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The gravity-driven flow of a liquid film down an inclined wall with periodic
indentations in the presence of a normal electric field is investigated. The film is
assumed to be a perfect conductor, and the bounding region of air above the film is
taken to be a perfect dielectric. In particular, the interaction between the electric field
and the topography is examined by predicting the shape of the film surface under
steady conditions. A nonlinear, non-local evolution equation for the thickness of the
liquid film is derived using a long-wave asymptotic analysis. Steady solutions are
computed for flow into a rectangular trench and over a rectangular mound, whose
shapes are approximated with smooth functions. The limiting behaviour of the film
profile as the steepness of the wall geometry is increased is discussed. Using substantial
numerical evidence, it is established that as the topography steepness increases towards
rectangular steps, trenches, or mounds, the interfacial slope remains bounded, and the
film does not touch the wall. In the absence of an electric field, the film develops a
capillary ridge above a downward step and a slight depression in front of an upward
step. It is demonstrated how an electric field may be used to completely eliminate the
capillary ridge at a downward step. In contrast, imposing an electric field leads to the
creation of a free-surface ridge at an upward step. The effect of the electric field on
film flow into relatively narrow trenches, over relatively narrow mounds, and down
slightly inclined substrates is also considered.

1. Introduction
Controlling the flow of a liquid film down a smooth or corrugated plate is of

fundamental importance in a broad range of engineering applications, including
the manufacture of photographic plates and magnetic memory devices. In industrial
coating, a liquid film is continuously deposited onto a moving substrate to produce a
thin layer of uniform thickness (e.g. Kistler & Schweizer 1997). Natural imperfections
in the target surface may lead to undesirable ripples or variations in the thickness
of the coated layer (e.g. Stillwagon & Larson 1988, 1990). In some applications, an
uneven film surface may be a desirable outcome. For example, in liquid film cooling
surface waves can significantly enhance heat or mass transfer (e.g. Yoshimura,
Nosoko & Nagata 1996; Serifi, Malamataris & Bontozoglou 2004). For these reasons,
a great deal of effort has been devoted to the theoretical prediction of film flow
behaviour under a wide variety of conditions.

The linear stability of film flow down an inclined plane was analysed by Benjamin
(1957) and Yih (1963). They showed that there exists a critical Reynolds number above
which the flow becomes unstable to long waves. This result was verified experimentally
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by Liu, Paul & Gollub (1993) and Liu & Gollub (1994). Fully computational studies
of waves occurring on the surface of a flowing film include those by Ramaswamy,
Chippada & Joo (1996) and Malamataris, Vlachogiannis & Bontozoglou (2002).
The daunting complexity of the full nonlinear problem, even in the absence of
topographically structured substrates, led a number of workers to derive reduced
models valid for long waves (e.g. Benney 1966; Lin 1974; Alekseenko, Nakoryakov &
Pokusaev 1985). Such models have proved successful in describing experimental obser-
vations, including the formation of capillary ridges close to a contact line at the front
of a flowing film (e.g. Bertozzi & Brenner 1997; Diez & Kondic 2001).

The linear stability of weakly nonlinear long waves on a film flowing along an
inclined uneven wall were studied by Tougou (1978). Wang (1981) performed an
asymptotic analysis for the flow of a film over a sinusoidal wall when the film
thickness is much larger than the wall amplitude. In both of these studies, the
amplitude of the wall corrugations was assumed small. This assumption was relaxed
by Wang (1984), who considered film flow along a curved surface whose minimum
radius of curvature is much larger than the film thickness, and by Shetty & Cerro
(1993), who also compared their results with experiments. Numerous computational
and experimental studies have addressed the problem of film flow along a corrugated
wall. Pozrikidis (1988) used the boundary-integral method to compute steady film
flow at zero Reynolds number over a variety of wall shapes. Trifonov (1999),
Malamataris & Bontozoglou (1999), and Gu et al. (2004) computed falling-film
flow over an uneven wall at arbitrary Reynolds number and produced results in good
agreement with experimental work, e.g. Zhao & Cerro (1992). Experimental results for
gravity-driven film flow down an inclined wall with periodic rectangular corrugations
were reported by Messé & Decré (1997), Fernandez-Parent, Lammers & Decré (1998),
Decré & Baret (2003), Vlachogiannis & Bontozoglou (2002), and Argyriadi,
Vlachogiannis & Bontozoglou (2006). The formation of eddies at very low Reynolds
numbers of order 10−5 for flows over undulating walls was studied experimentally
by Wierschem, Scholle & Aksel (2003). They found that eddies form when the film
thickness is above a critical value, which depends on the waviness of the wall,
the angle of inclination, and the surface tension, but not on the Reynolds number.
Additional experiments of film flow over moderate substrate undulations were carried
out by Wierschem & Aksel (2004a) and Wierschem & Aksel (2004b); the latter study
considers the effect of inertia on eddies formed in the creeping flow regime described
in Wierschem et al. (2003).

Derivations of thin-film equations over curved substrates can be found in the work
of Schwartz & Weidner (1995), Roy, Roberts & Simpson (2002), and Howell (2003).
Flow of a liquid film over an abrupt step or over a rectangular trench was investigated
by Kalliadasis, Bielarz & Homsy (2000) and Bielarz & Kalliadasis (2003) using the
lubrication model of Stillwagon & Larson (1990). Their results showed that the free-
surface shape generally follows the topography of the wall but can exhibit significant
variations near to an upward or a downward step. A pronounced capillary ridge
develops directly above a downward step, and a slight depression forms in front of an
upward step. Both of these features were observed experimentally by Messé & Decré
(1997), Fernandez-Parent et al. (1998), and Decré & Baret (2003) and were captured
by the boundary-integral calculations of Mazouchi & Homsy (2001). The latter work
lends credence to the results obtained using the lubrication model despite reservations
about its applicability for flow over steep topography. In a more recent related
study, Gaskell et al. (2004) (for a study that also includes evaporation, see Gaskell
et al. 2006) extended the work of Mazouchi & Homsy (2001) to non-zero Reynolds
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numbers. They used two-dimensional topography-following lubrication models as
well as three-dimensional finite-element simulations of the Navier–Stokes equations
to study film flow over smoothed but still relatively sharp rectangular indentations.
They found that at steady state an increase in the Reynolds number increases the
amplitude of the ridge formed ahead of a downward step and decreases the size of
the depression found ahead of an upward step. The predictions of the lubrication
models, the Navier–Stokes simulations, and the experimental results of Decré & Baret
(2003) are all found to be in very good agreement, increasing confidence in the use
of model equations for these types of flow. Related studies of creeping film flow
in a corner or over a hump can be found in Stocker & Hosoi (2005) and Jensen,
Chini & King (2004), who study thin film flow over topography in the absence of a
driving gravitational force, in contrast to the present study and the aforementioned
references.

The manipulation of a liquid film by means of an electric field has been discussed
by numerous authors with particular applications in mind, for example, by Bankoff
et al. (1994), Kim, Bankoff & Miksis (1994), Bankoff et al. (2002), and Griffing et al.
(2006). The electric field affects the flow through an additional Maxwell stress term
in the stress balance at the film surface. Film flow down an inclined plane in the
presence of a normal electric field was studied by Gonzalez & Castellanos (1996) and
Tseluiko & Papageorgiou (2006). The film was assumed to be a perfect conductor,
and the medium above the film was assumed to be a perfect dielectric. The electric
field was viewed as being imposed by an infinite electrode placed a long distance from
the film. Using a long-wave theory, they derived evolution equations describing the
nonlinear film dynamics and demonstrated the existence of travelling wave solutions,
periodic homoclinic bursts, and chaotic oscillations. The general conclusion is that
the effect of the electric field is destabilizing. The effect of imposing the electric
field via a finite-length electrode was considered by Kim, Bankoff & Miksis (1992).
Recently, Papageorgiou & Petropoulos (2004) used a leaky dielectric model to study
the stability of an electrified film at finite Reynolds number.

In the present work, we examine steady film flow over an indented wall when the film
is subjected to a normal electric field. The film is assumed to be a perfect conductor,
and the air above the film is assumed to be a perfect dielectric. Our particular goal is
to assess the effect of the electric field on the shape of the free surface. As discussed
above, either a smooth or a rippled film may be required in practical applications.
We investigate when an electric field is able to eliminate unwanted features, such as
the capillary ridge, and when it tends instead to promote the deformation of the film
surface. Motivated by the success of the lubrication model in describing the salient
features of film flow in the absence of an electric field, we use a long-wave theory
to derive a nonlinear evolution equation for the film height. We focus our attention
on steady solutions to this equation in the case of flow over upward and downward
steps, and flow into rectangular trenches and over rectangular mounds.

In § 2, we describe the physical problem and present the governing equations. In § 3,
we use an asymptotic long-wave theory to derive a nonlinear evolution equation for
the interface. Section 4 is devoted to studying steady-state solutions of this equation.
Finally, in § 5, we present our conclusions.

2. Problem formulation
We consider the two-dimensional, gravity-driven flow of a liquid film down an

uneven wall, which is inclined at an angle β to the horizontal, when the film is
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Figure 1. Schematic of the problem: flow of a fluid film down a corrugated wall in the
presence of gravity and an electric field.

subjected to a normal electric field, as is illustrated in figure 1. With reference to the
Cartesian axes shown in figure 1, the wall topography is described by the equation
z = s(x), and the film thickness is given by h(x, t), so that the film surface is located at
z = f (x, t) ≡ s(x) + h(x, t). The film is subjected to a uniform normal electric field of
strength E0 imposed a long way from the wall, as is shown in figure 1. The air above
the film is assumed to be a perfect dielectric with permittivity ε. The electric potential
above the film is denoted by ϕ(x, z, t) and satisfies the relation E = −∇ϕ, where E
is the electric field. The liquid is assumed to be a perfect conductor, so that there is
no potential difference between the wall and the free surface and, consequently, no
electric field in the film.

The governing equations in the film are the Navier–Stokes equation and the
continuity equation,

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + µ∇2u + ρg, ∇ · u = 0, (2.1a, b)

where u = (u, v) is the fluid velocity, p is the pressure, ρ and µ are the density and
viscosity of the liquid, respectively, and g is gravity. In the air above the film, the
electric potential, ϕ, satisfies Laplace’s equation,

∇2ϕ = 0. (2.2)

The no-slip and the impermeability boundary conditions require that

u = 0, v = 0 (2.3a, b)

at the wall, z = s(x). The uniform electric field condition at infinity requires that

∇ϕ → −E0 k (2.4)

as z → ∞, where k is the unit vector in the z-direction. At the film surface, z = f (x, t),
we have the kinematic condition,

v = ft + ufx, (2.5)
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the zero potential condition,

ϕ = 0, (2.6)

and the dynamic balance of stress,

σ · n = −(γ κ + pa)n + M · n, (2.7)

where σ is the Newtonian stress tensor, γ is the surface tension, pa is the atmospheric
pressure, and n is the unit normal to the free surface pointing into the film. The free-
surface curvature, κ , is taken to be positive when the surface is concave downwards,
as is shown in figure 1. The Maxwell stress tensor, M, is defined by

M = ε
(
E E − 1

2 I|E|2
)
. (2.8)

It may be verified directly that the Maxwell stresses do not contribute to the tangential
stress balance. In fact, the normal and tangential stress balance conditions at the free
surface are

t · σ · n = 0, n · σ · n = −(γ κ + pa) +
ε

2
|E|2, (2.9a, b)

where t is the unit tangent to the free surface, depicted in figure 1. It will be noted
that the Maxwell stress term in (2.9b) is non-negative and, hence, effectively decreases
the local ambient pressure felt by any point on the film surface.

To simplify the presentation, we introduce the shifted pressure, p̃, and electric
potential, ϕ̃, by writing

p = p̃ + pa − εE2
0

2
+ ρgx sin β − ρgz cosβ, (2.10)

ϕ = ϕ̃ + E0h0 − E0z, (2.11)

where h0 is the typical film thickness. These definitions remove the gravity terms from
(2.1a) and simplify the normal stress balance (2.9b). The shifted potential, ϕ̃, describes
the deviation from a wholly uniform electric field. Proceeding, we non-dimensionalize
variables by writing

x∗ =
1

h0
x, z∗ =

1

h0
z, t∗ =

U0

h0
t, f ∗ =

1

h0
f, s∗ =

1

h0
s,

u∗ =
1

U0
u, v∗ =

1

U0
v, p∗ =

h0

µU0
p̃, ϕ∗ =

1

E0h0
ϕ̃,





(2.12)

where an asterisk denotes a dimensionless quantity and U0 = ρgh2
0 sin β/2µ is the

Nusselt surface speed of a flat film flowing down an inclined plane. In addition, we
introduce the Reynolds number, R, the capillary number, C, and the electric Weber
number, We, measuring the relative importance of electric forces to viscous forces,

R =
ρU0h0

µ
=

ρ2gh3
0 sin β

2µ2
, C =

µU0

γ
=

ρgh2
0 sin β

2γ
, (2.13a, b)

We =
εh0E

2
0

2µU0
=

εE2
0

ρgh0 sin β
. (2.13c)

Substituting (2.10), (2.11), and (2.12) into (2.1a, b) and (2.2), and also into (2.3a, b)–
(2.6) and (2.9a, b), and dropping the asterisks, we obtain

R(ut + uux + vuz) = −px + uxx + uzz, (2.14)

R(vt + uvx + vvz) = −pz + vxx + vzz, (2.15)

ux + vz = 0, (2.16)
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in the liquid film, and

ϕxx + ϕzz = 0, (2.17)

above the film. The conditions at the wall are given by u =0 and v = 0 at z = s(x),
and at infinity we have

ϕx → 0, ϕz → 0 as z → ∞. (2.18)

At the film surface, z = f (x, t), the kinematic condition becomes

v = ft + ufx, (2.19)

the zero potential condition becomes

ϕ = f − 1, (2.20)

the tangential stress balance is given by
(
1 − f 2

x

)
(uz + vx) + 4fxvz = 0, (2.21)

and the normal stress balance is given by

−We

2

[
(1 − ϕz)

2
(
1 + f 2

x

)
− 1

]
+

1 + f 2
x

1 − f 2
x

vz − 1

2
(p + 2x − 2f cot β) =

fxx

2C
(
1 + f 2

x

)3/2 .

(2.22)

It will be noted that we have made use of (2.21) in deriving (2.22).

3. Thin-film analysis
We now assume that the film flow over the corrugated wall is such that streamwise

variations occur over a much longer length scale, λ, than the typical film thickness,
h0, and work on the basis of the lubrication approximation. Our goal is to derive
a nonlinear evolution equation for the free surface. Introducing the small parameter
δ =h0/λ, we rescale the electric problem by writing

x =
1

δ
ξ, z =

1

δ
η. (3.1)

The perturbation voltage potential satisfies

ϕξξ + ϕηη = 0, (3.2)

with ϕξ → 0 and ϕη → 0 as η → ∞, and with ϕ = f − 1 on η = 0. The last condition
is an approximation based on the assumption that δ is small. Using complex variable
theory it can be shown that

ϕη(ξ, 0) = −H[fξ ] (3.3)

(see Papageorgiou & Vanden-Broeck 2004; Tseluiko & Papageorgiou 2006), where
H is the Hilbert transform operator defined as

H[g](ξ ) =
1

π
PV

∫ ∞

−∞

g(ξ ′)

ξ − ξ ′ dξ ′, (3.4)

and PV denotes the principal value of the integral. The pertinent properties of the
Hilbert transform required for the present work may be found in Abdelouhab et al.
(1989), for example. Correct to leading order, we take

ϕz = −δH[fξ ] (3.5)

in the normal stress balance condition (2.22).
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In the liquid film, we change variables by writing

x =
1

δ
ξ, z = z, t =

1

δ
τ, v = δw (3.6)

and expand the flow variables as follows:

u = U + O(δ), w = W + O(δ), (3.7a, b)

p = δ−1P + O(1), f = F + O(δ). (3.7c, d)

To retain both the electric field and surface tension effects, we assume that

C = δ3C ′, We =
W ′

e

δ2
, (3.8)

where C ′ = O(1) and W ′
e =O(1). Neglecting the gravitational component in the z-

direction corresponds to assuming that cotβ ) δ−1. We make the further assumption
that R ) δ−1, which is inclusive of the case of Stokes flow. It will be noted that
these assumptions differ from those adopted by Tseluiko & Papageorgiou (2006).
Moreover, Tseluiko & Papageorgiou (2006) also retained the z-component of gravity
in their thin-film analysis and assumed that the Reynolds number is of order
one.

Proceeding, we substitute the expansions (3.7) into (2.14)–(2.16), the zero-velocity
conditions at the wall, the kinematic condition (2.19), and the tangential and normal
stress balance conditions (2.21) and (2.22), respectively, and derive the following
system at leading order,

Uzz = Pξ , Pz = 0, Wz = −Uξ , (3.9a, b, c)

with U = 0 and W = 0 on the wall, z = s(ξ ), and with

Fτ = W − UFξ , (3.10)

Uz = 0, (3.11)

P = −2ξ − 1

C ′ Fξξ − 2W ′
eH[Fξ ] (3.12)

at the film surface, z = F (ξ, τ ). The solution is

U =
Pξ

2
(z − s)2 − Pξ (F − s)(z − s), (3.13)

W = −Pξξ

6
(z − s)3 +

(Pξ (F − s))ξ + Pξ sξ

2
(z − s)2 − Pξ sξ (F − s)(z − s), (3.14)

where P is given by (3.12) throughout the film. Substituting (3.13) and (3.14) into the
kinematic condition (3.10) and writing H = F − s yields the evolution equation for
the leading-order film thickness

Hτ =
1

3
[H 3Pξ ]ξ , (3.15)

which can alternatively be expressed as

Hτ +

[
2

3
H 3 +

1

3C ′ H
3(H + s)ξξξ +

2

3
W ′

eH
3H[(H + s)ξξ ]

]

ξ

= 0. (3.16)

Stillwagon & Larson (1990) derived a similar equation, but without the electric field
term, for the case of axisymmetric flow of a thin fluid layer over a rotating disk
with axisymmetric corrugations. The analogous equation (containing a sign error),
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describing the surface-tension-driven flow of a viscous liquid film over a substrate at
zero Reynolds number and in the absence of an electric field, was also obtained by
Stillwagon & Larson (1988). Thin-film equations involving a Hilbert transform term
have also arisen in crack propagation studies (e.g. Spence, Sharp & Turcotte 1987;
Lister 1990).

4. Steady-state solutions
In this section, we compute free-surface profiles for steady electrified film flow

over topography. Previous workers have considered this problem in the absence
of an electric field. Kalliadasis et al. (2000) applied the lubrication model of
Stillwagon & Larson (1990) to compute steady film flow into a trench and found
that the free surface exhibits a well-defined ridge just upstream of the downward
step. The presence of the ridge was confirmed by Mazouchi & Homsy (2001) for
Stokes flow using a boundary-integral method. In fact, most of the important flow
features, including the formation of the capillary ridge just described, the thinning of
the film close to a downward or an upward step, and the occurrence of a depression
immediately in front of an upward step, are captured without difficulty by the
lubrication theory, despite its theoretical limitations. We do not, however, expect the
lubrication model to accurately reproduce the flow within the film. For example,
the flow over a rectangular trench to be considered in § 4.3 should in reality feature
viscous eddies inside the film. According to (3.12) and (3.13), U has the same sign for
all z at any given downstream location and so the possibility of eddies is excluded in
the current model.

Motivated by the previous success of the lubrication model in predicting free-
surface profiles, we use a numerical method to study solutions to the steady form of
the evolution equation (3.16),

[
2

3
H 3 +

1

3C ′ H
3(H + s)ξξξ +

2

3
W ′

eH
3H[(H + s)ξξ ]

]

ξ

= 0, (4.1)

for flow over several different classes of topography, including a rectangular trench,
a single downward or upward step, and a rectangular mound. We compute solutions
on the finite interval [−L, L], for a chosen value of L, assuming periodic boundary
conditions at the ends. Under the assumed 2L-periodicity of the solution, the Hilbert
transform (3.4) adopts the particular form

H[f ](ξ ) =
1

2L
PV

∫ L

−L

f (ξ ′) cot

(
π(ξ − ξ ′)

2L

)
dξ ′. (4.2)

The finite interval is divided into a uniform grid with 2M mesh points defined by

ξi = (i − M),ξ, (4.3)

for i = 1, 2, . . . , 2M , where ,ξ = L/M is the grid spacing. The value of H at the ith
mesh point is denoted by Hi . The spatial derivatives in (4.1) are approximated using
second-order-accurate central differences. The periodicity demands that H0 =H2M ,
H2M+1 = H1, and so on. The Hilbert transform of (H + s)ξξ at the midpoints
ξi+1/2 = (ξi + ξi+1)/2, for i = 0, 1, . . . , 2M − 1, is calculated by using the trapezoidal
rule with the ξi as integration nodes. In this way, the principal value integral in
(4.2) is efficiently computed, as if it were simply an ordinary integral. Applying the
discretized form of (4.1) at each of the mesh points, we obtain a system of 2M
nonlinear algebraic equations for the 2M unknowns H1, H2, . . . , H2M . Since (4.1)
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may be integrated once to furnish an arbitrary constant, we are free to fix one of the
unknowns in advance. Typically, we fix H2M = 1 and remove one of the equations to
leave a system of 2M − 1 equations for the 2M − 1 unknowns H1, H2, . . . , H2M−1,
which is solved using Newton’s method. The value of M is chosen to be sufficiently
large to accurately resolve the film profile and the wall shape. For the calculations
presented in this paper we took values of M up to 3000.

To study film flow over upward or downward steps, we approximate the sharp
topography using hyperbolic tangent functions, which are suited to the periodic
boundary conditions presently considered. Accordingly, a true rectangular trench
described by

s0(ξ ) = 2D[Hv(ξ − B) − Hv(ξ + B)], (4.4)

where Hv is the Heaviside function and D and B are chosen constants, is approximated
by the formula

s(ξ ) = D

[
tanh

(
ξ − B

d

)
− tanh

(
ξ + B

d

)]
, (4.5)

for an appropriate choice of the parameter d . A true rectangular mound described by

s0(ξ ) = −2D[1 + Hv(ξ − B) − Hv(ξ + B)] (4.6)

is modelled by the formula

s(ξ ) = −D

[
2 + tanh

(
ξ − B

d

)
− tanh

(
ξ + B

d

)]
, (4.7)

for a suitable choice of d . We note that the periodic extension of the wall
shape s(ξ ) is non-smooth at the ends. However, for computational purposes, since
s(±L) = O(e−2L/d), it follows that for sufficiently large L or small d the wall shape
is effectively smooth to within machine precision. Indeed, careful checks have been
performed to ensure that the wall shape is effectively periodic to within machine
accuracy for all the results presented in this paper. This was done by monitoring
the Fourier spectra of s(ξ ), H (ξ ), and F (ξ ) for each discretization, which showed the
appropriate exponential decay down to machine round-off error.

Solitary downward and upward steps are recovered in the double limit L → ∞ and
B → ∞. Sharp ninety-degree steps are obtained in the limit d → 0. Approximating
the latter limit numerically is a matter of some subtlety, as we shall discuss next.

4.1. Film flow over a sharp corner

To study the numerical solution for film flow in the presence of a sharp step, we
perform calculations for small values of d . Throughout this section, we consider film
flow over the rectangular trench obtained by fixing D = 0.75 and B = 4 in the wall
shape formula (4.5) for the case C ′ = 1 and W ′

e = 1. As a preliminary, we confirmed
that as L increases for a fixed value of d , the film surface converges to a limiting
profile and the velocity field approaches the expected Nusselt half-Poiseuille profile
far upstream and downstream of the step. In particular, we found that taking L =12
is sufficient to obtain a converged profile to within graphical accuracy, and we adopt
this value throughout the remainder of this section.

We now study in detail the limit d → 0. Figure 2 shows the free-surface profiles
for the various cases d = 0.5, 0.2, and 0.02. The profiles appear to converge to a
continuous limit as d is reduced. This is also apparent from figure 3(a), which shows
the behaviour of the maximum of F for the same values of the parameters. Moreover,
the results in figure 3 indicate that both the first and second derivatives of F remain
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Figure 3. The variation of the maxima of F , |Fξ |, |Fξξ |, and |Fξξξ | with the steepness parameter
d (a, b, c and d , respectively) for a trench with D = 0.75 and B = 4 when C ′ =1 and W ′

e = 1.
The computations were performed with L = 12 and M = 3000.

bounded in the limit d → 0, suggesting that the limiting profile is at least twice
differentiable. The behaviour of the third derivative, Fξξξ , also shown, is not so easy
to discern; it may either remain bounded or else blow up as d tends to zero. However,
if the first two derivatives of F are bounded, as seems to be the case, blow-up in Fξξξ
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for a trench with D = 0.75 and B = 4 when C ′ =1 and W ′

e = 1. The calculations were carried
out with L = 12 and M = 3000.

must be accompanied by blow-up in Pξ , but we will present strong evidence below
that the pressure gradient is in fact bounded.

Following these observations and making the physically plausible assumption that
the free-surface shape F is a continuous function of ξ , we conclude that the film
thickness function H =F − s must develop a jump discontinuity in the limit d → 0 at
each point where s becomes discontinuous. Suppose that s has a jump discontinuity
at the point ξ = ξ0. Then H must also have a jump discontinuity at the same
point. Steady-state solutions are determined by the steady version of (3.15), namely
[H 3Pξ ]ξ =0, where P is given by (3.12). Integrating once gives H 3Pξ = C0, for some
constant C0. It follows that

lim
ξ→ξ−

0

(H 3Pξ ) = lim
ξ→ξ+

0

(H 3Pξ ) = C0. (4.8)

We now have the following possibilities.
(i) If both H (ξ−

0 ) *= 0 and H (ξ+
0 ) *=0, then Pξ is bounded but has a jump

discontinuity at ξ = ξ0.
(ii) If either H (ξ−

0 ) = 0 or H (ξ+
0 ) = 0, then either Pξ (ξ−

0 ) is infinite or Pξ (ξ
+
0 ) is

infinite.
The second possibility corresponds to the case when the limiting film just touches

the wall at the corner. For the first possibility the film remains at a finite distance
from the wall all the way along its length.

To decide between the two options, we consider the minima of the film thickness
over the length of the film as the parameter d is reduced. For each value of d , we
compute the free-surface profile, F (ξ ), over the smooth trench, s(ξ ), given by (4.5).
Using this profile, we find the local minimum values of H = F − s and F − s0, where
s0(ξ ) is given by (4.4). Figure 4(a) displays the local minima obtained in the vicinity
of the downward step, and figure 4(b) displays the local minima in the vicinity of
the upward step. In both graphs, the minima of F − s for the smooth step decrease
monotonically as d decreases, while the minima of F − s0 for the sharp step increase
monotonically as d decreases. These results suggest that the minima will approach
a non-zero limit as d approaches zero, and that it is option (i) which is correct. By
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extrapolation, we can obtain an estimate of 0.58 for both of the limiting values of
the local minima at the downward and upward steps, that is H (ξ ) ! 0.58 for each ξ
in one period. From (4.8), it follows that |Pξ | is bounded above by |C0|/0.583. The
constant C0 can be estimated by considering the values of H and Pξ at ξ = − 12, for
example. Profiles of Pξ are displayed in figure 5 for the cases d = 0.02, 0.2, and 0.5.
The maximum local values of |Pξ | around the downward and upward steps are shown
in figure 6 and appear to be increasing as d decreases in apparent support of option
(ii). However, given that H (−12) = 1 and Pξ (−12) = −2 (see figures 2 and 5), we can
estimate that C0 ≈ −2. Thus, |Pξ | is in fact bounded by 2/0.583 ≈ 10.25. Moreover, Pξ

appears to be developing jump discontinuities at the downward and upward steps,
and our results support option (i), namely that the film remains a finite distance from
the wall as d tends to zero and the case of sharp right-angled steps is approached.
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The numerical estimate C0 ≈ −2 can be placed on a firmer footing by the following
analysis. Rewriting the governing equation H 3Pξ = C0 in the form

C0

H 3
+ 2 = Aξ , (4.9)

where A(ξ ) = −Fξξ/C ′ − 2W ′
eH[Fξ ], and averaging over [−L, L] gives

C0

[
1

2L

∫ L

−L

1

H 3
dξ

]
+ 2 =

A(L) − A(−L)

2L
. (4.10)

Due to the periodicity of F , we get A(L) = A(−L), and therefore the right-hand side
of (4.10) vanishes. We can obtain an estimate for C0 by considering the limit L → ∞.
This in turn gives a good approximation for C0 in the numerical solutions, since L is
taken to be large there. Using the fact that H → 1 as |ξ | → ∞, we find that

lim
L→∞

1

2L

∫ L

−L

1

H 3
dξ = 1. (4.11)

Using this result in (4.10) we find that C0 → −2 as L → ∞, which is consistent with
the numerical estimate.

4.2. Film flow over a single step

Flow over an isolated step is recovered by taking the double limit L → ∞ and B → ∞
in (4.5). In our calculations, we fix D = 1, d =0.2, L = 30, and B = 15. The latter two
values are found by experimentation to be sufficiently large to give accurate results for
a single step. For example, we checked that the velocity profile in the film approaches
the expected Nusselt half-Poiseuille profile far upstream and downstream of the step.
In the following calculations, we fix the rescaled capillary number to be C ′ =1 and
vary the rescaled electric Weber number, W ′

e, to assess the effect of the electric field
on the film profile.

Typical results for a downward/upward step are shown in figure 7(a, c, e, g) and
figure 7(b, d, f, h), respectively. The four panels in each column show solutions
for W ′

e = 0, 1.5, 3, and 4.5. The free-surface profile generally mimics that of the
topography with some deviations in the neighbourhoods of the steps; moreover,
these deviations can be controlled by the electric field. In the absence of an electric
field, when W ′

e =0, the free surface develops a capillary ridge just upstream of the
downward step. An electric field of low intensity introduces short-wave oscillations on
the capillary ridge above the downward step as well as a small depression immediately
downstream of the step. Increasing W ′

e reduces the magnitude of the oscillations and
the height of the capillary ridge, whilst also slightly deepening the depression beyond
the step. As the electric field is increased further, the capillary ridge is completely
eliminated. Figure 8 shows how the maximum and minimum values of the film height
F at the downward and upward steps vary with W ′

e. These are computed as the
maximum and minimum values of F over the range −20 " ξ " −10 at the downward
step and 10 " ξ " 20 at the upward step. For a downward step, both the maximum
and minimum values of the film height are monotonically decreasing functions of W ′

e.
Note that the depression beyond the downward step for large values of W ′

e is less
pronounced than the height of the capillary ridge found before a downward step in
the absence of an electric field. It is also observed that the film is pulled away from
the downward step as W ′

e increases.
The opposite behaviour is found at an upward step. In this case, with no electric

field present, a depression is formed right ahead of the step. Increasing the electric
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e = 0, 1.5, 3, and 4.5. For each step B =15, D = 1, and d = 0.2.
The calculations were carried out with L = 30 and M =1500.

field from zero introduces short-wave oscillations on the free surface in front of the
step. As W ′

e increases up to about 1.5, the amplitude of the oscillations becomes quite
large and the depression deepens. As W ′

e is increased beyond 1.5, the amplitude of
the short-wave oscillations is reduced and the depression is eliminated but a ridge
now forms above the step, although it is less pronounced than that encountered at
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a downward step in the absence of an electric field. As the Weber number increases
from zero, the film is pulled towards the step.

Some insight into the physical mechanisms responsible for the flow features is
provided in figures 9 and 10. In figure 9, the negative scaled pressure gradient, −Pξ/5,
is plotted on top of the free-surface profiles at a downward step and at an upward
step both with and without an electric field. In each graph, the pressure gradient is
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shown with a thick line, and the free-surface profile is shown with a thin line. The
steps are at ξ = ± 15. The (a–d) panels correspond to figure 7(a–d). Considering the
downward step with no electric field and looking from left to right, we note that
the first very slight depression in the free-surface profile in front of the capillary
ridge coincides with a rise in the negative pressure gradient, which drives fluid faster,
thereby thinning the film to ensure mass conservation. Conversely, the capillary ridge
is accompanied by a dip in the negative pressure gradient as fluid is slowed down
before traversing the step. The negative pressure gradient then rises very sharply,
pushing the fluid rapidly over the step. The increase in speed leads to a thinning
of the film, which is particularly noticeable at the apex of the step, as can be seen
in figure 7(a). When the electric field is switched on, the sharp rise in the negative
pressure gradient over the step is eliminated, the fluid flows more sluggishly over the
step, and the thinning effect is much less pronounced. For the upward step, the electric
field has the opposite effect. It provokes a much larger negative pressure gradient
over the step than would otherwise be present and speeds up the fluid just before it
climbs up the step. The fluid must be slowed down again to permit the film height
to return to its undisturbed upstream value. This explains the presence of the ridge
just beyond the step, where the negative pressure gradient dips and the fluid flow is
retarded.

To explain the fluctuations in the pressure gradient, we begin by integrating the
governing equation (4.1) with respect to ξ and arranging the result into the form

C0

H 3
+ 2 +

1

C ′ Hξξξ + 2W ′
eH[Hξξ ] = − 1

C ′ sξξξ − 2W ′
eH[sξξ ]. (4.12)

This is analogous to the forced equation (6a) of Kalliadasis et al. (2000) excluding
electric field effects. In the absence of topographical forcing, the right-hand side is
zero, the film is purely flat, H = 1, and the pressure gradient is uniform. Deviations
from a flat film in the presence of topography may, therefore, be understood in terms
of the forcing effects on the right-hand side. In figure 10, we plot the two forcing
contributions sξξξ/C ′ and 2W ′

eH[sξξ ] together with the wall profiles at a downward
step and at an upward step. The arrows indicate the direction in which the force is
pushing fluid. The sizes of the forcing terms have been scaled down for illustrative
purposes. It is noticeable that the general shapes of the forcing curves are qualitatively
similar to the pressure gradient profiles in figure 9, except for some oscillations in
the presence of an electric field. Concentrating first on the effect of the topography,
seen in the upper two panels, we see that the fluid is forced backwards just before
the step. This explains the local dip in the pressure gradient and also the creation of
the capillary ridge. Fluid is forced rapidly over the step before again being pushed
backwards at the bottom in order to slow down the fluid and enable the film to
return to its original undisturbed height upstream. In contrast, the topography forces
fluid onwards at the foot of the upward step, creating the small depression seen
in figure 7(b). The fluid is slowed before mounting the step, in line with physical
intuition, and is then accelerated forwards at the top of the step to return the film to
its original undisturbed height downstream.

The role played by the electrical forcing term is seen in figure 10(c, d). The electrical
forcing pushes fluid downstream just above the downward step, thereby weakening
the upstream acceleration imparted by the topography and reducing the amplitude
of the capillary ridge. It slows the fluid passing over the step, causing a thickening of
the film and effectively pulling the film away from the apex, in agreement with what
was observed in figure 7(e, g). Just beyond the step, a slight positive electrical forcing
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Figure 10. The forcing effects at a downward step (a, c) and an upward step (b, d). The
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pushes fluid faster downstream generating the slight depression seen in the profiles
in figure 7. As W ′

e increases, the depression deepens. At an upward step, a positive
electrical forcing pushes the fluid faster over the step, thereby thinning the film, as
seen in figure 7(f, h). A slightly negative electrical forcing beyond the step attempts
to push fluid back upstream, and this explains the appearance of the ridge. As W ′

e

increases, the amplitude of the ridge grows.
The forcing effects just described explain the basic observed features, such as the

emergence of ridges and depressions. However, secondary features, such as short-wave
oscillations showing up when an electric field is turned on, are not explained by this
analysis.

The effect of varying the depth of the downward step or varying the height of an
upward step is shown in figure 11. Panels (a) and (b) show profiles obtaining in the
absence of an electric field, W ′

e = 0, and these should be compared with figures 3(a) and
3(b) of Kalliadasis et al. (2000). As D is increased for a downward step, the amplitude
of the capillary ridge increases monotonically. Similarly, the depression preceding the
ridge grows deeper as D increases. For an upward step, increasing D has virtually no
effect on the downstream profile, but it tends to deepen the depression seen just before
the step and also shift it slightly upstream. These observations change markedly in
the presence of an electric field, as can be seen in figure 11(c, d). For example, at
a downward step with W ′

e =1.2, as D increases, the amplitude of the capillary ridge
first increases, then decreases, and then increases again. Also, the slight depression on
the downstream side of the step becomes more noticeable with increasing D. For the



466 D. Tseluiko, M. G. Blyth, D. T. Papageorgiou and J.-M. Vanden-Broeck

–25 –20 –15 –10 –5

–6

–4

–2

0

2

4

6

(a) (b)

D = 0.5
D = 1.5
D = 2.5
D = 3.5

Sh
if

te
d 

fi
lm

 s
ur

fa
ce

5 10 15 20 25

–6

–4

–2

0

2

4

6

D = 0.5
D = 1.5
D = 2.5
D = 3.5

ξ ξ

W ′e = 0 W ′e = 0

–25 –20 –15 –10 –5

–6

–4

–2

0

2

4

6

(c) (d )

D = 0.5
D = 1.5
D = 2.5
D = 3.5

Sh
if

te
d 

fi
lm

 s
ur

fa
ce

5 10 15 20 25

–6

–4

–2

0

2

4

6

D = 0.5
D = 1.5
D = 2.5
D = 3.5

W ′e = 1.2 W ′e = 1.2

Figure 11. The effect of varying the depth, D, of a downward step (a, c) and an upward
step (b, d) for W ′

e = 0 (a, b) and W ′
e = 1.2 (c, d) when C ′ = 1. The profiles have been shifted

upwards for illustrative purposes. The equations were integrated with L = 30, B =15, d = 0.2,
and M = 1500.

upward step, increasing D now has a significant effect on the downstream profile with
the creation of a ridge of increasing amplitude. Moreover, the profile just upstream
of the step develops more severe oscillations as D increases.

4.3. Film flow into a trench and over a mound

To examine flow into trenches and over mounds of finite breadth, we fix B and take
L to be large to ensure unidirectional oncoming flow. We found that taking L = 30
is sufficient to obtain accurate results. In the following calculations, we take D =1,
d =0.1, and fix C ′ = 1 and W ′

e =1.2.
Results for flows into a trench and over a mound are shown in figures 12(a, c, e) and

12(b, d, f ) for the cases B = 0.5, 2, and 4. When B = 4, the flow into a trench exhibits
a capillary ridge just before a downward step followed by a shallow depression, as is
found for the isolated downward step shown in figure 7(a, c, d, g). The film develops
oscillations before leaving the trench and a slight elevation above the upward step,
as is observed for the isolated upward step seen figure 7(b, d, f, h). In a similar
way, the flow over a mound features oscillations just before the upward step, with
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Figure 12. Steady-state profiles, F (ξ ), for flow into a trench (a, c, e) and over a mound
(b, d, f ) for C ′ = 1 and W ′

e = 1.2. The wall parameters are D = 1 and d =0.1, with B = 4
(a, b), B = 2 (c, d), and B =0.5 (e, f ). The equations were integrated with L =30 and
M = 2000.

a slight elevation occurring above the step. On the downstream side of the mound,
a capillary ridge precedes the downward step followed by a slight depression just
beyond the mound. As B decreases, the two profiles at the downward and upward
steps start to interact. For trench flow, the disturbance to the free surface becomes
less pronounced as the film is pulled up out of the trench. The height of the ridge
above the downward step increases, while the slight elevation above the upward step
is reduced. For mound flow, the capillary ridge on the downstream side of the mound
disappears, leaving the free surface with a single hump, whose height decreases as B
decreases. The oscillations immediately upstream of the mound are little affected as
the breadth of the mound decreases.

The influence of an electric field on film flow over a narrow trench or a narrow
mound is shown in figures 13(a, c, e, g) and 13(b, d, f, h) for the case L =30,
B = 0.5, D =1, d =0.1, C ′ = 1, and for different values of W ′

e. As can be seen, film
flow into a narrow trench in the absence of an electric field, with W ′

e = 0, features a
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Figure 13. Steady-state profiles, F (ξ ), for flow into a narrow trench (a, c, e, g) and over
a narrow mound (b, d, f, h) for C ′ = 1 and W ′

e = 0 (a, b), W ′
e =1 (c, d), W ′

e = 2 (e, f ), and
W ′

e = 10 (g, h). The wall parameters are B = 0.5, D = 1, and d = 0.1. The computations were
performed with L = 30 and M = 2000.

capillary ridge just ahead of the trench followed by a trough, which moves further
along the trench as the intensity of the electric field is increased. As W ′

e increases,
the height of the ridge and the depth of the trough start to grow, and short-wave
oscillations appear on the free surface around the capillary ridge. When W ′

e is further
increased, the height of the ridge and the depth of the trough both decrease, and the
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amplitude of the short-wave oscillations is reduced. At larger values of W ′
e, the free

surface is rendered almost flat but with a slight depression over the downstream edge
of the trench. For flow over a narrow mound, it can be seen that when W ′

e = 0, the
free surface has a small depression before the mound followed by a pronounced peak
over the mound. As W ′

e is increased, the height of the peak goes down, the depth of
the depression starts to grow, and short-wave oscillations appear localized around the
depression. As W ′

e is increased further, the peak rises and shifts downstream, and the
short-wave oscillations increase in amplitude. As W ′

e is increased still further, the free
surface develops a single relatively thick hump downstream of the mound followed
by a mild depression.

4.4. Film flow down a slightly inclined wall

When the substrate is inclined at only a very slight angle, the assumption adopted
heretofore that cotβ ) δ−1 could be violated. In particular, when β = O(δ) then
cot β = O(δ−1) and the z-component of the gravitational force may no longer be
neglected. In this case, a straightforward extension of the asymptotic analysis presented
in § 3 yields the modified equation for the steady-state film thickness,

[
2

3
H 3 − 2G

3
H 3(H + s)ξ +

1

3C ′ H
3(H + s)ξξξ +

2

3
W ′

eH
3H[(H + s)ξξ ]

]

ξ

= 0, (4.13)

where G = δ cot β . When G = 0, this equation reduces to (4.1). An equivalent equation
valid in the absence of an electric field was given by Kalliadasis et al. (2000),
who used a slightly different non-dimensionalization. They found that increasing
G tends to eliminate the capillary ridge at a downward step and to eliminate the
depression just upstream of an upward step. Solutions to (4.13) at a downward
and an upward step are shown in figure 14. Panels (a) and (b) show results when
there is no electric field, W ′

e =0. As G increases, the amplitude of the capillary
ridge at the downward step decreases monotonically. Similarly, increasing G tends
to monotonically reduce the depth of the depression found in front of the upward
step. These observations are in line with those of Kalliadasis et al. (2000). Panels
(c) and (d) show results in the presence of an electric field with W ′

e = 1.5. In this
case, the effect of increasing G is ultimately the same but now the behaviour
is non-monotonic. For example, as G increases the amplitude of the short-wave
oscillations on the capillary ridge at a downward step first increases and then
decreases. Similarly, as G increases the amplitude of the ridge above the upward
step first increases and then decreases, while the oscillations just upstream of the step
decrease in amplitude monotonically. In both panels (a, b) and (c, d), as G increases
the film is pulled towards the downward step and is pulled away from the upward
step.

The observed trends can be broadly explained by reference to the new forcing
contribution, −2Gsξ , which is identified by first rearranging (4.13) into a form
equivalent to (4.12). This term is plotted in figure 15 at both a downward and an
upward step. For a downward step, the effect of the new term is to help to push fluid
downstream. This weakens the upstream acceleration imparted by the topographical
forcing term just above the step (see figure 10a) and therefore acts to dampen
the capillary ridge. Also, when W ′

e *= 0, it strengthens the downstream acceleration
imparted by the electrical forcing just downstream of the step (see figure 10c),
and thereby supports the formation of the depression. Overall, it accelerates fluid
over a downward step, thinning the film and effectively pulling it towards the step.
Conversely, at an upward step the new gravitational forcing pushes fluid upstream.
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This weakens the downstream acceleration imparted by the topographical forcing
term just upstream of the step (see figure 10b) and opposes the formation of the
depression. Also, when W ′

e *= 0, it strengthens the upstream acceleration imparted by
the electrical forcing term just above the step (see figure 10); this explains why the
amplitude of the ridge above the upward step can grow with increasing G in the
presence of an electric field. Overall, the new forcing effect decelerates fluid passing
over an upward step, thickening the film and effectively pulling it away from the
step.

4.5. Physical parameter values

To gain some insight into the physical relevance of our results, we consider typical
values of our dimensionless parameters which might be realized in the laboratory.
Since water acts as a near-perfect conductor, we take as a benchmark the experiments
of Decré & Baret (2003) on an aqueous film flowing under gravity down a wall
indented with a rectangular trench in the absence of an electric field. The density,
viscosity, and surface tension were measured at a temperature of 20◦ C to be

ρ = 103 kg m−3, µ = 10−3 Pa s, γ = 7 × 10−2 Nm−1. (4.14)

The undisturbed uniform film thickness upstream of the trench ranged between 80µm
and 120µm. The wall was at an angle of β =30◦ to the horizontal. Identifying h0 with
the undisturbed film thickness upstream, the capillary number, C, defined in (2.13),
is found to be C = 2.24 × 10−4 when h0 = 80 µm. Taking C ′ =1, as in many of our
calculations, gives a value of δ = 0.06. To obtain a rescaled electric Weber number of
W ′

e =0.1, an electric field of strength E0 = 1.10 × 106 V m−1 is required. Assuming an
electrode potential of 500 V, this requires a gap between the film and the electrode
of 456 µm, which is nearly 6 times the film height. This may well be sufficiently
large for our analysis, which assumes that the electrode is a long way from the film,
to hold. Also, the electric field strength lies below the critical value for dielectric
breakdown of air, 3 × 106 V m−1, and so the configuration should be realizable in the
laboratory.

5. Discussion
We have investigated the effect of a normal electric field on two-dimensional,

gravity-driven flow of a perfectly conducting liquid film over topography. Working
within the context of lubrication theory, we derived a nonlinear partial differential
evolution equation for the film height. Subsequent attention was focused on steady-
state, periodic solutions of this equation for flow over a downward step, an upward
step, into a rectangular trench, and over a rectangular mound. In each case, the
topography was approximated by a smoothly varying function, which allowed the
corners to become increasingly sharp as a controlling parameter approaches zero. A
careful analysis of the film behaviour in the limit of a wall with sharp right-angled
corners provided strong evidence that the correct limiting configuration is one in
which the film profile always remains at a finite distance from the wall. The limiting
film profile is described by a twice continuously differentiable function whose third
derivative has jump discontinuities at the points where the wall shape function is
discontinuous.

In the absence of an electric field, previous studies have shown that the film
profile develops a capillary ridge above a downward step and a slight depression
just upstream of an upward step. The present results have revealed that an electric
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field is able to completely eliminate the capillary ridge. As a side effect, a slight
depression appears immediately downstream of the downward step. Also, increasing
the intensity of the electric field results in the film being pulled further away from
the step as it passes over it. For upward steps, the opposite behaviour is found. In
this case, the fluid film is pulled towards the step as the electric field is increased.
The electric field can be used to eliminate the depression in front of an upward
step. The side effect is that a slight ridge is introduced immediately above the
step.

The effect of an electric field on film flow over narrow trenches and narrow mounds
has also been examined. For the flows into narrow trenches, we have observed
that in the absence of an electric field the free surface develops a capillary ridge
just in front of the upstream edge of a narrow trench followed by a small trough.
Increasing the electric field almost flattens the free surface, leaving only a slight
depression over the trench. For film flow over a narrow mound, our results have
shown that in the absence of an electric field the free surface features a pronounced
peak over the mound preceded by a slight depression. When the electric field is
increased, the peak widens into a hump and is shifted downstream. The slight
depression before the mound is ironed out and a new depression appears beyond the
hump.

When the inclination angle is sufficiently small, the governing equation includes an
extra term reflecting the effect of the normal component of gravity. With no electric
field, previous studies showed that the effect of this term is to smooth out undesirable
free-surface features such as the capillary ridge. Our results have shown that this term
can work in unison with electric field effects to amplify the deformation of the free
surface.

Generally speaking, an electric field can either reduce or promote irregularities
in the film surface depending on the local geometry. It is capable of removing the
capillary ridge found at a downward step but leads to the creation of a ridge just
above an upward step. As was described in the Introduction, previous works by
Mazouchi & Homsy (2001) and Gaskell et al. (2004) showed that the type of long-
wave theory adopted here is still capable of predicting the essential characteristics of
the film profile over steep topographical features. We note, however, that it is unable
to predict accurately the flow inside the film which will inevitably involve eddies inside
a trench, for example. Boundary-integral calculations for Stokes flow, incorporating
the effect of an electric field, will lend further credence to the film surface profiles
presented here, and will, in addition, be able to predict flow features such as eddies.
These calculations are already underway.

The present work has concentrated on computing steady solutions for electrified
film flow, and we have said nothing about the stability of these solutions.
Kalliadasis & Homsy (2001) and Davis & Troian (2005) examined the stability
of the capillary ridge encountered at a downward step to spanwise perturbations in
the absence of an electric field. Kalliadasis & Homsy’s results showed that the ridge
is stable for a wide range of the pertinent parameter values. Linear stability analysis
has shown that the effect of an electric field on a flat film is generally destabilizing
(e.g. Gonzalez & Castellanos 1996; Tseluiko et al. 2007). Consequently, despite the
results of Kalliadasis & Homsy (2001), we acknowledge that our solutions may not
be stable for sufficiently large values of the electric Weber number. An analysis for
electrified flow over topography along the lines of that conducted by Kalliadasis &
Homsy (2001) is left as a topic for future research. Time-dependent calculations of
electrified film flow over topography will be presented in future work.



Electrified film flow over topography 473

This research was supported by the EPSRC under grant EP/D052289/1. The
work of DTP was supported in part by the National Science Foundation grant
DMS-0405639.

REFERENCES

Abdelouhab, A., Bona, J. L., Felland, M. & Saut, J.-C. 1989 Nonlocal models for nonlinear
dispersive waves. Physica D 40, 360–392.

Alekseenko, S. V., Nakoryakov, V. E. & Pokusaev, B. G. 1985 Wave formation on a vertical
falling liquid film. AIChE J. 31, 1446–1460.

Argyriadi, K., Vlachogiannis, M. & Bontozoglou, V. 2006 Experimental study of inclined film
flow along periodic corrugations: The effect of wall steepness. Phys. Fluids 18, 012102.

Bankoff, S. G., Griffing, E. M. & Schluter, R. A. 2002 Use of an electric field in an electrostatic
liquid film radiator. Ann. N.Y. Acad. Sci. 974, 1–9.

Bankoff, S. G., Miksis, M. J. & Gwinner, H. Kim R. 1994 Design considerations for the rotating
electrostatic liquid-film radiator. Nucl. Engng Des. 149, 441–447.

Benjamin, T. B. 1957 Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2,
554–574.

Benney, D. J. 1966 Long waves on liquid films. J. Math. Phys. 45, 150–155.
Bertozzi, A. L. & Brenner, M. P. 1997 Linear stability and transient growth in driven contact

lines. Phys. Fluids 9, 530–539.
Bielarz, C. & Kalliadasis, S. 2003 Time-dependent free-surface thin film flows over topography.

Phys. Fluids 15 (9), 2512–2524.
Davis, J. M. & Troian, S. M. 2005 Generalized linear stability of noninertial coating flows over

topographical features. Phys. Fluids 17, 072103.
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