

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

. .

LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY I

. ,

_--'-_____ L:;;,;I.:..B_RA~RY__'_ ______ ' -
!

, I AUTHOR/FILING TITLE

__________ ___ 't 9.9_$J_L".-___ \::t ___ tl ______ ----- --!
I

----- ----------------------- ---- --- ----- - -------~ I
ACCESSION/COPY NO, I

--VOL~NO~---~--- 1?~'tA~s~~i~'=-:--------------- i

-

- 1 JU /1988

30 UN 1989

IO~

This book was bound by

Badminton Press

-5~

18 Half Croft, Syston, Leicester, LE7 8LD
Telephone: Leicester (05331 602918,

I

,

i.

'.'

-

PARALLEL ALGORITHMS FOR MIMD PARALLEL COMPUTERS

BY

HILAL MOHAMMAD YOUSIF, B,Sc"M,Sc,

A Doctoral Thesis

submitted in partial fulfilment of

the award of Doctor of Philosophy

of the Loughborough University of Technology

September, 1986.

SUPERVISOR: PROFESSOR D.J. EVANS, Ph.D.,D.Sc.,

Department of Computer Studies.

~ Hilal Mohammad Yousif.

J

I

L

L.'ug~b~~::-~~~:,v" ~.',rJ'fl;~\.ity

of h,' '." "'V
-,---'It.!:, -•
.E.~"-",_" . g 7, .. .
C!~t!

DECLARATION

I declare that this thesis is a record of research

work carried out by me, and that the thesis is of my own

composition. I also certify that neither this thesis nor

the original work contained therein has been submitted to

this or any other institution for a higher degree.

Hilal Mohammad Yousif

To My Mother,

The memozy of my Father,

My wife, MARIAM,

without whose support and

enaouragement this work wouLd

not have been possibLe,

My daughters, RASHA, RANA,

And my Bon, ALI.

l

ACKNOWLEDGEMENTS

I wish to acknowledge my sincere gratitude to my supervisor,

Professor D.J. Evans, for his kind advice, invaluable guidance and

continued encouragement and assistance during the past three years of

study and preparation of this thesis.

I acknowledge also with gratitude the IRAQI Government for their

support to complete this thesis.

A sincere gratitude and thanks to Gen. K.A. AL-AZZAWI for his

encouragement and support during the course of this thesis.

Acknowledgements are also presented to the following people:

- Mr. R.P. Stallard for his cooperation and help with the

parallel system questions and requirements.

- Dr. W.S. Yousif for his valuable discussions and comments

in private communications.

- Dr. A.M.S. Rahma for his help and valuable discussion

in the early stages of this work.

PARALLEL ALGORITHMS FOR MIMD PARALLEL COMPUTERS

ABSTRACT

This thesis mainly covers the design and analysis of asynchronous

parallel algorithms that can be run on MIMD (Multiple Instruction

Multiple Data) parallel computers, in particular the NEPTUNE system at

Loughborough University. Initially the fundamentals of parallel computer

architectures are introduced with different parallel architectures being

described and compared. The principles of parallel programming and the

design of parallel algorithms are also outlined. Also the main

characteristics of the 4 processor MIMD NEPTUNE system are presented,

and performance indicators, i.e. the speed-up and the efficiency factors

are defined for the measurement of parallelism in a given system.

Both numerical and non-numerical algorithms are covered in the

thesis. In the numerical solution of partial differential equations,

a new parallel 9-point block iterative method is developed. Here, the

organization of the blocks is done in such a way that each process

contains its own group of 9 points on the network, therefore, they can

be run in parallel. The parallel implementation of both 9-point and 4-

point block iterative methods were programmed using natural and red

black ordering with synchronous and asynchronous approaches. The

results obtained for these different implementations were compared and

analysed.

Next the parallel version of the A.G.E. (Alternating Group Explicit)

method is developed in which the explicit nature of the difference

equation is revealed and exploited when applied to derive the solution

of both linear and non-linear 2-point boundary value problems. Two

strategies have been used in the implementation of the parallel A.G.E.

method using the synchronous and asynchronous approaches. The results

from these implementations were compared. Also for comparison reasons

the results obtained from the parallel A.G.E. were compared with the ~

corresponding results obtained from the parallel versions of the Jacobi,

Gauss-Seidel and S.O.R. methods. Finally, a computational complexity

analysis of the parallel A.G.E. algorithms is included.

In the area of non-numeric algorithms, the problems of sorting and

searching were studied. The sorting methods which were investigated

was the shell and the digit sort methods. with each method different

parallel strategies and approaches were used and compared to find the

best results which can be obtained on the parallel machine.

In the searching methods, the sequential search algorithm in an

unordered table and the binary search algorithms were investigated and

implemented in parallel with a presentation of the results. Finally,

a complexity analysis of these methods is presented.

The thesis concludes with a chapter summarizing the main results.

CONTENTS

CHAPTER 1: FUNDAMENTALS OF PARALLEL COMPUTER ARCHITECTURES

1.1 Introduction

1.2 Towards Parallel Processing

1.3 The Structure of Parallel Computers

1.3.1 Pipeline Computers

1.3.2 Array Processors

1.3.3 Multiprocessor Systems

1.4 Architectural Classification Schemes

1.4.1 Flynn's Classification

1.4.2 Shore's Classification

1.5 SIMD Machine

1.6 MIMD Computers

1.7 Loughborough University Parallel Systems

1.8 Data-Flow Computers

1.9 VLSI Systems

CHAPTER 2: PARALLEL PROGRAMMING PRINCIPLES

2 .1 Introduction

2.2 Hierarchies of Parallelism

2.2.1 Explicit Parallelism

2.2.2 Implicit Parallelism

PAGE

1

2

4

7

7

1'7

20

30

30

31

36

44

62

68

76

83

84

86

89

96

2.3 Parallel Languages for Vector Processing 104

2.4 Array ProceSSing Languages and Programming 109

2.5 MIMD Multiprocessor Programming 116

CHAPTER ·3:

2.6 Data Flow Languages

2.7 Parallelism in High-Level Programming
Languages

2.8 Programming the NEPTUNE System

DESIGN OF PARALLEL ALGORITHMS

3.1 Introduction

3.2 Parallel Algorithms for SIMD and PIPELINE
Computers

3.3 Parallel Algorithms for MIMD Computers

3.4 VLSI and Systo1ic Algorithms

3.5 Parallel Numerical Algorithms

3.5.1 Inherent Parallelism

3.5.2 Vector Iterative Method

3.5.3 Recurrence Relations

3.6 Parallel Non-Numerical Algorithms

3.7 Performance of Parallel Computer Algorithms

CHAPTER 4: PARALLEL IMPLEMENTATIONS OF THE FOUR-POINT AND NINE
POINT EXPLICIT-BLOCK ITERATIVE METHODS

4.1 Introduction

4.2 Basic Definitions

4.3 Basic Methods for Solving a Set of Linear
Equations

4.3.1 Direct Methods

4.3.2 Iterative Methods

4.4 Convergence of Point Iterative Methods

4.5 Rate of Convergence

PAGE

120

126

135

142

143

147

158

166

179

180

184

186

192

200

203

204

206

217

217

223

228

230

4.6 The Optimum Acceleration Parameter for the
SOR Method

4.7 Finite Difference Approximations to
Derivatives

4.8 Block Iterative Methods

4.9 Parallel Iterative Methods

4.10 The Four-Point Explicit Block Iterative
Method

PAGE

232

235

243

251

258

4.11 The 9-Point Explicit Block Iterative 263
Method

4.12 Experimental Results of the Block Iterative 278
Methods

4.13 Conclusions 332

CHAPTER 5: THE PARALLEL ALTERNATING GROUP EXPLICIT (A.G.E.)
METHOD

5.1 Introduction

5.2 Alternating Direction Implicit (A.D.I.)
Methods

5.3 The Alternating Group Explicit (A.G.E.)
Method

5.4 Experimental Results of the Parallel A.G.E.
Method

5.5 Conclusions

'" CHAPTER 6: PARALLEL SORTING AND SEARCHING ALGORITHMS

6.1 Introduction

6.2 The Sorting Algorithms

6.2.1 The Shell Sort Method

6.2.2 The Digit Sort Method

334

335

339

342

348

412

414

415

420

420

441

6.3 The Searching Algorithms

6.3.1 Sequential Search' (Unordered Table)

6.3.2 Binary Search

6.4 Conclusions

CHAPTER 7: SUMMARY AND CONCLUSIONS

APPENDIX: SELECTED COMPUTER PROGRAMS

REFERENCES

PAGE

466

467

479

488

492

502

562

1

CHAPTER 1

FUNDAMENTALS OF PARALLEL COMPUTERS ARCHITECTURES

2

1.1 INTRODUCTION

The greatest possible speed, throughput, performance, flexibility

and a high level of availability and reliability is the requirement to

many scientific and engineering applications, many of which need to be

solved in real time. Since the speed and reliability of conventional

computers is limited, the satisfaction of these requirements can only

be achieved by a high-performance computer system. Achieving high

performance depends not only on using faster and more reliable hardware

devices but also on different computer architectures and processing

techniques, so parallel computer systems need to be developed.

In the early days of computers, vacuum tubes were used and hardware

components were expensive, heat generating and slow. CPU structure was

bit-serial, and arithmetic was done on a bit-by-bit fixed pOint basis.

Transistors were invented in 1948 and the first transistorised digital

computer was built in 1954. Printed circuits appeared and magnetic

core memory was developed with the result that many computer systems

now use it. In 1959, many improvements to computer architecture were

carried out. For example, Sperry Rand built a computer system with an

independent I/O processor which operated in parallel with one or two

processing units. Between the early 1960'S and mid-1970'S, small-scale

integrated (SSI) and medium-scale integrated (MSI) circuits were used as

basic blocks in computer systems. core memory was still used in many

computer systems, like the CDC-6600. Then solid-state memories replaced

the core memories and many fast computers like CDC-7600 were built .

. In the early seventies, many high-performance computers were developed,

i.e., such computer systems were the IBM 360/91, Illiac IV, TI-ASC,

Cyber-175, STAR-lOO and C.mmp, and several vector processors were also

developed.

3

The present and near future computer designs emphasize the use

of large-scale integrated (LSI) circuits and very-large-scale (VLSI)

chips, for both logic and memory sections. Second generation vector

machines have appeared like the Cray-l (1976) and Cyber-205 (1982) and

high-speed mainframe and super computers appear in multiprocessor

system form like the Univac 1100/80, (1970), the IBM 3081 (1980), and the

Burroughs B-7800 (1978). In addition, a high degree of pipelining and

multiprocessing is emphasized in commercial super-computers.

From the above history of computer developments, the size of

computers has decreased and the speed of operation has increased rapidly.

Two methods can be used to achieve the highest possible speed and

throughput. These methcds are:a) by exploiting the technological

possibilities in the design of the computer components and b) by a

suitable modification to the structure and organization of the computer.

Since the increase in speed and density is not unlimited, for it has

ultimate physical limits then the other method of increasing speed,

improving the organization architectures of computers, leads to the

design of parallel architectures of computers.

l ,

4

1.2 TOWARDS PARALLEL PROCESSING

From a user's point of view, a high degree of parallelism is needed

as the computer applications become more and more sophisticated. Computer

usage started with data processing (i.e. a collection of raw data such

as numbers, characters, symbols, ••.) and as computer science

-
theory has advanced, many users have shifted to information processing

(i.e., data objects related by some syntactic relations). A high

degree of parallelism has been found at these two levels of computer

applications. In recent years, a knowledge based application system

(where knowledge consists of information items plus some semantic

meanings) has been established where a greater degree of parallelism

is needed and it is more ,exploitable in this type of application than

that in the data processing and information processing applications

fields.

From an operating system point of view, four operating modes have

been in usage for successive computer systems. These modes are: batch

processing, multiprogramming, time sharing, and multiprocessing.

Each mode has been an improvement to its predecessor. The degree of

parallelism has increased from one mode to another sharply. ~",al1g __ and"_

Briggs [1984] formally defined parallel processing as follows: Parallel
~

processing is an efficient form of information processing which emphasizes

the exploitation of concurrent events in the computing process.

Concurrency implies parallelism, simultaneity, and pipelining. Parallel

events may occur in multiple resources during the same time interval;

simultaneous events may occur at the same time instant; and pipelined

events may occur in an overlapped time span.

Also they show that, parallelism has been applied at several

distinct levels which might be classified as:

1. Job or program level,

5

This is the highest level which can be conducted among multiple

jobs or programs through multiprogramming, time sharing and multi

processing.

2. Task or procedure level,

This is the next highest level of parallel processing and is

conducted among procedure or tasks (program segments) within the

same program.

3. Interinstruction level,

This level is to exploit concurrency among multiple instructions.

4. Intrainstruction level,

This is the lowest level to obtain faster and concurrent operations

within each instruction.

These levels are implemented either by hardware or software means.

Hardware roles increase from high to low levels, while software

implementations increase from low to high levels.

To achieve parallel processing requires the development of more

capable and cost-effective computer systems. Since the conventional

uniprocessor system have their limit in achieving high performance,

the general architectural trend is being shifted away from conventional

uniprocessor systems to multiprocessor systems or to an array of

processing elements controlled by one uniprocessor. In all cases, a

high de~ee of pipelining is being incorporated into the various

system levels.

Hockney and Jesshop [19811 summarised the principal ways of

introducing parallelism into the architecture of computers as:

6

1. The application of pipelining techniques to improve the performance

of arithmetic or control units.

2. Providing several functional units, such as logic, addition, and

multiplication, where these functions operate in parallel on

different data.

3. Provide an array or vector of processing elements performing the

instruction simultaneously, but on different data, where the data

is stored in the processing elements' private memories.

4. Providing several processors each of them being a complete computer.

I 7

1.3 THE'STRUCTURE OF PARALLEL CO~~UTERS

Parallel computers are simply those systems carrying out several

opp-rations at the same time, or those systems which are'carrying out

parallel proce3sing. A parallel computer structure will be character-

ised as:

1. Pipeline computers

2. Array processors

3. Multiprocessor systems •

.. ';The pipeJining principle implies the segmentation or partition

of a cbmput<'.tto~)i',l process into N subprocesseswhich can be executed

iridepen<l.cn'tly by c:Ustinct unit.s or modules. An array processor uses -- -----------,----- -------- - - - -
. ~~ ';,

mult_tpl e pro,,.,,,sing units in a synchronized manner. A multiprocessor - - ,- - ,":' _t) ~ --:--------.. - - -~

syst~!!l US/~3 a set of asynchronized processors with shared resources.
:~:)S .:! -!;~I: " .. '

Some, se mputers belong to more than one of the above characterizations.

~e~o~qepts such as_data flow and VLSI approaches will also be "'--introduced in later sections.

1.3.1 Pipeline Computers

The prinCiple of pipelining has emerged as a major architectural

attribute of most present day computer systems. The concept of pipe-

line processing in a computer is similar to assembly lines in an

industrial plant. TO achieve pipelining, one must subdivide the input

task (process) into a sequence of subtasks, each of which can be

executed by a specialized hardware stage that operates concurrently

with other stages in the pipeline.

Pipelined machines such as the CDC STAR-lOO (Hintz, R.G. and

8

Tate, D.P. 1972), CRAY-l (Cray 1975) and the Texas Instrument ASC

(Watson, 1972) have different pipeline processing capabilities, which

varies from pipelined special purpose functional units to internally

pipelined instruction and arithmetic units.

A pipeline processor consists of a sequence of processing circuits,

called segments or stages through which a data stream passes (Figure

1.1). Each segment does some partial processing, on the data and a

final result is obtained after the data has passed through all the

segments of the pipeline. Parallel processing is achieved by having

distinct operand sets or processes in several segments at the same time.

1- - -- I
1 I

Cl
- -!

r - - - 1

1

j -,

-I
1
1

,-

FIGURE 1.1: Pipeline processing structure

Segment 1

Segment 2

Segment m

Output Register

R: Register

C: Processing
Circuit

I/O -

9

A typical pipeline computer is shown in Figure 1.2. This model

shows both scalar arithmetic pipelines and vector arithmetic pipelines.

The instruction processing unit is itself pipelined with three stages

as shown.

Scalar processor

Scalar data rl SPl J

K
Scalar K SP2 J

~- - - - --- - -- - - regis-

Main
Memory

Instruc nstruc Scalar
tion r- ion fetch
fetch decode

IS (F) (D) (0)

Vector
fetch

Instruction processing

r-------------

Vector

IS: Instruction stream

0: Operand fetch

K: Control signal

..

data

,
ter , r ·

I · j--- ·
4 SPn J K

t- ----,
Scalar pipeline

Vector processor

K
t'" --

It VPl
I" --,

1
I

Vector H VP2 __ I
regis-
ters

If- ·
.

·

L1. VPm

Vector pipelines

FIGURE 1.2: Functional structure of a modern pipeline computer with
scalar and vector capabilities

I

I

J

10

As an example, consider the process of executing an instruction.

Normally it involves the operations of fetching the instruction (F),

decode the instruction (D), fetch the operand (0), and finally its

execution (E). In a non-pipelined computer, the above steps must be

completed before the next instruction can be issued as shown in Figure

1.3.

--------------~~Instruction Processing ,

FIGURE 1.3: Non-pipelined processor

In a pipelined computer, successive instructions are executed in

an overlapped fashion. The four pipeline stages F,D,O and E which are

connected serially are shown in Figure 1.4. After constant time

intervals, the output of one stage is shifted to the next. A new

instruction is fetched (F) in every time cycle, and stage (E) produces

an output every time cycle because the time to execute an instruction

consists of multiple pipeline cycles. For the nonpipelined (nonover-

lapped) computer, it takes four pipeline cycles to complete one

instruction. While in pipelined computers, once the pipeline is filled

up, an output result is produced on each cycle. So by overlapping, the

execution time the instruction processing will be faster by a factor

of four (in our example, instruction processes in four stages) over

nonpipelined execution. The two space-time diagram (Figure 1.5 and

Figure 1.6) shows the difference between overlapped instruction

execution and sequentially nonoverlapped execution.

-------------------------1

Sl S2 S3 S4 (stages)

J------.-II~'-D_I 1,--_0 I '=E=/t----. ·

FIGURE 1.4: A pipe1ined processor to execute an instruction

pipeline
stages

E

0

D

F I1

1

I1

I2

I1

I1 I2

I2 I3

I3 I4

2 3

..

I2 I3 I4 IS

I3 I4 IS

I4 IS

IS

4 5 6 7 8 9 10 11 12

FIGURE 1.5: Space-time diagram for a pipe1ined processor

stages

E I1 I2 I3

0 I1 I2 ~3

D I1 I2 I3 ,

F I1 I2 I3 I4

13

I4

1 2 3 4 5 6 7 8 9 10 11 12 13 14

FIGURE 1.6: Space-time diagram for a nonpipe1ined processor

11

· ..
· ..
...
· ..

Time

· ..
I4 · ..

· . .
· ..
T~me

1.3.1.1 Classification of Pipeline Processors

Handler (1977) classified the pipeline processors into three

classes according to the levels of processing i.e.:

1. Arithmetic pipelining

Most arithmetic functions are easily implemented by pipelining.

12

Arithmetic pipelines have been constructed for performing either a

single arithmetic function or performing all the four basic operations

on both fixed-point and floating-point numbers. As examples we have

the four-stage pipes used in STAR-lOO, the eight-stage pipe used in

TI-ASC, the up to 14 pipeline stages used in the CRAY-l, and the up

to 26 stages per pipe in the Cyber-2QS.

2. Instruction pipelining

The purpose of an instruction pipeline is to overlap the execution

of the current instruction with the subsequent instruction stages.

Almost all high-performance computers are now equipped with instruction

execution pipelines.

3. Processor pipelining

In this type of pipelining, a cascade of processors/each with a

specific task,process the same data stream. The result from the first

processor is passed on to the second processor, and the result from the

second processor is passed to the third processor etc.

Ramamoorthy and Li (1977) have proposed the following classification

scheme:

1. Unifunction vs. Multifunction Pipelines

A pipelined module that only serves a single dedicated function

such as the floating-point adder, is called unifunationaZ. The CRAY-l

13

has 12 unifunctional pipeline units. A multifunctional pipe may

perform different functions, either at a different time or at the same

time, by interconnecting different subsets of stages in the pipeline.

The TI-ASC has four multifunction pipeline processors.

2. Static vs. Dynamic Pipelines

A static pipeline may assume only one functional configuration

at a time. It can be either unifunctional or multifunctional. on the

other hand, a dynamic pipeline processor permits several functional

configurations to exist simultaneously and must be multifunctional.

3. Scalar vs. Vector Pipelines

A scalar pipeline processes a sequence of scalar operands under

the control of a DO loop. A typical example of a machine equipped with

scalar pipelines is the IBM 360/91. Vector pipelines are specially

designed to handle vector instructions over vector operands. Examples

of vector pipeline machines are IT-ASC, CDC STAR-lOO, CDC cyber-20S and

CRAY-l.

Block diagrams for the pipeline machines CDC STAR-lOO, CRAY-l

and IT-ASC are shown in Figures 1.7, 1.8 and 1.9 respectively.

I

J

Banks

0-3 0

4-7 4

8-11 8

12-15 12

16-19 16

20-23 20

24-27
24

28-31 31 28

..

,- - ------
SAC

I I

I write bus
fanout

I

I

~
,
1

~
• ..,
I

~ I
I

~ I

~/ ~ I r-: ,
~~"'Ou'

,
I , fan-in

I
,

I I

I I
1 ,
1

I I/O channels 1

I and DMA I

I i 1
I

!..- ,-+- 1- -' ,
i 1
I 1

I
,
~ 1

I I I/O

~ CH2-4

optional
I/O CH

Direct access
channel

FIGURE 1.7: A system architecture of CDC STAR-lOO

stream

write
buffer

Read
buffer

I

String

14

pipeline
processor 2
1-------,
1

Multi-

1 purpose

I
1 .,.., floating-
1

I
gn~t add

I Regis-
1 ter , divide
I ---- --

- -- - --,
1 floating-

1
g~Allt add

,
I
1 :-IUlti-

·olv
1
1 .. - __ -
pipeline
processor 1

Maintenance
station

CaNT

12
unit

P

P register (24 bits)
Buffer 0

Branch
0 ~ 3
1 I"

• , ... • •
Control 64

I~R. I)~~ 16 bits Instruc ~on Ba . buffer
vector Rl

VL length B2
B3

function Aa ,
jf--

,
Shift IAl

f B63 I A2

I I I. Add lI~
B64

I. Mul A4 Address buffer registers
AS (24 bits)

lIr;

A7

Address registers TO
Tl (24 bits)
T2 50
T3 RTC 51

~_Md ~ • 52 · • · • • Shift 53
IT63 I Logical

~<1

SS T64

S~~l~r ~~ffer registers 56 .J.Ji,) i t~
57

Add FP 1/ I Scalar registers (64 bits)

~l VM

vector mask Mult FP

RA

0 VO r-t-
I. Add 1
Shift ~ 2

-.Loai'"l 3
-
4 I

I I

63
64

64 bits
Vector registers (64 bits)

FIGURE 1.8: Block diagram of the CRAY-l computer

15

M 12
A ~ I
N

M H I/O
E
M
0 It-
R 2
Y

CH

T
T

r ~ L

A REG. INT R.

IMW
64 bit

cycle
HParil¥j

50 ns

CLOCK 12-5 ns

Memory
Module

16
Control
processor

1- - - - - - - - - - -

~
I (One or two) ,

Instruction
I Processing Units

0 I (IPU)
.... i", I .; I , ...

, \ 1, 1 .; '- I ...
I 1 , ...

" , ... , v

I Memory Memory Memory ~:emory 2
I buffer buffer buffer buffer

I unit unit unit unit ,
I

3 Memory I
Control I

I

4l Unit
I
I · • · • · • • •
I • · . · •

5 I ,
6 L

I
I - 2'I3..I'IlIl~n. C -- - - - - - -- -- - -
UNIT (AU1) (AU2) (AU3) (AU4)

Peripherals

7 p;>rocessor

I

I
I
I
I

I
I
I

I
1

I
I
I
I
I ,
I
I

I ,
I
I
I
I
I
I - -

r-
H Channel \-1 periphe re:

I Port

8
Exp. t- Controllers

l- f of peripherals l- and external
memories

I ,..

J
Port -

""-
Exp. ~ Channel

FIGURE 1.9: Block diagram of the Texas Instrument ASC

17

It can be shown that a pipeline processor with n-stages could

be at most n times faster than a nonpipeline processor. From Figure

1.4, to process ~ tasks using a linear pipeline with n stages, it

takes

T = n + (~-l) clock periods.
n

(The clock period of a linear pipeline is equal to the maximum delay

in each stage Si plus a time delay between'each stage), where n cycles

are used to complete the execution of the first task and (~-l) cycles

are required to complete the remaining (~-l) tasks. While in 'a non-

pipeline processor with the same number of tasks and equivalent functions

it takes

Tl = t.n time delay.

The speedup S of a pipeline processor over a nonpipeline processor is n

defined as,

S
n = ~.n = n+(t-l)

The maximum speedup gain is S~n, for £»n. In other words, with n
n

stages the maximum speed up that can be gained from a pipeline processor

is n. However, this perfect speed up may not be achieved in practice

due to memory conflicts, data dependency, program branch and interrupt

operations.

1.3.2 Array Processors

Array processors can be defined as an array of interconnected

identical processing elements (PE's). The PE's are controlled by a

single control unit. Each PE consists of an arithmetic and logical

unit (ALU) and a local memory. Two essential reasons for building

18

array processors are firstly, economic for it is cheaper to build N

processors with only a single control unit rather than N similar

computers. The second reason concerns interprocessor communication,

the communication bandwidth can be more fully utilised. A typical

array processor is shown in Figure 1.10.

I/O PE: processing
elements

CP: control
processor

CM: control me mory

I I
P: processor

CP Control
Unit M: memory

Data I CM I bus

j ,
'- - -- ------- - -

I

I
I
I

PEl PE2 PEN I
I

G [;] ~
I

t- !- ~
le ontrol

- - - I

~
I

G [;] I
I
I
I
I
I ,

--'"
Inter-PE connection network

(data routing)

FIGURE 1.10: Array processors computer

19

The PE's are synchronized to perform the same function at the

same time. The control unit decodes the instruction and broadcasts

the instruction via control lines to all PE's simultaneously. The

control unit can access information in both control or local memory.

Each PE has access to its local memory only. Thus, a common instruction

is executed by all PE's simultaneously using data from its local memory.

Different interconnection patterns be~ween processors in array~

processors are used to permit data transfers between processors. In

order to maximize the parallelism in an array processor, we must utilize

as much of the available memory and processor bandwidths as possible.

The array processor is eminently suitable for Linear Algebra. For

example, if an array process contains N (N=2n) processor elements, the

array NXN is stored by columns in such a way that each element of the

matrix column is stored in the memory of the corresponding PE and one

memory fetch transfers one column of the matrix into the vector of

arithmetic units (PE). An example of an array processor is the ILLIAC

IV computer. The general structure of the ILLIAC IV is shown in Figure

1.11.

The operational speed of an array processor is supposed to increase

linearly as the number of processor elements (PE) is increased.

However, this is not true due to interprocessor communication and data

access overheads. The array processors can only be effective (i.e.

maximum parallelism) if the array is completely filled with operands.

An associative store is used to overcome the bottleneck in enhancing

the speed of conventional computers. An array processor using an

associative type store as its memory is called an associative array

processor. Array processors will be discussed again in a later section

when SIMD type machines are described.

,- - - - --l
I ,

,--,
,
I ,
1--)

I ,
I ,

.---'--"-; ,..,
Control
unit

, , ,
L-.......-~,

PEO PMO

PEl PMl

PE2 PM2

,
I
I
I
I
I ,

1-" r-
: ,-__ ~lt-L __ j-r~

PE3 PM3

Supervisory
computer
system

~
I/O device

J Switmj I

I
I

,.--...l-......"

Mass I
memory PE63

FIGURE 1.11: Structure of ILLIAC IV

1.3.3 MUltiprocessor Systems

PM63

64 processing
units

I~

20

To improve system speed, reliability, throughput and availability

multiprocessor systems were developed. A multiprocessor system is

defined as a single computer with multiple processing units. It can

also be defined as a system with more than one processing unit under

integrated control. All processors share ~ccess to a common memory,

input/output channels, control units and devices. Also, each processor

21

has its own local memory and private devices. For the complete multi-

processors system there is one integrated operating system which

controls the hardware and software of the computer system. Processors

are able to communicate between each other through the shared memories

or through an interrupt network. A basic multiprocessor system is shown

schematically in Figure 1.12.

r MMl -.

I MM2 L _-i-_oiI r

•

I MMm r

Shared
memory

MM: memory module

LM: local memory

P: processor

I/O channels

I ... 1
Input-output

interconnection

network

Interprocessor

interrupt

network

FIGURE 1.12: Multiprocessor system

Interprocessor-memory

connection network

(buses, crossbar, or

multiport)

•
•

22

The interconnection subsystem is the main factor that characterizes

the multiprocessor hardware system organization. Interconnection

networks are surveyed in many references and among those are Jensen,

J.E. and Baer, Jean-Loup 1976; Miller, J.S., Lickly, D.J., Kosmala,

A.L., and Saponavo, J.A. 1970; and Noguchi, K., I. Ohnishi, and Morita,

H. 1975.

Enslow 1977, Hwang and Briggs 1984 identified three fundamentally

different syst.,m organizations used in multiprocessors:

1. Tl.nm-shnred COlllJJlon bus
---.~-----~-.

Th" tJ.me-shal'od CO!l1;non bus represents the simplest interconnection

uystem. for either sirl91e or multiple processors. It consists of a

common.c()iillIlllilication path connecting all the functional units. These

functiclH"l units are a number of processors, memories, and input/output

(I/O) deviceo. More than a single bus may be provided for throughput

or rel:tF~hility reasons. 'The conunon bus architecture is characterized

by its simplicity and low processor interconnection costs in adding or

removing functtonal units, but a single failure in the bus halts the

entire system qualifying it suitable for small systems only. The system

ca.p.,.city is limited by the bus bandwidth and system performance may be

degraded by .adding new functional units.

The D.E.C., P.D.P.-ll/45 and P.D.P.-ll/55 computers are examples

of mini-computers that are employed in this type of connection as shown

in Figure 1.13. Different time-shared common bus interconnection

schemes are shown in Figure 1.14.

23

I
Unibus A

J;
I core I ...

Unibus
priority

Processor status:
word

arbitra-
tion un.!.!

I--i ~ 16 Memory Arithmetic
general manage- I---" and logical ~ register. ment uni processor

J r
... ..

Unibus B

r Floating
Solid Solid point
state state processo
memory

a. The structure of PDP-ll CPU

,- - -- - -----.
I

I Unibus A

I I
, I I" I I Core I I Disk Un ibu s
I memory I priority I

M9200 I arbitration

jumper I unit

module I r-----, r-----
I I I Floating ;.- Arithmetic --1 Memory I

I
point L- and logical -: Management I

I processor , unit I unit I
I

1 ____ • '--r---' I
I
I

I
1

~ Unibus B
I I 1 I
I I
1 I Solid state rOlid st~ I I memory memory 1 I
1 .. - _ _. - - - _I

Central processor

b. PDP-ll/45, PDP-ll/55 system block diagram

FIGURE 1.13

24

I/O
Memory 1 Memory 2 processor 1

1 1 1
I 1. 1

I/O
processor 1 processor 2 !processor 2

a. Time-shared bus (single bus)

1 1
Bus Control ~rocesso Processa Memory I/O
modifieJ logic 1 2 units

I 1 j, L
b. Time-shared bus (two one-way paths)

I/O 1 Processor Processor Processor
1 2 3

I/O 2 Memory 1 Memory 2 Memory 3

c. Time-share bus (multiple two-way bus)

FIGURE 1.14

25

2. Crossbar Switch Networks

To overcome the inadequacies of the time-shared bus organization,

the crossbar switch is used. Interconnections between processors and

memory units are increased in such a way that each processor is allowed

to access individual memory unit, i.e., a separate path is provided for

each memory as shown in Figure 1.15.

The main characteristics of the crossbar switch are high through-

put, easy to isolate the malfunctioning device, the addition of

functional units to attain improved system performance, and a most

complex interconnection system. It is difficult to build large systems

based on the crossbar switch concept due to the fact that the complexity

grows at the rate of 0(n2) for n devices. An example of a crossbar

interconnection system is the Carnegie-Mellon multi-mini processor

(C.mmp) as shown in Figure 1.16.

I Memory J I Memory I I Memory I ...
- - - - - - - - --- - -- - - - - - - -1

!) 1
I / r , I Processor
I "- V V

(
,

I ,
I

,
I r '\ r , ,- ,

Processor '- "- -' f-' I " 1
1 I

• • I • 1

1 r , r , ,
I/O ,- ,

"- .J " -' I
Processor

I ,
I I

I/O I r , r "\ I 1\ I

Processor
, "-V I
I crossbar switch I
1-• •

•
- ------ - - --- - --

FIGURE 1.15: Crossbar switch multiprocessor

- -- - - -

cr
Switch

osspoint

----- ---

Memory
0

16 x 16 crossbar interconnection
Memory

(processor-to-memory only) 1

· · ·
Memory

15

Address Address
Translator Translator •• .

Processo Memory roceSSOl Memory • • • 1 4K 2 4K

I/O Comm I/O Comm • • •

Interprocess
or interrupt
controller interprocessor interrupt bus

FIGURE 1.16: Carnegie-Mellon multi-mini processor (C.mmp)

I

Address
Translator

Proces!'<"l Memory
15 4K

I/O Comm

IV

'"

27

3. Multiport memories

In multiport memory multiprocessors, the functions of control,

priority arbitration, and switching between processors are centralized

at the memory interface. To fulfil this, input ports for all processors

are provided to each memory interface unit and response requests are

controlled at the interface. It is possible to designate a portion of

the memory as private to certain processors, I/O units, or a combination

of both.

The main characteristics of such a system are expensive memory

control, expansion from uniprocessor to multiprocessor system using the

same hardware, system limitation by memory port design, and a large

number of cables and connectors are required. Figure 1.17 shows a

multiport memory system. An example of a multiport memory system is

the IBM system 360/67 as shown in Figure 1.18.

28

Processor Processor
1 2

1
-.l -.l

~ 1 .1.1 ...li ~

Memory Memory Memory Memory 1 2 3 4

L i 1 i ----l _I
J J I .1 1

1
I/O 1 I/O 2

a. The basic organization of a mu1tiport memory system

Processor Processor
1 2

1
J -.l .1 i

Memory lMemory Memory
(em:ry 1 2 3

!
..J. .1 l .J.

i .J.

1
I/O 1 I/O 2

b. MU1tiport memory organization including private memory

FIGURE 1.17: MU1tiport memory system

29

Processor Processor

I 1
Memory Memory Memory

I I

Channel Channel

controller controller

j Selector I L
Multiplex Channel Multiplex
channel Channel

Selector ,

channel Selector

I CU CU
Channel

~ !
DeVl.ces

FIGURE 1.18: IBM system 360 Model 67

30

1.4 ARCHITECTURAL CLASSIFICATION SCHEMES

Different approaches to the classification of computer architecture

are suggested. Among those are, Flynn (1966) who proposed a class

ification scheme that is based upon instruction and data streams used

in the system, while Shore (1973) based his classification on how the

computer is organised from its constituent parts.

1.4.1 Flynn's Classification

Flynn classified computers into four classes according to the

multiplicity of instruction and data streams. A stream is defined as

a sequence of items (instructions or data) as executed or operated on

by a processor. An instruction stream is a sequence of instructions as

executed by the machine; a data stream is a sequence of data called for

by the instruction stream. Flynn's four machine organizations as shown

in Figure 1.19 are:

1. Single Instruction Stream Single Data Stream (SISD) computer which

is the conventional serial computer (Von Neumann) .

2. Single Instruction Stream Multiple Data Stream (SIMD) computer,

(also known as array processors). These are made up of an array

of processors, each executing the same string of instructions on

different data.

3. Multiple Instruction Stream Single Data Stream (MISD) computer.

This organization might be considered as unrealistic. There are

more than one processing units, each receiving distinct instructions

operating on the same data stream. Thurber (1976), Miklosko and

Kotov (1984) considered that the pipelined systems fall into this

category of computers.

31

4. Multiple Instruction Stream Multiple Data stream (MlMO) computers

are basically a network of n processors connected together to provide

a means for cooperating during a computation.

1.4.2 Shore's Classification

Shore presented a classification technique that derives machine

descriptions from the description of a uniprocessor. Six different

classes were identified which are shown in Figure 1.20 and are

classified as:

1. Machine I is a uniprocessor computer. Examples are the CDC-76 and

CRAY-l computers.

2. Machine 11 is the same as machine I but with the addition of bit

slice processing and access capability. Examples are the ICL DAP

and STARAN computers.

3. Machine III is derived from machine II by adding parallel word

processing and access capability. An example is the OMEN-60

computer.

4. Machine IV is derived from machine I by replicating the processing

units. An example is the PEPE computer.

5. Machine V is derived from machine IV by adding interconnections

between processors. An example is the ILLIAC IV computer.

6. Machine VI is derived from machine I by distributing the processing

logic throughout the memory. It is called a logic-in-memory array

(LIMA) processor. Examples are the associative memories and

associative processors.

From the above classification two main parallel computer classes emerge,

the SIMO and MlMO computers and these will be discussed in more detail.

32

The parallel systems installed at Loughborough University will also

be discussed. Finally, Data Flow computers and VLSI models of

computation will be discussed in later sections.

IS
CV

a. SISD computer

CU: control 't un~

PU: proces sor unit
MM: memory module
SM: shared memory
IS: instru ction stream
DS: data

stream rl cu ~

IS

b. SIMD computer

ISl
CUl f

ISl
1

rl CU2 f
Is2

•
•
•

lA -I
ISn

CUm I

c. MISD computer

IS

IS

CV

PUl I
'L

, PU2 I

• • •

~ PUn I

J,

~ PUl I

~ PU2 I
•
•
•

1 PUn J
...

FIGURE 1.19: Flynn-' s classification

DS
-'

DSl

DS2

DSn

DS

El
DS

MM

I MM11

I MM21
• SM • •

I MMmI

T

/MM21 •• •

•••

ISn

El

~S2 ISl

"

SM

33

ISl IS1
ISl J CUll J PUl L DSl

I I ·L .J MM1

IS2 Is2 I IS2
PU2 DS2

~ ·L CU2.J •
• , • • • , , SM • • ISn • • rrni cunJ PUn L DSn G;J ~Isn

1

d. MIMD computer

FIGURE 1.19(cont.) Flynn's classification

Instruction Control
Memory Unit

t
Horizontal
Processing
Unit

Word-Slice
Data

Memory

1. Machine I

Instruction
Memory

Control Horizontal
Unit Processing

Unit

Vertical
Data Processing
Memory Unit

3. Machine III

Instruction
Memory

Control
Unit

Vertical
Processing
Unit

2 • Machine Il

Control
Unit

34

Byte-Slice
Data
Memory

/J ~
Process- Process- Process-
ing unit ing unit ... ing unit

1 2 n

Data Data Data 1
Memory Memory

...
Memory

1 2 n

4. Machine IV

FIGURE 1.20: Six machine classes defined by Shore (1973).

Processing
unit

1

Data
Memory

1

5. Machine V

6. Machine VI

Control
Unit

Processing
unit

2

Data
Memory

2

Control
Unit

Processing unit

+

Data memory

•••
Processing

--oolI unit
n

..• ---lI Data
Memory

n

FIGURE 1.20: Six machine classes defined by Shore (l973)(co"tor'l<ted)

35

36

1. 5 SIMD MACHINE

The SIMD type machine or the array processor (see Section 1.3.2)

consists of N processing elements (PEs) under one control unit (cu).

Parallelism of the system is achieved by multiple processing units.

Through the availability of scalar and vector operation SIMD computer

programming is considered to be simple. A whole vector of data can be

executed in one instruction operation. In a SIMD type machine the

same operation is performed at the same time over data in all processing

elements. Two SIMD configuration types are shown in Figure 1.21. Type

a shows N synchronized PE's where all the PEs are under one control cu.

Each PE. has a local memory PEM. and the control unit has its own main
~ ~

memory. User programs are loaded into the CU. The CU decodes the

instructions and decides where the instructions should be executed.

Vector instructions are broadcast to the PEs while scalar or control-

type instructions are executed inside the CU. An example of this type

of configuration is the ILLIAC-IV computer.

Type b shows another configuration which consists of N PEs and P

memory modules. This configuration differs from configuration a in two

ways. Firstly, local memories are replaced by parallel memory which

are shared by all the PEs. Secondly, the inter-PE permutation network

is replaced by the inter-PE memory-alignment network, which is controlled

by the CU. An example of this type of configuration is the Burroughs

Scientific. Processor (BSP).

One of the major issues in the design of SIMD computers is the

interconnection and transfer of data between the PE's. Different inter-

connection networks have been proposed for SIMD computers. Obviously,

/ I 0

Data and Instructions
Data bus

CU Memory

CU - -- - - - - - - -

control bus

PEO If- PEl ~ PE N-l
o ••

PEMO PEMl PEM N-l

I 1 I
j,

I Interconnection network

a. Configuration a (Illiac IV)

1
,

CU Memory

Data bus CU !
i

- -

!t-

- --

37

I

control

T :- -- - - - - - - - ------

T 1
I PEO 1 [PEll •• 0 pE N-11

Alignment network ~

I MO -, r Ml 1 0 • 0 r M p-ll

b. Configuration b (BSP)

FIGURE 1.21: Architectural configuration of 2 SIMD array processors

~-----------------------

control

38

a complete interconnection network, where each processor is connected

to all other processors, is expensive and unmanageable by both the

designer and the user of the system. Hwang and Briggs [1984]

classified a SIMD interconnection network into static networks and

dynamic networks. Static networks are classified according to the

dimensions required for layout. For example, one-dimensional, two

dimensional, three-dimensional, and hypercube as shown in Figure 1.22.

Dynamic networks are classified into single-stage networks and multi

stage networks as shown in Figure 1.23.

To run a program efficiently, it is necessary to match the

algorithm requirements with the interconnection pattern concerned in

order to prevent extra communication delays that may increase the

execution time and reduce the speed-up factor.

Associative memory has been used to overcome the limitation

gain in speed of conventional computers due to the physical separation

between data storage and processing units. In associative memory data

can be retrieved using their content or part of their content. The

major advantage of associative memory over conventional random-access

is its capacity of performing parallel search and parallel comparisons.

Another class of SIMD computer have been built using associative

memory instead of conventional random-access memory.

An associative processor is an SIMD machine with the following

properties: (1) stored data items are content-addressable and (2)

arithmetic and logic operations are performed over many sets of

arguments in a single instruction. Figure 1.24 shows a block diagram

of the associative computer. The basic memory element of the

I

39

(a) Linear array (b) Ring (c) Star

. "1"

(d) Tree
(e) Near-neighbour mesh (f) Systolic array

(g) Comoletely connected (h) Chordal ring
(i) 3-cube

(j) 3-cube-connected cycle

k (a) one dimensional I (b-f) two dimensional. ' FIGURE 1.22: Static networ :
and (g-j) three dimensional

(b) 8x8 baseline network
(multistage)

--1

--l

/
1/

-'I

/,

\
--'

\ --i 1\

--!

--- I-

r--

r--

f--

t--

(c) 8x8 Benes network (multistage)

FIGURE 1.23: Dynamic network

r--

IX
~

t--

I-

40

(a) 8x8 shuffle-exchange
(single stage)

-+

-+

1\ f-+

~ ~

f--+
11

f--+

~
~

l-

41

Program Central
Memory Control

Unit

, ,
"

" ' '" I Comparand I I Mask I

I Cell 0 I tl I
I Cell 1 JtJ I

• r-.. • •
• •
•

- J I Cell (N-lll t
some/none

output

FIGURE 1.24: Block diagram of the associative computer

associative memory is called the bit-cell. In order to retrieve

stored data items by their content or part of their content, all cells

receive simultaneously the required word C and the mask M. A memory

cell is regarded selected if the condition (C=Wl~M is satisfied for all

bits.

The comparison process of the associative memory is the dominating

factor that classifies the architecture of associative processors.

Associative processors are classified into four categories as:

42

- fully parallel,

- bit-serial,

- word-serial,

- block-oriented.

There are two types of fully parallel associative processors: word

organized and distributed logic type. In the word-organized type, the

comparison logic is associated with each bit cell of every word and

the logical decision is available at the output of every word. In the

distributed logic type the comparison logic is associated with each

character-cell or with a group of character-cells. In a bit-serial

associative processor, only one bit column (also called bit-slice) of

the whole word is operated upon at a time. A word-serial associative

processor is essentially a hardware implementation of a simple program

loop for search. A block~riented associative processor can be

implemented by using a logic-per-track rotating memory which consists

of a head-per-track disk with some logic associated with each track.

The two most important categories are the fully parallel and the bit

serial associative processors. The Parallel Element Processing

Ensemble (PEPE) and STARAN are the best-known fully parallel and bit

serial associative processors respectively.

In a comparison of ~e associative SIMD processor with a SIMD

array processor, the associative processor has the following character-

istics, i.e.,

- it allows memory addressing down to the bit level,

- the word length can be chosen arbitrarily,

- due to the low cost of integrated cirCUit, the number of PEs

can be large in both"

43

- arithmetic units of single memory cells work serially bit-by-bit,

but they perform simultaneously the same operation which is

assigned by the central control unit to all cells.

44

1.6 MIMD COMPUTERS

Multiple instruction stream multiple data stream (MIMD) , computers

-include machine organizations usually referred to as "multiprocessors"

(see Section 1.3.3). The MIMD computer can be considered as a

collection or network of minicomputers or microcomputers and collect

ively as a multiprocessor system. The MIMD computer consists of

multiple processors, each processor generating its own instruction

stream which it executes on its own data stream. These processors are

connected either through a shared memory or via high-speed or low-speed

data links.

Figure 1.25 shows an MIMD structure consisting of P memory modules,

n processing units, and m input/output channels. Different inter

connection networks are shown in Figure 1.25, the processor to I/O

interconnection network enables the connection of the I/O channels to

any processor. The processor to memory interconnection network enables

the connection of a processor to any memory unit. The processor to

processor interconnection network is in fact an interrupt network

rather than a data exchange network, since the data exchanges can be

done through the memory to processor interconnection.

Memory conflict and processor interconnection are the main two

factors that degrade system performance. To reduce these two problems,

a "private memory" is recommended to be associated with each processor

in which its important data is stored.

MIMD systems may be classified into tightly coupled systems or

loosely coupled systems. Tightly coupled systems are characterized by:

• • •

Ml

M2

Mp

FIGURE 1.25: MIMD structure

Processor to memory

interconnection

network

• • •

Pl

P2 ~

Pn

• • •

Processor to I/O

interconnection network
• • •

45

Processor

to processo"

inter-

connection

network

I/Ol

I/02

I/Om

Input/Output

Channels

/

46

1. Shared main memory used as an interconnection means between

processors, and hence all the processors can access all the

memories and execute code out of them.

2. Input/output and other system resources are shared by the processors.

3. The interprocessor communication is of the order of the bandwidth

of the memory.

4. Synchronization between cooperating processors will be required.

5. A small local memory or high-speed buffer (cache) may exist in each

processor.

6. The connection between the processors and memory is done either by

a multiported memory or by inserting an interconnection network

between the processors and the memory.

The major limitations of the performance of tightly coupled multi-

processor systems are:-

1. The degradation in performance due to conflicts to access the main

memory or the input/output devices.

2. The delays due to synchronization and scheduling of jobs on the
~

different processors.

3. The choice of the processor-memory interconnection network.

Different approaches in the tight coupling of MIMD systems are shown

in Figure 1.26.

The main characteristics of loosely coupled systems are:-

1. Each processor in the system has its own memory, that is they do

not share a common memory.

2. An explicit communications interface between the processors are

needed.

3. Concurrent processes may be performed asynchronously.

•

47

CPU CPU CPU
A B C

1 I I
J. Shared I/O bus

System
Peripheral,

a) Shared bus approach

Local
memory

Shared
memory CPU B

Local
Peripheral1

Processor
A

I/O bus B

~ I/O bus A

b) Multiported shared memory approach

I Memory L
J

l Memory -I

Crossbar switch

network

l Memory I.-
J'

I I
Memory Memory
Map Map

CPU CPU
A B

I/O bus A ! I
I 1 .-

I/O bus B

Local Local
Peripheral Peripheral

c) Crossbar interconnection approach

FIGURE 1.26: Tight coupling in MIMD system

48

4. Each processor can stand by itself with its own storage.

In loosely coupled systems, normally, one of the processors is

designated as overall system control (global processor). The other

processors are called local processors. All jobs enter the system

through the global processor. If a global processor fails,- -one of the

10",,1 l?rocessors may act as global processor.

In loosely coupled systems, synchronization, task partitioning,

sof.t.ware control, and co,nmunication data transfers are the problems to

be taken into consideration. To improve performance, the user must

det.o;rmine how to divide the task between the computers so that they can

'-J : .. ;-..

operate in parallel.

Two variafions of loosely coupled systems are shown in Figure 1.27.
,.

A tightly coupled multiprocessor has a distinct performance
; T··, '.

advantage over ~e loosely coupled multiprocessor, and is a good general
--,:. -

solution'Qecause all its resources are shared and directly accessible,

and can be accessed and allocated faster. A shared memory also offers

the quickest way to pass data between CPUs.

I/O bus A

Local
~ Memory ,

I Local
CPU CPU

~
Memory A B

1 I Local
Io---i Peripheral

High speed interconnect bus I/O bus B

a) Using high-speed bus

FIGURE 1.27: Loose coupling in MIMD systems.

Local
Memory

I/O bus A

CPU
A

communication link
(point-to-point or multi

drop)

b) Using a slower link

. ,

Local
Memory

Local
Periphera

I/O bus B

.. :

FIGURE 1.27: Loose coupling in MIMD systems (cont.;,,~eJ)

t-

Flynn, et al (1970) suggested an alternative approach ,for the

design of the MIMD computer. He proposed to interconnect several

49

1(.

independent processors, each of which executes an independent instruction

stream. The proposal is to convert the processors into "skeleton"

processors, by removing from them all the arithmetic functions and

computational logic. These functions are performed by highly specialized

high-speed processors as shown in Figure 1.28. The resulting system

avoids many of the connection problems associated with shared resource

systems.

Consider for example, the events that occur when a skeleton

processor generates an ADD instruction. After obtaining the operands

50

for the instruction, the processor requests access to a high-speed

adder. If one is available, the operation is performed and the result

returned to the skeleton processor. In the case of conflict, the

request for computation can be queued or the request can be repeated

until an adder is available.

Memories

•
•

Skeleton
processors

Pool of high-speed
arithmetic units

o
o

FIGURE 1.28: MIMD computer with skeleton processors and centralized
computation facilities

In a multiprocessor system, an interconnection device between

the processors and memory modules, and between the processors and I/O

subsystems are needed to give the processors in the multiprocessor

system the ability to share both the main memory modules and I/O devices.

51

Enslow [1970] and [1974] classified multiprocessor interconnections into

three basic types, these types are:

1. Time shared or common buses

2. Crossbar switch matrix

3. Multiported memories.

The main advantages of the MIMD computers are high throughput and

greater reliability. High throughput can be achieved by dividing the

processes into many subprocesses which can run on different processors

concurrently. While greater reliability is achieved by easily isolating

the faulty resource, (processors and memory modules) which are general

purpose resources, and thereby achieving a better fault tolerance level.

MIMD computers are more general-purpose in application than SIMD

computers. The processors in MIMD computers need not be synchronized

instruction-by-instruction as in the SIMD computers. However, it is

required that the processing algorithms exhibit a high degree of

parallelism, so that several processors are active concurrently at any

time.

In MIMD systems, it is not generally true in practice that n

processors should give n times the throughput of a uniprocessor. This

is due to the overheads needed to coordinate the activities between the

cooperating processors. The main difficulties that arise in MIMD

computers are the partitioning strategy, i.e., identifying parallelism

in processing algorithms to invoke concurrent proceSSing streams. Also,

the interconnection network design, interconnection between the

processor-to-memory or processor-to-I/O devices is the most expensive

component of the system and can become a bottleneck.

S2

Examples of some multiprocessor systems are, C.mmp,C.m* (both

research machines constructed and developed at Carnegie Mellon

University), S-l system (currently under development at Lawrence

Livermore National Laboratory), and many commercially available multi-

processor systems, including some models in the IBM 370 series and 3080

series, the Univac 1100 series, the Tandem Nonstop system, the HEP,

and the Cray X-MP.

Finally, in more detail some of the above examples will be

described.

The first system, the C.mmp system, as shown in Figure 1.29 is

an MIND system developed by Carnegie-Mellon University during the years

1971-1978. There are 16 memory blocks (MO~MlS) connected to 16 processors ------------
(pO-P1S) through a l6-by-16 crossbar network. Each processor has a

local memory block (Mlocal), a disk unit, and other peripherals. An

interprocessor bus which connects the entire set of processors is used

to perform the general function of interprocess communication. The

bus provides common clock information as well as interprocessor

interrupts. Each processor is a model of the D.E.C. PDP 11. Some

modifications were required to make these processors suitable for a

multiprocessor environment and to provide software protection. The

primary memory consists of 1.4 Mbytes of core memory (~leven partitions)

and 1.3 Mbytes of MOS memory (five parts) . The co~e;memory in each
.~;.

partition consists of eight modules of 16K byt~s each; thereby providing

eight-way interleaving. The MOS memory is configured as fO\lr 6SK bytes

modules per partition. These modules are not interleaved. The local

(non-shared) memory of each processor is an8K byte core memory. ·A

.,
" ~i .,

"

:'1
!-

,~,

~

" I
I "

or:'

.,
I

r:.
iJ
!,'
~l~ ,-

,,~

.'

.' .;,:

53

MO

Ml

16 x 16 crossbar

• • •
MI5

I I
Cache Cache Cache

•••
DMAP DMAP DMAP

I I
PO PI ••• PIS

~tloca~ rlrtoca HM local

r- Disk ~ Disk r- Disk

Interface I Interface J I Interface J

Interprocess bus I
Clock

FIGURE 1.29: structure of the C.mmp multiprocessor

54

standard unibus interface is used to connect peripheral devices to

each processor. The DMAP unit maps the address on the unibus into

the address required for primary memory access. All references to the

shared memory are first checked against the contents of the 2K bytes

cache. If data are available in the cache, the primary memory is by-

passed. Thus, cache memory is employed to reduce the memory contention

rather than to speed up the memory access. The crossbar switch allows

the maximum concurrency of sixteen paths when all processors request

different memory parts. It also resolves the memory contention when

more than one processor requires the same memory location. The C.mmp

system is controlled by the Hydra operating system. This system has

been used as a testbed for parallel algorithm design and has contributed

to reliability and software recovery problems.

The second system is the 5-1 multiprocessor system which can be

described as a high-speed general-purpose multiprocessor. The 5-1 is

implemented with the 5-1 uniprocessor called Mark IIAs. Figure 1.30

shows the logical structure of the 5-1 multiprocessor. This structure

consists of 16 independent Mark IIa uniprocessors which share 16 memory

banks via a crossbar switch. Each processor has a private cache which

is transparent to the user. A diagnostic processor is connected to

each uniprocessor, crossbar switch and memory bank. This diagnostic

processor can probe, report and change the internal state of all modules

that it monitors. 30
Each memory bank can contain up to 2 bytes of semi-

conductor memory and hence a total physical address space of 16 giga-

34
bytes (2). The large memory addressibility of the 5-1 essentially

eliminates the programming cost associated with managing multiple types

55

of computer system storage. The crossbar switch is designed to provide

access to multiple memory requests. The crossbar also handles inter

processor communication. The 8-1 multiprocessor system has the

capacity of using dual crossbar switched for reliability and a front

end (diagnostic-maintenance) processor to remove a failing switch and

substitute an alternative switch. The memory controlle",control all

the read/write accesses between different uniprocessors by using send

and receive messages via interprocessor-interrupt mechanisms within the

crossbar switch. The S-l design provides the I/O subsystem which

consists of many microcoded I/O channels. Each channel is managed by

an I/O processor. The I/O subsystem also contains I/O buffers or

memories which are accessible as part of the 8-1 processors' address

space. Each I/O peripheral processor may be connected to input-output

ports on at least two uniprocessors, so that the failure of a single

uniprocessor does not isolate any input-output device from the multi

processor system. The performance of each Mark IIA is achieved by

extensive pipelining due to advances in microcode, programming, hardware

structure, and implementation technology.

The Mark IIA processor consists of five major components as shown

in Figure 1.31. These components are extremely fast, relatively

special-purpose programmable controllers that operate in parallel to

provide a high performance. Four components that form the instruction

pipeline are for instruction fetch (F sequencer), instruction decode

(P sequencer), operand operation (I sequencer) and arithmetic execution

(A module). These sections are internally pipelined to achieve a

maximum instruction-issue rate of one instruction per SOns, which is

equivalent to a maximum data throughput rate of 720 million bytes.

Memory 0 - - - - -
Controller ~Diagnostic

0 'Iprocessor

1
Uniprocessor 0

Data Instruction
.,.' , Cache Cache

" .. ~ ~: .. M

F
-.

P
.. .. I

A

I/O I Diagnostic Store t- ... --l
processor 0

Real time mass

I/O ~ I/O ~~rage
u its proces

sor 0
If-; ... --'

1-6

Peripheral
equipment

I/O
Store

1

I/O
proces,
or 7

56

1-14 - - - - - - - Memory 15

IDiagnostic~
) processor

congoller

I
Crossbar
switch

Diagnostic
H processor

i
Uniprocessor 15

Data Instruction
Cache Cache

M
F

1-14
i'- .•• ---; P

I

A

I I/O I/O
Diagnos- Store ~ '" --'I Store tic pro-

0 7 cessor

Real time mass
I/O ~ I/O t-4 storage I/O

proces units proces
sor 0

jf-+ ... +-'

Peripheral
equipment

sor 7

.

FIGURE 1.30: Logical structure of the S-l Mark IIA multiprocessor

i

/,

Diagnostic
maintenance
processor

Instruction
Cache

Instruction-
fetch unit (F
sequencer)

Writable

To-from
internal

~gnostic

To-from
memory or
crossbar

log
Memory-inter-
face unit (M
sem -,
Writable
control store

Decode RAM rl

Instruction-

t-l
decode unit (p

sequencer)

Writable

57

I/O 1-6 I/O
",roc-1'-'" -l proc-
I'SSOL es Cl

User register.

I/O 1-6 I/O

Data Cache ~ata if' data
st~re s~rE

Operand-pre- Pipelined
paration unit t--' arithmetic unit
(I sequencer) (A module)

Writable Writable
control store control store control store control store

FIGURE 1.31: The internal logical structure of the 5-1 Mark IIA
uniprocessor

For the 5-1 multiprocessor system, there exists a single user

operating system, multiu-us<r operating system, and advanced operating

system. The single-user operating system is a simple stand-alone system

which runs a single task at a time and provides only basic I/O functions.

The multiuser operating system to be developed will be based on the

Unix operating system because it is a small, relatively powerful system

and has demonstrated a suitability for transport. The advanced operating

I-

58

system for the S-l is the full functionality system Amber. The Amber

operating system supports a mixture of applications which include a

real-time system (e.g. signal processing), interactive use (e.g.,

physical simulation) and secure environment for data. The Amber

operating system combines the functions of the file system and virtual

memory. It also supports multitasking by the division of problems into

cooperating tasks.

The final example of a multiprocessor system is the HEP system.

The Heterogeneous Element Processor (HEP) is a large-scale scientific

multiprocessor system and is the first commercially available MIMD

multiprocessor system. The system contains up to 16 process execution

modules (PEM) and up to 128 data memory modules (DMM). The PEM's or

DMM's are connected with the I/O and control subsystem via a high-speed

switching network. The PEM is the computational element of the HEP.

Figure 1.32 shows an example configuration of the HEP with 28 switching

nodes, fourPEMs, four DMMS, a mass-storage subsystem, an I/O control

processor, and a node connection to four other devices. The mass

storage subsystem consists of three major components. A large MOS

buffer memory provides an I/O cache function to mask the seek and

rotational delays of the disks. Disk storage modules provide storage

increments of 600 megabytes. I/O channels couple the disk storage

modules to the I/O cache and are controlled by the I/O control

processor. Figure 1.33 illustrates the components of the mass-storage

subsystem. The system can handle up to 32 I/O channels, with each

channel supporting a transfer rate of up to 2.5 megabytes/so Each

disk storage module consists of two disk drives. The HEP switch is a

synchronous, pipelined, packet-switched network consisting of an

59

arbitrary number of nodes. Each node, which consists of three full

duplex ports, is connected to its neighbours. These neighbours may

be PEMs, DMMS, subsystems, or other nodes. Each node switch is

programmed to determine the best output port routing to the final

destination. Such programmed routing techniques allow for alternative

routing to bypass a faulty component.

Processor

Data
Memory

I/O choice

Processor

Data
Memory

I~ss storaqe devices

Processor

Data
Memory

control

Processor

Data
Memory

Packet
switched
network

)--0-
Other I/O
devices

FIGURE 1.32: The architecture of a typical HEP system with four
processors

60

[Switch network I

I/O choice
Memory

To I/O and control subsyst
subsystem

J

~ H Controller I
I

1 1 -
,.... --..

I) r--. ..--- r--.] 0 Channel-to- o Special
0 .
0 channel 0 purpose

r--. ~ interface I- I/O I

I"- ..--- -- 0

-~----
....... .-

0

0 0

•
•

I Controller
I I --

...1 j j
,.... --.. ~ ,

'I r--. ..-
I"--

--- .- Magnetic

tape

----------- ---------.-

..-

Disk storage
modules

FIGURE 1. 33 : The mass storage system (MSS) in the HEP

---'

61

The execution of multiple independent instruction streams on

multiple data streams is implemented by replicating the functional

units in each PEM. Maxmial parallelism in the HEP system is achieved

by providing multiple independent instruction streams executing multiple

data streams in a pipelined execution environment as shown in Figure 1.34.

Each PEM consists of its own program memory and an instruction

processing unit (IPU). Up to 50 instructions may be in various stages

of execution operating on one or more data streams simultaneously.

There are many applications which can be run on the HEP machine.

A variety of applications are: traditional multiprogramming, solution

of large-scale systems of ordinary and partial differential equations,

but the greatest potential is in the simulation of a discrete event

system or process driven simulation.

Process Process Process Process , 2 3 4

...
Data

Branch Add Multiply Divide

Divide Branch Add Multiply

Multiply Divide Branch Add

Add Multiply Divide Branch

I Branch
A B

• ~l
Yes esu ltResul Resul

«,

FIGURE 1.34: Achieving maximal parallelism with replicated hardware
in the HEP (MIMD processing)

*D E+F
t

62

1.7 LOUGHBOROUGH UNIVERSITY PARALLEL SYSTEMS

Two MIMD type parallel systems have been developed at the

Department of Computer Studies of Loughborough University, these

systems are the Interdata Dual 'System and the more powerful NEPTUNE

system.

The first system consisted of two identical Interdata model 70

processors. Each processor has 32Kb of private memory and shares a

32Kb shared memory as shown in Figure 1.35.

Common memory
(32Kb)

Private
Memory (32Kb) Private memory

(32Kb)

Memory Memory
bank I-- bus
controller interface

Processor A Processor B

FIGURE 1.35: Interdata Dual System

In this system description the two processors will be referred

to as A and B respectively. The system had the asymmetrical property

that when processor B is accessing the COmmon or its private memory,

63

processor A remains locked out of the common memory until that accession

is completed. Whereas, also if processor A is accessing the common

memory then processor B is locked out of both its private and common

memory until the memory cycle of A is completed. On the other hand,

processor A has a minimum delay of one microsecond in memory accession,

while processor B has zero microsecond as the minimum delay. The

performance measurements of this Interdata Dual system has been presented

by Barlow and Evans (1977).

The second MIMD type computer which has been developed at the

Department of Computer Studies of Loughborough University is the NEPTUNE

system (Barlow, et al 1981). This system is based upon the Texas

Instruments 990/10 minicomputer. The current configuration is shown in

Figure 1.36. The system contains five linked busses (TILINES) and four

processors (numbered as PO,Pl,p2, and p3 respectively). Each one of

the four processors are attached with the TILINE acting as the local

bus for that processor. Each processor can also access its own

(private) memory via its local TILINE. The current size of private

memory for processors PI, P2 and P3 are 192K bytes and for processor

PO it is 384K bytes (the maximum size of private memory for processors

PO,Pl,p2 and p3 are 576K, 384K, 576K and 320K bytes respectively) .

Processor PO has a 10 Mbyte disc drive on its local TILINE, while

processor p2 has a controller with a 474 Mbytes Winchester disc drive

and a tape streamer attached. Each of the local TILINE's is attached

via a TILINE coupler to the fifth (shared) TILINE. To this shared

TILINE there is attached 104 Kbytes (rising to 184 Kbytes)of memory and

a 50 Mbytes disc.

64

Each processor can access a minimum of 232 Kbytes. This is

because, the TILINE coupler is arranged so that the shared memory

follows continuously from the local memory of each processor. The

50 Mbytes disc can be accessed by all the processors which will receive

the disc interrupts.

In addition, the NEPTUNE system can operate as four individual

processing systems.

The Texas Instruments 990/10 minicomputer runs under the DXIO

operating system which is a sophisticated multi-tasking system and

supports a tree-structured filing system. Modifications have been

made to the DXIO to allow parallel processing to take place and to

permit various management policies for the shared resources to be

investigated.

The shared memory storage can be claimed by any processor, and

once it is granted this storage behaves as if it was local memory. A

small area on top of the shared memory is reserved for managing inter-

processor cooperation. A parallel program to be run on the four

processor system logically consists of two parts. The first part

contains the program code and local variables, while the shared

variables are stored in the second part. When a processor receives

a request to execute a parallel program (or, more correctly, a parallel

task), shared memory space is claimed by that processor and the segment

containing the shared variables is loaded into this space. The

management area in common memory is set to contain pointers to the

shared segments and tasks are activated in other processors with

sufficient information to enable them to run the requested program.

The non-shared segment(s) are loaded into the private memory of each

1
I

65

processor. The tasks running on all four processors have the right to

access simultaneously the shared disc and the files stored on it by the

DXIO.

TO realise parallel operation, more than one processor can create,

open, access (read and write) and delete files. There are however,

two restrictions on simultaneous access to a single file from more than

one job/task; the first is that it is not possible to have two tasks to

'open' a file for writing, the second is, if two tasks on different

machines have a file open one for reading and the other for writing

then if the writer changes the size of the file the reader will not be

informed until the writer closes the file.

When a user logs on, a task is initiated on his behalf. This

task provides the user interface to the system and is called the System

Command Interpreter (SCI). Commands may be issued in different ways by

the SCI. A series of menus are the simplest level that will display a

sequence of command classes and eventually arriving at a list of commands.

All the commands are implemented either as tasks running under the

operating system (e.g. compilers and utility programs) or as functions

of the SCI (those corresponding to a supervisor call). In the NEPTUNE

system, the foreground and background modes are available for a task

to be run. USing the terminal, only one foreground task may be executed

at anyone time. An interactive program must be run in the foreground.

Several tasks and commands may be executed in the background. Background

tasks should not involve I/O with the terminal. While a background task

is executing, the SCI is still running and available to process user

requests. Commands are available for inspecting the state of the

background tasks.

,

The access time to both shared memory and local memory for the

four processors in the NEPTUNE system are not the same. The times

66

for local memory access are: 0.98 ~sec, 0.95 ~sec, 0.92 ~sec and 0.92 ~s

for processors PO, PI, p2, P3 respectively. While the time for shared

memory access are 1.73 ~sec, 1.70 ~sec, 1.68 ~sec and 1.68 ~sec for

processors PO, PI, P2, P3 respectively. Although the processors are

identical in many hardware features, they are also different in their

speeds.

The hardware features and the operating system of the NEPTUNE

system have now been discussed. The programming concepts of the NEPTUNE

system will now be discussed in the next chapter.

67

I Shared

I t- memory

Gp Gp
I

I Pl I ~ f) I \
Disk

I

c;J Gp
I

(Disk

FIGURE 1.36: The current NEPTUNE configuration

68

1.8 DATA-FLOW COMPUTERS - .

The computer architectures discussed in the previous sections are

known as control flow (Von Neumann) machines. In conventional Von

Neumann's (known as Control Flow, CF) computer, the program is stored

in the memory as a serial sequence of instructions. Computations in

CF computers are done according to the flow of control in the program.

It is not possible to execute any instruction until all the previous

instructions in the program have been executed, i.e., if there exists

an instruction in a program such that the data is available and could

be executed immediately, it is not executed until its turn comes in

the program. This is one of the main difficulties in the utilization

of the natural parallelism of algorithms in the CF model of computation.

Another architectural model for computer systems is created to make it

possible to express the natural parallelisms of algorithms, this model

is the data flow model of computation, also known as a data-driven

system. In a Data Flow (DF) computer, the course of computation is

controlled by the flow of data in the program. That is, an operation

is performed as and when its operands are available. The sequence of

operations in the DF computer obey the precedence constraint imposed

by the algorithm used rather than by the location of the instructions

in the memory. In DF machine it is possible to carry out in parallel

as many instructions as the given computer can execute simultaneously.

After executing the instruction, the result is distributed to all

subsequent instructions which make use of this partial result as an

operand. In this way, the DF model of computation exploits in a simple

manner the natural parallelism of algorithms •. In computer architecture,

this makes it possible to create systems which can dynamically adapt

•

69

their inner configuration to the natural structure of the algorithm

being performed.

As an illustration of DF computation, the computation of the roots

of a quadratic equation is shown in Figure 1.37. Assuming that a,b a~d

2
c values are available, (-b), (b), (ac), and (2a)' can be computed

2
immediately, followed by the computation of (4ac), (b -4ac) and

/(b2-4ac), in that order~ After this, (-b+~2-4aC) and (-b-Ib~2~--4-a-c-)
can be simultaneously computed followed by the simultaneous computation

of the two roots. The only requirement is that the operands be available

before an operation can be invoked.

The two basic models of data flow computer architecture which

are designed by Miller and Cocke (1972) are the:

1. Search mode configurable computer (SM type)

2. Interconnection mode configurable computer (IM type)

Both models are characterized by the possibility of dynamic

adaptation of its configuration to the structure of algorithms. This

is done by interconnecting (according to the graph) the processors

that correspond the ~ operators in the data flow program of the

problem. Reconfiguration is done either by hardware or software means.

In the IM type, the interconnection of processors is actually implemented

through a large switch, 1. e., by hardware means. In the SM type, the

interconnection of processors is simulated by using a special instruction

format, i.e., by software means. Due to reconfigurability, the data

flow computer is able to achieve the same performance as a specialized

system, whilst still keeping its general purpose capabilities.

Figure 1.38 shows the search mode (SM) type computer which

consists of a memory, a functional unit, and a control unit (searcher).

b a

c

Root 1

Root 2

FIGURE 1.37: A data-flow graph for the computation of the roots of
a quadratic equation

70

2

2a

71

Memory

Searcher

Functional unit

FIGURE 1.38: Search mode configurable computer

The functional unit is composed of a certain number of processors. A

searcher is a specialized unit for generating tasks for processors

which belong to the functional unit. The memory is used to store data

and instructions, either together or separately. A free processor asks

the searcher for a task. The searcher locates a suitable task in the

memory or composes it from various components stored in different parts

of the memory and sends it to the selected processor in the functional

unit for execution. Processors may be adders, multipliers, conditional

tester, I/O processors, etc. Because the searcher performs more than

half of the work necessary in traditional computers for the execution

of an instruction, the performance of a computer will depend mainly on

the throughput of the searcher which the effective utilization of the

processors largely depends upon. Also the performance of this computer

will depend on the type and number of processors, and memory speed.

Figure 1.39 shows the interconnection mode configurable computer

(IM) type. A computer of IH type can be reconfigured to adapt as much as

72

Memory

Set-up Data access
control control

Switch FUnctional unit

FIGURE 1.39: Interconnection mode configurable (IM) computer

possible to the algorithm being executed. This is done through an

interconnection network (switch) as shown in Figure 1.39. Since it is

not possible to execute the whole program at one time on a set of

processors, the data flow program is divided up into a number of blocks

taking into consideration the number of processors available at anyone

time. This is done by a compiler which determines the interconnection

of processors, so that the computation structure created corresponds

to the graph of the data flow program or some part of it. This inter-

connection is encoded and stored in memory as a set-up instruction for

the switch. This set-up instruction is fetched first and sent to a

set-up control which does the interconnection of the proces~ors. In

this way, the computation structure is ready to execute the computation

of a block of the program. After processing a block, the processors

involved and a part of the switch are released and can be used for

setting up the structure of another block.

Several data flow machines have been built using different

architectures. CUrrently, data flow computers are operational at

different places in the United States, Japan and Europe. Among those

operational data flow computers there are those at the University of

Utah, Manchester, Toulouse, and two different projects at M.I.T.

73

One of the first data flow computers was introduced by Dennis and

Misunas [1974, 1975] as shown in Figure 1.40. The structure of this

data flow computer consists of five major sections connected by channels

through which information is sent in the form of discrete tokens

(packets). The memory section consists of instruction cells which hold

instructions and their operands. The processing section consists of

processing units that perform functional operations on data tokens.

The arbitration network delivers operation packets from the memory

section to the processing section. The control network delivers a

control token from the processing section to the memory section. The

distribution network delivers data tokens from the processing section

to the memory section.

Instructions held in the memory section are enabled for execution

by the arrival of their operands in data tokens from the distribution

network and control tokens from the control network. Enabled

instructions, together with their operands, are sent as operation

packets to the processing section through the arbitration network.

The results of instruction execution are sent through the distribution

network and the control network to the memory section, where they become

operands of other instructions. Each instruction cell consists of three

registers. The first register contains the instruction code and all

conditional control data, with operands in the second and third registers.

74

The arbitration network provides a path from each instruction cell to

each processing unit and sorts the operation packets among its output

ports according to the operation codes of the instructions they contain.

For each operation packet received, a processing unit performs the

operation specified by the instruction using the operand values in the

packet and produces one or more result tokens, which are sent to the

instruction cells through the control network and the distribution

network. Each result token consists of a result value and a destination

address derived from the instruction being processed by the processing

unit.

The functions performed by the processing unit are distributed

among several sections of the data flow processor. The transmission

of packets over each channel used an asynchronous protocol so that the

five sections of the computer can operate independently without using

central timing signals. The instruction cells are assumed to be physically

independent, so that at any time many of them may be enabled. The

arbitration network should be designed to allow many instruction packets

. to flow through it concurrently. Similarly, the control network and

the distribution network should be designed to distribute dense streams

of control and data packets back to the instruction cells. In this way,

both the appetites of pipelining and parallelism are satisfied.

Processing section

(control
tokens)

(Data
tokens) .

1

Processing
unit

• • •

Processing
unit

•••

/

Control \
network

• ••

~ Instruction /I--HI cell block

Distributior •

•
• network •

•
•

•
•
•

(Operation i
packets) ---.J

Arbitration
network

~ '------Instr~uction I I·V ~I--_Hcell block I"

Hemory section

FIGURE 1.40: The data flow computer architecture

75

76

1.9 VLSI SYSTEMS

Due to the current development in hardware technology, Large

Scale Integrated (LSI) electronic circuitry has become so dense that a

single silicon LSI chip may contain tens of thousands of transistors.

These hardware advances have led to more functions being implemented

in hardware, e.g. i~ has been possible to implement a sophisticated 16-

bit processor on a chip. The actual number of components in one chip

depends on the speed of the devices and the regularity of the patterns

used to lay them out on the chip.

As LSI technology advances, Very Large Scale Integrated (VLSI)

circuit designs were introduced in which the number of transistors

that the LSI circuit will contain will be increased by another factor of

10 to 100 in the next decade (Mead and Conway (1980)). By late 1980's

it will be possible to fabricate chips containing millions of transistors.

As we move into the VLSI era, 32-bit processors with memory and input/

output support will also be available on a chip. In addition, it will

be possible to implement SIMD and MIMD architectural designs on a chip.

The key factolBof VLSI technology are: its capacity to implement

enormous numbers of devices on a chip, low cost and high degree of

integration while the main VLSI problem is to overcome the design

complexity. One solution to reduce the complexity of a VLSI chip is

to use a regular design structure (patterns) as in a memory chip.

In order to get full use of VLSI capabilities, computer-aided

design methodologies, and design systems are needed for chip design.

The study of VLSI circuits is not limited to hardware aspects but also

software tools become more and more important in the design and testing

stages. This means that the production of a new chip requires software

77

as well as hardware engineering knowledge. However, computer

scientists have developed and are still developing more new algorithms

and new communications techniques to exploit the potentiality of the

VLSI system and its applications into highly parallel and specialised

computers. An excellent 'state of the art' survey can be found in the

January 1982. issue of IEEE Computer magazine.

The separation between the processor from its memory and the

limited opportunities for concurrent processing are the main difficulties

in the conventional (Von Neumann) computers. VLSI offers more flexibility

than conventional (Von Neumann) computers to overcome these difficulties

because memory and processing architectures can be implemented with the

same technology and close proximity. The potential power of VLSI has to

come from the large amount of concurrency that it may support. The

degree of concurrency in a VLSI computing structure is largely determined

by the underlying algorithm. Enormous parallelism can be obtained by

introducing a high degree of pipelining and multiprocessing while

designing the algorithm. The requirements of parallel architectures

for VLSI have been discussed by many authors among those are Kung (1982)

and Seitz (1982). The design should contain a few modules which are

replicated many times (i.e., simple and regular) and using both pipe

lining and multiprocessing principles. Finally, a successful algorithm

for VLSI design will be the one where the communication is only between

neighbouring processors.

One way of achieving parallelism is by attaching a special-purpose

parallel processor to the system bus of a microcomputer to speed-up

the more computationally bound tasks, as shown in Figure 1.41. The

special-purpose processor, for example, could be designed to exploit

<
I

Host micro computer
for I/O support

System Bus

Attached Parallel
processor

FIGURE 1.41: Microcomputer with attached special-purpose processor

78

the features of a particular class of problems (e.g. the finite element

machine (Podesiadlo and Jordan (1981)) or alternatively it could be

designed for a general computational task, like the solution of linear

equations, as envisaged by Kung (1979).

There are two general architectural designs of the attached parallel

processor to be considered in more detail in this section. The first

is the multiprocessor lattice architecture based on the idea of several

processing elements operating under a centralised control and the

second is a systolic array architecture which makes extensive use of

pipelining.

Dew, Buckley and Berzins (1983) defined a multiprocessor lattice

architecture as, an NxN array of processing elements which execute

concurrently under a centralised control and transmit along local

communication path connecting neighbouring processing elements. Each

processing element has a private memory to store both results and also

temporary values which may be needed. A global bus may be used by the

processing elements to communicate between eath other but this is not

an essential feature of the architecture. The ICL DAP computer is an

79

example of an array lattice architecture.

Another example is the Configurable Highly parallel Computer (CHIP)

(Snyder (1982)) where programmable switches are provided between the

processing elements. Because the switches are programmable this means

that the lattice is reconfigurable dynamically. In this type of

architecture, a significant amount of software support is needed to

program each processing element by the host computer. The need for a

large local memory, together with the need to broadcast a program to

each element means that the architecture is less well suited than the

systolic architectures to the requirements of a VLSI system. Still by

the use of VLSI systems it will drastically cut the cost of building

the hardware.

The second architecture, the systolic array architecture was

developed by Kung (1982) in which the wiring in a chip design is reduced

to a minimum. A systolic system consists of a set of interconnecting

cells (processing cells), each capable of performing a "hardware" simple

arithmetic operation.

The structure gives a simple and regular pattern that allows for

easy communication between the cells. Information in a systolic system

flows between the cells in a pipelined fashion, where communication with

the outside world occurs only at the boundary cells, i.e. boundary cells

may be I/O ports for the system. Figure 1.42 illustrates the basic

principle of a systolic array. By replacing a single processing element

with an array of P.E.'s, a higher computational throughput can be

achieved without increasing the memory bandwidth. Data items are

transmitted from the memory through the array of P.E.'s and can be

processed effectively at each cell it passes. This is possible for a

80

Memory

PE

a) The conventional processor

PE PE PE PE PE PE

b) A systolic processor array

FIGURE 1.42: The concept of systolic processor array

wide 91ass of computer-bound computations where multiple operations are

performed on each data item in a repetitive manner.

As an example, if each PE in Figure 1.42 operates with a clock

of 100 ns. The conventional memory-processor organization in Figure

81

1.42a has at most a performance of 5 million operations per second.

With the same clock rate, the systolic array will result in 30 MOPs

performance. This gain in processing speed can also be justified with

the fact that the number of pipeline stages has been increased six times

in Figure 1.42b.

The advantages of the systolic approach are, the ability to use

each input data item many times, modular expansionability, simple and

regular data and control flows. Figure 1.43 shows different VLSI

systolic array structures for different computer-bound algorithms.

These computations form the basis of many signal and image processing,

matrix arithmetic and database algorithms. The major problem with

systolic array is still in its I/O limit. The globally structured

systolic array can speed-up computations only if the I/O bandwidth is

high.

In conclusion, VLSI technology offers a great reliability at the

circuit level. Also, it has the advantages of simple and regular

interconnections that lead to cheap implementation and high densities

Where high density implies both high performance and low overhead for

support components.

82

~ H H
(a) One-dimensional linear array

I I I

- ,.-- ~ -

T I I

- ~ - -

I I I

- ~ 1- -

"1 -I I

(b) Two-dimensional square array (c) Two-dimensional hexagonal array

I I I I

- f-- I- I-

I I

,.-- I- ,...- I- - I-- I-

I

- I-

1
(d) Binary tree (e) Triangular array

FIGURE 1.43: Various systolic array configurations

83

CHAPTER 2

PARALLEL PROGRAMMING PRINCIPLES

84

2.1 INTRODUCTION

As seen in Chapter 1 the recent advances in hardware technology

and computer architecture leads to faster and powerful parallel computer

systems. Problems for parallel computer systems require some extra

programming faciljtjes which come under the heading of parallel

programming, to distinguish it from the conventional programming of -
single-processor co~uters. The two new concepts behind the new ideas
, -
of parallel programming theory are parallelis~and asynchronism of

programs. Gill (1958) defined parallel programming as the control of

two or more operations which are executed virtually simultaneously,

and each of which entails following a series of instructions.

There is a gap between the hardware architectual advances and the

development of programming languages or software production tools to

utilize these technological and architectural advances. Any parallelism

in an algorithm will be lost when it is expressed in a sequential high-

level language, so this type of language is not entirely suitable for

parallel computers. A parallel language which provides the programmer

with sufficient tools to enable the construction of efficient algorithms

and at the same time effectively utilize the hardware i?_neeq~_._ It

is now apparent that parallel processors required a language created

in their own generation using in so far as is possible the experience

accumulated in language design and implementation technique and which

incorporates the new features that are necessary in writing algorithms

for these machines.

Most of the high-level languages currently used to program

parallel computers are extensions of languages which were specifically -- --~-.-,-~ .. ---. -----_._------_ .. -.--------
designed many years ago, for sequential machine architectures. Examples
---~-.---- -----~-

are, Fortran-like languages, CFT for the Cray-l (Russell, (1978)),

and IVTRAN for the ILLIAC-IV (Mill stein (1973)). An algol-like

language, Glypni~ (Lawrie, (1975)) for Illiac-IV was also developed.

85

Many parallel programming languages have been proposed for

different types of machines. For example, ACTUS (Perrott, (1979)) has

been designed to enable the specification of parallelism directly and

has been used to exploit parallelism in algorithms implemented on array

processors such as the ILLIAC-IV. Other languages such as TRANQUIL

(Abel, et al (1969)), an Algol-like language and the experimental

VECTRAN (Paul and Wilson (1975)) language for vector/matrix array

processing have also been proposed.

Perrott (1979) has classified the available or proposed parallel

languages into three categories:-

1. Detection of problem parallelism, in which the programmer

constructs a problem solution in a sequential programming

language and a compiler tries to detect any inherent parallelism~

2. Expression of machine parallelism in which the syntax of

programming language reflects the underlying parallelism of

the hardware either directly or by means of subroutine calls.

3. Exploitation of problem parallelism in which the program and

data structures enable the programmer to directly express the

parallel nature of a problem.

86

2.2 HIERARCHIES OF PARALLELISM

Both Task and Process are intended to mean a self-contained portion

of a computation that once initiated can be carried out to its completion

without the need for additional inputs. The completion of a task is

significant in that its occurrence can initiate the execution of other

sets of tasks. The tasks Tl , T2 and T3 of a sequentially organized

program are illustrated in Figure 2.la. Parallelism is said to exist

between Tl and T2 , if the execution of T3 is independent of whether

task Tl and T2 are executed sequentially or in parallel as shown in

Figure 2.lb.

1 -

.L + t
Tl

Tl T2

T2

~

T3 T3

1 L
(al (bl

FIGURE 2.1: Sequential and parallel execution of two tasks

Parallelism can exist at several levels within an individual

program. These levels may vary from a statement or group of statements

of a procedural language to the level of micro-operations. Program

87

parallelism or multiprogramming refers to the type of processing in

which independent programs are processed concurrently. Intraprogram

parallelism, on the other hand, refers to the type of processing in

which a single program can be partitioned into tasks that can be

performed in parallel i.e. multitasking. Intraprogram parallelism can

be classified into global and local. In the global type of parallel

processing, a program is partitioned into tasks that can be performed

in parallel. Figure 2.2 shows a sample of a FORTRAN program illustrating

both global and local parallelism

Read 100 A,B,C,D

-y X=A**2-2.0*A*B+B**2

Y=C**2+2.0*C*D+D**2

10 Z=(A*B)+(C*D)

CALL SUBl (A,B,E)

CALL SUB2 (C,D,F)
100 FORMAT (4EIO.4)

END

FIGURE 2.2: Sample Fortran program illustrating global and local
parallelism

The two arithmetic expressions for X and Y can be executed in

parallel because they each have independent input sets. Parallelism

on a local level can be illustrated by statement 10 of Figure 2.2.

As shown in Figure 2.3, "subtasks" (2.3a) and (2.3b) within the task

outlined by statement 10 can be executed sequentially or in parallel.

A second example of local parallelism, the subroutine (say SUB1) could

itself consist of statements of the same form as statement 10 and be

executed in parallel themselves.

88

!
lOa 1
Z =A*B

1

lOa lOb

Z =A*B
1

Z =C*D 2

lOb

Z =C*D
2

lOc lOc

Z=Zl+Z2 Z=Zl+Z2

(a) (b)

FIGURE 2.3: Illustration of parallelism of a local level

To design a parallel program, it is necessary first to identify

the tasks that can be run in parallel. The two approaches which have

been used to SO~IT~thi~_pr_~b2::m are known as expl~_~~~~mplicit

parallelism. In the explicit approach, the programmer explicitly

specifies the concurrency that exists in the progr~ by usjng

~t~=io",n~a=l--"in=sc::t:::ru-=:::C~t~i:.:o::n:.:s~w::i:.:th::.:i::n~t:::h.:.:e::...:p~r~o:g:r=a=mm=:in=g~:l=a.:.:n::gu.::a::g:.:e~i:.:t::s::e:.:l::f=-. While

the implicit approach relieves the programmer of any additional duties,

and relies totally upon indicators existing in the program itself.

The two approaches have some advantages and disadvantages. In

explicit parallelism, the programmer can change the structure of an

algorithm if it is not suitable for parallel processing. While

inserting new parallel programming constructs. can be a time consuming

process and may lead to mistakes. In the implicit approach, it is

89

independent of the programmer, and existing programs would not have

to be modified to take advantage of any inherent parallelism.

However, this approach is associated with compiler and supervisory

programs to detect the parallelism and their related running overheads.

2.2.1 Explicit parallelism

In explicit parallelism, the users must be provided with

programming abstractions that permit them to indicate explicit

parallelism,when desired in a program. ~nway (1963) used FORK and

JOIN statements as an approach to parallelism. FORK is an instruction

that indicates the initiation of parallel tasks, JOIN waits for a,

previously created process to terminate. The three ways that FORK may

be specified are:

1. FORK A, the execution of this statement initiates another process

at address A and contipues the current process.

2. FORK A,J, the execution of this statement causes the same action

as FORK A and also increments a counter at address J.

3. FORK A,J,N, the execution of this statement causes the same action

as JOIN A and sets the counter at address J to N.

JOIN J is used with all the forms of the FORK command usage. The

exeCution of JOIN J decrements the counter J by one. The process at

address J+l is initiated if the result of the counter at J is equal to

zero, otherwise the process executing the JOIN is released. The FORK

and JOIN statements in parallel programming dre similar in concept to

the GOTO statement in sequential programming. An example of the FORK

JOIN instructions is illustrated in Figure 2.4.

90

100 FORK 200, 299 0
100 §)

0
FORK

101 200 105

A
B

106 JOIN 299

(a) (b)

FIGURE 2.4: FORK and JOIN (a) Flow chart, (b) Instructions

The FORK at location 100 means: set the contents of location 299

to 2; then instructions at 200 and at 101 will be subsequently executed.

The "2" in the instruction specifies the number of processors that the

FORK at location 100 will activate (if they are available). Each

processor, when it comes to the end of its parallel path, it branches

to location 299 where it decrements the counter by one, and tests if

the result is equal to zero. This means it is the last task to finish.

91

In the example, there are two JOIN instructions, at 106 and 220. Each

one reads: JOIN 299. This means, "decrement the counter 299 by one.

If the result is zero, branch to 299+1, otherwise release this

processor ". Notice that FORK has an associativity property; N

parallel paths may be specified equally well by many possible arrangements

of N-l forks.

Opler [1965], suggested two statements that allow the programmer

to indicate the sections of program which are to be executed in parallel.

The two statements are DO TOGETHER and HOLD. These two statements are

used to overcome the limitation in the procedure-oriented languages

(Algol, Fortran, Cobol, etc.) when used to express a problem solution

involving parallelism. The DO TOGETHER will create a range of parallel

operations and to define two or more parallel paths within this range.

The HOLD will terminate the range created by the DO TOGETHER. The

statement after the HOLD statement is executed only after all the

executable statements in all the paths have been processed. One of

the formats of the DO TOGETHER instruction is:

Label 1 DO TOGETHER label 2, label 3, .•• ,label n-l (label n)

Label 1 is optional and indicates the beginning of the range. Lable n

is required and the tag of the HOLD that terminates the range, label 2

to label n-l are tags of the first statement in each of the n-2 paths.

While the HOLD format is:

Label HOLD

The label is compulsory and must be referenced by one or more DO

TOGETHER's. Each path in the DO TOGETHER must be logically self

contained. DO TOGETHER's may be nested and may share the same HOLD.

Branching into or out of the range of a DO TOGETHER is not permitted.

92

As an example:

L1 DO TOGETHER L2,L3(L4}

L2 Statement 21

] Statement 22 Path 1

Statement 23

L3 Statement 31

] Statement 32 Path 2

Statement 33

L4 HOLD

FIGURE 2.5: Structure of a DO TOGETHER instruction

The block-structured language proposed by Dijkstra (196S) is an

equivalent extension of the FORK-JOIN concept. Cobegin-Coend (or

Parbegin-parend) constructs used to concurrently execute each process

in a set of n processes Sl,S2, ... ,Sn as:

begin

SOl

cobegin Sl;S21 .•• ;Sn coend

Sn+11

end

The cobegin Sl;S2; ..• ;Sn coend indicates that statements Sl,S2, .•• ,

Sn can be executed concurrently. When all the statements Sl,S2, •.• ,Sn

are executed and terminated, the following statement (Sn+1) in the

program is executed. Figure 2.6 shows the precedence graph of the

above example.

The processes defined by the concurrent statement are completely

independent of one another. Thus, the set of statements Sl,S2, ••• ,Sn

are disjoint processes. This implies that, to change any variable by

a process, that variable must be private to that process, but disjoint

93

FIGURE 2.6: Precedence graph of a concurrent program

processes can refer to common variables. The compiler should be cap~le

of detecting the disjointness between processes and determine the

variables that can be changed by the processes and those that can be

referenced only. Concurrent statements can be nested arbitrarily as

in the following example, which is illustrated in Figure 2.7.

begin

SO;

cobegin

SI;

begin S2; cobegin S3; S4; SS; coend S6; end

S7;

coend

S8;

end

94

FIGURE 2.7: Precedence graph of nested concurrent processes

Within the execution of the loops statemen'ts, parallelism can

normally be found. Gosden [1966J has implemented PARALLEL FOR state

ments and it is noted that his implementation is independent of the

number of processors available. As an example, consider the matrix

computation C+A.B, where A is an nXn matrix and Band Care nXl column

vectors, for very large n. A parallel For (parfor) statement is used

to implement the computation of C. The parfor statement will generate

p independent processes. Assume that p divides nand n/p=s:

parfor i+l ~ P do

begin

for j+(i-l)s+l until s.i do

begin

C(j)+{);

for k+l until n do

C(j)+e(j)+A(j,k) .B(k);

end

end

95

Each process being generated computes the statements between the outer-

most begin-end constructs for a different value of i. Hence, the

computation of each group of C(i) is done concurrently.

Shared variables should be controlled while being accessed by

different processes in a concurrent processing environment. In

concurrent processes, the segments of program that are used to enable

one processor to modify a shared variable is called a critical section.

There exists at most only one process in a critical section at a time

(i. e., mutual exclusion). A number of constructs can be included to

protect the use of the shared variables. An example is the MUTEXBEGIN

and MUTEXEND construction which is used to mutually exclude access to

a set of shared variables. LOCK and UNLOCK constructions may be used

to protect the shared variables from simultaneous access. LOCK(Xl,X2,

•••), makes the data variables X
l

,X2 , ••• , and are the exclusive property

of the branch issuing the LOCK statement. The UNLOCK (X
l

,X2 , .••)

released the previously locked statements. An explicit notation is

needed to specify whether a variable is private to a single processor

or shared by several processes. A shared variable v of type T is

declared as follows:

var v: shared T

96

Concurrent process can only refer to and change a shared variable

inside a critical section. Then critical section may be defined by

csect v do S

where S is associated with a common variable v and implies that the

statement S should have exclusive access to v.

2.2.2 Implicit Parallelism

An alternative approach to explicit parallelism is implicit

parallelism, where the independent processes are automatically detected

by the careful and detailed analysis of th~ source program. In this

approach the compiler scans the source program and detects any

independence between statements or program segments. This is considered
~~ ~

to be the first step in any parallelization technique. Detection of

the relationships between these parts allows the program to be run on

a parallel computer. This approach to parallelism is independent of

the programmer, i.e. the programmer need not express the parallelism

in the problem and a sequential program need not be rewritten to run

efficiently on a parallel computer. On the other hand, the compiling

and supervisory programs are complex and incur an overhead.

An area in which implicit parallelism can be applied is the

detection of parallelism within an arithmetic expression. Gonzalez

and Ramamoorthy [1970J and Williams [1978J studied the detection of

parallelism within arithmetic expressions which are executed on parallel

computers with a number of arithmetic units or processors. It was

shown that the time taken for an arithmetic expression to be calculated

on a parallel computer can be estimated to be proportional to the

number of levels in the tree representation of the expression. Whereas

for a sequential computer the time taken to calculate an expression

can be estimated to be proportional to the number of operations

needed to be performed.

97

If number of available arithmetic units or processors are

sufficient in. any parallel computer, then any operations that appear

at the same level in a tree representation of an arithmetic expression

can be executed in parallel on separate processors. As an example,

consider the expression,

A+B+C+D+E+F+G+H

which is shown in Figure 2.8 a,b. It is clear that the execution of

this expression will require 7 units of time for the tree representation

in Figure 2.6a and 3 units of time for the tree representation in

Figure 2.8b. This is because the two representations have a tree of

height levels 7 and 3 respectively. On the other hand, the number of

processors required for each level will be different in both represent

ations. In Figure 2.9a, only one processor is required in every level.

Whereas, in Figure 2.6b, four processors are required at level 1, two

at level 2 and one at level 3. So the tree representation of Figure

2.9b is more suitable for parallel execution than that of Figure 2.8a,

and we can conclude that the amount of potential parallelism for the

execution of an expression is inversely proportional to the number of

levels (or height) of the tree representation of that expression.

Hellerman [1966] has suggested an algorithm that is based on the

input expression being presented in reverse Polish notation and

containing only binary operators. The input string is scanned from

left to right replacing by temporary results each occurrence of adjacent

operands immediately followed by one operation. It is a fast and simple

98

level

7

6

5

4

3 I r---+ ----. r-+, ,+,
A B

i+li+li+li+l

A B C D E F

(a)
(b)

FIGURE 2.8: Possible binary tree representations of the expression
A+B+C+D+E+F+G+H

level

6

5

4

3

2

1

o
D E

FIGURE 2.9: Parallel computation of A+B~CtD*E*F*G+H+I
using Hellerman's algorithm

G H

99

algorithm, but it requires the input in reverse Polish notation and

handles commutative operators. An example using this algorithm to

handle the expression

A+B*C+D*E*F*G+H+I

is shown in Figure 2.9.

It can be seen that one processor is used at level 1,4,5 and 6 and

two processors at levels 2 and 3.

pb Stone [1967J proposed an algorithm based on two subtrees of the

same level combined into one a level higher. The algorithm generates

its output in a single pass and in reverse Polish notation. The

algorithm is slow because of the recursiveness and additional passes

which are required to specify parallel computation. Figure 2.10 shows

the output obtained from Stone's algorithm applied to the expression:

A+B*C+D*E*F*G+H+I

level I
5 ·1
4 I + I I
3

Ar-ri I +1
2 * ! I

*li*j H
1

B Cl
0

0 E F G

FIGURE 2.10: Parallel computation of A+B*C+D*E*F*G+H+I using Stone's
algorithm

All levels require two processors only while level 4 and 5

require only one processor.

Squire [19631 in his algorithm forms quintuples of temporary

results of the form:

R. (operand 1, operator, operand 2, start level, end level)
L

start level = max(end level operand 1; end level operand 2)

end level = start level+l.

Initially all the variables have a start and end level equal to zero.

All temporary results which have the same start level can be computed

100

in parallel. The algorithm scanning the input from right to the left,

starts from the right most operator and proceeds until an operator is

found with lower priority than that of the previously scanned operator.

Now a left to right scan proceeds until an operator is found whose

priority is lower than that of the left-most operator of the substring.

At this point a temporary result is used. The temporary result replaces

one of the operands, and the other is deleted together with its left

operator. The left to right scans are repeated until no further

quintuple can be produced, and at that time the right to left scan is

reinitiated. The algorithm can also handle subtraction and division

with increased complexity. Polish notation plays no part in either input

or output manipulation. Figure 2.11 shows a parallel computation of the

expression:
A+B*C+D*E*F*G+H+I _"

Bear and Bovet [196B1 in their algorithm use multiple passes over

the input string and each pass corresponds to a level. The output

string of one level becomes the input string for the next level until

the whole expression has been compiled. Thus, the number of passes will

level

4

3

+ ----,1
,+, 1*'

~+ll*ll*ll* "l il I B CD E F G

A H

FIGURE 2.11: Parallel computation of A+B*C+D*E*F*G+H+I using
Squire's algorithm

be equal to the number of levels in the syntactic tree. A left to

101

right scan is used so that the same symbol is scanned once during each

pass. All operations which have the same level number can be performed

in parallel. Figure 2.12 shows the syntactic tree generated by this

algorithm for the expression

A+B*C+D*E*F*G+H+I

level

4

I
+

I
3

I*l 1+1
2

i*l G ,+, I
1

Dll

F

BI*l C-+lH

FIGURE 2.12: Parallel computation of A+B*C+D*E*F*G+H+I using
Baer's and Bovet's algorithm

102

DiffereE_~app_r_o_a_c_h~~s~h~a_v_e~b~e~e_n __ d_e~v~e~l~o~p~e_d __ f~o_r~r_e_c_o_g~n=i_z~i~n~g_

parallelism in a ~~Eg~am automatically. Bernstein [1966] in his

method suggested conditions which must be satisfied before a sequential

process can be executed in parallel which is based on two separate sets

of variables for each process P.:
1.

1. The read set Ri represents the set of all memory locations for

which the first operation in P. involving them is fetah.
1.

2. The write set W. represents the set of all locations that are
1.

stored into in P ..
1.

Two sequential processes Pl and P2 can be executed in parallel if they

satisfy the following conditions:

1. Locations in Rl must not be destroyed by storing operations in

1'12 , The areas of memory for which tas~is read and onto

which task P2 writes should be mutually exclusive, that is,

(q,=empty set)

2. By symmetry, exchanging the roles of PI and P
2

,
.-

In addition, to maintain the state of the machine when entering P
3

independently of the mode of execution of P
l

and P
2

, P
3

must be

independent of the storing operations in P
l

and P
2

, that is,

Following this work, Evans and Williams [1978] have presented

a method of locating parallelism within ALGOL-type programming

languages and they investigated some constructs such as the following:

assignment statements, loops and IF statements.

To conclude this section, with the increasing complexity of the -

103

problems to be solved and future computer system structures, the

difficulties of program construction has grown. One way to relieve

the difficulties is to make parallel programming more automatic which

will increase efficiency.

2.3 PARALLEL LANGUAGES FOR VECTOR PROCESSING

In this section we describe the parallel languages features for

vector processing that have been developed for existing pipeline

computers.

l~

Vectorization is known as the process to replace a block of

sequential code by vector instructions. The system software which does

the regeneration of parallelism is known as a vectorizing compiler. An

intelligent compiler must be developed to detect the concurrency among

vector instructions which can be realized with pipelining or with the

chaining of pipelines.

High-level languages with parallel constructs have been developed

to facilitate vector processing. As we know the use of sequential

languages will lose the parallelism specified in a good algorithm.

Thus, vectorization is required to restore the concurrency in parallel

algorithms so that they can be efficiently implemented on a vector

processor. Most commercial vector processors have built-in hardware to

support extended high-level languages, like the extended FORTRAN on

Cray-l, and the FORTRAN 77 extension in the Fujitsu FACOM Vp-200.

Two vector processing languages have been proposed recently: i.e.,

the Actus by Perrott [1979] and the other is the Vectran by Paul and

Wilson [1975]. Neither Actus nor Vectran has been successfully tested

on a real machine. Hwang and Briggs [1984] state that the language for

vector processing should have the following features:

1. Flexibility in declaring and selecting array elements in the

rows, columns, blocks, diagonals and in various subarray

expressions.

2. Effectiveness in manipulating sparse and dense matrices.

lOS

3. Array conformity to allow transportability.

4. A mechanism to break vectorization barriers.

The following Fortran extension examples show some of the features

in a typical parallel language. The extended notation may be specified

through an implied DO notation as follows:

el:e2:e3

el:e2

*

el:*:e3

where el, e2 and e3 are expressions of the indexing parameters as they

appear in a DO statement. Only the single symbol "*,, indicates that

all of the elements are in a particular dimension. The notation "-*"

may be used to indicate that the elements are in reverse order.

Example 2.1 Given: DIMENSION X(12), Y(12,S)

Then: X(3:12:3) represents the elements X(3) ,X(6) ,X(9) ,X(12)

Y(4:6,S) represents the elements Y(4,S) ,ytS,S) ,Y(6,S)

Y(*,4) represents the fourth column of the matrix Y

Y(7,3:*) represents the elements Y(7,3) ,Y(7,4) ,Y(7,S)

Portions of an array should be allowed to be identified using separate

names explicitly in a vector statement. No extra storage is allocated

for an identified vector, simply because it is a virtual name for a

collection of elements in the original vector.

Example 2.2 Given: Real X(8,8)

Then: VECTOR X ROW 3(1:8) is a vector consisting of the third row of X.

VECTOR X DIAG (1:8) represents the diagonal elements of X.

VECTOR X COL 3(1:8:2) is the vector consisting of X(1:3) ,

X(3:3), X(S:3), X(7:3).

106

A WHERE statement may allow the programmer to indicate the assi~nment

statements to be executed under the control of a logical array. PACK

and UNPACK operations demonstrate the use of control vectors.

Example 2.3 Given: DIMENSION A(6), B(6), C(B); DATA A/-3,-2,1,3,-2,S/

Then: PACK WHERE (A.GT.O) B=C causes the elements of C in positions

corresponding to "true" in A.GT.O to be assigned to the B

elements such that B(l) = C(3), B(2) = C(4), B(3) = C(6);

UNPACK WHERE (A.GT.O) A=B inserts the elements of B into A in

positions indicated by A.GT.O. Thus, A(3)=B(1) , A(4) = B(2),

A(6) = B(3) •

with each element of a vector operand, a basic function may be needed

to be computed. For example A(l:S) = COS(B(l:S» is a vector basic

function. Several special vector instructions are shown in the

following example.

Example 2.4 Given: DIMENSION A(30) , B(30) , C(30)

Then: C(4:ll) = VADD(A(4:11), B(3:10» performs the vector addition;

S = SIZE(A(1:30:4» equals the length of the sparse vector

A(1:30:4) ;

S = DOTPD(A,B) forms the dot product of vector A and B;

S = MAXVAL (A) finds the largest value of vector A.

A vectorizer is needed to detect parallelism in a sequentially coded

program. For a program written in Fortran, a Fortran vectorizer will

recognize Fortran constructs that can be executed in parallel.

Precedence analysis and code generation are the two basic phases

performed by the vectorizer program. In the analysis phase, the

vectorizer performs an analysis of data dependencies and determines

the possibility of translating Fortran instruction sequences into a

vector syntax.

The following examples illustrate how the conventional Fortran

statements are converted into vectorized codes, probably by a

vectorizing compiler.

107

Example 2.5: A simple DO loop containing independent instructions can

be converted into a single vector instruction.

DO 10 1=4,60,2

10 A{I)=B{I+3)+C{I+l)

are being converted into a single vector statement:

A{4:60:2)=B{7:63:2)+C{5:61:2)

Example 2.6: A recurrence computation can be converted into vector

form, subject only to its precedence constraint. The recursion

A{O)=X

DO 10 I=l,N

10 A{I)=A{I-l)*B{I)+C{I+l)

can be converted to be:

A{O)=X

A{l:N)=A{O:N:l)*B{l:N)+C{2:N+l)

Example 2.7: An IF statement in a loop can be eliminated by setting

a corresponding control vector together with a WHERE statement, such

as converting

108

DO 10 I=l,N

10 IF(L(I) .NE.O)A(I)=A(I)-l
to WHERE (L(I) .NE.O) A(l:N)=A(l:N)-l

Example 2.8: Parallel computations are sometimes allowed by inter-

changing the execution sequence, such as converting

DO 10 I=l,N

A (I) =B (I-l)

10 B(I)=2*B(I)

to the following code:

B(1:N)=2*B(1:N)

A(l:N) =B(O:N-l)

The loop imposes an ordering which when you unroll the loop can only

be done correctly by reordering the instructions.

Example 2.9: Temporary storage can be used to enable parallel

computations, such as converting the standards

DO 10 I=l,N

A(I) =B(I) +C(I)

10 B(I)=2*A(I+l)

to vector code:

TEMP(1:N)=A(2:N+l)

A(l:N)=B(l:N)+C(l:N)

B(1:N)=2*TEMP(1:N)

A vectorizer informs the programmer of the possibility of parallel

operations. The programmer can rearrange the computations for better

pipe lining by examining the output of the vectorizer. Automatic

vectorization and code optimization will increase the programming

productivity of vector processing.

2.4 ARRAY PROCESSING LANGUAGES AND PROGRAMMING

Array processors are also known as SIMD computers since it can

handle single instruction and multiple data streams (see Chapter 1).

Parallel computation on vector or matrix type of data was certainly

109

the original purpose for developing SIMD array processors. All the

processing elements perform the same function synchronously in a lock

step fashion under the command of a control unit. Parallel execution

in the array of processing elements is started after all vector

operands are stored in the processing elements memory. SIMD array

processors allow explicit expression of parallelism in user programs.

The compiler detects the parallelism and generates object code suitable

for execution in the multiple processing elements and control unit

while the control unit is used to execute non-parallel program segments,

while parallel executable segments are sent to the processing elements

and are executed synchronously. To enable synchronous manipulation in

the processing elements, the data is permuted and arranged in vector

form. Thus, to run a program more efficiently on an array processor,

one must develop a technique for vectorizing the program codes.

Parallel programming in SIMD array processors can be seen from the

vector operations such as in matrix multiplication.

An example of a SIMD array processor is the Illiac-IV as shown

in Chapter 1, which WaS primarily designed for solving partial

differential equations and matrix manipulation. Glypnir (Lawrie, et

al [1975]), Tranquil (Abel et al [l969Dand Illiac-IV Fortran are three

suggested high-level languages for Illiac-IV. Both Glypnir and

Tranquil are Algol-like languages. Tranquil is the first language

proposed for Illiac-IV. It has the facilities to manipulate arrays

110

of data in a parallel fashion, independent of the machine organization.

Glypnir is a block-structured language and was written to exploit the

parallelism in the Illiac-IV architecture.

In Illiac-IV, arithmetic operations are carried out under the

control of a mask pattern, each processing element associated with it

is a 64 bit (true-false) boolean vector which is used for mask purposes.

A processing element is activated when its corresponding. bit mask is

true and a result of an operation may be delivered.

Consider the Glypnir expression:

A:;B*C

when A,B and C are vectors, each may have up to 64 elements. The above

multiplication means that each component of B is multiplied by the

corresponding element of C and the resulting product vector is stored

in A. However, when C is a scalar, the multiplication will be repeated

64 times in an invisible processing element variable.

Extra facilities are provided such as the rotation and shifting

of rows to the left and the right. For and if statements are also

provided, but it gives unconventional results. For example, if A,B

and C are vectors, the statement

If A>B then C:;A else C:;B

will deliver the maximum element of A and B to C and any result in

both the then and else statement to be executed. In Glypnir, the

programmer is responsible for storage allocation and be constrained to

only Illiac-IV rows (64 components) or vectors of rows. Illiac-IV

111

Fortran is used to overcome these constraints, since it allows the

-
user to program with vectors of any length. Extra constructs have

been added to the language to allow the shifting and rotation of

vectors and array rows. The DO statement have been extended to allow

the parallel execution of arithmetic expressions and binary data type

can be used to specify bit-control vectors for masking purposes.

Most parallel computers use extensions of existing languages,

such as extended Fortran for the Star-lOO, the CFT language for the

Cray-l and the Glypnir language for the Illiac-IV. The language SL-l

attempted to bring some of the benefits of structured programming to

the Star-lOO system. The Vectran language has been developed by the

IBM research group to facilitate the application of vector-array

processing algorithms. perrot [19791 introduced another parallel-

programming language for array processors which offers a theoretical

extension of the language Pascal and is called Actus.

The Actus language attempts to redress the technology imbalance

between the advanced architecture of parallel machines and the

development of high level languages for such machines. It is aimed

at exploiting parallelism and incorporating some software engineering

approaches. The syntax of the language enables the expression of

parallelism in a manner which is suited to the problem and which can

easily be exploited by a parallel architecture. The main features in

the Actus language are described below.

An array is declared in Actus by indicating the maximum extent

of parallelism. The syntax can support any number of dimensions.

For example, a scalar array is declared as:

112

var scalar: array[l •• m,l •. n] of real;

The maximum extent of parallelism is introduced by replacing only one

pair of sequential dots " .. " by a parallel pair":" as shown,

var parallel: array[l:m,l •• n] £f real;

This declaration indicates that the array "parallel" of mxn real

numbers for which the maximum extent of the parallelism is m. The

array "parallel" can be manipulated for m elements at a time since

it has been declared as a parallel variable with that extent of

parallelism. The extent of parallelism is a central concept to this

approach. It is defined for an array processor as the number of

processing elements that can logically compute upon a particular data

structure at the same time.

Index set can be used by the programmer to identify a particular

element of a data type that can be accessed in parallel. An index

set is defined with the data declaration,

index index=i: j;

where i and j are constant integer values such that i~j. The elements

i to j inclusive will be accessed whenever the index-identifier index

is used as a parallel-array index. For example, with the declarations

~ parallel: array[l:m,l. .n] of real;

index interior=2:m-l;

interior can be used as the first index of the array "parallel" to

access column elements other than the boundary elements. By using

the index set the expression becomes more readable and the execution

efficiency of the program can be improved.

Shift and Rotate are two alignment operators which are available

to enable the movement of data between elements of the same or

113

different parallel variables. The shift operator causes the movement

of the data within the range of the declared extent of parallelism.

While the rotate operator, which causes the data to be shifted

circularly with respect to the extent of parallelism.

To construct algorithms for parallel machines many of the program

constructions which are required in a sequential environment such as

assignment, selection, iteration and subprograms are necessary. The

essential difference is that in this new environment such manipulations

must be performed in parallel. A single extent of parallelism can be

associated with each simple or structured statement of the language

which refers to one or more than one parallel variable; this extent

must be less than or equal to the declared extent of parallelism for

the parallel variable involved. For example, the following are valid

assignment statements involving parallel variables:

aa[l:lOO,j]:=aa[l:lOO,j]*bb[i,l:lOO];

aa[lO:90,j]:=aa[lO:90,j]/bb[i,lO:90];

The within construct has been suggested to avoid repeatedly indicating

the extent of parallelism for a series of statements (or for a single

statement) in which the extent of parallelism will not change. This,

in turn, avoids the repeated evaluation of the same extent of parallelism.

The form of within is:

within specifier do statement

where the quantity specifier is either an index set identifier or an

explicit extent of parallelism which is shown as follows. The symbol

"#" is used to indicate the extent of parallelism.

The assignment statements:

aa[l:loo,j]:=aa[l:loo,j]*bb[i,l:loo];

aa[10:90,j]:=aa[10:90,j]/bb[i,10:90];

could have been written alternatively as:

within 1:100 do aa[#,j]:=aa[#,j]*bb[i,#];

within 10:90 do aa[#,j]:=aa[#,j]/bb[i,#];

114

The if and case statements can be used to indicate a choice of several

execution paths. For example,

~ a,b: array[l:loo] of integer;

if a[l:lOO]>O then statement

TO solve this problem the anonymous sharp symbol "#" is again used in

the construction of the statement. For example in

if a[l:lOO] >0 then a[#]:=O;

The sharp represents that subset of the set 1 to 100 for which the

corresponding element of 'a' are greater than zero. The effect of

executing the statement is to assign the value zero to these elements.

The ~ statement is the main means for specifying the repeated

parallel processing of the data. It is used when the number of times

the statement is to be executed is unknown. For example:

while a[1:50]<b[1:50] do a[#]:=a[#]+l

the "#" symbol identifies those elements of a which are less than their

corresponding element in b on each occasion that the comparison of

elements is performed and only those elements of a have their value

increased by 1. Execution terminates when all the elements of a are

greater than or equal to their corresponding element in b.

In the situation where the number of times the repetition to be

performed is known, the ~ construct has been expanded to allow the

inclusion of parallel variables in the control, start, finish and

increment positions. It then takes the form

for control:=start ~ increment to finish do statement

Functions and procedures can be constructed using the data

declarations and program constructs previously introduced and the

Pascal rules for.subprograms apply. Thus, local variables cannot

alter their extent of parallelism by a function or procedure call.

In procedure and function definitions, the formal parameter list can

consist of either scalar or parallel variables or both.

115

By introducing the concept of the extent of parallelism into data

declarations and modifying existing Pascal language constructs to

accommodate the special demands of a parallel processing environment.

The advantage of the Actus language is that a problem's parallel

nature is expressed directly in the syntax of the language which, in

turn, makes efficient use of the machine's computational resources.

The user, therefore, does not have to get involved with the detection

mechanism.of a compiler or with the Underlying architecture of the

machine on which the program will be executed.

2.5 MIMD MULTIPROCESSOR PROGRAMMING

A parallel program for a multiprocessor consists of two or more

interacting processes. In an MIMD multiprocessor system we need an

efficient notation for expressing concurrent operations. Processes

are concurrent if their executions overlap in time. In a MIMD

multiprocessor environment necessary changes in the instruction set

116

of multiprocessor machines is needed and then modifications or

extensions included in the high-level languages for programming multi

processors. Both explicit parallelism (Section 2.2.1) and implicit

parallelism (Section 2.2.2) may be used to exploit parallelism in a

multiprocessor environment.

In a multiprocessor system, synchronization takes an increased

importance as it could create overheads that are too high. System

performance could be reduced significantly if the synchronization

mechanisms are not efficient and the algorithms that use them are

not properly designed. Synchronization primitives are implemented

either directly in the hardware, microcode or in software. Cooperating

processing in a multiprocessor environment must often communicate and

synchronize for the execution of one process can influence the other

via communication. Now communication between processes are carried

out either by use of shared variables or message passing, and this is

done via a synchronization mechanism. A process executes with un

predictable speed and generates actions or events which must be

recognized by another cooperating process. The set of constraints on

the ordering of these events constitutes the set of synchronization

required for the operating processes. The synchronization mechanism

is used to delay the execution of a process in order to satisfy such

constraints.

117

Mutual exclusion and condition synchronization are the two types

of synchronization which are employed when using shared variables.

Mutual exclusion ensures that a physical or virtual resource is held

indivisibly. While conditional synchronization occurs when an attempt

to access a shared data by a process is delayed until the shared data

object state changes to the desired value as a result of other

processes being executed.

Many constructs have been used to implement both mutual exclusion

and condition synchronization. An example of those constructs are

MUTEXBEGIN. MUTEXEND and the usage of LOCK and UNLOCK operations which

are shown in Section 2.2.1.

Dijkstra proposed two primitives and indivisible operation P and

V. which can be used to implement the mutual-exclusion efficiently.

These operations can be shared by many processes and operate on a

special common variable called a semaphore. which indicates the number

of processes attempting to use the critical section:

~ s: semaphore

Then the primitive P(s) acts as an MUTEXBEGIN of a critical section.

The V(s) primitive is MUTEXEND and records the termination of a critical

section.

Semaphores are quite general and can be used to program almost

any kind of synchronization. While the difficulties that arise from

using the semaphore in parallel algorithms makes the algorithm

unstructured and prone to error. For example. the misuse of P or V

accidentally on a samaphore can make a disastrous effect, since

mutual exclusion would no longer be ensured. Another type of

difficulty expected, is when the programmer forgets to include the

semaphore in a critical section when using it and an error occurs in

execution.

TO overcome the difficulties in semaphore, Hoare [1972] and

Hansen [1972] proposed Conditional Critical Section (CCS). This is

a structured and highly user-oriented tool for specifying communication

among concurrent processes. Their use allows direct expression of

the fact that a process has to wait until an arbitrary condition on

the shared variables holds. The variable V may only be accessed within

CCS statement that name V. A CCS statement is of the form,

csect V do await C:S -----
where C is a boolean expression and S is a statement list. A CCS

statement delays the executing process until the condition C is true,

S is then executed. Other CCS statements that name the same resource

cannot interrupt the evaluation of C and the execution of S. Thus,

C is guaranteed to be true when the execution of S begins.

In a multiprocessor system with a high degree of concurrency,

the problem of deadlocks will arise. Deadlocks occur when members of

a group of processes which hold resources are blocked indefinitely

from access to resources held by other processes within the group.

Solution to the deadlock problem have been classified as prevention,

avoidance, detection and recovery techniques. Prevention is the process

of constraining system users 50 that requests leading to a deadlock

never occur. The scheduler then allocates resources 50 that deadlocks

will never occur. For dead avoidance, the scheduler controls the

__ J

resource allocation on the basis of some advance information abcut

resource usage so that the deadlock is avoided. With deadlock

detection and recovery, the scheduler gives resources to the process

as soon as they become available and, when deadlock is detected, the

scheduler pre-empts some resources in order to recover the system

from the deadlock situation.

120

2.6 DATA FLOW LANGUAGES

To overcome the problem encountered in introducing parallelism

into Von Neumann model, the data flow model of computing is introduced.

A data flow computation is one in which the operations are executed

in an order determined by the data interdependencies and the availability

of resources. Two varieties of data flow computation can be distinguished

i.e.,

1. Data-Driven Computation, in which operations are executed in an

order determined by the availability of input data.

2. Demand-Driven Computation, in which operations are executed in an

order determined by the requirement for data.

The data flow approach is often associated with the use of data-

driven computation.

Data flow languages are programming notations in which data

dependencies are expressed directly by program structure. A data flow

program in general may be represented by a directed graph, with nodes

used to represent the operations (such as addition, multiplication,

subtraction, etc.) and the arcs represent the flow of data, and show

the data dependencies. An example of data flow program is shown in

Figure 2.13.

(a+b)-(a*b)

FIGURE 2.13: Program to calculate the difference between the sum and
product of two numbers.

121

The nodes represent functional operators connected by data links.

Each type of operator has input and output links and specifies a

function from data values on input links to data values on output

link, as shown in Figure 2.14.

Il

01

01

01=Il+I2

Add

I

Ol=Il

02=I2

copy

12 Il

01

01=Il/I2

02=Il mod 12

Divide

02

FIGURE 2.14: Some data flow operators

I2 Il

02
01

01= ~Il

Not

122

During the execution of programs, the notation of tokens flowing

down arcs are used to carry data values. When a node has its data

token available upon its input arc(s) it generates an appropriate set

of data tokens upon its output arc (s). This is referred to as "firing".

Figure 2.15 shows the steps of the computation of the example shown

in Figure 2.13.

4

2 4

*

(a) initial input token present (b) copy node ire

B

•

(c) sum and product are calculated (d) difference is calculated

FIGURE 2.15: Steps illustrating the evaluation of a program graph

The set of operations of a data flow language are equivalent to

the primitive operations of a sequential language. An operator

becomes enabled (ready to execute) when tokens are present on all its

input links. The execution of all enabled operators is independent

and concurrent. Many data flow operators can execute concurrently if

each has its required operands. An enabled data flow operator removes

the input-values from its input links and computes the output values

as functions of the input values. The output values are transmitted

onto the output links and the operator returns to the inactive state.

Operator execution depends only on information local to the operator;

there are no global variables or side effects.

Extra operators are needed in order to provide some method of

making run-time data-dependent decisions as to what operators are to

123

be carried out. Figure 2.16 shows the two control operators, the switch

and the merge. In the switch operator the input token is placed on the

output are selected by the control unit. While in the merge operator,

it is the programmer's responsibility to ensure that only one input

arrives at anyone time, the input is then placed on the output.

Control operators are used to construct the conditional and loop graph

as shown in Figure 2.17.

An alternative representation to the graphical programming notation

is the textual programming notation as used in most programming

languages. Many single assignment and functional programming languages

have been developed by various research groups. Among those languages

are, the Irvine Data Flow (ID) language (Arvind, Gostelow and Plouffe

Control

input

True
output

(a) The switch

Data input

False
output

FIGURE 2.16: The control operators

Control

input

Result

'Else'
part

Initial
input

cond
ition

Possible
input

Output

(b) The merge

Result

(a) Conditional (b) While loop

Possible
input

FIGURE 2.17: Data flow graphs representing typical program constructs

124

Body
of
loop

125

[1978J) and the Value Algorithmic Language (VA) (Ackerman and Dennis

[1979J) •

The main characteristic of the data flow languages are.

1. It is shown to possess great locality. Assignment to a formal

parameter should be within a definite range. As a result, data flow

languages are appropriate for block structures.

2. Freedom of side effect. The absence of global or common variables

and careful control of the scopes of variables make it possible to

avoid side effects (such as in procedures that modify variables in

the calling program). Also calling by value which is used in data

flow languages will solve the aliasing problem.

3. A single assignment rule offers a method to promote parallelism in

a program. The rule is to inhibit the use of the same variable

name more than once on the left-hand side of any statement. This

will greatly facilitate the detection of parallelism in a program.

4. Data flow programs tend to waste memory space for the increased

code length due to the single assignment rule and the excessive

copying of data arrays.

126

2.7 PARALLELISM IN HIGH-LEVEL PROGRAMMING LANGUAGES

Most of the high-level languages currently used to program

parallel processors are extensions of languages designed many years

ago for conventional sequential architectures (such as Fortran). Many

new algorithmic languages are equipped with facilities to enable them

to handle parallel tasks and concurrency. In this section we are

going to investigate the parallelism in three high-level programming

languages, these languages are Algol-6B, Pascal-plus and Ada.

In Algol-6B, parallelism is specified syntactically by a collateral

phrase consisting of one or more constituents separated by commas.

Collateral elaboration of statements can be performed by means of a

construction known as a Void-collateral-clause. This takes the form of

a sequence of units enclosed by begin and ~ or '(' and ')' and

separated from each other by commas. An example of Void-col lateral

clause is:

(a :=b, ((cl :=dl;bl: =el) , (c2 :=d2 ;b2: =e2)) ,print (b))

The relative order in which the various statements are performed can be

shown in Figure 2.1B.

Facilities for the coordination of control in collateral tasks

have been proposed by Dennis and Van Horn [1966] (LOCK/UNLOCK mechanism)

and Dijkstra [1965] (samaphores). Algol-68 is equipped for this with

the structure sema, the values of which are integers and two operators:

up and down.

The two operators ~ and ~ are used to permit synchronization

to take place. The ~ operator can involve a potential delay and

hence suspension of the process in which it is contained. The ~

127
Previous phrase

cl:=dl c2:=d2

a:=b Print (b)

bl:=el b2:=e2

next phrase

FIGURE 2.18: The order in which (a:=b,((cl:=dl,bl:=el),(c2:=d2;b2:=e2»,

print(b» is executed

operator does not involve a delay but its use can awaken or restart

a process that was earlier sent to sleep or suspended as a result of a

previous application of~. An import precondition concerning semaphores

is that no two processes can simultaneously access the same semaphore in

order to perform an ~ or down operation on it.

Whenever synchronization has to take place there must be some

form of parallel processingin~toperation. Synchronization can be

performed only between the units of a parallel clause. A ~1Tallel

clause is like a Void-col lateral-clause except that it msut be

preceded by £ar.

128

Pascal-plus extend the Pascal programming language with process,

monitor and condition constructs required for programming a system of

parallel activities. The process construct is used to represent

program modules whose execution may proceed in parallel •. The syntactic

form of a process is:

process name {formal parameter list};

{local declaration}

begin

{body}

end;

instance

P: name {actual parameter list};

It is possible that several processes can share the same data and

only one allowed to modify it. The monitor construct is used to

control shared data as defined by Hoare [1974] and Hansen [1975]. In

Pascal-plus a monitor guarantees that only one process at a time can

execute its local code and therefore change its local data.

When a process requires access to a monitor it may be forced to

wait implicitly if some other process is currently executing its code.

In addition, having entered the monitor the process may find that the

129

data it requires is not available. Synchronization is achieved in

Pascal-plus through an operation on a built-in monitor called condition,

which is based on the Hoare condition [1974]. The operations provided

by this monitor are:

monitor condition;

~ range=O •• maxint;

procedure pwait(priority:range);

procedure wait;

procedure signal;

function length:range;

function priority:range;

end {condition}

Associated with each instance of condition is an ordered queue on which

process may be suspended. When a process invokes the pwait operation

it is placed on this queue according to the specified priority value.

signal operation is used to activate a process at the head of the

condition queue.

The Ada language provides two forms of modules called packages

and tasks with similar properties. A module is a programming unit that

consists of a specification and a body. Parallel activities are

described by means of tasks. A task is primarily intended to introduce

a new control path. A task cannot be a stand-alone unit in an Ada

program but it must be declared within another program unit, which is

referred to as a 'parent' of the task and a task is said to be 'dependent'

on its parent. The outline of a task is shown as:

task TASK-NAME is -- -
{This declares the entries accepted by the task}

entry ENTRY-NAME«parameter list» ;

The body of the task must be declared in the same declaration part,

but need not immediately follow the specification.

task body TASK-NAME is

rThe declarative part of the task, all objectsl

ideclared here are private to the task and nott

lvisible to the other program units. J

begin

lThe imperative part of the task, this will I
contain statements that accept calls on the

entries declared in the specification

accept ENTRY-NAME«parameterlist» do

end TASK-NAME;

130

In some cases a task presents no interface to other tasks in which

case the specification reduces to just

task TASK-NAME;

As an example, consider a family going shopping. The mother buys

the meat, the children buy the salad and the father buys the wine. These

activities can be illustrated in parallel as:

procedure mOPPING is

~ GET-SALAD;

~ body GET-SALAD is

begin

BUY-SALAD;

end GET-SALAD;

task GET-WINE;

~ body GET-WINE is

begin

BUY-WINE;

end GET-liINE;

begin

BUY-MEAT;

end SHOPPING;

131

In tilis example, the mother is represented as the main processor

and calls BUY-MEAT directly from the procedure SHOPPING. The children

and the father are considered as subservient processors. The activation

of a task is automatic. In the above example the local tasks become

active when the parent unit reaches the begin following the task

declaration. such a task will terminate when it reaches its final end.

A task declared in the declarative part of a subprogram, block or task

body is said to depend on that unit. It is an important rule that a

unit cannot be left until all dependent tasks have terminated. It is

important to realise that the main program is itself considered to be

called by a hypothetical main task. In the SHOPPING example, the

sequence of actions when "this main task calls the procedure SHOPPING.

First the tasks GET-SALAD and GET-WINE are declared and then when the

main task reaches the begin these dependent tasks are set active in

parallel with the main task. The dependent tasks call their respective

procedures and terminate. Meanwhile the main task calls BUY-MEAT and

then reaches the end of SHOPPING. The main task then waits until the

132

dependent tasks have terminated if they have not already done so.

Generally, tasks will interact with each other during their lifetime.

In Ada this is done by a mechanism known as a rendezvous. A rendezvous

between two tasks occurs as a consequence of one task calling an entry

declared in another:

entry ENTRY-NAME;

which is then accepted in the body of the task by the statement

accept ENTRY-NAME;

A calling task then sends its signal by the entry call:

CALLED-TASK-NAME.ENTRY-NAME;

The interactions between parallel tasks consists of actions of

synchronisation and actions of communications. The entry-accept construct

may be used to implement synchronisation. Rendezvous can be used to

express problems of mutual exclusion in a form similar to monitors or

critical regions. Also, the exchange of data between tasks can also

be achieved by entries: similarly to procedures, entries can have

formal parameters, and after an entry call provides the actual meaning

of the parameters.

An important capability, that of conditional execution is provided

in the Ada language through the execution of the select statement. The

select statement enables a called task to select one of several

alternative entry calls. A select statement combines several accept

and delay statements. A simple form of the select statement is shown

below:

select

or

or

accept ENTRY-ONE do

end ENTRY-ONE;

accept ENTRY-TWO do

end ENTRY-TWO;

accept ENTRY-TIIREE do

~ ENTRY-TIIREE;

end select;

The second feature of a select statement is the possibility of

133

guarding any clause by a boolean condition: a call to the corresponding

entry will be accepted, or the corresponding delay executed, only if

the guard evaluates as true when the select statement is reached.

select

when CONDITION-l =)

accept ENTRY-l
.

or

when CONDITION-2 =)

accept ENTRY-2

or

when CONDITION-3 =)

accept ENTRY-3

else

alternative actions;

end select;

do

do

do

A select statement may end with an else clause which will be

executed if no other clause in the select statement can be executed

immediately. A select statement can be used to provide a protected

data-area to overcome the problem of the shared data-area.

134

Finally, a delay statement can be used to control the execution

of a parallel process, not only with respect to other processes, but

also with the flow of time. The statement: "delay n;" (where n is an

expression yielding a value of the predefined type TIME) will cause

the task that executes it to be blocked for at least n units of time.

135

2.8 PROGRAMMING THE NEPTUNE SYSTEM

In Chapter 1, the hardware configuration and software character

istics of the NEPTUNE MIMD system were described. The parallel

programming aspects of this system will be illustrated in this section.

Two parallel programming languages that are available on the NEPTUNE

system are Pascal and Fortran. The adoption of Fortran is much easier

due to firstly, the concept of shared memory is very similar to that of

the sequential Fortran 'common' block. Secondly, Fortran IV does not

permit recursion and storage is statically allocated at compile time.

The parallel Fortran language was used in the course of this research,

and this is the language to be considered in this section.

Many constructs have been added to sequential Fortran to be

extended to handle the parallel processing requirements. The properties

of the parallel programs that run on the NEPTUNE system are, firstly,

only one parallel path (task) is executed on each processor at a time,

while other processors must be informed and locked out of that path.

Secondly, when this parallel path has been completed the next one in

order can be executed by the same processor. Both the local data of

this processor and the shared data can be used.

In a parallel programming environment, the user should have the

ability to, create and terminate parallel paths, share data between

paths and ensure the consistency of data. The essential constructs

that are needed to implement any parallel program on the NEPTUNE system

are:

(1) $USEPAR

This construct must be the first executable parallel statement in

the program. On encountering the $USEPAR all processors except one

are forced to wait until parallel paths are created for them to

execute.

(2) $END

136

This statement replaces the END statement of sequential Fortran.

It forces the checking at pre-compile time and that the nesting of

parallel syntactical constructs is completed within each individual

subrou tine.

(3) $STOP

This statement replaces the STOP statement of a sequential Fortran

program. It ensures the termination of the program.

Three pairs of constructs are available on the NEPTUNE system to

create/terminate paths, they are:

(i) $DOPAR/$PAREND

This construct has the following form:

$DOPAR label I=Nl,N2,N3

'code using index It

label $PAREND

In this form the generated and terminated paths with identical

code. It is similar to the Fortran DO loop, and (N2-Nl+l)/N3

paths will generate with each path having a unique value of the

loop index I. The indexing of data by the variable I then allows

different paths to evaluate different results. $PAREND is similar

to the CONTINUE statement in Fortran, and by executing the $PAREND

every generated path should be terminated.

137

(ii) $FORK/$JOIN

(Hi)

This construct has the following form:

$FORK label 1, label 2, label 3: label 4

label 1 'code for path l'

GO TO label 4

label 2 'code for path 2'

GO TO label 4

label 3 'code for path 3'

label 4 $JOIN

In this form, the generated paths are with different code, and

it is equivalent to the computed GO TO statement in Fortran.

The paths start at labels label 1, label 2, label 3 and terminate

at label 4. Each path contains a GO TO statement at the end to

force the paths to terminate at label 4 of the $JOIN statement,

except the last path which already terminates at label 4.

$DOALL/$PAREND

This construct has the form:

$DOALL label

'code'

label $PAREND

In this form, the generated paths are with the same code where

each processor is forced to execute the code once and only once,

and it is normally used to initialise the data or to obtain the

timing.

138

Shared variables may be used as a communication means between

the different parallel paths, and can be defined as:

$SHARED variable list

which enforces the variables to be loaded into the shared memory.

Whilst all other data including the program code are held in the local

memory. This construct is similar to the COMMON statement in Fortran.

In the NEPTUNE system, critical sections are used to enforce

sequential access to certain shared data structures to ensure their

integrity. For this purpose the user has available up to 8 'resources'

which can only be owned by one of the processors at anyone time.

Resources used must be declared with Fortran-like names using

$REGION list of names

The scope of this declaration is the next $END construct. The constructs,

$ENTER and $EXIT are used to resources which are embedded in a critical

section and released with $EXIT, i.e.,

$ENTER name

$EXIT name

i.e., the critical section is embedded within an $ENTER/$EXIT pair of

constructs. The same resources can protect different critical sections

in the program.

Many special commands have been introduced to the compiling,

linking and running of parallel programs on the NEPTUNE system. The

. 15
XPFCL or XPFCLD (used when the number of parallel paths up to (2 -1))

commands are used to produce a load module from the user's source

program. The effect of these two commands are to:

(i) Preprocess the user source program to convert the

special parallel constructs to FORTRAN statements.

(ii) Compile the resultant FORTRAN.

l39

(iii) Link the compiler output with the available FORTRAN

libraries and machine code written routines to control the

parallelism.

(iv) store the resultant load module in the user's program file.

If an error is detected in anyone of the above stages, an error

message will be written to the output file of that stage and the

command is terminated.

To run a parallel program on the NEPTUNE system, the XPFT command

is used. The user should specify the processor(s) on which the load

mcdule should run, the name of the load mcdule, and whether the execution

is required on the foreground or background computing basis. The

processors in the system are numbered 0 to 3 and processor 0 must be

one of these processors listed because it includes the main disc. Any

error during the run time will be reported and the run is terminated.

The Performance measurement is an important issue in parallel

programming and timing is an essential factor of its analysis. Two

subroutines are available for obtaining timing information. The

routines should be embedded within a $DOALL/$PAREND sequence to force

each processor to execute time, and the timing results should appear

in the output file. To force to activate the timing for each processor,

the following constructs are used:

$DOALL 10

CALL TIMEST

10 $PAREND

Normally these constructs are placed before the part of the

program to be performed by the path. To get the timing results for

each processor and place it in an array ITIME (as an example), the

following constructs are used:

$DOALL 20

CALL TIMOUT(ITIME)

20 $PAREND

These constructs are placed at the end of the part of the program

in the path. Usually the ITIME is declared as a shared array of size

100 and this result should be arranged in 8 columns. The timing results

for each processor are held in ITIME as follows:

ITIME(1+j*25) ••. ITIME(24+j*25) hold timing information

for processor j=0,l,2,3. With i=j*25, then we have:

ITIME(l+i) }

ITIME(2+i)

ITIME(3+i) }

ITIME(4+i)

ITIME(5+i)

ITIME(6+i)

ITIME(7+i)

ITIME(8+i)

clocked cpu time in seconds and milliseconds

elapsed time in seconds and milliseconds

number of parallel paths runs by this processor

number of waiting cycles because no path is available

number of accesses to critical section resource 1

number of accesses to critical section resource is

being used by another processor

141

ITlME (9+i)

I ITlME (22+i)

same for critical sections resources 2 to 8

)

ITlME(23+i) information on system critical section resource

ITlME (24+i) information on system critical section resource

ITlME(25+i) is not used.

The information in ITlME will be used to obtain the algorithm

performance used in the coming chapters.

142

CHAPTER 3

DESIGN OF PARALLEL ALGORITHMS

143

3.1 INTRODUCTION

Researchers have studied parallel algorithms even before parallel

computers had been constructed. Regardless of whether parallel

algorithms will be used in practice, many researchers find designing

parallel algorithms fascinating and challenging. Designing parallel

algorithms became more important and interesting as the development of

parallel computer architecture advances. Therefore, different parallel

algorithms have been designed from different viewpoints and for the

various parallel architectures which were described in Chapter 1. In

this section, the classification of parallel algorithms corresponds

naturally to that of parallel architectures. Parallel algorithms can

be considered as a collection of independent task mcdules that can be

executed in parallel and that they communicate with each other during

the execution of the algorithm. By independent task module we mean,

that the results obtained from one mcdule are not affected by the

results obtained from the other. For example, to find the result of

adding two n-vectors A and B,

C = A + B ,

where A=(a
l
,a2 ,· •• ,an), B=(b

l
,b

2
, •.. ,b

n
) and C=(c

l
,c

2
, ••• ,c

n
). The

evaluation of the components of the resultant vector C are obtained

from the formula,

c = a, + b, , for i=1,2, ... ,n.
i 1. 1.

It is clear that the calculation of the components of the vector Care

independent and a computer with n processors takes one step to compute

the vector C, where each component is evaluated in one processor. The

example shows that the algorithm already contains independent

computations without the need to reorganise, i.e., the example is said

144

to exhibit inherent parallelism. A parallel algorithm may be created

by ide~tifying the inherent parallelism of a sequential algorithm. An

algorithm may be reconstructed in order to increase the property of

parallelism.

Stone [1973] highlights some of the problem areas in parallel

computation, these include the necessity to rearrange the data in memory

for efficient parallel computation; the recognition that efficient

sequential algorithms are not necessarily efficient on parallel computers

and conversely, that sometimes inefficient sequential algorithms can

lead to very efficient parallel algorithms and lastly the possibility

of applying transformations to sequential algorithms to yield new

algorithms suitable for parallel execution.

Kung [1980] identified three orthogonal dimensions of the space of

parallel algorithms: concurrency control, module granularity and

communication geometry. Concurrency control is needed in parallel

algorithms to ensure the correctness of the concurrent execution,

because more than one task module can be executed at a time. The

module granularity of a parallel algorithm refers to the maximal amount

of computation a typical task module can do before having to communicate

with other modules. The module granularity of a parallel algorithm

reflects whether or not the algorithm tends to be communication intensive.

This must be taken into consideration for efficiency reasons. Suppose

that the task modules of a parallel algorithm are connected to represent

intermodule communication. Then, a geometric layout of the resulting

network is referred to as the communication geometry of the algorithm.

It is necessary to take into account the computer into which the

parallel algorithm is implemented. As shown in chapter 1, parallel

145

computers may be classified into SIMD, MIMD and pipelined computers.

In SIMD computers, the number of processors tend to be large compared

with that of MIMD computers. In general, we can say that the algorithm

designed for SIMD computers requires a high degree of parallelism

because this type have up to order nm, i.e. o(nm) processors, while

a MIMD computer has up to O(n) processors, where n is the order of the

problem (number of subtasks) and m ~2. This does not mean that an

algorithm designed for a MIMD computer cannot be run on an SIMD computer,

but an algorithm with only n independent computations will be executed

concurrently on only n processors and the remaining processors are left

idle. Conversely, in an MIMD computer there are insufficient processors

m
to run O(n) independent computations concurrently, but instead may

execute them in groups of P computations if P processors are available.

SIMD computers cannot take advantage of independent computations that

are not identical since the processors are synchronous, while the

processors of MIMD type are asynchronous and can take advantage of such

computations. The non-identical computations could be executed

sequentially on the SIMD computer, but the system efficiency would be

degraded. However, in the MIMD computer, the processors need not

necessarily be involved on the same problem. Thus, when designing

algorithms for a SIMD co~puter, one should consider only algorithms

with substantial amounts of identical computations in order to achieve

high efficiency. In general, a good MIMD algorithm is not always a

good SIMD algorithm and vice versa.

In a pipeline computer, the speed-up is achieved by producing a

string of identical operations that may be queued up and treated in an

assembly line fashion. It is obvious to see that the string of operations

146

must be independent and the longer the string the greater the speed-up

that is achieved. For this reason, a good pipeline algorithm is

generally a good SIMD algorithm and vice versa.

One area in which pipelining appears to be particularly

appropriate is in the implementation of arithmetic operations, and it

is known as arithmetic pipeline. Arithmetic pipelines have been

constructed for performing a single arithmetic function, e.g. floating

point addition, or for performing all four basic operations on both

fixed-point and floating-point numbers. For example, the Cray Research

CRAY-l uses six-stage floating-point adders and seven-stage floating

point adders, and the CDC STAR-lOO uses four-stage floating-point adders.

For a pipeline floating-point adder, the pipe typically consists of

stages for performing exponent alignment, fraction shift, fraction

addition and normalization. A pipeline arithmetic unit can be viewed

as a systolic machine composed of linearly connected processors that

are capable of performing a set of (different) operations.

147

3.2 PARALLEL ALGORITHMS FOR SIMD AND PIPELINE COMPUTERS

As shown in a previous section a good SIMD algorithm is generally

a good pipeline algorithm. and vice versa. In this section we will

discuss the structure of parallel algorithms for both SIMD and pipeline

computers. The research concerning the structure and design of the

parallel algorithms for SIMD computers can be found in many papers in

the literature. among those are Miranker [1971J. Stone [1971J.[1973bJ.

Heller [1978J and Wyllie [1979J. While. Chen [1975J and Ramamoorthy

and Li [1977J consider the applications of arithmetic operations on

pipeline computers.

One of the most successful applications on pipeline computers is

the execution of arithmetic operations. The pipeline approach is ideal

for situations where the same sequence of operations will be invoked

very frequently. so that the start-up time to initialize and fill the

pipe become relatively insignificant.

An example of a pipeline adder using a linear array is given in

and that U.=U. l .U. 2 ••••• U. k and V.=V.
l

.V. 2 ••..• V
ik

represent their
1. 1. 1. 1. 1. 1. 1.

binary representations. Figure 3.1 shows how the adder works for K=3.

The Uij and Vij march toward the processors synchronously as shown.

At each cycle. each processor sums the three numbers arriving from

the three input lines and then outputs the sum and the carry at the

output lines. From Figure 3.1. it is easy to check that When the pair

(Uij.Vij) reaches a processor. the carry needed to produce the correct

jth digit in the result of U.+V. will also reach the same processor.
1 1

As a result. the pipelined adder can compute a sum Ui+V
i

every cycle

in the steady state.

carry
out

148

...
sum 3 sum 1

~ 1 ~.
....

~ ,
.

carry in

or '"
..; -"". '- ---- V

ll -
-

I - V21 --- V
l2 V31 -- V22

FIGURE 3.1: Pipeline integer adder

This algorithm is suitable for an SIMD computer without considering

the binary representations of the digits. As described in Section 3.1,

the sum of two n-vectors can be computed in one step using n

simultaneous processors. The sum can be extended to the addition of

two (nxm) matrices A and B, where every row of A is added to every row

of B and then using,

C i = a
i

+ b
i

I for i=1,2, ..• ,n.

It is clear that the addition may be performed in one step using (n.m)

processors.

Tang and Lee [1984J suggest a method to design parallel algorithms

--

149

for SIMD computers based upon the divide-and-conquer strategy. The

divide-and-conquer scheme can be briefly specified as follows: Given a

problem and the initial conditions, divide it into K subproblems. Once

these subproblems have been solved, combine their solutions into a

solution for the original problem.

As an example. consider the problem of finding the maximum of a

set of N numbers. If the divide-and-conquer approach is used, we

divide the set into two subsets 51 and 52' each subset consisting of

N/2 numbers. In each subset 5 .• the algorithm is applied recursively
~

to find its maximum M .. The final step is a merging step, which is
~

selecting the maximum from Ml and M
2

• Figure 3.2 shows an example where

N=16. Each square represents a process which selects the maximum from

two numbers.

nl n2 n3 n4 nS n6 n7 n8 n9 nlO nll n12 n13 n14 nlS n16

level 2

level 3

level 4

FIGURE 3.2: A recursive doubling t
of n numbers. echnique to obtain the maximum

150

If the input size is N and there exist N processing elements, the

divide-and-conquer approach can be executed in the following way:

Step 1: One processing element splits the N data items into two

parts with sizes equal to N/2.

Step 2: Two processing elements simultaneously split each set of

n/2 data items into two parts with sizes equal to N/4.

Step logN: N/2 processing elements simultaneously split each set

of 2 data items into two parts with size 1.

Step logN+l: N processing elements process each datum to find the

solution simultaneously in constant time.

Step logN+2: These N solutions are grouped into N/2 pairs, each

pair constituting a solution. N/2 processing elements,

simultaneously merge each pair of solutions obtained

in the above step into N/2 solutions.

Step2logN+l: One processor finally merges the two solutions into

one final solution.

Figure 3.3 shows the above steps.

Tang and Lee show in their analysis, that they can choose the

number of processing elements that give the optimal speed-up ratio.

They show that, if the number of processing elements used is equal to

N/logN, then the complexity of the algorithm with N/logN processing

elements, is of O(logN) and the speed-up ratio is o (N/logN) , which is

optimal.

Another powerful method used for generating parallel algorithms

2

3

logN

logN+

logN+2

2LogN-l

210gN

21ogN+l

FIGURE 3.3:

151

Number of processi!
elements in use

Divide and conquer approach (0: splitting the data into two parts. 0 : processing

the data with aize one. V: combining the two

solutions into one) •

1

2

4

N
2

N

N
2

4

2

1

152

for a SIMD computer is based on problem decomposition is called

recursive doubling. The idea is to recursively divide the original

computation into independent smaller computations of equal complexity,

which are then computed in parallel. As an example, consider the sum
n

of n numbers,

S
n

La" then,
i=l 1

=
n

L a
i

=
i=l

m
L a, +

i=l 1

n

L a i i=m+l

by repeated splitting and the sum Sn will be evaluated in rlogznl steps

using rn/2l processors, where rxl is defined as the smallest integer

greater than x.

Figure 3.4 illustrates an evaluation tree of the above procedure

where n is given the value 8, and at each level the operations are

identical and independent, therefore they can be executed simultaneously.

Actually, any associative operation (such as, +,x,_, •..) could be

used instead of addition. Heller [1978] named this algorithm the

associative fan-in algorithm, but it is also known as the log-sum and

log-product algorithms with the operators + and x respectively. Heller

also shows that beside the simplicity of the associative fan-in

algorithms, they are optimal in the sense of achieving minimal

computation time for any number of processors used.

An example of an optimal algorithm is given below to compute,

An = a l 0 a Z 0 •.• 0 an

where 0 is any associative operation as shown in Figure 3.5. At each

level the operations are identical and independent, therefore they can

be executed simultaneously. It is clear from the Figure 3.5 that the

number of levels is l~ffl{ll and by using fn/Zl processors the result A
n

may be evaluated in rlogznl steps.

8
FIGURE 3.4: The evaluation tree of L a,

i=l 1.

o
Level 4

o 0

C ••• " /~ /\

153

o 0 0 0

:~::: /\ /\ /\ /\
/\/\/\1\/\/\/\/\

a aa aa aa aa aa aaaa.:1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FIGURE 3.5: Evaluation tree of expression A

An important application of the associative fan-in algorithm is

the computation of inner product (or scalar product). Given two n-

vectors A and B which have the form,

n
s = L a.b. ,

i=l l. l.
where A=(a

l
,a2 , ••• ,a

n
) and

B=(bl ,b2 ,···,b
n

)

The evaluation tree of the inner-product algorithm is shown in

Figure 3.6. The n products are'independent and may be performed

154

simultaneously using n processors, and the sum of the resultant product

is performed in rlog2nl steps. Therefore, the inner product requires

rlog2nl +1 steps using n processors.

FIGURE 3.6: Evaluation tree of the inner product algorithm

155

The inner product algorithm can be extended to evaluate matrix

multiplication. More generally, the product of m<n and nXp matrices

could be optimally computed in rlog~ +1 steps using (m.n.p) processors,

since each component of the m.p results is an inner product of n-vectors.

Implementation of algorithms for matrix multiplication on SIMD

computers has been discussed by many researchers. Muraoka and Kuck

[1973] consider the evaluation of a conformable sequence of matrix

unlimited parallelism. Hockney and Jesshope [1981], suggest three

options by which matrix multiplication may be obtained.

Given three matrices A,B and C, where
n

Cij = k~lAikBkj' l~i,j~n •

Three different options have been suggested to evaluate C, " The first
~J

option, the Inner Product Method which is an extension of the inner

product algorithm requires n2(rlOg2nl+l) steps using n processors,

since it consists of n
2

inner products. The second option, the Middle

Product Method, which computes the inner product over all the elements

of a column of C in parallel and requires 2n2 steps using n processors.

The parallelism it exhibits is therefore n/2, compared with rlOg2~ +1

for the first inner-product option. The third option, the Outer Product

Method, which computes the inner-product over all the elements of the

2 array C in parallel requires 2n steps using n processors. In addition,

Jesshope and Craigie [1980] note that the product of the two matrices

can be achieved in rlOg2n+iT steps using n
3

processors.

In Maruyama [1973] and Kuck and Maruyama [1975] discussed the

parallel evaluation of arbitrary matrix expressions with unlimited

parallelism.

156

The design of parallel algorithms may involve the restructuring

of the sequential algorithm into a form that is usually a combination

of these basic computations. Chen and Kuck [1975J, in their algorithm

for the solution of a triangular system of operations, is basically a

sequence of matrix sums and products.

Unlimited parallelism has been assumed while developing the above

mentioned parallel algorithms. This often leads to an algorithm that

requires an impractical large number of processors. The original

algorithm should be reconstructed into a second algorithm with its

processor's requirements reduced to a realistic number. The efficiency

of the new algorithm should be the same as using a large number of

processors. Two basic principles have been suggested by Hyafil and

Kung [1974J in which the new algorithm is constructed, namely the

algorithm decomposition and the problem decomposition principles. In

the algorithm decompcsition principle, it is assumed that q. operations
1

are performed during step i of the original algorithm. In the

constructed algorithm rqi/p1 steps are required to perform step i, where

p is the number of processors available. This means, the decompcsition

takes place in each step. On the other hand, in the problem decomposition

principle the original problem of order n is partitioned into smaller

problems of order P and then the parallel algorithm is applied to each

of the smaller problems.

Non-numerical algorithms have also been developed on a SIMD

computer. Wyllie [1979J presented algorithms mainly applied to various

data structures, such as the counting of the number of elements in a

linked list and the deletion of an element from a linked list. Another

widely used non-numerical problem is the sorting of a number of keys.

157

Among those researchers who have studied the implementation of sorting

algorithms on the SIMDdesign are Baudet and Stevenson [1978) who

presented a generalized odd-even transposition. Nassimi and Sahni

2
[1979) also presented a O(n) algorithm to sort n elements on an nXn

mesh-connected parallel computer and Thompson and Kung [1977) developed

2
an algorithm for sorting n elements on an nXn mesh-connected processor

array that requires O(n) routing and comparison steps.

158

3.3 PARALLEL ALGORITHMS FOR MIMD COMPUTERS

A parallel algorithm for a multiprocessor is a set of n concurrent

processes which may operate simultaneously and cooperatively to solve

a given problem. Synchronization and the exchange of data is needed

between processes to ensure that the parallel algorithm works correctly

and effectively to solve a given problem. Therefore, in some stage in

the execution of a process there may be some points where the processes

communicate with other processes. These points are called the

"interaction points". The interaction points divide a process into

stages. Therefore, at the end of each stage, a process may communicate

with some other processes before the next stage of the computation is

initiated.

Parallel algorithms for multiprocessors may be classified into

asynchronous and synchronous parallel algorithms. Because of the

interactions between the processes, some processes may be blocked at

certain times. The parallel algorithm in which some processes have to

wait on other processes is called a synchronized algorithm. The weakness

of a synchronized algorithm is that all the processes that have to

synchronize at a given point wait for the slowest amongst them. To

overcome this problem, an asynchronous algorithm is suggested. In an

asynchronous parallel algorithm, processes are not generally required

to wait for each other and communication is achieved by using global

variables stored in shared memory. Small delays may occur due to

concurrent accesses to the common memory.

An algorithm must be decomposed into a set of processes before it

can be executed into a multiprocessor system. Hwang and Briggs [1984J

describe two decomposition methods, these are the static decomposition

159

and dynamic decomposition. In a static decomposition, the set of

processes and precedence relations are known before execution. In

this method, the communication between processes may be very low,

provided the number of processes are small; however their adaptability

is limited. While in dynamic decomposition, the set of processes

changes during execution. In this method, the process communications

are high but it can adapt effectively to variations in the execution

time of the process graph.

As an example of a synchronous parallel algorithm,suppose it is

required to compute the matrix,

Z = A.B + (C+D). (I+G)

by maximum decomposition. Three processes may be created to compute Z

synchronously as shown in Figure 3.7. Part of a parallel program that

computes the value of Z using three processes is shown below.

var W,Y: shared real; var Sw,Sy: semaphore;

initial Sw=Sy=O;

cobegin

Process Plo begin

V~-AxB;

P (Sy) ;

Z+V+Y;

end

Process P2: begin

W+-C+D;

V (Sw) ;

end

Process P3: begin

X<-I+G;

P (Sw) ;

coend

y.+-W+X;

end

Ilstage 1 of P1II

Ilstage 2 of P1II

Ilstage 1 of P211

Ilstage 1 of P311

stage 2 of P3

160

From Figure 3.7, it is clear that the set of processes Pl,P2 and

p3 is a synchronized parallel algorithm because some stages are not

activated unless the other processes are completed. The second stage

of process p3 is not activated unless the process p2 is completed.

Similarly, the second stage of Pl cannot be initiated unless the second

stage of p3 is completed. Hence, the set of processes Pl, p2 and P3

is a synchronized parallel algorithm.

Process p2 Process P3
" - -,. , ,

I
, ,
I I , ,

I I
I

I I
/ Process Pl

I - -~ , ,
I " /
I " " .-
, stage 1

" .-,
,of Pl .,.

....
.... ,

....
....

....
....

I

"

FIGURE 3.7: Example of a synchronized algorithm with synchronizing
stages (Z= (A.B) + (C+D) • (I+G))

Now if we consider another example which evaluates the sum of n
n

numbers (L ail that is mentioned in Section 3.2, is:
i=l

The associative fan-in algorithm that is specified in Section 3.2

will be used to evaluate S. We assume that the MIMD computer onto

which the algorithm to be implemented has P processors. Therefore, the

161

expression 5 can be partitioned into P subsets. Thus,

where ~=n/p is a multiple of p and a parallel program for the evaluation

of the expression 5 using the NEPTUNE programming constructs is shown

in Figure 3.8.

It is clear in this program the P paths (processes) will run

concurrently. At the end of each path I, where I=1,2, ••• ,p, X(I)

contains the partial results of the computation of the subexpression

which corresponds to that which is evaluated by path I. A critical

section is used to enforce sequential access to variable 5. When all

paths have been completed, 5 will contain the total value of the whole

expression.

$5HARED 5

$REGION REGl

5=0.0

NPATH=N/P

$DOPAR 10 I=l,P

X(I)=O.O

I BEGIN=NPATH * (I-l)+l

IEND=NPATH*I

DO 20 K=IBEGIN, lEND

X(I)=X(I)+A(K)

20 CONTINUE

$ENTER REGl

5=5+X (I)

$EXIT REGl

10 $PAREND
n

FIGURE 3.8: Parallel evaluation of L a,
i=l l.

In asynchronous parallel algorithms, there is no exPlicit dependency

between processes as in synchronized parallel algorithms and global

variables or shared data is used as a communication means between

processes. Also in asynchronous parallel algorithms the processes

never wait for inputs at any time but continue execution or terminate

according to the current information in global variables. However,

processes may be blocked from entering a critical section which are

needed in many applications.

Kung [19761 shows an example of asynchronous parallel algorithms

that may be illustrated using the iterative method. For example, the

zeros of function f may be computed by Newton's iterative'method;

where f' (x) is the derivative of f(x). Figure 3.9 shows Newton's

iterative program using two processors Pl and P2. In the program three

global variables vl ,v2 and v3 have been used to hold the current values

of f(x), f' (x) and x respectively. Suppose the evaluation of f'(x) is

computationally mere expensive than that of f(x), then an asynchronous

iterative algorithm consisting of two processes pl and P2 can be defined

as follows. Let process Pl update variables v l and v3 ' while process

p2 updates v2 as shown on the next page.

It is seen from the program that, as soon as a process completes

updating a global variable, it proceeds to the next updating by using

the current values of the relevant variables without any delay. If

the initial values of the variables are Vl=f(xo)' V2=f' (xo) and v3=xl'

then the timing diagram in Figure 3.10 illustrates the sequence and

time period of a step completion for each iteration within each process.

function f I f I ;

~ Vl,V2,V3: shared real;

cobegin

Process PI: begin

163

while < termination criteria S not satisfied > do

coend

begin

Vl+f(V3); //step 1 of PI/I
-1

V3+V3-V2 VI; //step 2 of PI/I

end

end PI

Process P2: begin

while < termination criteria S not satisfied > do

V2+f' (V3);

end P2

//step 1 of p2/1

FIGURE 3.9: Newton's iterative parallel program

?,. I
PI: I 1

?
p2:~I _______ f_'~(X~lL) ________ +-_f_'_(~X~2~) ________ ~ __ f_'_(x~3~) ____ ~~ ______ __

FIGURE 3.10: Time dia~ram for an asynchronous parallel algorithm

The number i in the circle on the timing diagram indicates the

pOint where the ith iteration starts for that process. Then,

164

-1
x2 = xl - f' (xO) f (xl)

-1
x3 = x2

- f'(x
1

) f(x2)

-1
x4 = x3 -f'(x2) f(x

3
)

From the concurrent program given above for Pl and P2, the

recurrence relation that is generally followed by the execution of the

process is

xi+l = xi - f'(Xj)f(Xi)

where j~i. Therefore, the iterates generated by the asynchronous

iterative algorithm are different from those generated by the sequential

algorithm or synchronized iterative algorithms.

From the algorithm discussed earlier, we notice the difference in

the implementation on SIMD and MIMD computers. This follows from the

difference in the characteristics of the two types of computers. It is

known that the processors of a SIMD computer are synchronized as well

as being synchronous, i.e., each process executes the same instruction,

and the instructions are all executed at exactly the same time. In MIMD

computers, the processors are not exactly identical and often they differ

in their speeds. Therefore, even if the instruction streams are identical,

the processors may not execute each instruction at exactly the same time.

In fact, in the design and analysis of parallel algorithms for asynchronous

multiprocessors, one should aSSume that the time required to execute

the steps of a process carried out by one processor is unpredictable

(Kung, [1976]).

Parallel algorithms for multiprocessors are studied by Kung [1976],

[1980] including both synchronized and asynchronous algorithms. Baudet

[1976], Barlowet al [1982] studied the performance analysis of

algorithms on asynchronous parallel processors. Iterative techniques

~5

for solving linear systems of equations are given in Conrad and

Wallach [1977]. Barlow and Evans [1984] developed parallel algorithms

for the iterative solution to linear systems. Evans and Yousif [1985],

Yousif and Evans [1985a,b] have studied different implementations of

sorting and merging algorithms on the MIMD computer.

166

3.4 VLSI AND SYSTOLIC ALGORITHMS

The development in hardware technology has had a great effect on

computer design. It is noW feasible to build low-cost, special purpose,

peripheral devices to rapidly solve sophisticated problems. VLSI offers

outstanding opportunities for inexpensive implementations of high

performance devices. It is clear in VLSI technology that simple and

regular interconnections lead to cheap implementations and high densities,

and high density implies both high performance and low overhead for

support components (Mead and Conway, [1980]). For these reasons, to

design an effective parallel algorithm for VLSI processors there has to

be a simple and regular data flow. To minimize execution time, pipeline.

techniques may be used, i.e., processing may proceed concurrently with

input and output. The best performance may be obtained by using

pipelines and multiprocessing at each stage of processing.

As long as the communication in VLSI remains restrictive, locally

interconnected arrays will be of great importance. An increase of

efficiency can be expected if the algorithm arranges for a balanced

distribution of work load while observing the requirement of locality,

i.e., short communication paths. These properties of load distribution

and information flow serveS as a guideline to the designers of VLSI

algorithms, and may eventually lead to new designs of architecture and

language. Systolic and wavefront arrays are the first such special

purpose VLSI architectures, which boast tremendously massive concurrency.

Kung [1985] shows that to map an algorithm onto an array, a notation

should be used so it can be easily understood and compiled into an

efficient VLSI array processor. Thus, a powerful expression of array

algorithms will be essential to the design of arrays. Systolic and

~7

wave front expressions are two ways of array algorithm formation.

As shown in Chapter 1, a systolic array is very tractable to

VLSI implementation. A systolic system is a network of processors which

compute and pass data through the system. In a systolic system, every

processor regularly pumps data in and out, each time performing some

short computation, so that a regular flow of data is kept up in the

network.

Basic processing cells used in the construction of systolic

arithmetic arrays are the additive multiply cells specified in Figure

3.11. This cell has the three inputs A,B,C and the three outputs A=A,

B=B and D= C+A*B (inner product). Six interface registers are assumed

to exist and are attached to the input/output ports of a processing cell.

All registers are clocked for synchronous transfer of data amongst

adjacent cells. The additive-multiply operation is needed in performing

the inner product of two vectors, matrix-matrix multiplication, n~trix

inversion and L-U decomposition of a dense matrix. The processor is

capable of performing the inner product step and is called the inner

product step processor. (

A D

1
B __ ~ ~--~.B

A C

FIGURE 3.11: Geometries for the inner product step processor

168

Many different array connections are suggested for different

compute-bound algorithms. An example of connected processor arrays

are the linearly, the orthogonally and the hexagonally mesh-connected

(or hex-connected) scheme as shown in Figure 3.12.

(a) Linearly connected

(b) Orthogonally connected (c) Hexagonal1y connected

FIGURE 3.12: Mesh-connected processor arrays

Consider, for example, the construction of a systolic array for

the matrix-vector multiplication which is shown by Mead and Conway [1980).

T Given a matrix A=(aij), a vector ~=(xl,x2, ••• ,xn) and a vector

T
Z=(Y1'Y2""'Yn) which can be computed by the following recurrences:

(1) = 0
Yi

(k+1) (k)
Yi = Yi + aikxk '

(n+l)
Yi = Yi

Suppose A is an nxn band matrix* with width* w=p+q-1. Then the above

* See Chaptep 4 fop definition.

169

recurrence can be evaluated by pipe lining the x, and y, through w linearly
l. , l.

connected processors. Figure 3.13 illustrates the algorithm for the

band matrix-vector multiplication problem. While Figure 3.14 shows

the linearly connected network for the matrix-vector multiplication

problem shown in Figure 3.13.

In general, the matrix-vector multiplication algorithm is carried

out as follows:

Initially y, is initiated to zero and moves to the left, while
l.

the xi moves to the right and the a ij
are moving down. All the moves

are synchronized. Each Yi is able to accumulate all its terms, namely,

a, , 2x, 2' a, , lX, l' a, ,x, and a, , lX, l' before it leaves the
~,J- 1- 1,J- 1- 1,1 1 1,1+ 1+

network. p .
~

all a 12

q a2l a
22

a
23

a 3l a
32

a
33

a
34

a 42 a 43 a
44

" ...
" ,

o "

...
...

, ,
... , ,

...

,

0

,
...

"
, a

" n-l,n ,
a n,n-l a

n,n

x4 ,
I
I
I
I ,
I

x
n

=

FIGURE 3.13: Multiplication of a vector by a band matrix with p=2 and q=3

The first seven steps of the algorithm can be illustrated in Figure

3.15.

Note that when Yl and Y2 are output they have the correct values.

Also at any given time alternating processors are idle. It is possible

to use w/2 processors in the network for a general band matrix with band

width w. All the components of Z can be computed in (2n+w) time units

it33

.
a

22

all ----

connected FIGURE 3.14: The linearly
multiplicati on problem

a
43

.
a

32

.
a

21
, --, -r , ---

I
I ,
I

Yl

network for the matrix-vector
shown in Figure 3.13

170

I
I
I

I
a

42 I
I
I

a 31,.
I .

-1
,
I
I
I ,

Y2
~ --

Step
Number

1

2

Configuration

171

Comments

Yl is fed into the fourth

processor initialized at o.

Xl is fed into the first

processor while Y
l

is moved left

one place (from now on the xl

and Yl keep moving right and

left respectively) •

all enters the second processor

where yr-Yl+allxl. Thus

yl=allxl •

a 12 and a
21

enter the first

and third processors,
respectively, Yl=allxl+a12x2

and y
2

=a
21

x
l

.

Yl is output Y2=a21xl+a22x2

y 3=a 31xl •

Y2=a21xl+a22x2+a23x3

Y3=a31xl+a32x2·

Y2 is output

Y 3=a31 xl +a32 Xz +a3 3
x3

y
4

=a
42

x
2

FIGURE 3.15: The first seven steps of the matrix-vector multiplication
algorithm

172

using the above network. While the same n components of y needs O(wn)

units of time by using a sequential algorithm on a uniprocessor.

As another example, a systolic array may be constructed for the

multiplication of two banded matrices. The matrix multiplication can

be computed by the following recurrences:

C(l) = 0
ij

C~~+l) = c~k) b
1J 1J + a ik kj ,

= C(n+l)
ij

k=1,2, ... ,n

Given two band matrices of bandwidths w
l

and w
2

respectively,

then (wiw2) processing cells are required to form a systolic array

for matrix multiplication. The resultant product matrix has a bandwidth

of w
l

+w
2
-l. Figure 3.16 shows an example of a band matrix multiplication

application. Both matrices A and B have a bandwidth of size 4 and the

resultant matrix C=A.B has a bandwidth of 7 along its principal diagonal.

In this example it is required that wlxw2 4x4 = 16 multiply cells

are needed to construct the systolic array shown in Figure 3.17. The

size of the array is determined by the bandwidths w
l

and w
2

' independent

of the dimension of the matrices.

The element of A=(a ..) and B=(b ..) matrices enter the array along
1J 1J

the two diagonal data streams. The initial values of C=(c ..) entries
1J

are zeros. The outputs at the top of the vertical data stream give the

. out in
product matr1x (c

ij
= c

ij
+ a

ik
* b

kj
in each processing cell) • Three

data streams flow through the array in a pipelined fashion. If the

time delay of each processing cell be one unit time. This systolic

array can finish the band matrix multiplication in T time units, where

173

Therefore, the computation time is linearly proportional to the

dimension n of the matrix.

When the matrix bandwidths increase to wl=w2=n (for dense matrices

A and B), the time becomes O(4n), neglecting the input/output time

delays (Hwang and Briggs [1984]). If one used a single divide-multiply

3
processor to perform the same matrix multiplication O(n) computation

time would be needed. The systolic multiplier thus has a speed gain

2 of O(n). For large n, this improvement in speed is rather impressive.

A systolic array often represents a direct mapping of the

computations onto processor arrays. It will be used as an attached

processor of a host computer. The systolic array features the important

properties of modularity, regularity, local interconnection, as well as

a high degree of pipelining and highly synchronized multiprocessing.

One problem however, is that the data movements in a systolic array are

controlled by global timing-reference. In order to synchronize the

activities in a systolic array, extra delays are often used to ensure

correct timing.

all al2 bll bl2 b13

~l a22 ~3 b 21 b22 b23 b24

a31
a 32 a

33
a 34 b32 b33 b34 b35 ,

0
, C = a42

, b43
, , ,

0 0

A B

cll c12 c13 c
14

c
2l c 22 c

23
c

24
c 31 c 32 c33 c 34
c41 c42

, C , ,
C

C

FIGURE 3.16: Band matrix multiplication

- - -- --- ------ ---- ---- - ----- --------

c
• \,(. 1 • • r t • ,

I I I b 3< ... 1 ,-,
a 3• ''-.. I , , -, --<. I ,-

'. ... I I , ,.
b32 b))

a23
, , 1

,
a

33 ,
r- , ; ,

" I \ b
22

b
23 b2J

a
22

I a
42

a
32 "p

... I
" I
~"

I , •
"31 , -- ~

I c21
I

I ,
\j ,/

i
,
\

,I
/cn "22 cl) '. ,

I '.
: I .. \ , I

I
\

.1 c4l
c

32
c

23 c14 \

I
,

I c42
c

33
C24 \

I

i CS2
I

C43 C34 c2S1
I

FIGURE 3.17: The hex-connected processor array for the matrix multiplication problem

175

To overcome the problems mentioned in systolic arrays, we need

to take advantage of the control-flow locality, in addition to the data-

flow locality. This permits a data-driven, self-timed approach to array

processing. Conceptually, this approach substitutes the requirement of

correct "timing" by correct "sequencing". This concept is used

extensively in data flow computers and wave front arrays. The wavefront

array processor is conceived as a programmable, data-driven concurrent

array processor aiming at solving a majority of matrix algorithms.

Kung [1985] showed that, the derivation of a wave front process consists

of three steps: (i) the algorithms are expressed in terms of a sequence

of recursions, (ii) each of the recursions is mapped to a corresponding

computational wavefront, and (iii) the wave fronts are successively

pipe lined through the processor array.

Figure 3.18 shows a square, orthogonal NxN matrix array of

processor elements with regular and local interconnections. Most

matrix algorithms can be mapped naturally onto matrix arrays as shown

in Figure 3.18.

The computational wave front concept is used to create a smooth

data movement in a localized communication network. A wave front in the

processing array will correspond to a mathematical recursion in the

algorithm. Successive pipe lining of the wave fronts through the

computational array will accomplish the computation of all recursions.

As an example consider the matrix multiplication which was discussed

previously.

Let A=(a.
j
), B=(b ..) and C=AxB, all be NXN matrices. The two

l. l.)

matrices A and B are decomposed such that matrix D into rows Dj and

matrix A into columns Ai' and hence,

176

MEMORY MODULES

---- first
wave

- - - - - - - -' second
wave

FIGURE 3.18: The configuration of wave front array processor
(4 x 4 processing elements of the array)

The matrix multiplication can then be carried out in N recursions.

executing.

• with c(O)=o. recursively

for k=1.2 ••••• N.

To make it more clear. the computational wave front for the first

recursion in matrix multiplication is now shown in more detail. Suppose

that initially. all the registers for the processing elements (PE's) are

set to zero:
c~~) = 0 for all i.j.

177

The elements of matrix A are stored in the memory modules to the

left (in columns), and those of matrix B in memory modules on the top

(in rows). The process starts with PE(l,l) and

c(l) ~
11

c (0) + * b
11 all 11

is computed. The computational activity then transmits to the

neighbouring PE's (1,2) and (2,1) which will execute:

and

The next activity will be at PE's (31,) ,(2,2) and (1,3), thus

creating a computation wave front travelling down the processor array.

Once the wave front sweeps through all the cells, the first recursion

is complete. An identical second recursion will be executed in parallel

by pipelining a second wave front immediately after the first one. For

example, the (1,1) processor will execute

~ c(l) + a
11 12

(k) - * b * b * b C -a +a + .•. +a ij il Ij i2 2 j ik kj

The major characteristics of wave front arrays are:

(i) Self-timed, data-driven computation, meaning that no global

clock is needed,

(ii) Regularity, modularity and spatial locality of interconnections.

(Hi) Effective pipelinability.

To conclude this section, one can often reduce the number of processors

required by an algorithm if the matrix is known to be sparse or symmetric.

For "sparse band matrices", which are band matrices whose non-zero

entries appear only in a few of those lines in the band which are parallel

to the diagonal, then by introducing appropriate delays to each

processor for shifting its data to its neighbours, the number of

processors required by the algorithm above can be reduced to the

number of those diagonal lines that contain non-zero entries. This

variant is, of course, useful for performing iterative methods involving

sparse band matrices.

179

3.5 PARALLEL NUMERICAL ALGORITHMS

Parallelism may exist naturally in a numerical algorithm that is

designed for a sequential computer and a parallel numerical algorithm

can be created by recognizing the inherent parallelism in a sequential

algorithm. Natural parallelism is present mainly in the algorithms of

linear algebra and in the algorithms for the numerical computation of

partial differential equations.

It is sometimes necessary to exploit hidden parallelism in a serially

implemented algorithm. This is possible after a modification of the

original algorithm, which usually requires either the introduction of

redundant operators or the addition of some new ideas to the original

method which were not contained in its serial implementation. Such

algorithms are chaotic relaxation for the computation of linear equations,

the computation of the eigenvalues of symmetric matrices by Jacobi's

method, eliminating simultaneously several matrix elements and splitting

the original set of ordinary differential equations into many subsets.

Finally, there also exists parallel algorithms specially designed

for parallel computers. Their implementation on serial computers is of

no value. They are algorithms for solving problems for which only

complete serial algorithms have been available so far, such as recurrent

relationships, elimination methods for the calculation of tridiagonal

systems of linear equations, one-step iterations for calculating roots

of non-linear equations, one-step methods for the computation of the

initial values for ordinary difference equations, and the Gauss-Seidel

iteration method. When computing these problems on a parallel computer,

it was necessary to either implement the whole algorithm or design a

new algorithm for their calculation.

180

Several surveys of parallel numerical algorithms have been

introduced by different researchers. Miranker [1971] summarized some

early work in numerical analysis, Sameh [1977] explained in general

the numerical parallel algorithms, Heller [1978] gave a survey of

parallel algorithms in numerical linear algebra, Feilemeier[198l] gave

a detailed study for a wide area of numerical algorithms and finally,

Schendel [1984] provided an introduction to the principles of parallel

numerical analysis and certain recognized principles which are required

for the development of parallel numerical algorithms.

In this section some of the parallel numerical algorithms will be

considered.

3.5.1 Inherent Parallelism

As we mentioned earlier, one way to construct a parallel algorithm

is to start with a serial algorithm and convert it into a parallel one.

This principle which can be applied to most SIMD machines is to start

with a serial algorithm and to convert it into a precedure which operates

on vectors which can be carried out in parallel. As an example,

consider the solution of an nxn system of linear equations with a lower

triangular* coefficient matrix,

Ax = b ,

where

all
0 a2l a22

A = , and A is non-singular* .
~3l ~32 a

133 "
I ...
•

a nl an2 a n3 --- a
nn

* See Chapter 4 for the definition.

181

all ''1 b
l

a21
a

22 x2 b2
I , 0 I = (3.5.1.1) I ,
i ,

a
nn

x
n

b
n

2 Schendel [1984J shows that, by using a serial computer n arithmetic

operations are necessary to effect the inversion. If for i=1,2, .•• ,n

we define

1

1
0 , , ,

L. = l/a
ii ~

I 1
I ,

0 "' "' -a la .. 1 n ~~

x = L L 1 ••• Llb • - n n-

Then we obtain the solution from the relation

i=l,2, ... ,n,

(n+l)
where Y = x. This relation represents the Gaussian elimination

for (3.5.1.1). It can be shown that for i=1,2, ••• ,n

a. 1 .
~+ ,~

aii

(i) (i)
y. , ... ,y -
~ n

If n processors are available the solution x can be calculated in

approximately 3n steps, that is O(n).

2
n (for serial) n The speed-up is, S

n = ~-7:':::""':=:.::?'-:-:- = 3n (for parallel) 3 and,

the efficiency, E
n

S
n =-

n
n

= 3.n =

182

1
").

If, however, the number of processors available is k, where k<n,

r~ then, corresponding to n serial steps, [k[parallel steps are necessary
2

(i)
for the calculation of (Liy) ,

n
therefore, O(j{) steps are necessary,

giving a speed-up of Sk=O(k) and an efficiency of Ek=O(l).

Tb make it more clear, in the serial procedure it is equivalent

-1 . -1
to setting, ~=£ to A ~=A b by the division of the rows by the

diagonal terms and the reduction to zero of subdiagonal* terms in columns

by multiplication and subtraction. Thus, to deal with the first row

To reduce the (2,1) element to zero requires one division (by all).
b l

replacing the second element of the £ vector by b2-a2l*(all) , involves

that is a multiplication and subtraction. The processing of· the first

column thus involves 1+2(n-l) operations. For the second column and

subdiagonal terms 1+2(n-2) operations are necessary. While the whole

process requires n divisions plus 2(1+2+3+ .•. +n-l) multiplications and

subtractions, i.e., a total of n+2.t(n-l)n=n
2

arithmetical operations in

sequence.

E'or n=4, the proposed procedure is as follows,

1
0 0 0 b

l

bl l all all

I a2l
a

21
b l

1 0 9 b2 +
b2 1 all all ,

L = a 3l Yl = and Y2=L1Yl = a
31

b
l

I
1

0 1 0 b
3

+b
3 all all

a
4l

bl
I a4l

0 1 b4
I

0 +b 41 all all ...J

* See Chapter 4 for definition.

183

By using 4

In the diagrams

the operations

Processor 1

/'\'
1

-- • Y11 all

processors,

the symbols

illustrated.

the parallel operations are shown below.

at the roots of the trees are the result of

2 3 4
Y22 Y23

The time required to execute all operations in parallel corresponds to

a division (by all) , multiplication and division, 3 time units. Note

that xl~Y2l. The next step uses the matrix

1 0 0 0

0
1

0 0 a22
L2 ~ a 32

0 1 0 a22

0
a 42

0 1 a22

to operate on Y2~(Y21'Y22'Y23'Y24) to get Y3. Since xl~Y21 only three

components, Y32'Y33 and Y34 are needed in the next step and only three

processors need to be used.

Processor 2 3 4

a 32 - -_. y
a22 22

184

Again, 3 time units have been used and x2~Y32' The remaining two steps

can be shown schematically as,

Processor 3 4

1\'
1 -- * y a 33 33

a43 - -- * y a33 33

This gives x3~Y43' Finally,

1\
1 -- * y a44 44

and x4 ~ Y54' All steps have used 3 units of time except the last

which requires only 2. Thus, for general n the number of time steps

are 3n-l.

3.5.2 Vector Iteration Method

In a vector iteration method, a direct (non-iterative) serial

algorithm is substituted by an iterative parallel algorithm. The speed-up

factor of the parallel version depends on the ratio of the steps needed

in the direct version to those required by the iteration. Heller [1978J

gives an example for the triangular decomposition of a tridiagonal

matrix A.

A ~

where

m2
L ~

,

o

,

....
,

o

, ,
....

"

,

....

....

,
....

....

....
....

,
....

0
....

....
....

....
....

.... ,
....

....
....

e
n

o

....
....
"

'm '1
n

~ LU

f
n-l

d
n

U
l f

n
....

, U ~

0

The ui elements are calculated from the scheme

,
....

....
....

....
....

u, ~ d,-e,fi llu, 1 ' 2,i,n
1. 1. 1. - 1.-

The mi can then be calculated in parallel

m; = e. lu. 1 I i=2, 3 I •• • ,n
.... 1. 1.-

185

0 ,
....

.... , ,
'f , , n-l ,

U
n

(3.5.2.1)

The iteration method can be used to convert the serial equation (3.5.2.1)

to a parallel version as:

(0)
~ d, u,

~ ~

(,) (j-l) u J ~ d, - e,f, /u, 1
~ ~ 1. 1.- 1.-

I i=l,2, ... ,o,

where
(') u J is the jth iterate.

This parallelism can be a reasonable one if the computer can carry

out operations with vectors of n components faster than n scalar

operations. Moreover the number of iterations required must naturally

be significantly less than n.

186

3.5.3 Recurrence Relations

In numerical analysis. the solution of a problem is often expressed

as a sequence of evaluations x1 ,x2 , ... ,x
n

, ... , where each Xi (i=1,2, ... ,n)

may depend on one or more x~s where j<i. The equations describing this
J

dependence are called "recurrence relations". Because the definition

of the recurrence algorithm is given in terms of a sequential

evaluation which presents a special problem for a parallel computer.

the problem can be re-phrased so as to allow the parallel evaluation to

be carried out at the expense of introducing extra arithmetic operations.

As an example. we consider the evaluation of the partial sums of a

sequence of numbers.

The general linear first-order recurrence can be expressed as the

evaluation of the sequence Xj from the recurrence relation.

x
J
' = a,x, 1 + d,

J J- J
j=l,2, ... ,n (3.5.3.1)

The partial sum 5i • i=1.2 •..•• n can be evaluated as a special case of

(3.4.3.1). and defined as.
i
L a j •

j=l
i=1,2, ... ,n, (3.5.3.2)

where 5 j is the sum of the first j numbers in the sequence d
l

.d
2

••.•• d
n

•

The partial sums may be evaluated simply from the recurrence

Si = 5i _l + a i • i=1.2 ••.•• n.

The sequential sum method of evaluation may be realised with (n-l)

additions and (n-l) routing operations as shown in Figure 3.19. for the

case n=8.

Hockney and Jesshope [1981] describe an alternative parallel

approach to the partial sum (3.;.3.2) which is known as the "cascade

partial sum" and is shown in Figure 3.20 for the case n=8.

187

FIGURE 3.19: The sequential evaluation of partial sums of eight numbers.
The vertical axis is time, the horizontal axis is storage
location or processing element number.

188

An array of n variables is first loaded with the data (a!s). In
l.

level one, a copy of the variables is shifted one place to the right

and added to the unshifted variables in order to form the sum of the

adjacent variables. At the next level, the process is repeated but

with a shift of two places to the right, thereby producing sums of

groups of four numbers. As the shifts are made, zeros are brought in

from the left as required. In general, at the tth time level a shift

of 2 t places is made and at level t=1092n the variables contain the

required partial sums.

The cascade partial sum method requires 1092n additions with

parallelism n, and (n-l) routing operatings with parallelism n. The

sequential evaluation of the general first-order recurrence (3.5.3.1)

requires, 2n arithmetic operations with parallelism 1 and n routings

with parallelism 1. As shown in Figure 3.21, variables linked by a

brace are stored in the same PE. One PE is used to evaluate each term

of the recurrence.

The equivalent parallel algorithm to the cascade sum method is

known as "cyclic reduction", and has a wide application in numerical

analysis, particularly when one is trying to introduce parallelism into

a problem. Figure 3.22 shows the evaluation tree of the cyclic

reduction method to linear first-order sequences, for n=8.

There exists many parallel numerical algorithms specially

designed for parallel computers, among those algorithms are the new

parallel algorithms for partial differential equations, Evans [1984);

the solution of systems of linear equations. Chen and Kuck [1975).

Heller [1978) and Borodin and Munro [1975) have also shown that if

3
p=O(n) processors are available, a triangular system of n equations

dl

1 1+2 1+2+3

t=3

1+2+3

t=2

1 1+2 2+3

t=10

o
t=o

189
1+ ••• +5 1+ ••• +6 1+ ••• +7 1+ •.• +8

2+3+4+5

,r,\
, +)

3+4 4+5

3+4+5+6
~---.

(+ \
\)

5+6

4+5+6+7 5+6+7+8

6+7 7+8

FIGURE 3.20: The cascade sum method of forming partial sums. If only
the total sum S8 is required, then only the operations
shown with dotted lines are carried out.

t
a2 d

2 a
3 d

3 a
4 d

4 , ,
~ '--- •

PES
FIGURE 3.21: The sequential evaluation of the general first-order recurrence

PE1 PE2 PE3 PE4

I --+---t~---....--~ .--1- ._--- " _-------- -------' -----_._-_.-- -------._------

v
az d

2
a

3
'----.~. __ J .'-__ __

PE2 PE3
d2.

'--p""i;:-s-

r

a
7

FIGURE 3.22: The cyclic reduction of the general first-order recurrence relation

~l

2
of the form Lx:b can be resolved in O(log2n) time steps. Sameh and

Brent [1977] represent algorithms for the solution of a dense triangular

system of equations. Also, parallel versions of well known sequential

numerical algorithms have been implemented by different researchers,

such as, the parallel LR-algorithm, the parallel Gauss algorithm and

the paralleljs~to~ of iterative algorithms such as the Jacobi, Gauss-

Seidel and SOR algorithms.

192

3.6 PARALLEL NON-NUMERICAL ALGORITHMS

The algorithms derived from non-numerical applications are an area

which is widely applied and from which the benefits of parallelism are

very large. An example of a parallel non-numerical algorithm that has

been investigated by different researchers are the sorting of a given

set of numbers, the search for a given argument, the merging of strings

of numbers, deleting an element from a linked list and counting the

number of elements in a linked list, etc.

Sorting is an important application on a sequential computer and

its implementation on SIMD and MIMD parallel computers have been studied

by many researchers. In the first example, the implementation of the

parallel non-numeric algorithm on MIMD type machines will be considered.

Yousif (1983) presents many non-numerical algorithms for MIMD computers,

among these are different merging and sorting algorithms. The basic

principles of the 2-way merge algorithm is given by Knuth (1973). The

parallel implementation of this algorithm is performed on the M sorted

N
subsets of size (M) each, where N is the size of input, N is divisible

by M and M is a power of 2. This merge algorithm can be completed in

(logM) steps where parallelism is introduced within each step and not

amongst the steps as is shown in Figure 3.23.

Steps/subset
1 2 3 4 5 6 7 8

1

2

3

FIGURE 3.23: The parallel 2-way merge algorithm

193

In Figure 3.23, each step can be performed in parallel, where each

two neighbouring subsets are merged by one process to form a subset of

2N size (~). Also from Figure 3.23 it can be noticed that the number of

subsets to be merged is halved in each successive step until the final

step where only two subsets are to be merged in which case only one

process is required.

Yousif [1983] shows that the total complexity of the 2-way merge

algorithm in one processor is,

tlM = N log M-M+l

and the total complexity of the 2-way merge algorithm in P processors

is,

N M 2N M M
tpM ~ P log p + i?(P-l) - p + log(p) + 1.

The speed-up ratio for the merge algorithm is,

tlM
S (M) = --- , which is of
merge tpM

o(P ~Og M)

log (-) +2p-2
P

Yousif [1983] implements another parallel non-numerical algorithm

using the abcve parallel merge algorithm in its final stage. This is

the well known sequential sorting algorithm, the bubble sort (Knuth

[1973]). The serial "bubble sort" proceeds by comparing and exchanging

pairs of adjacent items. In order to sort an array (xl,x2"",xn)'

(n-l) comparison-exchanges (xl ,x2>,,(x2 ,x3) , ••• ,(xn_l,x
n

) are performed.

This results in placing the maximum at the right end of the array.

After this first step, x is discarded, and the same "bubble" sequence
n

of comparison-exchanges is applied to the reduced array (X
l

'x
2

, ••• ,x
n

_l).

By iterating (n-l) times, the entire sequence is sorted. Knuth [1973J

shows that to run the algorithm on a sequential machine (i.e. one

194

processor) where N is the number of elements to be sorted, needs an

average,

1 2
C ~ i(N -N £nN-N) comparisons

and
1 2

E = 4(N -N) exchanges,

o 321 3 i.e., the total running-time of the algorLthm, tl~ -~~nN-~ that is

2 the sequential bubble sort algorithm is of O(N).

Yousif [1983] present a parallel bubble sort version on an MIMD

type machine. In that implementation, the input set to be sorted is

partitioned into as many subsets as the system allows. Then for each

subset the sequential bubble sort method is applied. The final step

will be the merging step, where all the sorted subsets are merged to

determine the linear ordering of their unions by means of pairwise

comparisons between the subset elements. It was shown that, if the input

set N, is divided into M subsets (M~P, where P is the number of available

processors) each contains N/M elements, the total time to run the

algorithm on one processor is:

3 N 2 1 ~ N 3 N
= M[4(i) -2 Mtn (M>-4MJ

3 N
2

= ---4 M

Meanwhile, when this algorithm is run in parallel with P processors,

r~l subsets have to be carried out by each processor. Thus, the total

time needed is,

tps = Ir~l [2 N
2

-.!.!! £n (!!) _ 2 !!]
pOI 4 i 2 M M 4 M

3 N
2

1 N N 3 N
~ 4 MP - "2 P £n ("M) - 4 P + 1.

The total time (Tl) to run the bubble algorithm on one processor is

equal to the corresponding times for the sorting and merging sections.

Then,
Tl = t lS + tlM

3 i 1 =----N
4 M 2

195

N 3
in (M) - 4 N+NlogM-M+l.

For the parallel implementation, when the bubble sort algorithm is run

on P processors, the total parallel time (T) will be equal to the
p

corresponding times for sorting and merging. Then,

T = t + t
P PS PM

3 N2 1 N N
~ 4 MP 2 P in (M)

3 N N M 2N M M
4 P + p log(p) + l?(P-l)- p + log(p)+2.

The speed-up ratio, Stotal (M)
Tl

= - which
T

is of a(: log M) •
log (p) +2p-2 P

For SIMD type parallel computers, Baudet and Stevenson [1978]

present a sort algorithm which is based upon a generalization of the

odd-even transposition sort (Knuth [1973]). The serial odd-even

transposition sort can be considered as an algorithm for sorting K

elements using K processors in K steps of parallel "comparison exchanges".

The algorithm works as follows:

Let a l ,a2 , ••• ,ak be the sequence to be sorted. In the first step,

for i=1,3, ••• ,2Lk/2J-l, processor Pi compares elements a
i

and a
i

+
l

and

if ai>ai +l the two elements are exchanged. In the second step, the same

comparison exchanges are executed for i=2 ,4, .•. ,2 L(k-l) /2J. Steps 3,5, ...

are the repetitions of step 1, and steps 4,6, ••• , are repetitions of

step 2. A generalization of the above algorithm to partially sorted r-

sequences is shown below. In the first step for i=l, 3, ••• ,2 Lk/2J -1,

processor Plo' merges the two subsequences 5, and 5, 1 and then assigns
1. 1.+

to 5, the first half of the resulting merged sequence and assigns to 1.

Si+l the second half. For the second step, the same operations are

196

executed but for i=2,4, .•. ,2L(k-l)/2J. Again steps 3,5, ... , are the

repetitions of step 1 and steps 4,6, ••. , are repetitions of step 2, as

shown below in Figure 3.24.

Step 1 SteE 2 Step 3 Stel2

Sl: 43,54,63 ~Pl 28,43,54 28,43,54 rPl 17,25,28

S2 : 28,72,79 63,72,79 ~ p2
17,25,32 32 ,43 'S4}-P2

S3: 32,47,84 rP3 17,25,32 63,72 ,79 ~P3 47,63,66

S4: 17,25,66 47,66,84 47,66,84 72,79,84

FIGURE 3.24: Four steps of parallel "merging-splittings" for the
partially sorted 3-sequence numbers

The total execution time of the algorithm is:

T = (nlogn)/k + O(n) •

For a sequential computer, the minimum number of comparisons

4

required for sorting a sequence of n numbers is asymptotically nlogn.

17,25,28

32,43,47

54,63,66

72,79,84

Therefore, when k is smaller than logn, the asymptotic speed-up ratio of

the algorithm over the optimal sequential algorithm is k, which is optimal.

In particular, when k=logn, the ratio of this parallel algorithm to the

optimal sequential algorithm is of order logn, the number of processors.

On the other hand, when k is greater than logn, the total execution time

required for the algorithm is asymptotically linear in n.

In Thompson andKung [1977] two SIMD algorithms are presented to

2
sort n elements on an nXn mesh-connected processor array. In their

model, they assume a parallel computer with N=nxn identical processors,

the interconnections between the processors are defined by the following

two dimensional array:

197

n -----~)

~
n

where the p's denote the processors. That is, each processor is

connected to all its neighbours. Processors at the boundary have two

or three rather than four neighbours. The two timing factors used in

the evaluation of the algorithm complexity are the routing time (tR)

and the comparison time (te). Routing time (t
R

) , is the time required

to move one item from a processor to one of its neighbours. While

comparison time (te) is the time required for one comparison step.

Concurrent data movement is allowed as long as it is all in the same

direction, and also up to N comparisons may be performed simultaneously.

This means that a comparison-interchange step between two items in

adjacent processors can be done in time (2tR+te) time units (route

left, compare, route right). A mixture of horizontal and vertical

comparison interchanges r~quires at least (4tR+te) time units. The N

multiprocessors are indexed according to a pre-specified rule. The

indexing rules considered are the row-major, the snake-like row-major

and the shuffled row-major rules as shown in Figure 3.25. If it is

assumed that N keys with arbitrary values are initially loaded in the

N processors, each receiving exactly one key, the sorting problem

consists of moving the ith smallest key to the processor indexed by i,

198

for i=1,2, ••• ,N. The choice of a particular indexing scheme depends

upon how the sorted elements will be used.

GJ B GJ GJ GJ GJ Q GJ
0 G GJ 0 GJ 0 GJ [2]

0 0 ~ [2] 0 GJ 0 @

0 G 0 B ~ ~ ~ 0
(a) Initial loading pattern (b) Sorted pattern with row-major

before sorting indexing

GJ W GJ G GJ GJ GJ GJ
(2] GJ GJ [2J GJ 0 GJ GJ
GJ G [£J [2J GJ GJ ~ ~
~ [;J 0 ~ ~ 0 ~ @J

(c) Sorted pattern with shuffled (d) Sorted pattern with snake-like
row-major indexing row-major indexing

FIGURE 3.25: Sorting patterns with respect to three ways of indexing
the pOs.

In Thompson and Kung [1977J, two algorithms are presented that

perform this array sort in O(n) comparisons and moves. In the first

algorithm, the odd-even merge sort [Batcher [1968J, Knuth [1973J) on

a linear array has been generalized to a square array of processing

elements. The second algorithm uses a bitonic sort (Batcher [1968J,

Knuth [1973J) and orders the keys with shuffled row-major indexing.

Nassimi and Sahni present an O(n) algorithm to sort n2 elements

199

on an nXn mesh-connected processor array. This algorithm sorts the n2

elements into row-major order and is an adaptation of Batcher's

bitonic sort.

Implementations of more parallel non-numerical sorting and

searching algorithms will be discussed in Chapter 7 •

•

200

3.7 PERFORMANCE OF PARALLEL COMPUTER ALGORITHMS

In the previous sections different methods for parallel algorithm

design have been considered. However in a study of parallel computer

algorithms, we need some measure of efficiency to evaluate the algorithms.

An appropriate measure for specific problems is the speed-up ratio and

the efficiency of the algorithm. If T denotes the computation time on
p

a computer with P processors, and Tl to denote the computation time of

a sequential computer (uniprocessor). Then the speed-up (S) of a P
p

processor computer over a sequential computer is defined as,

S
P

and the efficiency (E) is defined as,
p

(3.7.1)

(3.7.2)

Where S is the maximum speed-up using P simultaneous processors and E
p P

measures the utilisation of the parallel machine. The longer that

processors are idle, or carry out extra calculations introduced through

the parallelisation of the problem, the smaller E becomes. It can be
p

verified that these definitions are consistent with the uniprocessor

case when p=l. To achieve a fair comparison, we always compare the best

serial algorithm for the computation with the best parallel algorithm,

even when the two algorithms are quite different.

Stone [1973] indicates that for a computer system with N processors,

the ideal speed-up ratio is N, but this is hardly ever achieved.

Computations that are very well-suited to parallel computer systems have

a speed-up of KM, where K is a constant near unity, but strictly less

than unity. The best speed-up ratio are linear in N.

201

To compare two parallel algorithms for the same problem 5chendel

[1984J introduces the following measure of effectiveness F as:
p

F = 5 le (3.7.3)
p P P

where I

e = PT (3.7.4)
P P

measures the 'cost' of the algorithm. It can be noticed that

F =(5 IpT) = E IT = E 5 ITl li 1. (3.7.5).
p p P P P pp

F is thus a measure of both speed-up and efficiency. An effective p

parallel algorithm is the one that maximises F •
P

As an example, consider the computation of the sum,

16
A = \' a L i

1

It can be seen that 15 additions are required to compute A with a single

processor, and we have Tl=lS time units. If two processors were

available we would form the two sums,

simultaneously, requiring 7 time units, and then form,

at the next stage, requiring a further time unit. Thus A would be

obtained in T2 = 7 + 1 = 8 time units.

Given 3 processors A could be formed in the following three stages:

Cl = bl + b2 , c2 = b 3 + a
16

;

dl = Cl + c2 = A.

This requires T = 4 + 1 + 1 = 6 time units
3

For 4 and 8 processors the following procedure and their

corresponding times are shown:

for p=4

cl = bl
+ b2 , c2 = b3 + b4

dl = cl + c2

giving, T4 = 5 time units I

and for p=8,

bl = a l + a2 , b2 = a 3 + a 4 ,··· , b8 = a lS + a16

cl = b l
+ b2 , c2 = b3 + b4 ,···, c4 = b7 + b8

dl
= cl + c2 ' d2 = c 3 + c4

A = d
l

+ d2

giving, T = 8 4 time units.

A table of the performance measures can now be constructed:

p T C S E FpTl = S E
P P P P pp

1 15 15 1 1 1

2 8 16 1.88 0.94 1. 76

3 4 18 2.5 0.83 2.08

4 5 20 3 0.75 2.25

8 4 32 3.-75 0.47 1. 76

202

time
units

(1)

(1)

(1)

(1)

(1)

(1)

The table shows that with increasing P, S increases steadily while E
p P

decreases. FpTl' however has a maximum when P=4 which indicates that

P=4 is the optimal choice of the number of processors for this calculation.

The parameters introduced above give one measure for the assessment

of a parallel algorithm. Other aspects for consideration are stability

and the analysis of errors.

CHAPTER 4

PARALLEL IMPLEMENTATIONS OF THE

FOUR-POINT AND NINE-POINT EXPLICIT-BLOCK

ITERATIVE METHODS

203

!

204'

4.1 INTRODUCTION

The solution to a variety of scientific problems can often be

obtained by solving a set of linear equations. Different methods have

been suggested to solve such a set of equations, and among these methods

are the point and the block (group) iterative methods (Young, 1971).

In this chapter the point and block (group) iterative methods are both

represented and discussed, and their mathematical foundations are shown.

Since the work done in this thesis is mainly applied to a MIMD parallel

computer, so the asynchronous aspects of these methods are emphasised

and considered. Other parallel iterative methods for solving a system

of linear equations are also considered and are discussed in this

chapter.

In this chapter, two methods for solving a linear system of

equations are implemented in parallel with the use of the acceleration

or overrelaxation parameter,w. The first method involving a block of

nine points is called the nine-point block method, while the second

method involves a block of four points, and is called the four-point

block method. The basic derivation of both the sequential 4-point and

9-point block methods are shown with the computational amount of the

work involved. On the other hand, different parallel implementations

of the 9-point and 4-point block methods by different orderings are

also developed in this chapter. TWO different parallel schemes are

used in these implementations, these are the synchronous and asynchronous

schemes.

The performance analysis of the 9-point and 4-point block methods

with different implementations are presented also. It is well known

that different algorithmic designs produce different timing results and

205

speed-up ratios on parallel computers depending on whether the

implementation is done synchronously or asynchronously. In both cases,

the overhead measurements incurred when more than one processor is

cooperating should be borne in mind. The main feature in the analysis

of the demand and supply of resources is that several demands may

compete for the supply of a shared resource, such as processors, shared

data or a memory block. Finally, the experimental results that are

obtained from the different implementations of the 9-point and 4-point

block methods on the NEPTUNE system are presented and analysed.

4.2 BASIC DEFINITIONS

In this section we introduce some basic properties and definitions

of matrices which will be used later in this chapter.

A system of m linear equations with n unknowns has the general

form,

+ alnxn = b l

+ a2nx
n

= b2

= b m

The right hand sides b, (i=1,2, ••• ,m) and the coefficients a, "
1 1,J

(4.2.1)

(i=1,2, •.. ,m; j=1,2, .•. ,n) are given numbers with the unknown vector

Xi' i=1,2, •.• ,n. The problem is to find, if possible, numbers Xj

(j=1,2, .•• ,n) such that the m equations (4.2.1) are satisfied

simultaneously.

A matrix is a rectangular array of numbers arranged in rows and

columns, and usually square brackets are used to denote the extent of

the array. An individual number occurring in a matrix is called an

eZement of the matrix. The coefficient of (4.2.1) form a matrix; called

A (matrices will be denoted by a capital letter) which can be written as:
....

al~ all a
12

a 2l
a

22 a
2n

I I I
(4.2.2) A = I I

---a mn

The matrix A in (4.2.2) has m rows and n coZumns and A is said to be

of order ~n. If a matrix has both n rows and n columns it is said to

be square of order n. If a matrix has only one row, it is known as a

207

row vector, and a matrix having only one column is called a column

vector. Both row vector and column vectors are known as vectors for

short and written by an underlined single lower case letter.

If A is a matrix of order mXn then the element in the ith row and

jth column of matrix A may be denoted by a .. and matrix A may be denoted
l.J

by
A = (a. .) •

l., J

From (4.2.1) both b i , (i=1,2, ••. ,m) and unknowns Xj (j=1,2, ••• ,n)

form the vectors,

bJ X~
b2 1 X21

b =
: I

and x = : I (4.2.3)

~J tJ
We say that £ is an m-vector, x is an n-vector and the system of

equations (4.2.1) simply can be written as,

Ax = b • (4.2.4)

If A=(a ..) is a square matrix of order n, then we call its
l.,J

elements a. i' i=1,2, ••. ,n the diagonal entries of A, and all other l.,

elements are called off-diagonal. All elements a .. of A with i<j are
l.,J

called Buperdiagonal, all entries a .. with i>j are called Bubdiagonal
l., J

as shown in Figure 4.1.

... ...
....

..... D, ...
Superdiagonal

i<j r
.......

... 'Cig:
........ Ol)<t.{

Subdiagonal l
........ .::"'~

i>j
... ...

FIGURE 4.1

I

J

208

A square matrix A is said to be diagonal, if all its off-diagonal

elements are zero (i.e., a .. =0 if iFj). "If all subdiagonal entries
1.,J

of the square matrix A are zero, we call A an upper triangular matrix

(i.e. a i .=0 if i>j), while if all superdiagonal entries of A are zero,
, J

then A is called lower triangular (i.e. a
i

.=0, if j>i). We call A an ,)
unit upper triangular matrix if it is upper triangular with diagonal

elements equal to unity, while A is called an unit lower triangular

if it is lower triangular with diagonal elements equal to unity.

If most of the elements a .. are non-zero, then the matrix A is a
1.,J

dense matrix. on the other hand, if most of the elements a .. of a
1.,J

matrix A are zero then A is said to be a sparse matrix. A matrix whose ,
elements are all zero is known as a null or zero matrix. If A is a

diagonal matrix of order n, has all its diagonal equal to 1,

then A is called the identity matrix of order nand enoted by I. The

-1 inverse of a given matrix A denoted by A and such

-1 -1
A A=AA =1

where I is the identity matrix.

If A=(a ..) is a matrix of order mxn t n the transpose of A, 1.,)
T T denoted by A , is the matrix of order nXm such that A =(a ..). This

J,1.
T means that the element appearing in the ith row and jth column of A

is the same as the element in the jth row and ith column of A. This

implies that AT is obtained from A merely by interchanging rows and

columns. The matrix A=(a ..) is said to be symmetric if it conicides 1., J

with its transpose, that is, if

A ,

and is said to be anti-symmetria (or skew-symmetria) if

AT = -A.

209

The determinant of a square matrix A will be denoted by det(A) or

IAI. A square matrix is said to be singular if det(A)=O; if det(A);o!O

it is said to be non-singular. The matrix A=(ai,j) is diagonally dominant

if n
la, ,I

1.,J ~ I ja, J' I
i=l 1.,

, for all l~i~n , (4.2.5)

j;o!i

in other words, each entry of the main.diagonal is greater or equal to

the sum of the other entries of the row holding that particular entry.

A is said to be strictly diagonally dominant if strict equality holds

for all l~i~n in the equality (4.2.5).

The matrix A=(a, ,) is said to be band matriJ; if a, ,=0 for li-jl>m
1.,J 1.,)

(Le. "bandwidth" 2m+l since this is the number of non-zero diagonals

in the band) • As an example, if a, ,=0 for li-kl>l, i.e., all elements
l., J

are zero except for the main diagonal and sub- and super-diagonals, the

matrix A is said to be tridiagonal. In general, if there are nt non-

zero diagonals immediately below and m2 non-zero diagonals immediately

above the main diagonal, then a, ,=0 for i>j+m
l

and j>i+m
2

, and it
1.,J

follows that the matrix A is a band matrix of "bandwidth" p=m
l

+m2+1.

Eigenvalues and Eigenvectors

If A is an (nxn) matrix and ~Q is a vector of order n. If there

exists a scalar A such that,

AX=A!" (4.2.6)

then x is said to be an eigenveator of A with corresponding

eigenvalue A.

The system (4.2.6) can be written as,

(4.2.7)

210

where I is the identity matrix. The non-trivial solution ~~ to the

system (4.2.7) exists if and only if the matrix of the system is

singular, i.e.,

det(A-AI) = 0 • (4.2.8)

Equation (4.2.8) is known as the characteristic equation of A.

Expanding equation (4.2.8) leads to an explicit polynomial equation, the

roots of which give all the eigenvalues A
I

,A2 , ••• ,An • substituting each

A into the equation (4.2.8) gives the n sets of equations
r

(A-A I)X(r) = 0 ,
r

(r) Which when solved give the eigenvector x

Theorem 4.2.1 (Bell [1975])

(4.2.9)

If A is a triangular matrix then its eigenvalues are its diagonal

elements.

Proof:

First we take the case when A is lower triangular; an exactly

similar proof holds for upper triangular A. Let,

all o o __ _ o

an o o

A = an o
I
I
I
I
•

anI

To determine the eigenvalues from the characteristic equation:

I~'-'
0 0 ----- 'l a2l a22-A 0

____ 0

~31 a
32 a 33 - A - - - --0

A-AI = lL .J an2 a n3

and thus

It follows from the characteristic equation is just

with roots all,a22,a33, ••• ,ann' which proves the required result.

Theorem 4.2.2

211

If A is a square matrix of order n with eigenvalues A
l

,A2 , ••• ,An

then the sum and product of all the eigenvalues are given by,

n
(i) T (A) = L A. (4.2.10) r i=l l.

n
(ii) det (A) = ITA.

i=l l.

(4.2.11)

Proof

(see Bell [1975], page 153).

Vector and Matrix Norms

In many applications it is appropriate to have some measure of

the sizes or magnitude of vectors or matrices. This measure is called

a norm and is denoted by 11.11.

Definition 4.2.1

Given a vector x then its norm 1 I~I 1 is a non-negative number

with the following properties:

(1) II~II :;0, and II~II =0 if and only if ~=2.,

(2) Ilaxll= lal.II~11 for any complex scalar a,

(3) 11~+1.11 ~ 11~II+II1.11 for vectors ~ and 1.' and is known as

the 'triangular inequality' •

From (3) we have,

212

The most commonly used norms are the ones which are defined as follows:

Definition 4.2.2

n

L
i=l

n

L
i=l

Ix.1
2

)7 , which is known as the Euclidean norm,
1.

II~II", = max lXii, maximum or uniform norm.

The general norm case can be written for the above three special cases

as:

The matrix norm can be defined in a similar way.

Definition 4.2.3

A norm of an (nxn) matrix, written as I IAI I, is a scalar satisfying

the following properties:

(1) IIAll>.o and IIAII=o if and only if A=(O) ,

(2) IICI.AII=IClI.IIAII, for any scalar Cl,

(3) IIA+BII~IIAII+IIBII, for matrices A and B,

(4) IIABII~IIAII.IIBII for matrices A and B.

In the same way as

max
j

in vector norms,
n
L I a. ·1 (maximum absolute column sum),

i=l 1.,]

H 7 = (maximum eigenvalue of A A) , (spectral norm) ,

IIAII = max
'" i

n

L
j=l

la .. 1 (maximum absolute row sum).
1.,]

Another nOrm which is compatible with the vector Euclidean norm is

defined as follows:

213

, (Euclidean norm) •

Definition 4.2.4

A matrix norm I IAI I is said to be aompatibZe with a vector norm

II~II if

Definition 4.2.5

A matrix norm is said to be subordinate to the corresponding norm,

if it can be constructed in the following form:

or equivalently,

Definition 4.2.6

Let A be an (nxn) matrix with eigenvalues Ai' l~i~n, then the

speatraZ radius of A can be defined as,

p (A) = max I A • I .
1

. J.
':t.l~n

(4.2.12)

For any (nxn) matrix A and any norm, it can be shown by definition

(4.2.4),

p (A) ~ 11 A 11 • (4.2.13)

Let Ai be an eigenvalue of A and ~ its corresponding eigenvector,

then,
Ax. = A.x. ,
-,1 ,1-1

and
IAil.ll~ill = II~ill

~ IIA 11.II~i 11, for any compatible norm.

Thus,

since A. was arbitrarily chosen, then from the definition (4.2.6)
l.

p (A) ~ II All •

214

(1) (2) (3)
A sequence of matrices A ,A ,A , .•• , of the same dimension

is said to be convergent to a matrix A (say) if and only if,

Definition 4.2.7

Let A be a square matrix, then A converges to zero if the sequence

2 3
of matrices A,A ,A , ••• converges to the null matrix 0 and is divergent

otherwise.

Theorem 4.2.3

Let A be an (nxn) matrix and if I IAI 1<1 then

lim Ak = 0

k-

Proof

IIAkl1 = IIAAk-lll~IIAII.IIAk-lll

~IIAI12 .IIA
k

-
2

11

~IIAllk

and since I IAI 1<1 then lim Ak=O.
k--

Theorem 4.2.4

If A is an (nxn) matrix, then A is convergent if and only if

p(A)<l (p(A) 1s the spectral radius of the matrix A).

Proof

See Varga [1962], page 13.

215

Property A and Consistent Ordering Matrices

The first definition was due to (Young, [1950)).

Definition 4.2.8 (Young [1971))

A matrix A of order n has Property A if there exists two disjoint

subsets 51 and 52 of W={l ,2, ••• ,n} (the set of the first N positive

integers), such that 51+52=W and such that if i#j and if either a .. #0
1., J

or aj,i#o, then i E 51 and j E 52 or else i E 52 and j E 51' If 51 or

52 is empty, then A is, of course, diagonal.

If a matrix A has Property (A), it is always possible to rearrange

the rows and corresponding columns of A, in order to obtain the matrix
,y

A which has either the block tridiagonal form

~'
Al

Bl D2 A2

B2 03 A3
0

...,
A =

....
......

(4.2.14)

0
.... , , ... B

k
_

2
D

k
_

l ~-l
B

k
_
l Dk

or the form,

'" r Dl Fll A =

lE-l D
2J

(4.2.15)

where D. are square diagonal matrices not necessarily of the same order.
l.

~ -1
i.e. there exists a permutation matrix P such that A=P AP has either

the form (4.2.14) or (4.2.15).

Definition 4.2.9 (Young [1971))

A matrix A of order n is consistentZy ordered if for some t there

exist disjoint subsets Sl'S2, ••• ,St of W={1,2, ••. ,n} such that

and such that if i and j are associated, then j € Sk+l if j>i

and j € Sk_l if j<i, where Sk is the subset containing i.

t

I S =W
k=l k

217

4.3 BASIC METHODS FOR SOLVING A SET OF LINEAR EQUATIONS

A variety of real life problems may be solved by determining the

solution of a set of simultaneous equations. We also find that, when

we study the numerical methods of solving a boundary-value problem

involving partial differential equations, then these problems also

require the solution of sets of equations which are often very large

in size.

A matrix-vector notation may be used to express the system of

linear equations as,

(4.3.1)

where A is an (nxn) matrix of coefficients, £ is a known n-vector and

x is an unknown n-vector whose value is to be found. Provided that

det(A) is non-zero, the unique solution of the equation is expressed

simply as,
-1

~ = A £,
-1

where A is the inverse of the matrix A.

The methods used to solve (4.3.1) can be classified into two

classes, the class of direot methods (also known as the elimination

methods) and the class of iterative methods (also known as the indirect

methods) •

4.3.1 Direct Methods

By a direct method we mean a method which calculates the required

solution without any intermediate approximations. Direct methods are

based ultimately on the process of the elimination of variables.

To solve equation (4.3.1) for the unknown n-vector ~, in the case

when A is upper-triangular with all diagonal elements non-zero. Then

218

the system of equations has the form,

+a x +a x
l,n-l n-l l,n n

a2 ,2x2+ ... +a2 x +a2 x ,n-l n-l ,n n

(4.3.2)

a x +a x = b
n-l,n-l n-l n-l,n n n-l

a x = b n,n n n

The nth equation
b

in the system (4.3.2) gives xn directly (since a ~O)
n,n

i.e. I X
n

=
n

a n,n

Since xn is known, then the (n-l}th equation gives x
n

_
l

(since

a ~O and x is now known), so n-l,n-l n

=
b -a x
n-l n-l,n n

a n-l,n-l
(4.3.3)

and so on until finally the first equation gives xl. In general, with

xk+l'~+2,··.,xn already computed, the kth equation can be uniquely

solved for ~, since akk~o, to give,

a x).-' .
k,j j Q kK

(4.3.4)

This process of determining the solution of (4.3.2) is called back-

substitution. The amount of work involved in the back-substitution

method is (Conte and Boor [l982)},

n division

,n (n-l) multiplications (4.3.5)

and ,n (n-l) additions

If the coefficient matrix A of the system (4.3.l) is not upper-

triangular, we have to reduce the system to an equivalent system with

upper-triangular coefficient matrix. This latter system can then be

219

solved by back-substitution. This method is known as GaUBsian

EZimination. The elementary procedure in which the first equation is

used to eliminate the first variable in the last (n-l) equations, the

new second equation is used to eliminate the second variable from the

last (n-2) equations, .and so on. If (n-l) such eliminations can be

performed, then the resulting system is triangular and is easily

solvable.
. . (k) (k)

A sequence of equLvalent systems A ~ = ~ ,k=O,1,2, ••• ,

n-l, are derived from the given linear system ~=~ of order n. Here

A(O)~=~(O) is just the original system. The elimination prccess is

. d t b h t if th ff" (k-l) fit' carrLe ou y eac s ep as: e coe LCLent a
kk

0 x
k

n equa Lon

((k-l) I (k-l» k is not zero, then a
ik

a
kk

times equation k is subtracted from

equation i, thereby eliminating the unknown x
k

from equation i, i=k+l,

k+2, ••• ,n and k=1,2, ••• ,(n-l). After (n-l) steps of this procedure,

one arrives at the system A(n-l)~=~(n-l), whose coefficient matrix is

upper-triangular, so this system can now be solved by back-substitution.

The Gaussian elimination process is usually programmed to

accommodate the coefficients and right hand side of the n equations

~=~, in which case the storage required is n(n+l) locations plus a

possible further n locations for the final solution vector. Finally,

the amount of work involved, can be seen to be (Fox [1964]): 0

and

n

1 3 2 1 Y' +n -)"

I 3 1 2 5
Y' 7' -~

divisions

multiplications (4.3.6)

additions

In practice, however, especially in the solution of sets of

linear equations, this value of the computational work involved is

never actually attained as the matrix A is never full. Instead A is

in general a band matrix, Le. A=(a
i

.) where
,J

i-j>m
a, j = 0

1,
j-i>m

so that the number of non-zero elements in each row is at most only

2m+l the bandwidth of the matrix. In this case, the number of

multiplications is of order 2m
2

n in contrast to the factor n3/3 for

the full matrix (Martin [1966]).

Another method can be used to solve equation (4.3.1) which is

220

known as LU Deaomposition. The matrix A can be decomposed into a pair

of factors Land U, such that

A = LU , (4.3.7)

where L is a unit lower triangular matrix and U is an upper

triangular matrix as shown below.

11" --- a l ' a 11 l , J l,n , I'

I
I I ,
I I " 0

I
,

I
' I

I " I a, 1 a, ,
- - -a, I = £, 1 1 1, 1,] 1,n 1,

I I
,

I

.:.j
,
" ~' ,

I I , a _
a n, j £

n,l £ n,i 1 n,l

r-
u l 1 - - - Ul,j - - - u , l,n , I

" I ,
t ,

u, - - - u,
J,j J ,n

0 , I

l
, I

" , ,
u

n,n

All the coefficients in Land U are initially unknown. The rule for

matrix multiplication enables them to be found from the following equations:

221

i-l
for j=i,i+l, ••• ,n, u. j l.,

= a - 2
i,j k=l

~. kUk .
1., , J

i=1,2, ••• ,n
i-l

for j=i+l,i+2, ••• ,n, ~. i =
J,

[a ..
J,l.

-2~ u.]
k=l j,k K,i J (4.3.8)

This factorization method fails only if one of the diagonal

elements u, which are used as divisors in the second equation of

(4.3.8) proves to be zero.

Equation (4.3.1) can then be written as,

LUx = b (4.3.9)

and the solution of equation (4.3.1) is computed from equation (4.3.9)

by introducing the column vector Z such that Z=U~ and then solving

LZ=~ for Z by a forward substitution process and U~=Z for ~ by back

sUbstitution.

The amount of work needed to solve ~=~ using LU decomposition

requires (Vichnevetsky [1981]),

N
3
/3 + 0(N

2
)

N
3
/3 + 0(N

2
)

multiplications
(4.3.10)

additions

As with all direct methods of solution, even if A is in general

a sparse matrix, Land U will be full (triangular) matrices. But if

A is banded, then the bandwidth of Land U will not exceed that of A.

In many applications, if A is not banded then we try to put it into

band form by interchanging the appropriate columns and rows. Let B be

the bandwidth then

a. j = 0 l.,
for [i-j[>B

and those elements lying outside (2B+l) diagonal bands are zero as

shown in Figure 4.2. In this case, the two matrices Land U formed by

222

the decomposition are also banded of width B as shown in Figure 4.3.

The work of decomposing A into Land U is greatly reduced, i.e., it

becomes linear in n if B«n. By contrast, the LU decomposition of a

sparse, but not banded, matrix does not benefit from such an advantage,

as shown in Figure 4.4 (Vichnevetsky [198l]).

2B+l bands
A =

L = u =

}B+l bands

'-v-'
B+l bands

FIGURE 4.2

.. A -1 is full

A is banded

Both Land U are banded
-1

FIGURE 4.3: Densities of A and of Land U for a banded sparse matrix

223

x x
x x

x x ..
x x

-1
A is full

Both Land U full
-1

FIGURE 4.4: Denseness of A and L and U for a general sparse matrix

Hence, to solve the system (4.3.1) in the banded case, by assuming

B<<N requires,

NB2 + O(NB)

NB2 + O(NB)

where B is the bandwidth.

4.3.2 Iterative Methods

multiplications
(4.3.11)

additions

As opposed to the direct method of solving a set of linear equations

by elimination, we now discuss iterative methods. Iterative methods

are preferred over the direct methods when the coefficient matrix is

sparse. They may be more economical for the core-storage requirements

of a computer. They have the distinct advantage that they are self-

correcting if an error is made, they may sometimes be used to reduce

round-off error in the solutions computed by direct methods (i.e.

iterative improvements).

In any iterative method, we begin with some initial approximation

to the value of the variables. By substituting these into the righthand

224

sides of the set of equations generates new approximations which are

usually closer to the true value if certain conditions with regard to

the matrix are satisfied i.e. diagonal dominance. The new values are

substituted into the righthand sides to generate a second approximation

and the process is repeated until successive values of each of the

variables are sufficiently alike to the specified or required number

of decimal places. The iterative procedure is said to be convergent

when the difference between the exact solution and the successive

approximations tend to zero as the number of iterations increased.

So we can say that, given a non-singular system,

(4.3.12)

(k) (k) -1
and a sequence of approximate solution {~ } such that x ~A b as

k __ •

Equation (4.3.12) can be rearranged by splitting the matrix A in

such a way that,

A = D-L-U ,

where D is the diagonal matrix formed from the diagonal entries and L

and U are the upper and lower triangular matrices respectively

comprising of the similar entries in A. Equation (4.3.12) may now be

written as,

(D-L-U) ~ = !? ' (4.3.13)

which can be written as,

Dx = (L+U)~ + b

(i) The Jaeobi Method or the method of Simultaneous Displacement.

In the Jacobi iterative method the (n+l)th iterative values are

exclusively expressed in terms of the nth iterative values. Then the

Jacobi method can be defined as,

225

Dx(k+l) = (L+U),::.(k) +!:. ' k;o , (4.3.14)

-1
by multiplying both sides by D ,the following equation is obtained,

(4.3.15)

-1 -1
The matrix D (L+U) or (I-O A), where I is the identity matrix, is

called the point Jacobi itepation matrix. Each point xi for i=1,2, ••• ,n

of the vector x is then iterated as follows:

(k+l)
xi =

i-l
2 a, j

j =1 l.,

x(k) +
j

n

2
j=i+l

In this method, the components of the vector x(k) must be saved

h 'l t' the t of x(k+l) w l. e compu l.ng componen s

(ii) The Gauss-SeideZ Method (The as Method) also known as the

(4.3.16)

Successive Displacement method which converges more quickly (approx-

imately twice) than the Jacobi method (Varga [1962). In this method

(k+l)
the new values xi are used as soon as they are available instead of

xik) The Gauss-SeideZ itepative method can be defined by the equation,

Dx(k+l) = Lx(k+l) + ux(k) + b (4.3.17)

giving,
(D_L),::.(n+l) = ux(n) + b , (4.3.18)

which is written as,

x (k+l) =' (D-L) -lu,::. (k) + (O-L) -l!:. • (4.3.19)

Since (D-L) is a non-singular matrix, equation (4.3.19) shows

-1
that the Gauss-Seidel point iteration matrix is (D-L) U. From

equation (4.3.17), the iteration of each point xi is given by,

x!k+l) =
l.

ii'l
L a, j

j=l l.,

(k+l) + 11 (k)
Xj L a x }

j=i+l i ,j j

.. . ,n .

for i=1,2,

(4.3.20)

226

The computational advantage of this iterative method is that it

does not require the simultaneous storage of the two approximations

(k+l) (k)
xi and xi as in the point Jacobi iterative method.

(iii) The Successive OverreZaxation Method (S.O.R. Method). Related

to the GS method is the S.O.R. method. In this method, the displacement

. (k) (k+1) (k)
or correct~on vector ~ = ~ -x of the S.O.R. method is taken

to be a constant w times the displacement vector d{k) defined by the

GS iteration. Hence, from equation (4.3.17), the S.O.R. method is

defined as,

Dd(k) = D (~(k+1) _~ (k»
1

= Dx(k+l)_Dx(k)

= Lx (k+1) + ux(k) _ Dx (k) + .£.

Thus, the S.O.R. iteration defined by,

= d(k)
w 1 '

can be written as,

therefore,

giving,

(k+1) (k) x -x =

x (k+1) = (I-wD -lL) -1 {(l-w) I+wD -lU}~ (k) + (I-wD -lL) D -lb.

(4.3.21)

Therefore the point S.O.R. iteration matrix is

(I-WD-1L)-1{(1-w)I+wD-1U}.

If w=l, the S.O.R. method reduces to that of Gauss-Seidel Method.

The quantity w is called an overrelaxation parameter, the choice of which

determines the rapidity of convergence. From equation (4.3.21), we can

227

reformulate it in point form as,

(k+l) i-1
(k+l) n

x(k)}_ (k) w L a .. L x. = - {b + Xj + ai,j (w-l)x
i

.
l. a.. i j=l l.,J i

l.l. j=i+l

(4.3.22)

228

4.4 CONVERGENCE OF POINT ITERATIVE METHODS

To find the conditions for the convergence of the iterative methods

described in Section 4.3, let us consider the system of equations,

Ax = £ ' (4.4.1)

where A is an (nXn) matrix and x and £ are (nxl) vectors. As shown in

Section 4.3, the general form of a stationary linear iterative method

may be written as,

x(n+l) = Gx(n) + r
- - - ' (4.4.2)

where G is the corresponding iteration matrix for the specific method

and r is a column vector of known values. G and r are both defined as

follows:-

G =

0-1 (L+U)

(O-L) -lu

for Jacobi method

for Gauss-Seidel method

-1 -1 -1
(I-wO L) {(l-W)I+wO U}, for S.O.R. method (usually

and

r =

O-lb

(O-L) -lb

(I-WO-1L)-lwO-l£

denoted by Lw) .

for Jacobi method

for Gauss-Seidel method

for S.O.R. method

Equation (4.4.2) can be derived from equation (4.4.1) by re-

arranging them into the form,

~=G~+£, (4.4.3)

i.e., the unique solution of n linear equations ~=£ is the solution

of equation (4.4.3). Alternatively, if we assume the iteration is

convergent then, by (4.4.2),

lim x(n+l) = lim x(n) = x
n-+<:o n--+<o

hence,

229

x=Gx+r.

Let the error at any stage be the difference between the true

and approximate solutions, i.e.,

(n) (n)
e = x - x (4.4.4)

then by subtracting equation (4.4.2) from equation (4.4.3) we have

e (n+l) = Ge (n) (4.4.5)

Therefore,

(4.4.6)

where e(O) = x_x(O) and x(O) is a known set of initial values.

. (1) (2) (n)
The sequence of l.terative values ~ ,~ , ••• ,~ , ••• will

converge to ~ as n tends to infinity if

lim e(n) = 0
n-

(4.4.7)

From equation (4.4.7), this can happen if and only if G(n)+(O) (the

null matrix) as k-. By theorem (4.2.4), this will be true if and

only if p(G)<l, which proves that iterative methods in the form of

(4.4.2) converges if and only if p(G)<l.

Corollary 4.4.1

A sufficient condition for the convergence of equation (4.4.2)

is that
(4.4.8)

since p(G):;IIGII (from equation (4.2.13».

In some cases it happens that I IGI 1>1 but p(G)<l which guarantees

the convergence of the iteration process, thus it means this is a

sufficient condition but not a necessary one.

4.5 RATE OF CONVERGENCE

In order to assess how iterative methods are effective, it is

necessary to consider the number of iterations required for each

convergence to a specified accuracy and the work done per each

iteration. In practice, the usual approach is to iterate until the

norm of the error vector e(k) is reduced to less than some pre-

(0) determined value, say €, of the norm of the initial vector e •

From equation (4.4.6) we have,

230

(4.5.1)

(4.5.2)

we require,

(4.5.3)

where 1 i·1 I denotes 11.11 2 as defined in (4.2.2). From Section 4.4

we have liml IGkl 1=0 if and only if p(G)<l (also Young [1971], page 84).
k--

Equation (4.5.3) can be satisfied by choosing k sufficiently large so

that,

(4.5.4)

If k is large enough so that 1 IGkl 1<1, it follows that equation

(4.5.4) is equivalent to,'

1 kl k ~ -log€/(- k 10gllG I) , (4.5.5)

and from this inequality a lower bound for the number of iterations

for the iterative method can be obtained.

Young [1971] concluded that the average rate of aonvergenae after

k iterations for any convergent iterative method in the form of equation

231

(4.4.2) is the quantity,

\:(G) = (4.5.6)

If \:(Gl)<\:(G2), then G2 is iteratively faster for k iterations

than G
l

•

The asymptotia average rate of aonvergenae is defined by,

R(G) = lim \:(G) = -logp(G) •
k-

Equation (4.5.7) holds, since,

p (G) = lim (11 Gk 11) ilk
k-

(4.5.7)

(4.5.8)

which is proved by Young [1971], page 87. R(G) is referred to as

the rate of aonvergenae.

To obtain an estimate of the number of iterations, k, in equation

(4.5.5) [p(G)]k is replaced instead by 1 IGkl 1 we see that E=[P(G)]k,

and hence,
-log E
-logp(G)

k : =
-logE
R(G) (4.5.9)

On the other hand, the value k obtained from (4.5.9) could be very

much lower when compared with the actual number required, in which

1 IGkl I will behave like kP(G)k-l, rather than p(G)k (see Young [1971]).

In this case, the smallest value of k such that,

k-l
k [p (G)] ~ E

estimates the number of iterations required.

(4.5.10)

232

4.6 THE OPTIMUM ACCELERATION PARAMETER FOR THE SOR METHOD

In section 4.3 it waS shown that the time taken for convergence

using the S.O.R. method is less than that of the Jacobi or Gauss-

Seidel methods. The convergence of the S.O.R. method depends on the

value of the acceleration factor wand ideally, we want the optimal

value of w, say ~, which minimises the spectral radius of the S.O.R.

iterative matrix and thereby minimise the rate of convergence of the

method. At the present time no formula exists for the determination

of ~ for an arbitrary set of linear equations, i.e. general A. However

it can be calculated for many of the matrices A derived from difference

equations approximations to first- and second-order partial differential

equations because their matrices are of a special type which possesses

property (A), and the significance of this was first revealed by Young

[1954]. Young proved that when a matrix possesses property (A) then

it can be transformed into what he termed a conSistently ordered matrix.

Subject to this condition the eigenvalues of the S.O.R. iteration matrix

L associated with A are related to the eigenvalues ~ of the correspond
w

ing point Jacobi iteration matrix B associated with A by the equation,

From the above equation, it can be seen that,

At = w~±~2~2_4(W_l)
2

(4.6.1)

(4.6.2)

Young [1954] shows that the rate of convergence is dependent on A

and so to optimise the rate of convergence, ;\, the eigenvalue of

maximum modulus of the S.O.R. iteration matrix L must be minimised.
w

This is achieved by making the square root in equation (4.6.2) equal

to zero for ~, the spectral radius of the point Jacobi iteration matrix

233

B, i.e.,

(4.6.3)

giving,

2
W b = --'=-::=

I _2
l+{l-~

is the value of w which minimises p(L
W

) , i.e., WFW
b

, then

p (L) > p (L) •
W ~

(4.6.4)

(4.6.5)

Using this optimum value of w, Young [1971] and Smith [1978] show

that,

(4.6.6)

The eigenvalue of maximum modulus value of G is called the

spectral radius of G. As we know that the Gauss-Seidel method is the

same as S.O.R. with w=l, and it can be shown that by substitution of

this value for W into (4.6.1), we have

2
p (G) = p (J) , (4.6.7)

where peG) and p(J) are the spectral radii of the Gauss-Seidel and

point Jacobi iteration matrices respectively. Therefore, wb may be

expressed in terms of p(G), as

2
W =

b
(4.6.8)

l+lt-p (G)

The estimation of wb depends on whether p(J) or peG) can be

estimated. Several methods have been suggested by (Carre, [1961],

Varga, [1962]) and Hageman and Kellogg [1968]). One which is the

power method can be described as follows.

Assuming the matrix of the finite difference equations is

consistently ordered and has property (A), calculate the sequence of

234

(1) (2) (k)
approximations ~ ,~ ""'~ ,to the solution of the system of

equations ~=~ by the Gauss-Seidel method and then we have,

p (G) = lim
k--

11!!(k)11

Ild(k-l)11
(4.6.9)

where d(k) is defined as,

(4.6.10)

and

(4.6.11)

Thus, using the power method we can determine an approximate

value of peG), which, in turn, can be substituted into equation (4.6.8)

to give an estimate of the optimum acceleration factor, w
b

'

Young [1971] and Smith [1978], show that the successive errors at

any mesh point, after a large number of iterations, are related to the

equation,

(4.6.12)

where p is the spectral radius of G. Also, for theoretical purposes

the asymptotic rate of convergence, R, is defined as,

R = -loge (l') • (4.6.13)

They show that R for the Gauss-Seidel method is twice that of

the point Jacobi method, and R for the S.O.R. method is approximately

2 2 2/E times that of Gauss-Seidel method, where ~ =l-E , E being small

for large n. The estimate of the number of iterations, n that is

necessary in order to make e(n)<E may be obtained, where E is the

required accuracy. From equation (4.6.9) it can be shown that (Young

[1971]) ,
n , log E

log (w-l) (4.6.14)

235

4.7 FINITE DIFFERENCE APPrOXIMATIONS TO DERIVATIVES

Many problems in engineering and science can be formulated in

terms of partial differential equations or a set of such equations.

Analytical or numerical methods may be used to find the solution to a

partial differential equation, and approximation techniques may be used

in both methods. Analytical approximation methods tend to be more

difficult to apply than numerical methods. Of the numerical approxi-

mation methods available for solving differential equations those

employing finite-differences are more frequently used and more

universally applicable than any other.

Finite-difference methods are approximate in the sense that

derivatives at a point are approximated by difference quotients over

a small interval. Suppose we are given the interval [a,b], we divide

the interval [a,b] into N equal parts of width h. We set xO=a, xN=b,

and we define,

.
h -----.

I ,

1 2

n=l ,2 , ••. ,N-l •

I ,

3 ••• i-l i i+l ••• n

Suppose u and its derivatives are single-valued, finite and

continuous functions of x, then by Taylor's theorem,

u(x+h) = u(x)
. h 2

+hu'(x) +-u"(x)
21

and

h
3

+ - un. (x)
31

+ ...

u(x-h) = u(x) - hu' (x) + h2
- u" (x)
21

h
3

- - u'"
31

(x) + •••

By adding (4.7.1) and (4.7.2) we get

u(x+h) + u(x-h) = 2u(x) + h
2
U"{X) + O(h4) ,

(4.7.1)

(4.7.2)

(4.7.3)
4 .

where O(h) denotes terms containing fourth and higher power of h.

236

Assuming these are negligible in comparison with the lower powers of

h it follows that,

iu
un (x) = -- =

dx
2

1 2 :2 (u(x+h)-2u(x)+u(x-h)} + O(h) ,
h

2 with the leading error on the right-hand side of order h

(4.7.4)

Subtracting

equation (4.7.2) from equation (4.7.1) and neglecting the terms of

3
order h leads to

u' (x) = : = -fh!U(X+h)-U(X-h)} + O(h2
)

2
with an error of order h •

(4.7.5)

As shown in Figure 4.2, Equation (4.7.5) clearly approximates

the slope of the tangent at p by the slope of the chord AB, and is called

a central-difference approximation. We can also approximate the slope of

the tangent at P by either the slope of the chord PS, giving the forward-

difference formula,

1
u' (x) " ~u(x+h) - u(x)} , (4.7.6)

or the· slope of the chord AP giving the backward-difference formula,

1
u'(x) " ~u(x) - u(x-h)}. (4.7.7)

u(x)

A

u (x-h) u(x) u(x+h)

o x-h x x+h

FIGURE 4.2

237

By assuming second and higher powers of h are negligible, both

equations (4.7.6) and (4.7.7) can be obtained from equations (4.7.1)

and (4.7.2) respectively. This shows that the leading errors in these

forward and backward-difference formula are both of order h.

To solve a boundary-value problem by the method of finite

difference, every derivative appearing in the equation, as well as in

the boundary conditions, is replaced by an appropriate finite difference

approximation.

In our model problem, we consider the two-dimensional problem for

the Laplace equation,

a2
u --+

ax2 o , (4.7.8)

with dependent variable u applied to a connected region R in the x-y

plane. Equation (4.7.8) mathematically represents a problem with

temperatures known on each boundary and is said to have Dirichlet

boundary conditions. We require to determine the solution u(x,y) inside

the region R. We will refer to our model throughout the thesis as the

Dirichlet problem.

Now we subdivide the x-y plane into sets of equal rectangles as

shown in Figure 4.3. The points of intersection of x lines and y lines

are known as the mesh points. Replacing the derivatives by difference

quotients which approximate the derivatives at each point of the mesh,

we get a set of M equations with M unknowns. Therefore, the solution of

the M equations yields an approximation to the partial differential

equation.

Consider now the uniform grid mesh of size h on the unit square

as shown in Figure 4.3.

238

y

(0,1) (1,1

p ..
~,J

.

t
J.

Pl,2

Pl,l P2 , P3 ,l

, x

(0,0) (1,0)

FIGURE 4.3

Assuming that u(x,y) is differentiable, then by Taylor's theorem

we have,
2 2 3 3 h4 4

u(x±h,y) u (x, y) h ~ + !'... .L!!. ± !'... .L!!. + o u (4.7.9) ~ ±
41 ox4

± ...
ox 2! ax 2 3! ax 3

2 2 3 3 h4 a~u u(x,y±h) = u(x,y) ± h ~ + !'... .L!!. ± !'... .L!!. +
414 ± ••• (4.7.10)

ay 21 a/ 3! ai ax

+ au) h
2 2

a
2
u 2

u(x+h,y±h) u(x,y) h (au (.L!!. + 2 o u) = + +-
axoy

+--ax - ay 2 ! 2 - 2 ax ay
3 3

a
3
u a

3
u 3 4 4 !'...(.L!!. + 3 + 3 ± .L!!.) + !'... (.L!!. + + 3 I 3- 2 2 3 4! ox 4 -. ax ax ay axay ay

4
a
4

u a4
u a

4
u 4 ~+ 6 4 3 ax2ay2

±
3 + --4) + ...

ox ay axay ay

(4.7.11)

u(x-h,y±h) = u(x,y) _ h (aU ± au)
ax ay

3 a
3

u (2..J! + 3 + 3
eX 3 - 2

ax ay

+6
4 a u

2 2
ax ay

4
± 4 a u

3
axay

h
2

a
2

u + -(-- +
2' 2-• ax

a
3

u 3
+ l...!!)

2 - 3
axay

4
+ ...1.J!)

4
ay

ay

239

2 2
h3

2~ + 2..J!)
axay a/ 31

h4 a\ a\ +-(-+ 4 41 4- 3 eX ax ay

(4.7.12)

where the pOints (x±h,y), (x,y±h) and (x±h,y±h) are contained in R.

Equations (4.7.9) and (4.7.10) respectively give,

au u(x+h,;t)-u(x,;t) + O(h) (4.7.13) -=
ax h

,

=
u(x,;t) -u (x-h,;t) + O(h) (4.7.14) h

au u (x,;t+h) -u(x,;t) + O(h) (4.7.15) -= , ay h

=
u (x,;t) -u (x, ;t-h)

+ O(h) (4.7.16) h

More accurate approximations are,

= u(x+h,y)-u(x-h,y) 0(h2)
2h +

au u(x,y+h)-u(x,;t-h) + 0(h2) .
ay = 2h

A combination of equations (4.7.9) and (4.7.10) give approximations

to the second-order derivatives

u(x+h,y)-2u(x,;t)+u(x-h,;t)

h
2

2 l...!! = u(x,y+h)-2u(x,y)+u(x,;t-h) + 0(h2) •

a/ h
2

A combination of equations (4.7.11) and (4.7.12) gives an

approximation to the second-order mixed derivative

u(x+h,y+h)-u(x+h,;t-h)-u(x-h,;t+h)+u(x-h,;t-h)

4h2

(4.7.17)

(4.7.18)

(4.7.19)

The mesh point (xi'Yi) = (ih,jh), let u(xi'Yi) be Ui,j' then

Laplace's equation
2 2
~+~=

2 2 ax ay
o ,

240

can be replaced at the point (x.,Y.) by the finite difference equation 1.)

which is obtained from adding equations (4.7.17) and (4.7.18), thus,

1
-(u +u +u .. +u. . -4u ..) = 0 ,
h2 i+l,j i-l,j 1.,)+1 1.,)-1 1..) (4.7.20)

which can be written as,

4u .. -u. 1 j-u. 1 j-u .. l-ui . 1 = 0 , 1,J 1+, 1.- I 1,J+ ,)- (4.7.21)

which is known as the 5-pcint finite difference equation.

A set of simultaneous equations may be obtained from equation

(4.7.20) and whose solution is a finite-difference approximation of

the exact solution {u .. } at the internal mesh pOints. On the other
1,)

hand, the computational molecule in Figure 4.4 correspcnds to equation

(4.7.20).

(i,j+l)

(i+l,j)

(i,j-l)

FIGURE 4.4: Five-pcint computational molecule for the Laplace operator

241

As an example, the (16x16) matrix illustrated in Figure 4.5

represents the coefficient matrix which is derived when a second order

elliptic partial differential equation (i.e., the Laplace equation) is

discretised on a network of lines spaced 1/5 apart, therefore,

o

4

3

2

1

~
0.2

8

7

6

5

12 16

11 15

10 14

9 13

1

FIGURE 4.5

Figure 4.6 shows the (16 x16) matrix which is obtained using the

computational molecule in Figure 4.3.

242

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 4 -1 , -1 -,
2 -1 4 -1 1 -1

3 -1 4 -1 -1

4 -1 4 .-:1_1_ -- --+ - -r
5 -1 14 -1 I -1 1

0
6 -1 1-1 4 -1 I -1

7 -1 1 -1 4 -1 I -1 1
8 -1 1 -1 4 1 -1 1

- --- -,- - - - - - -Cl - --
9 -1 14 -1

I 1 10 -1 -1 4 -1 -1
I -1

I
-1 4 -1 -1 11

12 I -1 I
-1 4 I -1 - - - -1-- T ---- ~ 13 -1 -1

0 1 1
14 -1 1-1 4 -1

15

I
-1 -1 4 -1

I
4 16

L -1 , -1

FIGURE 4.6

In Figure 4.5, at most five non-zero entries are contained in

each row, i.e. the matrix is sparse so that the computation of any

iterative method concentrates only on these five points in each row.

243

4.8 BLOCK ITERATIVE METHODS

The iterative methods for solving a system of linear equations

described in Section 4.3 belongs to a class known as point iterative

methods, that is, at anyone time only a single equation of the system

is treated. An extension of these methods are the block (group) iterative

methods. The principle inherent'in the group iterative method is to group

a certain number of individual equations (mesh points) and treat this

group similar to the way a single point is treated in the point iterative

method.

Consider a system of linear equations,

n
I a, ,x. = b

i
1=1,2, ..• ,n

j=l 1.,J J

which can be written in matrix form as,

(4.8.1)

Ax = b • (4.8.2)

In the group iterative methods the equations in (4.8.1) are

partitioned into different groups numbered 1,2, .•• ,N, such that each

of the above equations belong to one and only one group. Then, the

corresponding unknowns Xi of each group are solved in which the other

unknowns belonging to the remaining groups are treated as known

quantities. In this case the equations for i=1,2, •.• ,n
l

constitute

the first group, those for i=nl +l,nl +2, .•• ,n2 , constitute the second

group and, in general, the equations for i=n +l,n +2, •.. ,n 1 constitute
r r r+

the (r+1)st group and nN=N where N represents the number of distinct

groups.

In order to construct a group iterative method to solve equation

(4.8.2), we first divide the integers 1,2, ••. ,n into N~n distinct sets

such that each integer belongs to one and only one set. Note that it

244

is not necessary for the groups to consist of consecutive integers

although the groups are ordered by the following definitions.

Definition 4.8.1 (Young. [1971)

An ordered grouping ~ of T={1.2 ••••• n} (the set of the first n

positive integers). is a subdivision of T into disjoint subsets G
l

.G
2

•

•••• GN suchthatG1U G2 U •.. UG
N

=T.

Two grouping ~ and~' defined by Gl 'G2 ' •••• GN and G
l

.'G
2

•••••• G
N

••

respectively, are identical if N=N' and if Gl=G
l
., G2=G

2
., ••• ,G

N
=G

N
••

As an example. for n=S, we have the following ordered groupings:

~o: Gl ={l} • G2 ={2}, G3 ={3} , G4 ={4} • GS
={S}

~l : Gl ={1.2}. G2 ={3.4}, G3 ={S}

~2: Gl ={l.S}. G2 ={2,4}, G3 ={3}

~3: Gl ={1,3.S}, G2 ={2.4},

~4: Gl ={3}, G2 ={1,2,4,S}

~S: Gl ={4}, G2 ={1,2,S}, G
3

={3} , .etc.

It is clear that ~O and ~l constitute partitionings.

NOW, let us apply the abcve definition to the linear system (4.8.2)

and let ~ be an ordered grouping of equations in that system. We define

the submatrices ~,t' for k,t=1,2, ••• ,N, such that ~,t' is formed from

the matrix A by deleting all rows except those corresponding to G
k

and

all columns except those corresponding to G
t

. We also define the vectors

Xk and Bk , for k=1,2, .••• N, such that each X
k

and Bk are formed from

vector ~ and £ respectively by deleting all elements except those

corresponding to group Gk • Equation (4.8.2) can be written as,

N

L A- X
t=l k,t t

k=1,2, ••• ,N. (4.8.3)

245

As an example, if n=5 and the ordered grouping is defined by

G
l
={1,3,5}, G

2
={2,4}, we have,

~l,l al ,3 al,;T

Equation (4.8.3) becomes,

+

a
5,~

a 5,':1

The matrix A will be partitioned into blocks (groups) according

to rr and take the form,

A = ~
l'l Al,2 - - - Al,N

A2 ,1 A2 ,2 - - - - A2 ,N , (4.8.4) ,
lA~'l ~,2 - - - - AN,N

where N~n and ~,k' k=1,2, ••• ,N are square matrices and non-singular.

246

From this partitioning of the matrix A, we define the matrices,

Al,l

A22 , ,
D = ,

0

and

F = ,
o

0

, ,

, ,

~,N

A 1,N
I
I

E

, ~-l,N ,
o

0

l A2 ,1 0 0
I

= I " "-

oJ
I

"-I "-
~,l- ~,N-l

(4.8.5)

where D is a block diagonal matrix and the matrices E and F are strictly

lower and upper block triangular matrix respectively, and

A = D-E-F • (4.8.6)

Assuming that all submatrices A .. are non-singular, the various
1.,1. .

block iterative schemes can now be defined as follows.

The bZook Jaoobi

A. X (n+l)
K,k k

or equivalently,

x(n+l)
k =

iterative method is defined by,
N

= - I A. x(n) + V
k

' k=1,2, ••• ,N
.Q.=l -1<. R. R.

R.;lk

N
B x(n) L + Ck ' k=1,2, ••• ,N

R.=l k,R. R.

R.;lk

where,
-1

{ -~,k ~,.Q. if k;lR.

1
Bk,R. =

0 if k=R.
and

-1

J Ck = ~,k· Vk

We may write (4.8.8) in the matrix form,

(4.8.7)

(4.8.8)

(4.8.9)

247

(4.8.10)

where,

and
C (Tt) (o(Tt»-\ = , (4.8.12)

o (Tt) = diag A , (4.8.13)

E(Tt) and F (Tt) are again strictly lower and upper triangular matrices.

For bZoak Gauss-SeideZ iterative method we have,

k-1
~(n+1) = _ I A x(n+1)

~,k k 1,=1 k,R, 1,

N (n) - I ~ R,XR, + Vk ' k=1,2, ••• ,N
R,=k+1 '

or
X (n+l) =

k

k-1
I

1,=1

B X (n+l)
k,R, 1,

N

+ I
R,=k+l

(4.8.14)

B X (n) k 1 2 k,R, 1, + Ck , =, , ••• ,N, (4.8.15)

where Bk,R, and Ck are as given in (4.8.9).

in the matrix form,

This can also be written

where,

For the BZoak S.O.R. (BSOR) iterative method we have,

(n+l) L (Tt) (n) (L (Tt» -1 (Tt) x = x +w 1-w c
w - -

where,

L (Tt) (Tt) -1 (Tt) The B.S.O.R. iterotion = (1-wL) (wR +(1-w)1)
w

L(Tt) = (0 (Tt» -lE (Tt)

R (Tt) = (o(Tt» -IF (Tt)

(4.8.16)

(4.8.18)

m:ztrix.

(4.8.19)

(4.8.20)

(4.8.21)

For the analysis and convergence of the methods we follow the

following definitions and theorems, which is a generalization of Young's

definition of Property (A).

248

First we define the (.~x i) matrix Z = (z. .) by,
l.,J

z .. = 1, if A. .'10 I l.,J l., J
(4.8.22) ,

and
z.
~,j

= 0, if A .. =0
l.,J

where the matrix A and an ordered grouping ~, with i groups are given.

Definition 4.8.2

(~)
The matrix A has Property A ,if Z has Property A.

Definition 4.8.~

The matrix A is a ~-consistently ordered matrix if Z is consistently

ordered.

Definition 4.8.4 (Arms, Gates and Zondek [1956])

~
The matrix A has Property A for a given partition ~ if there

exist two disjoint subsets S and T of W, the set of first N positive

integers, such that S U T = Wand such that if ~,i+O' Then, either k=i

or K E Sand i E T or k E T and i E s.

(~) The above definition is a generalization of Young's Property A

def ini tion.

Definition 4.8.4

1I'1T1f TT
An ordering i-tuple for A will be an i-tuple ~ =(vl,v2, ••• ,vi)'

II
where each Vs is an integer, such that, if A . . '10 and i'lj, then

l.,J

Theorem 4.8.1

(~) .
A matrix A has Property A if and only l.f there exists an ordering

i-tuple for A.

249

Proof:

See Young (1971). page 148.

Theorem 4.8.2

If A is a symmetric matrix and D{n) is positive definite, then

p{L{n))<l if and only if A is positive definite and O<w<2.
W

Proof:

See Young (1971), page 463.

For a symmetric matrix with D{n) positive definite, Theorem (4.8.2)

shows the B.S.O.R. method converges. Now we try to find whether there

is an optimal w.

Theorem 4.8.3

If A has Property A{n) and is consistently ordered, with o<w<2.

d if ' . . 1 f L (n) an A ~s a non-zero e~genva ue 0 ,
W

and if ~ satisfies,

2 2 2
(A-w-l) = AW ~ , (4.8.23)

(n)
then ~ is an eigenvalue of B . Conversely, if ~ is an eigenvalue

of B{n) and if A satisfies (4.8.23), then A is an eigenvalue of L{n).
W

From equation (4.8.23) the optimal relaxation factor wb can be

found in terms of iT, where 1i is the spectral radius of B en) and the

matrix A is symmetric, positive definite and has Property A{n). The

value wb is optimal in the sense that the spectral radius i:' of L (n) is
W

minimal so that the convergence rate is greatest. The relations are

given by,
2

(4.8.24)

and (4.8.25)

Further we have,

p(L(7r»
wb

and, asymptotically, as n+l, we obtained the relation,

250

(4.8.26)

(4.8.26)

As an example, in our model problem if all the points in the blocks

are on two columns (or rows), or on three columns (or rows) then methods

based on the use of such blocks are called two-Zine iterative methods

and three-Zine iterative methods respectively as shown in Figure 4.7 a,b.
y

(0,1)

I ., 8 l~ 16

5 6 1 14

3 4 IJ 12

\.1 2 J 9 le

x
(0,0) (1,0)

a) Two-line block

y

(0,1)

,
7 8 9 16 le 18

'.
4 5 6 3 1< 15

1 2 3 ..110 1 12

x
(0,0) (1,0)

b) Three-line block

FIGURE 4.7: Grouping for the S2LOR and S3LOR method.

251

4.9 PARALLEL ITERATIVE METHODS

Parallel iterative algorithms can be classified into two classes

known as the class of "synohronised aZgol'ithms". or roughlY,parallel

algorithms for SIMD machines (see, for example, the surveys by Miranker

[1971) and by Heller [1978)}. The second class is known as the class

of "asynohl'onous aZgol'ithms". In a synchronised iterative algorithm,

the iterative function (a task) is decomposed into subtasks so that at

each iterative step, the subtask is solved by one process of the

algorithm. The processes are synchronised at the end of each iteration

(which are the interaction points). At these pOints the processes may

be blocked while waiting for inputs, so the performance of the algorithm

is degraded. The performance degradation expected increases as the

number of synchronised processes increases. Asynchronous parallel

algorithms arise naturally in the use of multiprocessors, where the

processors are not synchronised and the communication between co

operating processors is by means of shared data. When the fluctuations

in the computation time are large, asynchronous algorithms are in general

more efficient than synchronised ones for the following reasons. First,

the processes never waste any time in waiting for inputs. Second, the

algorithm can take advantage of processes which run fast. Results

produced by those processes can be immediately used. Third, the

algorithms are "adaptive", so the processes can finish about the same

time.

It was argued that the original form of the traditional iterative

methods that was discussed in Section 4.3 are not suitable for

implementation on parallel computers since they require some form of

synchronisation. On the other hand, many improvements have been studied

252

by different researchers to improve the above arguments.

stone [1973] in his method to solve tridiagonal systems of linear

equations using the ILL lAC IV computer (SIMD-type computer) which

performs N simultaneous computations where N=64,128,256 or 512, a

result N times faster than the serial computer of the same inherent

speed was expected. Actually, inefficiencies due to overhead and

constraints on data communication among processors will reduce the

speed increase to KN where O~k~l. The parallel algorithm presented

by Stone is based upon the LU decomposition, i.e., the matrix of

coefficients decomposes into upper and lower triangular matrices. By

using ILLIAC IV, each processor is assigned to each component of the

known vector. The processors all work simultaneously, therefore, data

can be communicated among the processors in one of two ways. One datum

can be broadcast to all processors simultaneously, or a vector of N

items can be shifted cyclically among the processors. The technique

that Stone used was for solving a system of equations is called

"recursive doublingll.

Chen and Kuck [1975] implemented an algorithm on an SIMD type

machine to solve any linear system of the form ~=£+~, where A is an

(nXn) strictly lower triangular matrix and £ is a constant column vector.

However, as the algorithm stands, all processors execute the same

operation at the same time. They show that O(lOg;n) time steps are

required using o(n3) processors.

Following on the work done by Stone, Clint and Perrot [1980]

presented a solution of a wide variety of problems in numerical

mathematics which needed the solution of sets of linear equations.

Their algorithms are designed for an array processor like the ILLIAC IV,

253

SIMD type computers. In their implementation of parallel iterative

methods lik" the Jacobi and Gauss-Seidel, each processor execu'tes one

component of t.he vector x. Hence, all the components can be evaluated

siullltaneous1y at anyone time.

In U,is thesis programs are run on an MIMD type computer whose

processors act asynchronously, therefore iterative methods for solving

a system of linear equations have to be constructed in asynchronous

form, i.e., asynchronous iterative algorithms. In asynchronous

itclaioive algorithms, each p~:ocej;S jn one iteration has to compute
> •

different "nO. tndependent subsets cf, !"l'e components using their initial

vaIn::", sb:u:ed.::1il'JJje shared memoLYo ')'he val.ues obtained in one iteration

az-e used L; the next iteration whilst C'OillPUt;.i!lg th~ Sallin -components.

. ...: "'
Since the~erformance of the avail~le processor~ are not tlic same,

each processor:-ean use at any computation time the values of the

co:np:ments'thatOare evaluated and released from the previous iteration.

on the otlierhand, when the value of the component is not available,

the proces'sor' can then use the current value of that which was used in

the previous iteration. As an example, Figure 4.8, shows two processors

wOlking asynct.ronous1y on a system of four equations.

P1
1 000 0

P2
1 o 0 0 0

Xl = (x
1

'x2,x3 ,x4) x3 = (x
1

,x2 'x
3

,x4)

1 o 0 0 0 1 000 0 x 2 = (x
1

'x2,x3,x4) x4 (xl 'x2 ,x3 ,x4)

2 111 1 2 o 0 1 1
"1 = (x

1
,x2,x3 'x4) x3 = (x1 ,x2 ,x3 'x4)

2 1 1 1 1 2 o 0 1 1 x2 = ("l'x2,x3,x4) x4
= (x

1
,x

2
,x

3
,x

4
)

3 2 2 2 2 3 1 1 2 2
Xl = (x

1
,x2,x

3
'x

4
) x3 = (x

1
,x2 ,x

3
'x4)

3 2 2 2 2 4 112 2 x2 = (x
1

,x2,x3 'x4) x3 = (x
1
'x2 ,x

3
,x4)

~IGURE 4.8: iwo processors working asynchronously on 4 equations
-- means end of execution

254

To represent an asynchronous iterative method that solves a system

of equations we suppose that F is an operator from mn into itself, we

want to find a vector x in mn which satisfies the system of equations

represented by,

x = F(x) • (4.9.1)

Chazan and Miranker [1969] introduced the chaotic relaxation scheme,

which is a class of iterative methods for solving equation (4.9.1),

where F is linear operator given by,

F(x) = ~ + ~ , (4.9.2)

where x is an unknown vector, A is an (nxn) matrix of coefficient and

b is a constant n-vector. They showed that iterations defined by a

chaotic relaxation scheme converge to (4.9.1) if and only if P(IAI)<l,

where p(IAI) is the spectral radius of the matrix A. The motivation of

defining chaotic relaxation is to account for the parallel implementation

of iterative methods on multiprocessor systems so as to reduce

communication and synchronisation between the cooperating processes.

This reduction is obtained by not forcing the processes to follow a

predetermined sequence of computations, but simply to allow a process,

when starting the evaluation of a new iterate, to choose dynamically not

only the components to be evaluated but also the values of the previous

iterates used in the evaluation. The restriction in the chaotic

relaxation scheme is that there must exist a fixed positive integer S

such that, in carrying out the evaluation of the ith iterate, a process

cannot make use of any value of the components of the jth iterate, if

j<i-S.

Baudet [1978] introduced a class of asynchronous iterative methods

"-in which the chaotic relaxation is considered as a special case and the

255

above restriction can be avoided. The class of asynchronous iterative

methods defined by Baudet is as follows:

n n
Let F: lR ... lR be a linear operator such that. [: ,., xl

F: = x: =

~n (x) x n

00

Let J: = (Jj)j=l be a sequence of non-empty subsets of {1.2 ••.•• n}

and let S = be a sequence of elements in 1'1 n (IN n the set r·,(j) JOO

l:n (j) j=l ~ J
of all non-negative integers). Thus. a sequence X(j) = Xt(j) E lP.

X (j)
n

for l~j~OO is called an asynchronous iterative sequence if the sequence
00

(x(j))j=l is determined by a quadruple (F.X(O) .J.S) in the following way:

-- fl._: (OJ (1) F.J.S as defined above. X(O) I..
l:n (0)

r x. (j-l) • if i ~ J .
~ J

(2) X. (J) =

1 ~

f. (Xl (Sl (j)) ••••• X (S (j))). if i E J.
~ n n J

(3) i occurs infinitely often in the sets J .• j=1.2 •••.• l~i~n.
J

'fiE {1.2 •••• ,n} [So (j)~j-l, j=1,2, ••• , and lim Si (j)->oo].
~ - j-

(4)

The sequence X(j) defined by the asynchronous iteration results

naturally from the successive approximation if it is performed on a MIMD

computer without any synchronisation of the processors.

From the above conditions it is clear that an asynchronous iteration

corresponding to the operator F and starting with a given vector x(O)

and defined by J and S, will be denoted by (F,X(O) ,J,S). Condition (2)

256

of the definition means that, to evaluate x. in the jth iteration, the . ~

recent values obtained from (j-l)th is used if they are released,

otherwise, the previous values obtained from early iterations are to be

used in the evaluation of a new iterate. Condition (3) of the definition

guarantees that no component of the vector x be abandoned during any

iterate. While the first part of condition (4) states that only

components of the previous iterate can be used in the evaluation of a

new iterate, and the second part states that the most recent values are

used instead of the values of an early iterate.

For example, the point JacObi method defined in the ~perator F

with the initial approximation x(O) can be represented by the

asynchronous iteration (F,X(O),J,S), where

J. = {l, .•• ,n}, for j=1,2, ••. ,
~

Si (j) = j-l, for j=l,2, ... , and i=l,2, ... ,n.

The same point Jacobi method can be equivalently represented by the

asynchronous iteration where,

J. = {l+(j-l mod n)}, for j=1,2, ••• ,
J

Si(j) = nL(j-l)/nJ, for j=1,2, ••• and i=1,2, ••• ,n.

In the first case, this means that all the components x
l

,x
2

, ••• ,x
n

are

evaluated at once and this, presumably, will be done by one computational

process with the fact that the components of the new iterate, say i,

cannot be evaluated until the values from the iterate (j-l) have been

obtained. While in the asynchronous Jacobi (second case), this means

that each component is evaluated by one process and up to n processes

can be used to perform the computation. In this method, the computation

of the components of the new iterate, j does not wait for the values

of these components from the value of these components at that time is

257

considered for that computation.

To ensure the convergence of the asynchronous iterative method,

Baudet [1978] shows that, if F is a contracting operator on a closed

n
subset D of IR and if F(D) CD, then any asynchronous iteration (F,

X(O),J,S) corresponding to F and starting with vector x(O) in D

converges to the unique fixed point of F in D.

Experimental results for solving linear systems iteratively using

asynchronous iterative methods (such as Jacobi, Gauss-Seidel and S.O.R.)

on an MIMD parallel computer can be found in Baudet [1978], Barlowand

Evans [1982] and Yousif [1983].

258

4.10 THE FOUR-POINT EXPLICIT BLOCK ITERATIVE METHOD

Implicit block iterative methods were introduced in Section 4.8;

in this section we present another approach of using a small group of

points of fixed size, i.e., where groups of a certain number of

individual equations (mesh point) and treated explicitly and similar

to the way a single point is treated in the point iterative method.

Evans and Biggins [1982] developed the four-point block iterative

scheme and applied it to solve the model problem of the solution of

the Laplace equation in the unit square. In this method, the mesh

pOints are ordered in groups of four, the groups themselves being

ordered in red-black ordering as shown in Figure 4.9.

y

(0,1) (1,1)

15 16 35 36 19 20

13 14 33 34 17 18

27 28 11 12 31 32

25 26 9 10 29 30

3 4 23 24 7 8

1 2 21 22 5 6

x
(0,0) (1,0)

FIGURE 4.9

259

Because the blocks are taken in red-black ordering, the matrix

has block Property (A) and is also block consistently ordered. Besides

if the blocks are taken in natural ordering, the matrix is also block

consistently ordered. It follows that the full theory of block S.O.R.

method applies for both orderings.

Block iterative methods are also known as implicit methods since

the solution of a whole group of points can be found at a time, as

opposed to the point iterative methods where only one point is considered.

Normally, implicit methods have larger convergence rates than those of

explicit methods, at the cost of some extra computation involving the

blocks in each iteration.

To derive the explicit block S.O.R. equations for the model problem,

we consider the 4 mesh points as shown in Figure 4.10.

2N+K 2N+K+l

~+K-l N+K N+K+l
N+K+2

K-l K K+l
K+2

K-N K-N+l

FIGURE 4.10

where k={£N+l){2) {t+l)N-l and t=0(2)N-2. Also, we have that N is an
2

even number and GM of the definition (4.8.l), M=1,2, ••• ,N
4

' such that

each GM consists of the four elements, {k,k+l~N+k,N+k+l} though, the

260

matrix ~.M is of order 4 and of the form.

4 -1 -1 0

-1 4 0 -1 2
~.M = • M=1.2 ••••• N /4 • (4.10.1)

-1 0 4 -1

0 -1 -1 4

Thus. for the model problem. by using the mesh points shown in

Figure 4.10. and from equation (4.8.8) the explicit group Jacobi

method can be written as.

(n+l) = .l...[7(x(n)+ (n»+2((n) +x(n)+ (n) +x(n))+x(n) + (n) 1
xk 24 k-N ~-l xk-N+l k+2 x2N+k N+k-l N+k+2 x2N+k+l •

(n+l) _ .l...[7 (n) + (n» 2 (n) + (n) (n) + (n)) (n) + (n)) 1
~+l - 24 (xk- N+l xk+2 + (~-N ~-1+xN+k+2 x2N+k+l +(x2N+k xN+k- l •

(n+l) _ .l...[7 ((n) + (n)) «n) + (n) (n) + (n)) (n) + (n) 1
~+k - 24 x2N+k xN+k_l +2 xk-N ~-1+xN+k+2 x2N+k+l +~-N+l xk+2 •

(n+l) =.l...[7 (x (n) +x (n)) +2 «n) +x (n) +x (n) +x (n)) +
xN+k+l 24 N+k+2 2N+k+l ~-N+l k+2 2N+k N+k-l

where k={1N+l) (2) (t+l)N-l and t=0(2)N-2.

(n) + (n) 1
~-N ~-l •

(4.10.2)

From equation (4.10.2) it can be seen that for the group of 4

N
2

points the Gauss-Seidel iterative method involves ~ systems of

equations of the form:

4 -1 -1 0 X. j (n+l)rr. (n)
1.. l..j

-1 4 0 -1 Xi.j+l ri.j+l
= • for i.j=1(2)N. -1 0 4 -1 Xi+l. j r i +l •j

0 -1 -1 4 Xi+l.j+l rHl,j+l

(4.10.3)

where. (n)
= X (n+l) + x(n+l)

r i • j i-l,j i.j-l

(n)
= X (n+l)

ri,j+l i-l.j+l
+ x(n)

i+2.j •

and

Now let,

(n)
r. 1 . l.+ ,]

= X(n+l) + X(n)
i+l,j-l i+2,j'

(n)
ri+l,j+l

= X(n) + X(n)
i+l,j+2 i+2,j+l

= (n) + (n) + (n) + r (n)
Si ri,j ri,j ri+l,j+l i+l,j+l

S = (n) + r (n) + (n) + (n)
2 ri,j+l i,j+l ri+l,j ri+l,j

261

(4.10.4)

(4.10.5)

(4.10.6)

Hence, the solution of the system (4.10.3) can be found from the

formula,

(4.10.7)

(n+l) = ...!..(7r (n) + S + (n))
Xi+l,j+l 24 i+l,j+l 2 ri,j

When the over-relaxation factor w is added, the application of

the over-relaxation technique leads to the (n+l)th iterate of the

group of 4 points being redefined to give the S.O.R. formula as:

X (n+l) = x(n) + (* (n»
i,j+l i,j+l w Xi,j+l - Xi,j+l '

x (n+l)
i+l,j

= x(n) + w(X~+l . - x~nl) .)
i+l,j l. ,] l.+ ,]

for i,j=1(2)n

X (n+l) = x(n) + (X* x(n»
i+l,j+l i+l,j+l w i+l,j+l - i+l,j+l '

where x* represents the Gauss-Seidel solution x(n+l) defined in

equation (4.10.7).

(4.10.8)

To calculate the amount of work required using this method,

Evans and Biggins [19821 show that,

262

3N
2

multiplications + ~3 N
2

additions (4.10.9)

for N
2

internal mesh points per iteration and assuming that the

constant 2~ is stored beforehand. Equation (4.10.9) has been

(n+l) (n+l)
improved by solving X.. and X. 1 . l' and to use these values

~,] 1.+ ,J+
. (n+l) (n+l)

to determ1ne X .. 1 and X. 1 .' Therefore, the average work per 1.,J+ 1.+ ,J

iteration for N
2

internal mesh points including the over-relaxation

process is,
2

5~ multiplications llN
2

+--
2

additions. (4.10.10)

263

4.11 THE 9-POINT EXPLICIT BLOCK ITERATIVE METHOD

In this method another grouping of the mesh points is suggested

by considering each block to be formed from a group of 9 points as

shown in Figure 4.11. For this scheme

by 3. In this method, each subset GM'

of grouping, N must be divisible

N
2

M=1,2' ••• '9i' of Definition

2 (4.8.1) consists of 9 elements, where N represents the number of

internal mesh points.

y ~

(0,1) (1,1)

34 35 36 16 17 18

31 32 33 13 14 15

28 29 3C 10 11 12

7 8 9 25 26 27

4 5 E 22 23 24

1 2 3 19 20 21

-,
x

(0,0) (1,0)

FIGURE 4.11

Suppose that the system of equations to be solved is derived from

the two-dimensional Dirich1et problem (the model problem, see section

4.7), where the 5-point finite difference scheme shown in Figure (4.12)

is used and given by the form,

Ax = b (4.11.1)

264

The left hand side of the finite difference equation of such a system

has the form,

x .. +a1xi _1 .+a2x. j+l+a 3x '+1 .+a4x. '-1 1.,) ,) 1., 1.,J 1.,J

"'3

"'4---- 1

"'1
FIGURE 4.12

For the mesh points shown in Figure 4.11, the resulting block

(4.11.2)

structure of the coefficient matrix A of equation (4.11.1) is shown

below,

ro o : R2 R~
0 RO : R1 R4

A = -R~: -;; -0J (4.11.3)
R4

Rl R2 I 0 R
I 0

where,

1 "'3 0 a2 0 o I 1 0
"'1 1 "'3 0 a2 0

0 "'1 1 0 0 '" I t- - _ 2..1

"'4 0 0 1 a3 0 "'2 0 0

0 "'4 0 I
"'1 1 a3 1 0 "'2 0

R =
0 0 a I 0 1 10 0

,
0

_ 4....l a1 _ "'"'-- -0-11
"'4 0 "'3 0

I
I

0 a4 0 I '" 1 a 3 0 I 1
0 0 a4 1° "'1 1

265

o "1'
o 0 1 o o o o o
o 0' -- - -1-o

-I - - -- _I _. __ _

o

l o

o

o

o
10

o "1 1
00

1
10 0 0 -----1-
I

o

o

'0 ,

o

o "1

o 0

o 0

o
01

01

01 .J... __ _

10 0 01

10 0 01 0
1"3 0

l - -

: 0 000

"3 0 0

I
o o I 0

I
" -0-01 - - - -, - - --

2 I 1
o "2 0 1 0 0
o 0 "21

o o

o o

o o

o 01

o
-, -

I
I o

From Figure 4.11, because the blocks are taken in red-black
(4.11.4)

ordering, the coefficient matrix A has block Property (A) and is also

block consistently ordered. Besides, if the blocks are taken in

natural ordering, the coefficient matrix is also block consistently

ordered and has block Property (A). Again, it follows that the full

theory of block S.O.R., method applies for both orderings.

Now, to derive the explicit block S.O.R. equations for the model

problem, we calculate the transformed matrix AE,

E -1
A = [diag{Ro }) A. (4.11.5)

-1 -1
The matrix [diag{Ro }) is simply diag{Ro }, and the inverse of

matrix RO is given by,

2 2 2 2 22
Y1 a 3S1 a 3S2 a 2S3 a 2a 3 S4 a 2a

3
S

S
a

2
S

6
a

2
a

3
S

7
a

2
a

3
S
S

2 2 2 n1S1 Y2 a 3S1 I u1u 2S4 u2 S9 u 2u
3

S
4

u
1

u
2

S
7

a
2

S
10

a
2

a
3

S
7

2 12 22 2 2
u1 S2 a1S1 Y1 a 1a 2SS a 1a 2S4 u2 S

3
a

1
a

2SS
a

1
a

2
S

7
a

2
S
6 - - - -"2" J.. - - - - - - 2" - r - - - - - - - -2-

a 4S3 a 3a 4S4 a 3a 4SS Y3 a 3S11 a3il12· a2il3 a 2a 3 il4 a2a3ilS

I
a 1a 4 il4 a 4S9 a 3u4 il4 a1illl Y4 a 3S11 I a 1a 2S4 a 2 S

9
a2a3il4

R -1 1 I 2 2 I 2 I (4.11. 6)
o d a1a4ilS u1a4il4 u4il3 a 1Jl12 a1illl Y3 a 1a 2J3 S a

1
a

2
S

4
a2il3

- - - 2- - T"2 I - - - - - -2 - T - - - - - - 2- -
a4 S6 a3a4il7 u3a4ilS a 4 il3 a 3a4 il4 u 3u4 SS I Y1 a3il1 u

3
S

2 2 2 2 I
a1a4il7 a 4 il10 a3a4il7 a 1

a
4 il4 a 4 ilg a3u4il4 u1il1 Y

2
u

3
il
1

22 2 2 2 2
a 1a 4 ilS a1a4il7 a.:i,il6 I a1a4ilS a 1a 4 S4 a 4 il3 u

1
il

2
a1il

1
Y

1

'" '" '"

267

where,

2 2 2
d =4~1~2~3~4[4(~1~3-~2~4) -2(~1~3+~2~4)+31-2~1~3(4~1~3-6~1~3+3)

2 2
-2~2~4(4~2~4-6~2~4+3)+1

2 2 2
Y1 = 2~1~2~3~4[2(~1~3-~2~4) -~1~3-a2~4+31-a1~3(4~1~3-8~1~3+5)

2 2
-~2~4(4~2~4-8~2~4+5)+1 ,

(4.11. 7)

26S

and

The block structure of the matrix AE is the same as that of A in

equation (4.11.3) with the submatrices RO replaced by the identity

matrix I, and the submatrices Ri' i=1,2,3,4 replaced by R;lR
i

, which can

be determined easily as follows:

o 0

o 0

o 0

o 0

-1 1
RO Rl = d 0 0

-1 1
R R =o 2 d

o 0

o 0

o 0

o 0

3
il2S6

3
il l il 2S7

2 3
il l il2SS

2
il 2S3

2
il l il2S

4
2 2

illil2~S

il2Yl

ill il2S
1

2
il l il 2S2

ill Y 1

2
illS 1

o 0

o 0

3
il l S2 o 0

il l il
4

S
3

0 0

2
il l il 4S

4
0 0

3
il l il

4
SS 0 0

2
il1il4S6 0 0

2 2
il l il

4
S

7
0 0

3 2
il lil4 Ss 0 0

3
il2il

3
S

7
3

il 2S
lO
3

il l il2S7
2

il2il
3

S
4

2
il2S

9
2

ill il2S4

il2il
3

Sl

il2Y2

illiliSl

ill Y 3
2

il 1 13 11

3
il l ll12

il1"4S3
2

il l "4S4
3

il l "4SS

3 2
il2il 3 i3S

3
il2"3 i3 7

3
il

2
S

6
2 2

il2il3 i3 S
2

il2il3i34
2

il2S3
2

il2il3 i3 2

il2il
3

i3l

il2Yl

o 0

o 0

o 0

o 0

o 0

o 0

2
'\il 2S6

2 2
il l il 2S7

3 2
il l "2SS

il l "2S3
2

il l il2S4
3

il l "2SS

o 0 0 0 0

o

o o

o o

o 0 o

o o

o o

o o

o 0 0 000

(4.11.9)

(4.11.10)

and,

a

a

a a

1
a

= -
d 2

"3"484 a a

"3"483
3 2

"3"488
2 2

"3"487
2

"3"486

a

a

a

a

a

a

a

a

a a a a a a

a a

a a

a a

o a

a a

a a

a a

a a a a a a

3
"2"385

3
"2"384

"2"383
3

"3812
2

"3811

"3Y3
3

"3"485
2

"3"484

"3"483

"4Y1

"1"481
2

"1"482
2

"483
2

"1"484
2 2

"1"485
3

"486
3

"1"487
2 3

"1"468

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

"2"363
3

"362
2

"361

"3"481

"4Y2

"1"461
2

"3"413 4
2

"469
2

"1"464
3

"3"467
3

"4810
3

"1"4 67

a

a

a

a

a

a a

a a

a a

a a

2
"3"462

"3"461

"4Y1

269

(4.11.11)

2 2
"3"465

2
"3"464 (4.11.12)

2
"463

2 3
"3"468

3
"3"467

3
"466

It can be noticed that, if matrix R. has a column of zeros, so
~

-1
does the result matrix R R., and where an element ". occurs as the a ~ ~

-1 -1
(q,p)th element of Ri' the qth column Ra Ri is the pth column of Ra '

multiplied by "i'

For the model problem the Dirich1et problem (4.7.8) we have,

1
a=cx=a=a=

1 2 3 4 4'

we have,

270

67 22 7 22 14 6 7 6 3

22 74 22 14 28 14 6 10 6

7 22 67 6 14 22 3 6 7

22 14 6 74 28 10 22 14 6

-1 1 14 28 14 28 84 28 14 28 14
RO =- (4.11.11) 56 6 14 22 10 28 74 6 14 22

7 6 3 22 14 6 67 22 7

6 10 6 14 28 14 22 74 22

3 6 7 6 14 22 7 22 67

Therefore,

0 0 67 0 0 22 0 0 7

0 0 22 0 0 14 0 0 6

0 0 7 0 0 6 0 0 3

0 0 22 0 0 74 0 0 22

0 0 14 0 0 28 0 0 14

-1 1
RO R1=-224 0 0 6 0 0 10 0 0 6 (4.11.12)

0 0 7 0 0 22 0 0 67

0 0 6 0 0 14 0 0 22

0 0 3 0 0 6 0 0 7

7 6 3

6 10 6

3 6 7

-1 1
22 14 6 0 (4.11.13) RO R2=-224

14 28 14

6 14 22

67 22 7

22 74 22

7 22 67

271

Similarly, R;lR3 and R;lR4 can be obtained.

Explicit equations corresponding to the points that form the block

of 9 points can also be derived by considering the area mesh as shown

in Figure 4. 13.

J I H

K 7 S 9 G

L 4 5 6 F

A 1 2 3 E

B C D

FIGURE 4.13

By applying the S-point finite difference formula, the following

system of equations is obtained:

4x
l = x2

+ x
4

+ X
A

+ X
B

4x2 = Xl + x3 + Xs + X
C

4x3 = x2 + x6 + X
D

+ X
E

4x4 = Xl + Xs + x
7

+ X
L

(4.11.14)

4xS = x2
+ x

4 + x6 + Xs

4x6 = x3 + Xs + Xg + X
F

4x
7 = x4 + Xs + X + X

J K

4xS = Xs + x
7 + Xg + X

I
and

4Xg = x6 + Xs + XG + X
H

272

Equation (4.11.14) can be rewritten as,

= X + X
A B

-x +4x -x
1 2 3 = Xc

-x
2

+4x
3

-x
1

+ 4x
4

-x
S -x7 (4.11.15)

-x
2 -x

4
+4x

S
-x

6

-x
3 -x

5
+4x

6

-x4

-xS

-x6

-xS

-x9

+4x
7
-x

a

-x
7

+4x
a

-x
9

-xa+4x9

= 0

= X I
F

This can be written in matrix form as Ax=b and thus X=A-1b can then be

given as,

= 221 [67(X +X)+22(X +X)+7(X +X +X +X)+6(x +X)+3(X +X)], x3 4 D E C F B G H A I L J K

= ~[2(X +X +X +X)+X +X +X +X +X +X +X +X] ,
Xs 16 C F I L BAD E G H J K

= 22
1
4 [67 (X +X) +22 (X +X) +7 (X +X +X +X) +6 (X +X) +3 (X +X)] ,

x 7 J K I L BAG H C F D E

x9 = 2;4 [67 (XG+XH) +22 (XF+XI) +7 (XD+XE+XJ+XK) +6 (XC+X
L

) +3 (X
B

+ X
A

)]

(4.11.16)

273

For the model problem, by using the mesh points as shown in

Figure 4.14, the group Jacobi method can be written as,

(n+l) __ 1_[67 ((n) + (n)) +22 «n) +x (n)) +7 (x (n) +x (n) +
xk - 224 xk _N x (k-l) xk - N+l N+k-l k-N+2 k+3

x (n) +x (n) +6 x (n) +x (n) (n) (n)
3N+k 2N+k-l) (N+k+3 3N+k+l)+3(x2N+k+3+x3N+k+2»)'

(n+l) = --L[37 (n) +11 ((n) +x (n) + (n) +x (n» +7 (x (n) +x (n))
xk+l 112 ~-N+l ~-N k-l ~-N+2 k+3 N+k+3 N+k-l

5 (n) +3 (x (n) +x (n) +x (n) +x (n)))
+ x3N+k+l 2N+k+3 3N+k+2 3N+k 2N+k-l '

(n+l) 1 (n) (n) (n) (n) (n) (n) (n)
xN+k = l12[37xN+k-l+ll(xk_N+x3N+k+x2N+k_l+~_l)+7(~_N+l+x3N+k+1)

+5x(n) +3(x(n) +x(n)+x(n) +x(n) »)
N+k+3 k-N+2 k+3 2N+k+3 3N+k+2 '

(n+l) = ...!...[2 (x (n) +x (n) +x (n) +x (n)) +x (n) +x (n) + (n) +x (n)
xN+k+l 16 k-N+l N+k+3 3N+k+l N+k-l k-N k-l ~-N+2 k+3

(n) (n) (n) (n)
+x +x +x +x)

2N+k+3 3N+k+2 3N+k 2N+k-l '

x(n+l) = _1_[37x(n) +ll(x(n) +x(n) +x(n) +x(n))+7(x(n) +
N+k+2 112 N+k+3 k-N+2 k+3 2N+k+3 3N+k+2 k-N+l

(n)) +5 (n) +3((n) + (n) + (n) + (n»)
x 3N+k +l xN+k - l ~-N x3N+k x 2N+k - l ~-l '

(n+l) _ -L[37 (n) +1 ((n) (n) (n) (n) 7 ((n)
x 2N+k +l - 112 x 3N+k +l 1 x2N+k+3+x3N+k+2+x3N+k+x2N+k_l)+ x N+k +3+

(n)) +5 (n) +3 «n) (n) (n) (n»
+xN+k - l xk _N+l xk_N+xk_l+xk_N+2+xk+3)'

274

(n+1) 1 en) en) en) en) en)
x2N+k+2 = 224[67{x2N+k+3+X3N+k+2)+22{xN+k+3+x3N+k+l)+7{~_N+2+

en) +x en) +x en)) +6 ({n) +x en)) +3 (x.{n) +x (n» 1
xk+3 3N+k 2N+k-l ~-N+l N+k-l k-N k-l '

(4.l1.l7)

where k={~N+l) (3) {~+1)N-2 and ~=O(3)N-3.
3N+k 3N+k+l 3N+k+2

2N+k-l
(i+2,j-l)

N+k-l
(i+l,j-l)

k-l
(i ,j-l)

(i+3,j)

2N+k
(i+2,j)

N+k
(i+l,j)

k
(i, j)

k-N
(i-l,j)

(i+3,j+l)

2N+k+l
{i+2,j+1

N+k+l
(i+1 ,j+1)

k+1
{i,j+1

k-N+1
(i-l,j+l)

FIGURE 4.14

(i+3,j+2)

2N+k+2
{i+2,j+2

N+k+2
(i+1 ,j+2)

k+2
(i,j+2

k-N+2
(i-l,j+2)

2
{

N+k+3
i+2,j+3)

N +k+3
i+1 ,j+3) {

{
+3
i,j+3)

We now find the amount of computation that is needed to obtain the

solution of the system of equations per iteration using the group of

9 points. From equation (4.ll.l7) it can be seen that the 9-point

Gauss-Seidel iterative method for the solution of our model problem

N
2

involves '3 systems of equations of the form,

275

(n+l) (n)

f -1 0 -1 X, , r,

l
~) 1,j

-1 4 -1 0 -1 Xi ,j+l ri,j+l
0

0 -1 4 0 0 -1 X, '+2 r i ,j+2 ~,)

-1 0 0 4 -1 0 -1
Xi+l,j r i +1 ,j

-1 0 -1 4 -1 0 -1
Xi+1,j+l ri+1,j+1

-1 0 -1 4 0
=

0 -1 Xi+1,j+2 r i +1 ,j+2

-1 0 0 4 -1 0 X'+2 ' ~H',j ~ ,)
0 -1 0 -1 4 -1 X, 2 ' 1

r i +2 ,j+ll 1.+ ,J+

-1 0 -1 4 Xi+2,j+2 ri+2,j+2

for i,j=l (3)N (4.11.18)

where
(n) (n+1)

+ X (n+l)
r i ' = X, 1 ' ,

,) 1.- ,J i ,j-1

(n)
= X (n+l)

ri,j+l i-1,j+l

(n)
= X (n+l) + X (n)

r i ,j+2 i-1,j+2 i,j+3

(n)
= X (n+l)

ri+l,j i+l,j-1

(n)
ri+l,j+l = 0 , (4.11.19)

(n) = x(n)
ri+1,j+2 i+l,j+3

,

(n)
= x(n+1) + x(n)

r i +2 ,j i+2,j-1 i+3,j

(n)
= X (n)

and
ri+2,j+l i+3, j+l

(n)
= X (n) + x(n)

r, 2 ' 2 1+ ,J+ i+3,j+2 i+2,j+3

Therefore, we have the Gauss-Seide1 solution of equation (4.11.18),

given by,

276

X (n+l) __ 1_ (n)+ 2 (n) + (n))+7 (n) + (n))+6 (n) +
" - 224[67r, , 2 (r, '+1 r'+l' (r, '+2 ri+2' (r'+l '+2 1.,J 1.,J 1.,] 1.,J 1.,J ,J 1.,J

(n)) +3r (n) I
r i +2 ,j+l i+2,j+2

x (n+l) _ .1:.....[37 (n) +11 ((n) + (n)) 7 ((n) (n» 5 (n) +3 ((n)
i,j+l - 112 ri,j+l ri,j r i ,j+2 + r i +l,j+2 +ri+l,j + i+2,j+l r i +2 ,j

(n)
+ri+2 ,j+2) I ,

x (n+l)
i,j+2

1 (n) (n) (n) (n) (n) (n)
= 224[67ri,j+2+22(ri,j+l+ri+l,j+2)+7(ri,j+ri+2,j+2)+6(ri+2,j+l

+r ~n) ,) +3r ~n) ,I
1.+1,) 1.+2,J

X (n+l) = _1_[37r~n) ,+ll(r(n~+r(n))+7((n) +r(n))+Sr(n)
i+l,j 112 1.+l,J i,J i+2,j ri,j+l i+2,j+l i+l,j+2

(n) + (n))
+3(ri ,j+2 ri+2,j+2] ,

(n+l) = 1:....[2 (r (n) + (n) + (n) + (n)) +r (n) + (n) +r (n)
Xi+l,j+l 16 i,j+l ri+l,j r i +l ,j+2 r i +2 ,j+l i,j r i ,j+2 i+2,j

(n)
+ri+2,j+2]

(n+l) __ 1_ 37 (n) + (n) + (n)) 7 «n) + (n))
Xi +l ,j+2 - l12[r i +l ,j+2 11(ri ,j+2 r i +2 ,j+2 + ri,j+l r i +2 ,j+l

(n) + (n)+ (n)
+Sr, 1 ' 3 (r, , r, 2 ,) I

1.+,] 1.,J 1.+,)

(n+l) __ 1_[(n) (n) + (n) (n) + (n)) (n)
Xi 2 ' - 224 67r, 2 ,+22(r, 2 ' 1 r, 1 ,)+7(r, , r, 2 ' 2 +6(r, , 1 + ,J 1.+ ,J 1.+ ,J+ 1.+ ,J 1.,J 1.+ ,J+ 1.,J+

(n) + (n)
+r, +1 '+2) 3r, '+2] 1. IJ 1.,]

X (n+l) 1 (n) + (n) + (n) (n) + (n)
i+2,j+l = 112[37ri +2 ,j+l 11(ri +2 ,j+2 r i +2 ,j)+7(ri +l ,j r i +l ,j+2

X (n+l)
i+2,j+2

+Sr ~n), +1+3 (r ~n), +r ~n)'+2) I
1.,J 1.,J 1.,J

- .1:.....[67 (n) +22((n) + ,en) ,)+7(r,(n) +r(,n) ,)
- 224 r i +2 ,j+2 r i +l ,j+2 r1.+2,J+l 1.,j+2 1.+2,J

(n) + (n)) +3 (n)] (4 11 2) +6 (r , '+1 r, +1' r" • • 0 1.,J 1.,J 1.,J

By the application of the over-relaxation technique on the (n+l)th

iteration of the group of 9 points we have the following formulae,

x(n+l)
i+JI.,j+k

= x(n) + w(X* _x(n))
i+JI.,j+k i+JI.,j+k i+JI.,j+k

277

for i,j=1(3)N and

k,JI.=0(1)2,

(4.11.21)

(n+l) where X* represents the Gauss-Seidel solution X defined by

equation (4.11.20). Therefore this scheme requires a total of,

multiplications + ~5 N
2

additions. (4.11.22)

We can improve the above computation work by, first calculating

(n+l) (n+l) (n+l) (n+l)
the 4 points Xi,j+l' Xi+l,j' Xi+l,j+2 and xi+2,j+l from equation (4.11.20)

then apply the 5 point finite difference formula to the remaining five

points. Hence we set,

and

= x(n+l) + x(n+l)
SI i,j+l i+l,j'

= x(n+l) + X (n+l)
S2 i,j+l i+l,j+2

= x(n+l) + x(n+l)
S3 i+l,j i+2,j+l

= x(n+l) + x(n+l)
S4 i+2,j+l i+l,j+2

(n+l)
Xi+l,j+l

X (n+l) 1 (n)
i+2,j+2 = "4(ri+2,j+2 + S4) ,

(4.11.23)

(4.11.24)

(4.11.25)

(4.11.26)

(4.11.27)

so the amount of work per iteration for this method including the over-

relaxation process is now,

38 N
2

multiplications + 59 N2 additions.
9 9 (4.11.28)

4.12 EXPERIMENTAL RESULTS OF THE BLOCK ITERATIVE METHODS

The parallel version of both the basic 9-point block and the basic

4-point block iterative methods have been implemented on the NEPTUNE

system. These parallel versions are used to solve the model problem,

i.e., the two-dimensional Dirichlet problem on a square grid of mesh

points and the approximate solution is found by solving a linear system

of equations, ~=£, where A is a (nxn) sparse matrix and £ is the vector

obtained from the boundary conditions. To ensure that the solution to

the model problem can be obtained, i.e. the solution converges then the

spectral radius of matrix A, P(A) should be less than 1 (see Section 4.2).

The parallel versions of the 9-point block iterative methods were

implemented using equations (4.11.19), (4.11.20) and (4.11.21) while

the parallel versions of the 4-point block iterative methods were

implemented by using equations (4.10.4), (4.10.5), (4.10.6), (4.10.7)

and (4.10.8). In general in all these versions, the model problem is

solved by decomposing it into many subsets that are assigned to the

different processors which can then be run in parallel. Obviously,

different versions may give different results in the running time

overheads, number of iterations needed for convergence and in the speed-

up ratios, which are studied and compared later. In the different

parallel versions, two mesh sizes are evaluated, these sizes are h-l =25

-1 -1
and h =37. For the mesh point size h =25 we need to evaluate a

(24 X24) sparse matrix which is obtained by using the finite difference

method (see Section (4.3), (4.10) and (4.11)). Similarly, for the mesh

-1
point size h =37 we need to evaluate a (36 x 36) sparse matrix.

Therefore, in general for mesh point size h-l=N+l we need to solve an

M=(NXN) matrix linear system in a multiprocessor of P processors.

279

The natural way to evaluate these points is done by processing a
,

fixed amount of work (MCM) points by each process which is carried ...
N out by allocating r-p lines (rows) of the matrix to each process.

This implies that the first r rows are assigned to process 1, the

second r rows are assigned to process 2 and so on. In this approach,

the rows are processed sequentially even though the components within

each row are treated three at a time in the case of the 9-point block

iterative method or pairwise in the case of the 4-point block

iterative method. This method is more commonly known as sequentiaZ

decomposition. In sequential decomposition, shared memory should be

used to hold the input component values. These values can then be

accessed by different processes. Each process iterates on its subset

permanently, but it needs to read all its components before the start

of the iteration. Then it releases all the values of the components

for the next iteration. It is possible that a process cannot obtain

the most recent value of its component, due to the time difference

needed by each process to complete its work. This means that when a

process P is busy updating the values of its components the other

processes cannot use the specific components when they are required

until the update is completed. In this case, process P will iterate

using the old values which is related to that component. As a

consequence to that situation an extra iteration will be needed to

obtain the solution within a required accuracy. Sequential

decomposition is considered as a good strategy, because when the mesh

points subsets are allocated to different processes, all the related

neighbouring points are computed sequentially within that subset,

except for the rows on the boundary of the subset which have their

280

related rows in different subsets and which are carried out by other

processes. Therefore, all the required new values of the related

components are in the same subset. Similar results should be obtained

for a larger number of mesh points, due to the capability of the

parallel system being exploited when it is fully loaded.

In this section, two parallel versions have been programmed and

implemented for both parallel 9-point block iterative methods and the

parallel 4-point block iterative method using an synchronously and

asynchronously approach with each parallel version. Also, two different

w values are used while running each algorithm, these values are w=l.O,

i.e. similar to the Gauss-Seidel method, and for w=w (optimal w),
opt

i.e. similar to the S.O.R. iterative method. Optimal w is obtained

from the experiments by choosing the one that gives the best running

time. In all the parallel versions, the blocks within each subset

are taken in both natural and red-black ordering. In our implementation

the number of processes (parallel paths) are taken to be less or equal

to the number of processors available and the accuracy value (E) taken

-5
to be equal to 10 • The results shown in this section (such as

timing, number of iterations, •••) are an average of many runs.

The Parallel 9-Point Block Iterative Method (Version One)

In this version of the 9-point block iterative method, the problem

(coeffiCient matrix) is decomposed into subsets each of which are

aSSigned to a parallel path. If P is the number of available processors

and N is the size of the problem, i.e. the number of rows in the mesh

which is divisible by P, then each path works on a subset of lines

N
N =-. This means P subsets are formed with each containing N

r
rows of r P

281

the original mesh points, where N should be divisible by 3. Each
N r

subset will contain b
r
=[(3r)2. P1 blocks each with 9 points to be

evaluated by each path. Each processor then computes its own subset

by taking its blocks (b) in the natural ordering, i.e., by taking up
r

each successive three neighbouring rows at a time and all the blocks

on these three lines are evaluated. When the blocks on the first

three lines of the subset are evaluated, the second three lines are

taken and all its blocks are also evaluated and the algorithm proceeds

as before until all the lines in the subset are evaluated. Figure 4.15

shows an example when N=12 and p=2 and we have the number of lines in

each subset N =6 and number of blocks in each subset b =8. Processors
r r

P
l

and P
2

evaluates their blocks in parallel and in natural ordering

as shown in the Figure below.

r

12

11
b25

b
26

b
27

- b
28

:::'.'\ 10

P2
9

8

7

~

~l b22 1°23 D24

6

5
b15

b
16

b
17 °18

1st
subset

4

P
l 3

2
bll

b
12

b
13 D14

1 \

FIGURE 4.15

282

In this version, the nine points within each group are evaluated using

equations (4.11.20) and (4.11.21), i.e. using the 13-point explicit

formula. Version One has been implemented in both the asynchronous

and synchronous approach. In the asynchronous approach, each processor

run asynchronously on its subset without waiting for the other

processors to complete their computations. In this case each processor

iterates permanently on its subset until this and the other subsets

which are carried out by other processors are converged. This approach

has been implemented in Program 4.1, in this program the component

values are maintained in a shared memory so that all the processors

can obtain their subset value by accessing shared memory. A set of

flags are also maintained in a shared memory, such that there is one

flag for each processor which are used for convergence tests. At the

end of each iteration, each processor checks to ensure that its

components are obtained within the required accuracy, i.e. converged.

If convergence is obtained, the processor sets its flag and tests the

remaining flags to ensure that the other subsets that were run on

different processors also converge. If anyone of the other processors

are not converged further iterations will be required, otherwise there

is no need for further iteration. The results of the Parallel Version

One algorithm are listed in Table 4.1, where 1~w~1.9, mesh size (24 X 24)

and the number of paths as 1,2 and 4. While Table 4.2 shows the

results of this implementation by using mesh sizes (24 X24) and (36X36)

and for w=l.O and w=w t (optimal w) which is equal to 1.66, 1.65 for op

the (24x24) mesh size and 1.75 for the (36 x36) mesh size.

Another strategy used to implement Version One is by evaluating

the formed 9-point blocks (b) in red-black ordering instead of the
r

283

natural ordering. By red-black ordering we mean that odd blocks

numbered 1,3,5 ••• are evaluated first then the even numbered blocks

2,4,6 ••• are evaluated next as shown in Figure 4.16. All assumptions

that are applied to the natural ordering is also applied to the red-

black ordering.

12

11
2nd

10 subset

b27 1\ b23 ' \ b28 ~24\ .\\
1\ \\ 1\ \ '\ \\

P2 9

8

7

" b2l \ b25 b22 \\ b26

1'.\ \ \\ ,\ \ \
6

5
1st

4 subset

b17 bl3 1\\ b18 1\ Ib14 \ \
f\ 1\ \ \ f\ \ \ \

Pl 3

2

1

bl} \' b15 '\ bi2 \ b
16

1\\ r\\ r\ 1\ \ f\\

FIGURE 4.16

Figure 4.16 shows an example when N=12, number of processors P=2 and

number of blocks in each subset b
r

=8. Processors P
l

and P
2

evaluates

their blocks simultaneously in red-black order as shown in Figure 4.16.

The red-black strategy is programmed in Program 4.2 and the results of

this program are listed in Table 4.3 where the mesh sizes (24x24) and

(36x36) are used with w=l.O and w=w (optimal w) •
opt

.•

284

From the results in Tables 4.2 and 4.3 we observe that for both

mesh sizes the running times for the asynchronous natural ordering

(Program 4.1) are less than that of asynchronous red-black ordering

(Program 4.2) and the speed-up ratios of the natural ordering is

greater than that of the red-black ordering. Therefore, the natural

ordering strategy appears to be better than that of the red-black

ordering in the asynchronous implementation of the 9-point block using

Version One. For that reason, we will choose the natural ordering

among the two implementations for further investigation. We also

noticed that for both strategies the speed-up ratios w=w (optimal w)
opt

are higher than that for w=l.O. The timing results from Tables 4.2 and

4.3 using mesh size (36x36) with both w=l.O and w=w t are shown in
op

Figure 4.17, while the speed-up results are shown in Figure 4.18.

285

Mesh Size No. of Time No. of Effective no.
(NxN) e: Processors w (seconds) iter- of parallel paths

ations used by this
processor

(24 x24) 10
-5

1 1.0 1007.49 201 1
1.1 835.81 167 1
1.2 686.30 137 1
1.3 561.02 112 1
1.4 445.75 89 1
1.5 340.50 68 1
1.6 235.45 47 1
1.7 196.04 39 1
1.8 306.07 61 1
1.9 635.58 127 1

2 1.0 509.28 203 1,1
1.1 420.85 168 1,1
1.2 348.52 139 1,1
1.3 282.48 112 1,1
1.4 225.60 90 1,1
1.5 171.60 68 1,1
1.6 117.76 47 1,1
1.7 96.48 38 1,1
1.8 157.90 62 1,1
1.9 396.06 157 1,1

4 1.0 255.65 205 1,1,1,1
1.1 213.70 171 1,1,1,1
1.2 176.00 141 1,1,1,1
1.3 145.80 116 1,1,1,1
1.4 113.78 91 1,1,1,1
1.5 91.31 72 1,1,1,1
1.6 70.62 56 1,1,1,1
1.7 48.39 38 1,1,1,1
1.8 89.28 71 1,1,1,1
1.9 257.56 204 1,1,1,1

FIGURE 4.1: Results of the parallel 9-point block iterative
method using natural ordering (Version One)

-

286

Mesh Size P Time No. of Speed- Effective no.
(NxN) , E W seconds) of parallel iter- up

ations paths used by
this processor

(24 x24) 10
-5

1 1.0 1007.49 201 1 1

2 1.0 509.28 203 1.97826 1,1

4 1.0 255.65 205 3.94090 1,1,1,1

1 1.66 160.10 32 1 1

2 1.66 80.39 32 1.99154 1,1

4 1.66 40.10 32 3.99252 1,1,1,1

(36x36) 10
-5

1 1.0 4552.10 403 1 1

2 1.0 2291.27 405 1.98672 1,1

3 1.0 1531.85 406 2.97164 1,1,1

4 1.0 1146.26 408 3.97126 1,1,1,1

1 1.75 524.50 47 1 1

2 1.75 262.50 46 1.99771 1,1

3 1.75 175.22 46 2.99338 1,1,1

4 1.75 132.14 47 3.96928 1,1,1,1

TABLE 4.2: The results of the asynchronous 9-point block
iterative method obtained from Program 4.1,
(Natural ordering, Version One)

287

Mesh Size Time No. of Speed- Effective no.
(NXN) E: P w (seconds) iter- of parallel up

ations paths used by
this processor

(24x24) 10
-5

1 1.0 1021.58 204 1.0 1

2 1.0 517.06 205 1.97575 1,1

4 1.0 260.94 208 3.91500 1,1,1,1

1 1.65 168.78 34 1.0 1

2 1.65 87.05 35 1.93889 1,1

4 1.65 44.03 35 3.83330 1,1,1,1

(36x36) 10-5 1 1.0 4615.78 409 1.0 1

2 1.0 2331.47 411 1.97947 1,1

3 1.0 1552.87 412 2.97196 1,1,1

4 1.0 1161.53 414 3.96985 1,1,1,1

1 1.75 559.03 50 1.0 1

2 1.75 281.64 51 1. 98491 1,1

3 1.75 191.64 51 2.91708 1,1,1

4 1.76 146.95 52 3.80551 1,1,1,1

TABLE 4.3: The results of the asynchronous 9-point block
iterative method obtained from program 4.2,
(Red-black, Version One)

Version One of the parallel 9-point block iterative method was

implemented synchronously so that the blocks were taken in natural

ordering. The natural ordering synchronous scheme was programmed in

Program 4.3, where each processor evaluates (iterates) its own subset

in the same manner as in asynchronous version with the exception that

each processor synchronises itself after each iteration. In this case,

each processor will wait for the other processors to finish their

iteration and after all the processors are synchronised the convergent

test is carried out by one processor (the master processor, processor 0

288

in the case of the NEPTUNE system). If the mesh components of previous

iterations is not within the required accuracy a new iteration will be

carried out by all the processors using their new subset values.

Otherwise the iterations are terminated which means convergence to the

solution has been obtained.

Table 4.4 shows the results obtained from Program 4.3 using two

mesh sizes (24x24) and (36x36) with w taken as w=l.O and w=w
opt

(optimal w), which equal to 1.66 in the case of the (24x24) mesh and

1.75 in the case of (36x36) mesh.

Mesh Size P Time No. of Speed- Effective no.of
(NxN) EO w (seconds) iter- parallel paths up

ations used by this
processor

(24x24) 10-5 1 1.0 1009.19 201 1.0 201

2 1.0 510.93 200 1.97520 200,200

4 1.0 256.34 199 3.93692 200,200 ,200,200

1 1.66 160.76 32 1.0 32

2 1.66 80.86 31 1.98813 31,31

4 1.66 40.89 30 3.93152 30,30,30,30

(36x36) 10-5 1 1.0 4553.17 403 1.0 403

2 1.0 2292.82 402 1.98584 402,402

3 1.0 1533.09 402 2.96341 402,402,402

4 1.0 1148.04 400 3.95733 400,400,400,400

1 1.75 530.42 47 1.0 47

2 1.75 266.41 46 1.99099 46,46

3 1.75 177.51 46 2.98811 46,46,46

4 1. 75 132.64 45 3.95733 45,45,45,45

TABLE 4.4: The results of the synchronous 9-point block
iterative method obtained from Program 4.3
(Natural ordering, Version One)

By comparing the results from Table 4.2 and 4.4 we notice that the time

of Program 4.3 is greater than that of Program 4.1, i.e. evaluating

289

blocks in natural ordering asynchronously takes less time to converge

than that of a synchronous evaluation and this is due to the

synchronisation overheads needed after each iteration in the

synchronous implementation. Also, it is clear that the speed-up ratios

of asynchronous implementation is higher than that of a synchronous one.

So we can say that, inspite of the efficient implementation of both the

synchronous and asynchronous programs, the asynchronous natural order

implementation gives better results in both time needed to converge and

the speed-up ratios of the processors than that of synchronous

implementation. This is due to the synchronisation overheads needed

in the synchronous implementation. However, in the asynchronous

implementation, all the processors obtain the most recent values of

the components every time, because they are released as soon as they

are updated. Figure 4.19, shows the timing results obtained from both

Tables 4.2 and 4.4, while Figure 4.20 shows the speed-up ratio results

obtained from the same tables.

Parallel 9-Point Block Iterative Method (Version Two)

In this version of the parallel 9-point iterative method we

decompose the problem into subsets each of which are assigned to a

parallel path, and where the number of parallel paths is equal to the

number of co-operating processors. Also, the number of lines in each

formed subset should be divisible by 3 and each processor then computes

its own subset by-taking up each successive three adjacent rows at a

time and all the blocks on these three lines are evaluated. All the

assumptions that were applied to Version One are also applied to

Version Two with the exception of the way in which the components

u
Q)
VI

c

w
~
f-

290

4800

Legend o Nat u ra l "::01

4200 n NaILlrC!!...!=!J!:' _ o R.d-8Iac;k . .. ,

6. R.d-~ck ~"oe..1

3600

3000

2400

1800

1200

600

= = - - - h,
O+----------.,----------r----------~----------

o 2 3

NO. OF PROCESSORS

FIGURE 4.17

The timing results of version one asynchronous 9-point block iterative
method using natural and red-black ordering for mesh size 36x36

4

CL
:J
I

o
w
w
CL
U1

4

3

Ij
Ij

Ij
(I

(I

2

Legend o Na l ll ral.,,=I . O

6. N~l~p_t _ 2 91 o Red-Bla ek ","1.0

6. R.d-81~!.!,f.!

'/
'I

Ij

/i::,.

/
/

!

1 ~--------~----------.---------,----------.

o 2 3

NO. OF PROCESSORS

FIGURE 4.18

The speed-up results of version one asynchronous 9-point block iterative
method using natural and red-block ordering for mesh size 36x36

4

u
ID
III

c

W
~
I-

3000

2400

1800

\

1200

600

~-------------"'" --~- ----
o+-------~-------=~==~=-==~-~~=~=-==~

o 2 3

NO. OF PROCESSORS

FIGURE 4.19

The timing results of version one both asynchronous and synchronous 9-point
block iterative method using natural ordering ,mesh sizes 36x36 & 24x24

4

292

0....
=>
I

o
w
W
0....
(f)

4

3

2

I I
o 2 3

NO. OF PROCESSORS

FIGURE 4.20

29 3

Legend o yetl ._1 ,i;u=2A

o A sy c. h w .. =.:!.! .e.'.!i !..!..=!". n Src" .=1 sl;u=2A

6. S1,h w~llu=2" .. o A. yeh .=1 ,i ze=36 o Asyc:h .. ,...op t .i z.=J~

\l SI,h w=d ,11:e=36

'\j 5 y,h _:wopt ,ize=36 ..

I
4

Speed-up results of version one both asynchronous and synchronous 9-point
block iterative method using natural ordering ,mesh sizes 36x36 & 24x24

294

within each block of the 9-point method are evaluated. In Version

One of the parallel 9-point block iterative method each point within

each block is evaluated using the 13-point explicit formula as shown

in equation (4.11.20), i.e. the points within each block are evaluated

in the following order (i,j), (i,j+l), (i,j+2), (i+l,j), (i+l,j+l),

(i+l,j+2), (i+2,j), (i+2,j+l) and (i+2,j+2). While in Version Two of

the parallel 9-point block iterative method, we start by evaluating

the points (i,j+l), (i+l,j), (i+l,j+2) and (i+2,j+l) of each 9-point

block using the 13-point explicit formula (i.e., the same as that of

Version One) and the remaining five points (i,j), (i,j+l), (i+l,j+l),
I

(i+2,j) and (i+2,j+2) are evaluated using the 5-point finite difference

formula as shown in equation (4.11.27). From Figure 4.21 we can see

that the points labelled "1" are evaluated first using its outer

boundary points (the points that are labelled with letters A to L) ,

Le., each point of the 4 points labelled "1" will use the 12 boundary

points, while evaluating its components as shown in equation (4.11.20).

The remaining 5 points (labelled "2" in Figure 4.21) can now make use

of the values obtained from the points labelled "1" using the 5-point

finite difference formula (equation (4.11.27», i.e. each point will

use only 4 boundary points instead of 12 boundary points in the case

of 13-point explicit formula (the first four points) •

J I H

K 2 1 2 G

L F

1 2 1
E

A 2 1 2

B C D

FIGURE 4.21

295

As in Version One, this version was implemented both asynchronously

and synchronously. In the asynchronous implementation two strategies

were used to evaluate the blocks within each subset, these strategies

are the natural ordering and the red-black ordering (see Figure 4.15

and 4.16). Whilst in the synchronous implementation the natural

ordering was implemented only. In these implementations each processor

evaluates its subset and the convergence test was carried out on the

NEPTUNE system as in that of Version One. For Version TWo, the

asynchronous strategy using both natural ordering and red-black ordering

was implemented in Programs 4.4 and 4.5 respectively. The synchronous

strategy with the natural ordering scheme for Version Two was implemented

in Program 4.6. The experimental results of these programs using mesh

size (24X24) are listed in Tables 4.5, 4.6 and 4.7 respectively.

By comparing the results from Table 4.5 and 4.6 we can see that

the asynchronous natural ordering scheme takes less time than that of

the asynchronous red-black ordering scheme and the speed-up factor of

asynchronous natural ordering is higher than that of the red-black

ordering. So we can say that in Version Two the asynchronous natural

ordering is better than that of asynchronous red-black ordering. This

is probably due to the overheads incurred by the system such as the

interprocessor communication. Asynchronous natural ordering strategy

was chosen among these two strategies and implemented synchronously in

Program 4.6. Now comparing the results obtained from the asynchronous

natural ordering (Table 4.5) and synchronous natural ordering (Table

4.7) we notice that the asynchronous strategy required less time than

that of the synchronous one. While the speed-up ratios results for

asynchronous strategy are greater than that of synchronous strategy

for both w=1.0 and w=w t (optimal w). Therefore we can say that in op

Version Two the asynchronous strategy also gives better results than

296

that of synchronous one. This is due to the synchronisation overheads

needed at the end of each iteration in the synchronous strategy and

the usage of the recent values by the asynchronous strategy because

they are relaxed as soon as they are updated.

Mesh Size P Time No. of Speed- Effective nO .of
(NXN) C w

(seconds) iter- parallel paths up
ations used by this

processor

(24x24) 10-5
1 1.0 850.69 201 1.0 1

2 1.0 431.32 204 1.98204 1,1

4 1.0 214.50 205 3.96592 1,1,1,1

1 1.42 135.73 32 1.0 1

2 1.42 68.68 32 1.97627 1,1

4 1.42 34.35 32 3.95138 1,1,1,1

TABLE 4.5: The results of the asynchronous 9-point block
iterative method obtained from Program 4.4
(Natural ordering, Version Two)

Mesh Size P
Time No.of Speed- Effective no .of

(NxN) c w (seconds) iter- parallel paths up
ations used by this

processor

(24x24) 10
-5

1 1.0 860.22 204 1.0 1

2 1.0 437.82 207 1.96478 1,1

4 1.0 219.77 208 3.91418 1,1,1,1

1 1.42 143.06 34 1.0 1

2 1.42 74.01 35 1. 93298 1,1

4 1.42 37.02 35 3.86440 1,1,1,1

TABLE 4.6: The results of the asynchronous 9-point block
iterative method obtained from Program 4.5
(Red-black ordering, Version Two)

297

Mesh Size Time No.of Speed- Effective no.of
E P (NxN) w (seconds) iter- parallel paths up

ations used by this
processor

(24 x 24) 10-5
1 1.0 851.81 201 1.0 201

2 1.0 433.08 201 1.96687 201,201

4 1.0 215.53 198 3.95216 198,198,198,198

1 1.42 135.99 32 1.0 32

2 1.42 69.97 32 1.94355 32,32

4 1.42 34.43 32 3.94975 32,32,32,32

TABLE 4.7: The results of the synchronous 9-point block
iterative method obtained from Program 4.6
(Natural ordering, Version Two)

TO compare both Version One and Two we take the best results of

both versions and compare them. Both versions give the best results when

using the asynchronous with natural ordering strategy. From the results

in Table 4.2 and 4.5 when the mesh size is equal to (24 X24) we can

notice that the time required by Version Two is less than that of

Version One. This is mainly from the way in which the components within

each 9-point block are evaluated in both versions. In Version One each

point is evaluated using the 13-point explicit formula, while in Version

Two the first four points are evaluated using the 13-point explicit

formula and the remaining five points were evaluated using the 5-point

finite difference formu~~ which means that less operations are required

in Version Two than that of Version One. Also in Version Two, by using

the most recent values of the first four points in evaluating the

remaining five points within each 9-point block a greater rate of

convergence is achieved since for these points a Gauss-Seidel approach

is used. On the other hand, the speed-up ratios for Version One when

w=l.O are less than that of Version Two, while for w=w (optimal w)
opt

298

the speed-up ratios for Version One is greater than that of Version

Two and optimal w values in both versions are different. Figure 4.22

shows the timing results obtained from both Table 4.2 and 4.5, while

Figure 4.23 shows the speed-up ratio results obtained from the same

tables.

To conclude from Version One and Two we can state that in all the

implemented algorithms for the 9-point block iterative method the

problem is decomposed into a subset each of which is aSSigned to a

processor where the number of processors is always equal to the number

of generated parallel paths. In all the implemented strategies

(asynchronous and synchronous), each processor updates its components

as soon as it is evaluated and it is made available to be used by the

other processors by using a single shared array to hold the components'

value. In the synchronous strategy the implementation is carried out

by letting each processor wait at the end of each iteration for the

other processors to finish their iteration in order to make sure that

its new evaluated component values are available to the other processors

to be used. This certainly gives the correct approximation to the

solution of the linear system of equations with a fixed number of

iterations for any number of cooperating processors. While the

asynchronous strategy implemented is carried out in the same way as

in the synchronous implementation but without waiting at the end of

each iteration. Because of the way the implementation is carried out

in both Version One and Two, we generally can say that in each Version

where the timing results are concerned it does not matter whether the

algorithm is synchronously or asynchronously implemented. Because in

both Version One and Version Two we decompose the problem into almost

299

equal subsets and assign each one to different processors, this means

that the amount of work carried out by each processor to evaluate any

component is approximately the same, i.e. the complexity of evaluating

any component by any processor is the same. To evaluate (update) a

component in any block of the 9 points, its computational complexity

(number of arithmetical operations) is equal to (13 Additions (A) +

8 Multiplications (M», therefore for a mesh size equal to (NXN) , there

are ((13A + 8M)N) operations per each line in each subset. Thus, for

P parallel paths and N =N/P lines in each subset, the total number of
r

operations carried out by each processor is equal to T=((13A + 8M) .N.N).
r

Besides the computational time T there are extra overheads incurred by

the system which degrades the algorithm performance in both the synchronous

and asynchronous implementations. These overheads are the generation

of parallel paths and the synchronisation at the end of each iteration

cycle. These overheads may become significant, if for example we take

the implementation of the synchronous and asynchronous methods by

natural ordering (Version One) on the NEPTUNE system using four processor,

w=l.O and mesh size equal to (36x36). In the asynchronous algorithm,

the problem converges after 403 iterations using a total of 4 parallel

paths, while in the synchronous algorithm we reach the same answer after

403 iterations using a total of 808 parallel paths, since we need a

synchronisation after each iteration. Thus, it is clear that the over-

heads may affect the performance of a parallel algorithm and specially

the synchronisation overheads in this case. Hence for this reason we

can say that the use of the asynchronous strategy is better suited for

a MIMD computer.

u
Q)
V1

c

w
~
f-

1100

1000

900

800

700

600

500

400

300

200

100 ~------~

300

Legend
o Version I w=1

o ~n I w=w.!.£.!.

6. Version 2 w=1

~ ~~w~

--...:. :::::::: - --------M\
- E

O-,~----------,-----------,-----------~-----------,

o 2 3

NO. OF PROCESSORS

FIGURE 4.22

The timing results of asynchronous natural ordering in both version one
and two using results trom table 4.1 & 4.4 using mesh size 24x24

4

CL
:::>
I

o w
w
CL
(/)

4

3

2

Leg end o Ve r:!lllo n 1 .,, =1

o Ve rs i o n 1 w=w.!..f.!
6 Ve rsi o n 2 w=1

~ .Ve rsl o n 2 w= w-!£)

1 1---------~----------._--------_r--------_.

o 2 3

NO. OF PROCESSORS

FIGURE 4.23

Speed-up results of asynchronous natural ordering in both version one
and two using results from table 4.1 & 4.4 using mesh size 24x24

4

30 1

302

Parallel 4-Point Block Iterative Method (Version One)

As in the parallel 9-point block iterative methods, in this

version the problem is decomposed into subsets each of which are

assigned to a parallel path which is run by a unique processor. The

number of parallel paths will be equal to the number of co-operating

processors. If P is the number of the available processors and N is

the size of the problem (N divisible by P) then each parallel path

evaluates in a subset of lines N =N/P (N should be divisible by 2) •
~ r

Each P subset will contain br =((2r)2. p) blocks each with 4 points to be

evaluated by a parallel path and run on a single processor. Each

processor then computes its own subset by taking up each successive

two neighbouring rows at a time so that each block on these two lines

are evaluated. When the blocks on these two lines are completed the

next two lines in the subset are taken and the algorithm proceeds as

before until all the lines in the subset are evaluated. In this version,

the points within each block are evaluated using the 9-point finite

difference explicit formula and implemented on the NEPTUNE system using

equations (4.10.7) and (4.10.8) respectively. Version One of the

parallel 4-point block iterative method has been implemented using

different strategies as in Version One of the parallel 9-point block

iterative method by taking the blocks within each subset in the natural

ordering as well as in red-black ordering using both the synchronous and

asynchronous approach. The principle of these strategies and the way

in which they are performed and programmed are the same as in that of

Version One of the parallel 9-point block iterative method.

Table 4.8 shows the results obtained from the implementation of

Version One of the parallel 4-point block iterative method asynchronously

303

on the NEPTUNE system. The blocks within each subset are evaluated in

natural ordering for both w=l.O and w=w t (optimal w) using mesh op

sizes (24 X24) and (36 X36). Table 4.9 shows the results of the same

strategy as that of Table 4.8 evaluating the blocks within each subset

in red-black ordering instead of natural ordering. By comparing the

results from Table 4.8 and 4.9 we notice that the running times taken

by the problem to converge using asynchronous red-black ordering is

higher than that of using the asynchronous natural ordering and the

speed-up ratios of the natural ordering implementation is higher than

the speed-up ratios of the red-black ordering implementation. Also,

for both mesh sizes (24X24) and (36 x 36) the result shows that the speed-

up ratios of optimal w (w) is higher than that of w=l.O for both opt

natural and red-black ordering. Thus we choose the natural ordering

implementation as the best amongst the two implementations for the

asynchronous strategy of Version One. Figure 4.24 shows the timing

results from Tables 4.8 and 4.9 for the mesh size (24 X24) with both

w=l.O and w=w t while Figure 4.25 shows the speed-up ratios of both op

results.

304

Mesh Size
p Time No.of Speed- Effective no.

(NxN) E W (seconds) iter- of parallel up
at ions paths used by

this processor

(2 4x2 4) -5
1 1.0 1075.76 286 1.0 10 1

2 1.0 541.38 288 1.98707 1,1

3 1.0 363.15 289 2.96230 1,1,1

4 1.0 271.09 289 3.96828 1,1,1,1

1 1.7 150.36 40 1.0 1

2 1.7 75.40 39 1.99417 1,1

3 1.71 50.40 39 2.98333 1,1,1

4 1.71 37.63 39 3.99575 1,1,1,1

(36x36) 10
-5

1 1.0 4849.03 572 1.0 1

2 1.0 2449.42 576 1.97967 1,1

3 1.0 1633.93 577 2.96771 1,1,1

1 1.79 496.82 59 1.0 1

2 1.79 248.56 58 1.99880 1,1

3 1.79 165.65 56 2.99922 1,1,1

TABLE 4.8: The results of the asynchronous 4-point block
iterative method obtained from Version One
using Natural ordering of blocks

305

Mesh Size Time No.of Speed- Effective no.
(NXN)

E P w (seconds) iter- of parallel up
ations paths used by

this processor

(24x24) 10-5
1 1.0 1091.24 290 1.0 1

2 1.0 552.08 293 1.97650 1,1

3 1.0 368.88 293 2.95825 1,1,1

4 1.0 276.35 294 3.94876 1,1,1,1

1 1.71 152.99 41 1.0 1

2 1.71 80.79 43 1.89368 1,1

3 1.71 54.19 43 2.92322 1,1,1

4 1.71 40.62 43 3.76637 1,1,1,1

(36x36) 10-5
1 1.0 4924.03 581 1.0 1

2 1.0 2487.52 585 1.97949 1,1

3 1.0 1660.75 585 2.96494 1,1,1

1 1.79 497.56 59 1.0 1

2 1.79 258.55 61 1.92440 1,1

3 1.79 173.62 60 2.86580 1,1,1

TABLE 4.9: The results of the asynchronous 4-point block
iterative method obtained from version One
using red-black ordering of blocks

u
Q)
Vl

c

w
~
f-

1100

1000

900

800

700

600

500

400

300

200

100

306

Legend o Natural.=1.0

o ~I~p_t _
6. Red-Bla ck 1.0

6. R.d-al~!..!..E!

0+----------.----------,---------.----------,
o 2 3

NO. OF PROCESSORS

FIGURE 4.24

The timing results of version one asynchronous 4-point block iterative
method using natural & red-block ordering for mesh size 24x24

4

0..
::::>
I

0
w
W
0..
V'l

307

4

I t
1/

/ /
/ /

/ /
3 / /

/
/

/
I

I
'/

2 '/
r;

Ij
f Legend

f 0 Natural w=1.0

f 0 Natural w=~ _

b. Red-Black w-1.0

b. Red-Black ~e.t

1
0 2 3 4

NO. OF PROCESSORS

FIGURE 4.25

Speed-up results 01 version one asynchronous 4-point block iterative
method using natural and red-black ordering lormesh size 24x24

308

However, Version One of the 4-point block iterative method using

the natural ordering strategy was implemented synchronously and its

results are shown in Table 4.10. The natural ordering synchronous

implementation was programmed in the same manner as that of Version One

of the synchronous 9-point block iterative method, where each processor

synchronises itself at the end of each iteration. Therefore, each

processor will wait for the other processors to finish their iteration

and the convergence test will be carried out by one processor (the

master processor, processor 0 in the case of the NEPTUNE system).

Another iteration will be carried out by all the processors if

convergence is not achieved. Table 4.10 shows the results of the

synchronous parallel 4-point block iterative method obtained from

Version One using the natural ordering using mesh sizes (24X 24) and

(36x36) for both w=l.O and w=optimal w (w t). op

By comparing the results from both Table 4.8 and 4.10 we notice

that the time for the synchronous implementation is greater than that

of the asynchronous implementation for both w=l.O and w=w t op Also we

notice that the speed-up ratios of the asynchronous implementation is

higher than that of the synchronous implementation. This improvement

in the asynchronous implementation is due to the synchronisation

overheads at the end of each iteration in the synchronous implementation

and the usage of the most recent component values all the time in the

asynchronous strategy. Figures 4.26 and 4.27 show the timing and the

speed-up ratios results obtained from both Table 4.8 and 4.10

respectively.

309

Mesh size Time No.of Speed- Effective no .of
E p w (seconds) iter- parallel paths (NxN) up

ations used by this
processor

(24 x24) 10-5
1 1.0 1075.95 286 1.0 286

2 1.0 545.48 285 1.97248 285,285

3 1.0 366.53 285 2.93550 285,285, 285

4 1.0 274.94 284 3.91340 284,284,284,284

1 1.7 150.73 40 1.0 40

2 1.7 75.83 39 1.98774 39,39

3 1.7 50.55 39 2.98180 39,39,39

4 1.7 37.77 38 3.99073 38,38,38,38

(36 X 36) 10
-5

1 1.0 4849.44 572 1.0 572

2 1.0 2464.81 574 1.96747 574,574

3 1.0 1642.88 571 2.95179 571,571,571

1 1.79 500.06 59 1.0 59

2 1.79 251.30 58 1.98989 58,58

3 1.79 166.74 56 2.99904 56,56,56

TABLE 4.10: The results of the synchronous parallel 4-point
block iterative method obtained from Version One
using Natural ordering

u
ID
I/)

c

w
~
I-

1100

1000

900

800

700

600

500

400

300

200

~
-..............

100 -..............
'"'----

Legend
o Asyn(;h ,*=1.0

o Asynch =w0.e ..
!l Synch .. =1. 0

~ Synch w=woP.!..

----5
04-----------.-----------.-----------.----------.

o 2 3

NO. OF PROCESSORS

FIGURE 4.26

The timing results of version one asynchronous and synchronous 4-point
block iterative method using Natural ordering for mesh size 24x24

4

0....
::::)

I
o
w
W
0....
(/)

4

3

2

311

Legend
o Asynch w=1 .0

o Asynch w~e!

£::,. Synch w=1 .0

£::,. Synch w=wop~

1 ~----------m-----------,I-----------,I----------"

02 3 4

NO. OF PROCESSORS

FIGURE 4.27

Speed-up results of version one asynchronous and synchronous 4-point
block iterative method using natural ordering for mesh size 24x24

312

Parallel 4-Point Block Iterative Method (Version Two)

In Version TwO of the parallel 4-point block iterative method we

first evaluate two selected points from the 4-point block then these

two recent values are used to evaluate the remaining two points of the

block. In Version One of the Parallel 4-point block iterative method

the four points (i,j), (i,j+l), (i+l,j) and (i+l,j+l) are evaluated in

the specified order using the 9-point explicit formula as shown in

equations (4.10.7) and (4.10.8). While in Version TwO of the parallel

4-point block iterative method we first evaluate the points (i,j) and

(i+l,j+l) using the 9-point explicit formula (i.e. equations (4.10.7)

and (4.10.8» then use the most recent value of these two points to

evaluate the remaining two points (i+l,j) and (i,j+l) using the 5-point

finite difference formula as shown in Figure 4.28. From Figure 4.28,

the points labelled "1" are evaluated first using its related outer

boundary points (the points labelled with letters) using equations

(4.10.7) and (4.10.8). The other two points labelled "2" are evaluated

using its four known boundary points which include the two points

labelled "1". This means that number of arithmetical operations required

in Version TwO are less than that of Version One.

G F

H E

2 1

A
1 2 10

B C

FIGURE 4.28

313

As in Version One we decompose the problem into subsets each of

which are assigned to a parallel path and run on a single processor by

taking the number of parallel paths equal to the number of processors.

Also Version Two was implemented using a synchronously and asynchronously

strategy with natural and red-black ordering schemes for the asynchronous

implementation and a natural ordering scheme in the synchronous

implementation. The strategies and schemes were implemented in a

similar way as in Version One but with a difference in the way in which

the points within each block were evaluated. The results of Version Two

asynchronous implementation on the NEPTUNE system using natural ordering

with w=l.O and W=W (optimal w) for mesh size (24X24) are displayed opt

in Table 4.11. While Table 4.12 shows the results of the implementation

of asynchronous red-black ordering using both w=l.O and W=W with mesh opt

size (24X24).

From these two tables we can see that the asynchronous natural

ordering results are better than that of the asynchronous red-black

ordering. This is because the running time of asynchronous natural

ordering is less than that of the asynchronous red-black ordering for

both W=l.O and W=W opt Also, the speed-up of the asynchronous natural

ordering is higher than that of the asynchronous red-black ordering for

both w=l.O and W=W • Thus, the asynchronous natural ordering will be opt

chosen as best among these two strategies. Also, in both the asynchronous

natural ordering and asynchronous red-black ordering better speed-up

ratios are obtained when W=W
opt Version Two of the parallel 4-point

block iterative method was also implemented synchronously. This

implementation is the same as that of Version One, i.e. at the end of each

iteration each processor will be synchronised with the other processors

314

to ensure the most recent component values are used by all the processors.

Table 4.13 shows the results from computer runs using the synchronous

natural ordering scheme using both w=1.0 and w=wopt for mesh size (24 x24).

By comparing the results from both the synchronous natural ordering,

Table 4.13 and asynchronous natural ordering, Table 4.11 we notice

that the running times of the asynchronous scheme is less than that of

the synchronous scheme and the speed-up factors of the asynchronous

scheme is higher than that of the synchronous scheme. This is due to

the delay caused by the synchronisation times needed at the end of each

iteration in the synchronous scheme and the usage of the most recent

component values all the time in the asynchronous scheme. In this case,

we can consider the asynchronous natural ordering is better than the

synchronous natural ordering for the above reason.

Mesh Size p Time No.of Speed- Effective no .of
E W (NxN) (seconds) iter- up parallel paths

ations used by this
processor

(24x24) 10
-5 1 1.0 987.99 286 1.0 1

2 1.0 497.55 287 1.98571 1,1

3 1.0 332.45 288 2.97185 1,1,1

4 1.0 250.06 289 3.94873 1,1,1,1

1 1.51 135.25 39 1.0 1

2 1.50 67.97 38 1.98985 1,1

3 1.50 45.10 37 2.99889 1,1,1

4 l.50 34.02 37 3.97560 1,1,1,1

TABLE 4.11: The results of the asynchronous 4-point block
iterative method obtained from Version Two
using natural ordering

315

Mesh Size Time No.of Speed- Effective no.
(NxN) € P w (seconds) iter- up of parallel

ations paths used by
this processor

.

(24x24) 10-5 1 1.0 1003.17 291 1.0 1

2 1.0 505.66 293 1. 98388 1,1

3 1.0 338.04 293 2.96761 1,1,1

4 1.0 254.25 294 3.94561 1,1,1,1

1 1.50 133.83 39 1.0 1

2 1.50 68.94 40 1.94125 1,1

3 1.50 46.31 40 2.88987 1,1,1

4 1.50 33.83 39 3.95596 1,1,1,1

TABLE 4.12: The results of the asynchronous 4-point block
iterative method obtained from Version Two
using red-black ordering

Mesh Size Time No.of Speed- Effective no.
(NxN) € p w (seconds) iter- up of parallel

ations paths used by
this processor

(24x24) 10-5 1 1.0 988.320 286 1.0 286

2 1.0 500.430 285 1.974949 285,285

3 1.0 335.34 284 2.94722 284,284,284

4 1.0 252.18 283 3.91911 283,283,283,283

1 1.5 135.34 39 1.0 39

2 1.5 68.35 38 1.98010 38,38

3 1.5 45.29 37 2.98830 37,37,37

4 1.5 34.18 • 36 3.95963 36,36,36,36

TABLE 4.13: The results of the synchronous 4-point block
iterative method obtained from Version Two
using natural ordering

To compare both Version One and Two of the parallel 4-point block

iterative method, we use the results obtained from the implementation

of the natural asynchronous strategy in both versions because they give

316

the best results in each version. Now comparing the results from

Tables (4.8) and (4.11) for mesh size (24x24) we notice that the time

required by Version Two is less than that of Version One and this is due

to the way in which the points in each 4-point block are evaluated.

In Version One, each point in the 4-point block are evaluated using the

9-point explicit formula, while in Version Two, the first two points in

the 4-point block are evaluated using the 9-point explicit formula and

the remaining two points are evaluated using the 5-point finite

difference formula, which means, less computational operations are

required in Version Two than that of Version One. Figure 4.29 shows

that the timing results of both Version One and Two of parallel 4-point

block iterative method using asynchronous natural ordering strategy

using w=l.O and w=w with mesh size (24 X24).
opt

To conclude from Version One and Two of the parallel 4-point block

iterative method, we generally can say that in each version where the

timing results are concerned it does not matter whether the algorithm

is synchronously or asynchronously implemented. Because in both versions

we decompose the problem into almost equal subsets and assign each one

to different processors, this means that the amount of work carried out

by each processor to evaluate any component is approximately the same,

i.e. the complexity of evaluating any component by any processor is the

same.

In our implementations of the parallel 4-point block iterative

methods we decompose the problem into equal subsets and each subset is

assigned to a parallel path which runs on a single processor, this means

that the same amount of work will be carried out by each processor,

i.e. the complexity of evaluating any component by any processor is the

u
Q)
Vl

c

w
~
f-

317

1100 Legend
0 Version 1 w=l

1000
0 Version 1 w=w0.E!. - - - ---
!:::,. Version 2 w=l

!:::,. Version 2 w=w~ - - ----
900

800

700

600

500

400

300

200

100

0+--------.----------,---------,----------.
o 2 3

NO. OF PROCESSORS

FIGURE 4.29

The timing results of asynchronous natural ordering in both version one
and two of parollel 4-point block iterative method for mesh size 24x24

4

318

same. To update a component in any block of the four points, its

computational complexity (number of arithmetical operations) is equal

to (3 multiplications (M) + 11 additions (A)), therefore for mesh size

(NXN) there are «3M + llA).N) operations for each line in each subset.

Thus for P parallel paths and N =N/P lines in each subset, the total
r

number of operations carried out by each processor is equal to

T=«3M+IIA) .N.N). Besides the computational time T there are some r

delay times due to the overheads incurred by the system which may degrade

the algorithm's performance. These overheads are the generation of the

parallel paths and the synchronisation at the end of each iteration

cycle. These overheads may become Significant, for example, if we

consider the implementation of the synchronous and asynchronous 4-

point block Version One natural ordering on the NEPTUNE system using

four processors for w=l.O and a mesh size (24x24). In the asynchronous

algorithm the problem converges after 286 iterations using a total of

four parallel paths, while in the synchronous algorithm the problem

converges after 286 iterations using a total of 574 parallel paths,

because we need a synchronisation after each iteration. Therefore, it

is clear that the amount of overheads especially the synchronisation

overhead in our case may affect the performance of an algorithm. Hence,

for this reason, we can say that the use of the asynchronous strategy

for the parallel 4-point block iterative method is better suited for

MIMD computers.

Now we compare the results obtained from the implementation of both

the parallel 4-point and 9-point block iterative methods on the NEPTUNE

system. In all the implemented strategies (natural and red-black) and

versions (Version One and Two) using the synchronous and asynchronous

319

schemes we have, for w;l.O the timing results for the parallel 9-point

block implementation are less than that of the parallel 4-point

iterative method. While for w~ (optimal w) we have the timing opt

results for the parallel 4-point block iterative method is less than

that of the parallel 9-point block iterative method. However, the

number of iterations needed for the problem to converge using the parallel

9-point block iterative method is less than that needed for the parallel

4-point block iterative method for both w;l.O and w;w and the speed-
opt

up ratios in both methods are almost the same.

The above argument can be shown for example, for the synchronous

natural ordering using Version Two, mesh size (24 X 24) , the number of

parallel paths is equal to one for both w;l.O and w;w
opt For the

parallel 9-point and 4-point block iterative methods the total time can

be calculated from both the total computational operations (equations

(4.10.10) and (4.11.28)) and the number of iterations carried out by

each parallel path (Tables (4.7) and (4.13)). Thus, using the parallel

9-point block iterative method with w;l.O, and N ;N/P, the total
r

38 59
computational operations is equal to «~ + 'lA) .N.N

r
.20l) and by

substituting the timing for the multiplication operation (M) and addition

operation (A) for the NEPTUNE system we get the total timing is equal to

(1377676.11 N.N)~secs. While for the parallel 4-point block iterative
r

method with w;l.O, the total computational operations is equal to

5 11 «zM + :fA).N.Nr ·286) and by replacing the operational timing for M and

A, we find that the total timing for the parallel 4-point iterative

method is equal to (14583l4.N.N)~sec. By comparing these two total
r

timings it is clear that the total time in the case of parallel 9-point

iterative method is less than that of parallel 4-point block iterative

method using w;l.O.

NOW by taking w=optimal value (w t)' we find that the total op

320

timing using the parallel 9-point block is equal to 38 59 «""gM + 9"') .N .N
r

.32)

and for that of the parallel 4-point block is equal 5 11
to «2M+'fA).N .Nr · 39) •

By replacing the values of M and A in both cases we get the total timing

for the parallel 9-point block iterative method equal to (219331.52 N.Nr)

~secs, while for the parallel 4-point block iterative method is equal

to (198861 N.N)~sec. Also by comparing these two totals we find that
r

the total timing results in the case of the parallel 4-point block

iterative method is less than that of the parallel 9-point block

iterative method. So, it is clear that the results obtained in our

calculations are generally coincident with those obtained experimentally.

Besides the computational operations time calculated above there is an

extra overhead time which we do not include in our calculation and will

be discussed later.

The timing results of both the asynchronous Version One and Two

methods using both the parallel 9-point block and parallel 4-point block

iterative method with w=l.O, w=w and mesh size (24x24) are shown in
opt

Figure (4.30). The total number of arithmetical operations required

for the solution of the model problem are shown in Table 4.14a,b,c,d,

which are calculated from combining the total number of computational

operations given in equations (4.10.9), (4.10.10), (4.11.22) and (4.11.28)

with the number of iterations obtained from the experimental results

shown in Tables (4.2), (4.3), (4.4), (4.5), (4.6), (4.7), (4.8), (4.9),

(4.10), (4.11), (4.12) and (4.13). In Table (4.4), K=N.N , where N
r

represents the number of points in the mesh to be solved, N =N/P is
r

the number of lines in each process and all the figures are taken to

the nearest integer.

()
QJ
VI

c

w
~
f-

1100

1000

900

800

700

600

500

400

300

200

100

32 1

Legend
o " -Point VI w=1

o "-Point VI ~P-.!

~ "-Point V2 w=1

~ "-Point V2 w=woe.t

o 9-Po inl VI w=1

o 9-Po int VI ~p-.!

'V 9-Point V2 w=1

'V 9-Point V2 w=w0e!

OT----------,----------,---------,----------,
o 2 3

NO. OF PROCESSORS

FIGURE 4.30

The timing results of natural asynchranous version one and !wo using parallel
9-point and 4-point block iterative method using mesh size 24x24

4

Mesh Size
p

(NXN) w

(24 x24) 1 1.0

2 1.0

4 1.0

1 w
opt

2 w
opt

4 w
opt

K=N*N, N =N/P
r r

Mesh Size
P

(NXN)
w

(24 x24) 1 1.0

2 1.0

4 1.0

1 w
opt

2 w opt
4 w

opt

K=N.N, N =N/P
r r

Asynch • 9-po int Asynch.9-point
Natural Version 1 Red-Black Version

M A M A

1318 K 1898 K 1337 K 1927 K

1331 K 1917 K 1344 K 1936 K

1344 K 1936 K 1364 K 1964 K

210 K 302 K 223 K 321 K

210 K 302 K 229 K 331 K

210 K 302 K 229 K 331 K

FIGURE 4.14(a)

Asynch.9-point Asynch.9-point
Natural Version 2 Red-Black Version

M A M A

849 K 1318 K 861 K 1337 K

861 K 1337 K 874 K 1357 K

866 K 1344 K 878 K 1364 K

135 K 210 K 144 K 223 K

135 K 210 K 148 K 229 K

135 K 210 K 148 K 229 K

FIGURE 4.14 (b)

322

Synch.9-point
1 Natural Version 1

M A

1318 K 1898 K

1311 K 1889 K

1305 K 1879 K

210 K 302 K

203 K 293 K

197 K 283 K

Synch .9 -po int
2 Natural Version 2

M A

849 K 1318 K

849 K 1318 K

836 K 1298 K

. 135 K 210 K

135 K 210 K

135 K 210 K

323

Mesh Size P tU
Asynch.4-point Asynch.4-point Synch .4-point

(NXN) Natural Version 1 Red-Black Version 1 Natural Version 1

M A M A M A

(24X24) 1 1.0 858 K 1859 K 870 K 1885 K 858 K 1859 K

2 1.0 864 K 1872 K 879 K 1905 K 855 K 1853 K

3 1.0 867 K 1879 K 879 K 1905 K 855 K 1853 K

4 1.0 867 K 1879 K 882 K 1911 K 852 K 1846 K

1 tU opt
120 K 260 K 123 K 267 K 120 K 260 K

2 tU opt
117 K 254 K 129 K 280 K 117 K 254 K

3 tU opt
117 K 254 K 129 K 280 K 117 K 254 K

4 tU opt
117 K 254 K 129 K 280 K 114 K 247 K

K=N*N I
r

N =N/P
r

FIGURE 4.14(c)

Mesh Size P Asynch.4-point Asynch.4-point Synch.4-point
(NXN) tU Natural Version 2 Red-Black Version 2 Natural Version 2

M A M A M A

(24X24) 1 1.0 715 K 1573 K 728 K 1601 K 715 K 1573 K

2 1.0 718 K 1579 K 733 K 1612 K 713K 1568 K

3 1.0 720K 1584 K 733 K 1612 K 710 K 1562 K

4 1.0 723 K 1590 K 735 K 1617 K 708 K 1557 K

1 tU opt
98 K 215 K 98 K 215 K 98 K 215 K

2 tU opt
95 K 209 K 100 K 220 K 95 K 209 K

3 tU opt
93 K 204 K 100 K 220 K 93 K 204 K

4 tU
opt

93 K 204 K 98 K 215 K 90 K 198 K

K=N*N , N =N/P r r

FIGURE 4.14 (d)

---~

324

Now, we discuss further the analysis of the parallel 9-point and

parallel 4-point block iterative methods using the experimental results

obtained when the algorithms were run on the NEPTUNE system and the

resource timings of the NEPTUNE system are shown in Table (4.15). The

principle behind the analysis of the two parallel block iterative

methods is that parallel computing involves the sharing of some system

resources which have a limited availability. Parallelism can often be

introduced into a program or problem in a number of different demands

for parallel resources. In reality parallel computers require the

resources:

(i) Multiple processors,

(ii) COmmunication for data sharing,

(iii) Synchronisation to allow unique data modification.

Three factors that affect the performance of parallel programs and are

associated with the above three features of systems:

(a) The degree of parallelism in the program,

(b) Accesses to shared data space impose an overhead,

(c) Accesses to the synchronisation tool and their protected

data structures impose an overhead.

Thus, since parallel programs always require more than one processor,

there has to be some communication between the processors even if this

is only as much as that required to start processing in the first

instance. Parallel programs demand shared resources such as processors,

memory block or a shared data structure and all resources demands by

the algorithm directly affect the potential performance of the algorithm.

The source of overheads on an asynchronous type machine can be classified

into two types known as statia and aynamia overheads [Barlow et al (1982)],

325

1. The statio overheads due to the design of software and hardware.

This covers the subdivision of the task, allocation of the tasks to

the processors, checking by hardware and software for contention on

accesses to the database, checking for correct sequencing.

2. The dynamio overheads due to the interference between two or more

subtasks running on different processors and inevitably causing

one or more of the processors to wait.

The performance of a multiprocessor can be expressed as a speed-

up factor (S),
p

S
P

T (l)
= = T(p}

time taken on a single processor
time taken on a P processor system

or in terms of the time wasted (W),

W = P * T(p} - T(l} ,

where the wasted time is equal to the sum of times taken by the P

processors to complete their subtasks less the time taken on a uni-

processor. The time wasted must be equal to the sum of the static and

dynamic overheads. It is obvious that either all processors complete

processing together or some processors take longer than others thus,

it follows that

T(} > T(l}+W
p, P

PT(l}
Sp ~ T(l}+W

Maximum speed-up factors (S) can be obtained by assuming that the
p

dynamic overheads are zero, and this is true only if every request for

a resource occurs when that resource is not being used. This is clearly

impossible if the demands for a resource are greater than the supply of

that resource. The three resources which are required for parallel

computing are prooessors, shared memory and synohronisation. The NEPTUNE

326

system has the ability to provide these resources,

(i) Processors

The software that controls the scheduling of processors to

processes counts the number of processes run by each processor.

This software also counts any time that a processor is idle

because there are no ready processes to run.

(ii) Shared Memory

This can be measured by counting the number of accesses to a

shared data by going through the user's program.

(iii) Synchronisation

The cost of mutual exclusion is significant because a high level

software technique has to be used to overcome inadequacies in the

hardware.

In order to carry out the performance analysis of all the implemented

algorithms discussed in this section we need to know the resource times

of the NEPTUNE system, which is obtained from Barlow et al [1981J and

Woodward, et al [1983J and illustrated in Table (4.15). In our analysis

of the parallel 9-point block and parallel 4-point block iterative

methods we will concentrate on the natural ordering of both methods

Version One and Two with mesh size (24x24) , w=l.O and w=w t
op When the

NEPTUNE system is used the parallel control accesS overheads and the

shared data access overheads will be calculated using the following

commands:

(i) The XPFCLS(TS): this command generates a load module with no

shared data assigned into the shared memory and no parallel path

allocation. Therefore, all the parallel programming constructs

will be treated as ordinary Fortran constructs.

327

(ii) The XPFCLN(T
N

): this command only loads the shared data into the

shared memory. Thus, by comparing the result of this command with

the results obtained from (i), we obtain the shared data access

overheads.

(iii) The XPFCL(Tp): this command generates the load module as in (ii)

in addition to the parallel path allocation. The comparison of

these results with that of (ii) yields the parallel control

overheads.

Processor 0 1 2 3 Resource

Relative Speeds 1.000 1.0l4 1.006 1.019

Memory access times

Local* 0.98 0.95 0.92 0.92

Shared* (0.98+0.75) (0.95+0.75) (0.92+0.76) (0.92+0.76)

Mutual exclusion
mechanism* ~800 ~800 -800 ~800

Mutual exclusion
blocked* ~400 ~400 -400 ~400

Parallel path
overhead* ~1200 ~1200 ~1200 ~1200

Floating point* -720 -720 -720 -720

Integer* ~20 -20 ~20 -20

* times in microseconds.

TABLE 4.15: The resources time on the NEPTUNE system

The resource demands required by Version One and Two of the parallel

9-point and parallel 4-point block iterative methods using the synchronous

and asynchronous strategy with natural ordering are shown in Table 4.16.

Actually Table 4.16 gives the mean rate of access to shared data and

parallel paths. It gives the estimates of the potential speed-up from

using P processors, where N represents the number of rows in the mesh to

328

be solved. While, Table 4.17 illustrates the results obtained when

the algorithms were run on the NEPTUNE system using mesh size (24x24) ,

where the parallel control overhead (PCO) is calculated using the

formula PCO=(Tp-TN)/Tp*lOO, and shared data overhead (SDO) is calculated

using the formula SDO=(TN-TS)/Tp*lOO. The term "flops" in these tables

represents a floating point operation.

Now from inspection of the parallel 9-point and parallel 4-point

iterative methods we see that a linear speed-up has been achieved and

2
up to the number (N/3) processors can be employed as an upper limit

in the case of the parallel 9-point block iterative method and (N/2)2

processors in the case of the parallel 4-point block iterative method.

As an example, in the case of the parallel 9-point asynchronous Version

One using natural ordering of the points, the algorithm has made 42

accesses to the shared data per 154 floating point operations. From the

results of Table 4.15 the shared data access timing is~O. 75 ~secs

and ~ 720 ~secs for a floating point operation. _ Therefore, the static

shared data access overheads in this algorithm is obtained as follows:

1 * 0.75
720 * 100 = 0.028% .

Further the parallel path access loss is equal to 0.01% since the

program made 1 access per (16*N*N) flops and the parallel path mechanism
r

requires -1200 microseconds (see Table 4.15). From these two tables it

can be concluded that the experimental results obtained from the NEPTUNE

system and the predicted results obtained from accesses to the shared

data or a parallel path are in agreement. Also, from the figures in

Tables 4.16 and 4.17 it is clear that the losses using the parallel

9-point block iterative method are less than that of using the parallel

329

4-point block iterative method. This is mainly because the number of

blocks in the parallel 4-point block iterative method is greater than

that in the parallel 9-point block iterative method and the number of

iterations needed for the problem to converge using the parallel 4-pcint

block iteration method is greater than that using the parallel 9-point

block iterative method. Hence, more losses will occur when using the

parallel 4-pcint block iterative methods.

Processors (P) Shared Data Parallel

Program Overhead
Numbers Speed-up Access Rate alOOunt Access Rate

9-point Asynchronous
I

Version One, Natural P~N/3 O(P) 42: 154 flops 0.028% 1: U6*N*N)
Ordering flops

r

9-point Synchronous
Version One, Natural P~N/3 O(p) 42:154 flops 0.028% 1: (16*N*N)
Ordering flops r

9-point Asynchronous
Version Two, Natural P~N/3 O(P) 34: 129 flops 0.028% 1: (10. 78*N*
Ordering N flops)

r

9-point Synchronous
Version Two, Natural P~N/3 O(P) 34: 129 flops 0.028% 1: (10.78*N*
Ordering N flops)

r
4-point Asynchronous
Version One, Natural P~N/2 o (p) 16:50 flops 0.033% 1: (9 .5*N*N)
Ordering flops

r

4-point Synchronous
Version One, Natural P~N/2 O(P) 16:50 flops 0.033% 1: (9 .5*N*N)
Ordering flops

r

4-point Asynchronous
Version Two, Natural P~N/2 O(P) 16:44 flops 0.038% 1: (8*N*N)
Ordering flops

r

4-point Synchronous
Version Two, Natural P~N/2 O(p) 16:44 flops 0.038% 1: (8*N*N)
Ordering flops r

TABLE 4.16: Resource demands of the parallel 9-point and parallel 4-point methods

Path

Overhead
annunt

0.018%

0.018%

0.027%

0.027%

0.031%

0.031%

0.036%

0.036%

w
w
o

Program W Speed-up Shared Data Parallel Control
Overhead (SDO) OVerhead (peO)

2 3 4

9-point Asynchronous 1.0 1.97826 - 3.94090 .028% .019%
Version One W 1.99154 - 3.99252 .031% .019% opt
9-point Synchronous 1.0 1.97520 - 3.93692 .030% .019%
Version One W 1.98813 - 3.93152 .031% .019%

opt
9 point Asynchronous 1.0 1.98204 - 3.96592 .O~ 'J% .028%
Version Two W

opt
1.97627 - 3.95138 .030% .030%

9-point Synchronous 1.0 1.96687 - 3.95216 .O-;!-g% .028%
Version Two W

opt
1. 94355 - 3.94975 .029% .029%

4-point Asynchronous 1.0 1.98707 2.96230 3.96828 .034% .034%
Version One W

opt 1.99417 2.98333 3.99575 .033% .033%

4-po~nt Syncnronous 1.0 1.9/~48 2.93550 3.91340 .033% .034%
Version One W 1.98774

opt
2.98180 3.99073 .033% .033%

4-point Asynchronous 1.0 1.98571 2.97185 3.94873 .040% .034%
Version Two Wopt 1.98985 2.99889 3.97560 .037% .037%

4-point Synchronous 1.0 1.97494 2.94722 3.91911 .040% .038%
Version Two W opt 1.98010 2.98830 3.95963 .037% .044%

TABLE 4.17: Performance measurements of algorithms on the NEPTUNE system for mesh 'size
(24x24) using natural ordering strategy

w
w

332

4.13 CONCLUSIONS

From the basic concept of the 9-point explicit block iterative

method the parallel 9-point block iterative method was developed and

implemented on the NEPTUNE system. The implementation of the parallel

9-point and parallel 4-point block iterative methods were programmed

using different versions and strategies such as synchronous and

asynchronous together with natural or red-black ordering. It is clear

that the implementation of different strategies present different

timing results and losses when they are run on the NEPTUNE system. In

the two implemented versions of both parallel 9-point and· parallel 4-

point block iterative method, Version Two gives better timing results

in all the programmed strategies, and this is due to the way in which

each block within each subset is evaluated.

The asynchronous natural ordering strategy always gives better

results than that using other strategies. For example, if the results

obtained from that strategy are compared with the corresponding results

obtained from the synchronous natural ordering strategy, the asynchronous

strategy gives better results than that of the synchronous version due

to the synchronisation overheads needed at the end of each iteration.

Also, in the asynchronous implementation better results are obtained

because the processors were almost always fully occupied and busy doing

work most of the time.

In general, all the algorithms presented in this chapter have

predicted static parallel path access overheads and shared data access

overheads which agree with the overheads obtained when these algorithms

were run on the NEPTUNE system.

333

It can be seen from the experimental results that the shared

data access overhead and the parallel control access overhead in the

case of the parallel 9-point block iterative methods are less than that

of the parallel 4-point block iterative method. Also, the parallel

9-point block iterative methods take less time than its corresponding

parallel 4-point block iterative method when w=l.O, while when W=W t'
op

in general the two parallel methods take the same time. Therefore,

the parallel 9-point block iterative method was chosen as best amongst

the two parallel block methods.

Finally to conclude this chapter it can be seen that these two

parallel block methods are suited for the parallel implementation on

the MIMD computer and this is due to the almost linear speed-ups

obtained from their implementations.

CHAPTER FIVE

THE PARALLEL ALTERNATING GROUP EXPLICIT

(A,G ,Eo) METHOD

334

335

5 .1 E!!.R00UCTION.

Point (Explicit) methods have natural extensions to block iterative

processes in which groups of components of x(k) are modified simultaneously

(see Chapter 4). This will involve the simultaneous solution of a system

of 1J.near equations. Consequently, individual components are implicitly

defined in terms of other components of the same group or block. Such

a method is· called an impliait iterative or bZoak iterative method.

The redefinition of an explicit method so that it becomes implicit often
./

leads to an increase in the convergence rate at the cost of some

complicati?" in the computational algorithm. The blocks may be a single

row of pointn, two !oWS, etq. A better convergence rate can be obtained

by evaluatinG the whol~ line, as an example the line S.O.R. gives an
. , ~;..

improvement by a factor of 1:2 over the corresponding optimum S.O.R. by

points (Parter [1961J).

In this chapter we discuss a class of methods for solving a two-

point boundary value problem. These methods are the AZternating Direction

Impliait (A.O;I.) ~Iethod and the AZternating Group Explicit (A.G.E.)

Method.

Two parallel strategi.es of the A.G.E. method were developed and

implemented on 1.he NEPTUNB system. These include synchronous and

asynchronous ve%·sions of the algorithms. The parallel A.G.E. method was

used to solve a .one dimensional linear and non-l.inear boundary value

problem. The results from these i.mplementations were compared as well

as the performance analysis of the best method presented. Also, the

timing results from the parallel A.G.E. method implementation were

compared with the parallel Jacobi, Gauss-Seidel and S.O.R. methods.

Consider the differential equation,

336

(5.1.1)

subject to the two-point boundary conditions,

U (a) = Cl , U (b) = e . (5.1.2)

Here Cl and e are given real constants, and f(x) and q(x) are given

real continuous functions in a~~b, with, q(x)~O. For Simplicity, we

place a uniform mesh of size h, where,

h = (b-a)/(N+l) , (5.1.3)

on the interval a~x~b, and we denote the mesh points of the discrete

problem by,

x. = a+ih, O~i~N+l,
~

as illustrated in the Figure 5.1,

FIGURE 5.1

(5.1.4)

The finite difference method (Chapter 4) is used to derive a finite

difference approximation to (5.1.1) by using a finite Taylor's series

expansion of the solution U(x) to (5.1.1). Let us assume that the

4 2 2 (unique) solution U(x) of (5.1.1) is of class C in a~x~b, i.e. d u/dx

exists and is continuous in this interval. Denoting U(X
i

) by U
i

' the

finite Taylor

from which it follows that,

2Ui -Ui _l -Ui +l

h
2

Therefore, by substitution in (5.1.1) gives,

h4 d 4
+ --- ± 41 2

dx
(5.1.5)

(5.1.6)

with a local truncation

d
4

U
i --+

dx4

337

(5.1.7)

error of

where u. denotes the function satisfying the difference equation at the
l.

mesh point x.=a+ih.
l.

Since uo=a and UN+l=S, then we have N equations for the N unknowns

ui ' i=1,2, ••• ,N. In the matrix notation, (5.1.7) can be written in the

form,

AE, = .e. ' (5.1.8)

where A is a real (NXN) matrix, u is the discrete approximation vector

to the solution U(x) of (5.1.1)-(5.1.2) and b is a column vector given

by,

-1
...

"
A =

....
... ...

....
"

...
....

(5.1. 9a)

,

... -1

ul l fl -ta/h
21

u2 , f2
u = I and b = fi I (5.1.9b)

I I
I

u
N

_
l

f
N

_
l

uN f N+S/h2

The basic properties of the matrix A are real, symmetric and tridiagonal

and since q(x)~O then it is also diagonally dominant with positive

diagonal entries. From the directed graph of A it can be seen that

338

since it is strongly connected implies that A is also irreducible.

The A.D.!. and A.G.E. methods for solving the system (5.1.8) which

is based on splitting the matrix A of (S.1.9a) into (NxN) matrices as

shown in the next two sections.

339

5.2 ALTERNATING DIRECTION IMPLICIT (A.D.I.) METHODS

The S.O.R. (Chapter 4) method by lines proceeds by taking all the

lines in the same direction. Thus in Figure (5.2), for example, we

first solve for the values at 1,2,3, then for 4,5,6, and finally for

7,8,9. Then we begin again with 1,2,3, and so forth. Convergence is

often improved by following the first sequence with a second in the

column direction. Thus, a complete iteration consists of first a half

iteration in the row direction followed by a second half iteration in

the column direction. Such methods are aptly designated alternating

direation impLiait methods or A.D.I. methods for short •.

7 8 9

4 5 6

1 2 3

FIGURE 5.2

Varga [1962] shows that, the first A.D.I. methods were developed

by Peaceman and Rachford [1955] for solving the system

(5.2.1)

where the (nxn) matrix A is an irreducible Stieltjes matrix, i.e. A

is a real symmetric and positive irreducible matrix with non-positive

off-diagonal entries. Moreover, that the matrix A has at most five non

zero entries in any of its rows. Matrix A is non-singular and can be

represented as the sum of three (nXn) matrices,

, . ~'.

340

A=H+V+1:. (5.2.2)

The matrices.H,V and 1: are all real symmetric (nxn) matrices. The

matrix 1: is a non-negative diagonal matrix, and is thus non-negative

definite. The matrices H and V are associated with the finite difference

approximation to the partial differential equation in the x and y

directions respectively and each have no more than three non-zero

entries per row, and both H and V are diagonally dominant matrices with

positive diagonal entries and non-positive off-diagonal entries, and are

thus Stieltjes matrices.

By using (5.2.2) we can write the matrix equation (5.2.1) as a

pair of matrix equations,

(H+!E+rI).'! = £-(V+!E-rI).'! '

(v+!1::+rI).'! = £-(H+!L-rI).'! '

for any positive scalar r. If we let,

Hl = H+!1:, Vl = V+!l:

} (5.2.3)

(5.2.4)

then the.Peaoeman-Raohford aZternating-direotion impZioit method is

defined by

(k+!) (k)
(Hl+rk+1I).'! = £-(vl-rk+1I).'! '

(k+l) (k+!)
(vl+rk+1I).'! = £-(Hl-rk+lI).'! ' I (5.2.5)

where the r's are positive aooeZeration parameters chosen to make the

process converge more ;apidlY, and .'!(O) is an arbitrary initial vector

approximation to the unique solution of (5.2.1).

Since the matrices (Hl+rk+1I) and (Vl+rk+1I) are, after suitable

permutations, tridiagonal nonsingular matrices, the above implicit process

can be directly carried out by the simple algorithm based on the Gaussian

elimination. In other words, this iterative method can be thought of as

•

341

a line method with alternating directions. Indeed, the name aZternating-

direation method is derived from the observation that for the first

equation (5.2.5) we solve first along horizontal mesh lines, and then

for the second equation of (5.2.5), we solve along vertical mesh lines.

The vector u(k+t) is treated as an auxiliary vector which is discarded
I

(k+l)
as soon as it has been used in the calculation of u •

The two equations of (5.2.5) are now combined to give,

where,

and

T
r

(k+l)
u

(k)
u + g (b) ,

rk+l -
k~O ,

-1 -1
gr(!2.) = (Vl+rI) {I-(Hl-rI)(Hl+rI) }!2..

It will be noticed that (5.2.6) is of the same form as (5.2.3).

(5.2.6)

(5.2.7a)

(5.2.7b)

For the convergence of the A.D.I. method Varga [1962] states the

following theorem.

Theorem 5.1

Let Hl and Vl be (nxn) symmetric non-negative definite matrices,

where at least one of the matrices Hl and Vl is positive definite.

Then, for any r>O, the Peaceman-Rachford matrix T of (5.2.7a) is
r

convergent.

Proof:

See Varga [1962], page 123.

342

5.3 THE ALTERNATING GROUP EXPLICIT (A.G.E.) METHOD

Evans (1985) presents a class of methods for solving (5.1.8) which

is based on the "splitting" of the matrix A into the sum of three matrices,

(5.3.1)

where E is a non-negative diagonal matrix and where Gl ,G2 and E satisfy

the following conditions:

(i) Gl +6E+rI and G2+6E+rI are non-singular for any e~o, r>O.

(ii) for any vector ~l and v2 and for any constants e~o and r>O

it is "convenient" to solve· the systems explicitly, Le.,

and

for !l and!2 respectively.

We shall be concerned here with the situation where G
l

and G
2

are

either small 2x2 block systems or can be made so by a suitable

permutation of their rows and corresponding columns. This procedure is

"convenient" in the sense that the work required is much less than

would be required to solve the original system (5.1.8) directly.

From the above discussion, we have G
l

, G
2 and E given by,

-1 I I I 1 I I I I , 1 I t -I -t _1-

-= _11 1 I j1 -11
- -I- -- I

11
--,-

1 , -1 1 1 I -1 11

I 1 -T 1'- -- I- -.! -
G = -1 1 O.!...

,
0

I
l- ' G2 = 1 I

,
1 - -1- , 1 , , , I

I , + _1- I
1 , I I 11- -li
L 10 _'L I

10 I r I I
1 11 -1 I 1-1 1 I

I I -1 -. -1- _I~

1
1-1 1 1

I 1
I

if N is even and

G =
1

· --

1 I I I

-r--t----
1 -1

_1- _

I 1
-1 11 -,- ""',-

1
I,

1
-l

e
1 '

1 10" I
1 1 " 1

-,- 1-
1 I

I

1 1 -1

1-1 1
1

343

1 -1 I 1
r I I

-1 1 1 I I
- - :..J - - 1- - r - -I -

11 -11 1 I
1 1 0 I -1 11 I

- 1- - f -=-, -11 - - r
-l---~--1

I :0 11 -1 1
1 1 1-1 11

-1- -t -...J--.,
1 1 : 1

(5.3.2)

if n is odd, and,

fl
q2 e

l: = h2

l
"

" " 0 qN-l

q

Let us write (5.1.B) in the form,

and let us consider two equivalent forms,

and

(Gl+el:+rl)!! = !?-(G2+(l~)l:-rl)!! '

(G2+el:+r'I)!! = !?-(Gl+(l~)l:-r'l)!!

(5.3.3)

(5.3.4)

(5.3.5)

Analogous to the Peaceman-Rachford A.D.l. method [1955] one selects

(k+i) d (k+l) positive iteration parameters, r and r' and determines u an u

respectively by,

(Gl+el:+rl)!!(k+i) = !?-(G2+(1~)l:-rl)!!(k) , (5.3.6)

and (5.3.7)
o

where u is an arbitrary initial vector approximation of the unique

solution of (5.1.B).

For Simplicity, we shall consider here the special case where,

" e = e = i, r=r' , (5.3.B)

344

and we let,
- -Gl = Gl + iE, G2 = G

2
+iE (5.3.9)

Evidently Gl and G2 satisfy the following conditions:

(i) Gl+rI and G2+rI are non-singular for any r>O,

(ii) for any vectors ~l and ~2 and for any r>O it is easy to solve

the (2x2) systems explicitly,

(Gl+rI).ll = ~l' (G2 +rI).l2 = ~2 •

Therefore (5.3.3) becomes,

«(;1 +(2).':! = .l? '

and (5.3.4)-(5.3.5) becomes respectively,

(G
l

+rI).':! (k+!)

(G
2

+rI).':! (k+l)

- (k)
= .l?-(G2-rI).':! ,

= b-(G _rI)u(k+i)
- 1 -

If we combine the above two equations into the form,

u(k+l) = T u(k) + b ,
r- -r

where,
- -1 - - -1

~ = (G2+rI) {I-(Gl-rI) (Gl+rI) }.l?

and - -1 - - -1
Tr = (G2+rI) (Gl-rI) (Gl+rI) (G2-rI)

The matrix Tr is called the A.G.E. iteration matrix.

(5.3.10)

(5.3.11)

(5.3.12)

(5.3.13)

(5.3.14)

(5.3.15)

(5.3.16)

To analyse the convergence of the A.G.E. method, we assume that U

is the true solution of (5.1.8) then,

- -(G1+G2).!:!. = .l? ' (5.3.17)

and (G1+rI).!:!. = .l?-(G2-rI).!:!. (5.3.18)

If e(k)=u(k)_u is the error vector associated with the vector - - -
(k)

iterate u • Thus from (5.3.12) and (5.3.18) we have,

Similarly,

(G
1

+rI)!:.(k+!) = -(G
2

-rI)!:.(k)

= -(G -rIle (k+i)
1 -

(5.3.19)

(5.3.20)

and hence,
e(k+1) = T e(k) ,

r-

where T is given in (5.3.16).
r

345

(5.3.21)

To show the convergence properties of T , we state the following
r

theorem due to Evans [1985).

Theorem 5.2

If ~ and G2 are real positive definite matrices and if r>O then

Proof:

See Evans [1985).

Let us now assume that G1 and G2 are real positive definite matrices

and that the eigenva1ues A of G1 and ~ of G
2

lie in the ranges,

o ~ a ~ A ~ b, 0 ~ a ~ U. ~ b.

Evidently, if r>O we have,

= (max
a~A~b

= [max
a~y~b 1

r::E..1 2), =~(a,b;r) . y+r

Since (y-r)/(y+r) is an increasing function of y we have,

max
a~y~b

When r=/ab, then

I ::~I =

[r::E..1
[y+r

Ib-r[
b+r[

l
a-r[[b-rl

,= max(a+r['[b+r) •

=

Moreover, if O<r</ab we have,

=

and if /ab<r, then,

2.£ (rab-r)

(b+r) (Ib+ra)
> 0 ,

(5.3.22)

(5.3.23)

(5.3.24)

(5.3.25)

(5.3.26)

Thus

I a-rl _
I a+rl = 2/b (r-/ab)

(r+a) cIb+la)
> 0 •

~a,b:r) is minimized when

(Trab) ~ 4<a,b:rab)

r=...ab and

= (fbFa)2
fbra

346

(5.3.27)

(5.3.28)

Therefore, r~ is optimum in the sense that the bound $ (a,b:r) for

P (T) is minimized.
r

The convergence of the A.G.E. method is frequently very rapid if

one allows r to vary cyclically from iteration to iteration. This rapid

convergence can be proved to hold for an appropriate choice of the

iteration parameters in the commutative case. Following Birkoff, Varga

and Young [1962], we say that the commutative case holds if the matrices

Gl ,G2 and E of (5.3.3) satisfy the following conditions:

(i) G
I
G2=G2G

l
,

(ii) E=O"I, where E is a non-negative constant,

(5.3.29)

(5.3.30)

(iii) Gl and G2 are similar to non-negative diagonal matrices

(5.3.31)

If these assumptions hold then the matrices,

Gl = Gl+!E, G2 = G2+!E , satisfy the conditions,

(5.3.32)

- -(ii) Gl and G2 are similar to non-negative diagonal matrices

(5.3.33)

The importance of the above conditions depends on the following theorem

of Frobenius, which we state without proof.

Theorem 5.3

If Gl and G2 are similar to diagonal matrices and if ~ G2 =G
2

G
l

'

then there exists a non-singular matrix W such that

(5.3.34)

where Dl and D2 are diagonal matrices.

347

It follows from (5.3.22) and (5.3.33) that there exists a set of

linearly independent vectors ~1'~2' ••• '~' which corresponds to the

columns of W in Theorem (5.3), such that each v. is an eigenvector both
-~

of Gl and of G2 • Now, for any column v of W we have,

(5.3.35)

- -for some eigenvalues A and ~ of G
l

and G
2

respectively. Evidently,

- -1 - - -1 -
Tr~ = (G2 +rI) (Gl-rI) (Gl+rI) (G2-rI)~ (5.3.36)

- -1 . -1 - -1 -1
Since (G1+rI) ~=(A+r) ~, (G2 +rI) ~=(~+r) ~ it follows that,

(A-r) (~-r)
Tv= v
r- (A+r) (~+r)

Thus v is an eigenvector of T for any r.
r

(5.3.37)

348

5 • 4 EXPF.RIM.ENTAL RESULTS OF THE PARALLEL A. G • E. METHOD

The n.G.E. method was implemented in the parallel form where two

strategies are used to solve a linear and a non-linear boundary value

problem. In the two strategies, generally the problems are solved by

decomposing it into many subsets that are assigned to the different

processors which can then be run in parallel, i.e. the sequential

decomposition is used (see Chapter 4). Also the two strategies are

programmed on the NEPTUNE system uSing both the synchronous and

asynchronous approach. The results from the implementations of these

two approaches, such as the timing needed to solve the problem, number

of iterations required, the running time overheads and the speed-up

ratios are studied and compared later.

Using the sequential decomposition technique, shared memory is

used to hold the input, the results from the first sweep and the final

output component values. These values can then be accessed by different

processes. Before the process iterates on its subset, it needs to read

all its components first, then it releases all the values of the

components for the next iteration. In the different parallel versions,

-1
different mesh sizes are evaluated, these sizes are h =25,49,73,97,121,

145 and 165. In our implementations, the accuracy value is taken to be

-6 equal to (5xlO) and the results shown in this section (such as timing,

number of iterations, •••) are an average of many runs.

The First Strategy of the Parallel A.G.E. Method

In the first strategy, the problem domain (mesh of points) is

decomposed into subsets each of which are assigned to a parallel path.

If P is the number of parallel paths and N is the size of the problem,

,

349

i.e •• the number of points in a given interval which is divisible by p.

N
then each path works on a subset of mesh points Np~' This means P

subsets are formed with each N points of the original mesh points.
p

Each processor then computes its own subsets in two sweeps. In the

first sweep. each processor evaluates its points by taking up each two

successive points at a time starting from the first point and terminates

after evaluating the last two points. While the second sweep is started

after the first sweep has been completed. In the second sweep each

processor starts its processing within its subset by evaluating the first

point then each successive two points at a time and the last point is

evaluated on its own. After the completion of both the first and second

sweep. i.e. one cycle (iteration) is completed and a convergence test

i.e. checks to ensure that the components are obtained within the

required accuracy. is carried out. As an example. given the interval

shown in Figure (5.1) and by taking P=l. one processor will be needed

(number of parallel paths equal number of processors) and starts

evaluating the mesh points by taking a pair of points at a time and in

the following order.

(Xl ·X2). (x3 ·x4)· (xS·x6) ••••• (xN_I'x
N

)

and this is denoted as the first sweep. A second sweep is started after

the first sweep is completed and the processor will evaluate its mesh

points in the second sweep in the following order.

(Xl)' (x2 .x3)· (x4 .xS)····. (xN_2.x
N

_l). (x
N
)·

So a single cycle (iteration) is terminated after evaluating all the

points in the given interval in both first and second sweeps.

This strategy is implemented using both synchronous and asynchronous

approaches. In the synchronous implementation approach each processor

350

evaluates its own subset in the manner discussed above and synchronises

itself after each iteration step (i.e. after both first and second

sweep). When all the processors are synchronised, the convergence test

is performed by one processor, the master processor (processor 0 in the

NEPTUNE system). If all the components of the mesh are obtained with

the required accuracy then the procedure terminates otherwise a new

iteration is needed and so on until all the components have converged.

While in the asynchronous approach the implementation strategy is

by letting each processor to run asynchronously on its own subset without

waiting for the other processors to complete their computations. In this

case each proce,~.sor iterates permanently on its subset until this subset

and the other subsets which are carried out by other processors have

converged. Thus, a flag is assigned to each processor, where the set

of all flags is in the shared memory and can be accessed by all the

processors, in order to check whether all the subsets have converged or

not. At the end of each iteration (after the completion of first and

second sweep), each processor checks to ensure whether its components

have converged. If convergence is obtained, the processor sets its flag

and tests the remaining flags to ensure that the other subsets are also

converged. If not, further iteration will be required.

The Second strategy of the Parallel A.G.E. Meth~d

As in the first strategy, the problem in this approach is also

decomposed into subsets each of which are assigned to a parallel path.

If P is the number of parallel paths, then each path works on a subset

N
of mesh points N=p, where N is the size of the problem. In the second

strategy, each processor computes its own subset in two sweeps. In the

351

first sweep, each processor within its subset evaluates all the odd

points first then followed by all the even points. In the second sweep,

the evaluation is carried out in the same manner as in the first sweep,

i.e., odd points are evaluated first and then followed by the even ones.

As an example, given the interval shown in Figure (5.1), by taking N=12

and one parallel path, in the first sweep the processor starts evaluating

the odd mesh points in the following order xl,x3,x5,X7,X9 and xll then

followed by the even points in the order of x2,x4,x6,xS,xlO and x12 •

In the second sweep, the processor first evaluates the odd points and

in the order xl,x3,x5,X7,X9 and xll then followed by the even points in

the order of x2,x4,x6,xS,xlO and x12 ' The second strategy is implemented

using both synchronous and asynchronous approaches as in the first

strategy.

The above two parallel strategies were implemented on the NEPTUNE

system to solve linear and non-linear two-point boundary value problems.

Problem I

We now consider the linear problem,

2 2
U2 = 400(Ul+cos (rrx)+2rr cos(2rrx»

subject to the boundary conditions,

The exact solution for this problem is given by,

-20 e
U

l
(x) = '::""--::<7""

-20 l+e

2 Ox _--:.1,-;;-::-e + -20 l+e

20e-20e20x

-20 l+e

20
-20 l+e

-2Ox 2
e - cos (rrx)

-2Ox
e + rrsin (2rrx) •

(5.4.1)

(5.4.2)

(5.4.3)

(5.4.4)

352

From (5.3.1) and (5.3.2), we have,

2 2
Ui = 400 (U

1
+cos (1TX)) + 21T (21TX)) • (5.4.5)

By following the finite difference procedure of Section (5.1), equation

(5.4.5) can be approximated to obtain the linear difference equation

(assuming u=u
l

) ,

ui _1-2u
i

+ui+l

h
2

Equation (5.4.6) can be simplified to the form,

(5.4.6)

2
-ui 1+(2+400h)u.-u, 1

- 1. 1.+

222
= -2h [200cos (~x.)+n cos(2nx.»), i=1,2, ... ,N.

1. 1.

The boundary conditions are replaced by the values,

u-Q u =0, o - , N+l
1

where h = --1 • N+

(5.4.7)

(5.4.8)

The linear system (5.4.7) can be represented in the matrix notation

as,
Au = b , (5.4.9)

where,

2g -1

-1 2g -1

-1 2g -1 0 , ,
A =

, , (5.4.10a)
"- ,

0
, ,

-1 2g -1

-1 2g

(5.4.lOb)

(5.4.1OC)

and (5.4.lOd)

353

where,
2 2 2

c i = -2h [20Qcos (TIX
i

) + TI cos(2TIX
i
)], i=1,2, ••• ,N. (S.4.lOe)

We now split the matrix A into the form (S.J' .1), hence from

(5.3.:) Gl and G2 have the form,

r~ ~:-:-
'g
I -1

- - - 'i

L

I
I- --1

-1, '
I

gl I
-~------ =

I', '0 , I
I " ,

1':--o ,g-l

1-1 g
I

I I ' I
L-l _ ~ I- _ 1 _ L _ __ ,I

G

L

, ,g -11

- i' J-l_ gl I 1=
,\ j" - - -1-

, I I' I 0 ,
, I \

-----r--L-'L

~
, 0 I ,g
I I I I , , ,-1

-~---i--l-~-

with

G = ~l

G , , ,

o

G

, , , ,

o

, ,
G

(5.4.11)

l
G, C , ,

c
, , ,

G

gJ

(5.4.12)

Hence by applying the A.G.E. method, u(k+t) and u(k+l) can be

determined successively by,

354

(k+!) - -1 - (k)
U = (Gl+rI) [~-(G2-rI)~ I,

(k+l) - -1 - (k+!)
U = (G2+rI) [~-(Gl-rI)~ I (5.4.13)

where r is the iteration parameter.

It is clear that (Gl+rI), (G2+rI),(G
l
-rI) and (G

2
-rI) can be

- -1 - -1
determined and (Gl+rI) , (G

2
+rI) are easily invertible, as shown

below,

a -1 I

I 1
-1 a 1 - - _1- __ _

I a -11
1

I l G

-- ~--I
I -1

1

1

1
-1-

I

'!.I
I' ,
I , 1

0 1

I
1

, 1 ,
-1-

1 a -1
1
1 -1 a

=

a I 1
-r--L--- r

I a -1 I 1

I
- -1-

-1 a I L
-1- - l 1-

I a -1 I

1
1

1-

I I I I
= _1_ + -!:.,. a+. __ 1 __ L_

1 1 I', 1 0 I
I- 1·_ L ~'.J _ _ I
[I 1 I a -1 1 J

-f--~ f ~-~o-i:

a

" G
\

o

" G

c

\ ,

" G

,
\

c

\
\ , "

G

(5.4.14)

l

\ C
\

\

\
\ ,,,

G

(5.4.15)

•

355

a -1 I 1 1 1 v

l 1 1 1 G
-1 a I

.L --I --1- - r L_
a --1 1 1

1 I v
G

I -1 a 1
- _1-

,
0 ----1--1' ,

v
1 I', 10 1 \ (G -rI)=G = = \ 1 1
L _ L ::' L _ _: __ \

\
I 10 la -1

\V I 0 G
1 I 1-1 a I
I -+ - -1- -1-

I 1 1 la -1 v

I I I 1 J I I 1-1 a
1 I I

(5.4.16)
a 1 I Il a

l
1 "t - -I-t a --iI -r

1 I 1 1 1 v

I I
G

I -1 a 1 ----L __ ----I-
I 18 -11 I 1

I 1 v

1-1 81 _o..!.: 1 G
- -1 v'

= - i - r = ,
0 (G2-rI) =G2 I I' 1 \ ,

I \ 1 1 ,
I \ I I \ _ 1_ _1- , \ -I--f-

I r 01 a -1 0
,

1 I v
1 I G

_ J I J
1-1 a I

-1- -
I I 18 L aJ 1 I

(5.4.17)
where a=g+r, a=g-r, I is the identity matrix and the (2x2) submatrices

and (5.4.18)

hence,

" G ,
- -1 "-1

(G
1
+rI) =G

1
=

,
'\ 0 , ,

\
0 '" G

A

G

c-Cl

" G

" 0 G ,
- -1 "-1 '\ (G

2
+rI) =G

2
= , , ,

0 ,,,
G

a

with

.. -1

L: ClJ ~ G = = d

-1
G

=

L
-1

=

1]

ClJ

-1

" -1 G , ,
\

o ,

0

l -
Ct

... -1
G

0

I where d

,
'\

,,-1
G ,

'\

... -1
G

'\
'\ ,

1
=--

2 Cl -1

356

",-1
G J

(5.4.19)

0

"-1
G

1
a

(5.4.20)

(5.4.21)

Hence, using equation (5.4.13) the vector u
(k+l)

can be determined from

u
(k)

in two steps, we first determine u
(k+t)

as follows,

f1

(k+t) (k)
1 I ~ r1 - au1 l Ct I I

I I I
u

2 1 Ct I I c
2

-su
2

+u
3 - - -- 4-_ -1--

u
3 la 1, , c

3
+u

2
-au

3 = d I (5.4.22)
u

4
1 , 0 1

c
4

-au
4

+u
5 I - -+ _ Ct-t _:.J._

I
"' I , I I I "' , I - - -"' +- I

u
N

_
1 I l-

It! 1 c +u -au

'0
N-1 N-2 N-1

I
'1 UN

I I I Ct c -au
N N

(k+l)

Ul 1 l/CI I I r--,-
u2 CId d

I I
u

3
I
I
I
I

I I d ~d_1

=

I
I
I

-j

I', , ,

-:-- -j-l
_1- _I __
a I I

I
, I ,

t Cld-

Id
L

I
I

-1-
d I

CId I
~

c
l
-su

l
+u

2

c
2

+u
l

-Su
2

c 3-Su
3

+u
4

I
I
I

CN_2+UN_3-SUN_2

cN_l-SuN_l+uN

357

(k+t)

I
J
I

10
I
1-
I
I

I
I

I l/CI
I

CN+UN_l-SUN J
(5.4.23)

Problem I was implemented in parallel on the NEPTUNE system using

both strategies with synchronous and asynchronous approaches. In all

these parallel implementations a different number of points within a

-1 given interval was taken, these are h =25,49,73,97,121,145 and 169.

-6
The accuracy value (E) taken to be equal to (5xlO) and in all these

implementations the optimal iteration parameter (r) (equation (5.3.28»

was used. The optimal iteration parameter (r) is also obtained from

the numerical experiments by choosing the one that gives the best

running time.

The parallel synchronous strategy implementation was programmed

in Program 5.1. Table (5.1) represents the results obtained from this

implementation by using a number of parallel paths greater than or

equal to the number of available processors using two problem sizes

for equal to 24 and 48. From Table (5.1) it is clear that the optimal

timing results are obtained when the number of parallel paths is equal

to the number of available processors. This is due to the overheads

incurred by the system to create the extra parallel paths and the

waiting time for the parallel paths to be executed by an available

358

processor. As a consequence to this result the number of parallel

paths will be taken to be equal to the number of available processors

in all the other implementations.

No.of No.of Time No.of Total no.
Size r Parallel Processors (seconds) iterations of Parallel

Paths Paths

24 0.45 1 1 2.10 8 34 .

2 1 2.12. 8 50

2 1.30 8 34,17

3 1 2.15 8 66

2 1.44 8 50,17

3 0.99 8 34,17,17

4 1 2.17 8 82

2 1.33 8 50,33

3 1.10 8 50,17,17

4 0.82 8 34,17,17,17

6 1 2.21 8 114

2 1.34 8 66,49

3 1.00 8 50,33,33

4 0.98 8 50,22,24,21

8 1 2.25 8 146

2 1.67 8 86,61

3 1.50 8 66,39,43

4 1.32 8 57,27,33,32

12 1 2.36 8 210

2 1.42 8 114,97

3 1.08 8 83,64,65

4 0.90 8 68,48,48,49

TABLE 5.1a: The results from the synchronous strategy I using a
number of parallel paths greater than the number of
processors

359

No.of No.of Time No.of Total parallel
Size r Parallel (seconds) iterations Paths

Paths
Processors

48 0.25 1 1 7.85 15 62

2 1 7.90 15 92

2 4.38 15 62,31

3 1 7.94 15 122

2 5.27 15 92,31

3 3.2 15 62,31,31

4 1 7.97 15 152

2 4.45 15 92,61

3 3.98 15 92,31,31

4 2.51 15 62,31,31,31

6 1 8.07 15 212
.

2 4.49 15 122,91

3 3.2 15 92,61,61

4 3.13 15 92,43,42,38

8 1 8.16 15 272

2 4.56 15 152,121

3 3.47 15 122,75,77

4 2.59 15 92,61,61,61

12 1 8.54 15 392

2 4.64 15 212,181

3 3.33 15 152,121,121

4 2.66 15 122,91,91,91

16 1 8.54 15 512

2 5.96 15 272 ,241

3 4.95 15 211 ,152 ,151
~. 4 4.57 15 152,121,121,121

24 1 9.06 15 752

2 5.07 15 392,361

3 3.69 15 273,240,241

4 2.99 15 213,181,181,181

TABLE 5.1b: The results from the synchronous strategy I using a
number of parallel paths greater than the number of
processors.

360

The results obtained from running Program 5.1 (Problem I using the

first strategy with the synchronous approach) for different sizes is

shown in Table 5.2. From Table 5.2 the best efficiency results (speed

up) is obtained when the problem size is equal to 120.

The same strategy (Stragegy I) was implemented and programmed in

Program 5.2 using the asynchronous approach by taking the number of

parallel paths equal to.the number of co-operating processors. Table

5.3 shows the results obtained from Program 5.2 using the same sizes

that are used in the synchronized approach. Results from Table 5.3 show

the best speed-up obtained when the problem size is equal to 120.

By comparing the results from Tables 5.2 and 5.3 we notice that

the times for Program 5.2 are less than that of Program 5.1, i.e.

evaluating the points using Strategy I with the asynchronous approach

takes less time to converge than that of the synchronous approach and

this is due to the synchronisation overheads needed after each iteration

in the synchronous implementation. Also, from both tables it is clear

that the better efficiency can be obtained by using the asynchronous

approach rather than the synchronous approach. This is because the

speed-up ratios of asynchronous implementation is higher than that of·

a synchronous one. So we can say that, using the first strategy in spite

of the efficient implementation of both the synchronous and asynchronous

programs, the asynchronous implementation gives better results in both

the time needed for the problem to converge and on the speed-up ratios

of the processors. This is due to the synchronisation overheads incurred

by the system in the synchronous implementation.

Now, the second strategy was programmed and implemented on the

NEPTUNE system to solve problem I using both the synchronous and

Mesh
Size

24

48

72

96

120

144

168

361

Time No. of Speed-up Total no. Effective no.
e r P (seconds) iterations of parallel of parallel

paths paths

5xl0 -6 0.45 1 2.10 8 1.0 34 8

0.45 2 1.30 8 1.61539 34,17 8,8

0.45 3 0.99 8 2.12121 34,17,17 8,8,8

0.45 4 0.82 8 2.56098 34,17,17,17 8,8,8,8

5xI0-6 0.25 1 7.85 15 1.0 62 15

0.25 2 4.38 15 1.79224 62,31 15,15

0.25 3 3.20 15 2.45313 62,31,31 15,15,15

0.25 4 2.51 15 3.12749 62,31,31,31 15,15,15,15

5xlO -6 0.30 1 17.48 22 1.0 90 22

0.20 2 9.46 22 1.84778 90,45 22,22

0.25 3 6.63 22 2.63650 90,45,45 22,22,22

0.20 4 5.30 22 3.29811 90,45,45,45 22,22,22,22

5XI0 -6 0.15 1 29.74 28 1.0 114 28

0.15 2 15.86 28 1.87516 114,57 28,28

0.20 3 11.20 28 2.65536 114,57,57 28,28,28

0.15 4 8.62 28 3.45012 114,57,57,57 28,28,28,28

5xIO
-6 0.15 1 46.52 35 1.0 142 35

0.15 2 24.56 35 1.89414 142,71 35,35

0.15 3 17.18 35 2.70780 142,71,71 35,35,35

0.15 4 13.24 35 3.51360 142,71,71,71 35,35,35,35

5xlO
-6 0.15 1 62.05 39 1.0 158 39

0.15 2 33.05 39 1.87746 158,79 39,39

0.15 3 23.43 39 2.64831 158,79,79 39,39,39

0.15 4 17.97 39 3.45298 158,79,79,79 39,39,39,39

5xlO-6 0.1 1 89.25 48 1.0 194 48

0.1 2 53.03 48 1.68301 194,97 48,48

0.1 3 37.11 48 2.40501 194,97,97 48,48,48

0.1 4 27.84 48 3.20582 194,97,97,97 48,48,48,48

TABLE 5.2: The results from the parallel A.G.E. method using
Strategy I with the synchronous approach (Problem I)

362

Mesh Time No. of Speed-up
Total no. Effective no.

e r p (seconds) iterations of parallel of parallel Size
paths paths

24 5x lO
-6

0.45 1 2.07 8 1.0 4 1

0.45 2 1.20 9 1.72500 4,2 1,1

0.55 3 0.96 11 2.15625 4,2,2 1,1,1

0.60 4 0.77 11 2.68831 4,2,2,2 1,1,1,1

48 5x lO
-6 0.25 1 7.79 15 1.0 4 1

0.25 2 4.22 16 1.84597 4,2 1,1

0.25 3 3.12 18 2.49680 4,2,2 1,1,1

0.25 4 2.35 18 3.31489 4,2,2,2 1,1,1,1

72 5x lO
-6 0.25 1 17.36 22 1.0 4 1

0.30 2 9.14 23 1.89934 4,2 1,1

0.20 3 6.55 24 2.65038 4,2,2 1,1,1

0.25 4 5.20 26 3.33846 4,2 ,2 ,2 1,1,1,1

96 5xI0
-6

0.15 1 29.66 28 1.0 4 1

0.15 2 15.43 29 1.92220 4,2 1,1

0.15 3 11.17 32 2.65533 4,2,2 1,1,1

0.20 4 8.59 34 3.45285 4,2,2,2 1,1,1,1

120 5xI0
-6 0.15 1 46.36 35 1.0 4 1

0.10 2 23.96 36 1.93489 4,2 1,1

0.15 3 17.08 38 2.71429 4,2,2 1,1,1

0.20 4 13.11 42 3.53623 4,2,2,2 1,1,1,1

144 5x lO
-6

0.15 1 61.90 39 1.0 4 1

0.10 2 32.95 42 1.87860 4,2 1,1

0.15 3 23.09 47 2.68081 4,2,2 1,1,1

0.10 4 17.88 51 3.46197 4,2 ,2 ,2 1,1,1,1

168 5x lO-6 0.10 1 89.03 48 1.0 4 1

0.10 2 52.36 56 1. 70034 4,2 1,1

0.10 3 36.68 58 2.42721 4,2,2 1,1,1

0.10 4 27.39 63 3.25046 4,2,2,2 1,1,1,1

TABLE 5.3: The results from the parallel A.G.E. methods using strategy
I with the asynchronous approach (problem I)

363

asynchronous approach. In our implementation we take the number of

parallel paths equal to the number of available processors. Also the

-6 accuracy value (g) is taken to be equal to (5xlO) with the optimal

iteration parameter. The sizes of the problem to be solved are taken to

be the same as those in the first strategy, i.e. h-l =25,49,73,97,121,145

and 169. The results from the synchronous implementation is shown in

Table 5.4 while the results from the asynchronous implementation is shown

in Table 5.5. Comparing the results from these two implementations, it is

noticed that the timing of asynchronous implementation using one processor

is better than that of the synchronous implementation. While using more

than one processor (i.e. two, three or four processors) a better timing

result is obtained in the case of the synchronous implementation •. It is

clear from the results that in the case of the asynchronous implementation

the optimal speed-up ratios obtained when the size of the problem is equal

to 24 and the speed-up starts dropping when using ni,her problem sizes.

While for the synchronous implementation a better speed-up ratio is

obtained when a larger problem size is used. Also, generally we can say

that in strategy 11 the synchronous implementation is better than an

asynchronous one. These results are due to the way in which the points

are evaluated in strategy 11. For the asynchronous implementation,

because in one iteration it first evaluates the odd points, this means

it is always the old values for the even points that are used in the

evaluation and vice versa. This means that an extra iteration will be

needed before the recent values are used. While in the synchronous

implementation, even if we evaluate the odd points first, it is guaranteed

that for the next iteration new values will always be used due to the

synchronisation process at the end of each iteration.

364

Time No. of Total no. Effective no.
Size E r P (seconds) iterations

Speed-up of parallel pf parallel
paths paths

24 5X1O-6 0.45 1 3.02 8 1.0 66 8

0.45 2 1.89 8 1.59788 66,33 8,8

0.45 3 1.48 8 2.04054 66,33,33 8,8,8

0.45 4 1.23 8 2.45529 66,33,33,33 8,8,8,8

48 5x1O
-6 0.40 1 11.35 15 1.0 122 15

0.40 2 6.40 15 1. 77344 122,61 15,15

0.40 3 4.61 15 2.46204 122,61,61 15,15,15

0.40 4 3.71 15 3.05930 122,61,61,61 15,15,15,15

72 5x1O
-6 0.30 1 25.35 22 1.0 178 22

0.30 2 13.76 22 1.84230 178,89 22,22

0.25 3 9.82 22 2.58147 178,89,89 22,22,22

0.30 4 7.71 22 3.28794 178,89,89,89 ~2,22,22,22

96 5x1O-6 0.15 1 43.24 28 1.0 226 28

0.15 2 23.21 28 1.86299 226,113 28,28

0.15 3 16.19 28 2.67078 226,113,113 28,28,28

0.20 4 12.69 28 3.40741 226.113.113,1.13 28,28,28,28

120 5xl0
-6

0.15 1 67.500 35 1.0 282 35

0.15 2 35.99 35 1.87552 282,141 35,35

0.15 3 25.10 35 2.68924 282,141,141 35,35,35

0.15 4 19.44 35 3.47222 282,1.4U41,14 ' 35,35,35,35

144 5xI0 -6 0.15 1 90.10 39 1.0 314 39

0.15 2 48.25 39 1.86736 314,157 39,39

0.15 3 33.69 39 2.67438 314,157,157 39,39,39

0.15 4 25.97 39 3.46939 314,157.157.15 39,39,39,39

168 5x1O-6 0.10 1 130.06 48 1.0 386 48

0.10 2 68.98 48 1.85853 386,193 48,48

0.10 3 48.82 48 2.66407 386,193,193 48,48,48

0.10 4 37.69 48 3.45078 386;1.93,193,193 48,48,48,48

TABLE 5.4: The results from the parallel A.G.E. method using strategy
11 with the synchronous approach (Problem I)

Size

24

48

72

96

120

144

168

365

Time No. of Speed-up Total no. Effective no.
E r P (seconds) iterations of parallel of parallel

paths paths

5XlO-6 0.45 1 2.94 8 1.0 4 1

0.6 2 2.04 11 1.44118 4,2 1,1

0.6 3 1.45 11 2.02759 4,2,2 1,1,1

0.65 4 1.17 11 2.51282 4,2,2,2 1,1,1,1

5xI0-b 0.40 1 11.13 15 1.0 4 1

0.50 2 7.52 20 1.48005 4,2 1,1

0.45 3 5.38 22 2.06877 4,2,2 1,1,1

0.45 4 4.42 24 2.5181 4,2,2,2 1,1,1,1

5xl0
-6

0.25 1 24.89 22 1.0 4 1

0.45 2 20.49 36 1.21474 4,2 1,1 .

0.45 3 13.93 37 1. 78679 4,2,2 1,1,1

0.45 4 10.68 39 2.33052 4,2,2,2 1,1,1,1

5xI0
-6 0.15 1 42.82 28 1.0 4 1

0.40 2 42.65 56 1.00400 4,2 1,1

0.45 3 28.34 56 1.51094 4,2,2 1,1,1

0.45 4 24.82 66 1.72522 4,2,2,2 1,1.1,1

5xI0
-6

0.15 1 67.10 35 1.0 4 1

0.4 2 73.14 76 0.91742 4,2 1,1

0.45 3 52.29 83 1.28323 4,2,2 1,1.1

0.45 4 39.07 84 1. 71743 4,2,2,2 1,1,1,1

5xlO-6 0.15 1 89.51 39 1.0 4 1

0.35 2 113.30 98 0.79003 4,2 1,1

0.40 3 81.56 107 1.09747 4,2,2 1,1.1

0.55 4 72.79 127 1.22970 4,2,2,2 1,1,1,1

5xI0
-6

0.10 1 129.110 48 1.0 4 1

0.35 2 168.81 125 0.76482 4,2 1,1

0.40 3 124.21 139 1.03945 4,2,2 1,1,1

0.50 4 105.73 155 1.22113 4,2,2,2 1,1.1,1

TABLE 5.5: The results from the parallel A.G.E. method using strategy
II with an asynchronous approach (Problem I)

366

Now comparing the results obtained from solving problem I using

both strategy I and II, i.e. comparing the results from Tables 5.2,

5.3, 5.4 and 5.5, we notice that the time needed in strategy I for the

problem to converge is less than that of strategy II and generally the

speed-up ratios using the asynchronous strategy I is the best amongst

the other implementations. This is mainly from the way in which the

components within each strategy are evaluated. In strategy II, we

first notice from its implementation that the number of computational

operations are higher than that of the first strategy. Secondly,

there is a possibility in the second strategy that during the evaluation

of its components the old values may be used which means extra iterations

will be needed. While in strategy I the most recent values of the

components will be used ·in the evaluation process and a greater rate

of convergence is achieved.

To conclude from strategy I and II we can say that in all the

implementations of problem I using the parallel A.G.E. method the best

results are obtained when the problem is decomposed into a number of

subsets, each of which is assigned to a processor where the number

of processors is always equal to the number of generated parallel paths.

From the implementation results we can say that strategy I will be chosen

amongst the two strategies, because a better running time result was

obtained. This is due to the extra amount of computational operations

required in strategy II and to the way in which the evaluation of the

components within each subset are carried out in each strategy, whereas

in strategy I the most recent values will be used in its evaluation

which is not the case in strategy II. In strategy I, because of the way

in which the implementation is carried out, we can generally say that

367

where the timing results are concerned it does not matter whether the

algorithm is synchronously or asynchronously implemented. Since we

decompose the problem into almost equal subsets and assign each one

to different processors, this means that the amount of work (computational

time) carried out by each processor to evaluate any component is

approximately the same. There are extra overheads incurred by the

system besides the computational time, which degrades the parallel

algorithm performance in both the synchronous and asynchronous

implementations. These overheads are the generation of the parallel

paths and the synchronisation at the end of each iteration cycle.

These overheads may become significant, as an example, if we take the

results from Tables 5.2 and 5.3 for the case when the problem size h

is equal to 168. using four processors, it is clear from the asynchronous

implementation that the problem converges after 63 iterations using a

total of 4 parallel paths by the first processor and 2 parallel paths

by each other processor. While in the case of the synchronous

implementation, the same problem converges after 48 iterations using

a total of 194 parallel paths by the first processor and 97 parallel

paths by each of the other processors, since we need a synchronisation

process after each iteration. Thus, it is clear that the overheads

may effect the performance of a parallel algorithm especially in the

case of the synchronous implementation. Hence for this reason we can

say that the use of the asynchronous approach is better suited for the

MIMD computer which confirms what is obtained from the experimental

results.

The timing results from both strategy I and II are as shown

diagrammatically in Figures 5.3 and 5.4 for the asynchronous approach.

45

'9----\

40

35

30

\
\
\
\
\
\

'------

368

Legend
o 51,Size 24

o 52 ,Size 24

/':, 5 1,5 ize 48

/':, 52 ,5 ize 48

o 51,5ize 72

o 52 ,Si ze 72

'V 51 ,5ize 96

'V 52,Size 96

~
~

-----v ~ 25
Vl

c

w
~ 20
r--

15

10

5

~-------------= ----~==-==-~~~~
04----------.----------,----------,---------.

o 2 3
NO , OF PROCESSORS

FIGURE 5.3

The timing results of asynchronous strategy I and 11 Using parallel
A,G,[, method for the sizes 24,48,72 and 96 problem one

4

u
Q)
Vl

c

w
~
r-

170

160

150

140

130

120

110

100

90

80

70

60

50

40

30

20

10

0
0

/\

/ \
/ \

/ \
/ \

d \

Legend
o 51,5iz.120

o 52 ,5 iz. 120

!::,. 51, Size 144

!::,. 52,5ize 144

D 5 1, 51ze 168

D 52,5ize 168

369

~
~

2 3
NO, OF PROCESSORS

FIGURE 5.4

~
~

El

o

4

The timing results of asynchronous strategy I and 11 using parallel
A.G.E. method for the sizes 120, 144 and 168 problem one

370

While for the synchronous approach the results are shown in Figures

5.5 and 5 . 6 .

For comparison reasons the parallel versions of the Jacobi,

Gauss-Seidel and S .O. R. iterative methods (see Chapter 4) are

implemented and programmed on the NEPTUNE system and used to solve

problem I. These implementations are carried out in the same way as

that of parallel A.G.E. methods using both synchronous and asynchronous

approaches. Also in our implementation the probl em is decomposed into

a subset each of which is assigned to a paralle l path where the number

of parallel paths is always equal to the number of co-operating

processors. Also, the accuracy value (E) is taken to be equal to

(5xlO-6) and in the parallel S.O.R. method the optimal w is obtained

from the experiments by choosing the value which gives the shortest

running time.

The timing results for problem I on the NEPTUNE system using the

parallel asynchronous and synchronous Jacobi method are shown in Tables

5 .6 and 5.7 respectively. Tables 5 .8 and 5 . 9 represent the results

for the same problem us ing the parallel asynchronous and synchronous

Gauss - Seidel method , while the results obtained from the parallel

asynchronous and synchronous S.O.R. method are shown in Tables 5.10

and 5 . 11 respectively .

By comparing these results with those obtained from the parallel

A.G.E. method using strategy I with the synchronous and asynChronous

appr oach (Tabl es 5 . 2 and 5.3) , it is clear that the elapsed time using

the parallel A.G .E. method gives better results in a l l caseS . This is

because the number of iterations in the paral lel Jacobi , Gauss - Seidel

and S .O.R. me t hods are much higher than that o f the par a l le l A.G. E.

u
<V
(/)

c

w
~
f-

Legend
0 S 1,Size 24

0 52.Size 24
45 t:. S I ,Size 48

'\ t:. S2 ,Size 48

0 S I, Size 72

40 \ 0 S2,Siz.72

'V 5 1,5i z9 96

\ 'V 52.Size 96

35 \
\

30 \
\

\
\

25 \
\

20 \
\

'" \ '---
15 \ "-....

"-....
~ ~ ~

~ ~
10 "'-----

~ --------
----5 ----------~

----t:, 1..,.--- -~ --- 8 o I

0 2 3 4

NO. OF PROCESSORS

FIGURE 5.5

The timing results of synchronous strategy I and 11 using parallel
A.G.E. method for the sizes 24,48,72 and 96 problem one

371

()
(J)
Vl

c

w
:::!:
I-

372

140 Legend
() 5 1,Size 120

0 S2..2i..ze 120

130 \ 6- Sl,Si ze 144

6- .5 2,Size 144

120 \ 0 Sl,Si l e 168

0 S2,Size 168

\ 11 0

\
100 \
90 \

\
80 \ \ \ 70 "\ :\ ~

'\ ~ 60 \ '\ ~ \ ~ 50 ~ "----~ "---- "----40 ~
~ 'c:J

30 "-------

20

10

0 I I
0 2 3

NO. OF PROCESSORS

FIGURE 5.6

The timing results of sY'lchronous strategy I and 11 using parallel
A.GE. method for The sizes 120, 144 and 168 problem one

4

Size

24

48

72

96

120

144

168

373

P
Time No. of Speed-up Total no. Effective no.

E
(seconds) iterations of parallel of parallel

paths paths

5xlO-6 1 4.95 40 1.0 4 4

2 2.59 41 1".91120 4,2 1,1

3 1.75 41 2.82857· 4,2,2 1,1,1

4 1.33 41 3.72181 4,2 ,2 ,2 1,1,1.1

5xl0-6
1 30.12 122 1.0 4 1

2 15.46 124 1.94825 4,2 1,1

3 10.21 122 2.95005 4,2,2 1,1,1

4 7.8 124 3.86154 4,2,2,2 1,1,1,1

5XI0-6
1 90.79 243 1.0 4 1

2 46.12 246 1.96856 4,2 1,1

3 30.64 244 2.96312 4,2,2 1,1,1

4 23.10 244 3.93030 4,2,2,2 1,1,1,1

5x10 -6 1 197.88 399 1.0 4 1

2 100.45 404 1.96994 4,2 1,1

3 66.24 398 2.98732 4,2,2 1,1,1

4 50.12 401 3.94813 4,2,2,2 1,1,1,1

5XI0-6
1 363.38 585 1.0 4 1

2 184.02 590 1.97468 4,2 1,1

3 122.06 586 2.97706 4,2,2 1,1,1

4 91.68 586 3.96357 4,2,2,2 1,1,1,1

5xI0-6
1 598.37 799 1.0 4 1

2 302.89 808 1.97554 4,2 1,1

3 200.12 800 2.99006 4,2,2 1,1,1

4 151.55 804 3.94833 4,2 ,2 ,2 1,1,1,1

5xl0 -6 1 901.13 1041 1.0 4 1

2 459.05 1053 1.96303 4,2 1,1

3 302.31 1040 2.98081 4,2,2 1,1,1

4 231.45 1043 3.89341 4,2,2,2 1,1,1,1

TABLE 5.6: The results from the parallel Jacobi iterative method
using the asynchronous approach (Problem I)

Size

24

48

72

96

120

144

168

374

Time No. of Speed-up Total no. Effective no.
£ P

(seconds) iterations of parallel of parallel
paths paths

5x10-6
1 5.05 40 1.0 82 40

2 3.14 40 1.60828 82,41 40,40

3 2.37 40 2.13080 82,41,41 40,40,40

4 1.99 40 2.53769 82.41.41.41 40 40.40,40

5x10-6
1 30.47 122 1.0 246 122

2 17.19 122 1.77254 246,123 122,122

3 12.34 122 2.46921 246,123,123 122,122,122

4 10.01 122 3.04396 46,1.2 3;L2 3,1.2 3 22,122,122,122

5x10-6
1 91.49 243 1.0 488 243

2 49.83 243 1.83604 488,244 243,243

3 35.07 243 2.60878 488,244,244 243,243,243

4 27.78 243 3.29338 88244244244 43 243 243.243

5x10 -6
1 198.89 399 1.0 800 399

2 106.88 399 1.86087 800,400 399,399

3 74.43 399 2.67218 800,400,400 399,399,399

4 58.5 399 3.39983 Ron, nn' OOAOO 99,399,399 399

5x10-6
1 365.12 585 1.0 1172 585

2 193.98 585 1.88226 1172 ,586 585,585

3 134.60 585 2.71263 172,586,586 585,585,585

4 105.33 585 3.46644 IJ. 72,5 86,586,5 86 1585,585,585,585
5 x10 -6 1 599.00 799 1.0 1600 799

2 317.31 799 1.88774 1600,800 799,799

3 219.92 799 2.72371 1600 ,800 ,80< 799,799,799

4 171.14 799 3.50006 U600;300;300;30 799,799,799,799

5x10-6 1 903.50 1041 1.0 2084 1041

2 480.63 1041 1.87982 2084,1042 1041,1041

3 332.66 1041 2.71599 r084;L042,104" 1041,1041,104

4 259.10 1041 3.48707 2084,1042, 1041,1041,104
1042 1042 1041

TABLE 5.7: The results from the parallel Jacobi iterative method
using the synchronous approach (Problem I)

Size

24

48

72

96

120

144

168

375

P Time No. of
Speed-up Total no. Effective nO.

E: (seconds) iterations of parallel of parallel
paths paths

5x10-6 1 2.98 24 1.0 4 1

2 1.59 25 1.87421 4,2 1,1

3 1.04 24 2.86539 4,2,2 1,1,1

4 0.79 24 3.77215 4 2,2,2 1,1,1,1

5xl0-6
1 16.79 68 1.0 4 1

2 8.60 69 1.95236 4,2 1,1

3 5.7 68 2.94561 4,2,2 1,1,1

4 4.33 68 3.87760 4 2 2 2 1 1 1 1

5x10-6
1 49.98 134 1.0 4 1

2 25.13 134 1.98886 4,2 1.1

3 16.72 133 2.98924 4,2,2 1,1,1

4 12.73 135 3.92616 4,2,2,2 1,1,1,1

5x10-6 1 108.40 219 1.0 4 1

2 54.76 220 1.97955 4,2 1,1

3 36.24 218 2.99117 4,2,2 1,1,1

4 27.37 220 3.96054 4,2,2,2 1,1,1,1

5x10-6
1 199.21 321 1.0 4 1

2 100.51 322 1.98199 4,2 1,1

3 66.67 320 2.98800 4,2,2 1,1,1

4 50.22 322 3.96675 4,2,2,2 1,1,1,1

5 x10-b
1 327.46 439 1.0 4 1

2 165.15 441 1.98280 4,2 1,1

3 109.76 439 2.98342 4,2,2 1,1,1

4 82.56 440 3.96633 4,2,2,2 1,1.1,1

5x10 -6 1 492.21 573 1.0 4 1

2 250.71 576 1.96326 4,2 1,1

3 166.20 572 2.96155 4,2,2 1,1,1

4 125.00 573 3.93768 4,2 ,2 ,2 1,1,1,1

TABLE 5.8: The results from the parallel Gauss-Seidel iterative
method using the asynchronous approach (Problem I)

Size

24

48

72

96

120

144

168

376

-
Time No. of speed-up

Total no. Effective no.
£ P (seconds) iterations of parallel of parallel

paths paths

5><10-6
1 3.03 24 1.0 50 24

2 1.91 24 1.58639 50,25 24,24

3 1.43 24 2.11888 50,25,25 24,24,24

4 1.21 24 2.50413 50,25,25 25 24,24,24,24

5><10-6
1 16.94 68 1.0 138 68

2 9.75 68 1. 73744 138,69 68,68

3 6.86 68 2.46939 138,69,69 68,68,68

4 5.56 68 3.04676 138,69,69,69 68,68,68,68

5><10-6
1 50.28 134 1.0 270 134

2 27.47 134 1.83036 270,135 134,134

3 19.36 134 2.59711 270,135,135 134,134,134

4 15.29 134 3.28842 270,1.35,1.35,1.35 134,134,134,1.34

5><10 -6 1 108.93 219 1.0 440 219

2 58.47 219 1.86301 440,220 219,219

3 40.62 219 2.68168 440,220,220 219,219,219

4 32.02 219 3.40194 440,220,220,220 219,219,219,219

5><10-6
1 199.88 321 1.0 644 321

2 106.22 321 .L .88176 644,322 321,321

3 73.69 321 2.71244 644,322,322 321,321,321

4 57.57 321 3.47195 644,322,322,322 321 , 321 , 321 ,321

5><10
-6

1 328.50 439 1.0 880 439

2 173.73 439 1.89087 880,440 439,439

3 119.93 439 2.73910 880,440,440 439,439,439

4 93.30 439 3.52090 880A40MOA40 439,439,439,439

5><10
-6

1 494.77 573 1.0 1148 573

2 262.34 573 1.88599 1148,574 573,573

3 181.76 573 ~. 72211 1148,574,574 573,573,573

4 141.66 573 3.49266 1148,574,574, 573,573,573,573
574

TABLE 5.9: The results from the parallel Gauss-Seidel iterative
method using the synchronous approach (Problem Il

Size

24

48

72

96

120

144

168

377

Time No .of Speed-up Total no. Effective no.
E III P (seconds) iterations of parallel of parallel

paths paths

5xlO-6 1.20 1 2.60 17 1.0 4 1

1.20 2 1.58 20 1.64557 4,2 1,1

1.20 3 1.09 20 2.38532 4,2,2 1,1,1

1.20 4 0.83 20 3.13253 4,2,2,2 1,1,1,1

5xlO-6 1.45 1 9.78 32 1.0 4 1

1.45 2 5.29 34 1.84877 4,2 1,1

1.40 3 3.86 37 2.53368 4,2,2 1,1,1

1.45 4 2.92 37 3.34932 4,2,2,2 1,1,1,1

5xl0-6 1.55 1 21.24 46 1.0 4 1

1.60 2 11.75 50 1.80766 4,2 1,1

1.60 3 8.54 53 2.48712 4,2,2 1,1,1

1.55 4 6.40 55 3.31875 4,2 ,2 ,2 1,1,1,1

5xl0-6 1.65 1 36.87 60 1.0 4 1

1.65 2 20.50 67 1. 79854 4,2 1,1

1.65 3 14.07 68 2.62047 4,2,2 1,1,1

1.65 4 11.35 73 3.24846 4,2,2,2 1,1,1,1

5xl0
-6 1. 70 1 57.06 74 1.0 4 1

1.702 31.25 80 1.82592 4,2 1,1

1. 70 3 22.30 85 2.55874 4,2,2 1,1,1

1. 70 4 17.65 92 3.23286 4,2,2,2 1,1,1,1

5xlO -6 1.75 1 81.69 88 1.0 4 1

1. 75 2 43.97 94 1.85786 4,2 1,1

1. 75 3 30.10 100 2.71395 4,2,2 1,1,1

1.75 4 24.43 104 3.37264 4,2,2,2 1,1,1,1

5xlO
-6 1. 75 1 112.69 105 1.0 4 1

1.80 2 61.00 112 1.84738 4,2 1,1

1.80 3 41.80 114 2.69593 4,2,2 1,1.1

1. 75 4 33.88 126 3.32615 4,2,2,2 1,1,1,1

TABLE 5.10: The results from the parallel S.O.R. method using
the asynchronous approach (Problem I)

Size

24

48

72

96

120

144

168

378

E W P Time No. of Speed-up Total no. Effective no.
(seconds) iterations of parallel pf parallel

paths paths

SXlO -6 1.21 1 2.62 17 1.0 36 17

1.23 2 1.69 18 1.55029 38,19 18,18

1.23 3 1.40 - 20 1.87143 42,21,21 20,20,20

1.21 4 1.16 20 2.25862 42,21,21,21 20,20,20,20

5XI0
-6

1.44 1 9.84 32 1.0 64 32

1.45 2 5.81 34 1.69363 70,35 34,34

1.40 3 4.49 37 2.19154 76,38,38 37,37,37

1.44 4 3.69 38 2.66667 78,39,39,39 38,38,38,38

5XI0
-6

1.56 1 21.27 46 1.0 94 46

1.57 2 12.20 49 1. 74344 100,50 49,49

1.55 3 9.26 53 2.29698 108,54,54 53,53,53

1.56 4 7.72 56 2.75518 114,57,57,57 56,56,56,56

5x10-6
1.64 1 36.99 60 1.0 122 60

1.66 2 20.88 64 1. 77155 130,65 64,64

1.63 3 15.70 69 2.35605 140,70,70 69,69,69

1.63 4 12.98 73 2.84977 148,74,74,74 73,73,73,73

5xlO
-6

1.69 1 57.22 74 1.0 150 74

1.71 2 32.33 79 1.76987 160,80 79,79

1. 70 3 23.95 85 2.38914 172,86,86 85,85,85

1.69 4 19.66 90 2.91048 182,91,91,91 90,90,90,90

5xlO
-6

1.75 1 81.68 88 1.0 178 88

1. 75 2 45.86 94 1.78107 190,95 94,94

1. 73 3 33.75 101 2.42015 204,102,10" 101,101,101

1. 73 4 27.74 107 2.94449 216,1.08,1.08,1.08 107,107,107,107

5xlO-6
1. 78 1 108.74- 101 1.0 204 101

1. 78 2 60.87 108 1.78643 218,109 108,108

1.77 3 43.70 113 2.48833 228,114,114 113,113,113

1.77 4 37.36 125 2.91060 252,1.26,1.26,1.26 125,125,125,125

TABLE 5.11' The results from the parallel S.O.R. method using the
synchronous approach (Problem I)

379

method. which means more total computational operations are required.

For this reason the parallel A.G.E. method is chosen to be the best

amongst all the other parallel methods.

As an example. Figures 5.7 and 5.8 show the run time results using

parallel A.G.E •• Jacobi. Gauss-Seidel and S.O.R. methods when the size

of the problem is equal to 168 using synchronous and asynchronous

approaches respectively.

Now to calculate the number of arithmetic operations that are

required to solve problem I by using the parallel A.G.E. method, we

concentrate on strategy I using the asynchronous approach because it

gives the best results amongst the other parallel implemented methods.

We first calculate the number of operations required to determine the

(k+t)th iterate of the A.G.E. method. From system (5.4.22). if we assume

that,

then.

uik+t) = d(ar
l

+r
2

)

and for i=3.2. (N-3)

(k+t)
d(ar' +r') u. =

J. 1 2

where r' (k) . (k)
= c.+u. l-au. 1 1. 1- 1.

and finally.

(k+t)
Q_ = d(ar"+r")

N-l 1 2

where (k) (k)
r 1 = cN_l+uN_2-auN_l

and

and

and (k+t)
d(r' + r') ui +l = 1 2

and r' (k) + (k) = ci+l-aui+l ui +2 2

and ~k+t) = d(r1+ r Z) •
and r" = c -au (k)

2 N N •

•

The values of c .• for i=1.2 ••••• N are given in equation (5.4.10e). d
J.

is given in equation (5.+.21). a and a are given in (5.4.17) and N is

divisible by 2. While the number of operations required to determine

()
(])
VI

c

w
~
f-

1000

900

800

700

600

500

400

300

200

Legend
o Jaco b i

380

6 Gauss-Seidel

o S . O.R .

V A.G . E.

The timing results of parallel Jacobi, Gauss-5iedel, 5.0 R. and A.G.E.
Methods using asynchronous approch for problem size equal to 168

381

1000

Legend

0 Jacobi

900 t, Gauss-Seidel

0 S. O.R.

\l A.G.E.

800

700

600
u
Q)
(/)

c
500

w
~
f-

400

300

200

100 ~
~

0
0 2 3 4

NO. OF PROCESSORS

FIGURE 5.8

The Timing Results Of Parallel Jacobi, Gauss-Siedel, S.O.R. and A.G.E.
Methods Using Synchronous Approch For Problem Size Equal To 168

th
the (k+l) iterate of the A.G.E. method is obtained from system

(5.4.23) if we assume that.

then

= c _Qu(k+')+u(k+t)
r l 1 ~ 1 2

(k+l)
u

l
1

= -(r)
ex 1

and for i=2.2.(N-2)

where,

and finally.

(k+l)
uN

= d(exr'+r')
1 2

1
= -(r")

ex 1

where ,,_ + (k+t)_Q (k+t) r l - cN uN_l ~uN •

and

d(r '+ar') 1 2 •

382

where the values of c, for i=1.2 ••••• N are given in equation (5.4.10e).
1.

d is given in equation (5.4.21). ex and S are given in (5.4.17) and N

is divisible by 2.

Thus. the computational complexity for the sequential algorithm

can be easily calculated by taking the number of operations required

in each sweep. Therefore. for the first sweep the number of operations

required for each point per iteration in the mesh is equal to (by

denoting the multiplication and the addition by M and A respectively) •

for the first and the last two points = (4M+4A).

for the other points in the mesh = (4M+5A).

For the second sweep the number of operations required for each point

in the mesh per iteration is equal to.

for the first and last points = (2M+2A).

for the other points in the mesh = (4M+5A).

presuming that d is evaluated and stored at the beginning of the program.

383

So, generally speaking, for each sweep we can estimate the number

of operations for each point in the mesh per iteration is equal to

(4M+4A), therefore for the two sweeps the total number of operations

for each point in each iteration is equal to (8M+8A) and by letting d

be evaluated and stored at the beginning of the program.

Now for N mesh points and P parallel paths each processor will

N evaluate (p) points with total computational complexity is equal to

T=[(8M+8A) .¥] operations per iteration. Besides the computational time

T there are some delay times due to the overheads incurred by the system

which may degrade the algorithm's performance. These overheads are the

generation of the parallel paths and the synchronisation at the end of

each iteration cycle.

From Chapter 4 it can be seen that the number of arithmetical

operations required for the solution of problem I using the Jacobi or

Gauss-Seidel iterative methods is equal to [1 multiplication (M) + 3

additions (A)], while using the S.O.R. iterative method needs [2(M)+5(A)].

The total number of arithmetic operations required for the solution of

problem I using the parallel A.G.E., Jacobi, Gauss-Seidel and S.O.R.

-1
methods using a mesh size h =169 are shown in Table 5.12. These results

are obtained from the number of arithmetic operations required by each

method and the results obtained from Tables 5.2, 5.3, 5.6, 5.7, 5.8,

5.9, 5.10 and 5.11. In Table 5.12 K=N/P, where N represents the number

of points in the mesh to be solved and P the number of parallel paths

generated and in our case equal to the number of cooperating processors.

By comparing the results obtained from Table 5.12 and the experimental

results, it is clear that all the results agree apart from the case of

the asynchronous S.O.R. method and synchronous S.O.R. method when using

384

only one or two processors. This is due to the extra overheads which

are not added to the results shown in Table 5.12. These overheads are

the generations of the parallel paths and the synchronization process

needed after each iteration cycle, which is greater in the case of

S.O.R. method due to the increased iterations required as shown in

Tables 5.10 and 5.11.

A.G.E • Jacobi .
.

Size
(N)

P Synchronous Asynchronous Synchronous Asynchronous

M A M A M A M A

168 1 384K 384K 384K 384K 1041K 3l23K lO41K 3l23K

2 384K 384K 448K 448K 1041K 3123K 1053K 3l59K

3 384K 384K 464K 464K 1041K 3123K 1040K 3120K

4 384K 384K 504K 504K 1041K 3123K 1043K 3129K

* K=N/P TABLE 5.12(a)

Gauss-Seidel S.O.R.
Size P Synchronous Asynchronous Synchronous Asynchronous (N)

M A M A M A M A

168 1 573K 1719K 573K 1719K 202K SOSK 210K 525K

2 573K 1719K 576K 1728K 216K 540K 224K S60K

3 573K 1719K 572K 1716K 226K 565K 228K S70K

4 573K 1719K 573K 1719K 2S0K 625K 252K 630K

*K=N/P TABLE 5.12(b)

Now for a further performance analysis of the parallel A.G.E.

method when used to solve Problem I, we follow the same steps used in

Chapter 4 using the system commands XPFCLS, XPFCLN and XPFCL. Both the

385

information obtained from Figure 4.15 (the resource timings of the

NEPTUNE system) and the experimental results in Tables 5.2, 5.3, 5.4

and 5.5 are also used in the analysis.

Actually Table 5.13 gives the mean rate of access to the shared

data and parallel path scheduling. It gives estimates of the potential

speed-up for using P processors, where N represents the number of points

in the mesh to be solved. On the other hand, Table 5.14 illustrates

the results obtained when the algorithms were run on the NEPTUNE system.

The parallel control access overheads (peO) are taken for the case P=l

and N is taken to be that which gives the best speed-up ratios (i.e.

N=48 in the case of using the asynchronous method strategy 11 and N=120

for the other methods).

Now by examining the results in Tabels 5.13 and 5.14, we notice

that the best results are obtained when using strategy I of the parallel

A.G.E. method with the asynchronous approach, and we see that a linear

speed-up has been achieved and as many as N (the number of mesh points)

processors can be employed as an upper limit. The strategy I parallel

A.G.E. method with the asynchronous approach has made 17 accesses to

the shared data per 65 floating point operators (flops). From the

information in Table 4.15, the static shared data access overheads in

this algorithm is equal to,

* ~ * 100 = 0 27% 720 .0.

Also this method from its program made 1 access per (16*N) flops,
p

where N is equal to the number of points in each process. This results p

in a parallel path access loss equal to -0.087% since the parallel path

mechanism requires -1200 ~s. This loss is almost the same as the

parallel path access loss of Table 5.14.

386

From Figures in Tables 5.13 and 5.14 we conclude that the best

results are obtained when using the strategy I of the parallel A.G.E.

method with the asynchronous approach and the predicted results

obtained for the shared data and the parallel path are in almost

agreement with the experimental results obtained from the NEPTUNE system.

Processors (P) Shared Data Parallel Path

Program
Access OVerhead Access Overhead

No. Speed-up
Rate Amount Rate Amount

Parallel A.G.E. P~N O(P) 17:65 0.027% 1: (16*N) 0.087%
strategy I flops flops P
(synchronous)

Parallel A.G.E. P~N O(P) 17:65 0.027% 1:(16*N) 0.087%
strategy I flops flops p

(asynchronous)

parallel A.G.E. P~N O(P) 25:72 0.036% 1: (16*N) 0.08n.
strategy II flops flops P

(synchrono us)

Parallel A.G.E. P~N o (p) 25:72 0.036% 1: (16*N) O.oS7'/,
strategy II flops flops p

(asynchronous)

TABLE 5.13: Resource demands of the parallel A.G.E. algorithms

Speed-up Shared Data Parallel
Overhead Control

Program 2 3 4 (SOO) Overhead
(PCO)

Parallel A.G.E. 1.89414 2.70780 3.51360 0.043% 0.172%
strategy I
(synchronous)

Parallel A.G.E. 1. 93489 2.71429 3.53623 0.022% 0.086%
strategy I -
(asynchronous)

parallel A.G.E. 1.87552 2.68924 3.47222 0.074% 0.089%
strategy II
(synchronous)

Parallel A.G.E. 1.48005 2.06877 2.51810 0.090% 0.090%
strategy II
(asynchronous)

TABLE 5.14: Performance measurements of parallel A.G.E.
methods on the NEPTUNE system

Problem II

We now consider the nonlinear problem,

un = ! u 3

subject to the boundary conditions,

U (0) = 1, U (1) = 2 •

The exact solution for this problem is given by,

2 U(x) =
2-x

387

(5.4.24)

(5.4.25)

(5.4.26)

By following the finite difference procedure of section (5.1), equation

(5.4.24) can be approximated to obtain the difference equation (assuming

h
2

3 . T Ut ' 1.=1,2, IN I

which can be simplified to the form

h
2

2
-u. 1+2"(1+ -4 u.)-u. 1 = 0, i=1,2, ... ,N. 1.-' 1. 1.+

The boundary conditions are replaced by the values,

where,

u(O) = 1, u(N+l) = 2 ,

h = 1
N+l

Equation (5.4.28) can be written as:

and
4
2 2

4+h U'.
l.

I i=l,2, ... ,N.

The system (5.4.30) can be written in matrix notation as,

Au = b ,

or,

(5.4.27)

(5.4.28)

(5.4.29)

(5.4.30)

(5.4.31)

(5.4.32a)

Z -gl I ,
:,.gz ~ J.-g~

-g I Z
3 I

o-g4
-1-, , _,

I
I

-1-,
I
I
I

--1- --
-g3 I

I
I ,

-1-
1

I

I

1
1 -,-

,
, I

I, , I
" " I , "I

- - - - 1- __ I-
-gN-3 ,Z -gN-3

10
r-

I
l-gN-2 Z I-gN-Z ------,--
I -g Z -g
I N-ll N-l

, I_g Z
, I N

=

388

o

o
I ,
I

I

o

o

o

(5.4.32b)

We now split the matrix A into two matrices G
1

and G
Z

which have the

form,

-gl ,

I
-g 1 _ ~ . 1 _I -

I
1 ,

11 -g31
,
I

I I _g 11
-f- i .,-- 1_

\ 0
1 I' I

G
1

= I 'I 1

---I- _~I- - _~_
I I '1 -g N-l 1

101
1 l-gN-Z 1 I

-1- - -1- - - - - - -,-
I 'I 1
I I ,

r -
, (~)
IG

1
2

,
(5.4.33a)

389

1 I I I 1 1 I I I I 1
-r------ - -1- - - I- -'-T-.,.--r- - -1-

1 -g I
1 21 I 1 IG (1) 1 1 1 1

I-g 1 1 1 1 2 1 1 1 I - r -1 _L -- -- - -t- -1-I
G
(2)I- - r - -:-

1 "' 1
I

'\ 0 1
1

1 1 2 1 C 1 I

"' 1 I' G =
I "' I I = , I 2 I I 1 I , 1

-I---t-- -1- --+ - -'--1-'- --j N - 1-

1 I 0 I 1 -gN-21
lie 1 IG('21>1

1 I I-g 1 I
I 1 1 1 2 1

-r- -1-- N-l I -+ _1--I ---- - - -1- -1-
1 I I : 1

1 1 '1 I 1

(S.4.34a)
if N is even, and,

1 I 1 1
-r--r--- ---+---

11 -g2 1 I I

l-g3 1 1 I
-----j-----

1 1 ' 0,

,
-, ---

I '
G

1
= I 1 '\ I 1

10 'I I _L __ L ___ '_1 ____ 1_

I I 1 1 -gN-3 I

1 1 rg
N

-2 1 1 -+ ___ L ____ , ____ 1_ -

I 1 1 -g
1 I I 1 N-l
1 I-gN 1

I

=

~~ - - _1. ~ _: -l
I 1 I
G(l) I

1 1 1 1

-41 - ~ - -, 0 - + -
\ 1 1

, 1 1
, \ I I

1 \ I
- - - - -1- -1-
'0 r (!!..l)
I IG1

2
1
1 -1 ____ .L _ -I--

1 I (!!)
1G

1
2

I
I

(S.4.33b)

390

I ,
1

G (1) I I

2 I I I

I

1
1

--1- -1- _1_ - -:- - -1-
1

: G (2) I 1

2 1 _1- _

- - - + - --te-
I 1
1 ,

- - - r --,---
I

_ .1_

-1-
-gN-21

1 I
-1-

1 1

I'
I " I " - - T l)+

1 1
1 I

-+ - r
1

if N is odd. Now, for the case N even, we have,

G;". ~'" -':'-J

Gi'" [~"., :" J

, i=1,2, ... ,~ ,

N
i=l,2, ••• '2-1.

(5.4.34b)

(k+!) (k+l) . By applying the A.G.E. method, u and u can be determ1ned

successively by,

(k+!) - -1 - (k)
u = (Gl+rI) [£-(G2-rI)!=!. 1,

u (k+l) = (G
2
+rI) -1[£_(<;, -rI)!=!. (k+!) J

(5.4.35)

where r is the iteration parameter.

Clearly, (<;, +rI) , (G2 +rI) , (Gl-rI) and (G
2
-rI) can be determined

- -1 -- -1
and (Gl+rI) ,(G2-rI) are easily invertible, as shown below,

391

-gl 1 1 1

_g all I
_ 1. __ .J _ _ _ _ _ _ _ _I - - - ..j-

1 a -g31 1 1

1 _g al I r
- - - _1_4_ -r -;:: -, 0 - - -1- --

1 I"..... I I
1 1 "I 1

- - - - _I _ _ _ 1 ___ "_I - - _ I- - -
I iO la -gN-3 1

a

1 1 l-gN_
2

a 1
-- - --I +- ___ 1_ - --

I 1 1 I a -gN-1

where a=l+r,

- -1
(G

1
+rI) =

where

+--
1
1

1 1 I':'g a
1 I 1 N

N
, i=1,2 , '2

(5.4.36)

ad
N
2

(5.4.37)

where di = """""'2=----=1-

a -q2ig2i+1

, i=1,2, •.• ,~ -1.

392

(5.4.38)

(5.4.39)

393

I

1 1
T - --- -1-

1 S -g31 I

l-g4 S 1 1
----------- ---

(~-rI) =

where S = l-r.

(G -rI) u (k+!) =
1 -

I

I
-1- -

I
I

--I--
I
1
I

Su1-g1 u2

-g2ul+ Su2

Su3-g
3
u

4

-g4 ti3+Su4

I ,

I ,
1

""t

10
I

T

I
I
I
I
I

SUN_3-gN_3uN_2

-gN_2uN_3+ SUN_2

SUN_l-gN_luN

-g U l+Su N N- N

,
" , ,

10
I
I
L __ I
I (3 -gN-~

I I
_1-gN-2_S -.J __ _

I IS -gN-l
1
-g S

N

BU
1

BU2 -g2u3

-g3u2 +Bu3

(S.4.40)

1
(G -rI) u (k)

2 -

Bu4-g
4US

j-g5U4~BU5
= IBuN_41gN_4uN_3

-gN-3uN-4 +BUN_3

BUN_2 -gN-2 uN_1

-gN-l uN_2 +BuN_1

BUN

J
(5.4.41)

394

e
,

1 1 1
-l---r- -T --- r I e -92 1 1 1

1 -9 e 1 ___ 3_ L-
--1-

I " 1
0 1 (G

2
-rI) = 1

, (S.4.42) 1 "-
I 1

I I "I 1
-i -1- -1-

I
,

I e -9N- 21 ,0
I f-9N_

l
e I

-t- ...J +- - -,-
1 's ,

T It is clear from (S.4.32b) that, b=(9lu ,o, ... ,O,O,9Nu 1) then - ° N+

b_(G_rI)u(k+t) =
- 1 -

and

b-(G -rI)u (k) =
- 2 -

91 Uo 13 u l +gl u2

92
u

l 13 u2

g3u413 u3

94
u

3- u
4

I
I
I ,

9
N

-
2

u
N

_
3

"13 u
N

_
2

9N- l uN"13 uN_l I
9N

u
N+l +9NuN_l"13 u~

9
1

Uo -fl ul

g2 u 3"13 U
2

9 3
u

2 "13 u3

94
U

S"13 u4

95
u

4 "13"5
I
I
I

9N_2uN_l-euN_2

I 9N- l uN_2 -e u
N_l

~NuN+l-euN

(5.4.43)

(5.4.44)

Now, equation (5.4.35) can be written as,

~dl (gluO-aul)+gldl (g2u3-au2)

g2dl (gluO-aul)~dl (g2u3-au2)

~d2(g3u2-au3)+g3d2(g4u5-aU4)

g4d2(g3u2-au3)+~d2(g4u5-au4)
I .

(k+t) I

395

u = I (5.4.45a)

and,

(k+l)
u =

I

gN_2dN (gN-3UN~4-a~_3)+~dN (gN_2uN_l-auN_2)
21 21

~dN(gN-luN-2-auN~1)+gN_ldN(gN-uN+l-auN)
"2 "2
gNdN(gN-IUN_2-auN_l)~dN(gNuN+l-auN)

"2 "2
1
a(gluO-aul+glu2)

~di (g2ul-au2)+g2di (g3u4-au3)

g3di (g2 ul-au2)+ di(g3u4-au3)

~d2(g4u3-au4)+g4d2(g5u6-au5)
I
I
I
I

~dN (gN-2UN-3-auN_2)+gN_2dN (gN_luN-auN_l)
21 21

gN-ldN (gN-2UN_3-aUN_2)+~dN (gN_luN-auN_l)
21 21

(5.4.45b)

Problem II was solved on the NEPTUNE system using the strategy

of the parallel A.G.E. method with both sync~onous and asynchronous

approaches. In our implementation, the size of the problem was taken
-1

to be h =25,37,39,61 and 73 and the accuracy tolerance value (E)

-6
equal to (lxlO). Again, in all these parallel implementations the

number of parallel paths is always equal to the number of available

processors and the optimal iteration parameter (r) (equation (5.3.28»

396

was obtained from the experiments by choosing the one that gives the

best execution time.

Table 5.15 represents the results obtained from the implementation

of Problem II using the parallel A.G.E. method (strategy I) using the

asynchronous approach for different mesh sizes. From that table it can

be noticed that the time needed for the problem to converge is increased

as the number of mesh points is increased. This is due to the greater

number of computational operations required to solve the problem.

Also it can be seen that the best efficiency results (speed-ups, etc.)

is obtained when the problem size is equal to 60. While for the same

sizes as used in the asynchronous approach, the results of the

implementation of Problem II using ,synchronous parallel A.G.E. method

waS shown in Table 5.16. From that table it is clear that the time

required for the problem to c~nverge is increased as the problem size

is increased and this again is due to the more computational operations

required. Also, the best efficiency (speed-up) result is obtained when ,

the size of the problem is equal to 60.

It can be noticed from Tables 5.15 and 5.16 that the time required

for the problem to converge in the case of evaluating the points using

the asynchronous approach (Table 5.15) is less than that of the

synchronous approach (Table 5.16) and this is due to the synchronisation

overheads needed after each iteration in the synchronous implementation.

Also from these two tables it is clear that better efficiency can be

obtained by using the asynchronous approach rather than the synchronous

approach. This is because the speed-up ratios of the asynchronous

implementation is higher than that of a synchronous one. So we summarise

briefly that to solve problem II using the first strategy of the parallel

397

A.G.E. method the asynchronous implementation gives better results in

both the time needed for the problem to converge and the speed-up

ratios of the processors. This is due to the synchronisation overheads

incurred by the system in the synchronisation programming implementation.

The results obtained from the implementation of problem II (non-linear

problem) agree with that obtained from ~roblem I (the linear problem),

i.e. in both the synchronous and asynchronous implementations in that

better results are obtained with the asynchronous approach rather than

a synchronous approach.

Because of the way in which algorithm II was implemented, the

computational time carried out by each processor to evaluate any
"- "

component is approximately the same. Besides the computational time

in both the synchronous and asynchronous implementation there are an

extra overhead incurred by the system which degrades the parallel

algorithm performance. These overheads are the generation of the

parallel paths and the synchronisation at the end of each iteration.

These overheads may become important, as an example, from the results

in Tables 5.15 and 5.16 and the case when the size of the problem is

equal to 60 using 4 processors. In the asynchronous implementation the

problem converges after 605 iterations using a total of 4 parallel

paths by the first processor and 2 parallel paths by each other

processor. While in the case of the synchronous implementation, the

same problem requires 585 iterations to converge using a total of 1160

parallel paths by the first processor and 586 parallel paths by each

other processor, since a synchronisation process was used after each

iteration. Thus, it is clear the effectiveness of the overheads on

the performance of the algorithm and specially in the case of the
',:;I",h.-""..5 i"'pl I:.a:l;.,." f/«.u 'H ~n y"lol_ 1, ...,<! """ ,":!1l, .. t f,.."IIu. .b " it.. ~r< of 11,.

398

~ynchronous approach is better suited for the MIMD computer which

agrees with what was obtained from the experimental results.

As in problem I, for comparison reasons the parallel versions of

the Jacobi, Gauss-Seidel and Non-Linear Over-Relaxation (N.L.O.R.)

iterative methods (See Chapter 4) are implemented on the NEPTUNE

system and used to solve problem 11. In these methods the number of

parallel paths was taken to be equal to the number of available

processors and the accuracy tolerance value (E) is again taken to be

-6
equal to (lX10). In the parallel N.L.O.R. method the optimal E is

obtained from the experimental results by choosing the value which

gives the shortest time. The synchronous and asynchronous results for

problem 11 from the implementation of the parallel Jacobi method on the

NEPTUNE system are shown in Tables 5.17 and 5.18 respectively and the

results from the parallel Gauss-Seidel implementation for the same

problem with synchronous and asynchronous approaches are shown in

Tables 5.19 and 5.20. While the results obtained from the parallel

synchronous and asynchronous N.L.O.R. method are shown in Tables 5.21

and 5.22 respectively.

By comparing these 'results with those obtained from the parallel

A.G.E. method using strategy I with the synchronous and asynchronous

approaches (Tables 5.15 and 5.16) , it is clear that the time needed for

problem 11 to converge using the parallel A.G.E. method gives better

results in the case of the parallel Jacobi and Gauss-Seidel methods.

The number of iterations in the parallel Jacobi and Gauss-Seidel methods

are higher than that of the parallel A.G.E. method, which means more

total computational operations are required to achieve a solution.

399

Tire NO. of Total no. Effective no.
Size € r P (seconds) iterations

Speed-up of parallel of parallel
paths paths

24 lxlO-6 0.31 1 30.89 82 1.0 4 1

0.30 2 16.06 85 1.92341 4,2 1,1

0.31 3 11.14 89 2.77289 4,2,2 1,1,1

0.30 4 8.65 90 3.57109 4,2,2,2 1,1,1,1

36 lxl0-6 0.33 1 106.90 188 1.0 4 1

0.33 2 55.10 194 1.94012 4,2 1,1

0.30 3 37.57 197 2.84536 4,2,2 1,1,1

0.35 4 27.75 213 3.85225 4,2,2,2 1,1,1,1

48 l xl0-6 0.30 1 237.15 313 1.0 4 1

0.35 2 121.79 320 1.94720 4,2 1,1

0.31 3 83.11 325 2.85345 4,2,2 1,1,1

0.32 4 61.40 327 3.86238 4,2,2,2 1,1,1,1

60 l xlO
-6

0.39 1 556.19 585 1.0 4 1

0.39 2 282.33 592 1.97000 4,2 1,1

0.40 3 191.03 603 2.91153 4,2,2 1,1,1

0.37 4 143.33 605 3.88049 4,2,2,2 1,1,1,1

72 l xl0-6 0.37 1 890.91 781 1.0 4 1

0.40 2 455.36 800 1.95650 4,2 1,1

0.35 3 307.28 810 2.89934 4,2,2 1,1,1

0.35 4 231.49 817 3.85342 4,2 ,2 ,2 1,1,1,1 !
!

TABLE 5.15: The results from the parallel A.G.E. method using
strategy I with an asynchronous approach (Problem II)

Size

24

36

48

60

72

400

Time No. of Total no. iEffective no.
E r P (seconds) iterations Speed-up of parallel ~f parallel

paths paths

P10-6
0.31 1 31.12 82 1.0 166 82

0.31 2 16.70 82 1.86347 166,83 82,82

0.37 3 11.81 82 2.63506 166,83,83 82,82,82

0.31 4 9.30 82 3.34624 166,83,83,83 82,82,82,82

PlO
-6

0.33 1 107.31 188 1.0 378 188

0.33 2 56.63 188 1.89493 378,189 188,188

0.33 3 39.18 188 2.73890 378,189,189 188,188,188

0.33 4 29.99 188 3.57819 378,189,189, 188,188,188,
189 188

PlO -6 0.3 1 237.94 313 1.0 628 313

0.3 2 124.57 313 1.91009 628,314 313,313

0.3 3 85.42 313 2.78553 628,314,314 313,313,313,

0.3 4 65.65 313 3.62437 628,314,314, 313 ,313,313,
314 313

PlO
-6

0.39 1 558.91 585 1.0 1160 585

0.39 2 289.76 585 1.92887 1160,586 585,585

0.35 3 197.83 585 2.82520 1160,586,586 585,585,585

0.35 4 153.98 585 3.62976 1160,585, 585,585,585,
586,586 585

PlO-6
0.37 1 892.80 781 1.0 1564 781

0.36 2 471.22 781 1.89466 1564,782 781,781

0.36 3 321.43 781 2.77759 1564,782,782 781,781,781

0.36 4 247.55 781 3.60654 1564,782,782 781,781,781,
782 781

TABLE 5.16: The results from the parallel A.G.E. method using
strategy I with the synchronous approach (Problem 11)

Size

24

36

48

60

72

401

Time No. of Speed-up
TOtal No. Effective no.

P of parallel of parallel €
(seconds) iterations paths paths

P10-6
1 388.05 873 1.0 1748 873

2 206.37 873 1.88036 1748,874 873,873

3 142.78 873 2.71782 1748,874,874 873,873,873

4 114.80 873 3.38023 1748,874,874, 873,873,873,
874 873

PlO -6 1 1108.43 1732 1.0 3466 1732

2 582.40 1733 1.90321 3468,1734 1733,1733

3 411.23 1732 2.69540 3466,1733,1733 1732,1732,1732

4 318.16 1730 3.48388 3462,1731, 1730,1730,
1731,1731 1730,1730

1x10-6
1 2358.57 2849 1.0 5700 2849

2 1236.57 2849 1.90735 5700,2850 2849,2849

3 863.08 2849 2.73274 5700,2850, 2849,2849,
2850 2849

4 623.23 2849 2.78443 5700 ,2850, 2849,2849,
2850,2850 2849,2849

1xlO-6
1 4257.64 4169 1.0 8340 4169

2 2216.39 4167 1.92098 8336,4168 4167,4167

3 1446.17 3840 2.94408 7682,3841, 3840,3840,
3841 3840

4 1153.15 3887 3.69218 7776,3888, 3887,3887,
3888,3888 3887,3887

1xI0-6
1 6878.68 5666 1.0 11334 5666

2 3636.74 5666 1.89144 11334,5667 5666,5666

3 2539.53 5666 2.70864 11334,5667, 5666,5666,
5667 5666

4 1964.45 5666 3.50158 11334,5667, 5666,5666,
5667,5667 5666,5666

-
TABLE 5.17: The results from the parallel Jacobi iterative

method using the synchronous approach (Problem 11)

Size

24

36

48

60

-

72

402

P
Time No.of Speed-up

Total no. Effective no.
E (seconds) iterations of parallel of parallel

paths paths

PlO -6 1 368.32 873 1.0 4 1

2 205.65 866 1. 71900 4,2 1,1

3 137.29 880 2.68279 4,2,2 1,1,1

4 103.68 899 3.55247 4,2,2,2 1,1,1,1

l xl0-6 1 1052.91 1732 1.0 4 1

2 590.78 1650 1.78224 4,2 1,1

3 415.36 1813 2.53493 4,2,2 1,1,1

4 303.74 1765 3.46648 4,2,2,2 1,1,1,1

l xl0-6 1 2240.14 2849 1.0 4 1
\

2 1267.02 2660 1. 76804 4,2 1,1

3 881.99 2889 2.53987 4,2,2 1,1,1

4 654.94 2920 3.42037 4,2,2,2 1,1,1,1

l x l0 6 1 4040.33 4169 1.0 4 1

2 2284.03 3869 1.76895 4,2 1,1

3 1592.40 4218 2.53726 4,2,2 1,1,1

4 1230.85 4551 3.28255 4,2,2,2
! 1,1,1,1

lxlO-6 1 6521.2 5666 1.0 4 1

2 3856.73 5599 1.69086 4,2 1,1

3 2541.67 5651 2.56572 4,2,2 1,1,1

4 1937.01 5921 3.36663 4,2,2,2 1,1,1,1

TABLE 5.18: The results from the parallel Jacobi iterative method
using the asynchronous approach (Problem II)

Size

24

36

48

60

72

403

Time No. of
Speed-up

Total no. Effective no.
P (seconds) iterations of parallel of parallel e

paths paths

P10-6
1 215.97 442 1.0 886 442

2 115.120 442 1.87604 886,443 442,442

3 81.97 442 2.63474 886,443,443 442,442,442

4 64.61 441 3.34267 884,442,442, 441,441,441,
442 441

PlO -6 1 643.48 880 1.0 1762 880

2 336.72 879 1.91102 1760,880 879,879

3 237.22 878 2.71259 1758,879,879 878,878,878

4 183.67 878 3.50346 1758,879,879 878,878,878,
879 878

PlO -6 1 1393.41 1432 1.0 2866 1432

2 72 3.98 1431 1.92465 2864,1432 1431,1431

3 508.67 1432 2.73932 2866,1433, 1432,1432,
1433 1432

4 391.79 1432 3.55652 2866,1433, 1432,1432,1432,
1433,1433 1432

1x10-6
1 2540.06 2094 1.0 4190 2094

2 1317.62 2094 1.92776 4190,2095 2094,2094

3 923.77 2094 2.74967 4190,2095, 2094,2094,2094
2095

4 707.62 2094 3.58958 4190,2095, 2094,2094,2094,
2095,2095 2094

lX10 -6 1 4108.16 2849 1.0 5700 2849

2 2124.06 2849 1.93411 5700,2850 2849,2849

3 1495.25 2848 2.74747 5698,2849, 2848,2848,2848
2849

4 1139.58 2848 3.60498 5698,2849, 2848,2848,2848,
2849,2849 2848

TABLE 5.19: The results from the parallel Gauss-Seide1
iterative method using the synchronous approach
(Problem II)

Size

24

36

48

60

72

404

P
Time No. of Speed-up Total no. Effective no.

€ (seconds) iterations of parallel of parallel
paths paths

1xlO
-6

1 215.91 442 1.0 4 1

2 110.32 456 1.95713 4,2 1,1

3 76.45 490 2.82420 4,2,2 1,1,1

4 58.28 510 3.70470 4,2,2,2 1,1.1,1

LX10-6 1 642.89 880 1.0 4 1

2 330.71 907 1.94397 4,2 1,1

3 225.10 968 2.85602 4,2,2 1,1,1

4 170.00 989 3.78171 4,2,2,2 1,1,1,1

1xlO
-6

1 1389.98 1432 1.0 4 1

2 704.18 1457 1.97390 4,2 1,1

3 489.18 1587 2.84145 4,2,2 1,1,1

4 368.97 1653 3.76719 4,2,2,2 1,1,1,1
-6 1X10 1 2533.97 2094 1.0 4 1

2 1277 .62 2126 1.98335 4,2 1,1

3 888.22 2322 2.85286 4,2,2 1,1,1

4 667.07 2413 3.79866 4,2,2,2 1,1,1,1

1x10 -6
1 4104.43 2849 1.0 4 1

2 2074.51 2892 1.97851 4,2 1,1

3 1445.29 3188 2.83987 4,2,2 1,1,1

4 1070.06 3192 3.83570 4,2,2,2 1,1,1,1

TABLE 5.20: The results from the parallel Gauss-Seide1
iterative method using the asynchronous approach
(Problem Il)

-

405

Size P
Time No. of Speed-up Total no. Effective no.

e: w (seconds) iterations of parallel of parallel
paths paths

24 LX 10-6 1 1. 76 26.01 51 1.0 104 51

2 1.76 14.92 50 1. 74330 102,51 50,50

3 1.76 9.97 52 2.60883 106,53,53 52,52,52

4 1.76 7.55 49 3.44503 100,50,50, 49,49,49,49
50

36 l x10-6 1 1.83 58.33 77 1.0 156 77

2 1.83 31.12 77 1.87436 156,78 77,77

3 1.83 21.16 74 2.75662 150,75,75 74,74,74

4 1.83 16.10 73 3.62298 148,74,74, 73,73,73,73
74

48 l x10-6
1 1.87 97.78 99 1.0 200 99

2 1.87 51.85 98 1.88582 198,99 98,98

3 1.87 36.01 101 2.71536 204,102, 101,101,101
102

4 1.87 27.39 97 3.56992 196,98,98, 97,97,97,97
98

60 l xlO-6 1 1.9 148.81 123 1.0 248 123

2 1.9 80.56 123 1.8472 248,124 123,123

3 1.9 55.74 123 2.66972 248,124,124 123,123,123

4 1.9 42.69 122 3.48583 246,123,123, 122,122,122,
123 122

72 l XlO-6 1 1.91 217.86 148 1.0 298 148

2 1.91 112.05 146 1.94431 294,147 146,146

3 1.91 76.28 145 2.85606 292,146,146 145,145,145

4 1.91 58.35 144 3.73368 290,145,145, 144,144,144,
145 144

-
TABLE 5.21 : The results from the parallel N.L.O.R. iterative

method using the synchronous approach (Problem II)

406

Size P Time No. of Speed-up
Total no. Effective no.

e: w (seconds) iterations of parallel of parallel
paths paths

24 PLO -6 1 1.76 24.71 51 1.0 4 1

2 1.76 13 .88 53 1.78026 4,2 1,1

3 1.76 8.90 55 2.77640 4,2,2 1,1,1

4 1.77 7.41 62 3.33469 4,2 ,2 ,2 1,1,1,1

36 l xlO-6 1 1.83 54.33 75 1.0 4 1

2 1.83 30.37 82 1.78894 4,2 1,1

3 1.83 18.81 77 2.88836 4,2,2 1,1,1

4 1.83 17.82 99 3.04882 4,2,2,2 1,1,1,1

48 l xlO-6 1 1.87 94.00 99 1.0 4 1

2 1.87 53.17 111 1.76791 4,2 1,1

3 1.87 31.62 101 2.97280 4,2,2 1,1,1

4 1.88 27.16 119 3.46097 4,2,2,2 1,1,1,1

60 PLO
-6

1 1.9 142.80 123 1.0 4 1

2 1.9 72 .59 126 1.96721 4,2 1,1

3 1.9 50.39 130 2.83390 4,2,2 1,1,1

4 1.9 41.23 136 3.46350 4,2,2,2 1,1,1,1

72 lxlO -6
1 1.91 208.36 147 1.0 4 1

2 1.91 106.51 152 1. 95625 4,2 1,1

3 1.91 74.01 157 2.81530 4,2,2 1,1,1

4 1.92 54.85 155 3.79872 4,2,2,2 1,1,1,1

TABLE 5.22: The results from the parallel N.L.O.R. iterative
method using the asynchronous approach
(Problem Il)

()
Q)
Vl

C

W
~
I-

407

4500 Legend
0 Jacabi

!::,. Gauss-Seidel

4000 0 N.L.O .R.

V A.G.E.

3500

3000

2500

2000

1500

1000

2 3
NO OF PROCESSORS

FIGURE 5.9

The timing results of parallel Jacobi, Gouss_Seidel, N.L.O.R. and A.GE.
method using the synchronous approch for problem size equel to 60

4

()
Q)
III

C

W
~
I-

4500

4000

3500

3000

2500

2000

1500

1000

500

~
0

0 2

NO, OF PROCESSORS

FIGURE 5.10

3

Legend
o Jacabi

~ Gauss-Scidel

o N. L.O R.

'V A::..:., G::..:.,=-[__

408

IV

4

The timing results of parallel Jacobi, Gauss_Seidel, N.L.O R. and A.G.E.
methods using the asynchronous approch for problem size equel to 60

400

While the parallel N.L.O.R. method gives the shortest timing results

than those of the parallel A.G.E. method and this is because the

number of iterations needed for problem II to converge in the case of

parallel A.G.E. method is higher than that of parallel N.L.O.R. method

and more computational operations are required.

As an example, Figures 5.9 and 5.10 show the run time results

using the parallel A.G.E., Jacobi, ~auss-Seidel and N.L.O.R. methods

when the size of the problem is equal to 60 using the synchronous and

asynchronous approaches respectively.

A further analysis for the parallel A.G.E. method used to solve

problem II can be performed by following the steps used in problem I

using the system commands XPFCLS, XPFCLN and XPFCL. The resource

timings of the NEPTUNE system (Figure 4.15) and the experimental

results in Tables (5.15) and (5.16) are also used.

In fact Tables (5.23) give the mean rate of access to the shared

data and parallel path scheduling. It gives estimates of the potential

speed-up for using P processors, where N represents the problem size

to be solved. On the other hand, Table (S.~4) illustrates the results

obtained when the algorithms were run on the NEPTUNE system. The

parallel control aCcess overheads (PCO) are taken for the case p=l

and N is taken to be that which gives the best speed-up ratios (i.e.

N=60) •

From the results in Tables (5.23) and (5.24), we notice that the

parallel A.G.E. method using the asynchronous approach gives better

results than that of the synchronous approach and we see that a linear

speed-up has been achieved and as many as N (the number of mesh pOints)

410

processors can be employed as an upper limit. From Table (5.23) the

parallel A.G.E. method with the asynchronous approach has made 90

accesses to the shared data per 143 floating point operators (flops).

Also from the information in Table (5.23), the static shared data

access overheads in this algorithm is equal to:

"""7.;:1~;, 0.75 * 100 = 0.06%
(143) 720

90

This method from its program also made 1 access per (16*Np) flops,

where Np is equal to the number of points in each process. This

results in a parallel path access loss equal to 0.087% since the

parallel path mechanism requires -1200~s.

To conclude we can say that from Problem 11 and from figures in

Tables (5.23) and (5.24) the best results are obtained when strategy

1 of the parallel A.G.E. method is used with the asynchronous approach.

Also the experimental results obtained from the NEPTUNE system shows

that in the case of the asynchronous approach the parallel control and

shared data overheads are less than that of the synchronous approach.

Processor (P) Shared Data Parallel Path
Program

No. Speed-up Access Overhead Access Overhead
rate amount rate amount

Parallel A.G.E.
P~N O(P)

91:152
0.06% 1: (16* 0.087% synchronous flops Np)

flops

Parallel A.G.E.
P~N O(P) 90:143 0.06% 1: (16* 0.087%

asynchronous flops Np)

flops

TABLE 5.23: Resource demands of the parallel A.G.E. algorithms

411

Speed-up Shared data Parallel control
Program overhead

2 3 4 (SDO)

Parallel A.G.E. 1.92887 2.82520 3.62976 0.23% synchronous

Parallel A.G.E. 1.97000 asynchronous 2.91153 3.88049 0.17%

TABLE 5.24: Performance measurements of the parallel A.G.E.
methods on the NEPTUNE system

overhead
(peo)

1.48%

0.05%

412

5.5 CONCLUSIONS

In this chapter the parallel A.G.E. methods have been developed

from the basic A.G.E. theory and the parallel versions have been

implemented on the NEPTUNE system. The implemented parallel A.G.E.

methods have been used to solve two types of boundary value problems.

The first is of linear type while the other type is the non-linear

problem. For the linear problem two strategies of the parallel A.G.E.

methods have been used to solve the problem and with each strategy

synchronous and asynchronous approaches have been used. For Problem I,

the best results were obtained when it is solved using Strategy I with

the asynchronous approach. This is due to the total computational

operations in Strategy II being higher than that of Strategy I and also

there is the case that the old values are used while evaluating the

points using Strategy II. While in the second example (the non-linear

problem) only Strategy I was used and in all the parallel implementations

the asynchronous approach gives better results than the synchronous

approach and this is due to the synchronisation overheads occurring at

the end of each iteration. Also from the experimental results it can

be seen that the shared data overhead and the parallel control access

overhead in the case of the asynchronous implementations are less than

that of the synchronous implementation. Also by comparing the results

obtained from both Problems I and II it can be noticed that a greater

speed-up is obtained in Problem II and we can conclude that the amount

of computations carried out over the total overheads in Problem II

(the non-linear problem) is greater than that of Problem I (the linear

problem). Also from the way in which the evaluation of the subsets is

413

carried out by each processor we can generally say that where the

timing results are concerned it does not matter whether the algorithm

is synchronously or asynchronously implemented. Since we decompose

the problem into almost equal subsets and assign each one to different

processors, this means that the amount of work carried out by each

processor to evaluate any component is approximately the same.

Finally to conclude this chapter it can be seen that the parallel

A.G.E. method is suited for the parallel implementation on a MIMD

computer which results in the almost linear speed-ups obtained from

their implementation.

414

CHAPTER SIX

PARALLEL SORTING AND SEARCHING ALGORITHMS

415

6.1 INTRODUCTION

Sorting is known as the process of arranging items in a predefined

order. The arrangements of items is undertaken so that calculations

which require data in a particular sequence can operate efficiently,

so that output reports can be meaningfully presented. There are many

"natural" orders, such as alphabetic ordering for a list of names, and

ascending or descending values for a list of numbers. A high percentage

of computer resources are utilized for sorting and it is a time consuming

operation, even when a very efficient sorting algorithm is used. Many

serial sorting algorithms have been developed and it was found that the

optimal time required to sort N items is roughly proportional to O(NlogN)

(Knuth [1973]). However, the introduction to parallel processing has

added a new dimension to research on sorting algorithms. With the use

of multiple processors, sorting times of N items can be reduced, at

least in theory to O(logN).

During the past decade, numerous results on parallel sorting have

been published. In particular, Batcher's [1968] exhibited a complexity

2
of O(log N); later, several optimal parallel sorting algorithms, of

complexity O(logN) were developed for a theoretical parallel processor

model (Hirschberg [1978]) and Preparata [1978]). The most striking

property of all these algorithms is perhaps, the very large number of

processors that they require. Typically, N processors are required to

sort N elements.

Two factors that may affect the performance of a sorting algorithm

are the number of comparisons and the conditionally exchange of data

during each time unit. So parallelism may be exploited by performing

more than a single comparison at a time and to move many keys

416

simultaneously during each unit of time. Since an optimal serial

algorithm sorts N keys in time o (NlogN) , the optimal speed-up would be

achieved when, using N processors, N keys are sorted in time o (logN) •

One way of writing a parallel sort algorithm is to parallelis,e a

well-known optimal serial algorithm. On the other hand, parallelization

of straight sorting methods (one that requires O(N
2

) co~parisons) seems

easier, but it does not lead to very fast parallel algorithms. By

performing N comparisons instead of 1 in a single time unit, the

. 2
execution time can be reduced from O(N) to O(N). An example for this

kind of parallelization is a well-known parallel version of the common

bubble-sort, called the odd-even transposition sort (Knuth [1973],

Baudet and Stevenson [1978]). Partial parallelization of a fast serial

algorithm can also lead to a parallel algorithm of order O(N). For

example, the serial tree selection sort can be modified so that all the

comparisons at the same level of the tree are performed in parallel

(Bentley [1979]).

An improvement to the above approach has been made to achieve a

higher performance. The first major improvement was reached with sorting

networks, that sort N numbers in time 10g2(N) and thus, achieve a speed-

up of N/log(N) (Batcher [1968]). Later, Preparata [1978] showed that

the optimal bound O(log(N» and speed-up (N) can be achieved with a

theoretical model of n processors accessing a large shared memory. For

a parallel SIMD type machine a new family of sorting algorithms has been

developed by Hirschberg [1978] which shows that N keys can be sorted in

, l+l/K ,
time O(KlogN) wLth N processors, where K LS an arbitrary integer

greater than or equal to 2 using random access capability to a common

memory. Thomas and Kung (1977) presented two algorithms for sorting N
2

417

elements on an (NxN) mesh connected processor array which requires O(N)

routing and comparison steps, where the best previous algorithms take

a time of O(NlogN). While Nassimi and Sahni [1979] developed an O(N)

2
algorithm to sort N elements on an Illiac IV-like (NxN) mesh connected

processor array (SIMD type machine). This algorithm sorts the N
2

elements into row-major order and snake-like row-major order. Another

class of parallel sorting algorithm based on enumeration have been

developed where N elements are sorted with o (logN) • Sorting is performed

by computing in parallel the rank of each element, and routing the elements

to the location modified by their rank. The first enumeration type

parallel sorting is a modified sorting network scheme, that sorts N

elements with O(N
2

) processing elements. By embedding this type of

network in a more general multiprocessor model, where processors have

access to a large shared memory, algorithms that are as fast, but which

require only O(N) processors were obtained. Muller [1975] proposed a

very fast sorting network parallel algorithm which was the first to use

an enumeration scheme for parallel sorting. The idea of sorting by

enumeration was exploited to develop other very fast parallel sorting

algorithms (Hirschberg [1978] and Preparata [1978]) which improve on

Muller's result by reducing the number of processing elements.

In addition to the idea of using enumeration, optimal parallel

sorting algorithms use a fast merging procedure. In a study of

parallelism in the comparison problem valiant [1975] presents an

inductive algorithm that merges two sorted sequences of n and m elements

(nxm) with (nm) processors in 210g logn+O(l) comparison steps. On the

other hand, Gavril [1975] proposed a fast merging algorithm that solves

the problem of merging two sorted sequences of length n and m with a

.

418

smaller number of processors p~n~m. This algorithm is based on binary

insertion, and requires only 210g(n+I)+4(n/p) comparisons when n=m.

Both Valiant's and Gavril's algorithms assume a shared memory model.

That is, all the processors utilized can simultaneously accesS elements

of the initial data, or intermediate computation results.

For all the parallel sorting algorithms described so far it is

assumed that the problem size is limited by the number of processors

available. Thus, these algorithms implicitly assume that the number of

processors is very large. Typically, N processors are utilized to sort

N records which is impractical. However, for a general purpose sorting

algorithm, it is desirable to set a limit on the number of processors

available, so that the number of records that can be sorted will not be

bounded by the number of processors. Furthermore, it must be possible

to sort a large array with a relatively small number of processors.

When P processors are available, and N records are to be sorted, one

possibility is to distribute the N records among the P processors so

that a block of M= IN/PI records is sorted in each processor's local

memory. The block residing in each processors memory constitutes a

sorted sequence of length M and the concatenation of these local

sequences constitutes a sorted sequence of length N.

Algorithms to sort large arrays of files that are initially

distributed across the processor's local memories, can be constructed

as a sequence of block merge-split steps. During a merge-split step,

a processor merges two sorted blocks of equal length (that are produced

by a previous step), and splits the resulting block into a "higher" and

a "lower" block, that are sent to two destination processors. Two

merge-split step ways have been proposed, one is based on a 2-way merge

419

(Baudet [1978]) and the other based on a bitonic merge (Hsiao [1980]).

In this chapter, two sorting algorithms have been implemented in

parallel on the NEPTUNE system with different approaches. These

algorithms are the parallel shell sort and the parallel digit sort

methods. Two parallel merging algorithms are used incorporated with

the sorting algorithms, these are the 2-way merge and the odd-even

reduction merge methods. Besides the parallel sorting algorithms, two

parallel searching algorithms are also implemented on the NEPTUNE system.

The results of all sorting and searching algorithms are studied and

compared from the efficiency point of view and whether all the

processors are fully used. The performance analysis of these algorithms

is also studied.

420

6.2 THE SORTING ALGORITHMS

In this section, two parallel sorting algorithms are implemented

on the NEPTUNE system and used to sort a set of N items in ascending

order. The first parallel sorting algorithm is developed from the

sequential shell sort, while the second one is developed from the
~ -

sequential digit sort.

Generally, the parallel sort implementation is carried out by

splitting the input set N into M subsets which are sorted in parallel

where M is greater than or equal to P, the number of available

processors. Two approaches are used to implement the parallel shell

sort method. In the first approach the final sorted set is obtained

by using the parallel sorting algorithm only, while in the second

approach each M subsets is sorted independently then followed by a

parallel merge algorithm to obtain the final sorted set.

6.2.1 The Shell Sort Method

This method, also known as the diminishing inarement sort (Knuth

[1973]) is a simple sorting algorithm that requires no extra storage

was developed by D.L. Shell [1959]. It consists of a number of passes

over the input (unsorted) set and in each pass it consists of a number

of comparisons of two keys and an interchange is carried out if they

are out of order. In this way, low keys are moved towards the beginning

of the list and high keys are moved towards the end, and an ordered

list will be finally produced. During the first pass, keys relatively

far apart are compared, in order to move the low ones that were

initially near the end of the list to the beginning, and vice versa.

Subsequent passes use a steadily decreasing increment between the

421

compared keys. While the last increment used must be 1.

TO sort the sequence x
l

,x2 , ••• ,x
n

using Shell's method, a number

d
l

(depending on n) is chosen and each of the subsequencies xi' xi+d
l

,

xi+2dl, •.• ,xi+nidl corresponding to i=1,2, .•• ,d
l

, where n i is the

largest integer such that nidl~n, is sorted by comparing xi with xi+dl ,

and are transposed if necessary. Then x
i

+3d
l

is compared with x
i

+2d
l

,

and if a transposition occurs, x
i

+3d
l

is compared with xi+d
l

• Then

x
i

+4d
l

is dropped down one position at a time into its proper place,

and so on up to xi+nid
l

• Then a number d
2

<d
l

is chosen and the

procedure is repeated on the sequences xi' xi +d2 ,.·· Then d 3<d2 is

chosen and the procedure finally repeated with d =1. This last pass
m

is simply by comparing two adjacent elements at a time and an inter-

change occurs as previously if they are out of order, and so completes

the sort.

The running time of Shell's method depends on the optimal sequence

d
l

,d
2

, •.• ,d
m

, which is still an open question. The one proposed by
n d

i
_

l Shell [1959], is that dl=[Z] and d
i

=[---2-] , where [] means the integral

k
suggest the form d

l
=2 +1, where part. Papernov and Stasevich [1965]

2k 2k+l [di]
<n~ , and d i +l = :1 . There are many other suggestions for the

choice of the d's and in all these methods the times required range

2 2
from O(n } to O(nlog n}, which depends on the choice of the increment

d (Knuth [1973]), Papernov and Stasevich [1965]}. In general, the

running time for Shell's sorting method is of order N
3

/
2

as an upper limit.

Two parallel versions of the Shell sort algorithm were implemented

on the NEPTUNE system. In version I, the original set of N elements is

partitioned into d subsets, each containing the elements that are d

positions apart. Thus, the first d elements are allocated into the first

422

subset and the next d elements into the second subset and so on.

We assume d~P. where P is the number of available processors and more

than one subset may be assigned to each processor. where P subsets can

be sorted in parallel (i.e. at the same time) using the sequential

algorithm described previously. In Version I we choose a sequence of

distance d
l

.d2 •..•• dm• such that dm=l and the sorted set is obtained

when all the dOs are applied to the input set. starting with d
l

and

terminated by using d. Also for Version I of the parallel Shell sort
m

two approaches are used for its implementation on the NEPTUNE system.

In the first approach. the parallel Shell sort algorithm

on the NEPTUNE system (Program 6.1) by taking dl=[~1 and

was programmed
d, 1 1.-

di =[-2-1 •

While in the second approach. the algorithm is programmed by taking

k di k k+l
d

l
=2 +1 and di=[:21. where 2 <n~2 (Program 6.2).

For the total complexity of the Shell sort algorithm when run on

both the sequential (one processor) and the parallel machine (p processors)

Papernov and Stasevich [19651 and Knuth [19751 shows that the total

running time Tl of the algorithm which is composed of both the total

comparisons and the total number of exchanges is equal to,

T = K N3/ 2
1

where K is a known constant and is assumed to be 0(1) •

(6.2.1)

In our implementation of the Shell sort, the set to be sorted is

partitioned into subsets and each subset is assigned to a parallel path.

Thus if we generate M paths (M equal to the distance of comparison)

N
with M~P, then in each subset (path) (M) elements are sorted. If all

the paths are carried out on one processor then by applying equation

(6.2.1), the total complexity for the Shell algorithm is equal to,

T = M x (~) 3/2
IS M (6.2.2)

423

On the other hand, when this algorithm is run in parallel using

p processors, rMl
Ipl

paths have to be carried out by each processor.

Thus,

r~ (.'i) 3/2
TpS = x (6.2.3) Ip M

~ (~) x (.'i) 3/2 +1-P M

The efficiency of the Shell sort algorithm when applied on a parallel

computer can be measured by calculating the speed-up ratio SpS(M) with

M subsets. Therefore,

(6.2.4)

1 - --) ,
TpS

= P(l

which is of O(p). This means that the optimal linear speed-up is

achieved for this implementation.

The experimental results obtained from the parallel Shell sort

(Version I) with different sizes on the NEPTUNE system using the first

and second approaches are shown in Tables (6.1) and (6.2) respectively.

The efficiency E in the tables are obtained theoretically from the
p

formula,

E
P

= Speed-up
P

From these results it can be noticed that in the second approach the

efficiency increases as the size of the input data increases. While

in the first approach the efficiency is generally the same. Within

each size (N) the efficiency decreases as the number of processors

increases and this is due to the reduction in the usage of processors.

It is clear from these results that the second strategy gives better

results from the first one. This is because the time taken to sort

the input set of numbers using the second strategy is less than that of

using the first strategy and the speed-up factors of the second strategy

424

is higher than that of the first strategy. This is due to the way in

which the distance of comparisons is chosen in the first strategy, as

in the final pass of the first strategy is entered, there are two

partitions, that of the even positions, and that of the odd positions.

Each partition is individually sorted, but there is no meaningful order

relative to each other. This condition will always occur when N is a

power of 2, because the distance is always even. Thus, there will

never be any comparisons between odd-numbered elements and even-numbered

elements. As a consequence, the final pass must merge two independent

strings. While this is not the case in the second strategy which means

fewer passes will be required and better results are obtained. It is

also clear from the results in Tables (6.1) and (6.2) that the values

obtained from the parallel sort algorithm is not very efficient. The

factor that decisively degrades its performance is the last pass, when

the increment is 1, which dominates the running time. During this pass

one of the processors assigned to the task performs the straight

insertion sorting on the whole set of numbers, and the remaining

processors are idle. Another factor that affects the performance of

this algorithm is due to the overheads incurred by the system due to the

generation of a large number of parallel paths. In this implementation

the total number of generated parallel paths is equal to the total

distances of comparisons (d.), which varies from pass to pass and
l.

depends on the size of the input data as shown in Tables (6.1) and (6.2).

Figure (6.1) shows the graphical representation of the experimental

timing results obtained from the implementation of Version I using the

first and second approach with data size equal to 1024.

In an effort to overcome this costly last step and increase the

Size
No .of Time Total No.

(N) Processors (sec.)
Speed-up of Parallel

(p) Paths

256 1 3.00 1.0 265

2 2.07 1.44928 142,124

3 1.88 1.59575 102,82,83

4 1.72 1. 74419 78,63,62,65

512 1 8.34 1.0 522

2 5.70 1.46316 272 ,251

3 5.19 1.60694 188,166,170

4 4.77 1. 74843 145,124,132,
124

768 1 13.76 1.0 777

2 9.52 1.44538 399,379

3 8.60 1.60 271 ,248 ,260

4 8.25 1.66788 209,186,193
192

1024 1 22.41 1.0 1035

2 15.88 1.41121 525,511

3 14.31 1.56604 361,339,337

4 13.60 1.64779 273,253,253,
259

TABLE 6.1: The results of the implementation of Shell sort
(Version I, first approach)

,

425

Efficiency
(E)

p

1.0

0.73

0.53

0.44

1.0

0.73

0.54

0.44

1.0

0.72

0.53

0.42

1.0

0.71

0.52

0.41

426

No.of Size Time Total No.
Efficiency

(N) Processors Speed-up of Parallel
(P) (sec.)

Paths

256 1 2.06 1.0 142

2 1.32 1.56061 78,65

3 1.03 2.00 56,45,43

4 0.91 2.26374 48,33,31,33

512 1 4.8 1.0 272

2 2.96 1.62162 142,131

3 2.21 2.17195 100,88,86

4 2.0 2.40 81,63,64,67

768 1 8.07 1.0 530

2 4.87 1.65708 273,258

3 3.55 2.27324 184,175,173

4 3.22 2.50621 145,130,127,
131

1024 1 11.18 1.0 530

2 6.72 1.66369 271 ,260

3 4.85 2.30516 189,173,170

4 4.32 2.58796 147,131,127,
128

TABLE 6.2: The results of the implementation of Shell sort
(Version I, second approach)

(E)
p

1.0

0.78

0.67

0.57

1.0

0.81

0.72

0.60

1.0

0.83

0.76

0.63

1.0

0.83

0.77

0.65

0
Q)

VI

.S

W
~
I-

24

Legend
v lit. Approac h

~ 2nd. ~rOJ!Ph

20

16

12

8

4

o 2 3
Nn. 'Or PROCESSORS

fiGURE -6.1
The experimental timing results obtained from the paralle l
shell sort (Version I) using the first and second strategy
with data size 1024 .

4

427

428

efficiency of the algorithm, we suggest a new version of implementing

the parallel Shell sort by incorporating the merge algorithm with the

sort procedure. In this version (Version II) the sort algorithm is

implemented in two stages, in the first stage the sort procedure is

applied, while in the second stage the merge algorithm is followed and

it is always in that order. In Version II, the input set is divided

into M subgroups where M~P, and P is the number of available processors,

then each subgroup is assigned to a parallel path which runs

simultaneously. In the first stage of this version each processor

will independently sort its subgroup using the parallel Shell sort

algorithm. When all the subgroups are sorted, the second stage is

started (the merge stage) by merging the sorted subgroups to form the

final sorted list using the parallel merge algorithm.

The implementation of version lIon the NEPTUNE system is carried

out by using the parallel Shell sort algorithm that gives the better

results in Version I (i.e. the second approach). While two parallel

merge algorithms are incorporated with the parallel Shell sort algorithm,

these are the parallel 2-way merge and the parallel odd-even merge

algorithms which are described below.

The Parallel 2-Way Merge Algorithm

In this parallel merge algorithm, the following sequential 2-way

merge procedure proposed by Knuth [1973, pp.159] is applied.

Given two ordered subsets xl~x2~ ••• ~xm and Yl~Y2~ .•• ~yn into a

Single set zl~z2~ ••• ~z m+n

(1) Set i~l, j~l, k~l,

429

(2) If x, ~y, ,
~ J

goto step (3) , otherwise goto step (5) •

(3) Set zk+xi' k+k+l , i+i+l. If i~m, goto step (2) •

(4) Set (zk'···'z)+(y" ••• ,y) m+n ~ n
and terminate the algorithm.

(5) Set zk+Yj' k+k+l, j+j+l. If j~n, goto step (2) •

(6) Set (z , ••• ,z) ... (x, , ••• ,l<)
k m+n ~ m and terminate the algorithm.

The parallel implementation of the 2-way merge algorithm is carried

out by, applying the above sequential algorithm on M sorted subsets of

N
size (M) each. By supposing that N is divisible by M where M is a

power of 2. The parallel 2-way merge algorithm can be completed in

log2M steps where the parallelism is introduced within each step and

not amongst the steps as shown in Figure 6.2.

2 Subsets 1
Steps -,..... -.--

1

2

3

3 4 5 6 --=r- -r-

FIGURE 6.2: The parallel 2-way merge algorithm

7 8 -:-

From Figure 6.2 it can be seen that each step can be performed

in parallel where each two neighbouring subsets are merged by one

process (or path) to form a subset of size (~M). Also it can be

realized from Figure 6.2 that the number of subsets to be merged is

halved in each successive step until the final step where only two

430

subsets are to be merged where only one processor is required.

The parallel 2-way merge is used to merge subgroups that are

sorted previously USing the parallel shell methods and the implementation

of the parallel shell sort algorithm with the parallel 2-way merge is

programmed on the NEPTUNE system as shown in Program (6.3).

For the complexity of the parallel 2-way merge algorithm, Evans and

Yousif [1985] shows that the total complexity when one procesor is used

to merge M subsets with size (~) each is,
M

TlM = NlogM - M+l • (6.2.5)

While for the parallel implementation of the 2-way merge using P

processors and M subsets where M~, the total complexity is,

N M 2N M M
TpM ~ p log(p) + l? (P-l) - p + 1 + log(p) • (6.2.6)

NOW, for Version 11 of the parallel shell sort algorithm using

the parallel 2-way merge (Program 6.3) , we can obtain the total

complexity which represents both the sorting and merging complexities.

The complexity of the parallel shell procedure on one processor is given

by T1S in equation (6.2.2), therefore, the total complexity Tl of

Program 6.3 in one processor is given by:

Tl = T1S + T1M

(N) 3/2
= M. M + N logM-M+l • (6.2.7)

To obtain the total complexity Tp of Program 6.3 when P processors

are used is obtained from equations (6.2.3) and (6.2.6). Thus,

Tp = TpS + TpM

~ (~). (*) 3/2 + ~log (~) + 2: (P-l) - ~ + log (~) +2 • (6.2.8)

The speed-up ratios for the merge algorithm alone (S (M)) and the
merge

total speed-up for both the sort and the merge algorithms together

(S t 1 (M» can to a
now be represented,

S (M) ~
merge

TIM

N M 2N
plog(p) + p(P-l)

M M
- - +log(-) +l

P P

431

P (NlogM - M+l)
~ M M • (6.2.9)

Nlog(p)+2N(P-l)-M+log(p)+P

At the same time, the total speed-up is measured as:
Tl

Stotal (M) ~"or
p

M (~)3/2 + NlogM - M+l ·M
M N 3/2 N M 2N M M

(p) .(-M) + plog(p) + p(P-l) - P+log(p)+2

N 3/2
M. (11) +NlogM-M+l

:;: P. (N 3/2 M M)
M. (11) +Nlog (p) +2N (P-l) -M+Plog (p) +2p

(6.2.10)

In our implementation the input size N is partitioned into M

subgroups with size (*) each, where M>.P (P is the number of co-operating

processors). From the results obtained in Table (6.3) it is clear that

the sorting speed-up is O(p). We also notice that the maximum total

speed-up occurs when M=P where the total speed-up is less than the

"linear speed-up". This is due to data communication, parallel path

allocation and shared data requirements. It can also be seen that the

speed-up decreases as M increases. This is due to the synchronisation

involved at the end of the parallel paths, when M>P. On the other hand,

the merge speed-up increases as M increases and the maximum speed-up

occurs at M=256 (which is the largest number of paths we generate on

the NEPTUNE system in our experiments). This increase is due to the

432

nature of the algorithm that halves the number of paths in each step.

M
This means that in the first log(p) steps all the processors are

M
active and contribute to the solution of the problem and after log(p)

steps the number of processors is halved until the final step is

reached where only one processor is active while the other processors

remain idle. Thus, if M»P, then log(~) is large, hence all the

processors are significantly active. Although the timing results

increase as M increases in the merge algorithm the speed-up results

are improved for large M. Table (6.4) represents the experimental

results with total efficiency (E) of Version II of parallel shell sort.
p

From both Tables (6.3) and (6.4) it can be seen that the best total

sort timing results are obtained when the input set N is partitioned

into M subsets where M=64. The efficiency in Table (6.4) decreases as

the number of processors increases and this is due to the reduction in

the usage of the processors in each step of the 2-way merge algorithm

and sorting procedure. The inequality (6.2.10) is used to calculate

the total theoretical speed-up values and these values are tabulated

in Table (6.5) with its corresponding experimental results in Table

(6.4). The mismatching in the results (especially for large M) of

Table (6.5) is due to the fact that the inequality (6.2.10) for the

theoretical speed-up does not include the parallel allocation or data

communication overheads.

An alternative implementation of Version II parallel Shell sort

algorithm on the NEPTUNE system is carried out by using the odd-even

reduction merge instead of the 2-way merge.

433

No. of No.of Time for Time for Total Speed-up Speed-up Speed-up
Processors Paths Sorting Merging time for for for both
(p) (M) (sec) (sec) (sec) sorting merging parts

1 2 9.10 0.84 9.94 1.0 1.0 1.0

2 2 4.62 0.85 5.47 1.96970 0.98824 1.81718

1 4 7.45 1.66 9.11 1.0 1.0 1.0

2 4 3.79 1.29 5.08 1.96570 1.28682 1.79331

4 4 1.94 1.27 3.21 3.84021 1.30709 2.83801

1 8 6.16 2.49 8.65 1.0 1.0 1.0

2 8 3.14 1. 70 4.84 1.96178 1.46471 1.78719

3 8 2.2 1.66 3.86 2.80000 1.50000 2.24093

4 8 1.61 1.49 3.10 3.82609 1.67114 2.79032

1 16 4.72 3.29 8.01 1.0 1.0 1.0

2 16 2.41 2.11 4.52 1.95851 1.55924 1.77212

3. 16 1.69 1.99 3.68 2.79290 1.65327 2.17663

4 16 1.24 1. 70 2.94 3.80645 1.93529 2.72449

1 32 3.61 4.08 7.69 1.0 1.0 1.0

2 32 1.85 2.53 4.38 1. 95135 1.61265 1.75571

3 32 1.30 2.30 3.60 2.77692 1.77391 2.13611

4 32 0.95 1.92 2.87 3.80000 2.12500 2.67944

1 64 2.62 4.87 7.49 1.0 1.0 1.0

2 64 1.35 2.93 4.28 1.94074 1.66212 1.7500

3 64 0.95 2.57 3.52 2.75790 1.89494 2.12784

4 64 0.71 2.15 2.86 3.69014 2.26512 2.61888

1 128 1.82 5.70 7.52 1.0 1.0 1.0

2 128 0.94 3.39 4.33 1. 93617 1.68142 1.73672

3 128 0.66 2.85 3.54 2.63768 1. 96552 2.12429

4 128 0.50 2.38 2.88 3.64000 2.39496 2.61111

1 256 1.25 6.5 7.75 1.0 1.0 1.0

2 256 0.65 3.84 4.49 1.92308 1.69271 1.72606

3 256 0.48 3.29 3.77 2.60417 1.97568 2.05570

4 256 0.35 2.63 2.98 3.57143 2.47148 2.60067

TABLE 6.3: The experimental results of shell sort algorithm using
the 2-way merge algorithm (Version II) for input size 1024.

Size Processors Parallel Total Total Total Total
(N) (p) Paths Time Speed-up parallel parallel

(M) (sec) paths for paths for
sorting merging

1024 1 2 9.94 1.0 5 4

4 9.11 1.0 7 7

8 8.65 1.0 11 12

16 8.01 1.0 19 21

32 7.69 1.0 35 38

64 7.49 1.0 67 71

128 7.52 1.0 131 136

256 7.75 1.0 259 265

2 2 5.47 1.81718 4,2 4,1

4 5.08 1. 79331 5,3 6,2

8 4.84 1. 78719 7,5 9,4

16 4.52 1.77212 11,9 14,8

32 4.38 1.75571 19,17 23,16

64 4.28 1. 75000 35,33 40,32

128 4.33 1.73672 68,64 73,64

256 4.49 1.72606 134,126 138,128

3 8 3.86 2.24093 6,3,4 9,3,2

16 3.68 2.17663 8,6,7 13,5,5

32 3.60 2.13611 14,12,11 19,12,9

64 3.52 2.12784 25,22,22 32,21,20

128 3.54 2.12429 46,44,43 55,42,41

256 3.77 2.05570 92,84,85 100,83,84

4 4 3.21 2.83801 4,2,2,2 6,1,1,2

8 3.10 2.79032 5,3,3,3 8,2,2,3

16 2.94 2.72449 7,5,5,5 11,4,4,5

32 2.87 2.67944 11,9,9,9 16,8,8,9

64 2.86 2.61888 19,17,1",1, 25,17,16,
17 16

128 2.88 2.61111 35,33,33, 42 ,32,32 ,
33 33

256 2.98 2.60067 69,65,63, 76,74,63,
65 65

TABLE 6.4: The experimental results with total efficiency of
parallel shell sort (Version II with 2-way merge)

434

Total
efficiency
(E)

p

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

0.91

0.90

0.89

0.89

0.88

0.88

0.87

0.86

0.75

0.73

0.71

0.71

0.71

0.69

0.71

0.70

0.68

0.67

0.65

0.65

0.65

Size Processors Paths Theoretical Experimental
(N) (P) (M) Speed-up Speed-up

1024 2 2 1.86172 1.81718

4 1.81383 1. 79331

8 1.75518 1. 78719

16 1.68778 1. 77212

32 1.61428 1. 75571

64 1.54229 1. 75000

128 1.47623 1. 73672

256 1.41826 1. 72606

3 8 2.32737 2.24093

16 2.16763 2.17663

32 2.00658 2.13611

64 1.86000 2.12784

128 1. 73000 2.14245

256 1.62203 2.05570

4 4 3.01749 2.83801

8 2.77249 2.79032

16 2.51825 2.72449

32 2.27487 2.67944

64 2.06010 2.61888

128 1.88280 2.61111

256 1.73825 2.60067

TABLE 6.5: The theoretical and experimental values of the
total speed-up of Program 6.3.

435

436

The Parallel Odd-Even Merge Algorithm

This version of the odd-even merge algorithm is an extension to

that of Baudet and Stevenson [1978] algorithm which it self is an

improvement to the original odd-even merge algorithm that is based on

Bacher's 0-1 merge (Batcher [1978J). The algorithm is described as

follows:

The input set of N elements is partitioned into M subsets of size

(~) each. Each of the M subsets are sorted using the parallel shell
M

procedure, so the subsets become sorted within themselves but not amongst

each other. Now these sorted subsets can be merged by the odd-even merge

algorithm in at most M sequential steps (see Baudet and Stevenson [1978]),

where the parallelism is introduced within each step. The graphical

representation of this merge algorithm is shown in Figure 6.3 for M=8.

Subset
Step No. --=-

1

2

3 -,

4

5
_.

6

7 '--'-

8

FIGURE 6.3: The parallel odd-even merge algorithm

437

Figure 6.3 illustrates that odd numbered subsets are merged with the

even numbered subsets in the odd numbered steps of the algorithm.

While in the even numbered steps, the even numbered subsets are merged

with the odd numbered subsets. Each two subsets are merged using the

sequential 2-way merge to form one subset of size equal to the sum of

the two subsets. In the next step of the algorithm, the appropriate

half of the resultant subset is merged with the neighbouring half of

the next subset and so on as shown in Figure 6.3. The final sorted set

can be obtained at the end of final step (step M) by combining the

sorted subsets.

The implementation of the parallel shell sort algorithm (Version

II) was carried out by incorporating the parallel odd-even merge

algorithm with the parallel shell sort procedure and the program of

this implementation is given in Program 6.4. Table 6.6 shows the

experimental results obtained from Program 6.4 when it runs on the

NEPTUNE system using a data size equal to 1024.

For the complexity of the parallel odd-even merge algorithm,

Yousif and Evans [1985al shows that the complexity of the odd-even

merge algorithm when run on one processor is equal to,

C = N(M-l)-!M(M-l) •
IM

(6.2.11)

While in the parallel implementation of the odd-even merge algorithm

when run on P processors, the total complexity is equal to,

and

M
+ 2 , for 2 < P ,

C
pM

~ N(2MP-M-2P)
2p(P-l)

li M/2 (M/2 -1) M
(P-l) + 2, for Pz 4 P

i M + - + 2 ,
2P 2P

M
for 2 > P •

(6.2.l2a)

(6.2.l2b)

(6.2.l2c)

438

The total complexity of the parallel shell sort algorithm

Program 6.4 can be calculated from the complexities of both the sorting

procedure (equations (6.2.2) and (6.2.3)) and the odd-even algorithm

(equation (6.2.11) and (6.2.12)). Now the total complexity of the

Version II parallel shell sort algorithm (i.e. sorting and merging)

when run on one processor is,

T = M(~)3/2 + N(M-l) - ~(M-l)
1 M 2 (6.2.13)

While the total time complexity Tp is obtained from the formula,

Tp - TpS + CpM which is equal to,

2 2MP-M-2p 1 M
+N(2P(P-l)) - 41'-

M/2 (M/2 -1) M
(P-l) +3, for z=P

M2 M
--+- + 2p 2P

M
3 , for "2 > P (6.2.14)

Now the merge speed-up, S (M) , of M subsets can be calculated merge

by dividing C1M of equation (6.2.11) by CpM of equation (6.2.12), which

gives,

S (M»-
merge

1 2 NM M-l M2 M-l M
(N(M-l)-Z(M -M))/(I'(M_2) - 2P(M-2) + 2), for "2 < P

2
(N(M_l)_~(M2_M))/(N(2MP-M-2P) _ ~ _ M/2(M/2 -1) +2)

2 2P(P-l) 4P (P-l) ,

1 2 N i M M
(N(M-l)-Z(M -M))/(p(M-l)- 2P + 2P + 2), for "2 > P

These speed-up formulae can be simplified as an order quantity,

such as,

S (M) ~ merge

(0 (p (:-2)), for ~ < P

O(2P(P-l) (M-l)), for ~ = P
2MP-M-2P 2

M
O(P) , for "2 > P •

M
for "2 = P

(6.2.15)

(6.2.16)

While the total speed-up (Stotal) is calculated by dividing Tl of

equation (6.2.13) by Tp of equation (6.2.14) which gives,

439

S > (M(_MN)3/2 + N(M-l) - 7M2l (N-l)/Tp total '
(6.2.17)

where Tp takes any value from equation (6.2.14) for the appropriate

values of M and P.

From the experimental results obtained from the implementation of

the parallel shell sort algorithm using the parallel odd-even merge

algorithm (Table 6.6), we notice that the sorting time decreases as the

number of subgroups (M) increase and this is due to the overheads for

contention of the parallel paths. Also we notice that the sorting

speed-up obtained when the number of subgroups is equal to the number

of available processors (M=P). While the time for merging increases

as the number of subgroups increases and this is due to the fact that

the number of comparisons increases with the number of subgroups. The

best merging speed-up is obtained when M=128. On the other hand,

generally the total time increases as the number of subgroups increase

and the speed-up is of O(P) which increases as the number of subgroups

increases, while the best speed-up occurs when M=128. Table 6.7 also

shows the experimental results with the total efficiency (Ep) of this

algorithm, where the best total time is obtained when M is equal to 4

in the case of P equal to 1 and 4 and M=8, for the case P=2 and 3.

The best efficiency value obtained using different processors is when

M=l28 and the efficiency decreases when the number of processors

increases. This is due to the reduction in the usage of the processors

in each step of the algorithm.

To compare the results obtained from Version II of the parallel

shell sort (i.e. the implementation that using the parallel 2-way

merge and the parallel odd-even merge), we notice that the time

required for the input data to be sorted using the parallel 2-way

merge is less than that using the parallel odd-even merge. This is

because the number of steps in the 2-way merge is log M while in the

odd-even merge it is M steps which is very much greater than logM and

the number of parallel paths in the case of odd-even merge is greater

than that of the 2-way merge as shown in Tables 6.4 and 6.7, which

440

means IOOre time is required for the algorithm to sort the. input data

when it uses the parallel odd-even merge algorithm. The total speed-up

of the algorithm using the odd-even merge algorithm is generally higher

than that of using the 2-way merge and this is due to the higher speed

up in the merge phase which affects the total speed-up. Thus, for

parallel implementation if we consider the complexity of both methods,

tr.·_ run-time illustrates that the shell sort with the 2-way merge method

for a particular data size is better than that using the odd-even merge

method. Also from Tables 6.3 and 6.6 we notice that the odd-even merge

speed-up is better than the 2-way merge speed-up. This is mainly due to

the usage of processors where in the odd-even merge the processors were

mostly fully used in all the steps of the merge phase while in the 2-way

merge the number of processors is halved in each step.

For comparison reasons, Table 6.8 shows the experimental results

obtained from the implementation of the parallel shell sort methods on

the NEPTUNE system using Version I and II with data size 1024. We

notice that the best timing results are obtained when the sorting is

carried out by using Version II with the 2-way merge method, with the

Version II methods giving better speed-up results than Version I methods.

441

In general, the speed-up of all the implemented methods are not high

and this is due to the fact that the processors are not fully utilized

in the different sorting steps and specially when more than 2 processors

are used. The timing results in Table 6.8 are graphically represented

in Figure 6.4 which shows that Version II with the 2-way merge is the best.

For a performance analysis using the facilities of the NEPTUNE

system and with reference to Chapter 4, the parallel control overheads

(PCO) and shared data overheads (SOO) of the different implemented

parallel shell methods are tabulated in Table 6.9. For Version II,

the timing results used are the ones that give the best efficiency,

i.e. for the 2-way merge the results used are for M=64 (M equal to the

number of subgroups) , while for the odd-even merge the one used is for

M=128, which gives the best efficiency. From Table 6.9 it is clear that

for Version I, the amount of the overheads using the second approach is

less than that of using the first approach and this is due to the fact

that the number of parallel paths generated in the second approach is

less than the first approach, as shown in Tables 6.1 and 6.2. While

for Version II, the algorithm using the 2-way merge gives better results

than that using the odd-even merge and is due to the number of generated

parallel paths using the 2-way merge method being less than that used

by the odd-even merge as shown in Tables 6;4 and 6.7. The results in

Table 6.9 show that the parallel shell sort method using the 2-way

merge algorithm gives the best results since it needs the lowest

overheads.

6.2.2 The Digit Sort Method

In the previous section the implemented shell method belongs to

442

No .of No.of Time for Time for Total Speed-up Speed-up Speed-up
Processors Paths Sorting Merging Time for for for Both

(P) (M) (sec.) (sec.) (sec.) sorting Merging Parts

1 2 9.10 0.85 9.95 1.0 1.0 1.0

2 2 4.62 0.85 5.47 1.96970 1.0 1.81901

1 4 7.45 2.33 9.78 1.0 1.0 1.0

2 4 3.79 1.72 5.51 1.96570 1.35465 1.77495

4 4 1.94 1.72 3.66 3.84021 1.35465 2.54674

1 8 6.16 4.57 10.73 1.0 1.0 1.0

2 8 3.14 2.87 6.01 1.96178 1.5923 1. 78536

3 8 2.2 2.25 4.45 2.80000 2.03111 2.41124

4 8 1.61 1.88 3.49 3.82609 2.43085 3.07450

1 16 4.72 8.89 13.61 1.0 1.0 1.0

2 16 2.41 5.09 7.50 1.95851 1.74656 1.81467

3 16 1.69 3.92 5.61 2.79290 2.26786 2.42602

4 16 1.24 3.15 4.39 3.80645 2.82222 3.10023

1 32 3.61 17.7 21.31 1.0 1.0 1.0

2 32 1.85 9.53 11.38 1.95135 1.85729 1.87258

3 32 1.30 6.83 8.13 2.77692 2.59151 2.62116

4 32 0.95 5.43 6.38 3.80000 3.25967 3.34013

1 64 2.62 35.88 38.50 1.0 1.0 1.0

2 64 1.35 18.74 20.09 1.94074 1.91462 1.91638

3 64 0.95 12.98 13 .93 2.75790 2.76425 2.76382

4 64 0.71 10.20 10.91 3.69014 3.51765 3.52887

1 128 1.82 74.65 76.47 1.0 1.0 1.0

2 128 0.94 38.45 39.39 1.93617 1.94148 1.94136

3 128 0.66 26.48 27.14 2.63768 2.81911 2.81761

4 128 0.50 20.48 20.98 3.64000 3.64502 3.64490

1 256 1.25 163.17 164.42 1.0 1.0 1.0

2 256 0.65 84.11 84.76 1.92308 1.93996 1. 93983

3 256 0.48 57.99 58.47 2.60417 2.81376 2.81204

4 256 0.35 45.5 45.85 3.57143 3.58615 3.58604

TABLE 6.6: The experimental results of the shell sort algorithm using
the odd-even merge algorithm (Version 11) for input size 1024.

443

Size Processors Parallel Total Total TOtal TOtal TOtal
N (P) Paths Time Speed-up Parallel Parallel Effici-

(M) (sec.) Paths for Paths for ency
Sorting Merging (E)

p

1024 1 2 9.95 1.0 5 4 1.0

4 0.78 1.0 7 12 1.0

8 10.73 1.0 11 38 1.0

16 13.61 1.0 19 138 1.0

32 21.31 1.0 35 530 1.0

64 38.50 1.0 67 2082 1.0

128 76.47 1.0 131 8258 1.0

256 164.42 1.0 259 32898 1.0

2 2 5.47 1.81901 4,2 4,1 0.91

4 5.51 1.77495 5,3 10,3 0.89

8 6.01 1.78536 7,5 24,15 0.89

16 7.50 1.81467 11,9 79,60 0.91

32 11.38 1.87258 19,17 283,248 0.94

64 20.09 1.91638 35,33 1085,998 0.96

128 39.39 1.94136 67,65 4217,4042 0.97

256 84.76 1.93983 133,127 16683, 0.97
16216

3 8 4.45 2.41124 6,4,3 19,10,11 0.80

16 5.61 2.42602 9,6,6 59,40,41 0.81

32 8.13 2.62116 14,11, 202,164, 0.87
12 166

64 13.93 2.76382 25,22, 762,665, 0.92
22 657

128 27.14 2.81761 47,43, 2898,2679, 0.94
43 2683

256 58.47 2.81204 89,85, 11351,10794, 0.94
87 10755

4 4 3.66 2.54674 4,2,2,2 10,1,2,2 0.64

8 3.49 3.07450 5,3,3,3 18,8,9,6 0.77

16 4.39 3.10023 7,5,5,5 48,32,32, 0.78
29

32 6.38 3.34013 11,9,9,9 159,125, 0.84
124,125 0.88 64 10.91 3.52887 19,17, 577,499,

17,17 499,510
128 20.98 3.64490 36,32, 2219,2015, 0.91

33,33 2009,2018
256 45.85 3.58604 70,66, 8657,8077, 0.90

66,65 8079,8088

TABLE 6.7: The experimental results of the total efficiency of the parallel
shell sort (Version II with odd-even merge)

444

Processors

Program 1 2 3 4

Time Time Speed-up Time Speed-up Time Speed-up

Version I 22.41 15.88 1.41121 14.31 1.56604 13 .60 1.64779
1st strategy

Version I 11.18 6.72 1.66369
2nd strategy

4.85 2.30516 4.32 2.58796

Version II
with 2-way 7.49 4.28 1.75000 3.52 2.12784 2.86 2.61888
merge

Version II
with odd- 9.78 5.47 1.78793 4.45 2.19775 3.66 2.67213
even merge

TABLE 6.8: The experimental results obtained from the implementation
of parallel shell sort with data size 1024.

Program T TN TS peo soo
p

Version I, 1st 22.41 21.7 21.4 3.17% 1.34%
Approach

Version I, 2nd 11.18 10.85 10.72 2.95% 1.16% Approach

Version II,2-way
Sort 2.62 2.57 2.56 1.91% 0.38%
Merge 4.87 4.83 4.79 0.82% 0.82%
Total 7.49 7.40 7.35 1.2% 0.67%

Version II,Odd-Even
Sort 1.82 1. 75 1.73 3.85% 1.1%
Merge 74.65 67.44 66.71 9.66% 0.98%
Total 76.47 69.16 68.42 9.56% 0.97%

TABLE 6.9: The performance results of the parallel shell sort

24

20

16

(.)
Q)
III

c:
12

w
::E
f-

8

4

Legend
0 1 ... Aee roach

l:::. 2nd. AeeroQch

0 Two-Wo

'V Odd-tv.n

o 2 3

NO. OF PROCESSORS

FIGURE '6.4
The experimental t o ta l timing r e sul s obt a ined f r om the
i mp l ementation of the paral l e l shell sort methods using
data size equal to 1024 .

4

445

a class of sorting methods known as the comparative methods in which

the data is ordered and depends on the comparison of the relative

magnitude of keys on the list. In this section we will implement

another sorting method which belongs to an alternative class known as

the distributive method, where each key inspects either character by

character or as an entity. By their nature distributive sorts are not

minimal-storage techniques. Since the "distribute" elements receive

areas on the basis of some characteristic of the key, there must be an

allocation of space for receiving such areas other than t.he space used

by their initial list. The digit sort algorithm belongs to the

distributive class and the sort is carried out by distributing the

elements into receiving areas based on the value of. a specific digit

of the key.

The method consists of partially sorting the records by a digit

sort and completing the sort by the bubble sort method. A file of

records R
l

,R
2

, ••• ,Rn is to be sorted according to the rank of the keys

xl ,X2 'X3""'Xn ' The keys are represented as numbers of d digits in

the number system of base m. The base m may be chosen arbitrarily.

The proposed method, may be thought of as consisting of three steps.

The first step is an adaptation of the familiar digit sort, which

is used to sort punch cards on a card sorter. In this step, the records

are sorted only on the P high digits of the keys. The digit sort is

carried out in P passes and at the end of the pth pass, the records are

sorted according to the P high order digits of the keys.

The second step in the method is to complete the sorting by the

familiar bubble method. The advantage of the bubble sort method is

that it takes very little time when the records are almost in order, as

446

they will be after the first step. The final step is to use the list

information to write the records out into an external memory or into

another area in the main memory or to rearrange them in place. It

happens that, unless the records are being written into an external

memory, the second and the third steps can be effectively combined.

The feature which makes the digit sort attractive is that the time

required per record to sort n records is independent of n (Mac1aren

[1966]) •

As a special case of the application of this method we consider

the rearrangement of an array {Xi} of positive integers so that X1~X2~

It is supposed that the number X. are represented to the base
l.

m. The highest order digit of X. is denoted by F (X.), the second
l. p l.

highest by F l(X.)' etc. Here the X. are assumed to be the number p- l. l.

of d digits and the high order digits may be zero. The integer P is

the number of passes to be made in the digit sort. P can be any

integer not exceeding d and P=2, is apparently the best choice (Mac1aren

[1966]). The general idea in the digit·sort is to have an array of n

lists (which are called bins), numbered O,1, ••• ,m-1. On pass number

K, the record Xi is put in bin number Fk(X i). At the end of the pass

all the bins are, in effect, put together to form one list containing

all the Xi. After P passes of the digit sort have been completed the

numbers have been sorted on their P highest order digits. For j<kcJP

every number falling in the interval [jmd-p ,(j+1)md- p] will precede

every number in the interval [kmd- p ,(k+1)md -p], again considering all

the bins as combined into one list. If the total number of intervals

mP is suitably large compared with n, the expected number of X. falling
l.

in anyone interval will not be large. This suggests completing the

447

sort by a procedure such as the bubble sort, which uses only few

operations when the records are almost in order to begin with.

The bubble sort procedure can be described as, to sort n numbers

Xl ,X2 "",Xn ' n steps may be required. At the end of the (j-l)th steps,

the first (j-l) numbers have been rearranged so that Xl~X2~",~Xj_l

On step number j, Xj is compared with X
j

_
l

; then if necessary, X
j

_
2

'

At that point X. is found
1.

so that Xj~Xi and Xj is inserted between Xi and X
i

+
l

' If the set of

numbers to begin with is in order this procedure uses only n comparisons

otherwise it is time consuming.

The Parallel Digit Sort

Two parallel versions of the sequential digit sort have been

implemented on the NEPTUNE system and these implementations are

programmed in Program (6.5) and (6.6) respectively. The three stages

of the digit sort are shown in Figure 6.5 and the first parallel

implementations are carried out as follows:

(1) Sl: The n keys are presorted into m "bins" according to their first

P digits and transferred sequentially to the available processors.

(2) Pl: The processors sort internally their bins into runs using the

bubble sort procedure.

(3) S2: The runs are sent sequentially into the common memory where

they constitute the sorted list (transfer of runs 1,2, ... ,m).

1Sl

L !
Pl

! S2

FIGURE 6.5: The stages of first parallel digit sort implementation

448

The digit sorting of the first step is based on the assumption

that there exists an integer P such that the list may be sorted into m

bins by converting the keys to base m and taking the first p digits

as indicating the bin to which the key belongs. In our implementation,

P is taken to be equal to 2 and the bins will include approximately

nlm keys (Maclaren [1966]). As an example, Table 6.10 shows a list of

numbers to be sorted, first we convert the numbers to base m=5. Lists

are formed according to whether the first digit is 0,1,2,3 or 4 and

sublists according to the second digit as shown in Table 6.11.

316,3736,5477,29968,16533,4136,3813,32758,11584,

21735,22034,13745,25025,4770,10131,4871,12588,23182,19270,413

TABLE 6.10: The list of N items to be sorted

BIN 00

Base 10- 316 413 3736 5477

BIN 01

4136 3813 4770

449

4871

Base 5"'; 0002231 0003123 0104421 0133404 0113021 0110223 0123041 0123441

BIN 03

11584 10131

0332314 03311011

BIN 12

22034

1201114

23182

1220212

BIN 04

13745 12588

0414440 0400323

BIN 13

25025

1300100

BIN 10

16533

1011113

BIN 14

29968

1424333

BIN 11

21735 19270

1143420 1104040

BIN 20

32758

2022013

TABLE 6.11: The list and sublists of N items to be sorted

Bins 02, 21, 22, 23, 24 are empty and nO main lists starts with 3 or 4.

The number of elements included in the lists and sublists may be shown

in a "matrix" A of P dimenSions (Table 6.12).

A =

1

2

3

4

5

1

2

1

1

0

0

o

2 3

6 0

2 2

0 0

0 0

0 0

1 2

sublist

TABLE 6.12: Matrix A of list

4

2

1

0

0

0

3

5

2

1

0

0

0

4

o

1

2

3

4

main list

For P=2, the columns of Table 6.12 represent the sublists, the rows

the main lists. For example, element A(2,3)=2 shows that there are 2

elements with leading element 1 and sublist 2, i.e. in bin 12 (see Table

6.11). Matrix A is helpful in dividing the list into approximately

equally long bins (of nlm records). The number of operations required

for deciding where to send the various lists and sublists is a function

of ref. Since there is no connection between m and n, the highest speed

up is expected for very large n.

The flowchart of the first parallel digit sort algorithm using

general P is shown overleaf (Program 6.5) •

450

(START)

Read size of
input (N) and create
N random numbers

Read the base into
which numbers are
to be converted (m)

Calculate divisors
IEX (1) and IEX(2)

Read number of
digits into which
input will be sorted

(p)

Insert each record
into main and sublist
(Mlink and Slink)

Update matr ix A
accordingly
(Table (Slink,Mlink»

Check "A" and prepare
to transfer sublists
to the available
processors

C

I -

Create parallel paths
equal to the number
of sublists available

For each one of the
created parallel path

00:-

Assign the available
processors to the
created paths, and for
each one 00:-

Assign a sublist to be
sorted

Call Bubble sort to
sort each sublist

Wait until all the
processors have
finished

- - - - - - - -
Transfer the sorted
sublists sequentially
to form the final
sorted list

END

451

I

I
I
I -

In Version I, the distribution is done by one processor only. For

instance, the processing of key:23l83 shows the following steps:

23182 .
K(l} : l5625 : 1; Lnsert 23182 into main list 1,

7557 R:23l82-l*15625:7557; K(2} : 3125 : 2; insert 23182

into sublist 12; update element A(1,2} by adding 1 to it.

Version II of the parallel digit sort is implemented on the

452

NEPTUNE system in the same way as Version I except that the distribution

of records (step SI in Figure 6.5) into main and sublists are dene in

parallel instead of sequential (one processor), i.e. the input (N) is

subdivided into subgroups each with (N!NPATH) elements, where NPATH is

equal to the number of subgroups, and assign one group to each of the

available processors, in which its elements will be distributed over

sublists and matrix A update accordingly. In order to maintain the

consistency of the information in this implementation a critical section

is used while updating the matrix A and updating the links between the

main and sublists. The usage of critical section will affect the

performance of the algorithm as seen later.

The experimental results obtained from the implementation of the

Version I parallel digit sort on the NEPTUNE system are shown in Tables

6.13 and 6.14. The results in Table 6.13 are obtained when the data

size sorted is equal to 1024, while Table 6.14 represents the results

obtained when the data size sorted is equal to 2048. In Table 6.13

different timing results obtained for the different number system bases

(i.e. which convert the unsorted numbers to a specific number system

base), and it can be noticed that the time required for the sorting is

proportional to the number of subsets obtained, where higher sorted time

required when the unsorted input set is divided into a small number of

subsets and vice versa. In our implementation the best time obtained

(lowest time) when the number system base used is equal to 8 and this

is due to the fact that this number system gives the highest number

of subsets amongst the other implemented number system bases (which is

equal to 64 subsets). For the higher number of subsets means a small

number of elements in each subset and as we know that the implemented

sorting procedure is efficient for a list of almost sorted small number

of elements. Also it can be noticed that for the sort phase only the

best efficiency (speed-up) is obtained when we get a higher number of

subsets and this is due to the fact that the processors are fully

utilized and a better efficiency obtained. For the total speed-up

453

(i.e. for both sorting and distribution phases) we notice that it is not

as good as the sorting phase only and this is due to the way in which

the algorithm is implemented. In this implementation the distribution

part is carried out sequentially, i.e. by one processor only and this

will increase the total timing and decrease the total speed-up of the

algorithm. Because the distribution time is the same for all the

different number systems a high effectiveness will occur in the case

when the number of the subsets is equal to 64 (base 8), i.e. in the

case of the lowest time as shown in Table 6.13 where the efficiency of

the processors dropped from 1.97698 to 1.77173, 2.96169 to 2.40274 and

3.94388 to 2.92333 for 2,3 and 4 processors respectively. Therefore,

for the total sorting time the best efficiency was achieved when the

number of subsets is a multiple of the number of processors, where for

2 and 4 processors the best efficiency is obtained when the number of

subsets is equal to 4 and for 3 processors the number of subsets is

equal to 26 gives the best efficiency. For the results in Table 6.14

454

i.e. the input data size equal to 2048), we notice that the same

observations are obtained as that of input data size equal to 1024 with

the exception that the best total speed-up obtained for 3 and 4

processors when number of subsets is equal to 14 and 8 respectively.

By comparing the results in Tables 6.13 and 6.14 we notice that a

higher efficiency (speed-up factors) is obtained in the case of a higher

input data aize (i.e. the speed-up results for the data size 2048 is

better than that of data size 1024) and this agrees with the theoretical

results (Maclaren [1966]). Generally, we can say that better speed-up

results will be expected with a higher input data size.

The experimental results of the version II parallel digit sort

using input data size 1024 and 2048 are shown in Tables 6.15 and 6.16

respectively. From these two tables it is clear that the total sorting

time is decreased as the number of subsets is increased. This is due to

the fact that the sorting procedure is efficient when the number of

elements in each subset are small and almost sorted and this is what we

get with the higher number of subsets. As in Version I, the best timing

is obtained (the lowest sort time) when the number of subsets is equal

to 64 which is obtained when the number system base is equal to 8. For

the sorting part with input size 1024, the best speed-up (efficiency)

is achieved when the number of subsets is equal to 26 when using 2

processors and 64 subsets when using 3 and 4 processors. While for the

total sorting time the best efficiency is obtained when the number of

subsets is equal to 26 when using 2 and 3 processors and 4 subsets when

using 2 processors. From the results in Table 6.16 where the input data

size is 2048, we notice that for the sorting part only the best speed-up

factors are obtained when number of subsets is equal to 64, 26 and 64

455

No. of Base No.of Sort Distribution Total Speed-up Total
Processors Subset (sec.) (sec.) Time of Speed-

(sec.) Sorting up

1 2 4 97.31 1.04 98.35 1.0 1.0

2 50.77 1.04 51.81 1.91668 1.89828

3 48.81 1.04 49.85 1.99365 1.97292

4 25.61 1.04 26.65 3.79969 3.69043

1 3 5 77 .01 1.04 78.05 1.0 1.0

2 45.53 1.04 46.57 1.69141 1.67597

3 31.27 1.04 32.31 2.46274 2.41566

4 30.16 1.04 31.20 2.55338 2.50160

1 4 8 48.70 1.04 49.74 1.0 1.0

2 25.63 1.04 26.67 1.90012 1.86502

3 18.90 1.04 19.94 2.57672 2.49448

4 13 .58 1.04 14.62 3.58616 3.40219

1 5 11 35.49 1.04 36.53 1.0 1.0

2 18.36 1.04 19.40 1.93301 1.88299

3 14.21 1.04 15.25 2.49754 2.39541

4 10.93 1.04 11.97 3.24703 3.05180

1 6 26 15.63 1.04 16.67 1.0 1.0

2 7.95 1.04 8.99 1.96604 1.85428

3 5.44 1.04 6.48 2.87316 2.57253

4 4.25 1.04 5.29 3.67765 3.15123

1 7 14 27.77 1.04 28.81 1.0 1.0

2 14.81 1.04 15.85 1.87508 1.81767

3 10.22 1.04 11.26 2.71722 2.55861

4 8.21 1.04 9.25 3.38246 3.11459

1 8 64 7.73 1.04 8.77 1.0 1.0

2 3.91 1.04 4.95 1.97698 1.77172

3 2.61 1.04 3.65 2.96169 2.40274

4 1.96 1.04 3.00 3.94388 2.92333

TABLE 6.13: The timing results obtained from the implementation of the
Version I parallel digit sort using data size equal to 1024.

No. of Base No.of Sort Distribution Total Speed-up Total
Processors Subset (sec.) (sec.) Time of Speed-

(sec.) Sorting up

1 2 4 391.55 2.03 393.58 1.0 1.0

2 201.13 2.03 203.16 1. 94675 1.93729

3 189.49 2.03 191.52 2.06634 2.05503

4 103.01 2.03 105.04 3.80109 3.74695

1 3 5 312.40 2.03 314.43 1.0 1.0

2 182.93 2.03 184.96 1.70776 1.69999

3 126.12 2.03 128.15 2.47701 2.45361

4 121.09 2.03 123.12 2.57990 2.55385

1 4 8 192.86 2.03 194.89 1.0 1.0

2 98.73 2.03 100.76 i. 95 341 1.93420

3 74.75 2.03 76.78 2.58007 2.53829

4 49.78 2.03 51.81 3.87425 3.76163

1 5 11 143.06 2.03 145.09 1.Q 1.0

2 73.20 2.03 75.23 1. 95437 1.92862

3 54.90 2.03 56.93 2.60583 2.54857

4 40.54 2.03 42.57 3.52886 3.40827

1 6 26 60.40 2.03 62.43 1.0 1.0

2 30.53 2.03 32.56 1.97838 1. 91738

3 20.55 2.03 22.58 2.93917 2.76484

4 16.39 2.03 18.42 3.68517 3.38925

1 7 14 111.19 2.03 113.22 1.0 1.0

2 58.40 2.03 60.43 1.90394 1.87357

3 38.54 2.03 40.57 2.88505 2.79073

4 32.85 2.03 34.88 3.38478 3.44658

1 8 64 , 27.29 2.03 29.32 1.0 1.0

2 13.72 2.03 15.75 1.98907 1.86159

3 9.20 2.03 11.23 2.96630 2.61086

4 6.90 2.03 8.93 3.95507 3.28700

TABLE 6.14: The timing results obtained from the 'implementation of the
Version I parallel digit sort using data size equal to 2048.

456

when using 2,3 and 4 processors respectively. While for the total

sorting time the best efficiency (speed-up) is achieved when the

457

number of subsets is equal to 26,64 and 8 when using 2,3 and 4 processors

respectively. It is noticed that the efficiency (speed-up) of the

distribution part is not as good as that of the sorting part and this

will affect the overall efficiency of the algorithm. The reason for

this is the update of matrix "A" and the links between the lists and

sublists are performed within a critical section (by using the $ENTER

and $EXIT constructs). This means only one processor can carry out the

updating while the rest of the processors are idle, which greatly

affects the performance of the algorithm. From the experimental results

in Tables 6.15 and 6.16 we also notice that a better efficiency (speed

up) is achieved for a higher input data size, i.e. the speed-up obtained

from using data size 2048 (Table 6.16) is better than that of using data

s~ze 1024 (Table 6.1) and this is confirmed by the results in parallel

Version I.

In Version II the usage of the critical section in the distribution

part has a significant delay that causes a higher running time and a low

speed-up is obtained since the overheads for the critical section accesses

are much more than the parallelism gain in the algorithm. In order to M~~~

c16l ... the. amount of degradation that is caused by the usage of the

critical section we need to know the time spent to access the critical

section made by the algorithm and also the time that the processors

spent on waiting for each other because the critical section is being

used by another processor. However, in the NEPTUNE system the time

required to access a critical section (i.e. the $ENTER/$EXIT construct)

is -800~econds and the cycle time while waiting to enter a critical

458

section is 1080 ~econds. In our implementation there is one access to

the critical section for each element in the input data set. Therefore

to sort N elements the algorithm needs N accesses to the critical

section. Besides the time spent in the critical section, there is a

waiting time by the processor to enter a critical section. Thus,

and

the time spent in the critical section = number of accesses to the

section x 800 ~,

the time spent for waiting cycles to access critical section =

number of waiting cycles

x 1080 ~.

For Version 11 of the parallel digit sort algorithm the total times

caused by the usage of critical section are shown in Table 6.17.' It is

noticed that the time lost while using an input data size 2048 is

greater than that from using 1024. This is due to the fact that for

each element in the input data set one access to the critical section

is needed. Besides the critical section time lost, Table 6.17 shows

the performance analysis of the parallel digit sort algorithms with both

the shared data (500) and parallel control overheads (PCO) are

calculated (see Chapter 4). From the results in Table 6.17 we can

notice that the speed-up factors of the parallel version 11 method is

better than that of the parallel Version I method and the amount of

overheads in the parallel Version 11 method is less than that of the

parallel Version I method. So we can conclude that generally the parallel

digit method Version 11 is more suitable for the MIMD parallel type

machine than that of Version I.

Base Subsets No.of No.of Sorting
Paths Processors (sec.)

2 4 1 1 97.31
2 1 97.34

2 50.73
3 1 97.34

2 50.77
3 48.78

4 1 97.31
2 50.75
3 48.76
4 25.61

3 5 1 1 76.96
2 1 77 .02

2 45.59
3 1 77 .03

2 45.64
3 31.34

4 1 77.16
2 45.61
3 31.34
4 30.170

4 8 1 1 48.70
2 1 48.73

2 25.71
3 1 48.66

2 25.69
3 18.68

4 1 48.70
2 25.70
3 18.67
4 13.67

Distribution Total Time
(sec.) (sec.)

1.84 99.15
1.84 99.28
0.96 51.69
1.84 99.18
1.23 52.00
1.00 49.78
1.83 99.14
0.95 51.60
1.20 49.96
0.95 26.56

1.84 78.80
1.84 78.86
0.94 46.53
1.84 78.87
1.24 46.88
0.98 32.32
1.84 79.00
0.94 46.55
1.21 32.55
0.99 31.16

1.84 50.54
1.84 50.57
0.96 26.67
1.84 50.50
1.25 26.94
0.99 19.67
1.84 50.54
0.96 26.66
1.22 19.89
0.98 14.65

TABLE 6.15 (A)

Speed-up Speed-up
for Sorting for Distribution

1.91879 1.91667

1.91727 1.49593
1.99549 1.84000

1.91744 1.92632
1.92132 1.99569
3.79969 1.92632

1.68941 1.95745

1.68777 1.48387
2.45788 1.87755

1.69173 1.95745
2.46203 1.52066
2.66751 1.85859

1.89537 1.91667

1.89412 1.47200
2.60493 1.85859

1.89494 1.91667
2.60846 1.50820
3.56255 1.87755

Total
Speed-up

1.92068

1.90731
1.99237

1.92132
1.52500
3.73268

1.69482

1.68238
2.44028

1.69710
2.42704
2.53530

1.89614

1.87454
2.56736

1.89572
2.54098
3.44983

...
lJ1
W

Base Subsets No.of No.of Sorting Distribution
Paths Processors (sec.) (sec.)

5 11 1 1 35.49 1.84
2 1 35.47 1.84

2 18.32 0.95
3 1 35.46 1.84

2 18.33 1.25
3 14.18 1.00

4 1 35.47 1.84
2 18.28 0.95
3 14.13 1.19
4 10.84 0.95

6 26 1 1 15.57 1.84
2 1 15.60 1.84

2 7.89 0.95
3 1 15.60 1.84

2 7.87 1.26
3 5.42 1.00

4 1 15.56 1.84
2 7.87 0.96
3 5.42 1.22
4 4.24 1.01

7 14 1 1 27.80 1.83
2 1 27.81 1.84

2 14.82 0.96
3 1 27.88 1.84

2 14.83 1.26
3 10.23 1.00

4 1 27.83 1.84
2 14.80 0.97
3 10.20 1.24
4 8.16 0.95

TABLE 6.15 (B)

Total Time Speed-up
(sec.) for Sorting

37.33
37.31
19.27 1.93614
37.30
19.58 1.93453
15.18 2.50071
37.31
19.23 1.94037
15.32 2.51026
11.79 3.27214

17.41
16.44
8.84 1.97719

17.44
9.13 1.98221
6.42 2.87823

17.40
8.83 1.97713
6.64 2.87085
5.25 3.66981

29.63
29.65
15.78 1.87652
29.72
16.09 1.87997
11.23 2.71848
29.67
15.77 1.88041
11.44 2.72843
9.11 3.41054

Speed-up
for Distribution

1.93684

1.47200
1.84000

1.93684
1.54622
1.93684

1.93684

1.46032
1.84000

1.91667
1.50820
1.82178

1.91667

1.46032
1.84000

1.89691
1.48387
1.93684

Total
Speed~up

1.93617

1.90501
2.45718

1.94020
2.43538
3.16455

1.85973

1.91019
2.71651

1.96833
2.62048
3.31429

1.87896

1.84711
2.64648

1.88142
2.59353
3.25686

...
'" o

Base Subsets No.of No.of Sorting Distribution Total Time Speed-up Speed-up
Paths Processors (sec.) (sec.) . (sec.) for Sorting for Distribution

8 64 1 1 7.71 1.83 9.54
2 1 7.70 1.83 9.53

2 3.91 0.97 4.88 1.96931 1.88660
3 1 7.72 1.84 9.56

2 3.93 1.24 5.17 1.96438 1.48387
3 2.63 1.00 3.63 2.93536 1.84000

4 1 7.74 1.84 9.58
2 3.92 0.95 4.87 1.97449 1.93684
3 2.63 1.20 3.83 2.94297 1. 53333
4 1.98 0.92 2.90 3.90909 2.00000

TABLE 6.15(C): The timing results obtained from the implementation of the Version 11 parallel digit
sort using data aize equal to 1024.

Total
Speed-up

1.95287

1.84913
2.63361

1.96715
2.50131
3.30345

Base Subsets No.of No.of Sorting Distr ibu tion
Paths Processors (sec.) (sec.)

2 4 1 1 390.96 3.17
2 1 390.64 3.17

2 201.43 1.89
3 1 390.90 3.17

2 200.93 2.32
3 189.87 2.02

4 1 390.72 3.17
2 201.05 1.99
3 189.90 2.33
4 102.82 1.77

3 5 1 1 312.16 3.17
2 1 312.26 3.17

2 182.96 1.93
3 1 311.40 3.17

2 182.96 2.31
3 125.90 2.01

4 1 311.65 3.17
2 183.03 1.99
3 126.17 2.30
4 121.52 1. 75

4 8 1 1 192.64 3.16
2 1 192.59 3.17

2 98.75 1.92
3 1 192.78 3.17

2 98.72 2.36
3 73.86 2.00

4 1 192.84 3.18
2 98.68 1.86
3 73.88 2.32
4 49.92 1.72

TABLE 6.16(A)

Total Time Speed-up
(sec.) for Sorting

394.13
393.81
203.32 1.93933
394.07
203.25 1. 94545
191.89 2.05878
393.89
203.04 1.94340
192.23 2.05750
104.59 3.80004

315.33
315.43
184.89 1. 70671
314.57
185.27 1. 70201
127.91 2.47339
314.82
185.02 1. 70273
128.47 2.47008
123.27 2.56460

195.80
195.76
100.67 1.95028
195.95
101.08 1.95280

75.86 2.61007
196.02
100.54 1.95420

76.20 2.61018
51.64 3.86298

Speed-up
for Distribution

1.67725

1.36638
1.56931

1.59296
1.36052
1.79096

1.64249

1.37229
1.57711

1. 59296
1.37826
1.81143

1.65104

1. 34322
1.58500

1.70968
1.37069
1.84884

Total
Speed-up

1.93690

1.93884
2.05362

1.93996
2.04906
3.76604

1. 70604

1.69790
2.45931

1. 70155
2.45053
2.55391

1.94457

1.93856
2.58305

1.94967
2.57244
3.79589

01>

'" N

Base Subsets No.of No.of Sorting Distribution Total Time Speed-up Speed-up Total
Paths Processors (sec.) (sec.) (sec.) for Sorting for Distribution Speed-up

5 11 1 1 143.33 3.18 146.51
2 1 143.08 3.18 146.26

2 73.46 1.81 75.27 1.94773 1.75691 1.94314
3 1 142.93 3.18 146.11

2 73.37 2.36 75.73 1.94807 1.34746 1.92935
3 54.96 2.01 56.97 2.60062 1.58209 2.56468

4 1 142.92 3.18 146.10
2 73.39 1.91 75.30 1.94740 1.63918 1.94024
3 54.95 2.31 57.26 2.60091 1.37662 2.55152
4 40.56 1. 74 42.30 3.52367 1.82759 3.45390

6 26 1 1 60.59 3.15 63.74
2 1 60.64 3.17 63.81

2 30.47 1.93 32.40 1.99015 1.64249 1.96944

3 1 60.62 3.17 63.79
2 30.5 2.32 32.82 1.98754 1.36638 1.94363
3 20.56 2.00 22.56 2.94844 1.58500 2.82757

4 1 60.59 3.17 63.76
2 30.40 1.89 32.29 1.99309 1.67725 1.97461
3 20.53 2.70 23.23 2.95129 1.17407 2.74473
4 16.41 1. 79 18.20 3.69226 1. 77095 3.50330

7 14 1 1 111.40 3.18 114.58
2 1 111.46 3.18 114.64

2 58.45 1.93 60.38 1.90693 1.64767 1.89864

3 1 111.09 3.17 114.26
2 58.41 2.34 60.75 1.90190 1.35470 1.88082

3 38.54 2.01 40.55 2.88246 1.57711 2.81776

4 1 111.07 3.17 114.24
2 58.40 1.87 60.27 1.90188 1.69519 1.89547

3 38.55 2.29 40.84 2.88119 1.38428 2.79726

4 32.47 1. 76 34.23 3.42070 1.80114 3.33742

TABLE 6.16 (B)

Base

8

Subsets No.of No.of Sorting Distribution Total Time Speed-up Speed-up
Paths Processors (sec.) (sec.) (sec.) for Sorting for Distribution

64 1 1 27.20 3.17 30.37
2 1 27.26 3.18 30.44

2 13.83 1.86 14.69 1.97108 1.70968
3 1 27.25 3.18 30.43

2 13.84 2.25 16.09 1.96893 1.41333
3 2.28 2.01 11.29 2.93642 1.58209

4 1 27.50 3.19 30.69
2 13.76 1.82 15.58 1.99855 1. 75275
3 9.33 2.30 11.63 2.94748 1.38696
4 6.95 1. 76 8.71 3.95683 1.81250

TABLE 6.16(C): The timing results obtained from the implementation of the Version II
parallel digit sort using data size equal to 2048.

Total
Speed-up

2.07216

1.89124
2.69531

1.96983
2.63887
3.52354

Parallel Paths in Critical

Program
No.of Total Time Speed-up

pistribution
Processors (sec.) Sort SDO PCO waiting

Part Part Cycles

Version 1 1 8.77 1.0 67 2 1.14% 1.28% -
(size 1024) 2 4.95 1. 77172 32,36 2,1 -

3 3.65 2.40274 25,19, 2,1,1 -
25

4 3.00 2.92333 19,16, 2,1,1,1 -
16,19

Version 1 1 29.32 1.0 67 2 1.10% 0.99% -
(size 2048) 2 15.75 1.86159 36,32 2,1 -

3 11.23 2.61086 25,23, 2,1,1 -
21

4 8.93 3.28700 19,16, 2,1,1,1 -
18,17

Version 11 1 9.58 1.0 67 7 1.02% 1.06% 0
(size 1024) 2 4.87 1.96715 32,36 5,3 30,31
(4 paths) 3 3.83 2.50131 25,19, 5,2,2 307,303,

25 297
4 2.90 3.30345 19,17, 4,2,2,2 454,458,

17,17 465,458

Version 11 1 30.69 1.0 67 7 0.93% 0.82% 0
(size 2048) 2 15.58 1.96983 36,32 5,3 359,379
(4 paths) 3 11.63 2.63887 25,23, 5,2,2 711,708,

21 699
4 8.71 3.52354 18,16, 4,2,2,2 924,919,

19,17 919,918

TABLE 6.17: Performance analysis of the parallel digit sort algorithms

Section

No. of
Accesses

-
-
-

-

-
-
-

-

1024
512,512
512,256,

256
256,256,
256,256

2048
1024,1024
1024,512,

512
512,512,
512,512

!'rotal
~ritical
section Time

(sec.)

0.82
0.85
0.74

0.70

1.64
1.23
1.59

1.41

...
'" U1

466

6.3 THE SEARCHING ALGORITHMS

Searching might be called the storage and retrieval of

information, or it might simply be called table-lookup. By searching,

one usually means the operation of locating a specific item in a given

sequence of N items, i.e. to find the data that has been stored with a

given identification. In general, we shall suppose that a set of N

records has been stored, and the problem is to locate the appropriate

one. Algorithms for searching are presented with a so-called argument

K, and the problem is to locate which record has K as its key. After

the search is complete, two possibilities can arise:

Either the search was successful, having located the unique

record containing K, or it was unsuccessful, having determined that K

is nowhere to be found.

Searching is the most time-consuming part of many programs, and

the substitution of a good search method for a bad one often leads to

a substantial increase in speed. It is often possible to arrange the J
/

data or the data structure so that the searching process can be

eliminated entirely.

For one-dimensional search problems a lower bound of logN for

searching a record amongst a set of N records has been established.

In this section, two sequential search algorithms are implemented

in parallel, these algorithms are the basic sequential search and the

\
~L

well known binary search. The experimental results of these two parallel

algorithms are presented and analysed beside its performance analysis.

Given a table of records R
l

,R2 , ••• ,R
N

whose respective keys are

Kl'~""'~' Given an argument K, the search consists of a comparison

between the argument K and the key field (K
i

) associated with each

record R
l

,R
2

, ••• ,R
N

, and action is taken based upon the result of

comparisons; the search succeeds when K.=K, for i=1,2, ••• ,N.
1.

467

without prior knowledge about the records, they must be assumed

to be unordered, uniformly probable, and uniformly accessible. In this

simple case, each access permits the examination of a single record,

1 so that N of the possibilities can be eliminated with each access. If

there are P processors, then P accesses per cycle are permitted in

parallel.
P In this case - of the candidate items can be examined each
N

cycle, including the single processor as a special case (P=l).

6.3.1 Sequential Search (Unordered Table) (Knuth, 1973)

If the data is not ordered, then there are no preferred places to

look for them. This means that in order to locate the target item K

in a field of similar items an exhaustive procedure must be used.

Given a table of records R
l

,R2 , .•• ,R
N

whose respective keys are

Kl'~""'~ this algorithm searches for a given argument K. We assume

that N~l.

(1) (Initialize) Set i=l, and set ~+l=K,

(2) (Compare) If K=K. , go to step (4) ,
1.

(3) (Advance) Increase i by 1, and return to step (2) ,

(4) (End of file) If i~N, the algorithm terminates successfully,

otherwise it terminates unsuccessfully (i=N+l).

In this algorithm a dummy record ~+l is used at the end of the

file. If every input key occurs with equal probability, the average

value of the number of key comparisons (C) in a successful search will

be:

468

C
1+2+ •.. +N

= N

=
N(N+l)/2

N

= !(N+l) (6.3.1)

While for an unsuccessful search the number of comparisons will be

equal to,

C = N . (6.3.2)

Parallel Sequential Search

The sequential search algorithm has been implemented in parallel

where P parallel processors co-operate to search the whole list of

numbers to locate a record with the required key. The implementation

of the sequential search on the NEPTUNE system was carried out as

follows :-

The input data set of N elements is partitioned into M subsets

of size (*) each, so that the

the first subset and the next

first (*) elements are allocated into

(~) elements into the second subset and
M

so on. We assume that M~P, where P is the number of the available

processors. Each subset is searched independently of the other sub-

sets. The search is carried out in exactly the same manner as in the

sequential form which was described in the algorithm. A flag is set

up when the searched key is found in any of the subsets to prevent

the remaining subsets to continue their search. When M>P, a processor

may execute one or more subsets that are kept in a queue, where each P

subsets can be carried out in parallel (i.e., at the same time). The

searching procedure is complete when the target item is found (i.e.,

the search successful) or when all the subsets have been searched (i.e.,

the search unsuccessful) •

469

The parallel implementation of the sequential search algorithm

on the NEPTUNE system is programmed in Program (6.7) and the

experimental results obtained from that implementation are shown in

Tables 6.18 a,b,c and d. These results are obtained for the input

data size (N) equal to 9216 using different subsets (M) where the

search is carried out for different keys. The searched keys are

located within the input set of elements in different positions where

the keys in Tables 6.18 a,b,c are in locations 2500, 5000, 7500

respectively. While the results in Table 6.l8d are obtained when the

search key is not in the input file, i.e. all the elements within the

input file need to be searched.

From these results we notice that when one processor has been

used the search time is increased as the number of subgroups (M) is

increased. This is due to the overheads incurred from the creation

of more parallel paths. While when using more than one processor the

optimum (lowest) search time needed depends on the number of subgroups

(M) used. For example, to search for the key 0.97599792, the lowest

time obtained when the input data set (N) is partitioned into 16,32

and 64 subsets using 2, 3 and 4 processors, respectively. This is

due to the way in which the parallel implementation is carried out

and the usage of the "FLAG" to prevent other processors from continuing

their search when the search key is found in any subset, so the search

time is dependent on the location of the key within each subset. For

the speed-up results, we can generally say that the best results are

obtained when the number of subsets (M) is the one that gives the

optimal search time and this is because at that value of M the co

operative processors are fully utilized.

Processors
No.of

1
SUbset

2 3 4

(M) Time Total Time Total
Speed-up

Time Total
~peed-up

Time Total
Speed-up (sec) Paths (sec) Paths (sec) Paths (sec) Paths

4 1.51 7 1.43 4,4 1.06 1.45 4,2,3 1.04 1.45 4,2,2,2 1.04

8 1.52 11 1.46 9,3 1.04 0.74 4,7,2 2.05 0.75 4,2,2,6 2.03

16 1.53 19 1.1 16,4 1.39 0.75 5,13,3 2.04 0.75 13,3,3,3 2.04

32 1.54 35 0.92 30,6 1.67 0.56 6,4,27 2,75 0.56 26,4,4,4 2.75

64 1.57 67 0.82 12,56 1.92 0.56 9,7,53 2.80 0.47 8,6,29, 3.34
27

128 1.64 131 0.88 69,63 1.86 0.62 32,51, 2.65 0.49 24,45, 3.35
50 21,44

256 1. 75 259 0.99 133, 1. 77 0.72 84,80, 2.43 0.59 61,66, 2.97
127 97 64,71

512 1.99 515 1.21 265, 1.65 0.93 170,174 2.14 0.76 129,131. 2.62
251 173 129,129

(a) Results obtained when the search key ~ 0.61517334

Processors
No.of 1
Subset

2 3 4

(M) Time Total Time Total
Speed-up Time Total

Speed-up Time Total
Speed-up (sec) Paths (sec) Paths (sec) Paths (sec) Paths

4 3.03 7 2.86 5,3 1.06 1.44 4,3,2 2.1 1.45 4,2,2,2 2.09
8 3.04 11 1.64 6,6 1.85 1.42 5,3,5 2.14 1.45 5,3,3,3 2.1

16 3.04 19 1.81 14,6 1.68 1.09 6,11,4 2.79 1.09 6,8,4,4 2.79
32 3.05 35 1.61 12,24 1.89 1.1 9,21,7 2.77 0.92 20,6,6,6 3.32
64 3.09 67 1.64 49,19 1.88 1.1 15,13, 2.81 0.84 12,10,38, 3.68

41 10

128 3.15 131 1.65 80,52 1.91 1.12 33,48, 2.81 0.88 32,28,27, 3.58
52 47

256 3.28 259 1.72 121, 1.91 1.19 90,88, 2.76 0.94 68,71,62, 3.49
139 83 61

512 3.54 515 1.90 254, 1.86 1.35 172,178, 2.62 1.08 131,128, 3.28
262 167 132,127

(b) Results obtained when the search key = 0.97599792

Processors
No.of 1 2 3 4 subset

(M) Time Total Time Total
Speed-up Time Total

Speed-up Time Total
Speed-up (sec) Paths (sec) Paths (sec) Paths (sec) Paths

4 4.57 7 2.85 5,3 1.6 1. 76 5,2,2 2.6 1.45 4,2,2,2 3.15
I

8 4.58 11 2.89 7,5 1.59 2.16 6,4,3 2.12 1.45 5,3,3,3 3.16
16 4.59 19 2.54 12,8 1.81 1.81 9,6,6 2.54 1.46 7,5,5,5 3.14
32 4.6 35 2.39 18,8 1.93 1.64 12,10, 2.81 1.28 10,8,8, 3.59

15 12
64 4.64 67 2.41 35,33 1.93 1.65 31,19, 2.81 1.19 17,14, 3.9

19 24,15
128 4.71 131 2.39 67,65 1.97 1.63 46,36, 2.89 1.22 34,41, 3.86

51 28,31
256 4.84 259 2.48 140,120 1.95 1.68 90,93, 2.88 1.28 64,71, 3.78

I 78 64,63
512 5.11 515 2.63 256,260 1.94 1. 79 180, 2.86 1.38 131,13q 3.70

168,169 126,131

(c) Results obtained when the search key = 0.52330017

Processors
No.of

1 2 3 4 Subset
(M) Time Total Time Total

!speed-up
Time Total

Speed-up Time Total
(sec) Paths (sec) Paths (sec) Paths (sec) Paths Speed-up

4 5.63 7 2.87 5,3 1.96 2.83 5,2,2 1.99 1.45 4,2,2,2 3.88
8 5.64 11 2.87 7,5 1.97 2.15 6, 3,4 2.62 1.46 5,3,3,3 3.86

16 5.65 19 2.87 11,9 1.97 2.13 9,6,6 2.65 1.45 7,5,5,5 3.89
32 5.66 35 2.88 19,17 1.97 1.98 14,11, 2.86 1.45 11,9,9, 3.9

12 9
64 5.7 67 2.90 35,33 1.97 1.97 25,22, 2.89 1.46 19,17, 3.9

22 17,17
128 5.77 131 2.93 67,65 1.97 1.97 46,44, 2.93 1.48 35,33, 3.9

43 33,33
256 5.91 259 2.99 131,129 1.98 1.99 89,86, 2.97 1.51 67,65, 3.91

86 65,65
512 6.91 515 3.12 259,257 1.98 2.08 175,171. 2.98 1.58 132,128, 3.92

171 128,130

(d) Results obtained when the search key ~ 0.99998877

TABLE 6.18: The experimental timing results with the total number of parallel paths run
by each processor obtained from searching an input data file of size 9216 elements.

474

From the results on Tables (6.18) the optimal search time for

each key using different processors are tabulated in Table (6.19).

From these results it is clear that there is a relation between the

key position within the input list and the speed-up factors obtained.

~en the key is positioned at the end of the list, then clearly all P

processors are actively engaged in searching the list and the speed-up

figures obtained reflect this. The deviation from P measures the

amount of overheads incurred in path conflicts (see Table 6.18d) •

When the key is positioned at the beginning of the list then clearly

the speed-up figures obtained reflect the amount of searching to be

done (i.e. there is not sufficient work involved for all 4 processors

to be fully utilised or engaged) (see Table 6.18a). Intermediate key

positions suggest that results in between these two extremes will be

obtained and is entirely dependent on the position of the key in the

list to be searched as to whether all the processors can be made active.

Processors

Key 1 2 3 4

Time Time Speed-up Time Speed-up Time Speed-up

0.61517334 1.51 0.82 1.84 0.56 2.70 0.47 3.21

0.97599792 3.03 1.61 1.88 1.10 2.76 0.84 3.61

0.5233017 4.57 2.39 1.91 1.63 2.80 1.19 3.84

0.99998877 5.63 2.87 1.96 1.97 2.86 1.45 3.88

TABLE 6.19: The optimum timing results with its speed-up factors

Now we consider the total complexity of the sequential search

algorithm when it is run on one processor (sequential machine) and when

it is run on a P processor system (parallel machine). Knuth [1973]

475

shows that if every input key occurs with equal probability, the

average value of the number of key comparisons C in a successful and

an unsucessful search are shown in equations (6.3.1) and (6.3.2)

respectively and these are,

C = {
N if the search is unsuccessful

t (N+l) if the search is successful

However for a successful search, in our parallel implementation of the

sequential search, the input to be searched is partitioned into M

subsets or paths with N divisible by M and M3P (where P=number of

available processors), then in each subset N/M elements are stored.

So, if the paths are carried out on one processor, then by applying

equation (6.3.1) above in each subset there will be an average

Cl=t(M+l) comparisons. And for all the M subsets the same idea is

used, and hence, the total number of comparisons

= Cl (1+2+3+ ••. +M)

= tM(M+l),C
l

(6.3.3)

so the average number of comparisons in all the M subsets, will be

C
ls

= t(M+l)C
l

N
= t (M+l) (t (M" +1))

= 4~(M+l) (N+M) • (6.3.4)

Meanwhile, when the algorithm is run in parallel with P processors,

rMl Ipl paths have to be carried out by each processor. Thus,

C = rMl [4~ (M+l) (N+M) 1 ps Ipl

~
lMN --+
4 P

1 M2 1 N
--+--4 P 4 P

1 M +--+
4 P 1 . (6.3.5)

Since we are interested in determining how much more efficient the

476

algorithm is when it is applied to a parallel computer, therefore we

measure the speed-up ratio S (M) for the sequential search with M ps

subsets. Thus,

S ps

Cls
= --Cps

2
• 4(MN+M +N+M)P

2
4M(MN+M +N+M+4P)

2 2 3 3 2
• (MN+M +M N+M +4PM-4PM-M -M N+M+N)

P 2 3 2
M N+M +MN+M +4PM

3 2
: P [1- (4;M+M3 +M N-~-N) 1

M N+M +MN+M +4PM

S :: O(P)
ps

While in an unsuccessful search, the corresponding values are,

N
Cls = M(-) = N , M

and
C = I~l (*) ps

~ !!.+ 1 . P

S
C
ls

= --ps C ps
Thus,

- N -
~l

: N
P(N+P)

= P P(l- -)
N+P

: 1 P(l- -)
~l
P

S : O(P)
ps

(6.3.6)

(6.3.7)

(6.3.8)

(6.3.9)

It can be easily noticed that from equation (6.3.9) the linear speed-

up is easily achieved, especially for large N and this is what we

477

obtain from the experimental results because the whole list is searched

and the processors are fully utilized where a linear speed-up is

achieved.

For a further performance analysis of the parallel sequential

search and with reference to Chapter 4, Table (6.20) shows the resource

demands required when the mean rate of access to shared data and

parallel paths are represented besides the parallel control overheads

(PCO) and shared data overheads (SDO) are calculated. Both SDO and

PCO are calculated when the algorithm was run on the NEPTUNE system

when the search key was equal to 0.99998877 (Table 6.18d). From the

results in Table (6.20) we notice that the parallel control overheads

are increased as the number of parallel paths (subsets) are increased

and this is what we get generally from both the experimental and the

expected demands. Also these overheads show the reasons why the speed

up obtained for the parallel implementation (Table 6.19) are not of O(P) .

To conclude this section, the sequential search algorithm is

time consuming when run on a sequential machine (especially for large

input size of data). However we find its parallel implementation on

an MIMD type machine is good and this is clear from the results shown

in Table (6.19) where all the processors are fully utilized and an

acceptable speed-up factor is obtained.

The results in Table (6.19) are diagrammatically represented in

Figure 6.6 where a linear speed-up is obtained.

0....
:::l
I

o
w
W
0....
U1

4

3

2

Legend
o Po sition 2500

6. Pos iti o n 50 00

o Positio n 7500

• Position 92t6

1 ~----------~----------~------------r---------~
o 2 3

NO. OF PROCESSORS

FIGURE 6.6

The speed-up results obtained from the parallel sequential search
algorithm using the data in Table 6.19

4

478

479

Input No.of Performance Resource Demands size Subsets Measurement
(N) (M) Parallel Path Shared Data

peo SDO Access rate Overheads Access rate OVerheads

0.355% N 0.006% (6: 10) 9216 4 0.355% 1: (13*"M)

flops flops

8 0.401% 0.355% 0.011%

16 0.531% 0.531% 0.022%

32 0.707% 0.353% 0.045%

64 1. 228% 0.526% 0.089%

128 2.08% 0.520% 0.178%

256 4.061% 0.338% 0.356%

512 7.431 % 0.323% 0.712%

TABLE 6.20: Performance measurement and resource demands of the
parallel sequential search algorithm.

6.3.2 Binary Search

If the input data is stored with some prescribed order then

another method may be used to search for a specific key (K) known as

0.063%

the binary search method. The previous sequential search is essentially

limited to a two-way decision (K=K, vs. K/K,), while in the binary
1 1

search method the search continues in three different ways, depending

on whether K<K" K=K, or K>K,. Hence we start comparing K with the
1 1 1

middle key in the table (the input data set); the result of this probe

tells us which half of the table should be searched next, and the same

procedure can be used again, comparing K to the middle key of the

selected half, etc. After (log N) comparisons, we will have found the

key or we will have established that it is not present.

480

Sequential Binary Search Algorithm (Knuth, 1973)

Given a table of records Rl ,R
2

, .•• ,R
N

whose keys are in increasing

order K
l

<K
2

< •.. <K
N

, this algorithm searches for a given argument K.

as follows:

(1) (Initialize) set R.=l, u=N.

(2) (Obtain mid-point)

If u<R., the algorithm terminates unsuccessfully, otherwise, set

i=L(R.+u) j2J, the approximate midpoint of the relevant table area.

(3) (Compare) If K<K. ,
1.

goto step (4)

If K>K. , goto step (5)
1.

If K=K. ,
1.

the algorithm terminates successfully.

(4) (Adjust u) Set u=i-l, goto step (2) •

(5) (Adjust R.) set R.=i+l, goto step (2).

To make the binary search algorithm more clear, we can represent

the binary search algorithm as a binary decision tree as shown in

Figure 6.7. For the case N=16, the first comparison made by the

algorithm is K:K
S

; this is represented by the root node (§) in the

Figure 6.7. Then, if K<K
8

, the algorithm follows the left subtree,

comparing K to K4 , etc; Similarly if K>K
S

' the right subtree is used.

An unsuccessful search will lead to one of the "external" square node

numbered @] through ~; for example, we reach node 0 if and only if

K6<K<K7'

Knuth [1973] and Baase [197S] shows that the number of comparisons

(C) don~ by the binary search algorithm, in the worst case, for a list

of N entries, is,

C = Llog NJ +1 , (6.3.10)

for N~l.

481

FIGURE 6.7: A binary decision tree for N=16

Parallel Binary Search

Consider the effects of using more than one independent

processor (searcher) to occupy the actual or potential nodes of a

binary search. In the binary search algorithm which half of the table

to look at next is the output of one level of the algorithm's operation.

If two processors are available, two cells can be examined at once;

half the time the second processor will have provided valuable look

ahead information, half the time its efforts will have been squandered

in the wrong direction.

Another way to use the processors available might be to use them

at each step to subdivide the input by more than !; i.e., to change

482

the binary search to a ternary one, i.e. 3 etc. This leads to the

multisection algorithm.

A third way is to partition the input to be searched into a number

of subgroups then apply the sequential binary search within each

partition and a broadcast is sent if the target item is found in any

one of the subgroups. The number of partitions may be greater than or

equal to number of available processors.

The third method has been implemented practically, because we

overcome the disadvantage of the first method by broadcasting the

result if the target item has been found in any partition and no

further search will be needed. In addition there is no need for the

input items to be partitioned into exactly the same number as available

processors as previously.

Now for the complexity of the parallel binary search, we suppose

that if N is the size of the input to be searched which is partitioned

into M (M divisible by N) subsets (or paths) with M~P (where P is equal

to the number of processors available), then in each subset N/M elements

are stored. If all the paths are carried out on one processor, then

by applying the binary sequential search formula (equation (6.3.10)),

we get
Cls = MLlog ~ + IJ

- N
~ M(log M +1) . (6.3.11)

Meanwhile, when the algorithm is run in parallel with P processors,

r~ paths have to be carried out by each processor. Thus, we have the

result,

M (log ~ +1)+1
P M (6.3.12)

483

We are interested in discovering how much more efficient the algorithm

is when run on a parallel computer, therefore we measure the speed-up

ratio 5 (M) for the sequential search with M subsets. Thus
ps

N
" M(logM" +1)

"

M N
p(log ~l) +1

N
PM(log ~l)

N
M(log ~l) +P

: P(l - P
N),

M(log ~l)+P
(6.3.13)

which is of O(P). This means that the optimum linear speed-up is

achieved for the unsuccessful case also. It can be seen that greater

efficiency can be obtained the larger M is chosen.

The parallel implementation of the binary search algorithm on the

NEPTUNE system has been programmed in Program (6.8) and the experi-

mental results obtained from running this program are shown in Table

(6.21). The results are obtained for the input size equal to 9216

using different numbers of subsets (M) to search for different keys.

The results in Table (6.21) are taken as an average of many runs.

For the input data size of 9216, the actual search time obtained from

the parallel search algorithm is very small and because this is the

highest input data size which can be used (due to the restriction of

the NEPTUNE system) the appropriate parts in Program 6.8 have been

repeated 50 times to make the results measurable.

From the results in Table (6.21) it can be noticed that the

search time is increased as the number of subsets (parallel paths) is

484

increased and this is due to the overheads incurred by the system

such as the generation of the parallel paths and the communication

between the processors. The speed-up factors are also increased as

the number of subsets is increased and this is due to the fact that

the co-operative processors are more utilized with the high number of

subsets available. Also from the experimental results we notice that,

unlike the parallel sequential search algorithm there is no relation

between the position of the searched key and the search time, i.e. it

is not necessary for the key located at the end of the input data set

(subset) requires the highest search time. This is because in this

method we always start searching at the middle of each subset, and the

key with the highest number of comparisons requires the highest search

time. we notice also the speed-up ratios obtained from the implementation

of the parallel binary search algorithm are generally small for the

case when the number of subsets are less than or equal to 32 (M~32).

This is because the percentage of the overheads (parallel control,

processor communication and shared data access) to the search time

are high in those cases (i.e. M'32).

Now, the performance analysis of this method is predicted

together with their performance measurements when run on the NEPTUNE

system. With reference to Chapter 4, we measure the losses due to

the shared data and the parallel paths. For the shared data loss we

have to consider how many accesses to the shared data per total number

of operations carried by one path. While for the losses due to the

parallel path control, we have to know the number of accesses made

by the program to a path per total number of operations performed in

the path. Table (6.22) shows the predicted resource demands and also

485

represents the performance measurements of the parallel binary

search when run on the NEPTUNE system for the input size 9216 to

search for the key 0.99998877 using different subsets (see Table 6.21) .

From the results in Table (6.22) we notice that in the resource

demands the parallel overheads are increased as the number of parallel

paths is increased. The experimental results confirm this prediction

where the obtainable parallel control overheads (peO) are increased

as the number of parallel paths is increased and this is due to the

extra overheads incurred by the system. We also notice that the

percentage of the overheads are generally high and this is because

the binary search time is low for our input data size.

To conclude this section we can say that the expected performance

of the parallel binary search algorithm is good for very large input

and this is clear from the results in Table (6.21) where the speed-up

is very good (high) when the co-operating processors are fully utilized

and this is what we expect from large input sizes.

,",o.of
No. of Processors

Subsets 1 2 3 4
N Key (M)

Time Time Speed- Time Speed- Time
(sec) (sec) up (sec) up (sec)

9216 0.52330017 4 2.44 1.96 1.25 1.51 1.62 1.50

8 3.97 2.72 1.46 2.08 1.91 1.98

16 6.86 4.21 1.63 2.94 2.33 2.79

32 12.04 6.87 1.75 5.10 2.36 4.38

64 21.88 12.2 1.79 8.90 2.46 7.28

128 39.20 21.61 1.81 15.61 2.51 12.61

0.61517334 4 2.65 1.98 1.34 1.43 1.22 1.47

8 4.17 2.93 1.42 2.31 1.81 2.04

16 7.77 4.56 1.70 3.69 2.11 2.99

32 14.11 7.89 1. 79 5.81 2.43 4.81

64 25.36 13.96 1.82 9.96 2.55 8.01

128 44.67 24.15 1.85 17.13 2.61 13 .65

0.97599792 4 3.32 2.11 1.57 1.63 2.04 1.50

8 6.26 3.62 1.73 2.77 2.26 2.25

16 11.71 6.26 1.87 4.41 2.66 3.65

32 21.36 11.16 1.91 7.55 2.83 6.01

64 37.91 19.67 1.93 13.25 2.86 10.23

128 66.86 34.15 1.96 23.05 2.90 17.60

0.99998877 4 3.64 2.43 1.50 1.95 1.87 1.74

8 6.59 3.94 1.67 3.03 2.18 2.45

16 12.03 6.52 1.85 4.84 2.49 3.72

32 21.69 11.49 1.89 8.00 2.71 6.09

64 38.8 20.04 1.94 13 .57 2.86 10.50

128 68.76 34.97 1.97 23.60 2.91 17.95

TABLE 6.21: The experimental results obtained from the parallel
implementation of the binary search algorithm

486

Speed-
up

1.63

2.01

2.46

2.75

3.01

3.11

1.18

2.04

2.60

2.93

3.17

3.27

2.21

2.78

3.21

3.55

3.71

3.80

2.09

2.69

3.23

3.56

3.70

3.83

Input No.of Performance Resource Demands
Size SUbsets Measurement
(N) (M) Parallel Path Shared

peo SDO Access rate Overheads Access rate

9216 4 6.319% 0.550% (1: 14 x 3.541% (4 :13) flops

8 6.373% 0.455% N
log M) flops 3.889%

16 6.567% 0.333% 4.312%

32 6.777% 0.323% 4.841%

64 7.242% 0.361% 5.515%

128 8.115% 0.422% 6.410%

TABLE 6.22: Performance measurement and resource demands of the
parallel binary search algorithm

487

Data

Overheads

0.032%

488

6.4 CONCLUSIONS

In this chapter, two parallel sorting and searching methods have

been implemented on the NEPTUNE system. For the sorting methods, the

first algorithm (the shell sort method) belongs to the comparative

sorting class, while the second algorithm (the digit sort method)

belongs to the distributive sorting class.

For the parallel shell algorithm, two versions have been

programmed on the NEPTUNE system, where in Version I the sort procedure

was only used, while in Version II the merge procedure is used after

the first pass of the sort procedure. In Version I, the parallel

implementation is carried out by two approaches, where the difference

between the two approaches is the way in which the distance of

comparison is chosen. From the experimental results it was shown that

the second approach needs less time for sorting and gives better speed

up ratios than that of the first approach. This is due to the way in

which the distance of comparison is chosen where fewer passes are

needed in the second approach than that of the first one.

In Version II of parallel shell sort, the algorithm is carried

out in two stages, these are the sorting and the merging stages. In

the merge stage, two merge algorithms have been used, these are the 2-

way and the odd-even merge algorithms. It is noticed that using the

2-way merge procedure gives less sorting time than that used in the

odd-even merge procedure. This is due to the fact that the algorithm

that used the 2-way merge needs logM steps to sort the input data set

(where M is the number of subsets), while the algorithm that used the

odd-even merge needs M steps where M>logM. Meanwhile, the speed-up

489

factors for the algorithm that used the odd-even merge procedure is

better than that used in the 2-way merge. This is because the

processors in the odd-even merge are more utilized, while in the 2-

way merge the number of active processors are halved in each step

of the algorithm, where only one processor is used in the final step

while the remaining processors are idle. Generally we notice that the

speed-up factors obtained from the parallel shell sort is not high

(see Table 6.8) and this is due to the manner in which the shell sort

algorithm performs its procedure, where from pass to pass the number

of active processors are decreased, in other words the co-operative

processors are not fully utilized.

For the digit sort algorithm, two parallel versions have been

implemented on the NEPTUNE system. The two versions are the same

except that the first part of the algorithm was implemented sequentially

in the first version, while in the second version it was implemented in

parallel. The experimental results show that for the first version the

shortest sorting time is obtained when using the largest number of

subsets, i.e., when the number of subsets is equal to 64 in our

implementation (see Table 6.13). For the sort part only, the best

efficiency (speed-up) is obtained when the number of subsets used is

the largest. This is because the processors are fully utilized. We

notice also that the total efficiency (speed-up) was not as good as

the speed-up of the sort part only and this is because the distribution

part is done sequentially which decreases the efficiency (as shown in

Table 6.13). We also observe from the experimental results that better

efficiency is obtained with the largest input data size and this is in

agreement with the theoretical results (Maclaren [1966).

490

The results obtained from Version II of the parallel digit sort

algorithm also show that the best (shortest) sorting time is obtained

when the number of subsets are the largest. The expected gain in using

parallel distribution instead of the sequential one (as in Version I)

is not good and this is due to the usage of the critical section while

maintaining the links between the lists and the sublists. This means

only one processor can be active within that section of the program

while the rest of the processors are idle which greatly affects the

algorithm's performance. In other words, the overheads for the

critical section accesses are much more than the parallel gain in the

algorithm (see Table 6.17). For both version I and II of the parallel

digit sort methods we can generally say that Version II is more suitable

for the MIMD type computers. This is clear from the utilization of

the processors shown in Table 6.17.

For the searching algorithms, two parallel methods were implemented

on the NEPTUNE system. These are the parallel sequential search and

the parallel binary search methods.

For the parallel sequential search algorithm it is clear from the

experimental results in Table 6.19 that the optimum results depend on

the location of the search key within the input data set. The best

efficiency (speed-up) is obtained when the key is located at the end

of the file, i.e. all the processors are fully utilized. Also, from

the experimental results we conclude that the parallel search algorithm

is generally efficient for the MIMD type machine (see Table 6.19).

While for the parallel binary search algorithm, we notice that

the search time.is increased as the number of subsets (parallel paths)

is increased and this is due to the overheads incurred by the system.

491

The efficiency of the parallel binary search algorithm is also

increased as the number of subsets is increased where the processors

are more efficiently utilized with the high number of subsets. In the

parallel binary search algorithm we notice that the percentage of the

overheads are g~~erally high and this is because the parallel binary

search time is low for our input data size (see Table 6.22). We

expect that a better performance will be obtained when the input data

size is very large and this is due to the fact that the processors

with the large input sizes are more utilized (see Table 6.21) •

492

CHAPTER SEVEN

SUMMARY AND CONCLUSIONS

The central theme of this thesis is to cover the design and

analysis of asynchronous parallel algorithms that can be run on MIMD

type computers and in particular the NEPTUNE system at Loughborough

University.

In the first three introductory chapters, the fundamentals of

parallel computer architectures, parallel programming principles and

design of parallel algorithms have been introduced.

493

As computed processing power increases, parallel processing is

considered as a natural and feasible approach to achieve these demands.

Parallel computers have been classified in this thesis into various

different types, each of which has its own characteristics and the types

of problems and applications for which it is more suitable to solve.

For the implementation of certain parallel algorithms, some difficulties

may arise and should be taken into consideration such as the communication

and the synchronisation between all the co-operating processors. These

problems can be overcome either implicitly or explicitly as seen in

Chapter 2.

In general, programming parallel systems is not as easy as that of

uniprocessor systems and this had led to the parallelism being concealed

on most existing MIMD computers. Since the MIMD-type computers consist

of P complete computers where P independent computations can be supported

simultaneously. Hence, the main problem in programming MIMD-type

computers lies in making the computers co-operate efficiently. So that

one problem can be appropriately partitioned amongst them to solve a

given problem with greater speed than it could be solved on a uni

processor. In order to make the MIMD computers competent, it is essential

that the obtainable speed is of O(P), in comparison with the smallest

494

possible sequential time achieved by the best method. This can be

obtained by minimizing both the synchronisation and shared data over

heads, which are directly dependent upon the overall computational

scheduling.

The performance analysis of an algorithm is important from

different points of view. Essentially, it can help to understand better

the algorithm and sometimes to reveal further necessary improvements.

In other words, the careful search required for a proper performance

analysis often leads to a more efficient and a more correct implementation

of algorithms. However, the more complicated the algorithm, the more

difficult its performance analysis becomes.

The principle behind the performance analysis is that parallel

processing involves the sharing of some resources which have a limited

availability. This has the consequence that there is a limit to the

number of demands that can be satisfied and some of them must wait if

there are some competing ones. These demands are determined by the

programs, while the availability and allocation algorithms are properties

of the system.

In recent research promising results have been achieved by getting

a better speed-up by the explicit use of parallelism through the program.

TWO types of algorithms have been implemented on the NEPTUNE system and

have been studied in this thesis, these are the numerical and non

numerical algorithm.

In Chapter 4, the parallel 9-point explicit block iterative method

was developed and implemented on the NEPTUNE system. The implementation

of the parallel 9-point and parallel 4-point block iterative methods

were programmed using different versions and strategies involving

495

synchroneity and asynchroneity together with natural or red-black

orderings. It is clear that the implementation of different strategies

present different timings and losses when they are run on the NEPTUNE

system. For both the parallel 9-point and parallel 4-point block

iterative method, the implementation Version 2 gives better timing

results in all the strategies considered and this is due to the way in

which each block within each subset is evaluated. In Version 2 the

number of operations required is less than that of Version 1. Also in

Version 2, a greater rate of convergence is achieved since the most

recent values of some points are used in evaluating the remaining other

points within each block. Also, from the different implemented

strategies, the asynchronous implementation gives better results than

the synchronous one. This is due to the overheads required at the end

of each iteration in the synchronous implementation. Also, in the

asynchronous implementation better results are obtained because the

processors are almost always fully occupied and busy doing work most of

the time.

The overheadsof shared data and parallel path access were measured

for all the strategies and the 9-point asynchronous version required less

overheads which resulted in the best results being obtained.

It can be seen from the experimental results that the parallel 9-

point block iterative method takes less time than its corresponding

parallel 4-point block iterative method when w=I.O, while when w=w t'
op

in general the two parallel methods take the same time. Therefore, the

parallel 9-point block iterative method was chosen as best amonst the

two parallel block methods. Also it can be seen from the experimental

results, that the parallel 9-point block and 4-point block methods are

496

best suited for parallel implementation on a MIMD computer and this

is due to the almost linear speed-up obtained from their implementation.

In Chapter 5, the parallel A.G.E. method has been developed where

two strategies have been implemented and used to solve a linear and a

non-linear boundary value problem. The two strategies were programmed

on the NEPTUNE system using both the synchronous and asynchronous

approach.

For the linear problem (Problem I), the best results were obtained

when the problem is solved using Strategy I of the parallel A.G.E.

method with the asynchronous approach. This is due to the total number

of computational operations in Strategy 11 being higher than that of

Strategy I and also there is the case that the old values are used

while evaluating the next point using Strategy 11.

For comparison reasons, the parallel versions of the Jacobi,

Gauss-Seidel and S.O.R. iterative methods are implemented on the NEPTUNE

system and used to solve the linear problem using the synchronous and

asynchronous approaches. By comparing the results obtained from these

implementations and those obtained from the parallel A.G.E. methods it

is clear that the elapsed times using the parallel A.G.E. method gives

better results in all the cases. This is because the number of

iterations in the parallel Jacobi, Gauss-Seidel and S.O.R. methods are

much higher than that of the parallel A.G.E. method, which means more

total computational operations are required.

For the non-linear problem (Problem 11), the results obtained from

using the parallel A.G.E. method shows that the asynchronous approach

gives better results than the synchronous approach and this is due to

the synchronisation overheads occurring at the end of each iteration.

497

For comparison reasons, the parallel Jacobi, Gauss-Seidel and
.

N.L.O.R. iterative methods are also used to solve Problem II. These

results show that the parallel A.G.E. method gives better results in

the case of the parallel Jacobi and Gauss-Seidel methods. This is

because the number of iterations in the parallel Jacobi and Gauss-

Seidel methods are higher than those of the parallel A.G.E. method,

which means more computational operations are required to obtain a

solution. While the parallel N.L.O.R. method gives the shortest

timing results than those of the parallel A.G.E. method this is because

more computational operations are required in the case of the parallel

A.G.E. method than that of the parallel N.L.O.R. method.

From the experimental results of the parallel A.G.E. methods, the

shared data and parallel control aCcess are calculated and can be

noticed in the case of the synchronous implementation to be higher than

that of the asynchronous implementation. From the speed-up results

obtained for both the linear and non-linear problem we notice that a

greater speed-up is obtained in the non-linear problem and we conclude

that the amount of computations carried out over the total overheads in

the non-linear problem is greater than that of the linear problem.

From the experimental results obtained we notice that an almost

linear speed-up is achievable and we can conclude that the parallel

A.G.E. method is suitable for implementation on a MIMD computer.

In Chapter 6, two non-numerical algorithms have been implemented

on the NEPTUNE system. These methods are concerned with parallel

sorting and parallel searching.

For the parallel sort, two algorithms were implemented using

different approaches: these are the parallel shell sort and the

parallel digit sort algorithms. In the parallel shell sort algorithms

two versions were implemented. In both version I and II of the shell

sort algorithm the created number of parallel paths are dependent on

the way in which the distance of comparisons was chosen. Where the

distance of comparison is large the number of parallel paths generated

is large and vice versa.

498

In Version I of the parallel shell sort algorithm only the shell

sort procedure is used to get the final sorted list. While in Version

II, the parallel merge algorithm is used after the sort stage to obtain

the final sorted output list. Two approaches have been used to

implement Version I, where the difference between them is the way in

which the distance of comparison was chosen. From the experimental

results we noticed that the second approach gives better results (less

time and better speed-up) than the first approach. This is because the

number of passes in the second approach is less than that of the first

approach and hence the total number of operations in the second approach

is less.

In Version II, the parallel shell sort algorithm is carried out

in two parts. In the first part the subgroups are sorted first, while

in the second part the sorted subgroups are merged to obtain the final

sorted list. Two different parallel merge algorithms were implemented

in the merge part of Version II. These algorithms are the parallel 2-

way merge and the parallel odd-even reduction merge. From the experi

mental results we noticed that the sorting time using the 2-way merge

algorithm is less than the odd-even merge algorithm. This is because

the 2-way merge needs only logM steps to merge the M subgroups, while

M steps are required for the odd-even merge algorithm, where M>logM.

From the speed-up results obtained from these two merge algorithms a

higher speed-up waS obtained in the case of the odd-even merge

algorithm. This is because in the odd-even merge algorithm the

processors are more utilized than in the 2-way merge and this is due

499

to the fact that in the 2-way merge algorithm the number of processors

are halved at each step where only one processor is used in the final

step and the rest of the processors are idle. Generally from the

different implementations of the parallel shell sort algorithm, we

noticed that the speed-up (efficiency) of the algorithms are not high,

and this is because the way in which the shell sort algorithm carries

out its procedure where the number of active processors are decreased

and specially in the last pass where only one processor is used. In

other words the co-operative processors are not fully utilized and from

the performance analysis of the parallel shell sort algorithm the over

heads of the parallel control and shared data access are relatively high

which directly affects the performance of the algorithm.

For the digit sort algorithm, two parallel versions were implemented

on the NEPTUNE system. In Version I, the first part of the algorithm

(the presort or distribution part) was implemented sequentially, while

in Version 11 the first part was implemented in parallel where the other

parts of the algorithms are the same in both versions.

The experimental results obtained from the implementation of the

parallel Version I shows that the sorting time decreases as the number

of subgroups are increased, with the lowest time being obtained when

the number of subgroups is equal to 64 in our input case. We also notice

in Version I that the total (distribution and sort parts) speed-up is

not as good as the sorting part only and this is because the distribution

500

part is done sequentially which affects the total speed-up. In Version

I we observed from the experimental results that a better efficiency

waS obtained with the higher input size data.

For Version 11 of the parallel digit sort we also noticed that the

lowest sorting time is obtained with the highest number of subsets.

Because in Version 11 the first part (presort) of the algorithm was

implemented in parallel, the expected gain is not good and this is due

to the usage of the critical section while maintaining the links between

the list and the sublists. This means the overheads of the critical

section accesses are much more than the parallel gain in the algorithm.

Finally, for the parallel digit sort algorithm, we can say that

Version 11 is more suitable for M1MD type computers and this is because

the utilization of the processors in Version 11 is more than that in

Version I.

For the search methods, two well known methods have been

implemented in parallel, these methods are the parallel sequential

search and the parallel binary search.

The experimental results obtained from the implementation of the

parallel sequential sort shows that the optimum results is dependent

on the location of the searched key within the input data set. The best

efficiency (speed-up) was obtained when the key was located at the end

of the file, i.e., all the processors are fully utilized. From the

experimental results we can conclude that the parallel sequential

search method is generally good for the MIMD type machine (see Table 6.19).

For the parallel binary search algorithm, we notice that the

search time increases as the number of subsets (parallel paths) is

increased and this is due to the overheads incurred by the system. The

501

efficiency of the algorithm is increased as the number of subsets is

increased where the processors are more utilized with the higher number

of subsets. In the parallel binary search algorithm, because the

searching time is low for the input size used we noticed that the

percentage of the overheads are generally high (see Table 6.22). From

the experimental results we also expect that the performance will be

improved for the very large input datajlizes since the processors are

more utilized for these cases.

502

APPENDIX

SELECTED COMPUTER PROGRAMS

1
2
3

5
6
7
6
9

10
11
12
13
14
15
16
17
16
19
20
21
22
23
24
25
26
27
26
29
30
31
32
33
34
35
36
37
36
39
~O

"1
-12
43

46
47
~6
49
50
51

c
c
c
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

2
C
C
C
C

90

95
C
C
C
C
96

664
C
C
C

**** PROGRAM ~.1 **** 503

THIS PROGRAM IMPLEMENTS THE 9-POINT BLOCK ITERATIVE METHOD WHERE
THE SOR ITERATIVE METHOD IS USED.THIS IS AN ASYNCHRONOUS ALGORITHM
TO SOLVE THE 2-DIMENTIONAL DIRICHLET PROBLEM.THE LINES OF THE
MESH TO BE SOLVED ARE PARTITIDNED INTO NPATH SUBSETS SO THAT EACH
SUBSET IS ASSIGNED TD A GROUP OF SEQUENTIAL LINES.THE BLOCKS OF 9
POINTS ARE EVALUATED IN THE NATURAL ORDERING WHERE EACH 3 LINES
WHICH FORM THE BLOCKS ARE TAKEN AT A TIME.

- THE ARRAY XN WILL HOLDS THE COEFFICIENT MATRIX.
- ITERIII - NUMBER OF ITERATIONS RUN BY PROCESSOR I.
- NPATH • NUMBER OF PARALLEL PATHS.
- W • RELAXATION FACTORS.
- MAXITR • MAXIMUM ITERATIONS.
- EPS • ACCURACY VALUE USED FOR CONVERGENCE TEST.

I NTEGER*2 I TI ME
DIMENSION XNI40.401.ERRI40.401.ITER(6),IFLAGI61.ITIMEll001
$BHARED XN,N.Nl.N2.NP.ITER,IFLnG.NPATH.EPS.MAXITR,W.ITIME
$USEPnR
MAX ITR = 1000
EPS ., 0,00001
WRITEI6.2)
FORMAT('PROGRAM NAME :- • PROGRAM 4.1 "1/1

REntl MESH SIZE, THE NIIMBER OF PAF:nLLEL PATHS
AND READ W,Wl THE RELAXATION FACTORS.

READ15,901 N,NPATH.IPRINT.W.Wl.WF
FORMAT(I2,lX,I2,lX,I2,lX,FS.3,lX,FS.3,lX,F5.3)
N2 ::: N··2
N1 '" N-1
NP '" NUNF'ATH
IFINP .E!l. 11 NP'''3
WRITEI6,95) MnXITR.EPS,N2,NPATH
FORMATI/'MAXITR-',I4/2X.'EPS-'F10.6/2X.'N2-'.I2/2X,'NPATH-'.I21

RlIN THE ALGORITHM WITH W WHICH IS INCREASErI EACH STEF' BY 1.1 IN ORDEF:
TO FIND THE EXACT RELAXATION FACTOR.

W=WtW1
IF IW .GT. WFI GO TO 150
WRITEI6.8M)W
FDRMATI/2X,'W-'.F7.31

INITIALISE THE COMPONENTS AND THE BOUNDARY OF THE MESH.

roD 11 11,-·l.N
XN I 11,1) '-100.0

52 DO 22 Jl~2,N
53 XNlIl.Jl)·O.O
54 22 CONTINUE
55 11 CONTINUE
56 C
57 C INITIALISE ITERATION COUNTERS AND FLAGS FOR EACH PROCESSOR
58 C
59 DO 17 I·l.NPATH
60 ITERIII-O
61 IFLAGlII-l

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

17
C
C
C

1
C
C
C

C
C
C
50
C
C
C
C

C
C
C

C
C
C
C

CONTINUE

START TIMING

$DOIILL 1
B~1./112.
r::-l t 1224.
C'''1./16.
Ct':LL TIMEST

$P!lRENrI

504

SET UP A F'ROCESS FOR Et'\CH F'ROCESSOR TO ITERATE IISYNCHRONOUSL Y.

$f!OF'IIR 15 IP~l ,NF'IITH
IF'S~NF'* (I P-l) t2
IPF"NPUP+1

ITERATE ON THE SUBSET ELEMENTS UNTIL !I CONVERGENCE IS IICHIEVEII.

ITER(IP)wITERIIP)tl

PfCK EACH THREE CONSE~UENT LINES liT A TIME SO THAT THE
BLOCKS TO BE EVALUATED CAN BE SOLVED AS COMPLETE.

DO 35 I-IPS,IPF,3
DO 36 J-2.N2,3

FYND THE EQUATIONS OF THE 9 POINTS OF THE BLOCK.

XOLII",XN (I , J)
Rl-XN(I-l,J)tXN(I,J-l)
R2~XN(I-l,Jtl)tXNlItl,J-l)

R3-XN(I-l,Jt2)tXN(I,Jt3)
R~·XNlIt3,J)tXN(It2,J-l)
R5-XN(Itl.Jt3)tXNlIt3,Jtl)
R6-XN(It2,Jt3)tXN(It3,Jt2)
R7'"XN(1+1, J-l)
R8-XN(I-l,Jtl)tXN(It3,Jtl)
R9~XN(1+1,Jt3)
Rl0-XN(It3,Jtl)tXN(Itl,J-l)
Rll-XN(I-l,Jtl)tXN(Itl,Jt3)
R12-XNlI-l,J+1)
R13-XN(Itl,Jt3)tXN(Itl,J-l)
R14=XN(It3,Jtl)
R15'"R3tR4
R16'"R1+R'I
R17-R3tR6
R18-R1tR6
R19-R1+R3
R20"R6tR~
R21=Rl0tR11
R22'"R18tR15
XNEW=(67.*Rlt22.*R2t7.li<R15t6.*R5t3.*R6)*A

EVALUt':TE THE COMPONENTS WITH W AND PUT THE NEW
Vt':LUE IN THE ARRAY XN.

XNEW=W*(XNEW-XOLD)tXOLD
ERR(I,J)-ABS(XNEW-XOLD)/(ltABSIXOLD»
XN(I,J)-XNEW
XOLII-XN (1+1 , J)
XNEW-(37.*R7tl1.*R16t7.*R8t5.tR9t3.*R17)*B

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
1'10
141
1112
1'13
1'14
1'15
146
147
148
1 ... 9
150
151
152
153
154
155
156
157
158
159
160
161
162 C

XNEW-W.IXNEW-XOLD)+XOLD
ERRII+l,J)~ABSIXNEW-XOLD)!ll+ABSIXOLD»
XN 11+ 1, J) '''XNEW
XOLD'-XN I 1+2, J)
XNEW n I67 •• R4+22.*Rl0+7 •• R18+6.*Rll+3.*R3)*A
XNE~I~W* I XNEW-XOLD) +XOLI'
ERRII+2,J)wABSIXNEW-XOLD)!(1+nBSIXOLD»
XN 11+2, J) '-XNEW
XOLI'~XN I I, J+1)
XNEW~137.'R12+11.'R19+7.*R13+5.'R14+3.*R20)'B
XNEW~W'IXNEW-XOLD)+XOLD
ERRII,J+l)~ABSIXNEW-XOLD)!ll+ABSIXOLD»
XNI I ,J+1)=XNEW
XOLr''''XNI 1+1, J+l)
XNEW n I2.'R21+R22).C
XNEW=W*IXNEW-XOLD)+XOLD
ERRII+l,J+l)=ABSIXNEW-XOLD)/ll+ABSIXOLD»
XNII+l,J+l)"XNEW
XOLDrXNII+2,J+1)
XNEW"137 •• R14+11.*R20+7.*R13+5.'R12+3.*R19).B
XNEW-WI I XNEI'I-XOLD) +XOLD
ERRII+2,J+1)"ABSIXNEW-XOLD)!11+ABSIXOLD»
XNII+2,J+l)-XNEW
XOLI"-XN I I , J+2)
XNEW=e67.*R3+22.*Rl1+7 •• R18+6.,Rl0+3.*R'I1*A
XNEWnWleXNEW-XOLD)+XOLD
ERRII,J+2)-ABSeXNEW-XOLD)/el+ABSeXOLD»
XNeI,J+2)-XNEW
XOLDnXNeI+l,J+2)
XNEW-137.*R9+11 •• R17+7 •• R8+5.'R7+3 •• R16)*B
XNEW~WIIXNEW-XDLD)+XOLD

ERReI+l,J+2)nABSIXNEW-XOLD)/el+ABSIXOLD»
XNII+l,J+2)=XNEW
XOLI"-XN I I +2, J+2)
XNEW=(67.*R6+22.'R5+7.IR15+6.*R2+3.*Rl).A
XNEW"WIIXNEW-XOLD)+XOLD
ERRII+2,J+2)=ABSIXNEW-XOLD)!(1+ABSIXOLD»
XNII+2,J+2)=XNEW

163 36 CONTINUE
164 35 CONTINUE
165 C
166 C CHECK IF THE NUMBER OF ITERATIONS EXCEEDS
167 C THE ALLOWED MAXIMUM.
168 C
169 113 IFIITERIIP) .8E. MAXITR) GO TO 15
170 C
171 C CHECK FOR CONVERGENCE.
172 C
173 PO 777 Ill-IPS,IPF
174 DO 777 Jll~2,Nl
175 IFIERRIIll,Jll) .8T. EPS) GO TO 50
176 777 CONTINUE
177 C
178 C SET THE CDNVERGENT FLAG = 2 AND TEST FDR THE
179 C CDNVERGENCE OF THE OTHER PROCESSES.
180 C
181 IFLAGIIP)~2

182 JJ n l
183 776 IFeIFLAGeJJ) .EO. 1) GO TO 50
184 JJ=JJ+l
185 IFeJJ .LE. NPATH) GO TO 776

505

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

15 fF'AREND
C
C END TIMING
C

3

801
C
C
C
C

28

812

85
154

61

65
810

250
61

37
150

f[IO"'LL 3
C~LL TIMOUT(ITIME)

fPAREND
WRITE(6,801) ITIME
FORMAT(112X,'THE TIMING'/8(I6,2X»

CHECK IF ANY PROCESS EXCEED ITS M"'XIMUM
ITER"'TION LIMITS.

DO 28 J~l,NF'I\TH
IF (ITER(J) .GT. M~XITR) GO TO 250

CONTINUE
DO 8S 1'"1, NP"'TH

WRITE(6,812) I,ITER(I)
FORMAT(111X,'CONVERGENCE IS ACHIEVED IN F'ROCESS NO.'I2,lX,

1 'AFTER',lX,I4,lX,'ITERATIONS')
CONTINUE
IF(IF'RINT .8T. 1) GO TO 37
WRITE(6,6~)
FORM~T(112X,'THE SOLUTION MESH IS')
DO 810 IJ'"bN
WRITE(6,6S)(XN(IJ.JJ),JJ;1,N)
FORMAT(111X,7(Fl0.6,lX»

CONTINUE
GO TO 37
WRITE(6,61)
FORM"'T(I/2X,'NO CONVERGENCE IS "'CHIEVED')
GO TO lS~

GO TO 96
$STOF'
$END

506

1 C
2 C **** PROGRAM 4.2 **** 3 C

507

~ C THIS PROGRAM IMPLEMENTS THE '-POINT BLOCK ITERATIVE METHOD WHERE
5 C THE SOR ITERATIVE METHOD IS USED.THIS IS AN ASYNCHRONOUS ALGORITHM
6 C TO SOLVE THE 2-DIMENTIONAL DIRICHLET PROBLEM. THE LINES OF THE
7 C MESH TO BE SOLVED ARE PARTITIONED INTO NPATH SUBSETS SO THAT EACH
8 C SUBSET IS ASSJGNED TO A GROUP OF SEOUENTIAL LINES.THE BLOCKS OF 9
9 C POINTS ARf EVALUATED IN THE RED-BLACK ORDERING WHERE EACH 3 LINES

10 C WHICH FORM THE BLOCKS ARE TAKEN AT A TIME.
11 C
12 C - THE ARRAY XN WILL HOLDS THE COEFFICIENT MATRIX.
13 C - ITER(I) n NUMBER OF ITERATIONS RUN BY PROCESSOR I.
14 C - NPATH n NUMBER OF PARALLEL PATHS.
15 C - N = RELAXATION FACTORS.
16 C - MAXITR n MAXIMUM ITERATIONS.
17 C - EPS - ACCURACY VALUE USED FOR CONVERGENCE TEST.
18 C
19 INTEGER ITIME,FLAG
20 DIMENSION XN(~0,40),ERR(40,40),ITER(6),IFLAG(6),ITIME(100)
21 .SHARED XN,N,Nl,N2,NP,ITER,IFLAG,NPATH,EPS,MAXITR,W,ITIME
22 .USEPAR
23 MAXITR r 1000
2~ EPS n 0.00001
25 WRITE(6,2)
26 2 FORMAT('PROGRAM NAME l- • PROGRAM 4.2 "11)
27 C
28 C READ MESH SIZE,NUMBER OF PARALLEL PATHS
29 C AND W,Wl THE RELAXATION FACTORS.
30 C
31 READ(5,90) N,NPATH,IPRINT,W,Wl,WF
32 90 FORMAT(I2,lX,I2,lX,I2,lX,F5.3,lX,F5.3,lX,F5.3)
33 N2 n N-2
3~ Nl n N-l
35 NP = N2/NPATH
36 IF(NP .Ea. 1) Np n 3
37 WRITE(6,95) MAXITR,EPS,N2,NPATH
38 95 FORMAT(/'MAXITR-',I4/2X,'EPS='Fl0.6/2X,'N2-',I2/2X,'NPATH-',I2)
39 C
~O C RUN THE ALGORJTHM WITH W WHICH IS INCREASED EACH STEP BY Wl IN ORDER
41 C TO FIND THE EXACT RELAXATION FACTOR.
42 C
43 96 W-W+Wl
~4 IF (W .GT. WF) GO TO 150
45 WRITE(6,864)W
46 864 FORMAT(/2X,'W.',F7.3)
47 C
~8 C INITIALISE THE COMPONENTS AND THE BOUNDARY OF THE MESH.
49 C
50 DO 11 Ilnl,N
51 XN(Il,1)-100.0
52 DO 22 Jl-2,N
53 XN(Il,Jl)-O.O
5~ 22 CONTINUE
55 11 CONTINUE
56 C
57 C INITIALISE ITERATION COUNTERS AND FLAGS FOR EACH PROCESSOR
58 C
59 DO 17 I n l,NPATH
60 ITER(I)-O
61 IFLAG(I)nl

62
63
6~

65
66
67
66
69
70
71
72
73
7'1
75
76
77
76
79
80
81
82
83
8~
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
11 ..
115
116
117
118
119
120
121
122
123

17
C

1
C
C
C

C
C
C
50
C
C
C
C

51

C
C
C

C
C
C
C

CONTINUE
SHIRT TIMING

$MIILL 1
F<'·'1.!112.
f'I:-::1 ./224.
C'~1';16.

Ci\LL TI MEST
$PtlREND

508

SET UP A PROCESS FOR Ei\CH PROCESSOR TO ITERATE ASYNCHRONOUSLY.

$nOPAR 15 Ip r l,NPATH
IPS'-NP't.(IP-l >+2
IPF=NP*IP+1

ITERIITE ON THE SUBSET ELEMENTS UNTIL A CONVERGENCE IS tlCHJEVEII.

ITERCIP)-ITERCIP)tl

PICK EACH THREE CONSEQUENT LINES liT A TIME SO THAT THE BLOCKS TO BE
EVALUATED CIIN BE SOLVED AS COMPLETE.

1<1 '"5
FLAG-O
DO 3~ I-IPS,IPF,3

Kl=7··Kl
110 36 J-K 1, N2, 6

FIND THE EQUATIONS OF THE 9 pnINTS OF THE BLOCK.

XOLD=XN(I,J)
Rl-XN(I-l,JltXNCI,J-l)
R2-XN(I-l,Jtl)tXN(Itl,J-l)
R3~XN(I-l,Jt2ItXN(I,Jt31
R4~XN(It3rJ)tXN(It2,J-l)
R5 r XN(Itl,Jt3)tXN(It3,Jtl)
R6-XN(It2,Jt3)tXN(It3,Jt2)
R7"'XNC Itl ,J-l)
R8-XN(I-l,Jtl)tXNCIt3,Jtl)
R9~XN(1+1 ,Jt3)
Rl0~XN(I+3rJtl)tXN(Itl,J-l1
Rll-XNCI-l,Jtl)tXN(Itl,Jt3)
R12~XN(1-1 ,J+1)
R13~XN(Itl,Jt3)tXNCItl,J-l)

R14-XNC It3,J+1)
R15'-R3tR~
R16=RltR4
R17-R3tR6
R18-RltR6
R19~·RltR3

R20-R6tR~

R21-Rl0tRll
R22~R18tR15

XNEW=(67.*Rlt22.*R2t7.'t.RI5t6.*R5t3.*R6)*A

EVALUATE THE COMPONENTS WITH W AND PUT THE NEW
VALUE IN THE IIRRtlY XN.

XNEW=W*(XNEW-XOLD)tXOLD
ERR(I,J)=IIBS(XNEW-XOLD)!(ltIlBS(XOLD»
XN(I ,J)~XNEI·'
XOLD'·XN (It 10 J)

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
1~1
142
1~3
1~4
145
146
147
148
119
150
151
152
153
1St!
155
156
157
158
159
160
161
162
163. C
164 36
165 35
166
167
168
169

XNEW~(37.tR7+11.tR16+7.*R8+5.tR9+3.*R17'tB

XNEW=W*(XNEW-XOLD)+XOLD
ERR(I+l,J)~ABS(XNEW-XOLD)/(l+ABS(XOLD»
XN(I+l,J)~XNEW
XOLI'=XN (I+2, J)
XNEW~(67.tR4+22.*Rl0+7.*R18+6.tRll+3.tR3'*A
XNEW-W*(XNEW-XOLD)+XOLD
ERR(I+2,J)rABS(XNEW-XOLD)/(1+ABS(XOLD»
XN (I+2, J) "XNE~J
XOLD=XN(I,J+l)
XNEW_(37.tR12+11.*R19+7.*R13+5.tR14+3.tR20)tB
XNEWrW*(XNEW-XOLD'+XOLD
ERRII,J+l)rABSIXNEW-XOLD)/ll+ABS(XOLD')
XN I I ,J+1) ·XNEW
XOLD-XN(I+l,J+l'
XNEW~(2.tR21+R22)*C
XNEW-Wt(XNEW-XOLD'+XOLD
ERRII+l,J+l)-ABSIXNEW-XOLD)/(l+ABSIXOLD»
XN(I+l ,J+l)=XNEW
XOLt,,"XN I 1+2, J+ 1)
XNEWr(37.*R14+11.*R20+7.*R13+5.*RI2+3.*RI9)tB
XNEW-WI(XNEW-XOLD'+XOLD
ERR(I+2,J+l)~ABS(XNEW-XOLD)/(1+ABSIXOLD»

XN (I+2, J+1) -XNEW
XOLD-'XN (I ,J+2)
XNEW=(67.*R3+22.tRl1+7.tR18+6.*Rl0+3.*R4)*A
XNEWrW*(XNEW-XOLD'+XOLD
ERR(I,J+2)rABS(XNEW-XOLD)/(1+ABS(XOLD»
XN(I,J+2'-XNEW
XOLI,rXN (I+ 1, J+2)
XNEWr(37.*R9+11.*R17+7.tR8+5.*R7+3.*R16)*B
XNEWrWI(XNEW-XOLD'+XOLD
ERR(I+l,J+2)-ABS(XNEW-XOLD)/(1+ABS(XOLD»
XN(I+l,J+2)-XNEW
XOLD'-XN (I +2, J+2'
XNEWr(67.tR6+22.*R5+7.IR15+6.*R2+3 •• Rl)IA
XNEW~Wt(XNEW-XOLD'+XOLD
ERR(I+2,J+2)=ABS(XNEW-XOLDI/(1+ABS(XOLD»
XNII+2,J+2)-XNEW

CONTINUE
CONTINUE
IF(FLM .ECl. 1) GO TO 113
FLM-'1
Kl'-2
GO TO 51

170 C
171 C
172 C
173 C
174 113
175 C
176 C
177 C
178

CHECK IF NUMBER OF ITERATIONS EXCEEDS
THE ALLOWED MAXIMUM LIMIT.

179
180
181 777
182 C
183 C
184 C
185 C

IF(ITER(IP' ·.GE. MAXITR) GO TO 15

CHECK FOR CONVERGENCE.

DO 777 Il1-IPS,IPF
[,0 777 Jll r '2, NI

IF(ERR(Il1,Jll) .GT. EPS) GO TO 50
CONTINUE

SET THE CONVERGENT FLAG = 2 AND TEST FOR THE
CONVERGENCE OF THE OTHER F'ROCESSES.

509

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

IFLI\G(IP)'"<?
JJ·l

776 IF(IFLI'IG(JJ) .Ell. 1) GO TO 50
JJ=JJ+l
IF(JJ .LE. NPATH) GO TO 776

15 $PI'IRENIt
C ENIt UMING

$['OI'lLL 3
CALL TIMOUT(ITIME)

3 $PI'>RENIt
WRITEC6,801) ITIME

801 FORMATC/12X,'THE TIMING'/8(I6,2X»
C
C CHECK IF I'INY PROCESS EXCCED ITS MI'IXIMUM
C ITERI'ITION LIMITS.
C

['0 28 J~l, NPI'ITH
IF (ITER(J) .GT. MAXITR) Gn TO 250

28 CONTINUE
['0 85 I~l,NF'I'>TH

WRITE(6,812) I,ITER(I)
812 FORMI'ITC//1X,'CONVERGENCE IS ACHIEVEIt IN PROCESS

1 'I'IFTER',IX,I4,IX,'ITERI'ITIONS')
85 CONTINUE
154 IF(IPRINT .GT. 1) GO TO 37

WRITE(6,M)
64 FORMAT(//2X,'THE SOLUTION MESH IS')

DO 810 I..J"'I,N
WRITEC6,65)(XNCIJ,JJ),JJ~I,N)

65 FORMAT(/11X,7(Fl0.6,IX»
810 CONTINUE

GO TO 37
250 WRITE(6,61)
61 FORMI'IT(/12X,'NO CONVERGENCE IS nCHIEVEIt')

GO TO 15~

37 GO TO 96
150 $STOF'

$ENIt

510

NO.'I2rlX,

511
1 C
2 C
3 C
'\ C
5 C
6 C
7 C
8 C
9 C

10 C
11 C
12 C
13 C
14 . C
15 C
16 C
17 C
18 C
19

THIS PROGRAM IMPLEMENTS THE 9-POINT BLOCK ITERATIVE METHOD WHERE
THE SOR ITERATIVE METHOD IS USED.THIS IS AN SYNCHRONOUS ALGORITHM
TO SOLVE THE 2-DIMENTIONAL DIRICHLET PROBLEM. THE LINES OF THE
MESH TO BE SOLVED ARE PARTITIONED INTO NPATH SUBSETS SO THAT EACH
SUBSET IS ASSIGNEI' TO A GROUP OF SEQUENTIAL LINES. THE BLOCI<S OF 9
POINTS ARE EVALUATED IN THE NATURAL ORDERING WHERE EACH 3 LINES
WHICH FORM THF. BLOCKS ARE TAKEN AT A TIME.

20
21
22
23
2~

25
26 2
27 C
28 C
29 C
30 C
31
32 90
33
3'\
35
36
37
38 95
39 C
40 C
41 C
42 C
43 96
44
45

- THE ARRAY XN WILL HOLDS THE COEFFICIENT MATRIX.
_ ITER = NUMBER OF ITERATIONS RUN BY THE THE PROCESSORS.
- NPATH ~ NlIMBER OF PARALLEL PATHS.
- W = RELAXATION FACTORS.
- MAXITR ~ MAXIMUM ITERATIONS.
- EPS = ACCURACY VALUE USED FOR CONVERGENCE TEST.

INTEGERlt.2 ITIME
DIMENSION XN(,\0,40),ERR(40,40),ITIME(100)
SSHARED XN,N,N1,N2,NP,ITER,IFLAG,NPATH,EPS,MAXITR,W,ITIME
SUSEPI\R
MAXITR ~ 1000
EPS = 0.00001
WRITE(6,2)
FORMAT('PROGRAM NAME :- • PROGRAM 4.3 "11)

REM' MESH SIZE,NUMBER OF PARALLEL PATHS
AND W,W1 THE RELAXATION FACTORS.

READ(5,90) N,NPATH,IPRINT,W.W1.WF
FORMAT(I2,lX,I2,lX,I2,lX.F5.3,lX.F5.3,lX,F5.3)
N2 ::- N-2
N1 = N-1
NP = N2/NF'nTH
IF(NP .EO. 1) NP~3
WRITE(6,95) MAXITR,EPS.N2,NPATH
FORMAT(/'MAXITR~',I,\/2X.'EPS='F10.6/2X.'N2~',I2/2X,'NPATH~'.I2)

RUN THE ALGORITHM WITH W WHICH IS INCREASED EACH STEP BY W1 IN ORDER
TO FIND THE EXACT RELAXATION FACTOR.

W~W+Wl

46 864
47 C
48 C
49 C
50

IF (W .GT. WF) GO TO 150
WRITE(6,8b4)W
FORMAT(/2X,'W~',F7.3)

INITIALISE THE COMPONENTS AND THE BOUNDARY OF THE MESH.

DO 11 11 ~1, N
XN(I1,1)'"100.0 51

52 DO 22 Jl 1-2,N
53 XN(Il,Jl)~O.O

5~ 22 CONTINUE
55 11 CONTINUE
56 C INITIALISE ITERATION COUNTER
57 ITER ~ 0
'58 C
59 C STnRT TIMING
60 C
61 snOnLL 1

62
63
64
65
66
67
68
69
70
71
72
73
7~

75
76

1
C
50
C
C
C

77 C
79 C
79 C
80
91
82
83
9 ..
85
96
97
98
99
90
91
92
93
94
95
96
97
99
99

100
101
102
103
10.. C
105 C
106 C
107 C
109
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

B"'l. 1112.
A:.-:l • /22~.
C'·1./16.
Ct'\LL TIMEST

$PARENII

ITER ,-- ITER + 1

SET UP A PROCESS FOR EACH PROCESSOR TO ITERATE SYNCHRONOUSLY.

$DOPAR 15 IP-l,NPATH
I PS"NF'* (Ip·l) +2
IF'F=NPIIPt1
DO 35 I~IPS,IPF,3

DO 36 J'"2, N2, 3

FIND THE EQUATIONS OF THE 9 POINTS OF THE BLOCK.

XOLII~XN (I , J)
Rl~XN(I-l.J)+XNCI,J-l)
R2~XN(I-l.J+l)+XNCI+l,J-l)
R3~XN(I-l.J+2)+XNeI.J+3)

R4=XNeI+3.J)+XNeI+2.J-l)
R5=XNeI+l.J+3)+XNeI+3.J+l)
R6=XN(I+2.J+3)+XNeI+3.J+2)
R7=XN (1+ 1. J-l)
R8~XNeI-l,J+l)+XNeI+3,J+l)
R9~XNeIt1,J+3)

Rl0-XN(I+3.J+l)+XN(I+l,J-l)
Rll=XNeI-l.J+l)+XN(I+l.J+3)
R12=XN(I-l.Jt1)
R13 n XNeI+l,J+3)+XN(I+l,J-l)
Rl .. -XNCI+3,Jt1)
R15"R3+R4
R16'-R1+R"
R17'-R3+R6
R18"R1+R6
R19'''R1+R3
R20-R6+R4
R21~Rl0+Rl1

R22"R18+R15
XNEW n e67.*Rl+22.IR2+7.'R15+6.IR5+3.*R6)*A

EVALUATE THE COMPONENTS WITH W AND PUT THE NEW
VALUE IN THE ARRt'\Y XN.

XNEW=W*(XNEW-XOLD)+XOLD
ERReI,J)-ABS(XNEW-XOLD)/(l+ABSeXOLD»
XNeI.J)~XNEW

XOLD'-'XN (1+ 1, J)
XNEWn(37.*R7+11.*R16+7.*R9+5.*R9+3 •• R17)*B
XNEW-W*eXNEW-XOLD)+XOLD
ERR(I+l.J)=ABSeXNEW-XOLD)/(l+ABS(XOLD»
XNe1+1.J)"·Y.NEI~
XOLII'''XN (It2, J)
XNEW-e67.*R4+22.IR10+7.IR18+6.*Rl1+3.IR3).A
XNEW-W*eXNEW-XOLD)+XOLD
ERR(I+2,J)·ABS(XNEW-XDLD)/el+ABSeXOLD»
XNe1+2.J)-XNEW
XOLD-XNeI,J+l)
XNEW-e37.*R12+11.*R19+7.*R13+5.*Rl .. +3.*R20)*B
XNEW·WI(XNEW-XOLD)+XOLD

512

124 ERRII,J+l)-ABSIXNfW-XOLD)/ll+ABSIXOLD»
125 XNII,J+l)-XNEW
126 XOLD-XNII+l,J+l)
127 XNEW-12.*R21+R22)*C
128 XNEW-W*IXNEW-XOLO)+XOLD
129 ERRII+l,J+l)-ABSIXNEW-XOLD)/ll+ABSIXOLD»
130 XNII+l,J+l)-XNEW
131 XOLD-XNII+2,J+1)
132 XNEW=137.*R1~+11.*R20+7.*R13+5.*R12+3.*R19)*B
133 XNEW-W*IXNEW-XOLD)+XOLD
134 ERRII+2,J+1)=ABSIXNEW-XOLD)/11+ABSIXOLD»
135 XNII+2,J+1)-XNEW
136 XOLD-XNII,J+2)
137 XNEW-167.*R3+22.*Rl1+7.*R18+6.*Rl0+3.*R~)*A
138 XNEW=W*IXNEW-XOLD)+XOLD
139 ERRII,J+2)=ABSIXNEW-XOLD)/11+ABSIXOLD»
110 XNII,J+2)-XNEW
141 XOLD=XNII+1,J+2)
142 XNEW-137.*R9+11.*R17+7.*R8+5.*R7+3.*R16)*B
143 XNEW-W*IXNEW-XOLD)+XOLD
144 ERRII+1,J+2)rABSIXNEW-XOLD)/ll+ABSIXOLD»
145 XNII+1,J+2)-XNEW
146 XOLD-XNII+2,J+2)
147 XNEW-167.*R6+22.*R5+7.*R15+6.*R2+3.*R1)*A
148 XNEW-W*IXNEW-XOLD)+XOLD
149 ERRII+2,J+2)·ABSIXNEW-XOLD)/11+ABSIXOLD»
150 XNII+2,J+2)=XNEW
151 C
152 36 CONTINUE
153 35 CONTINUE
154 15 $PAREND
155 C
156 C CHECK IF THE ITERATION ABOVE THE SPf.CIFICATION LIMIT.
157 C
158 113 IFIITER .GE. MnXITR) GO TO 775
159 C
160 C CHECK FOR CONVERGENCE.
161 C
162 DO 777 I11~IPS,IPF
163 DO 777 J11~2,N1
164 IFIERRII11rJ11) .8T. EPS) GO TO 50
165 777 CONTINUE
166 C
167 C END TIMING
168 C
169 775 $DOALL 3
170 CnLL TIMOUTIITIME)
171 3 $PAREND
172 WRITEI6,801) ITIME
173 801 FORMATI//2X,'THE TIMING'/8116,2X»
174 C
175 C CHECK IF ANY PROCESS EXCEED ITS
176 C MAXIMUM ITERATION LIMITS.
177 C
178 IF IITER .GT. MAXITR) GO TO 250
179 [10 85 I'"l,NF'(\TH
180 WRITEI6,812) I,ITER
181 812 FORMATI//1X,'CONVERGENCE IS ACHIEVED IN PROCESS NO.'I2,lX.
182 1 'AFTER'.lX,I4,lX.'ITERATIONS')
183 85 CONTINUE
184 15~ IFIIPRINT .GT. 1) GO TO 37
185 WRITEI6,64)

/

513

514
186 64 FORMAT(//2X,'THE SOLUTION MESH IS')

187 DO 810 IJ~l,N
188 WRITE(6,65)(XN(IJ,JJ),JJ~1,N)

189 65 FORMAT(//lX,7(Fl0.6,lX»
190 810 CONTINUE
191 GO TO 37
192 250 WRITE(6,61>
193 61 FORMI'IT (/ /2X. ' NO CONVERGENCE IS ,.,CHIEVEtl ')
19'. GO TO 154
195 37 GO TO 96
196 150 ~STOP

197 ~END

515

1 C
2 C **** PROGRnM 4.4 .***
3 C
4 C THJS PROGRAM IMPLEMENTS THE 9-POINT BLOCK ITERATIVE METHOD WHERE
5 C THE SOR ITF.RATJVE METHOD IS USED.THIS IS AN ASYNCHRONOUS ALGORITHM
6 C TO SOLVE THE 2-DIMENTIONAL DJRICHLET PROBLEM. THE LINES OF THE
7 C MESH TO BE SOLVED ARE PARTITIONED INTO NPATH SUBSETS SO THAT EnCH
8 C SUBSET IS ASSIGNEI' TO A GROUP OF SEQUENTI"'L LINES. THE BLOCKS OF 9
9 C ARE EVALUATED IN THE NATURAL ORDERING WHERE EnCH 3 LINES WHICH

10 C FORM THE BLOCKS ARE TAKEN AT A TIME.
11 C
12 C - THE ARRAY XN WILL HDLDS THE COEFFICIENT MATRIX.
13 C - ITER <I) .- NUMBER OF ITERATIONS RUN BY PROCESSOR I.
14 C - NF'ATH = NUMBER OF PARnLLEL pnTHS.
15 C - W = RELAXATION FACTORS.
16 C - MAXITR ~ M"'XIMUM ITERATIONS.
17 C - EPS = ACCURACY VALUE USED FOR CONVERGENCE TEST.
18 C
19 INTEGER*2 ITIME
20 DIMENSION XNC40,40),ERRC40,40), ITER(6),IFLAG(6),ITIMEC100)
21 'SHARED XN,N,Nl,N2,NP,ITER,IFLAG,NPATH,EPS,MAXITR,W,ITIME
22 .USEPAR
23 M"'XITR = 2000
24 EPS = 0.00001
25 WRITEC6,2)
26 2 FORMATC'PROGR"'M NnME :- • PROGRAM 4.4 "11)
27 C
28 C REI\D THE MESH SIZE, NUMBER OF PARI\LLEL PATHS
29 C AND W,Wl THE RELAXATION FACTORS.
30 C
31 REnDC5,90) N,NPATH,IPRINT,W,Wl,WF
32 90 FORMATCI2,IX,I2,lX,I2,lX,F5.3,lX,F5.3,lX,F5.3)
33 NZ = N-2
34 NI ~ N-l
35 NP = N2/NF'nTH
36 IFCNP .EQ. 1) NP~3
37 WRITEC6,95) MAXITR,EPS,N2,NPATH
38 95 FORMATC/'MnXITRm',I4/2X"EPS='Fl0.6/2X,'N2~',I2/2X,'NPATH-',I2)
39 C
40 C RUN THE ALGORITHM WITH W WHICH IS INCREASED EnCH STEP BY Wl IN ORDER
41 C TO FIND THE EXI\CT RELAXATION FACTOR.
42 C
43 96 W = W+Wl
44 IF (W .GT. WF) GO TO 150
45 WRITE(6,8n4)W
46 864 FORMAT(/2X,'W~',F7.3)

47 C
48 C INITIALISF. THE COMPONENTS AND THE BOUNDARY OF THE MESH.
49 C
50 DO 11 Il=l,N
51 XNCI1,1)~100.0

52 DO 22 Jl~2,N
53 XN(Il,Jl)~O.O

54 22 CONTINUE
55 11 CONTINUE
56 C
57 C INITInLISE ITERATION COUNTERS AND FLAGS FOR EI\CH PROCESSOR
59 C
59
60
61

[.0 17 I=l,NPATH
ITER (I)~O
IFLAGCI)~l

62
63
64
65
66
67
68
69
70
71
72
73
74
7'5
76
77
78
79
80
81
82
83
8'.
8'5
86
87
88
99
90
91
92
93
94
9S
96
97
99
99

100
101
102
103
104
10'5
106
107
108
109
110
111
112
113
114
11'5
116
117
118
119
120
121
122
123

17
C
C
C

1
C
C
C

C
C
C
'50
C
C
C
C

C
C
C

C

C

C
C
C
C

CONTINUE

SHIRT TIMING

$[lOALL 1
B"l. 1112.
C<'>LL TIMEST

$PARENI'

516

SET UP A PROCESS FOR E<'>CH PROCESSOR TO ITERATE ASYNCHRONOUSLY.

$DOPAR 15 IP-l,NPATH
I PS'" NPJt.I IP-l)+2
I PF=NF'* I P+ 1

ITERATE ON THE SUBSET ELEMENTS UNTIL fl CONVERGENCE IS flCHJEVED.

ITERIIP)nITERIIP)+1

PICK E<'>CH THREE CONSEQUENT LINES AT A TIME SO THAT THE BLOCKS TO BE
EVALU<'>TED CAN BE SOLVED AS COMPLETE.

DO 35 I-IPS,IPF,3
DO 36 J::-:2,N2,3

FINI' THE EQUATIONS OF THE 9 POINTS OF THE BLOCK.

Rl~XNlI-l,J)+XNII,J-I)

R2=XN<I-l ,J+1)
R3~XNlI-l,J+2)+XNII,J+3)

R'.'·XNI 1+1 ,J+3)
R'5 n XNII+2,J+3)+XNII+3,J+2)
R6 n XN 11+3 d+1)
R7~XNII+3.J)+XNII+2.J-l)
R8~XNI 1+1.J-l)

SI=R2+R6
S~'''RHR8
S3"-R3+R7
S4=-=R5+R5+R5
S'5'·-R1+R7
S6=R3+R3+R3
S7~S4+S6

S8=R7+R7+R7
S9nSHS8
S10nR'5+R7
Sl1~R1+R1+Rl

SI2'''S6+S11
SI3'''R3+R'5
SI4'''S8+S11
SI'5=R1+R3

XOLI""XN I 1+1 • J)
XNEW=137.*R8+11.*S'5+7.Jt.Sl+5.*R4+S7)*B

EVALUATE THE COMPONENTS WITH W AND PUT THE NEW
VALUE IN THE ARRAY XN.

XNEW-W*IXNEW-XOLD)+XOLD
ERRII+I.J)=ABSIXNEW-XOLD)/11+ABSIXOLD»
XN 11+ 1. J) "-XNEW
XOLD=XNII.J+1)

124
125
1::!~,

127
128
129
130
131
132
133
134
135
136
137
138 C
139
140
141
1-12
143 C
144
145
1"6
147
148
1~9

150
151
152
153
154

XNEW~137.*R2+11.*S15+7.*S2+5.tR6+S9)tB
XNEWrW*IXNEW-XOLD)+XOLD
ERRII,J+l)~ABSIXNEW-XOLD)/ll+nBSIXOLD»
XN I I , J+1) '"XNEW
XOLDcXNII+2,J+1)
XNEW-137.tR6+11.*SI0+7.*S2+5.*R2+S12)tB
XNEWrWICXNEW-XOLD)+XOLD
ERRII+2.J+I)=ABSIXNEW-XOLD)/11+ABSIXOLD»
XNI It2, J+1) =XNEW
XOUI-XN I 1+1, J+2)
XNEW=137.*R1+11.*S13+7.*Sl+5.*R8+S14)tB
XNEW-WIIXNEN-XOLD)+XOLD
ERRII+I,J+2)=ABSIXNEW-XOLD)/11+ABSIXOLD»
XNII+1,J+2)=XNEW

T2'·'XN I It 1 , J)
T1'"XNII,J+1>
T 6'-XN I It2, J+1)
T8'-XN I It 1, J+2)

XOLD-XN I It 1, J+1)
XNEW=IT2+T4+T6+T8)*.25
XNEW=WtIXNEW-XOLD)+XOLD
ERRII+l,J+l)=ABSIXNEW-XOLD)/ll+ABSIXOLD»
XNI Itl, J+1) -XNEW
XOLD=XNII,J)
XNEW-IR1+T2+T4)'.25
XNEWcWICXNEW-XOLD)+XOLD
ERRII,J)-ABSIXNEW-XOLD)/II+ABSIXOLD»
XNII,J)-XNEW
XOLD=XN I It2, J)

155 XNEW~(R7+T2+T6)*t25
156 XNEW-WIIXNEW-XOLD)+XOLD
157 ERRCI+2,J)nABSIXNEW-XOLD)/II+ABSIXOLD»
158 XNII+2,J)rXNEW
159 XOLDrXNII,J+2)
160 XNEW-IR3+T4+T8)*.25
161 XNEW·WIIXNEW-XOLD)+XOLD
162 ERRII,J+2)-ABSIXNEW-XOLD)/Cl+ABSIXOLD»
163 XNII,J+2)-XNEW
164 XOLD-XNII+2,J+2)
165 XNEW=IR5+T6+T8)t.25
166 XNEW-WIIXNEW-XOLD)+XOLD
167 ERRII+2,J+2)=ABSIXNEW-XOLD)/11+nBSIXOLD»
168 XNII+2,J+2)=XNEW
169 C
170 36 CONTINUE
171 35 CONTINUE
172 C
173 C CHECK IF THE ITERATION ABOVE THE SPECIFICATION LIMIT.
174 C
175 113 IFIITERIIP) .GE. MnXITR) GO TO 15
176 C
177 C CHECK FOR CONVERGENCE.
178 C
179 DO 777 Ill-IPS,IPF
180 DO 777 Jll-2,Nl
181 IFIERRlIll,Jll) .GT. EPS) GO TO 50
182 777 CONTINUE
183 C
184 C SET THE CONVERGENCE FLAG = 2 AND TEST FOR
185 C THE CONVERGENCE OF THE OTHER PROCESSORS.

517

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

C
IFLAO<IP)'"2
JJ~l

776 IF(IFLIIO(JJ) .EG. 1> 00 TO 50
JJ~JJt1
IF(JJ .LE. NP~TH) 00 TO 776

15 'PARENt.
C
C END TIMING
C

..r'OALL 3
CI\LL TIMOUT(ITIME)

3 $PIIREND
WRITE(6,801) ITIME

801 FORMAT(//2X,'THE TIMINO'/8(I6,2X»
C
C CHECK IF IINY PROCESS EXCEED ITS MAXIMUM
C ITERATION LIMITS.
C

DO 28 J,"l,NPIITH
IF (ITER(J) .OT. M~XITR) 00 TO 250

28 CONTINUE
DO 85 I'"bNPl'ITH

WRITE(6,812) I,ITER(I)
812 FORMAT(I/1X,'CONVEROENCE IS ACHIEVED IN

1 'IIFTER',lX,I4,lX,'ITERATIONS')
85 CONTINUE
154 IF(IPRINT .OT. 1) 00 TO 37

WRITE(6,6~)
64 FORMAT(112X,'THE SOLUTION MESH IS')

t.O 810 IJ'"l,N
WRITE(6,65)(XN(IJ,JJ),JJ=1,N)

65 FORMAT(111X,7(Fl0.6,lX»
810 CONTINUE

GO TO 37

518

PROCESS NO.'I2,lX,

250 WRITE(6.61)
61 FORMAT(//2X,'NO CONVERGENCE IS ACHIEVED')

00 TO 154
37 00 TO 96
150 $STOP

$END

519
1 C
2 C **** PROGRnM 4.5 ****
3 C
4 C THIS PROGRnM IMPLEMENTS THE 9-POINT BLOCK ITERnTIVE METHOD WHERE
5 C THE SOR ITERATIVE METHOD IS USED. THIS IS AN ASYNCHRONOUS ALGORITHM
6 C TO SOLVE THE 2-DIMENTlONI':L DIRICHLET PROBLEM. THE LINES OF THE
7 C MESH TO BE SOl.VED ARE PARTlTlONEt. INTO NPIITH SUBSETS SO THnT EACH
8 C SUBSET IS ASSIGNED TO A GROUP OF SEOUENTIIIL LINES.THE BLOCKS OF 9
9 C ARE EVALUATED IN • RED - BLACK' ORDERING WHERE EACH THREE LINES

10 C WHICH FORM THE BLOCKS ARE TAKEN AT A TIME.
11 C
12 C - THE ARRIIY XN WILL HOLDS THE COEFFICIENT MATRIX.
13 C - ITERCII • NUMBER OF ITERATIONS RUN BY PROCESSOR I.
14 C - NPATH • NUMBER OF PARALLEL PIITHS.
15 C - W • RELAXATION FnCTORS.
16 C - MAXITR - MnXIMUM ITERATIONS.
17 C - EPS = ACCURnCY VALUE USED FOR CONVERGENCE TEST.
18 C
19 INTEGER ITIME,FLnG
20 DIMENSION XNC~0,401,ERRC40,401, ITERC61,IFLAGC61,ITIMECI001
21 $SHIIRED XN,N,Nl,N2,NP,ITER,IFLIIG,NPATH,EPS,MAXITR,W,ITIME
22 $USEPAR
23 MIIXITR = 2000
2~ EPS = 0.00001
25 WRITEC6,21
26 2 FORMATC'PROGRAM NAME :- • PROGRAM 4.5 "1/1
27 C
28 C REnD THE MESH SIZE, NUMBER OF PARALLEL PATHS
29 C AND W,Wl THE RELAXATION FACTORS.
30 C
31 REIIDCS,90) N,NPATH,IPRINT,W,Wl,WF
32 90 FORMATCI2,IX,I2,lX,I2,lX,F5.3,lX,FS.3,lX,FS.3)
33 N2 = N-2
3'. NI ~ N-l
35 NP = N2/NPnTH
36 IFCNP .EO. 1) NP~3
37 WRITEC6,95) MAXITR,EPS,N2,NPATH
38 95 FORMATC/'MAXITR~',I4/2X,'EPS='FI0.6/2X,'N2~',I2/2X,'NPATH=',I2)

39 C
40 C RUN THE ALGORITHM WITH W WHICH IS INCREASED EACH STEP BY Wl IN ORDER
41 C TO FIND THE EXIICT RELAXATION FACTOR.
42 C
43 96 W = W+Wl
44 IF CW .GT. WF) GO TO 150
45 WRITEC6,864)W
46 864 FORMATC/2X,'W·',F7.3)
47 C
48 C INITIALISE THE COMPONENTS AND THE BOUNDARY OF THE MESH.
49 C
SO DO 11 Il-l,N
51 XNCll,I)·100.0
52 DO 22 Jl~2,N
53 XN(Il,Jll~O.O

54 22 CONTINUE
55 11 CONTINUE
56 C
57 C INITII'ILISE ITERATION COUNTERS AND FLI'lGS FOR EACH PROCESSOR
59 C
59 DO 17 I=I,NPATH
60 ITERCII·O
61 IFLAG(II~1

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

17
C
C
C

1
C
C
C

C
C
C
50
C
C
C
C

51

C
C
C

C

C

C
C
C
C

CONTINUE

SHIRT TIMING

U'OIlLL 1
B~1./112.

Cf>LL TI MEST
$PIIRENI'

SET UP A PROCESS FOR EnCH PROCESSOR TO ITERATE ASYNCHRONOUSLY.

$DOPAR 15 IP-l.NPnTH
I PS--'NP* (IF'-l) +2
I F'F=NP*I P+l

520

ITERATE ON THE SUf<SET ELEMENTS UNTIL n CONVERGENCE IS IICHIEVED.

ITER(IP)RITER(IP)+l

PICK EACH THREE CONSEQUENT LINES AT A TIME SO THAT THE
FLOCKS TO BE EVALUATED CAN FE SOLVED AS COMPLETE.

Kl = 5
FLAG ~ 0
DD 35 I=IPS.IPF.3

Kl ~ 7-K1
no 36 J'"Kl.N2.6

FIND THE EQUATIONS OF THE 9 PDINTS OF THE BLOCK.

Rl~XN(I-l,J)+XN(I.J-1)

R2=XN(1-1. J+l)
R3~XN(I-1.J+2)+XN(I.J+3)

R4=XN(1+1 oJ+3)
R5-XN(I+2.J+3)+XN(I+3.J+2)
R6'''XN (1+3. J+1)
R7=XN(I+3.J)+XN(I+2.J-l)
R8=XN(1+1.J-1)

Sl"'R2+R6
S2'"R4+R8
S3=R3+R7
S1~R5+R5+R5

S5~R1+R7
S6~R3+R3+R3

S7~S4+S6

S8=R7+R7+R7
S9~S"+S8
S10=R5+R7
S11-R1+R1+R1
512=56+511
S13'''R3+R5
S14~S8+S11

S15~R1+R3

XOLl'~XN (1+1 oJ)
XNEW=(37.*R8+11.*S5+7.*Sl+5.*R4+S7)*F

EVIILUIITE THE COMPONENTS WITH W AND PUT THE NEM
VIILUE IN THE XN.

XNEW=W*(XNEW-XOLI') +XOLD

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141 C
142
143
144
145
146 C
147
1'.8
1'.9
150
151
152
153
154
1S5
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172 C

ERRII+l,JI=ABSIXNEW-XOLDI/ll+ABSIXOLDII
XN (I +1 , J 1 ~XNE\J
XOLD~XNII,J+11
XNEW~(37.*R2+11.*S15+7.*S2+5.*R6+S91*B
XNEW~W*IXNEW-XOLDI+XOLD
ERRII,J+ll~ABSIXNEW-XOLDI/(l+nBS(XOLDII
XN (I , J+1 1 =XNEW
XOLD"XN(I+2,J+l1
XNEW=137.*R6+11.*S10+7 •• S2+5.*R2+S121*B
XNEW~W*(XNEW-XOLDI+XOLD
ERRII+2,J+11=ABSIXNEW-XOLDI/11+ABSIXOLDII
XN I 1+2, J+l 1 =XNEW
XOLII"XN I Itl , J+2 1
XNEW=137.*R~+11.*S13+7.*Sl+5.*R8+S141*B
XNEW~W*IXNEW-XOLDI+XOLD
ERRII+l,J+21=ABSIXNEW-XOLDI/11+ABS(XOLDII
XN I I +1, J+2 1 =XNEW

T2'-XN 11+ 1 , J 1
T~'-XNII,J+lI
T6~XNI1+2,J+11
T8'-XN I 1+1, J+2 1

XOLD~XNII+1,J+11

XNEW=IT2+T4+T6+T81*.25
XNEW=W.IXNEW-XOLDI+XOLD
ERRII+1,J+1,=ABSIXNEW-XOLD,/11+ABS(XOLD"
XN (It 1 oJ+1 1 '-XNEW
XOLD'-XN I I , J 1
XNEW-IR1+T2+T41'.25
XNEW~W'IXNEW-XOLDI+XOLD
ERRII,JI=ABSIXNEW-XOLDI/ll+ABSIXOLDII
XN I I. J 1 "-XNEW
XOLII.XN 11+2, J 1
XNEW=(R7+T2+T61*.25
XNEW·W*IXNEW-XOLDI+XOLD
ERRII+2,JI=ABSIXNEW-XOLDI/11+ABSIXOLDII
XN I 1+2, J) '-XNEW
XOLD=XNII,J+2)
XNEW=IR3+T4+T8)*.25
XNEW~W'IXNEW-XOLD)+XOLD
ERRII,J+2)-ABSIXNEW-XOLDI/11+ABSIXOLDII
XNII,J+21=XNEW
XOLD-XNII+2,J+2)
XNEW=IR5+T6+T8) •• 25
XNEW=W'IXNEW-XOLD)+XOLD
ERRII+2,J+21=ABSIXNEW-XOLDI/11+ABSIXOLD»
XNII+2,J+2)=XNEW

173 36 CONTINUE
174 35 CONTINUE
175 IF IFLAG .EQ. 11 GO TO 113
176 FLAG = 1
177 Kl = 2
178 GO TO 51
179 C
180 C CHECK IF THE ITERATION ABOVE THE SPECIFICATION LIMIT.
181 C
182 113 IFIITERIIP) .GE. M~XITR) GO TO 15
183 C
184 C CHECK FOR Cm!VERGENCE.
185 C

521

186 DO 777 Il1~IPI,IPF
187 DO 777 Jll~2,Nl
188 IFIERRllll,J11) .GT. EPS) GO TO 50
189 777 CONTINUE
190 C
191 C SET THE CONVERGENCE FLM _. 2 ANI' TEST FOR THE
192 C CONVERGENCE OF THE OTHER PROCESSES.
193 C
194 IFLAGIIP)w2
195 JJ~l
196 776 IFIIFLAGIJJ) .EO. 1) GO TO 50
197 JJ~JJ+l
198 IFIJJ .LE. NPATH) GO TO 776
199 15 .PAREND
200 C
201 C END TIMING
202 C
203 $DOALL 3
204 CALL TIMOUTIITIME)
205 3 $PAREND
206 WRITEI6,801) ITIME
207 801 FORMATI//2X,'THE TIMING'/8116,2X»
208 C
209 C CHECK IF ANY PROCESS EXCEED ITS MAXIMUM
210 C ITERATION LIMITS.
211 C
212
213
214 28
215
216
217 812
218
219 85
220 154
221
222 64
223
224
225 65
226 810
227
228 250
229 61
230
231 37
232 150
233

1'0 28 J~l,NP"'TH
IF IITERIJ) .GT. MAXITR) GO TO 250

CONTINUE
DO 85 I'"l,NF'I':TH

WRITEI6.812) I,ITERII)
FORMATI//1X,'CONVERGENCE IS ACHJEVED IN PROCESS NO.'I2,lX,

1 'I'IFTER',lX,I4,lX,'ITERATIONS')
CONTINUE
IF<IPRINT .GT. 1> GO TO 37
WRITEI 6, 64)
FORMATI//2X,'THE SOLUTION MESH IS')
DO 810 IJ"·l,N
WRITEI6,65)IXNIIJ,JJ),JJ;1,N)
FORMATI//1X,7IFl0.6,lX»

CONTINUE
GO TO 37
WRITEI6,61)
FORMATI//2X,'NO CONVERGENCE IS ACHJEVED')
GO TO 151\
GO TO 96
.srop
.END

522

523

**** PROGRAM 4.6 ****
1 C
2 C
3 C
'\ C
5 C
6 C
7 C
8 C
9 C

10 C
11 C
12 C
13 C
14 C
15 C
16 C
17 C
18 C
19

THIS PROGRAM IMPLEMENTS THE 9-POINT BLOCK ITERATIVE METHOD WHERE
THE SOR ITFRATIVE METHOD IS USED.THIS IS AN SYNCHRONOUS ALGORITHM
TO SOLVE THE 2-DIMENTlONAL DIRICHLET PROBLEM. THE LINES OF THE
MESH TO BE SOLVED ARE PARTITIONED INTO NPATH SUBSETS SO THAT EACH
SUBSET IS ASSIGNED TO A GROUP OF SEQUENTIAL LINES.THE BLOCKS OF 9
ARE EVALUATED IN THE NATURAL ORDERING WHERE EACH 3 LINES WHICH
FORM THE BLOCKS ARE TAKEN AT A TIME.

20
21
22
23
2~
25

- THE ARRAY XN WILL HDLDS THE COEFFICIENT MATRIX.
- ITER ~ NIJMBER OF ITEF:A Tl ONS.
- NPATH " NUMBER OF PARALLEL PATHS.
- W = RELAXATION FACTORS.
- MAXITR n MAXIMUM ITERATIONS.
- EPS = ACCURACY VALUE USED FOR CONVERGENCE TEST.

INTEGER*2 !TIME
DIMENSION XN(40,40),ERR(40,40),ITIME(100)
'SHARED XN,N,Nl,N2,NP,ITER,IFLnG,NPATH,EPS,MAXITR,W,ITIME
'USEPAR
MAXITR = 2000
EPS = 0.00001
WRITE(6,2)

26 2
27 C
28 C
29 C
30 C
31

FORMAT('PROGRAM NAME :- • PROGRAM 4.6 "11)

READ THE MESH SIZE, NUMBER OF PARALLEL PATHS
AND W,Wl THE RELAXATION FACTORS.

READ(S.90) N,NPATH,IPRINT,W,Wl,WF
32
33
34
35
36
37
38
39
40
~1
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

90 FORMAT(I2,lX,I2,lX,I2,lX,F5.3,lX,FS.3,lX,F5.3)
N2 ::;; N-2
NI = N-l
NP = N2/NPATH
IF(NP .Ea. 1) NPn 3
WRITE(6,95) MAXITR,EPS,N2,NPATH

95 FORMAT(/'MAXITR-',I4/2X,'EPS='Fl0.6/2X,'N2=',I2/2X,'NPATHr',I2)
C
C RUN THE ALGORITHM WITH W WHICH IS INCREASED EACH STEP BY Wl IN ORDER
C TO FIND THE EXACT RELAXATION FACTOR.
C
96 W ~ W+Wl

IF (W .GT. WF) GO TO 150
WRITE (6,864) W

864 FORMAT(/2X,'WR',F7.3)
C INITIALISE THE COMPONENTS AND THE BOUNDARY OF THE MESH.

DO 11 Il'=l,N
XN(11,I)'"100.0
[10 22 Jl,"2,N<

XN (11 , J 1)"0.0
22 CONTINUE
11 CONTINUE
C
C INITIALISE ITERATION COUNTER
C

ITER=O
S9 C
59 C START TIMING
60 C
61 'OOALL 1

(

62
63
64
65
66
67
69
69
70
71
72
73
7~
75
76
77
79
79
90
91
92
93
94
95
96
97
99
99
90
91
n
93
94
9~
96
97
99
99

100
101
102
103
104
105
106
107
109
109
110
111
112
113
114
115
116
117
119
119
120
121
122
123

1
C
C
C
50

C
C
C
C

C
C
C

C

c

C
C
C
C

B"'1./112.
CI'ILL TIMEST

$PIIRENI'

524

SfT UP A PROCESS FOR EACH PROCESSOR TO ITERATE ASYNCHRONOUSLY.

ITl':R ,." ITER+1
$DOPAR 15 IP~l,NPI'ITH

IPS=NP*(IP-l >+2
IPF=NPUPtl

PICK EI'ICH THREE CONSEGUENT LINES liT A T!ME SO THAT THE
BLOCKS TO BE EVALUATED CAN BE SOLVED AS COMPLETE.

DD 35 I-IPS,IPF,3
I'D 36 J'·'2,N2,3

F!ND THE EQUATIONS OF THE 9 POINTS OF THE BLOCK.

Rl=XN(I-l,J)tXN(I,J-l)
R2=XN(1-1 ,J+1)
R3=XN(I-l,Jt2)tXN(I,Jt3)
R~=XN(Itl ,Jt3)
R5~XN(It2,Jt3)+XN(I+3,J+2)
R6=XN (It3. J+1)
R7=XN(I+3,J)+XN(I+2,J-l)
R9=XN(IH ,J-l)

Sl=R2+R6
S2'"RHR9
S3'"R3+R7
S4=R5+R5+R5
S50"RltR7
S6=R3+R3+R3
S7'"SHS6
S8=R7+R7+R7
S9"SHS9
S10o,R5+R7
Sll~Rl +RltRl
S12-S6+S11
S13=R3+R5
Sl~"'S9+S11
S15=RltR3

XOLI,'''XN (I +1 , J)
XNEW=(37.*R9+11.*S5+7.*Sl+5.*R4+S7)*B

EVALUATE THE COMPONENTS WITH W AND PUT THE NEW
VIILUE IN THE ARRAY XN.

XNEW=W*(XNEW-XOLD)+XOLD
ERR(I+l,J)=ABS(XNEW-XOLD)/(l+ABS(XOLD»
XN(Itl ,J)-XNEW
XOLD-XN(I,J+l)
XNEW-(37.tR2+11.*S15+7.*S2+5.*R6+S9)tB
XNEW-W*(XNEW-XOLD)+XOLD
ERR(I,Jtl)-ABS(XNEW-XOLD)/(l+IIBS(XOLD»
XN(I,J+1)=XNEW
XOLD'''XN (I +2, J+ 1)
XNEW=(37.*R6+11.*S10+7.*S2+5.*R2+S12)*B
XNEW-W*(XNEW-XOLDl+XOLD
ERR(I+2,J+ll=ABS(XNEW-XOLDl/(1+ABS(XOLD»

124 XN(I+2,J+1)=XNEW
125 XOLD~XN(I+1,J+2)
126 XNEW=(37.fR1+11.*S13+7.*S1+5.*R8+S14)fB
127 XNEWrW*(XNEW-XOLD)+XOLD
128 ERR(I+1,Jt2)=ABS(XNEW-XOLD)/(1tnBS(XOLD»
129 XN(I+l,J+2)=XNEW
130 C
131 T2~XN(Itl,J)
132 T1~XN(I,Jtl1
133 T6 n XN(I+2,Jtl1
134 T8~XN(Itl,J+21

135 C
136 XOLDnXN(I+l,Jtl1
137 XNEW=(T2+T4tT6tT81*.25
138 XNEW·W'(XNEW-XOLDI+XOLD
139 ERR(I+l,J+ll=ABS(XNEW-XOLDI/(l+ABS(XOLD)1
140 XN(Itl,Jtll=XNEW
1~1 XOLD=XN(I,JI
142 XNEW~(Rl+T2+T4If.25
143 XNEWmW*(XNEW-XOLDI+XOLD
144 ERR(I,JlrABS(XNEW-XOLDI/(l+ABS(XOLDII
145 XN(I,JI~XNEW
146 XOLD=XN(I+2,JI
147 XNEWm(R7+T2+T61*.25
148 XNEW=W*(XNEW-XOLDI+XOLD
149 ERR(I+2,JI·ABS(XNEW-XOLDI/(1+ABS(XOLD)1
150 XN(I+2,J)~XNEW

151 XOLD~XN(I,J+21

152 XNEW=IR3+T4+T81*.25
153 XNEW-W* (XNn!-XOL!I)tXOLD
154 ERR(I,J+21~ABS(XNEW-XOLDI/(1+ABS(XOLDII

155 XN(I,J+21=XNEW
156 XOLD~XNII+2,J+21

157 XNEW=(R5+T6+T8If.25
158 XNEW-W*IXNEW-XOLDI+XOLD
159 ERRII+2,J+21=ABS(XNEW-XOLDI/(1+ABS(XOLDII
160 XN(I+2,J+21=XNEW
161 C
162 36 CONTINUE
163 35 CONTINUE
164 15 .PAREND
165 C
166 C CHECK IF THE ITERATION ABOVE THE SPECIFICATION LIMIT.
167 C
168 113 IF(ITER .GE. MnXITRI GO TO 775
169 C
170 C CHECK FOR CONVERGENCE.
171 C
172 DO 777 Il1·IPB,IPF
173 DO 777 Jll-2,Nl
174 IF(ERR(Il1,J111 .GT. EPSI GO TO 50
175 777 CONTINUE
176 C END TIMING
177 775 .DOALL 3
178 CnLL TIMOUT(ITIME)
179 3 .PAREND
180 WRITE(6,8011 ITIME
181 801 FORMAT(//2X,'THE TIMING'/8(I6,2XII
182 C
183 C CHECK IF ANY PROCESS EXCEED ITS MAXIMUM
184 C ITERATION LIMITS.
185 C

525

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

28

912

85
154

64

65
810

250
61

37
150

[10 28 J~l.NPATH
IF (ITER .GT. M~XITR) GO TO 250

CONTINUE
[10 85 I~l,NPATH

WRITE(6,812) I,ITER
FORMAT (/ flX,' CONVERGENCE IS ACHIEVEr' IN

1 'AFTER',lX,I4,lX,'ITERATIONS')
CONTINUE
IF(IPRINT .GT. 1> GO TO 37
WRITE(6,64)
FORMAT(ff2X,'THE SOLUTION MESH IS')
DO 810 IJ'·-l,N
WRITE(6,6S)(XN(IJ,JJ),JJ=1,N)
FORMAT(//lX,7(Fl0.6,lX»

CONTINUE
GO TO 37
WRITE(6,61>
FORMAT(/f2X,'NO CONVERGENCE IS ACHIEVE[I')
GO TO 154
GO TO 96
.STOP
$END

526

PROCESS NO.'I2.1X,

1 C
2 C 11.. PROGRAM 5.1 ,,*.
3 C
4 C THJS PROGRAM IS A SYNCHRONOUS VERSION I OF THE PARALLEL
S C A.G.E. MFTHOD THAT USED TO SOLVE PROBLEM lITHE LINEAR
6 C PROBLEM). IN THIS PARALLEL VERSION, IN THE FIRST SWEEP
7 C EACH PROCESSOR EVALUATES ITS POINTS BY TAKING UP EACH
8 C TWO SIJCCESSIVE POINTS AT A TIME STARTING FROM THE FJRST
9 C POINT AND TFRMINATES AFTER EVALUATING THE LAST TWO

10 C POINTS. WHILE THE SECOND SWEEP IB STARTED AFTER THE
11 C FIRST SWEEP HAS BEEN COMPLETED. IN THE SECOND SWEEP
12 C EACH PROCESSOR STARTS ITS PROCESSING WITHIN ITS SUBSET
13 C BY EVALUATING THE FIRST POINT THEN EACH SUCCESSIVE TWO
14 C POINTS AT A TIME AND THE LAST POINT IS EVALUATED ON ITS
15 C OWN.
16 C
17 C - THE ARRAY 'Ul' IS USED TO HOLDS THE STARTING VALUES.
18 C - THE ARRAY 'U2' IS USE!' TO HOLI'S THE VALUES AFTER THE
19 C FIRST SWEEP.
20 C - THE ARRI\Y 'U3' IS USED TO HOLI'S THE VALUES AFTER THE
21 C SECOND SWEEP.
22 C - N - SJZE OF INPUT.
23 C - NPROC r NUMBER OF CO-OPERATIVE PROCESSORS.
24 C - Ra - ACCELERATION PARAMETER.
25 C - PS - NUMBER OF PARALLEL PATHS.
26 C - TPRINT r USED TO INDICATE IF PRINTING REQUIRED.
27 C - ITER m TOTAL NUMBER OF ITERATIONS.
28 C
29 INTEGER ITJME(100),N,ITER,P.PS
30 DIMENSION Ul(200),U21200),U31200),DlI100),D21100)
31 DIMENSION IBSI2~),IENDS(24),ERRI200),BI200),GI200)
32 REAL ALP,ALP2,RO,BETA,H,Hl
33 C
34 $SHARED Nrlll,U?,U3,ERR,ITIME,RO,PS,NF'ROC
35 C
36 $REGION REGl
37 C
38 FKIX1,X2)-400*I(COSIX1'X2)112)'t2IX2*X2*COS(2.XltX2)
39 FIX1,X2)-IIEXPI-20.0)/lltEYP/-20.0»)tEXPI20.0IXl»t

527

40 1 11/11tEXPI-20.0»)*EXPI-20.0rXl)-IICOS(XltX2»*12)
41 C
42 $USEPAR
43 C
44 C CALCULATE NUMBER OF CO-OPERATIVE PROCESSORS
45 C
46 NPROC r 0
47 $DOALL 30
48 $ENTER REGl
49 NPROC .' NPROCtl
50 $FXIT REr.l
51 30 $PAREND
52 C
S3 WRITE/6,l'
54 1 FORMAT I 'PROGRAM NAME:- 'PROGRAM 5.1"1)
55 C
56 C READ THE INPUT PARAMETERS
57 C
58 READIS.2) N,RO,PS,IPRINT
59 2 FORMATII3,lX,F6.3,IX,I2,lX,Il)
60 C
61 WRITEI6,S)RO

62 5
63
6.. 6
65
66 62
67
68 64
69 C
70
71
72 C
73 C
74 C
7~
76
77
78
79
80
81
82
83
84
85
86
87 C
88
89
90
91
92 40
93 C
9.. C
95 C
96
97
98 C
99

100 C
101 C
102 C
103
104
105
106
107 45
108 C

FORM~T(/'W ~ ',F6.3/)
WRITE(6,6)N
FORMAT('SIZE OF INPUT (N)· ',13/)
WRITE(6,6') NPROC
FORM~T('NUMBER OF PROCESSORS ~ ',Ill)
WRITE(6,64) PS
FORMnT('NUMBER OF p~RnLLEL pnTHS ~ ',12/)

MAXITR ~ 500
EPS ~ 0.000005

SETTING THE REGUIR~D VnRIABLES TO ALL THE PRCESSORS

$TlOALL 211
H ~ 1,0/FLOnT(Ntl)
HI "' HtH
PI :~. '3.14159265'"
C ~ 200
Cl • 1.0/(1.0t(HltC»
P • PS
f<ETA ~, l-RO
ALP "' 1+RO
ALP' '" I'ILF' * ~LP
NI '" N-l
N2 :" N/2

flO 40 1-1 1Nl
G(I) - Cl
B(I) - -ClIHlIFK(ItH,PI)
U3<I) • 0.0

CONTINUE

SET THE BOUNI."'RY VI"\LUES

B(l) • -ClIHlIFK(H,PI)
f«N) - -ClIHlIFK(HIN,PI)

NP = NUP

CI"\LCULI'ITF THE ENI' AND ST"'RTS OF EnCH SUBGROUP

DO 45 I-l,P
IBS(I)·(I-l)*NPtl
lENDS <I) -IINP
IF (I .EG. P) IENDS(l)=N2

CONTINUE

109 DO 50 I~I,N2
110 Dl(I) - 1,0/(nLP2 - (G(2II-l)**2»
111 fl2(I) - 1.0/(I'ILP2 - (G(2*I)*12»
112 50 CONTI NUE
113 211 $PI'IREND
114 C
115 C ST"'RT TIMING
116 C
117 $DOALL 21~
118 CnLL TIMEST
119 21~ $pnREND
120 C
121 ITER • 0
122 100 ITER· ITER t 1
123 DO 60 I-l1N

528

12~

125 60
126 C
127 C
128 C
129 C
130
131
132
133
13~

UlII) • U3II)
CONTINUE

GENERATE P PARALLEL PATHS WHICH RUNS
~IMULTnNEOUSLY TO EVALUATE THE FIRST SWEEP.

SDOPAR 250 L-l,P
19 • 19SIL)
lEND - IENDS(LI
DO 200 JwJ9,I~ND
1-2IJ-l

135 IF (J .EG. 1 .OR. J .EG. N2) GO TO 210
136 RI ~ Dl(J)'(9(I)+G(I-l)*Ul(I-l)-9ETA*1J1(I»
137 R2 ~ Dl(J).(9(I+l)-9ETA*Ul(I+!)+G(I+l)*Ul(I+2»
138 U7(I) - ALPtRl+GII)*R2
139 U2II+l) ~ GII)tRI+ALP*R2
140 GO TO 200
141 210 IF (J .EG. N2) GO TO 220
1~2 RI • Dl(1)'19(1)-9ETA'UlI1»
1~3 R2 = Dl(1)*1912'-9ETA.Ul(2)+GI2)*UI13»
144 U2(1) ~ ALPtRl+Gll)*R2
145 U2(2) • Gll).Rl+ALP*R2
1~6 GO TO 200
147 220 RI n Dl(N2)tI9IN-l'+GIN-2'*UlIN-2)-9ETA*UlIN-l"
1~8 R2 • DlIN2)*19IN)-BETA'UlIN»
149 U7IN-l) n ALP.Rl + G(N-l)'R2
150 U2IN) • GIN-l)IRl + ALP.R2
151 200 CONTINUE
152 250 SPAR END
153 C
154 C GfNERATE P PARALLEL PATHS WHICH RUN
155 C SIMULTANEOUSl.Y TO EVALUATE THE SECOD SWEEP.
156 C
157 SDOPAR 350 L-!,P
158 19 - 19SIL)
159 lEND r IENDSIL)
160 DO 300 J~J9,IEND
161 I = 2*J
162 IF IJ .EG. N2' GO TO 310
163 RI n D2IJ)*19II)tGlI-l)*U2II-l)-BETA'U2(I»
164 R2 • D2IJ)*19II+l)-9ETA*U2(I+l)+GII+II.U2IIt2',
165 U3(I) ~ ALP.Rl + GII)*R2
166 ERRII) ~ A9SIU31I1 - UlII»/ll + A9SIU1II»)
167 U3II+l) - GII'*RI + ALPIR2
168 ERRII+I) • ABS(U3II+ll - UlII+l»)!ll + ABSIU1II+l»)
169 GO TO 300
170 310 U3(1)· Il./ALP)*IBll)-BETA*U211)+Gll).U2(2»
171 ERRll) • ABSIU3(1) - UlI1')/ll + ABSIU1(1»)
172 U3IN) • 11./ALP)*IBIN)+GIN-I)IU2IN-1~-BETA'U2IN»
173 ERRIN) = ABSIU3IN) - Ul(N»/ll+ABS(UlIN»)
174 300 CONTINUE
175 350 SPAREND
176 C
177 C CHECK IF THE TOTAL NUM9ER OF ITERATIOS GREATER
178 C THAN THE ALLOWED MAXIMUM ITERATIONS.
179 C
180 IF IITER .GT. MAXITR) GO TO ~oo
181 C
182 C CHECK FOR CONVERGENCE.
183 C
184 DO 400 Il-l,N
185 IF IERRlll) .DT. EPS) GO TO 100

529

186 400
187 C
188 500
189
190 600
191 C
192
193 7
194
195 8
196 C
197
198
199 11
200
201
202
203 720
204
205
206 9
207
208 3
209
210 12
211
212 700
213 ..
214
215

CONTINUE

n'OI\LL 600
C~LL TIMOUT(ITIME)

$PARENII

WRITE(6,7)
FORMIIT(/'THE TJME TI\KEN FOR CONVERGENCE IS'I)
WRITE (6,8) ITIME
FORMflT<8(Ib,2X»

IF (IPRINT .NE. 1) GO TO 700
WRITE (6011>
FORMAT(/'THE NUMERICAL SOLUTION IS'/)
I10 720 I'" 1 , N

Ul(I)"·F(lltH,PI)
ERR(I)wABS(Ul(I)-U3(I»

CONTINUE
WRITE(6,3)(Ul(I).I~1.N)

WRITE (6,9)
FORM~T(/'THE SOLUTION MI\TRIX IS'/)
WRITE(6,3)(U3(I),I ft l.N)
FORMI\T(// 7(F10.6,lX»
WRITE(6,12)

530

FORMAT(/'ERROR VALUES ARE'/)
WRITE(6.3)(ERR(I).I~1.N)

WRITE(6.4) ITER
FORMIIT(/'CONVERGENCE IS ACHEIVEII AFTER ',14,' IERATIONS'/)
$STOF'
$ENII

1 C
2 C
3 C
4 C
5 C
6 C
7 C
8 C
9 C

10 C
11 C
12 C

'13 C
14 C
15 C
16 C
17 C
18 C
19 C
20 C
21 C
22 C
23 C
24 C
25 C
26 C
27 C
28
29
30
31
32 C
33
3~ C
35
36
37
38 C
39
40 C

42 1
43 C
44 C
45 C
46
47 2
48 C
49
50 5
51
52 6
53 C
5~ C
55 C
56
57
58
59
60
61

11*1 PROGRAM 5.2 ****
THIS PROGRAM IS AN ASYNCHRONOUS V~RSION I OF THE
PARALLEL A.G.E. METHOD THAT USED TO SOLVE PROBLEM
lITHE LINEAR PROBLEM). IN THIS PARALLEL V~RSION,
IN THE FIRST SWEEP, EACH PROCESSOR EVALUATES ITS
POINTS BY TAKING UP EACH TWO SUCCESSIVE POINTS AT
A TIME STARTING FROM THE FIRST POINT AND TERMINATED
AFTER EVALUATING THE LAST TWO POINTS. WHILE THE
SECOND SW~EP IS STARTED AFTER THE FIRST SWEEP HAS
BEEN COMPLETED. I N THE SErON[' SWEEP EACH PROCESSOR
STARTS ITS PROCESSING WITHIN ITS SUBSET BY EVALUATING
THE FIRST F'OINT THEN EACH SUCCESSIVE TWO POINTS AT
A TIME AND THE LAST POINT IS EVALUATED ON ITS OWN.

- THE ARRAY Ul HOLDS THE STARTING VALUES.
- THE ARRAY U2 HOLDS THE VALUES AFTER THE

SECONI' St'!EEP.
- THE ARRAY U3 HOLI'S THE VALUES AFTER THE

SECONI' SWEEP.
- N ~ SIZE OF INPUT.
- NPROC ~ NUMBER OF CO-OPERATING PROCESSORS.
- RO ~ ACCELERATION PARAMETER.
- PS m NUMBER OF PARALLEL PATHS.
- IPRINT • USED TO INDICATE IF PRINTING REQUIRED.
- ITER = TOTAL NUMBER OF ITERATIONS.

INTEGER ITIMEll00),N,P,PS,FLAG,ITERI4)
DIMENSION U1(200),U21200),U31200),Dlll00),D21100)
DIMENSION FLAG(4),ERRI200),BI200).GI200)
REAL ALP,ALP2,Ro,BETA,H,Hl

'SHARED N,Ul,U2,U3,ERR,ITIME.RO,PS,FLAG,ITER

FKIX1,X2) ~ ~0011ICOSIX1IX2)*12»+2*X2tX2*COSI2tXl*X2)
FIX1,X2) - IIEXPI-20.0)/ll+EXPI-20.0»)tEXPI20.0'Xl»+

531

1 11/ll+EXPI-20.0»)*EXPI-20.0IXl)-(ICOSIX1'X2»112)

WRITE I 6,1)
FORMAT I 'PROGRAM NAME:- 'PROGRRAM 5.2"/)

READ THE INPUT PARAMETERS

READI5,2) N,Ro,PS.IPRINT
FORMAT(I3,lX,F6.3.1X,Il,lX,Il)

WRITEI6,5)RO
FORMATI/'W ~ ',f6.3/)
WRITEI6,6)N
FORMATI'SIZE OF INPUT IN) m ',13/)

SETTING THE REQUIREr' VARIABLES TO ALL THE PROCESSORS

f[lOALL 211
H ~ 1.0/FLOATIN+l)
Hl ~ H*H
F'I '" 3.1~159265~
C '" 200
Cl ~ 1.0/11.0+IH1IC»

62
63
64
65
66
67
68
69
70 C
71
72
73
7~
75 40
76 C
77 C
78 C
79
80
81 C

MI'IY.ITR ~ 500
EPS ~ 0.000005
P ~ F'S
BETA ~ l~RO

ALF' ., 1tRO
IILP2 ~ IILP * ALP
Nl ~ N-l
N2 ~ N/2

[10 40 [-l.Nl
G(I) ~ Cl
B(I) - -C1*Hl*FKCI*H,PI)
U3(I) ~ 0.0

CONTINUE

SET THE BOUNDARY VALUES

B(l) - -Cl*Hl*FK(H,PI)
«(N) .. -C1*H1*FK(H*N,PI)

82 NP - N2/P
83 NP1 ~ NIP
84 C
85 no 45 I m1,P
86 FLAG(I) .. 1
87 45 CONTINUE
88 C
89 DO 50 I-1.N2
90 01(1) 1.0/(ALP2 - (G(2*I-11'*2»
91 02(1) - 1.0/(ALP2 - (G(2'I)**2»
92 50 CONTINUE
93 211 $PIIRENO
94 C
95 C START TIMING
96 C
97 $OOIlLL 21~
98 CALL TIMEST
99 21~ $PIIREND

100 C
101 C GrNERATE P PARIILLEL PATHS WHICH RUNS
102 C SIMULTANEOUSLY.
103 C
104 SOOPAR 450 L-l,P
105 IB .. (L-llt-NP+!
106 lEND ~ L*NP
107 IF (L .Ea. PI IEND=N2
108 C
109 C CALCULATE THE STt':RT t':ND THE END
110 C OF EACH SUBGROUP.
111 C
112 IBl ... (L-U*NP1+1
113 IENDl R L*NPl
114 IF (L .EQ. PI IEND1-N
115 C
116 ITER(L) R 0
117 100 ITER(l) ... ITER(l) + 1
118 DO 60 I-IEll,IENDl
119 Ul(I) - U3(I)
120 60 CONTINUE
121 C
122 C FIRST SWEEP STt':RTS.
123 C

532

124 DO 200 J,"lEt,IEND 533
125 I~2t.J-l
126 IF (J .Etl. 1 .OR. J .EO. N2) GO TO 210
127 Rl m D1(J)*(B(I)+G(I-l)*Ul(I-l)-BETA*Ul(I»)
128 R2 = Dl(J)*(B(I+l)-BETA*Ul(I+l)+GII+1)*Ul(I+2»
129 U2(I) ~ ~LP*R1+G(I)t.R2
130 U2(I+l) = G(I)*R1+ALP*R2
131 GO TO 200
132 210 IF (J .EO. N2) GO TO 220
133 R1 = Dl(l)*(B(I)-BETAt.Ul(l»
134 R2 = Dl(1)t.(B(2)-BET~t.Ul(2)+G(2)*Ul(3»
135 U2(1) = ~LPt.Rl+G(1)t.R2
136 U2(2) ~ G(1)t.Rl+~LP*R2
137 GO TO 200
138 220 Rl m Dl(N2)*(B(N-l)+G(N-2)*Ul(N-2)-BETA*Ul(N-l»
139 R2 ~ Dl(N2)*(B(N)-BET~*Ul(N»
140 U2(N-l) ~ ~LPt.Rl + G(N-l)t.R2
141 U2(N) ~ G(N-l)t.Rl + ALPt.R2
142 200 CONTINUE
143 C
1~4 C SECOND SW"EP STARTS.
145 C
146 DO 300 JrIB,IEND
1'.7 I ~ 2*J
148 IF (J .Etl. N2) GO TO 310
149 Rl ~ D2(J)*(B(I)+G(I-l)*U2(I-l)-BETA*U2(I»
150 R2 = D2(J)t.(B(I+l)-BETAt.U2(I+l)+G(I+l)*U2(I+2»
151 U3(I) ~ ~LPt.Rl + G(I)t.R2
152 ERR(I) ~ ABS(U3(I) - Ul(I»/(l + ~BS(U1(I»)
153 U3(I+1) • G(I)t.R1 + ALPt.R2
154 ERR(I+1) m ABS(U3(I+1) - U1(I+1»/(1 + ABS(U1(I+1»)
155 GO TO 300
156 310 U3(1) n (1./~LP)t.(B(1)-BETA*U2(1)+G(1)t.U2(2»
157 ERR(1) ~ ABS(U3(1) - Ul(1»/(1 + ABS(U1(1»)
158 U3(N) m (1./ALP)t.(B(N)+G(N-1)t.U2(N-l)-BETA*U2(N»
159 ERR(N) = ~BS(U3(N) - Ul(N»/(1+~BS(Ul(N»)
160 300 CONTINUE
161 C
162 C CHECK IF NUMBER OF ITERATIONS EXCEED THE MAXIMUM.
163 C
164 IF (ITER(L) .GT. MAXITR) GO TO ~50
165 C
166 C CHECK FOR CONVERGENCE.
167 C
168 DO 400 Il·IB1.IENDl
169 IF (ERR(11) .GT. EPS) GO TO 100
170 400 CONTINUE
171 C
172 FLAG(L) ~ 2
173 J ,. 1
174 430 IF (FLAG(J>' .EO. 1) GO TO 100
175 J ~ J+l
176 IF (J .LE. P) GO TO 430
177 C
178 450 $PAREND
179 500 $DOALL 600
180 CALL TIMOUT(ITIME)
181 600 $P~REND
182 C
183 WRITE(6,7)
184 7 FORM~T(/'THE TIME TAKEN FOR CONVERGENCE IS'/)
185 WRITE(6,8)ITIME

186 8
187 C
188
189
190 11
191
192
193
194 720
195
196
197 9
198
199 3
200
201 12
202
203 700
204
205 710
206 10
207
208
209

FORM~TC8CI~,2X» 534

IF CIPRINT .NE. 1) GO TO 700
WRITEC6,11)
FORMATC/'THE EX~CT SOLUTION IS'/)
DO 720 I~l,N

U1CI)"'FCUH,PI)
ERRCI)~ABSCU1CI)-U3CI»

CONTINUE
WRITEC6,3)CU1CI),I~1,N)

WRITEC6,9)
FORMATC/'THE SOLUTION MATRIX IS'/)
WRITEC6,3)CU3CI),I~1,N)
FORM~TC// 7CF10.6.1X»
WRITEC6,12)
FORMATC/'ERROR V~LUES ~RE'/)
WRITEC6,3)CERRCI),I~1,N)

DO 710 I'''l,P
WRITEC6,10)I,ITERCI)

CONTINUE
FORM~TC/'CONVERGENCE IS ACHIEVED IN PROCESS NO.' I2.1X,

1 '~FTER',lX,I4,lX"ITERATIONS')

"STOP
'lENtl

1 C
2 C
3 C
.. C
5 C
6 C
7 C
8 C
9 C

10 C
11 C
12 C
13 C
1.. C
15 C
16 C
17
18
19
20
21
22 C
23
24 C
25 C
26 C
27 10
28 15
29
30
31
32
33 C
34 C
35 C
36 C
37 C
38 20
39
40 30
41 C
42 C
43
44
~5 110
.. 6 C
.. 7 C
48 C
49 C
50 C
51 C
52 130
53 140
54
55
56
57 150
58 160
59
60 170
61 180

t.*t.* PROGR~M 6.1 ****
THIS PROGRAM IS THE PAR~LLEL IMPLEMENTATION
OF THE ORIGIN~L SHELL SORT ALGORITHM.
IN THIS IMPLEMENTATION THE DISTANCE OF
COMPARISION IS CHOSSEN SUCH THAT :-

Dl • EN/2J AND DCI)· EDCI-l)/2J.
WHERE N ~ SIZE OF INPUT TO BE SORTED.

- P • NUMBER OF GENERATED PARALLEL P~THS.
- D = DISTANCE OF COMPARISONS.

THE ARRAY 'INPUT' IS USED TO STORED THE
GENERATED UNSORTED ELEMENTS.

,
REAL INPUT(5000),Y
INTEGER ITIME(100)
INTEGER I. N, p, D, K, J
$SHARED ITIME. INPUT, N, D
$REGION REGl

READ NUMBER OF NUMBERS TO BE SORTED

I~RITE C6.990)
WRITE C6,995)
REMI C5,980) N
IF CN .LE. 5000) GO TO 20
WRITE C6,970)
GO TO 10

GENEF:ATE
Rl"INF([I)
RI\NGE 0

THE NUMBERS TO
WILL GIVE US A

AND 1,

DO 30 I=l,N
INPUTCI) m Rl"INFCD)

CONTINUE

<J[IOALL 110
CALL TIMEST

$PAREND

BE SORTED. THE SUBROUTINE
Rl"INDOM NUMBER BETWEEN THE

C~LCULATE THE DISTANCE OF COMPARISION CD),
Dl - EN/2J WHERE N EnUAL SIZE OF INPUT
DCI) ~ EDCI-1)/2J
[J MEANS INTEGRAL Pl"IRT

D • N/2]
IF CD .LE. 0) GO TO 500
p~. M-D

/IF CP .GT. [I) P-D
$["tOPAR 400 K·l,P
IrK
J-I
Y'-INPUT< 1+[1)

IF CY .Lt. INPUT(J» GO TO 190
INPUT<JHI) - Y

535

62
63
64
65 190
66
67
68
69 400
70
71
72 C
73 C
74 500
75
76 450
77 C
78 C
79 C
80
81 C
82
83 C
8~ C
85 C
86
87 C
88
89 C
90 9~0
91 950
92 960
93~970

9~ 980
95 990
96 995
97 C
98
99 C

I~ItIl

IF «I+D) .LE. N) GO TO 160
GO TO 400
INPUT(J+D) = INPUT(J)
J = J-[I
IF (J .GT. 0) GO TO 170
GO TO 180
$PI'IREN[I -~-------
[I .. [1/2

GO TO 140

$DOALL 450
CALL TIMOUT(ITIME)

$PAREND

WRITE THE SORTED NUMBERS TO THE OUTPUT MEDII'I

WRITE(6.940) N

WRITEC6.960) CINPUTCI).I r 1.N.50)

~JRITE TIMING

WRITEC6.950)ITIME

$STOF'

FORMATC'SIZE OF INPUT IS - '.18/)
FORMAT(8C2X.r5))
FORMATC8C2X.E12.5»

536

FORMAT< 'ERROR. YOU EXCEEII MAX. NO •• PLEASE TRY AGIUN')
FORMnT< 14)
FORMI'ITC'PROGRnM NAME :- • PROGRAM 6.1 • 'I)
FORMATC'O(1)-[N/2J. OCI)~[OCI-1)/2J'I)

tEND

1 C
2 C
3 C
4 C
5 C
6 C
7 C
8 C
9 C

10 C
11 C
12 C
13 C
1~ C
15 C
16 C
17
18
19
20
21
22 C

**** PROGRAM 6.2 ****

THIS IS A PARALLEL IMPLEMENTATION OF
THE SHELL SORT ALGORITHM, WHERE THE
DISTANCE OF COMPARISONS ARE TAKEN AS,

OIl) 12**K)+1, Oil) 0" (D(I)/2)+1.
WHERE 2**K (N (2**(K+1),

N ~ SIZE OF INPUT TO BE SORTED.

- P = NUMBER OF GENERATED PARALLEL PATHS.
- 0 = DISTANCE OF COMPARISONS.

THE ARRAY "INPUT" IS USED TO HOLDS
INPUT ELEMENTS.

REAL INPUT(5000), Y
INTEGER ITIME(100), H(14)
INTEGER I, M, p, [I, K, J
'SHARED ITIME, INPUT, N, D
'REGION REGl

23 $USEPAR
24 C
25 C
26 C
27 10
28 15
29
30
31
32
33 C
3.. C
35 C
36 C
37 C
38 20
39
40 30
41 C
42 C
'\3
44
45 110
46 C
,\7 C
48 C
49 C
50 C
51 C
52
53 120
Sfl,
55
56 130
57
58
59
60 135
61 C

READ NUMBER OF NUMBERS TO BE SORTED

WRITE (6,990)
WRITE (6,995)
REflD (5,980) N
IF (1'1 .LE, 5000) GO TO 20
WRITE (6,970)
GO TO 10

GENERATE
R"'NF(D)
RANGE 0

THE NUMBERS TO BE SORTED. THE SUBROUTINE
WILL GIVE US A RnNDOM NUMBER BETWEEN THE

AND 1,

DO 30 I~1rN
INPUT(I) ~ R"'NF(D)

CONTINUE

$fiO"'LL 110
CALL TIMEST

'PI\REN[I

CALCULATE THE DISTANCE OF COMPARISION ID),
2~K ~ N ,. 2~(K+l)
[1(1) "" 12~K)tl

DII+l) - IDII)/2)+1

K '" 1
IF 112**K) .GE. 1'1) GO TO 130
K - Ktl
GO TO 120
H(1) "" 1
K - K-l
DO 135 J<!,K

HI J) ~2** I J-1) +1
CONTINUE

537

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

1~0

150
160

170
180

190

400

82 C
83 C
8~ 500
85
86 ...,50
87 C
88 C
89 C
90
91 C
92
93 C
94 C
95 C
96
97 C
98
99 C

100 940
101 950
102 960
103 970
104 980
105 990
106 995
107 C
108
109 C

11 = HIIO
P ~ N~11

IF IP .GT. [I) P=[I
$[lOPAR 400 M,-j,P
I"'M
J~I

Y"'INF'UT I I HI)
IF IY .LT. INPUTIJ» GO
INPUTIJ+[I) = Y
I"IHI
IF «H[I) .LEe N) GO TO
GO TO ~OO
INPUT< Jt[I) .- INPUTIJ)
J = J-[I
IF IJ .GT. 0) GO TO 170
GO TO 180
$PAREN[I
K ". K-l
IF IK .LTe 1> GO TO 500
GO TO 140

$!'IOALL 450
CALL TIMOUTIITIME)

$PAREN[I

TO 190

160

WRITE THE SORTE[I NUMBERS TO THE OUTPUT MEDIA

WRITE I 6,940) N

WRITEI6,960) IINPUTII),I r 1,N,50)

\,!RITE TIMING

WRITEI6,950)ITIME

.STOP

FORMATI'SIZE OF INPUT IS· ',18/)
FORMAT< 8 I 2X, IS»
FORMATll012X,E12.5»
FORMATI'ERROR, YOU EXCEED MAX. NO., PI EASE TRY AGAIN')
FORMAT II~)
FORMATI'PROGRAM NAME :- • PROGRAM 6.2 • 'I)

538

FORMATI' 2~K < N (= 2-IK+l), [lll)=12~K)+1, [lII+1)~I[lII)/2)+1'!)

539
, 1 C

2 C **** PROGRAM 6.3 ****
3 C
4 C THIS PRGRAM IS THE PARALLEL SHELL SORT WITH
5 C 2-WAY MERGE.
6 C THIS PROGRI'lM P"'RTITION THE ORIGINAL INPUT SET
7 C OF N ELEMENTS INTO M SUBSET OF SIZE (N/M) EACH.
8 C EACH SUBSET THEN SDRTED USING SHELL'S METHOD.
9 C THE SDRTED SUBSETS ARE MERGED TO FORM THE FINAL

10 C SORTED OUTPUT BY USING THE 2-WAY MERGE ALGORITHM.
11 C
12 C - INPUT : ARRAY TO HOLDS THE UNSORTED INPUT ELEMENTS.
13 C - N : NUMBER OF ELEMENTS TO BE SORTED.
1~ C - NPATH : NlIMBER OF PATHS (GROUPS" WHICH IS POWER OF 2.
15 C - WA : LOCAL ARRAY TO HOLDS THE LOCAL INPUT.
16 C - NPROC : NUMBER OF PROCESSORS USEII.
17 C - NELM : NUMBER OF ELEMENTS IN EACH GROUP.
18 C - INCR : ARRAY TO HOLDS THE INCREMENTS.
19 C - NINCR : NUMBER OF INCREMENTS.
20 C - NP : USED TO DETERMINE NUMBER OF PATHS, (NPATH n 2**NP).
21 C
22 C
23
24
25
26
27
28 C

INTEGER*2 ITIME
INTEGER PN. E. B, El, Bl, E2, B2, Bll, B22
DIMENSION ITIME(100), INCR(l~)

REAL INPUT(3000), WA(3000)
COMMON IAI~IA

29 $SHARED INPUT,N,NPATH,NELM,NPROC,MR,PN,INCR,NINCR,ITIME
30 C
31 .REGION REGl
32 C
33 .USEPAR
3~ C
35 C CALCULATE NUMBER OF PROCESSORS USED
36 C
37 NPROC • 0
38 $DOALL 10
39 .ENTER REnl
40 NPROC • NPROCtl
41 .EXIT REGl
42 10 $PAREND
~3 C
44 C READ NUMBER OF INPUT ELEMENTS TO BE SORTED
45 C
46 READ(5,20) N
47 20 FORMAT(I4)
48 C
49 C GENERATE N RANDOM NUMBERS
50 C
51 CALL RnNSET(l)
52 DO 30 I-l.N
53 INPUT(I) ~ R"'NF(D)
5~ 30 CONTINUE
55 C
56 C C"'LCULATE NUMBER OF PATHS (GROUPS), WHICH IS POWER OF 2
57 C
58 REnD(5.40) NP
59 40 FORMAT(Il)
60 NPftTH ~ 2.INP
61 HELM n N/NPATH

62 C 540
63 C~LL EVINCR
64 C
65 'DO~LL 50
66 C~LL TIMEST
67 50 'PAREND
68 C
69 'DOPAR 80 J-l,NPATH
70 B-NELM*CJ-l)+l
71 E'~NELMJt.J
72 IF CJ .Ea. NPATH) E ~ N
73 DO 60 KwB,E
74 WACK)rINPUTCK)
75 60 CONTINUE
76 C
77 CALL SHELLCB,E)
78 C
79 DO 70 K~~,E
80 INPUTCK)-WACK)
81 70 CONTINUE
82 80 'P~REND
83 C
84 .nOALL 90
85 C~LL TIMOUTCITIME)
86 90 $P~REND
87 C
88 WRITEC6,100)
89 100 FORM~TC/'THE TIME FOR SORTING'/)
90 WRITEC6,110) ITIME
91 110 FORMATC8CI6,2X))
92 C
93 'DO ALL 120
94 CALL TIMEST
95 120 $PAREND
96 C
97 C THIS PART MERGE THE SORTED GROUPS USING TWO-WAY MERGE
98 C
99 no 220 MR-l,NP

100 PN-NPATH/2Jt.Jt.MR
101 $DOPAR 210 J n l,PN
102 Bl~2**MR*NELM*CJ-l)+1
103 El=2Jt.Jt.CMR-l)*NELM*C2*J-l)
104 B2=Bl+NELMJt.2*Jt.CMR-l)
105 E2=El+NELMJt.2*Jt.CMR-l)
106 IF CJ .EG. PN) E2'''N
107 Bl1 ~ Bl
108 B22 = B2
109 I r Bl-l
110 130 I .- 1+1
111 IF CINPUTCBll) .LT. INPUTCB22) GO TO 140
112 WACI) . INPUTCB22)
113 B22 = B22 + 1
114 IF CB22 .LE. E2) GO TO 130
115 GO TO 150
116 140 WACI) .- INPUTCBll)
117 Bl1 - Bl1 + 1
118 IF CBll .LE. El) GO TO 130
119 GO TO 170
120 150 DO 160 K • Bll,El
121 1-1+1
122 WACI)nINPUTCK)
123 160 CONTINUE

124
125 170
126
127
128 180
129 190
130
131 200
132 210
133 220
13~ C
135
136
137 230
138
139 2~0

1.40
141

GO TO 190
DO 180 K~£I22,E2

I~I+1

WIH I)='INF'UT(K)
CONTINUE
DO 200 K~£Il1 E2

INF'UT (K) "WIH K)
CONTINUE

$PI\REND
CONTINUE

$[lOflLL 230
CALL TIMOUT(ITIME)

$F'flRENII
WRITE(6,240)
FORMflT(/'THE TIME FOR MERGING'I)
WRITE(6,110) ITIME
WRITE(6,2~0) N. NF'flTH. NF'ROC

541

142 250
143
1 .. 4 260
145

FORMAT(/l0X,'N· ',I8,8X,'NF'ATHS .',I4,8X,'NF'ROC ~',I5/)
WRITE(6,260) (INCR(I),I n l,NINCR)
FORMAT(/'INCREMENTS',5X,14(I4,2X)I)

1~6 270
1~7
1~8
149 280
150
151 290
152 999
153
154 C

READ(5,270) IF'RINT
FORM T (I1)
IF (IF'RINT .NE. 1) GO TO 999
WRITE (6,280)
FORMAT(/'THE SORTED ELEMENTS'II)
WRITE(6,290) (INF'UT(I),I=l,N)
FORMI\T(5(E12.5.2X)/)
$STOF'
$END

155 C THIS SUBROUTINE DETERMINE THE SEQUENCE OF INCREMENTS
156 C GOING TO £lE USED BY SHELL SUBROUTINE.
157 C
158 SUBROUTINE EVINCR
159 INTEGER F'N. INCR(14), ITIME(100)
160 REflL INF'UT(3000)
161 $SHI\RED INF'UT,N,NF'flTH,NELM,NF'ROC,MR,F'N,INCR,NINCR,ITIME
162 I~l

163 10 INCR(I). 2**1-1
164 IF «2**1) .GE. NELM) GO TO 20
165 I • 1+1
166 GO TO 10
167 20 NINCR=I-l
168 RETURN
169 $ENII
170 C
171 C THIS IS A SHELL'S SORTING SUBROUTINE.
172 C
173 SUBROUTINE SHELL(I£I,IE)
174 INTEGER F'N. INCR(14), ITIME(100)
175 REAL INPUT(3000), Wn(3000)
176 COMMON Ifl/Wn
177 $SHI\RED INF'UT.N,NF'ATH,NELM,NF'ROC,MR,F'N,INCR,NINCR,ITIME
178 M~NINCR+l

179 DO ~O L~l,NINCR
180 K~M-L
181 IC~INCR(K)

182 ICR~I£I+IC
183 DO 30 InICR,IE
184 J~I-IC
185 Y=WA(I)

186 10 IF (y .GE. W~(J» GO TO 20
542

187 W~(J+IC)~WA<J)

188 J~J-IC

189 IF (J .GE. HI) GO TO 10
190 20 WA(J+IC)~Y

191 30 CONTINUE
192 40 CONTINUE
193 RETURN
194 .END

C
2 C
3 C
.. C
5 C
6 C
7 C
8 C
9 C

10 C
11 C
12 C
13 C
1'1 C
15 C
16 C
17 C
18 C
19 C
20 C
21 C
22 C

*.** PROGRAM 6.4 .* ••
THIS IS A PAR~LLEL SHELL SORT METHOD USING THE
ODD- EVEN REDUCTION MERGE ~LGORITHM.
THIS PROGRAM PARTITION THE ORIGINAL INPUT SET
OF N ELEMENTS INTO M SUBSET OF SIZE (N/M) EACH.
EACH SUBSET THEN SDRTED USING SHELL'S METHOD.
THE SORTED SU~RETS ARE MERGED TO FORM THE FINAL
SORTED OUTPUT USING THE ODD-EVEN REDUCTION.

- INPUT : nRRI'IY TO HOLI'S THE UNSORTEI' INPUT ELEMENTS.
- N : NUMBER OF ELEMENTS T(1 BE SORTED.
_ NPATH : NUMBER OF PATHS (GROUPS), WHICH IS POWER OF 2.
_ \,!~ : LOCAL ARRAY TO HOlt.S THE lOCAL INPUT.
- NPROC : NUMBER OF PROCESSORS USED.
- NELM : NUMBER OF ELEMENTS IN EACH GROUP.
- INCR : ARR~Y TO HOLDS THE INCREMENTS.
- NINCR : NUMBER OF INCREMENTS.
- NP : USED TD DETERMINE NUMBER OF PnTHS, (NPATH=2**NP).

23 INTEGER*2 ITIME
24 INTEGER PN. E. B, El, Bl, E2, B2. Bll, B22
25 DIMENSION ITIME(100), INCR(l~)
26 RE~L INPUT(3000), W~(3000)

27 COMMON In/WA

543

28 C
29 $SH~REr. INPUT,N,NF'!lTH,NElM,NF'ROC,MM,MR,PN, INCR,NINCR, ITlME
30 C
31 $REGION REGl
32 C
33 $USEPAR
3'. C
35 C CI'\LCULI'lTE NUMBER OF PROCESSORS USED
36 C
37 NPROC - 0
38 'DOl'lLL 10
39 'ENTER REGl
40 NPROC • NPROCtl
41 $EXIT REGl
42 10 $PAREND
43 C
44 C REnD NUMBER OF INPUT ELEMENTS TO BE SORTED
45 C
46 READ(5.20) N
47 20 FORMAT(I4)
48 C
49 C GENERATE N RMWOM NUMBERS
50 C
51 CI'ILL RI'\NSET(l)
52 DO 30 I w l.N
53 INPUT(I) • RI'INF(D)
5~ 30 CONTINUE
55 C
56 C CALCULATE NUMBER OF PATHS (GROUPS), WHICH IS POWER OF 2
57 C
58 READ(5.40) NP
59 40 FORM~T(Il)

60 NPATH r 2**NP
61 NELM • N/NP~TH

62 C
63
M C
65
66
67 50
68 C
69
70
71
72
73
7 ..
75 60
76 C
77
78 C
79
80
81 70
82 80
83 C

Ct'lLL E\lINCR

'DOI'ILL 50
Ct'lLL TIMEST

'F'I\REN['

'DOPAR 80 J~l,NPI'ITH
B=NELM"'(J-l)+1
E"NELMtJ
IF (J .Ea. NF',HH) E
DO 60 K=B,E

WI\ (K) ,- INPUT (K)
CONTINUE

CALL SHELL(B,E)

DO 70 K'"B, E
INPUT<K),,··WI\(K)

CONTINUE
'PI'IREND

8~ U'OI\LL 90
85 CI'ILL TIMOUT(ITIME)
86 90 $PAREND
87 C
88 WRITE(6,100)

N

89 100 FORMAT(/'THE TIME FOR SORTING'/)
90 WRITE(6,110) ITIME
91 110 FORMAT(8(I6,2X»
92 C
93 $DOI\LL 120
9~ CI'ILL TIMEST
95 120 $PAREND
96 C

544

97 C THIS PI'IRT MERGE THE SORTED GROUPS USING ODD-EVEN REDUCTION
98 C AND TWO-WI'IY MERGE
99 C

100 MM = 1
101 DO 220 MR"l,NPATH
102 IF (MR .Ea. NPt'lTH .AND. NPATH .Ea. 2) GO TO 220
103 IF (MR .EO. MM) GO TO 130
104 PN • NPATH/2 - 1
105 MM .. MM + 2
106 GO TO 140
107 130 PN = NPATH/2
108 140 $DOPAR 210 J n l,PN
109 Bl n 2*NELM*(J-l)+(MM-MR)*NELM+l
110 El·· NELM*(2"'J-l)+(MM-MR)"'NELM
111 B2 n Bl+NELM
112 E2 - El+NELM
113 IF (J .EO. PN) E2=N
114 Bll ~ Bl
115
116
117 150
118
119
120
121
122
123 160

B22 = 92
I '" £11 - 1
I = I + 1
IF (INPUT(B11) .LT. INPUT(B22)) GO TO 160
WA(I) - INPUT(B22)
B22 ~ 922 + 1
IF (B22 .LE. E2) GO TO 150
GO TO 170
WI\(I) n INPUT(Bl1)

124
125
126
127 170
128
129
130 180
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

185

190
200

205
210
220
C

230

2~O

250

260

270

280

290
999

C
C
C
C

10

20

B11 ~ B11 + 1
IF (Bll .LE. El) GO TO 150
GO TO 185
DO 180 K w Bll,El

I = 1+1
WA<I) ~ INPUT(K)

CONTINUE
GO TO 200
DO 190 K~B22,E2

I = 1+1
MA< I) ~ INPUT(K)

CONTINUE
tlO 205 K~Bl ,E2

INPUT(K) = WII<K)
CONTINUE

~PARENtl
CONTINUE

~DOALL 230
CALL TIMOUT(ITIME)

$PARENtl
WRITE(6,240)
FORMAT(/'THE TIME FOR MERGING'/)
WRITE(6,110) ITIME

545

WRITE(6,250) N, NPATH, NF'ROC
FORMAT(/10X,'N = ',I8,8X,'NPATHS =',I4,8X,'NPROC ~',15/)
WRITE(6,260) (INCR(I),I~l,NINCR)
FORMAT(/'INCREMENTS',5X,14(I4,2X)/)
READ(5,270) IPRINT
FORMAT(11)
IF (IPRINT .NE. 1) GO TO 999
WRITE(6,280)
FORMAT(/'THE SORTED ELEMENTS'//)
WRITE(6,290) (INPUT(I),I~l,N)
FORMAT(5(E12.5,2X)/)
$STOP
$ENtl

THIS SUBROUTINE DETERMINE THE SE~UENCE OF INCREMENTS
GOING TO BE USED BY SHELL SUBROUTINE.

SUBROUTINE EVINCR
INTEGER PN. INCR(14), ITIME(100)
REAL INPUT(3000)
$SHARED INPUT,N,NPATH,NELM,NPROC,MM,MR,PN,INCR,NINCR,ITIHE
I~l

INCR(I) ~ 2**1-1
IF «2**1) .GE. NELM) GO TO 20
I ~ 1+1
GO TO 10
NINCR~I-l
RETURN
$ENtl

173
174
175
176
177 C
178 C
179 C
180
181
182
183
184
185

THIS IS A SHELL'S SORTING SUBROUTINE.

SUBROUTINE SHELL(IB,IE)
INTEGER PN, INCR(14), ITIHE(100)
REAL INPUT(3000), WA(3000)
COMMON /1\/101'"
$SHARED INPUT, N, NF'ATH, NELM, NPROC, MM, MR, PN, INCR; toll NCR, IT I ME
MwNINCR+1

186 DO 40 L~t.NINCR 546
187 K'"M-L
188 IC'"INCR<lO
189 ICR~IB+IC

190 [10 30 I~ICR,IE
191 J=I-IC
192 Y'·WA< I)
193 10 IF (Y .GE. W(\(J» GO TO 20
194 WI\ (J+I C) '"WI\ (J)
195 J"·J-IC
196 IF (J .GEt IB) GO TO 10
197 20 W{\(J+IC)~Y

198 30 CONTINUE
199 40 CONTINUE
200 RETURN
201 ~END

1
547

**** PROGRAM 6.5 '*" c
c
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
r:

THIS PROGRAM IS A PARALLEL DIGIT SORTING, lat. IMPLEMENTATION.
'5
6
7
8
9

10
11
12
13
1~
15
16
17
18
19
20
21
:~~
23
21
25
26
27
28
29
30
31
32

C
C
C
C
C
C
C
C
C

33 C
3~ C

1. T~E N-KEYS ARE PRESORTED INTO P-BINS ACCORDING TO THEIR
FIRST I DIGITS USING SEQUENTI~L APPROCH.

2. THE AVAILABLE PROCESSORS SORT INTERNALLY THEIR BINS INTO RIJW3.

3. THE RUNS APE ~ENT S~QUENTIALLY INTO THE COMMON MEMORY WHERE
THEY CONSTITUTE THE SORTED LIST.

THE VARIABLES USED IN THE PROGRAM ARE :-

*- INPUT
* lEX
*- TABLE

* K

* N * F' * MLIST * MLINK * SLINK
*- MINDEX
* LOCAL
" I"I'ITRIX * LIST
<. SLIST
* 11

USED TO HOLD THE INPUT ELEMENTS TO BE SORTED.
USED TO HOLD THE DIVISORS.
USED TO HOLD THE NUMBER OF ELEMENTS IN EACH LIST AND
SIJP-LIST.
USED TO HOLD THE DIGITS OF INPUT KEY, WHICH INDICATES
THE LIST AND SUBLIST.
NUMBER OF INPUT ELEMENTS TO BE SORTED.
THE B~eE 10TO WHICH THE INPUT ELEMENTS TO BE CONVERTED.
HOLDS THE MAIN LIST.
HOLDS THE LINK TO THE MAIN LIST.
~CLDS THE LINK TO THE SUFLIST.
USED TO CONTROL THE INDEX OF MAIN LIST.
USED TO HOLD THE INPUT El' '·,ENTS LOCALLY.
USED TO HOLD THE ELEMENTS OF ·T~FLE·.

USE!' TO HOLD THE INI'EX OF MAIN LIST.
USED TO HOLD THE INDEX OF SUBLIST.
NUMBER OF DIGITS INTO WHICH THE INPUT re ~DRTED ON.

35 REAL INPUT(102~),LOCAL(102~)

36 RE~L P,T,X
37 INTEGER t.~ Ml
38 INTEGER LIMIT,YI,Y2,R,PI
39 INTEGER N,S,II,A.F,C,Y,W·!.COUNT,COUNT1,ITIME(100).START
~O INTEGER IEX(10)·T~BLE(30,30),K(lO)

~1 INTEGER SLI"K(102~),MINDEX(30).MLINK(102~)
~2 INTE~E~ HnTRIX(900).LIST(900),SLIST'900)
~3 C
~4
~':.; c

'SH~RED INPUT,LocnL.NPROC,LIST,SLIST,MATRIX,SLINK,ML!·"· .!TIME

"~ 'REGION REGI
~7 C
48 $USEPAR
49 C
50 C CALCULATE NUMBER OF PROCESSORS USED
51 C
52 NPROC • 0
53 tDOALL 10
54 $ENTER REGl
55 NPROC = NPROCtl
56 $EXIT REGl
57 10 $PAREND
58 C
59 C READ NIJMBE-: 0" I NPIIT ELEMENTS TO BE SORTED
60 C
61 READ(5,20) N

62 20
63 C

FORMAT (I~)

6 ~ G GENERI\TE N Rf'lNIIOM NLlMBER
65 C
66 I ~ 0
67 30 X ~(32767.0 * Rf'lNF(D»
68 I ~ I+l
69 INPUT(I) = X
70 IF (I .LT. N) GO TO 30
71 C
72 C READ THE BASE TO WHICH THE Bf'lSE IS CONVERTED
73 C
74 READ (5,~0'P
75 40 FORMf'lT(E2.1)

548

76 C
77 C INTEGEP 9 IS USED TO CALCULATE THE DIVISORS, WHILE lEX HOLD IT
78 C
79 T ~ f'lLOG10(2.0)/f'lLOG10(P)
e0 S ~ IFIX(16 * T)
81 Ml ~ INT(P)
82 1 IF «Ml ** S) .LE. 32767) GO TO 2
83 S = S~l
84 GO TO 1
85 2 IEX(l) = Ml ** S
86 WRITE(6,3)IEX(1),Ml,P,9
87 3 FORMAT(/2X,'IEX(1) • ',I6,2X,'Ml = ',I4,2X,'P ~ "
88 1 F6.3,2X,'S = ',12 I)
89 C
90 C REnD MUMBER OF DIGIT INTO WHICH THE INPUT IS SORTED
91 C
92 REftD(5,50)II
93 SO FORMAT(Il)
o~ C
95 DO 60 J~2,II
96 IEX(J) = IEX(J-l)/IFIX(P)
97 60 CONTINUE
98 C
99 DO 70 1-1,30

100 MINDEX(I) • 0
101 70 CONTINUE
102 C
103 $DOALL 75
104 CftLL TIMEST
105 75 $Pf'lREND
106 C
107 C SEQUENTlf'lL PPESORTING OF THE INPUT KEYS
108 C
109 B • IEX(l)
110 DO 80 Z~l,N
111 K(l) ~ INT(INPUT(Z»/8
112 A • K(l)
113 R • INT(INPUT(Z»-A*8
114 K(2) ~ R/IEX(2)
115 SLINK(Z) - K(2)
116 MLINK(Z) ~ A
117 MINDEX(A+l) • MINDEX(A+l'+l
118 TI\BLE(f'I+l,K(2)+1) ~ Tft8LE(A+l,K(2)+1)+1
119 80 CONTINUE
120 C
121 C 8ULID AN ARRAY WITH ALL THE EXISTING SU8LISTS IN THE "TABLE"
122 C
123 C ~ I)

12~

125
126
127
128
129
130
131
132
133
13~

135
136
137
138
139
140
1'. 1
142
143
1'.4
145
146
147
1'.8
1~9

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
1.73
174
175
176
177
178
179
180
181
182
183
184
lSS

90
100
C

105
C

106

108
C

,10 100 1"'1.30
DO 90 J~1,30

IF (TM'LE(I,J) .Ell. 0) GO TO 90
C = CH
MATRIX(C) • TnBLE(I,J)
LIST(C) '" 1-1
SLIST<C) = J-l

CONTINUE
CONTINUE

$['O"'LL 105
CnLL TIMOUT(ITIME)

$PAREN['

WRITE(6,106)
FORMAT(/'TIME FOR DISTRIBUTION'/)
WRITE(6,9S0) ITIME
FORMAT< 8 (16, 2X))

$[,OnLL 108
CI\LL TIMEST

$PAREN['

549

C TRANSFER THE GENERATED SUBLISTS TO THE AV"'ILABLE PROCESSORS
C

C

$DOPAR 150 V~l,C
Vl ." V
W ", SLIST (VU
COUNT • 0
COUNTl '" 0
START" 1

C CALCULATE THE START OF EACH SUBLIST
C

IF CY .Ell. 1) GO TO 120
Y2 = Vl-1
DO 110 Mr l,Y2

START = START + MATRIX(M)
110 CONTINUE
120 IF (COUNTl .ER. MI\TRIX(Vl» GO TQ 145

COUNTl • COUNT1+1
130 COUNT • COUNT+l
1~0 IF (SLINK(COUNT> ,p'E, W) GO TO 130

C

IF (MLINK(COU~T) .NE. LIST(Vl» GO TO 130
LOCAL(BT~RT) • INPUT(COUNT)
STI':F:T ., START+l
GO TO 120

C C~LL SORT SUBROUTINE
C
145 LIMIT· START - 1

C

START = LIMIT - MATRIX(Yl) + 1
IF (START .ER. LIMIT) GO TO 150
CALL BUBBLE(START,LIMIT)

150 $pnREN['
C

$DOI\LL 160
CALL TIMOUT(ITI~E)

160 $PARENI'
C

186
187
lBB
lB9
190
191
192
193
194
195
196
197
198
199
200
201
202
203
:?04
205
206
207
208
209
210
211
212
213
214
215
216
21.7
218
219
220
2:?1
222
223
224
225
226
227

170

C

lBO

C

970

960

9BO

990
999

C
C
C

10

20

FORMATI/'TIME FOR SORTING'/)
WRITEI6,9~0) ITIME 550

Pl ~ IFIXIP)
WRITEI6,lBO)N,NPROC,Pl,C
FORMATI/5X,'INPUT SIZE = ',I4,5X,'NPROC ~ ',Il,2X,'BASE - "

1 I2,5X,'SUBLIST = ',13 /)

REI'\D 15,970) L
FORMATlIl)
IF I L .NE. 1) GO TO 999
WRITEI6,960)
FORMATI/'LIST BEFORE SORTING l-'/)
WRITE(6,990)IINPUTII),I~1,N)

WRITEI~,980)
FORMATI/'LIST AFTER SORTING l-'/)
WRITE(6,990)ILOCALII),I=1,N)
FORMI'\TI~IF17.9,2X)/)

$STOP
$END

SORT SUBROUTINE USING BUBBLE SORT TECHNIQUE

SUBROUTINE BUBBLE IS1,Bl)
REAL INPUTll024),LOCALll024),AREA
INTEGER Sl,Dl,BOUND,FLAG,ITIMEll00)
INTEGER LIST(900),SLISTI900),MATRIXI900),SLINKI1024),MLINKI1024)
$SHnRED INPUT,LOCAL,NPROC,LIST,SLIST,MATRIX,SLINK,MLINK,ITIME
BOUND ". Bl - 1
FLAG =. 0
DO 20 I '-S 1, BOUNI'

! F I LOCAL I I) • LE. LOCAL I It 1» GO TO 20
MEn .- LOCt'>L I I)
LOCALII) ~ LOCALlltl)
LOcnLlltl) p AREA
FLAG " I

CONTINUE
IF IFLAG .EQ. 0) GO TO 30
BOUN!' ~ FLAG - 1
GO TO 10
RETURN
$END

1
:!
3
'-
5
6
7
8
9

10
11
12
13
14
1'5
16
17
18
19
20
:!1
22
23
2-1
2'3
26
27
29
29
30
31
32
33
3~

3'3
36
37
38
39
40
41
~2

43
44
45
~6
~7
48
49
50
51
'52
53
54
55
56
57
58
59
60
61

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C

c

C

C
C
C

10
C
C
C

•• ,. PROGRnM 6.6 ••••

THJS PROGRAM IS A PARALLEL DIGIT SORTING, 2nd IMPLEMENTAJON.

1. THE N-KEYS ARE PRESORTED INTO P-BINS ACCORDING TO THEIR
FIRST I DIGITS USING PARALLEL IMPLEMENTATION.

551

:!. THE AVAILABLE PROCESSORS SORT INTERNALLY THEIR BINS INTO RUNS.

3. THE RUI'IS AF:E SENT SEQUENTIALLY INTO THE COMMON MEMORY WHERE
THEY CONSTITUTE THE SORTED LIST.

THE VnRIABLES USED IN THE PROGRAM ARE :-

:t INPUT
* lEX

USED TO HOLD THE INPUT ELEMENTS TO BE SORTED.
USED TO HOLD THE DIVISORS.
USED TO HOLD THE NUMBER OF ELEMENTS IN EACH LIST AND
SUBLIST. • TnBLE

• K

'" N
• P

USED TO HOLD THE DIGITS OF INPUT KEY, WHICH INDICATES
THE LIST AND SUBLIST.
NUMBER OF INPUT ELEMENTS TO BE SORTED.

:t MLIST
THE BASE INTO WHICH THE INPUT ELEMENT~ TO BE CONVERTED.
HOLDS THE MAIN LIST.

'" MLINK
1< SLINK
1< MIN[IEX
'" LOCAL
• MATRIX * LIST
• SLIST * II

HOLDS THE LINK TO THE MAIN LIST.
HOLDS THE LINK TO THE SUBLIST.
USED TO CONTROL THE INDEX OF MAIN LIST.
USED TO HOLD THE INPUT ELEMENTS LOCI'>LLY.
USED TO HOLD THE ELEMENTS OF 'TABLE'.
USED TO HOLD THE INDEX OF MI'>IN LIST.
USED TO HOLD THE INDEX OF SUBLIST.
NIIMBEF: OF DIGITS INTO WHICH THE INPUT IS SORTEr! ON.

REnL INPUT(102~),LOCAL(1024)

REAL P,T,X
INTEGER.'- HI
INTEGER LIHIT,YI,Y2,R,B2,E2.IEXI.IEX2
INTEGER N.S,II,A,B,C,Y,W.Z.COUNT.COUNTI.ITIME(IOO),START
INTEGER IEX(10).TABLE(30.30),K(IO)
INTEGER SLINK(1024),MINDEX(30).MLINK(1024)
INTEGER MnTRIX(900),LIST(900).SLIST(900)

$SHnRED INPUT,ITIME,NPROC.LIST,SLIST.MnTRIX.SLINK,MLINK,
I LOCAL.N.NPATH.NELEM.TABLE.MINDEX.IEX

$REGION REGI.REG2

$USEF'AR

CI'>LCULATE NUMBER OF F'ROCESSORS USE[I

NPROC '" 0
$[IOALL 10

$ENTER RE!'I
NPROC "" NPROC+!

$EXIT REGl
$PARE~I[I

REntl NUMBER OF INPUT ELEMENTS TO BE SORTED

62 READ(5,20) N
63 20 FORMAT (14)
6~ C
65 C GENERATE N RANDOM NUMBER
66 C
67 I ~ 0
68 30 X ~(32767.0 * RANF(D»
69 I = 1+1
70 INPUT(I) r X
71 IF (I .LT. N) GO TO 30
72 C
73 C READ THE BASE TO WHICH THE BASE IS CONVERTED
7'. C
75 REnD (S,40)P
76 40 FORMAT(E2.0)
77 C

552

78 C INTEGER S IS USED TO CALCULATE THE DIVISORS, WHILE lEX HOLD IT
79 C
80 T ~ ALOG10(2.0)/ALOG10(P)
81 S • IFIX(16 * T)
82 Ml r INT(P)
B3 1 IF «Ml ** S) ,LE. 32767) GO TO 2
g~ S = S-l
85 GO TO 1
86 2 IEX(l) r Ml ** S
87 C
88 C READ NUMBER OF DIGIT INTO WHICH THE INPUT IS SDRTED
89 C
90 READ(5.50)II
91 50 FORMAT(Il)
92 C
93 DO 60 J-2.I1
94 IEX(J) r IEX(J-l)/IFIX(P)
95 60 CONTINUE
96 C
97 .DOALL 65
98 IEXl " IEX(l)
99 IEX2 ~ IEX(2)

100 65 $PAREND
101 C
102 DO 70 1=1,30
103 MINDEX(I) m 0
104 70 CONTINUE
105 C
106 READ(5,73)NPATH
107 73 FORMAT(I3)
108 NELEM = N/NPATH
109 C
110 ~DOALL 73
111 CALL TIMEST
112 75 $PAREND
113 C
114 C THE PARALLEL PRESORTED OF THE INPUT KEYS.
115 C
116 $DOPAR 85 J r l.NPATH
117 B = IEXl
118 B2 = NELEMt(J-l)+1
119 E2 = ~ELEM.J
120 IF (J .ER. NPATH) E2~N
121 DO 80 Z~B',E2
122 K(l) rINT(INPUT(Z»/B
123 A • K(l)

124 R =INT(INPUT(Z»-A*B
125 K(2) ~ R/IEX2
126 .ENTER REG2
127 SLINK(Z) = K(2)
128 MLINK(Z) ~ A
129 MINDEXIA+l) n MINDEXIA+l)+l
130 T~BLE(A+l,K(2)+1) = TABLE(A+l,K(2)+1)+1
131 .EXIT REG2
132 80 CONTINUE
133 85 fPAREND
134 $DOALL 86
135 C~LL TIMOUT(ITIME)
136 86 $PAREND
137 WRITE(6,87)
138 87 FORMAT(/'THE TIME FOR DISTRIBUTION'I)
139 WRITE(6,950) ITIME
140 950 FORMAT(8(I6,2X»
141 C
142 C BULID AN ARRAY WITH ALL THE EXISTING SUBLISTS IN THE 'T~BLE'

143 C
144 C n 0
145 DO 100 1=1,30
146 DO 90 J~1,30

.147 IF (T~BLE(I,J) .EO. 0) GO TO 90
1~8 C = C+l
149 MATRIX(C) ~ T~BLE(I,J)

150 LIST(C) ~ 1-1
151 SLIST(C) = J-l
152 90 CONTINUE
153 100 CONTINUE
154 C
155 $DOALL 102
156 CALL TIMEST
157 102 $PAREND
158 C
159 C TR~NSFER THE GENERATED SUBLISTS TO THE AVAILABLE PROCESSORS
160 C
161 $DOPAR 150 Y·l.C
162 Yl = Y
163 W = SLIST(Yl)
164 COUNT n 0
165 COUNT 1 = 0
166 START = 1
167 C
168 C CALCULATE THE ST~RT OF EACH SUBLIST
169 C
170 IF (Y .EO. 1) GO TO 120
171 Y2 = Yl-l
172 DO 110 M~1,Y2
173 START = START + MATRIX(M)
174 110 CONTINUE
175 120 IF (COUNTl .ER. MATRIX(Yl» GO TO 145
176 COUNTl = COUNT1+1
177 130 COUNT = COUNT+l
178 140 IF (SLINK(COUNT) .NE. W) GO TO 130
179 IF (MLINK(COUNT) .NE. LIST(Yl» GO TO 130
180 LOCAL(START) ~ INPUT(COUNT)
181 START = ST~RT+l
182 GO TO 120
183 C
184 C CALL SORT SUBROUTINE
185 C

SS3

186 145 LIMIT ~ START - 1
187 START = LIMIT - MATRIX(Yl) + 1
188 IF (START .Er.. LIMIT) GO TO 150
189 CALL BUBBLE(START,LIMIT)
190 C
191 150 $PAREND
192 C
193 $DOALL 160
194 CALL TIMOUT(ITIME)
195 160 $PAREND
196 WRITE(6,170)
197 170 FORMAT(/'TIME FOR SORTING'/)
198 WRITE(6,950)ITIME
199 C
200 I r IFIXIP)
201 WRITEI6,180)N,NPATH,NPROC,I,C
202 180 FORMATI/5X,'N n '.2X,I4.5X.'NPATH • '.I3.4X.'NPROC - "
203 1 Il,5X,/B~SE ~ ',I2,5X,'SUBLISTS = ',13 /)
204 C
205 READ 15,970) L
206 970 FORMATlll)
207 IF (L .NE. 1) GO TO 999
208 WRITE(6.9bO)
209 960 FORMAT(/'LIST BEFORE SORTING :-'/)
210 WRITEI6.990)(INPUTII).I-l.N)
211 WRITE(6.9BO)
212 980 FORMAT(/'LIST AFTER SORTING :-'/)
213 WRITE(6.990)ILOCAL(I).I r l,N)
214 990 FORMAT(~IF17.9,2X)/)

215 999 $9TOP
216 $END
217 C
218 C SORT SUBROUTINE USING BUBBLE SORT TECHNIQUE
219 C
220 SUBROUTINE BUBBLE IS1,Bl)
221 REAL INPUT(102~),LOCAL(102~).AREA

554

222 INTEGER Sl.Bl.BOUND.FLAG.ITIME(100)
223 INTEGER LIBT(900),SLISTI900),MATRIXI900).SLINKI1024),MLINKI102~)
224 INTEGER TABLEI30,30),MINDEXI30).IEX(10)
225 $SHARED INPUT,ITIME,NPROC,LIST.SLIST.MATRIX.SLINK.MLINK~
226 1 LOCAL,N.NPATH,NELEM.TABLE,MINDEX.IEX
227 BOUND = Bl - 1
228 10 FLAG ~ 0
229 DO 20 IrSl,BOUND
230 IF (LOCAL(I) .LE. LOCALII+l» GO TO 20
231 AREA p LOCAL(I)
232 LOCALII) ~ LOCALCI+l)
233 LOCALII+l) ~ AREA
234 FLAG ~ I
235 20 CONTINUE
236 IF (FLAG .EG. 0) GO TO 30
237 BOUND = FLAG - 1
238 GO TO 10
239 30 RETURN
240 $END

C
2 C
3 C
4 C
'5 C
6 C
7 C
8 C
9 C

10 C
11 C
12 C
13 C
14 C
15 C
16 C
17 C
18 C
19
20
21 C

**** PROGRAM 6.7 ****
THIS PROGRAM IS THE PARALLEL IMPLEMENTATION OF
A SEQUENTIAL SE~RCH.
GIVEN A TABLE OF UNORDERED RECORDS Rll),RI2), ••• ,RIN),
WHOSE RESPECTIVE KEYS ARE Kl,K2, ••• ,KN. THIS PROGRAM
SEARCHES FOR A GIVEN ARGUMENT K. A DUMMY RECORD RIN+l)
BEEN INSERTEII AT THE END OF THE TABLE TO CONTROL THE END
OF THE SEARCH,

- N • SIZE OF INPUT TO BE SEARCHED.
- NPROC • NUMBER OF CO-OPERATIVE PROCESSORS.
- NPATH '" NllMBER OF P!lRALLEL P!lTHS I SUBGROUPS) •
- NELM " N\111BER OF ELEMENTS IN EI\CH SUBGROUP.
- KEYS IS !IN ARRAY TO HOLD THE KEYS TO BE SEI\RCHED FOR.
- K ~ THE ARGUMENT THI\T WE SEI\RCH FOR.

REAL INPUTll0000), K, KEYS(6)
INTEGER ITIME(100), FI,AG, B, E, NELM, IPATH(20)

22 ~SHI\RED INF'UT, !TIME, K, FLAG, N, NPROC, NE,LM
23 C
24
25 C

~REGION REGl

26 ~USEPAR
27 C
28 C CALCULATE NUMBER OF PROCESSORS.
29 C
30 NPROC • 0
31 $DOALL 10
32 $ENTER REGl
33 NPROC • NPROC + 1
3ft, $EXIT REGl
35 10 $PAREND
36 C
37 C READ SIZE OF INPUT
38 C
39 READ 15,20) N
~O 20 FORMAT (15)
11 C
42 C GENERI\TE AND STORE RANDOM NUMBERS
43 C
44 no 40 I r 1,N
45 I~PUT(I) • RANFID)
46 40 CONT H!IlE
47 C
18 C GENERATED NUMBERS, PRINTED OR NOT
49 C
50 READIS,30) IPRNT
51 30 FORMATlll)
52 C
53 C READ IN NUMBER OF PATHS INPATH) OR SUBGROUPS
5~ C
55 IP = 0
56 50 IP • IP + 1
57 READI5.55) IP!lTHIIP)
58 IF IIPATHIIP) .NE. 999) GO TO 50
59 5~ FORMAT(I3)
60 IP • IP-l
61 C

555

62
63
64
65
66
67
68
69
70
71
72
73
74
7S
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

C ' RE AI' THE ARGUMENT K TO BE SEARCHED FOR
C

KE = 0
60 I\E '" KEf 1

REnDI5,65)KEYSIKE)
IF IKEYS(KE) .NE •• 11111111) GO TO 60

65 FORMAT(Fll.8)

C

KE = KE-l
[IQ 888 IPP'-l, XP

NPATH r IPATH(IPP)
DO 777 KEE = 1,KE

K = KEYS(KEE)

C CnLCULATE NUMBER OF ELEMENTS IN EnCH SUBGROUPS
C

C
NELM r N/NPATH

$DOALL 70
CnLL TIMEST

70 $PARENII
C

FLAG = 0
C
C GENERATE 'NPATH' pnRALLEL PATHS THAT RUN
C SIMULTANEOUSLY.
C

$DOPAR 75 J r l.NPATH
IF (FLAG .EG. 1) GO TO 75
B = NELM*(J-ll+1

'E "' NELM>r.J
IF (J .EO. NPATH) E~N
CALL SEARCH (B,E)

75 $PAREND
95 C
96
97
98 80
99 C

100
101 C
102
103 120
104
105 140
106
107 160
108 180
109
110 190
111 C
112 200
113
114 220
115
116 230
117 C
118 2~0

119 250
120
121 260
122
123 270

$TlOflLL 80
CALL TIMOUT(ITIME)

$PARENII

IF (FLAG .EO. 1) GO TO 160

WRITE (6,120) K
FORMAT (/'THE ARGUMENT ',Fl1.8,' NOT FOUND'/)
WRITE(6, 1~0)
FORMAT('THE PROGRAM TERMINATED UNSUCCESSFULLY'/)
GO TO 200
WRITE (6,180) K
FORMAT(/'THE ARGUMENT ',Fl1.S,' FOUND'/)
WRITE(6,190)
FORMAT('THE PROGRAM TERMINATED SUCCESSFULLY')

IF (IPRNT .NE. 1) GO TO 240
WRITE (6,221)
FORMAT(/'THE UNORDERED ELEMENTS OF THE TABLE ARE :-'/)
WRITE(6,230) (INPUT(I),I r l,N,50)
FORMAT(5(Fl1.8,3X)/)

WRITE(6,250)
FORMAT(/'THE TIME FOR SEARCHING'I)
WRITE(6,2~0) ITIME
FORMAT(S(I6,2X»
WRITE(6,270) N, NPROC, NPATH
FDRMAT(/2X,'INPUT SIZE = 'I5,5X,'NO. OF PROC. = ',141

556

557

124 C I' NUMBER OF PATHS (SUBGROUPS) n ',13/)

125 777 CONTINUE
126 BeB CONTINUE
127 ~STOF'
12B ~EN[,

129 C
130 C SEQUENTI~L SEARCH ALGORITHM
131 C
132 SUBROUTINE SEftRCH (B1,E1)
133 REAL INPUT(10000), K, KEYS(6)
134 INTEGER ITIME(100), FLAG, B, E, B1, El, NELM, JPATH(20)
135 $SH~RED INF'UT, ITIME, K, FLAG, N, NPROC, NELM
136 I ~ B1
137 10 IF (K ,Efl, INPUT<I)) GO TO 30
13B I ~ 1+1
139 IF (I .GT. El) GO TO 40
140 GO TO 10
141 30 FL~G = 1
142 40 RETURN
143 $END

1 C
::! C
3 C
11 C
5 C
6 C
7 C
8 C
9 C

10 C
11 C
12 C
13 C
14 C
15 C
16 C
17 C
18 C
19 C
20 C
21 C
22 C

•••• PROGRnM 6.8 *'**
THIS PROGRAM IR THE PARALLEL IMPLEMENTATION OF
BINARY SEARCH ALGORITHM.
GIVEN A TABLE OF RECORDS R(1).R(2) ••••• R(N).
WHOSE KEYS ARE IN INCREASING ORDER
Kl <: K2 < ••• <: KN. THIS F'ROGRAM SEARCHES FOR
A GIVEN ARGUMENT K. TO START BY COMPARING K TO
THE MI[I['LE KEY IN THE TABLE. THE RESULT OF THIS
PROBE TELLS WHICH HALF OF THE TABLE SHOULD BE
SEI\RCHEI' NEXT. nND THE S liME PROCEDURE CAN BE USED
AGAIN. COMPAR7NG K TO THE MIDI'LE KEY OF THE
SELECTED HALF. ETC. THIS IS KNOWN AS 'BINARY SEARCH'.

- INPUT IS AN ARRnY HOLDS THE INPUT ELEMENTS.
- NPROC = NUMBER OF CO-OPERIITIVE F'ROCESSORS.
- NF'I'lTH ~ NUMBER OF PARALLEL PIITHS.
- NELM = NUMBER OF ELEMENTS IN EACH PATH.
- K • THE ARGUMENT WE SEARCH FOR.
- N = SIZE OF INPUT ELEMENTS.
- KEYS IS AN ARRAY THAT HOLDS THE SEARCHED KEYS.

23 REAL INPUT(9500). K. KEYS(6)
21 INTEGER ITIME(100). FLAG. L. U. IPATH(20)
25 C
26 $SHARED INPUT. ITIME. K. FLAG. N. NPROC. NELM. NPATH
27 C
28 $REGION REGl
29 C
30 $USEPAR
31 C
32 C CALCULATE NUMBER OF PROCESSOR
33 C
34 NPROC = 0
35 $DOALL 10
36 $ENTER REGl
37 NPROC ~ NF'ROC + 1
38 SEXIT REGl
39 10 $PAREND
~O C
~1 C REnD SIZE OF INPUT
12 C
43 READ (5.20) N
'.4 20 FORMAT (14)
45 C
46 C GENERATE AND STORE RANI'OM NUMBERS
47 C
48 DO 40 I n 1.N
'.9 INPUT(I) = ~ANF(D)
50 40 CONTINUE
51 C
52 C PRINT THE GENERATED NUMBERS OR NOT ?
53 C
54 REnD(5.45) IPRNT
55 45 FORMAT(Il)
56 C
57 C SORT THE GENERATED INPUT RANDOM NUMBERS
58 C USING SHELL'S METHOD
59 C
60 CALL SHELL
61 C

558

62 C REnD IN NUMBER OF PATHS (NPATH) OR SUBGROUPS
63 C
64 IP = 0
65 50 IP ~ IP+1
66 READ(5,5S) IPATH(IP)
67 IF (IPATH(IP) .NE. 999) GO TO so
68 S~ FORMAT(I3)
69 1P = 1P-l
70 C
71 C READ THE ARGUMENT K TO BE SEARCHED FOR
72 C
73 KE = 0
74 60 KE ~ KE+l
75 READ(S,6S) KEYS(KE)
76 IF (KEYS(KE) .NE •• 11111111) GO TO 60
77 65 FORMAT(F14.11)
78 KE = KE-l
79 DO 8e8 1Pp~l,rp
80 NPATH = IPATH(IPP)
81 DO 777 KEEn l,KE
82 K = KEYS(KEE)
83 C
84 C CALCULATE NUMBER OF ELEMENTS IN EACH SUBGROUPS
8S C
86 NELM ~ N/NPATH
87 C
88 $DOALL 70
89 CALL TIMEST
90 70 $PAREND
91 C
92 DO 90 MM = 1,50
93 C
94 FLAG ~ 0
95 C
96 C GENERt'ITE 'NPnTH' THAT RUNS SIMULTANEOUSLY.
97 C
98 $DOPAR 75 J-l.NPATH
99 IF (FLAG .Ea. 1) GO TO 75

100 L = NELM * (J-l) + 1
101 U • NELM * J
102 IF (J .En. NPftTH) U~N
103 CALL SEARCH (L,U)
104 75 $PAREND
105 C
106 90 CONTINUE
107 C
108 $DOALL 80
109 CALL T1MOUT(IT1ME)
110 80 $PAREND
111 C
112 IF (FLAG .Ea. 1) GO TO 160
113 C
114 WRITE (6,120) K
115 120 FORMAT (/'THE ARGUMENT ',F14.11,' NOT FOUND'I)
116 WRITE(6,140)
117 140 FORMI'IT<'THE PROGRAM TERMINATED UNSUCCESSFULLY'I)
118 GO TO 200
119 160 WRITE(6,180) K
120 160 FORMAT(/'THE ARGUMENT ',F14.11,' FOUND'I)
121 WRITE(6,190)
122 190 FORMAT('THE PROGRAM TERMINATED SUCCESSFULLY')
123 C

559

1~4 ~OO IF (IPRNT .NE. 1) GO TO 240
125 WRITE(6,2~0)
126 220 FORMAT(/'THE ORDERED ELEMENTS OF THE TABLE ARE :-'/)
127 WRITE(6,2~0) (INPUT(I),I~I,N,50)
128 230 FORMAT(5(FI4.ll,2Y.)/)
1~9 C
130 2~0 WRITE(6,250)
131 250 FORMAT(/'THE TIME FOR SE~RCHING'/)
132 WRITE(6,260) ITIME
133 260 FORMAT(8(I6,2X»
134 WRITEI6,270) N, NPROC, NPATH
135 270 FORMAT(/2X,'INPUT SIZE = 'I~,5X,'NO. OF PROC. = ',141
136 C I' NUMBER OF PATHS (SUBGROUPS) - ',13/)
137 777 CONTINUE
138 888 CONTINUE
139 $STOP
140 $END
1~1 C
142 C BINARY SE~RCH ALGORITHM
143 C
144 SUBROUTINE SE~RCH (Ll,Ul)
1~5 REAL INPUT(9500), K, KEYS(6)
146 INTEGER ITIME(100),FLAG,L,U,NELM,Ll,Ul,L2,U2,IPATH(20)
147 $SHARED INPUT, ITIME, K, FLAG, N, NPROC, NELM, NPATH
148 L2 • Ll
1~9 U2 = Ul
150 10 IF (U2 .LT. L2) GO TO 70
151 I - (L2+U2)/2
152 20 IF (K .LT. INPUT(I) GO TO 40
153 IF (K .GT. INPUTII)) GO TO 50
154 FLAG = 1
155 GO TO 70
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

C
C
C
40

C
C
C
50

70

C
C
C

AI'JUST U2

U2 = 1-1
GO TO 10

(Il'JUST L2

L2 R I t1
GO TO 10
RETURN
SE"ND

SHELL'S SORTI NG SUBROUTINE

171 SUBROUTINE SHELL
172 REAL INPUT(9500), K, Y, KEYS(6)
173 INTEGER ITIME(100), FLAG, I, D, IPATH(20)
174 $SHARED INPUT, ITIME, K, FLAG, N, NPROC, NELM, NPATH
175 C
176 C CALCULATE THE DISTANCE OF COMPARISION
177 C
178 1"1
179 20 IF «2**1) .GF. N) GO TO 30
180 I=Itl
181 GO TO 20
182 30 nR (2**(I-I)-I)
183 C
184 40 IF (D .LE. 0) GO TO 100
185 I R 1

560

186 50 J=I
561

187 Y ~ INF'UT< IHt)
188 60 IF (Y .LT. INF'UT(J)) GO TO 80
189 70 INF'UT(JtD) = Y
190 I " Itl
191 IF ((ItO) .LE. N) GO TO 50
192 [' = (['-1)12

193 GO TO 40
194 80 INPUT< J+O) ~ INF'UT(J)
195 J ~ J-['
196 IF (J .OT. 0) GO TO 60
197 GO TO 70
198 100 RETURN
199 '$ENO

562

REFERENCES

563

Abel, et al [1969): "TRANQUIL: Language for an Army Processing

Computer", Proc.Spring Joint Computer Conference, 1969, pp.57-68.

Ackerman, w. and Dennis, J.B. [1979): "VAL - A Value-Oriented

Algorithmic Language PreZiminary Reference Manual", Technical

Report 218, MIT Laboratory for Computer science, June 1979.

Adams, D.A. [1970): "A ModeZ for ParaZZel Computations", In Parallel

Processor Systems, Technologies and Applications, ed. by L.C.

Hobbs et al., Spartan Books, Washington, pp. 311-333.

Aho, et al. [1974): Aho, A.V., Hopcroft, J.E. and Ullman, J.D.: "The

Design and Analysis of Computer Algorithms", Addison-Wesley,

Reading, Massachusetts, 1974.

Anderson, G.A. and Jensen, E.D. [1975): "Computer Interconnection

Structures: Taxonomy, Characteristics and Complexes", Computing

Surveys, Vol. 7, No. 4, pp. 197-213.

Anderson, James P. [1965): "Program Structure for ParaZZeZ Processing",:

CACM, Vol. 8, No. 12, pp. 786-788.

Arms, et al. [1956): Arms, R.J., Gates, L.D. and Zondek, B.: "A Method

of Block Iteration", J.Soc.Indust.Appl.Math., vol. 4, pp. 220-229.

Baase, S. [1978): "Computer Algorithms: Introduction to Design and

Analysis", Addison-Wesley, Reading, Massachusetts, 1978.

Baer, J.L. and Bovet, D.P. [1968): "Compilation of Arithrootic

Expressions for ParaZlel Computations", Proc. IFIP Congress 1968,

North-Holland, Amsterdam, pp. 340-346.

564

Baer, et al. [1970J: Baer, J.L., Bovet, D.P. and Estrin, G.:

"Legality and Other Properties of Graph Models of Computations",

J.Ass.Comput.Mach., Vol. 17, pp. 543-552.

Baer, J.L. [1973J: "A Survey of Some Theoretiaal Aspeats of Multi

programming", Computing SUrveys, vol. 5, March 1973.

Baer, J.L. [1982J: "Teahniques to Exploit Parallelism", In Parallel

Processing Systems, An Advance Course, ed. D.J. Evans, Cambridge

University Press, 1982, London, pp. 75-99.

Barlow, R.H. and Evans, D.J. [1977J: "An Analysis of the Perforrrrznae

of a Dual-Miniaomputer Parallel Computer System", Internal Report

No. 59, Computer Studies Dept., Loughborough University.

Barlow, et al. [1981J: Barlow, R.H., Evans, D.J., Newman, I.A. and

Woodward, M.C.: "A Guide to Using the NEPTUNE Parallel Proaessing

System", Internal Report, Computer Studies Dept., Loughborough

University.

Barlow, et al. [1982aJ: Barlow, R.H., Evans, D.J. and Shanehchi, J.:

"Perforrrrznae Analysis of Algorithms on Asynahronous Parallel

Proaessors", Computer Physics Communications, 26, pp. 233-236.

Barlow, et al. [1982bJ: Barlow, R.H., Evans, D.J., Newman, I.A.,

Shanehchi, J. and Woodward, M.C.: "Performanae Analysis of

Parallel Algorithms on Asynahronous Parallel Computers", Internal

Report 157, Computer Studies Dept., Loughborough University.

Barlow, R.H. and Evans, D.J. [1982J: "Parallel Algorithms for the

Iterative Solution to Linear Systems", The Computer Journal, vol.

25, No. 1, pp. 56-60.

565

Barnes, J.G.P. [1984]: "PrograTmling in Ada", Addison-Wesley, Reading,

Massachusetts, 2nd ed. (1984).

Batcher, K.E. [1968]: "Sorting Networks and Their AppZications", Proc.

AFIP Spring Joint Computer Conference, Vol. 32, pp. 307-314.

Baudet, G.M. [1978]: "Asynchronous Iterative Methods for Multiprocessors",

J.ACM, Vol. 25, No. 2, pp. 226-244.

Baudet, G.M. and Stevenson, D. [1978]: "Optimal Sorting Algorithms for

Parallel Computers", IEEE Trans. on Computers, vol. C-27, No. 1,

pp. 84-87.

Baudet, G.M. [1981]: "Parallel Algorithm: Design, Analysis and

Experiments", INRIA, Domaine de Voluceau, 78150, Le Chesnay, France.

Bell, C.G. and Newell, A. [1971]: "Computer Structures: Readings and

Examples", McGraw-Hill, N.Y. 1971.

Bell, W. W. [1975]: "Matrices for Scientists and Engineers", Van Nostrand

Reinhold Company, 1975.

Bentley, J.L. and Kung, H.T. [1979]: "A Tree Machine for Searching

ProbZems" , Proceedings 1979 International Conference in Parallel

Processing, pp. 257-265, August, 1979.

Bernstein, A.J. [1966]: "Analysis of Programs for ParalleZ Processing",

IEEE Trans. on Electronic Computers, Vol. EC-15, No. 5, Oct. 1966,

pp. 757-763.

Biggins, M.J. [1980]: "The NumericaZ Solution of Elliptic Partial

Differential Equations by Finite-Difference Methods", Ph.D. Thesis,

Computer Studies Dept., Loughborough University.

566

Birkhoff et a1 [1962]: Birkhoff, G., Varga, R.S. and Young, D.M.:

"Alternating Direotion Implioit Methods", Advances in Computers,

Vol. 3, Academic Press, New York.

Bustand, D.W. [1980]: "An Introduation to PASCAL-PLUS", in 'On the

Construction of Programs', ed. by R.M. McKeag and A.M. MacNaugthen,

Cambridge University Press, 1980.

Carre, B.A. [1961]: "The Detel'mination of the Optinrzl Aoaeleration

Faator for Suooessive Over-Relaxation", Compt. Journal, Vol. 4,

pp. 73-78.

Chazan D. and Miranker, W. [1969]: "Chaotia Relaxation", in Linear

Algebra and Its Applications, Vol. 2, pp. 199-222.

Chen, S.C. and Kuck, D.J. [1975]: "Time and Parallel Bounds for Linear

Reourrenoe Systems", IEEE Trans. on Comp., vol. C-24, pp. 701-717.

Chen, T .C. [1975]: "Overlap and Pipeline Prooessing", In Introduction to

Computer Architecture, H.S. Stone, ed. p.p. 375-431, Science

Research Associates, Chicago, Illinois.

Clint, M. and Perrott, R.H. [1980]: "Algorithms for Parallel Computers",

In On the Construction of Programs, ed. McKeag, R.M. and MacNaugthen,

A.M., Cambridge University Press, pp. 283-318.

Commer et al [1971]: Commer, F., Holt, A.W., Evan, S.I--~~'~~~~A~.~' __________ __

"Marked Direoted Graph", J. Comp .Sys .sci., vol.

Oct. 1971.

Co1vin, A. [1980]: "Parallel Prooessing with Mini(1Om

COmmunications, Vol. 3, No.3.

567

Conrad, V. and Wallach, Y. [1977]: "Iterative So~ution of Linear

Equations on a ParaUe~ Processor System", IEEE Trans. on Computers,

Vol. C-26, No. 9, Sep. 1977.

Conte, S.D. and de Boor, C. [1982]: "E~ementary Numerica~ Ana~ysis",

McGraw-Hill Book Company, New York.

Conway, M.E. [1963]: "A Multiprocessor System Design", Proceeding Fall

Joint Computer Conference.

[Cray 75]: "The CRAY-l Computer", Preliminary Reference Manual, Cray

Research Inc., Chippewa Falls, Wise. 1975.

Dennis, J.B. and Van Horn, E.C.: "Programming Sel7K2ntics for Mu~ti

progra17'U71ed Computations", CACM, Vol. 9, No. 3, pp. 143-155.

Dennis, J.B. and Misunas, D.P. [1974]: "A Computer Architecture for

High~y ParaZle~ Signa~ Processing", Proc. Annual Conf. CAM,

pp. 402-409.

Dennis, J.B. and Misunas, D.P. [1975]: "A Preliminary Architecture for

a Basic Data-F~olJ Processor", Proc. 2nd Annual Symp. on Computer

Architecture, IEEE, New York, pp. 126-132.

Dew, et al. [1983]: Dew, P.M., Buckley, T.F. and Berzins,M.:

"Application of VLSI Devices to Computationa~ ProbZems in the Gas

Industry", 163 Dept. of Computer Studies, Leeds University.

Dew, P.M. [1984]: "VLSI Architecture for Prob~ems in NumericaZ

Computation", In Supercomputers and Parallel Computation, edited

by Paddon, D.J., Clarendon Press, Oxford.

Dijkstra, E.W. [1968]: "Co-operating Sequential Process", In

Programming Languages, edited by Genuys, F., Academic Press,

pp. 43-112.

568

Dunbar, R.C. [1978]: "Analysis and Design of Parallel Algorithms", Ph.D.

Thesis, Computer Studies Dept., Loughborough University.

Enslow, P.H. [1974]: "Multiprocessors and Parallel Processing", edited

by Enslow, P.H., A Wiley-Interscience Publication, John Wiley and

Sons, New York.

Enslow, P.H. [1977]: "Multiprocessor Organization - A Suwey", Computing

Surveys, Vol. 9, No. 1, pp. 103-129.

Evans, D.J. and Wi11iams S.A. [1978]: "Analysis and Detection of Parallel

Processable Code". The COmputer Journal, Vol. 23, No. ·1, pp .66-72.

Evans, D.J. [1984]: "New Parallel Algorithms for Partial Differential

Equations", In • Parallel Computing 83', edited by Feilmeier, M.,

Joubert, J. and Schendel, U., Elsevier Science Publishers, B.V.

(North-Holland), Int. COnf. Parallel Computing 83,1984, pp. 3-56.

Evans, D.J. [1985a]: "Group Explicit Iterative Methods for Solving

Large Lineal' Systems", Intern. J. Computer Math., Vol. 17, pp.81-108.

Evans, D.J. [1985b]: "Matri:c Iterative Methode: An Introduction",

Internal Report 222, Computer Studies Dept., Loughborough University.

Evans, D.J. and Yousif, N. [1985]: "Parallel Neighbour Sort with the

ParaUe l 2-Way Merge Algorithm", Internal Report 224, Computer

Studies Dept., Loughborough University.

Feil;'eier, M. [1982]: "Parallel Numerical Algorithms", In Parallel

Processing System, edited by Evans, D.J., Cambridge University

Press, 1982, pp. 285-338.

569

F1ynn, M.J. [1966]: "Very-High-Speed Computing System", Proceedings of

the IEEE, December, 1966, Vol. 54, pp. 1901-1909.

F1ynn, et al. [1970]: F1ynn, M.J., Podvin, A. and Shimizu: "A Multiple

Instruation Stream with Shared Resources", In Parallel Processer

Systems, Technologies and Applications, edited by Hobbs, L.C.,

washington D.C., Spartan Books, pp. 251-286.

F1ynn, M.J. [1972]: "Some Computer Organizations and Their Effectiveness",

IEEE Transactions on COmputers, Sept. 1972, pp. 948-960.

Gavril, F. [1975]: "Merging with ParaLLel Processors", CACM, vol. 18,

No. 10, October 1975.

Gill, s. [1958]: "ParaLLel Programming", COmputer Journal, vol. 1,

pp. 2-10, 1958.

Gera1d, C.F. [1978]: "AppLied Numerical Analysis", Addison-Wes1ey

Publishing COmpany, Reading, Mass., 2nd ed.

Gonza1ez, M.J. and Ramaooorthy, C.V. [1970]: "Recognition and

Representation of Parallel Processable Streams in Computer

Programs", in Parallel Processing Systems, Technologies and

Applications, edited by Hobbs, L.C., Spartan Books, pp.335-373.

Gosden, J .A. [1966]: "ExpLicit ParaUel Processing Description and

Control in Programs for MuZti- and Uni-processor Computers". In

~

Proc. AFIPS 1966 Fall Joint Computer Conf., Spartan Books,

New York, pp. 651-660.

570

Hageman, L.A. and Kellogg, R.B. [1968]: "Estim:zting the Optim:zL OVer

ReLaxation Parameter", Math. of Comp., vol. 22, pp. 60-68.

Handler, w. [1977]: "The Impaat of CLassifiaation Sahemes on Computer

Arohiteature", Proc. 1977 Int. Conf. on Parallel Proc., pp.7-l5.

Hansen, P.B. [1972]: "Struatured MuUiprogramming". CACM, Vol. 15,

No. 7, pp. 574-578.

Hansen, P.B. [1975]: "The Programming Language Conau1'1'ent PasaaL",

IEEE Trans. on Software Engineering, Vol. 1, No. 2.

Hansen, P .B. [1977]: "The Arahiteature of Conaurrent Programs",

Prentice-Hall, Englewood Cliffs, N.Y., 1977.

Hayes, J.P. [1983]: "Computer Arahiteature and Organization", McGraw

Hill International Book Company, 4th Printing, 1983.

Heller, D. [1978]: "A Survey of ParaUeZ ALgorithms in NumeriaaL Linear

ALgebra", SIAM Review, Vol. 20, No. 4, pp. 740-777.

Hellerman, H. [1966]: "ParaUeL Proaessing of ALgebraia Expressions",

IEEE Trans. on Electronic Computers, Vol. EC15, No. 1, Feb. 1966.

Hibbard, T.N. [1963]: "An EmpiriaaL Study of Minim:zL Storage Sorting",

CACM, Vol. 6, No. 5, pp. 206-213.

Hinz, R.G. and Tate, D.P. [1972]: "ControL Data STAR-lOO Processor

Design", Compcon. 72, IEEE Computer Society Conference Proc.,

pp.1-4, Sept. 1972.

Hirschberg, D.S. (1978): "Fast Parallel Sorting Algorithms", CACM,

Vol. 21, No. 8, pp. 657-661.

571

Hoare, C.A.R. (1972): "Towards a Theory of Parallel Pl'ograrmzing", In

Operating Systems Techniques, edited by Hoare, C.A.R. and Perrott,

R., Academic Press, New York, 1972.

Hoare, C.A.R. [1974]: "Monitors: An Operating System Struaturing Conaept",

CACM, Vol. 17, No. 10, pp. 549-557.

Hockney, R. W. and Jesshope, C. R. (1981): "Parallel Computers: Arahiteature,

Prograrmzing and Algorithms", Adam Hilger Ltd., Bristol.

Horowitz, E. and Zorat, A. [1983]: "Divide-and-Conquer for Parallel

Proaessing", IEEE Trans. on Computers, Vol. C-32, No. 6, June

1983, pp. 582-585.

Hsiao, D.K. and Menon, M.J. [1980]: "Parallel Reaord-Sorting Methods

for Hardware Realization Systems", Technical Report OSU-CISRC-TR-

80-7, The Ohio State University, Co1umbus, Ohio, July 1980.

Hyafil, L. and Kung, H.T. [1974]: "Parallel Algorithms for Solving

Triangular Lineal' Systems with Sm:zll Parallelism Parameter", Dept.

of Computer Science, Carnegie Me110n University.

Hwang, K. and Briggs, F.A. (1984): "Computer Arahiteature and Parallel

Pl'oaessing", McGraw-Hill Computer Science Series.

Jensen, et al. [1976]: Jensen, E.D., Thurber, K.J. and Schneider, G.M.:

"A Review of Systerrr:ztia Methods in Distributed Pl'oaessor Inter

aonneation", IEEE Internat. Conf. on Communications, 1976, IEEE, N.Y.

Jes shope , C.R. and Craigie, J. [1980): "Another Matrix AZgorithm for

the DAP", DAP Newsletter, VcL 4, pp. 7-14.

Joubert, G.R. and Maeder, A.J. [1982): "An MIMD ParaZZeZ Computer

System", computer Physics Communications, 26, pp. 253-257.

572

Karp, R.M. and Miller, R.E. [1966): "Properties of a ModeZ for ParaZZeZ

Computations: De terminaay , Termination, Queueing", SIAM J. AppL

Math., Vol. 14, No. 6, Nov. 1966.

Keller, R.M. [1970): "On MaximaUy ParaZZeZ Sahemata", In Conf. Rec.,

1970 IEEE 11th Ann. Symp. Switching and Automata Theory, pp.32-50.

Knuth, D.E. [1973): "The Art of Computer Programming: Voz. :3 Sorting

and Searahing", Addison-Wesley Publishing Company, Reading,

Massachusetts.

Kogge, P.M. [1974): "ParaZZeZ SoZutions of Reaurrenae ProbZems", IBM

J.Res. Develop., 18, pp. 138-148, March 1974.

Kotov, V.E. [1976): "Theory of ParalZel Prograrruning: Survey of PraatiaaZ

Aspeats", in Adv,,;nces in Information System Science, edited by

Tou, J.T., Vol. 6, 1976, Plenum Press.

Kuck, D.J. and Maruyama, K. [1975): "Time Bounds on the ParaZZeZ

Evaluation Of Arithmetia Expr>essions", SIAM J. Comput., 4, pp.

147-162.

Kuck, D.J. [1977): "A Survey of ParaZZeZ Maahine Organization and

Prograrruning", Computing Surveys, VoL 9, No. 1, March, 1977.

573

Kung, H.T. [1976]: "Synchronized and Asynchronous ParaUel Algorithms

for MUltiprocessors", in Algorithms and Complexity, New Directions

and Recent Results, edited by Traub, J.F., Academic-Press, pp.

153-200.

Kung, H.T. [1979]: "Let's Design Algorithms for VLSI Systems", Proc. of

Conf. on VLSI: Architecture Design Fabrication, CALTECH, pp.56-90.

Kung, H.T. [1980]: "The Structure of Parallel Algorithms", Advances in

Computers, Vol. 19, pp. 65-112, Academic Press, New York.

Kung, H.T. [1982a]: "Why SystoUc Arrays?", IEEE Computer, vol. 15,

No. 1, pp. 37-46.

Kung, H.T. [1982b]: "Notes on VLSI Computation", in Parallel Processing

Systems, edited by Evans, D.J., Cambridge University Press, pp.

339 -356.

Kung, S.Y. [1985]: "VLSI Array Processors", IEEE ASSP Magazine, pp.

4-22.

Lawrie, et al. [1975]: Lawrie, D.H., Layman, T., Baer, D. and Randal,

J.M.: "GLTI'NIR - A Programming Language for ILLIAC-IV", CACM,

Vol. 18, No. 3, March 1975, pp. 157-164.

Lorin, H. [1975]: "Sorting and Sorting Systems", Addison-wesley Pub.

1975.

Maruyama, K. [1973]: "The Parallel Evaluation of Matrix Expressions",

IBM T.J. Watson Research Centre, York Town Heights, N.Y.

574

McGettrick, A.D. [1978]: "AZgoZ 68 A First and Second Course".

Cambridge Computer Science Text 8, Cambridge University Press.

Mead, C. and Conway, L. [1980]: "Introduction to VLSI Systems".

Addison-Wes1ey Series in Computer Science, Reading, Massachusetts,

1980.

Mik1osko, J. [1984]: "Synthesis of ParoUeZ NumerioaZ AZgorithms".

In Algorithms, Software and Hardware of Parallel Computers, eds.

Mik1osko, J. and Kotov, V.E., Springer-Ver1ag, pp. 13-43, 1984.

Miller, R.E. and Cocke, J. (1972): "ConfigurobZe Computers: A New CZass

of GeneraZ-Purpose Machine". Int.Symp. on Theoretical Programming,

Novosibirsk 1972. In Lecture Notes in Computer Science, Vol. 5,

Springer-Verlag, New York, 1974, pp. 86-298.

Miller, R.E. [1973]: "A Comparison of Some TheoreticaZ ModeZs of

ParoUeZ Computation". IEEE Trans. on Computers, Vol. C-22, No. 8,

August 1973, pp. 710-717.

Millstein, R.E. [1973]: "ControZ Struoture in ILLIAC IV Fortran".

CACM, Vol. 16, No. 10, 1973, pp. 622-627.

Miranker, W.L. [1971]: "A Survey of ParoZZeZism in NumericaZ AnaZysia".

SIAM Review, Vol. 13, No. 4, 1971, pp. 524-547.

Muller, D.E. and Preparata, F.P. [1975]: "Bounds for CompZexity of

Networks for Sorting and SWitching". JACM, Vol. 22, No. 2, April

1975, pp. 195-201.

,

Muraoka, Y. and Kuck, D.J. [1973]: "On the Time Required for a

Sequence of Matrix Products", CACM 16, No. 1, 1973, pp.22-26.

Nassimi, D. and Sahni, S. [1979]: "Bitonic Sort on a Mesh-Connected

ParaZlel Computer", IEEE Trans. on Computers, vol. C-27, No. 1,

Jan. 1979, pp.2-7.

575

Opler, A. [1965]: "Procedure-Oriented Language Statements to Facilitate

ParaUel Processing", CACM, Vol. 8, No. 5, May 1965, pp. 306-307.

Papernov, A.A. and Stasevich, V. [1965]: "A Method of Inform:ztion

Sorting in Computer Memories", Problemy Peredachi Informatsii,

Vol. 1, No. 3, pp. 81-98, 1965.

Parter, S.V. [1961J: "Multi-line Iteration Methods for Elliptic

Difference Equations and FUndamentaZ Frequencies", Numer.Math.,

Vol. 3, pp. 305 -319.

Paul, G. and Wilson, M.W. [1975J: "The VECTRAN Language: An Experimental

Language for Vector/Matrix Array Processing", IBM Pal0 Alto

Scientific Center Report 6320-3334, August, 1975.

Peaceman, D.W. and Rachford, H.H. [1955J: "The Numerical Solution of

ParaboZic and EZZiptic Differential Equations", J.Soc.Indust.Appl.

Math., Vol. 3, pp. 38-41.

Perrott, R.H. [1979J: "A Language for Array and Vector Processors",

ACM Trans. on Programming Languages and Systems, Vol. 1, No. 2,

Oct. 1979, pp. 177 -195.

Perrott, R.H. [1980]: "Language for ParoUe~ Computers", In On the

Construction' of Programs, ed. by McKeag, R.M., and MacNaughten,

A.M., Cambridge University Press, pp. 255-281.

576

Perrott, R.H. [1982]: "Languages for Veotor and Parone~ Prooessors",

Computer Physics Communications, Vol. 26, 1982, pp. 267-275.

Peterson, J.L. [1977]: "Petri Nets", Computing Surveys, Vol. 9, No. 3,

Sept. 1977, pp. 223-252.

Petri, C.A. [1966]: "Kommunikation mit Automaten", Schriften des

Rheinisch-Westfalischen Institutes fur Instrumentelle Mathemat1k

an der Universitat Bonn, Heft 2, Bonn, W. Germany 1962;

translation: C.F. Greene, Supplement 1 to Tech.Rep. RADC-TR-65-337,

Vol. 1, Rome Air Development Center, Griffiss Air Force Base, N.Y.

1965, 89pp.

Podsiadl0, D.A. and Jordan, H.F. [1981]: "Operating System Support for

the Finite E~ement Maohine", Proc. of CONPAR, Lecture Notes in

Computer SCience, No. 111, Springer Verlag.

Pratt, V.R. [1972]: "SheUsort and Sorting Networks", Ph.D. Thesis,

Computer Science, Stanford University, 1972.

Preparata, F.P. [1978]: "New ParaUe~ Sorting Sohemes", IEEE-TC, vol.

C-27, No. 7, July 1978.

Ramamoorthy, C.V. and Li, H.F. [1977]: "Pipeline Arohiteoture", Camp.

Survey, Vol. 9, No. 1, March 1977, pp. 61-102.

Rumbaugh, J. [1977]: "A Data Flow MuZtipl'oaessol''', IEEE Trans. on

Computers, Vol. C-26, No. 2, pp.138-146.

Russell, R.M. [1978]: "The Cl'ay-l Computel' System", CACM; Vol. 21,

NO. 1, Jan. 1978, pp. 63-72.

Sajjan, G.S. [1985]: "Computel': Design and Struatul'e", Little, Brown

and Company (Canada) Ltd., 1985.

Sameh, A.H. [1977]: "Numel'iaal ParaZZel Algol'ithms - A SUl'vey", In

577

High Speed Computer and Algorithm Organization, edited by D.J. Kuck,

D.H. Lawrie and A.H. Sameh, Academic Press, New York, pp. 207-228,

1977 •

Sameh, A.H. and Brent, R.P. [1977]: "Solving Triangulal' Systems on a

Pal'aZZel Computel''', SIAM J.Numer.Anal. Vol. 14, No. 6, pp. 1101-

1113, 1977.

Seitz, C.L. [1982]: "Ensemble Al'ahiteatul'e fOl' VLSI - A SUl'vey and

Taxonomy", In Proc. of MIT Conf. on Advanced Research in VLSI,

ed. P. Penfield, Jr., Artech House, January, 1982, pp. 130-135.

Sharp, J.A. [1985]: "Data Flow Computing", Published by: Ellis Horwood

Limited, 1985.

Shell, D.L. [1959]: "A High-Speed SOl'ting P1'oaedul'e", CACM, Vol. 2, No.

7, 1959, pp. 30-33.

Shore, J.E. [1973]: "Seaond Thoughts of ParaZZel Pl'oaessing", Computing

and Electrical Engineering, Vol. 1, Pergamon Press, OXford,

England, 1973, pp. 95-105.

Slutz, D.R. [1968]: "The now Graph Sahemata Model of Parallel

Computation", Ph.D. Dissertation, E1ect.Enge.Dept., MIT,

cambridge Mass., Sept. 1968.

Slutz, D.R. [1970]: "now Graph Sahe=ta", in Rec. Project MAC Conf.

578

Concurrent Syst. and Parallel Computation. New York, Ass.Comput.

Mach., 1970, pp. 129-141.

Smith, G.D. [1978]: "Nwneriaal Solution of Partial Differential

Equations: Finite Differenae Methods", 1978, Second Edition,

OXford University Press, England, 1978.

Snyder, L. [1982]: "Introduation to the Configurable Highly Parallel

Computer", IEEE Computer, Vol. 15, pp. 47-56.

Snyder, L. [1984]: "Superaomputel's and VLSI: The Effeat Of Large-Saale

Integr>ation on Computer Arohiteature", in Advances in Computers,

Vol. 23, edited by M.C. Yovits, 1984, Academic Press, Inc.

Squire, J.S. [1963]: "A Transaation Algorithm for All Multiproaessor

Computer", Proc. 18th ACM National Conf. 1963.

Stone, H.S. [1967]: "One Pass Compilation of Arithmetia Expressions for

a Parallel Proaessor", CACM, Vol. 10, No. 4, April 1967, pp.220-223.

Stone, H.S. [1971]: "Parallel Proaessing with the Perfeat Shuffle",

IEEE Trans. on Computers, Vol. C-20, Feb., 1971, No. 2, pp. 153-161.

Stone, H.S. [1973]: "An Effiaient Parallel Algorithm for the Solution

Of a Tridiagonal Linear System of Equations", J. of ACM, Vol. 20,

No. 1, January 1973, pp. 27-38.

579

Stone, H.S. [1973a): "Problems of Parallel Computation", In Complexity

of Sequential and Parallel Algorithms, edited by J.F. Traub, Academic

Press, New York, 1973, pp. 1-16.

Tang, C.Y. and Lee, R.C. [1984): "Optimal Speeding Up of Parallel

Algorithms Based Upon the Divide-and-Conquer Strategy",

Information Science, Vol. 32, pp. 173-186.

[Texas Instruments, I): "Model 990 Computer, DX10 Operation System

Release ;5 Referenae Manual, Conaept and FaaiZities", Vol. I,

Computer Studies Dept., Loughborough University.

[Texas Instruments, II & IV): "Texas Instl'UJ71ents DX10 Operating

System Referenae Manual, Vol. II& IV", Computer Studies Dept.,

Loughborough University.

[Texas Instruments, VI): "Texas Instruments DX10 Operating System

Referenae Manual, Voz. VI", Computer Studies Dept., Loughborough

University.

Thomas, C.D. and Kung, H.T. [1977): Sorting on a Mesh-Conneated Parallel

Computer", CACM, Vol. 20, No. 2, 1977, pp. 263-27l.

Thurber, K.J. [1976): "Large Saale Computer Arahiteature: Parallel and

Assoaiative Proaessors", Hayden Publishing, Rochelle Park, N.J.,

1976.

Thurber, K.J. [1979J: "Parallel Proaessor Arahiteature - Part I:

General Pu:rpose Systems", Computer Design, January, 1979.

Valiant, L.G. (1975): "ParalleZism in Comparison Problems", SIAM J. of

Computing, Vol. 3, No. 4, Sept. 1975, pp. 348-355.

Varga, R.S. [1962J: "Matrix Iterative Analysis". Prentice-Hall,

Englewood Cliffs, N.J., 1962.

Vichnevetsky, R. [1981J: "Computer Methods for Partial Differential

Equations". vol. 1, Prentice-Hall, Inc., N. Y. Englewood Cliffs,

N.J., U.S.A. 1981.

580

Watson, W.J. [1972J: "The TI ACS. A Highly Modular and Flexible Super

Computer Architecture". AFIPS Fall 1972, Press, Montvale, N.J.,

Vol. 41, Part 1, pp. 221-229.

Wi11iams, S.A. [1978J: "Approaches to Determination of ParaUeZism in

Computer Programs". Ph.D. ~hesis, Computer Studies Department,

Loughborough University of Technology.

Wyllie, J.C. [1979J: "The Complexity of ParaUeZ Computation". Ph.D.

Thesis, Computer Science Dept., Cornell University, U.S.A., 1979.

Yau, S.S. and Fung, H.S. [1977J: "Associative Processor Architecture _

A Survey". Computing Surveys, vol. 9, No. 1, March 1977, pp. 3-27.

Young, D.M. [1954J: "Iterative Methods for Solving Partial Differential

Equations of EUiptic Type". Trans.Amer.Math.Soc., vol. 76,

pp. 92-111.

Young, D.M. [1971J: "Iterative Solution of Large Linear Systems".

Academic Press, New York, 1971.

Yousif, N.Y. [1983J: "ParaUel Algorithms for Asynchronous Multi

processors". Ph.D. Thesis, Computer Studies Dept., Loughborough

University of Technology, 1983.

1

j

'{ousif, N.'{. and Evans, D.J. [1985a]: "The PamUel Odd-Even Merge

Algorithm", Internal Report 223, Computer Studies Dept.,

Loughborough University, 1985.

581

'{ousif, N.'{. and Evans, D.J. [1985b]: "Merging by the ParaZZeZ Binary

Searoh Algorithm", Internal Report 225, Computer Studies Dept.,

Loughborough University, 1985.

Yousif, W.S. [1984]: "New Blook Iterative Methods for the Numerioal

Solution of Boundary VaZue Problems", Ph.D. 'Ihesis, Dept. of

Computer Studies, Loughborough University of Technology, 1984.

