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Highlights:  

• We examined the influence of a 12 month high impact, unilateral exercise 

programme on bone density. 

• Participants were 50 healthy, community dwelling men aged 65-80 years. 

• The brief daily exercises increased to 50 multidirectional hops, on one randomly 

selected leg. 

• Femoral neck BMD, BMC and geometry increased significantly in the exercise leg 

compared to the control leg. 

• Carefully targeted high impact exercises may reduce risk of hip fracture in healthy 

older men. 
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Abstract: 

Introduction: There is little evidence as to whether exercise can increase BMD in older 

men with no investigation of high impact exercise. Lifestyle changes and individual 

variability may confound exercise trials but can be minimised using a within-subject 

unilateral design (exercise leg [EL] vs. control leg [CL]) that has high statistical power. 

Purpose: This study investigated the influence of a 12 month high impact unilateral 

exercise intervention on femoral neck BMD in older men. Methods: Fifty, healthy, 

community-dwelling older men commenced a 12 month high impact unilateral exercise 

intervention which increased to 50 multidirectional hops, 7 days a week on one randomly 

allocated leg. BMD of both femurs was measured using dual energy X-ray absorptiometry 

(DXA) before and after 12 months of exercise, by an observer blind to the leg allocation. 

Repeated measures ANOVA with post hoc tests was used to detect significant effects of 

time, leg and interaction. Results: Thirty-five men (mean ± SD, age 69.9 ± 4.0 yrs) 

exercised for 12 months and intervention adherence was 90.5 ± 9.1% (304 ± 31 sessions 

completed out of 336 prescribed sessions). Fourteen men did not complete the 12 month 

exercise intervention due to: health problems or injuries unrelated to the intervention (n=9), 

time commitments (n=2), or discomfort during exercise (n=3), whilst BMD data were 

missing for one man. Femoral neck BMD, BMC and cross-sectional area all increased in the 

EL (+0.7, +0.9 and +1.2 % respectively) compared to the CL (-0.9, -0.4 and -1.2%); 

interaction effect P<0.05. Although the interaction term was not significant (P > 0.05), there 

were significant main effects of time for section modulus (P =0.044) and minimum neck 

width (P =0.006). Section modulus increased significantly in the EL (P=0.016) but not the 

CL (P =0.465); mean change +2.3% and +0.7% respectively, whereas minimum neck width 

increased significantly in the CL (P =0.004) but not in the EL (P =0.166); mean changes 

being +0.7% and +0.3% respectively. Conclusion: A 12 month high impact unilateral 

exercise intervention was feasible and effective for improving femoral neck BMD, BMC 

and geometry in older men. Carefully targeted high impact exercises may be suitable for 

incorporation into exercise interventions aimed at preventing fractures in healthy 

community-dwelling older men.  

 

Keywords: High Impact Exercise, Femoral neck, Bone Mineral Density, Bone Geometry, 

Ageing,  
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1. Introduction  

Osteoporotic fractures are a major public health problem among older adults. One in two 

women and one in five men aged fifty and over in the UK will suffer a fracture in their 

lifetime [1]. Osteoporotic fractures commonly occur at the hip, spine, and wrist and of these 

hip fractures have the highest short-term mortality, morbidity and associated socio-

economic impact [2-4]. Regular exercise is widely recommended as the most effective non-

pharmacological method for improving and maintaining BMD [5] and can also reduce the 

risk of falling.  As such, exercise has an important role in reducing the predisposition to 

osteoporotic hip fracture.  

 

Although older people are the population at most immediate risk of osteoporosis, it has been 

suggested that exercise may be less effective in older, than younger, people [6-7]. This may 

be related to the type and intensity of the exercise interventions studied, as lower 

neuromuscular function [8] or greater injury risk may limit exercise intensity in older 

people. Meta analysis of exercise intervention studies suggests that mixed loading 

interventions including low to moderate impact exercises in the form of jogging, walking 

and stair climbing, together with resistance training, can maintain BMD at the femoral neck 

in postmenopausal women [9]. However, evidence from animal experiments suggests that 

the optimal loading regimens are high in magnitude, high in strain rate and provide novel 

stress on the bone [10-13]. In children and young adults, high impact jumping exercises that 

exert a high magnitude of loading at the hip have produced the greatest increases in femoral 

neck BMD [6]. Therefore, interventions that incorporate brief but regular high impact 

exercise could potentially increase femoral neck BMD (rather than just preventing bone 

loss) in older adults.  

 

Few studies have investigated the effects of interventions consisting only of high impact 

loading in the form of vertical jumping on femoral neck BMD in older people [14-15]. 

These studies found no change in femoral neck BMD following the intervention but these 

findings pertain to postmenopausal women, whose adaptive response to mechanical loading 

is thought to be impaired by estrogen deficiency and reduced estrogen receptor number [16-

17]. 

 

Older men are at risk of osteoporotic fractures, and hip fracture related morbidity and 

mortality are higher for men than women [18]. However, there is little information 
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concerning the effects of long-term exercise interventions on BMD in this population [19-

20]. One exercise intervention including high impact exercises (single and double foot 

landings, bench stepping, and jumping off 15- and 30-cm benches) increased femoral neck 

BMD in middle aged and older men (50-79 yrs) [21, 22]. However, the high impact 

exercises in this intervention formed only a very small component of a progressive 

resistance training programme, requiring over 3 hours of exercise per week. High impact 

exercise alone may be more feasible, as exercises are less time-consuming and can be 

performed at home, without requiring any special equipment. Brief, high impact exercises 

performed at home can increase BMD in premenopausal women [23], but the effectiveness 

of high impact exercise alone on femoral neck BMD in older men is unknown.  

 

Individual differences and lifestyle modifications such as genotype, physical activity, diet 

and age-related change may confound longitudinal exercise intervention trials in older 

people [24]. The effect of these confounders can be minimised by using a within-subjects 

unilateral design (exercise leg [EL] vs. control leg [CL]) that has greater statistical power 

than studies comparing changes between individuals. Recently, it was demonstrated that 

high impact unilateral exercise increases femoral neck BMD in premenopausal women [25]. 

Therefore, the aim of this study was to investigate the influence of a 12 month high impact 

unilateral exercise intervention on femoral neck BMD in healthy community dwelling older 

men, using a within-subjects unilateral design. 

 

2. Methods  

2.1 Experimental overview 

The study was conducted as a longitudinal, randomised trial of a high impact exercise 

intervention in older men. The men were prescribed a 12 month, high impact unilateral 

exercise intervention which increased to 5 sets of 10 multidirectional hops, 7 days a week on 

one randomly allocated exercise leg, with the contralateral leg being untrained to provide a 

control leg. Randomisation was performed using the minimisation method so that half of 

participants exercised on the left leg and half on the right leg. All men were requested to 

maintain their habitual lifestyle, with no unaccustomed exercise or diet during the 

intervention period. Participants completed a familiarisation session 3 to 4 days before pre-

exercise measurements. Follow-up measurements were completed after 6 and 12 months of 

exercise. During the familiarisation visit participants completed health, lifestyle and habitual 

physical activity questionnaires and were requested to complete a 7 day weighed food diary. 
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They were also familiarised with performing a set of 10 exercise  hops on a force plate. At 

the first measurement session (pre-exercise) anthropometry, bone mass, bone geometry and 

the ground reaction forces (GRF) generated during a set of 10 exercise hops were recorded. 

After pre-exercise measurements were complete, the hopping exercises were demonstrated 

and completed under supervision. After 6 months of exercise, measurements of 

anthropometry and GRF generated during set of 10 exercise hops were repeated. After 12 

months of exercise (post-exercise), measurements of anthropometry, bone mass and bone 

geometry were repeated.  

 

2.2 Participants 

Older men were recruited from the local area by email, advertising and organised visits to 

local community groups. To be eligible to take part in the study, all participants had to be 

healthy, community-dwelling men of white European origin, between the ages of 65-80 

years, have no impairment in mental or physical function that may affect ability to exercise 

or follow instructions and have no recent (previous 12 months) involvement in strength, 

power or weight-bearing endurance exercise for more than 1hr/wk. Exclusion criteria were: 

BMI >30 kg/m2; history of strength training or moderate intensity physical activity (weight-

bearing or high impact); previous or existing injuries to the lower limbs or back that could 

be exacerbated by undertaking high impact exercise; recent (previous 12 months) medical or 

surgical problems likely to affect bone metabolism or neuromuscular function and any 

history of diagnosed or symptomatic diseases likely to influence bone, neuromuscular 

function or ability to perform high impact exercises (including osteomalacia, impaired 

liver/renal function, hypertension and locomotor disease). Written informed consent was 

obtained from all eligible participants and consent was given to notify their local general 

practitioner of their involvement in the study. The study was approved by the National 

Research Ethics Service and the Loughborough University Ethical Advisory Committee. 

The involvement of participants at each stage of the study is demonstrated in the consort 

flow diagram (Figure 1).  
 

[Figure 1] 
 

2.3 Exercise intervention  

2.3.1 Home-based exercise intervention  
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Participants commenced a high impact unilateral exercise programme that involved 

performing brief hopping exercise sessions on their EL at home over a 12 month period 

(Figure 2). The exercises were demonstrated at the pre-exercise measurement session, once 

measurements were complete. Each exercise session consisted of several minutes of 

mobilisation exercises before participants performed the exercise routine which increased 

progressively to 5 sets of 10 multi-directional hops 7 days per week (Table 1). Each set of 

hops were interspersed with a 15 s rest period which consisted of gentle on the spot walking. 

In total the hopping exercises lasted between 2 to 3 minutes and the total duration of each 

exercise session was typically ~15 minutes. Multi-directional hops were introduced in the 

ninth week of the programme and involved 1 set of each of anterior-posterior, medio-lateral, 

rotational hops as well as 2 sets of vertical hops. 

 

[Figure 2] 

 

If necessary, participants were advised to hold onto a secure support (i.e. the back of a chair 

or kitchen bench) to assist with stability in the first three weeks of the training. We 

highlighted that the support was to assist stability, rather than to assist propulsion. The 

height of the hops increased from gentle hop attempts in the first week through to the 

maximum height that could be sustained for 10 consecutive hops in week five. Thus, 

exercise intensity increased by encouraging participants to continue to hop as high and as 

fast as they could. The typical progression of exercise is summarised in Table 1, although 

this was individualised by only progressing once participants were confident with the 

existing exercises, and reducing intensity (hop height) and or frequency in any participant 

that reported discomfort during or after exercise. To monitor the exercise progression and 

safety, participants were requested to attend supervised exercise sessions in groups of five to 

six. These took place each week for the first month of the training and one supervised 

exercise session every 3 months thereafter. Attendance at each of supervised sessions was 

recorded and they involved performing the exercise routine as a group under the supervision 

of an observer with feedback on technique and verbal encouragement. All hopping exercises 

were recorded in a log book and participants were asked to record the occurrence and extent 

of any adverse events or injuries associated with the exercises. Log books were checked 

during each supervised session.  

  

 [Table 1] 
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2.4 Health, physical activity, dietary and anthropometric measurements 

Health and lifestyle questionnaires documented information regarding medical history, past 

and current medications, fracture history, tobacco use and alcohol consumption. Habitual 

physical activity was measured using a validated questionnaire [26] that separated activity 

into work (referred to household activities if participant were in retirement), leisure and 

sports. Dietary intakes (including supplement use [type and dosage]) were assessed using a 

7 day weighed food diary. Participants were provided with a set of electronic kitchen scales 

(Model 1004, Salter Housewares, London, UK) and requested to weigh and record all food 

and drink consumed during seven consecutive days that were typical of usual diet. Analysis 

was conducted using CompEat dietary analysis software (version 1, Nutrition Systems, 

Banbury, UK) which yielded estimates of energy, carbohydrate, fat, protein, calcium and 

vitamin D intake over the 7 day period. Height was measured to the nearest 0.001 m using a 

portable stadiometer (Holtain Ltd, Pembrokeshire, UK) and body mass was recorded to the 

nearest 0.1 kg using a beam balance scale (Herbet and Sons Ltd, London UK) while 

participants wore shorts and a T-shirt. 

 

2.5 Dual energy X-ray absorptiometry measurements 

Scans of the whole body and both proximal femurs were taken on a GE-Lunar Prodigy dual 

energy X-ray absorptiometry (DXA) scanner (GE Healthcare, Madison, WI, USA) that was 

maintained according to the manufacturer’s recommendations, including the performance of 

daily calibration and phantom scan for quality control. Participant positioning for each scan 

type followed the standardised positioning protocol outlined in the manufactures guidelines. 

Fat and lean tissue masses of the whole body and BMD and BMC at both proximal femurs 

were used for further analysis. The Lunar Advanced Hip Analysis (AHA) algorithms 

(version 10.10, encore 2006 software) were used to calculate femoral neck bone geometry 

(minimum neck width, cross-sectional area [CSA]) and strength (cross-sectional moment of 

inertia [CSMI], section modulus). All scans and subsequent analysis was performed by the 

same operator, who was blind to the exercise leg allocation. 

 

2.6 Ground reaction forces during the hop exercise  

To assess musculoskeletal loading during the intervention period, vertical ground reaction 

force (GRF) was sampled at 2000 Hz with a calibrated force plate (9286AA, Kistler 

Instruments Ltd, London, UK). Briefly the summed vertical forces from the four vertical 
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channels were interfaced with an analogue to digital converter (CED micro 1401, CED, 

Cambridge, UK) and recorded with a computer utilising Spike 2 software (version 7.02a; 

CED, Cambridge, UK). Participants stood barefoot in the centre of the force plate and were 

instructed to stand upright and still with their shoulders back and arms by their sides for ≥ 5 

s. From stationary standing, participants performed 10 consecutive vertical hops on their EL 

that were typical of their routine hopping exercises. The 10 hops were repeated if the 

participant did not take off or land successfully in the centre of the force plate. A stable 1 s 

period of vertical GRF during quiet standing was used to calculate body mass. Force 

recordings were analysed to yield the absolute and relative (to body weight) peak GRF 

during take-off and landing averaged over 10 hops. 

 

2.7 Statistical analysis  

An a priori sample size calculation yielded n = 30 in order to detect a similar differential 

response between legs for femoral neck BMD as a previous study (equivalent to a 2.0% 

difference with a statistical power of 80% and P < 0.05) [25]. Coefficients of variation 

(CVs) for DXA-derived variables were based on repeat measurements taken on the same 

day during post exercise scans in 11 older men from this study [27]. CVs for GRF variables 

were based on repeat measurements taken on separate days (~6 months apart) in a control 

group of 17 older men previously tested in our laboratory. Differences between legs (EL vs. 

CL) pre-exercise were determined using paired t-tests. Repeated measures multivariate 

analysis of variance (RM-MANOVA) was used to find out whether exercise effects differed 

according to hip site over time (leg x time x site [upper neck, lower neck, trochanter] 

interactions). Two-way repeated measures analysis of variance (ANOVA) examined the 

influence of the 12 month high impact unilateral exercise intervention over time (pre vs. 

post); between legs (exercise leg [EL] vs. control leg [CL]) and detect any leg x time 

interactions. When any significant main or interaction effects were identified, paired t-tests 

were then used to determine which means differed. Paired t-tests were also performed to 

examine differences pre-exercise and after 6 months of exercise for peak GRF during take-

off and landing averaged over 10 hops. Descriptive data are presented as mean ± SD and 

inferential data are presented as mean ± SEM. Statistical analysis was conducted using 

PASW Statistics software (PASW 18.0, SPSS Inc., Chicago, Illinois) with the significance 

level set at P < 0.05.  

 

3. Results 
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3.1 Reproducibility 

CVs for percentage total body fat and lean soft tissue were 1.2% and 0.5%. CVs for femoral 

neck BMD, BMC, CSMI, section modulus and minimum neck width were 1.0%, 1.0%, 

4.7%, 3.4% and 1.4% respectively. CVs for absolute peak and mean GRF during take-off 

and during landing were 6.4%, 5.9%, 8.5% and 7.0%. 

 

3.2 Intervention adherence and adverse events 

Of the fifty men that took part in the study, thirty-five men exercised for 12 months. 

Fourteen (28%) of the 50 men withdrew from the study, while BMD data were missing for 

one man. Three men withdrew from the study due to musculoskeletal discomfort (knee pain 

[n=2]), sciatic pain [n=1]) which appeared to be related to the exercise intervention. Of the 

thirty-five men that exercised for 12 months, three men reported minor discomfort 

(aggravated lower back ache [n=2] and toe pain [n=1]) but over a short period of time and 

were happy to continue with the exercises. Five men reported discomfort (aching hip [n=1], 

knee pain [n=2], ankle and knee pain [n=1], aggravated lower back ache [n=1]) that required 

2-14 days rest before being reintroduced to the exercises. All participants had progressed to 

performing 5 sets of 10 multi-directional hops 7 days per week within 3 months since 

commencing the intervention. The intervention adherence (home-based and supervised 

sessions) was 90.5 ± 9.1% (304 ± 31 sessions completed out of 336 prescribed sessions). 

 

3.3 Physical characteristics  

Physical characteristics of the thirty five men are presented in Table 2. One man out of 

thirty five smoked, specifically one cigar per week. Thirty three men were retired and two 

men were semi-retired (office work, 2 days per week [n = 1], boatyard operator 3 days per 

week [n = 1]). Sixteen men did not take part in any physical activity (45.7%), twelve men 

(34.3%) currently took part in low intensity activity (e.g. golf, average energy expenditure 

0.76 MJ/h) for 3.8 ± 1.8 hrs/wk and seven men (20.0%) took part in moderate intensity 

activity (e.g. cycling, average energy expenditure 1.26 MJ/h) for 2.4 ± 1.7 hrs/wk. The men 

had an average dietary calcium intake of 1068 mg/d which is higher than the UK 

recommended dietary intake (RDI) of 700 mg/d but their average vitamin D intake (3.3 

µg/d) was lower than the UK RDI (10-15 µg/day) for older men (50-70+ yrs) [28]. 

 

[Table 2] 
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3.4 Body composition and ground reaction forces 

Body mass did not change following 12 months of exercise (-0.2 ± 2.1 kg, P = 0.543) but 

increased significantly following 6 months of exercise (+0.8 ± 1.7 kg, P = 0.000). Similarly, 

BMI did not change following 12 months of high impact exercise (-0.03 ± 0.70 kg/m2, P = 

0.827) but increased significantly following 6 months of exercise (+0.27 ± 0.52 kg/m2, P = 

0.004). After 12 months of exercise there were no significant changes in total body fat (21.9 

± 5.4 vs. 21.8 ± 4.9 kg, P = 0.658) or total lean soft tissue mass (55.7 ± 5.6 vs. 55.6 ± 5.6 

kg, P = 0.649).  

 

During the high impact exercise absolute peak GRF during landing and take-off had both 

increased following 6 months of the intervention (Table 3). Peak GRF during landing, 

expressed in relative terms, increased from 2.7 times body weight to 3.0 time body weight, 

representing a 12% increase following 6 months of high impact exercise but relative peak 

GRF during take-off remained unchanged (Table 3).  

 

 [Table 3] 

 

3.5 Bone mineral density, bone mineral content and geometry  

The EL and CL did not differ significantly pre-exercise for any BMD (0.391<P<0.942), 

BMC (0.234<P<0.997) or geometry parameters (0.325<P<0.682). Mean femoral neck BMD 

increased (by 0.7%) in the EL and decreased (by 0.9%) in the CL (Table 4; Figure 3), 

representing a 1.6% net gain in BMD. This difference in response between legs was 

statistically significant (P for leg x time interaction in ANOVA = 0.003). Femoral neck 

BMC showed similar changes (Table 4), increasing in the exercise leg relative to the control 

leg (+.0.9% vs. -0.4%; Figure 3) (net gain of 1.3%) as did CSA (+1.2% vs. -1.2%).  

 

When femoral neck BMD changes were compared between sites (upper neck, lower neck, 

trochanter) by RM-MANOVA, an overall exercise effect was evident (significant leg x time 

interaction, P = 0.007) which differed significantly according to site (leg x time x site 

interaction significant; P = 0.025). Two-way RM-ANOVA revealed a significant interaction 

(leg x time) effect for BMD at the lower neck but not at the upper neck or trochanter (Table 

4). Lower neck BMD increased in EL by 1.4% and decreased in the CL by 0.8%.  

 

[Figure 3] 
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There were significant main effects of time for cross-sectional moment of inertia, section 

modulus and minimum neck width, although the interaction term was not significant 

(0.137<P<0.261) (Table 4). Specifically, cross-sectional moment of inertia increased 

significantly in the EL (430.3 ± 162.3 mm4, P = 0.012; paired t test) but not in the CL (199.2 

± 158.6 mm4, P = 0.218). Similarly, section modulus increased significantly in the EL (18.7 

± 7.4 mm3, P = 0.016) but not in the CL (5.5 ± 7.4 mm3, P = 0.465), whereas minimum 

neck width increased significantly in the CL (0.11 ± 0.08 mm, P = 0.004) but not in the EL 

(0.27 ± 0.09 mm, P = 0.166).  

 

There was a tendency for vertebrae L1-L4 BMD to increase pre- to post-exercise (pre 1.258 

± 0.030 vs. post 1.270 ± 0.030 g/cm2 P = 0.060). Vertebra L4 also significantly increased 

(by 1.8%) pre- to post-exercise (pre 1.336 ± 0.038 vs. post 1.360 ± 0.224 g/cm2 P = 0.038) 

but other individual vertebrae (L1, L2 and L3) did not change following the 12 month high 

impact exercise intervention (0.274<P<0.619). 

 

 [Table 4] 

 

4. Discussion  

This is the first study to document the influence of high impact, unilateral exercise on 

femoral neck BMD in older men in a longitudinal, randomised trial. The study demonstrated 

that a 12 month high impact exercise intervention increased femoral neck BMD and BMC in 

healthy community-dwelling older men. The within-subjects unilateral design of the study 

(EL vs. CL) reduces the possibility that our findings have been influenced by individual 

differences in exercise response, lifestyle modifications (physical activity, diet) and age-

related changes that can often confound longitudinal exercise trials in older people.  

 

Musculoskeletal loading can be quantified by measuring the vertical GRF during landing 

from impact exercise. In the present study, absolute GRF during landing increased by 13% 

during the first 6 months of the exercise intervention and demonstrates a progression of 

musculoskeletal loading that may be necessary for continued adaptation. GRFs during 

landing of 3.5 to 8.0 times body weight from a single countermovement jump and 

continuous drop jumps (from 61 cm) have produced the greatest increases in femoral neck 

BMD in children [29]. The prescribed high impact exercises in the present study elicited 
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landing GRFs of 2.7 to 3.0 times body weight, which were higher than the typical peak 

GRFs generated by healthy older adults during walking, running 3.3 m.s-1(1.1 to 1.9 times 

body weight [30-31]), and two-footed drop jumps from 15-20 cm (1.9 to 2.1 times body 

weight [32]).  

 

The 1.6% net gain in femoral neck BMD and the 1.3% net gain in femoral neck BMC in our 

study are in contrast with findings from previous studies in postmenopausal women which 

found no changes in femoral neck BMD or BMC following 6, 12 and 18 months of vertical 

jumping exercises [14-15]. Other than sex and related hormonal differences, discrepancies 

between studies may be attributed to differences in the exercise prescription. Evidence from 

animal experiments and human interventions have shown that the adaptive response of bone 

is maximised when loading cycles are interspersed with short, regular rest periods [33-34] 

and when loading bouts are performed frequently i.e. 7 days a week [25]. The exercises 

employed in previous interventions were performed 2-3 days [14] and 6 days a week [15], 

without rest intervals (50 jumps [14] and 100 jumps [15]). Thus, less frequent and prolonged 

periods of loading may have impaired and saturated the bone’s adaptive response in 

postmenopausal women. Furthermore, continued adaptation to exercise requires progressive 

overload and the mechanostat theory suggests that bone can become accustomed to constant 

loading of a similar magnitude until a higher magnitude load is applied [35]. As the authors 

did not monitor the vertical GRF during the exercise programmes [14-15] it is difficult to 

determine whether musculoskeletal loading was of a sufficient magnitude to produce an 

adaptive response in BMD in these postmenopausal women.  

 

The magnitude of change we observed in femoral neck BMD (1.6%) was similar to the 

change previously documented in older men following a 12 and 18 month progressive 

resistance training incorporating high impact exercise (1.8% and 1.9% [21-22]). However, 

the duration of the exercises intervention employed by these authors was longer than the 

present study, the population was younger (70 ± 4 vs. 61 ± 7 yrs) and the high impact 

exercises formed only a very small component of an extensive resistance training 

programme.   

 

In contrast to findings for a similar high impact unilateral exercise intervention in 

premenopausal women [25], the overall exercise effect differed significantly according to 

hip site (P = 0.025). Specifically, the greatest changes were found at the  lower neck, where 
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BMD increased in the EL by 1.4% and decreased in the CL by 0.8%. The inferior region of 

the femoral neck is the primary weight-bearing site [36]. The greatest increase at the lower 

femoral neck may be due to hopping generating greatest strains in this region; it is likely 

that hopping will produce axial compression and bending that is greatest on the infero-

medial surface of the femoral neck, although the multidirectional movements were intended 

to distribute strains more widely.  

 

The high magnitude of loading associated with performing high impact exercises has the 

potential to result in injury [37]. In the present study, three men withdrew due to 

musculoskeletal injuries related to the exercises but the majority of participants (n=9) 

withdrew because of health problems or injuries that were unrelated to the exercise 

intervention e.g. lower back strain from gardening, stomach ulcer. Seventy percent of 

participants completed the 12 month high impact, unilateral exercise intervention and this is 

comparable to the 73% completion rate reported for a similar but shorter (6 months) high 

impact unilateral exercise intervention (50 multi-directional hops, 7 days per week) in 

premenopausal women [25]. Participant adherence to the exercise programme in the present 

study was 91% (306 sessions completed out of 336 prescribed sessions) which is higher than 

the adherence reported for a vertical jumping programme in postmenopausal women (82%) 

[14] and for combined resistance (65% [21] and 63% [22]) and progressive resistance 

exercise programmes (71% [38]) in older men (50-80 yrs). The high participant adherence 

and low number of adverse events documented in the present study demonstrates the 

feasibility of the high impact exercises in older men and may be attributed to the low time 

demands of this intervention (~2-3 minutes to complete the hopping exercises) and the 

convenience of a home-based exercise programme requiring no specialist equipment. It 

should be noted however, there is likely to be a higher risk of injury for frail older adults 

performing high impact exercises so it is essential that this type of exercise is individually 

prescribed.  

 

Exercise can affect the distribution of bone as well as the quantity of bone [39]. To 

document changes in hip geometry following high impact exercise, CSA, section modulus 

and minimum neck width were assessed. We found that CSA increased significantly in the 

EL relative to the CL (+1.2% vs. -1.2%) and section modulus (a surrogate of bending 

strength) increased significantly in the EL (2.3%) only. These changes demonstrate 

increases in strength, conferring greater resistance to fracture. Minimum femoral neck width 
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(a surrogate estimate of bone size) did not change with exercise, but increased significantly 

(0.7%) in the CL. Our hip geometry results confirm findings from a previous cross-sectional 

study which demonstrated that athletic populations participating in high impact (i.e. 

volleyball, hurdling) and odd impact (i.e. squash, football) loading sports had similar 

femoral neck widths but larger section modulus (22% and 26%) compared to non-athletic 

referents [40]. Moreover, the extent to which 2 to 3 minutes of daily high impact exercise 

increased CSA and section modulus in the current study was similar to the increases 

previously achieved following a longer (~12-18 months) and more demanding (>3 hours a 

week) combined resistance and high impact exercise programme in older men (1.8% and 

2.1% [21-22]).  

 

The loss of BMD (-0.9%) and increased femoral neck width (+0.7%) we observed in the CL 

are also consistent with annual age-related changes in femoral neck BMD (-0.8% [41]) and 

femoral neck width in older men (+0.3% [42]). The increase in neck width may partly 

compensate the BMD loss to maintain strength in bending [43], but if a wider diameter and 

thinner cortex were subject to fall, this could increased the risk of fracture [44, 45]. The 

maintenance of femoral neck width and the gains in BMD and section modulus we observed 

with exercise, most likely suggest that high impact exercise produces an increase in cortical 

thickness by reducing endocortical resorption at the femoral neck rather than changes in 

periosteal expansion. Such a suggestion is compatible with findings from one study using 

MRI which found that athletes taking part in high and odd impact sports had a ~20% thicker 

cortex at the femoral neck [46]. Similarly, results from a 12 month combined aerobic step 

and jumping intervention in postmenopausal women revealed a 3.6% increase in section 

modulus and 3.7% increase in the ratio of cortical bone to total bone area at the distal tibia, 

indicating an exercise-induced thickening of the bone cortex [47].  

 

The main limitation of this study pertains to the exclusion of unhealthy individuals and any 

selection bias due to the voluntary participation that could skew our sample of older men 

towards a healthier and fitter population than the average. The generalisability of our 

findings is therefore limited to healthy, community-dwelling men (65-80 yrs), who are 

capable of performing high impact exercise. It was not the aim of the present study to 

conduct an intention to treat analysis; we therefore acknowledge that our results may yield a 

smaller effect size than clinical studies performing this type of analysis. We did not have a 

control group who did not have any intervention; the control leg may have been affected by 
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any systemic or crossover effects of the exercise. Given that any exercise effects on the 

control leg are likely to be beneficial rather than detrimental, use of a control leg rather than 

control group seems more likely to underestimate rather than overestimate exercise effect. 

In a previous study of a similar intervention in premenopausal women [25], changes in the 

control leg of exercisers were similar to changes in an independent control group. 

Furthermore, the study of bone geometric features in the present investigation is restricted 

by the inherent limitations of HSA algorithms and DXA technology particularly in older 

adults [48]. The geometric properties (i.e. CSA, section modulus) were derived from two-

dimensional DXA data. This involves a number of assumptions about the distribution of 

three-dimensional bone tissue [49]. Bone strength is affected by the distribution of bone 

(e.g. cortical thinning at structurally important regions of the proximal femur may 

predispose older adults to hip fracture [44, 50]) and this may be affected by exercise. To 

more fully understand the effects of exercise on bone strength, there is a need for further 

evaluation of exercise effects using techniques such as computed tomography or magnetic 

resonance imaging that allow three-dimensional imaging, to detect changes in geometric 

parameters such as cortical thickness and to allow estimation of bone strength through 

modelling techniques such as finite element analysis.   

 

Given that hip fractures are a major public health problem among older adults [1] and low 

femoral neck BMD is strongly associated with higher hip fracture incidence [51], our 

findings have important implications for informing preventative strategies against the risk of 

osteoporotic hip fracture in older men. Brief (2 to 3 minutes) but regular high impact 

exercise repeated on both legs may be suitable for integration into exercise interventions 

aimed at preventing osteoporotic hip fractures in healthy community-dwelling older men, 

with suitable screening and advice on progression. Further randomised longitudinal trials are 

required to determine whether this type of exercise is feasible and effective for improving 

bone health in a broader range of older adults.  

 

In conclusion, a 12 month high impact, unilateral exercise intervention was effective for 

inducing modest increases in femoral neck BMD and BMC in older men. The high 

participant adherence and low number of adverse events indicates that this type of exercise 

is safe and feasible in healthy older men. Pragmatically, these findings suggest that carefully 

targeted high impact exercises may be suitable for incorporation into exercise interventions 

aimed at preventing osteoporotic hip fractures in healthy community-dwelling older men.  
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Figure Legends 

Figure 1 Consort flow diagram illustrating the progress of participants’ involvement 

through the stages of the study.  

 

 

Enrolment 

Allocation 

Follow-Up 

Analysis 

Randomised (n=50) 

Allocation to exercise 
leg/control leg (n=50) 
 Received allocated 

intervention (n=50) 

Discontinued Intervention (n=14) 
-Time Commitments (n=2) 
-Discomfort during exercise 
(n=3) 
-Health problems/injuries 
unrelated to the intervention 
(n=9) 

Assessed for eligibility (n=125) 

Excluded (n=75) 
   Did not meet inclusion criteria (n=58)  

-Not of European origin (n=1) 
-Not between 65-80 yrs (n=10) 
-Recent involvement in strength, power or   
  weight-bearing endurance exercise for  
  more than 1hr/wk (n=6) 
-BMI greater than >30 kg.m-2 (n=4) 
-Previous or existing injuries to lower back or   
  limbs (n=14) 
-Medical or surgical problems (n=13) 
-History of diseases (n=10) 

   Declined to participate (n=14) 
   Other (n=3) 

 
 

Analysed (n=35) 
 
 

 

Excluded from analysis (n=1) 
-Missing BMD data 
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Figure 2 Demonstrative video stills showing the first of ten typical exercise hops of an older man: (a) start position of a typical hop on the 

exercise leg (b) countermovement prior to take off (c) flight of hop (d) landing on the exercise leg. 

 
a b c d 
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Figure 3 Percentage change in BMD (A) and BMC (B) at the femoral neck for the exercise 

leg (n = 35) and control leg (n = 35) in older men following the 12 month unilateral high 

impact exercise intervention. Values are mean ± SEM. 
 

 

* significant difference as determined by paired samples t-test (P < 0.05).  
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Table 1 Typical progression of the 12 month high impact, unilateral exercise intervention  

Week Sessions 

per week 

Exercise volume 

(sets x repetitions) 

Rest duration 

between sets (s) 

Hop 

direction * 

Self-rated 

hop height 

Arm 

movement 

1 3 3x10 15 V Low support 

2 3 3x10 15 V Low support 

3 3 3x10 15 V Moderate support 

4 3 4x10 15 V Moderate Arm swing 

5 4 4x10 15 V High Arm swing 

6 4 4x10 15 V High Arm swing 

7 5 5x10 15 V High Arm swing 

8 5 5x10 15 V High Arm swing 

9 6 5x10 15 M High Arm swing 

10 6 5x10 15 M High Arm swing 

11-52 7 5x10 15 M High Arm swing 

V = vertical, M = multidirectional (vertical, medio-lateral, anterio-posterior and rotational)  
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Table 2 Anthropometric, lifestyle, physical activity and dietary characteristics of participants at baseline.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Values are mean ± SD. BMI-Body mass index.   

       Older men (n=35) 

Age (y) 69.9  ± 4.0 

Height (m) 1.753  ± 0.063 

Weight (kg) 80.4  ± 8.4 

BMI (kg/m2) 26.2  ± 2.3 

Total body fat (%)  26.9  ± 4.9 

Proportion of men with previous fractures (%) 48.6    

Current physical activity (hrs/wk) 1.8 ± 2.0 

Baecke physical activity questionnaire score:    

 - Work index score 2.7  ± 0.5 

 - Sport index score 2.8  ± 1.0 

 - Leisure index score 2.6  ± 0.5 

 - Total index score 8.2  ± 1.5 

Energy Intake (MJ/day)  9.8  ± 2.1 

Total Fat (% energy)  34.2  ± 7.9 

CHO (% energy) 46.6  ± 6.7 

Protein (% energy) 14.5  ± 2.6 

Alcohol (% energy) 4.6  ± 4.7 

Calcium intake (mg/day) 1068.2 ± 259.6 

Vitamin D intake (µg/day) 3.3  ± 1.8 
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Table 3 Peak vertical ground reaction forces during takeoff and landing averaged over 10 hops in older men 

before and after 6 months of high impact exercises.   

Values are presented as mean ± SEM. *significantly different from baseline as determined by paired t-test P < 

0.05.  

 

 

 

 

 

 

 

 

 
 

 Older men (n=35) 

 Pre Post P 

Peak GRF during take off (N) 1771 ± 37 1847 ± 44          0.022* 

Peak GRF during take off (N/kg) 2.25 ± 0.05 2.31 ± 0.04          0.133 

Peak GRF during landing (N) 2132 ± 56 2402 ± 85        <0.001* 

Peak GRF during landing (N/kg) 2.72 ± 0.08 3.02 ± 0.11   0.001* 
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Table 4 Hip BMD, BMC and geometry parameters in the EL (n = 35) and CL (n = 35) of older men before and after a 12-month high impact unilateral exercise intervention 

. Values are mean ± SEM and the displayed P value denotes the ANOVA interaction and main effects. * significant effects observed at P < 0.05. 
 

 EL (n=35) CL (n=35) P 

      Pre     Post Pre Post Time Leg Leg x Time 

BMD                 

Femoral neck (g/cm2) 0.948 ± 0.018 0.954  ± 0.017 0.954  ± 0.018 0.945  ± 0.018 0.642 0.875  0.003* 

 - Upper neck (g/cm2) 0.769 ± 0.019 0.770 ± 0.019 0.779 ± 0.019 0.771 ± 0.019 0.304 0.627       0.138 

 - Lower neck (g/cm2) 1.122 ± 0.019 1.133 ± 0.018 1.124 ± 0.020 1.115 ± 0.020 0.711 0.456  0.001* 

Trochanter (g/cm2) 0.920 ± 0.017 0.923 ± 0.017 0.919 ± 0.018 0.923 ± 0.018 0.130 0.973       0.897 

Total hip (g/cm2) 1.027 ± 0.018 1.030 ± 0.017 1.029 ± 0.018 1.027 ± 0.018 0.856 0.985       0.206 

BMC                 

Femoral neck (g) 5.50 ± 0.14 5.54 ± 0.13 5.51 ± 0.14 5.49 ± 0.14 0.505 0.782     0.022* 

 - Upper neck (g) 2.20 ± 0.07 2.20 ± 0.06 2.22 ± 0.07 2.21 ± 0.07 0.738 0.631 0.265 

 - Lower neck (g) 3.30 ± 0.08 3.34 ± 0.07 2.22 ± 0.07 2.21 ± 0.07 0.172 0.367    0.018* 

Trochanter (g) 16.57 ± 0.52 16.45 ± 0.54 16.40 ± 0.59 16.49 ± 0.57 0.898 0.810 0.114 

Total hip (g) 40.44 ± 0.92 40.49 ± 0.91 40.29 ± 0.97 40.35 ± 0.97 0.551 0.659 0.966 

Geometry                

Section Modulus (mm3) 887.8  ± 27.9 906.5  ± 28.0 901.4  ± 28.0 906.8  ± 28.4 0.044* 0.538 0.157 

CSMI (mm4) 17636.7  ± 701.7 18367.0  ± 721.6 18132.2  ± 718.1 18331.7  ± 730.9 0.016* 0.757 0.261 

Minimum neck width (mm) 36.5  ± 0.4 36.6  ± 0.1 36.4  ± 0.4 36.7  ± 0.4 0.006* 0.977 0.137 

CSA (mm2) 173.2 ± 26.5 174.9 ± 24.9 174.5 ± 26.4 172.3 ± 26.2 0.688 0.700    0.012* 
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