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Abstract:  Many existing diesel particulate filter (DPF) models do not sufficiently 

describe the actual physio-chemical processes that occur during the regeneration process. 

This is due to the various assumptions made in the models. To overcome this 

shortcoming, a detailed two-dimensional (2-D) DPF regeneration model with a multi-

step chemical reaction scheme is presented. The model solves the variable density, multi-

component conservation equations by PISO (Pressure Implicit with Splitting of 

Operators) scheme for inlet and outlet channels as well as the porous soot layer and filter 

wall. It includes a non-thermal equilibrium (NTE) model for the energy equation for 

porous media. In addition, for the first time, experiments on DPF were conducted to 

determine interstitial heat transfer coefficient inside the DPF porous wall. The results 

compare well with an in-house 1-D model and subsequently this was used in the new 

2-D model. By using this detailed 2-D model, some interesting observations of the DPF 

regeneration process were revealed. These included flow reversals and asymmetry in the 

filters channels.  

 

Keywords: diesel, engine, particulate, filter, trap, regeneration, soot, chemical reactions, 

non-thermal equilibrium, PISO, model.  

 

1 INTRODUCTION  

 

Modern diesel engine-driven vehicles are well known for their durability and good fuel 

economy (low carbon footprint) and this has resulted in increasing market share, 

especially in Europe. However, diesel engines suffer from high emissions of particulate 
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matter (PM) and oxides of nitrogen (NOx) which are associated with environmental 

pollution and potential health hazards [1, 2] . Consequently, increasingly stringent 

emission legislation, such as EURO V and US Tier 3, have been introduced to limit 

harmful emissions. It has been predicted that diesel particulate filters (DPFs), which are 

able to retain the diesel PM inside the filter will become a necessity in order to reduce 

PM emissions to the regulated levels. Advances in DPF technology have enabled them to 

be used widely since 2001 [3]. Diesel PM that is retained inside a DPF needs to be 

oxidised by either internal or external measures [3] to avoid excessive exhaust gas back 

pressure which not only adversely affects engine power but also fuel economy. The PM 

oxidation process inside a DPF is known as regeneration. The DPF regeneration process 

has to be well-controlled so that the resulting heat release will not damage the DPF 

material. Experimental optimisation of DPF systems is a costly and time-consuming task, 

hence a DPF regeneration model is valuable not only to better understand the physics of 

the regeneration process but also as a design tool to devise better regeneration strategies.  

 

Many DPF regeneration models have been developed in the past two decades. These 

range from zero- to three-dimensional (3-D) models [4-11]. Recent years have seen the 

development of 3-D DPF models at full filter scale [8, 9, 12]. In these approaches, DPF 

channels were modelled by a set of one-dimensional (1-D) equations, as developed by 

Bissett [13]. The solutions were then used for the calculation of the three-dimensional 

energy equation for the whole filter. Hou and Angelo [14] presented a 3-D regeneration 

model at the channel / wall scale. The authors neglected changes in gas density during 

the regeneration process and assumed thermal equilibrium (TE) in the PM layer and the 

filter wall.  

 

Conversely, there are limited physio-chemical models for the DPF regeneration 

processes at the channel scale. Therefore, this paper presents a new two-dimensional (2-

D) DPF model to help provide more details. The present model calculates a transient, 

multi-component, variable-density flow and assumes a non-thermal equilibrium (NTE) 

combustion model for porous media (PM layer and filter wall). It also incorporates a 

multi-step chemical reaction scheme for thermal PM oxidation as reported previously 

[11]. In addition, the paper also presents a novel heat transfer experiment that was 

conducted to estimate, for the first time, the interstitial heat transfer coefficient inside the 

DPF filter wall. This important parameter was then used in the new 2-D model.  
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The next section of the paper will discuss the new 2-D model in detail. Subsequent 

sections will present the experimental work to determine the interstitial heat transfer 

coefficient of a clean wall-flow DPF. The results of the new 2-D model are then 

compared with data reported in the literature and lastly, the main findings of the paper 

are summarised.  

 

2 DPF REGENERATION MODEL  

2.1. Description of Model  

Figure 1 illustrates the domain of interest, which consists of half of the inlet and outlet 

channels as well as the PM layer and filter wall. The three distinct media that constitute 

the domain of interest in the current model are the free stream exhaust gas flow, 

consisting of inlet and outlet channels, the porous media of the PM layer and the filter 

wall. These three media can be modelled as two media with varying properties – the 

porous structure and the open structure. The exhaust gas flows into the filter through an 

inlet channel and is forced through the porous PM layer and wall due to the end plug at 

the downstream end of the inlet channel. The inlet flow rate of PM is ~1% the PM 

oxidation rate and, therefore, is not significant enough to affect the PM oxidation event. 

It finally exits via the outlet channel. Since each inlet channel is surrounded by four 

identical porous walls, the gas is assumed to be drawn into the adjacent outlet channels 

evenly. This promotes a symmetrical flow field and therefore only half of the channel 

width needs to be considered in the computational domain. The two dimensional 

geometry represents an infinite length in the z direction which, although it does not 

model two out of the four channels, it does give another level of understanding to the 

thermal, chemical and flow characteristics of diesel particulate filter regeneration beyond 

previous one dimensional models [??]. 

 

<Figure 1> 
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2.2. General Flow Field Solution (2-D)  

2.2.1. Free Stream  

The continuity equation for free stream variable density flow (due to changes in gas 

pressure and temperature) is given by 

 

 ( ) ( ) ( )
0G G Gu v

t x y
ρ ρ ρ∂ ∂ ∂

+ + =
∂ ∂ ∂

 (1) 

 
 
The gas phase momentum equations are given as 
 
 

 ( ) ( ) ( ). .G G G
G G

u u u v u p u u
t x y x x x y y
ρ ρ ρ

µ µ
∂ ∂ ∂  ∂ ∂ ∂ ∂ ∂ + + = − + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 (2) 

 

 ( ) ( ) ( )ρ ρ ρ
µ µ

∂ ∂ ∂  ∂ ∂ ∂ ∂ ∂ + + = − + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

. .G G G
G G

v u v v v p v v
t x y y x x y y

 (3) 

 

where Gµ  is the exhaust gas dynamic viscosity. 

    

2.2.2. Porous Media – PM Layer and Filter Wall 

The continuity equation for a porous medium can be written as 

 

 ( ) ( ) ( )
, ,

G G D G D
G S

u v
MW R R

t x y η α α

φρ ρ ρ
φ

∂ ∂ ∂
′′′ ′′′ + + = ⋅ ⋅ + ∂ ∂ ∂ ∑ ∑    (4) 

The Darcian (average) velocity, ( ),D D Du vu  in the porous media can be related to the 

pore velocity via ( ) ( ), ,D D D pore pore poreu v u vφ= ⋅u u . There is a mass addition term, 

, ,G SR Rα αφ ′′′ ′′′ ⋅ + ∑    in equation (4) owing to the gas and solid phase reactions in the PM 

cake layer. However, there is no mass addition in the porous filter wall.  
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To account for the exhaust gas flow in the porous wall and PM layer, the generalised 

Brinkman-Forchheimer-extended Darcy model [15] is used and these are given, in x- and 

y-direction, as     

x-momentum 

 

( ) ( ) ( )

2 2
1 2

G D G D D G D D

GD D E
eff eff G D D

u u u u v
t x y

p u u C u
x x x y y K K
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µφ µ µ φ ρ

∂ ∂ ∂
+ +

∂ ∂ ∂

 ∂ ∂ ∂ ∂ ∂   = − + + − +     ∂ ∂ ∂ ∂ ∂     
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 (5) 

 

y-momentum 

 

( ) ( ) ( )

2 2
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G D G D D G D D
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t x y

p v v C v
y x x y y K K
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∂ ∂ ∂
+ +

∂ ∂ ∂
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 (6) 

 

where eff Gµ φµ= , K is the permeability, EC is the inertial term for the porous media and 

DU  is the magnitude of the resultant Darcian velocity. These terms are given as: 

14 21.8 10  mpK −= ×  for PM layer [16] and 
( )

3
2 2

2
 m

150 1
fw

fw fw
fw

K d
φ

φ
=

⋅ −
 [17] for filter wall, 

1.51.75
150EC φ−=  [18] (for either the PM layer or the filter wall) and 2 2

D u v= +U . 

 

2.3. Temperature Field  

 

There are three main mechanisms of energy transfer in a DPF; conduction, convection 

and radiation. Prior to the onset of regeneration process, the inlet gas temperature is the 

main heat source of the whole DPF. To initiate regeneration, the gas temperature is 

increased to the ignition temperature of diesel PM. At this stage, the energy transfer is 

mainly from the gas phase to the solid phase. Once the regeneration process occurs, the 

heat liberated from PM oxidation is so high that the resultant / net heat flow is from the 

solid phase to the gas phase via convection. At the same time, the heat source is also 

transported to the whole DPF via the PM layer and the filter wall conduction. Since DPF 



Law, Clarke, Garner and Williams 

IMechE J. Part D, November 2007 6 

channels are slender, the four surfaces in each channel are assumed to exchange equal 

amount of radiative heat [19]. Hence, radiative heat loss is neglected in the model.  

 

2.3.1. Free Stream Energy Equation 

In this section, the energy equation for the free stream in the inlet and the outlet 

channels is presented. For the porous media, NTE is implemented in the model. The 

energy equation for the inlet and the outlet channels is given as 

 

 

( ) ( ) ( )

, ,

G pG G G pG G G pG G

G G
G G G G

c T c uT c vT

t x y

T Tk k R H
x x y y α α

α

ρ ρ ρ∂ ∂ ∂
+ +

∂ ∂ ∂

 ∂ ∂∂ ∂  ′′′= + + ⋅   ∂ ∂ ∂ ∂   
∑ 

 (7) 

 

On the left hand side of equation (7) are transient and convective terms in x- and y- 

directions. These are balanced by a fluid conduction term and a heat source term on the 

right hand side. The term , ,G GR Hα α
α

′′′ ⋅∑   is the sum of the product of gas phase reaction 

rates, α , and the corresponding enthalpies of reaction.  

 

2.3.2. Non-Thermal Equilibrium (NTE) Energy Equations 

 

Many of the existing DPF models (such as those developed as in [7], [10] and [14]) 

assumed TE for the porous media (PM layer and filter wall) temperature calculations. 

Zheng and Keith [10] argued that since the specific area in the DPF was generally large, 

the TE assumption was justifiable. Nevertheless, Kaviany [15] warned that the TE 

assumption in the porous media was violated if there was a heat generation source in 

either the solid or the gas phase. Hence, the present study investigates the validity of TE 

in the case of DPF regeneration by developing a non-thermal equilibrium (NTE) model, 

which consists of gas and solid phase energy equations.  

 

The NTE temperature equations are as follows 

Gas phase 



Law, Clarke, Garner and Williams 

IMechE J. Part D, November 2007 7 
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Solid phase 

 

( ) ( )interstitial , ,. .

S pS S

S S
S S G S S S

c T

t

T Tk k h a T T R H
x x y y α α

α

β ∂  
∂

 ∂ ∂∂ ∂  ′′′= + + − + ⋅   ∂ ∂ ∂ ∂   
∑ 

 (9) 

 

The coupling between gas and solid phases at temperature GT  and ST  respectively is via 

the volumetric interstitial heat transfer term, interstitial .h a . This value was determined 

experimentally for a ceramic DPF and is described in Section 4.  

 

2.4. Gas Species Field 

Since the PM reacts with gas species during the regeneration process, the concentrations 

of gas species vary throughout the computational domain. In addition, the reaction rate is 

dependent on the oxidant concentrations, e.g. oxygen, therefore, it is crucial that the 

model is able to predict accurately the species profile in the DPF. The gas species 

equation inside a porous medium can be written as 

 

 

( ) ( ) ( )

, , , ,

G G D G D

G eff G eff G S

Y Y u Y v

t x y

Y Y
D D MW R R

x x y y

η η η

η η
η η η ηα α α

α

φρ ρ ρ

ρ ρ ν φ

∂ ∂ ∂
+ +

∂ ∂ ∂

∂ ∂  ∂ ∂ ′′′ ′′′ = + + ⋅ ⋅ +    ∂ ∂ ∂ ∂   
∑  

 (10) 

 

where ,effD η  is the effective diffusion coefficient of a gas species η  inside a porous 

medium. Equation (10) consists of transient and convective terms on the left hand side 

and the diffusive and reaction source terms are on the right hand side. This equation can 

be modified for a free-stream case by setting 1φ = , , 0SR α′′′ =  and ,eff mD Dη η=  where Dηm 
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is the diffusion of species η in the gas mixture. The term Yη  is the mass fraction of gas 

species η . This equation is applicable to all the individual gas species, i.e. 

1, 2, 3, ..., 1,N Nη = − , where N is the total number of gas species. However, due to the 

principle of mass conservation the computation is only required for N-1 species. 

 

2.4.1. Free Stream 

In practical situations, the concentrations of gas species are not in equilibrium 

throughout the DPF. Due to factors such as concentration, pressure and temperature 

gradients, the gas molecules diffuse towards one another, even if there is no convective 

flow. In the present case, six species have been considered as taking part in the multi-step 

chemical reaction scheme. Therefore, multi-component diffusion needs to be taken into 

account.  

 

For this study only the diffusion caused by the gas concentration gradient is considered 

(i.e. ordinary diffusion). Other factors such as temperature and pressure gradients in the 

free stream are neglected in the present study. The diffusion coefficient of species η  in 

the gas mixture, mDη  can be calculated from  

 

 
1

m ND

D

η
η

γ

γ η ηγ

χ
χ

≠

−
=

∑
 (11) 

   

where ηχ  is the molar fraction of species η  [20], which in turn can be calculated from 

mixMWY
MWη η

η

χ
 

= ⋅  
 

 and the molecular weight of gas mixture is mixMW MWη η
η

χ= ⋅∑ . 

 

2.4.2. Porous Medium 

 

The diffusion coefficient in a porous medium needs to be modified in order to account 

for the narrow and irregular path inside the porous media. The gas motion inside the 

porous media is known as Knudsen diffusion. The diffusion coefficient is defined as [21] 
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 ,
8

3
p u G

Knud

d R TD
MWη

ηπ
=

⋅
 (12) 

  

where pd  is the mean pore diameter , uR  is the universal gas constant and MWη  is the 

molecular weight of gas species η . 

The overall effective diffusion coefficient is thus [21] 

 

 ,
,

,

Knud m
eff

Knud m

D D
D

D D
η η

η
η η

φ
τ
 ⋅

=  
+  

 (13) 

   

where τ  is the tortuosity factor which is the ratio of the distance between two points 

travelled by a molecule in an irregular path in a porous medium to the line of sight 

distance between these two points [22]. In this case, the value is taken to be 3 [23].  

 

2.5. PM Oxidation Rate 

The rate of PM oxidation is found from the sum of heterogeneous reactions that occurs 

and this is represented by 

 ,.p
p p SMW R

t α α
α

β
ν

∂
′′′= −

∂ ∑   (14) 

where pβ  is the PM bulk density and pαν  is the stoichiometric coefficient of reaction 

α .  

 

2.6. Equation of State 

 

The model is completed by adding the equation of state to relate the gas density variation 

with respect to pressure, p  and gas temperature, GT . This is given by 

 
G G

p
R T

ρ =  (15) 

The specific gas constant GR  can be found by dividing uR with the mean molecular 

weight of gas mixture.  
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2.7. Chemical Reaction Scheme 

 

Since only the thermal PM oxidation is studied in this paper, the global reactions 

involved are as follows 

2
1

C  O  CO
2

+ →    (R1) 

2 2
1

CO  O   CO
2

+ ⇔   (R2) 

2 2C  O  CO+ →    (R3) 

2 2 2CO  H O  CO   H+ ⇔ +    (R4) 

 

Heterogeneous reactions, R1 and R3 are one-way forward reactions whilst homogeneous 

gas phase reactions R2 and R4 (water gas shift reaction) are reversible reactions. The 

kinetic parameters of these reactions were reported in [11] and are shown here in Table 

??. In Equation (??) the gas phase contains only the homogeneous reactions while the 

solid (porous) phase includes the heterogeneous reaction terms. 

 

Reaction Rate Expression Pre-exponential constant, A Activation energy, E Ref 

R1 [ ]2
1

1'''
1, O

bk
bk

RS +
=  7

1 1064.2 ×=A s-1 791.791 =E kJ mol-1 [??] 

R2 [ ][ ] [ ] [ ]22
3.0

2
5.0

22
'''

2, COkOOHCOkR rfG −=  6
2 108.3 ×=A s-1 88.662 =E kJ mol-1 [??] 

R3 [ ]2
3

3'''
3, O

bk
bkRS +

=  6
3 1068.3 ×=A s-1 1423 =E kJ mol-1 [??] 

R4 [ ][ ]
[ ]( )

[ ][ ]
[ ]CO
HCOk

H
COOHk

R rf
G 6.31473.3791

5.0
224

5.0
2

5.0
24'''

4, +
−

+
=  11

4 1058.1 ×=fA m3/2 mol-1/2 s-1 

9
4 103×=rA m3/2 mol-1/2 s-1 

314.2814 =fE kJ mol-1 

26.2384 =rE kJ mol-1 

[??] 

 

  

2.8. Boundary Conditions 

The boundary conditions of the computational domain are as follows: 

 

Inflow 
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At the inlet, the axial velocity was calculated from the inlet mass flow rate and since the 

inlet radial velocity was usually not known, it was set to zero, i.e. inu U= , 0v = . Other 

scalar variables such as species mass fraction and gas temperature were taken as typical 

exhaust gas conditions.  

 

Symmetry line 

The shear stress in the u-momentum equation was set to zero, following [24], whereas 

for v-momentum, symmetryv  was zero at the line of symmetry. For scalar variables, zero 

normal gradients were assumed. Hence, the boundary conditions were   

0
u
y
∂

=
∂

,      symmetry 0v = ,      0GT
y

∂
=

∂
     and      0

Y
y
η∂
=

∂
   (16) 

 

Plugged wall 

No flow boundary conditions were applied to the plug wall surface. The heat transfer 

from to and from the plug is considered to have a negligible effect on the oxidation 

event and hence is considered a thermal insulation boundary. Thus 

0u = ,      0
v
y
∂

=
∂

,      0GT
x

∂
=

∂
,     0ST

x
∂

=
∂

     and      0
Y
x
η∂
=

∂
  (17) 

 

Outflow 

A zero normal gradient boundary condition was applied to v . Conversely, due to the 

conservation of mass principle, the axial outflow velocity was calculated such 

that ( )G inout
u mρ =  . Zero normal gradient was assumed for both temperature and gas 

species equations.  

 

Plain-porous medium interface 

 

According to [25], different types of boundary condition at the plain-porous medium 

interface (the transition between gas flow in the channel and gas flow within the porous 

wall) have negligible effects on the overall model results. Therefore, no boundary 

condition was applied in plain-porous interfaces for gas phase momentum and gas phase 

energy equations, i.e. the model would automatically set porosity to 1 and the Brinkman-

Forchheimer-extended Darcy term to zero (momentum equation only) when the 
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calculations were performed in the free-stream. Similarly, for porous media, the 

Brinkman-Forchheimer-extended Darcy term was added and porosity was set according 

to which porous medium was in consideration. This technique has been used by several 

researchers ([26] and [27]). Zero normal gradients were assumed for the gas species 

calculations and as for solid temperature, the following boundary condition is used 

( ),
,

G p S
G p S G G S

T Tk k h T T
y y

φ φ −

∂ ∂
− − = −

∂ ∂
     (18) 

where G ST −  is the temperature at plain-porous media interface.  

 

 

 

 

3 EXPERIMENTAL DETERMINATION OF INTERSTITIAL HEAT 
TRANSFER COEFFICIENT 

 

In order to better predict the DPF temperature profile during the regeneration process, it 

is important to understand the heat transfer between the gas and solid phases inside the 

porous wall. A survey of the literature indicated that, to the authors’ knowledge, no 

experiment that estimates the heat transfer coefficient inside a porous filter of a diesel 

particulate filter has so far been reported. Therefore, this section describes specific 

heating and cooling experiments on a DPF. It will be followed by an analysis of the data 

so that the interstitial heat transfer coefficient can be obtained.  

 

The experiments were carried out using a hot flow rig that provides a controlled flow 

into an instrumented DPF. The set-up of the experiment is illustrated in Figure 2.  

 

<Figure 2> 

 

A centrifugal air blower supplied air flow to the hot flow rig. The flow rate was 

controlled by a series of ball valves and measured using a pitot tube flowmeter. The air 

flow was heated up by an electric resistance heater, which was connected to a closed-

loop controller. The hot air then entered into the test rig and exited through the DPF 

outlet channels.  



Law, Clarke, Garner and Williams 

IMechE J. Part D, November 2007 13 

 

The pressure reading at the upstream of the DPF was measured using a Digital 

Manometer with an accuracy of 10 Pa± . The temperature profiles of the DPF were 

measured by eight, 0.5 mm diameter K – type thermocouples with an accuracy of 
00.5 C± . Thermocouples measured the upstream and downstream gas temperature while 

the others measured the gas temperatures at three different locations along the filter 

length. At each location, the gas temperatures within the inlet and outlet channels of the 

DPF were measured as shown in Figure 3. The thermocouples were connected to an 

eight-channel temperature data logger. The data logger was calibrated by the 

manufacturer with a quoted accuracy of 0.1%± . The channel gas temperature history 

was recorded for the heating-up and cooling-down periods. This procedure was repeated 

for several different inlet temperatures and flow rates.  

  

<Figure 3> 

 

The specification of the DPF used in the experimental testing is summarised in Table 1: 

 

< Table 1>  

 

Experimental runs were conducted to test the thermal response of a clean DPF during 

the heating and cooling processes for each test condition. Experiments were carried out 

under the following test conditions given in Table 2. 

 

<Table 2> 

 

The inlet gas temperature was increased to the desired level and held constant until 

steady-state was reached. The air heater was then switched off. The heating and cooling 

phases at various locations were recorded. Figure 4 shows the thermocouple response for 

an inlet temperature of 0400 C . Similar results were obtained for other inlet 

temperatures and these can be found in [30].  

<Figure 4> 
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4 NUMERICAL SOLUTION PROCEDURE 
 

The aforementioned governing equations (1)-(15), were discretized by the finite volume 

method [28]. To avoid the non-physical ‘checker-box’ pattern of velocity field, a 

staggered grid was used [28]. Equations (1)-(15) were then solved by PISO scheme, 

proposed by Issa [29]. The details of the numerical procedure can be found in [30].  

 

5 RESULTS AND DISCUSSIONS 

5.1. Determination of Interstitial Heat Transfer Coefficient 

 

By reassessing transient and steady-state experimental results by several investigators in 

[31], Wakao and Kaguei (1982) found that both the transient and steady-state data can be 

represented by a single correlation of the form ( )1 2Nu Pr Rem mf= , where the indices 

1m  and 2m  are empirically defined.  Therefore, transient heat transfer calculations can be 

approximated by a steady-state analysis. 

 

The heat transfer between the solid and gas phase of a porous DPF wall can be 

simplified as a 1-D conduction and convection model in the direction of gas flow 

through the wall. The gas temperature at the inlet side of the porous wall, Tinlet, at the 

outlet side of the porous wall, Toutlet, and the wall thickness Δyfw can be measured. By 

assuming a square channel with uniform heat flux both in the flow direction and around 

the periphery, i.e. Nu 3.091= [32], and that the hydrodynamic length of the channel 

equals its width, the convective heat transfer coefficient in a square channel is 

approximately -2 -187 W.m .K . Assuming the characteristic length of the model equals the 

DPF wall thickness, the Biot number, Bi 0.024 0.1= < . Hence, the heat transfer of a 

DPF can be analysed as a lumped-heat-capacity system [32].  

 

The total power to the DPF during steady state can be written as 

 inlet outlet
in

th th

T TTQ
R R

−∆
= =
∑ ∑

 (19)
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where 

 
inlet interstitia int int outlet

inlet interstitia int int

1 1 1
.

2 1
.

fw
th

fil fw fil

fw

fil fw

y
R

h A h A k A h A

y
h A h A k A

∆
= + + +

∆
= + +

∑
 (20) 

 

 

and inlet outlet,h h  are the convective heat transfer coefficients for the inlet and outlet 

channels, and interstitialh  is the convective heat transfer coefficient for the porous medium, 

int,filA A  are the filtration area and the area inside porous wall, fwy∆  is the thickness of 

DPF wall, and fwk  is the effective DPF wall conductivity. 

 

Here the conduction and convection heat transfer processes in the porous wall are in 

series and the convective heat transfer coefficients for both inlet and outlet channels are 

the same. The specific area of the porous wall is  

 

 4fw fw porea dφ=  (21) 

 

and the internal surface area can be calculated from 

 

 int . .fil fwA a A y= ∆  (22) 

 

The inlet power into the control volume (DPF) concerned, can be calculated by 

 

 ( )inlet inlet outletin pGQ m c T T= −  (23) 

 

 

Equating (19) and (23) and simplifying yields the interstitial heat transfer coefficient as 

 

 interstitial

int
inlet inlet int

1

1 2
.

fw

pG fil fw

h
y

A
m c h A k A

=
  ∆

− +      

 (24) 
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Figure 6 shows the temperature differences between the DPF inlet and outlet channels 

for an inlet temperature of 0400 C . Generally, it can be observed that temperature 

differences are directly proportional to the magnitude of the inlet temperature as well as 

the distance from the front face of the DPF. 

 

<Figure 6> 

 

Linear regression of the Nusselt number, Nu, as a function of  ( )1 2Pr Rem m  allowed the 

calculation of the interstitial heat transfer coefficient for the experimental conditions of 

interest. The interstitial heat transfer coefficient of the filter wall was found to be 

8.30 W.m-2.K-1. Detail of the analysis can be found in [30].  The mass transfer coefficient 

can be calculated (assuming unity for the Lewis number) as 

 interstitial
m

G pG

hk
cρ

=  (25) 

The empirically derived value of interstitialh was used in the previous 1-D model [11]. It was 

found that interstitialh  is large enough that the heat transfer in the DPF is relatively 

insensitive to the interstitial heat transfer coefficient when compared to, for example, 

flow rate. This is discussed in more detail when considering thermal equilibrium 

discussions in sub-section 5.3.2. Figure 7 shows the comparison of 1-D model result 

(Equation 19) with the experimental data from [33].  

 

<Figure 7> 

 

5.2. Model Comparisons 

 

Experimental data from [33] were used to validate the 2-D wall-flow DPF regeneration 

model. A grid density of 60 by 60 in both x- and y-directions was used in the simulation. 

For stability, a time-step of 52.5 10  sec−×  was used in all simulation runs. The grid sizes 

were chosen such that the simulation results were grid independent. 
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It should be emphasized that no arbitrarily-modified input parameters were used in the 

simulations. This is unusual in DPF regeneration modelling. All input parameters were 

based on experimentally-determined data. Therefore, it is assumed that the discrepancy 

between the model and the experimental measurements can be mainly attributed to the 

physics or chemistry not considered in the model. In addition, it should be noted that 

errors could occur in the experimental measurements and data. Therefore, full validation 

of the 2-D model result was not possible and the model was validated against available 

experimental data from [??].  

 

A comparison between the 2-D model and the experimental results by [33] at different 

DPF locations is shown in Figure 8. The measurement locations T1 to T5 are shown in 

Figure 9. The input data used in this 2-D model is identical to that used in the previous 

1-D model [11], except the PM porosity was set to 0.92 in agreement with [34]. Figure 8 

shows that the 2-D model is able to predict the gas temperature in the DPF reasonably 

well. However, the model under-predicts the magnitude of the gas temperature. For 

locations T2 and T3 (see Figure 9), the temperature differences are approximately 100 K 

and 50 K. Figure 8 also shows that the model predicts an outlet temperature which is 

close to that in the experimental data at T3. In addition, the 2-D model predicts a slower 

initial heating rate compared with the experimental data for locations T2 and T3. The 

difference could be due to the heat liberated from the PM soluble organic fraction (SOF) 

vaporization during the initial heating up period, since the diesel PM used in [33] was not 

preheated prior to the DPF regeneration process. In addition, the model predicts a faster 

temperature reduction rate after the PM oxidation. To explain this, it is worth noting that 

in reality, during the regeneration process, the diesel PM is not uniformly oxidised in the 

DPF. Therefore, the slower temperature drop shown in the experimental data could be 

due to the heat addition from other channels.  In spite of these discrepancies, the model 

nevertheless predicts the outlet gas temperature profiles well. For example, it shows the 

highest gas temperature at the downstream end of the DPF which is due to the heat 

accumulation in the DPF.  

 

 < Figure 8>  

< Figure 9> 
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5.3. The Simulated DPF Regeneration Process 

5.3.1. Flow Field Profile  

Figure 10 shows the exhaust flow profile inside the computational domain. Generally, 

the exhaust gas flows in a parabolic profile in the inlet and outlet channels whereas it is 

one-dimensional inside the porous diesel PM layer and DPF filter wall. In addition, it can 

be observed that upon entering the inlet channel, the exhaust gas flows in the direction 

towards the inlet symmetry line which was anticipated as the gas flow is constricted from 

the open exhaust flow upon entry to the channel inlets. The same observation was 

reported by Hou and Angelo [14]. This type of profile cannot be obtained by a 1-D 

model.  

 

Figure 10 shows a velocity increase in the PM layer because the corresponding PM is 

fully oxidised at 30sect = . As the regeneration proceeds, recirculation starts to appear at 

the high temperature region e.g. 55 to 60sect =  and flows toward the inlet channel end. 

The recirculation ceases toward the end of regeneration process when the diesel PM is 

fully oxidised. Another important finding that can be drawn from Figure 10 is that the 

flow field profile in the inlet channel is not the mirror image of that in outlet channels 

and vice-versa, which is often assumed in other existing models [35].  

 <Figure 10>  

 

5.3.2. Gas and Solid Temperature Profiles  

 

Initially the DPF is heated up by the hot exhaust gas flow. The exhaust gas temperature 

increases from upstream to downstream ends. For the same axial location, the outlet 

channel is heated quicker compared to that in the inlet channel ( 20 25 sect = − , Figure 

11). At 30 sect = , while the DPF is being heated up, the gas temperature at the 

upstream end is sufficiently high to cause an appreciable amount of PM to oxidise and 

results in a sudden increase of gas temperature at the upstream end.  From Figure 11, it 

can be observed that the gas temperature increases appreciably as the high temperature 

zone flows from the DPF upstream to the downstream. The locally high gas temperature 

starts to cool down when the remaining diesel PM is fully consumed at 70 sect = .  
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<Figure 11 > 

 

The temperature in the PM layer and DPF wall follow the same trends as the gas phase 

as a consequence of the close coupling of the gas and solid phase temperatures through 

the relatively high interstitial heat transfer coefficient. Therefore, the solid temperature 

profiles are not plotted here. Instead, attention is paid in assessing the validity of TE 

assumption that is often used in many of the existing models such as [10, 14]. These 

authors argued that due to high specific area inside the DPF porous structure, TE could 

be confidently used in the solid temperature calculation. In the current study, the thermal 

equilibrium assumption was assessed by examining the gas and solid temperatures at six 

locations within the DPF wall. These locations are marked by white circles as shown in 

Figure 12. The gas and solid temperatures at these locations are shown in Figure 13. 

From Figure 13 (a), it can be observed that gas and solid phases have similar temperature 

magnitudes up to 1000 K. The temperature differences become larger when the gas and 

solid temperatures reach beyond 1000 K or during the cooling stage. During cooling, it 

can be noticed that the gas temperatures fall quicker than those of the solid. At these 

locations, a maximum temperature difference of 37 K is observed. The coupling between 

the solid and gas phase temperature is a consequence of the interstitial heat transfer 

coefficient, and has a direct impact on the validity of thermal equilibrium modelling 

assumptions employed by some authors.  

 

The gas and solid temperature differences at location (j2+kmax) are more pronounced 

compared to those at location (j2+1) (see Figure 13 (b)). A maximum temperature 

difference of 56 K can be observed at location (j2+kmax). Hence, this study shows that 

TE does not hold for the DPF regeneration process.  

 

< Figure 13> 

5.3.3. Gas Species Profiles 

(1) Oxygen  

Figure 14 shows the oxygen mass fraction distributions in the DPF during the 

regeneration process. At the beginning of the regeneration process, uniform oxygen was 

assumed in the computational domain. As the gas temperature increases, this initiates PM 

oxidation which consumes oxygen. It can be observed that the region of lower oxygen 
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content propagated from the DPF upstream to the downstream side.  When the PM is 

fully consumed, the oxygen consumption ceases and therefore the oxygen content 

increases due to the oxygen supply from the inlet channel. The oxygen consumption and 

recovery processes continued until all the PM was fully oxidised at the end of 

regeneration process.  

 

< Figure 14> 

 

(2) Carbon Dioxide 

Since CO2 is the main overall product of PM oxidation with O2, it follows the opposite 

trend as that of O2. CO2 increased at the outlet channel as a result of increasing PM 

oxidation as well as conversion of CO to CO2. The development of local hot spots 

causes the local CO2 mass fraction to increase as high as 0.4. At the end of regeneration 

process, uniform CO2 distribution returns due to the inlet supply of CO2.  

 

(3) Carbon Monoxide 

From Figure 16, it can be observed that the main CO generation path is via the PM 

oxidation since higher CO concentration is in the PM layer. Since the PM temperature is 

sufficiently high, it produces higher CO concentration in the form of a continuous stripe 

(e.g. 30 to 40sect = ). Several locally higher CO concentration spots rather than a 

continuous stripe are developed later (e.g. 50 to 60sect = ). Apart from direct 

conversion from PM oxidation, these could be due to the gas phase reactions which 

involve the CO production, such as R2 and R4. After all the PM is fully consumed, the 

uniform CO distribution in the DPF is recovered (i.e. tends to diesel exhaust levels). 

< Figure 16> 

 

(4) Water Vapour 

In the multi-step chemical reaction scheme, water vapour is only generated by the water-

gas shift reaction under high temperature environment. At 30sect =  (see Figure 17), the 

gas temperature becomes sufficiently high to initiate gas phase reaction and the H2O 

content increases at the DPF upstream. There is an uneven H2O distribution with a 

decrease of local H2O concentration at the end of DPF inlet channel ( 40sect = ). The 
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high concentration of H2O follows the combustion wave (high gas temperature region) 

and causes an increase of H2O concentration at the DPF downstream ( 50sect = ). As 

the gas temperature decreases the H2O content decreases to the initial state ( 60sect = ).   

<Figure 17 > 

 

(5) Hydrogen  

Similar to water vapour, H2 concentration variations are due to the water-gas shift (WGS) 

reaction. Due to its small molecular weight of 2 g.mol-1, its presence during DPF 

regeneration process is virtually negligible. H2 is only produced in high temperature 

conditions where local hot regions develop. In addition, it is only produced sporadically 

and is not present for a long time i.e. it is quickly converted to H2O.  

 

< Figure 18> 

 

5.3.4. PM Oxidation Profile 

 

Figure 19 shows the amount of PM as a function of time and filter axial length. From 

Figure 19(a), a noticeable PM oxidation rate occurs at about 12sect = . After that, the 

oxidation rate increases with the highest oxidation rate occurring at 30sect = . This rapid 

oxidation rate decreases at around 45sect = . The PM is fully oxidised at 69sect = .  

 

From Figure 19(b) it shows that more PM is initially consumed at the upstream end of 

the DPF, which is nearer to the high temperature inlet. Therefore, the PM is consumed 

in a wave-like form rather than as a uniformly shrinking layer, until all the PM is fully 

oxidised.  

 

< Figure 19> 
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6 CONCLUSIONS  

 

A new 2-D DPF regeneration model has been presented, including an experimental 

study to estimate the interstitial heat transfer coefficient inside DPF porous wall. Several 

conclusions can be drawn from these studies and they are summarised as follows:  

 

1. Experimental work was carried out to estimate the interstitial heat transfer coefficient 

in the DPF filter wall and was found to be 8.30 W.m-2.K-1.  

 

2. A new 2-D finite volume method based DPF regeneration model, which includes a 

multi-step reaction scheme, has been developed. The model was compared 

quantitatively and qualitatively with experimental data as well as modelling findings 

reported in the literature.  

 

3. The 2-D model showed that the velocity magnitude is largest where exhaust gas 

immediately enters into the inlet channel and also when the exhaust gas leaves 

through the outlet channel.  

 

4. The model predicted that recirculation occurs in the DPF during the regeneration 

process. The initiation of the recirculation is associated with the high gas temperature 

region.  

 

5. The simulated flow field profile in the inlet channel is not the mirror image of that in 

the outlet channel and vice-versa as has been assumed in some previous models.  

 

6. The model predicted that that the high temperature zone moves from the upstream 

to the downstream of the DPF. When the exhaust gas temperature is sufficiently 

high and uniform in the filter, fast reactions occur and heat energy from the chemical 

reactions is released and quickly propagates to the downstream end of the filter. 

 

7. The thermal equilibrium assumption used by many previous modellers has been      

examined and found to be violated in the case of a high PM oxidation rate. Thus, the 

models presented here, which implement NTE, are considered to be more realistic 

because thermal equilibrium was not assumed.  
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8. Various species distribution profiles have been studied during the regeneration 

process. Generally the species distributions depend on the PM oxidation rates and 

the species availability within local gas.  

 

9. The 2-D model predicted that PM layer was consumed in a wave-like form during 

the regeneration process.  
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Nomenclature 

a    specific area, ( )-1m  

filA    total filtration area, ( )2m  

intA    total area inside porous wall, ( )2m  

pc    specific heat capacity at constant pressure, ( )-1 -1J.kg .K  

EC    coefficient in modified Darcy’s model, ( )-   

d    diameter, ( )m  

D    diffusion coefficient, ( )2 -1m .s  

h    heat transfer coefficient, ( )-2 -1W.m .K  

interstitialh   interstitial heat transfer coefficient, ( )-2 -1W.m .K  

inleth    heat transfer coefficient inside inlet channel, ( )-2 -1W.m .K  

outleth    heat transfer coefficient inside outlet channel, ( )-2 -1W.m .K  

H    enthalpy of reaction, ( )-1J.mol  

fwk    thermal conductivity of a DPF,  ( )-1 -1W.m .K  

Gk    gas phase conductivity, ( )-1 -1W.m .K  

mk    mass transfer coefficient, ( )-1m.s  

Sk    solid phase conductivity, ( )-1 -1W.m .K  

K    permeability of porous media, ( )2m  

L    characteristic length, ( )m  

m    mass, ( )kg  

MW    molecular weight, ( )-1kg.mol  

p    pressure, ( )Pa  
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Q    power, ( )W  

R′′′    species production/consumption rate, (mol.m-3.s-1) 

GR    gas constant, ( )-1 -1J.mol .K  

thR    thermal resistance, ( )2 -1m .K.W  

uR    universal gas constant, 8.3142 ( )-1 -1J.mol .K  

t    time, ( )s  

T    temperature, ( )K  

u    axial gas velocity, ( )1.m s −  

v    radial gas velocity, ( )1.m s −  

x    axial direction, ( )-  

,y z    radial direction used in 2-D and 1-D models respectively, ( )-  

Y    mass fraction, ( )-  

 

Acronyms  

1-D   one-dimensional 

2-D    two-dimensional  

3-D   three-dimensional  

DPF   diesel particulate filter 

NTE   non-thermal equilibrium  

PDE   partial differential equation 

PISO   pressure implicit with splitting of operators 

PM   particulates matter 

SOF   soluble organic fraction  

T/C   thermocouple 

TE   thermal equilibrium 

WGS   water-gas shift 
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Non-dimensional numbers 

Bi    Biot number, . Sh L k=  

Le    Lewis number, ( ).pG ph c g=   

Nu   Nusselt number, = . Gh L k  

Pr   Prandtl number, .pG G Gc kµ=  

Re   Reynold number, G GuLρ µ=  

 

Greek letters 

α    thα reaction ( )-  

pβ    bulk density of particulate, ( )-3kg.m  

ηχ    mole fraction of species η  

∆    difference of a quantity, (-) 

ρ    density, ( )-3kg.m  

µ    viscosity, ( )-1 -1kg.m .s  

τ    tortuosity of porous media, ( )-  

φ    porosity of porous media, ( )-  

,η γ    general gas constituent, ( )-  

ηαν    stoichiometric coefficient of a species η  in a reaction α , (-) 

,ν ν′ ′′    gas reactant stoichiometric coefficient, ( )-  

 

Matrix-Vector quantities 

U    velocity vector, ( )1.m s −  

 

Subscripts 

D   Darcian 

eff    effective  
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fw   filter wall 

G   gas phase 

in    input 

p   particulate 

pore   pore in ceramic substrate  

S   solid phase 

symmetry   symmetrical line of the inlet or outlet channels  

ηm   of species η in the gas mixture 

 

Superscripts 

1 2,m m    indices used in curve-fitting (-) 
//   per unit area (m-2) 
///   per unit volume (m-3) 

.   derivative with respect to time 
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