
 
 
 

This item was submitted to Loughborough University as a PhD thesis by the 
author and is made available in the Institutional Repository 

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence 
conditions. 

 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 



Intelligent Computer Vision Processing
Techniques for Fall Detection in Enclosed

Environments

by

Adel Rhuma

A doctoral thesis submitted in partial fulfilment of the requirements
for the award of the degree of Doctor of Philosophy (PhD)

February 2014

Advanced Signal Processing Group (ASPG),
School of Electronic, Electrical and Systems Engineering,

Loughborough University, Loughborough,
Leicestershire, UK, LE11 3TU

c⃝by Adel Rhuma, 2014



To my Mother and Father



Abstract

Detecting unusual movement (falls) for elderly people in enclosed envi-

ronments is receiving increasing attention and is likely to have massive

potential social and economic impact.

In this thesis, new intelligent computer vision processing based tech-

niques are proposed to detect falls in indoor environments for senior

citizens living independently, such as in intelligent homes. Different

types of features extracted from video-camera recordings are exploited

together with both background subtraction analysis and machine learn-

ing techniques.

Initially, an improved background subtraction method is used to ex-

tract the region of a person in the recording of a room environment. A

selective updating technique is introduced for adapting the change of

the background model to ensure that the human body region will not

be absorbed into the background model when it is static for prolonged

periods of time.

Since two-dimensional features can generate false alarms and are not

invariant to different directions, more robust three-dimensional fea-

tures are next extracted from a three-dimensional person representa-

tion formed from video-camera measurements of multiple calibrated

video-cameras. The extracted three-dimensional features are applied

to construct a single Gaussian model using the maximum likelihood
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technique. This can be used to distinguish falls from non-fall activity

by comparing the model output with a single preset threshold.

In the final works, new fall detection schemes which use only one un-

calibrated video-camera are tested in a real elderly person’s home en-

vironment. These approaches are based on two-dimensional features

which describe different human body posture. The extracted features

are applied to construct a supervised method for posture classification

for abnormal posture detection. Certain rules which are set according

to the characteristics of fall activities are lastly used to build a robust

fall detection model.
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gent Audio/Video Experimental Laboratory within the Advanced Sig-

nal Processing Group (ASPG) at Loughborough University and within

real indoor environments where elderly people habit. The novelty of

the contributions is supported by papers presented at international con-

ferences and presented in international journals as follows:

In Chapter 3, a new method is introduced to reliably extract humans

from a video-camera sequence even when the humans are static for long

periods of time. The proposed method addresses a common problem

in background subtraction techniques whereby humans that are static

are mistaken for new additions to the background scene and are con-

sequently absorbed into the background model. The proposed method

is therefore to use head tracking to identify where the human is within

the current frame and therefore all pixels which are associated with

the human are not updated in terms of their background model. The

results have been published in:

I. Colman, A. Rhuma, M. Yu and J. Chambers, “A robust technique

for person-background segmentation in video sequences based on the
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codebook method of background subtraction and head tracking”, Sen-

sor Signal Processing for Defence (SSPD), Imperial College London,

UK, pp.1-5, 2010.

Chapter 5 proposes a simple and robust fall detection scheme based on

three-dimensional features and a single Gaussian model.

Two video-cameras are initially calibrated by Tsai’s video-camera cal-

ibration method and a three-dimensional person is then constructed

from the background subtraction results of the two calibrated video-

cameras. Three-dimensional feature vectors, (including the centroid

position and the orientation value) corresponding to fall activities are

extracted to build a model for distinguishing fall activities and non-fall

activities using a single threshold in the Intelligent Audio/Video Ex-

perimental Laboratory within the Advanced Signal Processing Group

(ASPG) at Loughborough University. These works were presented in:

A. Rhuma, M. Yu and J. Chambers, “Fall detection system in enclosed

environments based on single Gaussian model”, Journal of Measure-

ment Science and Instrumentation, vol.3, no.2, pp.123-128, 2012.

Chapter 6 proposes an effective fall detection method for a real home

application, based on a supervised learning technique. The codebook

method background subtraction is used to extract the human body

postures and the same post-processing technique is applied to solve

the background subtraction errors caused by environmental changes in

a real home environment. A new combination of features is adopted

which can describe postures in more detail and used to construct the

corresponding supervised classifier. The results of the constructed clas-

sifiers, together with some rules determined from the fall characteristics,

are used to distinguish fall activities from non-fall activities. This re-
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Chapter 1

INTRODUCTION

1.1 Importance of fall detection

The importance of detecting unusual movement (falls) for elderly peo-

ple is receiving more and more attention and is likely to have mas-

sive potential social and economic impact [1], [2] and [3]. Falls are

an extremely common and critical health problem for elderly people

in security and safety application areas including supportive home en-

vironments. Moreover, falls are the main cause of admission and ex-

tended period of stay in hospitals or nursing homes for long term treat-

ment [4], [5], [6], and [7].

Nowadays, due to the development of the healthcare industry in mod-

ern society, human life expectancy has grown and there continues to be

related trends in the population of older people across the globe [8].

According to the US Bureau of Statistics, as reported by the Guardian

newspaper [9] in the United Kingdom, within 10 years, old people will

outnumber children for the first time. Figure 1.1 [10] shows that over

the next 30 years the number of people over 65 years of age across the

world is expected to almost double, from 506 million in 2008, to 1.3

billion, a leap from 7% of the world’s population to 14%. Already, the

number of people in the world aged 65 and over is increasing at an

1
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average of 870,000 each month.

Among these elderly people, a large percentage of them live alone at

home independently according to the research reported in [11].

20501950 1960 1970 1980 1990 2000 2010 2020 2030 2040

Age < 5

Age 65+

20%

15%

10%

5%

0%

Figure 1.1. Elderly people as a percentage of global population com-
pared with young children [10].

Therefore, caring for the elderly living alone is very important and poses

a big challenge in the community and the world at large.

There are many issues related to the care of elderly living alone at home.

Perhaps, one of the most important factors is detecting the occurrence

of unusual movement such as falls. According to [12] and [13], falls

occur commonly in the elderly community and can lead to serious dam-

age, such as broken bones, connective and soft tissue damage, and may

even cause death; as such the problem is responsible for considerable

medical costs, morbidity and mortality among the elderly population.

Besides, as reported by Age UK [14], in the United Kingdom, it has

been shown that about 250,000 people aged 65 and over in England are

treated in hospitals as a result of a fall every year.

As reported in [15], in the United States, falls happen among the elderly

with a median age of 79 and commonly result in fractures (primarily
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hip and femur), estimated at 155,000 to 200,000 each year. Cost esti-

mates range from a current annual amount of 750,000,000 to one billion

US dollars, and a similar situation exists in other developed countries.

Unlike in the case of monitoring young children, for example in a nurs-

ery, it is unrealistic to assign nurses to take care of elderly person in

their homes on a 24/7 basis. So, instead of human resources, new

technologies are required to detect unusual activity (falls) when they

occur, as part of the area of healthcare based on assisted living, with

the target of reducing the tremendous costs incurred by falls in a home

environment.

The governments in many developed countries have increased invest-

ment to push development of fall detection technology.

As reported in [16], a conference held in Singapore, Silver Industry

Conference and Exhibition (SiCEX), promoted concepts, products and

technologies related to healthcare for the elderly with focus on fall de-

tection.

In the United States of America (USA), many research institutes, which

include interdisciplinary groups of faculty, staff, and students, are be-

ing built to investigate, develop, and evaluate technology to serve the

needs of older adults and others with physical and cognitive challenges.

One of these is the Center for Eldercare and Rehabilitation Technol-

ogy (CERT), University of Missouri, Columbia, where one important

project is passive fall detection and gait analysis for fall risk assess-

ment, investigating a non-intrusive method to detect falls in a home

environment [17] and [18].
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1.2 Falls and typical scenarios

In this section, the definition of a fall and its typical scenarios is firstly

summarised before introducing different fall detection techniques.

According to [19], a fall is defined as “unintentionally coming to the

ground or some lower level other than as a consequence of sustaining

a violent blow, loss of consciousness, sudden onset of paralysis as in

stroke”.

Some other researchers have used a broader definition to include those

falls which occur as a result of dizziness as in [20]. Based on the par-

ticular definition, falls can be divided into different scenarios according

to different criteria [4]- [7] and [20]:

a) According to the orientation:

1. Frontal fall: A person falls towards his/her frontal direction, mostly

with his/her face impacting with the floor.

2. Backward fall: A person falls towards his/her backward direction,

mostly with the back of their head impacting with the floor.

3. Side fall: A person falls towards his/her side direction.

b) According to the amplitude:

1. Fast fall: A person falls fast, the amplitude of the body movement

is large, the duration is short (1-2s).

2. Slow fall: A person falls slowly, the amplitude of the body move-

ment is comparatively small and the duration is comparatively

long.

c) According to the transition of postures:
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1. Fall from standing: A person falls from an initial standing posture.

This type of fall occurs when an elderly person walks or stands

still due to slipping or unconsciousness. Both the head and cen-

ter of gravity move towards one direction and their heights reduce

(normally to the plane of the ground). Typically, this type of fall

belongs to the category of fast fall with large movement ampli-

tude.

2. Fall from sitting: A person falls from an initial sitting posture,

this type of fall occurs when an elderly person slips from a chair

due to his/her unconsciousness. Similarly, the head and center

of gravity move towards one direction with a reduced height;

however, compared with fall from standing, this type of fall has

smaller movement amplitude.

3. Fall from lying: A person falls from an initial lying posture. This

type of falls means that an elderly person rolls to the floor from

the bed during sleep. The person is initially on the bed when

a fall happens and the body reduces its height from the bed to

the floor plane, with the final body position being near the bed.

This type of fall usually happens when an elderly person sleeps

and his/her body rolls out of the bed while the person remains

unconscious.

4. Fall from other postures: A person falls from an initial bend-

ing/crouching or other posture. This type of fall happens for

example when an old person ties his/her shoe lace or does other

activities and suddenly becomes unconscious.
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Compared with non-fall activities, a fall is an unconscious activity or

an activity happening beyond an old person’s control (such as he/she

slips and falls).

Typically, fall activities end with a lying posture on the floor, as pre-

sented in Figure 1.2.

Figure 1.2. An old person falls ending with a lying posture on the
floor.

In the next section, the general scheme of a fall detection system is

presented.

1.3 Overview of a fall detection system

A general complete fall detection system is proposed in Figure 1.3. Ini-

tially, vision signals are acquired from different types of sensors (includ-

ing wearable and non-wearable device sensors such as accelerometers,

video-cameras respectively) and the acquired signals are then processed

with the corresponding information extracted. This information is then

fed into a fall detection system to detect falls with the aid of certain

algorithms (typically analytical algorithms or machine learning algo-

rithms). When the fall activity of an elderly person is detected, an

alarm signal is generated and this signal will be either sent to his/her
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family members, or some caregiver suppliers (including a hospital, or

monitoring center for elderly people) by modern communication tech-

niques (such as the wired or wireless communication network depicted

in Figure 1.3.

After receiving the alarm signal, the care staff will swiftly come to assist

the elderly person at the right time. It is important that such systems

minimise the number of false alarms and accurately report fall events.

Data 

acquisition

Intelligent video 

processing and 

feature extraction

Data analysis and 

fall detection 

Devices 

held by 

caregivers

Data transferSen sor

S e n
s o r

Figure 1.3. The diagrammatic representation of a complete fall detec-
tion system.

Some examples of the different sensors and extracted information used

to detect falls are presented in Figure 1.4. There are non-vision based

sensors (wearable device or ambience device) or intelligent vision based

sensors (video-cameras) to capture certain types of signals, and corre-

sponding information (posture information, motion information, and

body shape change information) from the acquired signals for fall de-

tection purpose. This thesis focuses on fall detection in indoor en-

vironments by applying intelligent vision based processing techniques

with effective vision methods proposed for detecting fall activities by

using one or multiple video-cameras with processing which can be per-

formed on a normal personal computer. As such, this type of system

can be used to cover a wide area and in different places. The main

disadvantage of these techniques is the accuracy will be affected by the

lighting condition problem, changing the background model (moving
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Figure 1.4. Different categorisation of fall detection methods [1] and
[16].

furniture for example) and foreground object when it has been static

for period of time. Moreover, they are prone to generate false alarms

even though the context information is used and they have a late alarm

because they detect a fall only when the person lies on the ground for a

while. However, this approach has the major advantage that it avoids

the requirement for wearing a sensor or recharging the batteries which

becomes difficult for elderly people, particularly those suffering from

conditions such as comatose. Therefore, the target of this thesis is to

improve the robustness of video based techniques through more intelli-

gent processing.

1.4 Aims and objectives

The aims of this thesis are to:

• Exploit state-of-the-art intelligent vision based methods in the

development of fall detection systems for potential application

in healthcare based assisted living for elderly in indoor environ-

ments.
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• Perform extensive study of the three modern background sub-

traction techniques which have been employed and improved to

extract moving objects from sequences of images or video-camera

in a room environment and determine the most suitable approach

for the fall detection system in indoor environments.

• Provide a mathematical and technical overview of the video-camera

calibration method based on Tsai’s model.

• Extract three-dimensional features to characterise the position

and pose of a human target.

• Employ support vector machine (SVM) based classifiers to per-

form robust fall detection. A new scheme is also introduced based

on appropriate rules to minimise false alarms in the detection of

falls.

• Evaluate methods on extensive datasets measured in the Advanced

Signal Processing Audio/Video Laboratory and real room environ-

ments.

At the end of the study the objectives are to have:

• Demonstrated the feasibility of fall detection with the proposed

system using datasets with volunteers who attempt to simulate

the movements of an elderly person in a real elderly home envi-

ronment.

• Published the research findings in leading international confer-

ences and journals.
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1.5 Overview of the Thesis

This section provides brief description of the research work presented

in this thesis.

Chapter 2, reviews related state-of-the-art fall detection schemes by us-

ing either non-vision techniques or intelligent vision based techniques,

which provide the background for later work within the thesis.

In Chapter 3, three background subtraction techniques are compared

including the approximate median filter (AMF), mixture of Gaussians

(MoG), and codebook (CB) methods. They are used to develop a ro-

bust video processing technique that reliably detects and extracts the

presence of a person in the recording of a room environment based on

background subtraction techniques and head tracking based method.

Extracting moving objects from sequences of images or video stream

is an interesting problem and remains a challenging topic in machine

vision based method. The aim of the chapter is to develop a robust

video-camera processing technique that reliably detects and extracts

the presence of a person in the recording of a room environment based

on background subtraction techniques and tracking algorithm to ensure

that the human body will never be lost into the background model, even

when static for an indefinite period of time.

Chapter 4, provides a technical overview of video-camera calibration

based on Tsai’s model. By applying the Tsai’s video-camera calibra-

tion using a set of correspondent points (three-dimensional points and

corresponding two-dimensional image points), both the external and in-

ternal parameters of a video-camera can be estimated. These estimated

parameters can be further used to obtain particular three-dimensional

types of information, such as the approximated three-dimensional hu-
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man body shape region, which is presented in detail in the next follow-

ing Chapter 5.

In Chapter 5, a fall detection scheme is proposed based on three-dimensi-

onal features initially using two video-cameras calibrated by the popular

Tsai’s video-camera calibration method. A three-dimensional person is

then constructed from the obtained codebook background subtraction

results from two calibrated video-cameras. A five-dimensional feature

vector is obtained (including the three-dimensional centroid position of

the voxel person, vertical position, horizontal variation of the centroid

and three-dimensional orientation angle) corresponding to fall activi-

ties are extracted to build a model for distinguishing fall and non-fall

activities. A single Gaussian model is used in this chapter for building

the classifier. The experiments were performed in a simulated labo-

ratory environment and one person was invited to participate in the

experiment by simulating different fall activities and non-fall activities,

which were used to build the training dataset for model construction

and test dataset for performance evaluation using receiving operating

characteristic (ROC) analysis.

In Chapter 6, an effective fall detection method for a real enclosed home

environment is presented. In particular, only a single camera and PC

reduce considerably the complexity of the scheme in Chapter 5. This

is based on a supervised learning technique.

The codebook background subtraction method is reused to extract the

postures and certain advanced post-processing techniques are applied

to reduce the background subtraction noise cased by indoor environ-

mental changes in a real home environment. Some features (projection

histogram and ellipse features) which can describe postures in detail are
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extracted and used to construct the corresponding supervised directed

acyclic graphic support vector machine (DAGSVM). The classification

results for the DAGSVM, with some rules determined from the fall char-

acteristics, are used to distinguish fall activities and non-fall activities.

The experiments are performed in a real enclosed home environment,

for the supervised learning based fall detection methods. Fifteen people

were invited to simulate different postures, which are then used to con-

struct a dataset used for training the DAGSVM. A series of simulated

fall and non-fall activities by different people were recorded for testing

purpose.

Finally, in the last Chapter 7, this thesis concludes by summarising

its contributions and suggestions are given for future possible research

directions.



Chapter 2

RELATED LITERATURE

REVIEW

2.1 Introduction

This chapter reviews some previous literature related to fall detection

methods in enclosed environments. The detection of fall of elderly peo-

ple is an interesting scientific problem which one could approach using

various methods. Although the concept of a fall may seem to be com-

mon sense, it is difficult to describe it precisely, and thus to specify by

means of detection. It could be described as the rapid change situation

from the upright/sitting position to the reclining or almost lengthened

position, but it is not a controlled movement, such as lying down on

the sofa, for example [21]. Distinct methods have been developed for

fall detection to monitor an elderly person in enclosed environments.

These methods have been modified and extended and can generally be

divided into two categories. That is, non-vision based methods, and

intelligent vision based methods for fall detection as shown in Figure

2.1 [1] and [16] repeated from Chapter 1 for convenience. For intelligent

vision based methods, video-camera sequences are captured by digital

video-camera recording and intelligent vision techniques are applied to

13
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Figure 2.1. The hierarchy of approaches of fall detection methods [1]
and [16].

analyse these captured video signals. For non-vision based techniques,

different types of sensors (such as accelerometers and gyroscopes) are

applied and non-video signals are fed into the fall detection system for

evaluation. The details of these two categories are presented in the next

two sections.

2.2 Non-vision based methods for fall detection

There are many non-vision based methods for fall detection in the global

market today. For these methods, different sensors are used to capture

the sound, vibration and human body movement information and such

information is applied to determine when a fall happens [22].

The most popular used sensors in this non-vision category are accelerom-

eter and gyroscopic sensors. For accelerometer sensors, they are typi-

cally based on small integrated circuits consisting of two surface micro

machined capacitive sensing devices and a signal conditioning unit con-

tained in a single integrated circuit package. This type of sensor is

typically used to measure acceleration, tilt angle θ, the direction of the

acceleration of a body along the X, Y and Z axes due to movement and

acceleration due to gravity [23]. These sensors generate a signal that

acts as input data to a computer system or an embedded system which
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then analyses the data to detect falls. Figure 2.2 shows at a high level

the sensor and the principle of using accelerometers for fall detection.

AccelerometersSensor (ICs)
θ

θ

Figure 2.2. Block diagram of basic principle of accelerometer sensor
and fall detection system [23].

Veltink et al. [24] were the first to utilise a single axis acceleration sen-

sor to distinguish dynamic and static activities in 1996.

Acceleration sensors were placed over the chest and at the feet to ob-

serve the changes. Since then, several studies of using accelerometer

and gyroscope sensors have been published in the last 10 years [25].

The simple and basic approach is to use the sensors (accelerometer and

or gyroscope) based on a threshold value as a fall detection process

denoting a fall when the acceleration is maximum.

Acceleration thresholds for fall detection have been studied using triax-

ial accelerometric measurements at the waist, wrist, and head for dif-

ferent fall events (forward, backward and lateral). A study has shown

that the measurements from the waist and head have potential to distin-

guish between falls and activities of daily living [26]. Besides, triaxial
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accelerometers worn on the chest were used in [27] and [28]. They de-

tected certain falls with 98.9% accuracy by applying a simple threshold

to the acceleration.

Kangas et al. [26] designed a single three axis acceleration sensor to

attach to the subject’s body in different positions: head, waist and

wrist to sense fall accidents. The dynamic and static acceleration com-

ponents measured from these acceleration sensors were compared with

proper thresholds to determine a fall. The results showed that a simple

threshold based algorithm was appropriate for certain falls, and opti-

mum sensing effect could be achieved at the head and waist.

The other sensor which can be used for fall detection is a gyroscope

Figure 2.3, which measures orientation and consists of a spinning wheel

whose axis is free to take any orientation.

Figure 2.3. Block diagram of basic principle of digital gyroscope sen-
sor within fall detection system [29].

It measures the orientation along one axis or multiple axes. By equip-



Section 2.2. Non-vision based methods for fall detection 17

ping an object with the gyroscope to measure the orientation along

three axes, it is possible to determine the orientation of the object and

the changes in orientation, from which the angular velocity can then

be computed [29].

Bourke and Lyons [30] used a biaxial gyroscope worn on the chest

to measure angular velocity data based on thresholds and optical mo-

tion capture to distinguish between falls and non-fall activities. They

showed that they could detect falls with 100% accuracy.

Sometimes, accelerometers and gyroscope can be used in a combined

way in order to obtain a better result.

Tong et al. [31] used a combination of accelerometers and a gyroscope

to detect acceleration and orientation of the subject for detecting falls.

The data from sensors were processed locally and a call sent wirelessly

to the main server to flag a fall. The system was attached to the chest

or back of the person, which had been determined as the best option

after considerable research on positioning of kinematic sensors. In the

case of a fall, the accelerometer sensed acceleration greater than a set

threshold value and the gyroscope determined the orientation of the

subject; if there was a fall, an emergency call was sent to the care peo-

ple. Moreover, using both an accelerometer and two gyroscopes could

be used to detect the forward falls. The study showed that one could

be able to detect successfully all 60 falls and differentiate between falls

and activities of daily living with no false positives.

Nyan et al. [32] used a three-dimensional accelerometer and 2D gyro-

scope based on a body area network (BAN). The experimental results

showed that falls could be detected with an average time of 700ms be-

fore the impact fall detection occurred, with no false alarms, and a fall
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detection rate of 95.2% can be achieved.

In addition, other researchers have used acoustic and vibration sensors

to detect falls. Li et al. [33] developed an acoustic fall detection system,

which automatically detected a fall and reported it to the care giver.

The study used an 8-microphone circular array which provided a better

three-dimensional estimation of the sound location. Although promis-

ing results were obtained in their experiment, whether this algorithm

was workable on more realistic datasets, such as falls in presence of

noises, needed more testing.

In Mihail et al. [34], an acoustic FAll DEtection system (FADE) that

will automatically signal a fall to the monitoring care giver was designed.

A linear array of an electric microphone [35] condenser acoustic sensors

was applied to obtain the audio signal; mel frequency cepstral coeffi-

cients (MFCC) features were extracted and the k-th nearest neighbor

method was applied to determine a fall and non-fall activity. The sound

was considered a false alarm if it came from a source located at a height

higher than two feet so that the false alarm rate could be reduced. Their

method seemed to be successful on a limited dataset, more experiments

were needed however to determine whether their method would be suc-

cessful in real scenarios.

Alwan et al. [36] proposed a design for a floor vibration-based fall de-

tection system that was completely passive and unobtrusive to the res-

ident.

The system used a special piezoelectric sensor coupled to the floor sur-

face by means of mass and spring arrangement. Successful differentia-

tion between the vibration patterns of a human fall from other activities

of daily living and from the falls of other objects was achieved. Lab-
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oratory tests were conducted using anthropomorphic dummies. The

results showed 100% fall detection rate with minimum potential for

false alarms. The drawback of this approach was the limited range of

the vibration sensor; i.e. only six meters. Moreover, the vibrations

couldn’t be detected on all kinds of floor materials. The piezoelectric

sensor only captured the signal produced by the floor vibration; it was

robust to the background noises.

Although non-vision based methods show a potentially wide application

in the fall detection field; however, several problems exist. They are

intrusive (accelerometer and gyroscope) and easily affected by noises

in the home environment (acoustic and vibration based methods). In

order to overcome these problems, intelligent vision based fall detection

techniques are next considered.

2.3 Intelligent vision based fall detection

In the last 10 years, there have been many advances in intelligent vision

and camera-video and advanced image processing techniques that use

real time movement of the subject. This is the most commonly used

solution for fall detection at present to solve a particular problem such

as elderly fall detection, which opens up a new branch of methods for

fall detection.

Compared with non-vision based methods, intelligent vision based meth-

ods have the following advantages:

1. They are non-intrusive, an elderly person need not wear some

special equipment such as an accelerometer;

2. They are not easily affected by noise in the home environment
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(suffered by floor vibration and acoustic sensors based methods).

Based on the analysis of algorithms for fall detection, the intelligent

vision based methods are divided into two categories; background sub-

traction based analytical and machine learning methods.

2.3.1 Background subtraction based analytical methods

In background subtraction analytical methods, certain types of video-

camera features are extracted and these features are analysed empiri-

cally to determine whether falls happen or not.

Tao et al. [37] used the aspect ratio of the human body as a basis for

fall detection. They apply a single Gaussian like model for background

subtraction to extract the human body region and use the aspect ra-

tio measurement of the human body and hypothesis testing for fall

detection. Although simple, the aspect ratio feature can not efficiently

distinguish the different poses from different view-points (only limited

postures viewed from limited view-points are considered); secondly, this

method only considers the transition from the standing posture to fall

posture, which is incomplete in the real environment; besides, when

there was occlusion in the scene, this method is likely to fail.

Wang et al. [38] used a calibrated omnidirectional vision sensor for ab-

normal event and fall detection. Firstly, they use a camshift algorithm

for tracking the object in the scene; the tracked trajectory information

was used to estimate the ‘activity zone’ and ‘non-activity zone’ in or-

der to detect an abnormal event (an object stays in the ‘activity zone’

for a long time); besides, the object’s physical height (which is known

beforehand) and the one calculated from the calibrated video-camera

was compared to determine whether a person falls or not. For the ap-
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plication of fall detection only, this method was inconvenient due to

a person’s height information being needed beforehand; besides, when

there was occlusion, such as a person passing by a table, this will fail.

Rougier [39] developed an approach to detect a fall using monocular

three-dimensional head tracking in real time. The tracking component

first located the head, and estimated it. The fall detection component

computed the vertical and horizontal velocity of the head and then used

two appropriate thresholds to distinguish falling from walking. They

used manual thresholds and the system dealt with one moving object

only; however, head tracking can not always guarantee 100% correct

result and the false alarm rate for this system is high (fast nodding will

be taken as falls).

Rougier et al. [40] also proposed a new method to detect a fall event,

the method was based on the motion history image (MHI) and some

changes in the shape of the person. They assumed that the motion

was large when a fall occurred, and they used the motion history im-

age to extract the motion. When a large motion was detected, they

analysed the human shape of the person in the video-camera sequence

to check if the person was on the ground. A background subtraction

technique was used to segment the person in the video-camera sequence.

Although this method considers falls from different view-points, as for

other threshold based methods, its performance is affected by occlu-

sion.

Toreyin et al. [41] suggested a method for fall detection by making use

of an hidden Markov model (HMM) using both audio and video-camera.

For the vision part of the approach, the aspect ratio of the bounding

box of the moving region detected with a standard camera was passed
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to the motion interpretation module. More precisely, its wavelet trans-

form was used as input feature for the HMM. Using conjointly video-

camera and audio cues seemed to be well founded; however, only three

state models for fall and walk activities were built, hence it was not

comprehensive.

Miaou et al. [42] and [43] used a detection system consisting of an

omni-dimensional video-camera and a computer server. This has the

advantage of capturing the whole 360 ◦ simultaneously in a single shot.

This way the problem of conventional video-cameras having blind spots

was removed. In this approach, a clean background was first obtained.

After that, the foreground of interest was obtained by subtracting the

background model from the current image. After removing noises from

the picture, a rectangle enclosing the object was created. The height

to width ratio of this rectangle was used to detect falls. The threshold

value in this system was customizable depending on personal physique.

The experimental results showed a detection rate of 78% without per-

sonal information that increased to 90% with personal information. The

drawbacks of this system were that the monitored individual needed to

give his personal information, such as height, body mass index (BMI).

This increased the infrastructure required to implement this system.

The work in [44] proposed a system consisting of a fixed video-camera

and a personal computer. The first step in this approach was segment-

ing the foreground. It was achieved by subtracting the background

from the current frame. The next step was the feature extraction pro-

cess. The features extracted in this approach were the horizontal and

vertical projection histograms of segmented foreground and the angle

between the last standing posture with the current foreground bound-
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ing box. As a final step the falling speed was used to infer the real

falling events. A recognition rate of about 90% was achieved in the

experiments. The occlusion problem, which is obstruction of the indi-

vidual by some other object, (due to a dynamic background) exists in

this approach. The possible blind spots were also a major concern due

to the use of a single video-camera.

Lee [45], designed an intelligent emergency response system to detect

falls in the home environment. It used image based sensors. A pilot

study was conducted using 21 subjects to evaluate the efficacy and per-

formance of the fall detection component of the system. Trials were

conducted in a mock-up bedroom setting, with bed, a chair and other

typical bedroom furnishings. A small digital video-camera was installed

in the ceiling at a height of approximately 2.6m. The video-camera cov-

ered an area of approximately 5.0m × 3.8m. The subjects were asked

to assume a series of postures, namely walking/standing, sitting/lying

down in an inactive zone, stooping, lying down in a ‘stretched’ posi-

tion, and lying down in a ‘tucked’ position. These five scenarios were

repeated three times by each subject in a random order. These test po-

sitions totalled 315 tasks with 126 fall simulated tasks and 189 non-fall

simulated tasks. The system detected a fall on 77% of occasions and

missed a fall on 23%. False alarms occurred on only 5% of occasions.

The results encouraged the potential use of a vision-based system to

provide safety and security in the homes of the elderly.

Nait-Charif and McKenna [46] proposed a method for automatically

extracting motion trajectory and providing human readable summary

of activity and detection of unusual inactivity. Tracking was performed

with an omni-camera by a particle filter on the ellipse parameters de-
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scribing human posture. A fall was detected as a deviation to usual

activity. A total of 97 sequences were acquired at 30 Hz with a resolu-

tion of 480 × 360 pixels (46755 frames, 26 minutes). Acquisition was

over two days of changeable weather. The scene contained multiple

light sources (windows and indoor lighting) and no attempt was made

to control the extent of lighting changes and cast shadows.

Anderson et al. [47] used a system consisting of a single video-camera

and a computer. In this approach, video-camera was recorded at 3fps

and then the silhouette of the individual was segmented from the back-

ground. This was done by first statistically modeling the background

and then segmenting the human, based on colour information. The

brightness feature was also used for the detection and removal of shad-

ows. After the silhouette was obtained from the frames of the video-

camera, a feature was extracted to determine a falling activity. The

feature extracted was the width to height ratio of the bounding box of

the silhouette. Experiments showed encouraging results, although no

exact figure was stated. This approach had certain shortcomings, such

as using only a single feature to make a decision and a single video-

camera which limited the viewing angle of the individual, and it had a

limited range of experimentation.

Thome and Miguet [48] used an hierarchical hidden Markov model

(HHMM) based algorithm to detect a fall. The single feature of an

HHMM was the orientation of a body’s blob. The state level of an

HHMM was the postures of the body. The other two levels of the

HHMM represent behaviour pattern and global motion pattern respec-

tively. The complicated structure of HHMM limits its real time appli-

cation. Only two types of activities (walk and fall) were analysed, more
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types of activities should be evaluated.

Cucchiara et al. [49] proposed a system consisting of a normal online

workstation and a fixed calibrated camera in an indoor environment.

In this approach, first of all the background was identified. Foreground

segmentation was then achieved by subtracting the background from

the current frame. Shadows and ghost pixels were also processed to

achieve better foreground segmentation. Projection histograms were

used to estimate the posture of the person. If the person was detected

to be in a lying position and was static for too long, an alarm was

generated indicating detection of a fall or system failure. Experimental

results showed up to 90% success rate. This system couldn’t differenti-

ate between standing and crouching.

Hsu [50] used deformable triangulation of body shape to classify the

postures of a person (one class in fall). Firstly, the extracted human

shape was triangulated; two types of features from the triangulation

result, skeleton and centroid contexts, were extracted for posture recog-

nition. The behaviors (walk and fall, which were represented in the

video sequence) were then classified by a set of symbols generated by

the posture classification of the behavior’s key frames. However, for

this method, it was impossible to be real time because of the complex-

ity of the posture classification step (the extraction and matching of

skeleton and centroid contexts are time consuming); besides, there ex-

ists a problem of how to segment a long video properly to obtain video

sequences containing one behavior in the real application.

Williams [51] developed a fall detection algorithm for a smart sensor

network, which consisted of a number of low resolution video-cameras.

The video-cameras are calibrated so that this system can not only de-
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tect a fall event, but also locate the place of a fall (it was mentioned

that localisation errors of less than 0.6 meters can be achieved). Due to

the system being based on low power hardware a complicated algorithm

could not be executed in this system, they proposed to use a threshold

on the aspect ratio (the length between width and height) to detect a

fall.

Lin et al. [52] and [53] developed a fall detection algorithm based on

two-dimensional shape of human extracted from compressed domain.

Global motion parameters were estimated for object extraction to dis-

tinguish between local object motions and camera motions, and also to

obtain a rough object mask. After detecting the moving objects, com-

pressed domain features (centroid and projection histogram) of each

object were then extracted for identifying and locating a fall incident.

The result showed the method correctly detected fall incidents in real

time. But it can not overcome the problems of occlusion and falling

in different directions commonly existing in the current fall detection

systems.

Yu et al. [54] proposed a new fall detection method based on the three-

dimensional head velocities in both the horizontal and vertical direc-

tions. Motion history image and codebook background subtraction

were combined to determine whether large movement occurred within

the scene. Based on the magnitude of the movement information, parti-

cle filters with different state models were used to track the head. The

head tracking procedure was performed in two video streams taken by

two separate video-cameras and three-dimensional head position was

calculated based on the tracking results. Finally, the three-dimensional

horizontal and vertical velocities of the head were used to detect the
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occurrence of a fall. This study detected a fall event when it was hap-

pening so the alarm signals could be sent immediately. However, only

the head’s position information is used and the false alarm rate is high

(fast nodding will be mistaken as a fall).

Shoaib et al. [55] proposed a novel context based human fall detection

mechanism in a real home environment. The image was divided into

small blocks and a training phase is needed to estimate the normal

head and floor blocks, while each floor block corresponds to a Gaussian

distribution. To detect a fall, head and feet locations and the vertical

distance of the object head from the head mean location (the mean of

the positions of the head blocks) were checked. If the distance is large,

then a fall is detected. The core of this system was the location of the

head’s position and it will fail when the head is invisible in the image.

Auvinet et al. [56] employed a network of multiple video-cameras to re-

construct three-dimensional bodies of the subjects. Their system then

detected falls by analysing the volume distribution along the vertical

axis. An indicator based on the ratio between the sum of vertical vol-

umn distribution (VVD) values from the first 40cm with respect to the

whole volume were computed to compare with a threshold, if it was

larger than that threshold, then a fall is detected. By using multiple

cameras, their system can effectively deal with the occlusion problem

and this fall detection system is robust to detect falls in different di-

rections. The only inconvenience of this fall detection system was that

video-camera calibration was needed to obtain the three-dimensional

volume information needed to detect a fall.

Leone et al. [57] proposed a similar approach that reconstructed three-

dimensional bodies of the subjects. In their work, the mixture of Gaus-
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sian background subtraction method is used initially with a depth image

to obtain the foreground region. The three-dimensional position of the

centroid of the foreground region is obtained by a special time-of-flight

(TOF) camera, which is self calibrated initially by automatic floor de-

tection. The distance from the three-dimensional centroid position and

the floor plane was compared with a threshold to detect a fall. In this

method, the need for a special sensor limited its popularity.

Zambanini et al. [58] proposed to detect falls by analysing bounding box

aspect ratio, orientation, axis ratio and the speed of motion from the

three-dimensional visual hull. In their method, these three-dimensional

features were extracted from the reconstructed three-dimensional visual

hull, which is obtained from the background subtraction results of multi-

ple calibrated video-cameras. A fuzzy logic system based on these three-

dimensional features was then applied to determine the confidence of a

fall. This method is simple and effective; however, the video-cameras

need to be calibrated and the membership functions and fuzzy rules

were all set empirically.

In [59], a model based threshold method was proposal using three-

dimensional features. Calibrated video-cameras were used to recon-

struct the three-dimensional shape of a person. Fall events were de-

tected by analysing the volume distribution along the vertical axis, and

an alarm was triggered when the major part of this distribution was ab-

normally near the floor over a predefined period of time, which implied

that a person had fallen on the floor. The experimental results showed

good performance of this system (achieving 99.7% fall detection rate or

better with four cameras or more) and a graphic processing unit (GPU)

was applied for efficient computation.
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For obtaining a good fall detection performance, proper thresholds and

different features are need to be chosen for the fall detection systems;

however, in the real scenario, sometimes it is difficult to choose the

proper thresholds for different persons to be monitored. In order to

solve this problem, machine learning algorithms can be applied.

2.3.2 Machine learning algorithms

Machine learning algorithms, as proposed in [60], have been used in a

wide range of areas and many researchers have applied these machine

learning algorithms for fall detection application. For machine learning

algorithms, different types of video features are extracted from video

signals, and these features are used to train the classifiers by supervised

methods to classify different types of postures or activities for fall de-

tection, to distinguish normal activities and fall activities when they

occur.

2.3.2.1 Supervised learning algorithms

For the supervised learning based fall detection systems, some video

features are extracted from postures or short video sequences are then

used to construct a particular supervised classifier for distinguishing

different postures or activities to detect falls.

Posture recognition based fall detection methods are proposed in [61],

[62] and [63]. In [61] and [63], projection histogram features were ex-

tracted from the segmented human body region from the background

subtraction method and different types of supervised classifiers such as

a neural fuzzy network in [61] and posture probabilistic template in [63]

were constructed from the projection histogram features for classifying
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different postures. If the detected posture changed from ‘stand’ to ‘lie’

in a short time [61] or the ‘lie’ posture stays for a long time [63], fall ac-

tivities are reported. A posture recognition rate of 97.8% was achieved

in [61] and four sequences were shown to illustrate falls can be suc-

cessfully detected by the posture recognition results combined with the

rule set in this work (a fall is confirmed when the posture changed from

‘stand’ to ‘lie’ in a short time), and a fairly robust posture recognition

result (about 90% for three different datasets) was reported in [63].

Similar projection histogram features were also used in [62] with an im-

provement by using a statistical scheme to reduce the effect of human

body upper limb activities, and a more common k-nearest neighbour

classifier was applied for posture classification purpose. A fall activity

was then confirmed if the time difference between a ‘stand’ posture and

‘lie’ posture is less than a threshold. This is determined by statistical

hypothesis testing for distinguishing a fall event from lying down. In

the experiment, it was presented that the obtained threshold for fall

confirmation is 0.4s and a correct detection rate of 84.44% is obtained

on fall detection and lying down event detection according to their ex-

perimental results.

In [64], B. Ni et al. proposed a computer vision based fall prevention

system for hospital ward application. A Microsoft sensor which can

obtain the colour and depth information was applied; motion features

and shape features, such as motion history image (MHI), histogram

of oriented gradients (HOG) and histogram of optic flows (HOF) from

both colour and depth image sequences were extracted. These were

then fused via a multiple kernel learning framework [65] for training

the fall event detector. Experimental results demonstrated the high
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accuracy that can be achieved by the proposed system with an activity

recognition accuracy of 98.76%.

B. Mirnahboub et al. [66] proposed a view-invariant fall detection sys-

tem by using a single camera. The silhouette area extracted from back-

ground subtraction and combined with inclination angle was extracted

from a video sequence as features. These were then fed into the pop-

ularly used SVM for classifying fall activities and non-fall activities.

Different kernels were tested in this work and the experimental results

on a public dataset showed that the polynomial kernel of 2nd degree

can achieve the best performance with 100% fall detection rate and

less than 1% of mistaking non-fall activities as falls.

The extracted features from short video sequences can be used to build

an hidden Markov model (HMM) for activity recognition to detect fall

activities. For [67], a bounding box and motion information were ex-

tracted from consecutive silhouettes as features. These features were

then used to train HMMs for classifying fall and non-fall activities.

Preliminary results were presented by constructing three HMMs for

walking, kneeling and falling activities from several training sequences.

The most likely state sequence for a particular test sequence can be

successfully estimated by the corresponding HMM.

In [68] a method was presented based on short video sequence activity

classification. In this work, a novel method was proposed to extract a

person’s three-dimensional orientation information from multiple non-

calibrated video-cameras. Using this extracted orientation information

from short video sequence; an improved version of HMM, layered hid-

den Markov model (LHMM) was trained and used to test falls. The

experimental results on falling and walking sequences showed that a
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fall detection rate of 98% can be achieved by using two cameras, with

no walking activities mistaken as falls.

Htike et al. [69] presented a vision-based framework that could de-

tect falls using a single video-camera, irrespective of the viewpoint

of the camera with respect to the subjects. The proposed system

made use of invariant pose models which performed view-invariant hu-

man pose recognition by using the chord distribution of the resampled

points along the contour of the extracted foreground region. Based

on the chord distribution information, inference with an expectation-

maximization algorithm was performed on an ensemble of pose mod-

els and the probability value that the given frame contained a corre-

sponding pose was then calculated. The system finally detected falls

by analysing a sequence of frames using a fuzzy hidden Markov model

(FHMM) based on the estimated pose probability values for every frame.

This system achieved a 94.1% success rate when it was tested on a chal-

lenging multiple view dataset. A multi-camera based HMM approach

was proposed in [49], where in projection histogram features were ex-

tracted from every single frame for posture recognition by a posture

probabilistic template, the results were then fed into an HMM model

which exploited the temporal coherence of the postures for detecting

falls for an acquired sequence. Multiple calibrated cameras were used

to transfer the appearance information to solve the initial occlusion

problem when the person passes to another monitored room.

Apart from the features extracted from postures or short video se-

quences, some other features can also be applied to construct the cor-

responding supervised classifiers.

In [70], Mihailidis et al. used a single camera to classify fall and non-
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fall activities. Carefully engineered features, such as silhouette features,

lighting features and flow features were extracted to allow the system to

be robust to lighting, environment and the presence of multiple moving

objects. Three pattern recognition methods were compared (Logistic

Regression (LR), Neural Network (NN) and SVM); the NN technique

achieved the best performance with a fall detection rate of 92% and a

false detection rate of 5%.

Foroughi et al. [71] proposed a new method for fall detection based on

human shape variations using an multi-class support vector machine

(MCSVM). Several new features extracted from segmented foreground

were used to detect fall and other actions. A combination of best fit

approximated ellipse around the human body, projection histograms of

the segmented silhouette and temporal changes of head pose were used

to obtain useful clues for detection of different behaviors. Extracted

feature vectors were fed to an MCSVM for precise classification of mo-

tions and determination of a fall event. A reliability rate of 88.08% was

achieved in the experimentation. Although this approach did not need

tight clothes to be worn, the system had restricted functionality due to

the occlusion problem.

Three-dimensional features were applied in [67] by constructing a three-

dimensional voxel person from multiple calibrated cameras. Based on

the extracted three-dimensional features (including the three-dimension-

al centroid and orientation information), Anderson proposed a fuzzy

logic based linguistic summarisation for fall detection. A hierarchy of

fuzzy logic was used, where the output from each level was summarized

and fed into the next level for inference. Corresponding fuzzy rules were

designed under the supervision of nurses to ensure that they reflect the
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manner in which elderly people perform their activities. The proposed

framework was extremely flexible and rules can be modified, added,

or removed to allow for per-resident customization. This system was

tested on a dataset which contained 14 fall activities and 32 non-fall

activities, all the fall activities were correctly detected and only two

non-fall activities were mistaken as fall activities (100% fall detection

rate and 6% false detection rate), which showed an acceptable level of

performance.

The main problem for supervised fall detection methods is that they do

not provide a person-specific solution for individuals. A large dataset

needs to be constructed initially (which should contain the data col-

lected from many people in different views) for a supervised fall detec-

tion system, if a person does not fit the dataset very well (such as if

he/she is obese), a good performance can definitely not be obtained for

this specific person. Moreover, supervised fall detection methods will

be affected by occlusions which happen in a real home environment.

2.4 Comparison of the fall detection methods

Both intelligent vision and non-vision techniques have different strengths

and weaknesses. The following Table 2.1 summaries the advantages and

disadvantages of the two techniques of fall detection.

2.5 Summary

In this chapter a pertinent review of fall detection techniques and cer-

tain existing products has been presented. It focuses on the two main

categories: intelligent vision and non-vision based methods.
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Table 2.1. Comparison of the two approaches of fall detection
Sensor

description
Definition Equipment Merits Demerits

Non-vision
based methods

User wears
some devices
and multiple
installed
sensors to
detect posture,
sound,
vibration and
motion

Accelerometer,
gyroscope
and/or
pressure sensor
to obtain users
location

Cheap; easy to set
up and
non-intrusive

High rate of false
alarm; the sensor
is intrusive

Intelligent
vision based
methods

Computer
vision
techniques
applied to the
data captured
by
video-cameras

Single or
multiple
digital-cameras

Monitor multiple
events
simultaneously;
less intrusive; the
recorded video for
remote and post
verification

The accuracy is
very sensitive to
lighting condition,
dim light in the
night with poor
performance.
There may be a
privacy issue

For non-vision based methods, the focus was mainly on accelerometer,

gyroscope and acoustic or vibration based sensors. The principle of fall

detection based on these sensors is that a fall has a different pattern of

motion data from other activities.

Intelligent vision based methods are more in use nowadays; because

they avoid the drawback of non-vision based methods. They use digi-

tal video-cameras for image capture. The issue of privacy is not covered

in this thesis. However, they still suffer from the problem that accu-

racy is very sensitive to lighting condition, shadow and similar colour,

which needs to be solved by modern intelligent computer vision tech-

niques. Therefore, for the current intelligent vision based techniques,

three main problems exist:

1. For the analysis of image sequences involving humans body shape

needs to be improved in order to obtain robust person extraction

in an indoor environment for fall detection system.

2. Most of the two-dimensional features used in the fall detection



Section 2.5. Summary 36

works are not invariant to directions; either direction invariant

three-dimensional features need to be used or two-dimensional

features captured from different directions should be used to build

a supervised classifier model which is invariant to directions.

3. For the posture classification methods for fall detection, an im-

proved classifier should be applied for achieving a better posture

classification performance. Besides, the current posture classifica-

tion based methods are not easy to distinguish fall activities from

fast lying activities. Additional information, such as floor region

information is needed to distinguish these two activities.

Different techniques are proposed in the next contribution chapters

to solve these problems with the aim of achieving more robust fall

detection methods for better detection performance.



Chapter 3

BACKGROUND

SUBTRACTION

TECHNIQUES

3.1 Introduction

In this chapter background subtraction (BGS) techniques will be dis-

cussed in detail, including the approximate media filter (AMF), mixture

of Gaussians (MoG), and codebook (CB) methods. In addition, a se-

lective updating technique is introduced for adapting the change of the

background model to ensure that the human body region will not be

absorbed into the background model when static for prolonged periods

of time.

Extracting moving objects from sequences of images or video is an inter-

esting problem and remains a challenging topic in intelligent computer

vision. The aim of the chapter is to develop a robust video-camera

processing technique that reliably extracts the region of a person in the

recording of a room environment based on BGS techniques. BGS is

the first step when implementing a detection algorithm as mentioned

in [72] and [73]. It is the process of generating a foreground mask for

37
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each frame that flags pixels that are considered to be foreground. Fore-

ground in this context refers to any set of pixels that do not conform to

the background scene for a given frame. The challenge when selecting

a BGS algorithm is to find a solution that best suits the video scene

in question. The main performance parameters when selecting an algo-

rithm are the ability to cope with changing background scenes (moving

furniture for example), the ability to cope with sudden and gradual

changes in illumination and the ability to reliably detect a foreground

object even if it has been static for a significant length of time.

Since the background scenes in this thesis are indoor environments, the

foreground is likely to be static for prolonged periods of time (as the

person sleeps or is seated on a sofa for example) and the background

model is not subject to change to the same extent as some outdoor

scenes such as in a car park [74].

In the following section, three methods of BGS are explained, each

of which has been implemented in the MATLAB environment. Each

method is objectively BGS analysed and a selective updating tech-

nique is proposed for adapting the background model change. Some

post-processing steps, such as noise-removal, holes-filling and shadow-

removal [75] required for each method to improve the quality of the BGS

result which will be used in this research work for given environments

are chosen.

3.2 Background subtraction techniques, review and implementa-

tion

Much research has been carried out in the field of background subtrac-

tion techniques [76] and these are summarised in the following three
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subsections. Specific methods have their own range of computational

complexity and their differing algorithmic approaches to background

modelling and foreground detection however, each method follows the

same basic steps. An initial background model is produced using a

training sequence before the video is processed. Then on a per-frame

basis, the background model is modified over time to reflect changes in

the background scene. Each frame is compared to the running back-

ground model in order to extract the estimated foreground. As in [72],

in this chapter It(x, y) and Bt(x, y) denote the intensity of a pixel with

spatial coordinates (x, y) within the input video frame and the back-

ground model respectively at time t. The following three methods are

the most common methods for BGS [76] each with their own chosen

strengths and weaknesses for a given environment:

• Approximate median filter (AMF)

• Mixture of Gaussians (MoG)

• Codebook method (CB)

In the following subsection, the different methods of BGS techniques

will be discussed in detail to enable the selection of a suitable method

which can be applied in an indoor residential environment.

3.2.1 Approximate median filter

The AMF method of BGS which was proposed by McFarlane and

Schofield in [77] corresponds to a simple recursive filter to estimate

the median intensity value. This technique has also been used in back-

ground modelling for urban traffic monitoring [78]. Median filtering is

a nonlinear operation often used in image processing to reduce ‘salt’
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and ‘pepper’ noise. A median filter is more effective than a linear con-

volution based filter when the goal is to simultaneously reduce noise

and preserve edges [79].

In [80], Cucchiara et al. computed the median on a set of sub-sampled

frames, which increased the ability of detection in the background

model. The median filter has the disadvantage that computationally

requires a buffer with recent pixel values and there is no deviation mea-

sure for adapting the subtraction threshold.

The initial background model consists of a single frame that depicts

the background with no foreground objects visible. The background

model Bt(x, y), adapts to the video sequence over time by running an

estimate of the median which is incremented by one if the input pixel

is larger than the estimate, and decreased by one if smaller depending

on the current input frame as in equation (3.2.1):

Bt(x, y) =


Bt−1(x, y) + 1, It(x, y) > Bt−1(x, y)

Bt−1(x, y)− 1, It(x, y) < Bt−1(x, y)
(3.2.1)

Over time, this estimate eventually converges to a value (the median)

for which half of the input pixels are larger and half are smaller than [77].

Foreground detection is achieved by subtracting the background model

from the current frame and thresholding the result as in equation (3.2.2).

A pixel within a frame at time t is detected as foreground if the following

conditional is true as in equation (3.2.2) with a threshold T .

|It(x, y)−Bt(x, y)| > T (3.2.2)
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A drawback of the AMF is that it adapts slowly toward a large change

in background. It needs many frames to learn the new background

region revealed by an object that moves away after being stationary for

a long time. The AMF is clearly a very simple algorithm and performs

extremely well under good lighting conditions, but its inability to cope

or handle poorer lighting conditions make it an unsuitable method for

indoor application, as presented in the experimental section.

3.2.2 Mixture of Gaussians

The mixture of Gaussians model is among the most fundamental and

widely used statistical models for BGS techniques, and was initially

proposed in [81] for BGS and since then it has been a popular method

of BGS according to the application [72].

According to [72] and [81] the basis of this algorithm is to model the

pixel distribution on a per-pixel basis with the sum of K Gaussian

probability distributions (referred to as components). The component

sets for each pixel represent a set of modalities that correspond to

the distribution of a pixel, which can be expressed mathematically as

follows:

Bt(x, y) =
K∑

i=1
ωî,t · η(xt;µî,t, σî,t) (3.2.3)

where K is the number of Gaussian distributions, ωî,t is a weight associ-

ated to the ith Gaussian at time t with mean µî,t and standard deviation

σî,t. η is a Gaussian probability density function:

η(xt, µî,t, σî,t) = 1
(2π)π/2 | σî,t |

1
2

exp

−1
2

(xt − µî,t)2

σ2
î,t

 (3.2.4)
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The weights for a given component sum to unity. The first step in im-

plementing the algorithm is to identify the component of Bt(x, y) which

is most closely matched to It(x, y). This is referred to as component

î. A component is declared to be a matched component based on the

following condition:

| It(x, y)− µî,t−1 |≤ D · σî,t−1 (3.2.5)

where D is the deviation threshold with D > 0. When a matched

component is identified then the parameters of the matched component

are updated as follows:

ωî,t = (1− α)ωî,t−1 + α

µî,t = (1− ρ)µî,t−1 + ρ

σ2
î,t = (1− ρ)σ2

î,t−1 + ρ(It − µî,t)2 (3.2.6)

where α is the learning rate set by the user as a value between 0 and

1 and ρ is a second learning rate and can be approximately calculated

as follows rather than defined by the user:

ρ = α

ωî,t

(3.2.7)

This is only when no matched component can be found, and the weights

of the components exponentially decay as in:

ωî,t = (1− α)ωî,t−1 (3.2.8)
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The component with the least weight is replaced by a new component.

The next step is to re-configure the weights to sum to unity whether

a matched component has been identified or not. Up to this point the

process is used to train the background with a series of training frames.

These training frames need to make up a copy of the background scene

with as little foreground present as possible. The same process is per-

formed on a per-frame basis to modify the background model over time

during processing. Foreground extraction is the final step which occurs

alongside its model modification process.

With regards to the AMF, the structure involves the simple task of

subtracting the background from the current frame and thresholding

the result. The process is more complex in MoG than in AMF and

starts with the computationally intensive step of ranking all of the

components associated with each pixel in order of ωî,t/σî,t. This rank-

ing scheme favours components with high weightings and low standard

deviations. Once weighted, the first M components that satisfy the

following conditional against the weight threshold Γ are declared as

background components as in:

iM∑
k=i1

ωk,t ≥ Γ (3.2.9)

Finally, It(x, y) is declared as foreground if it is at least D times the

standard deviation from the mean of any one of the background com-

ponents.
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3.2.3 Codebook method

Besides the AMF and MoG BGS method [82], another popularly used

BGS method is the codebook (CB) BGS method [73]. For the CB BGS

method, there is no parametric assumption on the CB model and it

shows the following merits as proposed in [73]: (1) resistance to ar-

tifacts of acquisition, digitisation and compression, (2) capability of

coping with illumination changes, (3) adaptive and compressed back-

ground models that can capture structural background motion over a

long period of time under limited memory, (4) unconstrained training

that allows moving foreground objects in the scene during the initial

training period.

As for the AMF BGS and the MoG BGS method, the CB BGS al-

gorithm is also a pixel-wise method, and each pixel is modelled by a

number of codewords. One codeword c is composed of an RGB vector

v = (R̄, Ḡ, B̄) and a 6-tuple aux = ⟨Ǐ , Î , f, λ, p, q ⟩. The meanings

of the elements in the 6-tuple aux are shown in Table 3.1:

Table 3.1. The meanings of the elements in the tuple.
Ǐ , Î The min and max brightness of all pixels assigned to

this codeword

f The frequency with which the codeword has occurred

λ Maximum negative run-length (MNRL) defined as the
longest interval during the training period that the
codeword has not recurred

p, q The first and last access times, respectively, that the
codeword has occurred

The CB BGS algorithm is divided into model training and BGS process.

For model training, the codewords used to model every single pixel will

be obtained from a training sequence. The procedure for constructing
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the codewords for a particular pixel is shown in Table 3.2. Initially, the

Table 3.2. The training procedure for constructing the codewords for
a pixel.

(I). L ←0, Φ← ϕ(empty set)

(II). For t=1 to N do
(i) xt = (R,G,B), I ←

√
R2 +G2 +B2

(ii) Find the codeword cm in
Φ (codewords class for a pixel) = {ci|1 ≤ ci ≤ L} matching to xt

based on:
(a) Colourdist(xt,vm)≤ εt

(b) Brightness(I,⟨Îm, Ǐm⟩)=true
(iii) If Φ = ϕ or there is no match,then L←L+1.

Create a new codeword cL by setting:
•vL ← (R,G,B)
•auxL ← ⟨I, I, 1, t− 1, t, t⟩

(iv) Otherwise, update the matched codeword cm, consisting of
vm = (R̄m, Ḡm, B̄m) and
auxm = ⟨Ǐm, Îm, fm, λm, pm, qm⟩, by setting:
•vm ← (fmR̄m+R

fm+1 , fmḠm+G
fm+1 , fmB̄m+B

fm+1 )
•auxm ←
⟨min{I, Ǐm},max{I, Îm}, fm + 1,max{λm, t− qm}, pm, t⟩.
end for

(III). For each codeword ci, i=1,.......,L, wrap around λi by
setting
λi ← max{λi, (N − qi + pi − 1)}, removing the codewords whose
λs are larger than a particular threshold.

codewords set for a pixel are set to be empty so that the number is

zero. Codewords are constructed and updated by matching the exist-

ing codewords with the incoming pixel in the training set. If matched,

the matched codeword will be updated and a new codeword will be

constructed if there is no match.

Finally, the codeword set is refined by deleting the codewords which

do not recur for a certain interval measured by the maximum negative

run-length (MNRL) value λ to form a more compact CB model. For a
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particular codeword c, it is said to match the incoming pixel xt if the

following two conditions are met:

colordist(xt, c) ≤ ε

brightness(I, ⟨Î , Ǐ⟩) = true (3.2.10)

where ε is a preset threshold value for comparison, I represents the

norm of xt, Î and Ǐ are the first two parameters of the 6-tuple aux

vector of the codeword c. The colordist(xt,c) measures the chromatic

difference between two colour vectors, which can be calculated as:

colordist(xt, c) =
√
∥ xt ∥2 − xt · v

∥ v ∥2 (3.2.11)

where v represents the RGB vector v = (R, G, B) of codeword c. The

brightness(I, ⟨Î, Ǐ⟩) is defined as:

brightness(I, ⟨Î , Ǐ⟩) =


true if Ilow ≤ I ≤ Ihi

false otherwise
(3.2.12)

where Ilow = αÎ and Ihi = min{βÎ, Ǐ
α
}. In the experimental studies, α

and β are fixed to be 0.5 and 2 respectively for BGS.

The CB model training procedure is applied for every pixel are con-

structed, the trained CB models are then used for BGS, the procedure

is shown in Table 3.3.

Sometimes, the background model will change after the training pro-

cess (due to the movement of furniture, for example) and therefore the

corresponding CB model for every pixel should be updated.

For the model updating, an additional model ~′ called a cache and three
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Table 3.3. The codebook background subtraction procedure.
Step I For each pixel xt=(R,G,B) (assuming the time instance of

the frame is t), calculate the intensity from the (R,G,B)
value of a colour image by I←

√
R2 +G2 +B2

Step II Find the first codeword cm from the corresponding CB
matching to xt based on two conditions: 1)
colourdist(xt, cm)≤ ε2, 2) brightness(I, ⟨Îm,Ǐm⟩) = true
Update the matched codeword

Step III If there is no match, then the pixel xt is categorised as
foreground; otherwise, it is regarded as a background pixel.

parameters T~′ , Tadd and Tdelete are defined. The updating procedure is

then described as in Table 3.4.

Table 3.4. The updating procedure for the CB background model.
Step I After training, the background model ~ for a pixel is

obtained. Create an empty model ~′ as a cache.

Step II For an incoming pixel value xt, find a matching
codeword in ~. If found, update the codeword.

Step III Otherwise, try to find a matching codeword in ~′ and
update it. For no matching, a new codeword h is
created and added to ~′.

Step IV Filter out the cache codewords based on T~′ :
~′ ← ~′ − {hi|hi ∈ ~′, λ of hi is longer than T~′}

Step V Move to the cache codewords staying for enough time,
to ~: ~← ~ ∪ {hi|hi ∈ ~′,hi stays longer than Tadd}

Step VI Delete the codewords not accessed for a long time from
~: ~← ~− {ci|ci ∈ ~, ci not accessed for Tdelete}

Step VII Repeat the process from the Step II.

The CB model is updated so any changes in the background model will

be taken as the new background model after certain iterations of the

above steps.
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3.3 Selectively adaptive modification of background model up-

dating

It should be noticed that for the traditional BGS method, the human

body will be absorbed into the background model if he/she stays still

after a certain time period due to the updating of the background model.

To ensure that humans are not absorbed into the background scene, the

background model must be updated selectively. The codewords of the

pixels in the human body blob should not be updated but other pixels

need to be updated according to Table 3.4 so that this human body

region will always be taken as foreground and extracted even when the

person is static for a very long time while the background model is

updated.

In order to selectively update the background model, head tracking is

performed to recursively estimate the location of a person’s head in

each frame. The location of the head is then used to determine the

human body blob (which includes the head’s location). The tracking

problem can be treated as a statistical estimation problem where the

dynamics of the human head are estimated based on a sequence of

noisy measurements. The particle filter has been employed to perform

the estimation recursively, which is explained more comprehensively

in [83].

Two types of models are applied in the particle filter, they are state

model and measurement model.
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3.3.1 State model

A mathematical model of the human head state and transition char-

acteristics between frames must be defined. The model used in this

research work is an elliptical one based on [84], which is described as:

xk = Axk−1 + wk

zk = Hxk + vk (3.3.1)

where xk is the models state vector at sample k,A is the state transition

matrix, zk is the measurement vector at sample k whose relationship

to xk is defined by measurement matrix H.wk and vk are additive

noise vector variables that model the process and measurement noise

respectively.

A simple ellipse is used to model the head with fixed size for a given

person. The ratio of the minor to major axes of the ellipse is fixed

at 1 : 1.2. The state vector x is represented as x = [x, y, ẋ, ẏ]T where

x and y are the pixel coordinates of the ellipses centre and ẋ and ẏ

are respectively the horizontal and vertical velocity components of the

ellipse in pixels/frame. The state transition behaviour is assumed to

be simply the previous state coordinates plus the effects of the velocity

from the previous time step. This gives the state transition matrix:

A =



1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1


(3.3.2)
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3.3.2 Measurement model

Tracking methods usually involve measuring the similarity between a

target model and one or more hypothesised models in order to decide

which hypothesis is more likely to be the real state in the new frame.

For measuring the similarity, multiple measurement cues exist and for

the particular head tracking problem the mostly used ones include the

intensity gradient [84] and colour histogram [85]. In this work, these

two measurement cues are applied together to increase the tracker’s

robustness.

3.3.2.1 Intensity measurement

The intensity gradient measurement analyses the perimeter pixels of a

hypothesised elliptical head model and compares it to that of the tar-

get.

Figure 3.1 shows how the intensities of the perimeter pixels of an hy-

pothesis and a target model can be treated as vectors T [i] and Hn[i]

respectively where i is the perimeter pixel index and n is the index given

to different hypotheses. To determine a measure of similarity between

T [i] and Hn[i], the min(.) function is used. This function chooses the

minimum value of the two vectors for each pixel. The scalar measure of

similarity with respect to intensity ϕig is then given by equation (3.3.3)

where N represents the number of perimeter pixels. This coefficient of

similarity is bounded by 0 and 1.

ϕig =
N∑

i=1

min(T [i], Hn[i])
T [i]

(3.3.3)
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Figure 3.1. Intensity vectors of hypothesis and target elliptical mod-
els.

3.3.2.2 Colour histogram measurement

The colour histogram module analyses the interior pixels bounded by a

hypothesised elliptical head model and compares it to that of the target.

The histogram is produced by assigning each of the interior pixels of a

given ellipse to a bin in three-dimensional RGB colour space.

Once a target histogram U [i] and the nth hypothesis histogram Gn[i]

have been computed, they can be compared in a very similar way to

the intensity. The scalar measure of similarity with respect to colour

distribution ϕcd is given by equation (3.3.4) where N represents the

number of bins in the three dimensional histogram (for example, if the

histogram was size 2-by-4-by-4 then N = 32) and i = [1, 2, ..., N ]. This

coefficient of similarity is bounded by 0 and 1 to give a normalised
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comparison between this and ϕig as equation (3.3.3):

ϕcd =
N∑

i=1

min(U [i], Gn[i])
U [i]

(3.3.4)

3.3.3 Particle filter tracker

Based on the state model and measurement model, the particle filtering

technique is applied for head tracking purpose. The objective of the

particle filter, is to estimate the posterior state distribution p(xk | z1:k)

which in this application yields an estimated head location in the cur-

rent frame. The particle filter is a recursive Bayesian approach to state

estimation. It is able to incorporate elements of non-linearity and non-

Gaussianity into the tracking process, which makes the particle filter a

valuable estimator for many modern applications where the restrictive

assumptions of the Kalman Filter cannot be applied [86].

The principle behind the particle filtering approach is to represent the

posterior state distribution p(xk | z1:k) as a sum of weighted particles,

where each particle is a hypothesised state. This point-mass approach

to representing probability distributions along with its recursive opera-

tion makes the particle filter a sequential Monte Carlo method.

For this work, the iih particle at sample time k is represented by the

vector Si
k with the form [x, y, ẋ, ẏ]T where x and y are the spatial coordi-

nates of the elliptical head model and ẋ and ẏ are respectively the hori-

zontal and vertical velocity components of the ellipse in pixels/frame.

The ith weight at sample time k is represented by the scalar W i
k. The

weight of each particle can be thought of as a measure of how likely it

is that a hypothesised state is correct. When N particles are summed

together in weighted delta function form the particles approximate the
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posterior distribution without making assumptions about the distribu-

tion’s shape as shown below:

p(xk | z1:k) ≈
N∑

i=1
W i

kδ(xk − Si
k) (3.3.5)

where ∑N
i=1 W

i
k = 1. The particle filter algorithm for head tracking can

be split into four main steps which are repeated for every frame of the

video sequence:

1. Select particles from the previous time step.

2. Propagate particles into the current time step according to state

transition model.

3. Measure the current frame at each and every particle to assign a

new weight to each particle.

4. Estimate the head location based on the distribution given by the

newly drawn particles and their associated new weights.

3.3.3.1 Select particles

The particle filter is implemented within the sequential importance sam-

pling (SIS) framework. This means that a resampling operation is car-

ried out at every time step which takes into account the importance of

each particle in the previous time step. Drawing N particles means that

particles with high weighting are likely to be resampled whereas parti-

cles with a low weight are likely to be lost in the resampling process.

This has two important functions. Firstly, it reduces wasted computa-

tion on particles (hypothesised elliptical head states) that are not at all

likely to be similar to that of the target. Secondly, it militates against
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the scenario where all but one of the particles is given negligible weight

after several successive iterations.

3.3.3.2 Propagate particles

Since all of the particles that have been drawn are from the previous

time step, they must be propagated using the model dynamics defined

by equation (3.3.1). This automatically takes into account the motion

of the head since velocity forms part of the state model. The additive

noise is given by multivariate Gaussian random variable rk:

xk = Axk−1 + rk (3.3.6)

3.3.3.3 Measurements

A new set of particle weights is now assigned by observing the frame

at each hypothesised state (given by each particle) using the intensity

gradient and colour histogram cues described in Section 3.3. Weights

are calculated independently based on each measurement cue and are

then combined to give a single scalar weight for each particle. The ith

weight as a result of each cue at sample time k is calculated as follows:

W i
igk

= 1√
2πϕig

e
−

1−ϕig

2σ2
ig (3.3.7)

W i
cdk

= 1√
2πϕcd

e
− 1−ϕcd

2σ2
cd (3.3.8)

W i
k =

√
(W i

igk
)2 + (W i

cdk
)2 (3.3.9)
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where ϕig and ϕcd are as in Section 3.3, W i
igk

and W i
cdk

are the weights as

a result of the intensity gradient and colour histogram cues respectively

and ∑N
i=1 W

i
k = 1. These new weights and their associated particles

represent the a posteriori distribution as in equation (3.3.5).

3.3.3.4 Estimate

The estimate of the head’s location is simply the expected value of the

posterior distribution:

E{p(xk | Z1:k)} ≈
N∑

i=1
W i

kS
i
k (3.3.10)

This concludes the head tracking process using the particle filter.

After the head tracking, the head’s position in the two-dimensional

image plane is estimated, the blob which contains the head’s position

is then taken as the human body blob and will not be updated.

As presented in Figure 3.2 if a person remains static after taking off

the clothes, after the selective updating, the human body blob (which

contains the head) is not absorbed into the background model while

the non-human blobs (clothes) are absorbed into the background model

after a certain time period. One important problem with head tracking

is initialisation. The initial position of the human head should be known

for successive tracking in later frames. This can be done either manually

or by adapting particular head detection algorithms such as in [87]

and [88]. The later approach is adopted in this work.
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(a) (b)

(c)

Figure 3.2. The illustration of selective updating. (a) The original
image. (b) The BGS result, the tracked head is contained in the human
body blob. (c) The non-human blobs are absorbed into the background
model after a certain time while the human blob still remains as the
foreground.

3.4 Post-processing techniques

When a BGS method is applied to a video sequence, the result is binary;

a zero value represents background model where as a unity value repre-

sents foreground region. It should be noted, however that inescapably

some foreground pixels are detected as background pixels and vice-versa

and therefore post-processing is introduced to increase the accuracy of

the output. The survey by Parks et al. [89] provides a useful summary

of post-processing techniques and some of them are applied here to
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improve the BGS results.

3.4.1 Median filtering

An effective way of excluding inconsistent values within the set and

reducing ‘salt’ and ‘pepper’ noise is to take the median value of the

set of pixels. This type of filtering is an ideal candidate for the CB

algorithms post-processing [54].

To solve this problem a 5× 5 window is applied to the set of pixels to

perform the median filtering. If half of the pixels in the windows have

‘0’ values, then the pixel value in the centre of the window is also set to

‘0’. In this way, some small ‘salt’ and ‘pepper’ noises will be removed,

as seen in Figure 3.3.

(a) (b)

Figure 3.3. A 5 x 5 median filter applied to the BGS output showing
considerable success in removing ‘salt’ + ‘paper’ noise. (a) BGS output.
(b) Median Filtering.

3.4.2 Advanced post-processing techniques

To further improve the BGS result, some advanced post-processing tech-

niques can also be used. One of these methods is called ‘blobs’ post-

processing. Essentially, it classifies the image as a number of segments

of foreground or ‘blobs’ representing different groups of foreground pix-
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els which are 4-connected or 8-connected [75]. If the distance between

two blobs is less than a threshold, these two blobs will be taken as one.

A threshold is set and the blobs whose pixel numbers are less than the

set threshold are removed and the pixels in these blobs are taken as

background pixels. One example is seen in Figure 3.4, from which it

can be seen that by the ‘blobs’ post-processing, further improvement

of the BGS result is obtained and all the ‘noisy blocks’ are removed.

(a) (b)

Figure 3.4. Applying blob post-processing to the CB output video.
(a) BGS output video. (b) Blob post-processing technique.

3.5 Performance analysis of background subtraction techniques

This section will focus on performance analysis of the BGS techniques

which have been mentioned in Section 3.2. For comparing the perfor-

mance of three BGS algorithms, three datasets were used in a room

environment. Frames samples from datasets 1, 2 and 3 are shown in

Figure 3.5. To test the performance of the BGS techniques different

real video sequences from a single video-camera in an enclosed environ-

ment are used to represent one person in a room environment and under

different light conditions (good, poor and typical lighting conditions).
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These colour datasets contain around 50 video frames of size 320× 240.

The criteria for comparison are based on speed and accuracy.

(a) (b)

(c)

Figure 3.5. Different sample of datasets used. (a) Dataset 1 in good
lighting conditions. (b) Dataset 2 in poor lighting conditions. (c)
Dataset 3 in typical lighting conditions.

3.5.1 Speed comparison of different background subtraction meth-

ods

Table 3.5 shows the comparison of speed for the various techniques.

The AMF BGS method just compares the values between the current

frame and background model for a particular pixel, as shown in [76],

the complexity is defined as O(1). The MoG method has O(m) time

complexity for one pixel, with m the number of Gaussian distributions

used, typically in the order of 3-5 [91].

Finally, for the CB algorithm which is a quantisation method [73] mod-
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Table 3.5. Performance of speed (theoretically) per pixel.
Method Speed

Approximate median filter (AMF) [90]
and [80]

O(1)

Mixture of Gaussians (MoG) [91] O(m)

Codebook (CB) [73] [54] O(nc)

els are built from a long observation of a video-camera sequence [54]

and [73] for each pixel. This model, will build a CB consisting of one

or more codewords and may be different from pixel to pixel. There-

fore, the CB has time complexity as O(nc), nc is the total number of

codewords.

3.5.2 Accuracies of different background subtraction methods

For evaluating the accuracy two parameters are obtained, true positive

rate (TPR) and false positive rate (FPR) for each implementation, and

are defined as follows in equation (3.5.1) and (3.5.2) to quantify how

well each algorithm matches the ground truth images [73].

TPR = Number of foreground pixels correctly identified by the algorithm

Actual number of foreground pixels in ground− truth
(3.5.1)

FPR = Number of foreground pixels incorrectly identified by the algorithm

Actual number of background pixels in ground− truth
(3.5.2)

Figure 3.6 shows the ground truth images manually framed for the ac-

tual foreground image [92], in which the foreground is shown in white
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and corresponds to the human body.

Figure 3.6. Samples of the ground truth images manually generated
from actual foreground pixels.

In order to calculate TPR and FPR, knowledge of the true foreground

must be known. For example TPR aims to answer the question ‘how

much of the actual foreground was correctly identified as foreground?’

whilst FPR aims to answer ‘how much of the areas identified as fore-

ground are truly foreground pixels?’ [72].

To achieve this, a process called framing was used to manually generate

frames which indicate the foreground of the true areas and these frames

could be used as a reference to obtain the corresponding TPR and FPR

values.

It is vitally important to obtain results from a variety of data sets so

that consistent characteristics of each algorithm can be identified and

to enable the performance of the techniques to be examined under dif-

ferent datasets with different lighting conditions.
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The Figures in 3.7, 3.8, 3.9, 3.10, 3.11 and 3.12 show the results of the

simulation of the three techniques for three different data sets which

are explained in detail in the previous subsection.

Figure 3.7. Simulation of the AMF, MoG and CB methods of BGS,
dataset 1 in good lighting conditions.

Figure 3.8. Simulation of the AMF, MoG and CB methods of BGS,
dataset 1 in good lighting conditions.
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Figure 3.9. Simulation of the AMF, MoG and CB methods of BGS,
dataset 2 in poor lighting conditions.

Figure 3.10. Simulation of the AMF, MoG and CB methods of BGS,
dataset 2 in in poor lighting conditions.
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Figure 3.11. Simulation of the AMF, MoG and CB methods of BGS,
dataset 3 in typical lighting conditions.

Figure 3.12. Simulation of the AMF, MoG and CB methods of BGS,
dataset 3 in typical lighting conditions.

For each dataset evaluation, the parameters for each algorithm are

tuned empirically to be optimal and the corresponding post-processing

techniques are adopted to improve the BGS results. For a good de-

tection algorithm, it will offer a high level of TPR without sacrificing

FPR.
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Figures 3.7, 3.8 show the performance of three algorithms on dataset 1

with good lighting conditions, from which it can be observed that the

CB method has the lowest FPR curve (Figure 3.7) and highest TPR

curve (Figure 3.8) among the three methods. For the other two meth-

ods (MoG and AMF), high values of TPR are obtained at the expense

of high FPRs. In conclusion, the CB method has better performance

than the other two methods on this dataset.

Similar phenomena can be observed on the other two datasets with

typical and poor lighting conditions (Figures 3.9, 3.10, 3.11 and 3.12);

the CB method always obtains a higher TPR curve and a lower FPR

curve than other two methods. This is because the CB method makes

use of both the colour information and the intensity information for

distinguishing the background model and foreground, which makes the

background and foreground pixels more distinguishable than the AMF

and MoG methods which only use the intensity information.

Besides, it is also noted that the performance of each algorithm is re-

lated to the lighting condition; for the better lighting condition, a higher

TPR curve and a lower FPR curve are obtained. As an example, the

TPR curve of the CB method fluctuates around 0.8 and the FPR curve

is near to zero for the dataset 1 (good lighting condition); however,

when it comes to the poor lighting condition case, the value of the

TPR curve could drop below 0.6 and higher FPR values (more than

0.005) are obtained. This phenomenon can be explained by the fact

that the contrast between the foreground and background model is

usually larger under the better lighting condition, making it easier to

obtain a good BGS result.

For an overall quantitative analysis, the average TPRs and FPRs for
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the frames in all the three datasets are calculated, the results are pre-

sented in Tables 3.6, 3.7 and 3.8. From these tables, the advantages

Table 3.6. Average value of TPR and FPR for dataset 1
TPR FPR

AMF 0.6368 0.00099

MoG 0.5748 0.0023

CB 0.8139 0.0007

Table 3.7. Average value of TPR and FPR for dataset 2
TPR FPR

AMF 0.4272 0.0072

MoG 0.3513 0.0051

CB 0.5416 0.0024

Table 3.8. Average value of TPR and FPR for dataset 3
TPR FPR

AMF 0.4556 0.0033

MoG 0.488 0.0046

CB 0.77 0.0032

of the CB method over the AMF and MoG methods can be observed;

higher TPRs and lower FPRs are obtained in all the three datasets for

the CB method. Considering the CB method’s advantages, it is applied

in the work for extracting the human body for fall detection throughout

this research work.
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3.6 Selectively updating evaluation

3.6.1 The evaluation of head tracking

For selectively updating the background model, head tracking is per-

formed to determine the human body blob, some examples of the head

tracking results for a video sequence are presented in Figure 3.13 where

an, ellipse is used to model the head. The performance of the parti-

Figure 3.13. Some head tracking results, the tracked head position is
tracked by an ellipse.

cle filter is dependent on the number of particles; the performance of

the particle filter improves with the increasing number of particles. To

investigate how many particles are necessary for this application us-

ing the intensity gradient and colour histogram cues, Figure 3.14 was

produced which shows the cumulative spatial error between the true

head centroid and that of the particle filter estimate. It can be seen

that increasing the number of particles N by a factor of 2 from 50 to

100 causes a significant decrease in cumulative error. Increasing by a
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Figure 3.14. Effect of number of particles (N) on head tracking per-
formance

further factor of 2 from 100 to 200 results in much less of a positive

impact. This is an important result as it shows the relationship be-

tween N and that the error is not a linear one. It also shows that,

there is a point at which increasing N does not result in a significant

performance advantage. The number of particles used plays a large role

in the computational complexity of the filter and so should be set as

low as possible whilst maintaining a satisfactory level of error. For this

application a value of N = 100 was seen as an acceptable engineering

trade-off between complexity and performance.

3.6.2 Comparisons of different updating schemes

For comparing different background updating schemes, a video-camera

is recorded which shows two people moving in a scene, a chair is moved

by one person and after moving the chair, the two persons are static in

the scene. The CB BGS method is chosen for BGS because it achieves

the best performance for different indoor scenarios from previous anal-

ysis. Three different types of CB BGS versions are implemented, they
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are: CB BGS without updating (CB), CB BGS with updating (ACB),

CB BGS with selective updating (SACB) using head tracking. Figure

3.15 shows some results of the three versions of CB BGS method, the

corresponding ground truth images are shown in the bottom line for

comparison purpose. From the last column of Figure 3.15, it can be

Figure 3.15. The comparison of three CB BGS methods, first row:
original image, the second, third, fourth and fifth rows are the results
of CB, ACB, SACB and ground truth images respectively.

observed intuitively the SACB method proposed works best. Not only

is the chair absorbed into the background model, the two static persons

are also successfully segmented.



Section 3.6. Selectively updating evaluation 70

For an objective analysis, the TPR curves and FPR curves for the

three versions of CB BGS method on this video sequence are presented

in Figure 3.16 and 3.17, from which it can be seen that initially, these

three versions of CB methods work similarly; however, after a certain

time interval, the SACB can achieve both higher TPR and lower FPR

by selective background model updating.
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Figure 3.16. The comparison of TPR for three CB methods.

Figure 3.17. The comparison of FPR for three CB methods
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3.7 Summary

Different BGS techniques were compared and corresponding improve-

ments were presented in this chapter. Compared with the AMF and

MoG methods, the CB BGS method achieved the best performance

with the highest TPR and lowest FPR, based on three different datasets

under different lighting conditions. This is because compared with the

AMF and MoG methods, the CB method makes use of both intensity

and colour information, so that the foreground pixels and background

pixels will be properly discriminated and better BGS results can be

achieved. For this reason, CB method is applied for BGS for fall de-

tection in indoor environment. The complexity of the CB method is

related to number of codeword O(nc) as mentioned in [73], real-time

performance can be achieved.

Additionally, with the aid of the head tracking, selective updating of

the background model was achieved, which efficiently coped with the

change of the background while not taking the long-time static people

as the background. As a result, good BGS results can still be obtained

after a person is still for a certain time interval, the person will be de-

tected and the background model will be updated to absorb the changes

(such as moving a chair/furniture) in the background model.



Chapter 4

VIDEO-CAMERA

CALIBRATION BASED ON

THE TSAI’S MODEL

4.1 Introduction

Video-camera calibration is an important step in three-dimensional

computer vision to obtain certain types of three-dimensional informa-

tion (such as the three-dimensional position for a particular pixel in the

image). The Tsai’s model for calibration detailed in this Chapter is the

basis of Chapter 5. The derivations of the three-dimensional space line

and constructions of three-dimensional voxel person rely upon Tsai’s

model. As such, the content of this chapter facilitates the derivations

of Chapter 5; besides, it also gives readers the corresponding back-

ground knowledge about camera calibration. It involves estimating the

external and internal parameters of a video camera based on certain

camera models, which correspond to various geometries of the image

formation process as shown in [93], [94], [95] and [96].

In a general sense, a video-camera model procedure can be regarded as

a set of equations involving several video-camera parameters that pro-

72
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vides a mathematical interpretation of the process of projecting a three-

dimensional world scene onto a two-dimensional image plane coordinate

system. The estimation of these video-camera model parameters can

be achieved from experimentally acquired point correspondences (a set

of three-dimensional object points and corresponding two-dimensional

image points).

There are many different video-camera calibration techniques. In gen-

eral, existing video-camera calibration techniques can be classified into

three types [96]:

1. Linear techniques (direct linear transform model (DLT)) [93] and

[94].

2. Nonlinear techniques (Z. Zhang’s model) [95].

3. Multiple steps techniques (Tsai’s model) [96].

The following Table 4.1 summaries the merits and demerits of the three

techniques of video-camera calibration.

To calibrate the uncalibrated video-cameras and extract a three-dimensi

onal voxal block from two-dimensional images, Roger Y. Tsai’s versatile

video-camera calibration algorithm (aptly called the Tsai’s model) de-

scribed in [96] has been used due to its ability to estimate the internal

and external parameters separately for an uncalibrated video-camera.

To estimate these internal and external parameters of a video-camera,

a calibration target with points whose three-dimensional real world

coordinates and corresponding two-dimensional image coordinates are

known, must be recorded. These real world coordinates and image co-

ordinates are then put in files in an appropriate order before passing

on to the calibration routines steps.
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Table 4.1. Comparison of the three geometric calibration techniques
Methods Computational Accuracy Merits Demerits

Linear
calibration

More
expensive and
use expensive
equipment
such as two or
three
orthogonal
planes

Generates
large errors

Widely used for
their simplicity
and simple
implementation
and fast operation

Distortion not
considered

Non-linear
calibration

Use a large
number of
unknowns and
a large-scale
nonlinear
optimization

Low accuracy Easy to use; and
flexible

In highly distorted
environments the
optimization may
be unstable if the
iterative procedure
is not
appropriately
designed

Multiple steps
calibration

Computationally
complex

Accurate Can be used with
linear and non
linear model,
possibility to fix
the internal
parameters

Other types of
distortion not
considered such as
tangential [97]

4.2 Calibration steps based on Tsai’s model

This section describes in detail the video-camera calibration model steps

based on the Tsai’s model [96]. It will also identify and define the

calibration parameters. The Tsai’s model has internal and external

parameters and is based on the pinhole model of three-dimensional

to two-dimensional perspective projection with 1st order radial lens

distortion. The parameters are as listed below:

Internal parameters:

• Effective focal length of the pinhole video-camera (f).

• 1st order radial lens distortion coefficient (k).

• Scale factor, (sx) to account for any uncertainty in the frame

grabber’s resampling of the horizontal scan line.

External parameters:
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• Rotation angles for the transformation between the world coordi-

nate system and video-camera coordinate system frames (Rx, Ry, Rz)

• Translational components for the transform between the world co-

ordinate system and video-camera coordinate system (Tx, Ty, Tz)

frames.

Tsai’s model involves a four step video-camera calibration procedure

of transformation from three-dimensional world coordinate system to

two-dimensional image coordinate system captured by multiple digital

video-cameras, which is based on the video-camera geometry as shown

in Figure 4.1 which displays the basic geometry of the video-camera

model processing based on Tsai’s model.

or
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Figure 4.1. Video-camera geometry with perspective projection based
on Tsai’s model and radial lens distortion [96].
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The flowchart in Figure 4.2 shows the four steps of transformation from

three-dimensional world coordinate system to video-camera coordinate

system.

Transformation from the 3D world coordinated                  to camera 
coordinate system        and other parameters needed to be 
calibrated (Rotation matrix       and Translation vector 

Estimation of the ideal image 
coordinate system          

and other parameters needed to be 
calibrated: focal length 

Estimation of the real image coordinate 
system with distortion                and 

parameters needed to be calibrated: radial 
lens distorted 

Converting to the image coordinate system 
measured by pixels             and parameters 
needed to be calibrated: uncertainty scale 

factors 

The image coordinate system   
measured in pixels

3D world coordinates system

Step 1

Step 2

Step 3

Step 4

),,( www ZYX

)fYf,(X

)( , ff YX

)( xs

),( dd YX

)(k

),( uu YX

)(f

),,( www ZYX
),,( zyx

)(R )(T

Figure 4.2. The flowchart of converting from the three-dimensional
world coordinate to the two-dimensional image coordinate system mea-
sured by pixels and the parameters needed to be calibrated [96].

Step 1. For a three-dimensional point, P is the object point in a

scene as shown in Figure 4.1 and it has a corresponding three-

dimensional world coordinate system (xw, yw, zw) (based on the
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three-dimensional world coordinate system (Ow, xw, yw, zw) as in

Figure 4.1).

The video-camera itself also has its own coordinate system, which is

called the video-camera coordinate system denoted as (O, x, y, z) as

shown in Figure 4.1 (with the origin being the lens center of the video-

camera).

The world coordinate system can be aligned to the video-camera coor-

dinate system by certain rotating and translating operations.

The relationship between the three-dimensional world coordinate sys-

tem (xw, yw, zw) and the video-camera coordinate system (x, y, z) of the

point P is as shown:


x

y

z

 = R


xw

yw

zw

 + T (4.2.1)

where R is a 3 × 3 rotation matrix which can be represented by three

rotation angles in three-dimensional space (Euler angles yaw θ, pitch ϕ

and tilt ψ) as:

R =


cos(ψ) cos(θ) sin(ψ) cos(θ) − sin(θ)

− sin(ψ) cos(ϕ) + cos(ψ) sin(θ) sin(ϕ) cos(ψ) cos(ϕ) + sin(ψ) sin(θ) sin(ϕ) cos(θ) sin(ϕ)

sin(ψ) sin(ϕ) + cos(ψ) sin(θ) cos(ϕ) − cos(ψ) sin(ϕ) + sin(ψ) sin(θ) cos(ϕ) cos(θ) cos(ϕ)


(4.2.2)

or it can be written in a simpler form:

R =


r1 r2 r3

r4 r5 r6

r7 r8 r9

 (4.2.3)
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and T is a 3× 1 translation vector with:

T =


Tx

Ty

Tz

 (4.2.4)

Step 2. After the video-camera coordinate system (x, y, z), of the ob-

ject point P is obtained, the coordinates system of the pinhole

video-camera model [96], that is the image plane coordinate sys-

tem (Xu, Yu) of the ideally projected point Pu can be obtained

as:

Xu = f
x

z

Yu = f
y

z
(4.2.5)

where f is the focal length of the video-camera, and also measures the

distance between the center of lens and image plane.

Step 3. In comparison to the pinhole video-camera model, the real

video-camera outputs contain certain types of distortion.

One important distortion and one whose impact is most felt is the

radial lens distortion. The lens distortion, the actual object point on

the image plane (denoted as Pd) differs from the ideally projected point

Pu.

Note that image plane coordinate system Pd is denoted as (Xd, Yd). As
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proposed in [96], the relationship between (Xu, Yu) and (Xd, Yd) is:

Xu = Xd(1 + kr2)

Yu = Yd(1 + kr2) (4.2.6)

where r =
√
X2

d + Y 2
d and k is the coefficient of the radial lens distor-

tion.

Step 4. The last step, is to convert the image plane coordinate system

(Xd, Yd) to the image plane coordinate system (Xf , Yf ) measured

in pixels with the following transformation:

Xf = sxḋ
−1
x Xd + Cx

Yf = ḋ−1
y Yd + Cy (4.2.7)

where Cx and Cy are the center coordinates system of the captured

image, sx is the uncertainty scaling factor due to camera scanning and

acquisition time error, ḋx and ḋy represent the corresponding size of a

pixel, and are calculated as:

ḋx = dx
Ncx

Nfx

ḋy = dy
Ncy

Nfy

(4.2.8)

where dx and dy are the center to center distance (CCD) between ad-

jacent sensor elements in the X and Y directions; Ncx and Ncy are the

numbers of CCD sensor elements in the X and Y directions and Nfx

and Nfy are the numbers of image pixels in the X and Y directions.
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The four steps highlighted above show the relationship between the

three-dimensional real world coordinate system and two-dimensional

image pixel coordinate system for a particular point. From these four

steps, a three-dimensional point can be converted to a two-dimensional

point on the image.

4.3 Parameter estimation for video-camera model

The procedures of estimating the internal and external parameters are

shown in the following section.

4.3.1 Estimation of external and internal parameters

The estimations will involve the following parameters, T−1
y sxr1, T−1

y sxr2,

T−1
y sxr3, T−1

y sxTx, T−1
y r4, T−1

y r5, and T−1
y r6.

If points P (x, y, z) and Poz(0, 0, z) are connected (as shown in Fig-

ure 4.3), O1Pd//PozP (// means parallel) can be obtained by the fact

that O1Pd and PozP are the intersections of the plane (O,P, Poz) and

two parallel planes ((O1, x, y) and (Poz, x, y)). As O1Pd//PozP and

O1Pd × PozP=0 (× denotes the cross product), then:

(Xd, Yd)× (x, y) = 0 (4.3.1)

which yields Xd · y − Yd · x = 0. If equations (4.2.3) and (4.2.4) are

substituted into equation (4.2.1), the following is obtained:

x = r1xw + r2yw + r3zw + Tx

y = r4xw + r5yw + r6zw + Ty (4.3.2)
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Figure 4.3. O1Pd//PozP by connecting P and Poz by the fact that
O1Pd and PozP are the intersections of the plane (O,P, Poz) with two
parallel planes (O1, x, y) and (Poz, x, y) [96].

Thus, using equation (4.3.1), it can be derived that:

Xd(r4xw + r5yw + r6zw +Ty)−Yd(r1xw + r2yw + r3zw +Tx) = 0 (4.3.3)
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Dividing each side by Ty and after applying some algebraic operations,

equation (4.3.4) is obtained:

[
Ydxw Ydyw Ydzw Yd −Xdxw −Xdyw −Xdzw

]
·



T−1
y r1

T−1
y r2

T−1
y r3

T−1
y Tx

T−1
y r4

T−1
y r5

T−1
y r6



= Xd

(4.3.4)

Multiplying both sides by sx and replacing the result Xdṡx with Ẋd a

new equation (4.3.5) is obtained:

[
Ydxw Ydyw Ydzw Yd − Ẋdxw − Ẋdyw − Ẋdzw

]
·



T−1
y sxr1

T−1
y sxr2

T−1
y sxr3

T−1
y sxTx

T−1
y r4

T−1
y r5

T−1
y r6



= Ẋd

(4.3.5)

Initially, a set of points is chosen and for each point i, its three-dimensional

world coordinate system (xwi, ywi, zwi) and two-dimensional image co-

ordinate system (Xf , Yf ) are known. Using equation (4.2.7), Ẋdi and
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Ydi can be calculated as:

Ẋdi = (Xfi − Cx)ḋx

Ydi = (Yfi − Cy)ḋy (4.3.6)

Equation (4.3.5) can be denoted as:

ai · x = bi (4.3.7)

where

ai =
[
Ydixwi Ydiywi Ydizwi Ydi − Ẋdixwi − Ẋdiywi − Ẋdizwi

]
,

x =



T−1
y sxr1

T−1
y sxr2

T−1
y sxr3

T−1
y sxTx

T−1
y r4

T−1
y r5

T−1
y r6



, bi = Ẋdi, each element of the vector ai and bi

are all known. If there are N points, then equation (4.3.8) holds:
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a1

·

·

ai

·

·

aN



x =



b1

·

·

bi

·

·

bN



(4.3.8)

and if A is used to represent



a1

·

·

ai

·

·

aN



which is a N × 7 matrix, and b

is used to represent



b1

·

·

bi

·

·

bN



which is a N×1 vector then equation (4.3.9)

can be obtained:

A · x = b (4.3.9)

and the least squares solution for equation (4.3.9) is:

x = (AT A)−1AT b (4.3.10)
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from which the seven parameters:

T−1
y sxr1, T

−1
y sxr2, T

−1
y sxr3, T

−1
y sxTx, T

−1
y r4, T

−1
y r5, T

−1
y r6 are esti-

mated.

4.3.2 Determination of Ty and sx

The result of equation (4.3.10) can be used to estimate |Ty|. If the ith

element of x is denoted as xi, |Ty| can be computed as:

|Ty| = (x2
5 + x2

6 + x2
7)−1/2 (4.3.11)

by using r2
4 + r2

5 + r2
6 = 1 according to the correspondence between

equation (4.2.2) and (4.2.3). The uncertainty scale factor sx can be

estimated from |Ty| as:

sx = (x2
1 + x2

2 + x2
3)−1/2|Ty| (4.3.12)

by using r2
1 + r2

2 + r2
3 = 1. To determine the sign of Ty an object point i

whose two-dimensional image pixel coordinate (Xfi, Yfi) is away from

the image center (Cx, Cy) is selected; its three-dimensional world coor-

dinate is denoted as (xwi, ywi, zwi). Initially, the sign of Ty is assumed

as +1 and this point’s three-dimensional camera coordinate (xi, yi) is

computed as:

xi = r1xwi + r2ywi + r3zwi + Tx

yi = r4xwi + r5ywi + r6zwi + Ty (4.3.13)

where r1, r2, r3, r4, r5, r6 and Tx can be calculated as:
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r1 = (T−1
y sxr1) · Tys

−1
x = x1Tys

−1
x

r2 = (T−1
y sxr2) · Tys

−1
x = x2Tys

−1
x

r3 = (T−1
y sxr3) · Tysx

−1 = x3Tysx
−1

r4 = (T−1
y r4) · Ty = x5Ty

r5 = (T−1
y r5) · Ty = x6Ty

r6 = (T−1
y r6) · Ty = x7Ty

Tx = (T−1
y Tx) · Ty = x4Ty (4.3.14)

Moreover, by using equation (4.2.7), the distorted image coordinate

(Xdi, Ydi) can be obtained from (Xfi, Yfi). In addition, from the rela-

tionship between (Xdi, Ydi) and (xi, yi) as shown in equations (4.2.5)

and (4.2.6), it can be concluded that Xdi and xi, together with Ydi and

yi should have the same signs. Therefore, if the calculated (Xdi, Ydi)

and (xi, yi) meet this condition, the initial assumption is right and the

sign of Ty is +1; otherwise, the sign of Ty is −1.

4.3.3 Computation of R and Tx

After obtaining Ty, sx and the solution x = [T−1
y sxr1, T

−1
y sxr2, T

−1
y sxr3,

T−1
y sxTx, T

−1
y r4, T

−1
y r5, T

−1
y r6], some elements of the rotation matrix

(r1, r2, r3, r4, r5, r6) and Tx can be obtained in the same way as equation

(4.3.14).

The remaining three elements r7, r8, r9 of the rotation matrix R, can be

estimated by using the fact that the third row of R can be computed

as the cross product of the first two rows according to the form of R



Section 4.3. Parameter estimation for video-camera model 87

equation (4.2.3), which yields:

r7 = r2 ∗ r6 − r3 ∗ r5

r8 = r3 ∗ r4 − r1 ∗ r6

r9 = r1 ∗ r5 − r2 ∗ r4 (4.3.15)

4.3.4 Computations of f , Tz and k

The remaining parameters needed to be estimated include focal length

f , Tz and radial lens distortion coefficient k. To obtain these parame-

ters, a two step procedure is applied:

Step 1. For a particular point Pi in a set of N points {P1, ..., PN},

combining equations (4.2.5), (4.2.6) and (4.3.2), the following is

obtained:

Xdi(1 + kr2) = f
r1xwi + r2ywi + r3zwi + Tx

r7xwi + r8ywi + r9zwi + Tz

Ydi(1 + kr2) = f
r4xwi + r5ywi + r6zwi + Ty

r7xwi + r8ywi + r9zwi + Tz

(4.3.16)

if k is set to zero, then:

[
xi −Xdi

]  f

Tz

 = Xdiwi

[
yi − Ydi

]  f

Tz

 = Ydiwi (4.3.17)

where xi = r1xwi + r2ywi + r3zwi + Tx, yi = r4xwi + r5ywi + r6zwi + Ty

and wi = r7xwi + r8ywi + r9zwi.
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Extending equation (4.3.18) to N points, gives



x1 −Xd1

y1 − Yd1

·

·

xi −Xdi

yi − Ydi

·

·

xN −XdN

yN − YdN



 f

Tz

 =



Xd1w1

Yd1w1

·

·

Xdiwi

Ydiwi

·

·

XdNwN

YdNwN



(4.3.18)

Similarly, a least squares solution of

 f

Tz

 can be obtained by using

equation (4.3.10), with A =



x1 −Xd1

y1 − Yd1

·

·

xi −Xdi

yi − Ydi

·

·

xN −XdN

yN − YdN



which is a 2N × 2 ma-
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trix and b =



Xd1w1

Yd1w1

·

·

Xdiwi

Ydiwi

·

·

XdNwN

YdNwN



which is a 2N × 1 vector.

Step 2. In order to obtain more precise estimations of f , Tz and k, an

error function e(f, Tz, k) with respect to f , Tz and k is minimized,

which becomes:

e(f, Tz, k) =
N∑

i=1

(
Xdi(1 + kr2)− f r1xwi + r2ywi + r3zwi + Tx

r7xwi + r8ywi + r9zwi + Tz

)2

+
N∑

i=1

(
Ydi(1 + kr2)− f r4xwi + r5ywi + r6zwi + Ty

r7xwi + r8ywi + r9zwi + Tz

)2

(4.3.19)

e(f, Tz, k) is a non-linear function with respect to f , Tz and k and in or-

der to minimise it, some non-linear optimisation methods, such as the

steepest gradient method, Gaussian Newton method and Levenberg-

Marquardt method (damped Gaussian-Newton method) [98] can be

applied.

The optimisation method adopted in the fall detection system is the

Levenberg-Marquardt method. The Levenberg-Marquardt method ob-

tained its operating stability from the steepest descent method and
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gains its accelerated convergence in the minimum vicinity from the

Newton method as shown in [98]. The f , Tz and k values calculated in

Step 1 are used as the initial point values for the Levenberg-Marquardt

method. By minimising e(f, Tz, k), the difference between the undis-

torted image plane coordinate system obtained from two-dimensional

image pixel and that obtained from three-dimensional real world coor-

dinate system will be small, which indicates an accurate camera model

for the correspondence between two-dimensional image pixel coordinate

system and three-dimensional real world coordinate system.

At this stage, all the video-camera parameters are estimated and can

then be applied to obtain the corresponding three-dimensional types of

information as shown in the next chapter.

4.4 Summary

This chapter has given a technical overview of the video-camera calibra-

tion based on Tsai’s model. By applying the Tsai’s camera calibration

using a set of correspondent points (three-dimensional points and corre-

sponding two-dimensional image points), both the external and internal

parameters of a video camera can be estimated.

The Tsai camera model, together with estimated parameters can be

further used to obtain particular three-dimensional types of informa-

tion, such as the approximated three-dimensional person region, which

is presented in details in the next chapter.



Chapter 5

SINGLE GAUSSIAN MODEL

BASED FALL DETECTION

AND THREE-DIMENSIONAL

FEATURE EXTRACTION

5.1 Introduction

In this chapter, an effective new fall detection system for intelligent

indoor environments is proposed based on three-dimensional features

and a single Gaussian model. Initially, the codebook (CB) background

subtraction (BGS) method as described in [73] is performed on multi-

ple calibrated video-cameras (the video-camera calibration procedure

based on Tsai’s model is described in the previous Chapter 4 and will

be applied as an important step in this chapter). The approximated

three-dimensional person is then reconstructed and corresponding three-

dimensional features are extracted from the obtained BGS results. The

extracted three-dimensional features are applied to construct a single

Gaussian model using the maximum likelihood technique, which can be

used to distinguish falls and non-falls by comparing with a single preset

91
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threshold. The performance of the proposed fall detection system with

different threshold values is validated and the results are presented in

the experimental section.

5.2 Three-dimensional human body reconstruction and feature

extraction

In this section, the three-dimensional human body shape is reconstructed

from the multiple calibrated video-cameras and how the corresponding

three-dimensional features are extracted will be explained in more de-

tails in the following subsections.

5.2.1 Three-dimensional reconstruction of a human body based

multi-view

Once the video-camera parameters have been estimated (illustrated

in previous Chapter 4 section 4.3) the three-dimensional human body

shape can subsequently be reconstructed as presented in [99]. Firstly,

the room space (assumed to be cubic) is divided into non overlapping

blocks called ‘voxels block’, (Ow, xw, yw, zw) and (O, x, y, z) represent

the three-dimensional world coordinate system and three-dimensional

camera coordinate system respectively as shown in Figure 5.1. For a

two-dimensional image pixel with two-dimensional image pixel coordi-

nate P (Xf , Yf ), from equation (5.2.1) and (5.2.2),

Xu = Xd(1 + kr2)

Yu = Yd(1 + kr2) (5.2.1)
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Figure 5.1. Discretisation of the three-dimensional room space with
the dimension 5.64m x 2.8m x 3m.

where r =
√
X2

d + Y 2
d and k is the coefficient of the radial lens distortion

Xf = sxḋ
−1
x Xd + Cx

Yf = ḋ−1
y Yd + Cy (5.2.2)

where Cx and Cy are the center coordinates system of the captured

image, sx is the uncertainty scaling factor due to camera scanning and

acquisition time error, ḋx and ḋy represent the corresponding size of

a pixel, and are calculated as in equation (4.2.8). The image plane

coordinate system (Xu, Yu) of the corresponding ideally projected point

Pu on the image plane coordinate system can be obtained from (Xf , Yf )



Section 5.2. Three-dimensional human body reconstruction and feature extraction 94

as:

Xu = (Xf − Cx)ḋx

sx

(1 + kr2)

Yu = (Yf − Cy)ḋy(1 + kr2) (5.2.3)

The three-dimensional world coordinate system of the point Pu is (Xu, Yu, f)

where f is the focal length and represents the z-axis of every point on

the image plane converted using equation 5.2.4:


x

y

z

 = R


xw

yw

zw

 + T (5.2.4)

where R is a 3× 3 rotation matrix and T is a 3× 1 translation vector

The point Pu can be denoted as (Pxw, Pyw, Pzw).

Using the above, the origin point O(0, 0, 0), of the three-dimensional

camera coordinate system which represents the center of the camera

lens can also be converted to the three-dimensional world coordinate

system and is (Oxw, Oyw, Ozw).

Points (Pxw, Pyw, Pzw) and (Oxw, Oyw, Ozw) thus determine a three-dime-

nsional line (as the line OPu in Figure 5.2) in the three-dimensional

world coordinate system (xw, yw, zw) which intersects with voxels block

in three-dimensional space as:

xw −Oxw

Pxw −Oxw

= yw −Oyw

Pyw −Oyw

= zw −Ozw

Pzw −Ozw

= t (5.2.5)

where t is a scalar indicating the slope of the three-dimensional line.

Using this technique, a simple and efficient method is applied for ob-
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taining the voxels block with which the three-dimensional line intersects

which is illustrated as follows:

z

i- t h

2P

1P

x
y

uP

wz
wy

wx

O

wO

(a)

1P

2P

wlowywhighy

(b)

Figure 5.2. The procedure of obtaining the intersected voxel block for
the ith bin along the xw axis. (a) The three-dimensional line connecting
the video-camera coordinate system origin O and point Pu intersect
with the ith bin along the xw axis, the intersected line segment is P1P2
and (b) The coordinate system range of P1P2 in the yw direction is
denoted as [ywlow, ywhigh], every bin in [ywlow, ywhigh] is tested to obtain
the final intersected voxel person (marked in black).



Section 5.2. Three-dimensional human body reconstruction and feature extraction 96

1. If it is assumed that the size of a voxel block is [l × l × l] and

the number of voxels blocks along the xw, yw and zw directions

(which coincide with the length, width and height of the three-

dimensional space as shown in Figure 5.1 in three-dimensional

room space) are Nxw , Nyw and Nzw respectively, the room space

can then be divided into Nxw , Nyw and Nzw bins along the three

axes of the three-dimensional world coordinate system, with each

bin’s length being l.

2. For the ith bin along the xw direction, its xw coordinate range is

[(i − 1) ∗ l, i ∗ l]. As such (i − 1) ∗ l and i ∗ l can be substituted

into equation (5.2.5) to obtain the yw range of the line segment

in that bin, denoted as [ywlow, ywhigh] with

ywlow
= min{Oyw + (i− 1) ∗ l −Oxw

Pxw −Oxw

(Pyw −Oyw),

Oyw + i ∗ l −Oxw

Pxw −Oxw

(Pyw −Oyw)}

ywhigh
= max{Oyw + i ∗ l −Oxw

Pxw −Oxw

(Pyw −Oyw),

Oyw + (i− 1) ∗ l −Oxw

Pxw −Oxw

(Pyw −Oyw)} (5.2.6)

3. This can be converted to the bin index range [Iyw
low, I

yw
high] along the

yw axis as:

Iyw
low = int(ywlow

l
) + 1

Iyw
high = int(ywhigh

l
) + 1 (5.2.7)
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where int(.) represents the operation of getting the integer part of the

result.

4. Finally, [Iyw
low, I

yw
high] intersects with [1, Nyw] to obtain the bin index

range confined by the three-dimensional room space, denoted as

[Ĩyw
low, Ĩ

yw
high], if the intersection result is non-empty.

In a similar way, for every bin index from Ĩyw
low to Ĩyw

high, the corresponding

zw direction’s bin index range confined by the three-dimensional room

space (denoted as [Ĩzw
low, Ĩ

zw
high]) can be calculated. In the end, the bin

indices of voxels block which are intersected with the three-dimensional

line are obtained in the ith bin along the xw direction.

Figure 5.2 shows the procedure of obtaining the intersection of the vox-

els block in the ith bin along the xw direction with the line P1P2, the

same procedure is applied for every bin along this direction and to ob-

tain the voxels block with which the three-dimensional line intersects

in the three-dimensional room space.

For every pixel on the image, the voxel blocks intersected by the corre-

sponding three-dimensional line are obtained which form a voxel block

set corresponding to that pixel.

Multiple video-cameras of viewpoints are applied for three-dimensional

human body reconstruction (as shown in Figure 5.3 for a two video-

camera case).

For each video-camera the voxel person set which corresponding to the

pixels on the image plane initially obtained using the the CB method

based on BGS techniques as shown in Chapter 3 is applied for extrac-

tion of the moving object (the CB BGS techniques can achieve the best

performance in the indoor environments as shown in the experimental
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analysis in Chapter 3 Section 3.5).

The union of voxels person corresponding to pixels in the moving ob-

ject for the ith video-camera is then calculated and denoted as Vi
t =

{Vi
t,1, ......,Vi

t,P i}, where t is the captured time, i is the index of the

video-camera, Vi
t,1 represents voxels corresponding to the background

subtraction result of the i − th camera and Pi is the number of cam-

eras. The voxel person can be obtained by intersecting the union sets

of multiple camera as: V′
t = ∩C

i=1 Vi
t where V′

t denotes the voxel person

set corresponding to the three-dimensional reconstructed human body

shape and C is the number of video-cameras.

Silhouette 

extraction 2Voxel camera 

intersection space

Silhouette 

extraction 1

Voxel set2
Intersection of 

voxel sets
Voxel set 1

Camera 1 Camera 2

Figure 5.3. The procedure for three-dimensional voxels person recon-
struction from two video-camera measurements.
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5.2.2 Three-dimensional feature extraction

The next step is to evaluate both the centroid position and the orienta-

tion value (denoted as ∆t and θ), which reflects the three-dimensional

angle between the constructed human body and the ground floor plane.

The centroid of the voxel person at time t, ut = [xt, yt, zt] is evaluated

using:

ut = ( 1
P

)
P∑

j=1
V′

t,j (5.2.8)

where V′
t,j is the jth voxel block V′

t at time t.

Within a time interval of ∆t the centroid’s height information and dif-

ferences of the centroid’s horizontal and vertical position can both be

used as features for the fall recognition system. The horizontal varia-

tion of the centroid is calculated as:
√

(xt+∆t − xt)2 + (yt+∆t − yt)2 and

the vertical variation is: |zt+∆t − zt|. The covariance matrix used to

define the orientation information is:

( 1
P

)
P∑

j=1
(V′

t,j − ut)(V′
t,j − ut)T (5.2.9)

where (V′
t,j − ut) is the difference between the three-dimensional posi-

tion of the jth voxel and voxel person’s centroid.

If the largest eigenvector corresponding to the largest eigenvalue at time

t is eigenvect, then θt is calculated as:

θt = (eigenvect.⟨0, 0, 1⟩T ,−eigenvect.⟨0, 0, 1⟩T ) (5.2.10)

where the eigenvalues and eigenvector are calculated as shown in [100].

If the elderly person is upright, the value is near unity; if the elderly
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person for example lies on the ground, then the value is near zero.

This value and its difference during ∆t (|θt+∆t − θt|) are chosen as the

remaining elements of the feature vector.

Finally, a 5-dimensional feature vector is obtained, which consists of

the following five elements:

1. The centroid’s horizontal position change over ∆t

2. The centroid’s vertical position change over ∆t

3. The centroid’s vertical position at particular time t+∆t

4. The θt value change over ∆t

5. The θ at the particular time t+∆t

These five-dimensional features are chosen based on previous research

work done on characteristics of falls [47], [55], [59], [61], [66] and [68].

The centroid position and the three-dimensional orientation angle con-

tain sufficient information to distinguish fall and non-fall activity. For

example, when a person falls the centroid height is very low and the ori-

entation angle between the human body and the ground plane is almost

zero, which is different from other common activity, such as standing,

sitting and so on. It is for this reason that features (3) and (5) which

provide static information besides other dynamic phenomena that can

be observed for fall activities which includes the centroid horizontal and

vertical position changing dramatically over a short time interval (fall

is a fast activity). The human body will change from standing to lying

on the floor during the same interval. This provides the dynamic infor-

mation to distinguish fall and non-fall activities. It is for this reasons

that features (1), (2) and (4) were chosen. Note that a time interval of
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one second was chosen because fall activity usually occurs within one

second.

Therefore, in this fall detection system, ∆t is chosen to be 1s. The three-

dimensional video-camera features are obtained and the ones which

correspond to fall activities are used to construct models representing

falling, which are then used to distinguish fall and non-fall activities.

The construction of three different kinds of density models is shown in

the next section.

A single Gaussian model based on maximum likelihood parameter esti-

mation is used to distinguish unusual activity (falls) and is presented

in the next section.

5.3 Single Gaussian model based fall detection

The single Gaussian model, also known as the normal distribution, is

a widely used model for the probability distribution of continuous vari-

ables.

In the case of a single variable x, the Gaussian distribution can be

written in the form (5.3.1):

P (x | µ, σ2) = 1
(2πσ2) 1

2
exp

− 1
2σ2 (x− µ)2

 (5.3.1)

where µ is the mean and σ2 is the variance. An example of a single

Gaussian model with µ = 0 and σ2 = 1 is presented in Figure 5.4. For

a D-dimensional vector x, the multivariate Gaussian distribution takes
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Figure 5.4. The single variable single Gaussian model.

the form (5.3.2):

P (x | u,Σ) = 1
(2π)D

2

1
| Σ | 12

exp

− 1
2

(x− u)T Σ−1(x− u)

 (5.3.2)

where D is the dimension of variable x, u and Σ represent the mean

vector and covariance matrix respectively. Figure 5.5 shows an exam-

ple of two-dimensional single Gaussian distribution with u =

 0

0

 and

Σ =

 1 0

0 1

. If N dataset samples X = [x1, ...,xN ] are provided, these

samples can be used to fit a single Gaussian model. The correspond-

ing model parameters u and Σ can be obtained from the maximum
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Figure 5.5. The multivariate single Gaussian model.

likelihood (ML) function as:

d(ln((P (X))) =
N∑

i=1
ln(d(P (xi)))

=
N∑

i=1
ln( 1

(2π)d/2|Σ|1/2 exp(−
1
2

(xi − u)T Σ−1(xi − u)))

= −Nd
2

ln(2π)− N

2
ln |Σ| − 1

2

N∑
i=1

(xi − u)T Σ−1(xi − u)

(5.3.3)
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As mentioned in [101], to determine the ML estimators of u and Σ, the

first order differential of equation (5.3.3) is calculated as:

d ln((P (X)) = −N
2

d ln |Σ| − 1
2

dTr(Σ−1Z)

= −N
2

d ln |Σ| − 1
2
Tr(d(Σ−1)Z)− 1

2
Tr(Σ−1d(Z))

= −N
2
Tr(Σ−1dΣ) + 1

2
Tr(Σ−1d(Σ)Σ−1Z)

+ 1
2
Tr(Σ−1(

N∑
i=1

(xi − u)(du)T + (du)
N∑

i=1
(xi − u)T ))

= 1
2
Tr(Σ−1(dΣ)Σ−1(Z−NΣ)) + (du)T Σ−1

N∑
i=1

(xi − u)

= 1
2
Tr(Σ−1(dΣ)Σ−1(Z−NΣ)) +N(du)T Σ−1(x̄− u)

(5.3.4)

where d(·) is the differential operation, Tr(·) represents the trace of a

matrix and x̄, Z can be represented as:

x̄ = 1
N

N∑
i=1

xi

Z =
N∑

i=1
(xi − u)(xi − u)T (5.3.5)

The ML estimators of u and Σ, denoted as û and Σ̂, are then obtained

by making the first differential of equation (5.3.4) equal to zero to

obtain:

x̄− û = 0

Z−NΣ̂ = 0 (5.3.6)
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from which the ML estimators of û and Σ̂ are evaluated as:

û = 1
N

N∑
i=1

xi

Σ̂ = 1
N

N∑
i=1

(xi − u)(xi − u)T (5.3.7)

To prove that the obtained Σ̂ and û are the local maximum estima-

tor (instead of the local minimum estimator which can also make the

first differential of equation is equal to zero), the second differential of

equation (5.3.8) is calculated, which is:

d2 ln((P (X)) = 1
2
Tr(d(Σ−1)(dΣ)Σ−1(Z−NΣ))

+ 1
2
Tr(d(Σ−1)(dΣ)d(Σ−1)(Z−NΣ))

+ 1
2
Tr(Σ−1(dΣ)Σ−1(dZ−NdΣ))

+N (du)T (dΣ−1)(x̄− u)

− N(du)T Σ−1du (5.3.8)

For the obtained Σ̂ and û in equation (5.3.7), the second differential in

equation (5.3.8) becomes:

d2 ln((P (X)) = −N
2
Tr(Σ̂−1(dΣ)Σ̂−1(dΣ))−N(du)T Σ̂−1(du) (5.3.9)

which is always smaller than zero, so that the obtained Σ̂ and û are the

local maximum estimator of the ML function in equation (5.3.4).

For this particular fall detection problem, multiple fall activities are

initially simulated and three-dimensional video features are then ex-

tracted from the video sequences of fall activities to form the dataset

X. A single Gaussian model is then constructed from the dataset X
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and the constructed model is then used to distinguish fall and non-fall

activities. For a three-dimensional video feature vector (denoted as

x) of a certain type of activity, if P (x) (the probability value for the

single Gaussian model) is high, then x is from the supporting region

corresponding to X and the corresponding activity is regarded as a fall;

otherwise, the activity is regarded as a non-fall activity. A threshold

is set and the following formula shows the criteria of detecting falls for

an incoming feature vector x:

Activitydetection =


Fall P (x) ≥ threshold

NonFall P (x) < threshold
(5.3.10)

where a threshold value is set and if the corresponding probability den-

sity function of P (x) is no less than the threshold for an extracted

feature vector x, then the corresponding activity from which the fea-

ture vector is extracted belongs to fall activity; otherwise, the activity

belongs to non-fall activity.

As proposed in [102], direct calculation of the density estimate is avoided

to solve the problem of numerical instability (the determinant of the

covariance matrix is zero), only the Mahalanobis distance is used. The

Mahalanobis distance is defined as:

f(x) = (x− µ)T Σ−1(x− µ) (5.3.11)

The obtained Mahalanobis distance f(x) for an incoming feature x is

then compared with a proper threshold for detecting falls, the equation
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(5.3.10) and can be rewritten as:

Activitydetection =


Fall f(x) < threshold

NonFall f(x) ≥ threshold
(5.3.12)

The flowchart of the proposed single Gaussian model fall detection sys-

tem is presented in Figure 5.6. Online video frames are captured from

Capture video frames

(Video-camera 1 &2)

Codebook method 

based background 

subtraction

Human body analysis 

and 3D features 

extraction 

Information analysis for 

fall detection based 

Single Gaussian model 

(SGM)

Making a decision

R
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Figure 5.6. The flow-diagram of the proposed fall detection system
based single Gaussian model.
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two calibrated video-cameras and three-dimensional human body shape

is reconstructed. An efficient CB BGS algorithm is firstly applied to ex-

tract the human body foreground and some post-processing is applied

to improve the results.

Different features are extracted from the three-dimensional human body

reconstruction, which are used for classification purposes. These fea-

tures are fed into the single Gaussian model and by setting proper

threshold value are used to determine fall or non-fall when it happens.

In this research work, different threshold values for the Mahalanobis

distance are chosen and tested for the single Gaussian model to distin-

guishing fall and non-fall activities when they happen; the correspond-

ing results are illustrated in the next experimental analysis section.

5.4 Experimental analysis

5.4.1 Experimental description

The experiments are performed in the Intelligent Audio/Video Experi-

mental Laboratory within the Advanced Signal Processing Group (ASPG)

at Loughborough University. Two Basler A312fc video-cameras and the

Streampix 5 software were applied to capture the video sequences. The

recorded sequences were then processed using VC++ 6.0 (with OpenCV

1.0) and MATLAB R2010. Figure 5.7 shows the room scene captured

by two video-cameras.

5.4.2 Dataset collection and description

One person was invited to participate in the experiment, for which he

simulate 40 fall activities (including 10 frontal falls, 10 backward falls
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(a) (b)

Figure 5.7. The room’s scenes captured by two video-cameras. (a)
The room scene captured by video-camera 1, and (b) The room scene
captured by video-camera 2.

and 20 side falls), which are used to compose a training dataset for

model construction. He also simulate another 40 fall activities (which

also include 10 frontal falls, 10 backward falls and 20 side falls) and 40

non-fall activities (including 8 walking actions, 8 rapid moving actions,

8 bending actions, 8 sitting actions and 8 lying actions), which are used

for testing purpose, as outlines in Table 5.1. Each activity recorded

Table 5.1. The characteristic of dataset used
Activity Simulated activity

80 fall 20 front, 20
backward, 40 side

40 non-fall 8 walking, 8 rapid
moving, 8 bending,
8 sitting, 8 lying

is listed on Table 5.1 lasts about 1-2s (with frame rate 15fps). The

final output video format is audio video interleaved (AVI) and three-

dimensional features were extracted from the recorded video clips of

these activities for training and testing.



Section 5.4. Experimental analysis 110

5.4.3 Video-camera calibration and three-dimensional person con-

struction

For the calibration of each video-camera, a large chessboard is printed

and adhered to a plate, which is placed at a particular position in

the room and captured by the video-camera needed to be calibrated.

The corner points of the chessboard blocks are used for video-camera

calibration (these length and width of the chessboard plate are par-

allel to the world coordinate axes xw and yw). The two-dimensional

image pixel coordinates are obtained manually from the image. The

chessboard images captured by two video-cameras are presented in

Figure 5.8. The block corner points are used for video-camera cali-

bration and are marked as red stars. Table 5.2 and 5.3 describe the

Figure 5.8. The chessboard plate used for video-camera calibration
with the block corner points marked as red stars.

video-cameras parameters estimated from the corresponding points set.
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To construct the three-dimensional voxel person, the room is divided

Table 5.2. Calibrated video-camera parameters for video-camera no.1.
Parameters needed to be estimated Video-camera Calibration results[

r1 r2 r3
r4 r5 r6
r7 r8 r9

] [
−0.7001 − 0.7105 − 0.0717

−0.1772 0.2563 − 0.9502
0.6935 − 0.6525 − 0.3053

]
[Tx, Ty , Tz ] (mm) [760.4500, 1122.9000, 5620.2000]

f(mm) 7.5100

k 0.0033

sx 0.9719

Table 5.3. Calibrated video-camera parameters for video-camera no.2.
Parameters needed to be estimated Calibration results[

r1 r2 r3
r4 r5 r6
r7 r8 r9

] [
−0.4405 0.8959 0.0569
0.3853 0.1964 − 0.9016

−0.8190 − 0.3753 − 0.4318

]
[Tx, Ty , Tz ] (mm) [−1867.9000, 588.9082, 4325.1000]

f (mm) 6.2373

k 0.0028

sx 0.9462

into 94 × 74 × 50 blocks along the xw, yw and zw axes of the three-

dimensional world coordinate system with each block having the size

of 60mm × 60mm × 60mm. Figures 5.9, 5.10 and 5.11 show the BGS

techniques and three-dimensional person construction results for four

different activities. Initially, the CB method based on BGS techniques

is applied on both video-cameras to obtain the moving object, and

the three-dimensional person is then constructed from the BGS results

and the estimated video-camera parameters. After three-dimensional

person construction, the three-dimensional features are then extracted

and the features corresponding to fall activities are applied to build the

models for fall detection.
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(a) (b) (c) (d)

Figure 5.9. Four activities and corresponding background subtraction
results for video-camera 1. (a) Lying, (b) Bending, (c) Walking, and
(d) Crouching.

(a) (b) (c) (d)

Figure 5.10. Four activities and corresponding background subtrac-
tion results for video-camera 2. (a) Lying, (b) Bending, (c) Walking,
and (d) Crouching.
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(a)
(b)

(c) (d)

Figure 5.11. Three-dimensional person construction by using back-
ground subtraction results from video-cameras 1. and 2. (a) Lying, (b)
Stretching, (c) Walking, and (d) Crouching.

5.4.4 Single Gaussian model analysis

In this section, the performance of the single Gaussian model is anal-

ysed for the recorded dataset. This includes 40 fall activities (including

10 frontal falls, 10 backward falls and 20 side falls), which are used to

compose a training dataset for model construction. Also another 40

fall activities (which also include 10 frontal falls, 10 backward falls and

20 side falls) and 40 non-fall activities (including 8 walking actions, 8

rapid moving actions, 8 bending actions, 8 sitting actions and 8 lying
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actions), were recorded and used for testing purpose, as outlined in Ta-

ble 5.1.

Figure 5.12 (a) shows the two-dimensional principle component analy-

sis (PCA) [60] projections of the features extracted from 80 fall activi-

ties and 40 non-fall activities, and Figure 5.12 (b) shows that a single

Gaussian model can be applied to fit the projected two-dimensional fea-

tures corresponding to falling activities; different contours of the single

Gaussian model corresponding to different Mahalanobis distance values

are plotted and the projected fall features and non-fall features can be

successfully distinguished by a proper contour (with the Mahalanobis

distance being 8).



Section 5.4. Experimental analysis 115

(a)

(b)

Figure 5.12. (a) Projected two-dimensional feature by principle com-
ponent analysis, and (b) The projected two-dimensional features by
PCA and the fitted single Gaussian model with different Mahalanobis
distances.

In order to analyse the performance of the single Gaussian model on

the training and testing datasets with full-dimensional features, Re-

ceiver operating characteristic (ROC) analysis [102] is applied for the

single Gaussian model. Different thresholds are chosen and the true

positive rate (TPR), which represents the percentage of falls which are

correctly detected and false negative rate (FNR), which represents the
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percentage of non-falls which are wrongly detected as falls are calcu-

lated for these thresholds, and the results are plotted as a ROC curve

in Figure 5.13. To reveal more details, the performance with different

thresholds corresponding to the Mahalanobis distances are listed in Ta-

ble 5.4. Ideally, for a perfect fall detection system, TPR should be 1

and FNR should be 0.
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Figure 5.13. The ROC curve of the single Gaussian model.

Table 5.4. The performance of the single Gaussian model with dif-
ferent thresholds value (The experiment is performed by applying the
5-dimensional feature (not the 2-dimensional features obtained from
PCA)).

Thresholds 0 10 20 30 40 50 60 70 80 90 100

TPR 1 1 1 1 1 1 1 0.975 0.95 0.925 0.85

FNR 1 0.25 0.05 0 0 0 0 0 0 0 0
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From Figure 5.13 and Table 5.4, it can be observed that the single

Gaussian model can effectively distinguish different fall activities and

non-fall activities at a proper threshold setting (between 30 and 60

for the Mahalanobis distance as shown in Table 5.4 and Figure 5.12

(b)). This is due to the fact that the obtained five-dimensional features

based on three-dimensional person construction are distinguishable for

fall and non-fall activities, as shown in Figure 5.12 (a) for the projected

two-dimensional images.

5.5 Summary

This chapter proposed a new fall detection scheme based on three-

dimensional human body features extraction and a single Gaussian

model to distinguish unusual behaviour (falls) for enclosed environ-

ments from multiple calibrated video-camera.

A three-dimensional person was initially constructed from the obtained

codebook background subtraction results from multiple calibrated video-

cameras.

The position, velocity and orientation information corresponding to

fall activities were then extracted from the three-dimensional human

body to build the Gaussian model for distinguishing fall activities and

non-fall activities. The performance of the single Gaussian model with

different thresholds was validated and results show that the single Gaus-

sian model can effectively distinguish falls and non-falls with the proper

threshold setting.

The shortcoming of this process lies in the fact that in order to obtain

the three-dimensional person construction results and extract the corre-

sponding features, at least two video-cameras are used thus increasing
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the financial costs; furthermore, the video-cameras need to be individ-

ually calibrated and the room dimension also needs to be measured

beforehand. This will also cause inconvenience in the real application.

The level of Computational complexity in obtaining the pixels voxel

correspondence limits its suitability for real time application.

Therefore, to obtain a simple but effective fall detection system, a two-

dimensional postures recognition based fall detection scheme is pro-

posed. This scheme is implemented using only one un-calibrated video-

camera, which can effectively distinguish fall activities and non-fall ac-

tivities performed in different directions.



Chapter 6

SUPERVISED MULTI-CLASS

CLASSIFIER FOR FALL

DETECTION BASED ON

POSTURE FEATURES

6.1 Introduction

This chapter describes the development of a new effective fall detec-

tion system based on posture features. Based on the codebook (CB)

method based background subtraction (BGS) technique for segmenting

the human body posture, in addition to new advanced post-processing

techniques, an improved background subtraction technique is applied

for a real home indoor environment.

Special types of features which can be used to describe the segmented

human body posture are then extracted. A supervised fall detection

system is proposed, the posture features are obtained and can be fed

into an efficient supervised classifier. This system uses a multi-class sup-

port vector machine (MCSVM) classifier, for which the features from

various types of postures simulated by different persons are used to

119
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build the corresponding classifier for posture classification. The results

of the classifier, together with certain rules derived from characteristics

of fall activities, can then be used for detecting whether a fall happens

or not.

Results based on experimental studies are used to assess the fall detec-

tion performance in a real home environment.

6.2 Codebook method reconsidering based BGS techniques

In Chapter 3 Section 3.2, different BGS techniques have been discussed

and the results show that an efficient codebook based BGS algorithm

can be employed to obtain the best performance of extracting the fore-

ground object in indoor environments.

Post-processing techniques which include (a blob operation and a mor-

phological technique) were applied to obtain an improved background

subtraction result. However, in a real home environment, three prob-

lems arise:

1. Sometimes the furniture (chair or table) in the home environment

will be moved.

2. The person may be static in the room for a long period of time

(for example sitting on a chair or lying down on a couch) and the

static human body region will be absorbed into the background.

3. The light condition may change dramatically when a light is

turned on/off, or curtain is opened.

These three problems will definitely generate large background sub-

traction errors, which can not be solved by the basic post-processing
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technique as mentioned in Chapter 3 Section 3.4.

In order to obtain good background subtraction results when these prob-

lems occur, some other post-processing techniques must be applied.

6.2.1 Advanced post-processing technique based codebook method

In this research, a three step blob operation strategy is adopted after the

codebook method based BGS technique procedure in order to remove

the errors that are introduced as a result of the movement of furniture

and the long static period for an elderly person. This three stage blob

operation strategy is:

Step 1. Blob merging

In this stage, a blob merging operation is applied on the original back-

ground subtraction result. If the distance between two blobs is less

than a pre-set threshold, these two blobs will be merged together (as

shown in Figure 6.1 (d), where blobs B2 and B3 contain several sepa-

rate blobs which are near to each other).

The distance between two blobs is defined as the minimum 4-distance

[75] between two rectangles which enclose the blobs given by:

Distance(B1, B2) = minp1∈R1,p2∈R2d4(p1, p2) (6.2.1)

where B1 and B2 are two blobs, R1 and R2 are two rectangles which

enclose them, and p1 and p2 are points belonging to R1 and R2. Figure

6.2 shows examples of the distance between two blobs with respect to

their positions.

Step 2. Human body blob determination:
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(a) (b)

(c) (d)

(e)

Figure 6.1. The background subtraction and the human body blob de-
termination. (a) Background image. (b) Image with object. (c) Frame
difference result obtained from two consecutive frames. (d) Original
background subtraction result, there are three large blobs (B1, B2 and
B3) after the blob merging operation and they are marked red, green
and yellow, and the blue colour represents the small noise like blobs.
(e) The final result obtained human body blob.

After the blobs merging step, small blobs are removed by the post-

processing technique as previously mentioned in Chapter 3 Section 3.4.

According to the number of remaining blobs and assuming that the el-

derly person lives alone, implying that there should be only one human

moving object, three possible cases are given as follows:

Case 1: The number of remaining blobs is zero, which means that no
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Figure 6.2. Four cases of the distance between two blobs with respect
to their relative positions.

large foreground object (human body) is in the scene and the

room is empty.

Case 2: The number of remaining blobs is one, which indicates that

the blob represents the human body region.

Case 3: The number of blobs after blob merging is greater than one,

which suggesting that there are some other regions (such as the

chair regions at the new and previous positions as shown in Figure

6.1 (d)) which are mistaken as a foreground object. In this case,

the human body blob is determined by using the frame difference

technique as:



Section 6.2. Codebook method reconsidering based BGS techniques 124

Dt(x, y) = |It(x, y)− It−1(x, y)| (6.2.2)

where It(x, y) and It−1(x, y) are the gray level pixel values of consecutive

frames It and It−1 at position (x, y), | · | denotes the operation to obtain

the absolute value and Dt(x, y) is the frame differencing result for the

position (x, y) at time t.

Frame differencing is applied to obtain the moving pixels Figure 6.1 (c)

and the blob with the greatest number of moving pixels is taken as the

human body blob. From Figure 6.1 (e), it can be seen that the blob

B1 contains the most moving pixels and so B1 is finally taken as the

human body blobs.

Step 3. Selective updating:

As shown in Figure 6.1 (e), the non-human body blobs B2 and B3 are

removed from the final background subtraction result, and their pixel

values form new codewords to be added to the background codebook

immediately for background model updating. In this case, no updating

is performed for pixels in the human body blob.

Furthermore, the errors generated by the movement of furniture are

absorbed into the background model immediately and a better back-

ground subtraction result is obtained. Besides, the foreground human

body object is not absorbed into the background even though he/she

has been static for a long time.
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6.2.2 Background model retraining for the sudden illumination

change

The trained background CB model can be affected in various ways, in-

cluding dramatic change in illumination due to for example a sudden

turning on/off the light. When this occurs, the CB model needs to be

re-trained because the previous CB is no longer available. The dramatic

change in illumination can be detected by frame difference results, if

the value of the active pixels in an image is larger than a threshold

(50% is set), then the dramatic global illumination change is said to

have occurred and the background model is retrained.

By using selective updating and background model retraining, the prac-

tical problems (movement of the furniture, the elderly person being sta-

tionary for a long period and sudden light change) existing in the real

home environment can be solved to obtain a better human body region

extraction result, which is used for the next step in the posture feature

extraction.

6.3 Features used for posture description

The extracted human body postures can be described in detail by cer-

tain types of features. These are then fed into some supervised classi-

fier for classification. In this research, two types of features are applied,

they are ellipse features and projection histogram features.

The first set of features extracted from the human body silhouette is

obtained from ellipse fitting proposed in [40]. This is, a moment based

approach which is applied to fit the ellipse features. For a binary image
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f(x, y), the moments are given as:

mpq =
∑
x,y

xpyqf(x, y) with p, q = 0, 1, 2, 3... (6.3.1)

By using the first and zero order spatial moments, the center of the

ellipse can be obtained (x̄, ȳ) as: x̄ = m10/m00 and ȳ = m01/m00. The

angle between the major axis of the person and the horizontal axis x

gives the orientation of the ellipse, and it is computed as:

θ = 1
2
arctan( 2u11

u20 − u02
) (6.3.2)

where the central moment can be calculated as:

upq =
∑
x,y

(x− x̄)p(y − ȳ)qf(x, y) with p, q = 0, 1, 2, 3... (6.3.3)

The remaining parameters to describe an ellipse are the major and mi-

nor semi-axes a and b respectively, these two parameters are calculated

by evaluating the greatest and least moments of inertia, which are de-

noted here as Imax and Imin. They can be obtained by evaluating the

eigenvalues of the covariance matrix:

J =

 u20 u11

u11 u02

 (6.3.4)

Imin and Imax are the smallest and largest eigenvalues of matrix J

respectively, given as:

Imin =
u20 + u02 −

√
(u20 − u02)2 + 4u2

11

2
(6.3.5)
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Imax =
u20 + u02 +

√
(u20 − u02)2 + 4u2

11

2
(6.3.6)

After obtaining Imin and Imax, the major semi-axis a and minor semi-

axis b can be calculated using the following equations:

a = (4/π)1/4
[
I(max)3

Imin

]1/8

(6.3.7)

b = (4/π)1/4
[
I(min)3

Imax

]1/8

(6.3.8)

The results from the ellipse fitting experiment are shown in Figure

6.3. For comparison, the simple blob-based rectangle fitting result used

(a) (b) (c) (d)

Figure 6.3. The rectangle fitting and ellipse fitting results. (a) Orig-
inal image for a person with a broom. (b) Background subtraction
based codebook result. (c) Rectangle fitting. (d) Ellipse fitting result.

in [61] is also presented, which shows that the ellipse fitting is better fit-

ted to the human body region for a person with a broom. After ellipse

fitting, the orientation of the ellipse (denoted as θ) and the ratio be-

tween a and b (denoted as ρ) are taken as features to describe a human

body posture’s general property. Features obtained from the ellipse fit-

ting can describe postures in a general way, however, it is evident that

2-dimensional features alone can not fully describe postures in detail for

distinguishing different postures. In order for a more detailed posture

description, other features such as the projection histogram features
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discussed in the next subsection, are needed.

6.3.1 Projection histogram features

A commonly used feature which describes the posture’s detail infor-

mation is the projection histogram [61], [62] and [49]. This feature is

computationally efficient which can be applied in a real time applica-

tion [103], while achieving a good performance for posture classification

purpose of the supervised classifier. In this research, the projection di-

rections of the corresponding projection histogram are along the major

and minor axes of the fitted ellipse. One example is shown in Figure

6.4 where the projection histograms of the long and short axes of the

fitted ellipses are obtained for different types of postures. The results

show that there are differences in the patterns within the histograms

between different postures, which are helpful for posture classification.

The numbers of bins of the major axis projection and minor axis pro-

jection histograms are all set to 30 for this research. This value was

found empirically and provides suitable detail whilst not introducing

undue complexity.

For particular bins of the projection histograms along the ellipse’s major

and minor axes, their values are calculated as in (6.3.9) and (6.3.10):

binmajor(i) = NoFPmajor(i)
Lmajor

(6.3.9)

binminor(i) = NoFPminor(i)
Lminor

(6.3.10)

where i is the index of bins, NoFPmajor(i) and NoFPminor(i) denote

the number of foreground pixels along the i− th projection line in the

directions of the major and minor axes respectively. The results are nor-



Section 6.3. Features used for posture description 129

(a)

(b)

(c)

(d)

Figure 6.4. Projection histograms of four different types of postures.
(a) Original frames. (b) Background subtraction results with fitted
ellipses and projection lines. (c) Projection histograms along the major
axis of the ellipse. (d) Projection histograms along the minor axis of the
ellipse. The horizontal axis of the projection histogram represents the
index of bins and the vertical axis represents the value of the projection
histogram.
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malised by Lmajor and Lminor, which represent the length of the major

and minor axes. The purpose of the normalisation is to make sure this

feature is invariant to the size of the foreground human body region

(which will vary according to a person’s distance from the camera).

The projection histogram features, together with two features obtained

from the fitted ellipse result: the ratio between the major and minor

axes rho and the orientation angle theta, can be applied for posture clas-

sification by a support vector machine, which can deal with both multi-

class classification and high-dimensionality features. This is will lead to

overcome the problem with single Gussain model that can not handle

with the multiple classes classification problem and high-dimensionality

features. The results are presented in the experiment section.

6.4 Support vector machine based supervised learning algorithm

The extracted features for describing the postures are then be fed into

the supervised classifier. These are then used for the detection of dif-

ferent postures. In this section, supervised learning methods are de-

scribed.

6.4.1 Support vector machine based supervised classifier

6.4.1.1 2-class support vector machine

A support vector machine (SVM) is a recently emerging classification

technique based on statistical learning theory [104] and it has good

generalisation performance compared with the traditional classifica-

tion methods, such as the nearest neighbour method and neural net-

work based techniques. For a two class classification problem with



Section 6.4. Support vector machine based supervised learning algorithm 131

the training dataset: {xi, yi}, yi ∈ {−1, 1},xi ∈ Rd, a hyperplane

h(x) = w·Φ(x)+b in a particular feature space is estimated to separate

these two classes while making the margin (the smallest distance be-

tween the hyperplane and any of the samples) maximum, as presented

in Figure 6.5.

-b

W

Origin

m
argin

h(x)=w. Φ(x)+b

Figure 6.5. The illustration of a hyperplane to separate samples from
two classes (white and black) in a particular feature space.

In order to obtain the hyperplane, the following quadratic problem

needs to be solved to obtain the hyperplane’s parameters w and b:

min
w,ξ,b

1
2
∥w∥2 + C

∑
i

ξi

subject to yi(w · Φ(xi)− b) ≥ 1− ξi, ξi ≥ 0 (6.4.1)

where w and b are the parameters determining a hyperplane, ξ =

[ξ1, ..., ξN ] are slack variables to cope with noise, C is called a penalty

parameter which balances the noises and the margin and Φ(·) is a map-
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ping operation which maps the original sample into a feature space for

better separation purpose as mentioned in [60] and [104].

A Lagrangian function L is obtained by introducing multipliers α =

[α1, ..., αN ], β = [β1, ..., βN ] as:

L(w, ξ, b, α, β) = 1
2
∥ w ∥2 +C

∑
i

ξi −
∑

i

αi(yi(w · Φ(xi) + b)− 1 + ξi)−
∑

i

βiξi

(6.4.2)

The derivatives of the above Lagrangian function with respect to w, ξ

and b are set to zeros, which yields:

w =
∑

i

αiyiΦ(xi)

αi = C − βi∑
i

αiyi = 0 (6.4.3)

From the results of (6.4.2), the Lagrangian function L in (6.4.6) then

becomes:

L(w, ξ, b, α, β) = 1
2
∥ w ∥2 +C

∑
i

ξi −
∑

i

αi(yi(w · Φ(xi) + b)− 1 + ξi)−
∑

i

βiξi

= 1
2
∑
ij

αiαjyiyjΦ(xi) · Φ(xj) + C
∑

i

ξi −
∑
ij

αiαjyiyjΦ(xi) · Φ(xj)

− b
∑

i

αiyi +
∑

i

αi −
∑

i

αiξi −
∑

i

βiξi

= −1
2
∑
ij

αiαjyiyjΦ(xi) · Φ(xj) +
∑

i

αi (6.4.4)

According to [105], a dual form of the problem (6.4.1) is obtained by

maximizing (6.4.4) with respect to α considering the constraints of α
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in (6.4.3). Thus,

max
α

− 1
2
∑
ij

αiαjyiyjΦ(xi) · Φ(xj) +
∑

i

αi

subject to 0 ≤ αi ≤ C,
∑

i

αiyi = 1 (6.4.5)

can be obtained. Besides, a Gaussian kernel function k(x,y) is applied

to replace the dot product of samples in the feature space (Φ(x) ·Φ(y)),

and (6.4.6) is rewritten as:

max
α

− 1
2
∑
ij

αiαjyiyjk(xi,xj) +
∑

i

αi

subject to 0 ≤ αi ≤ C,
∑

i

yiαi = 1 (6.4.6)

From the relationship of w and α as mentioned in (6.4.3), the solution

of α in (6.4.5) (denoted as α∗) is related to the solution of w in (6.4.1)

(denoted as w∗) with:

w∗ =
∑

i

α∗
i yiΦ(xi) (6.4.7)

The solution of parameter b in (6.4.1) (denoted as b∗) can be estimated

from the Karush-Kuhn-Tucker (KKT) conditions as mentioned in [105],

from which it follows that:

α∗
i (yi(w∗ · Φ(xi) + b∗)− 1 + ξ∗

i ) = 0

β∗
i ξ

∗
i = 0 (6.4.8)
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where ξ∗
i and β∗

i denote the ith optimal solutions of ξ and β. If α∗
i ̸= 0

and β∗
i ̸= 0, then from the KKT conditions in (6.4.8):

b∗ = yi −w∗ · Φ(xi) (6.4.9)

if w∗ is replaced with ∑i α
∗
i yiΦ(xi) by (6.4.7), then

b∗ = yi −
∑

j

α∗
jyj(Φ(xj) · Φ(xi))

= yi −
∑

j

α∗
jyjk(xj,xi) (6.4.10)

Finally, after α∗ and b∗ are obtained, the hyperplane can be determined

as:

h(x) =
∑

i

α∗
i yik(xi,x) + b∗ (6.4.11)

This value of h(x) is then used to determine to which class the sample

x belongs. For an incoming test sample x, if h(x) ≥ 0, then the corre-

sponding symbol y is then determined as ‘+1’ and x belongs to the ‘+1’

class; or else, the symbol value is -1 and x belongs to the ‘−1’ class.

6.4.1.2 Directed acyclic graph support vector machine for multi-class classifi-

cation

The traditional 2-class SVM can only solve the 2-class classification

problem, hence the need to consider a multi-class approach. In addition,

several schemes have been developed to solve the multi-class classifica-

tion problem, the representative one-versus-one (1-v-1) cases [106] and

the one-versus-rest (1-v-r) [104]. In comparison to these two methods,

a new concept called the directed acyclic graph support vector machine

(DAGSVM) was introduced by Platt et al. [107], which has a theoreti-
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cally defined generalisation error bound and is more efficient than 1-v-1

and 1-v-r schemes with respect to the training and computation time.

This DAGSVM is the same as operating on a list, initialised with all

classes. Therefore, for input sample data x, it is firstly evaluated by a

2-class support vector machine corresponding to the first and last class

element. After the evaluation by the 2-class support vector machine,

the sample x is determined to be one of the two classes and the class

element that x does not belong to will be eliminated from the list. This

procedure is repeated until only one class element remains in the list

and this class element is taken as the class to which x belongs. In this

way, it can be seen that for a problem with N classes, N-1 decisions will

be evaluated in order to derive an answer.

An example of the decision procedure of the DAGSVM for a four class

classification problem is shown in Figure 6.6. This figure presents a1234
not1 not4123234

not3not1not4not2

122334
1234

1 vs 4

1 vs32 vs 4

3 vs 4 2 vs 3 1 vs 2

Figure 6.6. The decision process for the traditional DAGSVM for a
four class problem [107]
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tree-like structure and each node in this structure corresponds to a 2-

class SVM. The decision process just follows the structure and is based

on a sequence of 2-class operations, a decision is made when a bottom

node is reached.

As for all other classifiers, one step for training the DAGSVM classifier

is to determine optimal parameters so that the classifier can achieve

the optimal performance. There are two sets of parameters required to

be tuned for the DAGSVM classifier:

1. The list sequence for the DAGSVM, which is equivalent to the

sequence of different 2-class support vector machines for making

a decision as shown in Figure 6.6; the list sequence is related to

the performance of the DAGSVM and a proper list sequence is

essential to guarantee good performance.

2. The parameters of each 2-class SVM node, including the kernel

parameters (Gaussian kernel is used here for non-linear classifica-

tion) and the penalty parameter in the 2-class SVM scheme, also

need to be tuned optimally.

Although traditional cross-validation [60] can be used to find the opti-

mal parameters, when there is a large number of parameters needed to

be tuned, it proves to be time consuming. As such, in this research, a

new parameter optimisation scheme is proposed to reduce the training

time to a large extent. For tuning the kernel parameters, the concept

of distance between two classes (DBTC) is exploited, as shown in [108].

The calculation of DBTC in a feature space with n1 and n2 samples for
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two classes is defined as follows:

DBTC = ∥mΦ
1 −mΦ

2 ∥2

= (mΦ
1 −mΦ

2 )T (mΦ
1 −mΦ

2 )

= 1
n2

1

n1∑
i=1

n1∑
j=1

k(x1,i,x1,j) + 1
n2

2

n2∑
i=1

n2∑
j=1

k(x2,i,x2,j)

− 2
n1n2

n1∑
i=1

n2∑
j=1

k(x1,i,x2,j)

(6.4.12)

where k(x,y) is the kernel function mentioned previously and mΦ
1 ,

mΦ
2 are the means of the two classes in the feature space: mΦ

1 =
1

n1

∑n1
i=1 Φ(x1,i) and mΦ

2 = 1
n2

∑n2
i=1 Φ(x2,i). For the Gaussian kernel

used in this work, the following equation holds:

DBTC = (2− 2
n1n2

n1∑
i=1

n2∑
j=1

k(x1,i,x2,j))

− (1− 1
n2

1

n1∑
i=1

n1∑
j=1

k(x1,i,x1,j))

− (1− 1
n2

2

n2∑
i=1

n2∑
j=1

k(x2,i,x2,j))

= d(C1, C2)
n1n2

− d(C1, C1)
n2

1
− d(C2, C2)

n2
2

(6.4.13)

where d(Ci, Cj) is calculated as: d(Ci, Cj) = ∑
x∈Ci

∑
y∈Cj
∥Φ(x) −

Φ(y)∥2, which measure the distance between two classes.

From equation (6.4.13), it can be observed that a large DBTC value

means a large inter-distance value d(Ci, Cj) and small intra-distance

values d(Ci, Ci) and d(Cj, Cj), imply, the two classes have high separa-

tion level.

For each two class SVM, the optimal Gaussian kernel parameter can

then be obtained by maximising the DBTC value between the corre-

sponding two classes, which reduces the training time because compared
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with the traditional cross-validation method [101] to tune this parame-

ter, the time consuming 2-class SVM training procedure is avoided. The

cross-validation method is still employed in tuning the penalty parame-

ter of the 2-class SVM. Assuming that the parameters for every 2-class

SVM node have already been tuned, the 2-class SVMs are trained and

the DBTCs are calculated under the tuned parameters to obtain two

lists:

DBTClist = DBTC1,1, ..., DBTC1,n, ..., DBTCi,i+1, ..., DBTCi,n, ..., DBTCn−1,n

SVMlist = SVM1,1, ..., SV M1,n, ..., SV Mi,i+1, ..., SV Mi,n, ..., SV Mn−1,n(6.4.14)

For an incoming sample, the sequence of different 2-class support vec-

tor machines for making a decision is determined by DBTClist, which

is summarised in Table 6.1 and a four class example is presented in

Figure 6.7. The procedure in Table 6.1 guarantees that at every step,

Table 6.1. Optimal sequence of 2-class support vector machines for
decision making

Step 1 Initially, the largest value in the DBTClist is chosen.
Assuming the largest value is DBTCx,y, SVMx,y is
then used to make a decision.

Step 2 After the decision, one class is eliminated. Assuming
the eliminated class is x, all the DBTCs and SVMs
whose indexes contain x will be eliminated from the
DBTClist and SVMlist.

Step 3 Choosing the largest value among the DBTC values
whose index contain y for the remaining elements in
the DBTClist. And the corresponding SVM in the
SVMlist will be applied for the second round
classification.

Step 4 Repeating step 2-3, until one element is left in
DBTClist and SVMlist, and the final classification is
then made.
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the two classes used to build up the 2-class SVM for classification are

always the most separable (with the largest DBTC value in the current

DBTClist), thus good generalisation performance can be achieved. One

other merit of this decision making scheme is that it avoids the trial

of every possible list sequence of DAGSVM for cross validation, thus

greatly saving on the parameter optimization time. For this particular
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• Assuming the final classification 

result is class 1

Class 1

Figure 6.7. The decision process for the DAGSVM based on the
DBTC values for a four class example, the DBTC value between classes
i and j is denoted as Dij.

fall detection problem, the projection histogram features of a posture

and features obtained from the posture’s ellipse fitting result (the ratio

between the major and minor axes rho and the orientation angle theta)

are used for DAGSVM construction or posture classification.

In this sub-section, a supervised classification method for classifying

different types of postures for fall detection is proposed.
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The classification results, together with certain rules can be used to-

gether to construct a robust fall detection system, the corresponding

rules are presented in the next section.

6.5 Rules used for fall detection

After classifying a particular posture by a supervised classifier, some

rules can be used to further confirm whether a fall has happened or not,

these rules and the results obtained from postures are used together to

achieve a robust fall detection system.

A fall activity is determined if the following three rules are met:

1. The posture is classified as ‘lie’ or ‘bend’.

2. The posture is inside the ground region.

3. The above two conditions are kept for a certain time, which ex-

ceeds a preset time threshold (20s is used).

These three rules are set according to the characteristic of fall activity,

in most cases, fall activities end up with a ‘lie’ posture and this ‘lie’

posture usually remains for a certain time due to the period of immo-

bility of an elderly person after the fall. Compared to lying on the

bed/sofa, the posture should be inside the ground region (or at least

a large part is inside the ground region). Also it is considered that an

elderly person rarely ‘bends’ for a long time in the ground region (here

the ‘bend’ class is defined as postures of bending to fasten a shoe lace

or bending to pick up something, which very commonly occurs in an

elderly person’s daily life). So that if a ‘bend’ posture is detected in

the ground region for a certain time, it is also regarded as an abnormal
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activity (this can happen when an elderly person falls while ending up

with a bend-like posture, an example will be given in the experimental

section).

In order to detect falls by the three rules, the ground region needs to be

determined initially. Before the fall detection phase, floor detection is

carried out. In this phase, when the posture is classified as stand or sit,

the region nearby the lower extreme point of the ellipse (an 8× 8 block

is used here) is marked as the ground region. Figure 6.8 shows the

result of floor detection. Note, as shown in (d) and (e), sometimes the

furniture is moved and the floor region has to be updated accordingly.

The detected floor region is extremely helpful to distinguish a fall on

the floor from lying on a sofa, which is shown in the experimental part.

The flowchart of the proposed supervised fall detection system is pre-

sented in Figure 6.9. An efficient codebook background subtraction

algorithm is initially applied to extract the human body foreground

and some post-processing is applied to improve the results. From the

extracted foreground silhouette, features are extracted from the fitted

ellipse and projection histogram, which are used for classification pur-

poses. These features are fed into the DAGSVM (which is trained from

a dataset containing features extracted from different postures in dif-

ferent orientations) and the extracted foreground silhouette is classified

as one of four different postures (bend, lie, sit and stand). The classi-

fication results, together with the detected floor information, are then

used to determine fall or non-fall activities.

The evaluations of performance of this supervised fall detection systems

are presented in the experimental part.
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(a) (b)

(c) (d)

(e)

Figure 6.8. The floor detection results. (a) Original image; (b) De-
tected floor region while a person is walking; (c) Floor detection result
after some time; (d) More than one blob after the furniture is moved,
the moving blob (human body) is marked in red, the static blob (furni-
ture) is marked green; (e) The updated floor region result after moving
furniture. The region nearby the new position of the furniture is un-
marked and that nearby the person’s feet is marked as the floor region.

6.6 Experimental analysis

In this section, the performance of the proposed supervised fall detec-

tion system will be presented. The experiments were carried out in a

simulated real elderly home environment. A USB camera was used for

recording the real video sequence with the image size of 320× 240, the

recorded video sequence is processed by using VC++ 6.0 (with OpenCv

library 1.0) and MATLAB on an Intel(R) Core(TM)2 Duo CPU lap-
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Ellipse fitting and feature extractionClassification by improved DAGSVM

Stand Orsit
Classification by improved DAGSVMLie

The posture is inside the ground regain and remaining for a long time

No ground markingMark the region nearby the lower point of the ellipse as ground

Background model is trained by a number of training frames 

NoYes Floor detection phase

BendingPosture is inside the ground region and remains for a long time
NoYes NoYes

YesNoNoYes

Classifier is trained by posture dataset

Fall detection phase
Fall Non-fall

Stand or sit
Non-fall Fall

Figure 6.9. The flow chart of the proposed supervised DAGSVM
classifier based fall detection system.

top with 1.00GB Memory. Figure 6.10 shows the camera used in the

experiment and the background image it records.
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(a) (b)

Figure 6.10. (a) The USB camera used in the experimental room
environment. (b) The experimental environment.

6.6.1 Background subtraction results

Some background subtraction results in this more realistic home en-

vironment are shown in Figures 6.11, 6.12 and 6.13, in which three

challenging scenarios which occur commonly in a home environment

are analysed. Initially, a short video-camera clip which contains 100

frames is applied for training the original background model, which

will be updated with the evolution of time.

Figure 6.11 shows the background subtraction results at different times

of day with gradual light change. In Figure 6.11 images (a) and (c) show

a frame captured at noon time and the corresponding background sub-

traction result. Figure 6.12 shows the background subtraction results

in the presence of moving objects. The background model is updated to

cope with the gradual light change and the results are shown in (b) and

(d), where (b) is a frame captured later in the afternoon and (d) is the

background subtraction result with the updated background model. (a)

shows four frames sampled in a short video sequence, which shows that

a person moves the table and fruit plate. (b) shows the background sub-

traction results by directly applying the codebook background subtrac-
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(a) (b)

(c) (d)

Figure 6.11. Background subtraction results at different times of a
day; (a) and (c) show an original frame captured at noon time and
the corresponding BGS result; (b) is a frame captured in the afternoon
with the light condition changed and (d) is the BGS result of (b) with
the updated background model.

tion method. It can be seen that there are many segmentation errors

due to the movement of the table and fruit plate. Frame differencing

results are shown in (c), which indicate active pixels and help to find

the active blob representing the human body. By the post-processing

technique as discussed in Subsection 6.2.1, improved background sub-

traction results are obtained in (d).

Figure 6.13 shows a case of sudden illumination change. At frame (c),

the light is turned on and a large illumination change can be observed.

This sudden change of illumination can be detected by the frame dif-

ferencing result as shown in (g), with more than 50% of pixels being

marked as active ones (white). The background model is then retrained

to cope with this sudden illumination change. As shown in (d) and (h),

good segmentation is obtained by the retrained background model.
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(a)

(b)

(c)

(d)

Figure 6.12. Background subtraction results for moving furniture.
(a) Shows original frames of a person moving the table and fruit plate.
Codebook background subtraction results are shown in (b), (c) Shows
the frame differencing results which indicate active pixels. From the
frame differencing results and blob operations, improved background
subtraction results are obtained in (d).

6.6.2 Results for the supervised fall detection system

For the experiment of the fall detection based on supervised classi-

fiers, 15 people (11 males and 4 females) were invited to attend the

experiments for simulating different postures and activities. The char-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.13. Background subtraction for sudden illumination change.
Frames (a) and (b) are captured with the light off, at frame (c) the light
is turned on and a drastic illumination change can be observed. Frame
(d) is captured after the light is turned on for a certain time. Frames
(e) and (f) are the background subtraction results of (a) and (b). Image
(g) is the frame difference result for (c), sudden illumination is detected
because more than 50% of the pixels are marked as active ones and the
background model is retrained. Frame (h) is the subtraction result of
(d) by the retrained background model.

acteristics of the 15 people are summarised in Table 6.2. It has to be

noted that real elderly people were not invited to participate in the

experiments because it is unsafe for an elderly person to simulate fall

activities; instead, younger people were invited to mimic elderly people.

Table 6.2. The characteristics of 15 participators in the experiments.
No. of people 15

Male/Female 11/4

Age 25-49

Weight 57-94 (kg)

Height 158-187 (cm)
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6.6.3 Posture classification results

To form the posture dataset, 3200 postures (comprising of 800 stands,

800 sits, 800 lies and 800 bends) from 15 people were recorded. As

in [109], each person was asked to simulate postures in different direc-

tions. This ensures that the constructed classifier is robust to view

angles. Some samples are shown in Figure 6.14.

(a)

(b)

(c)

(d)

Figure 6.14. Posture samples simulated by different participates in
different orientations: (a) Stand (b) Sit (c) Lie and (d) Bend.

Then a 10-fold validation [60] was applied to evaluate the performance
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of the posture classification. Three types of comparisons were made:

The first evaluation is the feature comparison, shown in Table 6.3. The

feature classification results are compared when using the ellipse fea-

tures or projection histogram features alone and when using a combi-

nation of these two features. The DAGSVM is then applied to classifi-

cation.

Table 6.3. Classification result by different types of features.
Global
features

Local
features

Combined
features

Classification rate 89.72% 76.70% 96.09%

Table 6.3 shows that, the classification result by the combined feature

presents a higher classification rate than using either feature alone. For

the second assessment, two types of parameter optimisation methods

are compared for DAGSVM: the 10-fold validation based method and

the DBTC based method, which is shown in Table 6.4.

Table 6.4. Comparison of different parameter optimisation methods.
10-fold validation
method

DBTC based
method

Training time (s) 2453.40 397.87

Classification rate 95.63% 96.09%

From Table 6.4, it can be seen that the DBTC based parameters op-

timisation method can greatly reduce the training time of DAGSVM

while achieving an even slightly better performance. For this reason,

the DBTC based parameters optimisation method is preferred in this

research work. In the third assessment, the performance of DAGSVM is

compared with other traditional classifiers K-nearest neighbour (KNN),
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multi-layer perceptron neural network (MLPNN) , naive bayes clas-

sifier (NBC) and binary decision tree (BDT). All classifiers are im-

plemented using PRtools, a well-known software package for pattern

recognition [110]). The results are presented in Table 6.5. To get a

fair result, the parameters of the comparison classifiers are tuned to be

optimal by using the cross validation function in PRtools. Table 6.5

presents the results from the cross validation tests. It can be observed

Table 6.5. Comparison of different classifiers.
DAGSVM KNN MLPNN NBC BDT

Classification rate 96.09% 92.64% 92.53% 75.27% 83.72%

that DAGSVM achieves the best performance with a slightly better

classification rate performance than k-nearest neighbour and the MLP

neural network.

It should be noted that in the real life scenario, the training dataset is

not usually perfect and it is common to find some outliers existing in the

training dataset. Outliers in posture classification are mainly caused by

extremely bad background subtraction results and wrong labeling (for

example, the feature of one class may be mislabelled as another class).

In Table 6.6, the comparison results of the classifiers are presented on

a dataset which includes 10% outliers. This table presents another ad-

Table 6.6. Comparison of different classifiers on a dataset which is
corrupted by 10% outliers.

DAGSVM KNN MLPNN NBC BDT

Classification rate 95.51% 84.07% 85.93% 72.42% 58.72%

vantage of the classification rate of the DAGSVM over other classifiers

on this noisy dataset. Also, compared with other classifiers, DAGSVM



Section 6.6. Experimental analysis 151

is the most robust to such noise due to the reason that slack variables

are introduced in the 2-class SVMs of the DAGSVM classifier to cope

with the noises as mentioned in Section 6.4 (there is only a 0.58% drop

in classification rate compared with the result of Table 6.5. Therefore,

from the results presented in Table 6.5 and Table 6.6, DAGSVM per-

forms better for posture classification than other traditional classifiers.

6.6.4 Fall detection by the supervised directed acyclic graph sup-

port vector machine classifier

Using the three conditions presented in the previous section, posture

classification results along with the detected floor information may be

used to detect falls. To illustrate this further, five cases are presented

in Figure 6.15. Figure 6.15, (a) shows a person who has fallen on the

floor, and a ‘lie’ posture is detected with most parts of the human body

region in the detected ground region; in addition, this posture is kept

for a certain time (longer than 20s), therefore, a fall is detected. For

Figure 6.15 (b), although a ‘lie’ posture is detected, the human body

blob is not in the floor region, so the lying on the sofa case is correctly

classified as non-fall. In figure 6.15 (c), (d) and (e), the postures are

all classified as ‘bend’. For figure 6.15 (c), a large portion of the human

body is in the ground region and the ‘bend’ posture remains for longer

than 20s. It is assumed to be generally impossible for an elderly person

to bend for a long time in the ground region, so this is classified as an

abnormal activity and it is detected as a fall. For (d) and (e), either

the detected ‘bend’ posture does not hold for a long time (for case (d),

a person ties his shoe lace and the ‘bend’ posture recovers to ‘stand’

posture in a short time), or the posture is not in the ground region (only



Section 6.6. Experimental analysis 152

a small portion of the human body region is in the ground), so they

are not detected as falls. To evaluate this fall detection system, each

(a) (b) (c) (d) (e)

Figure 6.15. Different cases of fall and non-fall activities. a) Fall on
the floor; (b) Lie on the sofa; (c) Fall on the floor; (d) Bend to fasten the
shoe tie; (e) Sit on the sofa. For (a) and (b), the postures are classified
as ‘lie’ and for (c), (d) and (e), the postures are classified as ‘bend’.
The blue region represents the detected floor, the red region represents
the intersected part of the foreground human body with the detected
floor region, the white region represents the foreground human body
part which is not intersected with the detected floor region and the
remaining background region is marked as black. The proposed system
successfully classifies (a), (c) As falls and (b), (d) and (e) as non-falls.

person is asked to simulate 16 fall activities and 16 non-fall activities in

different directions. A total number of 240 fall activities and 240 non-

fall activities are recorded. These are used to evaluate the proposed fall

detection system. To classify an individual activity, the postures from

other people in the recorded posture dataset are used to construct the

DAGSVM classifier. The final results are given in Table 6.7. The table

shows that 233 out of 240 (97.08%) falls can be detected while only 2

out of 240 (0.8%) non-falls are mistaken as falls. A high fall detection

rate (true positives) is obtained with a very low false alarm rate.
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Table 6.7. Evaluation of the proposed fall detection system.
No. of Detected as Detected as
activities falls non-falls

Falls 240 233 7
Walking around 60 0 60

Sitting on the
sofa/chair

60 2 58

Bending 60 0 60

Lying on the sofa 60 0 60

6.7 Summary

This chapter presented an efficient fall detection system based on a

supervised approach, the advantages of this proposed system include:

1. Using the codebook background subtraction technique, extraction

of a silhouette was performed with further post-processing tech-

niques applied to solve the background subtraction errors caused

by environmental changes in a real home environment.

2. The combination of ellipse and projection histogram features were

used, and an improved version of DAGSVM classifier was pro-

posed.

3. Classification results of DAGSVM, together with some properly

designed rules were effectively used to distinguish falls and non-

falls.

Experimental results showed that acceptable fall detection results can

be obtained for the supervised fall detection system. The supervised

fall detection system has both merits and drawbacks. One demerit is

that at the initial stage, a large posture dataset composed of postures
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from different persons is needed for training the classifier, this is incon-

venient. However, the trained classifier can be immediately applied for

classifying postures for fall detection for a particular elderly person as

long as the classifier is well trained.

Besides the information obtained from postures, as a means of improv-

ing the system, other types of information can be applied to achieve a

more robust fall detection system. One such type of information can be

obtained from audio as proposed in [111] and [112]. The floor sounds

generated for fall activities and non-fall activities are different, and this

sound information is helpful to distinguish fall activities and non-fall

activities when poor results of posture features are obtained (such as

the elderly person wearing clothes whose colour is very similar to the

background thus generating bad posture segmentation results).



Chapter 7

CONCLUSION AND FUTURE

WORK

7.1 Conclusion

This thesis proposed different types of intelligent vision based fall de-

tection techniques for detecting fall activities of an elderly person living

alone at home. Three background subtraction techniques were used to

develop a robust video processing technique that reliably extracted the

presence of a person in the recording of a room environment based

on background subtraction techniques. Two-dimensional and three-

dimensional features were extracted from video sequences recorded by

one or multiple video-cameras, and an analytical algorithm (Chapter 3

and Chapter 4) and machine learning algorithms (Chapter 5 and Chap-

ter 6) were then exploited to process the extracted features for detecting

fall activities. Evaluations were performed in both the intelligent sig-

nal processing lab at Loughborough University and also in a real home

environment.

In Chapter 3, background subtraction techniques based on AMF, MOG

and CB were compared and datasets were used and tested based on dif-

ferent lighting conditions (good lighting, poorer lighting conditions and

155
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typical lighting conditions). The results showed that the CB method

based BGS technique, provides a fixed background model after train-

ing. This implies that new modalities in the scene, including foreground

items that remain static for long periods of time will never become part

of the background model as they would do in the other methods. There-

fore, the CB method of BGS is the one among the three popular BGS

methods that is most suited to robust person extraction in an indoor

environment.

Chapter 4 gives a technical overview of the video-camera calibration

based on Tsai’s model. By applying the Tsai’s camera calibration using

a set of correspondent points (three-dimensional points and correspond-

ing two-dimensional image points), both the external and internal pa-

rameters of a video camera can be estimated. This calibration is a very

important step to obtaining certain types of three-dimensional informa-

tion (such as the three-dimensional position for a particular pixel in the

image).

Chapter 5 proposed a fall detection scheme based on three-dimensional

features extraction and single Gaussian model based method to dis-

tinguish unusual behaviour (falls) for enclosed environments. Video-

cameras were firstly calibrated by the popular Tsai’s camera calibra-

tion method and a three-dimensional person was then constructed from

the obtained CB BGS results from two calibrated cameras. Three-

dimensional features, including the three-dimensional position, veloc-

ity and orientation information corresponding to fall activities were ex-

tracted to build the model for distinguishing fall activities and non-fall

activities. Single Gaussian models were constructed from a training

dataset including 80 short video clips of different fall activities simu-
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lated by one person. From these models, three-dimensional features

were extracted for model construction. The test dataset included 40

fall activities and 40 non-fall activities simulated by the same person.

Results showed that the single Gaussian model achieved the best per-

formance with 100% fall detection rate and 0% false detection rate with

the optimal threshold.

Chapter 6 presented fall detection systems based on supervised learning

methods. The codebook background subtraction approach was used to

extract the postures and certain post-processing techniques were ap-

plied to solve the background subtraction errors caused by some envi-

ronmental changes in a real home environment. Some features (ellipse

features and projection histogram) which can describe postures in de-

tail were extracted and used to construct the corresponding DAGSVM

classifier with some simple features (ellipse features and position fea-

tures). The classification results of DAGSVM, together with certain

rules were used to distinguish falls from non-falls. Experimental results

in a real home environment showed that acceptable fall detection re-

sults can be obtained, with 97.08% fall detection rate and 0.8% false

detection rate for a 15 person dataset by using proposed supervised fall

detection system.

In summary, this thesis has proposed effective schemes for solving the

problems listed at the end of Chapter 2:

1. The codebook background subtraction technique is improved to

obtain better background subtraction results in a home environ-

ment (e.g. by head tracking in Chapter 3 and some other ad-

vanced post-processing techniques in Chapter 6).

2. Directional invariant three-dimensional features were extracted
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from the reconstructed 3-D person. These were obtained from the

background subtraction results from video sequences recorded by

calibrated video-cameras, and the three-dimensional features were

used to train the model to distinguish fall and non-fall activities

by using only one threshold.

3. Supervised classifiers based on posture features, with certain types

of information (floor information and movement amplitude infor-

mation) were applied to construct more robust fall detection sys-

tems. These were then thoroughly evaluated on datasets recorded

in a real home environment representative of an assisted living ap-

plication.

7.2 Future work

The research work can be extended in different ways such as algorithm

aspects, information aspects and hardware equipment aspects:

From algorithm aspects, elegant intelligent vision algorithms can be ap-

plied as the components of the proposed fall detection system. A more

efficient background subtraction method as proposed in [113] can be

applied for better human body segmentation, with online self-adaptive

mechanism to update model parameters.

In this way, the change of the illumination, which is a common phe-

nomenon in the indoor environment, could be avoided.

On the other hand, considering that there could sometimes be more

than one moving object at home (such as the elderly person with a

pet), some object classification algorithms in [114] and [115] could be

applied to determine the moving blob corresponding to the human re-
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gion. These algorithms can be added into the current fall detection

system as new modules, which is helpful in enhancing the performance

of the proposed fall detection systems.

From information aspects, instead of using only the video information,

more types of information (such as acoustic information) could be ex-

tracted to compensate for the limitations of video information (such as

poor video information will be obtained when an elderly person wears

clothes whose colour is similar to the background). For hardware equip-

ment aspects, a more robust multimodal fall detection system could be

constructed by fusing different types of information (video information

and audio information) for improving the performance.

The sound and posture information together can be used to compose a

more robust multimodal (audio and video) fall detection system, which

is a possible next research.

The limitation of the audio information is that it can easily be affected

by background noises, especially TV; however, this problem can be

ameliorated by using the modern Blind Source Separation (BSS) tech-

nique [116] and [117] to reduce this type of interference.

Instead of using only ordinary video-cameras, more advanced hardware

equipment could be used. As presented in [118], a new-emerging Kinect

sensor could be applied, which can obtain additional depth information

for better human body segmentation when an elderly person wears

clothes whose colour is similar to the background.
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