.e., the view that the HUD will be added to).

Here is the caller graph for this function:
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3.8.2.8 - (id) initWithWindow: (UIWindow ⇤) window

A convenience constructor that initializes the HUD with the window’s bounds. Calls the designated constructor with
window.bounds as the parameter.

Parameters

window The window instance that will provide the bounds for the HUD. Should be the same instance
as the HUD’s superview (i.e., the window that the HUD will be added to).
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Here is the call graph for this function:
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3.8.2.9 - (void) show: (BOOL) animated

Display the HUD. You need to make sure that the main thread completes its run loop soon after this method call so
the user interface can be updated. Call this method when your task is already set-up to be executed in a new thread
(e.g., when using something like NSOperation or calling an asynchronous call like NSURLRequest).

Parameters

animated If set to YES the HUD will appear using the current animationType. If set to NO the HUD will
not use animations while appearing.

See Also

animationType

Here is the caller graph for this function:
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3.8.2.10 + (MBProgressHUD ⇤) showHUDAddedTo: (UIView ⇤) view animated:(BOOL) animated

Creates a new HUD, adds it to provided view and shows it. The counterpart to this method is hideHUDForView-
:animated:.

Parameters

view The view that the HUD will be added to
animated If set to YES the HUD will appear using the current animationType. If set to NO the HUD will

not use animations while appearing.

Returns

A reference to the created HUD.
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See Also

+ hideHUDForView:animated:
animationType

Here is the call graph for this function:
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3.8.2.11 - (void) showWhileExecuting: (SEL) method onTarget:(id) target withObject:(id) object animated:(BOOL) animated

Shows the HUD while a background task is executing in a new thread, then hides the HUD.

This method also takes care of autorelease pools so your method does not have to be concerned with setting up a
pool.

Parameters

method The method to be executed while the HUD is shown. This method will be executed in a new
thread.

target The object that the target method belongs to.
object An optional object to be passed to the method.

animated If set to YES the HUD will (dis)appear using the current animationType. If set to NO the HUD
will not use animations while (dis)appearing.

Here is the call graph for this function:
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3.8.3 Property Documentation

3.8.3.1 - (MBProgressHUDAnimation) animationType [read], [write], [atomic], [assign]

The animation type that should be used when the HUD is shown and hidden.

See Also

MBProgressHUDAnimation
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3.8.3.2 - (UIColor⇤) color [read], [write], [atomic], [assign]

The color of the HUD window. Defaults to black. If this property is set, color is set using this UIColor and the opacity
property is not used. using retain because performing copy on UIColor base colors (like [UIColor greenColor]) cause
problems with the copyZone.

3.8.3.3 - (UIView⇤) customView [read], [write], [atomic], [assign]

The UIView (e.g., a UIImageView) to be shown when the HUD is in MBProgressHUDModeCustomView. For best
results use a 37 by 37 pixel view (so the bounds match the built in indicator bounds).

3.8.3.4 - (id<MBProgressHUDDelegate>) delegate [read], [write], [atomic], [assign]

The HUD delegate object.

See Also

MBProgressHUDDelegate

3.8.3.5 - (UIFont⇤) detailsLabelFont [read], [write], [atomic], [assign]

Font to be used for the details label. Set this property if the default is not adequate.

3.8.3.6 - (NSString⇤) detailsLabelText [read], [write], [atomic], [copy]

An optional details message displayed below the labelText message. This message is displayed only if the labelText
property is also set and is different from an empty string (""). The details text can span multiple lines.

3.8.3.7 - (BOOL) dimBackground [read], [write], [atomic], [assign]

Cover the HUD background view with a radial gradient.

3.8.3.8 - (UIFont⇤) labelFont [read], [write], [atomic], [assign]

Font to be used for the main label. Set this property if the default is not adequate.

3.8.3.9 - (NSString⇤) labelText [read], [write], [atomic], [copy]

An optional short message to be displayed below the activity indicator. The HUD is automatically resized to fit the
entire text. If the text is too long it will get clipped by displaying "..." at the end. If left unchanged or set to "", then no
message is displayed.

3.8.3.10 - (float) margin [read], [write], [atomic], [assign]

The amount of space between the HUD edge and the HUD elements (labels, indicators or custom views). Defaults
to 20.0

3.8.3.11 - (float) minShowTime [read], [write], [atomic], [assign]

The minimum time (in seconds) that the HUD is shown. This avoids the problem of the HUD being shown and than
instantly hidden. Defaults to 0 (no minimum show time).
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3.8.3.12 - (CGSize) minSize [read], [write], [atomic], [assign]

The minimum size of the HUD bezel. Defaults to CGSizeZero (no minimum size).

3.8.3.13 - (MBProgressHUDMode) mode [read], [write], [atomic], [assign]

MBProgressHUD operation mode. The default is MBProgressHUDModeIndeterminate.

See Also

MBProgressHUDMode

3.8.3.14 - (float) opacity [read], [write], [atomic], [assign]

The opacity of the HUD window. Defaults to 0.8 (80% opacity).

3.8.3.15 - (float) progress [read], [write], [atomic], [assign]

The progress of the progress indicator, from 0.0 to 1.0. Defaults to 0.0.

3.8.3.16 - (BOOL) removeFromSuperViewOnHide [read], [write], [atomic], [assign]

Removes the HUD from its parent view when hidden. Defaults to NO.

3.8.3.17 - (BOOL) square [read], [write], [atomic], [assign]

Force the HUD dimensions to be equal if possible.

3.8.3.18 - (BOOL) taskInProgress [read], [write], [atomic], [assign]

Indicates that the executed operation is in progress. Needed for correct graceTime operation. If you don’t set
a graceTime (different than 0.0) this does nothing. This property is automatically set when using showWhile-
Executing:onTarget:withObject:animated:. When threading is done outside of the HUD (i.e., when the show: and
hide: methods are used directly), you need to set this property when your task starts and completes in order to have
normal graceTime functionality.

3.8.3.19 - (float) xOffset [read], [write], [atomic], [assign]

The x-axis offset of the HUD relative to the centre of the superview.

3.8.3.20 - (float) yOffset [read], [write], [atomic], [assign]

The y-ayis offset of the HUD relative to the centre of the superview.

The documentation for this class was generated from the following files:

• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/MBProgressHUD.h

• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/MBProgressHUD.m
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3.9 MBProgressHUD() Category Reference

Instance Methods

• (void) - setupLabels
• (void) - registerForKVO
• (void) - unregisterFromKVO
• (NSArray ⇤) - observableKeypaths
• (void) - registerForNotifications
• (void) - unregisterFromNotifications
• (void) - updateUIForKeypath:
• (void) - hideUsingAnimation:
• (void) - showUsingAnimation:
• (void) - done
• (void) - updateIndicators
• (void) - handleGraceTimer:
• (void) - handleMinShowTimer:
• (void) - setTransformForCurrentOrientation:
• (void) - cleanUp
• (void) - launchExecution
• (void) - deviceOrientationDidChange:
• (void) - hideDelayed:

Properties

• UIView ⇤ indicator
• NSTimer ⇤ graceTimer
• NSTimer ⇤ minShowTimer
• NSDate ⇤ showStarted
• CGSize size

The documentation for this category was generated from the following file:

• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/MBProgressHUD.m

3.10 <MBProgressHUDDelegate> Protocol Reference

Inheritance diagram for <MBProgressHUDDelegate>:
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Collaboration diagram for <MBProgressHUDDelegate>:
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Instance Methods

• (void) - hudWasHidden:

3.10.1 Method Documentation

3.10.1.1 - (void) hudWasHidden: (MBProgressHUD ⇤) hud [optional]

Called after the HUD was fully hidden from the screen.

The documentation for this protocol was generated from the following file:

• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/MBProgressHUD.h

3.11 MBRoundProgressView Class Reference

#import <MBProgressHUD.h>

Inheritance diagram for MBRoundProgressView:
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Collaboration diagram for MBRoundProgressView:
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Properties

• float progress

• UIColor ⇤ progressTintColor

• UIColor ⇤ backgroundTintColor

• BOOL annular

3.11.1 Detailed Description

A progress view for showing definite progress by filling up a circle (pie chart).

3.11.2 Property Documentation

3.11.2.1 - (UIColor⇤) backgroundTintColor [read], [write], [nonatomic], [assign]

Indicator background (non-progress) color. Defaults to translucent white (alpha 0.1)

3.11.2.2 - (float) progress [read], [write], [nonatomic], [assign]

Progress (0.0 to 1.0)

3.11.2.3 - (UIColor⇤) progressTintColor [read], [write], [nonatomic], [assign]

Indicator progress color. Defaults to white [UIColor whiteColor]

The documentation for this class was generated from the following files:

• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/MBProgressHUD.h

• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/MBProgressHUD.m
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3.12 MGSplitCornersView Class Reference

Inheritance diagram for MGSplitCornersView:
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Collaboration diagram for MGSplitCornersView:
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Properties

• float cornerRadius

• MGSplitViewController ⇤ splitViewController

• MGCornersPosition cornersPosition

• UIColor ⇤ cornerBackgroundColor

The documentation for this class was generated from the following file:

• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/MGSplitCornersView.h
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3.13 MGSplitDividerView Class Reference

Inheritance diagram for MGSplitDividerView:
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Collaboration diagram for MGSplitDividerView:
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Instance Methods

• (void) - drawGripThumbInRect:

Properties

• MGSplitViewController ⇤ splitViewController

• BOOL allowsDragging

The documentation for this class was generated from the following files:

• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/MGSplitDividerView.h

• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/MGSplitDividerView.m
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3.14 MGSplitViewController Class Reference

Inheritance diagram for MGSplitViewController:
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Collaboration diagram for MGSplitViewController:
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Instance Methods

• (IBAction) - toggleSplitOrientation:
• (IBAction) - toggleMasterBeforeDetail:
• (IBAction) - toggleMasterView:
• (IBAction) - showMasterPopover:
• (void) - notePopoverDismissed
• (BOOL) - isShowingMaster
• (void) - setSplitPosition:animated:
• (void) - setDividerStyle:animated:
• (NSArray ⇤) - cornerViews

Protected Attributes

• BOOL _showsMasterInPortrait
• BOOL _showsMasterInLandscape

Generated on Thu Feb 27 2014 10:41:29 for Loughborough Wave Lab - iOS by Doxygen



3.15 MGSplitViewController(MGPrivateMethods) Category Reference 33

• float _splitWidth
• id _delegate
• BOOL _vertical
• BOOL _masterBeforeDetail
• NSMutableArray ⇤ _viewControllers
• UIBarButtonItem ⇤ _barButtonItem
• UIPopoverController ⇤ _hiddenPopoverController
• MGSplitDividerView ⇤ _dividerView
• NSArray ⇤ _cornerViews
• float _splitPosition
• BOOL _reconfigurePopup
• MGSplitViewDividerStyle _dividerStyle

Properties

• IBOutlet id
< MGSplitViewControllerDelegate > delegate

• BOOL showsMasterInPortrait
• BOOL showsMasterInLandscape
• BOOL vertical
• BOOL masterBeforeDetail
• float splitPosition
• float splitWidth
• BOOL allowsDraggingDivider
• NSArray ⇤ viewControllers
• IBOutlet UIViewController ⇤ masterViewController
• IBOutlet UIViewController ⇤ detailViewController
• MGSplitDividerView ⇤ dividerView
• MGSplitViewDividerStyle dividerStyle
• BOOL landscape

The documentation for this class was generated from the following files:

• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/MGSplitViewController.h
• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/MGSplitViewController.m

3.15 MGSplitViewController(MGPrivateMethods) Category Reference

Instance Methods

• (void) - setup
• (CGSize) - splitViewSizeForOrientation:
• (void) - layoutSubviews
• (void) - layoutSubviewsWithAnimation:
• (void) - layoutSubviewsForInterfaceOrientation:withAnimation:
• (BOOL) - shouldShowMasterForInterfaceOrientation:
• (BOOL) - shouldShowMaster
• (NSString ⇤) - nameOfInterfaceOrientation:
• (void) - reconfigureForMasterInPopover:

The documentation for this category was generated from the following file:

• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/MGSplitViewController.m
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3.16 <MGSplitViewControllerDelegate> Protocol Reference

Instance Methods

• (void) - splitViewController:willHideViewController:withBarButtonItem:forPopoverController:
• (void) - splitViewController:willShowViewController:invalidatingBarButtonItem:
• (void) - splitViewController:popoverController:willPresentViewController:
• (void) - splitViewController:willChangeSplitOrientationToVertical:
• (void) - splitViewController:willMoveSplitToPosition:
• (float) - splitViewController:constrainSplitPosition:splitViewSize:

The documentation for this protocol was generated from the following file:

• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/MGSplitViewController.h

3.17 PulseObject Class Reference

Inheritance diagram for PulseObject:
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Collaboration diagram for PulseObject:
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Instance Methods

• (id) - initWithXCoord:YCoordinate:iterationCount:excitationMode:
• (id) - initWithXCoord:YCoordinate:iterationCount:excitationMode:wavelength:
• (float) - normalDistWithX:mean:stdDev:
• (void) - repeatPulse
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Protected Attributes

• TLMiPhoneAppDelegate ⇤ appDelegate
• NSInteger iterationCountAtSeed
• int pulseXCoord
• int pulseYCoord
• float zNormalDistributionValue
• float sinusoidValue
• float scalingValue
• NSInteger pulseExcitationMode
• NSInteger pulseBandwidth
• BOOL pulseCompleted

3.17.1 Method Documentation

3.17.1.1 - (id) initWithXCoord: (int) pulseXPos YCoordinate:(int) pulseYPos iterationCount:(NSInteger) count
excitationMode:(NSInteger) excitation

Initialises a PulseObject object.

Parameters

pulseXPos The x-axis mesh co-ordinate for the pulse point source.
pulseYPos The y-axis mesh co-ordinate for the pulse point source.

count The number of time-steps that the pulse point source should persist for.
excitation The excitation mode for the pulse point source (from the MODE enum in Defs.h).

Returns

The initialised PulseObject object.

3.17.1.2 - (id) initWithXCoord: (int) pulseXPos YCoordinate:(int) pulseYPos iterationCount:(NSInteger) count
excitationMode:(NSInteger) excitation wavelength:(NSInteger) wavelength

Initialises a PulseObject object.

Parameters

pulseXPos The x-axis mesh co-ordinate for the pulse point source.
pulseYPos The y-axis mesh co-ordinate for the pulse point source.

count The number of time-steps that the pulse point source should persist for.
excitation The excitation mode for the pulse point source (from the MODE enum in Defs.h).

wavelength The wavelength of the pulse point source.

Returns

The initialised PulseObject object.

3.17.1.3 - (float) normalDistWithX: (float) x mean:(float) mean stdDev:(float) stdDev

Calculates the Z-score for a given normal distribution.
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Parameters

x The x value.
mean The mean of the normal distribution.

stdDev The standard deviation of the normal distribution.

Returns

The Z-Score value.

Here is the caller graph for this function:
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3.17.1.4 - (void) repeatPulse

Compute the next excitation value for the pulse point source, and inject it into the TLM mesh.

Here is the call graph for this function:
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Here is the caller graph for this function:
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The documentation for this class was generated from the following files:

• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/PulseObject.h

• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/PulseObject.m
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3.18 <SimListDelegate> Protocol Reference

Inheritance diagram for <SimListDelegate>:
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Collaboration diagram for <SimListDelegate>:
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Instance Methods

• (void) - dismissModalSplitViewController
• (void) - dismissConfigViewControllerFromListViewController

The documentation for this protocol was generated from the following file:

• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/SimulationListViewController.h

3.19 Simulation Class Reference

The documentation for this class was generated from the following file:

• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/Simulation.m
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3.20 SimulationListViewController Class Reference

Inheritance diagram for SimulationListViewController:
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Collaboration diagram for SimulationListViewController:
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Instance Methods

• (void) - cancelCustomSimTapped:
• (void) - editServerAddressTapped:
• (void) - loadSimulationList
• (NSError ⇤) - parseCEMLFile
• (BOOL) - createSimulationFromSelectionAtIndexPath:

Protected Attributes

• TLMiPhoneAppDelegate ⇤ appDelegate
• BOOL didTapACustomSimulation
• NSMutableArray ⇤ simulations

Properties

• id< SimListDelegate > delegate
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3.20.1 Method Documentation

3.20.1.1 - (void) cancelCustomSimTapped: (id) sender

Dismiss the XML Simulation List view controller
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Parameters

sender IBOutlet representing the Cancel button.

3.20.1.2 - (BOOL) createSimulationFromSelectionAtIndexPath: (NSIndexPath⇤) path

Configure TLM mesh and boundary conditions based on a selected simulation from the table view.

Parameters

path The NSIndexPath of the selected table row.

Returns

A Boolean value to determine successful execution.

Here is the call graph for this function:
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3.20.1.3 - (void) editServerAddressTapped: (id) sender

Present the Edit Server Address view controller.

Parameters

sender IBOutlet representing the Edit Server Address button.

3.20.1.4 - (void) loadSimulationList

Load the full simulation list and present it in the table view.

Here is the call graph for this function:
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3.20.1.5 - (NSError ⇤) parseCEMLFile

Parse the CEML XML file at the current server URL.
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Returns

An NSError object (nil if no error).

Here is the caller graph for this function:
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The documentation for this class was generated from the following files:

• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/SimulationListViewController.h

• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/SimulationListViewController.m

3.21 SMXMLDocument Class Reference

Inheritance diagram for SMXMLDocument:
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Collaboration diagram for SMXMLDocument:
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Instance Methods

• (id) - initWithData:error:

Class Methods

• (SMXMLDocument ⇤) + documentWithData:error:

Properties

• SMXMLElement ⇤ root

• NSError ⇤ error

The documentation for this class was generated from the following files:

• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/SMXMLDocument.h

• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/SMXMLDocument.m
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3.22 SMXMLElement Class Reference

Inheritance diagram for SMXMLElement:
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Collaboration diagram for SMXMLElement:
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Instance Methods

• (id) - initWithDocument:
• (SMXMLElement ⇤) - childNamed:
• (NSArray ⇤) - childrenNamed:
• (SMXMLElement ⇤) - childWithAttribute:value:
• (NSString ⇤) - attributeNamed:
• (SMXMLElement ⇤) - descendantWithPath:
• (NSString ⇤) - valueWithPath:

Properties

• SMXMLDocument ⇤ document
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• SMXMLElement ⇤ parent
• NSString ⇤ name
• NSString ⇤ value
• NSArray ⇤ children
• SMXMLElement ⇤ firstChild
• NSDictionary ⇤ attributes

The documentation for this class was generated from the following files:

• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/SMXMLDocument.h
• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/SMXMLDocument.m

3.23 TLMiPhoneAppDelegate Class Reference

Inheritance diagram for TLMiPhoneAppDelegate:
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Collaboration diagram for TLMiPhoneAppDelegate:

��������	
���		���	

��������	��	�������	�

�����		���	������	�

�����		���	

�����	�� ���
����������		���	 ��!"�����

�#�!���

���	�������	�����	�������	� ��������	�������	��		���	 ����$����	��		���	 

������	�� 

�������	����

Instance Methods

• (void) - savePreviousGlobalIterationCounterValue
• (void) - fetchCurrentGlobalIterationCounterValue
• (void) - resetScreenAndMeshDefaults
• (void) - clearTLMArray
• (void) - clearBuffers
• (void) - checkMeshBuffersForMalloc
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Protected Attributes

• int counterCopy [6]

Properties

• IBOutlet UIWindow ⇤ window
• IBOutlet TLMiPhoneViewController ⇤ viewController
• float ⇤ GaussianMesh
• float ⇤ SinusoidalMesh
• float ⇤ RippleTankMesh
• float ⇤ WaveGuideMesh
• float ⇤ DoubleSlitMesh
• float ⇤ CustomSimMesh
• Simulation ⇤ simObj
• NSInteger globalIterationCounter
• NSInteger currentSimulationMode
• NSInteger currentExcitationMode
• NSInteger previousExcitationMode
• NSInteger gaussianPulseBandwidthInTimesteps
• NSInteger sinusoidalWaveBandwidthInTimesteps
• NSInteger plainWaveWidthInNodes
• NSInteger rippleTankWaveBandwidthInTimesteps
• NSInteger waveguideBandwidthInTimesteps
• NSInteger doubleSlitWaveBandwidthInTimesteps
• NSInteger xScreenConstraint
• NSInteger yScreenConstraint
• NSInteger xScreenWidth
• NSInteger yScreenWidth
• NSInteger rowLen
• NSInteger columnLen
• NSInteger nodesX
• NSInteger nodesY
• NSNumber ⇤ meshLossFactor
• NSNumber ⇤ leftBoundaryCondition
• NSNumber ⇤ rightBoundaryCondition
• NSNumber ⇤ topBoundaryCondition
• NSNumber ⇤ bottomBoundaryCondition
• NSMutableArray ⇤ gaussianPulseArray
• NSMutableArray ⇤ sinusoidalPulseArray
• NSMutableArray ⇤ ripplePulseArray
• NSMutableArray ⇤ waveGuidePulseArray
• NSMutableArray ⇤ doubleSlitPulseArray
• NSMutableArray ⇤ customSimulationPulseArray
• NSMutableArray ⇤ gaussianBoundaryArray
• NSMutableArray ⇤ sinusoidalBoundaryArray
• NSMutableArray ⇤ rippleBoundaryArray
• NSMutableArray ⇤ waveGuideBoundaryArray
• NSMutableArray ⇤ doubleSlitBoundaryArray
• NSMutableArray ⇤ customSimulationBoundaryArray
• NSMutableArray ⇤ customSimulationCircleBoundaryArray
• NSMutableArray ⇤ topBoundaryArray
• NSMutableArray ⇤ bottomBoundaryArray
• NSMutableArray ⇤ leftBoundaryArray
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• NSMutableArray ⇤ rightBoundaryArray
• BOOL firstRipple
• BOOL firstWaveguide
• BOOL firstDoubleSlit
• BOOL firstGaussianTouch
• BOOL firstSinusoidTouch
• BOOL drawPulsesOrBoundaries
• BOOL firstShowOfChangeMeshInstructions
• NSInteger currentDevice
• CFAbsoluteTime startTime

3.23.1 Method Documentation

3.23.1.1 - (void) checkMeshBuffersForMalloc

Lazily allocate the TLM mesh array for the current excitation mode (i.e. if the memory for the array has not already
been allocated, then allocate it now).

Here is the caller graph for this function:
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3.23.1.2 - (void) clearBuffers

Clear the two mesh buffers in the TLMSolver object of all impulse values in all ports.

Here is the call graph for this function:
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Here is the caller graph for this function:
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3.23.1.3 - (void) clearTLMArray

Clear the TLM mesh for the current excitation mode of all impulse values in all ports.

Here is the call graph for this function:
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Here is the caller graph for this function:
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3.23.1.4 - (void) fetchCurrentGlobalIterationCounterValue

Fetches the previously saved value for the global iteration count for the excitation mode being transitioned into.

Here is the caller graph for this function:
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3.23.1.5 - (void) resetScreenAndMeshDefaults

Resets the variables controlling the screen and mesh geometry to their default values.
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Here is the caller graph for this function:
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3.23.1.6 - (void) savePreviousGlobalIterationCounterValue

Saves a copy of the global iteration count value for the excitation mode being transitioned away from.

Here is the caller graph for this function:

��������	
����������
����������	����	����������	


�	�
���������

��������	
������	
��	����
�����������	
��
���

��������	
������	
��	����
���	��	
������ ��	
�����!�

The documentation for this class was generated from the following files:

• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/TLMiPhoneAppDelegate.h

• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/TLMiPhoneAppDelegate.m

3.24 TLMiPhoneViewController Class Reference

Inheritance diagram for TLMiPhoneViewController:
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Collaboration diagram for TLMiPhoneViewController:
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Instance Methods

• (void) - drawToScreen:
• (void) - drawToScreenNEON:
• (void) - renderSimulationFrame
• (void) - endOfDrawLoopHousekeeping
• (void) - resetModeTitle
• (void) - resetMeshContents
• (void) - manageTimers
• (void) - pauseRelevantTimer
• (IBAction) - showConfigureOptionsView:
• (IBAction) - playPauseButtonPressed:
• (IBAction) - clearScreenButtonPressed:

Protected Attributes

• TLMiPhoneAppDelegate ⇤ appDelegate
• CGPoint TLMSeedPoint
• BOOL swipeInProgressFlag
• BOOL syncSourcesModeFlag
• BOOL drawBoundariesFlag
• NSTimer ⇤ executionGaussianTimer
• NSTimer ⇤ executionSinusoidalTimer
• NSTimer ⇤ executionRippleTankTimer
• NSTimer ⇤ executionWaveGuideTimer
• NSTimer ⇤ executionDoubleSlitTimer
• NSTimer ⇤ executionCustomSimulationTimer
• CFAbsoluteTime startTime
• CGFloat initialPinchDistance
• CGFloat phaseChangeValue
• UIImage ⇤ image
• CGDataProviderRef provider
• CGImageRef newImageRef
• CGColorSpaceRef colorspace
• CGBitmapInfo bitmapInfo
• size_t width
• size_t height
• size_t bitsPerComponent
• size_t bitsPerPixel
• size_t bytesPerRow
• BOOL previouslyShownInstructions
• UILongPressGestureRecognizer ⇤ boundariesOrPulsesLongPressRecogniser
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Properties

• IBOutlet UIImageView ⇤ TLMImageView

• IBOutlet UIImageView ⇤ tutorialImageView

• TLMSolver ⇤ TLMSolverObj

• IBOutlet UIButton ⇤ configureOptionsButton

• IBOutlet UIButton ⇤ playPauseButton

• IBOutlet UIButton ⇤ clearScreenButton

• IBOutlet UILabel ⇤ excitationModeLabel

• IBOutlet UILabel ⇤ multipleSourcesModeLabel

• IBOutlet UILabel ⇤ longPressModeLabel

• IBOutlet UILabel ⇤ fpsLabel

• UIPopoverController ⇤ popOver

3.24.1 Method Documentation

3.24.1.1 - (IBAction) clearScreenButtonPressed: (id) sender

IBAction triggered when the Clear Screen button is pressed.

Parameters

sender IBOutlet represented by the Clear Screen button.

Here is the call graph for this function:
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3.24.1.2 - (void) drawToScreen: (NSTimer⇤) timer

Render the current simulation time-step to the screen, then execute scatter & connect for subsequent time-step.

Parameters

timer The current NSTimer controlling simulation execution.

Here is the call graph for this function:
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3.24.1.3 - (void) drawToScreenNEON: (NSTimer⇤) timer

Render the current simulation time-step to the screen, then execute scatter & connect for subsequent time-step
(using ARM NEON acceleration).
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Parameters

timer The current NSTimer controlling simulation execution.

Here is the call graph for this function:
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3.24.1.4 - (void) manageTimers

Manager the various NSTimer objects depending on the current excitation mode.

Here is the caller graph for this function:
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3.24.1.5 - (void) pauseRelevantTimer

Pause the relevant NSTimer object depending on the current excitation mode.

Here is the caller graph for this function:
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3.24.1.6 - (IBAction) playPauseButtonPressed: (id) sender

IBAction for when the Play/Pause button has been pressed by the user.
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Parameters

sender The IBOutlet representing the Play/Pause button.

Here is the call graph for this function:
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3.24.1.7 - (void) renderSimulationFrame

Render the current time-step to a UIImage and display on screen.

Here is the caller graph for this function:
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3.24.1.8 - (void) resetMeshContents

Reset the TLM mesh contents based on the current excitation mode.

Generated on Thu Feb 27 2014 10:41:29 for Loughborough Wave Lab - iOS by Doxygen



54 Class Documentation

Here is the call graph for this function:
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Here is the caller graph for this function:
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3.24.1.9 - (void) resetModeTitle

Reset the mode title to reflect the current excitation mode.

Here is the caller graph for this function:
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3.24.1.10 - (IBAction) showConfigureOptionsView: (id) sender

Display the Configuration Options view to the user.
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Parameters

sender The IBOutlet representing the Configuration Options button.

Here is the call graph for this function:
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The documentation for this class was generated from the following files:

• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/TLMiPhoneViewController.h

• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/TLMiPhoneViewController.m

3.25 TLMSolver Class Reference

Inheritance diagram for TLMSolver:
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Collaboration diagram for TLMSolver:
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Instance Methods

• (id) - init
• (void) - seedNewImpulseWithXCoordinate:YCoordinate:withPhaseOffset:
• (void) - computeBoundaries
• (void) - computePulses
• (void) - implementBoundaryConditionAtNode:
• (void) - setupEdgeBoundaries
• (void) - removeEdgeBoundaries
• (void) - createStraightLineBoundaryWithCondition:andStartX:andStartY:andEndX:andEndY:isEdge:
• (void) - createRippleTankWave
• (void) - createWaveguide
• (void) - createDoubleSlitWave
• (void) - injectEnergyValue:atX:andY:
• (void) - updateLocalScatterAndConnectVariables
• (void) - scatterAndConnect
• (void) - scatterAndConnectWithYStart:andYEnd:
• (void) - scatterAndConnectNEON
• (void) - scatterAndConnectNEONWithYStart:andYEnd:
• (void) - configureCurrentExcitationMode
• (signed char ⇤) - getPixelArray
• (void) - clearPixelArray
• (void) - initSpecMapArrayWithCustomContrast:
• (void) - meshCopyBack
• (void) - meshSave
• (void) - clearBuffers
• (float) - normalDistWithX:mean:stdDev:

Protected Attributes

• TLMiPhoneAppDelegate ⇤ appDelegate

Properties

• NSInteger iterationCountAtSeed
• float contrastValue
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3.25.1 Method Documentation

3.25.1.1 - (void) clearBuffers

Remove all the pulse voltage information in the main TLM mesh buffer arrays.

3.25.1.2 - (void) clearPixelArray

Remove all RGB information from the pixels array.

3.25.1.3 - (void) computeBoundaries

Execute boundary node calculations for the current time-step and current excitation mode.

Here is the call graph for this function:
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Here is the caller graph for this function:
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3.25.1.4 - (void) computePulses

Execute pulse point source calculations for the current time-step and current excitation mode.

Here is the call graph for this function:
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Here is the caller graph for this function:
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3.25.1.5 - (void) configureCurrentExcitationMode

Ready the mesh for simulation when the current excitation mode of the TLMSolver object has changed.

Here is the call graph for this function:
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3.25.1.6 - (void) createDoubleSlitWave

Configure the Double Slit simulation.

Here is the call graph for this function:
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3.25.1.7 - (void) createRippleTankWave

Configure the Ripple Tank simulation.

3.25.1.8 - (void) createStraightLineBoundaryWithCondition: (BOOL) cond andStartX:(NSInteger) stX andStartY:(NSInteger) stY
andEndX:(NSInteger) eX andEndY:(NSInteger) eY isEdge:(NSInteger) meshEdge

Configure a straight-line of boundary nodes, with a given boundary condition.
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Parameters

cond The boundary condition.
stX The x-axis co-ordinate for the start of the straight-line boundary.
stY The y-axis co-ordinate for the start of the straight-line boundary.
eX The x-axis co-ordinate for the end of the straight-line boundary.
eY The y-axis co-ordinate for the end of the straight-line boundary.

meshEdge The mesh edge type.

Here is the call graph for this function:
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Here is the caller graph for this function:
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3.25.1.9 - (void) createWaveguide

Configure the Waveguide simulation.

3.25.1.10 - (signed char ⇤) getPixelArray

Return the pixel char array ready for pushing to the device screen.

Returns

The 1D array of RGB values for screen pixels.

3.25.1.11 - (void) implementBoundaryConditionAtNode: (BoundaryNode⇤) bNode

TLMSolver object instance method for reversing scatter & connect and implementing boundary condition for a given
node.
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Parameters

bNode The BoundaryNode object to work with.

Here is the caller graph for this function:
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3.25.1.12 - (id) init

Initialise a TLMSolver object.

Returns

The initialised TLMSolver object.

Here is the call graph for this function:
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3.25.1.13 - (void) initSpecMapArrayWithCustomContrast: (BOOL) customContrast

Initialise the array holding the spectrum colourmap values for intensity to RGB pixel value conversions.

Parameters

customContrast A Boolean flag to determine if the custom contrast value should be utilised.

Here is the caller graph for this function:
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3.25.1.14 - (void) injectEnergyValue: (float) energy atX:(int) x andY:(int) y

Inject a specific pulse value into the TLM mesh at specific point.

Parameters

energy The pulse value to inject.
x The x-axis mesh co-ordinate.
y The y-axis mesh co-ordinate.

3.25.1.15 - (void) meshCopyBack

Copy the previously-saved TLM mesh information back to the TLMSolver object’s main TLM mesh array for the
current excitation mode.

3.25.1.16 - (void) meshSave

Save a copy of the TLMSolver object’s TLM mesh into the relevant storage array for the current excitation mode.

3.25.1.17 - (float) normalDistWithX: (float) x mean:(float) mean stdDev:(float) stdDev

Calculate a Z-score for a given normal distribution.

Parameters

x The ’x’ value.
mean The mean of the normal distribution.

stdDev The standard deviation of the normal distribution.

Returns

The computed Z-score value.

3.25.1.18 - (void) removeEdgeBoundaries

Remove all boundary nodes along TLM mesh edges.

3.25.1.19 - (void) scatterAndConnect

Execute the scatter & connect process on the TLM mesh for a single time-step (with no ARM NEON acceleration).

Here is the call graph for this function:
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3.25.1.20 - (void) scatterAndConnectNEON

Execute the scatter & connect process on the TLM mesh for a single time-step (with ARM NEON acceleration).

Here is the call graph for this function:
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3.25.1.21 - (void) scatterAndConnectNEONWithYStart: (int) yStart andYEnd:(int) yEnd

Scatter & connect a single y-axis row of the TLM mesh (with ARM NEON acceleration).

Parameters

yStart The y-axis start position.
yEnd The y-axis end position.

Here is the caller graph for this function:
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3.25.1.22 - (void) scatterAndConnectWithYStart: (int) yStart andYEnd:(int) yEnd

Scatter & connect a single y-axis row of the TLM mesh (with no ARM NEON acceleration).

Parameters

yStart The y-axis start position.
yEnd The y-axis end position.

Here is the caller graph for this function:
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3.25.1.23 - (void) seedNewImpulseWithXCoordinate: (int) touchXPos YCoordinate:(int) touchYPos withPhaseOffset:(int) phase

Configure a new pulse point source (in response to a user-triggered touch event).
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Parameters

touchXPos The x-axis screen co-ordinate of the touch.
touchYPos The y-axis screen co-ordinate of the touch.

phase The phase offset value.

3.25.1.24 - (void) setupEdgeBoundaries

Configure the boundary conditions for each edge of the TLM mesh.

Here is the call graph for this function:

��������	
��
������
��������
�

��������	
����
��
��������
���
���������������������
������������������� ��������

������� �����
��

����������!��
��

�!��

������������������

3.25.1.25 - (void) updateLocalScatterAndConnectVariables

Update the local copies of variables used during the scatter & connect process.

Here is the caller graph for this function:
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The documentation for this class was generated from the following files:

• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/TLMSolver.h
• /Users/eeseadmin/GitHub Repos/Loughborough-Wave-Lab-iOS/Classes/TLMSolver.m
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Figure D.1: Weekly user sessions figures for the iOS version of the mobile solver
application.
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Figure D.2: User sessions observed over the course of any given 24 hour period for the
iOS version of the solver application.
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Figure D.3: Weekly new user sessions figures for the iOS version of the mobile solver
application.
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Figure D.4: New user sessions observed over the course of any given 24 hour period
for the iOS version of the solver application.
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Figure D.5: Weekly active user sessions figures for the iOS version of the mobile solver
application.
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Figure D.6: Active user sessions observed over the course of any given 24 hour period
for the iOS version of the solver application.
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Figure D.7: Session length usage data across all users for the iOS version of the solver
application.
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Figure D.8: Session per day usage data across all users for the iOS version of the solver
application.
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Figure D.9: Session per week usage data across all users for the iOS version of the solver
application.
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Figure D.10: Session per month usage data across all users for the iOS version of the
solver application.
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Figure D.11: Usage retention percentages data for the first 30 days after installing the
application.
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Figure D.12: User age distribution (based on the 20.8% of users where age is known)
for the iOS version of the solver application.
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Figure D.13: iOS device family usage percentages across all sessions.


