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PARALLEL ALGORITHMS FOR MIMD PARALLEL COMPUTERS 

ABSTRACT 

This thesis mainly covers the design and analysis of asynchronous 

parallel algorithms that can be run on MIMD (Multiple Instruction 

Multiple Data) parallel computers, in particular the NEPTUNE system at 

Loughborough University. Initially the fundamentals of parallel computer 

architectures are introduced with different parallel architectures being 

described and compared. The principles of parallel programming and the 

design of parallel algorithms are also outlined. Also the main 

characteristics of the 4 processor MIMD NEPTUNE system are presented, 

and performance indicators, i.e. the speed-up and the efficiency factors 

are defined for the measurement of parallelism in a given system. 

Both numerical and non-numerical algorithms are covered in the 

thesis. In the numerical solution of partial differential equations, 

a new parallel 9-point block iterative method is developed. Here, the 

organization of the blocks is done in such a way that each process 

contains its own group of 9 points on the network, therefore, they can 

be run in parallel. The parallel implementation of both 9-point and 4-

point block iterative methods were programmed using natural and red

black ordering with synchronous and asynchronous approaches. The 

results obtained for these different implementations were compared and 

analysed. 

Next the parallel version of the A.G.E. (Alternating Group Explicit) 

method is developed in which the explicit nature of the difference 

equation is revealed and exploited when applied to derive the solution 



of both linear and non-linear 2-point boundary value problems. Two 

strategies have been used in the implementation of the parallel A.G.E. 

method using the synchronous and asynchronous approaches. The results 

from these implementations were compared. Also for comparison reasons 

the results obtained from the parallel A.G.E. were compared with the ~ 

corresponding results obtained from the parallel versions of the Jacobi, 

Gauss-Seidel and S.O.R. methods. Finally, a computational complexity 

analysis of the parallel A.G.E. algorithms is included. 

In the area of non-numeric algorithms, the problems of sorting and 

searching were studied. The sorting methods which were investigated 

was the shell and the digit sort methods. with each method different 

parallel strategies and approaches were used and compared to find the 

best results which can be obtained on the parallel machine. 

In the searching methods, the sequential search algorithm in an 

unordered table and the binary search algorithms were investigated and 

implemented in parallel with a presentation of the results. Finally, 

a complexity analysis of these methods is presented. 

The thesis concludes with a chapter summarizing the main results. 
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CHAPTER 1 

FUNDAMENTALS OF PARALLEL COMPUTERS ARCHITECTURES 
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1.1 INTRODUCTION 

The greatest possible speed, throughput, performance, flexibility 

and a high level of availability and reliability is the requirement to 

many scientific and engineering applications, many of which need to be 

solved in real time. Since the speed and reliability of conventional 

computers is limited, the satisfaction of these requirements can only 

be achieved by a high-performance computer system. Achieving high 

performance depends not only on using faster and more reliable hardware 

devices but also on different computer architectures and processing 

techniques, so parallel computer systems need to be developed. 

In the early days of computers, vacuum tubes were used and hardware 

components were expensive, heat generating and slow. CPU structure was 

bit-serial, and arithmetic was done on a bit-by-bit fixed pOint basis. 

Transistors were invented in 1948 and the first transistorised digital 

computer was built in 1954. Printed circuits appeared and magnetic 

core memory was developed with the result that many computer systems 

now use it. In 1959, many improvements to computer architecture were 

carried out. For example, Sperry Rand built a computer system with an 

independent I/O processor which operated in parallel with one or two 

processing units. Between the early 1960'S and mid-1970'S, small-scale 

integrated (SSI) and medium-scale integrated (MSI) circuits were used as 

basic blocks in computer systems. core memory was still used in many 

computer systems, like the CDC-6600. Then solid-state memories replaced 

the core memories and many fast computers like CDC-7600 were built . 

. In the early seventies, many high-performance computers were developed, 

i.e., such computer systems were the IBM 360/91, Illiac IV, TI-ASC, 

Cyber-175, STAR-lOO and C.mmp, and several vector processors were also 

developed. 
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The present and near future computer designs emphasize the use 

of large-scale integrated (LSI) circuits and very-large-scale (VLSI) 

chips, for both logic and memory sections. Second generation vector 

machines have appeared like the Cray-l (1976) and Cyber-205 (1982) and 

high-speed mainframe and super computers appear in multiprocessor 

system form like the Univac 1100/80, (1970), the IBM 3081 (1980), and the 

Burroughs B-7800 (1978). In addition, a high degree of pipelining and 

multiprocessing is emphasized in commercial super-computers. 

From the above history of computer developments, the size of 

computers has decreased and the speed of operation has increased rapidly. 

Two methods can be used to achieve the highest possible speed and 

throughput. These methcds are:a) by exploiting the technological 

possibilities in the design of the computer components and b) by a 

suitable modification to the structure and organization of the computer. 

Since the increase in speed and density is not unlimited, for it has 

ultimate physical limits then the other method of increasing speed, 

improving the organization architectures of computers, leads to the 

design of parallel architectures of computers. 
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1.2 TOWARDS PARALLEL PROCESSING 

From a user's point of view, a high degree of parallelism is needed 

as the computer applications become more and more sophisticated. Computer 

usage started with data processing (i.e. a collection of raw data such 

as numbers, characters, symbols, ••. ) and as computer science 

-
theory has advanced, many users have shifted to information processing 

(i.e., data objects related by some syntactic relations). A high 

degree of parallelism has been found at these two levels of computer 

applications. In recent years, a knowledge based application system 

(where knowledge consists of information items plus some semantic 

meanings) has been established where a greater degree of parallelism 

is needed and it is more ,exploitable in this type of application than 

that in the data processing and information processing applications 

fields. 

From an operating system point of view, four operating modes have 

been in usage for successive computer systems. These modes are: batch 

processing, multiprogramming, time sharing, and multiprocessing. 

Each mode has been an improvement to its predecessor. The degree of 

parallelism has increased from one mode to another sharply. ~",al1g __ and"_ 

Briggs [1984] formally defined parallel processing as follows: Parallel 
~ 

processing is an efficient form of information processing which emphasizes 

the exploitation of concurrent events in the computing process. 

Concurrency implies parallelism, simultaneity, and pipelining. Parallel 

events may occur in multiple resources during the same time interval; 

simultaneous events may occur at the same time instant; and pipelined 

events may occur in an overlapped time span. 



Also they show that, parallelism has been applied at several 

distinct levels which might be classified as: 

1. Job or program level, 
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This is the highest level which can be conducted among multiple 

jobs or programs through multiprogramming, time sharing and multi

processing. 

2. Task or procedure level, 

This is the next highest level of parallel processing and is 

conducted among procedure or tasks (program segments) within the 

same program. 

3. Interinstruction level, 

This level is to exploit concurrency among multiple instructions. 

4. Intrainstruction level, 

This is the lowest level to obtain faster and concurrent operations 

within each instruction. 

These levels are implemented either by hardware or software means. 

Hardware roles increase from high to low levels, while software 

implementations increase from low to high levels. 

To achieve parallel processing requires the development of more 

capable and cost-effective computer systems. Since the conventional 

uniprocessor system have their limit in achieving high performance, 

the general architectural trend is being shifted away from conventional 

uniprocessor systems to multiprocessor systems or to an array of 

processing elements controlled by one uniprocessor. In all cases, a 

high de~ee of pipelining is being incorporated into the various 

system levels. 



Hockney and Jesshop [19811 summarised the principal ways of 

introducing parallelism into the architecture of computers as: 

6 

1. The application of pipelining techniques to improve the performance 

of arithmetic or control units. 

2. Providing several functional units, such as logic, addition, and 

multiplication, where these functions operate in parallel on 

different data. 

3. Provide an array or vector of processing elements performing the 

instruction simultaneously, but on different data, where the data 

is stored in the processing elements' private memories. 

4. Providing several processors each of them being a complete computer. 
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1.3 THE'STRUCTURE OF PARALLEL CO~~UTERS 

Parallel computers are simply those systems carrying out several 

opp-rations at the same time, or those systems which are'carrying out 

parallel proce3sing. A parallel computer structure will be character-

ised as: 

1. Pipeline computers 

2. Array processors 

3. Multiprocessor systems • 

.. ';The pipeJining principle implies the segmentation or partition 

of a cbmput<'.tto~)i',l process into N subprocesseswhich can be executed 

iridepen<l.cn'tly by c:Ustinct unit.s or modules. An array processor uses -- -----------,----- -------- - - - -
. ~~ ';, 

mult_tpl e pro,,.,,,sing units in a synchronized manner. A multiprocessor - - ,- - ,":' _t) ~ --:--------.. - - -~ 

syst~!!l US/~3 a set of asynchronized processors with shared resources. 
:~:)S .:! -!;~I: " .. ' 

Some, se mputers belong to more than one of the above characterizations. 

~e~o~qepts such as_data flow and VLSI approaches will also be "'--introduced in later sections. 

1.3.1 Pipeline Computers 

The prinCiple of pipelining has emerged as a major architectural 

attribute of most present day computer systems. The concept of pipe-

line processing in a computer is similar to assembly lines in an 

industrial plant. TO achieve pipelining, one must subdivide the input 

task (process) into a sequence of subtasks, each of which can be 

executed by a specialized hardware stage that operates concurrently 

with other stages in the pipeline. 

Pipelined machines such as the CDC STAR-lOO (Hintz, R.G. and 



8 

Tate, D.P. 1972), CRAY-l (Cray 1975) and the Texas Instrument ASC 

(Watson, 1972) have different pipeline processing capabilities, which 

varies from pipelined special purpose functional units to internally 

pipelined instruction and arithmetic units. 

A pipeline processor consists of a sequence of processing circuits, 

called segments or stages through which a data stream passes (Figure 

1.1). Each segment does some partial processing, on the data and a 

final result is obtained after the data has passed through all the 

segments of the pipeline. Parallel processing is achieved by having 

distinct operand sets or processes in several segments at the same time. 

1- - -- I 
1 I 

Cl 
- -! 

r - - - 1 

1 

j -, 

-I 
1 
1 

,-

FIGURE 1.1: Pipeline processing structure 
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Segment 2 

Segment m 

Output Register 

R: Register 

C: Processing 
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A typical pipeline computer is shown in Figure 1.2. This model 

shows both scalar arithmetic pipelines and vector arithmetic pipelines. 

The instruction processing unit is itself pipelined with three stages 

as shown. 

Scalar processor 

Scalar data rl SPl J 

K 
Scalar K SP2 J 

~- - - - --- - -- - - regis-

Main 
Memory 

Instruc nstruc Scalar 
tion r- ion fetch 
fetch decode 

IS (F) (D) (0) 

Vector 
fetch 

Instruction processing 

r-------------

Vector 

IS: Instruction stream 

0: Operand fetch 

K: Control signal 

.. 

data 

, 
ter , r · 

I · j--- · 
4 SPn J K 

t- ----, 
Scalar pipeline 

Vector processor 

K 
t'" --

It VPl 
I" --, 

1 
I 

Vector H VP2 __ I 
regis-
ters 

If- · 
. 

· 

L1. VPm 

Vector pipelines 

FIGURE 1.2: Functional structure of a modern pipeline computer with 
scalar and vector capabilities 

I 

I 

J 
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As an example, consider the process of executing an instruction. 

Normally it involves the operations of fetching the instruction (F), 

decode the instruction (D), fetch the operand (0), and finally its 

execution (E). In a non-pipelined computer, the above steps must be 

completed before the next instruction can be issued as shown in Figure 

1.3. 

--------------~~Instruction Processing , 

FIGURE 1.3: Non-pipelined processor 

In a pipelined computer, successive instructions are executed in 

an overlapped fashion. The four pipeline stages F,D,O and E which are 

connected serially are shown in Figure 1.4. After constant time 

intervals, the output of one stage is shifted to the next. A new 

instruction is fetched (F) in every time cycle, and stage (E) produces 

an output every time cycle because the time to execute an instruction 

consists of multiple pipeline cycles. For the nonpipelined (nonover-

lapped) computer, it takes four pipeline cycles to complete one 

instruction. While in pipelined computers, once the pipeline is filled 

up, an output result is produced on each cycle. So by overlapping, the 

execution time the instruction processing will be faster by a factor 

of four (in our example, instruction processes in four stages) over 

nonpipelined execution. The two space-time diagram (Figure 1.5 and 

Figure 1.6) shows the difference between overlapped instruction 

execution and sequentially nonoverlapped execution. 
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FIGURE 1.4: A pipe1ined processor to execute an instruction 

pipeline 
stages 

E 

0 

D 

F I1 

1 

I1 

I2 

I1 

I1 I2 

I2 I3 

I3 I4 

2 3 

.. 

I2 I3 I4 IS 

I3 I4 IS 

I4 IS 

IS 

4 5 6 7 8 9 10 11 12 

FIGURE 1.5: Space-time diagram for a pipe1ined processor 

stages 

E I1 I2 I3 

0 I1 I2 ~3 

D I1 I2 I3 , 

F I1 I2 I3 I4 

13 

I4 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

FIGURE 1.6: Space-time diagram for a nonpipe1ined processor 

11 

· .. 
· .. 
... 
· .. 

Time 

· .. 
I4 · .. 

· . . 
· .. 
T~me 



1.3.1.1 Classification of Pipeline Processors 

Handler (1977) classified the pipeline processors into three 

classes according to the levels of processing i.e.: 

1. Arithmetic pipelining 

Most arithmetic functions are easily implemented by pipelining. 

12 

Arithmetic pipelines have been constructed for performing either a 

single arithmetic function or performing all the four basic operations 

on both fixed-point and floating-point numbers. As examples we have 

the four-stage pipes used in STAR-lOO, the eight-stage pipe used in 

TI-ASC, the up to 14 pipeline stages used in the CRAY-l, and the up 

to 26 stages per pipe in the Cyber-2QS. 

2. Instruction pipelining 

The purpose of an instruction pipeline is to overlap the execution 

of the current instruction with the subsequent instruction stages. 

Almost all high-performance computers are now equipped with instruction

execution pipelines. 

3. Processor pipelining 

In this type of pipelining, a cascade of processors/each with a 

specific task,process the same data stream. The result from the first 

processor is passed on to the second processor, and the result from the 

second processor is passed to the third processor etc. 

Ramamoorthy and Li (1977) have proposed the following classification 

scheme: 

1. Unifunction vs. Multifunction Pipelines 

A pipelined module that only serves a single dedicated function 

such as the floating-point adder, is called unifunationaZ. The CRAY-l 
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has 12 unifunctional pipeline units. A multifunctional pipe may 

perform different functions, either at a different time or at the same 

time, by interconnecting different subsets of stages in the pipeline. 

The TI-ASC has four multifunction pipeline processors. 

2. Static vs. Dynamic Pipelines 

A static pipeline may assume only one functional configuration 

at a time. It can be either unifunctional or multifunctional. on the 

other hand, a dynamic pipeline processor permits several functional 

configurations to exist simultaneously and must be multifunctional. 

3. Scalar vs. Vector Pipelines 

A scalar pipeline processes a sequence of scalar operands under 

the control of a DO loop. A typical example of a machine equipped with 

scalar pipelines is the IBM 360/91. Vector pipelines are specially 

designed to handle vector instructions over vector operands. Examples 

of vector pipeline machines are IT-ASC, CDC STAR-lOO, CDC cyber-20S and 

CRAY-l. 

Block diagrams for the pipeline machines CDC STAR-lOO, CRAY-l 

and IT-ASC are shown in Figures 1.7, 1.8 and 1.9 respectively. 

I 

J 
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It can be shown that a pipeline processor with n-stages could 

be at most n times faster than a nonpipeline processor. From Figure 

1.4, to process ~ tasks using a linear pipeline with n stages, it 

takes 

T = n + (~-l) clock periods. 
n 

(The clock period of a linear pipeline is equal to the maximum delay 

in each stage Si plus a time delay between'each stage), where n cycles 

are used to complete the execution of the first task and (~-l) cycles 

are required to complete the remaining (~-l) tasks. While in 'a non-

pipeline processor with the same number of tasks and equivalent functions 

it takes 

Tl = t.n time delay. 

The speedup S of a pipeline processor over a nonpipeline processor is n 

defined as, 

S 
n = ~.n = n+(t-l) 

The maximum speedup gain is S~n, for £»n. In other words, with n 
n 

stages the maximum speed up that can be gained from a pipeline processor 

is n. However, this perfect speed up may not be achieved in practice 

due to memory conflicts, data dependency, program branch and interrupt 

operations. 

1.3.2 Array Processors 

Array processors can be defined as an array of interconnected 

identical processing elements (PE's). The PE's are controlled by a 

single control unit. Each PE consists of an arithmetic and logical 

unit (ALU) and a local memory. Two essential reasons for building 
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array processors are firstly, economic for it is cheaper to build N 

processors with only a single control unit rather than N similar 

computers. The second reason concerns interprocessor communication, 

the communication bandwidth can be more fully utilised. A typical 

array processor is shown in Figure 1.10. 
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FIGURE 1.10: Array processors computer 
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The PE's are synchronized to perform the same function at the 

same time. The control unit decodes the instruction and broadcasts 

the instruction via control lines to all PE's simultaneously. The 

control unit can access information in both control or local memory. 

Each PE has access to its local memory only. Thus, a common instruction 

is executed by all PE's simultaneously using data from its local memory. 

Different interconnection patterns be~ween processors in array~ 

processors are used to permit data transfers between processors. In 

order to maximize the parallelism in an array processor, we must utilize 

as much of the available memory and processor bandwidths as possible. 

----
The array processor is eminently suitable for Linear Algebra. For 

example, if an array process contains N (N=2n) processor elements, the 

array NXN is stored by columns in such a way that each element of the 

matrix column is stored in the memory of the corresponding PE and one 

memory fetch transfers one column of the matrix into the vector of 

arithmetic units (PE). An example of an array processor is the ILLIAC 

IV computer. The general structure of the ILLIAC IV is shown in Figure 

1.11. 

The operational speed of an array processor is supposed to increase 

linearly as the number of processor elements (PE) is increased. 

However, this is not true due to interprocessor communication and data 

access overheads. The array processors can only be effective (i.e. 

maximum parallelism) if the array is completely filled with operands. 

An associative store is used to overcome the bottleneck in enhancing 

the speed of conventional computers. An array processor using an 

associative type store as its memory is called an associative array 

processor. Array processors will be discussed again in a later section 

when SIMD type machines are described. 
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To improve system speed, reliability, throughput and availability 

multiprocessor systems were developed. A multiprocessor system is 

defined as a single computer with multiple processing units. It can 

also be defined as a system with more than one processing unit under 

integrated control. All processors share ~ccess to a common memory, 

input/output channels, control units and devices. Also, each processor 
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has its own local memory and private devices. For the complete multi-

processors system there is one integrated operating system which 

controls the hardware and software of the computer system. Processors 

are able to communicate between each other through the shared memories 

or through an interrupt network. A basic multiprocessor system is shown 

schematically in Figure 1.12. 
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The interconnection subsystem is the main factor that characterizes 

the multiprocessor hardware system organization. Interconnection 

networks are surveyed in many references and among those are Jensen, 

J.E. and Baer, Jean-Loup 1976; Miller, J.S., Lickly, D.J., Kosmala, 

A.L., and Saponavo, J.A. 1970; and Noguchi, K., I. Ohnishi, and Morita, 

H. 1975. 

Enslow 1977, Hwang and Briggs 1984 identified three fundamentally 

different syst.,m organizations used in multiprocessors: 

1. Tl.nm-shnred COlllJJlon bus 
---.~-----~-. 

Th" tJ.me-shal'od CO!l1;non bus represents the simplest interconnection 

uystem. for either sirl91e or multiple processors. It consists of a 

common.c()iillIlllilication path connecting all the functional units. These 

functiclH"l units are a number of processors, memories, and input/output 

(I/O) deviceo. More than a single bus may be provided for throughput 

or rel:tF~hility reasons. 'The conunon bus architecture is characterized 

by its simplicity and low processor interconnection costs in adding or 

removing functtonal units, but a single failure in the bus halts the 

entire system qualifying it suitable for small systems only. The system 

ca.p.,.city is limited by the bus bandwidth and system performance may be 

degraded by .adding new functional units. 

The D.E.C., P.D.P.-ll/45 and P.D.P.-ll/55 computers are examples 

of mini-computers that are employed in this type of connection as shown 

in Figure 1.13. Different time-shared common bus interconnection 

schemes are shown in Figure 1.14. 
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2. Crossbar Switch Networks 

To overcome the inadequacies of the time-shared bus organization, 

the crossbar switch is used. Interconnections between processors and 

memory units are increased in such a way that each processor is allowed 

to access individual memory unit, i.e., a separate path is provided for 

each memory as shown in Figure 1.15. 

The main characteristics of the crossbar switch are high through-

put, easy to isolate the malfunctioning device, the addition of 

functional units to attain improved system performance, and a most 

complex interconnection system. It is difficult to build large systems 

based on the crossbar switch concept due to the fact that the complexity 

grows at the rate of 0(n2) for n devices. An example of a crossbar 

interconnection system is the Carnegie-Mellon multi-mini processor 

(C.mmp) as shown in Figure 1.16. 
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3. Multiport memories 

In multiport memory multiprocessors, the functions of control, 

priority arbitration, and switching between processors are centralized 

at the memory interface. To fulfil this, input ports for all processors 

are provided to each memory interface unit and response requests are 

controlled at the interface. It is possible to designate a portion of 

the memory as private to certain processors, I/O units, or a combination 

of both. 

The main characteristics of such a system are expensive memory 

control, expansion from uniprocessor to multiprocessor system using the 

same hardware, system limitation by memory port design, and a large 

number of cables and connectors are required. Figure 1.17 shows a 

multiport memory system. An example of a multiport memory system is 

the IBM system 360/67 as shown in Figure 1.18. 
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1.4 ARCHITECTURAL CLASSIFICATION SCHEMES 

Different approaches to the classification of computer architecture 

are suggested. Among those are, Flynn (1966) who proposed a class

ification scheme that is based upon instruction and data streams used 

in the system, while Shore (1973) based his classification on how the 

computer is organised from its constituent parts. 

1.4.1 Flynn's Classification 

Flynn classified computers into four classes according to the 

multiplicity of instruction and data streams. A stream is defined as 

a sequence of items (instructions or data) as executed or operated on 

by a processor. An instruction stream is a sequence of instructions as 

executed by the machine; a data stream is a sequence of data called for 

by the instruction stream. Flynn's four machine organizations as shown 

in Figure 1.19 are: 

1. Single Instruction Stream Single Data Stream (SISD) computer which 

is the conventional serial computer (Von Neumann) . 

2. Single Instruction Stream Multiple Data Stream (SIMD) computer, 

(also known as array processors). These are made up of an array 

of processors, each executing the same string of instructions on 

different data. 

3. Multiple Instruction Stream Single Data Stream (MISD) computer. 

This organization might be considered as unrealistic. There are 

more than one processing units, each receiving distinct instructions 

operating on the same data stream. Thurber (1976), Miklosko and 

Kotov (1984) considered that the pipelined systems fall into this 

category of computers. 
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4. Multiple Instruction Stream Multiple Data stream (MlMO) computers 

are basically a network of n processors connected together to provide 

a means for cooperating during a computation. 

1.4.2 Shore's Classification 

Shore presented a classification technique that derives machine 

descriptions from the description of a uniprocessor. Six different 

classes were identified which are shown in Figure 1.20 and are 

classified as: 

1. Machine I is a uniprocessor computer. Examples are the CDC-76 and 

CRAY-l computers. 

2. Machine 11 is the same as machine I but with the addition of bit

slice processing and access capability. Examples are the ICL DAP 

and STARAN computers. 

3. Machine III is derived from machine II by adding parallel word 

processing and access capability. An example is the OMEN-60 

computer. 

4. Machine IV is derived from machine I by replicating the processing 

units. An example is the PEPE computer. 

5. Machine V is derived from machine IV by adding interconnections 

between processors. An example is the ILLIAC IV computer. 

6. Machine VI is derived from machine I by distributing the processing 

logic throughout the memory. It is called a logic-in-memory array 

(LIMA) processor. Examples are the associative memories and 

associative processors. 

From the above classification two main parallel computer classes emerge, 

the SIMO and MlMO computers and these will be discussed in more detail. 
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The parallel systems installed at Loughborough University will also 

be discussed. Finally, Data Flow computers and VLSI models of 

computation will be discussed in later sections. 
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1. 5 SIMD MACHINE 

The SIMD type machine or the array processor (see Section 1.3.2) 

consists of N processing elements (PEs) under one control unit (cu). 

Parallelism of the system is achieved by multiple processing units. 

Through the availability of scalar and vector operation SIMD computer 

programming is considered to be simple. A whole vector of data can be 

executed in one instruction operation. In a SIMD type machine the 

same operation is performed at the same time over data in all processing 

elements. Two SIMD configuration types are shown in Figure 1.21. Type 

a shows N synchronized PE's where all the PEs are under one control cu. 

Each PE. has a local memory PEM. and the control unit has its own main 
~ ~ 

memory. User programs are loaded into the CU. The CU decodes the 

instructions and decides where the instructions should be executed. 

Vector instructions are broadcast to the PEs while scalar or control-

type instructions are executed inside the CU. An example of this type 

of configuration is the ILLIAC-IV computer. 

Type b shows another configuration which consists of N PEs and P 

memory modules. This configuration differs from configuration a in two 

ways. Firstly, local memories are replaced by parallel memory which 

are shared by all the PEs. Secondly, the inter-PE permutation network 

is replaced by the inter-PE memory-alignment network, which is controlled 

by the CU. An example of this type of configuration is the Burroughs 

Scientific. Processor (BSP). 

One of the major issues in the design of SIMD computers is the 

interconnection and transfer of data between the PE's. Different inter-

connection networks have been proposed for SIMD computers. Obviously, 
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a complete interconnection network, where each processor is connected 

to all other processors, is expensive and unmanageable by both the 

designer and the user of the system. Hwang and Briggs [1984] 

classified a SIMD interconnection network into static networks and 

dynamic networks. Static networks are classified according to the 

dimensions required for layout. For example, one-dimensional, two

dimensional, three-dimensional, and hypercube as shown in Figure 1.22. 

Dynamic networks are classified into single-stage networks and multi

stage networks as shown in Figure 1.23. 

To run a program efficiently, it is necessary to match the 

algorithm requirements with the interconnection pattern concerned in 

order to prevent extra communication delays that may increase the 

execution time and reduce the speed-up factor. 

Associative memory has been used to overcome the limitation 

gain in speed of conventional computers due to the physical separation 

between data storage and processing units. In associative memory data 

can be retrieved using their content or part of their content. The 

major advantage of associative memory over conventional random-access 

is its capacity of performing parallel search and parallel comparisons. 

Another class of SIMD computer have been built using associative 

memory instead of conventional random-access memory. 

An associative processor is an SIMD machine with the following 

properties: (1) stored data items are content-addressable and (2) 

arithmetic and logic operations are performed over many sets of 

arguments in a single instruction. Figure 1.24 shows a block diagram 

of the associative computer. The basic memory element of the 

I 
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FIGURE 1.24: Block diagram of the associative computer 

associative memory is called the bit-cell. In order to retrieve 

stored data items by their content or part of their content, all cells 

receive simultaneously the required word C and the mask M. A memory 

cell is regarded selected if the condition (C=Wl~M is satisfied for all 

bits. 

The comparison process of the associative memory is the dominating 

factor that classifies the architecture of associative processors. 

Associative processors are classified into four categories as: 
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- fully parallel, 

- bit-serial, 

- word-serial, 

- block-oriented. 

There are two types of fully parallel associative processors: word

organized and distributed logic type. In the word-organized type, the 

comparison logic is associated with each bit cell of every word and 

the logical decision is available at the output of every word. In the 

distributed logic type the comparison logic is associated with each 

character-cell or with a group of character-cells. In a bit-serial 

associative processor, only one bit column (also called bit-slice) of 

the whole word is operated upon at a time. A word-serial associative 

processor is essentially a hardware implementation of a simple program 

loop for search. A block~riented associative processor can be 

implemented by using a logic-per-track rotating memory which consists 

of a head-per-track disk with some logic associated with each track. 

The two most important categories are the fully parallel and the bit

serial associative processors. The Parallel Element Processing 

Ensemble (PEPE) and STARAN are the best-known fully parallel and bit

serial associative processors respectively. 

In a comparison of ~e associative SIMD processor with a SIMD 

array processor, the associative processor has the following character-

istics, i.e., 

- it allows memory addressing down to the bit level, 

- the word length can be chosen arbitrarily, 

- due to the low cost of integrated cirCUit, the number of PEs 

can be large in both" 
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- arithmetic units of single memory cells work serially bit-by-bit, 

but they perform simultaneously the same operation which is 

assigned by the central control unit to all cells. 
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1.6 MIMD COMPUTERS 

Multiple instruction stream multiple data stream (MIMD) , computers 

-include machine organizations usually referred to as "multiprocessors" 

(see Section 1.3.3). The MIMD computer can be considered as a 

collection or network of minicomputers or microcomputers and collect

ively as a multiprocessor system. The MIMD computer consists of 

multiple processors, each processor generating its own instruction 

stream which it executes on its own data stream. These processors are 

connected either through a shared memory or via high-speed or low-speed 

data links. 

Figure 1.25 shows an MIMD structure consisting of P memory modules, 

n processing units, and m input/output channels. Different inter

connection networks are shown in Figure 1.25, the processor to I/O 

interconnection network enables the connection of the I/O channels to 

any processor. The processor to memory interconnection network enables 

the connection of a processor to any memory unit. The processor to 

processor interconnection network is in fact an interrupt network 

rather than a data exchange network, since the data exchanges can be 

done through the memory to processor interconnection. 

Memory conflict and processor interconnection are the main two 

factors that degrade system performance. To reduce these two problems, 

a "private memory" is recommended to be associated with each processor 

in which its important data is stored. 

MIMD systems may be classified into tightly coupled systems or 

loosely coupled systems. Tightly coupled systems are characterized by: 
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1. Shared main memory used as an interconnection means between 

processors, and hence all the processors can access all the 

memories and execute code out of them. 

2. Input/output and other system resources are shared by the processors. 

3. The interprocessor communication is of the order of the bandwidth 

of the memory. 

4. Synchronization between cooperating processors will be required. 

5. A small local memory or high-speed buffer (cache) may exist in each 

processor. 

6. The connection between the processors and memory is done either by 

a multiported memory or by inserting an interconnection network 

between the processors and the memory. 

The major limitations of the performance of tightly coupled multi-

processor systems are:-

1. The degradation in performance due to conflicts to access the main 

memory or the input/output devices. 

2. The delays due to synchronization and scheduling of jobs on the 
~ 

different processors. 

3. The choice of the processor-memory interconnection network. 

Different approaches in the tight coupling of MIMD systems are shown 

in Figure 1.26. 

The main characteristics of loosely coupled systems are:-

1. Each processor in the system has its own memory, that is they do 

not share a common memory. 

2. An explicit communications interface between the processors are 

needed. 

3. Concurrent processes may be performed asynchronously. 
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4. Each processor can stand by itself with its own storage. 

In loosely coupled systems, normally, one of the processors is 

designated as overall system control (global processor). The other 

processors are called local processors. All jobs enter the system 

through the global processor. If a global processor fails,- -one of the 

10",,1 l?rocessors may act as global processor. 

In loosely coupled systems, synchronization, task partitioning, 

sof.t.ware control, and co,nmunication data transfers are the problems to 

be taken into consideration. To improve performance, the user must 

det.o;rmine how to divide the task between the computers so that they can 

'-J : .. ;-.. 

operate in parallel. 

Two variafions of loosely coupled systems are shown in Figure 1.27. 
,. 

A tightly coupled multiprocessor has a distinct performance 
; T··, '. 

advantage over ~e loosely coupled multiprocessor, and is a good general 
--, .... .:. -

solution'Qecause all its resources are shared and directly accessible, 

and can be accessed and allocated faster. A shared memory also offers 

the quickest way to pass data between CPUs. 
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FIGURE 1.27: Loose coupling in MIMD systems. 
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Flynn, et al (1970) suggested an alternative approach ,for the 

design of the MIMD computer. He proposed to interconnect several 
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1(. 

independent processors, each of which executes an independent instruction 

stream. The proposal is to convert the processors into "skeleton" 

processors, by removing from them all the arithmetic functions and 

computational logic. These functions are performed by highly specialized 

high-speed processors as shown in Figure 1.28. The resulting system 

avoids many of the connection problems associated with shared resource 

systems. 

Consider for example, the events that occur when a skeleton 

processor generates an ADD instruction. After obtaining the operands 
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for the instruction, the processor requests access to a high-speed 

adder. If one is available, the operation is performed and the result 

returned to the skeleton processor. In the case of conflict, the 

request for computation can be queued or the request can be repeated 

until an adder is available. 

Memories 

• 
• 

Skeleton 
processors 

Pool of high-speed 
arithmetic units 

o 
o 

FIGURE 1.28: MIMD computer with skeleton processors and centralized 
computation facilities 

In a multiprocessor system, an interconnection device between 

the processors and memory modules, and between the processors and I/O 

subsystems are needed to give the processors in the multiprocessor 

system the ability to share both the main memory modules and I/O devices. 
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Enslow [1970] and [1974] classified multiprocessor interconnections into 

three basic types, these types are: 

1. Time shared or common buses 

2. Crossbar switch matrix 

3. Multiported memories. 

The main advantages of the MIMD computers are high throughput and 

greater reliability. High throughput can be achieved by dividing the 

processes into many subprocesses which can run on different processors 

concurrently. While greater reliability is achieved by easily isolating 

the faulty resource, (processors and memory modules) which are general

purpose resources, and thereby achieving a better fault tolerance level. 

MIMD computers are more general-purpose in application than SIMD 

computers. The processors in MIMD computers need not be synchronized 

instruction-by-instruction as in the SIMD computers. However, it is 

required that the processing algorithms exhibit a high degree of 

parallelism, so that several processors are active concurrently at any 

time. 

In MIMD systems, it is not generally true in practice that n 

processors should give n times the throughput of a uniprocessor. This 

is due to the overheads needed to coordinate the activities between the 

cooperating processors. The main difficulties that arise in MIMD 

computers are the partitioning strategy, i.e., identifying parallelism 

in processing algorithms to invoke concurrent proceSSing streams. Also, 

the interconnection network design, interconnection between the 

processor-to-memory or processor-to-I/O devices is the most expensive 

component of the system and can become a bottleneck. 
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Examples of some multiprocessor systems are, C.mmp,C.m* (both 

research machines constructed and developed at Carnegie Mellon 

University), S-l system (currently under development at Lawrence 

Livermore National Laboratory), and many commercially available multi-

processor systems, including some models in the IBM 370 series and 3080 

series, the Univac 1100 series, the Tandem Nonstop system, the HEP, 

and the Cray X-MP. 

Finally, in more detail some of the above examples will be 

described. 

The first system, the C.mmp system, as shown in Figure 1.29 is 

an MIND system developed by Carnegie-Mellon University during the years 

1971-1978. There are 16 memory blocks (MO~MlS) connected to 16 processors ------------
(pO-P1S) through a l6-by-16 crossbar network. Each processor has a 

local memory block (Mlocal), a disk unit, and other peripherals. An 

interprocessor bus which connects the entire set of processors is used 

to perform the general function of interprocess communication. The 

bus provides common clock information as well as interprocessor 

interrupts. Each processor is a model of the D.E.C. PDP 11. Some 

modifications were required to make these processors suitable for a 

multiprocessor environment and to provide software protection. The 

primary memory consists of 1.4 Mbytes of core memory (~leven partitions) 

and 1.3 Mbytes of MOS memory (five parts) . The co~e;memory in each 
.~;. 

partition consists of eight modules of 16K byt~s each; thereby providing 

eight-way interleaving. The MOS memory is configured as fO\lr 6SK bytes 

modules per partition. These modules are not interleaved. The local 

(non-shared) memory of each processor is an8K byte core memory. ·A 
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FIGURE 1.29: structure of the C.mmp multiprocessor 
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standard unibus interface is used to connect peripheral devices to 

each processor. The DMAP unit maps the address on the unibus into 

the address required for primary memory access. All references to the 

shared memory are first checked against the contents of the 2K bytes 

cache. If data are available in the cache, the primary memory is by-

passed. Thus, cache memory is employed to reduce the memory contention 

rather than to speed up the memory access. The crossbar switch allows 

the maximum concurrency of sixteen paths when all processors request 

different memory parts. It also resolves the memory contention when 

more than one processor requires the same memory location. The C.mmp 

system is controlled by the Hydra operating system. This system has 

been used as a testbed for parallel algorithm design and has contributed 

to reliability and software recovery problems. 

The second system is the 5-1 multiprocessor system which can be 

described as a high-speed general-purpose multiprocessor. The 5-1 is 

implemented with the 5-1 uniprocessor called Mark IIAs. Figure 1.30 

shows the logical structure of the 5-1 multiprocessor. This structure 

consists of 16 independent Mark IIa uniprocessors which share 16 memory 

banks via a crossbar switch. Each processor has a private cache which 

is transparent to the user. A diagnostic processor is connected to 

each uniprocessor, crossbar switch and memory bank. This diagnostic 

processor can probe, report and change the internal state of all modules 

that it monitors. 30 
Each memory bank can contain up to 2 bytes of semi-

conductor memory and hence a total physical address space of 16 giga-

34 
bytes (2 ). The large memory addressibility of the 5-1 essentially 

eliminates the programming cost associated with managing multiple types 
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of computer system storage. The crossbar switch is designed to provide 

access to multiple memory requests. The crossbar also handles inter

processor communication. The 8-1 multiprocessor system has the 

capacity of using dual crossbar switched for reliability and a front 

end (diagnostic-maintenance) processor to remove a failing switch and 

substitute an alternative switch. The memory controlle",control all 

the read/write accesses between different uniprocessors by using send 

and receive messages via interprocessor-interrupt mechanisms within the 

crossbar switch. The S-l design provides the I/O subsystem which 

consists of many microcoded I/O channels. Each channel is managed by 

an I/O processor. The I/O subsystem also contains I/O buffers or 

memories which are accessible as part of the 8-1 processors' address 

space. Each I/O peripheral processor may be connected to input-output 

ports on at least two uniprocessors, so that the failure of a single 

uniprocessor does not isolate any input-output device from the multi

processor system. The performance of each Mark IIA is achieved by 

extensive pipelining due to advances in microcode, programming, hardware 

structure, and implementation technology. 

The Mark IIA processor consists of five major components as shown 

in Figure 1.31. These components are extremely fast, relatively 

special-purpose programmable controllers that operate in parallel to 

provide a high performance. Four components that form the instruction 

pipeline are for instruction fetch (F sequencer), instruction decode 

(P sequencer), operand operation (I sequencer) and arithmetic execution 

(A module). These sections are internally pipelined to achieve a 

maximum instruction-issue rate of one instruction per SOns, which is 

equivalent to a maximum data throughput rate of 720 million bytes. 
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For the 5-1 multiprocessor system, there exists a single user 

operating system, multiu-us<r operating system, and advanced operating 

system. The single-user operating system is a simple stand-alone system 

which runs a single task at a time and provides only basic I/O functions. 

The multiuser operating system to be developed will be based on the 

Unix operating system because it is a small, relatively powerful system 

and has demonstrated a suitability for transport. The advanced operating 

I-
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system for the S-l is the full functionality system Amber. The Amber 

operating system supports a mixture of applications which include a 

real-time system (e.g. signal processing), interactive use (e.g., 

physical simulation) and secure environment for data. The Amber 

operating system combines the functions of the file system and virtual 

memory. It also supports multitasking by the division of problems into 

cooperating tasks. 

The final example of a multiprocessor system is the HEP system. 

The Heterogeneous Element Processor (HEP) is a large-scale scientific 

multiprocessor system and is the first commercially available MIMD 

multiprocessor system. The system contains up to 16 process execution 

modules (PEM) and up to 128 data memory modules (DMM). The PEM's or 

DMM's are connected with the I/O and control subsystem via a high-speed 

switching network. The PEM is the computational element of the HEP. 

Figure 1.32 shows an example configuration of the HEP with 28 switching 

nodes, fourPEMs, four DMMS, a mass-storage subsystem, an I/O control 

processor, and a node connection to four other devices. The mass

storage subsystem consists of three major components. A large MOS 

buffer memory provides an I/O cache function to mask the seek and 

rotational delays of the disks. Disk storage modules provide storage 

increments of 600 megabytes. I/O channels couple the disk storage 

modules to the I/O cache and are controlled by the I/O control 

processor. Figure 1.33 illustrates the components of the mass-storage 

subsystem. The system can handle up to 32 I/O channels, with each 

channel supporting a transfer rate of up to 2.5 megabytes/so Each 

disk storage module consists of two disk drives. The HEP switch is a 

synchronous, pipelined, packet-switched network consisting of an 
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arbitrary number of nodes. Each node, which consists of three full 

duplex ports, is connected to its neighbours. These neighbours may 

be PEMs, DMMS, subsystems, or other nodes. Each node switch is 

programmed to determine the best output port routing to the final 

destination. Such programmed routing techniques allow for alternative 

routing to bypass a faulty component. 
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FIGURE 1.32: The architecture of a typical HEP system with four 
processors 
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The execution of multiple independent instruction streams on 

multiple data streams is implemented by replicating the functional 

units in each PEM. Maxmial parallelism in the HEP system is achieved 

by providing multiple independent instruction streams executing multiple 

data streams in a pipelined execution environment as shown in Figure 1.34. 

Each PEM consists of its own program memory and an instruction 

processing unit (IPU). Up to 50 instructions may be in various stages 

of execution operating on one or more data streams simultaneously. 

There are many applications which can be run on the HEP machine. 

A variety of applications are: traditional multiprogramming, solution 

of large-scale systems of ordinary and partial differential equations, 

but the greatest potential is in the simulation of a discrete event 

system or process driven simulation. 
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FIGURE 1.34: Achieving maximal parallelism with replicated hardware 
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1.7 LOUGHBOROUGH UNIVERSITY PARALLEL SYSTEMS 

Two MIMD type parallel systems have been developed at the 

Department of Computer Studies of Loughborough University, these 

systems are the Interdata Dual 'System and the more powerful NEPTUNE 

system. 

The first system consisted of two identical Interdata model 70 

processors. Each processor has 32Kb of private memory and shares a 

32Kb shared memory as shown in Figure 1.35. 

Common memory 
(32Kb) 

Private 
Memory (32Kb) Private memory 

(32Kb) 

Memory Memory 
bank I-- bus 
controller interface 

Processor A Processor B 

FIGURE 1.35: Interdata Dual System 

In this system description the two processors will be referred 

to as A and B respectively. The system had the asymmetrical property 

that when processor B is accessing the COmmon or its private memory, 
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processor A remains locked out of the common memory until that accession 

is completed. Whereas, also if processor A is accessing the common 

memory then processor B is locked out of both its private and common 

memory until the memory cycle of A is completed. On the other hand, 

processor A has a minimum delay of one microsecond in memory accession, 

while processor B has zero microsecond as the minimum delay. The 

performance measurements of this Interdata Dual system has been presented 

by Barlow and Evans (1977). 

The second MIMD type computer which has been developed at the 

Department of Computer Studies of Loughborough University is the NEPTUNE 

system (Barlow, et al 1981). This system is based upon the Texas 

Instruments 990/10 minicomputer. The current configuration is shown in 

Figure 1.36. The system contains five linked busses (TILINES) and four 

processors (numbered as PO,Pl,p2, and p3 respectively). Each one of 

the four processors are attached with the TILINE acting as the local 

bus for that processor. Each processor can also access its own 

(private) memory via its local TILINE. The current size of private 

memory for processors PI, P2 and P3 are 192K bytes and for processor 

PO it is 384K bytes (the maximum size of private memory for processors 

PO,Pl,p2 and p3 are 576K, 384K, 576K and 320K bytes respectively) . 

Processor PO has a 10 Mbyte disc drive on its local TILINE, while 

processor p2 has a controller with a 474 Mbytes Winchester disc drive 

and a tape streamer attached. Each of the local TILINE's is attached 

via a TILINE coupler to the fifth (shared) TILINE. To this shared 

TILINE there is attached 104 Kbytes (rising to 184 Kbytes)of memory and 

a 50 Mbytes disc. 



64 

Each processor can access a minimum of 232 Kbytes. This is 

because, the TILINE coupler is arranged so that the shared memory 

follows continuously from the local memory of each processor. The 

50 Mbytes disc can be accessed by all the processors which will receive 

the disc interrupts. 

In addition, the NEPTUNE system can operate as four individual 

processing systems. 

The Texas Instruments 990/10 minicomputer runs under the DXIO 

operating system which is a sophisticated multi-tasking system and 

supports a tree-structured filing system. Modifications have been 

made to the DXIO to allow parallel processing to take place and to 

permit various management policies for the shared resources to be 

investigated. 

The shared memory storage can be claimed by any processor, and 

once it is granted this storage behaves as if it was local memory. A 

small area on top of the shared memory is reserved for managing inter-

processor cooperation. A parallel program to be run on the four 

processor system logically consists of two parts. The first part 

contains the program code and local variables, while the shared 

variables are stored in the second part. When a processor receives 

a request to execute a parallel program (or, more correctly, a parallel 

task), shared memory space is claimed by that processor and the segment 

containing the shared variables is loaded into this space. The 

management area in common memory is set to contain pointers to the 

shared segments and tasks are activated in other processors with 

sufficient information to enable them to run the requested program. 

The non-shared segment(s) are loaded into the private memory of each 

1 
I 
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processor. The tasks running on all four processors have the right to 

access simultaneously the shared disc and the files stored on it by the 

DXIO. 

TO realise parallel operation, more than one processor can create, 

open, access (read and write) and delete files. There are however, 

two restrictions on simultaneous access to a single file from more than 

one job/task; the first is that it is not possible to have two tasks to 

'open' a file for writing, the second is, if two tasks on different 

machines have a file open one for reading and the other for writing 

then if the writer changes the size of the file the reader will not be 

informed until the writer closes the file. 

When a user logs on, a task is initiated on his behalf. This 

task provides the user interface to the system and is called the System 

Command Interpreter (SCI). Commands may be issued in different ways by 

the SCI. A series of menus are the simplest level that will display a 

sequence of command classes and eventually arriving at a list of commands. 

All the commands are implemented either as tasks running under the 

operating system (e.g. compilers and utility programs) or as functions 

of the SCI (those corresponding to a supervisor call). In the NEPTUNE 

system, the foreground and background modes are available for a task 

to be run. USing the terminal, only one foreground task may be executed 

at anyone time. An interactive program must be run in the foreground. 

Several tasks and commands may be executed in the background. Background 

tasks should not involve I/O with the terminal. While a background task 

is executing, the SCI is still running and available to process user 

requests. Commands are available for inspecting the state of the 

background tasks. 

, 



The access time to both shared memory and local memory for the 

four processors in the NEPTUNE system are not the same. The times 
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for local memory access are: 0.98 ~sec, 0.95 ~sec, 0.92 ~sec and 0.92 ~s 

for processors PO, PI, p2, P3 respectively. While the time for shared 

memory access are 1.73 ~sec, 1.70 ~sec, 1.68 ~sec and 1.68 ~sec for 

processors PO, PI, P2, P3 respectively. Although the processors are 

identical in many hardware features, they are also different in their 

speeds. 

The hardware features and the operating system of the NEPTUNE 

system have now been discussed. The programming concepts of the NEPTUNE 

system will now be discussed in the next chapter. 
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1.8 DATA-FLOW COMPUTERS - . 

The computer architectures discussed in the previous sections are 

known as control flow (Von Neumann) machines. In conventional Von 

Neumann's (known as Control Flow, CF) computer, the program is stored 

in the memory as a serial sequence of instructions. Computations in 

CF computers are done according to the flow of control in the program. 

It is not possible to execute any instruction until all the previous 

instructions in the program have been executed, i.e., if there exists 

an instruction in a program such that the data is available and could 

be executed immediately, it is not executed until its turn comes in 

the program. This is one of the main difficulties in the utilization 

of the natural parallelism of algorithms in the CF model of computation. 

Another architectural model for computer systems is created to make it 

possible to express the natural parallelisms of algorithms, this model 

is the data flow model of computation, also known as a data-driven 

system. In a Data Flow (DF) computer, the course of computation is 

controlled by the flow of data in the program. That is, an operation 

is performed as and when its operands are available. The sequence of 

operations in the DF computer obey the precedence constraint imposed 

by the algorithm used rather than by the location of the instructions 

in the memory. In DF machine it is possible to carry out in parallel 

as many instructions as the given computer can execute simultaneously. 

After executing the instruction, the result is distributed to all 

subsequent instructions which make use of this partial result as an 

operand. In this way, the DF model of computation exploits in a simple 

manner the natural parallelism of algorithms •. In computer architecture, 

this makes it possible to create systems which can dynamically adapt 
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their inner configuration to the natural structure of the algorithm 

being performed. 

As an illustration of DF computation, the computation of the roots 

of a quadratic equation is shown in Figure 1.37. Assuming that a,b a~d 

2 
c values are available, (-b), (b ), (ac), and (2a)' can be computed 

2 
immediately, followed by the computation of (4ac), (b -4ac) and 

/(b2-4ac), in that order~ After this, (-b+~2-4aC) and (-b-Ib~2~--4-a-c-) 
can be simultaneously computed followed by the simultaneous computation 

of the two roots. The only requirement is that the operands be available 

before an operation can be invoked. 

The two basic models of data flow computer architecture which 

are designed by Miller and Cocke (1972) are the: 

1. Search mode configurable computer (SM type) 

2. Interconnection mode configurable computer (IM type) 

Both models are characterized by the possibility of dynamic 

adaptation of its configuration to the structure of algorithms. This 

is done by interconnecting (according to the graph) the processors 

that correspond the ~ operators in the data flow program of the 

problem. Reconfiguration is done either by hardware or software means. 

In the IM type, the interconnection of processors is actually implemented 

through a large switch, 1. e., by hardware means. In the SM type, the 

interconnection of processors is simulated by using a special instruction 

format, i.e., by software means. Due to reconfigurability, the data 

flow computer is able to achieve the same performance as a specialized 

system, whilst still keeping its general purpose capabilities. 

Figure 1.38 shows the search mode (SM) type computer which 

consists of a memory, a functional unit, and a control unit (searcher). 
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FIGURE 1.37: A data-flow graph for the computation of the roots of 
a quadratic equation 
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FIGURE 1.38: Search mode configurable computer 

The functional unit is composed of a certain number of processors. A 

searcher is a specialized unit for generating tasks for processors 

which belong to the functional unit. The memory is used to store data 

and instructions, either together or separately. A free processor asks 

the searcher for a task. The searcher locates a suitable task in the 

memory or composes it from various components stored in different parts 

of the memory and sends it to the selected processor in the functional 

unit for execution. Processors may be adders, multipliers, conditional 

tester, I/O processors, etc. Because the searcher performs more than 

half of the work necessary in traditional computers for the execution 

of an instruction, the performance of a computer will depend mainly on 

the throughput of the searcher which the effective utilization of the 

processors largely depends upon. Also the performance of this computer 

will depend on the type and number of processors, and memory speed. 

Figure 1.39 shows the interconnection mode configurable computer 

(IM) type. A computer of IH type can be reconfigured to adapt as much as 
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FIGURE 1.39: Interconnection mode configurable (IM) computer 

possible to the algorithm being executed. This is done through an 

interconnection network (switch) as shown in Figure 1.39. Since it is 

not possible to execute the whole program at one time on a set of 

processors, the data flow program is divided up into a number of blocks 

taking into consideration the number of processors available at anyone 

time. This is done by a compiler which determines the interconnection 

of processors, so that the computation structure created corresponds 

to the graph of the data flow program or some part of it. This inter-

connection is encoded and stored in memory as a set-up instruction for 

the switch. This set-up instruction is fetched first and sent to a 

set-up control which does the interconnection of the proces~ors. In 

this way, the computation structure is ready to execute the computation 

of a block of the program. After processing a block, the processors 

involved and a part of the switch are released and can be used for 

setting up the structure of another block. 



Several data flow machines have been built using different 

architectures. CUrrently, data flow computers are operational at 

different places in the United States, Japan and Europe. Among those 

operational data flow computers there are those at the University of 

Utah, Manchester, Toulouse, and two different projects at M.I.T. 
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One of the first data flow computers was introduced by Dennis and 

Misunas [1974, 1975] as shown in Figure 1.40. The structure of this 

data flow computer consists of five major sections connected by channels 

through which information is sent in the form of discrete tokens 

(packets). The memory section consists of instruction cells which hold 

instructions and their operands. The processing section consists of 

processing units that perform functional operations on data tokens. 

The arbitration network delivers operation packets from the memory 

section to the processing section. The control network delivers a 

control token from the processing section to the memory section. The 

distribution network delivers data tokens from the processing section 

to the memory section. 

Instructions held in the memory section are enabled for execution 

by the arrival of their operands in data tokens from the distribution 

network and control tokens from the control network. Enabled 

instructions, together with their operands, are sent as operation 

packets to the processing section through the arbitration network. 

The results of instruction execution are sent through the distribution 

network and the control network to the memory section, where they become 

operands of other instructions. Each instruction cell consists of three 

registers. The first register contains the instruction code and all 

conditional control data, with operands in the second and third registers. 



74 

The arbitration network provides a path from each instruction cell to 

each processing unit and sorts the operation packets among its output 

ports according to the operation codes of the instructions they contain. 

For each operation packet received, a processing unit performs the 

operation specified by the instruction using the operand values in the 

packet and produces one or more result tokens, which are sent to the 

instruction cells through the control network and the distribution 

network. Each result token consists of a result value and a destination 

address derived from the instruction being processed by the processing 

unit. 

The functions performed by the processing unit are distributed 

among several sections of the data flow processor. The transmission 

of packets over each channel used an asynchronous protocol so that the 

five sections of the computer can operate independently without using 

central timing signals. The instruction cells are assumed to be physically 

independent, so that at any time many of them may be enabled. The 

arbitration network should be designed to allow many instruction packets 

. to flow through it concurrently. Similarly, the control network and 

the distribution network should be designed to distribute dense streams 

of control and data packets back to the instruction cells. In this way, 

both the appetites of pipelining and parallelism are satisfied. 
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1.9 VLSI SYSTEMS 

Due to the current development in hardware technology, Large 

Scale Integrated (LSI) electronic circuitry has become so dense that a 

single silicon LSI chip may contain tens of thousands of transistors. 

These hardware advances have led to more functions being implemented 

in hardware, e.g. i~ has been possible to implement a sophisticated 16-

bit processor on a chip. The actual number of components in one chip 

depends on the speed of the devices and the regularity of the patterns 

used to lay them out on the chip. 

As LSI technology advances, Very Large Scale Integrated (VLSI) 

circuit designs were introduced in which the number of transistors 

that the LSI circuit will contain will be increased by another factor of 

10 to 100 in the next decade (Mead and Conway (1980)). By late 1980's 

it will be possible to fabricate chips containing millions of transistors. 

As we move into the VLSI era, 32-bit processors with memory and input/ 

output support will also be available on a chip. In addition, it will 

be possible to implement SIMD and MIMD architectural designs on a chip. 

The key factolBof VLSI technology are: its capacity to implement 

enormous numbers of devices on a chip, low cost and high degree of 

integration while the main VLSI problem is to overcome the design 

complexity. One solution to reduce the complexity of a VLSI chip is 

to use a regular design structure (patterns) as in a memory chip. 

In order to get full use of VLSI capabilities, computer-aided 

design methodologies, and design systems are needed for chip design. 

The study of VLSI circuits is not limited to hardware aspects but also 

software tools become more and more important in the design and testing 

stages. This means that the production of a new chip requires software 
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as well as hardware engineering knowledge. However, computer 

scientists have developed and are still developing more new algorithms 

and new communications techniques to exploit the potentiality of the 

VLSI system and its applications into highly parallel and specialised 

computers. An excellent 'state of the art' survey can be found in the 

January 1982. issue of IEEE Computer magazine. 

The separation between the processor from its memory and the 

limited opportunities for concurrent processing are the main difficulties 

in the conventional (Von Neumann) computers. VLSI offers more flexibility 

than conventional (Von Neumann) computers to overcome these difficulties 

because memory and processing architectures can be implemented with the 

same technology and close proximity. The potential power of VLSI has to 

come from the large amount of concurrency that it may support. The 

degree of concurrency in a VLSI computing structure is largely determined 

by the underlying algorithm. Enormous parallelism can be obtained by 

introducing a high degree of pipelining and multiprocessing while 

designing the algorithm. The requirements of parallel architectures 

for VLSI have been discussed by many authors among those are Kung (1982) 

and Seitz (1982). The design should contain a few modules which are 

replicated many times (i.e., simple and regular) and using both pipe

lining and multiprocessing principles. Finally, a successful algorithm 

for VLSI design will be the one where the communication is only between 

neighbouring processors. 

One way of achieving parallelism is by attaching a special-purpose 

parallel processor to the system bus of a microcomputer to speed-up 

the more computationally bound tasks, as shown in Figure 1.41. The 

special-purpose processor, for example, could be designed to exploit 
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FIGURE 1.41: Microcomputer with attached special-purpose processor 
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the features of a particular class of problems (e.g. the finite element 

machine (Podesiadlo and Jordan (1981)) or alternatively it could be 

designed for a general computational task, like the solution of linear 

equations, as envisaged by Kung (1979). 

There are two general architectural designs of the attached parallel 

processor to be considered in more detail in this section. The first 

is the multiprocessor lattice architecture based on the idea of several 

processing elements operating under a centralised control and the 

second is a systolic array architecture which makes extensive use of 

pipelining. 

Dew, Buckley and Berzins (1983) defined a multiprocessor lattice 

architecture as, an NxN array of processing elements which execute 

concurrently under a centralised control and transmit along local 

communication path connecting neighbouring processing elements. Each 

processing element has a private memory to store both results and also 

temporary values which may be needed. A global bus may be used by the 

processing elements to communicate between eath other but this is not 

an essential feature of the architecture. The ICL DAP computer is an 
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example of an array lattice architecture. 

Another example is the Configurable Highly parallel Computer (CHIP) 

(Snyder (1982)) where programmable switches are provided between the 

processing elements. Because the switches are programmable this means 

that the lattice is reconfigurable dynamically. In this type of 

architecture, a significant amount of software support is needed to 

program each processing element by the host computer. The need for a 

large local memory, together with the need to broadcast a program to 

each element means that the architecture is less well suited than the 

systolic architectures to the requirements of a VLSI system. Still by 

the use of VLSI systems it will drastically cut the cost of building 

the hardware. 

The second architecture, the systolic array architecture was 

developed by Kung (1982) in which the wiring in a chip design is reduced 

to a minimum. A systolic system consists of a set of interconnecting 

cells (processing cells), each capable of performing a "hardware" simple 

arithmetic operation. 

The structure gives a simple and regular pattern that allows for 

easy communication between the cells. Information in a systolic system 

flows between the cells in a pipelined fashion, where communication with 

the outside world occurs only at the boundary cells, i.e. boundary cells 

may be I/O ports for the system. Figure 1.42 illustrates the basic 

principle of a systolic array. By replacing a single processing element 

with an array of P.E.'s, a higher computational throughput can be 

achieved without increasing the memory bandwidth. Data items are 

transmitted from the memory through the array of P.E.'s and can be 

processed effectively at each cell it passes. This is possible for a 
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FIGURE 1.42: The concept of systolic processor array 

wide 91ass of computer-bound computations where multiple operations are 

performed on each data item in a repetitive manner. 

As an example, if each PE in Figure 1.42 operates with a clock 

of 100 ns. The conventional memory-processor organization in Figure 
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1.42a has at most a performance of 5 million operations per second. 

With the same clock rate, the systolic array will result in 30 MOPs 

performance. This gain in processing speed can also be justified with 

the fact that the number of pipeline stages has been increased six times 

in Figure 1.42b. 

The advantages of the systolic approach are, the ability to use 

each input data item many times, modular expansionability, simple and 

regular data and control flows. Figure 1.43 shows different VLSI 

systolic array structures for different computer-bound algorithms. 

These computations form the basis of many signal and image processing, 

matrix arithmetic and database algorithms. The major problem with 

systolic array is still in its I/O limit. The globally structured 

systolic array can speed-up computations only if the I/O bandwidth is 

high. 

In conclusion, VLSI technology offers a great reliability at the 

circuit level. Also, it has the advantages of simple and regular 

interconnections that lead to cheap implementation and high densities 

Where high density implies both high performance and low overhead for 

support components. 
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CHAPTER 2 

PARALLEL PROGRAMMING PRINCIPLES 
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2.1 INTRODUCTION 

As seen in Chapter 1 the recent advances in hardware technology 

and computer architecture leads to faster and powerful parallel computer 

systems. Problems for parallel computer systems require some extra 

programming faciljtjes which come under the heading of parallel 

programming, to distinguish it from the conventional programming of -
single-processor co~uters. The two new concepts behind the new ideas 
, -
of parallel programming theory are parallelis~and asynchronism of 

programs. Gill (1958) defined parallel programming as the control of 

two or more operations which are executed virtually simultaneously, 

and each of which entails following a series of instructions. 

There is a gap between the hardware architectual advances and the 

development of programming languages or software production tools to 

utilize these technological and architectural advances. Any parallelism 

in an algorithm will be lost when it is expressed in a sequential high-

level language, so this type of language is not entirely suitable for 

parallel computers. A parallel language which provides the programmer 

with sufficient tools to enable the construction of efficient algorithms 

and at the same time effectively utilize the hardware i?_neeq~_._ It 

is now apparent that parallel processors required a language created 

in their own generation using in so far as is possible the experience 

accumulated in language design and implementation technique and which 

incorporates the new features that are necessary in writing algorithms 

for these machines. 

Most of the high-level languages currently used to program 

parallel computers are extensions of languages which were specifically -- --~-.-,-~ .. ---. -----_._------_ .. -.--------
designed many years ago, for sequential machine architectures. Examples 
---~-.---- -----~-



are, Fortran-like languages, CFT for the Cray-l (Russell, (1978)), 

and IVTRAN for the ILLIAC-IV (Mill stein (1973)). An algol-like 

language, Glypni~ (Lawrie, (1975)) for Illiac-IV was also developed. 
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Many parallel programming languages have been proposed for 

different types of machines. For example, ACTUS (Perrott, (1979)) has 

been designed to enable the specification of parallelism directly and 

has been used to exploit parallelism in algorithms implemented on array 

processors such as the ILLIAC-IV. Other languages such as TRANQUIL 

(Abel, et al (1969)), an Algol-like language and the experimental 

VECTRAN (Paul and Wilson (1975)) language for vector/matrix array 

processing have also been proposed. 

Perrott (1979) has classified the available or proposed parallel 

languages into three categories:-

1. Detection of problem parallelism, in which the programmer 

constructs a problem solution in a sequential programming 

language and a compiler tries to detect any inherent parallelism~ 

2. Expression of machine parallelism in which the syntax of 

programming language reflects the underlying parallelism of 

the hardware either directly or by means of subroutine calls. 

3. Exploitation of problem parallelism in which the program and 

data structures enable the programmer to directly express the 

parallel nature of a problem. 
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2.2 HIERARCHIES OF PARALLELISM 

Both Task and Process are intended to mean a self-contained portion 

of a computation that once initiated can be carried out to its completion 

without the need for additional inputs. The completion of a task is 

significant in that its occurrence can initiate the execution of other 

sets of tasks. The tasks Tl , T2 and T3 of a sequentially organized 

program are illustrated in Figure 2.la. Parallelism is said to exist 

between Tl and T2 , if the execution of T3 is independent of whether 

task Tl and T2 are executed sequentially or in parallel as shown in 

Figure 2.lb. 

1 -

.L + t 
Tl 

Tl T2 

T2 

~ 

T3 T3 

1 L 
(al (bl 

FIGURE 2.1: Sequential and parallel execution of two tasks 

Parallelism can exist at several levels within an individual 

program. These levels may vary from a statement or group of statements 

of a procedural language to the level of micro-operations. Program 
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parallelism or multiprogramming refers to the type of processing in 

which independent programs are processed concurrently. Intraprogram 

parallelism, on the other hand, refers to the type of processing in 

which a single program can be partitioned into tasks that can be 

performed in parallel i.e. multitasking. Intraprogram parallelism can 

be classified into global and local. In the global type of parallel 

processing, a program is partitioned into tasks that can be performed 

in parallel. Figure 2.2 shows a sample of a FORTRAN program illustrating 

both global and local parallelism 

Read 100 A,B,C,D 

-y X=A**2-2.0*A*B+B**2 

Y=C**2+2.0*C*D+D**2 

10 Z=(A*B)+(C*D) 

CALL SUBl (A,B,E) 

CALL SUB2 (C,D,F) 
100 FORMAT (4EIO.4) 

END 

FIGURE 2.2: Sample Fortran program illustrating global and local 
parallelism 

The two arithmetic expressions for X and Y can be executed in 

parallel because they each have independent input sets. Parallelism 

on a local level can be illustrated by statement 10 of Figure 2.2. 

As shown in Figure 2.3, "subtasks" (2.3a) and (2.3b) within the task 

outlined by statement 10 can be executed sequentially or in parallel. 

A second example of local parallelism, the subroutine (say SUB1) could 

itself consist of statements of the same form as statement 10 and be 

executed in parallel themselves. 
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lOa 1 
Z =A*B 
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Z =A*B 
1 

Z =C*D 2 

lOb 

Z =C*D 
2 

lOc lOc 

Z=Zl+Z2 Z=Zl+Z2 

(a) (b) 

FIGURE 2.3: Illustration of parallelism of a local level 

To design a parallel program, it is necessary first to identify 

the tasks that can be run in parallel. The two approaches which have 

been used to SO~IT~thi~_pr_~b2::m are known as expl~_~~~~mplicit 

parallelism. In the explicit approach, the programmer explicitly 

specifies the concurrency that exists in the progr~ by usjng 

~t~=io",n~a=l--"in=sc::t:::ru-=:::C~t~i:.:o::n:.:s~w::i:.:th::.:i::n~t:::h.:.:e::...:p~r~o:g:r=a=mm=:in=g~:l=a.:.:n::gu.::a::g:.:e~i:.:t::s::e:.:l::f=-. While 

the implicit approach relieves the programmer of any additional duties, 

and relies totally upon indicators existing in the program itself. 

The two approaches have some advantages and disadvantages. In 

explicit parallelism, the programmer can change the structure of an 

algorithm if it is not suitable for parallel processing. While 

inserting new parallel programming constructs. can be a time consuming 

process and may lead to mistakes. In the implicit approach, it is 
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independent of the programmer, and existing programs would not have 

to be modified to take advantage of any inherent parallelism. 

However, this approach is associated with compiler and supervisory 

programs to detect the parallelism and their related running overheads. 

2.2.1 Explicit parallelism 

In explicit parallelism, the users must be provided with 

programming abstractions that permit them to indicate explicit 

parallelism,when desired in a program. ~nway (1963) used FORK and 

JOIN statements as an approach to parallelism. FORK is an instruction 

that indicates the initiation of parallel tasks, JOIN waits for a, 

previously created process to terminate. The three ways that FORK may 

be specified are: 

1. FORK A, the execution of this statement initiates another process 

at address A and contipues the current process. 

2. FORK A,J, the execution of this statement causes the same action 

as FORK A and also increments a counter at address J. 

3. FORK A,J,N, the execution of this statement causes the same action 

as JOIN A and sets the counter at address J to N. 

JOIN J is used with all the forms of the FORK command usage. The 

exeCution of JOIN J decrements the counter J by one. The process at 

address J+l is initiated if the result of the counter at J is equal to 

zero, otherwise the process executing the JOIN is released. The FORK 

and JOIN statements in parallel programming dre similar in concept to 

the GOTO statement in sequential programming. An example of the FORK

JOIN instructions is illustrated in Figure 2.4. 
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100 FORK 200, 299 0 
100 §) 

0 
FORK 

101 200 105 

A 
B 

106 JOIN 299 

(a) (b) 

FIGURE 2.4: FORK and JOIN (a) Flow chart, (b) Instructions 

The FORK at location 100 means: set the contents of location 299 

to 2; then instructions at 200 and at 101 will be subsequently executed. 

The "2" in the instruction specifies the number of processors that the 

FORK at location 100 will activate (if they are available). Each 

processor, when it comes to the end of its parallel path, it branches 

to location 299 where it decrements the counter by one, and tests if 

the result is equal to zero. This means it is the last task to finish. 
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In the example, there are two JOIN instructions, at 106 and 220. Each 

one reads: JOIN 299. This means, "decrement the counter 299 by one. 

If the result is zero, branch to 299+1, otherwise release this 

processor ". Notice that FORK has an associativity property; N 

parallel paths may be specified equally well by many possible arrangements 

of N-l forks. 

Opler [1965], suggested two statements that allow the programmer 

to indicate the sections of program which are to be executed in parallel. 

The two statements are DO TOGETHER and HOLD. These two statements are 

used to overcome the limitation in the procedure-oriented languages 

(Algol, Fortran, Cobol, etc.) when used to express a problem solution 

involving parallelism. The DO TOGETHER will create a range of parallel 

operations and to define two or more parallel paths within this range. 

The HOLD will terminate the range created by the DO TOGETHER. The 

statement after the HOLD statement is executed only after all the 

executable statements in all the paths have been processed. One of 

the formats of the DO TOGETHER instruction is: 

Label 1 DO TOGETHER label 2, label 3, .•• ,label n-l (label n) 

Label 1 is optional and indicates the beginning of the range. Lable n 

is required and the tag of the HOLD that terminates the range, label 2 

to label n-l are tags of the first statement in each of the n-2 paths. 

While the HOLD format is: 

Label HOLD 

The label is compulsory and must be referenced by one or more DO 

TOGETHER's. Each path in the DO TOGETHER must be logically self

contained. DO TOGETHER's may be nested and may share the same HOLD. 

Branching into or out of the range of a DO TOGETHER is not permitted. 
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As an example: 

L1 DO TOGETHER L2,L3(L4} 

L2 Statement 21 

] Statement 22 Path 1 

Statement 23 

L3 Statement 31 

] Statement 32 Path 2 

Statement 33 

L4 HOLD 

FIGURE 2.5: Structure of a DO TOGETHER instruction 

The block-structured language proposed by Dijkstra (196S) is an 

equivalent extension of the FORK-JOIN concept. Cobegin-Coend (or 

Parbegin-parend) constructs used to concurrently execute each process 

in a set of n processes Sl,S2, ... ,Sn as: 

begin 

SOl 

cobegin Sl;S21 .•• ;Sn coend 

Sn+11 

end 

The cobegin Sl;S2; ..• ;Sn coend indicates that statements Sl,S2, .•• , 

Sn can be executed concurrently. When all the statements Sl,S2, •.• ,Sn 

are executed and terminated, the following statement (Sn+1) in the 

program is executed. Figure 2.6 shows the precedence graph of the 

above example. 

The processes defined by the concurrent statement are completely 

independent of one another. Thus, the set of statements Sl,S2, ••• ,Sn 

are disjoint processes. This implies that, to change any variable by 

a process, that variable must be private to that process, but disjoint 
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FIGURE 2.6: Precedence graph of a concurrent program 

processes can refer to common variables. The compiler should be cap~le 

of detecting the disjointness between processes and determine the 

variables that can be changed by the processes and those that can be 

referenced only. Concurrent statements can be nested arbitrarily as 

in the following example, which is illustrated in Figure 2.7. 

begin 

SO; 

cobegin 

SI; 

begin S2; cobegin S3; S4; SS; coend S6; end 

S7; 

coend 

S8; 

end 
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FIGURE 2.7: Precedence graph of nested concurrent processes 

Within the execution of the loops statemen'ts, parallelism can 

normally be found. Gosden [1966J has implemented PARALLEL FOR state

ments and it is noted that his implementation is independent of the 

number of processors available. As an example, consider the matrix 

computation C+A.B, where A is an nXn matrix and Band Care nXl column 

vectors, for very large n. A parallel For (parfor) statement is used 

to implement the computation of C. The parfor statement will generate 

p independent processes. Assume that p divides nand n/p=s: 



parfor i+l ~ P do 

begin 

for j+(i-l)s+l until s.i do 

begin 

C(j)+{); 

for k+l until n do 

C(j)+e(j)+A(j,k) .B(k); 

end 

end 
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Each process being generated computes the statements between the outer-

most begin-end constructs for a different value of i. Hence, the 

computation of each group of C(i) is done concurrently. 

Shared variables should be controlled while being accessed by 

different processes in a concurrent processing environment. In 

concurrent processes, the segments of program that are used to enable 

one processor to modify a shared variable is called a critical section. 

There exists at most only one process in a critical section at a time 

(i. e., mutual exclusion). A number of constructs can be included to 

protect the use of the shared variables. An example is the MUTEXBEGIN 

and MUTEXEND construction which is used to mutually exclude access to 

a set of shared variables. LOCK and UNLOCK constructions may be used 

to protect the shared variables from simultaneous access. LOCK(Xl,X2, 

••• ), makes the data variables X
l

,X2 , ••• , and are the exclusive property 

of the branch issuing the LOCK statement. The UNLOCK (X
l

,X2 , .•• ) 

released the previously locked statements. An explicit notation is 

needed to specify whether a variable is private to a single processor 

or shared by several processes. A shared variable v of type T is 

declared as follows: 

var v: shared T 
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Concurrent process can only refer to and change a shared variable 

inside a critical section. Then critical section may be defined by 

csect v do S 

where S is associated with a common variable v and implies that the 

statement S should have exclusive access to v. 

2.2.2 Implicit Parallelism 

An alternative approach to explicit parallelism is implicit 

parallelism, where the independent processes are automatically detected 

by the careful and detailed analysis of th~ source program. In this 

approach the compiler scans the source program and detects any 

independence between statements or program segments. This is considered 
~~ ~ 

to be the first step in any parallelization technique. Detection of 

the relationships between these parts allows the program to be run on 

a parallel computer. This approach to parallelism is independent of 

the programmer, i.e. the programmer need not express the parallelism 

in the problem and a sequential program need not be rewritten to run 

efficiently on a parallel computer. On the other hand, the compiling 

and supervisory programs are complex and incur an overhead. 

An area in which implicit parallelism can be applied is the 

detection of parallelism within an arithmetic expression. Gonzalez 

and Ramamoorthy [1970J and Williams [1978J studied the detection of 

parallelism within arithmetic expressions which are executed on parallel 

computers with a number of arithmetic units or processors. It was 

shown that the time taken for an arithmetic expression to be calculated 

on a parallel computer can be estimated to be proportional to the 

number of levels in the tree representation of the expression. Whereas 



for a sequential computer the time taken to calculate an expression 

can be estimated to be proportional to the number of operations 

needed to be performed. 
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If number of available arithmetic units or processors are 

sufficient in. any parallel computer, then any operations that appear 

at the same level in a tree representation of an arithmetic expression 

can be executed in parallel on separate processors. As an example, 

consider the expression, 

A+B+C+D+E+F+G+H 

which is shown in Figure 2.8 a,b. It is clear that the execution of 

this expression will require 7 units of time for the tree representation 

in Figure 2.6a and 3 units of time for the tree representation in 

Figure 2.8b. This is because the two representations have a tree of 

height levels 7 and 3 respectively. On the other hand, the number of 

processors required for each level will be different in both represent

ations. In Figure 2.9a, only one processor is required in every level. 

Whereas, in Figure 2.6b, four processors are required at level 1, two 

at level 2 and one at level 3. So the tree representation of Figure 

2.9b is more suitable for parallel execution than that of Figure 2.8a, 

and we can conclude that the amount of potential parallelism for the 

execution of an expression is inversely proportional to the number of 

levels (or height) of the tree representation of that expression. 

Hellerman [1966] has suggested an algorithm that is based on the 

input expression being presented in reverse Polish notation and 

containing only binary operators. The input string is scanned from 

left to right replacing by temporary results each occurrence of adjacent 

operands immediately followed by one operation. It is a fast and simple 
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FIGURE 2.8: Possible binary tree representations of the expression 
A+B+C+D+E+F+G+H 
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FIGURE 2.9: Parallel computation of A+B~CtD*E*F*G+H+I 
using Hellerman's algorithm 
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algorithm, but it requires the input in reverse Polish notation and 

handles commutative operators. An example using this algorithm to 

handle the expression 

A+B*C+D*E*F*G+H+I 

is shown in Figure 2.9. 

It can be seen that one processor is used at level 1,4,5 and 6 and 

two processors at levels 2 and 3. 

pb Stone [1967J proposed an algorithm based on two subtrees of the 

same level combined into one a level higher. The algorithm generates 

its output in a single pass and in reverse Polish notation. The 

algorithm is slow because of the recursiveness and additional passes 

which are required to specify parallel computation. Figure 2.10 shows 

the output obtained from Stone's algorithm applied to the expression: 

A+B*C+D*E*F*G+H+I 

level I 
5 ·1 
4 I + I I 
3 

Ar-ri I +1 
2 * ! I 

*li*j H 
1 

B Cl 
0 

0 E F G 

FIGURE 2.10: Parallel computation of A+B*C+D*E*F*G+H+I using Stone's 
algorithm 



All levels require two processors only while level 4 and 5 

require only one processor. 

Squire [19631 in his algorithm forms quintuples of temporary 

results of the form: 

R. (operand 1, operator, operand 2, start level, end level) 
L 

start level = max(end level operand 1; end level operand 2) 

end level = start level+l. 

Initially all the variables have a start and end level equal to zero. 

All temporary results which have the same start level can be computed 
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in parallel. The algorithm scanning the input from right to the left, 

starts from the right most operator and proceeds until an operator is 

found with lower priority than that of the previously scanned operator. 

Now a left to right scan proceeds until an operator is found whose 

priority is lower than that of the left-most operator of the substring. 

At this point a temporary result is used. The temporary result replaces 

one of the operands, and the other is deleted together with its left 

operator. The left to right scans are repeated until no further 

quintuple can be produced, and at that time the right to left scan is 

reinitiated. The algorithm can also handle subtraction and division 

with increased complexity. Polish notation plays no part in either input 

or output manipulation. Figure 2.11 shows a parallel computation of the 

expression: 
A+B*C+D*E*F*G+H+I _" 

Bear and Bovet [196B1 in their algorithm use multiple passes over 

the input string and each pass corresponds to a level. The output 

string of one level becomes the input string for the next level until 

the whole expression has been compiled. Thus, the number of passes will 
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FIGURE 2.11: Parallel computation of A+B*C+D*E*F*G+H+I using 
Squire's algorithm 

be equal to the number of levels in the syntactic tree. A left to 
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right scan is used so that the same symbol is scanned once during each 

pass. All operations which have the same level number can be performed 

in parallel. Figure 2.12 shows the syntactic tree generated by this 

algorithm for the expression 

A+B*C+D*E*F*G+H+I 

level 

4 

I 
+ 

I 
3 

I*l 1+1 
2 

i*l G ,+, I 
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Dll 

F 

BI*l C-+lH 

FIGURE 2.12: Parallel computation of A+B*C+D*E*F*G+H+I using 
Baer's and Bovet's algorithm 
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DiffereE_~app_r_o_a_c_h~~s~h~a_v_e~b~e~e_n __ d_e~v~e~l~o~p~e_d __ f~o_r~r_e_c_o_g~n=i_z~i~n~g_ 

parallelism in a ~~Eg~am automatically. Bernstein [1966] in his 

method suggested conditions which must be satisfied before a sequential 

process can be executed in parallel which is based on two separate sets 

of variables for each process P.: 
1. 

1. The read set Ri represents the set of all memory locations for 

which the first operation in P. involving them is fetah. 
1. 

2. The write set W. represents the set of all locations that are 
1. 

stored into in P .. 
1. 

Two sequential processes Pl and P2 can be executed in parallel if they 

satisfy the following conditions: 

1. Locations in Rl must not be destroyed by storing operations in 

1'12 , The areas of memory for which tas~is read and onto 

which task P2 writes should be mutually exclusive, that is, 

(q,=empty set) 

2. By symmetry, exchanging the roles of PI and P
2

, 
.-

In addition, to maintain the state of the machine when entering P
3 

independently of the mode of execution of P
l 

and P
2

, P
3 

must be 

independent of the storing operations in P
l 

and P
2

, that is, 

Following this work, Evans and Williams [1978] have presented 

a method of locating parallelism within ALGOL-type programming 

languages and they investigated some constructs such as the following: 

assignment statements, loops and IF statements. 

To conclude this section, with the increasing complexity of the -
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problems to be solved and future computer system structures, the 

difficulties of program construction has grown. One way to relieve 

the difficulties is to make parallel programming more automatic which 

will increase efficiency. 



2.3 PARALLEL LANGUAGES FOR VECTOR PROCESSING 

In this section we describe the parallel languages features for 

vector processing that have been developed for existing pipeline 

computers. 

l~ 

Vectorization is known as the process to replace a block of 

sequential code by vector instructions. The system software which does 

the regeneration of parallelism is known as a vectorizing compiler. An 

intelligent compiler must be developed to detect the concurrency among 

vector instructions which can be realized with pipelining or with the 

chaining of pipelines. 

High-level languages with parallel constructs have been developed 

to facilitate vector processing. As we know the use of sequential 

languages will lose the parallelism specified in a good algorithm. 

Thus, vectorization is required to restore the concurrency in parallel 

algorithms so that they can be efficiently implemented on a vector 

processor. Most commercial vector processors have built-in hardware to 

support extended high-level languages, like the extended FORTRAN on 

Cray-l, and the FORTRAN 77 extension in the Fujitsu FACOM Vp-200. 

Two vector processing languages have been proposed recently: i.e., 

the Actus by Perrott [1979] and the other is the Vectran by Paul and 

Wilson [1975]. Neither Actus nor Vectran has been successfully tested 

on a real machine. Hwang and Briggs [1984] state that the language for 

vector processing should have the following features: 

1. Flexibility in declaring and selecting array elements in the 

rows, columns, blocks, diagonals and in various subarray 

expressions. 

2. Effectiveness in manipulating sparse and dense matrices. 
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3. Array conformity to allow transportability. 

4. A mechanism to break vectorization barriers. 

The following Fortran extension examples show some of the features 

in a typical parallel language. The extended notation may be specified 

through an implied DO notation as follows: 

el:e2:e3 

el:e2 

* 

el:*:e3 

where el, e2 and e3 are expressions of the indexing parameters as they 

appear in a DO statement. Only the single symbol "*,, indicates that 

all of the elements are in a particular dimension. The notation "-*" 

may be used to indicate that the elements are in reverse order. 

Example 2.1 Given: DIMENSION X(12), Y(12,S) 

Then: X(3:12:3) represents the elements X(3) ,X(6) ,X(9) ,X(12) 

Y(4:6,S) represents the elements Y(4,S) ,ytS,S) ,Y(6,S) 

Y(*,4) represents the fourth column of the matrix Y 

Y(7,3:*) represents the elements Y(7,3) ,Y(7,4) ,Y(7,S) 

Portions of an array should be allowed to be identified using separate 

names explicitly in a vector statement. No extra storage is allocated 

for an identified vector, simply because it is a virtual name for a 

collection of elements in the original vector. 

Example 2.2 Given: Real X(8,8) 

Then: VECTOR X ROW 3(1:8) is a vector consisting of the third row of X. 

VECTOR X DIAG (1:8) represents the diagonal elements of X. 



VECTOR X COL 3(1:8:2) is the vector consisting of X(1:3) , 

X(3:3), X(S:3), X(7:3). 

106 

A WHERE statement may allow the programmer to indicate the assi~nment 

statements to be executed under the control of a logical array. PACK 

and UNPACK operations demonstrate the use of control vectors. 

Example 2.3 Given: DIMENSION A(6), B(6), C(B); DATA A/-3,-2,1,3,-2,S/ 

Then: PACK WHERE (A.GT.O) B=C causes the elements of C in positions 

corresponding to "true" in A.GT.O to be assigned to the B 

elements such that B(l) = C(3), B(2) = C(4), B(3) = C(6); 

UNPACK WHERE (A.GT.O) A=B inserts the elements of B into A in 

positions indicated by A.GT.O. Thus, A(3)=B(1) , A(4) = B(2), 

A(6) = B(3) • 

with each element of a vector operand, a basic function may be needed 

to be computed. For example A(l:S) = COS(B(l:S» is a vector basic 

function. Several special vector instructions are shown in the 

following example. 

Example 2.4 Given: DIMENSION A(30) , B(30) , C(30) 

Then: C(4:ll) = VADD(A(4:11), B(3:10» performs the vector addition; 

S = SIZE(A(1:30:4» equals the length of the sparse vector 

A(1:30:4) ; 

S = DOTPD(A,B) forms the dot product of vector A and B; 

S = MAXVAL (A) finds the largest value of vector A. 

A vectorizer is needed to detect parallelism in a sequentially coded 

program. For a program written in Fortran, a Fortran vectorizer will 

recognize Fortran constructs that can be executed in parallel. 



Precedence analysis and code generation are the two basic phases 

performed by the vectorizer program. In the analysis phase, the 

vectorizer performs an analysis of data dependencies and determines 

the possibility of translating Fortran instruction sequences into a 

vector syntax. 

The following examples illustrate how the conventional Fortran 

statements are converted into vectorized codes, probably by a 

vectorizing compiler. 
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Example 2.5: A simple DO loop containing independent instructions can 

be converted into a single vector instruction. 

DO 10 1=4,60,2 

10 A{I)=B{I+3)+C{I+l) 

are being converted into a single vector statement: 

A{4:60:2)=B{7:63:2)+C{5:61:2) 

Example 2.6: A recurrence computation can be converted into vector 

form, subject only to its precedence constraint. The recursion 

A{O)=X 

DO 10 I=l,N 

10 A{I)=A{I-l)*B{I)+C{I+l) 

can be converted to be: 

A{O)=X 

A{l:N)=A{O:N:l)*B{l:N)+C{2:N+l) 

Example 2.7: An IF statement in a loop can be eliminated by setting 

a corresponding control vector together with a WHERE statement, such 

as converting 
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DO 10 I=l,N 

10 IF(L(I) .NE.O)A(I)=A(I)-l 
to WHERE (L(I) .NE.O) A(l:N)=A(l:N)-l 

Example 2.8: Parallel computations are sometimes allowed by inter-

changing the execution sequence, such as converting 

DO 10 I=l,N 

A (I) =B (I-l) 

10 B(I)=2*B(I) 

to the following code: 

B(1:N)=2*B(1:N) 

A(l:N) =B(O:N-l) 

The loop imposes an ordering which when you unroll the loop can only 

be done correctly by reordering the instructions. 

Example 2.9: Temporary storage can be used to enable parallel 

computations, such as converting the standards 

DO 10 I=l,N 

A(I) =B(I) +C(I) 

10 B(I)=2*A(I+l) 

to vector code: 

TEMP(1:N)=A(2:N+l) 

A(l:N)=B(l:N)+C(l:N) 

B(1:N)=2*TEMP(1:N) 

A vectorizer informs the programmer of the possibility of parallel 

operations. The programmer can rearrange the computations for better 

pipe lining by examining the output of the vectorizer. Automatic 

vectorization and code optimization will increase the programming 

productivity of vector processing. 



2.4 ARRAY PROCESSING LANGUAGES AND PROGRAMMING 

Array processors are also known as SIMD computers since it can 

handle single instruction and multiple data streams (see Chapter 1). 

Parallel computation on vector or matrix type of data was certainly 
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the original purpose for developing SIMD array processors. All the 

processing elements perform the same function synchronously in a lock

step fashion under the command of a control unit. Parallel execution 

in the array of processing elements is started after all vector 

operands are stored in the processing elements memory. SIMD array 

processors allow explicit expression of parallelism in user programs. 

The compiler detects the parallelism and generates object code suitable 

for execution in the multiple processing elements and control unit 

while the control unit is used to execute non-parallel program segments, 

while parallel executable segments are sent to the processing elements 

and are executed synchronously. To enable synchronous manipulation in 

the processing elements, the data is permuted and arranged in vector 

form. Thus, to run a program more efficiently on an array processor, 

one must develop a technique for vectorizing the program codes. 

Parallel programming in SIMD array processors can be seen from the 

vector operations such as in matrix multiplication. 

An example of a SIMD array processor is the Illiac-IV as shown 

in Chapter 1, which WaS primarily designed for solving partial 

differential equations and matrix manipulation. Glypnir (Lawrie, et 

al [1975]), Tranquil (Abel et al [l969Dand Illiac-IV Fortran are three 

suggested high-level languages for Illiac-IV. Both Glypnir and 



Tranquil are Algol-like languages. Tranquil is the first language 

proposed for Illiac-IV. It has the facilities to manipulate arrays 
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of data in a parallel fashion, independent of the machine organization. 

Glypnir is a block-structured language and was written to exploit the 

parallelism in the Illiac-IV architecture. 

In Illiac-IV, arithmetic operations are carried out under the 

control of a mask pattern, each processing element associated with it 

is a 64 bit (true-false) boolean vector which is used for mask purposes. 

A processing element is activated when its corresponding. bit mask is 

true and a result of an operation may be delivered. 

Consider the Glypnir expression: 

A:;B*C 

when A,B and C are vectors, each may have up to 64 elements. The above 

multiplication means that each component of B is multiplied by the 

corresponding element of C and the resulting product vector is stored 

in A. However, when C is a scalar, the multiplication will be repeated 

64 times in an invisible processing element variable. 

Extra facilities are provided such as the rotation and shifting 

of rows to the left and the right. For and if statements are also 

provided, but it gives unconventional results. For example, if A,B 

and C are vectors, the statement 

If A>B then C:;A else C:;B 

will deliver the maximum element of A and B to C and any result in 

both the then and else statement to be executed. In Glypnir, the 

programmer is responsible for storage allocation and be constrained to 

only Illiac-IV rows (64 components) or vectors of rows. Illiac-IV 
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Fortran is used to overcome these constraints, since it allows the 

-
user to program with vectors of any length. Extra constructs have 

been added to the language to allow the shifting and rotation of 

vectors and array rows. The DO statement have been extended to allow 

the parallel execution of arithmetic expressions and binary data type 

can be used to specify bit-control vectors for masking purposes. 

Most parallel computers use extensions of existing languages, 

such as extended Fortran for the Star-lOO, the CFT language for the 

Cray-l and the Glypnir language for the Illiac-IV. The language SL-l 

attempted to bring some of the benefits of structured programming to 

the Star-lOO system. The Vectran language has been developed by the 

IBM research group to facilitate the application of vector-array 

processing algorithms. perrot [19791 introduced another parallel-

programming language for array processors which offers a theoretical 

extension of the language Pascal and is called Actus. 

The Actus language attempts to redress the technology imbalance 

between the advanced architecture of parallel machines and the 

development of high level languages for such machines. It is aimed 

at exploiting parallelism and incorporating some software engineering 

approaches. The syntax of the language enables the expression of 

parallelism in a manner which is suited to the problem and which can 

easily be exploited by a parallel architecture. The main features in 

the Actus language are described below. 

An array is declared in Actus by indicating the maximum extent 

of parallelism. The syntax can support any number of dimensions. 

For example, a scalar array is declared as: 
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var scalar: array[l •• m,l •. n] of real; 

The maximum extent of parallelism is introduced by replacing only one 

pair of sequential dots " .. " by a parallel pair":" as shown, 

var parallel: array[l:m,l •• n] £f real; 

This declaration indicates that the array "parallel" of mxn real 

numbers for which the maximum extent of the parallelism is m. The 

array "parallel" can be manipulated for m elements at a time since 

it has been declared as a parallel variable with that extent of 

parallelism. The extent of parallelism is a central concept to this 

approach. It is defined for an array processor as the number of 

processing elements that can logically compute upon a particular data 

structure at the same time. 

Index set can be used by the programmer to identify a particular 

element of a data type that can be accessed in parallel. An index 

set is defined with the data declaration, 

index index=i: j; 

where i and j are constant integer values such that i~j. The elements 

i to j inclusive will be accessed whenever the index-identifier index 

is used as a parallel-array index. For example, with the declarations 

~ parallel: array[l:m,l. .n] of real; 

index interior=2:m-l; 

interior can be used as the first index of the array "parallel" to 

access column elements other than the boundary elements. By using 

the index set the expression becomes more readable and the execution 

efficiency of the program can be improved. 

Shift and Rotate are two alignment operators which are available 

to enable the movement of data between elements of the same or 
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different parallel variables. The shift operator causes the movement 

of the data within the range of the declared extent of parallelism. 

While the rotate operator, which causes the data to be shifted 

circularly with respect to the extent of parallelism. 

To construct algorithms for parallel machines many of the program 

constructions which are required in a sequential environment such as 

assignment, selection, iteration and subprograms are necessary. The 

essential difference is that in this new environment such manipulations 

must be performed in parallel. A single extent of parallelism can be 

associated with each simple or structured statement of the language 

which refers to one or more than one parallel variable; this extent 

must be less than or equal to the declared extent of parallelism for 

the parallel variable involved. For example, the following are valid 

assignment statements involving parallel variables: 

aa[l:lOO,j]:=aa[l:lOO,j]*bb[i,l:lOO]; 

aa[lO:90,j]:=aa[lO:90,j]/bb[i,lO:90]; 

The within construct has been suggested to avoid repeatedly indicating 

the extent of parallelism for a series of statements (or for a single 

statement) in which the extent of parallelism will not change. This, 

in turn, avoids the repeated evaluation of the same extent of parallelism. 

The form of within is: 

within specifier do statement 

where the quantity specifier is either an index set identifier or an 

explicit extent of parallelism which is shown as follows. The symbol 

"#" is used to indicate the extent of parallelism. 

The assignment statements: 



aa[l:loo,j]:=aa[l:loo,j]*bb[i,l:loo]; 

aa[10:90,j]:=aa[10:90,j]/bb[i,10:90]; 

could have been written alternatively as: 

within 1:100 do aa[#,j]:=aa[#,j]*bb[i,#]; 

within 10:90 do aa[#,j]:=aa[#,j]/bb[i,#]; 
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The if and case statements can be used to indicate a choice of several 

execution paths. For example, 

~ a,b: array[l:loo] of integer; 

if a[l:lOO]>O then statement 

TO solve this problem the anonymous sharp symbol "#" is again used in 

the construction of the statement. For example in 

if a[l:lOO] >0 then a[#]:=O; 

The sharp represents that subset of the set 1 to 100 for which the 

corresponding element of 'a' are greater than zero. The effect of 

executing the statement is to assign the value zero to these elements. 

The ~ statement is the main means for specifying the repeated 

parallel processing of the data. It is used when the number of times 

the statement is to be executed is unknown. For example: 

while a[1:50]<b[1:50] do a[#]:=a[#]+l 

the "#" symbol identifies those elements of a which are less than their 

corresponding element in b on each occasion that the comparison of 

elements is performed and only those elements of a have their value 

increased by 1. Execution terminates when all the elements of a are 

greater than or equal to their corresponding element in b. 

In the situation where the number of times the repetition to be 



performed is known, the ~ construct has been expanded to allow the 

inclusion of parallel variables in the control, start, finish and 

increment positions. It then takes the form 

for control:=start ~ increment to finish do statement 

Functions and procedures can be constructed using the data 

declarations and program constructs previously introduced and the 

Pascal rules for.subprograms apply. Thus, local variables cannot 

alter their extent of parallelism by a function or procedure call. 

In procedure and function definitions, the formal parameter list can 

consist of either scalar or parallel variables or both. 
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By introducing the concept of the extent of parallelism into data 

declarations and modifying existing Pascal language constructs to 

accommodate the special demands of a parallel processing environment. 

The advantage of the Actus language is that a problem's parallel 

nature is expressed directly in the syntax of the language which, in 

turn, makes efficient use of the machine's computational resources. 

The user, therefore, does not have to get involved with the detection 

mechanism.of a compiler or with the Underlying architecture of the 

machine on which the program will be executed. 



2.5 MIMD MULTIPROCESSOR PROGRAMMING 

A parallel program for a multiprocessor consists of two or more 

interacting processes. In an MIMD multiprocessor system we need an 

efficient notation for expressing concurrent operations. Processes 

are concurrent if their executions overlap in time. In a MIMD 

multiprocessor environment necessary changes in the instruction set 
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of multiprocessor machines is needed and then modifications or 

extensions included in the high-level languages for programming multi

processors. Both explicit parallelism (Section 2.2.1) and implicit 

parallelism (Section 2.2.2) may be used to exploit parallelism in a 

multiprocessor environment. 

In a multiprocessor system, synchronization takes an increased 

importance as it could create overheads that are too high. System 

performance could be reduced significantly if the synchronization 

mechanisms are not efficient and the algorithms that use them are 

not properly designed. Synchronization primitives are implemented 

either directly in the hardware, microcode or in software. Cooperating 

processing in a multiprocessor environment must often communicate and 

synchronize for the execution of one process can influence the other 

via communication. Now communication between processes are carried 

out either by use of shared variables or message passing, and this is 

done via a synchronization mechanism. A process executes with un

predictable speed and generates actions or events which must be 

recognized by another cooperating process. The set of constraints on 

the ordering of these events constitutes the set of synchronization 

required for the operating processes. The synchronization mechanism 



is used to delay the execution of a process in order to satisfy such 

constraints. 
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Mutual exclusion and condition synchronization are the two types 

of synchronization which are employed when using shared variables. 

Mutual exclusion ensures that a physical or virtual resource is held 

indivisibly. While conditional synchronization occurs when an attempt 

to access a shared data by a process is delayed until the shared data 

object state changes to the desired value as a result of other 

processes being executed. 

Many constructs have been used to implement both mutual exclusion 

and condition synchronization. An example of those constructs are 

MUTEXBEGIN. MUTEXEND and the usage of LOCK and UNLOCK operations which 

are shown in Section 2.2.1. 

Dijkstra proposed two primitives and indivisible operation P and 

V. which can be used to implement the mutual-exclusion efficiently. 

These operations can be shared by many processes and operate on a 

special common variable called a semaphore. which indicates the number 

of processes attempting to use the critical section: 

~ s: semaphore 

Then the primitive P(s) acts as an MUTEXBEGIN of a critical section. 

The V(s) primitive is MUTEXEND and records the termination of a critical 

section. 

Semaphores are quite general and can be used to program almost 

any kind of synchronization. While the difficulties that arise from 

using the semaphore in parallel algorithms makes the algorithm 

unstructured and prone to error. For example. the misuse of P or V 



accidentally on a samaphore can make a disastrous effect, since 

mutual exclusion would no longer be ensured. Another type of 

difficulty expected, is when the programmer forgets to include the 

semaphore in a critical section when using it and an error occurs in 

execution. 

TO overcome the difficulties in semaphore, Hoare [1972] and 

Hansen [1972] proposed Conditional Critical Section (CCS). This is 

a structured and highly user-oriented tool for specifying communication 

among concurrent processes. Their use allows direct expression of 

the fact that a process has to wait until an arbitrary condition on 

the shared variables holds. The variable V may only be accessed within 

CCS statement that name V. A CCS statement is of the form, 

csect V do await C:S -----
where C is a boolean expression and S is a statement list. A CCS 

statement delays the executing process until the condition C is true, 

S is then executed. Other CCS statements that name the same resource 

cannot interrupt the evaluation of C and the execution of S. Thus, 

C is guaranteed to be true when the execution of S begins. 

In a multiprocessor system with a high degree of concurrency, 

the problem of deadlocks will arise. Deadlocks occur when members of 

a group of processes which hold resources are blocked indefinitely 

from access to resources held by other processes within the group. 

Solution to the deadlock problem have been classified as prevention, 

avoidance, detection and recovery techniques. Prevention is the process 

of constraining system users 50 that requests leading to a deadlock 

never occur. The scheduler then allocates resources 50 that deadlocks 

will never occur. For dead avoidance, the scheduler controls the 

__ J 



resource allocation on the basis of some advance information abcut 

resource usage so that the deadlock is avoided. With deadlock 

detection and recovery, the scheduler gives resources to the process 

as soon as they become available and, when deadlock is detected, the 

scheduler pre-empts some resources in order to recover the system 

from the deadlock situation. 
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2.6 DATA FLOW LANGUAGES 

To overcome the problem encountered in introducing parallelism 

into Von Neumann model, the data flow model of computing is introduced. 

A data flow computation is one in which the operations are executed 

in an order determined by the data interdependencies and the availability 

of resources. Two varieties of data flow computation can be distinguished 

i.e., 

1. Data-Driven Computation, in which operations are executed in an 

order determined by the availability of input data. 

2. Demand-Driven Computation, in which operations are executed in an 

order determined by the requirement for data. 

The data flow approach is often associated with the use of data-

driven computation. 

Data flow languages are programming notations in which data 

dependencies are expressed directly by program structure. A data flow 

program in general may be represented by a directed graph, with nodes 

used to represent the operations (such as addition, multiplication, 

subtraction, etc.) and the arcs represent the flow of data, and show 

the data dependencies. An example of data flow program is shown in 

Figure 2.13. 

(a+b)-(a*b) 

FIGURE 2.13: Program to calculate the difference between the sum and 
product of two numbers. 
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The nodes represent functional operators connected by data links. 

Each type of operator has input and output links and specifies a 

function from data values on input links to data values on output 

link, as shown in Figure 2.14. 

Il 

01 

01 

01=Il+I2 

Add 

I 
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02=I2 

copy 

12 Il 
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01=Il/I2 
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Divide 

02 

FIGURE 2.14: Some data flow operators 
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During the execution of programs, the notation of tokens flowing 

down arcs are used to carry data values. When a node has its data 

token available upon its input arc(s) it generates an appropriate set 

of data tokens upon its output arc (s). This is referred to as "firing". 

Figure 2.15 shows the steps of the computation of the example shown 

in Figure 2.13. 

4 

2 4 

* 

(a) initial input token present (b) copy node ire 

B 

• 

(c) sum and product are calculated (d) difference is calculated 

FIGURE 2.15: Steps illustrating the evaluation of a program graph 



The set of operations of a data flow language are equivalent to 

the primitive operations of a sequential language. An operator 

becomes enabled (ready to execute) when tokens are present on all its 

input links. The execution of all enabled operators is independent 

and concurrent. Many data flow operators can execute concurrently if 

each has its required operands. An enabled data flow operator removes 

the input-values from its input links and computes the output values 

as functions of the input values. The output values are transmitted 

onto the output links and the operator returns to the inactive state. 

Operator execution depends only on information local to the operator; 

there are no global variables or side effects. 

Extra operators are needed in order to provide some method of 

making run-time data-dependent decisions as to what operators are to 
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be carried out. Figure 2.16 shows the two control operators, the switch 

and the merge. In the switch operator the input token is placed on the 

output are selected by the control unit. While in the merge operator, 

it is the programmer's responsibility to ensure that only one input 

arrives at anyone time, the input is then placed on the output. 

Control operators are used to construct the conditional and loop graph 

as shown in Figure 2.17. 

An alternative representation to the graphical programming notation 

is the textual programming notation as used in most programming 

languages. Many single assignment and functional programming languages 

have been developed by various research groups. Among those languages 

are, the Irvine Data Flow (ID) language (Arvind, Gostelow and Plouffe 
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FIGURE 2.16: The control operators 
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FIGURE 2.17: Data flow graphs representing typical program constructs 
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[1978J) and the Value Algorithmic Language (VA) (Ackerman and Dennis 

[1979J) • 

The main characteristic of the data flow languages are. 

1. It is shown to possess great locality. Assignment to a formal 

parameter should be within a definite range. As a result, data flow 

languages are appropriate for block structures. 

2. Freedom of side effect. The absence of global or common variables 

and careful control of the scopes of variables make it possible to 

avoid side effects (such as in procedures that modify variables in 

the calling program). Also calling by value which is used in data 

flow languages will solve the aliasing problem. 

3. A single assignment rule offers a method to promote parallelism in 

a program. The rule is to inhibit the use of the same variable 

name more than once on the left-hand side of any statement. This 

will greatly facilitate the detection of parallelism in a program. 

4. Data flow programs tend to waste memory space for the increased 

code length due to the single assignment rule and the excessive 

copying of data arrays. 
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2.7 PARALLELISM IN HIGH-LEVEL PROGRAMMING LANGUAGES 

Most of the high-level languages currently used to program 

parallel processors are extensions of languages designed many years 

ago for conventional sequential architectures (such as Fortran). Many 

new algorithmic languages are equipped with facilities to enable them 

to handle parallel tasks and concurrency. In this section we are 

going to investigate the parallelism in three high-level programming 

languages, these languages are Algol-6B, Pascal-plus and Ada. 

In Algol-6B, parallelism is specified syntactically by a collateral 

phrase consisting of one or more constituents separated by commas. 

Collateral elaboration of statements can be performed by means of a 

construction known as a Void-collateral-clause. This takes the form of 

a sequence of units enclosed by begin and ~ or '(' and ')' and 

separated from each other by commas. An example of Void-col lateral

clause is: 

(a :=b, ( (cl :=dl;bl: =el) , (c2 :=d2 ;b2: =e2) ) ,print (b) ) 

The relative order in which the various statements are performed can be 

shown in Figure 2.1B. 

Facilities for the coordination of control in collateral tasks 

have been proposed by Dennis and Van Horn [1966] (LOCK/UNLOCK mechanism) 

and Dijkstra [1965] (samaphores). Algol-68 is equipped for this with 

the structure sema, the values of which are integers and two operators: 

up and down. 

The two operators ~ and ~ are used to permit synchronization 

to take place. The ~ operator can involve a potential delay and 

hence suspension of the process in which it is contained. The ~ 
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Previous phrase 

cl:=dl c2:=d2 

a:=b Print (b) 

bl:=el b2:=e2 

next phrase 

FIGURE 2.18: The order in which (a:=b,((cl:=dl,bl:=el),(c2:=d2;b2:=e2», 

print(b» is executed 

operator does not involve a delay but its use can awaken or restart 

a process that was earlier sent to sleep or suspended as a result of a 

previous application of~. An import precondition concerning semaphores 

is that no two processes can simultaneously access the same semaphore in 

order to perform an ~ or down operation on it. 



Whenever synchronization has to take place there must be some 

form of parallel processingin~toperation. Synchronization can be 

performed only between the units of a parallel clause. A ~1Tallel 

clause is like a Void-col lateral-clause except that it msut be 

preceded by £ar. 
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Pascal-plus extend the Pascal programming language with process, 

monitor and condition constructs required for programming a system of 

parallel activities. The process construct is used to represent 

program modules whose execution may proceed in parallel •. The syntactic 

form of a process is: 

process name {formal parameter list}; 

{local declaration} 

begin 

{body} 

end; 

instance 

P: name {actual parameter list}; 

It is possible that several processes can share the same data and 

only one allowed to modify it. The monitor construct is used to 

control shared data as defined by Hoare [1974] and Hansen [1975]. In 

Pascal-plus a monitor guarantees that only one process at a time can 

execute its local code and therefore change its local data. 

When a process requires access to a monitor it may be forced to 

wait implicitly if some other process is currently executing its code. 

In addition, having entered the monitor the process may find that the 
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data it requires is not available. Synchronization is achieved in 

Pascal-plus through an operation on a built-in monitor called condition, 

which is based on the Hoare condition [1974]. The operations provided 

by this monitor are: 

monitor condition; 

~ range=O •• maxint; 

procedure pwait(priority:range); 

procedure wait; 

procedure signal; 

function length:range; 

function priority:range; 

end {condition} 

Associated with each instance of condition is an ordered queue on which 

process may be suspended. When a process invokes the pwait operation 

it is placed on this queue according to the specified priority value. 

signal operation is used to activate a process at the head of the 

condition queue. 

The Ada language provides two forms of modules called packages 

and tasks with similar properties. A module is a programming unit that 

consists of a specification and a body. Parallel activities are 

described by means of tasks. A task is primarily intended to introduce 

a new control path. A task cannot be a stand-alone unit in an Ada 

program but it must be declared within another program unit, which is 

referred to as a 'parent' of the task and a task is said to be 'dependent' 

on its parent. The outline of a task is shown as: 



task TASK-NAME is -- -
{This declares the entries accepted by the task} 

entry ENTRY-NAME«parameter list» ; 

The body of the task must be declared in the same declaration part, 

but need not immediately follow the specification. 

task body TASK-NAME is 

rThe declarative part of the task, all objectsl 

ideclared here are private to the task and nott 

lvisible to the other program units. J 

begin 

lThe imperative part of the task, this will I 
contain statements that accept calls on the 

entries declared in the specification 

accept ENTRY-NAME«parameterlist» do 

end TASK-NAME; 
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In some cases a task presents no interface to other tasks in which 

case the specification reduces to just 

task TASK-NAME; 

As an example, consider a family going shopping. The mother buys 

the meat, the children buy the salad and the father buys the wine. These 

activities can be illustrated in parallel as: 

procedure mOPPING is 

~ GET-SALAD; 

~ body GET-SALAD is 

begin 

BUY-SALAD; 

end GET-SALAD; 



task GET-WINE; 

~ body GET-WINE is 

begin 

BUY-WINE; 

end GET-liINE; 

begin 

BUY-MEAT; 

end SHOPPING; 
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In tilis example, the mother is represented as the main processor 

and calls BUY-MEAT directly from the procedure SHOPPING. The children 

and the father are considered as subservient processors. The activation 

of a task is automatic. In the above example the local tasks become 

active when the parent unit reaches the begin following the task 

declaration. such a task will terminate when it reaches its final end. 

A task declared in the declarative part of a subprogram, block or task 

body is said to depend on that unit. It is an important rule that a 

unit cannot be left until all dependent tasks have terminated. It is 

important to realise that the main program is itself considered to be 

called by a hypothetical main task. In the SHOPPING example, the 

sequence of actions when "this main task calls the procedure SHOPPING. 

First the tasks GET-SALAD and GET-WINE are declared and then when the 

main task reaches the begin these dependent tasks are set active in 

parallel with the main task. The dependent tasks call their respective 

procedures and terminate. Meanwhile the main task calls BUY-MEAT and 

then reaches the end of SHOPPING. The main task then waits until the 
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dependent tasks have terminated if they have not already done so. 

Generally, tasks will interact with each other during their lifetime. 

In Ada this is done by a mechanism known as a rendezvous. A rendezvous 

between two tasks occurs as a consequence of one task calling an entry 

declared in another: 

entry ENTRY-NAME; 

which is then accepted in the body of the task by the statement 

accept ENTRY-NAME; 

A calling task then sends its signal by the entry call: 

CALLED-TASK-NAME.ENTRY-NAME; 

The interactions between parallel tasks consists of actions of 

synchronisation and actions of communications. The entry-accept construct 

may be used to implement synchronisation. Rendezvous can be used to 

express problems of mutual exclusion in a form similar to monitors or 

critical regions. Also, the exchange of data between tasks can also 

be achieved by entries: similarly to procedures, entries can have 

formal parameters, and after an entry call provides the actual meaning 

of the parameters. 

An important capability, that of conditional execution is provided 

in the Ada language through the execution of the select statement. The 

select statement enables a called task to select one of several 

alternative entry calls. A select statement combines several accept 

and delay statements. A simple form of the select statement is shown 

below: 



select 

or 

or 

accept ENTRY-ONE do 

end ENTRY-ONE; 

accept ENTRY-TWO do 

end ENTRY-TWO; 

accept ENTRY-TIIREE do 

~ ENTRY-TIIREE; 

end select; 

The second feature of a select statement is the possibility of 
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guarding any clause by a boolean condition: a call to the corresponding 

entry will be accepted, or the corresponding delay executed, only if 

the guard evaluates as true when the select statement is reached. 

select 

when CONDITION-l =) 

accept ENTRY-l 
. 

or 

when CONDITION-2 =) 

accept ENTRY-2 

or 

when CONDITION-3 =) 

accept ENTRY-3 

else 

alternative actions; 

end select; 

do 

do 

do 



A select statement may end with an else clause which will be 

executed if no other clause in the select statement can be executed 

immediately. A select statement can be used to provide a protected 

data-area to overcome the problem of the shared data-area. 
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Finally, a delay statement can be used to control the execution 

of a parallel process, not only with respect to other processes, but 

also with the flow of time. The statement: "delay n;" (where n is an 

expression yielding a value of the predefined type TIME) will cause 

the task that executes it to be blocked for at least n units of time. 
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2.8 PROGRAMMING THE NEPTUNE SYSTEM 

In Chapter 1, the hardware configuration and software character

istics of the NEPTUNE MIMD system were described. The parallel 

programming aspects of this system will be illustrated in this section. 

Two parallel programming languages that are available on the NEPTUNE 

system are Pascal and Fortran. The adoption of Fortran is much easier 

due to firstly, the concept of shared memory is very similar to that of 

the sequential Fortran 'common' block. Secondly, Fortran IV does not 

permit recursion and storage is statically allocated at compile time. 

The parallel Fortran language was used in the course of this research, 

and this is the language to be considered in this section. 

Many constructs have been added to sequential Fortran to be 

extended to handle the parallel processing requirements. The properties 

of the parallel programs that run on the NEPTUNE system are, firstly, 

only one parallel path (task) is executed on each processor at a time, 

while other processors must be informed and locked out of that path. 

Secondly, when this parallel path has been completed the next one in 

order can be executed by the same processor. Both the local data of 

this processor and the shared data can be used. 

In a parallel programming environment, the user should have the 

ability to, create and terminate parallel paths, share data between 

paths and ensure the consistency of data. The essential constructs 

that are needed to implement any parallel program on the NEPTUNE system 

are: 

(1) $USEPAR 

This construct must be the first executable parallel statement in 



the program. On encountering the $USEPAR all processors except one 

are forced to wait until parallel paths are created for them to 

execute. 

(2) $END 
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This statement replaces the END statement of sequential Fortran. 

It forces the checking at pre-compile time and that the nesting of 

parallel syntactical constructs is completed within each individual 

subrou tine. 

(3) $STOP 

This statement replaces the STOP statement of a sequential Fortran 

program. It ensures the termination of the program. 

Three pairs of constructs are available on the NEPTUNE system to 

create/terminate paths, they are: 

(i) $DOPAR/$PAREND 

This construct has the following form: 

$DOPAR label I=Nl,N2,N3 

'code using index It 

label $PAREND 

In this form the generated and terminated paths with identical 

code. It is similar to the Fortran DO loop, and (N2-Nl+l)/N3 

paths will generate with each path having a unique value of the 

loop index I. The indexing of data by the variable I then allows 

different paths to evaluate different results. $PAREND is similar 

to the CONTINUE statement in Fortran, and by executing the $PAREND 

every generated path should be terminated. 
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(ii) $FORK/$JOIN 

(Hi) 

This construct has the following form: 

$FORK label 1, label 2, label 3: label 4 

label 1 'code for path l' 

GO TO label 4 

label 2 'code for path 2' 

GO TO label 4 

label 3 'code for path 3' 

label 4 $JOIN 

In this form, the generated paths are with different code, and 

it is equivalent to the computed GO TO statement in Fortran. 

The paths start at labels label 1, label 2, label 3 and terminate 

at label 4. Each path contains a GO TO statement at the end to 

force the paths to terminate at label 4 of the $JOIN statement, 

except the last path which already terminates at label 4. 

$DOALL/$PAREND 

This construct has the form: 

$DOALL label 

'code' 

label $PAREND 

In this form, the generated paths are with the same code where 

each processor is forced to execute the code once and only once, 

and it is normally used to initialise the data or to obtain the 

timing. 
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Shared variables may be used as a communication means between 

the different parallel paths, and can be defined as: 

$SHARED variable list 

which enforces the variables to be loaded into the shared memory. 

Whilst all other data including the program code are held in the local 

memory. This construct is similar to the COMMON statement in Fortran. 

In the NEPTUNE system, critical sections are used to enforce 

sequential access to certain shared data structures to ensure their 

integrity. For this purpose the user has available up to 8 'resources' 

which can only be owned by one of the processors at anyone time. 

Resources used must be declared with Fortran-like names using 

$REGION list of names 

The scope of this declaration is the next $END construct. The constructs, 

$ENTER and $EXIT are used to resources which are embedded in a critical 

section and released with $EXIT, i.e., 

$ENTER name 

$EXIT name 

i.e., the critical section is embedded within an $ENTER/$EXIT pair of 

constructs. The same resources can protect different critical sections 

in the program. 

Many special commands have been introduced to the compiling, 

linking and running of parallel programs on the NEPTUNE system. The 

. 15 
XPFCL or XPFCLD (used when the number of parallel paths up to (2 -1)) 

commands are used to produce a load module from the user's source 

program. The effect of these two commands are to: 



(i) Preprocess the user source program to convert the 

special parallel constructs to FORTRAN statements. 

(ii) Compile the resultant FORTRAN. 
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(iii) Link the compiler output with the available FORTRAN 

libraries and machine code written routines to control the 

parallelism. 

(iv) store the resultant load module in the user's program file. 

If an error is detected in anyone of the above stages, an error 

message will be written to the output file of that stage and the 

command is terminated. 

To run a parallel program on the NEPTUNE system, the XPFT command 

is used. The user should specify the processor(s) on which the load 

mcdule should run, the name of the load mcdule, and whether the execution 

is required on the foreground or background computing basis. The 

processors in the system are numbered 0 to 3 and processor 0 must be 

one of these processors listed because it includes the main disc. Any 

error during the run time will be reported and the run is terminated. 

The Performance measurement is an important issue in parallel 

programming and timing is an essential factor of its analysis. Two 

subroutines are available for obtaining timing information. The 

routines should be embedded within a $DOALL/$PAREND sequence to force 

each processor to execute time, and the timing results should appear 

in the output file. To force to activate the timing for each processor, 

the following constructs are used: 

$DOALL 10 

CALL TIMEST 

10 $PAREND 



Normally these constructs are placed before the part of the 

program to be performed by the path. To get the timing results for 

each processor and place it in an array ITIME (as an example), the 

following constructs are used: 

$DOALL 20 

CALL TIMOUT(ITIME) 

20 $PAREND 

These constructs are placed at the end of the part of the program 

in the path. Usually the ITIME is declared as a shared array of size 

100 and this result should be arranged in 8 columns. The timing results 

for each processor are held in ITIME as follows: 

ITIME(1+j*25) ••. ITIME(24+j*25) hold timing information 

for processor j=0,l,2,3. With i=j*25, then we have: 

ITIME(l+i) } 

ITIME(2+i) 

ITIME(3+i) } 

ITIME(4+i) 

ITIME(5+i) 

ITIME(6+i) 

ITIME(7+i) 

ITIME(8+i) 

clocked cpu time in seconds and milliseconds 

elapsed time in seconds and milliseconds 

number of parallel paths runs by this processor 

number of waiting cycles because no path is available 

number of accesses to critical section resource 1 

number of accesses to critical section resource is 

being used by another processor 
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ITlME (9+i) 

I ITlME (22+i) 

same for critical sections resources 2 to 8 

) 

ITlME(23+i) information on system critical section resource 

ITlME (24+i) information on system critical section resource 

ITlME(25+i) is not used. 

The information in ITlME will be used to obtain the algorithm 

performance used in the coming chapters. 
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CHAPTER 3 

DESIGN OF PARALLEL ALGORITHMS 
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3.1 INTRODUCTION 

Researchers have studied parallel algorithms even before parallel 

computers had been constructed. Regardless of whether parallel 

algorithms will be used in practice, many researchers find designing 

parallel algorithms fascinating and challenging. Designing parallel 

algorithms became more important and interesting as the development of 

parallel computer architecture advances. Therefore, different parallel 

algorithms have been designed from different viewpoints and for the 

various parallel architectures which were described in Chapter 1. In 

this section, the classification of parallel algorithms corresponds 

naturally to that of parallel architectures. Parallel algorithms can 

be considered as a collection of independent task mcdules that can be 

executed in parallel and that they communicate with each other during 

the execution of the algorithm. By independent task module we mean, 

that the results obtained from one mcdule are not affected by the 

results obtained from the other. For example, to find the result of 

adding two n-vectors A and B, 

C = A + B , 

where A=(a
l
,a2 ,· •• ,an), B=(b

l
,b

2
, •.. ,b

n
) and C=(c

l
,c

2
, ••• ,c

n
). The 

evaluation of the components of the resultant vector C are obtained 

from the formula, 

c = a, + b, , for i=1,2, ... ,n. 
i 1. 1. 

It is clear that the calculation of the components of the vector Care 

independent and a computer with n processors takes one step to compute 

the vector C, where each component is evaluated in one processor. The 

example shows that the algorithm already contains independent 

computations without the need to reorganise, i.e., the example is said 
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to exhibit inherent parallelism. A parallel algorithm may be created 

by ide~tifying the inherent parallelism of a sequential algorithm. An 

algorithm may be reconstructed in order to increase the property of 

parallelism. 

Stone [1973] highlights some of the problem areas in parallel 

computation, these include the necessity to rearrange the data in memory 

for efficient parallel computation; the recognition that efficient 

sequential algorithms are not necessarily efficient on parallel computers 

and conversely, that sometimes inefficient sequential algorithms can 

lead to very efficient parallel algorithms and lastly the possibility 

of applying transformations to sequential algorithms to yield new 

algorithms suitable for parallel execution. 

Kung [1980] identified three orthogonal dimensions of the space of 

parallel algorithms: concurrency control, module granularity and 

communication geometry. Concurrency control is needed in parallel 

algorithms to ensure the correctness of the concurrent execution, 

because more than one task module can be executed at a time. The 

module granularity of a parallel algorithm refers to the maximal amount 

of computation a typical task module can do before having to communicate 

with other modules. The module granularity of a parallel algorithm 

reflects whether or not the algorithm tends to be communication intensive. 

This must be taken into consideration for efficiency reasons. Suppose 

that the task modules of a parallel algorithm are connected to represent 

intermodule communication. Then, a geometric layout of the resulting 

network is referred to as the communication geometry of the algorithm. 

It is necessary to take into account the computer into which the 

parallel algorithm is implemented. As shown in chapter 1, parallel 
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computers may be classified into SIMD, MIMD and pipelined computers. 

In SIMD computers, the number of processors tend to be large compared 

with that of MIMD computers. In general, we can say that the algorithm 

designed for SIMD computers requires a high degree of parallelism 

because this type have up to order nm, i.e. o(nm) processors, while 

a MIMD computer has up to O(n) processors, where n is the order of the 

problem (number of subtasks) and m ~2. This does not mean that an 

algorithm designed for a MIMD computer cannot be run on an SIMD computer, 

but an algorithm with only n independent computations will be executed 

concurrently on only n processors and the remaining processors are left 

idle. Conversely, in an MIMD computer there are insufficient processors 

m 
to run O(n ) independent computations concurrently, but instead may 

execute them in groups of P computations if P processors are available. 

SIMD computers cannot take advantage of independent computations that 

are not identical since the processors are synchronous, while the 

processors of MIMD type are asynchronous and can take advantage of such 

computations. The non-identical computations could be executed 

sequentially on the SIMD computer, but the system efficiency would be 

degraded. However, in the MIMD computer, the processors need not 

necessarily be involved on the same problem. Thus, when designing 

algorithms for a SIMD co~puter, one should consider only algorithms 

with substantial amounts of identical computations in order to achieve 

high efficiency. In general, a good MIMD algorithm is not always a 

good SIMD algorithm and vice versa. 

In a pipeline computer, the speed-up is achieved by producing a 

string of identical operations that may be queued up and treated in an 

assembly line fashion. It is obvious to see that the string of operations 
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must be independent and the longer the string the greater the speed-up 

that is achieved. For this reason, a good pipeline algorithm is 

generally a good SIMD algorithm and vice versa. 

One area in which pipelining appears to be particularly 

appropriate is in the implementation of arithmetic operations, and it 

is known as arithmetic pipeline. Arithmetic pipelines have been 

constructed for performing a single arithmetic function, e.g. floating

point addition, or for performing all four basic operations on both 

fixed-point and floating-point numbers. For example, the Cray Research 

CRAY-l uses six-stage floating-point adders and seven-stage floating

point adders, and the CDC STAR-lOO uses four-stage floating-point adders. 

For a pipeline floating-point adder, the pipe typically consists of 

stages for performing exponent alignment, fraction shift, fraction 

addition and normalization. A pipeline arithmetic unit can be viewed 

as a systolic machine composed of linearly connected processors that 

are capable of performing a set of (different) operations. 
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3.2 PARALLEL ALGORITHMS FOR SIMD AND PIPELINE COMPUTERS 

As shown in a previous section a good SIMD algorithm is generally 

a good pipeline algorithm. and vice versa. In this section we will 

discuss the structure of parallel algorithms for both SIMD and pipeline 

computers. The research concerning the structure and design of the 

parallel algorithms for SIMD computers can be found in many papers in 

the literature. among those are Miranker [1971J. Stone [1971J.[1973bJ. 

Heller [1978J and Wyllie [1979J. While. Chen [1975J and Ramamoorthy 

and Li [1977J consider the applications of arithmetic operations on 

pipeline computers. 

One of the most successful applications on pipeline computers is 

the execution of arithmetic operations. The pipeline approach is ideal 

for situations where the same sequence of operations will be invoked 

very frequently. so that the start-up time to initialize and fill the 

pipe become relatively insignificant. 

An example of a pipeline adder using a linear array is given in 

and that U.=U. l .U. 2 ••••• U. k and V.=V.
l

.V. 2 ••..• V
ik 

represent their 
1. 1. 1. 1. 1. 1. 1. 

binary representations. Figure 3.1 shows how the adder works for K=3. 

The Uij and Vij march toward the processors synchronously as shown. 

At each cycle. each processor sums the three numbers arriving from 

the three input lines and then outputs the sum and the carry at the 

output lines. From Figure 3.1. it is easy to check that When the pair 

(Uij.Vij ) reaches a processor. the carry needed to produce the correct 

jth digit in the result of U.+V. will also reach the same processor. 
1 1 

As a result. the pipelined adder can compute a sum Ui+V
i 

every cycle 

in the steady state. 
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... ... ... .... 
sum 3 sum 1 

~ 1 ~. 
.... 

~ , 
. 

carry in 

or '" 
..; -"". '- ---- V

ll -
-

I - V21 --- V
l2 V31 -- V22 

FIGURE 3.1: Pipeline integer adder 

This algorithm is suitable for an SIMD computer without considering 

the binary representations of the digits. As described in Section 3.1, 

the sum of two n-vectors can be computed in one step using n 

simultaneous processors. The sum can be extended to the addition of 

two (nxm) matrices A and B, where every row of A is added to every row 

of B and then using, 

C i = a
i 

+ b
i 

I for i=1,2, ..• ,n. 

It is clear that the addition may be performed in one step using (n.m) 

processors. 

Tang and Lee [1984J suggest a method to design parallel algorithms 
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for SIMD computers based upon the divide-and-conquer strategy. The 

divide-and-conquer scheme can be briefly specified as follows: Given a 

problem and the initial conditions, divide it into K subproblems. Once 

these subproblems have been solved, combine their solutions into a 

solution for the original problem. 

As an example. consider the problem of finding the maximum of a 

set of N numbers. If the divide-and-conquer approach is used, we 

divide the set into two subsets 51 and 52' each subset consisting of 

N/2 numbers. In each subset 5 .• the algorithm is applied recursively 
~ 

to find its maximum M .. The final step is a merging step, which is 
~ 

selecting the maximum from Ml and M
2

• Figure 3.2 shows an example where 

N=16. Each square represents a process which selects the maximum from 

two numbers. 

nl n2 n3 n4 nS n6 n7 n8 n9 nlO nll n12 n13 n14 nlS n16 

level 2 

level 3 

level 4 

FIGURE 3.2: A recursive doubling t 
of n numbers. echnique to obtain the maximum 
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If the input size is N and there exist N processing elements, the 

divide-and-conquer approach can be executed in the following way: 

Step 1: One processing element splits the N data items into two 

parts with sizes equal to N/2. 

Step 2: Two processing elements simultaneously split each set of 

n/2 data items into two parts with sizes equal to N/4. 

Step logN: N/2 processing elements simultaneously split each set 

of 2 data items into two parts with size 1. 

Step logN+l: N processing elements process each datum to find the 

solution simultaneously in constant time. 

Step logN+2: These N solutions are grouped into N/2 pairs, each 

pair constituting a solution. N/2 processing elements, 

simultaneously merge each pair of solutions obtained 

in the above step into N/2 solutions. 

Step2logN+l: One processor finally merges the two solutions into 

one final solution. 

Figure 3.3 shows the above steps. 

Tang and Lee show in their analysis, that they can choose the 

number of processing elements that give the optimal speed-up ratio. 

They show that, if the number of processing elements used is equal to 

N/logN, then the complexity of the algorithm with N/logN processing 

elements, is of O(logN) and the speed-up ratio is o (N/logN) , which is 

optimal. 

Another powerful method used for generating parallel algorithms 
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for a SIMD computer is based on problem decomposition is called 

recursive doubling. The idea is to recursively divide the original 

computation into independent smaller computations of equal complexity, 

which are then computed in parallel. As an example, consider the sum 
n 

of n numbers, 

S 
n 

La" then, 
i=l 1 

= 
n 

L a
i 

= 
i=l 

m 
L a, + 

i=l 1 

n 

L a i i=m+l 

by repeated splitting and the sum Sn will be evaluated in rlogznl steps 

using rn/2l processors, where rxl is defined as the smallest integer 

greater than x. 

Figure 3.4 illustrates an evaluation tree of the above procedure 

where n is given the value 8, and at each level the operations are 

identical and independent, therefore they can be executed simultaneously. 

Actually, any associative operation (such as, +,x,_, •.. ) could be 

used instead of addition. Heller [1978] named this algorithm the 

associative fan-in algorithm, but it is also known as the log-sum and 

log-product algorithms with the operators + and x respectively. Heller 

also shows that beside the simplicity of the associative fan-in 

algorithms, they are optimal in the sense of achieving minimal 

computation time for any number of processors used. 

An example of an optimal algorithm is given below to compute, 

An = a l 0 a Z 0 •.• 0 an 

where 0 is any associative operation as shown in Figure 3.5. At each 

level the operations are identical and independent, therefore they can 

be executed simultaneously. It is clear from the Figure 3.5 that the 

number of levels is l~ffl{ll and by using fn/Zl processors the result A 
n 

may be evaluated in rlogznl steps. 



8 
FIGURE 3.4: The evaluation tree of L a, 

i=l 1. 

o 
Level 4 

o 0 

C ••• " /~ /\ 
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o 0 0 0 

:~::: /\ /\ /\ /\ 
/\/\/\1\/\/\/\/\ 

a aa aa aa aa aa aaaa.:1 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

FIGURE 3.5: Evaluation tree of expression A 



An important application of the associative fan-in algorithm is 

the computation of inner product (or scalar product). Given two n-

vectors A and B which have the form, 

n 
s = L a.b. , 

i=l l. l. 
where A=(a

l
,a2 , ••• ,a

n
) and 

B=(bl ,b2 ,···,b
n

) 

The evaluation tree of the inner-product algorithm is shown in 

Figure 3.6. The n products are'independent and may be performed 
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simultaneously using n processors, and the sum of the resultant product 

is performed in rlog2nl steps. Therefore, the inner product requires 

rlog2nl +1 steps using n processors. 

FIGURE 3.6: Evaluation tree of the inner product algorithm 
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The inner product algorithm can be extended to evaluate matrix 

multiplication. More generally, the product of m<n and nXp matrices 

could be optimally computed in rlog~ +1 steps using (m.n.p) processors, 

since each component of the m.p results is an inner product of n-vectors. 

Implementation of algorithms for matrix multiplication on SIMD 

computers has been discussed by many researchers. Muraoka and Kuck 

[1973] consider the evaluation of a conformable sequence of matrix 

unlimited parallelism. Hockney and Jesshope [1981], suggest three 

options by which matrix multiplication may be obtained. 

Given three matrices A,B and C, where 
n 

Cij = k~lAikBkj' l~i,j~n • 

Three different options have been suggested to evaluate C, " The first 
~J 

option, the Inner Product Method which is an extension of the inner 

product algorithm requires n2(rlOg2nl+l) steps using n processors, 

since it consists of n
2 

inner products. The second option, the Middle 

Product Method, which computes the inner product over all the elements 

of a column of C in parallel and requires 2n2 steps using n processors. 

The parallelism it exhibits is therefore n/2, compared with rlOg2~ +1 

for the first inner-product option. The third option, the Outer Product 

Method, which computes the inner-product over all the elements of the 

2 array C in parallel requires 2n steps using n processors. In addition, 

Jesshope and Craigie [1980] note that the product of the two matrices 

can be achieved in rlOg2n+iT steps using n
3 

processors. 

In Maruyama [1973] and Kuck and Maruyama [1975] discussed the 

parallel evaluation of arbitrary matrix expressions with unlimited 

parallelism. 



156 

The design of parallel algorithms may involve the restructuring 

of the sequential algorithm into a form that is usually a combination 

of these basic computations. Chen and Kuck [1975J, in their algorithm 

for the solution of a triangular system of operations, is basically a 

sequence of matrix sums and products. 

Unlimited parallelism has been assumed while developing the above 

mentioned parallel algorithms. This often leads to an algorithm that 

requires an impractical large number of processors. The original 

algorithm should be reconstructed into a second algorithm with its 

processor's requirements reduced to a realistic number. The efficiency 

of the new algorithm should be the same as using a large number of 

processors. Two basic principles have been suggested by Hyafil and 

Kung [1974J in which the new algorithm is constructed, namely the 

algorithm decomposition and the problem decomposition principles. In 

the algorithm decompcsition principle, it is assumed that q. operations 
1 

are performed during step i of the original algorithm. In the 

constructed algorithm rqi/p1 steps are required to perform step i, where 

p is the number of processors available. This means, the decompcsition 

takes place in each step. On the other hand, in the problem decomposition 

principle the original problem of order n is partitioned into smaller 

problems of order P and then the parallel algorithm is applied to each 

of the smaller problems. 

Non-numerical algorithms have also been developed on a SIMD 

computer. Wyllie [1979J presented algorithms mainly applied to various 

data structures, such as the counting of the number of elements in a 

linked list and the deletion of an element from a linked list. Another 

widely used non-numerical problem is the sorting of a number of keys. 
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Among those researchers who have studied the implementation of sorting 

algorithms on the SIMDdesign are Baudet and Stevenson [1978) who 

presented a generalized odd-even transposition. Nassimi and Sahni 

2 
[1979) also presented a O(n) algorithm to sort n elements on an nXn 

mesh-connected parallel computer and Thompson and Kung [1977) developed 

2 
an algorithm for sorting n elements on an nXn mesh-connected processor 

array that requires O(n) routing and comparison steps. 
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3.3 PARALLEL ALGORITHMS FOR MIMD COMPUTERS 

A parallel algorithm for a multiprocessor is a set of n concurrent 

processes which may operate simultaneously and cooperatively to solve 

a given problem. Synchronization and the exchange of data is needed 

between processes to ensure that the parallel algorithm works correctly 

and effectively to solve a given problem. Therefore, in some stage in 

the execution of a process there may be some points where the processes 

communicate with other processes. These points are called the 

"interaction points". The interaction points divide a process into 

stages. Therefore, at the end of each stage, a process may communicate 

with some other processes before the next stage of the computation is 

initiated. 

Parallel algorithms for multiprocessors may be classified into 

asynchronous and synchronous parallel algorithms. Because of the 

interactions between the processes, some processes may be blocked at 

certain times. The parallel algorithm in which some processes have to 

wait on other processes is called a synchronized algorithm. The weakness 

of a synchronized algorithm is that all the processes that have to 

synchronize at a given point wait for the slowest amongst them. To 

overcome this problem, an asynchronous algorithm is suggested. In an 

asynchronous parallel algorithm, processes are not generally required 

to wait for each other and communication is achieved by using global 

variables stored in shared memory. Small delays may occur due to 

concurrent accesses to the common memory. 

An algorithm must be decomposed into a set of processes before it 

can be executed into a multiprocessor system. Hwang and Briggs [1984J 

describe two decomposition methods, these are the static decomposition 
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and dynamic decomposition. In a static decomposition, the set of 

processes and precedence relations are known before execution. In 

this method, the communication between processes may be very low, 

provided the number of processes are small; however their adaptability 

is limited. While in dynamic decomposition, the set of processes 

changes during execution. In this method, the process communications 

are high but it can adapt effectively to variations in the execution 

time of the process graph. 

As an example of a synchronous parallel algorithm,suppose it is 

required to compute the matrix, 

Z = A.B + (C+D). (I+G) 

by maximum decomposition. Three processes may be created to compute Z 

synchronously as shown in Figure 3.7. Part of a parallel program that 

computes the value of Z using three processes is shown below. 

var W,Y: shared real; var Sw,Sy: semaphore; 

initial Sw=Sy=O; 

cobegin 

Process Plo begin 

V~-AxB; 

P (Sy) ; 

Z+V+Y; 

end 

Process P2: begin 

W+-C+D; 

V (Sw) ; 

end 

Process P3: begin 

X<-I+G; 

P (Sw) ; 

coend 

y.+-W+X; 

end 

Ilstage 1 of P1II 

Ilstage 2 of P1II 

Ilstage 1 of P211 

Ilstage 1 of P311 

stage 2 of P3 
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From Figure 3.7, it is clear that the set of processes Pl,P2 and 

p3 is a synchronized parallel algorithm because some stages are not 

activated unless the other processes are completed. The second stage 

of process p3 is not activated unless the process p2 is completed. 

Similarly, the second stage of Pl cannot be initiated unless the second 

stage of p3 is completed. Hence, the set of processes Pl, p2 and P3 

is a synchronized parallel algorithm. 

Process p2 Process P3 
" - -,. , , 

I 
, , 
I I , , 

I I 
I 

I I 
/ Process Pl 

I - -~ , .... , .... .... 
I " / 
I " " .-
, stage 1 

" .-, 
,of Pl .,. 

.... 
.... , 

.... 
.... 

.... 
.... 

I 

" 

FIGURE 3.7: Example of a synchronized algorithm with synchronizing 
stages (Z= (A.B) + (C+D) • (I+G)) 

Now if we consider another example which evaluates the sum of n 
n 

numbers ( L ail that is mentioned in Section 3.2, is: 
i=l 

The associative fan-in algorithm that is specified in Section 3.2 

will be used to evaluate S. We assume that the MIMD computer onto 

which the algorithm to be implemented has P processors. Therefore, the 
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expression 5 can be partitioned into P subsets. Thus, 

where ~=n/p is a multiple of p and a parallel program for the evaluation 

of the expression 5 using the NEPTUNE programming constructs is shown 

in Figure 3.8. 

It is clear in this program the P paths (processes) will run 

concurrently. At the end of each path I, where I=1,2, ••• ,p, X(I) 

contains the partial results of the computation of the subexpression 

which corresponds to that which is evaluated by path I. A critical 

section is used to enforce sequential access to variable 5. When all 

paths have been completed, 5 will contain the total value of the whole 

expression. 

$5HARED 5 

$REGION REGl 

5=0.0 

NPATH=N/P 

$DOPAR 10 I=l,P 

X(I)=O.O 

I BEGIN=NPATH * (I-l)+l 

IEND=NPATH*I 

DO 20 K=IBEGIN, lEND 

X(I)=X(I)+A(K) 

20 CONTINUE 

$ENTER REGl 

5=5+X (I) 

$EXIT REGl 

10 $PAREND 
n 

FIGURE 3.8: Parallel evaluation of L a, 
i=l l. 

In asynchronous parallel algorithms, there is no exPlicit dependency 



between processes as in synchronized parallel algorithms and global 

variables or shared data is used as a communication means between 

processes. Also in asynchronous parallel algorithms the processes 

never wait for inputs at any time but continue execution or terminate 

according to the current information in global variables. However, 

processes may be blocked from entering a critical section which are 

needed in many applications. 

Kung [19761 shows an example of asynchronous parallel algorithms 

that may be illustrated using the iterative method. For example, the 

zeros of function f may be computed by Newton's iterative'method; 

where f' (x) is the derivative of f(x). Figure 3.9 shows Newton's 

iterative program using two processors Pl and P2. In the program three 

global variables vl ,v2 and v3 have been used to hold the current values 

of f(x), f' (x) and x respectively. Suppose the evaluation of f'(x) is 

computationally mere expensive than that of f(x), then an asynchronous 

iterative algorithm consisting of two processes pl and P2 can be defined 

as follows. Let process Pl update variables v l and v3 ' while process 

p2 updates v2 as shown on the next page. 

It is seen from the program that, as soon as a process completes 

updating a global variable, it proceeds to the next updating by using 

the current values of the relevant variables without any delay. If 

the initial values of the variables are Vl=f(xo )' V2=f' (xo ) and v3=xl' 

then the timing diagram in Figure 3.10 illustrates the sequence and 

time period of a step completion for each iteration within each process. 



function f I f I ; 

~ Vl,V2,V3: shared real; 

cobegin 

Process PI: begin 
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while < termination criteria S not satisfied > do 

coend 

begin 

Vl+f(V3); //step 1 of PI/I 
-1 

V3+V3-V2 VI; //step 2 of PI/I 

end 

end PI 

Process P2: begin 

while < termination criteria S not satisfied > do 

V2+f' (V3); 

end P2 

//step 1 of p2/1 

FIGURE 3.9: Newton's iterative parallel program 

?,. I 
PI: I 1 

? 
p2:~I _______ f_'~(X~lL) ________ +-_f_'_(~X~2~) ________ ~ __ f_'_(x~3~) ____ ~~ ______ __ 

FIGURE 3.10: Time dia~ram for an asynchronous parallel algorithm 

The number i in the circle on the timing diagram indicates the 

pOint where the ith iteration starts for that process. Then, 
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-1 
x2 = xl - f' (xO) f (xl) 

-1 
x3 = x2 

- f'(x
1

) f(x2) 

-1 
x4 = x3 -f'(x2 ) f(x

3
) 

From the concurrent program given above for Pl and P2, the 

recurrence relation that is generally followed by the execution of the 

process is 

xi+l = xi - f'(Xj)f(Xi ) 

where j~i. Therefore, the iterates generated by the asynchronous 

iterative algorithm are different from those generated by the sequential 

algorithm or synchronized iterative algorithms. 

From the algorithm discussed earlier, we notice the difference in 

the implementation on SIMD and MIMD computers. This follows from the 

difference in the characteristics of the two types of computers. It is 

known that the processors of a SIMD computer are synchronized as well 

as being synchronous, i.e., each process executes the same instruction, 

and the instructions are all executed at exactly the same time. In MIMD 

computers, the processors are not exactly identical and often they differ 

in their speeds. Therefore, even if the instruction streams are identical, 

the processors may not execute each instruction at exactly the same time. 

In fact, in the design and analysis of parallel algorithms for asynchronous 

multiprocessors, one should aSSume that the time required to execute 

the steps of a process carried out by one processor is unpredictable 

(Kung, [1976]). 

Parallel algorithms for multiprocessors are studied by Kung [1976], 

[1980] including both synchronized and asynchronous algorithms. Baudet 

[1976], Barlowet al [1982] studied the performance analysis of 

algorithms on asynchronous parallel processors. Iterative techniques 
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for solving linear systems of equations are given in Conrad and 

Wallach [1977]. Barlow and Evans [1984] developed parallel algorithms 

for the iterative solution to linear systems. Evans and Yousif [1985], 

Yousif and Evans [1985a,b] have studied different implementations of 

sorting and merging algorithms on the MIMD computer. 
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3.4 VLSI AND SYSTOLIC ALGORITHMS 

The development in hardware technology has had a great effect on 

computer design. It is noW feasible to build low-cost, special purpose, 

peripheral devices to rapidly solve sophisticated problems. VLSI offers 

outstanding opportunities for inexpensive implementations of high

performance devices. It is clear in VLSI technology that simple and 

regular interconnections lead to cheap implementations and high densities, 

and high density implies both high performance and low overhead for 

support components (Mead and Conway, [1980]). For these reasons, to 

design an effective parallel algorithm for VLSI processors there has to 

be a simple and regular data flow. To minimize execution time, pipeline. 

techniques may be used, i.e., processing may proceed concurrently with 

input and output. The best performance may be obtained by using 

pipelines and multiprocessing at each stage of processing. 

As long as the communication in VLSI remains restrictive, locally

interconnected arrays will be of great importance. An increase of 

efficiency can be expected if the algorithm arranges for a balanced 

distribution of work load while observing the requirement of locality, 

i.e., short communication paths. These properties of load distribution 

and information flow serveS as a guideline to the designers of VLSI 

algorithms, and may eventually lead to new designs of architecture and 

language. Systolic and wavefront arrays are the first such special

purpose VLSI architectures, which boast tremendously massive concurrency. 

Kung [1985] shows that to map an algorithm onto an array, a notation 

should be used so it can be easily understood and compiled into an 

efficient VLSI array processor. Thus, a powerful expression of array 

algorithms will be essential to the design of arrays. Systolic and 
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wave front expressions are two ways of array algorithm formation. 

As shown in Chapter 1, a systolic array is very tractable to 

VLSI implementation. A systolic system is a network of processors which 

compute and pass data through the system. In a systolic system, every 

processor regularly pumps data in and out, each time performing some 

short computation, so that a regular flow of data is kept up in the 

network. 

Basic processing cells used in the construction of systolic 

arithmetic arrays are the additive multiply cells specified in Figure 

3.11. This cell has the three inputs A,B,C and the three outputs A=A, 

B=B and D= C+A*B (inner product). Six interface registers are assumed 

to exist and are attached to the input/output ports of a processing cell. 

All registers are clocked for synchronous transfer of data amongst 

adjacent cells. The additive-multiply operation is needed in performing 

the inner product of two vectors, matrix-matrix multiplication, n~trix 

inversion and L-U decomposition of a dense matrix. The processor is 

capable of performing the inner product step and is called the inner 

product step processor. ( 

A D 

1 
B __ ~ ~--~.B 

A C 

FIGURE 3.11: Geometries for the inner product step processor 
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Many different array connections are suggested for different 

compute-bound algorithms. An example of connected processor arrays 

are the linearly, the orthogonally and the hexagonally mesh-connected 

(or hex-connected) scheme as shown in Figure 3.12. 

(a) Linearly connected 

(b) Orthogonally connected (c) Hexagonal1y connected 

FIGURE 3.12: Mesh-connected processor arrays 

Consider, for example, the construction of a systolic array for 

the matrix-vector multiplication which is shown by Mead and Conway [1980). 

T Given a matrix A=(aij ), a vector ~=(xl,x2, ••• ,xn) and a vector 

T 
Z=(Y1'Y2""'Yn) which can be computed by the following recurrences: 

(1) = 0 
Yi 

(k+1) (k) 
Yi = Yi + aikxk ' 

(n+l) 
Yi = Yi 

Suppose A is an nxn band matrix* with width* w=p+q-1. Then the above 

* See Chaptep 4 fop definition. 
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recurrence can be evaluated by pipe lining the x, and y, through w linearly 
l. , l. 

connected processors. Figure 3.13 illustrates the algorithm for the 

band matrix-vector multiplication problem. While Figure 3.14 shows 

the linearly connected network for the matrix-vector multiplication 

problem shown in Figure 3.13. 

In general, the matrix-vector multiplication algorithm is carried 

out as follows: 

Initially y, is initiated to zero and moves to the left, while 
l. 

the xi moves to the right and the a ij 
are moving down. All the moves 

are synchronized. Each Yi is able to accumulate all its terms, namely, 

a, , 2x, 2' a, , lX, l' a, ,x, and a, , lX, l' before it leaves the 
~,J- 1- 1,J- 1- 1,1 1 1,1+ 1+ 

network. p . 
~ 

all a 12 

q a2l a
22 

a
23 

a 3l a
32 

a
33 

a
34 

a 42 a 43 a
44 

" ... 
" , 

o " 

... 
... 

, , 
... , , 

... 

, 

0 

, 
... 

" 
, a 

" n-l,n , 
a n,n-l a 

n,n 

x4 , 
I 
I 
I 
I , 
I 

x 
n 

= 

FIGURE 3.13: Multiplication of a vector by a band matrix with p=2 and q=3 

The first seven steps of the algorithm can be illustrated in Figure 

3.15. 

Note that when Yl and Y2 are output they have the correct values. 

Also at any given time alternating processors are idle. It is possible 

to use w/2 processors in the network for a general band matrix with band 

width w. All the components of Z can be computed in (2n+w) time units 
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Comments 

Yl is fed into the fourth 

processor initialized at o. 

Xl is fed into the first 

processor while Y
l 

is moved left 

one place (from now on the xl 

and Yl keep moving right and 

left respectively) • 

all enters the second processor 

where yr-Yl+allxl. Thus 

yl=allxl • 

a 12 and a
21 

enter the first 

and third processors, 
respectively, Yl=allxl+a12x2 

and y
2

=a
21

x
l

. 

Yl is output Y2=a21xl+a22x2 

y 3=a 31xl • 

Y2=a21xl+a22x2+a23x3 

Y3=a31xl+a32x2· 

Y2 is output 

Y 3=a31 xl +a32 Xz +a3 3
x3 

y
4

=a
42

x
2 

FIGURE 3.15: The first seven steps of the matrix-vector multiplication 
algorithm 
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using the above network. While the same n components of y needs O(wn) 

units of time by using a sequential algorithm on a uniprocessor. 

As another example, a systolic array may be constructed for the 

multiplication of two banded matrices. The matrix multiplication can 

be computed by the following recurrences: 

C(l) = 0 
ij 

C~~+l) = c~k) b 
1J 1J + a ik kj , 

= C(n+l) 
ij 

k=1,2, ... ,n 

Given two band matrices of bandwidths w
l 

and w
2 

respectively, 

then (wiw2) processing cells are required to form a systolic array 

for matrix multiplication. The resultant product matrix has a bandwidth 

of w
l

+w
2
-l. Figure 3.16 shows an example of a band matrix multiplication 

application. Both matrices A and B have a bandwidth of size 4 and the 

resultant matrix C=A.B has a bandwidth of 7 along its principal diagonal. 

In this example it is required that wlxw2 4x4 = 16 multiply cells 

are needed to construct the systolic array shown in Figure 3.17. The 

size of the array is determined by the bandwidths w
l 

and w
2

' independent 

of the dimension of the matrices. 

The element of A=(a .. ) and B=(b .. ) matrices enter the array along 
1J 1J 

the two diagonal data streams. The initial values of C=(c .. ) entries 
1J 

are zeros. The outputs at the top of the vertical data stream give the 

. out in 
product matr1x (c

ij 
= c

ij 
+ a

ik 
* b

kj 
in each processing cell) • Three 

data streams flow through the array in a pipelined fashion. If the 

time delay of each processing cell be one unit time. This systolic 

array can finish the band matrix multiplication in T time units, where 
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Therefore, the computation time is linearly proportional to the 

dimension n of the matrix. 

When the matrix bandwidths increase to wl=w2=n (for dense matrices 

A and B), the time becomes O(4n), neglecting the input/output time 

delays (Hwang and Briggs [1984]). If one used a single divide-multiply 

3 
processor to perform the same matrix multiplication O(n ) computation 

time would be needed. The systolic multiplier thus has a speed gain 

2 of O(n). For large n, this improvement in speed is rather impressive. 

A systolic array often represents a direct mapping of the 

computations onto processor arrays. It will be used as an attached 

processor of a host computer. The systolic array features the important 

properties of modularity, regularity, local interconnection, as well as 

a high degree of pipelining and highly synchronized multiprocessing. 

One problem however, is that the data movements in a systolic array are 

controlled by global timing-reference. In order to synchronize the 

activities in a systolic array, extra delays are often used to ensure 

correct timing. 
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FIGURE 3.16: Band matrix multiplication 
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FIGURE 3.17: The hex-connected processor array for the matrix multiplication problem 
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To overcome the problems mentioned in systolic arrays, we need 

to take advantage of the control-flow locality, in addition to the data-

flow locality. This permits a data-driven, self-timed approach to array 

processing. Conceptually, this approach substitutes the requirement of 

correct "timing" by correct "sequencing". This concept is used 

extensively in data flow computers and wave front arrays. The wavefront 

array processor is conceived as a programmable, data-driven concurrent 

array processor aiming at solving a majority of matrix algorithms. 

Kung [1985] showed that, the derivation of a wave front process consists 

of three steps: (i) the algorithms are expressed in terms of a sequence 

of recursions, (ii) each of the recursions is mapped to a corresponding 

computational wavefront, and (iii) the wave fronts are successively 

pipe lined through the processor array. 

Figure 3.18 shows a square, orthogonal NxN matrix array of 

processor elements with regular and local interconnections. Most 

matrix algorithms can be mapped naturally onto matrix arrays as shown 

in Figure 3.18. 

The computational wave front concept is used to create a smooth 

data movement in a localized communication network. A wave front in the 

processing array will correspond to a mathematical recursion in the 

algorithm. Successive pipe lining of the wave fronts through the 

computational array will accomplish the computation of all recursions. 

As an example consider the matrix multiplication which was discussed 

previously. 

Let A=(a.
j
), B=(b .. ) and C=AxB, all be NXN matrices. The two 

l. l.) 

matrices A and B are decomposed such that matrix D into rows Dj and 

matrix A into columns Ai' and hence, 
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MEMORY MODULES 

---- first 
wave 

- - - - - - - -' second 
wave 

FIGURE 3.18: The configuration of wave front array processor 
(4 x 4 processing elements of the array) 

The matrix multiplication can then be carried out in N recursions. 

executing. 

• with c(O)=o. recursively 

for k=1.2 ••••• N. 

To make it more clear. the computational wave front for the first 

recursion in matrix multiplication is now shown in more detail. Suppose 

that initially. all the registers for the processing elements (PE's) are 

set to zero: 
c~~) = 0 for all i.j. 
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The elements of matrix A are stored in the memory modules to the 

left (in columns), and those of matrix B in memory modules on the top 

(in rows). The process starts with PE(l,l) and 

c(l) ~ 
11 

c (0) + * b 
11 all 11 

is computed. The computational activity then transmits to the 

neighbouring PE's (1,2) and (2,1) which will execute: 

and 

The next activity will be at PE's (31,) ,(2,2) and (1,3), thus 

creating a computation wave front travelling down the processor array. 

Once the wave front sweeps through all the cells, the first recursion 

is complete. An identical second recursion will be executed in parallel 

by pipelining a second wave front immediately after the first one. For 

example, the (1,1) processor will execute 

~ c(l) + a 
11 12 

(k) - * b * b * b C -a +a + .•. +a ij il Ij i2 2 j ik kj 

The major characteristics of wave front arrays are: 

(i) Self-timed, data-driven computation, meaning that no global 

clock is needed, 

(ii) Regularity, modularity and spatial locality of interconnections. 

(Hi) Effective pipelinability. 

To conclude this section, one can often reduce the number of processors 

required by an algorithm if the matrix is known to be sparse or symmetric. 

For "sparse band matrices", which are band matrices whose non-zero 

entries appear only in a few of those lines in the band which are parallel 



to the diagonal, then by introducing appropriate delays to each 

processor for shifting its data to its neighbours, the number of 

processors required by the algorithm above can be reduced to the 

number of those diagonal lines that contain non-zero entries. This 

variant is, of course, useful for performing iterative methods involving 

sparse band matrices. 
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3.5 PARALLEL NUMERICAL ALGORITHMS 

Parallelism may exist naturally in a numerical algorithm that is 

designed for a sequential computer and a parallel numerical algorithm 

can be created by recognizing the inherent parallelism in a sequential 

algorithm. Natural parallelism is present mainly in the algorithms of 

linear algebra and in the algorithms for the numerical computation of 

partial differential equations. 

It is sometimes necessary to exploit hidden parallelism in a serially 

implemented algorithm. This is possible after a modification of the 

original algorithm, which usually requires either the introduction of 

redundant operators or the addition of some new ideas to the original 

method which were not contained in its serial implementation. Such 

algorithms are chaotic relaxation for the computation of linear equations, 

the computation of the eigenvalues of symmetric matrices by Jacobi's 

method, eliminating simultaneously several matrix elements and splitting 

the original set of ordinary differential equations into many subsets. 

Finally, there also exists parallel algorithms specially designed 

for parallel computers. Their implementation on serial computers is of 

no value. They are algorithms for solving problems for which only 

complete serial algorithms have been available so far, such as recurrent 

relationships, elimination methods for the calculation of tridiagonal 

systems of linear equations, one-step iterations for calculating roots 

of non-linear equations, one-step methods for the computation of the 

initial values for ordinary difference equations, and the Gauss-Seidel 

iteration method. When computing these problems on a parallel computer, 

it was necessary to either implement the whole algorithm or design a 

new algorithm for their calculation. 



180 

Several surveys of parallel numerical algorithms have been 

introduced by different researchers. Miranker [1971] summarized some 

early work in numerical analysis, Sameh [1977] explained in general 

the numerical parallel algorithms, Heller [1978] gave a survey of 

parallel algorithms in numerical linear algebra, Feilemeier[198l] gave 

a detailed study for a wide area of numerical algorithms and finally, 

Schendel [1984] provided an introduction to the principles of parallel 

numerical analysis and certain recognized principles which are required 

for the development of parallel numerical algorithms. 

In this section some of the parallel numerical algorithms will be 

considered. 

3.5.1 Inherent Parallelism 

As we mentioned earlier, one way to construct a parallel algorithm 

is to start with a serial algorithm and convert it into a parallel one. 

This principle which can be applied to most SIMD machines is to start 

with a serial algorithm and to convert it into a precedure which operates 

on vectors which can be carried out in parallel. As an example, 

consider the solution of an nxn system of linear equations with a lower 

triangular* coefficient matrix, 

Ax = b , 

where 

all 
0 a2l a22 

A = , and A is non-singular* . 
~3l ~32 a 

133 " 
I ... 
• ... ... 

a nl an2 a n3 --- a 
nn 

* See Chapter 4 for the definition. 
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all ''1 b
l 

a21 
a

22 x2 b2 
I , 0 I = (3.5.1.1) I , 
i , 

a 
nn 

x 
n 

b 
n 

2 Schendel [1984J shows that, by using a serial computer n arithmetic 

operations are necessary to effect the inversion. If for i=1,2, .•• ,n 

we define 

1 

1 
0 , , , 

L. = l/a
ii ~ 

I 1 
I , 

0 "' "' -a la .. 1 n ~~ 

x = L L 1 ••• Llb • - n n-

Then we obtain the solution from the relation 

i=l,2, ... ,n, 

(n+l) 
where Y = x. This relation represents the Gaussian elimination 

for (3.5.1.1). It can be shown that for i=1,2, ••• ,n 

a. 1 . 
~+ ,~ 

aii 

(i) (i) 
y. , ... ,y -
~ n 

If n processors are available the solution x can be calculated in 

approximately 3n steps, that is O(n). 

2 
n (for serial) n The speed-up is, S 

n = ~-7:':::""':=:.::?'-:-:- = 3n (for parallel) 3 and, 



the efficiency, E 
n 

S 
n =-

n 
n 

= 3.n = 
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1 
"). 

If, however, the number of processors available is k, where k<n, 

r~ then, corresponding to n serial steps, [k[ parallel steps are necessary 
2 

( i) 
for the calculation of (Liy ) , 

n 
therefore, O(j{) steps are necessary, 

giving a speed-up of Sk=O(k) and an efficiency of Ek=O(l). 

Tb make it more clear, in the serial procedure it is equivalent 

-1 . -1 
to setting, ~=£ to A ~=A b by the division of the rows by the 

diagonal terms and the reduction to zero of subdiagonal* terms in columns 

by multiplication and subtraction. Thus, to deal with the first row 

To reduce the (2,1) element to zero requires one division (by all). 
b l 

replacing the second element of the £ vector by b2-a2l*(all) , involves 

that is a multiplication and subtraction. The processing of· the first 

column thus involves 1+2(n-l) operations. For the second column and 

subdiagonal terms 1+2(n-2) operations are necessary. While the whole 

process requires n divisions plus 2(1+2+3+ .•. +n-l) multiplications and 

subtractions, i.e., a total of n+2.t(n-l)n=n 
2 

arithmetical operations in 

sequence. 

E'or n=4, the proposed procedure is as follows, 

1 
0 0 0 b

l 

bl l all all 

I a2l 
a

21
b l 

1 0 9 b2 +
b2 1 all all , 

L = a 3l Yl = and Y2=L1Yl = a
31

b
l 

I 
1 

0 1 0 b
3 

+b
3 all all 

a
4l

bl 
I a4l 

0 1 b4 
I 

0 +b 41 all all ...J 

* See Chapter 4 for definition. 
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By using 4 

In the diagrams 

the operations 

Processor 1 

/'\' 
1 

-- • Y11 all 

processors, 

the symbols 

illustrated. 

the parallel operations are shown below. 

at the roots of the trees are the result of 

2 3 4 
Y22 Y23 

The time required to execute all operations in parallel corresponds to 

a division (by all) , multiplication and division, 3 time units. Note 

that xl~Y2l. The next step uses the matrix 

1 0 0 0 

0 
1 

0 0 a22 
L2 ~ a 32 

0 1 0 a22 

0 
a 42 

0 1 a22 

to operate on Y2~(Y21'Y22'Y23'Y24) to get Y3. Since xl~Y21 only three 

components, Y32'Y33 and Y34 are needed in the next step and only three 

processors need to be used. 

Processor 2 3 4 

a 32 - -_. y 
a22 22 
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Again, 3 time units have been used and x2~Y32' The remaining two steps 

can be shown schematically as, 

Processor 3 4 

1\' 
1 -- * y a 33 33 

a43 - -- * y a33 33 

This gives x3~Y43' Finally, 

1\ 
1 -- * y a44 44 

and x4 ~ Y54' All steps have used 3 units of time except the last 

which requires only 2. Thus, for general n the number of time steps 

are 3n-l. 

3.5.2 Vector Iteration Method 

In a vector iteration method, a direct (non-iterative) serial 

algorithm is substituted by an iterative parallel algorithm. The speed-up 

factor of the parallel version depends on the ratio of the steps needed 

in the direct version to those required by the iteration. Heller [1978J 

gives an example for the triangular decomposition of a tridiagonal 

matrix A. 
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The ui elements are calculated from the scheme 

, 
.... 

.... 
.... 

.... 
.... 

u, ~ d,-e,fi llu, 1 ' 2,i,n 
1. 1. 1. - 1.-

The mi can then be calculated in parallel 

m; = e. lu. 1 I i=2, 3 I •• • ,n 
.... 1. 1.-
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0 , 
.... 

.... , , 
'f , , n-l , 

U 
n 

(3.5.2.1) 

The iteration method can be used to convert the serial equation (3.5.2.1) 

to a parallel version as: 

(0) 
~ d, u, 

~ ~ 

( , ) (j-l) u J ~ d, - e,f, /u, 1 
~ ~ 1. 1.- 1.-

I i=l,2, ... ,o, 

where 
( ') u J is the jth iterate. 

This parallelism can be a reasonable one if the computer can carry 

out operations with vectors of n components faster than n scalar 

operations. Moreover the number of iterations required must naturally 

be significantly less than n. 
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3.5.3 Recurrence Relations 

In numerical analysis. the solution of a problem is often expressed 

as a sequence of evaluations x1 ,x2 , ... ,x
n

, ... , where each Xi (i=1,2, ... ,n) 

may depend on one or more x~s where j<i. The equations describing this 
J 

dependence are called "recurrence relations". Because the definition 

of the recurrence algorithm is given in terms of a sequential 

evaluation which presents a special problem for a parallel computer. 

the problem can be re-phrased so as to allow the parallel evaluation to 

be carried out at the expense of introducing extra arithmetic operations. 

As an example. we consider the evaluation of the partial sums of a 

sequence of numbers. 

The general linear first-order recurrence can be expressed as the 

evaluation of the sequence Xj from the recurrence relation. 

x
J
' = a,x, 1 + d, 

J J- J 
j=l,2, ... ,n (3.5.3.1) 

The partial sum 5i • i=1.2 •..•• n can be evaluated as a special case of 

(3.4.3.1). and defined as. 
i 
L a j • 

j=l 
i=1,2, ... ,n, (3.5.3.2) 

where 5 j is the sum of the first j numbers in the sequence d
l

.d
2 

••.•• d
n

• 

The partial sums may be evaluated simply from the recurrence 

Si = 5i _l + a i • i=1.2 ••.•• n. 

The sequential sum method of evaluation may be realised with (n-l) 

additions and (n-l) routing operations as shown in Figure 3.19. for the 

case n=8. 

Hockney and Jesshope [1981] describe an alternative parallel 

approach to the partial sum (3.;.3.2) which is known as the "cascade 

partial sum" and is shown in Figure 3.20 for the case n=8. 
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FIGURE 3.19: The sequential evaluation of partial sums of eight numbers. 
The vertical axis is time, the horizontal axis is storage 
location or processing element number. 
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An array of n variables is first loaded with the data (a!s). In 
l. 

level one, a copy of the variables is shifted one place to the right 

and added to the unshifted variables in order to form the sum of the 

adjacent variables. At the next level, the process is repeated but 

with a shift of two places to the right, thereby producing sums of 

groups of four numbers. As the shifts are made, zeros are brought in 

from the left as required. In general, at the tth time level a shift 

of 2 t places is made and at level t=1092n the variables contain the 

required partial sums. 

The cascade partial sum method requires 1092n additions with 

parallelism n, and (n-l) routing operatings with parallelism n. The 

sequential evaluation of the general first-order recurrence (3.5.3.1) 

requires, 2n arithmetic operations with parallelism 1 and n routings 

with parallelism 1. As shown in Figure 3.21, variables linked by a 

brace are stored in the same PE. One PE is used to evaluate each term 

of the recurrence. 

The equivalent parallel algorithm to the cascade sum method is 

known as "cyclic reduction", and has a wide application in numerical 

analysis, particularly when one is trying to introduce parallelism into 

a problem. Figure 3.22 shows the evaluation tree of the cyclic 

reduction method to linear first-order sequences, for n=8. 

There exists many parallel numerical algorithms specially 

designed for parallel computers, among those algorithms are the new 

parallel algorithms for partial differential equations, Evans [1984); 

the solution of systems of linear equations. Chen and Kuck [1975). 

Heller [1978) and Borodin and Munro [1975) have also shown that if 

3 
p=O(n ) processors are available, a triangular system of n equations 
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FIGURE 3.20: The cascade sum method of forming partial sums. If only 
the total sum S8 is required, then only the operations 
shown with dotted lines are carried out. 
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FIGURE 3.21: The sequential evaluation of the general first-order recurrence 
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FIGURE 3.22: The cyclic reduction of the general first-order recurrence relation 
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2 
of the form Lx:b can be resolved in O(log2n) time steps. Sameh and 

Brent [1977] represent algorithms for the solution of a dense triangular 

system of equations. Also, parallel versions of well known sequential 

numerical algorithms have been implemented by different researchers, 

such as, the parallel LR-algorithm, the parallel Gauss algorithm and 

the paralleljs~to~ of iterative algorithms such as the Jacobi, Gauss-

Seidel and SOR algorithms. 
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3.6 PARALLEL NON-NUMERICAL ALGORITHMS 

The algorithms derived from non-numerical applications are an area 

which is widely applied and from which the benefits of parallelism are 

very large. An example of a parallel non-numerical algorithm that has 

been investigated by different researchers are the sorting of a given 

set of numbers, the search for a given argument, the merging of strings 

of numbers, deleting an element from a linked list and counting the 

number of elements in a linked list, etc. 

Sorting is an important application on a sequential computer and 

its implementation on SIMD and MIMD parallel computers have been studied 

by many researchers. In the first example, the implementation of the 

parallel non-numeric algorithm on MIMD type machines will be considered. 

Yousif (1983) presents many non-numerical algorithms for MIMD computers, 

among these are different merging and sorting algorithms. The basic 

principles of the 2-way merge algorithm is given by Knuth (1973). The 

parallel implementation of this algorithm is performed on the M sorted 

N 
subsets of size (M) each, where N is the size of input, N is divisible 

by M and M is a power of 2. This merge algorithm can be completed in 

(logM) steps where parallelism is introduced within each step and not 

amongst the steps as is shown in Figure 3.23. 

Steps/subset 
1 2 3 4 5 6 7 8 

1 

2 

3 

FIGURE 3.23: The parallel 2-way merge algorithm 
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In Figure 3.23, each step can be performed in parallel, where each 

two neighbouring subsets are merged by one process to form a subset of 

2N size (~). Also from Figure 3.23 it can be noticed that the number of 

subsets to be merged is halved in each successive step until the final 

step where only two subsets are to be merged in which case only one 

process is required. 

Yousif [1983] shows that the total complexity of the 2-way merge 

algorithm in one processor is, 

tlM = N log M-M+l 

and the total complexity of the 2-way merge algorithm in P processors 

is, 

N M 2N M M 
tpM ~ P log p + i?(P-l) - p + log(p) + 1. 

The speed-up ratio for the merge algorithm is, 

tlM 
S (M) = --- , which is of 
merge tpM 

o( P ~Og M ) 

log (-) +2p-2 
P 

Yousif [1983] implements another parallel non-numerical algorithm 

using the abcve parallel merge algorithm in its final stage. This is 

the well known sequential sorting algorithm, the bubble sort (Knuth 

[1973]). The serial "bubble sort" proceeds by comparing and exchanging 

pairs of adjacent items. In order to sort an array (xl,x2"",xn)' 

(n-l) comparison-exchanges (xl ,x2>,,(x2 ,x3) , ••• ,(xn_l,x
n

) are performed. 

This results in placing the maximum at the right end of the array. 

After this first step, x is discarded, and the same "bubble" sequence 
n 

of comparison-exchanges is applied to the reduced array (X
l

'x
2

, ••• ,x
n

_l ). 

By iterating (n-l) times, the entire sequence is sorted. Knuth [1973J 

shows that to run the algorithm on a sequential machine (i.e. one 
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processor) where N is the number of elements to be sorted, needs an 

average, 

1 2 
C ~ i(N -N £nN-N) comparisons 

and 
1 2 

E = 4(N -N) exchanges, 

o 321 3 i.e., the total running-time of the algorLthm, tl~ -~~nN-~ that is 

2 the sequential bubble sort algorithm is of O(N ). 

Yousif [1983] present a parallel bubble sort version on an MIMD 

type machine. In that implementation, the input set to be sorted is 

partitioned into as many subsets as the system allows. Then for each 

subset the sequential bubble sort method is applied. The final step 

will be the merging step, where all the sorted subsets are merged to 

determine the linear ordering of their unions by means of pairwise 

comparisons between the subset elements. It was shown that, if the input 

set N, is divided into M subsets (M~P, where P is the number of available 

processors) each contains N/M elements, the total time to run the 

algorithm on one processor is: 

3 N 2 1 ~ N 3 N 
= M[4(i) -2 Mtn (M>-4MJ 

3 N
2 

= ---4 M 

Meanwhile, when this algorithm is run in parallel with P processors, 

r~l subsets have to be carried out by each processor. Thus, the total 

time needed is, 

tps = Ir~l [2 N
2 

-.!.!! £n (!!) _ 2 !!] 
pOI 4 i 2 M M 4 M 

3 N
2 

1 N N 3 N 
~ 4 MP - "2 P £n ("M) - 4 P + 1. 

The total time (Tl ) to run the bubble algorithm on one processor is 

equal to the corresponding times for the sorting and merging sections. 



Then, 
Tl = t lS + tlM 

3 i 1 =----N 
4 M 2 
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N 3 
in (M) - 4 N+NlogM-M+l. 

For the parallel implementation, when the bubble sort algorithm is run 

on P processors, the total parallel time (T ) will be equal to the 
p 

corresponding times for sorting and merging. Then, 

T = t + t 
P PS PM 

3 N2 1 N N 
~ 4 MP 2 P in (M) 

3 N N M 2N M M 
4 P + p log(p) + l?(P-l)- p + log(p)+2. 

The speed-up ratio, Stotal (M) 
Tl 

= - which 
T 

is of a( : log M) • 
log (p) +2p-2 P 

For SIMD type parallel computers, Baudet and Stevenson [1978] 

present a sort algorithm which is based upon a generalization of the 

odd-even transposition sort (Knuth [1973]). The serial odd-even 

transposition sort can be considered as an algorithm for sorting K 

elements using K processors in K steps of parallel "comparison exchanges". 

The algorithm works as follows: 

Let a l ,a2 , ••• ,ak be the sequence to be sorted. In the first step, 

for i=1,3, ••• ,2Lk/2J-l, processor Pi compares elements a
i 

and a
i

+
l 

and 

if ai>ai +l the two elements are exchanged. In the second step, the same 

comparison exchanges are executed for i=2 ,4, .•. ,2 L(k-l) /2J. Steps 3,5, ... 

are the repetitions of step 1, and steps 4,6, ••• , are repetitions of 

step 2. A generalization of the above algorithm to partially sorted r-

sequences is shown below. In the first step for i=l, 3, ••• ,2 Lk/2J -1, 

processor Plo' merges the two subsequences 5, and 5, 1 and then assigns 
1. 1.+ 

to 5, the first half of the resulting merged sequence and assigns to 1. 

Si+l the second half. For the second step, the same operations are 
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executed but for i=2,4, .•. ,2L(k-l)/2J. Again steps 3,5, ... , are the 

repetitions of step 1 and steps 4,6, ••. , are repetitions of step 2, as 

shown below in Figure 3.24. 

Step 1 SteE 2 Step 3 Stel2 

Sl: 43,54,63 ~Pl 28,43,54 28,43,54 rPl 17,25,28 

S2 : 28,72,79 63,72,79 ~ p2 
17,25,32 32 ,43 'S4}-P2 

S3: 32,47,84 rP3 17,25,32 63,72 ,79 ~P3 47,63,66 

S4: 17,25,66 47,66,84 47,66,84 72,79,84 

FIGURE 3.24: Four steps of parallel "merging-splittings" for the 
partially sorted 3-sequence numbers 

The total execution time of the algorithm is: 

T = (nlogn)/k + O(n) • 

For a sequential computer, the minimum number of comparisons 

4 

required for sorting a sequence of n numbers is asymptotically nlogn. 

17,25,28 

32,43,47 

54,63,66 

72,79,84 

Therefore, when k is smaller than logn, the asymptotic speed-up ratio of 

the algorithm over the optimal sequential algorithm is k, which is optimal. 

In particular, when k=logn, the ratio of this parallel algorithm to the 

optimal sequential algorithm is of order logn, the number of processors. 

On the other hand, when k is greater than logn, the total execution time 

required for the algorithm is asymptotically linear in n. 

In Thompson andKung [1977] two SIMD algorithms are presented to 

2 
sort n elements on an nXn mesh-connected processor array. In their 

model, they assume a parallel computer with N=nxn identical processors, 

the interconnections between the processors are defined by the following 

two dimensional array: 
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n -----~) 

~ 
n 

where the p's denote the processors. That is, each processor is 

connected to all its neighbours. Processors at the boundary have two 

or three rather than four neighbours. The two timing factors used in 

the evaluation of the algorithm complexity are the routing time (tR) 

and the comparison time (te). Routing time (t
R

) , is the time required 

to move one item from a processor to one of its neighbours. While 

comparison time (te ) is the time required for one comparison step. 

Concurrent data movement is allowed as long as it is all in the same 

direction, and also up to N comparisons may be performed simultaneously. 

This means that a comparison-interchange step between two items in 

adjacent processors can be done in time (2tR+te ) time units (route 

left, compare, route right). A mixture of horizontal and vertical 

comparison interchanges r~quires at least (4tR+te ) time units. The N 

multiprocessors are indexed according to a pre-specified rule. The 

indexing rules considered are the row-major, the snake-like row-major 

and the shuffled row-major rules as shown in Figure 3.25. If it is 

assumed that N keys with arbitrary values are initially loaded in the 

N processors, each receiving exactly one key, the sorting problem 

consists of moving the ith smallest key to the processor indexed by i, 
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for i=1,2, ••• ,N. The choice of a particular indexing scheme depends 

upon how the sorted elements will be used. 

GJ B GJ GJ GJ GJ Q GJ 
0 G GJ 0 GJ 0 GJ [2] 

0 0 ~ [2] 0 GJ 0 @ 

0 G 0 B ~ ~ ~ 0 
(a) Initial loading pattern (b) Sorted pattern with row-major 

before sorting indexing 

GJ W GJ G GJ GJ GJ GJ 
(2] GJ GJ [2J GJ 0 GJ GJ 
GJ G [£J [2J GJ GJ ~ ~ 
~ [;J 0 ~ ~ 0 ~ @J 

(c) Sorted pattern with shuffled (d) Sorted pattern with snake-like 
row-major indexing row-major indexing 

FIGURE 3.25: Sorting patterns with respect to three ways of indexing 
the pOs. 

In Thompson and Kung [1977J, two algorithms are presented that 

perform this array sort in O(n) comparisons and moves. In the first 

algorithm, the odd-even merge sort [Batcher [1968J, Knuth [1973J) on 

a linear array has been generalized to a square array of processing 

elements. The second algorithm uses a bitonic sort (Batcher [1968J, 

Knuth [1973J) and orders the keys with shuffled row-major indexing. 

Nassimi and Sahni present an O(n) algorithm to sort n2 elements 
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on an nXn mesh-connected processor array. This algorithm sorts the n2 

elements into row-major order and is an adaptation of Batcher's 

bitonic sort. 

Implementations of more parallel non-numerical sorting and 

searching algorithms will be discussed in Chapter 7 • 

• 
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3.7 PERFORMANCE OF PARALLEL COMPUTER ALGORITHMS 

In the previous sections different methods for parallel algorithm 

design have been considered. However in a study of parallel computer 

algorithms, we need some measure of efficiency to evaluate the algorithms. 

An appropriate measure for specific problems is the speed-up ratio and 

the efficiency of the algorithm. If T denotes the computation time on 
p 

a computer with P processors, and Tl to denote the computation time of 

a sequential computer (uniprocessor). Then the speed-up (S ) of a P 
p 

processor computer over a sequential computer is defined as, 

S 
P 

and the efficiency (E ) is defined as, 
p 

(3.7.1) 

(3.7.2) 

Where S is the maximum speed-up using P simultaneous processors and E 
p P 

measures the utilisation of the parallel machine. The longer that 

processors are idle, or carry out extra calculations introduced through 

the parallelisation of the problem, the smaller E becomes. It can be 
p 

verified that these definitions are consistent with the uniprocessor 

case when p=l. To achieve a fair comparison, we always compare the best 

serial algorithm for the computation with the best parallel algorithm, 

even when the two algorithms are quite different. 

Stone [1973] indicates that for a computer system with N processors, 

the ideal speed-up ratio is N, but this is hardly ever achieved. 

Computations that are very well-suited to parallel computer systems have 

a speed-up of KM, where K is a constant near unity, but strictly less 

than unity. The best speed-up ratio are linear in N. 
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To compare two parallel algorithms for the same problem 5chendel 

[1984J introduces the following measure of effectiveness F as: 
p 

F = 5 le (3.7.3) 
p P P 

where I 

e = PT (3.7.4) 
P P 

measures the 'cost' of the algorithm. It can be noticed that 

F =(5 IpT ) = E IT = E 5 ITl li 1. (3.7.5). 
p p P P P pp 

F is thus a measure of both speed-up and efficiency. An effective p 

parallel algorithm is the one that maximises F • 
P 

As an example, consider the computation of the sum, 

16 
A = \' a L i 

1 

It can be seen that 15 additions are required to compute A with a single 

processor, and we have Tl=lS time units. If two processors were 

available we would form the two sums, 

simultaneously, requiring 7 time units, and then form, 

at the next stage, requiring a further time unit. Thus A would be 

obtained in T2 = 7 + 1 = 8 time units. 

Given 3 processors A could be formed in the following three stages: 

Cl = bl + b2 , c2 = b 3 + a
16

; 

dl = Cl + c2 = A. 

This requires T = 4 + 1 + 1 = 6 time units 
3 



For 4 and 8 processors the following procedure and their 

corresponding times are shown: 

for p=4 

cl = bl 
+ b2 , c2 = b3 + b4 

dl = cl + c2 

giving, T4 = 5 time units I 

and for p=8, 

bl = a l + a2 , b2 = a 3 + a 4 ,··· , b8 = a lS + a16 

cl = b l 
+ b2 , c2 = b3 + b4 ,···, c4 = b7 + b8 

dl 
= cl + c2 ' d2 = c 3 + c4 

A = d
l 

+ d2 

giving, T = 8 4 time units. 

A table of the performance measures can now be constructed: 

p T C S E FpTl = S E 
P P P P pp 

1 15 15 1 1 1 

2 8 16 1.88 0.94 1. 76 

3 4 18 2.5 0.83 2.08 

4 5 20 3 0.75 2.25 

8 4 32 3.-75 0.47 1. 76 

202 

time 
units 

(1) 

(1) 

(1) 

(1) 

( 1) 

(1) 

The table shows that with increasing P, S increases steadily while E 
p P 

decreases. FpTl' however has a maximum when P=4 which indicates that 

P=4 is the optimal choice of the number of processors for this calculation. 

The parameters introduced above give one measure for the assessment 

of a parallel algorithm. Other aspects for consideration are stability 

and the analysis of errors. 



CHAPTER 4 

PARALLEL IMPLEMENTATIONS OF THE 

FOUR-POINT AND NINE-POINT EXPLICIT-BLOCK 

ITERATIVE METHODS 

203 

! 



204' 

4.1 INTRODUCTION 

The solution to a variety of scientific problems can often be 

obtained by solving a set of linear equations. Different methods have 

been suggested to solve such a set of equations, and among these methods 

are the point and the block (group) iterative methods (Young, 1971). 

In this chapter the point and block (group) iterative methods are both 

represented and discussed, and their mathematical foundations are shown. 

Since the work done in this thesis is mainly applied to a MIMD parallel 

computer, so the asynchronous aspects of these methods are emphasised 

and considered. Other parallel iterative methods for solving a system 

of linear equations are also considered and are discussed in this 

chapter. 

In this chapter, two methods for solving a linear system of 

equations are implemented in parallel with the use of the acceleration 

or overrelaxation parameter,w. The first method involving a block of 

nine points is called the nine-point block method, while the second 

method involves a block of four points, and is called the four-point 

block method. The basic derivation of both the sequential 4-point and 

9-point block methods are shown with the computational amount of the 

work involved. On the other hand, different parallel implementations 

of the 9-point and 4-point block methods by different orderings are 

also developed in this chapter. TWO different parallel schemes are 

used in these implementations, these are the synchronous and asynchronous 

schemes. 

The performance analysis of the 9-point and 4-point block methods 

with different implementations are presented also. It is well known 

that different algorithmic designs produce different timing results and 
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speed-up ratios on parallel computers depending on whether the 

implementation is done synchronously or asynchronously. In both cases, 

the overhead measurements incurred when more than one processor is 

cooperating should be borne in mind. The main feature in the analysis 

of the demand and supply of resources is that several demands may 

compete for the supply of a shared resource, such as processors, shared 

data or a memory block. Finally, the experimental results that are 

obtained from the different implementations of the 9-point and 4-point 

block methods on the NEPTUNE system are presented and analysed. 



4.2 BASIC DEFINITIONS 

In this section we introduce some basic properties and definitions 

of matrices which will be used later in this chapter. 

A system of m linear equations with n unknowns has the general 

form, 

+ alnxn = b l 

+ a2nx
n 

= b2 

= b m 

The right hand sides b, (i=1,2, ••• ,m) and the coefficients a, " 
1 1,J 

(4.2.1) 

(i=1,2, •.. ,m; j=1,2, .•. ,n) are given numbers with the unknown vector 

Xi' i=1,2, •.• ,n. The problem is to find, if possible, numbers Xj 

(j=1,2, .•• ,n) such that the m equations (4.2.1) are satisfied 

simultaneously. 

A matrix is a rectangular array of numbers arranged in rows and 

columns, and usually square brackets are used to denote the extent of 

the array. An individual number occurring in a matrix is called an 

eZement of the matrix. The coefficient of (4.2.1) form a matrix; called 

A (matrices will be denoted by a capital letter) which can be written as: 
.... 

al~ all a
12 

a 2l 
a

22 a
2n 

I I I 
(4.2.2) A = I I 

---a mn 

The matrix A in (4.2.2) has m rows and n coZumns and A is said to be 

of order ~n. If a matrix has both n rows and n columns it is said to 

be square of order n. If a matrix has only one row, it is known as a 
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row vector, and a matrix having only one column is called a column 

vector. Both row vector and column vectors are known as vectors for 

short and written by an underlined single lower case letter. 

If A is a matrix of order mXn then the element in the ith row and 

jth column of matrix A may be denoted by a .. and matrix A may be denoted 
l.J 

by 
A = (a. .) • 

l., J 

From (4.2.1) both b i , (i=1,2, ••. ,m) and unknowns Xj (j=1,2, ••• ,n) 

form the vectors, 

bJ X~ 
b2 1 X21 

b = 
: I 

and x = : I (4.2.3) 

~J tJ 
We say that £ is an m-vector, x is an n-vector and the system of 

equations (4.2.1) simply can be written as, 

Ax = b • (4.2.4) 

If A=(a .. ) is a square matrix of order n, then we call its 
l.,J 

elements a. i' i=1,2, ••. ,n the diagonal entries of A, and all other l., 

elements are called off-diagonal. All elements a .. of A with i<j are 
l.,J 

called Buperdiagonal, all entries a .. with i>j are called Bubdiagonal 
l., J 

as shown in Figure 4.1. 

... ... 
.... .... ..... 

..... D, ... 
Superdiagonal 

i<j r 
....... 

... 'Cig: ..... 
........ Ol)<t.{ ........ 

Subdiagonal ........ .... l 
........ .::"'~ ........ .... 

i>j ........ .... .... 
... ... 

FIGURE 4.1 

I 

J 



208 

A square matrix A is said to be diagonal, if all its off-diagonal 

elements are zero (i.e., a .. =0 if iFj). "If all subdiagonal entries 
1.,J 

of the square matrix A are zero, we call A an upper triangular matrix 

(i.e. a i .=0 if i>j), while if all superdiagonal entries of A are zero, 
, J 

then A is called lower triangular (i.e. a
i 

.=0, if j>i). We call A an , ) 
unit upper triangular matrix if it is upper triangular with diagonal 

elements equal to unity, while A is called an unit lower triangular 

if it is lower triangular with diagonal elements equal to unity. 

If most of the elements a .. are non-zero, then the matrix A is a 
1.,J 

dense matrix. on the other hand, if most of the elements a .. of a 
1.,J 

matrix A are zero then A is said to be a sparse matrix. A matrix whose , 
elements are all zero is known as a null or zero matrix. If A is a 

diagonal matrix of order n, has all its diagonal equal to 1, 

then A is called the identity matrix of order nand enoted by I. The 

-1 inverse of a given matrix A denoted by A and such 

-1 -1 
A A=AA =1 

where I is the identity matrix. 

If A=(a .. ) is a matrix of order mxn t n the transpose of A, 1.,) 
T T denoted by A , is the matrix of order nXm such that A =(a .. ). This 

J,1. 
T means that the element appearing in the ith row and jth column of A 

is the same as the element in the jth row and ith column of A. This 

implies that AT is obtained from A merely by interchanging rows and 

columns. The matrix A=(a .. ) is said to be symmetric if it conicides 1., J 

with its transpose, that is, if 

A , 

and is said to be anti-symmetria (or skew-symmetria) if 

AT = -A. 
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The determinant of a square matrix A will be denoted by det(A) or 

IAI. A square matrix is said to be singular if det(A)=O; if det(A);o!O 

it is said to be non-singular. The matrix A=(ai,j) is diagonally dominant 

if n 
la, ,I 

1.,J ~ I ja, J' I 
i=l 1., 

, for all l~i~n , (4.2.5) 

j;o!i 

in other words, each entry of the main.diagonal is greater or equal to 

the sum of the other entries of the row holding that particular entry. 

A is said to be strictly diagonally dominant if strict equality holds 

for all l~i~n in the equality (4.2.5). 

The matrix A=(a, ,) is said to be band matriJ; if a, ,=0 for li-jl>m 
1.,J 1.,) 

(Le. "bandwidth" 2m+l since this is the number of non-zero diagonals 

in the band) • As an example, if a, ,=0 for li-kl>l, i.e., all elements 
l., J 

are zero except for the main diagonal and sub- and super-diagonals, the 

matrix A is said to be tridiagonal. In general, if there are nt non-

zero diagonals immediately below and m2 non-zero diagonals immediately 

above the main diagonal, then a, ,=0 for i>j+m
l 

and j>i+m
2

, and it 
1.,J 

follows that the matrix A is a band matrix of "bandwidth" p=m
l 

+m2+1. 

Eigenvalues and Eigenvectors 

If A is an (nxn) matrix and ~Q is a vector of order n. If there 

exists a scalar A such that, 

AX=A!" (4.2.6) 

then x is said to be an eigenveator of A with corresponding 

eigenvalue A. 

The system (4.2.6) can be written as, 

(4.2.7) 
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where I is the identity matrix. The non-trivial solution ~~ to the 

system (4.2.7) exists if and only if the matrix of the system is 

singular, i.e., 

det(A-AI) = 0 • (4.2.8) 

Equation (4.2.8) is known as the characteristic equation of A. 

Expanding equation (4.2.8) leads to an explicit polynomial equation, the 

roots of which give all the eigenvalues A
I

,A2 , ••• ,An • substituting each 

A into the equation (4.2.8) gives the n sets of equations 
r 

(A-A I)X(r) = 0 , 
r 

(r) Which when solved give the eigenvector x 

Theorem 4.2.1 (Bell [1975]) 

(4.2.9) 

If A is a triangular matrix then its eigenvalues are its diagonal 

elements. 

Proof: 

First we take the case when A is lower triangular; an exactly 

similar proof holds for upper triangular A. Let, 

all o o __ _ o 

an o o 

A = an o 
I 
I 
I 
I 
• 

anI 

To determine the eigenvalues from the characteristic equation: 

I~'-' 
0 0 ----- 'l a2l a22-A 0 

____ 0 

~31 a
32 a 33 - A - - - --0 

A-AI = lL .J an2 a n3 



and thus 

It follows from the characteristic equation is just 

with roots all,a22,a33, ••• ,ann' which proves the required result. 

Theorem 4.2.2 
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If A is a square matrix of order n with eigenvalues A
l

,A2 , ••• ,An 

then the sum and product of all the eigenvalues are given by, 

n 
( i) T (A) = L A. (4.2.10) r i=l l. 

n 
(ii) det (A) = ITA. 

i=l l. 

(4.2.11) 

Proof 

(see Bell [1975], page 153). 

Vector and Matrix Norms 

In many applications it is appropriate to have some measure of 

the sizes or magnitude of vectors or matrices. This measure is called 

a norm and is denoted by 11.11. 

Definition 4.2.1 

Given a vector x then its norm 1 I~I 1 is a non-negative number 

with the following properties: 

(1) II~II :;0, and II~II =0 if and only if ~=2., 

(2) Ilaxll= lal.II~11 for any complex scalar a, 

(3) 11~+1.11 ~ 11~II+II1.11 for vectors ~ and 1.' and is known as 

the 'triangular inequality' • 

From (3) we have, 
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The most commonly used norms are the ones which are defined as follows: 

Definition 4.2.2 

n 

L 
i=l 

n 

L 
i=l 

Ix.1
2

)7 , which is known as the Euclidean norm, 
1. 

II~II", = max lXii, maximum or uniform norm. 

The general norm case can be written for the above three special cases 

as: 

The matrix norm can be defined in a similar way. 

Definition 4.2.3 

A norm of an (nxn) matrix, written as I IAI I, is a scalar satisfying 

the following properties: 

(1) IIAll>.o and IIAII=o if and only if A=(O) , 

(2) IICI.AII=IClI.IIAII, for any scalar Cl, 

(3) IIA+BII~IIAII+IIBII, for matrices A and B, 

(4) IIABII~IIAII.IIBII for matrices A and B. 

In the same way as 

max 
j 

in vector norms, 
n 
L I a. ·1 (maximum absolute column sum), 

i=l 1.,] 

H 7 = (maximum eigenvalue of A A) , (spectral norm) , 

IIAII = max 
'" i 

n 

L 
j=l 

la .. 1 (maximum absolute row sum). 
1.,] 

Another nOrm which is compatible with the vector Euclidean norm is 

defined as follows: 
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, (Euclidean norm) • 

Definition 4.2.4 

A matrix norm I IAI I is said to be aompatibZe with a vector norm 

II~II if 

Definition 4.2.5 

A matrix norm is said to be subordinate to the corresponding norm, 

if it can be constructed in the following form: 

or equivalently, 

Definition 4.2.6 

Let A be an (nxn) matrix with eigenvalues Ai' l~i~n, then the 

speatraZ radius of A can be defined as, 

p (A) = max I A • I . 
1

. J. 
':t.l~n 

(4.2.12) 

For any (nxn) matrix A and any norm, it can be shown by definition 

(4.2.4), 

p (A) ~ 11 A 11 • (4.2.13) 

Let Ai be an eigenvalue of A and ~ its corresponding eigenvector, 

then, 
Ax. = A.x. , 
-,1 ,1-1 

and 
IAil.ll~ill = II~ill 

~ IIA 11.II~i 11, for any compatible norm. 

Thus, 



since A. was arbitrarily chosen, then from the definition (4.2.6) 
l. 

p (A) ~ II All • 
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(1) (2) (3) 
A sequence of matrices A ,A ,A , .•• , of the same dimension 

is said to be convergent to a matrix A (say) if and only if, 

Definition 4.2.7 

Let A be a square matrix, then A converges to zero if the sequence 

2 3 
of matrices A,A ,A , ••• converges to the null matrix 0 and is divergent 

otherwise. 

Theorem 4.2.3 

Let A be an (nxn) matrix and if I IAI 1<1 then 

lim Ak = 0 

k-

Proof 

IIAkl1 = IIAAk-lll~IIAII.IIAk-lll 

~IIAI12 .IIA
k

-
2

11 

~IIAllk 

and since I IAI 1<1 then lim Ak=O. 
k--

Theorem 4.2.4 

If A is an (nxn) matrix, then A is convergent if and only if 

p(A)<l (p(A) 1s the spectral radius of the matrix A). 

Proof 

See Varga [1962], page 13. 
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Property A and Consistent Ordering Matrices 

The first definition was due to (Young, [1950)). 

Definition 4.2.8 (Young [1971)) 

A matrix A of order n has Property A if there exists two disjoint 

subsets 51 and 52 of W={l ,2, ••• ,n} (the set of the first N positive 

integers), such that 51+52=W and such that if i#j and if either a .. #0 
1., J 

or aj,i#o, then i E 51 and j E 52 or else i E 52 and j E 51' If 51 or 

52 is empty, then A is, of course, diagonal. 

If a matrix A has Property (A), it is always possible to rearrange 

the rows and corresponding columns of A, in order to obtain the matrix 
,y 

A which has either the block tridiagonal form 

~' 
Al 

Bl D2 A2 

B2 03 A3 
0 

... .... .... ...., ... .... .... 
A = ...... .... .... 

.... .... ...... .... 
...... ... .... .... .... 

(4.2.14) 

0 
.... ... .... ... , , ... B

k
_

2 
D

k
_

l ~-l 
B

k
_
l Dk 

or the form, 

'" r Dl Fll A = 

lE-l D
2J 

(4.2.15) 

where D. are square diagonal matrices not necessarily of the same order. 
l. 

~ -1 
i.e. there exists a permutation matrix P such that A=P AP has either 

the form (4.2.14) or (4.2.15). 

Definition 4.2.9 (Young [1971)) 

A matrix A of order n is consistentZy ordered if for some t there 



exist disjoint subsets Sl'S2, ••• ,St of W={1,2, ••. ,n} such that 

and such that if i and j are associated, then j € Sk+l if j>i 

and j € Sk_l if j<i, where Sk is the subset containing i. 

t 

I S =W 
k=l k 
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4.3 BASIC METHODS FOR SOLVING A SET OF LINEAR EQUATIONS 

A variety of real life problems may be solved by determining the 

solution of a set of simultaneous equations. We also find that, when 

we study the numerical methods of solving a boundary-value problem 

involving partial differential equations, then these problems also 

require the solution of sets of equations which are often very large 

in size. 

A matrix-vector notation may be used to express the system of 

linear equations as, 

(4.3.1) 

where A is an (nxn) matrix of coefficients, £ is a known n-vector and 

x is an unknown n-vector whose value is to be found. Provided that 

det(A) is non-zero, the unique solution of the equation is expressed 

simply as, 
-1 

~ = A £, 
-1 

where A is the inverse of the matrix A. 

The methods used to solve (4.3.1) can be classified into two 

classes, the class of direot methods (also known as the elimination 

methods) and the class of iterative methods (also known as the indirect 

methods) • 

4.3.1 Direct Methods 

By a direct method we mean a method which calculates the required 

solution without any intermediate approximations. Direct methods are 

based ultimately on the process of the elimination of variables. 

To solve equation (4.3.1) for the unknown n-vector ~, in the case 

when A is upper-triangular with all diagonal elements non-zero. Then 



218 

the system of equations has the form, 

+a x +a x 
l,n-l n-l l,n n 

a2 ,2x2+ ... +a2 x +a2 x ,n-l n-l ,n n 

(4.3.2) 

a x +a x = b 
n-l,n-l n-l n-l,n n n-l 

a x = b n,n n n 

The nth equation 
b 

in the system (4.3.2) gives xn directly (since a ~O) 
n,n 

i.e. I X 
n 

= 
n 

a n,n 

Since xn is known, then the (n-l}th equation gives x
n

_
l 

(since 

a ~O and x is now known), so n-l,n-l n 

= 
b -a x 
n-l n-l,n n 

a n-l,n-l 
(4.3.3) 

and so on until finally the first equation gives xl. In general, with 

xk+l'~+2,··.,xn already computed, the kth equation can be uniquely 

solved for ~, since akk~o, to give, 

a x).-' . 
k,j j Q kK 

(4.3.4) 

This process of determining the solution of (4.3.2) is called back-

substitution. The amount of work involved in the back-substitution 

method is (Conte and Boor [l982)}, 

n division 

,n (n-l) multiplications (4.3.5) 

and ,n (n-l) additions 

If the coefficient matrix A of the system (4.3.l) is not upper-

triangular, we have to reduce the system to an equivalent system with 

upper-triangular coefficient matrix. This latter system can then be 
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solved by back-substitution. This method is known as GaUBsian 

EZimination. The elementary procedure in which the first equation is 

used to eliminate the first variable in the last (n-l) equations, the 

new second equation is used to eliminate the second variable from the 

last (n-2) equations, .and so on. If (n-l) such eliminations can be 

performed, then the resulting system is triangular and is easily 

solvable. 
. . (k) (k) 

A sequence of equLvalent systems A ~ = ~ ,k=O,1,2, ••• , 

n-l, are derived from the given linear system ~=~ of order n. Here 

A(O)~=~(O) is just the original system. The elimination prccess is 

. d t b h t if th ff" (k-l) fit' carrLe ou y eac s ep as: e coe LCLent a
kk 

0 x
k 

n equa Lon 

( (k-l) I (k-l» k is not zero, then a
ik 

a
kk 

times equation k is subtracted from 

equation i, thereby eliminating the unknown x
k 

from equation i, i=k+l, 

k+2, ••• ,n and k=1,2, ••• ,(n-l). After (n-l) steps of this procedure, 

one arrives at the system A(n-l)~=~(n-l), whose coefficient matrix is 

upper-triangular, so this system can now be solved by back-substitution. 

The Gaussian elimination process is usually programmed to 

accommodate the coefficients and right hand side of the n equations 

~=~, in which case the storage required is n(n+l) locations plus a 

possible further n locations for the final solution vector. Finally, 

the amount of work involved, can be seen to be (Fox [1964]): 0 

and 

n 

1 3 2 1 Y' +n -)" 

I 3 1 2 5 
Y' 7' -~ 

divisions 

multiplications (4.3.6) 

additions 

In practice, however, especially in the solution of sets of 

linear equations, this value of the computational work involved is 

never actually attained as the matrix A is never full. Instead A is 

in general a band matrix, Le. A=(a
i 

.) where 
,J 



i-j>m 
a, j = 0 

1, 
j-i>m 

so that the number of non-zero elements in each row is at most only 

2m+l the bandwidth of the matrix. In this case, the number of 

multiplications is of order 2m
2

n in contrast to the factor n3/3 for 

the full matrix (Martin [1966]). 

Another method can be used to solve equation (4.3.1) which is 
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known as LU Deaomposition. The matrix A can be decomposed into a pair 

of factors Land U, such that 

A = LU , (4.3.7) 

where L is a unit lower triangular matrix and U is an upper 

triangular matrix as shown below. 

11" --- a l ' a 11 l , J l,n , I' 

I 
I I , 
I I " 0 

I 
, 

I 
' I 

I " I a, 1 a, , 
- - -a, I = £, 1 1 1, 1,] 1,n 1, 

I I 
, 

I 

.:.j 
, 
" ~' , 

I I , a _ 
a n, j £ 

n,l £ n,i 1 n,l 

r-
u l 1 - - - Ul,j - - - u , l,n , I 

" I , 
t , 

u, - - - u, 
J,j J ,n 

0 , I 

l 
, I 

" , , 
u 

n,n 

All the coefficients in Land U are initially unknown. The rule for 

matrix multiplication enables them to be found from the following equations: 



221 

i-l 
for j=i,i+l, ••• ,n, u. j l., 

= a - 2 
i,j k=l 

~. kUk . 
1., , J 

i=1,2, ••• ,n 
i-l 

for j=i+l,i+2, ••• ,n, ~. i = 
J, 

[a .. 
J,l. 

-2~ u.] 
k=l j,k K,i J (4.3.8) 

This factorization method fails only if one of the diagonal 

elements u, which are used as divisors in the second equation of 

(4.3.8) proves to be zero. 

Equation (4.3.1) can then be written as, 

LUx = b (4.3.9) 

and the solution of equation (4.3.1) is computed from equation (4.3.9) 

by introducing the column vector Z such that Z=U~ and then solving 

LZ=~ for Z by a forward substitution process and U~=Z for ~ by back 

sUbstitution. 

The amount of work needed to solve ~=~ using LU decomposition 

requires (Vichnevetsky [1981]), 

N
3
/3 + 0(N

2
) 

N
3
/3 + 0(N

2
) 

multiplications 
(4.3.10) 

additions 

As with all direct methods of solution, even if A is in general 

a sparse matrix, Land U will be full (triangular) matrices. But if 

A is banded, then the bandwidth of Land U will not exceed that of A. 

In many applications, if A is not banded then we try to put it into 

band form by interchanging the appropriate columns and rows. Let B be 

the bandwidth then 

a. j = 0 l., 
for [i-j[>B 

and those elements lying outside (2B+l) diagonal bands are zero as 

shown in Figure 4.2. In this case, the two matrices Land U formed by 



222 

the decomposition are also banded of width B as shown in Figure 4.3. 

The work of decomposing A into Land U is greatly reduced, i.e., it 

becomes linear in n if B«n. By contrast, the LU decomposition of a 

sparse, but not banded, matrix does not benefit from such an advantage, 

as shown in Figure 4.4 (Vichnevetsky [198l]). 

2B+l bands 
A = 

L = u = 

}B+l bands 

'-v-' 
B+l bands 

FIGURE 4.2 

.. A -1 is full 

A is banded 

Both Land U are banded 
-1 

FIGURE 4.3: Densities of A and of Land U for a banded sparse matrix 
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x x 
x x 

x x .. 
x x 

-1 
A is full 

Both Land U full 
-1 

FIGURE 4.4: Denseness of A and L and U for a general sparse matrix 

Hence, to solve the system (4.3.1) in the banded case, by assuming 

B<<N requires, 

NB2 + O(NB) 

NB2 + O(NB) 

where B is the bandwidth. 

4.3.2 Iterative Methods 

multiplications 
(4.3.11) 

additions 

As opposed to the direct method of solving a set of linear equations 

by elimination, we now discuss iterative methods. Iterative methods 

are preferred over the direct methods when the coefficient matrix is 

sparse. They may be more economical for the core-storage requirements 

of a computer. They have the distinct advantage that they are self-

correcting if an error is made, they may sometimes be used to reduce 

round-off error in the solutions computed by direct methods (i.e. 

iterative improvements). 

In any iterative method, we begin with some initial approximation 

to the value of the variables. By substituting these into the righthand 
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sides of the set of equations generates new approximations which are 

usually closer to the true value if certain conditions with regard to 

the matrix are satisfied i.e. diagonal dominance. The new values are 

substituted into the righthand sides to generate a second approximation 

and the process is repeated until successive values of each of the 

variables are sufficiently alike to the specified or required number 

of decimal places. The iterative procedure is said to be convergent 

when the difference between the exact solution and the successive 

approximations tend to zero as the number of iterations increased. 

So we can say that, given a non-singular system, 

(4.3.12) 

(k) (k) -1 
and a sequence of approximate solution {~ } such that x ~A b as 

k __ • 

Equation (4.3.12) can be rearranged by splitting the matrix A in 

such a way that, 

A = D-L-U , 

where D is the diagonal matrix formed from the diagonal entries and L 

and U are the upper and lower triangular matrices respectively 

comprising of the similar entries in A. Equation (4.3.12) may now be 

written as, 

(D-L-U) ~ = !? ' (4.3.13) 

which can be written as, 

Dx = (L+U)~ + b 

(i) The Jaeobi Method or the method of Simultaneous Displacement. 

In the Jacobi iterative method the (n+l)th iterative values are 

exclusively expressed in terms of the nth iterative values. Then the 

Jacobi method can be defined as, 
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Dx(k+l) = (L+U),::.(k) +!:. ' k;o , (4.3.14) 

-1 
by multiplying both sides by D ,the following equation is obtained, 

(4.3.15) 

-1 -1 
The matrix D (L+U) or (I-O A), where I is the identity matrix, is 

called the point Jacobi itepation matrix. Each point xi for i=1,2, ••• ,n 

of the vector x is then iterated as follows: 

(k+l) 
xi = 

i-l 
2 a, j 

j =1 l., 

x(k) + 
j 

n 

2 
j=i+l 

In this method, the components of the vector x(k) must be saved 

h 'l t' the t of x(k+l) w l. e compu l.ng componen s 

(ii) The Gauss-SeideZ Method (The as Method) also known as the 

(4.3.16) 

Successive Displacement method which converges more quickly (approx-

imately twice) than the Jacobi method (Varga [1962). In this method 

(k+l) 
the new values xi are used as soon as they are available instead of 

xik ) The Gauss-SeideZ itepative method can be defined by the equation, 

Dx(k+l) = Lx(k+l) + ux(k) + b (4.3.17) 

giving, 
(D_L),::.(n+l) = ux(n) + b , (4.3.18) 

which is written as, 

x (k+l) =' (D-L) -lu,::. (k) + (O-L) -l!:. • (4.3.19) 

Since (D-L) is a non-singular matrix, equation (4.3.19) shows 

-1 
that the Gauss-Seidel point iteration matrix is (D-L) U. From 

equation (4.3.17), the iteration of each point xi is given by, 

x!k+l) = 
l. 

ii'l 
L a, j 

j=l l., 

(k+l) + 11 (k) 
Xj L a x } 

j=i+l i ,j j 

.. . ,n . 

for i=1,2, 

(4.3.20) 
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The computational advantage of this iterative method is that it 

does not require the simultaneous storage of the two approximations 

(k+l) (k) 
xi and xi as in the point Jacobi iterative method. 

(iii) The Successive OverreZaxation Method (S.O.R. Method). Related 

to the GS method is the S.O.R. method. In this method, the displacement 

. (k) (k+1) (k) 
or correct~on vector ~ = ~ -x of the S.O.R. method is taken 

to be a constant w times the displacement vector d{k) defined by the 

GS iteration. Hence, from equation (4.3.17), the S.O.R. method is 

defined as, 

Dd(k) = D (~(k+1) _~ (k» 
1 

= Dx(k+l)_Dx(k) 

= Lx (k+1) + ux(k) _ Dx (k) + .£. 

Thus, the S.O.R. iteration defined by, 

= d(k) 
w 1 ' 

can be written as, 

therefore, 

giving, 

(k+1) (k) x -x = 

x (k+1) = (I-wD -lL) -1 {(l-w) I+wD -lU}~ (k) + (I-wD -lL) D -lb. 

(4.3.21) 

Therefore the point S.O.R. iteration matrix is 

(I-WD-1L)-1{(1-w)I+wD-1U}. 

If w=l, the S.O.R. method reduces to that of Gauss-Seidel Method. 

The quantity w is called an overrelaxation parameter, the choice of which 

determines the rapidity of convergence. From equation (4.3.21), we can 
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reformulate it in point form as, 

(k+l) i-1 
(k+l) n 

x(k)}_ (k) w L a .. L x. = - {b + Xj + ai,j (w-l)x
i 

. 
l. a.. i j=l l.,J i 

l.l. j=i+l 

(4.3.22) 
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4.4 CONVERGENCE OF POINT ITERATIVE METHODS 

To find the conditions for the convergence of the iterative methods 

described in Section 4.3, let us consider the system of equations, 

Ax = £ ' (4.4.1) 

where A is an (nXn) matrix and x and £ are (nxl) vectors. As shown in 

Section 4.3, the general form of a stationary linear iterative method 

may be written as, 

x(n+l) = Gx(n) + r 
- - - ' (4.4.2) 

where G is the corresponding iteration matrix for the specific method 

and r is a column vector of known values. G and r are both defined as 

follows:-

G = 

0-1 (L+U) 

(O-L) -lu 

for Jacobi method 

for Gauss-Seidel method 

-1 -1 -1 
(I-wO L) {(l-W)I+wO U}, for S.O.R. method (usually 

and 

r = 

O-lb 

(O-L) -lb 

(I-WO-1L)-lwO-l£ 

denoted by Lw) . 

for Jacobi method 

for Gauss-Seidel method 

for S.O.R. method 

Equation (4.4.2) can be derived from equation (4.4.1) by re-

arranging them into the form, 

~=G~+£, (4.4.3) 

i.e., the unique solution of n linear equations ~=£ is the solution 

of equation (4.4.3). Alternatively, if we assume the iteration is 

convergent then, by (4.4.2), 

lim x(n+l) = lim x(n) = x 
n-+<:o n--+<o 

hence, 
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x=Gx+r. 

Let the error at any stage be the difference between the true 

and approximate solutions, i.e., 

(n) (n) 
e = x - x (4.4.4) 

then by subtracting equation (4.4.2) from equation (4.4.3) we have 

e (n+l) = Ge (n) (4.4.5) 

Therefore, 

(4.4.6) 

where e(O) = x_x(O) and x(O) is a known set of initial values. 

. (1) (2) (n) 
The sequence of l.terative values ~ ,~ , ••• ,~ , ••• will 

converge to ~ as n tends to infinity if 

lim e(n) = 0 
n-

(4.4.7) 

From equation (4.4.7), this can happen if and only if G(n)+(O) (the 

null matrix) as k-. By theorem (4.2.4), this will be true if and 

only if p(G)<l, which proves that iterative methods in the form of 

(4.4.2) converges if and only if p(G)<l. 

Corollary 4.4.1 

A sufficient condition for the convergence of equation (4.4.2) 

is that 
(4.4.8) 

since p(G):;IIGII (from equation (4.2.13». 

In some cases it happens that I IGI 1>1 but p(G)<l which guarantees 

the convergence of the iteration process, thus it means this is a 

sufficient condition but not a necessary one. 



4.5 RATE OF CONVERGENCE 

In order to assess how iterative methods are effective, it is 

necessary to consider the number of iterations required for each 

convergence to a specified accuracy and the work done per each 

iteration. In practice, the usual approach is to iterate until the 

norm of the error vector e(k) is reduced to less than some pre-

(0) determined value, say €, of the norm of the initial vector e • 

From equation (4.4.6) we have, 
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(4.5.1) 

(4.5.2) 

we require, 

(4.5.3) 

where 1 i·1 I denotes 11.11 2 as defined in (4.2.2). From Section 4.4 

we have liml IGkl 1=0 if and only if p(G)<l (also Young [1971], page 84). 
k--

Equation (4.5.3) can be satisfied by choosing k sufficiently large so 

that, 

(4.5.4) 

If k is large enough so that 1 IGkl 1<1, it follows that equation 

(4.5.4) is equivalent to,' 

1 kl k ~ -log€/(- k 10gllG I) , (4.5.5) 

and from this inequality a lower bound for the number of iterations 

for the iterative method can be obtained. 

Young [1971] concluded that the average rate of aonvergenae after 

k iterations for any convergent iterative method in the form of equation 
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(4.4.2) is the quantity, 

\:(G) = (4.5.6) 

If \:(Gl )<\:(G2), then G2 is iteratively faster for k iterations 

than G
l

• 

The asymptotia average rate of aonvergenae is defined by, 

R(G) = lim \:(G) = -logp(G) • 
k-

Equation (4.5.7) holds, since, 

p (G) = lim (11 Gk 11 ) ilk 
k-

(4.5.7) 

(4.5.8) 

which is proved by Young [1971], page 87. R(G) is referred to as 

the rate of aonvergenae. 

To obtain an estimate of the number of iterations, k, in equation 

(4.5.5) [p(G)]k is replaced instead by 1 IGkl 1 we see that E=[P(G)]k, 

and hence, 
-log E 
-logp(G) 

k : = 
-logE 
R(G) (4.5.9) 

On the other hand, the value k obtained from (4.5.9) could be very 

much lower when compared with the actual number required, in which 

1 IGkl I will behave like kP(G)k-l, rather than p(G)k (see Young [1971]). 

In this case, the smallest value of k such that, 

k-l 
k [p (G) ] ~ E 

estimates the number of iterations required. 

(4.5.10) 
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4.6 THE OPTIMUM ACCELERATION PARAMETER FOR THE SOR METHOD 

In section 4.3 it waS shown that the time taken for convergence 

using the S.O.R. method is less than that of the Jacobi or Gauss-

Seidel methods. The convergence of the S.O.R. method depends on the 

value of the acceleration factor wand ideally, we want the optimal 

value of w, say ~, which minimises the spectral radius of the S.O.R. 

iterative matrix and thereby minimise the rate of convergence of the 

method. At the present time no formula exists for the determination 

of ~ for an arbitrary set of linear equations, i.e. general A. However 

it can be calculated for many of the matrices A derived from difference 

equations approximations to first- and second-order partial differential 

equations because their matrices are of a special type which possesses 

property (A), and the significance of this was first revealed by Young 

[1954]. Young proved that when a matrix possesses property (A) then 

it can be transformed into what he termed a conSistently ordered matrix. 

Subject to this condition the eigenvalues of the S.O.R. iteration matrix 

L associated with A are related to the eigenvalues ~ of the correspond
w 

ing point Jacobi iteration matrix B associated with A by the equation, 

From the above equation, it can be seen that, 

At = w~±~2~2_4(W_l) 
2 

(4.6.1) 

(4.6.2) 

Young [1954] shows that the rate of convergence is dependent on A 

and so to optimise the rate of convergence, ;\, the eigenvalue of 

maximum modulus of the S.O.R. iteration matrix L must be minimised. 
w 

This is achieved by making the square root in equation (4.6.2) equal 

to zero for ~, the spectral radius of the point Jacobi iteration matrix 
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B, i.e., 

(4.6.3) 

giving, 

2 
W b = --'=-::= 

I _2 
l+{l-~ 

is the value of w which minimises p(L
W

) , i.e., WFW
b

, then 

p (L ) > p (L ) • 
W ~ 

(4.6.4) 

(4.6.5) 

Using this optimum value of w, Young [1971] and Smith [1978] show 

that, 

(4.6.6) 

The eigenvalue of maximum modulus value of G is called the 

spectral radius of G. As we know that the Gauss-Seidel method is the 

same as S.O.R. with w=l, and it can be shown that by substitution of 

this value for W into (4.6.1), we have 

2 
p (G) = p (J) , (4.6.7) 

where peG) and p(J) are the spectral radii of the Gauss-Seidel and 

point Jacobi iteration matrices respectively. Therefore, wb may be 

expressed in terms of p(G), as 

2 
W = 

b 
(4.6.8) 

l+lt-p (G) 

The estimation of wb depends on whether p(J) or peG) can be 

estimated. Several methods have been suggested by (Carre, [1961], 

Varga, [1962]) and Hageman and Kellogg [1968]). One which is the 

power method can be described as follows. 

Assuming the matrix of the finite difference equations is 

consistently ordered and has property (A), calculate the sequence of 
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(1) (2) (k) 
approximations ~ ,~ ""'~ ,to the solution of the system of 

equations ~=~ by the Gauss-Seidel method and then we have, 

p (G) = lim 
k--

11!!(k)11 

Ild(k-l)11 
(4.6.9) 

where d(k) is defined as, 

(4.6.10) 

and 

(4.6.11) 

Thus, using the power method we can determine an approximate 

value of peG), which, in turn, can be substituted into equation (4.6.8) 

to give an estimate of the optimum acceleration factor, w
b

' 

Young [1971] and Smith [1978], show that the successive errors at 

any mesh point, after a large number of iterations, are related to the 

equation, 

(4.6.12) 

where p is the spectral radius of G. Also, for theoretical purposes 

the asymptotic rate of convergence, R, is defined as, 

R = -loge (l') • (4.6.13) 

They show that R for the Gauss-Seidel method is twice that of 

the point Jacobi method, and R for the S.O.R. method is approximately 

2 2 2/E times that of Gauss-Seidel method, where ~ =l-E , E being small 

for large n. The estimate of the number of iterations, n that is 

necessary in order to make e(n)<E may be obtained, where E is the 

required accuracy. From equation (4.6.9) it can be shown that (Young 

[1971] ) , 
n , log E 

log (w-l) (4.6.14) 
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4.7 FINITE DIFFERENCE APPrOXIMATIONS TO DERIVATIVES 

Many problems in engineering and science can be formulated in 

terms of partial differential equations or a set of such equations. 

Analytical or numerical methods may be used to find the solution to a 

partial differential equation, and approximation techniques may be used 

in both methods. Analytical approximation methods tend to be more 

difficult to apply than numerical methods. Of the numerical approxi-

mation methods available for solving differential equations those 

employing finite-differences are more frequently used and more 

universally applicable than any other. 

Finite-difference methods are approximate in the sense that 

derivatives at a point are approximated by difference quotients over 

a small interval. Suppose we are given the interval [a,b], we divide 

the interval [a,b] into N equal parts of width h. We set xO=a, xN=b, 

and we define, 

. 
h -----. 

I , 

1 2 

n=l ,2 , ••. ,N-l • 

I , 

3 ••• i-l i i+l ••• n 

Suppose u and its derivatives are single-valued, finite and 

continuous functions of x, then by Taylor's theorem, 

u(x+h) = u(x) 
. h 2 

+hu'(x) +-u"(x) 
21 

and 

h
3 

+ - un. (x) 
31 

+ ... 

u(x-h) = u(x) - hu' (x) + h2 
- u" (x) 
21 

h
3 

- - u'" 
31 

(x) + ••• 

By adding (4.7.1) and (4.7.2) we get 

u(x+h) + u(x-h) = 2u(x) + h
2
U"{X) + O(h4) , 

(4.7.1) 

(4.7.2) 

(4.7.3) 
4 . 

where O(h ) denotes terms containing fourth and higher power of h. 
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Assuming these are negligible in comparison with the lower powers of 

h it follows that, 

iu 
un (x) = -- = 

dx
2 

1 2 :2 (u(x+h)-2u(x)+u(x-h)} + O(h) , 
h 

2 with the leading error on the right-hand side of order h 

(4.7.4) 

Subtracting 

equation (4.7.2) from equation (4.7.1) and neglecting the terms of 

3 
order h leads to 

u' (x) = : = -fh!U(X+h)-U(X-h)} + O(h2
) 

2 
with an error of order h • 

(4.7.5) 

As shown in Figure 4.2, Equation (4.7.5) clearly approximates 

the slope of the tangent at p by the slope of the chord AB, and is called 

a central-difference approximation. We can also approximate the slope of 

the tangent at P by either the slope of the chord PS, giving the forward-

difference formula, 

1 
u' (x) " ~u(x+h) - u(x)} , (4.7.6) 

or the· slope of the chord AP giving the backward-difference formula, 

1 
u'(x) " ~u(x) - u(x-h)}. (4.7.7) 

u(x) 

A 

u (x-h) u(x) u(x+h) 

o x-h x x+h 

FIGURE 4.2 
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By assuming second and higher powers of h are negligible, both 

equations (4.7.6) and (4.7.7) can be obtained from equations (4.7.1) 

and (4.7.2) respectively. This shows that the leading errors in these 

forward and backward-difference formula are both of order h. 

To solve a boundary-value problem by the method of finite 

difference, every derivative appearing in the equation, as well as in 

the boundary conditions, is replaced by an appropriate finite difference 

approximation. 

In our model problem, we consider the two-dimensional problem for 

the Laplace equation, 

a2
u --+ 

ax2 o , (4.7.8) 

with dependent variable u applied to a connected region R in the x-y 

plane. Equation (4.7.8) mathematically represents a problem with 

temperatures known on each boundary and is said to have Dirichlet 

boundary conditions. We require to determine the solution u(x,y) inside 

the region R. We will refer to our model throughout the thesis as the 

Dirichlet problem. 

Now we subdivide the x-y plane into sets of equal rectangles as 

shown in Figure 4.3. The points of intersection of x lines and y lines 

are known as the mesh points. Replacing the derivatives by difference 

quotients which approximate the derivatives at each point of the mesh, 

we get a set of M equations with M unknowns. Therefore, the solution of 

the M equations yields an approximation to the partial differential 

equation. 

Consider now the uniform grid mesh of size h on the unit square 

as shown in Figure 4.3. 
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y 

(0,1 ) (1,1 

p .. 
~,J 

. 

t 
J. 

Pl,2 

Pl,l P2 , P3 ,l 

, x 

(0,0) (1,0) 

FIGURE 4.3 

Assuming that u(x,y) is differentiable, then by Taylor's theorem 

we have, 
2 2 3 3 h4 4 

u(x±h,y) u (x, y) h ~ + !'... .L!!. ± !'... .L!!. + o u (4.7.9) ~ ± 
41 ox4 

± ... 
ox 2! ax 2 3! ax 3 

2 2 3 3 h4 a~u u(x,y±h) = u(x,y) ± h ~ + !'... .L!!. ± !'... .L!!. + 
414 ± ••• (4.7.10) 

ay 21 a/ 3! ai ax 

+ au) h
2 2 

a
2
u 2 

u(x+h,y±h) u(x,y) h (au (.L!!. + 2 o u) = + +-
axoy 

+--ax - ay 2 ! 2 - 2 ax ay 
3 3 

a
3
u a

3
u 3 4 4 !'...(.L!!. + 3 + 3 ± .L!!.) + !'... (.L!!. + + 3 I 3- 2 2 3 4! ox 4 -. ax ax ay axay ay 

4 
a
4

u a4
u a

4
u 4 ~+ 6 4 3 ax2ay2 

± 
3 + --4) + ... 

ox ay axay ay 

(4.7.11) 



u(x-h,y±h) = u(x,y) _ h (aU ± au) 
ax ay 

3 a
3

u (2..J! + 3 + 3 
eX 3 - 2 

ax ay 

+6 
4 a u 

2 2 
ax ay 

4 
± 4 a u 

3 
axay 

h
2 

a
2

u + -(-- + 
2' 2-• ax 

a
3

u 3 
+ l...!!) 

2 - 3 
axay 

4 
+ ...1.J!) 

4 
ay 

ay 
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2 2 
h3 

2~ + 2..J!) 
axay a/ 31 

h4 a\ a\ +-(-+ 4 41 4- 3 eX ax ay 

(4.7.12) 

where the pOints (x±h,y), (x,y±h) and (x±h,y±h) are contained in R. 

Equations (4.7.9) and (4.7.10) respectively give, 

au u(x+h,;t)-u(x,;t) + O(h) (4.7.13) -= 
ax h 

, 

= 
u(x,;t) -u (x-h,;t) + O(h) (4.7.14) h 

au u (x,;t+h) -u(x,;t) + O(h) (4.7.15) -= , ay h 

= 
u (x,;t) -u (x, ;t-h) 

+ O(h) (4.7.16) h 

More accurate approximations are, 

= u(x+h,y)-u(x-h,y) 0(h2) 
2h + 

au u(x,y+h)-u(x,;t-h) + 0(h2) . 
ay = 2h 

A combination of equations (4.7.9) and (4.7.10) give approximations 

to the second-order derivatives 

u(x+h,y)-2u(x,;t)+u(x-h,;t) 

h
2 

2 l...!! = u(x,y+h)-2u(x,y)+u(x,;t-h) + 0(h2) • 

a/ h
2 

A combination of equations (4.7.11) and (4.7.12) gives an 

approximation to the second-order mixed derivative 

u(x+h,y+h)-u(x+h,;t-h)-u(x-h,;t+h)+u(x-h,;t-h) 

4h2 

(4.7.17) 

(4.7.18) 

(4.7.19) 



The mesh point (xi'Yi ) = (ih,jh), let u(xi'Yi ) be Ui,j' then 

Laplace's equation 
2 2 
~+~= 

2 2 ax ay 
o , 
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can be replaced at the point (x.,Y.) by the finite difference equation 1. ) 

which is obtained from adding equations (4.7.17) and (4.7.18), thus, 

1 
-(u +u +u .. +u. . -4u .. ) = 0 , 
h2 i+l,j i-l,j 1.,)+1 1.,)-1 1..) (4.7.20) 

which can be written as, 

4u .. -u. 1 j-u. 1 j-u .. l-ui . 1 = 0 , 1,J 1+, 1.- I 1,J+ ,)- (4.7.21) 

which is known as the 5-pcint finite difference equation. 

A set of simultaneous equations may be obtained from equation 

(4.7.20) and whose solution is a finite-difference approximation of 

the exact solution {u .. } at the internal mesh pOints. On the other 
1,) 

hand, the computational molecule in Figure 4.4 correspcnds to equation 

(4.7.20). 

(i,j+l) 

(i+l,j) 

(i,j-l) 

FIGURE 4.4: Five-pcint computational molecule for the Laplace operator 
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As an example, the (16x16) matrix illustrated in Figure 4.5 

represents the coefficient matrix which is derived when a second order 

elliptic partial differential equation (i.e., the Laplace equation) is 

discretised on a network of lines spaced 1/5 apart, therefore, 

o 

4 

3 

2 

1 

~ 
0.2 

8 

7 

6 

5 

12 16 

11 15 

10 14 

9 13 

1 

FIGURE 4.5 

Figure 4.6 shows the (16 x16) matrix which is obtained using the 

computational molecule in Figure 4.3. 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 4 -1 , -1 -, 
2 -1 4 -1 1 -1 

3 -1 4 -1 -1 

4 -1 4 .-:1_1_ -- --+ - -r 
5 -1 14 -1 I -1 1 

0 
6 -1 1-1 4 -1 I -1 

7 -1 1 -1 4 -1 I -1 1 
8 -1 1 -1 4 1 -1 1 

- --- -,- - - - - - -Cl - --
9 -1 14 -1 

I 1 10 -1 -1 4 -1 -1 
I -1 

I 
-1 4 -1 -1 11 

12 I -1 I 
-1 4 I -1 - - - -1-- T ---- ~ 13 -1 -1 

0 1 1 
14 -1 1-1 4 -1 

15 

I 
-1 -1 4 -1 

I 
4 16 

L -1 , -1 

FIGURE 4.6 

In Figure 4.5, at most five non-zero entries are contained in 

each row, i.e. the matrix is sparse so that the computation of any 

iterative method concentrates only on these five points in each row. 
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4.8 BLOCK ITERATIVE METHODS 

The iterative methods for solving a system of linear equations 

described in Section 4.3 belongs to a class known as point iterative 

methods, that is, at anyone time only a single equation of the system 

is treated. An extension of these methods are the block (group) iterative 

methods. The principle inherent'in the group iterative method is to group 

a certain number of individual equations (mesh points) and treat this 

group similar to the way a single point is treated in the point iterative 

method. 

Consider a system of linear equations, 

n 
I a, ,x. = b

i 
# 1=1,2, ..• ,n 

j=l 1.,J J 

which can be written in matrix form as, 

(4.8.1) 

Ax = b • (4.8.2) 

In the group iterative methods the equations in (4.8.1) are 

partitioned into different groups numbered 1,2, .•• ,N, such that each 

of the above equations belong to one and only one group. Then, the 

corresponding unknowns Xi of each group are solved in which the other 

unknowns belonging to the remaining groups are treated as known 

quantities. In this case the equations for i=1,2, •.• ,n
l 

constitute 

the first group, those for i=nl +l,nl +2, .•• ,n2 , constitute the second 

group and, in general, the equations for i=n +l,n +2, •.. ,n 1 constitute 
r r r+ 

the (r+1)st group and nN=N where N represents the number of distinct 

groups. 

In order to construct a group iterative method to solve equation 

(4.8.2), we first divide the integers 1,2, ••. ,n into N~n distinct sets 

such that each integer belongs to one and only one set. Note that it 
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is not necessary for the groups to consist of consecutive integers 

although the groups are ordered by the following definitions. 

Definition 4.8.1 (Young. [1971) 

An ordered grouping ~ of T={1.2 ••••• n} (the set of the first n 

positive integers). is a subdivision of T into disjoint subsets G
l

.G
2 

• 

•••• GN suchthatG1U G2 U •.. UG
N

=T. 

Two grouping ~ and~' defined by Gl 'G2 ' •••• GN and G
l

.'G
2 

•••••• G
N 

•• 

respectively, are identical if N=N' and if Gl=G
l
., G2=G

2
., ••• ,G

N
=G

N 
•• 

As an example. for n=S, we have the following ordered groupings: 

~o: Gl ={l} • G2 ={2}, G3 ={3} , G4 ={4} • GS 
={S} 

~l : Gl ={1.2}. G2 ={3.4}, G3 ={S} 

~2: Gl ={l.S}. G2 ={2,4}, G3 ={3} 

~3: Gl ={1,3.S}, G2 ={2.4}, 

~4: Gl ={3}, G2 ={1,2,4,S} 

~S: Gl ={4}, G2 ={1,2,S}, G
3 

={3} , .etc. 

It is clear that ~O and ~l constitute partitionings. 

NOW, let us apply the abcve definition to the linear system (4.8.2) 

and let ~ be an ordered grouping of equations in that system. We define 

the submatrices ~,t' for k,t=1,2, ••• ,N, such that ~,t' is formed from 

the matrix A by deleting all rows except those corresponding to G
k 

and 

all columns except those corresponding to G
t

. We also define the vectors 

Xk and Bk , for k=1,2, .••• N, such that each X
k 

and Bk are formed from 

vector ~ and £ respectively by deleting all elements except those 

corresponding to group Gk • Equation (4.8.2) can be written as, 

N 

L A- X 
t=l k,t t 

k=1,2, ••• ,N. (4.8.3) 
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As an example, if n=5 and the ordered grouping is defined by 

G
l
={1,3,5}, G

2 
={2,4}, we have, 

~l,l al ,3 al,;T 

Equation (4.8.3) becomes, 

+ 

a 
5,~ 

a 5,':1 

The matrix A will be partitioned into blocks (groups) according 

to rr and take the form, 

A = ~
l'l Al,2 - - - Al,N 

A2 ,1 A2 ,2 - - - - A2 ,N , (4.8.4) , 
lA~'l ~,2 - - - - AN,N 

where N~n and ~,k' k=1,2, ••• ,N are square matrices and non-singular. 
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From this partitioning of the matrix A, we define the matrices, 

Al,l 

A22 , , 
D = , 

0 

and 

F = , 
o 

0 

, , 

, , 

~,N 

A 1,N 
I 
I 

E 

, ~-l,N , 
o 

0 

l A2 ,1 0 0 ..... 
I ..... 

= I " "-

oJ 
I 

"-I "-
~,l- ~,N-l 

(4.8.5) 

where D is a block diagonal matrix and the matrices E and F are strictly 

lower and upper block triangular matrix respectively, and 

A = D-E-F • (4.8.6) 

Assuming that all submatrices A .. are non-singular, the various 
1.,1. . 

block iterative schemes can now be defined as follows. 

The bZook Jaoobi 

A. X (n+l) 
K,k k 

or equivalently, 

x(n+l) 
k = 

iterative method is defined by, 
N 

= - I A. x(n) + V
k 

' k=1,2, ••• ,N 
.Q.=l -1<. R. R. 

R.;lk 

N 
B x(n) L + Ck ' k=1,2, ••• ,N 

R.=l k,R. R. 

R.;lk 

where, 
-1 

{ -~,k ~,.Q. if k;lR. 

1 
Bk,R. = 

0 if k=R. 
and 

-1 

J Ck = ~,k· Vk 

We may write (4.8.8) in the matrix form, 

(4.8.7) 

(4.8.8) 

(4.8.9) 
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(4.8.10) 

where, 

and 
C (Tt) (o(Tt»-\ = , (4.8.12) 

o (Tt) = diag A , (4.8.13) 

E(Tt) and F (Tt) are again strictly lower and upper triangular matrices. 

For bZoak Gauss-SeideZ iterative method we have, 

k-1 
~(n+1) = _ I A x(n+1) 

~,k k 1,=1 k,R, 1, 

N (n) - I ~ R,XR, + Vk ' k=1,2, ••• ,N 
R,=k+1 ' 

or 
X (n+l) = 

k 

k-1 
I 

1,=1 

B X (n+l) 
k,R, 1, 

N 

+ I 
R,=k+l 

(4.8.14) 

B X (n) k 1 2 k,R, 1, + Ck , =, , ••• ,N, (4.8.15) 

where Bk,R, and Ck are as given in (4.8.9). 

in the matrix form, 

This can also be written 

where, 

For the BZoak S.O.R. (BSOR) iterative method we have, 

(n+l) L (Tt) (n) ( L (Tt» -1 (Tt) x = x +w 1-w c 
w - -

where, 

L (Tt) (Tt) -1 (Tt) The B.S.O.R. iterotion = (1-wL ) (wR +(1-w)1) 
w 

L(Tt) = (0 (Tt» -lE (Tt) 

R (Tt) = (o(Tt» -IF (Tt) 

(4.8.16) 

(4.8.18) 

m:ztrix. 

(4.8.19) 

(4.8.20) 

(4.8.21) 

For the analysis and convergence of the methods we follow the 

following definitions and theorems, which is a generalization of Young's 

definition of Property (A). 
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First we define the (.~x i) matrix Z = (z. . ) by, 
l.,J 

z .. = 1, if A. .'10 I l.,J l., J 
(4.8.22) , 

and 
z. 
~,j 

= 0, if A .. =0 
l.,J 

where the matrix A and an ordered grouping ~, with i groups are given. 

Definition 4.8.2 

(~) 
The matrix A has Property A ,if Z has Property A. 

Definition 4.8.~ 

The matrix A is a ~-consistently ordered matrix if Z is consistently 

ordered. 

Definition 4.8.4 (Arms, Gates and Zondek [1956]) 

~ 
The matrix A has Property A for a given partition ~ if there 

exist two disjoint subsets S and T of W, the set of first N positive 

integers, such that S U T = Wand such that if ~,i+O' Then, either k=i 

or K E Sand i E T or k E T and i E s. 

(~) The above definition is a generalization of Young's Property A 

def ini tion. 

Definition 4.8.4 

1I'1T1f TT 
An ordering i-tuple for A will be an i-tuple ~ =(vl,v2, ••• ,vi)' 

II 
where each Vs is an integer, such that, if A . . '10 and i'lj, then 

l.,J 

Theorem 4.8.1 

(~) . 
A matrix A has Property A if and only l.f there exists an ordering 

i-tuple for A. 
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Proof: 

See Young (1971). page 148. 

Theorem 4.8.2 

If A is a symmetric matrix and D{n) is positive definite, then 

p{L{n))<l if and only if A is positive definite and O<w<2. 
W 

Proof: 

See Young (1971), page 463. 

For a symmetric matrix with D{n) positive definite, Theorem (4.8.2) 

shows the B.S.O.R. method converges. Now we try to find whether there 

is an optimal w. 

Theorem 4.8.3 

If A has Property A{n) and is consistently ordered, with o<w<2. 

d if ' . . 1 f L (n) an A ~s a non-zero e~genva ue 0 , 
W 

and if ~ satisfies, 

2 2 2 
(A-w-l) = AW ~ , (4.8.23) 

(n) 
then ~ is an eigenvalue of B . Conversely, if ~ is an eigenvalue 

of B{n) and if A satisfies (4.8.23), then A is an eigenvalue of L{n). 
W 

From equation (4.8.23) the optimal relaxation factor wb can be 

found in terms of iT, where 1i is the spectral radius of B en) and the 

matrix A is symmetric, positive definite and has Property A{n). The 

value wb is optimal in the sense that the spectral radius i:' of L (n) is 
W 

minimal so that the convergence rate is greatest. The relations are 

given by, 
2 

(4.8.24) 

and (4.8.25) 



Further we have, 

p(L(7r» 
wb 

and, asymptotically, as n+l, we obtained the relation, 
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(4.8.26) 

(4.8.26) 

As an example, in our model problem if all the points in the blocks 

are on two columns (or rows), or on three columns (or rows) then methods 

based on the use of such blocks are called two-Zine iterative methods 

and three-Zine iterative methods respectively as shown in Figure 4.7 a,b. 
y 

(0,1 ) 

I ., 8 l~ 16 

5 6 1 14 

3 4 IJ 12 

\.1 2 J 9 le 

x 
(0,0) (1,0) 

a) Two-line block 

y 

(0,1) 

, 
7 8 9 16 le 18 

'. 
4 5 6 3 1< 15 

1 2 3 ..110 1 12 

x 
(0,0) (1,0) 

b) Three-line block 

FIGURE 4.7: Grouping for the S2LOR and S3LOR method. 
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4.9 PARALLEL ITERATIVE METHODS 

Parallel iterative algorithms can be classified into two classes 

known as the class of "synohronised aZgol'ithms". or roughlY,parallel 

algorithms for SIMD machines (see, for example, the surveys by Miranker 

[1971) and by Heller [1978)}. The second class is known as the class 

of "asynohl'onous aZgol'ithms". In a synchronised iterative algorithm, 

the iterative function (a task) is decomposed into subtasks so that at 

each iterative step, the subtask is solved by one process of the 

algorithm. The processes are synchronised at the end of each iteration 

(which are the interaction points). At these pOints the processes may 

be blocked while waiting for inputs, so the performance of the algorithm 

is degraded. The performance degradation expected increases as the 

number of synchronised processes increases. Asynchronous parallel 

algorithms arise naturally in the use of multiprocessors, where the 

processors are not synchronised and the communication between co

operating processors is by means of shared data. When the fluctuations 

in the computation time are large, asynchronous algorithms are in general 

more efficient than synchronised ones for the following reasons. First, 

the processes never waste any time in waiting for inputs. Second, the 

algorithm can take advantage of processes which run fast. Results 

produced by those processes can be immediately used. Third, the 

algorithms are "adaptive", so the processes can finish about the same 

time. 

It was argued that the original form of the traditional iterative 

methods that was discussed in Section 4.3 are not suitable for 

implementation on parallel computers since they require some form of 

synchronisation. On the other hand, many improvements have been studied 
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by different researchers to improve the above arguments. 

stone [1973] in his method to solve tridiagonal systems of linear 

equations using the ILL lAC IV computer (SIMD-type computer) which 

performs N simultaneous computations where N=64,128,256 or 512, a 

result N times faster than the serial computer of the same inherent 

speed was expected. Actually, inefficiencies due to overhead and 

constraints on data communication among processors will reduce the 

speed increase to KN where O~k~l. The parallel algorithm presented 

by Stone is based upon the LU decomposition, i.e., the matrix of 

coefficients decomposes into upper and lower triangular matrices. By 

using ILLIAC IV, each processor is assigned to each component of the 

known vector. The processors all work simultaneously, therefore, data 

can be communicated among the processors in one of two ways. One datum 

can be broadcast to all processors simultaneously, or a vector of N 

items can be shifted cyclically among the processors. The technique 

that Stone used was for solving a system of equations is called 

"recursive doublingll. 

Chen and Kuck [1975] implemented an algorithm on an SIMD type 

machine to solve any linear system of the form ~=£+~, where A is an 

(nXn) strictly lower triangular matrix and £ is a constant column vector. 

However, as the algorithm stands, all processors execute the same 

operation at the same time. They show that O(lOg;n) time steps are 

required using o(n3 ) processors. 

Following on the work done by Stone, Clint and Perrot [1980] 

presented a solution of a wide variety of problems in numerical 

mathematics which needed the solution of sets of linear equations. 

Their algorithms are designed for an array processor like the ILLIAC IV, 
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SIMD type computers. In their implementation of parallel iterative 

methods lik" the Jacobi and Gauss-Seidel, each processor execu'tes one 

component of t.he vector x. Hence, all the components can be evaluated 

siullltaneous1y at anyone time. 

In U,is thesis programs are run on an MIMD type computer whose 

processors act asynchronously, therefore iterative methods for solving 

a system of linear equations have to be constructed in asynchronous 

form, i.e., asynchronous iterative algorithms. In asynchronous 

itclaioive algorithms, each p~:ocej;S jn one iteration has to compute 
> • 

different "nO. tndependent subsets cf, !"l'e components using their initial 

vaIn::", sb:u:ed.::1il'JJje shared memoLYo ')'he val.ues obtained in one iteration 

az-e used L; the next iteration whilst C'OillPUt;.i!lg th~ Sallin -components. 

. ...: "' 
Since the~erformance of the avail~le processor~ are not tlic same, 

each processor:-ean use at any computation time the values of the 

co:np:ments'thatOare evaluated and released from the previous iteration. 

on the otlierhand, when the value of the component is not available, 

the proces'sor' can then use the current value of that which was used in 

the previous iteration. As an example, Figure 4.8, shows two processors 

wOlking asynct.ronous1y on a system of four equations. 

P1 
1 000 0 

P2 
1 o 0 0 0 

Xl = (x
1

'x2,x3 ,x4) x3 = (x
1

,x2 'x
3

,x4) 

1 o 0 0 0 1 000 0 x 2 = (x
1

'x2,x3,x4) x4 (xl 'x2 ,x3 ,x4 ) 

2 111 1 2 o 0 1 1 
"1 = (x

1
,x2,x3 'x4 ) x3 = (x1 ,x2 ,x3 'x4 ) 

2 1 1 1 1 2 o 0 1 1 x2 = ("l'x2,x3,x4 ) x4 
= (x

1
,x

2
,x

3
,x

4
) 

3 2 2 2 2 3 1 1 2 2 
Xl = (x

1
,x2,x

3
'x

4
) x3 = (x

1
,x2 ,x

3
'x4) 

3 2 2 2 2 4 112 2 x2 = (x
1

,x2,x3 'x4) x3 = (x
1
'x2 ,x

3
,x4) 

~IGURE 4.8: iwo processors working asynchronously on 4 equations 
-- means end of execution 
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To represent an asynchronous iterative method that solves a system 

of equations we suppose that F is an operator from mn into itself, we 

want to find a vector x in mn which satisfies the system of equations 

represented by, 

x = F(x) • (4.9.1) 

Chazan and Miranker [1969] introduced the chaotic relaxation scheme, 

which is a class of iterative methods for solving equation (4.9.1), 

where F is linear operator given by, 

F(x) = ~ + ~ , (4.9.2) 

where x is an unknown vector, A is an (nxn) matrix of coefficient and 

b is a constant n-vector. They showed that iterations defined by a 

chaotic relaxation scheme converge to (4.9.1) if and only if P(IAI)<l, 

where p(IAI) is the spectral radius of the matrix A. The motivation of 

defining chaotic relaxation is to account for the parallel implementation 

of iterative methods on multiprocessor systems so as to reduce 

communication and synchronisation between the cooperating processes. 

This reduction is obtained by not forcing the processes to follow a 

predetermined sequence of computations, but simply to allow a process, 

when starting the evaluation of a new iterate, to choose dynamically not 

only the components to be evaluated but also the values of the previous 

iterates used in the evaluation. The restriction in the chaotic 

relaxation scheme is that there must exist a fixed positive integer S 

such that, in carrying out the evaluation of the ith iterate, a process 

cannot make use of any value of the components of the jth iterate, if 

j<i-S. 

Baudet [1978] introduced a class of asynchronous iterative methods 

"-in which the chaotic relaxation is considered as a special case and the 
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above restriction can be avoided. The class of asynchronous iterative 

methods defined by Baudet is as follows: 

n n 
Let F: lR ... lR be a linear operator such that. [: ,., xl 

F: = x: = 

~n (x) x n 

00 

Let J: = (Jj)j=l be a sequence of non-empty subsets of {1.2 ••.•• n} 

and let S = be a sequence of elements in 1'1 n (IN n the set r·,(j) JOO 

l:n (j) j=l ~ J 
of all non-negative integers). Thus. a sequence X(j) = Xt(j) E lP. 

X (j) 
n 

for l~j~OO is called an asynchronous iterative sequence if the sequence 
00 

(x(j))j=l is determined by a quadruple (F.X(O) .J.S) in the following way: 

-- fl._: (OJ (1) F.J.S as defined above. X(O) I.. 
l:n (0) 

r x. (j-l) • if i ~ J . 
~ J 

(2 ) X. (J) = 

1 ~ 

f. (Xl (Sl (j)) ••••• X (S (j))). if i E J. 
~ n n J 

(3) i occurs infinitely often in the sets J .• j=1.2 •••.• l~i~n. 
J 

'fiE {1.2 •••• ,n} [So (j)~j-l, j=1,2, ••• , and lim Si (j)->oo]. 
~ - j-

(4) 

The sequence X(j) defined by the asynchronous iteration results 

naturally from the successive approximation if it is performed on a MIMD 

computer without any synchronisation of the processors. 

From the above conditions it is clear that an asynchronous iteration 

corresponding to the operator F and starting with a given vector x(O) 

and defined by J and S, will be denoted by (F,X(O) ,J,S). Condition (2) 
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of the definition means that, to evaluate x. in the jth iteration, the . ~ 

recent values obtained from (j-l)th is used if they are released, 

otherwise, the previous values obtained from early iterations are to be 

used in the evaluation of a new iterate. Condition (3) of the definition 

guarantees that no component of the vector x be abandoned during any 

iterate. While the first part of condition (4) states that only 

components of the previous iterate can be used in the evaluation of a 

new iterate, and the second part states that the most recent values are 

used instead of the values of an early iterate. 

For example, the point JacObi method defined in the ~perator F 

with the initial approximation x(O) can be represented by the 

asynchronous iteration (F,X(O),J,S), where 

J. = {l, .•• ,n}, for j=1,2, ••. , 
~ 

Si (j) = j-l, for j=l,2, ... , and i=l,2, ... ,n. 

The same point Jacobi method can be equivalently represented by the 

asynchronous iteration where, 

J. = {l+(j-l mod n)}, for j=1,2, ••• , 
J 

Si(j) = nL(j-l)/nJ, for j=1,2, ••• and i=1,2, ••• ,n. 

In the first case, this means that all the components x
l

,x
2

, ••• ,x
n 

are 

evaluated at once and this, presumably, will be done by one computational 

process with the fact that the components of the new iterate, say i, 

cannot be evaluated until the values from the iterate (j-l) have been 

obtained. While in the asynchronous Jacobi (second case), this means 

that each component is evaluated by one process and up to n processes 

can be used to perform the computation. In this method, the computation 

of the components of the new iterate, j does not wait for the values 

of these components from the value of these components at that time is 
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considered for that computation. 

To ensure the convergence of the asynchronous iterative method, 

Baudet [1978] shows that, if F is a contracting operator on a closed 

n 
subset D of IR and if F(D) CD, then any asynchronous iteration (F, 

X(O),J,S) corresponding to F and starting with vector x(O) in D 

converges to the unique fixed point of F in D. 

Experimental results for solving linear systems iteratively using 

asynchronous iterative methods (such as Jacobi, Gauss-Seidel and S.O.R.) 

on an MIMD parallel computer can be found in Baudet [1978], Barlowand 

Evans [1982] and Yousif [1983]. 
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4.10 THE FOUR-POINT EXPLICIT BLOCK ITERATIVE METHOD 

Implicit block iterative methods were introduced in Section 4.8; 

in this section we present another approach of using a small group of 

points of fixed size, i.e., where groups of a certain number of 

individual equations (mesh point) and treated explicitly and similar 

to the way a single point is treated in the point iterative method. 

Evans and Biggins [1982] developed the four-point block iterative 

scheme and applied it to solve the model problem of the solution of 

the Laplace equation in the unit square. In this method, the mesh 

pOints are ordered in groups of four, the groups themselves being 

ordered in red-black ordering as shown in Figure 4.9. 

y 

(0,1 ) (1,1) 

15 16 35 36 19 20 

13 14 33 34 17 18 

27 28 11 12 31 32 

25 26 9 10 29 30 

3 4 23 24 7 8 

1 2 21 22 5 6 

x 
(0,0) (1,0) 

FIGURE 4.9 
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Because the blocks are taken in red-black ordering, the matrix 

has block Property (A) and is also block consistently ordered. Besides 

if the blocks are taken in natural ordering, the matrix is also block 

consistently ordered. It follows that the full theory of block S.O.R. 

method applies for both orderings. 

Block iterative methods are also known as implicit methods since 

the solution of a whole group of points can be found at a time, as 

opposed to the point iterative methods where only one point is considered. 

Normally, implicit methods have larger convergence rates than those of 

explicit methods, at the cost of some extra computation involving the 

blocks in each iteration. 

To derive the explicit block S.O.R. equations for the model problem, 

we consider the 4 mesh points as shown in Figure 4.10. 

2N+K 2N+K+l 

~+K-l N+K N+K+l 
N+K+2 

K-l K K+l 
K+2 

K-N K-N+l 

FIGURE 4.10 

where k={£N+l){2) {t+l)N-l and t=0(2)N-2. Also, we have that N is an 
2 

even number and GM of the definition (4.8.l), M=1,2, ••• ,N
4 

' such that 

each GM consists of the four elements, {k,k+l~N+k,N+k+l} though, the 
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matrix ~.M is of order 4 and of the form. 

4 -1 -1 0 

-1 4 0 -1 2 
~.M = • M=1.2 ••••• N /4 • (4.10.1) 

-1 0 4 -1 

0 -1 -1 4 

Thus. for the model problem. by using the mesh points shown in 

Figure 4.10. and from equation (4.8.8) the explicit group Jacobi 

method can be written as. 

(n+l) = .l...[7(x(n)+ (n»+2( (n) +x(n)+ (n) +x(n) )+x(n) + (n) 1 
xk 24 k-N ~-l xk-N+l k+2 x2N+k N+k-l N+k+2 x2N+k+l • 

(n+l) _ .l...[7 (n) + (n» 2 (n) + (n) (n) + (n) ) (n) + (n) ) 1 
~+l - 24 (xk- N+l xk+2 + (~-N ~-1+xN+k+2 x2N+k+l +(x2N+k xN+k- l • 

(n+l) _ .l...[7 ( (n) + (n) ) «n) + (n) (n) + (n) ) (n) + (n) 1 
~+k - 24 x2N+k xN+k_l +2 xk-N ~-1+xN+k+2 x2N+k+l +~-N+l xk+2 • 

(n+l) =.l...[7 (x (n) +x (n) ) +2 «n) +x (n) +x (n) +x (n) ) + 
xN+k+l 24 N+k+2 2N+k+l ~-N+l k+2 2N+k N+k-l 

where k={1N+l) (2) (t+l)N-l and t=0(2)N-2. 

(n) + (n) 1 
~-N ~-l • 

(4.10.2) 

From equation (4.10.2) it can be seen that for the group of 4 

N
2 

points the Gauss-Seidel iterative method involves ~ systems of 

equations of the form: 

4 -1 -1 0 X. j (n+l)rr. (n) 
1.. l..j 

-1 4 0 -1 Xi.j+l ri.j+l 
= • for i.j=1(2)N. -1 0 4 -1 Xi+l. j r i +l •j 

0 -1 -1 4 Xi+l.j+l rHl,j+l 

(4.10.3) 

where. (n) 
= X (n+l) + x(n+l) 

r i • j i-l,j i.j-l 

(n) 
= X (n+l) 

ri,j+l i-l.j+l 
+ x(n) 

i+2.j • 



and 

Now let, 

(n) 
r. 1 . l.+ ,] 

= X(n+l) + X(n) 
i+l,j-l i+2,j' 

(n) 
ri+l,j+l 

= X(n) + X(n) 
i+l,j+2 i+2,j+l 

= (n) + (n) + (n) + r (n) 
Si ri,j ri,j ri+l,j+l i+l,j+l 

S = (n) + r (n) + (n) + (n) 
2 ri,j+l i,j+l ri+l,j ri+l,j 
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(4.10.4) 

(4.10.5) 

(4.10.6) 

Hence, the solution of the system (4.10.3) can be found from the 

formula, 

(4.10.7) 

(n+l) = ...!..(7r (n) + S + (n) ) 
Xi+l,j+l 24 i+l,j+l 2 ri,j 

When the over-relaxation factor w is added, the application of 

the over-relaxation technique leads to the (n+l)th iterate of the 

group of 4 points being redefined to give the S.O.R. formula as: 

X (n+l) = x(n) + (* (n» 
i,j+l i,j+l w Xi,j+l - Xi,j+l ' 

x (n+l) 
i+l,j 

= x(n) + w(X~+l . - x~nl) .) 
i+l,j l. ,] l.+ ,] 

for i,j=1(2)n 

X (n+l) = x(n) + (X* x(n» 
i+l,j+l i+l,j+l w i+l,j+l - i+l,j+l ' 

where x* represents the Gauss-Seidel solution x(n+l) defined in 

equation (4.10.7). 

(4.10.8) 

To calculate the amount of work required using this method, 

Evans and Biggins [19821 show that, 
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3N
2 

multiplications + ~3 N
2 

additions (4.10.9) 

for N
2 

internal mesh points per iteration and assuming that the 

constant 2~ is stored beforehand. Equation (4.10.9) has been 

(n+l) (n+l) 
improved by solving X.. and X. 1 . l' and to use these values 

~,] 1.+ ,J+ 
. (n+l) (n+l) 

to determ1ne X .. 1 and X. 1 .' Therefore, the average work per 1.,J+ 1.+ ,J 

iteration for N
2 

internal mesh points including the over-relaxation 

process is, 
2 

5~ multiplications llN
2 

+--
2 

additions. (4.10.10) 
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4.11 THE 9-POINT EXPLICIT BLOCK ITERATIVE METHOD 

In this method another grouping of the mesh points is suggested 

by considering each block to be formed from a group of 9 points as 

shown in Figure 4.11. For this scheme 

by 3. In this method, each subset GM' 

of grouping, N must be divisible 

N
2 

M=1,2' ••• '9i' of Definition 

2 (4.8.1) consists of 9 elements, where N represents the number of 

internal mesh points. 

y ~ 

(0,1) (1,1) 

34 35 36 16 17 18 

31 32 33 13 14 15 

28 29 3C 10 11 12 

7 8 9 25 26 27 

4 5 E 22 23 24 

1 2 3 19 20 21 

-, 
x 

(0,0) (1,0) 

FIGURE 4.11 

Suppose that the system of equations to be solved is derived from 

the two-dimensional Dirich1et problem (the model problem, see section 

4.7), where the 5-point finite difference scheme shown in Figure (4.12) 

is used and given by the form, 

Ax = b (4.11.1) 
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The left hand side of the finite difference equation of such a system 

has the form, 

x .. +a1xi _1 .+a2x. j+l+a 3x '+1 .+a4x. '-1 1.,) ,) 1., 1.,J 1.,J 

"'3 

"'4---- 1 

"'1 
FIGURE 4.12 

For the mesh points shown in Figure 4.11, the resulting block 

(4.11.2) 

structure of the coefficient matrix A of equation (4.11.1) is shown 

below, 

ro o : R2 R~ 
0 RO : R1 R4 

A = -R~: -;; -0J (4.11.3) 
R4 

Rl R2 I 0 R 
I 0 

where, 

1 "'3 0 a2 0 o I 1 0 
"'1 1 "'3 0 a2 0 

0 "'1 1 0 0 '" I t- - _ 2..1 

"'4 0 0 1 a3 0 "'2 0 0 

0 "'4 0 I 
"'1 1 a3 1 0 "'2 0 

R = 
0 0 a I 0 1 10 0 

, 
0 

_ 4....l a1 _ "'"'-- -0-11 
"'4 0 "'3 0 

I 
I 

0 a4 0 I '" 1 a 3 0 I 1 
0 0 a4 1° "'1 1 
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o "1' 
o 0 1 o o o o o 
o 0' -- - -1-o 

-I - - -- _I _. __ _ 

o 

l o 

o 

o 

o 
10 

o "1 1 
00

1 
10 0 0 -----1-
I 

o 

o 

'0 , 

o 

o "1 

o 0 

o 0 

o 
01 

01 

01 .J... __ _ 

10 0 01 

10 0 01 0 
1"3 0 

l - -

: 0 000 

"3 0 0 

I 
o o I 0 

I 
" -0-01 - - - -, - - --

2 I 1 
o "2 0 1 0 0 
o 0 "21 

o o 

o o 

o o 

o 01 

o 
-, -

I 
I o 

From Figure 4.11, because the blocks are taken in red-black 
(4.11.4) 

ordering, the coefficient matrix A has block Property (A) and is also 

block consistently ordered. Besides, if the blocks are taken in 

natural ordering, the coefficient matrix is also block consistently 

ordered and has block Property (A). Again, it follows that the full 

theory of block S.O.R., method applies for both orderings. 

Now, to derive the explicit block S.O.R. equations for the model 

problem, we calculate the transformed matrix AE, 

E -1 
A = [diag{Ro }) A. (4.11.5) 

-1 -1 
The matrix [diag{Ro }) is simply diag{Ro }, and the inverse of 

matrix RO is given by, 



2 2 2 2 22 
Y1 a 3S1 a 3S2 a 2S3 a 2a 3 S4 a 2a

3
S

S 
a

2
S

6 
a

2
a

3
S

7 
a

2
a

3
S
S 

2 2 2 n1S1 Y2 a 3S1 I u1u 2S4 u2 S9 u 2u
3

S
4 

u
1

u
2

S
7 

a
2

S
10 

a
2

a
3

S
7 

2 12 22 2 2 
u1 S2 a1S1 Y1 a 1a 2SS a 1a 2S4 u2 S

3 
a

1
a

2SS 
a

1
a

2
S

7 
a

2
S
6 - - - -"2" J.. - - - - - - 2" - r - - - - - - - -2-

a 4S3 a 3a 4S4 a 3a 4SS Y3 a 3S11 a3il12· a2il3 a 2a 3 il4 a2a3ilS 

I 
a 1a 4 il4 a 4S9 a 3u4 il4 a1illl Y4 a 3S11 I a 1a 2S4 a 2 S

9 
a2a3il4 

R -1 1 I 2 2 I 2 I (4.11. 6) 
o d a1a4ilS u1a4il4 u4il3 a 1Jl12 a1illl Y3 a 1a 2J3 S a

1
a

2
S

4 
a2il3 

- - - 2- - T"2 I - - - - - -2 - T - - - - - - 2- -
a4 S6 a3a4il7 u3a4ilS a 4 il3 a 3a4 il4 u 3u4 SS I Y1 a3il1 u

3
S

2 2 2 2 I 
a1a4il7 a 4 il10 a3a4il7 a 1

a
4 il4 a 4 ilg a3u4il4 u1il1 Y

2 
u

3
il
1 

22 2 2 2 2 
a 1a 4 ilS a1a4il7 a.:i,il6 I a1a4ilS a 1a 4 S4 a 4 il3 u

1
il

2 
a1il

1 
Y

1 

'" '" '" 
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where, 

2 2 2 
d =4~1~2~3~4[4(~1~3-~2~4) -2(~1~3+~2~4)+31-2~1~3(4~1~3-6~1~3+3) 

2 2 
-2~2~4(4~2~4-6~2~4+3)+1 

2 2 2 
Y1 = 2~1~2~3~4[2(~1~3-~2~4) -~1~3-a2~4+31-a1~3(4~1~3-8~1~3+5) 

2 2 
-~2~4(4~2~4-8~2~4+5)+1 , 

(4.11. 7) 
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and 

The block structure of the matrix AE is the same as that of A in 

equation (4.11.3) with the submatrices RO replaced by the identity 

matrix I, and the submatrices Ri' i=1,2,3,4 replaced by R;lR
i

, which can 

be determined easily as follows: 

o 0 

o 0 

o 0 

o 0 

-1 1 
RO Rl = d 0 0 

-1 1 
R R =o 2 d 

o 0 

o 0 

o 0 

o 0 

3 
il2S6 

3 
il l il 2S7 

2 3 
il l il2SS 

2 
il 2S3 

2 
il l il2S

4 
2 2 

illil2~S 

il2Yl 

ill il2S
1 

2 
il l il 2S2 

ill Y 1 

2 
illS 1 

o 0 

o 0 

3 
il l S2 o 0 

il l il
4

S
3 

0 0 

2 
il l il 4S

4 
0 0 

3 
il l il

4
SS 0 0 

2 
il1il4S6 0 0 

2 2 
il l il

4
S

7 
0 0 

3 2 
il lil4 Ss 0 0 

3 
il2il

3
S

7 
3 

il 2S
lO 
3 

il l il2S7 
2 

il2il
3

S
4 

2 
il2S

9 
2 

ill il2S4 

il2il
3

Sl 

il2Y2 

illiliSl 

ill Y 3 
2 

il 1 13 11 

3 
il l ll12 

il1"4S3 
2 

il l "4S4 
3 

il l "4SS 

3 2 
il2il 3 i3S 

3 
il2"3 i3 7 

3 
il

2
S

6 
2 2 

il2il3 i3 S 
2 

il2il3i34 
2 

il2S3 
2 

il2il3 i3 2 

il2il
3

i3l 

il2Yl 

o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

2 
'\il 2S6 

2 2 
il l il 2S7 

3 2 
il l "2SS 

il l "2S3 
2 

il l il2S4 
3 

il l "2SS 

o 0 0 0 0 

o 

o o 

o o 

o 0 o 

o o 

o o 

o o 

o 0 0 000 

(4.11.9) 

(4.11.10) 



and, 

a 

a 

a a 

1 
a 

= -
d 2 

"3"484 a a 

"3"483 
3 2 

"3"488 
2 2 

"3"487 
2 

"3"486 

a 

a 

a 

a 

a 

a 

a 

a 

a a a a a a 

a a 

a a 

a a 

o a 

a a 

a a 

a a 

a a a a a a 

3 
"2"385 

3 
"2"384 

"2"383 
3 

"3812 
2 

"3811 

"3Y3 
3 

"3"485 
2 

"3"484 

"3"483 

"4Y1 

"1"481 
2 

"1"482 
2 

"483 
2 

"1"484 
2 2 

"1"485 
3 

"486 
3 

"1"487 
2 3 

"1"468 

a 

a 

a 

a 

a 

a 

a 

a 

a 

a 

a 

a 

a 

a 

a 

a 

a 

a 

"2"363 
3 

"362 
2 

"361 

"3"481 

"4Y2 

"1"461 
2 

"3"413 4 
2 

"469 
2 

"1"464 
3 

"3"467 
3 

"4810 
3 

"1"4 67 

a 

a 

a 

a 

a 

a a 

a a 

a a 

a a 

2 
"3"462 

"3"461 

"4Y1 
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(4.11.11) 

2 2 
"3"465 

2 
"3"464 (4.11.12) 

2 
"463 

2 3 
"3"468 

3 
"3"467 

3 
"466 

It can be noticed that, if matrix R. has a column of zeros, so 
~ 

-1 
does the result matrix R R., and where an element ". occurs as the a ~ ~ 

-1 -1 
(q,p)th element of Ri' the qth column Ra Ri is the pth column of Ra ' 

multiplied by "i' 

For the model problem the Dirich1et problem (4.7.8) we have, 

1 
a=cx=a=a= 

1 2 3 4 4' 

we have, 
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67 22 7 22 14 6 7 6 3 

22 74 22 14 28 14 6 10 6 

7 22 67 6 14 22 3 6 7 

22 14 6 74 28 10 22 14 6 

-1 1 14 28 14 28 84 28 14 28 14 
RO =- (4.11.11) 56 6 14 22 10 28 74 6 14 22 

7 6 3 22 14 6 67 22 7 

6 10 6 14 28 14 22 74 22 

3 6 7 6 14 22 7 22 67 

Therefore, 

0 0 67 0 0 22 0 0 7 

0 0 22 0 0 14 0 0 6 

0 0 7 0 0 6 0 0 3 

0 0 22 0 0 74 0 0 22 

0 0 14 0 0 28 0 0 14 

-1 1 
RO R1=-224 0 0 6 0 0 10 0 0 6 (4.11.12) 

0 0 7 0 0 22 0 0 67 

0 0 6 0 0 14 0 0 22 

0 0 3 0 0 6 0 0 7 

7 6 3 

6 10 6 

3 6 7 

-1 1 
22 14 6 0 (4.11.13) RO R2=-224 

14 28 14 

6 14 22 

67 22 7 

22 74 22 

7 22 67 
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Similarly, R;lR3 and R;lR4 can be obtained. 

Explicit equations corresponding to the points that form the block 

of 9 points can also be derived by considering the area mesh as shown 

in Figure 4. 13. 

J I H 

K 7 S 9 G 

L 4 5 6 F 

A 1 2 3 E 

B C D 

FIGURE 4.13 

By applying the S-point finite difference formula, the following 

system of equations is obtained: 

4x
l = x2 

+ x
4 

+ X 
A 

+ X 
B 

4x2 = Xl + x3 + Xs + X 
C 

4x3 = x2 + x6 + X 
D 

+ X 
E 

4x4 = Xl + Xs + x
7 

+ X 
L 

(4.11.14 ) 

4xS = x2 
+ x

4 + x6 + Xs 

4x6 = x3 + Xs + Xg + X 
F 

4x
7 = x4 + Xs + X + X 

J K 

4xS = Xs + x
7 + Xg + X 

I 
and 

4Xg = x6 + Xs + XG + X
H 
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Equation (4.11.14) can be rewritten as, 

= X + X 
A B 

-x +4x -x 
1 2 3 = Xc 

-x
2

+4x
3 

-x 
1 

+ 4x
4

-x
S -x7 (4.11.15) 

-x 
2 -x

4 
+4x

S
-x

6 

-x 
3 -x

5
+4x

6 

-x4 

-xS 

-x6 

-xS 

-x9 

+4x
7
-x

a 

-x
7

+4x
a 

-x 
9 

-xa+4x9 

= 0 

= X I 
F 

This can be written in matrix form as Ax=b and thus X=A-1b can then be 

given as, 

= 221 [67(X +X )+22(X +X )+7(X +X +X +X )+6(x +X )+3(X +X )], x3 4 D E C F B G H A I L J K 

= ~[2(X +X +X +X )+X +X +X +X +X +X +X +X ] , 
Xs 16 C F I L BAD E G H J K 

= 22
1
4 [67 (X +X ) +22 (X +X ) +7 (X +X +X +X ) +6 (X +X ) +3 (X +X )] , 

x 7 J K I L BAG H C F D E 

x9 = 2;4 [67 (XG+XH) +22 (XF+XI ) +7 (XD+XE+XJ+XK) +6 (XC+X
L

) +3 (X
B

+ X
A

)] 

(4.11.16) 
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For the model problem, by using the mesh points as shown in 

Figure 4.14, the group Jacobi method can be written as, 

(n+l) __ 1_[67 ( (n) + (n) ) +22 «n) +x (n) ) +7 (x (n) +x (n) + 
xk - 224 xk _N x (k-l) xk - N+l N+k-l k-N+2 k+3 

x (n) +x (n) +6 x (n) +x (n) (n) (n) 
3N+k 2N+k-l) (N+k+3 3N+k+l)+3(x2N+k+3+x3N+k+2»)' 

(n+l) = --L[37 (n) +11 ( (n) +x (n) + (n) +x (n» +7 (x (n) +x (n) ) 
xk+l 112 ~-N+l ~-N k-l ~-N+2 k+3 N+k+3 N+k-l 

5 (n) +3 (x (n) +x (n) +x (n) +x (n) ) ) 
+ x3N+k+l 2N+k+3 3N+k+2 3N+k 2N+k-l ' 

(n+l) 1 (n) (n) (n) (n) (n) (n) (n) 
xN+k = l12[37xN+k-l+ll(xk_N+x3N+k+x2N+k_l+~_l)+7(~_N+l+x3N+k+1) 

+5x(n) +3(x(n) +x(n)+x(n) +x(n) ») 
N+k+3 k-N+2 k+3 2N+k+3 3N+k+2 ' 

(n+l) = ...!...[2 (x (n) +x (n) +x (n) +x (n) ) +x (n) +x (n) + (n) +x (n) 
xN+k+l 16 k-N+l N+k+3 3N+k+l N+k-l k-N k-l ~-N+2 k+3 

(n) (n) (n) (n) 
+x +x +x +x ) 

2N+k+3 3N+k+2 3N+k 2N+k-l ' 

x(n+l) = _1_[37x(n) +ll(x(n) +x(n) +x(n) +x(n) )+7(x(n) + 
N+k+2 112 N+k+3 k-N+2 k+3 2N+k+3 3N+k+2 k-N+l 

(n) ) +5 (n) +3( (n) + (n) + (n) + (n») 
x 3N+k +l xN+k - l ~-N x3N+k x 2N+k - l ~-l ' 

(n+l) _ -L[37 (n) +1 ( (n) (n) (n) (n) 7 ( (n) 
x 2N+k +l - 112 x 3N+k +l 1 x2N+k+3+x3N+k+2+x3N+k+x2N+k_l)+ x N+k +3+ 

(n) ) +5 (n) +3 «n) (n) (n) (n» 
+xN+k - l xk _N+l xk_N+xk_l+xk_N+2+xk+3)' 
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(n+1) 1 en) en) en) en) en) 
x2N+k+2 = 224[67{x2N+k+3+X3N+k+2)+22{xN+k+3+x3N+k+l)+7{~_N+2+ 

en) +x en) +x en) ) +6 ({n) +x en) ) +3 (x.{n) +x (n» 1 
xk+3 3N+k 2N+k-l ~-N+l N+k-l k-N k-l ' 

(4.l1.l7) 

where k={~N+l) (3) {~+1)N-2 and ~=O(3)N-3. 
3N+k 3N+k+l 3N+k+2 

2N+k-l 
(i+2,j-l) 

N+k-l 
(i+l,j-l) 

k-l 
(i ,j-l) 

(i+3,j) 

2N+k 
(i+2,j) 

N+k 
(i+l,j) 

k 
(i, j) 

k-N 
(i-l,j) 

(i+3,j+l) 

2N+k+l 
{i+2,j+1 

N+k+l 
(i+1 ,j+1) 

k+1 
{i,j+1 

k-N+1 
(i-l,j+l) 

FIGURE 4.14 

(i+3,j+2 ) 

2N+k+2 
{i+2,j+2 

N+k+2 
(i+1 ,j+2) 

k+2 
(i,j+2 

k-N+2 
(i-l,j+2) 

2 
{ 

N+k+3 
i+2,j+3) 

N +k+3 
i+1 ,j+3) { 

{ 
+3 
i,j+3) 

We now find the amount of computation that is needed to obtain the 

solution of the system of equations per iteration using the group of 

9 points. From equation (4.ll.l7) it can be seen that the 9-point 

Gauss-Seidel iterative method for the solution of our model problem 

N
2 

involves '3 systems of equations of the form, 
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(n+l) (n) 

f -1 0 -1 X, , r, 

l 
~) 1,j 

-1 4 -1 0 -1 Xi ,j+l ri,j+l 
0 

0 -1 4 0 0 -1 X, '+2 r i ,j+2 ~,) 

-1 0 0 4 -1 0 -1 
Xi+l,j r i +1 ,j 

-1 0 -1 4 -1 0 -1 
Xi+1,j+l ri+1,j+1 

-1 0 -1 4 0 
= 

0 -1 Xi+1,j+2 r i +1 ,j+2 

-1 0 0 4 -1 0 X'+2 ' ~H',j ~ ,) 
0 -1 0 -1 4 -1 X, 2 ' 1 

r i +2 ,j+ll 1.+ ,J+ 

-1 0 -1 4 Xi+2,j+2 ri+2,j+2 

for i,j=l (3)N (4.11.18) 

where 
(n) (n+1) 

+ X (n+l) 
r i ' = X, 1 ' , 

,) 1.- ,J i ,j-1 

(n) 
= X (n+l) 

ri,j+l i-1,j+l 

(n) 
= X (n+l) + X (n) 

r i ,j+2 i-1,j+2 i,j+3 

(n) 
= X (n+l) 

ri+l,j i+l,j-1 

(n) 
ri+l,j+l = 0 , (4.11.19) 

(n) = x(n) 
ri+1,j+2 i+l,j+3 

, 

(n) 
= x(n+1) + x(n) 

r i +2 ,j i+2,j-1 i+3,j 

(n) 
= X (n) 

and 
ri+2,j+l i+3, j+l 

(n) 
= X (n) + x(n) 

r, 2 ' 2 1+ ,J+ i+3,j+2 i+2,j+3 

Therefore, we have the Gauss-Seide1 solution of equation (4.11.18), 

given by, 
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X (n+l) __ 1_ (n)+ 2 (n) + (n) )+7 (n) + (n) )+6 (n) + 
" - 224[67r, , 2 (r, '+1 r'+l' (r, '+2 ri+2' (r'+l '+2 1.,J 1.,J 1.,] 1.,J 1.,J ,J 1.,J 

(n) ) +3r (n) I 
r i +2 ,j+l i+2,j+2 

x (n+l) _ .1:.....[37 (n) +11 ( (n) + (n) ) 7 ( (n) (n» 5 (n) +3 ( (n) 
i,j+l - 112 ri,j+l ri,j r i ,j+2 + r i +l,j+2 +ri+l,j + i+2,j+l r i +2 ,j 

(n) 
+ri+2 ,j+2) I , 

x (n+l) 
i,j+2 

1 (n) (n) (n) (n) (n) (n) 
= 224[67ri,j+2+22(ri,j+l+ri+l,j+2)+7(ri,j+ri+2,j+2)+6(ri+2,j+l 

+r ~n) ,) +3r ~n) ,I 
1.+1,) 1.+2,J 

X (n+l) = _1_[37r~n) ,+ll(r(n~+r(n) )+7( (n) +r(n) )+Sr(n) 
i+l,j 112 1.+l,J i,J i+2,j ri,j+l i+2,j+l i+l,j+2 

(n) + (n) ) 
+3(ri ,j+2 ri+2,j+2 ] , 

(n+l) = 1:....[2 (r (n) + (n) + (n) + (n) ) +r (n) + (n) +r (n) 
Xi+l,j+l 16 i,j+l ri+l,j r i +l ,j+2 r i +2 ,j+l i,j r i ,j+2 i+2,j 

(n) 
+ri+2,j+2] 

(n+l) __ 1_ 37 (n) + (n) + (n) ) 7 «n) + (n) ) 
Xi +l ,j+2 - l12[ r i +l ,j+2 11(ri ,j+2 r i +2 ,j+2 + ri,j+l r i +2 ,j+l 

(n) + (n)+ (n) 
+Sr, 1 ' 3 (r, , r, 2 ,) I 

1.+,] 1.,J 1.+,) 

(n+l) __ 1_[ (n) (n) + (n) (n) + (n) ) (n) 
Xi 2 ' - 224 67r, 2 ,+22(r, 2 ' 1 r, 1 ,)+7(r, , r, 2 ' 2 +6(r, , 1 + ,J 1.+ ,J 1.+ ,J+ 1.+ ,J 1.,J 1.+ ,J+ 1.,J+ 

(n) + (n) 
+r, +1 '+2) 3r, '+2] 1. IJ 1.,] 

X (n+l) 1 (n) + (n) + (n) (n) + (n) 
i+2,j+l = 112[37ri +2 ,j+l 11(ri +2 ,j+2 r i +2 ,j)+7(ri +l ,j r i +l ,j+2 

X (n+l) 
i+2,j+2 

+Sr ~n), +1+3 (r ~n), +r ~n)'+2) I 
1.,J 1.,J 1.,J 

- .1:.....[67 (n) +22( (n) + ,en) , )+7(r,(n) +r(,n) ,) 
- 224 r i +2 ,j+2 r i +l ,j+2 r1.+2,J+l 1.,j+2 1.+2,J 

(n) + (n) ) +3 (n)] (4 11 2 ) +6 (r , '+1 r, +1' r" • • 0 1.,J 1.,J 1.,J 

By the application of the over-relaxation technique on the (n+l)th 

iteration of the group of 9 points we have the following formulae, 



x(n+l) 
i+JI.,j+k 

= x(n) + w(X* _x(n) ) 
i+JI.,j+k i+JI.,j+k i+JI.,j+k 
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for i,j=1(3)N and 

k,JI.=0(1)2, 

(4.11.21) 

(n+l) where X* represents the Gauss-Seidel solution X defined by 

equation (4.11.20). Therefore this scheme requires a total of, 

multiplications + ~5 N
2 

additions. (4.11.22) 

We can improve the above computation work by, first calculating 

(n+l) (n+l) (n+l) (n+l) 
the 4 points Xi,j+l' Xi+l,j' Xi+l,j+2 and xi+2,j+l from equation (4.11.20) 

then apply the 5 point finite difference formula to the remaining five 

points. Hence we set, 

and 

= x(n+l) + x(n+l) 
SI i,j+l i+l,j' 

= x(n+l) + X (n+l) 
S2 i,j+l i+l,j+2 

= x(n+l) + x(n+l) 
S3 i+l,j i+2,j+l 

= x(n+l) + x(n+l) 
S4 i+2,j+l i+l,j+2 

(n+l) 
Xi+l,j+l 

X (n+l) 1 (n) 
i+2,j+2 = "4(ri+2,j+2 + S4) , 

(4.11.23) 

(4.11.24) 

(4.11.25) 

(4.11.26) 

(4.11.27) 

so the amount of work per iteration for this method including the over-

relaxation process is now, 

38 N
2 

multiplications + 59 N2 additions. 
9 9 (4.11.28) 



4.12 EXPERIMENTAL RESULTS OF THE BLOCK ITERATIVE METHODS 

The parallel version of both the basic 9-point block and the basic 

4-point block iterative methods have been implemented on the NEPTUNE 

system. These parallel versions are used to solve the model problem, 

i.e., the two-dimensional Dirichlet problem on a square grid of mesh 

points and the approximate solution is found by solving a linear system 

of equations, ~=£, where A is a (nxn) sparse matrix and £ is the vector 

obtained from the boundary conditions. To ensure that the solution to 

the model problem can be obtained, i.e. the solution converges then the 

spectral radius of matrix A, P(A) should be less than 1 (see Section 4.2). 

The parallel versions of the 9-point block iterative methods were 

implemented using equations (4.11.19), (4.11.20) and (4.11.21) while 

the parallel versions of the 4-point block iterative methods were 

implemented by using equations (4.10.4), (4.10.5), (4.10.6), (4.10.7) 

and (4.10.8). In general in all these versions, the model problem is 

solved by decomposing it into many subsets that are assigned to the 

different processors which can then be run in parallel. Obviously, 

different versions may give different results in the running time 

overheads, number of iterations needed for convergence and in the speed-

up ratios, which are studied and compared later. In the different 

parallel versions, two mesh sizes are evaluated, these sizes are h-l =25 

-1 -1 
and h =37. For the mesh point size h =25 we need to evaluate a 

(24 X24) sparse matrix which is obtained by using the finite difference 

method (see Section (4.3), (4.10) and (4.11)). Similarly, for the mesh 

-1 
point size h =37 we need to evaluate a (36 x 36) sparse matrix. 

Therefore, in general for mesh point size h-l=N+l we need to solve an 

M=(NXN) matrix linear system in a multiprocessor of P processors. 
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The natural way to evaluate these points is done by processing a 
, 

fixed amount of work (MCM) points by each process which is carried ... 
N out by allocating r-p lines (rows) of the matrix to each process. 

This implies that the first r rows are assigned to process 1, the 

second r rows are assigned to process 2 and so on. In this approach, 

the rows are processed sequentially even though the components within 

each row are treated three at a time in the case of the 9-point block 

iterative method or pairwise in the case of the 4-point block 

iterative method. This method is more commonly known as sequentiaZ 

decomposition. In sequential decomposition, shared memory should be 

used to hold the input component values. These values can then be 

accessed by different processes. Each process iterates on its subset 

permanently, but it needs to read all its components before the start 

of the iteration. Then it releases all the values of the components 

for the next iteration. It is possible that a process cannot obtain 

the most recent value of its component, due to the time difference 

needed by each process to complete its work. This means that when a 

process P is busy updating the values of its components the other 

processes cannot use the specific components when they are required 

until the update is completed. In this case, process P will iterate 

using the old values which is related to that component. As a 

consequence to that situation an extra iteration will be needed to 

obtain the solution within a required accuracy. Sequential 

decomposition is considered as a good strategy, because when the mesh 

points subsets are allocated to different processes, all the related 

neighbouring points are computed sequentially within that subset, 

except for the rows on the boundary of the subset which have their 
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related rows in different subsets and which are carried out by other 

processes. Therefore, all the required new values of the related 

components are in the same subset. Similar results should be obtained 

for a larger number of mesh points, due to the capability of the 

parallel system being exploited when it is fully loaded. 

In this section, two parallel versions have been programmed and 

implemented for both parallel 9-point block iterative methods and the 

parallel 4-point block iterative method using an synchronously and 

asynchronously approach with each parallel version. Also, two different 

w values are used while running each algorithm, these values are w=l.O, 

i.e. similar to the Gauss-Seidel method, and for w=w (optimal w), 
opt 

i.e. similar to the S.O.R. iterative method. Optimal w is obtained 

from the experiments by choosing the one that gives the best running 

time. In all the parallel versions, the blocks within each subset 

are taken in both natural and red-black ordering. In our implementation 

the number of processes (parallel paths) are taken to be less or equal 

to the number of processors available and the accuracy value (E) taken 

-5 
to be equal to 10 • The results shown in this section (such as 

timing, number of iterations, ••• ) are an average of many runs. 

The Parallel 9-Point Block Iterative Method (Version One) 

In this version of the 9-point block iterative method, the problem 

(coeffiCient matrix) is decomposed into subsets each of which are 

aSSigned to a parallel path. If P is the number of available processors 

and N is the size of the problem, i.e. the number of rows in the mesh 

which is divisible by P, then each path works on a subset of lines 

N 
N =-. This means P subsets are formed with each containing N

r 
rows of r P 



281 

the original mesh points, where N should be divisible by 3. Each 
N r 

subset will contain b
r
=[( 3r )2. P1 blocks each with 9 points to be 

evaluated by each path. Each processor then computes its own subset 

by taking its blocks (b ) in the natural ordering, i.e., by taking up 
r 

each successive three neighbouring rows at a time and all the blocks 

on these three lines are evaluated. When the blocks on the first 

three lines of the subset are evaluated, the second three lines are 

taken and all its blocks are also evaluated and the algorithm proceeds 

as before until all the lines in the subset are evaluated. Figure 4.15 

shows an example when N=12 and p=2 and we have the number of lines in 

each subset N =6 and number of blocks in each subset b =8. Processors 
r r 

P
l 

and P
2 

evaluates their blocks in parallel and in natural ordering 

as shown in the Figure below. 

r 
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FIGURE 4.15 
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In this version, the nine points within each group are evaluated using 

equations (4.11.20) and (4.11.21), i.e. using the 13-point explicit 

formula. Version One has been implemented in both the asynchronous 

and synchronous approach. In the asynchronous approach, each processor 

run asynchronously on its subset without waiting for the other 

processors to complete their computations. In this case each processor 

iterates permanently on its subset until this and the other subsets 

which are carried out by other processors are converged. This approach 

has been implemented in Program 4.1, in this program the component 

values are maintained in a shared memory so that all the processors 

can obtain their subset value by accessing shared memory. A set of 

flags are also maintained in a shared memory, such that there is one 

flag for each processor which are used for convergence tests. At the 

end of each iteration, each processor checks to ensure that its 

components are obtained within the required accuracy, i.e. converged. 

If convergence is obtained, the processor sets its flag and tests the 

remaining flags to ensure that the other subsets that were run on 

different processors also converge. If anyone of the other processors 

are not converged further iterations will be required, otherwise there 

is no need for further iteration. The results of the Parallel Version 

One algorithm are listed in Table 4.1, where 1~w~1.9, mesh size (24 X 24) 

and the number of paths as 1,2 and 4. While Table 4.2 shows the 

results of this implementation by using mesh sizes (24 X24) and (36X36) 

and for w=l.O and w=w t (optimal w) which is equal to 1.66, 1.65 for op 

the (24x24) mesh size and 1.75 for the (36 x36) mesh size. 

Another strategy used to implement Version One is by evaluating 

the formed 9-point blocks (b ) in red-black ordering instead of the 
r 
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natural ordering. By red-black ordering we mean that odd blocks 

numbered 1,3,5 ••• are evaluated first then the even numbered blocks 

2,4,6 ••• are evaluated next as shown in Figure 4.16. All assumptions 

that are applied to the natural ordering is also applied to the red-

black ordering. 

12 

11 
2nd 

10 subset 

b27 1\ b23 ' \ b28 ~24\ .\\ 
1\ \\ 1\ \ '\ \\ 

P2 9 

8 

7 

" b2l \ b25 b22 \\ b26 

1'.\ \ \\ ,\ \ \ 
6 

5 
1st 

4 subset 

b17 bl3 1\\ b18 1\ Ib14 \ \ 
f\ 1\ \ \ f\ \ \ \ 

Pl 3 

2 

1 

bl} \' b15 '\ bi2 \ b
16 

1\\ r\\ r\ 1\ \ f\\ 

FIGURE 4.16 

Figure 4.16 shows an example when N=12, number of processors P=2 and 

number of blocks in each subset b
r

=8. Processors P
l 

and P
2 

evaluates 

their blocks simultaneously in red-black order as shown in Figure 4.16. 

The red-black strategy is programmed in Program 4.2 and the results of 

this program are listed in Table 4.3 where the mesh sizes (24x24) and 

(36x36) are used with w=l.O and w=w (optimal w) • 
opt 

.• 
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From the results in Tables 4.2 and 4.3 we observe that for both 

mesh sizes the running times for the asynchronous natural ordering 

(Program 4.1) are less than that of asynchronous red-black ordering 

(Program 4.2) and the speed-up ratios of the natural ordering is 

greater than that of the red-black ordering. Therefore, the natural 

ordering strategy appears to be better than that of the red-black 

ordering in the asynchronous implementation of the 9-point block using 

Version One. For that reason, we will choose the natural ordering 

among the two implementations for further investigation. We also 

noticed that for both strategies the speed-up ratios w=w (optimal w) 
opt 

are higher than that for w=l.O. The timing results from Tables 4.2 and 

4.3 using mesh size (36x36) with both w=l.O and w=w t are shown in 
op 

Figure 4.17, while the speed-up results are shown in Figure 4.18. 
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Mesh Size No. of Time No. of Effective no. 
(NxN) e: Processors w (seconds) iter- of parallel paths 

ations used by this 
processor 

(24 x24) 10 
-5 

1 1.0 1007.49 201 1 
1.1 835.81 167 1 
1.2 686.30 137 1 
1.3 561.02 112 1 
1.4 445.75 89 1 
1.5 340.50 68 1 
1.6 235.45 47 1 
1.7 196.04 39 1 
1.8 306.07 61 1 
1.9 635.58 127 1 

2 1.0 509.28 203 1,1 
1.1 420.85 168 1,1 
1.2 348.52 139 1,1 
1.3 282.48 112 1,1 
1.4 225.60 90 1,1 
1.5 171.60 68 1,1 
1.6 117.76 47 1,1 
1.7 96.48 38 1,1 
1.8 157.90 62 1,1 
1.9 396.06 157 1,1 

4 1.0 255.65 205 1,1,1,1 
1.1 213.70 171 1,1,1,1 
1.2 176.00 141 1,1,1,1 
1.3 145.80 116 1,1,1,1 
1.4 113.78 91 1,1,1,1 
1.5 91.31 72 1,1,1,1 
1.6 70.62 56 1,1,1,1 
1.7 48.39 38 1,1,1,1 
1.8 89.28 71 1,1,1,1 
1.9 257.56 204 1,1,1,1 

FIGURE 4.1: Results of the parallel 9-point block iterative 
method using natural ordering (Version One) 

-
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Mesh Size P Time No. of Speed- Effective no. 
(NxN) , E W seconds) of parallel iter- up 

ations paths used by 
this processor 

(24 x24) 10 
-5 

1 1.0 1007.49 201 1 1 

2 1.0 509.28 203 1.97826 1,1 

4 1.0 255.65 205 3.94090 1,1,1,1 

1 1.66 160.10 32 1 1 

2 1.66 80.39 32 1.99154 1,1 

4 1.66 40.10 32 3.99252 1,1,1,1 

(36x36) 10 
-5 

1 1.0 4552.10 403 1 1 

2 1.0 2291.27 405 1.98672 1,1 

3 1.0 1531.85 406 2.97164 1,1,1 

4 1.0 1146.26 408 3.97126 1,1,1,1 

1 1.75 524.50 47 1 1 

2 1.75 262.50 46 1.99771 1,1 

3 1.75 175.22 46 2.99338 1,1,1 

4 1.75 132.14 47 3.96928 1,1,1,1 

TABLE 4.2: The results of the asynchronous 9-point block 
iterative method obtained from Program 4.1, 
(Natural ordering, Version One) 
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Mesh Size Time No. of Speed- Effective no. 
(NXN) E: P w (seconds) iter- of parallel up 

ations paths used by 
this processor 

(24x24) 10 
-5 

1 1.0 1021.58 204 1.0 1 

2 1.0 517.06 205 1.97575 1,1 

4 1.0 260.94 208 3.91500 1,1,1,1 

1 1.65 168.78 34 1.0 1 

2 1.65 87.05 35 1.93889 1,1 

4 1.65 44.03 35 3.83330 1,1,1,1 

(36x36) 10-5 1 1.0 4615.78 409 1.0 1 

2 1.0 2331.47 411 1.97947 1,1 

3 1.0 1552.87 412 2.97196 1,1,1 

4 1.0 1161.53 414 3.96985 1,1,1,1 

1 1.75 559.03 50 1.0 1 

2 1.75 281.64 51 1. 98491 1,1 

3 1.75 191.64 51 2.91708 1,1,1 

4 1.76 146.95 52 3.80551 1,1,1,1 

TABLE 4.3: The results of the asynchronous 9-point block 
iterative method obtained from program 4.2, 
(Red-black, Version One) 

Version One of the parallel 9-point block iterative method was 

implemented synchronously so that the blocks were taken in natural 

ordering. The natural ordering synchronous scheme was programmed in 

Program 4.3, where each processor evaluates (iterates) its own subset 

in the same manner as in asynchronous version with the exception that 

each processor synchronises itself after each iteration. In this case, 

each processor will wait for the other processors to finish their 

iteration and after all the processors are synchronised the convergent 

test is carried out by one processor (the master processor, processor 0 
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in the case of the NEPTUNE system). If the mesh components of previous 

iterations is not within the required accuracy a new iteration will be 

carried out by all the processors using their new subset values. 

Otherwise the iterations are terminated which means convergence to the 

solution has been obtained. 

Table 4.4 shows the results obtained from Program 4.3 using two 

mesh sizes (24x24) and (36x36) with w taken as w=l.O and w=w 
opt 

(optimal w), which equal to 1.66 in the case of the (24x24) mesh and 

1.75 in the case of (36x36) mesh. 

Mesh Size P Time No. of Speed- Effective no.of 
(NxN) EO w (seconds) iter- parallel paths up 

ations used by this 
processor 

(24x24) 10-5 1 1.0 1009.19 201 1.0 201 

2 1.0 510.93 200 1.97520 200,200 

4 1.0 256.34 199 3.93692 200,200 ,200,200 

1 1.66 160.76 32 1.0 32 

2 1.66 80.86 31 1.98813 31,31 

4 1.66 40.89 30 3.93152 30,30,30,30 

(36x36) 10-5 1 1.0 4553.17 403 1.0 403 

2 1.0 2292.82 402 1.98584 402,402 

3 1.0 1533.09 402 2.96341 402,402,402 

4 1.0 1148.04 400 3.95733 400,400,400,400 

1 1.75 530.42 47 1.0 47 

2 1.75 266.41 46 1.99099 46,46 

3 1.75 177.51 46 2.98811 46,46,46 

4 1. 75 132.64 45 3.95733 45,45,45,45 

TABLE 4.4: The results of the synchronous 9-point block 
iterative method obtained from Program 4.3 
(Natural ordering, Version One) 

By comparing the results from Table 4.2 and 4.4 we notice that the time 

of Program 4.3 is greater than that of Program 4.1, i.e. evaluating 
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blocks in natural ordering asynchronously takes less time to converge 

than that of a synchronous evaluation and this is due to the 

synchronisation overheads needed after each iteration in the 

synchronous implementation. Also, it is clear that the speed-up ratios 

of asynchronous implementation is higher than that of a synchronous one. 

So we can say that, inspite of the efficient implementation of both the 

synchronous and asynchronous programs, the asynchronous natural order 

implementation gives better results in both time needed to converge and 

the speed-up ratios of the processors than that of synchronous 

implementation. This is due to the synchronisation overheads needed 

in the synchronous implementation. However, in the asynchronous 

implementation, all the processors obtain the most recent values of 

the components every time, because they are released as soon as they 

are updated. Figure 4.19, shows the timing results obtained from both 

Tables 4.2 and 4.4, while Figure 4.20 shows the speed-up ratio results 

obtained from the same tables. 

Parallel 9-Point Block Iterative Method (Version Two) 

In this version of the parallel 9-point iterative method we 

decompose the problem into subsets each of which are assigned to a 

parallel path, and where the number of parallel paths is equal to the 

number of co-operating processors. Also, the number of lines in each 

formed subset should be divisible by 3 and each processor then computes 

its own subset by-taking up each successive three adjacent rows at a 

time and all the blocks on these three lines are evaluated. All the 

assumptions that were applied to Version One are also applied to 

Version Two with the exception of the way in which the components 
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The speed-up results of version one asynchronous 9-point block iterative 
method using natural and red-block ordering for mesh size 36x36 
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within each block of the 9-point method are evaluated. In Version 

One of the parallel 9-point block iterative method each point within 

each block is evaluated using the 13-point explicit formula as shown 

in equation (4.11.20), i.e. the points within each block are evaluated 

in the following order (i,j), (i,j+l), (i,j+2), (i+l,j), (i+l,j+l), 

(i+l,j+2), (i+2,j), (i+2,j+l) and (i+2,j+2). While in Version Two of 

the parallel 9-point block iterative method, we start by evaluating 

the points (i,j+l), (i+l,j), (i+l,j+2) and (i+2,j+l) of each 9-point 

block using the 13-point explicit formula (i.e., the same as that of 

Version One) and the remaining five points (i,j), (i,j+l), (i+l,j+l), 
I 

(i+2,j) and (i+2,j+2) are evaluated using the 5-point finite difference 

formula as shown in equation (4.11.27). From Figure 4.21 we can see 

that the points labelled "1" are evaluated first using its outer 

boundary points (the points that are labelled with letters A to L) , 

Le., each point of the 4 points labelled "1" will use the 12 boundary 

points, while evaluating its components as shown in equation (4.11.20). 

The remaining 5 points (labelled "2" in Figure 4.21) can now make use 

of the values obtained from the points labelled "1" using the 5-point 

finite difference formula (equation (4.11.27», i.e. each point will 

use only 4 boundary points instead of 12 boundary points in the case 

of 13-point explicit formula (the first four points) • 

J I H 

K 2 1 2 G 

L F 

1 2 1 
E 

A 2 1 2 

B C D 

FIGURE 4.21 
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As in Version One, this version was implemented both asynchronously 

and synchronously. In the asynchronous implementation two strategies 

were used to evaluate the blocks within each subset, these strategies 

are the natural ordering and the red-black ordering (see Figure 4.15 

and 4.16). Whilst in the synchronous implementation the natural 

ordering was implemented only. In these implementations each processor 

evaluates its subset and the convergence test was carried out on the 

NEPTUNE system as in that of Version One. For Version TWo, the 

asynchronous strategy using both natural ordering and red-black ordering 

was implemented in Programs 4.4 and 4.5 respectively. The synchronous 

strategy with the natural ordering scheme for Version Two was implemented 

in Program 4.6. The experimental results of these programs using mesh 

size (24X24) are listed in Tables 4.5, 4.6 and 4.7 respectively. 

By comparing the results from Table 4.5 and 4.6 we can see that 

the asynchronous natural ordering scheme takes less time than that of 

the asynchronous red-black ordering scheme and the speed-up factor of 

asynchronous natural ordering is higher than that of the red-black 

ordering. So we can say that in Version Two the asynchronous natural 

ordering is better than that of asynchronous red-black ordering. This 

is probably due to the overheads incurred by the system such as the 

interprocessor communication. Asynchronous natural ordering strategy 

was chosen among these two strategies and implemented synchronously in 

Program 4.6. Now comparing the results obtained from the asynchronous 

natural ordering (Table 4.5) and synchronous natural ordering (Table 

4.7) we notice that the asynchronous strategy required less time than 

that of the synchronous one. While the speed-up ratios results for 

asynchronous strategy are greater than that of synchronous strategy 
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Version Two the asynchronous strategy also gives better results than 
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that of synchronous one. This is due to the synchronisation overheads 

needed at the end of each iteration in the synchronous strategy and 

the usage of the recent values by the asynchronous strategy because 

they are relaxed as soon as they are updated. 

Mesh Size P Time No. of Speed- Effective nO .of 
(NXN) C w 

(seconds) iter- parallel paths up 
ations used by this 

processor 

(24x24) 10-5 
1 1.0 850.69 201 1.0 1 

2 1.0 431.32 204 1.98204 1,1 

4 1.0 214.50 205 3.96592 1,1,1,1 

1 1.42 135.73 32 1.0 1 

2 1.42 68.68 32 1.97627 1,1 

4 1.42 34.35 32 3.95138 1,1,1,1 

TABLE 4.5: The results of the asynchronous 9-point block 
iterative method obtained from Program 4.4 
(Natural ordering, Version Two) 

Mesh Size P 
Time No.of Speed- Effective no .of 

(NxN) c w (seconds) iter- parallel paths up 
ations used by this 

processor 

(24x24) 10 
-5 

1 1.0 860.22 204 1.0 1 

2 1.0 437.82 207 1.96478 1,1 

4 1.0 219.77 208 3.91418 1,1,1,1 

1 1.42 143.06 34 1.0 1 

2 1.42 74.01 35 1. 93298 1,1 

4 1.42 37.02 35 3.86440 1,1,1,1 

TABLE 4.6: The results of the asynchronous 9-point block 
iterative method obtained from Program 4.5 
(Red-black ordering, Version Two) 
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Mesh Size Time No.of Speed- Effective no.of 
E P (NxN) w (seconds) iter- parallel paths up 

ations used by this 
processor 

(24 x 24) 10-5 
1 1.0 851.81 201 1.0 201 

2 1.0 433.08 201 1.96687 201,201 

4 1.0 215.53 198 3.95216 198,198,198,198 

1 1.42 135.99 32 1.0 32 

2 1.42 69.97 32 1.94355 32,32 

4 1.42 34.43 32 3.94975 32,32,32,32 

TABLE 4.7: The results of the synchronous 9-point block 
iterative method obtained from Program 4.6 
(Natural ordering, Version Two) 

TO compare both Version One and Two we take the best results of 

both versions and compare them. Both versions give the best results when 

using the asynchronous with natural ordering strategy. From the results 

in Table 4.2 and 4.5 when the mesh size is equal to (24 X24) we can 

notice that the time required by Version Two is less than that of 

Version One. This is mainly from the way in which the components within 

each 9-point block are evaluated in both versions. In Version One each 

point is evaluated using the 13-point explicit formula, while in Version 

Two the first four points are evaluated using the 13-point explicit 

formula and the remaining five points were evaluated using the 5-point 

finite difference formu~~ which means that less operations are required 

in Version Two than that of Version One. Also in Version Two, by using 

the most recent values of the first four points in evaluating the 

remaining five points within each 9-point block a greater rate of 

convergence is achieved since for these points a Gauss-Seidel approach 

is used. On the other hand, the speed-up ratios for Version One when 

w=l.O are less than that of Version Two, while for w=w (optimal w) 
opt 
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the speed-up ratios for Version One is greater than that of Version 

Two and optimal w values in both versions are different. Figure 4.22 

shows the timing results obtained from both Table 4.2 and 4.5, while 

Figure 4.23 shows the speed-up ratio results obtained from the same 

tables. 

To conclude from Version One and Two we can state that in all the 

implemented algorithms for the 9-point block iterative method the 

problem is decomposed into a subset each of which is aSSigned to a 

processor where the number of processors is always equal to the number 

of generated parallel paths. In all the implemented strategies 

(asynchronous and synchronous), each processor updates its components 

as soon as it is evaluated and it is made available to be used by the 

other processors by using a single shared array to hold the components' 

value. In the synchronous strategy the implementation is carried out 

by letting each processor wait at the end of each iteration for the 

other processors to finish their iteration in order to make sure that 

its new evaluated component values are available to the other processors 

to be used. This certainly gives the correct approximation to the 

solution of the linear system of equations with a fixed number of 

iterations for any number of cooperating processors. While the 

asynchronous strategy implemented is carried out in the same way as 

in the synchronous implementation but without waiting at the end of 

each iteration. Because of the way the implementation is carried out 

in both Version One and Two, we generally can say that in each Version 

where the timing results are concerned it does not matter whether the 

algorithm is synchronously or asynchronously implemented. Because in 

both Version One and Version Two we decompose the problem into almost 
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equal subsets and assign each one to different processors, this means 

that the amount of work carried out by each processor to evaluate any 

component is approximately the same, i.e. the complexity of evaluating 

any component by any processor is the same. To evaluate (update) a 

component in any block of the 9 points, its computational complexity 

(number of arithmetical operations) is equal to (13 Additions (A) + 

8 Multiplications (M», therefore for a mesh size equal to (NXN) , there 

are ((13A + 8M)N) operations per each line in each subset. Thus, for 

P parallel paths and N =N/P lines in each subset, the total number of 
r 

operations carried out by each processor is equal to T=((13A + 8M) .N.N ). 
r 

Besides the computational time T there are extra overheads incurred by 

the system which degrades the algorithm performance in both the synchronous 

and asynchronous implementations. These overheads are the generation 

of parallel paths and the synchronisation at the end of each iteration 

cycle. These overheads may become significant, if for example we take 

the implementation of the synchronous and asynchronous methods by 

natural ordering (Version One) on the NEPTUNE system using four processor, 

w=l.O and mesh size equal to (36x36). In the asynchronous algorithm, 

the problem converges after 403 iterations using a total of 4 parallel 

paths, while in the synchronous algorithm we reach the same answer after 

403 iterations using a total of 808 parallel paths, since we need a 

synchronisation after each iteration. Thus, it is clear that the over-

heads may affect the performance of a parallel algorithm and specially 

the synchronisation overheads in this case. Hence for this reason we 

can say that the use of the asynchronous strategy is better suited for 

a MIMD computer. 
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Parallel 4-Point Block Iterative Method (Version One) 

As in the parallel 9-point block iterative methods, in this 

version the problem is decomposed into subsets each of which are 

assigned to a parallel path which is run by a unique processor. The 

number of parallel paths will be equal to the number of co-operating 

processors. If P is the number of the available processors and N is 

the size of the problem (N divisible by P) then each parallel path 

evaluates in a subset of lines N =N/P (N should be divisible by 2) • 
~ r 

Each P subset will contain br =((2r )2. p) blocks each with 4 points to be 

evaluated by a parallel path and run on a single processor. Each 

processor then computes its own subset by taking up each successive 

two neighbouring rows at a time so that each block on these two lines 

are evaluated. When the blocks on these two lines are completed the 

next two lines in the subset are taken and the algorithm proceeds as 

before until all the lines in the subset are evaluated. In this version, 

the points within each block are evaluated using the 9-point finite 

difference explicit formula and implemented on the NEPTUNE system using 

equations (4.10.7) and (4.10.8) respectively. Version One of the 

parallel 4-point block iterative method has been implemented using 

different strategies as in Version One of the parallel 9-point block 

iterative method by taking the blocks within each subset in the natural 

ordering as well as in red-black ordering using both the synchronous and 

asynchronous approach. The principle of these strategies and the way 

in which they are performed and programmed are the same as in that of 

Version One of the parallel 9-point block iterative method. 

Table 4.8 shows the results obtained from the implementation of 

Version One of the parallel 4-point block iterative method asynchronously 
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on the NEPTUNE system. The blocks within each subset are evaluated in 

natural ordering for both w=l.O and w=w t (optimal w) using mesh op 

sizes (24 X24) and (36 X36). Table 4.9 shows the results of the same 

strategy as that of Table 4.8 evaluating the blocks within each subset 

in red-black ordering instead of natural ordering. By comparing the 

results from Table 4.8 and 4.9 we notice that the running times taken 

by the problem to converge using asynchronous red-black ordering is 

higher than that of using the asynchronous natural ordering and the 

speed-up ratios of the natural ordering implementation is higher than 

the speed-up ratios of the red-black ordering implementation. Also, 

for both mesh sizes (24X24) and (36 x 36) the result shows that the speed-

up ratios of optimal w (w ) is higher than that of w=l.O for both opt 

natural and red-black ordering. Thus we choose the natural ordering 

implementation as the best amongst the two implementations for the 

asynchronous strategy of Version One. Figure 4.24 shows the timing 

results from Tables 4.8 and 4.9 for the mesh size (24 X24) with both 

w=l.O and w=w t while Figure 4.25 shows the speed-up ratios of both op 

results. 
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Mesh Size 
p Time No.of Speed- Effective no. 

(NxN) E W (seconds) iter- of parallel up 
at ions paths used by 

this processor 

(2 4x2 4) -5 
1 1.0 1075.76 286 1.0 10 1 

2 1.0 541.38 288 1.98707 1,1 

3 1.0 363.15 289 2.96230 1,1,1 

4 1.0 271.09 289 3.96828 1,1,1,1 

1 1.7 150.36 40 1.0 1 

2 1.7 75.40 39 1.99417 1,1 

3 1.71 50.40 39 2.98333 1,1,1 

4 1.71 37.63 39 3.99575 1,1,1,1 

(36x36) 10 
-5 

1 1.0 4849.03 572 1.0 1 

2 1.0 2449.42 576 1.97967 1,1 

3 1.0 1633.93 577 2.96771 1,1,1 

1 1.79 496.82 59 1.0 1 

2 1.79 248.56 58 1.99880 1,1 

3 1.79 165.65 56 2.99922 1,1,1 

TABLE 4.8: The results of the asynchronous 4-point block 
iterative method obtained from Version One 
using Natural ordering of blocks 
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Mesh Size Time No.of Speed- Effective no. 
(NXN) 

E P w (seconds) iter- of parallel up 
ations paths used by 

this processor 

(24x24) 10-5 
1 1.0 1091.24 290 1.0 1 

2 1.0 552.08 293 1.97650 1,1 

3 1.0 368.88 293 2.95825 1,1,1 

4 1.0 276.35 294 3.94876 1,1,1,1 

1 1.71 152.99 41 1.0 1 

2 1.71 80.79 43 1.89368 1,1 

3 1.71 54.19 43 2.92322 1,1,1 

4 1.71 40.62 43 3.76637 1,1,1,1 

(36x36) 10-5 
1 1.0 4924.03 581 1.0 1 

2 1.0 2487.52 585 1.97949 1,1 

3 1.0 1660.75 585 2.96494 1,1,1 

1 1.79 497.56 59 1.0 1 

2 1.79 258.55 61 1.92440 1,1 

3 1.79 173.62 60 2.86580 1,1,1 

TABLE 4.9: The results of the asynchronous 4-point block 
iterative method obtained from version One 
using red-black ordering of blocks 
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However, Version One of the 4-point block iterative method using 

the natural ordering strategy was implemented synchronously and its 

results are shown in Table 4.10. The natural ordering synchronous 

implementation was programmed in the same manner as that of Version One 

of the synchronous 9-point block iterative method, where each processor 

synchronises itself at the end of each iteration. Therefore, each 

processor will wait for the other processors to finish their iteration 

and the convergence test will be carried out by one processor (the 

master processor, processor 0 in the case of the NEPTUNE system). 

Another iteration will be carried out by all the processors if 

convergence is not achieved. Table 4.10 shows the results of the 

synchronous parallel 4-point block iterative method obtained from 

Version One using the natural ordering using mesh sizes (24X 24) and 

(36x36) for both w=l.O and w=optimal w (w t). op 

By comparing the results from both Table 4.8 and 4.10 we notice 

that the time for the synchronous implementation is greater than that 

of the asynchronous implementation for both w=l.O and w=w t op Also we 

notice that the speed-up ratios of the asynchronous implementation is 

higher than that of the synchronous implementation. This improvement 

in the asynchronous implementation is due to the synchronisation 

overheads at the end of each iteration in the synchronous implementation 

and the usage of the most recent component values all the time in the 

asynchronous strategy. Figures 4.26 and 4.27 show the timing and the 

speed-up ratios results obtained from both Table 4.8 and 4.10 

respectively. 
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Mesh size Time No.of Speed- Effective no .of 
E p w (seconds) iter- parallel paths (NxN) up 

ations used by this 
processor 

(24 x24) 10-5 
1 1.0 1075.95 286 1.0 286 

2 1.0 545.48 285 1.97248 285,285 

3 1.0 366.53 285 2.93550 285,285, 285 

4 1.0 274.94 284 3.91340 284,284,284,284 

1 1.7 150.73 40 1.0 40 

2 1.7 75.83 39 1.98774 39,39 

3 1.7 50.55 39 2.98180 39,39,39 

4 1.7 37.77 38 3.99073 38,38,38,38 

(36 X 36) 10 
-5 

1 1.0 4849.44 572 1.0 572 

2 1.0 2464.81 574 1.96747 574,574 

3 1.0 1642.88 571 2.95179 571,571,571 

1 1.79 500.06 59 1.0 59 

2 1.79 251.30 58 1.98989 58,58 

3 1.79 166.74 56 2.99904 56,56,56 

TABLE 4.10: The results of the synchronous parallel 4-point 
block iterative method obtained from Version One 
using Natural ordering 
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Parallel 4-Point Block Iterative Method (Version Two) 

In Version TwO of the parallel 4-point block iterative method we 

first evaluate two selected points from the 4-point block then these 

two recent values are used to evaluate the remaining two points of the 

block. In Version One of the Parallel 4-point block iterative method 

the four points (i,j), (i,j+l), (i+l,j) and (i+l,j+l) are evaluated in 

the specified order using the 9-point explicit formula as shown in 

equations (4.10.7) and (4.10.8). While in Version TwO of the parallel 

4-point block iterative method we first evaluate the points (i,j) and 

(i+l,j+l) using the 9-point explicit formula (i.e. equations (4.10.7) 

and (4.10.8» then use the most recent value of these two points to 

evaluate the remaining two points (i+l,j) and (i,j+l) using the 5-point 

finite difference formula as shown in Figure 4.28. From Figure 4.28, 

the points labelled "1" are evaluated first using its related outer 

boundary points (the points labelled with letters) using equations 

(4.10.7) and (4.10.8). The other two points labelled "2" are evaluated 

using its four known boundary points which include the two points 

labelled "1". This means that number of arithmetical operations required 

in Version TwO are less than that of Version One. 

G F 
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2 1 

A 
1 2 10 
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313 

As in Version One we decompose the problem into subsets each of 

which are assigned to a parallel path and run on a single processor by 

taking the number of parallel paths equal to the number of processors. 

Also Version Two was implemented using a synchronously and asynchronously 

strategy with natural and red-black ordering schemes for the asynchronous 

implementation and a natural ordering scheme in the synchronous 

implementation. The strategies and schemes were implemented in a 

similar way as in Version One but with a difference in the way in which 

the points within each block were evaluated. The results of Version Two 

asynchronous implementation on the NEPTUNE system using natural ordering 

with w=l.O and W=W (optimal w) for mesh size (24X24) are displayed opt 

in Table 4.11. While Table 4.12 shows the results of the implementation 

of asynchronous red-black ordering using both w=l.O and W=W with mesh opt 

size (24X24). 

From these two tables we can see that the asynchronous natural 

ordering results are better than that of the asynchronous red-black 

ordering. This is because the running time of asynchronous natural 

ordering is less than that of the asynchronous red-black ordering for 

both W=l.O and W=W opt Also, the speed-up of the asynchronous natural 

ordering is higher than that of the asynchronous red-black ordering for 

both w=l.O and W=W • Thus, the asynchronous natural ordering will be opt 

chosen as best among these two strategies. Also, in both the asynchronous 

natural ordering and asynchronous red-black ordering better speed-up 

ratios are obtained when W=W 
opt Version Two of the parallel 4-point 

block iterative method was also implemented synchronously. This 

implementation is the same as that of Version One, i.e. at the end of each 

iteration each processor will be synchronised with the other processors 
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to ensure the most recent component values are used by all the processors. 

Table 4.13 shows the results from computer runs using the synchronous 

natural ordering scheme using both w=1.0 and w=wopt for mesh size (24 x24). 

By comparing the results from both the synchronous natural ordering, 

Table 4.13 and asynchronous natural ordering, Table 4.11 we notice 

that the running times of the asynchronous scheme is less than that of 

the synchronous scheme and the speed-up factors of the asynchronous 

scheme is higher than that of the synchronous scheme. This is due to 

the delay caused by the synchronisation times needed at the end of each 

iteration in the synchronous scheme and the usage of the most recent 

component values all the time in the asynchronous scheme. In this case, 

we can consider the asynchronous natural ordering is better than the 

synchronous natural ordering for the above reason. 

Mesh Size p Time No.of Speed- Effective no .of 
E W (NxN) (seconds) iter- up parallel paths 

ations used by this 
processor 

(24x24) 10 
-5 1 1.0 987.99 286 1.0 1 

2 1.0 497.55 287 1.98571 1,1 

3 1.0 332.45 288 2.97185 1,1,1 

4 1.0 250.06 289 3.94873 1,1,1,1 

1 1.51 135.25 39 1.0 1 

2 1.50 67.97 38 1.98985 1,1 

3 1.50 45.10 37 2.99889 1,1,1 

4 l.50 34.02 37 3.97560 1,1,1,1 

TABLE 4.11: The results of the asynchronous 4-point block 
iterative method obtained from Version Two 
using natural ordering 
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Mesh Size Time No.of Speed- Effective no. 
(NxN) € P w (seconds) iter- up of parallel 

ations paths used by 
this processor 

. 

(24x24) 10-5 1 1.0 1003.17 291 1.0 1 

2 1.0 505.66 293 1. 98388 1,1 

3 1.0 338.04 293 2.96761 1,1,1 

4 1.0 254.25 294 3.94561 1,1,1,1 

1 1.50 133.83 39 1.0 1 

2 1.50 68.94 40 1.94125 1,1 

3 1.50 46.31 40 2.88987 1,1,1 

4 1.50 33.83 39 3.95596 1,1,1,1 

TABLE 4.12: The results of the asynchronous 4-point block 
iterative method obtained from Version Two 
using red-black ordering 

Mesh Size Time No.of Speed- Effective no. 
(NxN) € p w (seconds) iter- up of parallel 

ations paths used by 
this processor 

(24x24) 10-5 1 1.0 988.320 286 1.0 286 

2 1.0 500.430 285 1.974949 285,285 

3 1.0 335.34 284 2.94722 284,284,284 

4 1.0 252.18 283 3.91911 283,283,283,283 

1 1.5 135.34 39 1.0 39 

2 1.5 68.35 38 1.98010 38,38 

3 1.5 45.29 37 2.98830 37,37,37 

4 1.5 34.18 • 36 3.95963 36,36,36,36 

TABLE 4.13: The results of the synchronous 4-point block 
iterative method obtained from Version Two 
using natural ordering 

To compare both Version One and Two of the parallel 4-point block 

iterative method, we use the results obtained from the implementation 

of the natural asynchronous strategy in both versions because they give 
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the best results in each version. Now comparing the results from 

Tables (4.8) and (4.11) for mesh size (24x24) we notice that the time 

required by Version Two is less than that of Version One and this is due 

to the way in which the points in each 4-point block are evaluated. 

In Version One, each point in the 4-point block are evaluated using the 

9-point explicit formula, while in Version Two, the first two points in 

the 4-point block are evaluated using the 9-point explicit formula and 

the remaining two points are evaluated using the 5-point finite 

difference formula, which means, less computational operations are 

required in Version Two than that of Version One. Figure 4.29 shows 

that the timing results of both Version One and Two of parallel 4-point 

block iterative method using asynchronous natural ordering strategy 

using w=l.O and w=w with mesh size (24 X24). 
opt 

To conclude from Version One and Two of the parallel 4-point block 

iterative method, we generally can say that in each version where the 

timing results are concerned it does not matter whether the algorithm 

is synchronously or asynchronously implemented. Because in both versions 

we decompose the problem into almost equal subsets and assign each one 

to different processors, this means that the amount of work carried out 

by each processor to evaluate any component is approximately the same, 

i.e. the complexity of evaluating any component by any processor is the 

same. 

In our implementations of the parallel 4-point block iterative 

methods we decompose the problem into equal subsets and each subset is 

assigned to a parallel path which runs on a single processor, this means 

that the same amount of work will be carried out by each processor, 

i.e. the complexity of evaluating any component by any processor is the 
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The timing results of asynchronous natural ordering in both version one 
and two of parollel 4-point block iterative method for mesh size 24x24 
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same. To update a component in any block of the four points, its 

computational complexity (number of arithmetical operations) is equal 

to (3 multiplications (M) + 11 additions (A)), therefore for mesh size 

(NXN) there are «3M + llA).N) operations for each line in each subset. 

Thus for P parallel paths and N =N/P lines in each subset, the total 
r 

number of operations carried out by each processor is equal to 

T=«3M+IIA) .N.N ). Besides the computational time T there are some r 

delay times due to the overheads incurred by the system which may degrade 

the algorithm's performance. These overheads are the generation of the 

parallel paths and the synchronisation at the end of each iteration 

cycle. These overheads may become Significant, for example, if we 

consider the implementation of the synchronous and asynchronous 4-

point block Version One natural ordering on the NEPTUNE system using 

four processors for w=l.O and a mesh size (24x24). In the asynchronous 

algorithm the problem converges after 286 iterations using a total of 

four parallel paths, while in the synchronous algorithm the problem 

converges after 286 iterations using a total of 574 parallel paths, 

because we need a synchronisation after each iteration. Therefore, it 

is clear that the amount of overheads especially the synchronisation 

overhead in our case may affect the performance of an algorithm. Hence, 

for this reason, we can say that the use of the asynchronous strategy 

for the parallel 4-point block iterative method is better suited for 

MIMD computers. 

Now we compare the results obtained from the implementation of both 

the parallel 4-point and 9-point block iterative methods on the NEPTUNE 

system. In all the implemented strategies (natural and red-black) and 

versions (Version One and Two) using the synchronous and asynchronous 
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schemes we have, for w;l.O the timing results for the parallel 9-point 

block implementation are less than that of the parallel 4-point 

iterative method. While for w~ (optimal w) we have the timing opt 

results for the parallel 4-point block iterative method is less than 

that of the parallel 9-point block iterative method. However, the 

number of iterations needed for the problem to converge using the parallel 

9-point block iterative method is less than that needed for the parallel 

4-point block iterative method for both w;l.O and w;w and the speed-
opt 

up ratios in both methods are almost the same. 

The above argument can be shown for example, for the synchronous 

natural ordering using Version Two, mesh size (24 X 24) , the number of 

parallel paths is equal to one for both w;l.O and w;w
opt For the 

parallel 9-point and 4-point block iterative methods the total time can 

be calculated from both the total computational operations (equations 

(4.10.10) and (4.11.28)) and the number of iterations carried out by 

each parallel path (Tables (4.7) and (4.13)). Thus, using the parallel 

9-point block iterative method with w;l.O, and N ;N/P, the total 
r 

38 59 
computational operations is equal to «~ + 'lA) .N.N

r
.20l) and by 

substituting the timing for the multiplication operation (M) and addition 

operation (A) for the NEPTUNE system we get the total timing is equal to 

(1377676.11 N.N )~secs. While for the parallel 4-point block iterative 
r 

method with w;l.O, the total computational operations is equal to 

5 11 «zM + :fA).N.Nr ·286) and by replacing the operational timing for M and 

A, we find that the total timing for the parallel 4-point iterative 

method is equal to (14583l4.N.N )~sec. By comparing these two total 
r 

timings it is clear that the total time in the case of parallel 9-point 

iterative method is less than that of parallel 4-point block iterative 

method using w;l.O. 
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timing using the parallel 9-point block is equal to 38 59 «""gM + 9"') .N .N
r 

.32) 

and for that of the parallel 4-point block is equal 5 11 
to «2M+'fA).N .Nr · 39) • 

By replacing the values of M and A in both cases we get the total timing 

for the parallel 9-point block iterative method equal to (219331.52 N.Nr ) 

~secs, while for the parallel 4-point block iterative method is equal 

to (198861 N.N )~sec. Also by comparing these two totals we find that 
r 

the total timing results in the case of the parallel 4-point block 

iterative method is less than that of the parallel 9-point block 

iterative method. So, it is clear that the results obtained in our 

calculations are generally coincident with those obtained experimentally. 

Besides the computational operations time calculated above there is an 

extra overhead time which we do not include in our calculation and will 

be discussed later. 

The timing results of both the asynchronous Version One and Two 

methods using both the parallel 9-point block and parallel 4-point block 

iterative method with w=l.O, w=w and mesh size (24x24) are shown in 
opt 

Figure (4.30). The total number of arithmetical operations required 

for the solution of the model problem are shown in Table 4.14a,b,c,d, 

which are calculated from combining the total number of computational 

operations given in equations (4.10.9), (4.10.10), (4.11.22) and (4.11.28) 

with the number of iterations obtained from the experimental results 

shown in Tables (4.2), (4.3), (4.4), (4.5), (4.6), (4.7), (4.8), (4.9), 

(4.10), (4.11), (4.12) and (4.13). In Table (4.4), K=N.N , where N 
r 

represents the number of points in the mesh to be solved, N =N/P is 
r 

the number of lines in each process and all the figures are taken to 

the nearest integer. 
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Mesh Size 
p 

(NXN) w 

(24 x24) 1 1.0 

2 1.0 

4 1.0 

1 w 
opt 

2 w 
opt 

4 w 
opt 

K=N*N, N =N/P 
r r 

Mesh Size 
P 

(NXN) 
w 

(24 x24) 1 1.0 

2 1.0 

4 1.0 

1 w 
opt 

2 w opt 
4 w 

opt 

K=N.N, N =N/P 
r r 

Asynch • 9-po int Asynch.9-point 
Natural Version 1 Red-Black Version 

M A M A 

1318 K 1898 K 1337 K 1927 K 

1331 K 1917 K 1344 K 1936 K 

1344 K 1936 K 1364 K 1964 K 

210 K 302 K 223 K 321 K 

210 K 302 K 229 K 331 K 

210 K 302 K 229 K 331 K 

FIGURE 4.14(a) 

Asynch.9-point Asynch.9-point 
Natural Version 2 Red-Black Version 

M A M A 

849 K 1318 K 861 K 1337 K 

861 K 1337 K 874 K 1357 K 

866 K 1344 K 878 K 1364 K 

135 K 210 K 144 K 223 K 

135 K 210 K 148 K 229 K 

135 K 210 K 148 K 229 K 

FIGURE 4.14 (b) 
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Synch.9-point 
1 Natural Version 1 

M A 

1318 K 1898 K 

1311 K 1889 K 

1305 K 1879 K 

210 K 302 K 

203 K 293 K 

197 K 283 K 

Synch .9 -po int 
2 Natural Version 2 

M A 

849 K 1318 K 

849 K 1318 K 

836 K 1298 K 

. 135 K 210 K 

135 K 210 K 

135 K 210 K 
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Mesh Size P tU 
Asynch.4-point Asynch.4-point Synch .4-point 

(NXN) Natural Version 1 Red-Black Version 1 Natural Version 1 

M A M A M A 

(24X24) 1 1.0 858 K 1859 K 870 K 1885 K 858 K 1859 K 

2 1.0 864 K 1872 K 879 K 1905 K 855 K 1853 K 

3 1.0 867 K 1879 K 879 K 1905 K 855 K 1853 K 

4 1.0 867 K 1879 K 882 K 1911 K 852 K 1846 K 

1 tU opt 
120 K 260 K 123 K 267 K 120 K 260 K 

2 tU opt 
117 K 254 K 129 K 280 K 117 K 254 K 

3 tU opt 
117 K 254 K 129 K 280 K 117 K 254 K 

4 tU opt 
117 K 254 K 129 K 280 K 114 K 247 K 

K=N*N I 
r 

N =N/P 
r 

FIGURE 4.14(c) 

Mesh Size P Asynch.4-point Asynch.4-point Synch.4-point 
(NXN) tU Natural Version 2 Red-Black Version 2 Natural Version 2 

M A M A M A 

(24X24) 1 1.0 715 K 1573 K 728 K 1601 K 715 K 1573 K 

2 1.0 718 K 1579 K 733 K 1612 K 713K 1568 K 

3 1.0 720K 1584 K 733 K 1612 K 710 K 1562 K 

4 1.0 723 K 1590 K 735 K 1617 K 708 K 1557 K 

1 tU opt 
98 K 215 K 98 K 215 K 98 K 215 K 

2 tU opt 
95 K 209 K 100 K 220 K 95 K 209 K 

3 tU opt 
93 K 204 K 100 K 220 K 93 K 204 K 

4 tU 
opt 

93 K 204 K 98 K 215 K 90 K 198 K 

K=N*N , N =N/P r r 

FIGURE 4.14 (d) 

---~ 
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Now, we discuss further the analysis of the parallel 9-point and 

parallel 4-point block iterative methods using the experimental results 

obtained when the algorithms were run on the NEPTUNE system and the 

resource timings of the NEPTUNE system are shown in Table (4.15). The 

principle behind the analysis of the two parallel block iterative 

methods is that parallel computing involves the sharing of some system 

resources which have a limited availability. Parallelism can often be 

introduced into a program or problem in a number of different demands 

for parallel resources. In reality parallel computers require the 

resources: 

(i) Multiple processors, 

(ii) COmmunication for data sharing, 

(iii) Synchronisation to allow unique data modification. 

Three factors that affect the performance of parallel programs and are 

associated with the above three features of systems: 

(a) The degree of parallelism in the program, 

(b) Accesses to shared data space impose an overhead, 

(c) Accesses to the synchronisation tool and their protected 

data structures impose an overhead. 

Thus, since parallel programs always require more than one processor, 

there has to be some communication between the processors even if this 

is only as much as that required to start processing in the first 

instance. Parallel programs demand shared resources such as processors, 

memory block or a shared data structure and all resources demands by 

the algorithm directly affect the potential performance of the algorithm. 

The source of overheads on an asynchronous type machine can be classified 

into two types known as statia and aynamia overheads [Barlow et al (1982)], 
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1. The statio overheads due to the design of software and hardware. 

This covers the subdivision of the task, allocation of the tasks to 

the processors, checking by hardware and software for contention on 

accesses to the database, checking for correct sequencing. 

2. The dynamio overheads due to the interference between two or more 

subtasks running on different processors and inevitably causing 

one or more of the processors to wait. 

The performance of a multiprocessor can be expressed as a speed-

up factor (S ), 
p 

S 
P 

T (l) 
= = T(p} 

time taken on a single processor 
time taken on a P processor system 

or in terms of the time wasted (W), 

W = P * T(p} - T(l} , 

where the wasted time is equal to the sum of times taken by the P 

processors to complete their subtasks less the time taken on a uni-

processor. The time wasted must be equal to the sum of the static and 

dynamic overheads. It is obvious that either all processors complete 

processing together or some processors take longer than others thus, 

it follows that 

T( } > T(l}+W 
p, P 

PT(l} 
Sp ~ T(l}+W 

Maximum speed-up factors (S ) can be obtained by assuming that the 
p 

dynamic overheads are zero, and this is true only if every request for 

a resource occurs when that resource is not being used. This is clearly 

impossible if the demands for a resource are greater than the supply of 

that resource. The three resources which are required for parallel 

computing are prooessors, shared memory and synohronisation. The NEPTUNE 
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system has the ability to provide these resources, 

(i) Processors 

The software that controls the scheduling of processors to 

processes counts the number of processes run by each processor. 

This software also counts any time that a processor is idle 

because there are no ready processes to run. 

(ii) Shared Memory 

This can be measured by counting the number of accesses to a 

shared data by going through the user's program. 

(iii) Synchronisation 

The cost of mutual exclusion is significant because a high level 

software technique has to be used to overcome inadequacies in the 

hardware. 

In order to carry out the performance analysis of all the implemented 

algorithms discussed in this section we need to know the resource times 

of the NEPTUNE system, which is obtained from Barlow et al [1981J and 

Woodward, et al [1983J and illustrated in Table (4.15). In our analysis 

of the parallel 9-point block and parallel 4-point block iterative 

methods we will concentrate on the natural ordering of both methods 

Version One and Two with mesh size (24x24) , w=l.O and w=w t 
op When the 

NEPTUNE system is used the parallel control accesS overheads and the 

shared data access overheads will be calculated using the following 

commands: 

(i) The XPFCLS(TS): this command generates a load module with no 

shared data assigned into the shared memory and no parallel path 

allocation. Therefore, all the parallel programming constructs 

will be treated as ordinary Fortran constructs. 
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(ii) The XPFCLN(T
N

): this command only loads the shared data into the 

shared memory. Thus, by comparing the result of this command with 

the results obtained from (i), we obtain the shared data access 

overheads. 

(iii) The XPFCL(Tp): this command generates the load module as in (ii) 

in addition to the parallel path allocation. The comparison of 

these results with that of (ii) yields the parallel control 

overheads. 

Processor 0 1 2 3 Resource 

Relative Speeds 1.000 1.0l4 1.006 1.019 

Memory access times 

Local* 0.98 0.95 0.92 0.92 

Shared* (0.98+0.75) (0.95+0.75) (0.92+0.76) (0.92+0.76) 

Mutual exclusion 
mechanism* ~800 ~800 -800 ~800 

Mutual exclusion 
blocked* ~400 ~400 -400 ~400 

Parallel path 
overhead* ~1200 ~1200 ~1200 ~1200 

Floating point* -720 -720 -720 -720 

Integer* ~20 -20 ~20 -20 

* times in microseconds. 

TABLE 4.15: The resources time on the NEPTUNE system 

The resource demands required by Version One and Two of the parallel 

9-point and parallel 4-point block iterative methods using the synchronous 

and asynchronous strategy with natural ordering are shown in Table 4.16. 

Actually Table 4.16 gives the mean rate of access to shared data and 

parallel paths. It gives the estimates of the potential speed-up from 

using P processors, where N represents the number of rows in the mesh to 
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be solved. While, Table 4.17 illustrates the results obtained when 

the algorithms were run on the NEPTUNE system using mesh size (24x24) , 

where the parallel control overhead (PCO) is calculated using the 

formula PCO=(Tp-TN)/Tp*lOO, and shared data overhead (SDO) is calculated 

using the formula SDO=(TN-TS)/Tp*lOO. The term "flops" in these tables 

represents a floating point operation. 

Now from inspection of the parallel 9-point and parallel 4-point 

iterative methods we see that a linear speed-up has been achieved and 

2 
up to the number (N/3) processors can be employed as an upper limit 

in the case of the parallel 9-point block iterative method and (N/2)2 

processors in the case of the parallel 4-point block iterative method. 

As an example, in the case of the parallel 9-point asynchronous Version 

One using natural ordering of the points, the algorithm has made 42 

accesses to the shared data per 154 floating point operations. From the 

results of Table 4.15 the shared data access timing is~O. 75 ~secs 

and ~ 720 ~secs for a floating point operation. _ Therefore, the static 

shared data access overheads in this algorithm is obtained as follows: 

1 * 0.75 
720 * 100 = 0.028% . 

Further the parallel path access loss is equal to 0.01% since the 

program made 1 access per (16*N*N ) flops and the parallel path mechanism 
r 

requires -1200 microseconds (see Table 4.15). From these two tables it 

can be concluded that the experimental results obtained from the NEPTUNE 

system and the predicted results obtained from accesses to the shared 

data or a parallel path are in agreement. Also, from the figures in 

Tables 4.16 and 4.17 it is clear that the losses using the parallel 

9-point block iterative method are less than that of using the parallel 
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4-point block iterative method. This is mainly because the number of 

blocks in the parallel 4-point block iterative method is greater than 

that in the parallel 9-point block iterative method and the number of 

iterations needed for the problem to converge using the parallel 4-pcint 

block iteration method is greater than that using the parallel 9-point 

block iterative method. Hence, more losses will occur when using the 

parallel 4-pcint block iterative methods. 



Processors (P) Shared Data Parallel 

Program Overhead 
Numbers Speed-up Access Rate alOOunt Access Rate 

9-point Asynchronous 
I 

Version One, Natural P~N/3 O(P) 42: 154 flops 0.028% 1: U6*N*N ) 
Ordering flops 

r 

9-point Synchronous 
Version One, Natural P~N/3 O(p) 42:154 flops 0.028% 1: (16*N*N ) 
Ordering flops r 

9-point Asynchronous 
Version Two, Natural P~N/3 O(P) 34: 129 flops 0.028% 1: (10. 78*N* 
Ordering N flops) 

r 

9-point Synchronous 
Version Two, Natural P~N/3 O(P) 34: 129 flops 0.028% 1: (10.78*N* 
Ordering N flops) 

r 
4-point Asynchronous 
Version One, Natural P~N/2 o (p) 16:50 flops 0.033% 1: (9 .5*N*N ) 
Ordering flops 

r 

4-point Synchronous 
Version One, Natural P~N/2 O(P) 16:50 flops 0.033% 1: (9 .5*N*N ) 
Ordering flops 

r 

4-point Asynchronous 
Version Two, Natural P~N/2 O(P) 16:44 flops 0.038% 1: (8*N*N ) 
Ordering flops 

r 

4-point Synchronous 
Version Two, Natural P~N/2 O(p) 16:44 flops 0.038% 1: (8*N*N ) 
Ordering flops r 

TABLE 4.16: Resource demands of the parallel 9-point and parallel 4-point methods 

Path 

Overhead 
annunt 

0.018% 

0.018% 

0.027% 

0.027% 

0.031% 

0.031% 

0.036% 

0.036% 

w 
w 
o 



Program W Speed-up Shared Data Parallel Control 
Overhead (SDO) OVerhead (peO) 

2 3 4 

9-point Asynchronous 1.0 1.97826 - 3.94090 .028% .019% 
Version One W 1.99154 - 3.99252 .031% .019% opt 
9-point Synchronous 1.0 1.97520 - 3.93692 .030% .019% 
Version One W 1.98813 - 3.93152 .031% .019% 

opt 
9 point Asynchronous 1.0 1.98204 - 3.96592 .O~ 'J% .028% 
Version Two W 

opt 
1.97627 - 3.95138 .030% .030% 

9-point Synchronous 1.0 1.96687 - 3.95216 .O-;!-g% .028% 
Version Two W 

opt 
1. 94355 - 3.94975 .029% .029% 

4-point Asynchronous 1.0 1.98707 2.96230 3.96828 .034% .034% 
Version One W 

opt 1.99417 2.98333 3.99575 .033% .033% 

4-po~nt Syncnronous 1.0 1.9/~48 2.93550 3.91340 .033% .034% 
Version One W 1.98774 

opt 
2.98180 3.99073 .033% .033% 

4-point Asynchronous 1.0 1.98571 2.97185 3.94873 .040% .034% 
Version Two Wopt 1.98985 2.99889 3.97560 .037% .037% 

4-point Synchronous 1.0 1.97494 2.94722 3.91911 .040% .038% 
Version Two W opt 1.98010 2.98830 3.95963 .037% .044% 

TABLE 4.17: Performance measurements of algorithms on the NEPTUNE system for mesh 'size 
(24x24) using natural ordering strategy 

w 
w .... 
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4.13 CONCLUSIONS 

From the basic concept of the 9-point explicit block iterative 

method the parallel 9-point block iterative method was developed and 

implemented on the NEPTUNE system. The implementation of the parallel 

9-point and parallel 4-point block iterative methods were programmed 

using different versions and strategies such as synchronous and 

asynchronous together with natural or red-black ordering. It is clear 

that the implementation of different strategies present different 

timing results and losses when they are run on the NEPTUNE system. In 

the two implemented versions of both parallel 9-point and· parallel 4-

point block iterative method, Version Two gives better timing results 

in all the programmed strategies, and this is due to the way in which 

each block within each subset is evaluated. 

The asynchronous natural ordering strategy always gives better 

results than that using other strategies. For example, if the results 

obtained from that strategy are compared with the corresponding results 

obtained from the synchronous natural ordering strategy, the asynchronous 

strategy gives better results than that of the synchronous version due 

to the synchronisation overheads needed at the end of each iteration. 

Also, in the asynchronous implementation better results are obtained 

because the processors were almost always fully occupied and busy doing 

work most of the time. 

In general, all the algorithms presented in this chapter have 

predicted static parallel path access overheads and shared data access 

overheads which agree with the overheads obtained when these algorithms 

were run on the NEPTUNE system. 
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It can be seen from the experimental results that the shared 

data access overhead and the parallel control access overhead in the 

case of the parallel 9-point block iterative methods are less than that 

of the parallel 4-point block iterative method. Also, the parallel 

9-point block iterative methods take less time than its corresponding 

parallel 4-point block iterative method when w=l.O, while when W=W t' 
op 

in general the two parallel methods take the same time. Therefore, 

the parallel 9-point block iterative method was chosen as best amongst 

the two parallel block methods. 

Finally to conclude this chapter it can be seen that these two 

parallel block methods are suited for the parallel implementation on 

the MIMD computer and this is due to the almost linear speed-ups 

obtained from their implementations. 



CHAPTER FIVE 

THE PARALLEL ALTERNATING GROUP EXPLICIT 

(A,G ,Eo) METHOD 
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5 .1 E!!.R00UCTION. 

Point (Explicit) methods have natural extensions to block iterative 

processes in which groups of components of x(k) are modified simultaneously 

(see Chapter 4). This will involve the simultaneous solution of a system 

of 1J.near equations. Consequently, individual components are implicitly 

defined in terms of other components of the same group or block. Such 

a method is· called an impliait iterative or bZoak iterative method. 

The redefinition of an explicit method so that it becomes implicit often 
./ 

leads to an increase in the convergence rate at the cost of some 

complicati?" in the computational algorithm. The blocks may be a single 

row of pointn, two !oWS, etq. A better convergence rate can be obtained 

by evaluatinG the whol~ line, as an example the line S.O.R. gives an 
. , ~;.. 

improvement by a factor of 1:2 over the corresponding optimum S.O.R. by 

points (Parter [1961J). 

In this chapter we discuss a class of methods for solving a two-

point boundary value problem. These methods are the AZternating Direction 

Impliait (A.O;I.) ~Iethod and the AZternating Group Explicit (A.G.E.) 

Method. 

Two parallel strategi.es of the A.G.E. method were developed and 

implemented on 1.he NEPTUNB system. These include synchronous and 

asynchronous ve%·sions of the algorithms. The parallel A.G.E. method was 

used to solve a .one dimensional linear and non-l.inear boundary value 

problem. The results from these i.mplementations were compared as well 

as the performance analysis of the best method presented. Also, the 

timing results from the parallel A.G.E. method implementation were 

compared with the parallel Jacobi, Gauss-Seidel and S.O.R. methods. 

Consider the differential equation, 
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(5.1.1) 

subject to the two-point boundary conditions, 

U (a) = Cl , U (b) = e . (5.1.2) 

Here Cl and e are given real constants, and f(x) and q(x) are given 

real continuous functions in a~~b, with, q(x)~O. For Simplicity, we 

place a uniform mesh of size h, where, 

h = (b-a)/(N+l) , (5.1.3) 

on the interval a~x~b, and we denote the mesh points of the discrete 

problem by, 

x. = a+ih, O~i~N+l, 
~ 

as illustrated in the Figure 5.1, 

FIGURE 5.1 

(5.1.4) 

The finite difference method (Chapter 4) is used to derive a finite 

difference approximation to (5.1.1) by using a finite Taylor's series 

expansion of the solution U(x) to (5.1.1). Let us assume that the 

4 2 2 (unique) solution U(x) of (5.1.1) is of class C in a~x~b, i.e. d u/dx 

exists and is continuous in this interval. Denoting U(X
i

) by U
i

' the 

finite Taylor 

from which it follows that, 

2Ui -Ui _l -Ui +l 

h
2 

Therefore, by substitution in (5.1.1) gives, 

h4 d 4 
+ --- ± 41 2 

dx 
(5.1.5) 

(5.1.6) 



with a local truncation 

d
4

U 
i --+ 

dx4 
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(5.1.7) 

error of 

where u. denotes the function satisfying the difference equation at the 
l. 

mesh point x.=a+ih. 
l. 

Since uo=a and UN+l=S, then we have N equations for the N unknowns 

ui ' i=1,2, ••• ,N. In the matrix notation, (5.1.7) can be written in the 

form, 

AE, = .e. ' (5.1.8) 

where A is a real (NXN) matrix, u is the discrete approximation vector 

to the solution U(x) of (5.1.1)-(5.1.2) and b is a column vector given 

by, 

-1 
... 

" .... .... .... 
A = 

.... .... 
... ... 

.... .... 
" 

... 
.... .... .... .... ... 

(5.1. 9a) .... ... ... 

, .... .... 

... -1 

ul l fl -ta/h
21 

u2 , f2 
u = I and b = fi I (5.1.9b) 

I I 
I 

u
N

_
l 

f
N

_
l 

uN f N+S/h2 

The basic properties of the matrix A are real, symmetric and tridiagonal 

and since q(x)~O then it is also diagonally dominant with positive 

diagonal entries. From the directed graph of A it can be seen that 
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since it is strongly connected implies that A is also irreducible. 

The A.D.!. and A.G.E. methods for solving the system (5.1.8) which 

is based on splitting the matrix A of (S.1.9a) into (NxN) matrices as 

shown in the next two sections. 
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5.2 ALTERNATING DIRECTION IMPLICIT (A.D.I.) METHODS 

The S.O.R. (Chapter 4) method by lines proceeds by taking all the 

lines in the same direction. Thus in Figure (5.2), for example, we 

first solve for the values at 1,2,3, then for 4,5,6, and finally for 

7,8,9. Then we begin again with 1,2,3, and so forth. Convergence is 

often improved by following the first sequence with a second in the 

column direction. Thus, a complete iteration consists of first a half 

iteration in the row direction followed by a second half iteration in 

the column direction. Such methods are aptly designated alternating 

direation impLiait methods or A.D.I. methods for short •. 

7 8 9 

4 5 6 

1 2 3 

FIGURE 5.2 

Varga [1962] shows that, the first A.D.I. methods were developed 

by Peaceman and Rachford [1955] for solving the system 

(5.2.1) 

where the (nxn) matrix A is an irreducible Stieltjes matrix, i.e. A 

is a real symmetric and positive irreducible matrix with non-positive 

off-diagonal entries. Moreover, that the matrix A has at most five non

zero entries in any of its rows. Matrix A is non-singular and can be 

represented as the sum of three (nXn) matrices, 
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A=H+V+1:. (5.2.2) 

The matrices.H,V and 1: are all real symmetric (nxn) matrices. The 

matrix 1: is a non-negative diagonal matrix, and is thus non-negative 

definite. The matrices H and V are associated with the finite difference 

approximation to the partial differential equation in the x and y 

directions respectively and each have no more than three non-zero 

entries per row, and both H and V are diagonally dominant matrices with 

positive diagonal entries and non-positive off-diagonal entries, and are 

thus Stieltjes matrices. 

By using (5.2.2) we can write the matrix equation (5.2.1) as a 

pair of matrix equations, 

(H+!E+rI).'! = £-(V+!E-rI).'! ' 

(v+!1::+rI).'! = £-(H+!L-rI).'! ' 

for any positive scalar r. If we let, 

Hl = H+!1:, Vl = V+!l: 

} (5.2.3) 

(5.2.4) 

then the.Peaoeman-Raohford aZternating-direotion impZioit method is 

defined by 

(k+!) (k) 
(Hl+rk+1I).'! = £-(vl-rk+1I).'! ' 

(k+l) (k+!) 
(vl+rk+1I).'! = £-(Hl-rk+lI).'! ' I (5.2.5) 

where the r's are positive aooeZeration parameters chosen to make the 

process converge more ;apidlY, and .'!(O) is an arbitrary initial vector 

approximation to the unique solution of (5.2.1). 

Since the matrices (Hl+rk+1I) and (Vl+rk+1I) are, after suitable 

permutations, tridiagonal nonsingular matrices, the above implicit process 

can be directly carried out by the simple algorithm based on the Gaussian 

elimination. In other words, this iterative method can be thought of as 

• 
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a line method with alternating directions. Indeed, the name aZternating-

direation method is derived from the observation that for the first 

equation (5.2.5) we solve first along horizontal mesh lines, and then 

for the second equation of (5.2.5), we solve along vertical mesh lines. 

The vector u(k+t) is treated as an auxiliary vector which is discarded 
I 

(k+l) 
as soon as it has been used in the calculation of u • 

The two equations of (5.2.5) are now combined to give, 

where, 

and 

T 
r 

(k+l) 
u 

(k) 
u + g (b) , 

rk+l -
k~O , 

-1 -1 
gr(!2.) = (Vl+rI) {I-(Hl-rI)(Hl+rI) }!2.. 

It will be noticed that (5.2.6) is of the same form as (5.2.3). 

(5.2.6) 

(5.2.7a) 

(5.2.7b) 

For the convergence of the A.D.I. method Varga [1962] states the 

following theorem. 

Theorem 5.1 

Let Hl and Vl be (nxn) symmetric non-negative definite matrices, 

where at least one of the matrices Hl and Vl is positive definite. 

Then, for any r>O, the Peaceman-Rachford matrix T of (5.2.7a) is 
r 

convergent. 

Proof: 

See Varga [1962], page 123. 
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5.3 THE ALTERNATING GROUP EXPLICIT (A.G.E.) METHOD 

Evans (1985) presents a class of methods for solving (5.1.8) which 

is based on the "splitting" of the matrix A into the sum of three matrices, 

(5.3.1) 

where E is a non-negative diagonal matrix and where Gl ,G2 and E satisfy 

the following conditions: 

(i) Gl +6E+rI and G2+6E+rI are non-singular for any e~o, r>O. 

(ii) for any vector ~l and v2 and for any constants e~o and r>O 

it is "convenient" to solve· the systems explicitly, Le., 

and 

for !l and!2 respectively. 

We shall be concerned here with the situation where G
l 

and G
2 

are 

either small 2x2 block systems or can be made so by a suitable 

permutation of their rows and corresponding columns. This procedure is 

"convenient" in the sense that the work required is much less than 

would be required to solve the original system (5.1.8) directly. 

From the above discussion, we have G
l

, G
2 and E given by, 

-1 I I I 1 I I I I , 1 I t -I -t _1-

-= _11 1 I j1 -11 
- -I- -- I 

11 
--,-

1 , -1 1 1 I -1 11 

I 1 -T 1'- -- I- -.! -
G = -1 1 O.!... 

, 
0 

I 
l- ' G2 = 1 I 

, 
1 - -1- , 1 , , , I 

I , + _1- I 
1 , I I 11- -li 
L 10 _'L I 

10 I r I I 
1 11 -1 I 1-1 1 I 

I I -1 -. -1- _I~ 

1 
1-1 1 1 

I 1 
I 

if N is even and 



G = 
1 

· ----------------------------------------------

1 I I I 

-r--t----
1 -1 

_1- _ 

I 1 
-1 11 -,- ""',-

1 
I, 

1 
-l

e 
1 ' 

1 10" I 
1 1 " 1 

-,- 1-
1 I 

I 

1 1 -1 

1-1 1 
1 
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1 -1 I 1 
r I I 

-1 1 1 I I 
- - :..J - - 1- - r - -I -

11 -11 1 I 
1 1 0 I -1 11 I 

- 1- - f -=-, -11 - - r 
-l---~--1 

I :0 11 -1 1 
1 1 1-1 11 

-1- -t -...J--., 
1 1 : 1 

(5.3.2) 

if n is odd, and, 

fl 
q2 e 

l: = h2 

l 
" .... 

" " 0 qN-l 

q 

Let us write (5.1.B) in the form, 

and let us consider two equivalent forms, 

and 

(Gl+el:+rl)!! = !?-(G2+(l~)l:-rl)!! ' 

(G2+el:+r'I)!! = !?-(Gl+(l~)l:-r'l)!! 

(5.3.3) 

(5.3.4) 

(5.3.5) 

Analogous to the Peaceman-Rachford A.D.l. method [1955] one selects 

(k+i) d (k+l) positive iteration parameters, r and r' and determines u an u 

respectively by, 

(Gl+el:+rl)!!(k+i) = !?-(G2+(1~)l:-rl)!!(k) , (5.3.6) 

and (5.3.7) 
o 

where u is an arbitrary initial vector approximation of the unique 

solution of (5.1.B). 

For Simplicity, we shall consider here the special case where, 

" e = e = i, r=r' , (5.3.B) 
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and we let, 
- -Gl = Gl + iE, G2 = G

2
+iE (5.3.9) 

Evidently Gl and G2 satisfy the following conditions: 

(i) Gl+rI and G2+rI are non-singular for any r>O, 

(ii) for any vectors ~l and ~2 and for any r>O it is easy to solve 

the (2x2) systems explicitly, 

(Gl+rI).ll = ~l' (G2 +rI).l2 = ~2 • 

Therefore (5.3.3) becomes, 

«(;1 +(2).':! = .l? ' 

and (5.3.4)-(5.3.5) becomes respectively, 

(G
l 

+rI).':! (k+!) 

(G
2 

+rI).':! (k+l) 

- (k) 
= .l?-(G2-rI).':! , 

= b-(G _rI)u(k+i) 
- 1 -

If we combine the above two equations into the form, 

u(k+l) = T u(k) + b , 
r- -r 

where, 
- -1 - - -1 

~ = (G2+rI) {I-(Gl-rI) (Gl+rI) }.l? 

and - -1 - - -1 
Tr = (G2+rI) (Gl-rI) (Gl+rI) (G2-rI) 

The matrix Tr is called the A.G.E. iteration matrix. 

(5.3.10) 

(5.3.11) 

(5.3.12) 

(5.3.13) 

(5.3.14) 

(5.3.15) 

(5.3.16) 

To analyse the convergence of the A.G.E. method, we assume that U 

is the true solution of (5.1.8) then, 

- -(G1+G2 ).!:!. = .l? ' (5.3.17) 

and (G1+rI).!:!. = .l?-(G2-rI).!:!. (5.3.18) 

If e(k)=u(k)_u is the error vector associated with the vector - - -
(k) 

iterate u • Thus from (5.3.12) and (5.3.18) we have, 

Similarly, 

(G
1 

+rI)!:.(k+!) = -(G
2

-rI)!:.(k) 

= -(G -rIle (k+i) 
1 -

(5.3.19) 

(5.3.20) 



and hence, 
e(k+1) = T e(k) , 

r-

where T is given in (5.3.16). 
r 

345 

(5.3.21) 

To show the convergence properties of T , we state the following 
r 

theorem due to Evans [1985). 

Theorem 5.2 

If ~ and G2 are real positive definite matrices and if r>O then 

Proof: 

See Evans [1985). 

Let us now assume that G1 and G2 are real positive definite matrices 

and that the eigenva1ues A of G1 and ~ of G
2 

lie in the ranges, 

o ~ a ~ A ~ b, 0 ~ a ~ U. ~ b. 

Evidently, if r>O we have, 

= (max 
a~A~b 

= [max 
a~y~b 1

r::E..1 2 ), =~(a,b;r) . y+r 

Since (y-r)/(y+r) is an increasing function of y we have, 

max 
a~y~b 

When r=/ab, then 

I ::~I = 

[ r::E..1 
[y+r 

Ib-r[ 
b+r[ 

l
a-r[ [b-rl 

,= max( a+r[ '[b+r ) • 

= 

Moreover, if O<r</ab we have, 

= 

and if /ab<r, then, 

2.£ (rab-r) 

(b+r) (Ib+ra) 
> 0 , 

(5.3.22) 

(5.3.23) 

(5.3.24) 

(5.3.25) 

(5.3.26) 



Thus 

I a-rl _ 
I a+rl = 2/b (r-/ab) 

(r+a) cIb+la) 
> 0 • 

~a,b:r) is minimized when 

(Trab) ~ 4<a,b:rab) 

r=...ab and 

= (fbFa)2 
fbra 
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(5.3.27) 

(5.3.28) 

Therefore, r~ is optimum in the sense that the bound $ (a,b:r) for 

P (T ) is minimized. 
r 

The convergence of the A.G.E. method is frequently very rapid if 

one allows r to vary cyclically from iteration to iteration. This rapid 

convergence can be proved to hold for an appropriate choice of the 

iteration parameters in the commutative case. Following Birkoff, Varga 

and Young [1962], we say that the commutative case holds if the matrices 

Gl ,G2 and E of (5.3.3) satisfy the following conditions: 

(i) G
I
G2=G2G

l
, 

(ii) E=O"I, where E is a non-negative constant, 

(5.3.29) 

(5.3.30) 

(iii) Gl and G2 are similar to non-negative diagonal matrices 

(5.3.31) 

If these assumptions hold then the matrices, 

Gl = Gl+!E, G2 = G2+!E , satisfy the conditions, 

(5.3.32) 

- -(ii) Gl and G2 are similar to non-negative diagonal matrices 

(5.3.33) 

The importance of the above conditions depends on the following theorem 

of Frobenius, which we state without proof. 

Theorem 5.3 

If Gl and G2 are similar to diagonal matrices and if ~ G2 =G
2

G
l 

' 

then there exists a non-singular matrix W such that 

(5.3.34) 

where Dl and D2 are diagonal matrices. 
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It follows from (5.3.22) and (5.3.33) that there exists a set of 

linearly independent vectors ~1'~2' ••• '~' which corresponds to the 

columns of W in Theorem (5.3), such that each v. is an eigenvector both 
-~ 

of Gl and of G2 • Now, for any column v of W we have, 

(5.3.35) 

- -for some eigenvalues A and ~ of G
l 

and G
2 

respectively. Evidently, 

- -1 - - -1 -
Tr~ = (G2 +rI) (Gl-rI) (Gl+rI) (G2-rI)~ (5.3.36) 

- -1 . -1 - -1 -1 
Since (G1+rI) ~=(A+r) ~, (G2 +rI) ~=(~+r) ~ it follows that, 

(A-r) (~-r) 
Tv= v 
r- (A+r) (~+r) 

Thus v is an eigenvector of T for any r. 
r 

(5.3.37) 
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5 • 4 EXPF.RIM.ENTAL RESULTS OF THE PARALLEL A. G • E. METHOD 

The n.G.E. method was implemented in the parallel form where two 

strategies are used to solve a linear and a non-linear boundary value 

problem. In the two strategies, generally the problems are solved by 

decomposing it into many subsets that are assigned to the different 

processors which can then be run in parallel, i.e. the sequential 

decomposition is used (see Chapter 4). Also the two strategies are 

programmed on the NEPTUNE system uSing both the synchronous and 

asynchronous approach. The results from the implementations of these 

two approaches, such as the timing needed to solve the problem, number 

of iterations required, the running time overheads and the speed-up 

ratios are studied and compared later. 

Using the sequential decomposition technique, shared memory is 

used to hold the input, the results from the first sweep and the final 

output component values. These values can then be accessed by different 

processes. Before the process iterates on its subset, it needs to read 

all its components first, then it releases all the values of the 

components for the next iteration. In the different parallel versions, 

-1 
different mesh sizes are evaluated, these sizes are h =25,49,73,97,121, 

145 and 165. In our implementations, the accuracy value is taken to be 

-6 equal to (5xlO ) and the results shown in this section (such as timing, 

number of iterations, ••• ) are an average of many runs. 

The First Strategy of the Parallel A.G.E. Method 

In the first strategy, the problem domain (mesh of points) is 

decomposed into subsets each of which are assigned to a parallel path. 

If P is the number of parallel paths and N is the size of the problem, 

, 
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i.e •• the number of points in a given interval which is divisible by p. 

N 
then each path works on a subset of mesh points Np~' This means P 

subsets are formed with each N points of the original mesh points. 
p 

Each processor then computes its own subsets in two sweeps. In the 

first sweep. each processor evaluates its points by taking up each two 

successive points at a time starting from the first point and terminates 

after evaluating the last two points. While the second sweep is started 

after the first sweep has been completed. In the second sweep each 

processor starts its processing within its subset by evaluating the first 

point then each successive two points at a time and the last point is 

evaluated on its own. After the completion of both the first and second 

sweep. i.e. one cycle (iteration) is completed and a convergence test 

i.e. checks to ensure that the components are obtained within the 

required accuracy. is carried out. As an example. given the interval 

shown in Figure (5.1) and by taking P=l. one processor will be needed 

(number of parallel paths equal number of processors) and starts 

evaluating the mesh points by taking a pair of points at a time and in 

the following order. 

(Xl ·X2). (x3 ·x4)· (xS·x6 ) ••••• (xN_I'x
N

) 

and this is denoted as the first sweep. A second sweep is started after 

the first sweep is completed and the processor will evaluate its mesh 

points in the second sweep in the following order. 

(Xl)' (x2 .x3)· (x4 .xS)····. (xN_2.x
N

_l ). (x
N
)· 

So a single cycle (iteration) is terminated after evaluating all the 

points in the given interval in both first and second sweeps. 

This strategy is implemented using both synchronous and asynchronous 

approaches. In the synchronous implementation approach each processor 
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evaluates its own subset in the manner discussed above and synchronises 

itself after each iteration step (i.e. after both first and second 

sweep). When all the processors are synchronised, the convergence test 

is performed by one processor, the master processor (processor 0 in the 

NEPTUNE system). If all the components of the mesh are obtained with 

the required accuracy then the procedure terminates otherwise a new 

iteration is needed and so on until all the components have converged. 

While in the asynchronous approach the implementation strategy is 

by letting each processor to run asynchronously on its own subset without 

waiting for the other processors to complete their computations. In this 

case each proce,~.sor iterates permanently on its subset until this subset 

and the other subsets which are carried out by other processors have 

converged. Thus, a flag is assigned to each processor, where the set 

of all flags is in the shared memory and can be accessed by all the 

processors, in order to check whether all the subsets have converged or 

not. At the end of each iteration (after the completion of first and 

second sweep), each processor checks to ensure whether its components 

have converged. If convergence is obtained, the processor sets its flag 

and tests the remaining flags to ensure that the other subsets are also 

converged. If not, further iteration will be required. 

The Second strategy of the Parallel A.G.E. Meth~d 

As in the first strategy, the problem in this approach is also 

decomposed into subsets each of which are assigned to a parallel path. 

If P is the number of parallel paths, then each path works on a subset 

N 
of mesh points N=p, where N is the size of the problem. In the second 

strategy, each processor computes its own subset in two sweeps. In the 
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first sweep, each processor within its subset evaluates all the odd 

points first then followed by all the even points. In the second sweep, 

the evaluation is carried out in the same manner as in the first sweep, 

i.e., odd points are evaluated first and then followed by the even ones. 

As an example, given the interval shown in Figure (5.1), by taking N=12 

and one parallel path, in the first sweep the processor starts evaluating 

the odd mesh points in the following order xl,x3,x5,X7,X9 and xll then 

followed by the even points in the order of x2,x4,x6,xS,xlO and x12 • 

In the second sweep, the processor first evaluates the odd points and 

in the order xl,x3,x5,X7,X9 and xll then followed by the even points in 

the order of x2,x4,x6,xS,xlO and x12 ' The second strategy is implemented 

using both synchronous and asynchronous approaches as in the first 

strategy. 

The above two parallel strategies were implemented on the NEPTUNE 

system to solve linear and non-linear two-point boundary value problems. 

Problem I 

We now consider the linear problem, 

2 2 
U2 = 400(Ul+cos (rrx)+2rr cos(2rrx» 

subject to the boundary conditions, 

The exact solution for this problem is given by, 

-20 e 
U

l 
(x) = '::""--::<7"" 

-20 l+e 

2 Ox _--:.1,-;;-::-e + -20 l+e 

20e-20e20x 

-20 l+e 

20 
-20 l+e 

-2Ox 2 
e - cos (rrx) 

-2Ox 
e + rrsin (2rrx) • 

(5.4.1) 

(5.4.2) 

(5.4.3) 

(5.4.4) 
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From (5.3.1) and (5.3.2), we have, 

2 2 
Ui = 400 (U

1 
+cos (1TX)) + 21T (21TX)) • (5.4.5) 

By following the finite difference procedure of Section (5.1), equation 

(5.4.5) can be approximated to obtain the linear difference equation 

(assuming u=u
l

) , 

ui _1-2u
i 

+ui+l 

h
2 

Equation (5.4.6) can be simplified to the form, 

(5.4.6) 

2 
-ui 1+(2+400h )u.-u, 1 

- 1. 1.+ 

222 
= -2h [200cos (~x.)+n cos(2nx.»), i=1,2, ... ,N. 

1. 1. 

The boundary conditions are replaced by the values, 

u-Q u =0, o - , N+l 
1 

where h = --1 • N+ 

(5.4.7) 

(5.4.8) 

The linear system (5.4.7) can be represented in the matrix notation 

as, 
Au = b , (5.4.9) 

where, 

2g -1 

-1 2g -1 

-1 2g -1 0 , , 
A = 

, , (5.4.10a) 
"- , 

0 
, , 

-1 2g -1 

-1 2g 

(5.4.lOb) 

(5.4.1OC) 

and (5.4.lOd) 
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where, 
2 2 2 

c i = -2h [20Qcos (TIX
i

) + TI cos(2TIX
i
)], i=1,2, ••• ,N. (S.4.lOe) 

We now split the matrix A into the form (S.J' .1), hence from 

(5.3.:) Gl and G2 have the form, 

r~ ~:-:-
'g 
I -1 

- - - 'i 

L 

I 
I- --1 

-1, ' 
I 

gl I 
-~------ = 

I', '0 , I 
I " , 

1':--o ,g-l 

1-1 g 
I 

I I ' I 
L-l _ ~ I- _ 1 _ L _ __ ,I 

G 

L 

, ,g -11 

- i' J-l_ gl I 1= 
,\ j" - - -1-

, I I' I 0 , 
, I \ 

-----r--L-'L 

~ 
, 0 I ,g 
I I I I , , ,-1 

-~---i--l-~-

with 

G = ~l 

G , , , 

o 

G 

, , , , 

o 

, , 
G 

(5.4.11) 

l 
G, C , , 

c 
, , , 

G 

gJ 

(5.4.12) 

Hence by applying the A.G.E. method, u(k+t) and u(k+l) can be 

determined successively by, 
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(k+!) - -1 - (k) 
U = (Gl+rI) [~-(G2-rI)~ I, 

(k+l) - -1 - (k+!) 
U = (G2+rI) [~-(Gl-rI)~ I (5.4.13) 

where r is the iteration parameter. 

It is clear that (Gl+rI), (G2+rI),(G
l
-rI) and (G

2
-rI) can be 

- -1 - -1 
determined and (Gl+rI) , (G

2
+rI) are easily invertible, as shown 

below, 

a -1 I 

I 1 
-1 a 1 - - _1- __ _ 

I a -11 
1 

I l G 

-- ~--I 
I -1 

1 

1 

1 
-1-

I 

'!.I 
I' , 
I , 1 

0 1 

I 
1 

, 1 , 
-1-

1 a -1 
1 
1 -1 a 

= 

a I 1 
-r--L--- r 

I a -1 I 1 

I 
- -1-

-1 a I L 
-1- - l 1-

I a -1 I 

1 
1 

1-

I I I I 
= _1_ + -!:.,. a+. __ 1 __ L_ 

1 1 I', 1 0 I 
I- 1·_ L ~'.J _ _ I 
[ I 1 I a -1 1 J 

-f--~ f ~-~o-i: 

a 

" G 
\ 

o 

" G 

c 

\ , 

" G 

, 
\ 

c 

\ 
\ , " 

G 

(5.4.14) 

l 

\ C 
\ 

\ 

\ 
\ ,,, 

G 

(5.4.15) 

• 
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a -1 I 1 1 1 v 

l 1 1 1 G 
-1 a I 

.L --I --1- - r L_ 
a --1 1 1 

1 I v 
G 

I -1 a 1 
- _1-

, 
0 ----1--1' , 

v 
1 I', 10 1 \ (G -rI)=G = = \ 1 1 
L _ L ::' L _ _: __ \ 

\ 
I 10 la -1 

\V I 0 G 
1 I 1-1 a I 
I -+ - -1- -1-
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where a=g+r, a=g-r, I is the identity matrix and the (2x2) submatrices 

and (5.4.18) 

hence, 
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(5.4.21) 

Hence, using equation (5.4.13) the vector u 
(k+l) 

can be determined from 

u 
(k) 

in two steps, we first determine u 
(k+t) 

as follows, 
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Problem I was implemented in parallel on the NEPTUNE system using 

both strategies with synchronous and asynchronous approaches. In all 

these parallel implementations a different number of points within a 

-1 given interval was taken, these are h =25,49,73,97,121,145 and 169. 

-6 
The accuracy value (E) taken to be equal to (5xlO ) and in all these 

implementations the optimal iteration parameter (r) (equation (5.3.28» 

was used. The optimal iteration parameter (r) is also obtained from 

the numerical experiments by choosing the one that gives the best 

running time. 

The parallel synchronous strategy implementation was programmed 

in Program 5.1. Table (5.1) represents the results obtained from this 

implementation by using a number of parallel paths greater than or 

equal to the number of available processors using two problem sizes 

for equal to 24 and 48. From Table (5.1) it is clear that the optimal 

timing results are obtained when the number of parallel paths is equal 

to the number of available processors. This is due to the overheads 

incurred by the system to create the extra parallel paths and the 

waiting time for the parallel paths to be executed by an available 
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processor. As a consequence to this result the number of parallel 

paths will be taken to be equal to the number of available processors 

in all the other implementations. 

No.of No.of Time No.of Total no. 
Size r Parallel Processors (seconds) iterations of Parallel 

Paths Paths 

24 0.45 1 1 2.10 8 34 . 

2 1 2.12. 8 50 

2 1.30 8 34,17 

3 1 2.15 8 66 

2 1.44 8 50,17 

3 0.99 8 34,17,17 

4 1 2.17 8 82 

2 1.33 8 50,33 

3 1.10 8 50,17,17 

4 0.82 8 34,17,17,17 

6 1 2.21 8 114 

2 1.34 8 66,49 

3 1.00 8 50,33,33 

4 0.98 8 50,22,24,21 

8 1 2.25 8 146 

2 1.67 8 86,61 

3 1.50 8 66,39,43 

4 1.32 8 57,27,33,32 

12 1 2.36 8 210 

2 1.42 8 114,97 

3 1.08 8 83,64,65 

4 0.90 8 68,48,48,49 

TABLE 5.1a: The results from the synchronous strategy I using a 
number of parallel paths greater than the number of 
processors 
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No.of No.of Time No.of Total parallel 
Size r Parallel (seconds) iterations Paths 

Paths 
Processors 

48 0.25 1 1 7.85 15 62 

2 1 7.90 15 92 

2 4.38 15 62,31 

3 1 7.94 15 122 

2 5.27 15 92,31 

3 3.2 15 62,31,31 

4 1 7.97 15 152 

2 4.45 15 92,61 

3 3.98 15 92,31,31 

4 2.51 15 62,31,31,31 

6 1 8.07 15 212 
. 

2 4.49 15 122,91 

3 3.2 15 92,61,61 

4 3.13 15 92,43,42,38 

8 1 8.16 15 272 

2 4.56 15 152,121 

3 3.47 15 122,75,77 

4 2.59 15 92,61,61,61 

12 1 8.54 15 392 

2 4.64 15 212,181 

3 3.33 15 152,121,121 

4 2.66 15 122,91,91,91 

16 1 8.54 15 512 

2 5.96 15 272 ,241 

3 4.95 15 211 ,152 ,151 
~. 4 4.57 15 152,121,121,121 

24 1 9.06 15 752 

2 5.07 15 392,361 

3 3.69 15 273,240,241 

4 2.99 15 213,181,181,181 

TABLE 5.1b: The results from the synchronous strategy I using a 
number of parallel paths greater than the number of 
processors. 
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The results obtained from running Program 5.1 (Problem I using the 

first strategy with the synchronous approach) for different sizes is 

shown in Table 5.2. From Table 5.2 the best efficiency results (speed

up) is obtained when the problem size is equal to 120. 

The same strategy (Stragegy I) was implemented and programmed in 

Program 5.2 using the asynchronous approach by taking the number of 

parallel paths equal to.the number of co-operating processors. Table 

5.3 shows the results obtained from Program 5.2 using the same sizes 

that are used in the synchronized approach. Results from Table 5.3 show 

the best speed-up obtained when the problem size is equal to 120. 

By comparing the results from Tables 5.2 and 5.3 we notice that 

the times for Program 5.2 are less than that of Program 5.1, i.e. 

evaluating the points using Strategy I with the asynchronous approach 

takes less time to converge than that of the synchronous approach and 

this is due to the synchronisation overheads needed after each iteration 

in the synchronous implementation. Also, from both tables it is clear 

that the better efficiency can be obtained by using the asynchronous 

approach rather than the synchronous approach. This is because the 

speed-up ratios of asynchronous implementation is higher than that of· 

a synchronous one. So we can say that, using the first strategy in spite 

of the efficient implementation of both the synchronous and asynchronous 

programs, the asynchronous implementation gives better results in both 

the time needed for the problem to converge and on the speed-up ratios 

of the processors. This is due to the synchronisation overheads incurred 

by the system in the synchronous implementation. 

Now, the second strategy was programmed and implemented on the 

NEPTUNE system to solve problem I using both the synchronous and 
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Size 

24 

48 

72 

96 

120 

144 

168 
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Time No. of Speed-up Total no. Effective no. 
e r P (seconds) iterations of parallel of parallel 

paths paths 

5xl0 -6 0.45 1 2.10 8 1.0 34 8 

0.45 2 1.30 8 1.61539 34,17 8,8 

0.45 3 0.99 8 2.12121 34,17,17 8,8,8 

0.45 4 0.82 8 2.56098 34,17,17,17 8,8,8,8 

5xI0-6 0.25 1 7.85 15 1.0 62 15 

0.25 2 4.38 15 1.79224 62,31 15,15 

0.25 3 3.20 15 2.45313 62,31,31 15,15,15 

0.25 4 2.51 15 3.12749 62,31,31,31 15,15,15,15 

5xlO -6 0.30 1 17.48 22 1.0 90 22 

0.20 2 9.46 22 1.84778 90,45 22,22 

0.25 3 6.63 22 2.63650 90,45,45 22,22,22 

0.20 4 5.30 22 3.29811 90,45,45,45 22,22,22,22 

5XI0 -6 0.15 1 29.74 28 1.0 114 28 

0.15 2 15.86 28 1.87516 114,57 28,28 

0.20 3 11.20 28 2.65536 114,57,57 28,28,28 

0.15 4 8.62 28 3.45012 114,57,57,57 28,28,28,28 

5xIO 
-6 0.15 1 46.52 35 1.0 142 35 

0.15 2 24.56 35 1.89414 142,71 35,35 

0.15 3 17.18 35 2.70780 142,71,71 35,35,35 

0.15 4 13.24 35 3.51360 142,71,71,71 35,35,35,35 

5xlO 
-6 0.15 1 62.05 39 1.0 158 39 

0.15 2 33.05 39 1.87746 158,79 39,39 

0.15 3 23.43 39 2.64831 158,79,79 39,39,39 

0.15 4 17.97 39 3.45298 158,79,79,79 39,39,39,39 

5xlO-6 0.1 1 89.25 48 1.0 194 48 

0.1 2 53.03 48 1.68301 194,97 48,48 

0.1 3 37.11 48 2.40501 194,97,97 48,48,48 

0.1 4 27.84 48 3.20582 194,97,97,97 48,48,48,48 

TABLE 5.2: The results from the parallel A.G.E. method using 
Strategy I with the synchronous approach (Problem I) 
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Mesh Time No. of Speed-up 
Total no. Effective no. 

e r p (seconds) iterations of parallel of parallel Size 
paths paths 

24 5x lO 
-6 

0.45 1 2.07 8 1.0 4 1 

0.45 2 1.20 9 1.72500 4,2 1,1 

0.55 3 0.96 11 2.15625 4,2,2 1,1,1 

0.60 4 0.77 11 2.68831 4,2,2,2 1,1,1,1 

48 5x lO 
-6 0.25 1 7.79 15 1.0 4 1 

0.25 2 4.22 16 1.84597 4,2 1,1 

0.25 3 3.12 18 2.49680 4,2,2 1,1,1 

0.25 4 2.35 18 3.31489 4,2,2,2 1,1,1,1 

72 5x lO 
-6 0.25 1 17.36 22 1.0 4 1 

0.30 2 9.14 23 1.89934 4,2 1,1 

0.20 3 6.55 24 2.65038 4,2,2 1,1,1 

0.25 4 5.20 26 3.33846 4,2 ,2 ,2 1,1,1,1 

96 5xI0 
-6 

0.15 1 29.66 28 1.0 4 1 

0.15 2 15.43 29 1.92220 4,2 1,1 

0.15 3 11.17 32 2.65533 4,2,2 1,1,1 

0.20 4 8.59 34 3.45285 4,2,2,2 1,1,1,1 

120 5xI0 
-6 0.15 1 46.36 35 1.0 4 1 

0.10 2 23.96 36 1.93489 4,2 1,1 

0.15 3 17.08 38 2.71429 4,2,2 1,1,1 

0.20 4 13.11 42 3.53623 4,2,2,2 1,1,1,1 

144 5x lO 
-6 

0.15 1 61.90 39 1.0 4 1 

0.10 2 32.95 42 1.87860 4,2 1,1 

0.15 3 23.09 47 2.68081 4,2,2 1,1,1 

0.10 4 17.88 51 3.46197 4,2 ,2 ,2 1,1,1,1 

168 5x lO-6 0.10 1 89.03 48 1.0 4 1 

0.10 2 52.36 56 1. 70034 4,2 1,1 

0.10 3 36.68 58 2.42721 4,2,2 1,1,1 

0.10 4 27.39 63 3.25046 4,2,2,2 1,1,1,1 

TABLE 5.3: The results from the parallel A.G.E. methods using strategy 
I with the asynchronous approach (problem I) 
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asynchronous approach. In our implementation we take the number of 

parallel paths equal to the number of available processors. Also the 

-6 accuracy value (g) is taken to be equal to (5xlO ) with the optimal 

iteration parameter. The sizes of the problem to be solved are taken to 

be the same as those in the first strategy, i.e. h-l =25,49,73,97,121,145 

and 169. The results from the synchronous implementation is shown in 

Table 5.4 while the results from the asynchronous implementation is shown 

in Table 5.5. Comparing the results from these two implementations, it is 

noticed that the timing of asynchronous implementation using one processor 

is better than that of the synchronous implementation. While using more 

than one processor (i.e. two, three or four processors) a better timing 

result is obtained in the case of the synchronous implementation •. It is 

clear from the results that in the case of the asynchronous implementation 

the optimal speed-up ratios obtained when the size of the problem is equal 

to 24 and the speed-up starts dropping when using ni,her problem sizes. 

While for the synchronous implementation a better speed-up ratio is 

obtained when a larger problem size is used. Also, generally we can say 

that in strategy 11 the synchronous implementation is better than an 

asynchronous one. These results are due to the way in which the points 

are evaluated in strategy 11. For the asynchronous implementation, 

because in one iteration it first evaluates the odd points, this means 

it is always the old values for the even points that are used in the 

evaluation and vice versa. This means that an extra iteration will be 

needed before the recent values are used. While in the synchronous 

implementation, even if we evaluate the odd points first, it is guaranteed 

that for the next iteration new values will always be used due to the 

synchronisation process at the end of each iteration. 
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Time No. of Total no. Effective no. 
Size E r P (seconds) iterations 

Speed-up of parallel pf parallel 
paths paths 

24 5X1O-6 0.45 1 3.02 8 1.0 66 8 

0.45 2 1.89 8 1.59788 66,33 8,8 

0.45 3 1.48 8 2.04054 66,33,33 8,8,8 

0.45 4 1.23 8 2.45529 66,33,33,33 8,8,8,8 

48 5x1O 
-6 0.40 1 11.35 15 1.0 122 15 

0.40 2 6.40 15 1. 77344 122,61 15,15 

0.40 3 4.61 15 2.46204 122,61,61 15,15,15 

0.40 4 3.71 15 3.05930 122,61,61,61 15,15,15,15 

72 5x1O 
-6 0.30 1 25.35 22 1.0 178 22 

0.30 2 13.76 22 1.84230 178,89 22,22 

0.25 3 9.82 22 2.58147 178,89,89 22,22,22 

0.30 4 7.71 22 3.28794 178,89,89,89 ~2,22,22,22 

96 5x1O-6 0.15 1 43.24 28 1.0 226 28 

0.15 2 23.21 28 1.86299 226,113 28,28 

0.15 3 16.19 28 2.67078 226,113,113 28,28,28 

0.20 4 12.69 28 3.40741 226.113.113,1.13 28,28,28,28 

120 5xl0 
-6 

0.15 1 67.500 35 1.0 282 35 

0.15 2 35.99 35 1.87552 282,141 35,35 

0.15 3 25.10 35 2.68924 282,141,141 35,35,35 

0.15 4 19.44 35 3.47222 282,1.4U41,14 ' 35,35,35,35 

144 5xI0 -6 0.15 1 90.10 39 1.0 314 39 

0.15 2 48.25 39 1.86736 314,157 39,39 

0.15 3 33.69 39 2.67438 314,157,157 39,39,39 

0.15 4 25.97 39 3.46939 314,157.157.15 39,39,39,39 

168 5x1O-6 0.10 1 130.06 48 1.0 386 48 

0.10 2 68.98 48 1.85853 386,193 48,48 

0.10 3 48.82 48 2.66407 386,193,193 48,48,48 

0.10 4 37.69 48 3.45078 386;1.93,193,193 48,48,48,48 

TABLE 5.4: The results from the parallel A.G.E. method using strategy 
11 with the synchronous approach (Problem I) 
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24 

48 

72 

96 
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144 
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Time No. of Speed-up Total no. Effective no. 
E r P (seconds) iterations of parallel of parallel 

paths paths 

5XlO-6 0.45 1 2.94 8 1.0 4 1 

0.6 2 2.04 11 1.44118 4,2 1,1 

0.6 3 1.45 11 2.02759 4,2,2 1,1,1 

0.65 4 1.17 11 2.51282 4,2,2,2 1,1,1,1 

5xI0-b 0.40 1 11.13 15 1.0 4 1 

0.50 2 7.52 20 1.48005 4,2 1,1 

0.45 3 5.38 22 2.06877 4,2,2 1,1,1 

0.45 4 4.42 24 2.5181 4,2,2,2 1,1,1,1 

5xl0 
-6 

0.25 1 24.89 22 1.0 4 1 

0.45 2 20.49 36 1.21474 4,2 1,1 . 

0.45 3 13.93 37 1. 78679 4,2,2 1,1,1 

0.45 4 10.68 39 2.33052 4,2,2,2 1,1,1,1 

5xI0 
-6 0.15 1 42.82 28 1.0 4 1 

0.40 2 42.65 56 1.00400 4,2 1,1 

0.45 3 28.34 56 1.51094 4,2,2 1,1,1 

0.45 4 24.82 66 1.72522 4,2,2,2 1,1.1,1 

5xI0 
-6 

0.15 1 67.10 35 1.0 4 1 

0.4 2 73.14 76 0.91742 4,2 1,1 

0.45 3 52.29 83 1.28323 4,2,2 1,1.1 

0.45 4 39.07 84 1. 71743 4,2,2,2 1,1,1,1 

5xlO-6 0.15 1 89.51 39 1.0 4 1 

0.35 2 113.30 98 0.79003 4,2 1,1 

0.40 3 81.56 107 1.09747 4,2,2 1,1.1 

0.55 4 72.79 127 1.22970 4,2,2,2 1,1,1,1 

5xI0 
-6 

0.10 1 129.110 48 1.0 4 1 

0.35 2 168.81 125 0.76482 4,2 1,1 

0.40 3 124.21 139 1.03945 4,2,2 1,1,1 

0.50 4 105.73 155 1.22113 4,2,2,2 1,1.1,1 

TABLE 5.5: The results from the parallel A.G.E. method using strategy 
II with an asynchronous approach (Problem I) 
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Now comparing the results obtained from solving problem I using 

both strategy I and II, i.e. comparing the results from Tables 5.2, 

5.3, 5.4 and 5.5, we notice that the time needed in strategy I for the 

problem to converge is less than that of strategy II and generally the 

speed-up ratios using the asynchronous strategy I is the best amongst 

the other implementations. This is mainly from the way in which the 

components within each strategy are evaluated. In strategy II, we 

first notice from its implementation that the number of computational 

operations are higher than that of the first strategy. Secondly, 

there is a possibility in the second strategy that during the evaluation 

of its components the old values may be used which means extra iterations 

will be needed. While in strategy I the most recent values of the 

components will be used ·in the evaluation process and a greater rate 

of convergence is achieved. 

To conclude from strategy I and II we can say that in all the 

implementations of problem I using the parallel A.G.E. method the best 

results are obtained when the problem is decomposed into a number of 

subsets, each of which is assigned to a processor where the number 

of processors is always equal to the number of generated parallel paths. 

From the implementation results we can say that strategy I will be chosen 

amongst the two strategies, because a better running time result was 

obtained. This is due to the extra amount of computational operations 

required in strategy II and to the way in which the evaluation of the 

components within each subset are carried out in each strategy, whereas 

in strategy I the most recent values will be used in its evaluation 

which is not the case in strategy II. In strategy I, because of the way 

in which the implementation is carried out, we can generally say that 
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where the timing results are concerned it does not matter whether the 

algorithm is synchronously or asynchronously implemented. Since we 

decompose the problem into almost equal subsets and assign each one 

to different processors, this means that the amount of work (computational 

time) carried out by each processor to evaluate any component is 

approximately the same. There are extra overheads incurred by the 

system besides the computational time, which degrades the parallel 

algorithm performance in both the synchronous and asynchronous 

implementations. These overheads are the generation of the parallel 

paths and the synchronisation at the end of each iteration cycle. 

These overheads may become significant, as an example, if we take the 

results from Tables 5.2 and 5.3 for the case when the problem size h 

is equal to 168. using four processors, it is clear from the asynchronous 

implementation that the problem converges after 63 iterations using a 

total of 4 parallel paths by the first processor and 2 parallel paths 

by each other processor. While in the case of the synchronous 

implementation, the same problem converges after 48 iterations using 

a total of 194 parallel paths by the first processor and 97 parallel 

paths by each of the other processors, since we need a synchronisation 

process after each iteration. Thus, it is clear that the overheads 

may effect the performance of a parallel algorithm especially in the 

case of the synchronous implementation. Hence for this reason we can 

say that the use of the asynchronous approach is better suited for the 

MIMD computer which confirms what is obtained from the experimental 

results. 

The timing results from both strategy I and II are as shown 

diagrammatically in Figures 5.3 and 5.4 for the asynchronous approach. 
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While for the synchronous approach the results are shown in Figures 

5.5 and 5 . 6 . 

For comparison reasons the parallel versions of the Jacobi, 

Gauss-Seidel and S .O. R. iterative methods (see Chapter 4 ) are 

implemented and programmed on the NEPTUNE system and used to solve 

problem I. These implementations are carried out in the same way as 

that of parallel A.G.E. methods using both synchronous and asynchronous 

approaches. Also in our implementation the probl em is decomposed into 

a subset each of which is assigned to a paralle l path where the number 

of parallel paths is always equal to the number of co-operating 

processors. Also, the accuracy value (E) is taken to be equal to 

(5xlO-6 ) and in the parallel S.O.R. method the optimal w is obtained 

from the experiments by choosing the value which gives the shortest 

running time. 

The timing results for problem I on the NEPTUNE system using the 

parallel asynchronous and synchronous Jacobi method are shown in Tables 

5 .6 and 5.7 respectively. Tables 5 .8 and 5 . 9 represent the results 

for the same problem us ing the parallel asynchronous and synchronous 

Gauss - Seidel method , while the results obtained from the parallel 

asynchronous and synchronous S.O.R. method are shown in Tables 5.10 

and 5 . 11 respectively . 

By comparing these results with those obtained from the parallel 

A.G.E. method using strategy I with the synchronous and asynChronous 

appr oach (Tabl es 5 . 2 and 5.3) , it is clear that the elapsed time using 

the parallel A.G .E. method gives better results in a l l caseS . This is 

because the number of iterations in the paral lel Jacobi , Gauss - Seidel 

and S .O.R. me t hods are much higher than that o f the par a l le l A.G. E. 
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Size 

24 

48 

72 

96 

120 

144 

168 

373 

P 
Time No. of Speed-up Total no. Effective no. 

E 
(seconds) iterations of parallel of parallel 

paths paths 

5xlO-6 1 4.95 40 1.0 4 4 

2 2.59 41 1".91120 4,2 1,1 

3 1.75 41 2.82857· 4,2,2 1,1,1 

4 1.33 41 3.72181 4,2 ,2 ,2 1,1,1.1 

5xl0-6 
1 30.12 122 1.0 4 1 

2 15.46 124 1.94825 4,2 1,1 

3 10.21 122 2.95005 4,2,2 1,1,1 

4 7.8 124 3.86154 4,2,2,2 1,1,1,1 

5XI0-6 
1 90.79 243 1.0 4 1 

2 46.12 246 1.96856 4,2 1,1 

3 30.64 244 2.96312 4,2,2 1,1,1 

4 23.10 244 3.93030 4,2,2,2 1,1,1,1 

5x10 -6 1 197.88 399 1.0 4 1 

2 100.45 404 1.96994 4,2 1,1 

3 66.24 398 2.98732 4,2,2 1,1,1 

4 50.12 401 3.94813 4,2,2,2 1,1,1,1 

5XI0-6 
1 363.38 585 1.0 4 1 

2 184.02 590 1.97468 4,2 1,1 

3 122.06 586 2.97706 4,2,2 1,1,1 

4 91.68 586 3.96357 4,2,2,2 1,1,1,1 

5xI0-6 
1 598.37 799 1.0 4 1 

2 302.89 808 1.97554 4,2 1,1 

3 200.12 800 2.99006 4,2,2 1,1,1 

4 151.55 804 3.94833 4,2 ,2 ,2 1,1,1,1 

5xl0 -6 1 901.13 1041 1.0 4 1 

2 459.05 1053 1.96303 4,2 1,1 

3 302.31 1040 2.98081 4,2,2 1,1,1 

4 231.45 1043 3.89341 4,2,2,2 1,1,1,1 

TABLE 5.6: The results from the parallel Jacobi iterative method 
using the asynchronous approach (Problem I) 



Size 

24 

48 

72 

96 

120 

144 

168 

374 

Time No. of Speed-up Total no. Effective no. 
£ P 

(seconds) iterations of parallel of parallel 
paths paths 

5x10-6 
1 5.05 40 1.0 82 40 

2 3.14 40 1.60828 82,41 40,40 

3 2.37 40 2.13080 82,41,41 40,40,40 

4 1.99 40 2.53769 82.41.41.41 40 40.40,40 

5x10-6 
1 30.47 122 1.0 246 122 

2 17.19 122 1.77254 246,123 122,122 

3 12.34 122 2.46921 246,123,123 122,122,122 

4 10.01 122 3.04396 46,1.2 3;L2 3,1.2 3 22,122,122,122 

5x10-6 
1 91.49 243 1.0 488 243 

2 49.83 243 1.83604 488,244 243,243 

3 35.07 243 2.60878 488,244,244 243,243,243 

4 27.78 243 3.29338 88244244244 43 243 243.243 

5x10 -6 
1 198.89 399 1.0 800 399 

2 106.88 399 1.86087 800,400 399,399 

3 74.43 399 2.67218 800,400,400 399,399,399 

4 58.5 399 3.39983 Ron, nn' OOAOO 99,399,399 399 

5x10-6 
1 365.12 585 1.0 1172 585 

2 193.98 585 1.88226 1172 ,586 585,585 

3 134.60 585 2.71263 172,586,586 585,585,585 

4 105.33 585 3.46644 IJ. 72,5 86,586,5 86 1585,585,585,585 
5 x10 -6 1 599.00 799 1.0 1600 799 

2 317.31 799 1.88774 1600,800 799,799 

3 219.92 799 2.72371 1600 ,800 ,80< 799,799,799 

4 171.14 799 3.50006 U600;300;300;30 799,799,799,799 

5x10-6 1 903.50 1041 1.0 2084 1041 

2 480.63 1041 1.87982 2084,1042 1041,1041 

3 332.66 1041 2.71599 r084;L042,104" 1041,1041,104 

4 259.10 1041 3.48707 2084,1042, 1041,1041,104 
1042 1042 1041 

TABLE 5.7: The results from the parallel Jacobi iterative method 
using the synchronous approach (Problem I) 



Size 

24 

48 

72 

96 

120 

144 

168 

375 

P Time No. of 
Speed-up Total no. Effective nO. 

E: (seconds) iterations of parallel of parallel 
paths paths 

5x10-6 1 2.98 24 1.0 4 1 

2 1.59 25 1.87421 4,2 1,1 

3 1.04 24 2.86539 4,2,2 1,1,1 

4 0.79 24 3.77215 4 2,2,2 1,1,1,1 

5xl0-6 
1 16.79 68 1.0 4 1 

2 8.60 69 1.95236 4,2 1,1 

3 5.7 68 2.94561 4,2,2 1,1,1 

4 4.33 68 3.87760 4 2 2 2 1 1 1 1 

5x10-6 
1 49.98 134 1.0 4 1 

2 25.13 134 1.98886 4,2 1.1 

3 16.72 133 2.98924 4,2,2 1,1,1 

4 12.73 135 3.92616 4,2,2,2 1,1,1,1 

5x10-6 1 108.40 219 1.0 4 1 

2 54.76 220 1.97955 4,2 1,1 

3 36.24 218 2.99117 4,2,2 1,1,1 

4 27.37 220 3.96054 4,2,2,2 1,1,1,1 

5x10-6 
1 199.21 321 1.0 4 1 

2 100.51 322 1.98199 4,2 1,1 

3 66.67 320 2.98800 4,2,2 1,1,1 

4 50.22 322 3.96675 4,2,2,2 1,1,1,1 

5 x10-b 
1 327.46 439 1.0 4 1 

2 165.15 441 1.98280 4,2 1,1 

3 109.76 439 2.98342 4,2,2 1,1,1 

4 82.56 440 3.96633 4,2,2,2 1,1.1,1 

5x10 -6 1 492.21 573 1.0 4 1 

2 250.71 576 1.96326 4,2 1,1 

3 166.20 572 2.96155 4,2,2 1,1,1 

4 125.00 573 3.93768 4,2 ,2 ,2 1,1,1,1 

TABLE 5.8: The results from the parallel Gauss-Seidel iterative 
method using the asynchronous approach (Problem I) 



Size 

24 

48 

72 

96 

120 

144 

168 

376 

-
Time No. of speed-up 

Total no. Effective no. 
£ P (seconds) iterations of parallel of parallel 

paths paths 

5><10-6 
1 3.03 24 1.0 50 24 

2 1.91 24 1.58639 50,25 24,24 

3 1.43 24 2.11888 50,25,25 24,24,24 

4 1.21 24 2.50413 50,25,25 25 24,24,24,24 

5><10-6 
1 16.94 68 1.0 138 68 

2 9.75 68 1. 73744 138,69 68,68 

3 6.86 68 2.46939 138,69,69 68,68,68 

4 5.56 68 3.04676 138,69,69,69 68,68,68,68 

5><10-6 
1 50.28 134 1.0 270 134 

2 27.47 134 1.83036 270,135 134,134 

3 19.36 134 2.59711 270,135,135 134,134,134 

4 15.29 134 3.28842 270,1.35,1.35,1.35 134,134,134,1.34 

5><10 -6 1 108.93 219 1.0 440 219 

2 58.47 219 1.86301 440,220 219,219 

3 40.62 219 2.68168 440,220,220 219,219,219 

4 32.02 219 3.40194 440,220,220,220 219,219,219,219 

5><10-6 
1 199.88 321 1.0 644 321 

2 106.22 321 .L .88176 644,322 321,321 

3 73.69 321 2.71244 644,322,322 321,321,321 

4 57.57 321 3.47195 644,322,322,322 321 , 321 , 321 ,321 

5><10 
-6 

1 328.50 439 1.0 880 439 

2 173.73 439 1.89087 880,440 439,439 

3 119.93 439 2.73910 880,440,440 439,439,439 

4 93.30 439 3.52090 880A40MOA40 439,439,439,439 

5><10 
-6 

1 494.77 573 1.0 1148 573 

2 262.34 573 1.88599 1148,574 573,573 

3 181.76 573 ~. 72211 1148,574,574 573,573,573 

4 141.66 573 3.49266 1148,574,574, 573,573,573,573 
574 

TABLE 5.9: The results from the parallel Gauss-Seidel iterative 
method using the synchronous approach (Problem Il 



Size 

24 

48 

72 

96 

120 

144 

168 

377 

Time No .of Speed-up Total no. Effective no. 
E III P (seconds) iterations of parallel of parallel 

paths paths 

5xlO-6 1.20 1 2.60 17 1.0 4 1 

1.20 2 1.58 20 1.64557 4,2 1,1 

1.20 3 1.09 20 2.38532 4,2,2 1,1,1 

1.20 4 0.83 20 3.13253 4,2,2,2 1,1,1,1 

5xlO-6 1.45 1 9.78 32 1.0 4 1 

1.45 2 5.29 34 1.84877 4,2 1,1 

1.40 3 3.86 37 2.53368 4,2,2 1,1,1 

1.45 4 2.92 37 3.34932 4,2,2,2 1,1,1,1 

5xl0-6 1.55 1 21.24 46 1.0 4 1 

1.60 2 11.75 50 1.80766 4,2 1,1 

1.60 3 8.54 53 2.48712 4,2,2 1,1,1 

1.55 4 6.40 55 3.31875 4,2 ,2 ,2 1,1,1,1 

5xl0-6 1.65 1 36.87 60 1.0 4 1 

1.65 2 20.50 67 1. 79854 4,2 1,1 

1.65 3 14.07 68 2.62047 4,2,2 1,1,1 

1.65 4 11.35 73 3.24846 4,2,2,2 1,1,1,1 

5xl0 
-6 1. 70 1 57.06 74 1.0 4 1 

1.702 31.25 80 1.82592 4,2 1,1 

1. 70 3 22.30 85 2.55874 4,2,2 1,1,1 

1. 70 4 17.65 92 3.23286 4,2,2,2 1,1,1,1 

5xlO -6 1.75 1 81.69 88 1.0 4 1 

1. 75 2 43.97 94 1.85786 4,2 1,1 

1. 75 3 30.10 100 2.71395 4,2,2 1,1,1 

1.75 4 24.43 104 3.37264 4,2,2,2 1,1,1,1 

5xlO 
-6 1. 75 1 112.69 105 1.0 4 1 

1.80 2 61.00 112 1.84738 4,2 1,1 

1.80 3 41.80 114 2.69593 4,2,2 1,1.1 

1. 75 4 33.88 126 3.32615 4,2,2,2 1,1,1,1 

TABLE 5.10: The results from the parallel S.O.R. method using 
the asynchronous approach (Problem I) 



Size 

24 

48 

72 

96 

120 

144 

168 

378 

E W P Time No. of Speed-up Total no. Effective no. 
(seconds) iterations of parallel pf parallel 

paths paths 

SXlO -6 1.21 1 2.62 17 1.0 36 17 

1.23 2 1.69 18 1.55029 38,19 18,18 

1.23 3 1.40 - 20 1.87143 42,21,21 20,20,20 

1.21 4 1.16 20 2.25862 42,21,21,21 20,20,20,20 

5XI0 
-6 

1.44 1 9.84 32 1.0 64 32 

1.45 2 5.81 34 1.69363 70,35 34,34 

1.40 3 4.49 37 2.19154 76,38,38 37,37,37 

1.44 4 3.69 38 2.66667 78,39,39,39 38,38,38,38 

5XI0 
-6 

1.56 1 21.27 46 1.0 94 46 

1.57 2 12.20 49 1. 74344 100,50 49,49 

1.55 3 9.26 53 2.29698 108,54,54 53,53,53 

1.56 4 7.72 56 2.75518 114,57,57,57 56,56,56,56 

5x10-6 
1.64 1 36.99 60 1.0 122 60 

1.66 2 20.88 64 1. 77155 130,65 64,64 

1.63 3 15.70 69 2.35605 140,70,70 69,69,69 

1.63 4 12.98 73 2.84977 148,74,74,74 73,73,73,73 

5xlO 
-6 

1.69 1 57.22 74 1.0 150 74 

1.71 2 32.33 79 1.76987 160,80 79,79 

1. 70 3 23.95 85 2.38914 172,86,86 85,85,85 

1.69 4 19.66 90 2.91048 182,91,91,91 90,90,90,90 

5xlO 
-6 

1.75 1 81.68 88 1.0 178 88 

1. 75 2 45.86 94 1.78107 190,95 94,94 

1. 73 3 33.75 101 2.42015 204,102,10" 101,101,101 

1. 73 4 27.74 107 2.94449 216,1.08,1.08,1.08 107,107,107,107 

5xlO-6 
1. 78 1 108.74- 101 1.0 204 101 

1. 78 2 60.87 108 1.78643 218,109 108,108 

1.77 3 43.70 113 2.48833 228,114,114 113,113,113 

1.77 4 37.36 125 2.91060 252,1.26,1.26,1.26 125,125,125,125 

TABLE 5.11' The results from the parallel S.O.R. method using the 
synchronous approach (Problem I) 
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method. which means more total computational operations are required. 

For this reason the parallel A.G.E. method is chosen to be the best 

amongst all the other parallel methods. 

As an example. Figures 5.7 and 5.8 show the run time results using 

parallel A.G.E •• Jacobi. Gauss-Seidel and S.O.R. methods when the size 

of the problem is equal to 168 using synchronous and asynchronous 

approaches respectively. 

Now to calculate the number of arithmetic operations that are 

required to solve problem I by using the parallel A.G.E. method, we 

concentrate on strategy I using the asynchronous approach because it 

gives the best results amongst the other parallel implemented methods. 

We first calculate the number of operations required to determine the 

(k+t)th iterate of the A.G.E. method. From system (5.4.22). if we assume 

that, 

then. 

uik+t ) = d(ar
l

+r
2

) 

and for i=3.2. (N-3) 

(k+t) 
d(ar' +r') u. = 

J. 1 2 

where r' (k) . (k) 
= c.+u. l-au. 1 1. 1- 1. 

and finally. 

(k+t) 
Q_ = d(ar"+r") 

N-l 1 2 

where (k) (k) 
r 1 = cN_l+uN_2-auN_l 

and 

and 

and (k+t) 
d(r' + r') ui +l = 1 2 

and r' (k) + (k) = ci+l-aui+l ui +2 2 

and ~k+t) = d(r1+ r Z) • 
and r" = c -au (k) 

2 N N • 

• 

The values of c .• for i=1.2 ••••• N are given in equation (5.4.10e). d 
J. 

is given in equation (5.+.21). a and a are given in (5.4.17) and N is 

divisible by 2. While the number of operations required to determine 



() 
(]) 
VI 

c 

w 
~ 
f-

1000 

900 

800 

700 

600 

500 

400 

300 

200 

Legend 
o Jaco b i 

380 

6 Gauss-Seidel 

o S . O.R . 

V A.G . E. 

The timing results of parallel Jacobi, Gauss-5iedel, 5.0 R. and A.G.E. 
Methods using asynchronous approch for problem size equal to 168 



381 

1000 

Legend 

0 Jacobi 

900 t, Gauss-Seidel 

0 S. O.R. 

\l A.G.E. 

800 

700 

600 
u 
Q) 
(/) 

c 
500 

w 
~ 
f-

400 

300 

200 

100 ~ 
~ 

0 
0 2 3 4 

NO. OF PROCESSORS 

FIGURE 5.8 

The Timing Results Of Parallel Jacobi, Gauss-Siedel, S.O.R. and A.G.E. 
Methods Using Synchronous Approch For Problem Size Equal To 168 



th 
the (k+l) iterate of the A.G.E. method is obtained from system 

(5.4.23) if we assume that. 

then 

= c _Qu(k+')+u(k+t) 
r l 1 ~ 1 2 

(k+l) 
u

l 
1 

= -(r ) 
ex 1 

and for i=2.2.(N-2) 

where, 

and finally. 

(k+l) 
uN 

= d(exr'+r') 
1 2 

1 
= -(r") 

ex 1 

where ,,_ + (k+t)_Q (k+t) r l - cN uN_l ~uN • 

and 

d(r '+ar') 1 2 • 

382 

where the values of c, for i=1.2 ••••• N are given in equation (5.4.10e). 
1. 

d is given in equation (5.4.21). ex and S are given in (5.4.17) and N 

is divisible by 2. 

Thus. the computational complexity for the sequential algorithm 

can be easily calculated by taking the number of operations required 

in each sweep. Therefore. for the first sweep the number of operations 

required for each point per iteration in the mesh is equal to (by 

denoting the multiplication and the addition by M and A respectively) • 

for the first and the last two points = (4M+4A). 

for the other points in the mesh = (4M+5A). 

For the second sweep the number of operations required for each point 

in the mesh per iteration is equal to. 

for the first and last points = (2M+2A). 

for the other points in the mesh = (4M+5A). 

presuming that d is evaluated and stored at the beginning of the program. 
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So, generally speaking, for each sweep we can estimate the number 

of operations for each point in the mesh per iteration is equal to 

(4M+4A), therefore for the two sweeps the total number of operations 

for each point in each iteration is equal to (8M+8A) and by letting d 

be evaluated and stored at the beginning of the program. 

Now for N mesh points and P parallel paths each processor will 

N evaluate (p) points with total computational complexity is equal to 

T=[(8M+8A) .¥] operations per iteration. Besides the computational time 

T there are some delay times due to the overheads incurred by the system 

which may degrade the algorithm's performance. These overheads are the 

generation of the parallel paths and the synchronisation at the end of 

each iteration cycle. 

From Chapter 4 it can be seen that the number of arithmetical 

operations required for the solution of problem I using the Jacobi or 

Gauss-Seidel iterative methods is equal to [1 multiplication (M) + 3 

additions (A)], while using the S.O.R. iterative method needs [2(M)+5(A)]. 

The total number of arithmetic operations required for the solution of 

problem I using the parallel A.G.E., Jacobi, Gauss-Seidel and S.O.R. 

-1 
methods using a mesh size h =169 are shown in Table 5.12. These results 

are obtained from the number of arithmetic operations required by each 

method and the results obtained from Tables 5.2, 5.3, 5.6, 5.7, 5.8, 

5.9, 5.10 and 5.11. In Table 5.12 K=N/P, where N represents the number 

of points in the mesh to be solved and P the number of parallel paths 

generated and in our case equal to the number of cooperating processors. 

By comparing the results obtained from Table 5.12 and the experimental 

results, it is clear that all the results agree apart from the case of 

the asynchronous S.O.R. method and synchronous S.O.R. method when using 
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only one or two processors. This is due to the extra overheads which 

are not added to the results shown in Table 5.12. These overheads are 

the generations of the parallel paths and the synchronization process 

needed after each iteration cycle, which is greater in the case of 

S.O.R. method due to the increased iterations required as shown in 

Tables 5.10 and 5.11. 

A.G.E • Jacobi . 
. 

Size 
(N) 

P Synchronous Asynchronous Synchronous Asynchronous 

M A M A M A M A 

168 1 384K 384K 384K 384K 1041K 3l23K lO41K 3l23K 

2 384K 384K 448K 448K 1041K 3123K 1053K 3l59K 

3 384K 384K 464K 464K 1041K 3123K 1040K 3120K 

4 384K 384K 504K 504K 1041K 3123K 1043K 3129K 

* K=N/P TABLE 5.12(a) 

Gauss-Seidel S.O.R. 
Size P Synchronous Asynchronous Synchronous Asynchronous (N) 

M A M A M A M A 

168 1 573K 1719K 573K 1719K 202K SOSK 210K 525K 

2 573K 1719K 576K 1728K 216K 540K 224K S60K 

3 573K 1719K 572K 1716K 226K 565K 228K S70K 

4 573K 1719K 573K 1719K 2S0K 625K 252K 630K 

*K=N/P TABLE 5.12(b) 

Now for a further performance analysis of the parallel A.G.E. 

method when used to solve Problem I, we follow the same steps used in 

Chapter 4 using the system commands XPFCLS, XPFCLN and XPFCL. Both the 
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information obtained from Figure 4.15 (the resource timings of the 

NEPTUNE system) and the experimental results in Tables 5.2, 5.3, 5.4 

and 5.5 are also used in the analysis. 

Actually Table 5.13 gives the mean rate of access to the shared 

data and parallel path scheduling. It gives estimates of the potential 

speed-up for using P processors, where N represents the number of points 

in the mesh to be solved. On the other hand, Table 5.14 illustrates 

the results obtained when the algorithms were run on the NEPTUNE system. 

The parallel control access overheads (peO) are taken for the case P=l 

and N is taken to be that which gives the best speed-up ratios (i.e. 

N=48 in the case of using the asynchronous method strategy 11 and N=120 

for the other methods). 

Now by examining the results in Tabels 5.13 and 5.14, we notice 

that the best results are obtained when using strategy I of the parallel 

A.G.E. method with the asynchronous approach, and we see that a linear 

speed-up has been achieved and as many as N (the number of mesh points) 

processors can be employed as an upper limit. The strategy I parallel 

A.G.E. method with the asynchronous approach has made 17 accesses to 

the shared data per 65 floating point operators (flops). From the 

information in Table 4.15, the static shared data access overheads in 

this algorithm is equal to, 

* ~ * 100 = 0 27% 720 .0. 

Also this method from its program made 1 access per (16*N ) flops, 
p 

where N is equal to the number of points in each process. This results p 

in a parallel path access loss equal to -0.087% since the parallel path 

mechanism requires -1200 ~s. This loss is almost the same as the 

parallel path access loss of Table 5.14. 
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From Figures in Tables 5.13 and 5.14 we conclude that the best 

results are obtained when using the strategy I of the parallel A.G.E. 

method with the asynchronous approach and the predicted results 

obtained for the shared data and the parallel path are in almost 

agreement with the experimental results obtained from the NEPTUNE system. 

Processors (P) Shared Data Parallel Path 

Program 
Access OVerhead Access Overhead 

No. Speed-up 
Rate Amount Rate Amount 

Parallel A.G.E. P~N O(P) 17:65 0.027% 1: (16*N ) 0.087% 
strategy I flops flops P 
(synchronous) 

Parallel A.G.E. P~N O(P) 17:65 0.027% 1:(16*N) 0.087% 
strategy I flops flops p 

(asynchronous) 

parallel A.G.E. P~N O(P) 25:72 0.036% 1: (16*N ) 0.08n. 
strategy II flops flops P 

(synchrono us) 

Parallel A.G.E. P~N o (p) 25:72 0.036% 1: (16*N ) O.oS7'/, 
strategy II flops flops p 

(asynchronous) 

TABLE 5.13: Resource demands of the parallel A.G.E. algorithms 

Speed-up Shared Data Parallel 
Overhead Control 

Program 2 3 4 (SOO) Overhead 
(PCO) 

Parallel A.G.E. 1.89414 2.70780 3.51360 0.043% 0.172% 
strategy I 
(synchronous) 

Parallel A.G.E. 1. 93489 2.71429 3.53623 0.022% 0.086% 
strategy I -
(asynchronous) 

parallel A.G.E. 1.87552 2.68924 3.47222 0.074% 0.089% 
strategy II 
(synchronous) 

Parallel A.G.E. 1.48005 2.06877 2.51810 0.090% 0.090% 
strategy II 
(asynchronous) 

TABLE 5.14: Performance measurements of parallel A.G.E. 
methods on the NEPTUNE system 



Problem II 

We now consider the nonlinear problem, 

un = ! u 3 

subject to the boundary conditions, 

U (0) = 1, U (1) = 2 • 

The exact solution for this problem is given by, 

2 U(x) = 
2-x 
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(5.4.24) 

(5.4.25) 

(5.4.26) 

By following the finite difference procedure of section (5.1), equation 

(5.4.24) can be approximated to obtain the difference equation (assuming 

h
2 

3 . T Ut ' 1.=1,2, ...... IN I 

which can be simplified to the form 

h
2 

2 
-u. 1+2"(1+ -4 u.)-u. 1 = 0, i=1,2, ... ,N. 1.-' 1. 1.+ 

The boundary conditions are replaced by the values, 

where, 

u(O) = 1, u(N+l) = 2 , 

h = 1 
N+l 

Equation (5.4.28) can be written as: 

and 
4 
2 2 

4+h U'. 
l. 

I i=l,2, ... ,N. 

The system (5.4.30) can be written in matrix notation as, 

Au = b , 

or, 

(5.4.27) 

(5.4.28) 

(5.4.29) 

(5.4.30) 

(5.4.31) 

(5.4.32a) 
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(5.4.32b) 

We now split the matrix A into two matrices G
1 

and G
Z 

which have the 

form, 

-gl , 

I 
-g 1 _ ~ . 1 _I -

I 
1 , 

11 -g31 
,
I 

I I _g 11 
-f- i .,-- 1_ 

\ 0 
1 I' I 

G
1

= I 'I 1 

---I- _~I- - _~_ 
I I '1 -g N-l 1 

101 
1 l-gN-Z 1 I 

-1- - -1- - - - - - -,-
I 'I 1 
I I , 

r -
, (~) 
IG

1
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, 
(5.4.33a) 
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I , 
1 

G (1) I I 

2 I I I 
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1 
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1 

: G (2) I 1 
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1 

if N is odd. Now, for the case N even, we have, 

G;". ~'" -':'-J 

Gi'" [~"., :" J 

, i=1,2, ... ,~ , 

N 
i=l,2, ••• '2-1. 

(5.4.34b) 

(k+!) (k+l) . By applying the A.G.E. method, u and u can be determ1ned 

successively by, 

(k+!) - -1 - (k) 
u = (Gl+rI) [£-(G2-rI)!=!. 1, 

u (k+l) = (G
2
+rI) -1[£_(<;, -rI)!=!. (k+!) J 

(5.4.35) 

where r is the iteration parameter. 

Clearly, (<;, +rI) , (G2 +rI) , (Gl-rI) and (G
2 
-rI) can be determined 

- -1 -- -1 
and (Gl+rI) ,(G2-rI) are easily invertible, as shown below, 
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where a=l+r, 

- -1 
(G

1 
+rI) = 

where 

+--
1 
1 

1 1 I':'g a 
1 I 1 N 

N 
, i=1,2 , .... .. '2 

(5.4.36) 

ad
N 
2 

(5.4.37) 



where di = """""'2=----=1-

a -q2ig2i+1 

, i=1,2, •.• ,~ -1. 
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(5.4.38) 

(5.4.39) 
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(5.4.44) 



Now, equation (5.4.35) can be written as, 

~dl (gluO-aul)+gldl (g2u3-au2) 

g2dl (gluO-aul)~dl (g2u3-au2) 

~d2(g3u2-au3)+g3d2(g4u5-aU4) 

g4d2(g3u2-au3)+~d2(g4u5-au4) 
I . 

(k+t) I 
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u = I (5.4.45a) 

and, 

(k+l) 
u = 

I 

gN_2dN (gN-3UN~4-a~_3)+~dN (gN_2uN_l-auN_2) 
21 21 

~dN(gN-luN-2-auN~1)+gN_ldN(gN-uN+l-auN) 
"2 "2 
gNdN(gN-IUN_2-auN_l)~dN(gNuN+l-auN) 

"2 "2 
1 
a(gluO-aul+glu2) 

~di (g2ul-au2)+g2di (g3u4-au3) 

g3di (g2 ul-au2)+ di(g3u4-au3) 

~d2(g4u3-au4)+g4d2(g5u6-au5) 
I 
I 
I 
I 

~dN (gN-2UN-3-auN_2)+gN_2dN (gN_luN-auN_l) 
21 21 

gN-ldN (gN-2UN_3-aUN_2)+~dN (gN_luN-auN_l) 
21 21 

(5.4.45b) 

Problem II was solved on the NEPTUNE system using the strategy 

of the parallel A.G.E. method with both sync~onous and asynchronous 

approaches. In our implementation, the size of the problem was taken 
-1 

to be h =25,37,39,61 and 73 and the accuracy tolerance value (E) 

-6 
equal to (lxlO ). Again, in all these parallel implementations the 

number of parallel paths is always equal to the number of available 

processors and the optimal iteration parameter (r) (equation (5.3.28» 
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was obtained from the experiments by choosing the one that gives the 

best execution time. 

Table 5.15 represents the results obtained from the implementation 

of Problem II using the parallel A.G.E. method (strategy I) using the 

asynchronous approach for different mesh sizes. From that table it can 

be noticed that the time needed for the problem to converge is increased 

as the number of mesh points is increased. This is due to the greater 

number of computational operations required to solve the problem. 

Also it can be seen that the best efficiency results (speed-ups, etc.) 

is obtained when the problem size is equal to 60. While for the same 

sizes as used in the asynchronous approach, the results of the 

implementation of Problem II using ,synchronous parallel A.G.E. method 

waS shown in Table 5.16. From that table it is clear that the time 

required for the problem to c~nverge is increased as the problem size 

is increased and this again is due to the more computational operations 

required. Also, the best efficiency (speed-up) result is obtained when , 

the size of the problem is equal to 60. 

It can be noticed from Tables 5.15 and 5.16 that the time required 

for the problem to converge in the case of evaluating the points using 

the asynchronous approach (Table 5.15) is less than that of the 

synchronous approach (Table 5.16) and this is due to the synchronisation 

overheads needed after each iteration in the synchronous implementation. 

Also from these two tables it is clear that better efficiency can be 

obtained by using the asynchronous approach rather than the synchronous 

approach. This is because the speed-up ratios of the asynchronous 

implementation is higher than that of a synchronous one. So we summarise 

briefly that to solve problem II using the first strategy of the parallel 
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A.G.E. method the asynchronous implementation gives better results in 

both the time needed for the problem to converge and the speed-up 

ratios of the processors. This is due to the synchronisation overheads 

incurred by the system in the synchronisation programming implementation. 

The results obtained from the implementation of problem II (non-linear 

problem) agree with that obtained from ~roblem I (the linear problem), 

i.e. in both the synchronous and asynchronous implementations in that 

better results are obtained with the asynchronous approach rather than 

a synchronous approach. 

Because of the way in which algorithm II was implemented, the 

computational time carried out by each processor to evaluate any 
"- " 

component is approximately the same. Besides the computational time 

in both the synchronous and asynchronous implementation there are an 

extra overhead incurred by the system which degrades the parallel 

algorithm performance. These overheads are the generation of the 

parallel paths and the synchronisation at the end of each iteration. 

These overheads may become important, as an example, from the results 

in Tables 5.15 and 5.16 and the case when the size of the problem is 

equal to 60 using 4 processors. In the asynchronous implementation the 

problem converges after 605 iterations using a total of 4 parallel 

paths by the first processor and 2 parallel paths by each other 

processor. While in the case of the synchronous implementation, the 

same problem requires 585 iterations to converge using a total of 1160 

parallel paths by the first processor and 586 parallel paths by each 

other processor, since a synchronisation process was used after each 

iteration. Thus, it is clear the effectiveness of the overheads on 

the performance of the algorithm and specially in the case of the 
',:;I",h.-""..5 i"'pl ...... I:.a:l;.,." f/«.u 'H ~n y"lol_ 1, ...,<! """ ,":!1l, .. t f,.."IIu. .b ............. " it.. ~r< of 11,. 
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~ynchronous approach is better suited for the MIMD computer which 

agrees with what was obtained from the experimental results. 

As in problem I, for comparison reasons the parallel versions of 

the Jacobi, Gauss-Seidel and Non-Linear Over-Relaxation (N.L.O.R.) 

iterative methods (See Chapter 4) are implemented on the NEPTUNE 

system and used to solve problem 11. In these methods the number of 

parallel paths was taken to be equal to the number of available 

processors and the accuracy tolerance value (E) is again taken to be 

-6 
equal to (lX10 ). In the parallel N.L.O.R. method the optimal E is 

obtained from the experimental results by choosing the value which 

gives the shortest time. The synchronous and asynchronous results for 

problem 11 from the implementation of the parallel Jacobi method on the 

NEPTUNE system are shown in Tables 5.17 and 5.18 respectively and the 

results from the parallel Gauss-Seidel implementation for the same 

problem with synchronous and asynchronous approaches are shown in 

Tables 5.19 and 5.20. While the results obtained from the parallel 

synchronous and asynchronous N.L.O.R. method are shown in Tables 5.21 

and 5.22 respectively. 

By comparing these 'results with those obtained from the parallel 

A.G.E. method using strategy I with the synchronous and asynchronous 

approaches (Tables 5.15 and 5.16) , it is clear that the time needed for 

problem 11 to converge using the parallel A.G.E. method gives better 

results in the case of the parallel Jacobi and Gauss-Seidel methods. 

The number of iterations in the parallel Jacobi and Gauss-Seidel methods 

are higher than that of the parallel A.G.E. method, which means more 

total computational operations are required to achieve a solution. 
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Tire NO. of Total no. Effective no. 
Size € r P (seconds) iterations 

Speed-up of parallel of parallel 
paths paths 

24 lxlO-6 0.31 1 30.89 82 1.0 4 1 

0.30 2 16.06 85 1.92341 4,2 1,1 

0.31 3 11.14 89 2.77289 4,2,2 1,1,1 

0.30 4 8.65 90 3.57109 4,2,2,2 1,1,1,1 

36 lxl0-6 0.33 1 106.90 188 1.0 4 1 

0.33 2 55.10 194 1.94012 4,2 1,1 

0.30 3 37.57 197 2.84536 4,2,2 1,1,1 

0.35 4 27.75 213 3.85225 4,2,2,2 1,1,1,1 

48 l xl0-6 0.30 1 237.15 313 1.0 4 1 

0.35 2 121.79 320 1.94720 4,2 1,1 

0.31 3 83.11 325 2.85345 4,2,2 1,1,1 

0.32 4 61.40 327 3.86238 4,2,2,2 1,1,1,1 

60 l xlO 
-6 

0.39 1 556.19 585 1.0 4 1 

0.39 2 282.33 592 1.97000 4,2 1,1 

0.40 3 191.03 603 2.91153 4,2,2 1,1,1 

0.37 4 143.33 605 3.88049 4,2,2,2 1,1,1,1 

72 l xl0-6 0.37 1 890.91 781 1.0 4 1 

0.40 2 455.36 800 1.95650 4,2 1,1 

0.35 3 307.28 810 2.89934 4,2,2 1,1,1 

0.35 4 231.49 817 3.85342 4,2 ,2 ,2 1,1,1,1 ! 
! 

TABLE 5.15: The results from the parallel A.G.E. method using 
strategy I with an asynchronous approach (Problem II) 



Size 

24 

36 

48 

60 

72 

400 

Time No. of Total no. iEffective no. 
E r P (seconds) iterations Speed-up of parallel ~f parallel 

paths paths 

P10-6 
0.31 1 31.12 82 1.0 166 82 

0.31 2 16.70 82 1.86347 166,83 82,82 

0.37 3 11.81 82 2.63506 166,83,83 82,82,82 

0.31 4 9.30 82 3.34624 166,83,83,83 82,82,82,82 

PlO 
-6 

0.33 1 107.31 188 1.0 378 188 

0.33 2 56.63 188 1.89493 378,189 188,188 

0.33 3 39.18 188 2.73890 378,189,189 188,188,188 

0.33 4 29.99 188 3.57819 378,189,189, 188,188,188, 
189 188 

PlO -6 0.3 1 237.94 313 1.0 628 313 

0.3 2 124.57 313 1.91009 628,314 313,313 

0.3 3 85.42 313 2.78553 628,314,314 313,313,313, 

0.3 4 65.65 313 3.62437 628,314,314, 313 ,313,313, 
314 313 

PlO 
-6 

0.39 1 558.91 585 1.0 1160 585 

0.39 2 289.76 585 1.92887 1160,586 585,585 

0.35 3 197.83 585 2.82520 1160,586,586 585,585,585 

0.35 4 153.98 585 3.62976 1160,585, 585,585,585, 
586,586 585 

PlO-6 
0.37 1 892.80 781 1.0 1564 781 

0.36 2 471.22 781 1.89466 1564,782 781,781 

0.36 3 321.43 781 2.77759 1564,782,782 781,781,781 

0.36 4 247.55 781 3.60654 1564,782,782 781,781,781, 
782 781 

TABLE 5.16: The results from the parallel A.G.E. method using 
strategy I with the synchronous approach (Problem 11) 



Size 

24 

36 

48 

60 

72 

401 

Time No. of Speed-up 
TOtal No. Effective no. 

P of parallel of parallel € 
(seconds) iterations paths paths 

P10-6 
1 388.05 873 1.0 1748 873 

2 206.37 873 1.88036 1748,874 873,873 

3 142.78 873 2.71782 1748,874,874 873,873,873 

4 114.80 873 3.38023 1748,874,874, 873,873,873, 
874 873 

PlO -6 1 1108.43 1732 1.0 3466 1732 

2 582.40 1733 1.90321 3468,1734 1733,1733 

3 411.23 1732 2.69540 3466,1733,1733 1732,1732,1732 

4 318.16 1730 3.48388 3462,1731, 1730,1730, 
1731,1731 1730,1730 

1x10-6 
1 2358.57 2849 1.0 5700 2849 

2 1236.57 2849 1.90735 5700,2850 2849,2849 

3 863.08 2849 2.73274 5700,2850, 2849,2849, 
2850 2849 

4 623.23 2849 2.78443 5700 ,2850, 2849,2849, 
2850,2850 2849,2849 

1xlO-6 
1 4257.64 4169 1.0 8340 4169 

2 2216.39 4167 1.92098 8336,4168 4167,4167 

3 1446.17 3840 2.94408 7682,3841, 3840,3840, 
3841 3840 

4 1153.15 3887 3.69218 7776,3888, 3887,3887, 
3888,3888 3887,3887 

1xI0-6 
1 6878.68 5666 1.0 11334 5666 

2 3636.74 5666 1.89144 11334,5667 5666,5666 

3 2539.53 5666 2.70864 11334,5667, 5666,5666, 
5667 5666 

4 1964.45 5666 3.50158 11334,5667, 5666,5666, 
5667,5667 5666,5666 

-
TABLE 5.17: The results from the parallel Jacobi iterative 

method using the synchronous approach (Problem 11) 



Size 

24 

36 

48 

60 

-

72 

402 

P 
Time No.of Speed-up 

Total no. Effective no. 
E (seconds) iterations of parallel of parallel 

paths paths 

PlO -6 1 368.32 873 1.0 4 1 

2 205.65 866 1. 71900 4,2 1,1 

3 137.29 880 2.68279 4,2,2 1,1,1 

4 103.68 899 3.55247 4,2,2,2 1,1,1,1 

l xl0-6 1 1052.91 1732 1.0 4 1 

2 590.78 1650 1.78224 4,2 1,1 

3 415.36 1813 2.53493 4,2,2 1,1,1 

4 303.74 1765 3.46648 4,2,2,2 1,1,1,1 

l xl0-6 1 2240.14 2849 1.0 4 1 
\ 

2 1267.02 2660 1. 76804 4,2 1,1 

3 881.99 2889 2.53987 4,2,2 1,1,1 

4 654.94 2920 3.42037 4,2,2,2 1,1,1,1 

l x l0 6 1 4040.33 4169 1.0 4 1 

2 2284.03 3869 1.76895 4,2 1,1 

3 1592.40 4218 2.53726 4,2,2 1,1,1 

4 1230.85 4551 3.28255 4,2,2,2 
! 1,1,1,1 

lxlO-6 1 6521.2 5666 1.0 4 1 

2 3856.73 5599 1.69086 4,2 1,1 

3 2541.67 5651 2.56572 4,2,2 1,1,1 

4 1937.01 5921 3.36663 4,2,2,2 1,1,1,1 

TABLE 5.18: The results from the parallel Jacobi iterative method 
using the asynchronous approach (Problem II) 



Size 

24 

36 

48 

60 

72 

403 

Time No. of 
Speed-up 

Total no. Effective no. 
P (seconds) iterations of parallel of parallel e 

paths paths 

P10-6 
1 215.97 442 1.0 886 442 

2 115.120 442 1.87604 886,443 442,442 

3 81.97 442 2.63474 886,443,443 442,442,442 

4 64.61 441 3.34267 884,442,442, 441,441,441, 
442 441 

PlO -6 1 643.48 880 1.0 1762 880 

2 336.72 879 1.91102 1760,880 879,879 

3 237.22 878 2.71259 1758,879,879 878,878,878 

4 183.67 878 3.50346 1758,879,879 878,878,878, 
879 878 

PlO -6 1 1393.41 1432 1.0 2866 1432 

2 72 3.98 1431 1.92465 2864,1432 1431,1431 

3 508.67 1432 2.73932 2866,1433, 1432,1432, 
1433 1432 

4 391.79 1432 3.55652 2866,1433, 1432,1432,1432, 
1433,1433 1432 

1x10-6 
1 2540.06 2094 1.0 4190 2094 

2 1317.62 2094 1.92776 4190,2095 2094,2094 

3 923.77 2094 2.74967 4190,2095, 2094,2094,2094 
2095 

4 707.62 2094 3.58958 4190,2095, 2094,2094,2094, 
2095,2095 2094 

lX10 -6 1 4108.16 2849 1.0 5700 2849 

2 2124.06 2849 1.93411 5700,2850 2849,2849 

3 1495.25 2848 2.74747 5698,2849, 2848,2848,2848 
2849 

4 1139.58 2848 3.60498 5698,2849, 2848,2848,2848, 
2849,2849 2848 

TABLE 5.19: The results from the parallel Gauss-Seide1 
iterative method using the synchronous approach 
(Problem II) 



Size 

24 

36 

48 

60 

72 

404 

P 
Time No. of Speed-up Total no. Effective no. 

€ (seconds) iterations of parallel of parallel 
paths paths 

1xlO 
-6 

1 215.91 442 1.0 4 1 

2 110.32 456 1.95713 4,2 1,1 

3 76.45 490 2.82420 4,2,2 1,1,1 

4 58.28 510 3.70470 4,2,2,2 1,1.1,1 

LX10-6 1 642.89 880 1.0 4 1 

2 330.71 907 1.94397 4,2 1,1 

3 225.10 968 2.85602 4,2,2 1,1,1 

4 170.00 989 3.78171 4,2,2,2 1,1,1,1 

1xlO 
-6 

1 1389.98 1432 1.0 4 1 

2 704.18 1457 1.97390 4,2 1,1 

3 489.18 1587 2.84145 4,2,2 1,1,1 

4 368.97 1653 3.76719 4,2,2,2 1,1,1,1 
-6 1X10 1 2533.97 2094 1.0 4 1 

2 1277 .62 2126 1.98335 4,2 1,1 

3 888.22 2322 2.85286 4,2,2 1,1,1 

4 667.07 2413 3.79866 4,2,2,2 1,1,1,1 

1x10 -6 
1 4104.43 2849 1.0 4 1 

2 2074.51 2892 1.97851 4,2 1,1 

3 1445.29 3188 2.83987 4,2,2 1,1,1 

4 1070.06 3192 3.83570 4,2,2,2 1,1,1,1 

TABLE 5.20: The results from the parallel Gauss-Seide1 
iterative method using the asynchronous approach 
(Problem Il) 
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Size P 
Time No. of Speed-up Total no. Effective no. 

e: w (seconds) iterations of parallel of parallel 
paths paths 

24 LX 10-6 1 1. 76 26.01 51 1.0 104 51 

2 1.76 14.92 50 1. 74330 102,51 50,50 

3 1.76 9.97 52 2.60883 106,53,53 52,52,52 

4 1.76 7.55 49 3.44503 100,50,50, 49,49,49,49 
50 

36 l x10-6 1 1.83 58.33 77 1.0 156 77 

2 1.83 31.12 77 1.87436 156,78 77,77 

3 1.83 21.16 74 2.75662 150,75,75 74,74,74 

4 1.83 16.10 73 3.62298 148,74,74, 73,73,73,73 
74 

48 l x10-6 
1 1.87 97.78 99 1.0 200 99 

2 1.87 51.85 98 1.88582 198,99 98,98 

3 1.87 36.01 101 2.71536 204,102, 101,101,101 
102 

4 1.87 27.39 97 3.56992 196,98,98, 97,97,97,97 
98 

60 l xlO-6 1 1.9 148.81 123 1.0 248 123 

2 1.9 80.56 123 1.8472 248,124 123,123 

3 1.9 55.74 123 2.66972 248,124,124 123,123,123 

4 1.9 42.69 122 3.48583 246,123,123, 122,122,122, 
123 122 

72 l XlO-6 1 1.91 217.86 148 1.0 298 148 

2 1.91 112.05 146 1.94431 294,147 146,146 

3 1.91 76.28 145 2.85606 292,146,146 145,145,145 

4 1.91 58.35 144 3.73368 290,145,145, 144,144,144, 
145 144 

-
TABLE 5.21 : The results from the parallel N.L.O.R. iterative 

method using the synchronous approach (Problem II) 
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Size P Time No. of Speed-up 
Total no. Effective no. 

e: w (seconds) iterations of parallel of parallel 
paths paths 

24 PLO -6 1 1.76 24.71 51 1.0 4 1 

2 1.76 13 .88 53 1.78026 4,2 1,1 

3 1.76 8.90 55 2.77640 4,2,2 1,1,1 

4 1.77 7.41 62 3.33469 4,2 ,2 ,2 1,1,1,1 

36 l xlO-6 1 1.83 54.33 75 1.0 4 1 

2 1.83 30.37 82 1.78894 4,2 1,1 

3 1.83 18.81 77 2.88836 4,2,2 1,1,1 

4 1.83 17.82 99 3.04882 4,2,2,2 1,1,1,1 

48 l xlO-6 1 1.87 94.00 99 1.0 4 1 

2 1.87 53.17 111 1.76791 4,2 1,1 

3 1.87 31.62 101 2.97280 4,2,2 1,1,1 

4 1.88 27.16 119 3.46097 4,2,2,2 1,1,1,1 

60 PLO 
-6 

1 1.9 142.80 123 1.0 4 1 

2 1.9 72 .59 126 1.96721 4,2 1,1 

3 1.9 50.39 130 2.83390 4,2,2 1,1,1 

4 1.9 41.23 136 3.46350 4,2,2,2 1,1,1,1 

72 lxlO -6 
1 1.91 208.36 147 1.0 4 1 

2 1.91 106.51 152 1. 95625 4,2 1,1 

3 1.91 74.01 157 2.81530 4,2,2 1,1,1 

4 1.92 54.85 155 3.79872 4,2,2,2 1,1,1,1 

TABLE 5.22: The results from the parallel N.L.O.R. iterative 
method using the asynchronous approach 
(Problem Il) 
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While the parallel N.L.O.R. method gives the shortest timing results 

than those of the parallel A.G.E. method and this is because the 

number of iterations needed for problem II to converge in the case of 

parallel A.G.E. method is higher than that of parallel N.L.O.R. method 

and more computational operations are required. 

As an example, Figures 5.9 and 5.10 show the run time results 

using the parallel A.G.E., Jacobi, ~auss-Seidel and N.L.O.R. methods 

when the size of the problem is equal to 60 using the synchronous and 

asynchronous approaches respectively. 

A further analysis for the parallel A.G.E. method used to solve 

problem II can be performed by following the steps used in problem I 

using the system commands XPFCLS, XPFCLN and XPFCL. The resource 

timings of the NEPTUNE system (Figure 4.15) and the experimental 

results in Tables (5.15) and (5.16) are also used. 

In fact Tables (5.23) give the mean rate of access to the shared 

data and parallel path scheduling. It gives estimates of the potential 

speed-up for using P processors, where N represents the problem size 

to be solved. On the other hand, Table (S.~4) illustrates the results 

obtained when the algorithms were run on the NEPTUNE system. The 

parallel control aCcess overheads (PCO) are taken for the case p=l 

and N is taken to be that which gives the best speed-up ratios (i.e. 

N=60) • 

From the results in Tables (5.23) and (5.24), we notice that the 

parallel A.G.E. method using the asynchronous approach gives better 

results than that of the synchronous approach and we see that a linear 

speed-up has been achieved and as many as N (the number of mesh pOints) 
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processors can be employed as an upper limit. From Table (5.23) the 

parallel A.G.E. method with the asynchronous approach has made 90 

accesses to the shared data per 143 floating point operators (flops). 

Also from the information in Table (5.23), the static shared data 

access overheads in this algorithm is equal to: 

"""7.;:1~;, 0.75 * 100 = 0.06% 
(143) 720 

90 

This method from its program also made 1 access per (16*Np ) flops, 

where Np is equal to the number of points in each process. This 

results in a parallel path access loss equal to 0.087% since the 

parallel path mechanism requires -1200~s. 

To conclude we can say that from Problem 11 and from figures in 

Tables (5.23) and (5.24) the best results are obtained when strategy 

1 of the parallel A.G.E. method is used with the asynchronous approach. 

Also the experimental results obtained from the NEPTUNE system shows 

that in the case of the asynchronous approach the parallel control and 

shared data overheads are less than that of the synchronous approach. 

Processor (P) Shared Data Parallel Path 
Program 

No. Speed-up Access Overhead Access Overhead 
rate amount rate amount 

Parallel A.G.E. 
P~N O(P) 

91:152 
0.06% 1: (16* 0.087% synchronous flops Np) 

flops 

Parallel A.G.E. 
P~N O(P) 90:143 0.06% 1: (16* 0.087% 

asynchronous flops Np) 

flops 

TABLE 5.23: Resource demands of the parallel A.G.E. algorithms 
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Speed-up Shared data Parallel control 
Program overhead 

2 3 4 (SDO) 

Parallel A.G.E. 1.92887 2.82520 3.62976 0.23% synchronous 

Parallel A.G.E. 1.97000 asynchronous 2.91153 3.88049 0.17% 

TABLE 5.24: Performance measurements of the parallel A.G.E. 
methods on the NEPTUNE system 

overhead 
(peo) 

1.48% 

0.05% 
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5.5 CONCLUSIONS 

In this chapter the parallel A.G.E. methods have been developed 

from the basic A.G.E. theory and the parallel versions have been 

implemented on the NEPTUNE system. The implemented parallel A.G.E. 

methods have been used to solve two types of boundary value problems. 

The first is of linear type while the other type is the non-linear 

problem. For the linear problem two strategies of the parallel A.G.E. 

methods have been used to solve the problem and with each strategy 

synchronous and asynchronous approaches have been used. For Problem I, 

the best results were obtained when it is solved using Strategy I with 

the asynchronous approach. This is due to the total computational 

operations in Strategy II being higher than that of Strategy I and also 

there is the case that the old values are used while evaluating the 

points using Strategy II. While in the second example (the non-linear 

problem) only Strategy I was used and in all the parallel implementations 

the asynchronous approach gives better results than the synchronous 

approach and this is due to the synchronisation overheads occurring at 

the end of each iteration. Also from the experimental results it can 

be seen that the shared data overhead and the parallel control access 

overhead in the case of the asynchronous implementations are less than 

that of the synchronous implementation. Also by comparing the results 

obtained from both Problems I and II it can be noticed that a greater 

speed-up is obtained in Problem II and we can conclude that the amount 

of computations carried out over the total overheads in Problem II 

(the non-linear problem) is greater than that of Problem I (the linear 

problem). Also from the way in which the evaluation of the subsets is 



413 

carried out by each processor we can generally say that where the 

timing results are concerned it does not matter whether the algorithm 

is synchronously or asynchronously implemented. Since we decompose 

the problem into almost equal subsets and assign each one to different 

processors, this means that the amount of work carried out by each 

processor to evaluate any component is approximately the same. 

Finally to conclude this chapter it can be seen that the parallel 

A.G.E. method is suited for the parallel implementation on a MIMD 

computer which results in the almost linear speed-ups obtained from 

their implementation. 
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CHAPTER SIX 

PARALLEL SORTING AND SEARCHING ALGORITHMS 
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6.1 INTRODUCTION 

Sorting is known as the process of arranging items in a predefined 

order. The arrangements of items is undertaken so that calculations 

which require data in a particular sequence can operate efficiently, 

so that output reports can be meaningfully presented. There are many 

"natural" orders, such as alphabetic ordering for a list of names, and 

ascending or descending values for a list of numbers. A high percentage 

of computer resources are utilized for sorting and it is a time consuming 

operation, even when a very efficient sorting algorithm is used. Many 

serial sorting algorithms have been developed and it was found that the 

optimal time required to sort N items is roughly proportional to O(NlogN) 

(Knuth [1973]). However, the introduction to parallel processing has 

added a new dimension to research on sorting algorithms. With the use 

of multiple processors, sorting times of N items can be reduced, at 

least in theory to O(logN). 

During the past decade, numerous results on parallel sorting have 

been published. In particular, Batcher's [1968] exhibited a complexity 

2 
of O(log N); later, several optimal parallel sorting algorithms, of 

complexity O(logN) were developed for a theoretical parallel processor 

model (Hirschberg [1978]) and Preparata [1978]). The most striking 

property of all these algorithms is perhaps, the very large number of 

processors that they require. Typically, N processors are required to 

sort N elements. 

Two factors that may affect the performance of a sorting algorithm 

are the number of comparisons and the conditionally exchange of data 

during each time unit. So parallelism may be exploited by performing 

more than a single comparison at a time and to move many keys 
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simultaneously during each unit of time. Since an optimal serial 

algorithm sorts N keys in time o (NlogN) , the optimal speed-up would be 

achieved when, using N processors, N keys are sorted in time o (logN) • 

One way of writing a parallel sort algorithm is to parallelis,e a 

well-known optimal serial algorithm. On the other hand, parallelization 

of straight sorting methods (one that requires O(N
2

) co~parisons) seems 

easier, but it does not lead to very fast parallel algorithms. By 

performing N comparisons instead of 1 in a single time unit, the 

. 2 
execution time can be reduced from O(N ) to O(N). An example for this 

kind of parallelization is a well-known parallel version of the common 

bubble-sort, called the odd-even transposition sort (Knuth [1973], 

Baudet and Stevenson [1978]). Partial parallelization of a fast serial 

algorithm can also lead to a parallel algorithm of order O(N). For 

example, the serial tree selection sort can be modified so that all the 

comparisons at the same level of the tree are performed in parallel 

(Bentley [1979]). 

An improvement to the above approach has been made to achieve a 

higher performance. The first major improvement was reached with sorting 

networks, that sort N numbers in time 10g2(N) and thus, achieve a speed-

up of N/log(N) (Batcher [1968]). Later, Preparata [1978] showed that 

the optimal bound O(log(N» and speed-up (N) can be achieved with a 

theoretical model of n processors accessing a large shared memory. For 

a parallel SIMD type machine a new family of sorting algorithms has been 

developed by Hirschberg [1978] which shows that N keys can be sorted in 

, l+l/K , 
time O(KlogN) wLth N processors, where K LS an arbitrary integer 

greater than or equal to 2 using random access capability to a common 

memory. Thomas and Kung (1977) presented two algorithms for sorting N
2 
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elements on an (NxN) mesh connected processor array which requires O(N) 

routing and comparison steps, where the best previous algorithms take 

a time of O(NlogN). While Nassimi and Sahni [1979] developed an O(N) 

2 
algorithm to sort N elements on an Illiac IV-like (NxN) mesh connected 

processor array (SIMD type machine). This algorithm sorts the N
2 

elements into row-major order and snake-like row-major order. Another 

class of parallel sorting algorithm based on enumeration have been 

developed where N elements are sorted with o (logN) • Sorting is performed 

by computing in parallel the rank of each element, and routing the elements 

to the location modified by their rank. The first enumeration type 

parallel sorting is a modified sorting network scheme, that sorts N 

elements with O(N
2

) processing elements. By embedding this type of 

network in a more general multiprocessor model, where processors have 

access to a large shared memory, algorithms that are as fast, but which 

require only O(N) processors were obtained. Muller [1975] proposed a 

very fast sorting network parallel algorithm which was the first to use 

an enumeration scheme for parallel sorting. The idea of sorting by 

enumeration was exploited to develop other very fast parallel sorting 

algorithms (Hirschberg [1978] and Preparata [1978]) which improve on 

Muller's result by reducing the number of processing elements. 

In addition to the idea of using enumeration, optimal parallel 

sorting algorithms use a fast merging procedure. In a study of 

parallelism in the comparison problem valiant [1975] presents an 

inductive algorithm that merges two sorted sequences of n and m elements 

(nxm) with (nm) processors in 210g logn+O(l) comparison steps. On the 

other hand, Gavril [1975] proposed a fast merging algorithm that solves 

the problem of merging two sorted sequences of length n and m with a 

. 
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smaller number of processors p~n~m. This algorithm is based on binary 

insertion, and requires only 210g(n+I)+4(n/p) comparisons when n=m. 

Both Valiant's and Gavril's algorithms assume a shared memory model. 

That is, all the processors utilized can simultaneously accesS elements 

of the initial data, or intermediate computation results. 

For all the parallel sorting algorithms described so far it is 

assumed that the problem size is limited by the number of processors 

available. Thus, these algorithms implicitly assume that the number of 

processors is very large. Typically, N processors are utilized to sort 

N records which is impractical. However, for a general purpose sorting 

algorithm, it is desirable to set a limit on the number of processors 

available, so that the number of records that can be sorted will not be 

bounded by the number of processors. Furthermore, it must be possible 

to sort a large array with a relatively small number of processors. 

When P processors are available, and N records are to be sorted, one 

possibility is to distribute the N records among the P processors so 

that a block of M= IN/PI records is sorted in each processor's local 

memory. The block residing in each processors memory constitutes a 

sorted sequence of length M and the concatenation of these local 

sequences constitutes a sorted sequence of length N. 

Algorithms to sort large arrays of files that are initially 

distributed across the processor's local memories, can be constructed 

as a sequence of block merge-split steps. During a merge-split step, 

a processor merges two sorted blocks of equal length (that are produced 

by a previous step), and splits the resulting block into a "higher" and 

a "lower" block, that are sent to two destination processors. Two 

merge-split step ways have been proposed, one is based on a 2-way merge 
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(Baudet [1978]) and the other based on a bitonic merge (Hsiao [1980]). 

In this chapter, two sorting algorithms have been implemented in 

parallel on the NEPTUNE system with different approaches. These 

algorithms are the parallel shell sort and the parallel digit sort 

methods. Two parallel merging algorithms are used incorporated with 

the sorting algorithms, these are the 2-way merge and the odd-even 

reduction merge methods. Besides the parallel sorting algorithms, two 

parallel searching algorithms are also implemented on the NEPTUNE system. 

The results of all sorting and searching algorithms are studied and 

compared from the efficiency point of view and whether all the 

processors are fully used. The performance analysis of these algorithms 

is also studied. 
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6.2 THE SORTING ALGORITHMS 

In this section, two parallel sorting algorithms are implemented 

on the NEPTUNE system and used to sort a set of N items in ascending 

order. The first parallel sorting algorithm is developed from the 

sequential shell sort, while the second one is developed from the 
~ -

sequential digit sort. 

Generally, the parallel sort implementation is carried out by 

splitting the input set N into M subsets which are sorted in parallel 

where M is greater than or equal to P, the number of available 

processors. Two approaches are used to implement the parallel shell 

sort method. In the first approach the final sorted set is obtained 

by using the parallel sorting algorithm only, while in the second 

approach each M subsets is sorted independently then followed by a 

parallel merge algorithm to obtain the final sorted set. 

6.2.1 The Shell Sort Method 

This method, also known as the diminishing inarement sort (Knuth 

[1973]) is a simple sorting algorithm that requires no extra storage 

was developed by D.L. Shell [1959]. It consists of a number of passes 

over the input (unsorted) set and in each pass it consists of a number 

of comparisons of two keys and an interchange is carried out if they 

are out of order. In this way, low keys are moved towards the beginning 

of the list and high keys are moved towards the end, and an ordered 

list will be finally produced. During the first pass, keys relatively 

far apart are compared, in order to move the low ones that were 

initially near the end of the list to the beginning, and vice versa. 

Subsequent passes use a steadily decreasing increment between the 
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compared keys. While the last increment used must be 1. 

TO sort the sequence x
l

,x2 , ••• ,x
n 

using Shell's method, a number 

d
l 

(depending on n) is chosen and each of the subsequencies xi' xi+d
l

, 

xi+2dl, •.• ,xi+nidl corresponding to i=1,2, .•• ,d
l

, where n i is the 

largest integer such that nidl~n, is sorted by comparing xi with xi+dl , 

and are transposed if necessary. Then x
i

+3d
l 

is compared with x
i

+2d
l

, 

and if a transposition occurs, x
i

+3d
l 

is compared with xi+d
l

• Then 

x
i

+4d
l 

is dropped down one position at a time into its proper place, 

and so on up to xi+nid
l

• Then a number d
2

<d
l 

is chosen and the 

procedure is repeated on the sequences xi' xi +d2 ,.·· Then d 3<d2 is 

chosen and the procedure finally repeated with d =1. This last pass 
m 

is simply by comparing two adjacent elements at a time and an inter-

change occurs as previously if they are out of order, and so completes 

the sort. 

The running time of Shell's method depends on the optimal sequence 

d
l

,d
2

, •.• ,d
m

, which is still an open question. The one proposed by 
n d

i
_

l Shell [1959], is that dl=[Z] and d
i

=[---2-] , where [ ] means the integral 

k 
suggest the form d

l
=2 +1, where part. Papernov and Stasevich [1965] 

2k 2k+l [di ] 
<n~ , and d i +l = :1 . There are many other suggestions for the 

choice of the d's and in all these methods the times required range 

2 2 
from O(n } to O(nlog n}, which depends on the choice of the increment 

d (Knuth [1973]), Papernov and Stasevich [1965]}. In general, the 

running time for Shell's sorting method is of order N
3

/
2 

as an upper limit. 

Two parallel versions of the Shell sort algorithm were implemented 

on the NEPTUNE system. In version I, the original set of N elements is 

partitioned into d subsets, each containing the elements that are d 

positions apart. Thus, the first d elements are allocated into the first 
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subset and the next d elements into the second subset and so on. 

We assume d~P. where P is the number of available processors and more 

than one subset may be assigned to each processor. where P subsets can 

be sorted in parallel (i.e. at the same time) using the sequential 

algorithm described previously. In Version I we choose a sequence of 

distance d
l

.d2 •..•• dm• such that dm=l and the sorted set is obtained 

when all the dOs are applied to the input set. starting with d
l 

and 

terminated by using d. Also for Version I of the parallel Shell sort 
m 

two approaches are used for its implementation on the NEPTUNE system. 

In the first approach. the parallel Shell sort algorithm 

on the NEPTUNE system (Program 6.1) by taking dl=[~1 and 

was programmed 
d, 1 1.-

di =[-2-1 • 

While in the second approach. the algorithm is programmed by taking 

k di k k+l 
d

l
=2 +1 and di=[:21. where 2 <n~2 (Program 6.2). 

For the total complexity of the Shell sort algorithm when run on 

both the sequential (one processor) and the parallel machine (p processors) 

Papernov and Stasevich [19651 and Knuth [19751 shows that the total 

running time Tl of the algorithm which is composed of both the total 

comparisons and the total number of exchanges is equal to, 

T = K N3/ 2 
1 

where K is a known constant and is assumed to be 0(1) • 

(6.2.1) 

In our implementation of the Shell sort, the set to be sorted is 

partitioned into subsets and each subset is assigned to a parallel path. 

Thus if we generate M paths (M equal to the distance of comparison) 

N 
with M~P, then in each subset (path) (M) elements are sorted. If all 

the paths are carried out on one processor then by applying equation 

(6.2.1), the total complexity for the Shell algorithm is equal to, 

T = M x (~) 3/2 
IS M (6.2.2) 
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On the other hand, when this algorithm is run in parallel using 

p processors, rMl 
Ipl 

paths have to be carried out by each processor. 

Thus, 

r~ (.'i) 3/2 
TpS = x (6.2.3) Ip M 

~ (~) x (.'i) 3/2 +1-P M 

The efficiency of the Shell sort algorithm when applied on a parallel 

computer can be measured by calculating the speed-up ratio SpS(M) with 

M subsets. Therefore, 

(6.2.4) 

1 - --) , 
TpS 

= P(l 

which is of O(p). This means that the optimal linear speed-up is 

achieved for this implementation. 

The experimental results obtained from the parallel Shell sort 

(Version I) with different sizes on the NEPTUNE system using the first 

and second approaches are shown in Tables (6.1) and (6.2) respectively. 

The efficiency E in the tables are obtained theoretically from the 
p 

formula, 

E 
P 

= Speed-up 
P 

From these results it can be noticed that in the second approach the 

efficiency increases as the size of the input data increases. While 

in the first approach the efficiency is generally the same. Within 

each size (N) the efficiency decreases as the number of processors 

increases and this is due to the reduction in the usage of processors. 

It is clear from these results that the second strategy gives better 

results from the first one. This is because the time taken to sort 

the input set of numbers using the second strategy is less than that of 

using the first strategy and the speed-up factors of the second strategy 
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is higher than that of the first strategy. This is due to the way in 

which the distance of comparisons is chosen in the first strategy, as 

in the final pass of the first strategy is entered, there are two 

partitions, that of the even positions, and that of the odd positions. 

Each partition is individually sorted, but there is no meaningful order 

relative to each other. This condition will always occur when N is a 

power of 2, because the distance is always even. Thus, there will 

never be any comparisons between odd-numbered elements and even-numbered 

elements. As a consequence, the final pass must merge two independent 

strings. While this is not the case in the second strategy which means 

fewer passes will be required and better results are obtained. It is 

also clear from the results in Tables (6.1) and (6.2) that the values 

obtained from the parallel sort algorithm is not very efficient. The 

factor that decisively degrades its performance is the last pass, when 

the increment is 1, which dominates the running time. During this pass 

one of the processors assigned to the task performs the straight 

insertion sorting on the whole set of numbers, and the remaining 

processors are idle. Another factor that affects the performance of 

this algorithm is due to the overheads incurred by the system due to the 

generation of a large number of parallel paths. In this implementation 

the total number of generated parallel paths is equal to the total 

distances of comparisons (d.), which varies from pass to pass and 
l. 

depends on the size of the input data as shown in Tables (6.1) and (6.2). 

Figure (6.1) shows the graphical representation of the experimental 

timing results obtained from the implementation of Version I using the 

first and second approach with data size equal to 1024. 

In an effort to overcome this costly last step and increase the 



Size 
No .of Time Total No. 

(N) Processors (sec. ) 
Speed-up of Parallel 

(p) Paths 

256 1 3.00 1.0 265 

2 2.07 1.44928 142,124 

3 1.88 1.59575 102,82,83 

4 1.72 1. 74419 78,63,62,65 

512 1 8.34 1.0 522 

2 5.70 1.46316 272 ,251 

3 5.19 1.60694 188,166,170 

4 4.77 1. 74843 145,124,132, 
124 

768 1 13.76 1.0 777 

2 9.52 1.44538 399,379 

3 8.60 1.60 271 ,248 ,260 

4 8.25 1.66788 209,186,193 
192 

1024 1 22.41 1.0 1035 

2 15.88 1.41121 525,511 

3 14.31 1.56604 361,339,337 

4 13.60 1.64779 273,253,253, 
259 

TABLE 6.1: The results of the implementation of Shell sort 
(Version I, first approach) 

, 
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Efficiency 
(E ) 

p 

1.0 

0.73 

0.53 

0.44 

1.0 

0.73 

0.54 

0.44 

1.0 

0.72 

0.53 

0.42 

1.0 

0.71 

0.52 

0.41 
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No.of Size Time Total No. 
Efficiency 

(N) Processors Speed-up of Parallel 
(P) (sec. ) 

Paths 

256 1 2.06 1.0 142 

2 1.32 1.56061 78,65 

3 1.03 2.00 56,45,43 

4 0.91 2.26374 48,33,31,33 

512 1 4.8 1.0 272 

2 2.96 1.62162 142,131 

3 2.21 2.17195 100,88,86 

4 2.0 2.40 81,63,64,67 

768 1 8.07 1.0 530 

2 4.87 1.65708 273,258 

3 3.55 2.27324 184,175,173 

4 3.22 2.50621 145,130,127, 
131 

1024 1 11.18 1.0 530 

2 6.72 1.66369 271 ,260 

3 4.85 2.30516 189,173,170 

4 4.32 2.58796 147,131,127, 
128 

TABLE 6.2: The results of the implementation of Shell sort 
(Version I, second approach) 

(E ) 
p 

1.0 

0.78 

0.67 

0.57 

1.0 

0.81 

0.72 

0.60 

1.0 

0.83 

0.76 

0.63 

1.0 

0.83 

0.77 

0.65 
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efficiency of the algorithm, we suggest a new version of implementing 

the parallel Shell sort by incorporating the merge algorithm with the 

sort procedure. In this version (Version II) the sort algorithm is 

implemented in two stages, in the first stage the sort procedure is 

applied, while in the second stage the merge algorithm is followed and 

it is always in that order. In Version II, the input set is divided 

into M subgroups where M~P, and P is the number of available processors, 

then each subgroup is assigned to a parallel path which runs 

simultaneously. In the first stage of this version each processor 

will independently sort its subgroup using the parallel Shell sort 

algorithm. When all the subgroups are sorted, the second stage is 

started (the merge stage) by merging the sorted subgroups to form the 

final sorted list using the parallel merge algorithm. 

The implementation of version lIon the NEPTUNE system is carried 

out by using the parallel Shell sort algorithm that gives the better 

results in Version I (i.e. the second approach). While two parallel 

merge algorithms are incorporated with the parallel Shell sort algorithm, 

these are the parallel 2-way merge and the parallel odd-even merge 

algorithms which are described below. 

The Parallel 2-Way Merge Algorithm 

In this parallel merge algorithm, the following sequential 2-way 

merge procedure proposed by Knuth [1973, pp.159] is applied. 

Given two ordered subsets xl~x2~ ••• ~xm and Yl~Y2~ .•• ~yn into a 

Single set zl~z2~ ••• ~z m+n 

(1) Set i~l, j~l, k~l, 
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(2 ) If x, ~y, , 
~ J 

goto step (3) , otherwise goto step (5) • 

(3 ) Set zk+xi' k+k+l , i+i+l. If i~m, goto step (2) • 

(4) Set (zk'···'z )+(y" ••• ,y) m+n ~ n 
and terminate the algorithm. 

(5) Set zk+Yj' k+k+l, j+j+l. If j~n, goto step (2) • 

(6) Set (z , ••• ,z ) ... (x, , ••• ,l< ) 
k m+n ~ m and terminate the algorithm. 

The parallel implementation of the 2-way merge algorithm is carried 

out by, applying the above sequential algorithm on M sorted subsets of 

N 
size (M) each. By supposing that N is divisible by M where M is a 

power of 2. The parallel 2-way merge algorithm can be completed in 

log2M steps where the parallelism is introduced within each step and 

not amongst the steps as shown in Figure 6.2. 

2 Subsets 1 
Steps -,..... -.--

1 

2 

3 

3 4 5 6 --=r- -r-

FIGURE 6.2: The parallel 2-way merge algorithm 

7 8 -:-

From Figure 6.2 it can be seen that each step can be performed 

in parallel where each two neighbouring subsets are merged by one 

process (or path) to form a subset of size (~M). Also it can be 

realized from Figure 6.2 that the number of subsets to be merged is 

halved in each successive step until the final step where only two 
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subsets are to be merged where only one processor is required. 

The parallel 2-way merge is used to merge subgroups that are 

sorted previously USing the parallel shell methods and the implementation 

of the parallel shell sort algorithm with the parallel 2-way merge is 

programmed on the NEPTUNE system as shown in Program (6.3). 

For the complexity of the parallel 2-way merge algorithm, Evans and 

Yousif [1985] shows that the total complexity when one procesor is used 

to merge M subsets with size (~) each is, 
M 

TlM = NlogM - M+l • (6.2.5) 

While for the parallel implementation of the 2-way merge using P 

processors and M subsets where M~, the total complexity is, 

N M 2N M M 
TpM ~ p log(p) + l? (P-l) - p + 1 + log(p) • (6.2.6) 

NOW, for Version 11 of the parallel shell sort algorithm using 

the parallel 2-way merge (Program 6.3) , we can obtain the total 

complexity which represents both the sorting and merging complexities. 

The complexity of the parallel shell procedure on one processor is given 

by T1S in equation (6.2.2), therefore, the total complexity Tl of 

Program 6.3 in one processor is given by: 

Tl = T1S + T1M 

(N) 3/2 
= M. M + N logM-M+l • (6.2.7) 

To obtain the total complexity Tp of Program 6.3 when P processors 

are used is obtained from equations (6.2.3) and (6.2.6). Thus, 

Tp = TpS + TpM 

~ (~). (*) 3/2 + ~log (~) + 2: (P-l) - ~ + log (~) +2 • (6.2.8) 

The speed-up ratios for the merge algorithm alone (S (M)) and the 
merge 



total speed-up for both the sort and the merge algorithms together 

(S t 1 (M» can to a 
now be represented, 

S (M) ~ 
merge 

TIM 

N M 2N 
plog(p) + p(P-l) 

M M 
- - +log(-) +l 

P P 
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P (NlogM - M+l ) 
~ M M • (6.2.9) 

Nlog(p)+2N(P-l)-M+log(p)+P 

At the same time, the total speed-up is measured as: 
Tl 

Stotal (M) ~"or
p 

M (~)3/2 + NlogM - M+l ·M 
M N 3/2 N M 2N M M 

(p) .(-M) + plog(p) + p(P-l) - P+log(p)+2 

N 3/2 
M. (11) +NlogM-M+l 

:;: P. ( N 3/2 M M ) 
M. (11) +Nlog (p) +2N (P-l) -M+Plog (p) +2p 

(6.2.10) 

In our implementation the input size N is partitioned into M 

subgroups with size (*) each, where M>.P (P is the number of co-operating 

processors). From the results obtained in Table (6.3) it is clear that 

the sorting speed-up is O(p). We also notice that the maximum total 

speed-up occurs when M=P where the total speed-up is less than the 

"linear speed-up". This is due to data communication, parallel path 

allocation and shared data requirements. It can also be seen that the 

speed-up decreases as M increases. This is due to the synchronisation 

involved at the end of the parallel paths, when M>P. On the other hand, 

the merge speed-up increases as M increases and the maximum speed-up 

occurs at M=256 (which is the largest number of paths we generate on 

the NEPTUNE system in our experiments). This increase is due to the 
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nature of the algorithm that halves the number of paths in each step. 

M 
This means that in the first log(p) steps all the processors are 

M 
active and contribute to the solution of the problem and after log(p) 

steps the number of processors is halved until the final step is 

reached where only one processor is active while the other processors 

remain idle. Thus, if M»P, then log(~) is large, hence all the 

processors are significantly active. Although the timing results 

increase as M increases in the merge algorithm the speed-up results 

are improved for large M. Table (6.4) represents the experimental 

results with total efficiency (E ) of Version II of parallel shell sort. 
p 

From both Tables (6.3) and (6.4) it can be seen that the best total 

sort timing results are obtained when the input set N is partitioned 

into M subsets where M=64. The efficiency in Table (6.4) decreases as 

the number of processors increases and this is due to the reduction in 

the usage of the processors in each step of the 2-way merge algorithm 

and sorting procedure. The inequality (6.2.10) is used to calculate 

the total theoretical speed-up values and these values are tabulated 

in Table (6.5) with its corresponding experimental results in Table 

(6.4). The mismatching in the results (especially for large M) of 

Table (6.5) is due to the fact that the inequality (6.2.10) for the 

theoretical speed-up does not include the parallel allocation or data 

communication overheads. 

An alternative implementation of Version II parallel Shell sort 

algorithm on the NEPTUNE system is carried out by using the odd-even 

reduction merge instead of the 2-way merge. 
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No. of No.of Time for Time for Total Speed-up Speed-up Speed-up 
Processors Paths Sorting Merging time for for for both 
(p) (M) (sec) (sec) (sec) sorting merging parts 

1 2 9.10 0.84 9.94 1.0 1.0 1.0 

2 2 4.62 0.85 5.47 1.96970 0.98824 1.81718 

1 4 7.45 1.66 9.11 1.0 1.0 1.0 

2 4 3.79 1.29 5.08 1.96570 1.28682 1.79331 

4 4 1.94 1.27 3.21 3.84021 1.30709 2.83801 

1 8 6.16 2.49 8.65 1.0 1.0 1.0 

2 8 3.14 1. 70 4.84 1.96178 1.46471 1.78719 

3 8 2.2 1.66 3.86 2.80000 1.50000 2.24093 

4 8 1.61 1.49 3.10 3.82609 1.67114 2.79032 

1 16 4.72 3.29 8.01 1.0 1.0 1.0 

2 16 2.41 2.11 4.52 1.95851 1.55924 1.77212 

3. 16 1.69 1.99 3.68 2.79290 1.65327 2.17663 

4 16 1.24 1. 70 2.94 3.80645 1.93529 2.72449 

1 32 3.61 4.08 7.69 1.0 1.0 1.0 

2 32 1.85 2.53 4.38 1. 95135 1.61265 1.75571 

3 32 1.30 2.30 3.60 2.77692 1.77391 2.13611 

4 32 0.95 1.92 2.87 3.80000 2.12500 2.67944 

1 64 2.62 4.87 7.49 1.0 1.0 1.0 

2 64 1.35 2.93 4.28 1.94074 1.66212 1.7500 

3 64 0.95 2.57 3.52 2.75790 1.89494 2.12784 

4 64 0.71 2.15 2.86 3.69014 2.26512 2.61888 

1 128 1.82 5.70 7.52 1.0 1.0 1.0 

2 128 0.94 3.39 4.33 1. 93617 1.68142 1.73672 

3 128 0.66 2.85 3.54 2.63768 1. 96552 2.12429 

4 128 0.50 2.38 2.88 3.64000 2.39496 2.61111 

1 256 1.25 6.5 7.75 1.0 1.0 1.0 

2 256 0.65 3.84 4.49 1.92308 1.69271 1.72606 

3 256 0.48 3.29 3.77 2.60417 1.97568 2.05570 

4 256 0.35 2.63 2.98 3.57143 2.47148 2.60067 

TABLE 6.3: The experimental results of shell sort algorithm using 
the 2-way merge algorithm (Version II) for input size 1024. 



Size Processors Parallel Total Total Total Total 
(N) (p) Paths Time Speed-up parallel parallel 

(M) (sec) paths for paths for 
sorting merging 

1024 1 2 9.94 1.0 5 4 

4 9.11 1.0 7 7 

8 8.65 1.0 11 12 

16 8.01 1.0 19 21 

32 7.69 1.0 35 38 

64 7.49 1.0 67 71 

128 7.52 1.0 131 136 

256 7.75 1.0 259 265 

2 2 5.47 1.81718 4,2 4,1 

4 5.08 1. 79331 5,3 6,2 

8 4.84 1. 78719 7,5 9,4 

16 4.52 1.77212 11,9 14,8 

32 4.38 1.75571 19,17 23,16 

64 4.28 1. 75000 35,33 40,32 

128 4.33 1.73672 68,64 73,64 

256 4.49 1.72606 134,126 138,128 

3 8 3.86 2.24093 6,3,4 9,3,2 

16 3.68 2.17663 8,6,7 13,5,5 

32 3.60 2.13611 14,12,11 19,12,9 

64 3.52 2.12784 25,22,22 32,21,20 

128 3.54 2.12429 46,44,43 55,42,41 

256 3.77 2.05570 92,84,85 100,83,84 

4 4 3.21 2.83801 4,2,2,2 6,1,1,2 

8 3.10 2.79032 5,3,3,3 8,2,2,3 

16 2.94 2.72449 7,5,5,5 11,4,4,5 

32 2.87 2.67944 11,9,9,9 16,8,8,9 

64 2.86 2.61888 19,17,1",1, 25,17,16, 
17 16 

128 2.88 2.61111 35,33,33, 42 ,32,32 , 
33 33 

256 2.98 2.60067 69,65,63, 76,74,63, 
65 65 

TABLE 6.4: The experimental results with total efficiency of 
parallel shell sort (Version II with 2-way merge) 
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Total 
efficiency 
(E ) 

p 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

0.91 

0.90 

0.89 

0.89 

0.88 

0.88 

0.87 

0.86 

0.75 

0.73 

0.71 

0.71 

0.71 

0.69 

0.71 

0.70 

0.68 

0.67 

0.65 

0.65 

0.65 



Size Processors Paths Theoretical Experimental 
(N) (P) (M) Speed-up Speed-up 

1024 2 2 1.86172 1.81718 

4 1.81383 1. 79331 

8 1.75518 1. 78719 

16 1.68778 1. 77212 

32 1.61428 1. 75571 

64 1.54229 1. 75000 

128 1.47623 1. 73672 

256 1.41826 1. 72606 

3 8 2.32737 2.24093 

16 2.16763 2.17663 

32 2.00658 2.13611 

64 1.86000 2.12784 

128 1. 73000 2.14245 

256 1.62203 2.05570 

4 4 3.01749 2.83801 

8 2.77249 2.79032 

16 2.51825 2.72449 

32 2.27487 2.67944 

64 2.06010 2.61888 

128 1.88280 2.61111 

256 1.73825 2.60067 

TABLE 6.5: The theoretical and experimental values of the 
total speed-up of Program 6.3. 
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The Parallel Odd-Even Merge Algorithm 

This version of the odd-even merge algorithm is an extension to 

that of Baudet and Stevenson [1978] algorithm which it self is an 

improvement to the original odd-even merge algorithm that is based on 

Bacher's 0-1 merge (Batcher [1978J). The algorithm is described as 

follows: 

The input set of N elements is partitioned into M subsets of size 

(~) each. Each of the M subsets are sorted using the parallel shell 
M 

procedure, so the subsets become sorted within themselves but not amongst 

each other. Now these sorted subsets can be merged by the odd-even merge 

algorithm in at most M sequential steps (see Baudet and Stevenson [1978]), 

where the parallelism is introduced within each step. The graphical 

representation of this merge algorithm is shown in Figure 6.3 for M=8. 

Subset 
Step No. --=-

1 

2 

3 -, 

4 

5 
_. 

6 

7 '--'-

8 

FIGURE 6.3: The parallel odd-even merge algorithm 
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Figure 6.3 illustrates that odd numbered subsets are merged with the 

even numbered subsets in the odd numbered steps of the algorithm. 

While in the even numbered steps, the even numbered subsets are merged 

with the odd numbered subsets. Each two subsets are merged using the 

sequential 2-way merge to form one subset of size equal to the sum of 

the two subsets. In the next step of the algorithm, the appropriate 

half of the resultant subset is merged with the neighbouring half of 

the next subset and so on as shown in Figure 6.3. The final sorted set 

can be obtained at the end of final step (step M) by combining the 

sorted subsets. 

The implementation of the parallel shell sort algorithm (Version 

II) was carried out by incorporating the parallel odd-even merge 

algorithm with the parallel shell sort procedure and the program of 

this implementation is given in Program 6.4. Table 6.6 shows the 

experimental results obtained from Program 6.4 when it runs on the 

NEPTUNE system using a data size equal to 1024. 

For the complexity of the parallel odd-even merge algorithm, 

Yousif and Evans [1985al shows that the complexity of the odd-even 

merge algorithm when run on one processor is equal to, 

C = N(M-l)-!M(M-l) • 
IM 

(6.2.11) 

While in the parallel implementation of the odd-even merge algorithm 

when run on P processors, the total complexity is equal to, 

and 

M 
+ 2 , for 2 < P , 

C
pM 

~ N(2MP-M-2P) 
2p(P-l) 

li M/2 (M/2 -1) M 
(P-l) + 2, for Pz 4 P 

i M + - + 2 , 
2P 2P 

M 
for 2 > P • 

(6.2.l2a) 

(6.2.l2b) 

(6.2.l2c) 
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The total complexity of the parallel shell sort algorithm 

Program 6.4 can be calculated from the complexities of both the sorting 

procedure (equations (6.2.2) and (6.2.3)) and the odd-even algorithm 

(equation (6.2.11) and (6.2.12)). Now the total complexity of the 

Version II parallel shell sort algorithm (i.e. sorting and merging) 

when run on one processor is, 

T = M(~)3/2 + N(M-l) - ~(M-l) 
1 M 2 (6.2.13) 

While the total time complexity Tp is obtained from the formula, 

Tp - TpS + CpM which is equal to, 

2 2MP-M-2p 1 M 
+N( 2P(P-l)) - 41'-

M/2 (M/2 -1) M 
(P-l) +3, for z=P 

M2 M 
--+- + 2p 2P 

M 
3 , for "2 > P (6.2.14) 

Now the merge speed-up, S (M) , of M subsets can be calculated merge 

by dividing C1M of equation (6.2.11) by CpM of equation (6.2.12), which 

gives, 

S (M»-
merge 

1 2 NM M-l M2 M-l M 
(N(M-l)-Z(M -M))/(I'(M_2) - 2P(M-2) + 2), for "2 < P 

2 
(N(M_l)_~(M2_M))/(N(2MP-M-2P) _ ~ _ M/2(M/2 -1) +2) 

2 2P(P-l) 4P (P-l) , 

1 2 N i M M 
(N(M-l)-Z(M -M))/(p(M-l)- 2P + 2P + 2), for "2 > P 

These speed-up formulae can be simplified as an order quantity, 

such as, 

S (M) ~ merge 

( 0 (p (:-2) ), for ~ < P 

O(2P(P-l) (M-l)), for ~ = P 
2MP-M-2P 2 

M 
O(P) , for "2 > P • 

M 
for "2 = P 

(6.2.15) 

(6.2.16) 



While the total speed-up (Stotal) is calculated by dividing Tl of 

equation (6.2.13) by Tp of equation (6.2.14) which gives, 
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S > (M(_MN)3/2 + N(M-l) - 7M2l (N-l)/Tp total ' 
(6.2.17) 

where Tp takes any value from equation (6.2.14) for the appropriate 

values of M and P. 

From the experimental results obtained from the implementation of 

the parallel shell sort algorithm using the parallel odd-even merge 

algorithm (Table 6.6), we notice that the sorting time decreases as the 

number of subgroups (M) increase and this is due to the overheads for 

contention of the parallel paths. Also we notice that the sorting 

speed-up obtained when the number of subgroups is equal to the number 

of available processors (M=P). While the time for merging increases 

as the number of subgroups increases and this is due to the fact that 

the number of comparisons increases with the number of subgroups. The 

best merging speed-up is obtained when M=128. On the other hand, 

generally the total time increases as the number of subgroups increase 

and the speed-up is of O(P) which increases as the number of subgroups 

increases, while the best speed-up occurs when M=128. Table 6.7 also 

shows the experimental results with the total efficiency (Ep) of this 

algorithm, where the best total time is obtained when M is equal to 4 

in the case of P equal to 1 and 4 and M=8, for the case P=2 and 3. 

The best efficiency value obtained using different processors is when 

M=l28 and the efficiency decreases when the number of processors 

increases. This is due to the reduction in the usage of the processors 

in each step of the algorithm. 

To compare the results obtained from Version II of the parallel 



shell sort (i.e. the implementation that using the parallel 2-way 

merge and the parallel odd-even merge), we notice that the time 

required for the input data to be sorted using the parallel 2-way 

merge is less than that using the parallel odd-even merge. This is 

because the number of steps in the 2-way merge is log M while in the 

odd-even merge it is M steps which is very much greater than logM and 

the number of parallel paths in the case of odd-even merge is greater 

than that of the 2-way merge as shown in Tables 6.4 and 6.7, which 
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means IOOre time is required for the algorithm to sort the. input data 

when it uses the parallel odd-even merge algorithm. The total speed-up 

of the algorithm using the odd-even merge algorithm is generally higher 

than that of using the 2-way merge and this is due to the higher speed

up in the merge phase which affects the total speed-up. Thus, for 

parallel implementation if we consider the complexity of both methods, 

tr.·_ run-time illustrates that the shell sort with the 2-way merge method 

for a particular data size is better than that using the odd-even merge 

method. Also from Tables 6.3 and 6.6 we notice that the odd-even merge 

speed-up is better than the 2-way merge speed-up. This is mainly due to 

the usage of processors where in the odd-even merge the processors were 

mostly fully used in all the steps of the merge phase while in the 2-way 

merge the number of processors is halved in each step. 

For comparison reasons, Table 6.8 shows the experimental results 

obtained from the implementation of the parallel shell sort methods on 

the NEPTUNE system using Version I and II with data size 1024. We 

notice that the best timing results are obtained when the sorting is 

carried out by using Version II with the 2-way merge method, with the 

Version II methods giving better speed-up results than Version I methods. 



441 

In general, the speed-up of all the implemented methods are not high 

and this is due to the fact that the processors are not fully utilized 

in the different sorting steps and specially when more than 2 processors 

are used. The timing results in Table 6.8 are graphically represented 

in Figure 6.4 which shows that Version II with the 2-way merge is the best. 

For a performance analysis using the facilities of the NEPTUNE 

system and with reference to Chapter 4, the parallel control overheads 

(PCO) and shared data overheads (SOO) of the different implemented 

parallel shell methods are tabulated in Table 6.9. For Version II, 

the timing results used are the ones that give the best efficiency, 

i.e. for the 2-way merge the results used are for M=64 (M equal to the 

number of subgroups) , while for the odd-even merge the one used is for 

M=128, which gives the best efficiency. From Table 6.9 it is clear that 

for Version I, the amount of the overheads using the second approach is 

less than that of using the first approach and this is due to the fact 

that the number of parallel paths generated in the second approach is 

less than the first approach, as shown in Tables 6.1 and 6.2. While 

for Version II, the algorithm using the 2-way merge gives better results 

than that using the odd-even merge and is due to the number of generated 

parallel paths using the 2-way merge method being less than that used 

by the odd-even merge as shown in Tables 6;4 and 6.7. The results in 

Table 6.9 show that the parallel shell sort method using the 2-way 

merge algorithm gives the best results since it needs the lowest 

overheads. 

6.2.2 The Digit Sort Method 

In the previous section the implemented shell method belongs to 
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No .of No.of Time for Time for Total Speed-up Speed-up Speed-up 
Processors Paths Sorting Merging Time for for for Both 

(P) (M) (sec. ) (sec. ) (sec.) sorting Merging Parts 

1 2 9.10 0.85 9.95 1.0 1.0 1.0 

2 2 4.62 0.85 5.47 1.96970 1.0 1.81901 

1 4 7.45 2.33 9.78 1.0 1.0 1.0 

2 4 3.79 1.72 5.51 1.96570 1.35465 1.77495 

4 4 1.94 1.72 3.66 3.84021 1.35465 2.54674 

1 8 6.16 4.57 10.73 1.0 1.0 1.0 

2 8 3.14 2.87 6.01 1.96178 1.5923 1. 78536 

3 8 2.2 2.25 4.45 2.80000 2.03111 2.41124 

4 8 1.61 1.88 3.49 3.82609 2.43085 3.07450 

1 16 4.72 8.89 13.61 1.0 1.0 1.0 

2 16 2.41 5.09 7.50 1.95851 1.74656 1.81467 

3 16 1.69 3.92 5.61 2.79290 2.26786 2.42602 

4 16 1.24 3.15 4.39 3.80645 2.82222 3.10023 

1 32 3.61 17.7 21.31 1.0 1.0 1.0 

2 32 1.85 9.53 11.38 1.95135 1.85729 1.87258 

3 32 1.30 6.83 8.13 2.77692 2.59151 2.62116 

4 32 0.95 5.43 6.38 3.80000 3.25967 3.34013 

1 64 2.62 35.88 38.50 1.0 1.0 1.0 

2 64 1.35 18.74 20.09 1.94074 1.91462 1.91638 

3 64 0.95 12.98 13 .93 2.75790 2.76425 2.76382 

4 64 0.71 10.20 10.91 3.69014 3.51765 3.52887 

1 128 1.82 74.65 76.47 1.0 1.0 1.0 

2 128 0.94 38.45 39.39 1.93617 1.94148 1.94136 

3 128 0.66 26.48 27.14 2.63768 2.81911 2.81761 

4 128 0.50 20.48 20.98 3.64000 3.64502 3.64490 

1 256 1.25 163.17 164.42 1.0 1.0 1.0 

2 256 0.65 84.11 84.76 1.92308 1.93996 1. 93983 

3 256 0.48 57.99 58.47 2.60417 2.81376 2.81204 

4 256 0.35 45.5 45.85 3.57143 3.58615 3.58604 

TABLE 6.6: The experimental results of the shell sort algorithm using 
the odd-even merge algorithm (Version 11) for input size 1024. 
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Size Processors Parallel Total Total TOtal TOtal TOtal 
N (P) Paths Time Speed-up Parallel Parallel Effici-

(M) (sec. ) Paths for Paths for ency 
Sorting Merging (E ) 

p 

1024 1 2 9.95 1.0 5 4 1.0 

4 0.78 1.0 7 12 1.0 

8 10.73 1.0 11 38 1.0 

16 13.61 1.0 19 138 1.0 

32 21.31 1.0 35 530 1.0 

64 38.50 1.0 67 2082 1.0 

128 76.47 1.0 131 8258 1.0 

256 164.42 1.0 259 32898 1.0 

2 2 5.47 1.81901 4,2 4,1 0.91 

4 5.51 1.77495 5,3 10,3 0.89 

8 6.01 1.78536 7,5 24,15 0.89 

16 7.50 1.81467 11,9 79,60 0.91 

32 11.38 1.87258 19,17 283,248 0.94 

64 20.09 1.91638 35,33 1085,998 0.96 

128 39.39 1.94136 67,65 4217,4042 0.97 

256 84.76 1.93983 133,127 16683, 0.97 
16216 

3 8 4.45 2.41124 6,4,3 19,10,11 0.80 

16 5.61 2.42602 9,6,6 59,40,41 0.81 

32 8.13 2.62116 14,11, 202,164, 0.87 
12 166 

64 13.93 2.76382 25,22, 762,665, 0.92 
22 657 

128 27.14 2.81761 47,43, 2898,2679, 0.94 
43 2683 

256 58.47 2.81204 89,85, 11351,10794, 0.94 
87 10755 

4 4 3.66 2.54674 4,2,2,2 10,1,2,2 0.64 

8 3.49 3.07450 5,3,3,3 18,8,9,6 0.77 

16 4.39 3.10023 7,5,5,5 48,32,32, 0.78 
29 

32 6.38 3.34013 11,9,9,9 159,125, 0.84 
124,125 0.88 64 10.91 3.52887 19,17, 577,499, 

17,17 499,510 
128 20.98 3.64490 36,32, 2219,2015, 0.91 

33,33 2009,2018 
256 45.85 3.58604 70,66, 8657,8077, 0.90 

66,65 8079,8088 

TABLE 6.7: The experimental results of the total efficiency of the parallel 
shell sort (Version II with odd-even merge) 
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Processors 

Program 1 2 3 4 

Time Time Speed-up Time Speed-up Time Speed-up 

Version I 22.41 15.88 1.41121 14.31 1.56604 13 .60 1.64779 
1st strategy 

Version I 11.18 6.72 1.66369 
2nd strategy 

4.85 2.30516 4.32 2.58796 

Version II 
with 2-way 7.49 4.28 1.75000 3.52 2.12784 2.86 2.61888 
merge 

Version II 
with odd- 9.78 5.47 1.78793 4.45 2.19775 3.66 2.67213 
even merge 

TABLE 6.8: The experimental results obtained from the implementation 
of parallel shell sort with data size 1024. 

Program T TN TS peo soo 
p 

Version I, 1st 22.41 21.7 21.4 3.17% 1.34% 
Approach 

Version I, 2nd 11.18 10.85 10.72 2.95% 1.16% Approach 

Version II,2-way 
Sort 2.62 2.57 2.56 1.91% 0.38% 
Merge 4.87 4.83 4.79 0.82% 0.82% 
Total 7.49 7.40 7.35 1.2% 0.67% 

Version II,Odd-Even 
Sort 1.82 1. 75 1.73 3.85% 1.1% 
Merge 74.65 67.44 66.71 9.66% 0.98% 
Total 76.47 69.16 68.42 9.56% 0.97% 

TABLE 6.9: The performance results of the parallel shell sort 
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a class of sorting methods known as the comparative methods in which 

the data is ordered and depends on the comparison of the relative 

magnitude of keys on the list. In this section we will implement 

another sorting method which belongs to an alternative class known as 

the distributive method, where each key inspects either character by 

character or as an entity. By their nature distributive sorts are not 

minimal-storage techniques. Since the "distribute" elements receive 

areas on the basis of some characteristic of the key, there must be an 

allocation of space for receiving such areas other than t.he space used 

by their initial list. The digit sort algorithm belongs to the 

distributive class and the sort is carried out by distributing the 

elements into receiving areas based on the value of. a specific digit 

of the key. 

The method consists of partially sorting the records by a digit 

sort and completing the sort by the bubble sort method. A file of 

records R
l

,R
2

, ••• ,Rn is to be sorted according to the rank of the keys 

xl ,X2 'X3""'Xn ' The keys are represented as numbers of d digits in 

the number system of base m. The base m may be chosen arbitrarily. 

The proposed method, may be thought of as consisting of three steps. 

The first step is an adaptation of the familiar digit sort, which 

is used to sort punch cards on a card sorter. In this step, the records 

are sorted only on the P high digits of the keys. The digit sort is 

carried out in P passes and at the end of the pth pass, the records are 

sorted according to the P high order digits of the keys. 

The second step in the method is to complete the sorting by the 

familiar bubble method. The advantage of the bubble sort method is 

that it takes very little time when the records are almost in order, as 
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they will be after the first step. The final step is to use the list 

information to write the records out into an external memory or into 

another area in the main memory or to rearrange them in place. It 

happens that, unless the records are being written into an external 

memory, the second and the third steps can be effectively combined. 

The feature which makes the digit sort attractive is that the time 

required per record to sort n records is independent of n (Mac1aren 

[1966]) • 

As a special case of the application of this method we consider 

the rearrangement of an array {Xi} of positive integers so that X1~X2~ 

It is supposed that the number X. are represented to the base 
l. 

m. The highest order digit of X. is denoted by F (X.), the second 
l. p l. 

highest by F l(X.)' etc. Here the X. are assumed to be the number p- l. l. 

of d digits and the high order digits may be zero. The integer P is 

the number of passes to be made in the digit sort. P can be any 

integer not exceeding d and P=2, is apparently the best choice (Mac1aren 

[1966]). The general idea in the digit·sort is to have an array of n 

lists (which are called bins), numbered O,1, ••• ,m-1. On pass number 

K, the record Xi is put in bin number Fk(X i ). At the end of the pass 

all the bins are, in effect, put together to form one list containing 

all the Xi. After P passes of the digit sort have been completed the 

numbers have been sorted on their P highest order digits. For j<kcJP 

every number falling in the interval [jmd-p ,(j+1)md- p ] will precede 

every number in the interval [kmd- p ,(k+1)md -p ], again considering all 

the bins as combined into one list. If the total number of intervals 

mP is suitably large compared with n, the expected number of X. falling 
l. 

in anyone interval will not be large. This suggests completing the 
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sort by a procedure such as the bubble sort, which uses only few 

operations when the records are almost in order to begin with. 

The bubble sort procedure can be described as, to sort n numbers 

Xl ,X2 "",Xn ' n steps may be required. At the end of the (j-l)th steps, 

the first (j-l) numbers have been rearranged so that Xl~X2~",~Xj_l 

On step number j, Xj is compared with X
j

_
l

; then if necessary, X
j

_
2

' 

At that point X. is found 
1. 

so that Xj~Xi and Xj is inserted between Xi and X
i

+
l

' If the set of 

numbers to begin with is in order this procedure uses only n comparisons 

otherwise it is time consuming. 

The Parallel Digit Sort 

Two parallel versions of the sequential digit sort have been 

implemented on the NEPTUNE system and these implementations are 

programmed in Program (6.5) and (6.6) respectively. The three stages 

of the digit sort are shown in Figure 6.5 and the first parallel 

implementations are carried out as follows: 

(1) Sl: The n keys are presorted into m "bins" according to their first 

P digits and transferred sequentially to the available processors. 

(2) Pl: The processors sort internally their bins into runs using the 

bubble sort procedure. 

(3) S2: The runs are sent sequentially into the common memory where 

they constitute the sorted list (transfer of runs 1,2, ... ,m). 

1Sl 

L ! 
Pl 

! S2 

FIGURE 6.5: The stages of first parallel digit sort implementation 

448 



The digit sorting of the first step is based on the assumption 

that there exists an integer P such that the list may be sorted into m 

bins by converting the keys to base m and taking the first p digits 

as indicating the bin to which the key belongs. In our implementation, 

P is taken to be equal to 2 and the bins will include approximately 

nlm keys (Maclaren [1966]). As an example, Table 6.10 shows a list of 

numbers to be sorted, first we convert the numbers to base m=5. Lists 

are formed according to whether the first digit is 0,1,2,3 or 4 and 

sublists according to the second digit as shown in Table 6.11. 

316,3736,5477,29968,16533,4136,3813,32758,11584, 

21735,22034,13745,25025,4770,10131,4871,12588,23182,19270,413 

TABLE 6.10: The list of N items to be sorted 

BIN 00 

Base 10- 316 413 3736 5477 

BIN 01 

4136 3813 4770 
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4871 

Base 5"'; 0002231 0003123 0104421 0133404 0113021 0110223 0123041 0123441 

BIN 03 

11584 10131 

0332314 03311011 

BIN 12 

22034 

1201114 

23182 

1220212 

BIN 04 

13745 12588 

0414440 0400323 

BIN 13 

25025 

1300100 

BIN 10 

16533 

1011113 

BIN 14 

29968 

1424333 

BIN 11 

21735 19270 

1143420 1104040 

BIN 20 

32758 

2022013 

TABLE 6.11: The list and sublists of N items to be sorted 

Bins 02, 21, 22, 23, 24 are empty and nO main lists starts with 3 or 4. 

The number of elements included in the lists and sublists may be shown 

in a "matrix" A of P dimenSions (Table 6.12). 



A = 

1 

2 

3 

4 

5 

1 

2 

1 

1 

0 

0 

o 

2 3 

6 0 

2 2 

0 0 

0 0 

0 0 

1 2 

sublist 

TABLE 6.12: Matrix A of list 

4 

2 

1 

0 

0 

0 

3 

5 

2 

1 

0 

0 

0 

4 

o 

1 

2 

3 

4 

main list 

For P=2, the columns of Table 6.12 represent the sublists, the rows 

the main lists. For example, element A(2,3)=2 shows that there are 2 

elements with leading element 1 and sublist 2, i.e. in bin 12 (see Table 

6.11). Matrix A is helpful in dividing the list into approximately 

equally long bins (of nlm records). The number of operations required 

for deciding where to send the various lists and sublists is a function 

of ref. Since there is no connection between m and n, the highest speed

up is expected for very large n. 

The flowchart of the first parallel digit sort algorithm using 

general P is shown overleaf (Program 6.5) • 
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( START ) 

Read size of 
input (N) and create 
N random numbers 

Read the base into 
which numbers are 
to be converted (m) 

Calculate divisors 
IEX (1) and IEX(2) 

Read number of 
digits into which 
input will be sorted 

(p) 

Insert each record 
into main and sublist 
(Mlink and Slink) 

Update matr ix A 
accordingly 
(Table (Slink,Mlink» 

Check "A" and prepare 
to transfer sublists 
to the available 
processors 

C 

I -

Create parallel paths 
equal to the number 
of sublists available 

For each one of the 
created parallel path 

00:-

Assign the available 
processors to the 
created paths, and for 
each one 00:-

Assign a sublist to be 
sorted 

Call Bubble sort to 
sort each sublist 

Wait until all the 
processors have 
finished 

- - - - - - - -
Transfer the sorted 
sublists sequentially 
to form the final 
sorted list 

END 
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In Version I, the distribution is done by one processor only. For 

instance, the processing of key:23l83 shows the following steps: 

23182 . 
K(l} : l5625 : 1; Lnsert 23182 into main list 1, 

7557 R:23l82-l*15625:7557; K(2} : 3125 : 2; insert 23182 

into sublist 12; update element A(1,2} by adding 1 to it. 

Version II of the parallel digit sort is implemented on the 
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NEPTUNE system in the same way as Version I except that the distribution 

of records (step SI in Figure 6.5) into main and sublists are dene in 

parallel instead of sequential (one processor), i.e. the input (N) is 

subdivided into subgroups each with (N!NPATH) elements, where NPATH is 

equal to the number of subgroups, and assign one group to each of the 

available processors, in which its elements will be distributed over 

sublists and matrix A update accordingly. In order to maintain the 

consistency of the information in this implementation a critical section 

is used while updating the matrix A and updating the links between the 

main and sublists. The usage of critical section will affect the 

performance of the algorithm as seen later. 

The experimental results obtained from the implementation of the 

Version I parallel digit sort on the NEPTUNE system are shown in Tables 

6.13 and 6.14. The results in Table 6.13 are obtained when the data 

size sorted is equal to 1024, while Table 6.14 represents the results 

obtained when the data size sorted is equal to 2048. In Table 6.13 

different timing results obtained for the different number system bases 

(i.e. which convert the unsorted numbers to a specific number system 

base), and it can be noticed that the time required for the sorting is 

proportional to the number of subsets obtained, where higher sorted time 

required when the unsorted input set is divided into a small number of 



subsets and vice versa. In our implementation the best time obtained 

(lowest time) when the number system base used is equal to 8 and this 

is due to the fact that this number system gives the highest number 

of subsets amongst the other implemented number system bases (which is 

equal to 64 subsets). For the higher number of subsets means a small 

number of elements in each subset and as we know that the implemented 

sorting procedure is efficient for a list of almost sorted small number 

of elements. Also it can be noticed that for the sort phase only the 

best efficiency (speed-up) is obtained when we get a higher number of 

subsets and this is due to the fact that the processors are fully 

utilized and a better efficiency obtained. For the total speed-up 
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(i.e. for both sorting and distribution phases) we notice that it is not 

as good as the sorting phase only and this is due to the way in which 

the algorithm is implemented. In this implementation the distribution 

part is carried out sequentially, i.e. by one processor only and this 

will increase the total timing and decrease the total speed-up of the 

algorithm. Because the distribution time is the same for all the 

different number systems a high effectiveness will occur in the case 

when the number of the subsets is equal to 64 (base 8), i.e. in the 

case of the lowest time as shown in Table 6.13 where the efficiency of 

the processors dropped from 1.97698 to 1.77173, 2.96169 to 2.40274 and 

3.94388 to 2.92333 for 2,3 and 4 processors respectively. Therefore, 

for the total sorting time the best efficiency was achieved when the 

number of subsets is a multiple of the number of processors, where for 

2 and 4 processors the best efficiency is obtained when the number of 

subsets is equal to 4 and for 3 processors the number of subsets is 

equal to 26 gives the best efficiency. For the results in Table 6.14 
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i.e. the input data size equal to 2048), we notice that the same 

observations are obtained as that of input data size equal to 1024 with 

the exception that the best total speed-up obtained for 3 and 4 

processors when number of subsets is equal to 14 and 8 respectively. 

By comparing the results in Tables 6.13 and 6.14 we notice that a 

higher efficiency (speed-up factors) is obtained in the case of a higher 

input data aize (i.e. the speed-up results for the data size 2048 is 

better than that of data size 1024) and this agrees with the theoretical 

results (Maclaren [1966]). Generally, we can say that better speed-up 

results will be expected with a higher input data size. 

The experimental results of the version II parallel digit sort 

using input data size 1024 and 2048 are shown in Tables 6.15 and 6.16 

respectively. From these two tables it is clear that the total sorting 

time is decreased as the number of subsets is increased. This is due to 

the fact that the sorting procedure is efficient when the number of 

elements in each subset are small and almost sorted and this is what we 

get with the higher number of subsets. As in Version I, the best timing 

is obtained (the lowest sort time) when the number of subsets is equal 

to 64 which is obtained when the number system base is equal to 8. For 

the sorting part with input size 1024, the best speed-up (efficiency) 

is achieved when the number of subsets is equal to 26 when using 2 

processors and 64 subsets when using 3 and 4 processors. While for the 

total sorting time the best efficiency is obtained when the number of 

subsets is equal to 26 when using 2 and 3 processors and 4 subsets when 

using 2 processors. From the results in Table 6.16 where the input data 

size is 2048, we notice that for the sorting part only the best speed-up 

factors are obtained when number of subsets is equal to 64, 26 and 64 
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No. of Base No.of Sort Distribution Total Speed-up Total 
Processors Subset (sec. ) (sec. ) Time of Speed-

(sec.) Sorting up 

1 2 4 97.31 1.04 98.35 1.0 1.0 

2 50.77 1.04 51.81 1.91668 1.89828 

3 48.81 1.04 49.85 1.99365 1.97292 

4 25.61 1.04 26.65 3.79969 3.69043 

1 3 5 77 .01 1.04 78.05 1.0 1.0 

2 45.53 1.04 46.57 1.69141 1.67597 

3 31.27 1.04 32.31 2.46274 2.41566 

4 30.16 1.04 31.20 2.55338 2.50160 

1 4 8 48.70 1.04 49.74 1.0 1.0 

2 25.63 1.04 26.67 1.90012 1.86502 

3 18.90 1.04 19.94 2.57672 2.49448 

4 13 .58 1.04 14.62 3.58616 3.40219 

1 5 11 35.49 1.04 36.53 1.0 1.0 

2 18.36 1.04 19.40 1.93301 1.88299 

3 14.21 1.04 15.25 2.49754 2.39541 

4 10.93 1.04 11.97 3.24703 3.05180 

1 6 26 15.63 1.04 16.67 1.0 1.0 

2 7.95 1.04 8.99 1.96604 1.85428 

3 5.44 1.04 6.48 2.87316 2.57253 

4 4.25 1.04 5.29 3.67765 3.15123 

1 7 14 27.77 1.04 28.81 1.0 1.0 

2 14.81 1.04 15.85 1.87508 1.81767 

3 10.22 1.04 11.26 2.71722 2.55861 

4 8.21 1.04 9.25 3.38246 3.11459 

1 8 64 7.73 1.04 8.77 1.0 1.0 

2 3.91 1.04 4.95 1.97698 1.77172 

3 2.61 1.04 3.65 2.96169 2.40274 

4 1.96 1.04 3.00 3.94388 2.92333 

TABLE 6.13: The timing results obtained from the implementation of the 
Version I parallel digit sort using data size equal to 1024. 



No. of Base No.of Sort Distribution Total Speed-up Total 
Processors Subset (sec. ) (sec. ) Time of Speed-

(sec.) Sorting up 

1 2 4 391.55 2.03 393.58 1.0 1.0 

2 201.13 2.03 203.16 1. 94675 1.93729 

3 189.49 2.03 191.52 2.06634 2.05503 

4 103.01 2.03 105.04 3.80109 3.74695 

1 3 5 312.40 2.03 314.43 1.0 1.0 

2 182.93 2.03 184.96 1.70776 1.69999 

3 126.12 2.03 128.15 2.47701 2.45361 

4 121.09 2.03 123.12 2.57990 2.55385 

1 4 8 192.86 2.03 194.89 1.0 1.0 

2 98.73 2.03 100.76 i. 95 341 1.93420 

3 74.75 2.03 76.78 2.58007 2.53829 

4 49.78 2.03 51.81 3.87425 3.76163 

1 5 11 143.06 2.03 145.09 1.Q 1.0 

2 73.20 2.03 75.23 1. 95437 1.92862 

3 54.90 2.03 56.93 2.60583 2.54857 

4 40.54 2.03 42.57 3.52886 3.40827 

1 6 26 60.40 2.03 62.43 1.0 1.0 

2 30.53 2.03 32.56 1.97838 1. 91738 

3 20.55 2.03 22.58 2.93917 2.76484 

4 16.39 2.03 18.42 3.68517 3.38925 

1 7 14 111.19 2.03 113.22 1.0 1.0 

2 58.40 2.03 60.43 1.90394 1.87357 

3 38.54 2.03 40.57 2.88505 2.79073 

4 32.85 2.03 34.88 3.38478 3.44658 

1 8 64 , 27.29 2.03 29.32 1.0 1.0 

2 13.72 2.03 15.75 1.98907 1.86159 

3 9.20 2.03 11.23 2.96630 2.61086 

4 6.90 2.03 8.93 3.95507 3.28700 

TABLE 6.14: The timing results obtained from the 'implementation of the 
Version I parallel digit sort using data size equal to 2048. 
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when using 2,3 and 4 processors respectively. While for the total 

sorting time the best efficiency (speed-up) is achieved when the 
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number of subsets is equal to 26,64 and 8 when using 2,3 and 4 processors 

respectively. It is noticed that the efficiency (speed-up) of the 

distribution part is not as good as that of the sorting part and this 

will affect the overall efficiency of the algorithm. The reason for 

this is the update of matrix "A" and the links between the lists and 

sublists are performed within a critical section (by using the $ENTER 

and $EXIT constructs). This means only one processor can carry out the 

updating while the rest of the processors are idle, which greatly 

affects the performance of the algorithm. From the experimental results 

in Tables 6.15 and 6.16 we also notice that a better efficiency (speed

up) is achieved for a higher input data size, i.e. the speed-up obtained 

from using data size 2048 (Table 6.16) is better than that of using data 

s~ze 1024 (Table 6.1 ) and this is confirmed by the results in parallel 

Version I. 

In Version II the usage of the critical section in the distribution 

part has a significant delay that causes a higher running time and a low 

speed-up is obtained since the overheads for the critical section accesses 

are much more than the parallelism gain in the algorithm. In order to M~~~ 

c16l ... the. amount of degradation that is caused by the usage of the 

critical section we need to know the time spent to access the critical 

section made by the algorithm and also the time that the processors 

spent on waiting for each other because the critical section is being 

used by another processor. However, in the NEPTUNE system the time 

required to access a critical section (i.e. the $ENTER/$EXIT construct) 

is -800~econds and the cycle time while waiting to enter a critical 
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section is 1080 ~econds. In our implementation there is one access to 

the critical section for each element in the input data set. Therefore 

to sort N elements the algorithm needs N accesses to the critical 

section. Besides the time spent in the critical section, there is a 

waiting time by the processor to enter a critical section. Thus, 

and 

the time spent in the critical section = number of accesses to the 

section x 800 ~, 

the time spent for waiting cycles to access critical section = 

number of waiting cycles 

x 1080 ~. 

For Version 11 of the parallel digit sort algorithm the total times 

caused by the usage of critical section are shown in Table 6.17.' It is 

noticed that the time lost while using an input data size 2048 is 

greater than that from using 1024. This is due to the fact that for 

each element in the input data set one access to the critical section 

is needed. Besides the critical section time lost, Table 6.17 shows 

the performance analysis of the parallel digit sort algorithms with both 

the shared data (500) and parallel control overheads (PCO) are 

calculated (see Chapter 4). From the results in Table 6.17 we can 

notice that the speed-up factors of the parallel version 11 method is 

better than that of the parallel Version I method and the amount of 

overheads in the parallel Version 11 method is less than that of the 

parallel Version I method. So we can conclude that generally the parallel 

digit method Version 11 is more suitable for the MIMD parallel type 

machine than that of Version I. 



Base Subsets No.of No.of Sorting 
Paths Processors (sec. ) 

2 4 1 1 97.31 
2 1 97.34 

2 50.73 
3 1 97.34 

2 50.77 
3 48.78 

4 1 97.31 
2 50.75 
3 48.76 
4 25.61 

3 5 1 1 76.96 
2 1 77 .02 

2 45.59 
3 1 77 .03 

2 45.64 
3 31.34 

4 1 77.16 
2 45.61 
3 31.34 
4 30.170 

4 8 1 1 48.70 
2 1 48.73 

2 25.71 
3 1 48.66 

2 25.69 
3 18.68 

4 1 48.70 
2 25.70 
3 18.67 
4 13.67 

Distribution Total Time 
(sec.) (sec. ) 

1.84 99.15 
1.84 99.28 
0.96 51.69 
1.84 99.18 
1.23 52.00 
1.00 49.78 
1.83 99.14 
0.95 51.60 
1.20 49.96 
0.95 26.56 

1.84 78.80 
1.84 78.86 
0.94 46.53 
1.84 78.87 
1.24 46.88 
0.98 32.32 
1.84 79.00 
0.94 46.55 
1.21 32.55 
0.99 31.16 

1.84 50.54 
1.84 50.57 
0.96 26.67 
1.84 50.50 
1.25 26.94 
0.99 19.67 
1.84 50.54 
0.96 26.66 
1.22 19.89 
0.98 14.65 

TABLE 6.15 (A) 

Speed-up Speed-up 
for Sorting for Distribution 

1.91879 1.91667 

1.91727 1.49593 
1.99549 1.84000 

1.91744 1.92632 
1.92132 1.99569 
3.79969 1.92632 

1.68941 1.95745 

1.68777 1.48387 
2.45788 1.87755 

1.69173 1.95745 
2.46203 1.52066 
2.66751 1.85859 

1.89537 1.91667 

1.89412 1.47200 
2.60493 1.85859 

1.89494 1.91667 
2.60846 1.50820 
3.56255 1.87755 

Total 
Speed-up 

1.92068 

1.90731 
1.99237 

1.92132 
1.52500 
3.73268 

1.69482 

1.68238 
2.44028 

1.69710 
2.42704 
2.53530 

1.89614 

1.87454 
2.56736 

1.89572 
2.54098 
3.44983 

... 
lJ1 
W 



Base Subsets No.of No.of Sorting Distribution 
Paths Processors (sec.) (sec. ) 

5 11 1 1 35.49 1.84 
2 1 35.47 1.84 

2 18.32 0.95 
3 1 35.46 1.84 

2 18.33 1.25 
3 14.18 1.00 

4 1 35.47 1.84 
2 18.28 0.95 
3 14.13 1.19 
4 10.84 0.95 

6 26 1 1 15.57 1.84 
2 1 15.60 1.84 

2 7.89 0.95 
3 1 15.60 1.84 

2 7.87 1.26 
3 5.42 1.00 

4 1 15.56 1.84 
2 7.87 0.96 
3 5.42 1.22 
4 4.24 1.01 

7 14 1 1 27.80 1.83 
2 1 27.81 1.84 

2 14.82 0.96 
3 1 27.88 1.84 

2 14.83 1.26 
3 10.23 1.00 

4 1 27.83 1.84 
2 14.80 0.97 
3 10.20 1.24 
4 8.16 0.95 

TABLE 6.15 (B) 

Total Time Speed-up 
(sec. ) for Sorting 

37.33 
37.31 
19.27 1.93614 
37.30 
19.58 1.93453 
15.18 2.50071 
37.31 
19.23 1.94037 
15.32 2.51026 
11.79 3.27214 

17.41 
16.44 
8.84 1.97719 

17.44 
9.13 1.98221 
6.42 2.87823 

17.40 
8.83 1.97713 
6.64 2.87085 
5.25 3.66981 

29.63 
29.65 
15.78 1.87652 
29.72 
16.09 1.87997 
11.23 2.71848 
29.67 
15.77 1.88041 
11.44 2.72843 
9.11 3.41054 

Speed-up 
for Distribution 

1.93684 

1.47200 
1.84000 

1.93684 
1.54622 
1.93684 

1.93684 

1.46032 
1.84000 

1.91667 
1.50820 
1.82178 

1.91667 

1.46032 
1.84000 

1.89691 
1.48387 
1.93684 

Total 
Speed~up 

1.93617 

1.90501 
2.45718 

1.94020 
2.43538 
3.16455 

1.85973 

1.91019 
2.71651 

1.96833 
2.62048 
3.31429 

1.87896 

1.84711 
2.64648 

1.88142 
2.59353 
3.25686 

... 
'" o 



Base Subsets No.of No.of Sorting Distribution Total Time Speed-up Speed-up 
Paths Processors (sec. ) (sec. ) . (sec. ) for Sorting for Distribution 

8 64 1 1 7.71 1.83 9.54 
2 1 7.70 1.83 9.53 

2 3.91 0.97 4.88 1.96931 1.88660 
3 1 7.72 1.84 9.56 

2 3.93 1.24 5.17 1.96438 1.48387 
3 2.63 1.00 3.63 2.93536 1.84000 

4 1 7.74 1.84 9.58 
2 3.92 0.95 4.87 1.97449 1.93684 
3 2.63 1.20 3.83 2.94297 1. 53333 
4 1.98 0.92 2.90 3.90909 2.00000 

TABLE 6.15(C): The timing results obtained from the implementation of the Version 11 parallel digit 
sort using data aize equal to 1024. 

Total 
Speed-up 

1.95287 

1.84913 
2.63361 

1.96715 
2.50131 
3.30345 



Base Subsets No.of No.of Sorting Distr ibu tion 
Paths Processors (sec.) (sec. ) 

2 4 1 1 390.96 3.17 
2 1 390.64 3.17 

2 201.43 1.89 
3 1 390.90 3.17 

2 200.93 2.32 
3 189.87 2.02 

4 1 390.72 3.17 
2 201.05 1.99 
3 189.90 2.33 
4 102.82 1.77 

3 5 1 1 312.16 3.17 
2 1 312.26 3.17 

2 182.96 1.93 
3 1 311.40 3.17 

2 182.96 2.31 
3 125.90 2.01 

4 1 311.65 3.17 
2 183.03 1.99 
3 126.17 2.30 
4 121.52 1. 75 

4 8 1 1 192.64 3.16 
2 1 192.59 3.17 

2 98.75 1.92 
3 1 192.78 3.17 

2 98.72 2.36 
3 73.86 2.00 

4 1 192.84 3.18 
2 98.68 1.86 
3 73.88 2.32 
4 49.92 1.72 

TABLE 6.16(A) 

Total Time Speed-up 
(sec.) for Sorting 

394.13 
393.81 
203.32 1.93933 
394.07 
203.25 1. 94545 
191.89 2.05878 
393.89 
203.04 1.94340 
192.23 2.05750 
104.59 3.80004 

315.33 
315.43 
184.89 1. 70671 
314.57 
185.27 1. 70201 
127.91 2.47339 
314.82 
185.02 1. 70273 
128.47 2.47008 
123.27 2.56460 

195.80 
195.76 
100.67 1.95028 
195.95 
101.08 1.95280 

75.86 2.61007 
196.02 
100.54 1.95420 

76.20 2.61018 
51.64 3.86298 

Speed-up 
for Distribution 

1.67725 

1.36638 
1.56931 

1.59296 
1.36052 
1.79096 

1.64249 

1.37229 
1.57711 

1. 59296 
1.37826 
1.81143 

1.65104 

1. 34322 
1.58500 

1.70968 
1.37069 
1.84884 

Total 
Speed-up 

1.93690 

1.93884 
2.05362 

1.93996 
2.04906 
3.76604 

1. 70604 

1.69790 
2.45931 

1. 70155 
2.45053 
2.55391 

1.94457 

1.93856 
2.58305 

1.94967 
2.57244 
3.79589 

01> 

'" N 



Base Subsets No.of No.of Sorting Distribution Total Time Speed-up Speed-up Total 
Paths Processors (sec.) (sec. ) (sec. ) for Sorting for Distribution Speed-up 

5 11 1 1 143.33 3.18 146.51 
2 1 143.08 3.18 146.26 

2 73.46 1.81 75.27 1.94773 1.75691 1.94314 
3 1 142.93 3.18 146.11 

2 73.37 2.36 75.73 1.94807 1.34746 1.92935 
3 54.96 2.01 56.97 2.60062 1.58209 2.56468 

4 1 142.92 3.18 146.10 
2 73.39 1.91 75.30 1.94740 1.63918 1.94024 
3 54.95 2.31 57.26 2.60091 1.37662 2.55152 
4 40.56 1. 74 42.30 3.52367 1.82759 3.45390 

6 26 1 1 60.59 3.15 63.74 
2 1 60.64 3.17 63.81 

2 30.47 1.93 32.40 1.99015 1.64249 1.96944 

3 1 60.62 3.17 63.79 
2 30.5 2.32 32.82 1.98754 1.36638 1.94363 
3 20.56 2.00 22.56 2.94844 1.58500 2.82757 

4 1 60.59 3.17 63.76 
2 30.40 1.89 32.29 1.99309 1.67725 1.97461 
3 20.53 2.70 23.23 2.95129 1.17407 2.74473 
4 16.41 1. 79 18.20 3.69226 1. 77095 3.50330 

7 14 1 1 111.40 3.18 114.58 
2 1 111.46 3.18 114.64 

2 58.45 1.93 60.38 1.90693 1.64767 1.89864 

3 1 111.09 3.17 114.26 
2 58.41 2.34 60.75 1.90190 1.35470 1.88082 

3 38.54 2.01 40.55 2.88246 1.57711 2.81776 

4 1 111.07 3.17 114.24 
2 58.40 1.87 60.27 1.90188 1.69519 1.89547 

3 38.55 2.29 40.84 2.88119 1.38428 2.79726 

4 32.47 1. 76 34.23 3.42070 1.80114 3.33742 

TABLE 6.16 (B) 



Base 

8 

Subsets No.of No.of Sorting Distribution Total Time Speed-up Speed-up 
Paths Processors (sec. ) (sec. ) (sec. ) for Sorting for Distribution 

64 1 1 27.20 3.17 30.37 
2 1 27.26 3.18 30.44 

2 13.83 1.86 14.69 1.97108 1.70968 
3 1 27.25 3.18 30.43 

2 13.84 2.25 16.09 1.96893 1.41333 
3 2.28 2.01 11.29 2.93642 1.58209 

4 1 27.50 3.19 30.69 
2 13.76 1.82 15.58 1.99855 1. 75275 
3 9.33 2.30 11.63 2.94748 1.38696 
4 6.95 1. 76 8.71 3.95683 1.81250 

TABLE 6.16(C): The timing results obtained from the implementation of the Version II 
parallel digit sort using data size equal to 2048. 

Total 
Speed-up 

2.07216 

1.89124 
2.69531 

1.96983 
2.63887 
3.52354 



Parallel Paths in Critical 

Program 
No.of Total Time Speed-up 

pistribution 
Processors (sec. ) Sort SDO PCO waiting 

Part Part Cycles 

Version 1 1 8.77 1.0 67 2 1.14% 1.28% -
(size 1024) 2 4.95 1. 77172 32,36 2,1 -

3 3.65 2.40274 25,19, 2,1,1 -
25 

4 3.00 2.92333 19,16, 2,1,1,1 -
16,19 

Version 1 1 29.32 1.0 67 2 1.10% 0.99% -
(size 2048) 2 15.75 1.86159 36,32 2,1 -

3 11.23 2.61086 25,23, 2,1,1 -
21 

4 8.93 3.28700 19,16, 2,1,1,1 -
18,17 

Version 11 1 9.58 1.0 67 7 1.02% 1.06% 0 
(size 1024) 2 4.87 1.96715 32,36 5,3 30,31 
(4 paths) 3 3.83 2.50131 25,19, 5,2,2 307,303, 

25 297 
4 2.90 3.30345 19,17, 4,2,2,2 454,458, 

17,17 465,458 

Version 11 1 30.69 1.0 67 7 0.93% 0.82% 0 
(size 2048) 2 15.58 1.96983 36,32 5,3 359,379 
(4 paths) 3 11.63 2.63887 25,23, 5,2,2 711,708, 

21 699 
4 8.71 3.52354 18,16, 4,2,2,2 924,919, 

19,17 919,918 

TABLE 6.17: Performance analysis of the parallel digit sort algorithms 

Section 

No. of 
Accesses 

-
-
-

-

-
-
-

-

1024 
512,512 
512,256, 

256 
256,256, 
256,256 

2048 
1024,1024 
1024,512, 

512 
512,512, 
512,512 

!'rotal 
~ritical 
section Time 

(sec. ) 

0.82 
0.85 
0.74 

0.70 

1.64 
1.23 
1.59 

1.41 

... 
'" U1 
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6.3 THE SEARCHING ALGORITHMS 

Searching might be called the storage and retrieval of 

information, or it might simply be called table-lookup. By searching, 

one usually means the operation of locating a specific item in a given 

sequence of N items, i.e. to find the data that has been stored with a 

given identification. In general, we shall suppose that a set of N 

records has been stored, and the problem is to locate the appropriate 

one. Algorithms for searching are presented with a so-called argument 

K, and the problem is to locate which record has K as its key. After 

the search is complete, two possibilities can arise: 

Either the search was successful, having located the unique 

record containing K, or it was unsuccessful, having determined that K 

is nowhere to be found. 

Searching is the most time-consuming part of many programs, and 

the substitution of a good search method for a bad one often leads to 

a substantial increase in speed. It is often possible to arrange the J 
/ 

data or the data structure so that the searching process can be 

eliminated entirely. 

For one-dimensional search problems a lower bound of logN for 

searching a record amongst a set of N records has been established. 

In this section, two sequential search algorithms are implemented 

in parallel, these algorithms are the basic sequential search and the 

\ 
~L 

well known binary search. The experimental results of these two parallel 

algorithms are presented and analysed beside its performance analysis. 

Given a table of records R
l

,R2 , ••• ,R
N 

whose respective keys are 

Kl'~""'~' Given an argument K, the search consists of a comparison 

between the argument K and the key field (K
i

) associated with each 



record R
l

,R
2

, ••• ,R
N

, and action is taken based upon the result of 

comparisons; the search succeeds when K.=K, for i=1,2, ••• ,N. 
1. 
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without prior knowledge about the records, they must be assumed 

to be unordered, uniformly probable, and uniformly accessible. In this 

simple case, each access permits the examination of a single record, 

1 so that N of the possibilities can be eliminated with each access. If 

there are P processors, then P accesses per cycle are permitted in 

parallel. 
P In this case - of the candidate items can be examined each 
N 

cycle, including the single processor as a special case (P=l). 

6.3.1 Sequential Search (Unordered Table) (Knuth, 1973) 

If the data is not ordered, then there are no preferred places to 

look for them. This means that in order to locate the target item K 

in a field of similar items an exhaustive procedure must be used. 

Given a table of records R
l

,R2 , .•• ,R
N 

whose respective keys are 

Kl'~""'~ this algorithm searches for a given argument K. We assume 

that N~l. 

(1) (Initialize) Set i=l, and set ~+l=K, 

(2 ) (Compare) If K=K. , go to step (4) , 
1. 

(3) (Advance) Increase i by 1, and return to step (2) , 

(4) (End of file) If i~N, the algorithm terminates successfully, 

otherwise it terminates unsuccessfully (i=N+l). 

In this algorithm a dummy record ~+l is used at the end of the 

file. If every input key occurs with equal probability, the average 

value of the number of key comparisons (C) in a successful search will 

be: 
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C 
1+2+ •.. +N 

= N 

= 
N(N+l)/2 

N 

= !(N+l) (6.3.1) 

While for an unsuccessful search the number of comparisons will be 

equal to, 

C = N . (6.3.2) 

Parallel Sequential Search 

The sequential search algorithm has been implemented in parallel 

where P parallel processors co-operate to search the whole list of 

numbers to locate a record with the required key. The implementation 

of the sequential search on the NEPTUNE system was carried out as 

follows :-

The input data set of N elements is partitioned into M subsets 

of size (*) each, so that the 

the first subset and the next 

first (*) elements are allocated into 

(~) elements into the second subset and 
M 

so on. We assume that M~P, where P is the number of the available 

processors. Each subset is searched independently of the other sub-

sets. The search is carried out in exactly the same manner as in the 

sequential form which was described in the algorithm. A flag is set 

up when the searched key is found in any of the subsets to prevent 

the remaining subsets to continue their search. When M>P, a processor 

may execute one or more subsets that are kept in a queue, where each P 

subsets can be carried out in parallel (i.e., at the same time). The 

searching procedure is complete when the target item is found (i.e., 

the search successful) or when all the subsets have been searched (i.e., 

the search unsuccessful) • 
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The parallel implementation of the sequential search algorithm 

on the NEPTUNE system is programmed in Program (6.7) and the 

experimental results obtained from that implementation are shown in 

Tables 6.18 a,b,c and d. These results are obtained for the input 

data size (N) equal to 9216 using different subsets (M) where the 

search is carried out for different keys. The searched keys are 

located within the input set of elements in different positions where 

the keys in Tables 6.18 a,b,c are in locations 2500, 5000, 7500 

respectively. While the results in Table 6.l8d are obtained when the 

search key is not in the input file, i.e. all the elements within the 

input file need to be searched. 

From these results we notice that when one processor has been 

used the search time is increased as the number of subgroups (M) is 

increased. This is due to the overheads incurred from the creation 

of more parallel paths. While when using more than one processor the 

optimum (lowest) search time needed depends on the number of subgroups 

(M) used. For example, to search for the key 0.97599792, the lowest 

time obtained when the input data set (N) is partitioned into 16,32 

and 64 subsets using 2, 3 and 4 processors, respectively. This is 

due to the way in which the parallel implementation is carried out 

and the usage of the "FLAG" to prevent other processors from continuing 

their search when the search key is found in any subset, so the search 

time is dependent on the location of the key within each subset. For 

the speed-up results, we can generally say that the best results are 

obtained when the number of subsets (M) is the one that gives the 

optimal search time and this is because at that value of M the co

operative processors are fully utilized. 



Processors 
No.of 

1 
SUbset 

2 3 4 

(M) Time Total Time Total 
Speed-up 

Time Total 
~peed-up 

Time Total 
Speed-up (sec) Paths (sec) Paths (sec) Paths (sec) Paths 

4 1.51 7 1.43 4,4 1.06 1.45 4,2,3 1.04 1.45 4,2,2,2 1.04 

8 1.52 11 1.46 9,3 1.04 0.74 4,7,2 2.05 0.75 4,2,2,6 2.03 

16 1.53 19 1.1 16,4 1.39 0.75 5,13,3 2.04 0.75 13,3,3,3 2.04 

32 1.54 35 0.92 30,6 1.67 0.56 6,4,27 2,75 0.56 26,4,4,4 2.75 

64 1.57 67 0.82 12,56 1.92 0.56 9,7,53 2.80 0.47 8,6,29, 3.34 
27 

128 1.64 131 0.88 69,63 1.86 0.62 32,51, 2.65 0.49 24,45, 3.35 
50 21,44 

256 1. 75 259 0.99 133, 1. 77 0.72 84,80, 2.43 0.59 61,66, 2.97 
127 97 64,71 

512 1.99 515 1.21 265, 1.65 0.93 170,174 2.14 0.76 129,131. 2.62 
251 173 129,129 

(a) Results obtained when the search key ~ 0.61517334 



Processors 
No.of 1 
Subset 

2 3 4 

(M) Time Total Time Total 
Speed-up Time Total 

Speed-up Time Total 
Speed-up (sec) Paths (sec) Paths (sec) Paths (sec) Paths 

4 3.03 7 2.86 5,3 1.06 1.44 4,3,2 2.1 1.45 4,2,2,2 2.09 
8 3.04 11 1.64 6,6 1.85 1.42 5,3,5 2.14 1.45 5,3,3,3 2.1 

16 3.04 19 1.81 14,6 1.68 1.09 6,11,4 2.79 1.09 6,8,4,4 2.79 
32 3.05 35 1.61 12,24 1.89 1.1 9,21,7 2.77 0.92 20,6,6,6 3.32 
64 3.09 67 1.64 49,19 1.88 1.1 15,13, 2.81 0.84 12,10,38, 3.68 

41 10 

128 3.15 131 1.65 80,52 1.91 1.12 33,48, 2.81 0.88 32,28,27, 3.58 
52 47 

256 3.28 259 1.72 121, 1.91 1.19 90,88, 2.76 0.94 68,71,62, 3.49 
139 83 61 

512 3.54 515 1.90 254, 1.86 1.35 172,178, 2.62 1.08 131,128, 3.28 
262 167 132,127 

(b) Results obtained when the search key = 0.97599792 



Processors 
No.of 1 2 3 4 subset 

(M) Time Total Time Total 
Speed-up Time Total 

Speed-up Time Total 
Speed-up (sec) Paths (sec) Paths (sec) Paths (sec) Paths 

4 4.57 7 2.85 5,3 1.6 1. 76 5,2,2 2.6 1.45 4,2,2,2 3.15 
I 

8 4.58 11 2.89 7,5 1.59 2.16 6,4,3 2.12 1.45 5,3,3,3 3.16 
16 4.59 19 2.54 12,8 1.81 1.81 9,6,6 2.54 1.46 7,5,5,5 3.14 
32 4.6 35 2.39 18,8 1.93 1.64 12,10, 2.81 1.28 10,8,8, 3.59 

15 12 
64 4.64 67 2.41 35,33 1.93 1.65 31,19, 2.81 1.19 17,14, 3.9 

19 24,15 
128 4.71 131 2.39 67,65 1.97 1.63 46,36, 2.89 1.22 34,41, 3.86 

51 28,31 
256 4.84 259 2.48 140,120 1.95 1.68 90,93, 2.88 1.28 64,71, 3.78 

I 78 64,63 
512 5.11 515 2.63 256,260 1.94 1. 79 180, 2.86 1.38 131,13q 3.70 

168,169 126,131 

(c) Results obtained when the search key = 0.52330017 



Processors 
No.of 

1 2 3 4 Subset 
(M) Time Total Time Total 

!speed-up 
Time Total 

Speed-up Time Total 
(sec) Paths (sec) Paths (sec) Paths (sec) Paths Speed-up 

4 5.63 7 2.87 5,3 1.96 2.83 5,2,2 1.99 1.45 4,2,2,2 3.88 
8 5.64 11 2.87 7,5 1.97 2.15 6, 3,4 2.62 1.46 5,3,3,3 3.86 

16 5.65 19 2.87 11,9 1.97 2.13 9,6,6 2.65 1.45 7,5,5,5 3.89 
32 5.66 35 2.88 19,17 1.97 1.98 14,11, 2.86 1.45 11,9,9, 3.9 

12 9 
64 5.7 67 2.90 35,33 1.97 1.97 25,22, 2.89 1.46 19,17, 3.9 

22 17,17 
128 5.77 131 2.93 67,65 1.97 1.97 46,44, 2.93 1.48 35,33, 3.9 

43 33,33 
256 5.91 259 2.99 131,129 1.98 1.99 89,86, 2.97 1.51 67,65, 3.91 

86 65,65 
512 6.91 515 3.12 259,257 1.98 2.08 175,171. 2.98 1.58 132,128, 3.92 

171 128,130 

(d) Results obtained when the search key ~ 0.99998877 

TABLE 6.18: The experimental timing results with the total number of parallel paths run 
by each processor obtained from searching an input data file of size 9216 elements. 
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From the results on Tables (6.18) the optimal search time for 

each key using different processors are tabulated in Table (6.19). 

From these results it is clear that there is a relation between the 

key position within the input list and the speed-up factors obtained. 

~en the key is positioned at the end of the list, then clearly all P 

processors are actively engaged in searching the list and the speed-up 

figures obtained reflect this. The deviation from P measures the 

amount of overheads incurred in path conflicts (see Table 6.18d) • 

When the key is positioned at the beginning of the list then clearly 

the speed-up figures obtained reflect the amount of searching to be 

done (i.e. there is not sufficient work involved for all 4 processors 

to be fully utilised or engaged) (see Table 6.18a). Intermediate key 

positions suggest that results in between these two extremes will be 

obtained and is entirely dependent on the position of the key in the 

list to be searched as to whether all the processors can be made active. 

Processors 

Key 1 2 3 4 

Time Time Speed-up Time Speed-up Time Speed-up 

0.61517334 1.51 0.82 1.84 0.56 2.70 0.47 3.21 

0.97599792 3.03 1.61 1.88 1.10 2.76 0.84 3.61 

0.5233017 4.57 2.39 1.91 1.63 2.80 1.19 3.84 

0.99998877 5.63 2.87 1.96 1.97 2.86 1.45 3.88 

TABLE 6.19: The optimum timing results with its speed-up factors 

Now we consider the total complexity of the sequential search 

algorithm when it is run on one processor (sequential machine) and when 

it is run on a P processor system (parallel machine). Knuth [1973] 
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shows that if every input key occurs with equal probability, the 

average value of the number of key comparisons C in a successful and 

an unsucessful search are shown in equations (6.3.1) and (6.3.2) 

respectively and these are, 

C = { 
N if the search is unsuccessful 

t (N+l) if the search is successful 

However for a successful search, in our parallel implementation of the 

sequential search, the input to be searched is partitioned into M 

subsets or paths with N divisible by M and M3P (where P=number of 

available processors), then in each subset N/M elements are stored. 

So, if the paths are carried out on one processor, then by applying 

equation (6.3.1) above in each subset there will be an average 

Cl=t(M+l) comparisons. And for all the M subsets the same idea is 

used, and hence, the total number of comparisons 

= Cl (1+2+3+ ••. +M) 

= tM(M+l),C
l 

(6.3.3) 

so the average number of comparisons in all the M subsets, will be 

C
ls 

= t(M+l)C
l 

N 
= t (M+l) (t (M" +1)) 

= 4~(M+l) (N+M) • (6.3.4) 

Meanwhile, when the algorithm is run in parallel with P processors, 

rMl Ipl paths have to be carried out by each processor. Thus, 

C = rMl [4~ (M+l) (N+M) 1 ps Ipl 

~ 
lMN --+ 
4 P 

1 M2 1 N 
--+--4 P 4 P 

1 M +--+ 
4 P 1 . (6.3.5) 

Since we are interested in determining how much more efficient the 
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algorithm is when it is applied to a parallel computer, therefore we 

measure the speed-up ratio S (M) for the sequential search with M ps 

subsets. Thus, 

S ps 

Cls 
= --Cps 

2 
• 4(MN+M +N+M)P 

2 
4M(MN+M +N+M+4P) 

2 2 3 3 2 
• (MN+M +M N+M +4PM-4PM-M -M N+M+N) 

P 2 3 2 
M N+M +MN+M +4PM 

3 2 
: P [1- (4;M+M3 +M N-~-N ) 1 

M N+M +MN+M +4PM 

S :: O(P) 
ps 

While in an unsuccessful search, the corresponding values are, 

N 
Cls = M(-) = N , M 

and 
C = I~l (*) ps 

~ !!.+ 1 . P 

S 
C
ls 

= --ps C ps 
Thus, 

- N -
~l 

: N 
P(N+P) 

= P P(l- -) 
N+P 

: 1 P(l- -) 
~l 
P 

S : O(P) 
ps 

(6.3.6) 

(6.3.7) 

(6.3.8) 

(6.3.9) 

It can be easily noticed that from equation (6.3.9) the linear speed-

up is easily achieved, especially for large N and this is what we 
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obtain from the experimental results because the whole list is searched 

and the processors are fully utilized where a linear speed-up is 

achieved. 

For a further performance analysis of the parallel sequential 

search and with reference to Chapter 4, Table (6.20) shows the resource 

demands required when the mean rate of access to shared data and 

parallel paths are represented besides the parallel control overheads 

(PCO) and shared data overheads (SDO) are calculated. Both SDO and 

PCO are calculated when the algorithm was run on the NEPTUNE system 

when the search key was equal to 0.99998877 (Table 6.18d). From the 

results in Table (6.20) we notice that the parallel control overheads 

are increased as the number of parallel paths (subsets) are increased 

and this is what we get generally from both the experimental and the 

expected demands. Also these overheads show the reasons why the speed

up obtained for the parallel implementation (Table 6.19) are not of O(P) . 

To conclude this section, the sequential search algorithm is 

time consuming when run on a sequential machine (especially for large 

input size of data). However we find its parallel implementation on 

an MIMD type machine is good and this is clear from the results shown 

in Table (6.19) where all the processors are fully utilized and an 

acceptable speed-up factor is obtained. 

The results in Table (6.19) are diagrammatically represented in 

Figure 6.6 where a linear speed-up is obtained. 
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The speed-up results obtained from the parallel sequential search 
algorithm using the data in Table 6.19 
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Input No.of Performance Resource Demands size Subsets Measurement 
(N) (M) Parallel Path Shared Data 

peo SDO Access rate Overheads Access rate OVerheads 

0.355% N 0.006% (6: 10) 9216 4 0.355% 1: (13*"M) 

flops flops 

8 0.401% 0.355% 0.011% 

16 0.531% 0.531% 0.022% 

32 0.707% 0.353% 0.045% 

64 1. 228% 0.526% 0.089% 

128 2.08% 0.520% 0.178% 

256 4.061% 0.338% 0.356% 

512 7.431 % 0.323% 0.712% 

TABLE 6.20: Performance measurement and resource demands of the 
parallel sequential search algorithm. 

6.3.2 Binary Search 

If the input data is stored with some prescribed order then 

another method may be used to search for a specific key (K) known as 

0.063% 

the binary search method. The previous sequential search is essentially 

limited to a two-way decision (K=K, vs. K/K,), while in the binary 
1 1 

search method the search continues in three different ways, depending 

on whether K<K" K=K, or K>K,. Hence we start comparing K with the 
1 1 1 

middle key in the table (the input data set); the result of this probe 

tells us which half of the table should be searched next, and the same 

procedure can be used again, comparing K to the middle key of the 

selected half, etc. After (log N) comparisons, we will have found the 

key or we will have established that it is not present. 
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Sequential Binary Search Algorithm (Knuth, 1973) 

Given a table of records Rl ,R
2

, .•• ,R
N 

whose keys are in increasing 

order K
l

<K
2

< •.. <K
N

, this algorithm searches for a given argument K. 

as follows: 

(1) (Initialize) set R.=l, u=N. 

(2) (Obtain mid-point) 

If u<R., the algorithm terminates unsuccessfully, otherwise, set 

i=L(R.+u) j2J, the approximate midpoint of the relevant table area. 

(3) (Compare) If K<K. , 
1. 

goto step (4 ) 

If K>K. , goto step (5) 
1. 

If K=K. , 
1. 

the algorithm terminates successfully. 

(4 ) (Adjust u) Set u=i-l, goto step (2) • 

(5) (Adjust R.) set R.=i+l, goto step (2). 

To make the binary search algorithm more clear, we can represent 

the binary search algorithm as a binary decision tree as shown in 

Figure 6.7. For the case N=16, the first comparison made by the 

algorithm is K:K
S

; this is represented by the root node (§) in the 

Figure 6.7. Then, if K<K
8

, the algorithm follows the left subtree, 

comparing K to K4 , etc; Similarly if K>K
S

' the right subtree is used. 

An unsuccessful search will lead to one of the "external" square node 

numbered @] through ~; for example, we reach node 0 if and only if 

K6<K<K7' 

Knuth [1973] and Baase [197S] shows that the number of comparisons 

(C) don~ by the binary search algorithm, in the worst case, for a list 

of N entries, is, 

C = Llog NJ +1 , (6.3.10) 

for N~l. 
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FIGURE 6.7: A binary decision tree for N=16 

Parallel Binary Search 

Consider the effects of using more than one independent 

processor (searcher) to occupy the actual or potential nodes of a 

binary search. In the binary search algorithm which half of the table 

to look at next is the output of one level of the algorithm's operation. 

If two processors are available, two cells can be examined at once; 

half the time the second processor will have provided valuable look

ahead information, half the time its efforts will have been squandered 

in the wrong direction. 

Another way to use the processors available might be to use them 

at each step to subdivide the input by more than !; i.e., to change 
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the binary search to a ternary one, i.e. 3 etc. This leads to the 

multisection algorithm. 

A third way is to partition the input to be searched into a number 

of subgroups then apply the sequential binary search within each 

partition and a broadcast is sent if the target item is found in any 

one of the subgroups. The number of partitions may be greater than or 

equal to number of available processors. 

The third method has been implemented practically, because we 

overcome the disadvantage of the first method by broadcasting the 

result if the target item has been found in any partition and no 

further search will be needed. In addition there is no need for the 

input items to be partitioned into exactly the same number as available 

processors as previously. 

Now for the complexity of the parallel binary search, we suppose 

that if N is the size of the input to be searched which is partitioned 

into M (M divisible by N) subsets (or paths) with M~P (where P is equal 

to the number of processors available), then in each subset N/M elements 

are stored. If all the paths are carried out on one processor, then 

by applying the binary sequential search formula (equation (6.3.10)), 

we get 
Cls = MLlog ~ + IJ 

- N 
~ M(log M +1) . (6.3.11) 

Meanwhile, when the algorithm is run in parallel with P processors, 

r~ paths have to be carried out by each processor. Thus, we have the 

result, 

M (log ~ +1)+1 
P M (6.3.12) 
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We are interested in discovering how much more efficient the algorithm 

is when run on a parallel computer, therefore we measure the speed-up 

ratio 5 (M) for the sequential search with M subsets. Thus 
ps 

N 
" M(logM" +1) 

" 

M N 
p(log ~l) +1 

N 
PM(log ~l) 

N 
M(log ~l) +P 

: P(l - P 
N ), 

M(log ~l)+P 
(6.3.13) 

which is of O(P). This means that the optimum linear speed-up is 

achieved for the unsuccessful case also. It can be seen that greater 

efficiency can be obtained the larger M is chosen. 

The parallel implementation of the binary search algorithm on the 

NEPTUNE system has been programmed in Program (6.8) and the experi-

mental results obtained from running this program are shown in Table 

(6.21). The results are obtained for the input size equal to 9216 

using different numbers of subsets (M) to search for different keys. 

The results in Table (6.21) are taken as an average of many runs. 

For the input data size of 9216, the actual search time obtained from 

the parallel search algorithm is very small and because this is the 

highest input data size which can be used (due to the restriction of 

the NEPTUNE system) the appropriate parts in Program 6.8 have been 

repeated 50 times to make the results measurable. 

From the results in Table (6.21) it can be noticed that the 

search time is increased as the number of subsets (parallel paths) is 
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increased and this is due to the overheads incurred by the system 

such as the generation of the parallel paths and the communication 

between the processors. The speed-up factors are also increased as 

the number of subsets is increased and this is due to the fact that 

the co-operative processors are more utilized with the high number of 

subsets available. Also from the experimental results we notice that, 

unlike the parallel sequential search algorithm there is no relation 

between the position of the searched key and the search time, i.e. it 

is not necessary for the key located at the end of the input data set 

(subset) requires the highest search time. This is because in this 

method we always start searching at the middle of each subset, and the 

key with the highest number of comparisons requires the highest search 

time. we notice also the speed-up ratios obtained from the implementation 

of the parallel binary search algorithm are generally small for the 

case when the number of subsets are less than or equal to 32 (M~32). 

This is because the percentage of the overheads (parallel control, 

processor communication and shared data access) to the search time 

are high in those cases (i.e. M'32). 

Now, the performance analysis of this method is predicted 

together with their performance measurements when run on the NEPTUNE 

system. With reference to Chapter 4, we measure the losses due to 

the shared data and the parallel paths. For the shared data loss we 

have to consider how many accesses to the shared data per total number 

of operations carried by one path. While for the losses due to the 

parallel path control, we have to know the number of accesses made 

by the program to a path per total number of operations performed in 

the path. Table (6.22) shows the predicted resource demands and also 
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represents the performance measurements of the parallel binary 

search when run on the NEPTUNE system for the input size 9216 to 

search for the key 0.99998877 using different subsets (see Table 6.21) . 

From the results in Table (6.22) we notice that in the resource 

demands the parallel overheads are increased as the number of parallel 

paths is increased. The experimental results confirm this prediction 

where the obtainable parallel control overheads (peO) are increased 

as the number of parallel paths is increased and this is due to the 

extra overheads incurred by the system. We also notice that the 

percentage of the overheads are generally high and this is because 

the binary search time is low for our input data size. 

To conclude this section we can say that the expected performance 

of the parallel binary search algorithm is good for very large input 

and this is clear from the results in Table (6.21) where the speed-up 

is very good (high) when the co-operating processors are fully utilized 

and this is what we expect from large input sizes. 



,",o.of 
No. of Processors 

Subsets 1 2 3 4 
N Key (M) 

Time Time Speed- Time Speed- Time 
(sec) (sec) up (sec) up (sec) 

9216 0.52330017 4 2.44 1.96 1.25 1.51 1.62 1.50 

8 3.97 2.72 1.46 2.08 1.91 1.98 

16 6.86 4.21 1.63 2.94 2.33 2.79 

32 12.04 6.87 1.75 5.10 2.36 4.38 

64 21.88 12.2 1.79 8.90 2.46 7.28 

128 39.20 21.61 1.81 15.61 2.51 12.61 

0.61517334 4 2.65 1.98 1.34 1.43 1.22 1.47 

8 4.17 2.93 1.42 2.31 1.81 2.04 

16 7.77 4.56 1.70 3.69 2.11 2.99 

32 14.11 7.89 1. 79 5.81 2.43 4.81 

64 25.36 13.96 1.82 9.96 2.55 8.01 

128 44.67 24.15 1.85 17.13 2.61 13 .65 

0.97599792 4 3.32 2.11 1.57 1.63 2.04 1.50 

8 6.26 3.62 1.73 2.77 2.26 2.25 

16 11.71 6.26 1.87 4.41 2.66 3.65 

32 21.36 11.16 1.91 7.55 2.83 6.01 

64 37.91 19.67 1.93 13.25 2.86 10.23 

128 66.86 34.15 1.96 23.05 2.90 17.60 

0.99998877 4 3.64 2.43 1.50 1.95 1.87 1.74 

8 6.59 3.94 1.67 3.03 2.18 2.45 

16 12.03 6.52 1.85 4.84 2.49 3.72 

32 21.69 11.49 1.89 8.00 2.71 6.09 

64 38.8 20.04 1.94 13 .57 2.86 10.50 

128 68.76 34.97 1.97 23.60 2.91 17.95 

TABLE 6.21: The experimental results obtained from the parallel 
implementation of the binary search algorithm 
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Speed-
up 

1.63 

2.01 

2.46 

2.75 

3.01 

3.11 

1.18 

2.04 

2.60 

2.93 

3.17 

3.27 

2.21 

2.78 

3.21 

3.55 

3.71 

3.80 

2.09 

2.69 

3.23 

3.56 

3.70 

3.83 



Input No.of Performance Resource Demands 
Size SUbsets Measurement 
(N) (M) Parallel Path Shared 

peo SDO Access rate Overheads Access rate 

9216 4 6.319% 0.550% (1: 14 x 3.541% (4 :13) flops 

8 6.373% 0.455% N 
log M) flops 3.889% 

16 6.567% 0.333% 4.312% 

32 6.777% 0.323% 4.841% 

64 7.242% 0.361% 5.515% 

128 8.115% 0.422% 6.410% 

TABLE 6.22: Performance measurement and resource demands of the 
parallel binary search algorithm 
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Data 

Overheads 

0.032% 
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6.4 CONCLUSIONS 

In this chapter, two parallel sorting and searching methods have 

been implemented on the NEPTUNE system. For the sorting methods, the 

first algorithm (the shell sort method) belongs to the comparative 

sorting class, while the second algorithm (the digit sort method) 

belongs to the distributive sorting class. 

For the parallel shell algorithm, two versions have been 

programmed on the NEPTUNE system, where in Version I the sort procedure 

was only used, while in Version II the merge procedure is used after 

the first pass of the sort procedure. In Version I, the parallel 

implementation is carried out by two approaches, where the difference 

between the two approaches is the way in which the distance of 

comparison is chosen. From the experimental results it was shown that 

the second approach needs less time for sorting and gives better speed

up ratios than that of the first approach. This is due to the way in 

which the distance of comparison is chosen where fewer passes are 

needed in the second approach than that of the first one. 

In Version II of parallel shell sort, the algorithm is carried 

out in two stages, these are the sorting and the merging stages. In 

the merge stage, two merge algorithms have been used, these are the 2-

way and the odd-even merge algorithms. It is noticed that using the 

2-way merge procedure gives less sorting time than that used in the 

odd-even merge procedure. This is due to the fact that the algorithm 

that used the 2-way merge needs logM steps to sort the input data set 

(where M is the number of subsets), while the algorithm that used the 

odd-even merge needs M steps where M>logM. Meanwhile, the speed-up 
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factors for the algorithm that used the odd-even merge procedure is 

better than that used in the 2-way merge. This is because the 

processors in the odd-even merge are more utilized, while in the 2-

way merge the number of active processors are halved in each step 

of the algorithm, where only one processor is used in the final step 

while the remaining processors are idle. Generally we notice that the 

speed-up factors obtained from the parallel shell sort is not high 

(see Table 6.8) and this is due to the manner in which the shell sort 

algorithm performs its procedure, where from pass to pass the number 

of active processors are decreased, in other words the co-operative 

processors are not fully utilized. 

For the digit sort algorithm, two parallel versions have been 

implemented on the NEPTUNE system. The two versions are the same 

except that the first part of the algorithm was implemented sequentially 

in the first version, while in the second version it was implemented in 

parallel. The experimental results show that for the first version the 

shortest sorting time is obtained when using the largest number of 

subsets, i.e., when the number of subsets is equal to 64 in our 

implementation (see Table 6.13). For the sort part only, the best 

efficiency (speed-up) is obtained when the number of subsets used is 

the largest. This is because the processors are fully utilized. We 

notice also that the total efficiency (speed-up) was not as good as 

the speed-up of the sort part only and this is because the distribution 

part is done sequentially which decreases the efficiency (as shown in 

Table 6.13). We also observe from the experimental results that better 

efficiency is obtained with the largest input data size and this is in 

agreement with the theoretical results (Maclaren [1966). 
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The results obtained from Version II of the parallel digit sort 

algorithm also show that the best (shortest) sorting time is obtained 

when the number of subsets are the largest. The expected gain in using 

parallel distribution instead of the sequential one (as in Version I) 

is not good and this is due to the usage of the critical section while 

maintaining the links between the lists and the sublists. This means 

only one processor can be active within that section of the program 

while the rest of the processors are idle which greatly affects the 

algorithm's performance. In other words, the overheads for the 

critical section accesses are much more than the parallel gain in the 

algorithm (see Table 6.17). For both version I and II of the parallel 

digit sort methods we can generally say that Version II is more suitable 

for the MIMD type computers. This is clear from the utilization of 

the processors shown in Table 6.17. 

For the searching algorithms, two parallel methods were implemented 

on the NEPTUNE system. These are the parallel sequential search and 

the parallel binary search methods. 

For the parallel sequential search algorithm it is clear from the 

experimental results in Table 6.19 that the optimum results depend on 

the location of the search key within the input data set. The best 

efficiency (speed-up) is obtained when the key is located at the end 

of the file, i.e. all the processors are fully utilized. Also, from 

the experimental results we conclude that the parallel search algorithm 

is generally efficient for the MIMD type machine (see Table 6.19). 

While for the parallel binary search algorithm, we notice that 

the search time.is increased as the number of subsets (parallel paths) 

is increased and this is due to the overheads incurred by the system. 



491 

The efficiency of the parallel binary search algorithm is also 

increased as the number of subsets is increased where the processors 

are more efficiently utilized with the high number of subsets. In the 

parallel binary search algorithm we notice that the percentage of the 

overheads are g~~erally high and this is because the parallel binary 

search time is low for our input data size (see Table 6.22). We 

expect that a better performance will be obtained when the input data 

size is very large and this is due to the fact that the processors 

with the large input sizes are more utilized (see Table 6.21) • 
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CHAPTER SEVEN 

SUMMARY AND CONCLUSIONS 



The central theme of this thesis is to cover the design and 

analysis of asynchronous parallel algorithms that can be run on MIMD 

type computers and in particular the NEPTUNE system at Loughborough 

University. 

In the first three introductory chapters, the fundamentals of 

parallel computer architectures, parallel programming principles and 

design of parallel algorithms have been introduced. 
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As computed processing power increases, parallel processing is 

considered as a natural and feasible approach to achieve these demands. 

Parallel computers have been classified in this thesis into various 

different types, each of which has its own characteristics and the types 

of problems and applications for which it is more suitable to solve. 

For the implementation of certain parallel algorithms, some difficulties 

may arise and should be taken into consideration such as the communication 

and the synchronisation between all the co-operating processors. These 

problems can be overcome either implicitly or explicitly as seen in 

Chapter 2. 

In general, programming parallel systems is not as easy as that of 

uniprocessor systems and this had led to the parallelism being concealed 

on most existing MIMD computers. Since the MIMD-type computers consist 

of P complete computers where P independent computations can be supported 

simultaneously. Hence, the main problem in programming MIMD-type 

computers lies in making the computers co-operate efficiently. So that 

one problem can be appropriately partitioned amongst them to solve a 

given problem with greater speed than it could be solved on a uni

processor. In order to make the MIMD computers competent, it is essential 

that the obtainable speed is of O(P), in comparison with the smallest 
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possible sequential time achieved by the best method. This can be 

obtained by minimizing both the synchronisation and shared data over

heads, which are directly dependent upon the overall computational 

scheduling. 

The performance analysis of an algorithm is important from 

different points of view. Essentially, it can help to understand better 

the algorithm and sometimes to reveal further necessary improvements. 

In other words, the careful search required for a proper performance 

analysis often leads to a more efficient and a more correct implementation 

of algorithms. However, the more complicated the algorithm, the more 

difficult its performance analysis becomes. 

The principle behind the performance analysis is that parallel 

processing involves the sharing of some resources which have a limited 

availability. This has the consequence that there is a limit to the 

number of demands that can be satisfied and some of them must wait if 

there are some competing ones. These demands are determined by the 

programs, while the availability and allocation algorithms are properties 

of the system. 

In recent research promising results have been achieved by getting 

a better speed-up by the explicit use of parallelism through the program. 

TWO types of algorithms have been implemented on the NEPTUNE system and 

have been studied in this thesis, these are the numerical and non

numerical algorithm. 

In Chapter 4, the parallel 9-point explicit block iterative method 

was developed and implemented on the NEPTUNE system. The implementation 

of the parallel 9-point and parallel 4-point block iterative methods 

were programmed using different versions and strategies involving 
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synchroneity and asynchroneity together with natural or red-black 

orderings. It is clear that the implementation of different strategies 

present different timings and losses when they are run on the NEPTUNE 

system. For both the parallel 9-point and parallel 4-point block 

iterative method, the implementation Version 2 gives better timing 

results in all the strategies considered and this is due to the way in 

which each block within each subset is evaluated. In Version 2 the 

number of operations required is less than that of Version 1. Also in 

Version 2, a greater rate of convergence is achieved since the most 

recent values of some points are used in evaluating the remaining other 

points within each block. Also, from the different implemented 

strategies, the asynchronous implementation gives better results than 

the synchronous one. This is due to the overheads required at the end 

of each iteration in the synchronous implementation. Also, in the 

asynchronous implementation better results are obtained because the 

processors are almost always fully occupied and busy doing work most of 

the time. 

The overheadsof shared data and parallel path access were measured 

for all the strategies and the 9-point asynchronous version required less 

overheads which resulted in the best results being obtained. 

It can be seen from the experimental results that the parallel 9-

point block iterative method takes less time than its corresponding 

parallel 4-point block iterative method when w=I.O, while when w=w t' 
op 

in general the two parallel methods take the same time. Therefore, the 

parallel 9-point block iterative method was chosen as best amonst the 

two parallel block methods. Also it can be seen from the experimental 

results, that the parallel 9-point block and 4-point block methods are 
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best suited for parallel implementation on a MIMD computer and this 

is due to the almost linear speed-up obtained from their implementation. 

In Chapter 5, the parallel A.G.E. method has been developed where 

two strategies have been implemented and used to solve a linear and a 

non-linear boundary value problem. The two strategies were programmed 

on the NEPTUNE system using both the synchronous and asynchronous 

approach. 

For the linear problem (Problem I), the best results were obtained 

when the problem is solved using Strategy I of the parallel A.G.E. 

method with the asynchronous approach. This is due to the total number 

of computational operations in Strategy 11 being higher than that of 

Strategy I and also there is the case that the old values are used 

while evaluating the next point using Strategy 11. 

For comparison reasons, the parallel versions of the Jacobi, 

Gauss-Seidel and S.O.R. iterative methods are implemented on the NEPTUNE 

system and used to solve the linear problem using the synchronous and 

asynchronous approaches. By comparing the results obtained from these 

implementations and those obtained from the parallel A.G.E. methods it 

is clear that the elapsed times using the parallel A.G.E. method gives 

better results in all the cases. This is because the number of 

iterations in the parallel Jacobi, Gauss-Seidel and S.O.R. methods are 

much higher than that of the parallel A.G.E. method, which means more 

total computational operations are required. 

For the non-linear problem (Problem 11), the results obtained from 

using the parallel A.G.E. method shows that the asynchronous approach 

gives better results than the synchronous approach and this is due to 

the synchronisation overheads occurring at the end of each iteration. 
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For comparison reasons, the parallel Jacobi, Gauss-Seidel and 
. 

N.L.O.R. iterative methods are also used to solve Problem II. These 

results show that the parallel A.G.E. method gives better results in 

the case of the parallel Jacobi and Gauss-Seidel methods. This is 

because the number of iterations in the parallel Jacobi and Gauss-

Seidel methods are higher than those of the parallel A.G.E. method, 

which means more computational operations are required to obtain a 

solution. While the parallel N.L.O.R. method gives the shortest 

timing results than those of the parallel A.G.E. method this is because 

more computational operations are required in the case of the parallel 

A.G.E. method than that of the parallel N.L.O.R. method. 

From the experimental results of the parallel A.G.E. methods, the 

shared data and parallel control aCcess are calculated and can be 

noticed in the case of the synchronous implementation to be higher than 

that of the asynchronous implementation. From the speed-up results 

obtained for both the linear and non-linear problem we notice that a 

greater speed-up is obtained in the non-linear problem and we conclude 

that the amount of computations carried out over the total overheads in 

the non-linear problem is greater than that of the linear problem. 

From the experimental results obtained we notice that an almost 

linear speed-up is achievable and we can conclude that the parallel 

A.G.E. method is suitable for implementation on a MIMD computer. 

In Chapter 6, two non-numerical algorithms have been implemented 

on the NEPTUNE system. These methods are concerned with parallel 

sorting and parallel searching. 

For the parallel sort, two algorithms were implemented using 

different approaches: these are the parallel shell sort and the 



parallel digit sort algorithms. In the parallel shell sort algorithms 

two versions were implemented. In both version I and II of the shell 

sort algorithm the created number of parallel paths are dependent on 

the way in which the distance of comparisons was chosen. Where the 

distance of comparison is large the number of parallel paths generated 

is large and vice versa. 
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In Version I of the parallel shell sort algorithm only the shell 

sort procedure is used to get the final sorted list. While in Version 

II, the parallel merge algorithm is used after the sort stage to obtain 

the final sorted output list. Two approaches have been used to 

implement Version I, where the difference between them is the way in 

which the distance of comparison was chosen. From the experimental 

results we noticed that the second approach gives better results (less 

time and better speed-up) than the first approach. This is because the 

number of passes in the second approach is less than that of the first 

approach and hence the total number of operations in the second approach 

is less. 

In Version II, the parallel shell sort algorithm is carried out 

in two parts. In the first part the subgroups are sorted first, while 

in the second part the sorted subgroups are merged to obtain the final 

sorted list. Two different parallel merge algorithms were implemented 

in the merge part of Version II. These algorithms are the parallel 2-

way merge and the parallel odd-even reduction merge. From the experi

mental results we noticed that the sorting time using the 2-way merge 

algorithm is less than the odd-even merge algorithm. This is because 

the 2-way merge needs only logM steps to merge the M subgroups, while 

M steps are required for the odd-even merge algorithm, where M>logM. 



From the speed-up results obtained from these two merge algorithms a 

higher speed-up waS obtained in the case of the odd-even merge 

algorithm. This is because in the odd-even merge algorithm the 

processors are more utilized than in the 2-way merge and this is due 
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to the fact that in the 2-way merge algorithm the number of processors 

are halved at each step where only one processor is used in the final 

step and the rest of the processors are idle. Generally from the 

different implementations of the parallel shell sort algorithm, we 

noticed that the speed-up (efficiency) of the algorithms are not high, 

and this is because the way in which the shell sort algorithm carries 

out its procedure where the number of active processors are decreased 

and specially in the last pass where only one processor is used. In 

other words the co-operative processors are not fully utilized and from 

the performance analysis of the parallel shell sort algorithm the over

heads of the parallel control and shared data access are relatively high 

which directly affects the performance of the algorithm. 

For the digit sort algorithm, two parallel versions were implemented 

on the NEPTUNE system. In Version I, the first part of the algorithm 

(the presort or distribution part) was implemented sequentially, while 

in Version 11 the first part was implemented in parallel where the other 

parts of the algorithms are the same in both versions. 

The experimental results obtained from the implementation of the 

parallel Version I shows that the sorting time decreases as the number 

of subgroups are increased, with the lowest time being obtained when 

the number of subgroups is equal to 64 in our input case. We also notice 

in Version I that the total (distribution and sort parts) speed-up is 

not as good as the sorting part only and this is because the distribution 
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part is done sequentially which affects the total speed-up. In Version 

I we observed from the experimental results that a better efficiency 

waS obtained with the higher input size data. 

For Version 11 of the parallel digit sort we also noticed that the 

lowest sorting time is obtained with the highest number of subsets. 

Because in Version 11 the first part (presort) of the algorithm was 

implemented in parallel, the expected gain is not good and this is due 

to the usage of the critical section while maintaining the links between 

the list and the sublists. This means the overheads of the critical 

section accesses are much more than the parallel gain in the algorithm. 

Finally, for the parallel digit sort algorithm, we can say that 

Version 11 is more suitable for M1MD type computers and this is because 

the utilization of the processors in Version 11 is more than that in 

Version I. 

For the search methods, two well known methods have been 

implemented in parallel, these methods are the parallel sequential 

search and the parallel binary search. 

The experimental results obtained from the implementation of the 

parallel sequential sort shows that the optimum results is dependent 

on the location of the searched key within the input data set. The best 

efficiency (speed-up) was obtained when the key was located at the end 

of the file, i.e., all the processors are fully utilized. From the 

experimental results we can conclude that the parallel sequential 

search method is generally good for the MIMD type machine (see Table 6.19). 

For the parallel binary search algorithm, we notice that the 

search time increases as the number of subsets (parallel paths) is 

increased and this is due to the overheads incurred by the system. The 
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efficiency of the algorithm is increased as the number of subsets is 

increased where the processors are more utilized with the higher number 

of subsets. In the parallel binary search algorithm, because the 

searching time is low for the input size used we noticed that the 

percentage of the overheads are generally high (see Table 6.22). From 

the experimental results we also expect that the performance will be 

improved for the very large input datajlizes since the processors are 

more utilized for these cases. 



502 

APPENDIX 

SELECTED COMPUTER PROGRAMS 



1 
2 
3 

5 
6 
7 
6 
9 

10 
11 
12 
13 
14 
15 
16 
17 
16 
19 
20 
21 
22 
23 
24 
25 
26 
27 
26 
29 
30 
31 
32 
33 
34 
35 
36 
37 
36 
39 
~O 

"1 
-12 
43 

46 
47 
~6 
49 
50 
51 

c 
c 
c 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

2 
C 
C 
C 
C 

90 

95 
C 
C 
C 
C 
96 

664 
C 
C 
C 

**** PROGRAM ~.1 **** 503 

THIS PROGRAM IMPLEMENTS THE 9-POINT BLOCK ITERATIVE METHOD WHERE 
THE SOR ITERATIVE METHOD IS USED.THIS IS AN ASYNCHRONOUS ALGORITHM 
TO SOLVE THE 2-DIMENTIONAL DIRICHLET PROBLEM.THE LINES OF THE 
MESH TO BE SOLVED ARE PARTITIDNED INTO NPATH SUBSETS SO THAT EACH 
SUBSET IS ASSIGNED TD A GROUP OF SEQUENTIAL LINES.THE BLOCKS OF 9 
POINTS ARE EVALUATED IN THE NATURAL ORDERING WHERE EACH 3 LINES 
WHICH FORM THE BLOCKS ARE TAKEN AT A TIME. 

- THE ARRAY XN WILL HOLDS THE COEFFICIENT MATRIX. 
- ITERIII - NUMBER OF ITERATIONS RUN BY PROCESSOR I. 
- NPATH • NUMBER OF PARALLEL PATHS. 
- W • RELAXATION FACTORS. 
- MAXITR • MAXIMUM ITERATIONS. 
- EPS • ACCURACY VALUE USED FOR CONVERGENCE TEST. 

I NTEGER*2 I TI ME 
DIMENSION XNI40.401.ERRI40.401.ITER(6),IFLAGI61.ITIMEll001 
$BHARED XN,N.Nl.N2.NP.ITER,IFLnG.NPATH.EPS.MAXITR,W.ITIME 
$USEPnR 
MAX ITR = 1000 
EPS ., 0,00001 
WRITEI6.2) 
FORMAT('PROGRAM NAME :- • PROGRAM 4.1 "1/1 

REntl MESH SIZE, THE NIIMBER OF PAF:nLLEL PATHS 
AND READ W,Wl THE RELAXATION FACTORS. 

READ15,901 N,NPATH.IPRINT.W.Wl.WF 
FORMAT(I2,lX,I2,lX,I2,lX,FS.3,lX,FS.3,lX,F5.3) 
N2 ::: N··2 
N1 '" N-1 
NP '" NUNF'ATH 
IFINP .E!l. 11 NP'''3 
WRITEI6,95) MnXITR.EPS,N2,NPATH 
FORMATI/'MAXITR-',I4/2X.'EPS-'F10.6/2X.'N2-'.I2/2X,'NPATH-'.I21 

RlIN THE ALGORITHM WITH W WHICH IS INCREASErI EACH STEF' BY 1.1 IN ORDEF: 
TO FIND THE EXACT RELAXATION FACTOR. 

W=WtW1 
IF IW .GT. WFI GO TO 150 
WRITEI6.8M )W 
FDRMATI/2X,'W-'.F7.31 

INITIALISE THE COMPONENTS AND THE BOUNDARY OF THE MESH. 

roD 11 11,-·l.N 
XN I 11,1) '-100.0 

52 DO 22 Jl~2,N 
53 XNlIl.Jl)·O.O 
54 22 CONTINUE 
55 11 CONTINUE 
56 C 
57 C INITIALISE ITERATION COUNTERS AND FLAGS FOR EACH PROCESSOR 
58 C 
59 DO 17 I·l.NPATH 
60 ITERIII-O 
61 IFLAGlII-l 



62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 

17 
C 
C 
C 

1 
C 
C 
C 

C 
C 
C 
50 
C 
C 
C 
C 

C 
C 
C 

C 
C 
C 
C 

CONTINUE 

START TIMING 

$DOIILL 1 
B~1./112. 
r::-l t 1224. 
C'''1./16. 
Ct':LL TIMEST 

$P!lRENrI 
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SET UP A F'ROCESS FOR Et'\CH F'ROCESSOR TO ITERATE IISYNCHRONOUSL Y. 

$f!OF'IIR 15 IP~l ,NF'IITH 
IF'S~NF'* ( I P-l ) t2 
IPF"NPUP+1 

ITERATE ON THE SUBSET ELEMENTS UNTIL !I CONVERGENCE IS IICHIEVEII. 

ITER(IP)wITERIIP)tl 

PfCK EACH THREE CONSE~UENT LINES liT A TIME SO THAT THE 
BLOCKS TO BE EVALUATED CAN BE SOLVED AS COMPLETE. 

DO 35 I-IPS,IPF,3 
DO 36 J-2.N2,3 

FYND THE EQUATIONS OF THE 9 POINTS OF THE BLOCK. 

XOLII",XN ( I , J) 
Rl-XN(I-l,J)tXN(I,J-l) 
R2~XN(I-l,Jtl)tXNlItl,J-l) 

R3-XN(I-l,Jt2)tXN(I,Jt3) 
R~·XNlIt3,J)tXN(It2,J-l) 
R5-XN(Itl.Jt3)tXNlIt3,Jtl) 
R6-XN(It2,Jt3)tXN(It3,Jt2) 
R7'"XN( 1+1, J-l) 
R8-XN(I-l,Jtl)tXN(It3,Jtl) 
R9~XN(1+1,Jt3) 
Rl0-XN(It3,Jtl)tXN(Itl,J-l) 
Rll-XN(I-l,Jtl)tXN(Itl,Jt3) 
R12-XNlI-l,J+1) 
R13-XN(Itl,Jt3)tXN(Itl,J-l) 
R14=XN(It3,Jtl ) 
R15'"R3tR4 
R16'"R1+R'I 
R17-R3tR6 
R18-R1tR6 
R19-R1+R3 
R20"R6tR~ 
R21=Rl0tR11 
R22'"R18tR15 
XNEW=(67.*Rlt22.*R2t7.li<R15t6.*R5t3.*R6)*A 

EVALUt':TE THE COMPONENTS WITH W AND PUT THE NEW 
Vt':LUE IN THE ARRAY XN. 

XNEW=W*(XNEW-XOLD)tXOLD 
ERR(I,J)-ABS(XNEW-XOLD)/(ltABSIXOLD» 
XN(I,J)-XNEW 
XOLII-XN ( 1+1 , J) 
XNEW-(37.*R7tl1.*R16t7.*R8t5.tR9t3.*R17)*B 



124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
1'10 
141 
1112 
1'13 
1'14 
1'15 
146 
147 
148 
1 ... 9 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 C 

XNEW-W.IXNEW-XOLD)+XOLD 
ERRII+l,J)~ABSIXNEW-XOLD)!ll+ABSIXOLD» 
XN 11+ 1, J) '''XNEW 
XOLD'-XN I 1+2, J) 
XNEW n I67 •• R4+22.*Rl0+7 •• R18+6.*Rll+3.*R3)*A 
XNE~I~W* I XNEW-XOLD) +XOLI' 
ERRII+2,J)wABSIXNEW-XOLD)!(1+nBSIXOLD» 
XN 11+2, J) '-XNEW 
XOLI'~XN I I, J+1 ) 
XNEW~137.'R12+11.'R19+7.*R13+5.'R14+3.*R20)'B 
XNEW~W'IXNEW-XOLD)+XOLD 
ERRII,J+l)~ABSIXNEW-XOLD)!ll+ABSIXOLD» 
XNI I ,J+1 )=XNEW 
XOLr''''XNI 1+1, J+l) 
XNEW n I2.'R21+R22).C 
XNEW=W*IXNEW-XOLD)+XOLD 
ERRII+l,J+l)=ABSIXNEW-XOLD)/ll+ABSIXOLD» 
XNII+l,J+l)"XNEW 
XOLDrXNII+2,J+1) 
XNEW"137 •• R14+11.*R20+7.*R13+5.'R12+3.*R19).B 
XNEW-WI I XNEI'I-XOLD) +XOLD 
ERRII+2,J+1)"ABSIXNEW-XOLD)!11+ABSIXOLD» 
XNII+2,J+l)-XNEW 
XOLI"-XN I I , J+2) 
XNEW=e67.*R3+22.*Rl1+7 •• R18+6.,Rl0+3.*R'I1*A 
XNEWnWleXNEW-XOLD)+XOLD 
ERRII,J+2)-ABSeXNEW-XOLD)/el+ABSeXOLD» 
XNeI,J+2)-XNEW 
XOLDnXNeI+l,J+2) 
XNEW-137.*R9+11 •• R17+7 •• R8+5.'R7+3 •• R16)*B 
XNEW~WIIXNEW-XDLD)+XOLD 

ERReI+l,J+2)nABSIXNEW-XOLD)/el+ABSIXOLD» 
XNII+l,J+2)=XNEW 
XOLI"-XN I I +2, J+2) 
XNEW=(67.*R6+22.'R5+7.IR15+6.*R2+3.*Rl).A 
XNEW"WIIXNEW-XOLD)+XOLD 
ERRII+2,J+2)=ABSIXNEW-XOLD)!(1+ABSIXOLD» 
XNII+2,J+2)=XNEW 

163 36 CONTINUE 
164 35 CONTINUE 
165 C 
166 C CHECK IF THE NUMBER OF ITERATIONS EXCEEDS 
167 C THE ALLOWED MAXIMUM. 
168 C 
169 113 IFIITERIIP) .8E. MAXITR) GO TO 15 
170 C 
171 C CHECK FOR CONVERGENCE. 
172 C 
173 PO 777 Ill-IPS,IPF 
174 DO 777 Jll~2,Nl 
175 IFIERRIIll,Jll) .8T. EPS) GO TO 50 
176 777 CONTINUE 
177 C 
178 C SET THE CDNVERGENT FLAG = 2 AND TEST FDR THE 
179 C CDNVERGENCE OF THE OTHER PROCESSES. 
180 C 
181 IFLAGIIP)~2 

182 JJ n l 
183 776 IFeIFLAGeJJ) .EO. 1) GO TO 50 
184 JJ=JJ+l 
185 IFeJJ .LE. NPATH) GO TO 776 
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186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 

15 fF'AREND 
C 
C END TIMING 
C 

3 

801 
C 
C 
C 
C 

28 

812 

85 
154 

61 

65 
810 

250 
61 

37 
150 

f[IO"'LL 3 
C~LL TIMOUT(ITIME) 

fPAREND 
WRITE(6,801) ITIME 
FORMAT(112X,'THE TIMING'/8(I6,2X» 

CHECK IF ANY PROCESS EXCEED ITS M"'XIMUM 
ITER"'TION LIMITS. 

DO 28 J~l,NF'I\TH 
IF (ITER(J) .GT. M~XITR) GO TO 250 

CONTINUE 
DO 8S 1'"1, NP"'TH 

WRITE(6,812) I,ITER(I) 
FORMAT(111X,'CONVERGENCE IS ACHIEVED IN F'ROCESS NO.'I2,lX, 

1 'AFTER',lX,I4,lX,'ITERATIONS') 
CONTINUE 
IF(IF'RINT .8T. 1) GO TO 37 
WRITE(6,6~) 
FORM~T(112X,'THE SOLUTION MESH IS') 
DO 810 IJ'"bN 
WRITE(6,6S)(XN(IJ.JJ),JJ;1,N) 
FORMAT(111X,7(Fl0.6,lX» 

CONTINUE 
GO TO 37 
WRITE(6,61 ) 
FORM"'T(I/2X,'NO CONVERGENCE IS "'CHIEVED') 
GO TO lS~ 

GO TO 96 
$STOF' 
$END 
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1 C 
2 C **** PROGRAM 4.2 **** 3 C 
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~ C THIS PROGRAM IMPLEMENTS THE '-POINT BLOCK ITERATIVE METHOD WHERE 
5 C THE SOR ITERATIVE METHOD IS USED.THIS IS AN ASYNCHRONOUS ALGORITHM 
6 C TO SOLVE THE 2-DIMENTIONAL DIRICHLET PROBLEM. THE LINES OF THE 
7 C MESH TO BE SOLVED ARE PARTITIONED INTO NPATH SUBSETS SO THAT EACH 
8 C SUBSET IS ASSJGNED TO A GROUP OF SEOUENTIAL LINES.THE BLOCKS OF 9 
9 C POINTS ARf EVALUATED IN THE RED-BLACK ORDERING WHERE EACH 3 LINES 

10 C WHICH FORM THE BLOCKS ARE TAKEN AT A TIME. 
11 C 
12 C - THE ARRAY XN WILL HOLDS THE COEFFICIENT MATRIX. 
13 C - ITER(I) n NUMBER OF ITERATIONS RUN BY PROCESSOR I. 
14 C - NPATH n NUMBER OF PARALLEL PATHS. 
15 C - N = RELAXATION FACTORS. 
16 C - MAXITR n MAXIMUM ITERATIONS. 
17 C - EPS - ACCURACY VALUE USED FOR CONVERGENCE TEST. 
18 C 
19 INTEGER ITIME,FLAG 
20 DIMENSION XN(~0,40),ERR(40,40),ITER(6),IFLAG(6),ITIME(100) 
21 .SHARED XN,N,Nl,N2,NP,ITER,IFLAG,NPATH,EPS,MAXITR,W,ITIME 
22 .USEPAR 
23 MAXITR r 1000 
2~ EPS n 0.00001 
25 WRITE(6,2) 
26 2 FORMAT('PROGRAM NAME l- • PROGRAM 4.2 "11) 
27 C 
28 C READ MESH SIZE,NUMBER OF PARALLEL PATHS 
29 C AND W,Wl THE RELAXATION FACTORS. 
30 C 
31 READ(5,90) N,NPATH,IPRINT,W,Wl,WF 
32 90 FORMAT(I2,lX,I2,lX,I2,lX,F5.3,lX,F5.3,lX,F5.3) 
33 N2 n N-2 
3~ Nl n N-l 
35 NP = N2/NPATH 
36 IF(NP .Ea. 1) Np n 3 
37 WRITE(6,95) MAXITR,EPS,N2,NPATH 
38 95 FORMAT(/'MAXITR-',I4/2X,'EPS='Fl0.6/2X,'N2-',I2/2X,'NPATH-',I2) 
39 C 
~O C RUN THE ALGORJTHM WITH W WHICH IS INCREASED EACH STEP BY Wl IN ORDER 
41 C TO FIND THE EXACT RELAXATION FACTOR. 
42 C 
43 96 W-W+Wl 
~4 IF (W .GT. WF) GO TO 150 
45 WRITE(6,864)W 
46 864 FORMAT(/2X,'W.',F7.3) 
47 C 
~8 C INITIALISE THE COMPONENTS AND THE BOUNDARY OF THE MESH. 
49 C 
50 DO 11 Ilnl,N 
51 XN(Il,1)-100.0 
52 DO 22 Jl-2,N 
53 XN(Il,Jl)-O.O 
5~ 22 CONTINUE 
55 11 CONTINUE 
56 C 
57 C INITIALISE ITERATION COUNTERS AND FLAGS FOR EACH PROCESSOR 
58 C 
59 DO 17 I n l,NPATH 
60 ITER(I)-O 
61 IFLAG(I)nl 



62 
63 
6~ 

65 
66 
67 
66 
69 
70 
71 
72 
73 
7'1 
75 
76 
77 
76 
79 
80 
81 
82 
83 
8~ 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
11 .. 
115 
116 
117 
118 
119 
120 
121 
122 
123 

17 
C 

1 
C 
C 
C 

C 
C 
C 
50 
C 
C 
C 
C 

51 

C 
C 
C 

C 
C 
C 
C 

CONTINUE 
SHIRT TIMING 

$MIILL 1 
F<'·'1.!112. 
f'I:-::1 ./224. 
C'~1';16. 

Ci\LL TI MEST 
$PtlREND 
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SET UP A PROCESS FOR Ei\CH PROCESSOR TO ITERATE ASYNCHRONOUSLY. 

$nOPAR 15 Ip r l,NPATH 
IPS'-NP't.( IP-l >+2 
IPF=NP*IP+1 

ITERIITE ON THE SUBSET ELEMENTS UNTIL A CONVERGENCE IS tlCHJEVEII. 

ITERCIP)-ITERCIP)tl 

PICK EACH THREE CONSEQUENT LINES liT A TIME SO THAT THE BLOCKS TO BE 
EVALUATED CIIN BE SOLVED AS COMPLETE. 

1<1 '"5 
FLAG-O 
DO 3~ I-IPS,IPF,3 

Kl=7··Kl 
110 36 J-K 1, N2, 6 

FIND THE EQUATIONS OF THE 9 pnINTS OF THE BLOCK. 

XOLD=XN(I,J) 
Rl-XN(I-l,JltXNCI,J-l) 
R2-XN(I-l,Jtl)tXN(Itl,J-l) 
R3~XN(I-l,Jt2ItXN(I,Jt31 
R4~XN(It3rJ)tXN(It2,J-l) 
R5 r XN(Itl,Jt3)tXN(It3,Jtl) 
R6-XN(It2,Jt3)tXN(It3,Jt2) 
R7"'XNC Itl ,J-l) 
R8-XN(I-l,Jtl)tXNCIt3,Jtl) 
R9~XN( 1+1 ,Jt3) 
Rl0~XN(I+3rJtl)tXN(Itl,J-l1 
Rll-XNCI-l,Jtl)tXN(Itl,Jt3) 
R12~XN( 1-1 ,J+1) 
R13~XN(Itl,Jt3)tXNCItl,J-l) 

R14-XNC It3,J+1) 
R15'-R3tR~ 
R16=RltR4 
R17-R3tR6 
R18-RltR6 
R19~·RltR3 

R20-R6tR~ 

R21-Rl0tRll 
R22~R18tR15 

XNEW=(67.*Rlt22.*R2t7.'t.RI5t6.*R5t3.*R6)*A 

EVALUATE THE COMPONENTS WITH W AND PUT THE NEW 
VALUE IN THE IIRRtlY XN. 

XNEW=W*(XNEW-XOLD)tXOLD 
ERR(I,J)=IIBS(XNEW-XOLD)!(ltIlBS(XOLD» 
XN( I ,J)~XNEI·' 
XOLD'·XN ( It 10 J) 



124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
1~1 
142 
1~3 
1~4 
145 
146 
147 
148 
119 
150 
151 
152 
153 
1St! 
155 
156 
157 
158 
159 
160 
161 
162 
163. C 
164 36 
165 35 
166 
167 
168 
169 

XNEW~(37.tR7+11.tR16+7.*R8+5.tR9+3.*R17'tB 

XNEW=W*(XNEW-XOLD)+XOLD 
ERR(I+l,J)~ABS(XNEW-XOLD)/(l+ABS(XOLD» 
XN(I+l,J)~XNEW 
XOLI'=XN (I+2, J) 
XNEW~(67.tR4+22.*Rl0+7.*R18+6.tRll+3.tR3'*A 
XNEW-W*(XNEW-XOLD)+XOLD 
ERR(I+2,J)rABS(XNEW-XOLD)/(1+ABS(XOLD» 
XN ( I+2, J) "XNE~J 
XOLD=XN(I,J+l) 
XNEW_(37.tR12+11.*R19+7.*R13+5.tR14+3.tR20)tB 
XNEWrW*(XNEW-XOLD'+XOLD 
ERRII,J+l)rABSIXNEW-XOLD)/ll+ABS(XOLD') 
XN I I ,J+1 ) ·XNEW 
XOLD-XN(I+l,J+l' 
XNEW~(2.tR21+R22)*C 
XNEW-Wt(XNEW-XOLD'+XOLD 
ERRII+l,J+l)-ABSIXNEW-XOLD)/(l+ABSIXOLD» 
XN( I+l ,J+l )=XNEW 
XOLt,,"XN I 1+2, J+ 1 ) 
XNEWr(37.*R14+11.*R20+7.*R13+5.*RI2+3.*RI9)tB 
XNEW-WI(XNEW-XOLD'+XOLD 
ERR(I+2,J+l)~ABS(XNEW-XOLD)/(1+ABSIXOLD» 

XN ( I+2, J+1 ) -XNEW 
XOLD-'XN ( I ,J+2) 
XNEW=(67.*R3+22.tRl1+7.tR18+6.*Rl0+3.*R4)*A 
XNEWrW*(XNEW-XOLD'+XOLD 
ERR(I,J+2)rABS(XNEW-XOLD)/(1+ABS(XOLD» 
XN(I,J+2'-XNEW 
XOLI,rXN ( I+ 1, J+2) 
XNEWr(37.*R9+11.*R17+7.tR8+5.*R7+3.*R16)*B 
XNEWrWI(XNEW-XOLD'+XOLD 
ERR(I+l,J+2)-ABS(XNEW-XOLD)/(1+ABS(XOLD» 
XN(I+l,J+2)-XNEW 
XOLD'-XN (I +2, J+2' 
XNEWr(67.tR6+22.*R5+7.IR15+6.*R2+3 •• Rl)IA 
XNEW~Wt(XNEW-XOLD'+XOLD 
ERR(I+2,J+2)=ABS(XNEW-XOLDI/(1+ABS(XOLD» 
XNII+2,J+2)-XNEW 

CONTINUE 
CONTINUE 
IF(FLM .ECl. 1) GO TO 113 
FLM-'1 
Kl'-2 
GO TO 51 

170 C 
171 C 
172 C 
173 C 
174 113 
175 C 
176 C 
177 C 
178 

CHECK IF NUMBER OF ITERATIONS EXCEEDS 
THE ALLOWED MAXIMUM LIMIT. 

179 
180 
181 777 
182 C 
183 C 
184 C 
185 C 

IF(ITER(IP' ·.GE. MAXITR) GO TO 15 

CHECK FOR CONVERGENCE. 

DO 777 Il1-IPS,IPF 
[,0 777 Jll r '2, NI 

IF(ERR(Il1,Jll) .GT. EPS) GO TO 50 
CONTINUE 

SET THE CONVERGENT FLAG = 2 AND TEST FOR THE 
CONVERGENCE OF THE OTHER F'ROCESSES. 
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186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 

IFLI\G( IP)'"<? 
JJ·l 

776 IF(IFLI'IG(JJ) .Ell. 1) GO TO 50 
JJ=JJ+l 
IF(JJ .LE. NPATH) GO TO 776 

15 $PI'IRENIt 
C ENIt UMING 

$['OI'lLL 3 
CALL TIMOUT(ITIME) 

3 $PI'>RENIt 
WRITEC6,801) ITIME 

801 FORMATC/12X,'THE TIMING'/8(I6,2X» 
C 
C CHECK IF I'INY PROCESS EXCCED ITS MI'IXIMUM 
C ITERI'ITION LIMITS. 
C 

['0 28 J~l, NPI'ITH 
IF (ITER(J) .GT. MAXITR) Gn TO 250 

28 CONTINUE 
['0 85 I~l,NF'I'>TH 

WRITE(6,812) I,ITER(I) 
812 FORMI'ITC//1X,'CONVERGENCE IS ACHIEVEIt IN PROCESS 

1 'I'IFTER',IX,I4,IX,'ITERI'ITIONS') 
85 CONTINUE 
154 IF(IPRINT .GT. 1) GO TO 37 

WRITE(6,M) 
64 FORMAT(//2X,'THE SOLUTION MESH IS') 

DO 810 I..J"'I,N 
WRITEC6,65)(XNCIJ,JJ),JJ~I,N) 

65 FORMAT(/11X,7(Fl0.6,IX» 
810 CONTINUE 

GO TO 37 
250 WRITE(6,61) 
61 FORMI'IT(/12X,'NO CONVERGENCE IS nCHIEVEIt') 

GO TO 15~ 

37 GO TO 96 
150 $STOF' 

$ENIt 

510 
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511 
1 C 
2 C 
3 C 
'\ C 
5 C 
6 C 
7 C 
8 C 
9 C 

10 C 
11 C 
12 C 
13 C 
14 . C 
15 C 
16 C 
17 C 
18 C 
19 

THIS PROGRAM IMPLEMENTS THE 9-POINT BLOCK ITERATIVE METHOD WHERE 
THE SOR ITERATIVE METHOD IS USED.THIS IS AN SYNCHRONOUS ALGORITHM 
TO SOLVE THE 2-DIMENTIONAL DIRICHLET PROBLEM. THE LINES OF THE 
MESH TO BE SOLVED ARE PARTITIONED INTO NPATH SUBSETS SO THAT EACH 
SUBSET IS ASSIGNEI' TO A GROUP OF SEQUENTIAL LINES. THE BLOCI<S OF 9 
POINTS ARE EVALUATED IN THE NATURAL ORDERING WHERE EACH 3 LINES 
WHICH FORM THF. BLOCKS ARE TAKEN AT A TIME. 

20 
21 
22 
23 
2~ 

25 
26 2 
27 C 
28 C 
29 C 
30 C 
31 
32 90 
33 
3'\ 
35 
36 
37 
38 95 
39 C 
40 C 
41 C 
42 C 
43 96 
44 
45 

- THE ARRAY XN WILL HOLDS THE COEFFICIENT MATRIX. 
_ ITER = NUMBER OF ITERATIONS RUN BY THE THE PROCESSORS. 
- NPATH ~ NlIMBER OF PARALLEL PATHS. 
- W = RELAXATION FACTORS. 
- MAXITR ~ MAXIMUM ITERATIONS. 
- EPS = ACCURACY VALUE USED FOR CONVERGENCE TEST. 

INTEGERlt.2 ITIME 
DIMENSION XN(,\0,40),ERR(40,40),ITIME(100) 
SSHARED XN,N,N1,N2,NP,ITER,IFLAG,NPATH,EPS,MAXITR,W,ITIME 
SUSEPI\R 
MAXITR ~ 1000 
EPS = 0.00001 
WRITE(6,2) 
FORMAT('PROGRAM NAME :- • PROGRAM 4.3 "11) 

REM' MESH SIZE,NUMBER OF PARALLEL PATHS 
AND W,W1 THE RELAXATION FACTORS. 

READ(5,90) N,NPATH,IPRINT,W.W1.WF 
FORMAT(I2,lX,I2,lX,I2,lX.F5.3,lX.F5.3,lX,F5.3) 
N2 ::- N-2 
N1 = N-1 
NP = N2/NF'nTH 
IF(NP .EO. 1) NP~3 
WRITE(6,95) MAXITR,EPS.N2,NPATH 
FORMAT(/'MAXITR~',I,\/2X.'EPS='F10.6/2X.'N2~',I2/2X,'NPATH~'.I2) 

RUN THE ALGORITHM WITH W WHICH IS INCREASED EACH STEP BY W1 IN ORDER 
TO FIND THE EXACT RELAXATION FACTOR. 

W~W+Wl 

46 864 
47 C 
48 C 
49 C 
50 

IF (W .GT. WF) GO TO 150 
WRITE(6,8b4)W 
FORMAT(/2X,'W~',F7.3) 

INITIALISE THE COMPONENTS AND THE BOUNDARY OF THE MESH. 

DO 11 11 ~1, N 
XN(I1,1)'"100.0 51 

52 DO 22 Jl 1-2,N 
53 XN(Il,Jl)~O.O 

5~ 22 CONTINUE 
55 11 CONTINUE 
56 C INITIALISE ITERATION COUNTER 
57 ITER ~ 0 
'58 C 
59 C STnRT TIMING 
60 C 
61 snOnLL 1 



62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
7~ 

75 
76 

1 
C 
50 
C 
C 
C 

77 C 
79 C 
79 C 
80 
91 
82 
83 
9 .. 
85 
96 
97 
98 
99 
90 
91 
92 
93 
94 
95 
96 
97 
99 
99 

100 
101 
102 
103 
10.. C 
105 C 
106 C 
107 C 
109 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 

B"'l. 1112. 
A:.-:l • /22~. 
C'·1./16. 
Ct'\LL TIMEST 

$PARENII 

ITER ,-- ITER + 1 

SET UP A PROCESS FOR EACH PROCESSOR TO ITERATE SYNCHRONOUSLY. 

$DOPAR 15 IP-l,NPATH 
I PS"NF'* ( Ip·l ) +2 
IF'F=NPIIPt1 
DO 35 I~IPS,IPF,3 

DO 36 J'"2, N2, 3 

FIND THE EQUATIONS OF THE 9 POINTS OF THE BLOCK. 

XOLII~XN ( I , J) 
Rl~XN(I-l.J)+XNCI,J-l) 
R2~XN(I-l.J+l)+XNCI+l,J-l) 
R3~XN(I-l.J+2)+XNeI.J+3) 

R4=XNeI+3.J)+XNeI+2.J-l) 
R5=XNeI+l.J+3)+XNeI+3.J+l) 
R6=XN(I+2.J+3)+XNeI+3.J+2) 
R7=XN ( 1+ 1. J-l ) 
R8~XNeI-l,J+l)+XNeI+3,J+l) 
R9~XNeIt1,J+3) 

Rl0-XN(I+3.J+l)+XN(I+l,J-l) 
Rll=XNeI-l.J+l)+XN(I+l.J+3) 
R12=XN(I-l.Jt1) 
R13 n XNeI+l,J+3)+XN(I+l,J-l) 
Rl .. -XNCI+3,Jt1) 
R15"R3+R4 
R16'-R1+R" 
R17'-R3+R6 
R18"R1+R6 
R19'''R1+R3 
R20-R6+R4 
R21~Rl0+Rl1 

R22"R18+R15 
XNEW n e67.*Rl+22.IR2+7.'R15+6.IR5+3.*R6)*A 

EVALUATE THE COMPONENTS WITH W AND PUT THE NEW 
VALUE IN THE ARRt'\Y XN. 

XNEW=W*(XNEW-XOLD)+XOLD 
ERReI,J)-ABS(XNEW-XOLD)/(l+ABSeXOLD» 
XNeI.J)~XNEW 

XOLD'-'XN ( 1+ 1, J) 
XNEWn(37.*R7+11.*R16+7.*R9+5.*R9+3 •• R17)*B 
XNEW-W*eXNEW-XOLD)+XOLD 
ERR(I+l.J)=ABSeXNEW-XOLD)/(l+ABS(XOLD» 
XNe1+1.J)"·Y.NEI~ 
XOLII'''XN (It2, J) 
XNEW-e67.*R4+22.IR10+7.IR18+6.*Rl1+3.IR3).A 
XNEW-W*eXNEW-XOLD)+XOLD 
ERR(I+2,J)·ABS(XNEW-XDLD)/el+ABSeXOLD» 
XNe1+2.J)-XNEW 
XOLD-XNeI,J+l) 
XNEW-e37.*R12+11.*R19+7.*R13+5.*Rl .. +3.*R20)*B 
XNEW·WI(XNEW-XOLD)+XOLD 

512 



124 ERRII,J+l)-ABSIXNfW-XOLD)/ll+ABSIXOLD» 
125 XNII,J+l)-XNEW 
126 XOLD-XNII+l,J+l) 
127 XNEW-12.*R21+R22)*C 
128 XNEW-W*IXNEW-XOLO)+XOLD 
129 ERRII+l,J+l)-ABSIXNEW-XOLD)/ll+ABSIXOLD» 
130 XNII+l,J+l)-XNEW 
131 XOLD-XNII+2,J+1) 
132 XNEW=137.*R1~+11.*R20+7.*R13+5.*R12+3.*R19)*B 
133 XNEW-W*IXNEW-XOLD)+XOLD 
134 ERRII+2,J+1)=ABSIXNEW-XOLD)/11+ABSIXOLD» 
135 XNII+2,J+1)-XNEW 
136 XOLD-XNII,J+2) 
137 XNEW-167.*R3+22.*Rl1+7.*R18+6.*Rl0+3.*R~)*A 
138 XNEW=W*IXNEW-XOLD)+XOLD 
139 ERRII,J+2)=ABSIXNEW-XOLD)/11+ABSIXOLD» 
110 XNII,J+2)-XNEW 
141 XOLD=XNII+1,J+2) 
142 XNEW-137.*R9+11.*R17+7.*R8+5.*R7+3.*R16)*B 
143 XNEW-W*IXNEW-XOLD)+XOLD 
144 ERRII+1,J+2)rABSIXNEW-XOLD)/ll+ABSIXOLD» 
145 XNII+1,J+2)-XNEW 
146 XOLD-XNII+2,J+2) 
147 XNEW-167.*R6+22.*R5+7.*R15+6.*R2+3.*R1)*A 
148 XNEW-W*IXNEW-XOLD)+XOLD 
149 ERRII+2,J+2)·ABSIXNEW-XOLD)/11+ABSIXOLD» 
150 XNII+2,J+2)=XNEW 
151 C 
152 36 CONTINUE 
153 35 CONTINUE 
154 15 $PAREND 
155 C 
156 C CHECK IF THE ITERATION ABOVE THE SPf.CIFICATION LIMIT. 
157 C 
158 113 IFIITER .GE. MnXITR) GO TO 775 
159 C 
160 C CHECK FOR CONVERGENCE. 
161 C 
162 DO 777 I11~IPS,IPF 
163 DO 777 J11~2,N1 
164 IFIERRII11rJ11) .8T. EPS) GO TO 50 
165 777 CONTINUE 
166 C 
167 C END TIMING 
168 C 
169 775 $DOALL 3 
170 CnLL TIMOUTIITIME) 
171 3 $PAREND 
172 WRITEI6,801) ITIME 
173 801 FORMATI//2X,'THE TIMING'/8116,2X» 
174 C 
175 C CHECK IF ANY PROCESS EXCEED ITS 
176 C MAXIMUM ITERATION LIMITS. 
177 C 
178 IF IITER .GT. MAXITR) GO TO 250 
179 [10 85 I'"l,NF'(\TH 
180 WRITEI6,812) I,ITER 
181 812 FORMATI//1X,'CONVERGENCE IS ACHIEVED IN PROCESS NO.'I2,lX. 
182 1 'AFTER'.lX,I4,lX.'ITERATIONS') 
183 85 CONTINUE 
184 15~ IFIIPRINT .GT. 1) GO TO 37 
185 WRITEI6,64) 

/ 
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514 
186 64 FORMAT(//2X,'THE SOLUTION MESH IS') 

187 DO 810 IJ~l,N 
188 WRITE(6,65)(XN(IJ,JJ),JJ~1,N) 

189 65 FORMAT(//lX,7(Fl0.6,lX» 
190 810 CONTINUE 
191 GO TO 37 
192 250 WRITE(6,61> 
193 61 FORMI'IT (/ /2X. ' NO CONVERGENCE IS ,.,CHIEVEtl ') 
19'. GO TO 154 
195 37 GO TO 96 
196 150 ~STOP 

197 ~END 



515 

1 C 
2 C **** PROGRnM 4.4 .*** 
3 C 
4 C THJS PROGRAM IMPLEMENTS THE 9-POINT BLOCK ITERATIVE METHOD WHERE 
5 C THE SOR ITF.RATJVE METHOD IS USED.THIS IS AN ASYNCHRONOUS ALGORITHM 
6 C TO SOLVE THE 2-DIMENTIONAL DJRICHLET PROBLEM. THE LINES OF THE 
7 C MESH TO BE SOLVED ARE PARTITIONED INTO NPATH SUBSETS SO THAT EnCH 
8 C SUBSET IS ASSIGNEI' TO A GROUP OF SEQUENTI"'L LINES. THE BLOCKS OF 9 
9 C ARE EVALUATED IN THE NATURAL ORDERING WHERE EnCH 3 LINES WHICH 

10 C FORM THE BLOCKS ARE TAKEN AT A TIME. 
11 C 
12 C - THE ARRAY XN WILL HDLDS THE COEFFICIENT MATRIX. 
13 C - ITER <I ) .- NUMBER OF ITERATIONS RUN BY PROCESSOR I. 
14 C - NF'ATH = NUMBER OF PARnLLEL pnTHS. 
15 C - W = RELAXATION FACTORS. 
16 C - MAXITR ~ M"'XIMUM ITERATIONS. 
17 C - EPS = ACCURACY VALUE USED FOR CONVERGENCE TEST. 
18 C 
19 INTEGER*2 ITIME 
20 DIMENSION XNC40,40),ERRC40,40), ITER(6),IFLAG(6),ITIMEC100) 
21 'SHARED XN,N,Nl,N2,NP,ITER,IFLAG,NPATH,EPS,MAXITR,W,ITIME 
22 .USEPAR 
23 M"'XITR = 2000 
24 EPS = 0.00001 
25 WRITEC6,2) 
26 2 FORMATC'PROGR"'M NnME :- • PROGRAM 4.4 "11) 
27 C 
28 C REI\D THE MESH SIZE, NUMBER OF PARI\LLEL PATHS 
29 C AND W,Wl THE RELAXATION FACTORS. 
30 C 
31 REnDC5,90) N,NPATH,IPRINT,W,Wl,WF 
32 90 FORMATCI2,IX,I2,lX,I2,lX,F5.3,lX,F5.3,lX,F5.3) 
33 NZ = N-2 
34 NI ~ N-l 
35 NP = N2/NF'nTH 
36 IFCNP .EQ. 1) NP~3 
37 WRITEC6,95) MAXITR,EPS,N2,NPATH 
38 95 FORMATC/'MnXITRm',I4/2X"EPS='Fl0.6/2X,'N2~',I2/2X,'NPATH-',I2) 
39 C 
40 C RUN THE ALGORITHM WITH W WHICH IS INCREASED EnCH STEP BY Wl IN ORDER 
41 C TO FIND THE EXI\CT RELAXATION FACTOR. 
42 C 
43 96 W = W+Wl 
44 IF (W .GT. WF) GO TO 150 
45 WRITE(6,8n4)W 
46 864 FORMAT(/2X,'W~',F7.3) 

47 C 
48 C INITIALISF. THE COMPONENTS AND THE BOUNDARY OF THE MESH. 
49 C 
50 DO 11 Il=l,N 
51 XNCI1,1)~100.0 

52 DO 22 Jl~2,N 
53 XN(Il,Jl)~O.O 

54 22 CONTINUE 
55 11 CONTINUE 
56 C 
57 C INITInLISE ITERATION COUNTERS AND FLAGS FOR EI\CH PROCESSOR 
59 C 
59 
60 
61 

[.0 17 I=l,NPATH 
ITER ( I )~O 
IFLAGCI)~l 



62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
7'5 
76 
77 
78 
79 
80 
81 
82 
83 
8'. 
8'5 
86 
87 
88 
99 
90 
91 
92 
93 
94 
9S 
96 
97 
99 
99 

100 
101 
102 
103 
104 
10'5 
106 
107 
108 
109 
110 
111 
112 
113 
114 
11'5 
116 
117 
118 
119 
120 
121 
122 
123 

17 
C 
C 
C 

1 
C 
C 
C 

C 
C 
C 
'50 
C 
C 
C 
C 

C 
C 
C 

C 

C 

C 
C 
C 
C 

CONTINUE 

SHIRT TIMING 

$[lOALL 1 
B"l. 1112. 
C<'>LL TIMEST 

$PARENI' 
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SET UP A PROCESS FOR E<'>CH PROCESSOR TO ITERATE ASYNCHRONOUSLY. 

$DOPAR 15 IP-l,NPATH 
I PS'" NPJt.I IP-l )+2 
I PF=NF'* I P+ 1 

ITERATE ON THE SUBSET ELEMENTS UNTIL fl CONVERGENCE IS flCHJEVED. 

ITERIIP)nITERIIP)+1 

PICK E<'>CH THREE CONSEQUENT LINES AT A TIME SO THAT THE BLOCKS TO BE 
EVALU<'>TED CAN BE SOLVED AS COMPLETE. 

DO 35 I-IPS,IPF,3 
DO 36 J::-:2,N2,3 

FINI' THE EQUATIONS OF THE 9 POINTS OF THE BLOCK. 

Rl~XNlI-l,J)+XNII,J-I) 

R2=XN<I-l ,J+1) 
R3~XNlI-l,J+2)+XNII,J+3) 

R'.'·XNI 1+1 ,J+3) 
R'5 n XNII+2,J+3)+XNII+3,J+2) 
R6 n XN 11+3 d+1) 
R7~XNII+3.J)+XNII+2.J-l) 
R8~XNI 1+1.J-l) 

SI=R2+R6 
S~'''RHR8 
S3"-R3+R7 
S4=-=R5+R5+R5 
S'5'·-R1+R7 
S6=R3+R3+R3 
S7~S4+S6 

S8=R7+R7+R7 
S9nSHS8 
S10nR'5+R7 
Sl1~R1+R1+Rl 

SI2'''S6+S11 
SI3'''R3+R'5 
SI4'''S8+S11 
SI'5=R1+R3 

XOLI""XN I 1+1 • J) 
XNEW=137.*R8+11.*S'5+7.Jt.Sl+5.*R4+S7)*B 

EVALUATE THE COMPONENTS WITH W AND PUT THE NEW 
VALUE IN THE ARRAY XN. 

XNEW-W*IXNEW-XOLD)+XOLD 
ERRII+I.J)=ABSIXNEW-XOLD)/11+ABSIXOLD» 
XN 11+ 1. J) "-XNEW 
XOLD=XNII.J+1) 



124 
125 
1::!~, 

127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 C 
139 
140 
141 
1-12 
143 C 
144 
145 
1"6 
147 
148 
1~9 

150 
151 
152 
153 
154 

XNEW~137.*R2+11.*S15+7.*S2+5.tR6+S9)tB 
XNEWrW*IXNEW-XOLD)+XOLD 
ERRII,J+l)~ABSIXNEW-XOLD)/ll+nBSIXOLD» 
XN I I , J+1 ) '"XNEW 
XOLDcXNII+2,J+1) 
XNEW-137.tR6+11.*SI0+7.*S2+5.*R2+S12)tB 
XNEWrWICXNEW-XOLD)+XOLD 
ERRII+2.J+I)=ABSIXNEW-XOLD)/11+ABSIXOLD» 
XNI It2, J+1 ) =XNEW 
XOUI-XN I 1+1, J+2) 
XNEW=137.*R1+11.*S13+7.*Sl+5.*R8+S14)tB 
XNEW-WIIXNEN-XOLD)+XOLD 
ERRII+I,J+2)=ABSIXNEW-XOLD)/11+ABSIXOLD» 
XNII+1,J+2)=XNEW 

T2'·'XN I It 1 , J) 
T1'"XNII,J+1> 
T 6'-XN I It2, J+1 ) 
T8'-XN I It 1, J+2) 

XOLD-XN I It 1, J+1 ) 
XNEW=IT2+T4+T6+T8)*.25 
XNEW=WtIXNEW-XOLD)+XOLD 
ERRII+l,J+l)=ABSIXNEW-XOLD)/ll+ABSIXOLD» 
XNI Itl, J+1) -XNEW 
XOLD=XNII,J) 
XNEW-IR1+T2+T4)'.25 
XNEWcWICXNEW-XOLD)+XOLD 
ERRII,J)-ABSIXNEW-XOLD)/II+ABSIXOLD» 
XNII,J)-XNEW 
XOLD=XN I It2, J) 

155 XNEW~(R7+T2+T6)*t25 
156 XNEW-WIIXNEW-XOLD)+XOLD 
157 ERRCI+2,J)nABSIXNEW-XOLD)/II+ABSIXOLD» 
158 XNII+2,J)rXNEW 
159 XOLDrXNII,J+2) 
160 XNEW-IR3+T4+T8)*.25 
161 XNEW·WIIXNEW-XOLD)+XOLD 
162 ERRII,J+2)-ABSIXNEW-XOLD)/Cl+ABSIXOLD» 
163 XNII,J+2)-XNEW 
164 XOLD-XNII+2,J+2) 
165 XNEW=IR5+T6+T8)t.25 
166 XNEW-WIIXNEW-XOLD)+XOLD 
167 ERRII+2,J+2)=ABSIXNEW-XOLD)/11+nBSIXOLD» 
168 XNII+2,J+2)=XNEW 
169 C 
170 36 CONTINUE 
171 35 CONTINUE 
172 C 
173 C CHECK IF THE ITERATION ABOVE THE SPECIFICATION LIMIT. 
174 C 
175 113 IFIITERIIP) .GE. MnXITR) GO TO 15 
176 C 
177 C CHECK FOR CONVERGENCE. 
178 C 
179 DO 777 Ill-IPS,IPF 
180 DO 777 Jll-2,Nl 
181 IFIERRlIll,Jll) .GT. EPS) GO TO 50 
182 777 CONTINUE 
183 C 
184 C SET THE CONVERGENCE FLAG = 2 AND TEST FOR 
185 C THE CONVERGENCE OF THE OTHER PROCESSORS. 
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186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 

C 
IFLAO<IP)'"2 
JJ~l 

776 IF(IFLIIO(JJ) .EG. 1> 00 TO 50 
JJ~JJt1 
IF(JJ .LE. NP~TH) 00 TO 776 

15 'PARENt. 
C 
C END TIMING 
C 

..r'OALL 3 
CI\LL TIMOUT(ITIME) 

3 $PIIREND 
WRITE(6,801) ITIME 

801 FORMAT(//2X,'THE TIMINO'/8(I6,2X» 
C 
C CHECK IF IINY PROCESS EXCEED ITS MAXIMUM 
C ITERATION LIMITS. 
C 

DO 28 J,"l,NPIITH 
IF (ITER(J) .OT. M~XITR) 00 TO 250 

28 CONTINUE 
DO 85 I'"bNPl'ITH 

WRITE(6,812) I,ITER(I) 
812 FORMAT(I/1X,'CONVEROENCE IS ACHIEVED IN 

1 'IIFTER',lX,I4,lX,'ITERATIONS') 
85 CONTINUE 
154 IF(IPRINT .OT. 1) 00 TO 37 

WRITE(6,6~) 
64 FORMAT(112X,'THE SOLUTION MESH IS') 

t.O 810 IJ'"l,N 
WRITE(6,65)(XN(IJ,JJ),JJ=1,N) 

65 FORMAT(111X,7(Fl0.6,lX» 
810 CONTINUE 

GO TO 37 
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PROCESS NO.'I2,lX, 

250 WRITE(6.61) 
61 FORMAT(//2X,'NO CONVERGENCE IS ACHIEVED') 

00 TO 154 
37 00 TO 96 
150 $STOP 

$END 
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1 C 
2 C **** PROGRnM 4.5 **** 
3 C 
4 C THIS PROGRnM IMPLEMENTS THE 9-POINT BLOCK ITERnTIVE METHOD WHERE 
5 C THE SOR ITERATIVE METHOD IS USED. THIS IS AN ASYNCHRONOUS ALGORITHM 
6 C TO SOLVE THE 2-DIMENTlONI':L DIRICHLET PROBLEM. THE LINES OF THE 
7 C MESH TO BE SOl.VED ARE PARTlTlONEt. INTO NPIITH SUBSETS SO THnT EACH 
8 C SUBSET IS ASSIGNED TO A GROUP OF SEOUENTIIIL LINES.THE BLOCKS OF 9 
9 C ARE EVALUATED IN • RED - BLACK' ORDERING WHERE EACH THREE LINES 

10 C WHICH FORM THE BLOCKS ARE TAKEN AT A TIME. 
11 C 
12 C - THE ARRIIY XN WILL HOLDS THE COEFFICIENT MATRIX. 
13 C - ITERCII • NUMBER OF ITERATIONS RUN BY PROCESSOR I. 
14 C - NPATH • NUMBER OF PARALLEL PIITHS. 
15 C - W • RELAXATION FnCTORS. 
16 C - MAXITR - MnXIMUM ITERATIONS. 
17 C - EPS = ACCURnCY VALUE USED FOR CONVERGENCE TEST. 
18 C 
19 INTEGER ITIME,FLnG 
20 DIMENSION XNC~0,401,ERRC40,401, ITERC61,IFLAGC61,ITIMECI001 
21 $SHIIRED XN,N,Nl,N2,NP,ITER,IFLIIG,NPATH,EPS,MAXITR,W,ITIME 
22 $USEPAR 
23 MIIXITR = 2000 
2~ EPS = 0.00001 
25 WRITEC6,21 
26 2 FORMATC'PROGRAM NAME :- • PROGRAM 4.5 "1/1 
27 C 
28 C REnD THE MESH SIZE, NUMBER OF PARALLEL PATHS 
29 C AND W,Wl THE RELAXATION FACTORS. 
30 C 
31 REIIDCS,90) N,NPATH,IPRINT,W,Wl,WF 
32 90 FORMATCI2,IX,I2,lX,I2,lX,F5.3,lX,FS.3,lX,FS.3) 
33 N2 = N-2 
3'. NI ~ N-l 
35 NP = N2/NPnTH 
36 IFCNP .EO. 1) NP~3 
37 WRITEC6,95) MAXITR,EPS,N2,NPATH 
38 95 FORMATC/'MAXITR~',I4/2X,'EPS='FI0.6/2X,'N2~',I2/2X,'NPATH=',I2) 

39 C 
40 C RUN THE ALGORITHM WITH W WHICH IS INCREASED EACH STEP BY Wl IN ORDER 
41 C TO FIND THE EXIICT RELAXATION FACTOR. 
42 C 
43 96 W = W+Wl 
44 IF CW .GT. WF) GO TO 150 
45 WRITEC6,864)W 
46 864 FORMATC/2X,'W·',F7.3) 
47 C 
48 C INITIALISE THE COMPONENTS AND THE BOUNDARY OF THE MESH. 
49 C 
SO DO 11 Il-l,N 
51 XNCll,I)·100.0 
52 DO 22 Jl~2,N 
53 XN(Il,Jll~O.O 

54 22 CONTINUE 
55 11 CONTINUE 
56 C 
57 C INITII'ILISE ITERATION COUNTERS AND FLI'lGS FOR EACH PROCESSOR 
59 C 
59 DO 17 I=I,NPATH 
60 ITERCII·O 
61 IFLAG(II~1 



62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 

17 
C 
C 
C 

1 
C 
C 
C 

C 
C 
C 
50 
C 
C 
C 
C 

51 

C 
C 
C 

C 

C 

C 
C 
C 
C 

CONTINUE 

SHIRT TIMING 

U'OIlLL 1 
B~1./112. 

Cf>LL TI MEST 
$PIIRENI' 

SET UP A PROCESS FOR EnCH PROCESSOR TO ITERATE ASYNCHRONOUSLY. 

$DOPAR 15 IP-l.NPnTH 
I PS--'NP* ( IF'-l ) +2 
I F'F=NP*I P+l 
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ITERATE ON THE SUf<SET ELEMENTS UNTIL n CONVERGENCE IS IICHIEVED. 

ITER(IP)RITER(IP)+l 

PICK EACH THREE CONSEQUENT LINES AT A TIME SO THAT THE 
FLOCKS TO BE EVALUATED CAN FE SOLVED AS COMPLETE. 

Kl = 5 
FLAG ~ 0 
DD 35 I=IPS.IPF.3 

Kl ~ 7-K1 
no 36 J'"Kl.N2.6 

FIND THE EQUATIONS OF THE 9 PDINTS OF THE BLOCK. 

Rl~XN(I-l,J)+XN(I.J-1) 

R2=XN( 1-1. J+l) 
R3~XN(I-1.J+2)+XN(I.J+3) 

R4=XN( 1+1 oJ+3) 
R5-XN(I+2.J+3)+XN(I+3.J+2) 
R6'''XN (1+3. J+1) 
R7=XN(I+3.J)+XN(I+2.J-l) 
R8=XN( 1+1.J-1) 

Sl"'R2+R6 
S2'"R4+R8 
S3=R3+R7 
S1~R5+R5+R5 

S5~R1+R7 
S6~R3+R3+R3 

S7~S4+S6 

S8=R7+R7+R7 
S9~S"+S8 
S10=R5+R7 
S11-R1+R1+R1 
512=56+511 
S13'''R3+R5 
S14~S8+S11 

S15~R1+R3 

XOLl'~XN ( 1+1 oJ) 
XNEW=(37.*R8+11.*S5+7.*Sl+5.*R4+S7)*F 

EVIILUIITE THE COMPONENTS WITH W AND PUT THE NEM 
VIILUE IN THE XN. 

XNEW=W*( XNEW-XOLI') +XOLD 



124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 C 
142 
143 
144 
145 
146 C 
147 
1'.8 
1'.9 
150 
151 
152 
153 
154 
1S5 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 C 

ERRII+l,JI=ABSIXNEW-XOLDI/ll+ABSIXOLDII 
XN (I +1 , J 1 ~XNE\J 
XOLD~XNII,J+11 
XNEW~(37.*R2+11.*S15+7.*S2+5.*R6+S91*B 
XNEW~W*IXNEW-XOLDI+XOLD 
ERRII,J+ll~ABSIXNEW-XOLDI/(l+nBS(XOLDII 
XN (I , J+1 1 =XNEW 
XOLD"XN(I+2,J+l1 
XNEW=137.*R6+11.*S10+7 •• S2+5.*R2+S121*B 
XNEW~W*(XNEW-XOLDI+XOLD 
ERRII+2,J+11=ABSIXNEW-XOLDI/11+ABSIXOLDII 
XN I 1+2, J+l 1 =XNEW 
XOLII"XN I Itl , J+2 1 
XNEW=137.*R~+11.*S13+7.*Sl+5.*R8+S141*B 
XNEW~W*IXNEW-XOLDI+XOLD 
ERRII+l,J+21=ABSIXNEW-XOLDI/11+ABS(XOLDII 
XN I I +1, J+2 1 =XNEW 

T2'-XN 11+ 1 , J 1 
T~'-XNII,J+lI 
T6~XNI1+2,J+11 
T8'-XN I 1+1, J+2 1 

XOLD~XNII+1,J+11 

XNEW=IT2+T4+T6+T81*.25 
XNEW=W.IXNEW-XOLDI+XOLD 
ERRII+1,J+1,=ABSIXNEW-XOLD,/11+ABS(XOLD" 
XN (It 1 oJ+1 1 '-XNEW 
XOLD'-XN I I , J 1 
XNEW-IR1+T2+T41'.25 
XNEW~W'IXNEW-XOLDI+XOLD 
ERRII,JI=ABSIXNEW-XOLDI/ll+ABSIXOLDII 
XN I I. J 1 "-XNEW 
XOLII.XN 11+2, J 1 
XNEW=(R7+T2+T61*.25 
XNEW·W*IXNEW-XOLDI+XOLD 
ERRII+2,JI=ABSIXNEW-XOLDI/11+ABSIXOLDII 
XN I 1+2, J) '-XNEW 
XOLD=XNII,J+2) 
XNEW=IR3+T4+T8)*.25 
XNEW~W'IXNEW-XOLD)+XOLD 
ERRII,J+2)-ABSIXNEW-XOLDI/11+ABSIXOLDII 
XNII,J+21=XNEW 
XOLD-XNII+2,J+2) 
XNEW=IR5+T6+T8) •• 25 
XNEW=W'IXNEW-XOLD)+XOLD 
ERRII+2,J+21=ABSIXNEW-XOLDI/11+ABSIXOLD» 
XNII+2,J+2)=XNEW 

173 36 CONTINUE 
174 35 CONTINUE 
175 IF IFLAG .EQ. 11 GO TO 113 
176 FLAG = 1 
177 Kl = 2 
178 GO TO 51 
179 C 
180 C CHECK IF THE ITERATION ABOVE THE SPECIFICATION LIMIT. 
181 C 
182 113 IFIITERIIP) .GE. M~XITR) GO TO 15 
183 C 
184 C CHECK FOR Cm!VERGENCE. 
185 C 
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186 DO 777 Il1~IPI,IPF 
187 DO 777 Jll~2,Nl 
188 IFIERRllll,J11) .GT. EPS) GO TO 50 
189 777 CONTINUE 
190 C 
191 C SET THE CONVERGENCE FLM _. 2 ANI' TEST FOR THE 
192 C CONVERGENCE OF THE OTHER PROCESSES. 
193 C 
194 IFLAGIIP)w2 
195 JJ~l 
196 776 IFIIFLAGIJJ) .EO. 1) GO TO 50 
197 JJ~JJ+l 
198 IFIJJ .LE. NPATH) GO TO 776 
199 15 .PAREND 
200 C 
201 C END TIMING 
202 C 
203 $DOALL 3 
204 CALL TIMOUTIITIME) 
205 3 $PAREND 
206 WRITEI6,801) ITIME 
207 801 FORMATI//2X,'THE TIMING'/8116,2X» 
208 C 
209 C CHECK IF ANY PROCESS EXCEED ITS MAXIMUM 
210 C ITERATION LIMITS. 
211 C 
212 
213 
214 28 
215 
216 
217 812 
218 
219 85 
220 154 
221 
222 64 
223 
224 
225 65 
226 810 
227 
228 250 
229 61 
230 
231 37 
232 150 
233 

1'0 28 J~l,NP"'TH 
IF IITERIJ) .GT. MAXITR) GO TO 250 

CONTINUE 
DO 85 I'"l,NF'I':TH 

WRITEI6.812) I,ITERII) 
FORMATI//1X,'CONVERGENCE IS ACHJEVED IN PROCESS NO.'I2,lX, 

1 'I'IFTER',lX,I4,lX,'ITERATIONS') 
CONTINUE 
IF<IPRINT .GT. 1> GO TO 37 
WRITEI 6, 64) 
FORMATI//2X,'THE SOLUTION MESH IS') 
DO 810 IJ"·l,N 
WRITEI6,65)IXNIIJ,JJ),JJ;1,N) 
FORMATI//1X,7IFl0.6,lX» 

CONTINUE 
GO TO 37 
WRITEI6,61 ) 
FORMATI//2X,'NO CONVERGENCE IS ACHJEVED') 
GO TO 151\ 
GO TO 96 
.srop 
.END 
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**** PROGRAM 4.6 **** 
1 C 
2 C 
3 C 
'\ C 
5 C 
6 C 
7 C 
8 C 
9 C 

10 C 
11 C 
12 C 
13 C 
14 C 
15 C 
16 C 
17 C 
18 C 
19 

THIS PROGRAM IMPLEMENTS THE 9-POINT BLOCK ITERATIVE METHOD WHERE 
THE SOR ITFRATIVE METHOD IS USED.THIS IS AN SYNCHRONOUS ALGORITHM 
TO SOLVE THE 2-DIMENTlONAL DIRICHLET PROBLEM. THE LINES OF THE 
MESH TO BE SOLVED ARE PARTITIONED INTO NPATH SUBSETS SO THAT EACH 
SUBSET IS ASSIGNED TO A GROUP OF SEQUENTIAL LINES.THE BLOCKS OF 9 
ARE EVALUATED IN THE NATURAL ORDERING WHERE EACH 3 LINES WHICH 
FORM THE BLOCKS ARE TAKEN AT A TIME. 

20 
21 
22 
23 
2~ 
25 

- THE ARRAY XN WILL HDLDS THE COEFFICIENT MATRIX. 
- ITER ~ NIJMBER OF ITEF:A Tl ONS. 
- NPATH " NUMBER OF PARALLEL PATHS. 
- W = RELAXATION FACTORS. 
- MAXITR n MAXIMUM ITERATIONS. 
- EPS = ACCURACY VALUE USED FOR CONVERGENCE TEST. 

INTEGER*2 !TIME 
DIMENSION XN(40,40),ERR(40,40),ITIME(100) 
'SHARED XN,N,Nl,N2,NP,ITER,IFLnG,NPATH,EPS,MAXITR,W,ITIME 
'USEPAR 
MAXITR = 2000 
EPS = 0.00001 
WRITE(6,2) 

26 2 
27 C 
28 C 
29 C 
30 C 
31 

FORMAT('PROGRAM NAME :- • PROGRAM 4.6 "11) 

READ THE MESH SIZE, NUMBER OF PARALLEL PATHS 
AND W,Wl THE RELAXATION FACTORS. 

READ(S.90) N,NPATH,IPRINT,W,Wl,WF 
32 
33 
34 
35 
36 
37 
38 
39 
40 
~1 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 

90 FORMAT(I2,lX,I2,lX,I2,lX,F5.3,lX,FS.3,lX,F5.3) 
N2 ::;; N-2 
NI = N-l 
NP = N2/NPATH 
IF(NP .Ea. 1) NPn 3 
WRITE(6,95) MAXITR,EPS,N2,NPATH 

95 FORMAT(/'MAXITR-',I4/2X,'EPS='Fl0.6/2X,'N2=',I2/2X,'NPATHr',I2) 
C 
C RUN THE ALGORITHM WITH W WHICH IS INCREASED EACH STEP BY Wl IN ORDER 
C TO FIND THE EXACT RELAXATION FACTOR. 
C 
96 W ~ W+Wl 

IF (W .GT. WF) GO TO 150 
WRITE (6,864) W 

864 FORMAT(/2X,'WR',F7.3) 
C INITIALISE THE COMPONENTS AND THE BOUNDARY OF THE MESH. 

DO 11 Il'=l,N 
XN(11,I)'"100.0 
[10 22 Jl,"2,N< 

XN ( 11 , J 1)"0.0 
22 CONTINUE 
11 CONTINUE 
C 
C INITIALISE ITERATION COUNTER 
C 

ITER=O 
S9 C 
59 C START TIMING 
60 C 
61 'OOALL 1 

( 



62 
63 
64 
65 
66 
67 
69 
69 
70 
71 
72 
73 
7~ 
75 
76 
77 
79 
79 
90 
91 
92 
93 
94 
95 
96 
97 
99 
99 
90 
91 
n 
93 
94 
9~ 
96 
97 
99 
99 

100 
101 
102 
103 
104 
105 
106 
107 
109 
109 
110 
111 
112 
113 
114 
115 
116 
117 
119 
119 
120 
121 
122 
123 

1 
C 
C 
C 
50 

C 
C 
C 
C 

C 
C 
C 

C 

c 

C 
C 
C 
C 

B"'1./112. 
CI'ILL TIMEST 

$PIIRENI' 
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SfT UP A PROCESS FOR EACH PROCESSOR TO ITERATE ASYNCHRONOUSLY. 

ITl':R ,." ITER+1 
$DOPAR 15 IP~l,NPI'ITH 

IPS=NP*( IP-l >+2 
IPF=NPUPtl 

PICK EI'ICH THREE CONSEGUENT LINES liT A T!ME SO THAT THE 
BLOCKS TO BE EVALUATED CAN BE SOLVED AS COMPLETE. 

DD 35 I-IPS,IPF,3 
I'D 36 J'·'2,N2,3 

F!ND THE EQUATIONS OF THE 9 POINTS OF THE BLOCK. 

Rl=XN(I-l,J)tXN(I,J-l) 
R2=XN( 1-1 ,J+1) 
R3=XN(I-l,Jt2)tXN(I,Jt3) 
R~=XN( Itl ,Jt3) 
R5~XN(It2,Jt3)+XN(I+3,J+2) 
R6=XN (It3. J+1) 
R7=XN(I+3,J)+XN(I+2,J-l) 
R9=XN( IH ,J-l) 

Sl=R2+R6 
S2'"RHR9 
S3'"R3+R7 
S4=R5+R5+R5 
S50"RltR7 
S6=R3+R3+R3 
S7'"SHS6 
S8=R7+R7+R7 
S9"SHS9 
S10o,R5+R7 
Sll~Rl +RltRl 
S12-S6+S11 
S13=R3+R5 
Sl~"'S9+S11 
S15=RltR3 

XOLI,'''XN ( I +1 , J) 
XNEW=(37.*R9+11.*S5+7.*Sl+5.*R4+S7)*B 

EVALUATE THE COMPONENTS WITH W AND PUT THE NEW 
VIILUE IN THE ARRAY XN. 

XNEW=W*(XNEW-XOLD)+XOLD 
ERR(I+l,J)=ABS(XNEW-XOLD)/(l+ABS(XOLD» 
XN( Itl ,J)-XNEW 
XOLD-XN(I,J+l) 
XNEW-(37.tR2+11.*S15+7.*S2+5.*R6+S9)tB 
XNEW-W*(XNEW-XOLD)+XOLD 
ERR(I,Jtl)-ABS(XNEW-XOLD)/(l+IIBS(XOLD» 
XN(I,J+1)=XNEW 
XOLD'''XN (I +2, J+ 1) 
XNEW=(37.*R6+11.*S10+7.*S2+5.*R2+S12)*B 
XNEW-W*(XNEW-XOLDl+XOLD 
ERR(I+2,J+ll=ABS(XNEW-XOLDl/(1+ABS(XOLD» 



124 XN(I+2,J+1)=XNEW 
125 XOLD~XN(I+1,J+2) 
126 XNEW=(37.fR1+11.*S13+7.*S1+5.*R8+S14)fB 
127 XNEWrW*(XNEW-XOLD)+XOLD 
128 ERR(I+1,Jt2)=ABS(XNEW-XOLD)/(1tnBS(XOLD» 
129 XN(I+l,J+2)=XNEW 
130 C 
131 T2~XN(Itl,J) 
132 T1~XN(I,Jtl1 
133 T6 n XN(I+2,Jtl1 
134 T8~XN(Itl,J+21 

135 C 
136 XOLDnXN(I+l,Jtl1 
137 XNEW=(T2+T4tT6tT81*.25 
138 XNEW·W'(XNEW-XOLDI+XOLD 
139 ERR(I+l,J+ll=ABS(XNEW-XOLDI/(l+ABS(XOLD)1 
140 XN(Itl,Jtll=XNEW 
1~1 XOLD=XN(I,JI 
142 XNEW~(Rl+T2+T4If.25 
143 XNEWmW*(XNEW-XOLDI+XOLD 
144 ERR(I,JlrABS(XNEW-XOLDI/(l+ABS(XOLDII 
145 XN(I,JI~XNEW 
146 XOLD=XN(I+2,JI 
147 XNEWm(R7+T2+T61*.25 
148 XNEW=W*(XNEW-XOLDI+XOLD 
149 ERR(I+2,JI·ABS(XNEW-XOLDI/(1+ABS(XOLD)1 
150 XN(I+2,J)~XNEW 

151 XOLD~XN(I,J+21 

152 XNEW=IR3+T4+T81*.25 
153 XNEW-W* (XNn!-XOL!I)tXOLD 
154 ERR(I,J+21~ABS(XNEW-XOLDI/(1+ABS(XOLDII 

155 XN(I,J+21=XNEW 
156 XOLD~XNII+2,J+21 

157 XNEW=(R5+T6+T8If.25 
158 XNEW-W*IXNEW-XOLDI+XOLD 
159 ERRII+2,J+21=ABS(XNEW-XOLDI/(1+ABS(XOLDII 
160 XN(I+2,J+21=XNEW 
161 C 
162 36 CONTINUE 
163 35 CONTINUE 
164 15 .PAREND 
165 C 
166 C CHECK IF THE ITERATION ABOVE THE SPECIFICATION LIMIT. 
167 C 
168 113 IF(ITER .GE. MnXITRI GO TO 775 
169 C 
170 C CHECK FOR CONVERGENCE. 
171 C 
172 DO 777 Il1·IPB,IPF 
173 DO 777 Jll-2,Nl 
174 IF(ERR(Il1,J111 .GT. EPSI GO TO 50 
175 777 CONTINUE 
176 C END TIMING 
177 775 .DOALL 3 
178 CnLL TIMOUT(ITIME) 
179 3 .PAREND 
180 WRITE(6,8011 ITIME 
181 801 FORMAT(//2X,'THE TIMING'/8(I6,2XII 
182 C 
183 C CHECK IF ANY PROCESS EXCEED ITS MAXIMUM 
184 C ITERATION LIMITS. 
185 C 
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186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 

28 

912 

85 
154 

64 

65 
810 

250 
61 

37 
150 

[10 28 J~l.NPATH 
IF (ITER .GT. M~XITR) GO TO 250 

CONTINUE 
[10 85 I~l,NPATH 

WRITE(6,812) I,ITER 
FORMAT (/ flX,' CONVERGENCE IS ACHIEVEr' IN 

1 'AFTER',lX,I4,lX,'ITERATIONS') 
CONTINUE 
IF(IPRINT .GT. 1> GO TO 37 
WRITE(6,64) 
FORMAT(ff2X,'THE SOLUTION MESH IS') 
DO 810 IJ'·-l,N 
WRITE(6,6S)(XN(IJ,JJ),JJ=1,N) 
FORMAT(//lX,7(Fl0.6,lX» 

CONTINUE 
GO TO 37 
WRITE(6,61> 
FORMAT(/f2X,'NO CONVERGENCE IS ACHIEVE[I') 
GO TO 154 
GO TO 96 
.STOP 
$END 
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PROCESS NO.'I2.1X, 



1 C 
2 C 11.. PROGRAM 5.1 ,,*. 
3 C 
4 C THJS PROGRAM IS A SYNCHRONOUS VERSION I OF THE PARALLEL 
S C A.G.E. MFTHOD THAT USED TO SOLVE PROBLEM lITHE LINEAR 
6 C PROBLEM). IN THIS PARALLEL VERSION, IN THE FIRST SWEEP 
7 C EACH PROCESSOR EVALUATES ITS POINTS BY TAKING UP EACH 
8 C TWO SIJCCESSIVE POINTS AT A TIME STARTING FROM THE FJRST 
9 C POINT AND TFRMINATES AFTER EVALUATING THE LAST TWO 

10 C POINTS. WHILE THE SECOND SWEEP IB STARTED AFTER THE 
11 C FIRST SWEEP HAS BEEN COMPLETED. IN THE SECOND SWEEP 
12 C EACH PROCESSOR STARTS ITS PROCESSING WITHIN ITS SUBSET 
13 C BY EVALUATING THE FIRST POINT THEN EACH SUCCESSIVE TWO 
14 C POINTS AT A TIME AND THE LAST POINT IS EVALUATED ON ITS 
15 C OWN. 
16 C 
17 C - THE ARRAY 'Ul' IS USED TO HOLDS THE STARTING VALUES. 
18 C - THE ARRAY 'U2' IS USE!' TO HOLI'S THE VALUES AFTER THE 
19 C FIRST SWEEP. 
20 C - THE ARRI\Y 'U3' IS USED TO HOLI'S THE VALUES AFTER THE 
21 C SECOND SWEEP. 
22 C - N - SJZE OF INPUT. 
23 C - NPROC r NUMBER OF CO-OPERATIVE PROCESSORS. 
24 C - Ra - ACCELERATION PARAMETER. 
25 C - PS - NUMBER OF PARALLEL PATHS. 
26 C - TPRINT r USED TO INDICATE IF PRINTING REQUIRED. 
27 C - ITER m TOTAL NUMBER OF ITERATIONS. 
28 C 
29 INTEGER ITJME(100),N,ITER,P.PS 
30 DIMENSION Ul(200),U21200),U31200),DlI100),D21100) 
31 DIMENSION IBSI2~),IENDS(24),ERRI200),BI200),GI200) 
32 REAL ALP,ALP2,RO,BETA,H,Hl 
33 C 
34 $SHARED Nrlll,U?,U3,ERR,ITIME,RO,PS,NF'ROC 
35 C 
36 $REGION REGl 
37 C 
38 FKIX1,X2)-400*I(COSIX1'X2)112)'t2IX2*X2*COS(2.XltX2) 
39 FIX1,X2)-IIEXPI-20.0)/lltEYP/-20.0»)tEXPI20.0IXl»t 
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40 1 11/11tEXPI-20.0»)*EXPI-20.0rXl)-IICOS(XltX2»*12) 
41 C 
42 $USEPAR 
43 C 
44 C CALCULATE NUMBER OF CO-OPERATIVE PROCESSORS 
45 C 
46 NPROC r 0 
47 $DOALL 30 
48 $ENTER REGl 
49 NPROC .' NPROCtl 
50 $FXIT REr.l 
51 30 $PAREND 
52 C 
S3 WRITE/6,l' 
54 1 FORMAT I 'PROGRAM NAME:- 'PROGRAM 5.1"1) 
55 C 
56 C READ THE INPUT PARAMETERS 
57 C 
58 READIS.2) N,RO,PS,IPRINT 
59 2 FORMATII3,lX,F6.3,IX,I2,lX,Il) 
60 C 
61 WRITEI6,S)RO 



62 5 
63 
6.. 6 
65 
66 62 
67 
68 64 
69 C 
70 
71 
72 C 
73 C 
74 C 
7~ 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 C 
88 
89 
90 
91 
92 40 
93 C 
9.. C 
95 C 
96 
97 
98 C 
99 

100 C 
101 C 
102 C 
103 
104 
105 
106 
107 45 
108 C 

FORM~T(/'W ~ ',F6.3/) 
WRITE(6,6)N 
FORMAT('SIZE OF INPUT (N)· ',13/) 
WRITE(6,6') NPROC 
FORM~T('NUMBER OF PROCESSORS ~ ',Ill) 
WRITE(6,64) PS 
FORMnT('NUMBER OF p~RnLLEL pnTHS ~ ',12/) 

MAXITR ~ 500 
EPS ~ 0.000005 

SETTING THE REGUIR~D VnRIABLES TO ALL THE PRCESSORS 

$TlOALL 211 
H ~ 1,0/FLOnT(Ntl) 
HI "' HtH 
PI :~. '3.14159265'" 
C ~ 200 
Cl • 1.0/(1.0t(HltC» 
P • PS 
f<ETA ~, l-RO 
ALP "' 1+RO 
ALP' '" I'ILF' * ~LP 
NI '" N-l 
N2 :" N/2 

flO 40 1-1 1Nl 
G(I) - Cl 
B(I) - -ClIHlIFK(ItH,PI) 
U3<I) • 0.0 

CONTINUE 

SET THE BOUNI."'RY VI"\LUES 

B(l) • -ClIHlIFK(H,PI) 
f«N) - -ClIHlIFK(HIN,PI) 

NP = NUP 

CI"\LCULI'ITF THE ENI' AND ST"'RTS OF EnCH SUBGROUP 

DO 45 I-l,P 
IBS(I)·(I-l)*NPtl 
lENDS <I) -IINP 
IF (I .EG. P) IENDS(l)=N2 

CONTINUE 

109 DO 50 I~I,N2 
110 Dl(I) - 1,0/(nLP2 - (G(2II-l)**2» 
111 fl2(I) - 1.0/(I'ILP2 - (G(2*I)*12» 
112 50 CONTI NUE 
113 211 $PI'IREND 
114 C 
115 C ST"'RT TIMING 
116 C 
117 $DOALL 21~ 
118 CnLL TIMEST 
119 21~ $pnREND 
120 C 
121 ITER • 0 
122 100 ITER· ITER t 1 
123 DO 60 I-l1N 
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12~ 

125 60 
126 C 
127 C 
128 C 
129 C 
130 
131 
132 
133 
13~ 

UlII) • U3II) 
CONTINUE 

GENERATE P PARALLEL PATHS WHICH RUNS 
~IMULTnNEOUSLY TO EVALUATE THE FIRST SWEEP. 

SDOPAR 250 L-l,P 
19 • 19SIL) 
lEND - IENDS(LI 
DO 200 JwJ9,I~ND 
1-2IJ-l 

135 IF (J .EG. 1 .OR. J .EG. N2) GO TO 210 
136 RI ~ Dl(J)'(9(I)+G(I-l)*Ul(I-l)-9ETA*1J1(I» 
137 R2 ~ Dl(J).(9(I+l)-9ETA*Ul(I+!)+G(I+l)*Ul(I+2» 
138 U7(I) - ALPtRl+GII)*R2 
139 U2II+l) ~ GII)tRI+ALP*R2 
140 GO TO 200 
141 210 IF (J .EG. N2) GO TO 220 
1~2 RI • Dl(1)'19(1)-9ETA'UlI1» 
1~3 R2 = Dl(1)*1912'-9ETA.Ul(2)+GI2)*UI13» 
144 U2(1) ~ ALPtRl+Gll)*R2 
145 U2(2) • Gll).Rl+ALP*R2 
1~6 GO TO 200 
147 220 RI n Dl(N2)tI9IN-l'+GIN-2'*UlIN-2)-9ETA*UlIN-l" 
1~8 R2 • DlIN2)*19IN)-BETA'UlIN» 
149 U7IN-l) n ALP.Rl + G(N-l)'R2 
150 U2IN) • GIN-l)IRl + ALP.R2 
151 200 CONTINUE 
152 250 SPAR END 
153 C 
154 C GfNERATE P PARALLEL PATHS WHICH RUN 
155 C SIMULTANEOUSl.Y TO EVALUATE THE SECOD SWEEP. 
156 C 
157 SDOPAR 350 L-!,P 
158 19 - 19SIL) 
159 lEND r IENDSIL) 
160 DO 300 J~J9,IEND 
161 I = 2*J 
162 IF IJ .EG. N2' GO TO 310 
163 RI n D2IJ)*19II)tGlI-l)*U2II-l)-BETA'U2(I» 
164 R2 • D2IJ)*19II+l)-9ETA*U2(I+l)+GII+II.U2IIt2', 
165 U3(I) ~ ALP.Rl + GII)*R2 
166 ERRII) ~ A9SIU31I1 - UlII»/ll + A9SIU1II») 
167 U3II+l) - GII'*RI + ALPIR2 
168 ERRII+I) • ABS(U3II+ll - UlII+l»)!ll + ABSIU1II+l») 
169 GO TO 300 
170 310 U3(1)· Il./ALP)*IBll)-BETA*U211)+Gll).U2(2» 
171 ERRll) • ABSIU3(1) - UlI1')/ll + ABSIU1(1») 
172 U3IN) • 11./ALP)*IBIN)+GIN-I)IU2IN-1~-BETA'U2IN» 
173 ERRIN) = ABSIU3IN) - Ul(N»/ll+ABS(UlIN») 
174 300 CONTINUE 
175 350 SPAREND 
176 C 
177 C CHECK IF THE TOTAL NUM9ER OF ITERATIOS GREATER 
178 C THAN THE ALLOWED MAXIMUM ITERATIONS. 
179 C 
180 IF IITER .GT. MAXITR) GO TO ~oo 
181 C 
182 C CHECK FOR CONVERGENCE. 
183 C 
184 DO 400 Il-l,N 
185 IF IERRlll) .DT. EPS) GO TO 100 
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186 400 
187 C 
188 500 
189 
190 600 
191 C 
192 
193 7 
194 
195 8 
196 C 
197 
198 
199 11 
200 
201 
202 
203 720 
204 
205 
206 9 
207 
208 3 
209 
210 12 
211 
212 700 
213 .. 
214 
215 

CONTINUE 

n'OI\LL 600 
C~LL TIMOUT(ITIME) 

$PARENII 

WRITE(6,7) 
FORMIIT(/'THE TJME TI\KEN FOR CONVERGENCE IS'I) 
WRITE (6,8) ITIME 
FORMflT<8( Ib,2X» 

IF (IPRINT .NE. 1) GO TO 700 
WRITE (6011> 
FORMAT(/'THE NUMERICAL SOLUTION IS'/) 
I10 720 I'" 1 , N 

Ul( I )"·F( lltH,PI) 
ERR(I)wABS(Ul(I)-U3(I» 

CONTINUE 
WRITE(6,3)(Ul(I).I~1.N) 

WRITE (6,9) 
FORM~T(/'THE SOLUTION MI\TRIX IS'/) 
WRITE(6,3)(U3(I),I ft l.N) 
FORMI\T(// 7(F10.6,lX» 
WRITE(6,12) 
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FORMAT(/'ERROR VALUES ARE'/) 
WRITE(6.3)(ERR(I).I~1.N) 

WRITE(6.4) ITER 
FORMIIT(/'CONVERGENCE IS ACHEIVEII AFTER ',14,' IERATIONS'/) 
$STOF' 
$ENII 



1 C 
2 C 
3 C 
4 C 
5 C 
6 C 
7 C 
8 C 
9 C 

10 C 
11 C 
12 C 

'13 C 
14 C 
15 C 
16 C 
17 C 
18 C 
19 C 
20 C 
21 C 
22 C 
23 C 
24 C 
25 C 
26 C 
27 C 
28 
29 
30 
31 
32 C 
33 
3~ C 
35 
36 
37 
38 C 
39 
40 C 

42 1 
43 C 
44 C 
45 C 
46 
47 2 
48 C 
49 
50 5 
51 
52 6 
53 C 
5~ C 
55 C 
56 
57 
58 
59 
60 
61 

11*1 PROGRAM 5.2 **** 
THIS PROGRAM IS AN ASYNCHRONOUS V~RSION I OF THE 
PARALLEL A.G.E. METHOD THAT USED TO SOLVE PROBLEM 
lITHE LINEAR PROBLEM). IN THIS PARALLEL V~RSION, 
IN THE FIRST SWEEP, EACH PROCESSOR EVALUATES ITS 
POINTS BY TAKING UP EACH TWO SUCCESSIVE POINTS AT 
A TIME STARTING FROM THE FIRST POINT AND TERMINATED 
AFTER EVALUATING THE LAST TWO POINTS. WHILE THE 
SECOND SW~EP IS STARTED AFTER THE FIRST SWEEP HAS 
BEEN COMPLETED. I N THE SErON[' SWEEP EACH PROCESSOR 
STARTS ITS PROCESSING WITHIN ITS SUBSET BY EVALUATING 
THE FIRST F'OINT THEN EACH SUCCESSIVE TWO POINTS AT 
A TIME AND THE LAST POINT IS EVALUATED ON ITS OWN. 

- THE ARRAY Ul HOLDS THE STARTING VALUES. 
- THE ARRAY U2 HOLDS THE VALUES AFTER THE 

SECONI' St'!EEP. 
- THE ARRAY U3 HOLI'S THE VALUES AFTER THE 

SECONI' SWEEP. 
- N ~ SIZE OF INPUT. 
- NPROC ~ NUMBER OF CO-OPERATING PROCESSORS. 
- RO ~ ACCELERATION PARAMETER. 
- PS m NUMBER OF PARALLEL PATHS. 
- IPRINT • USED TO INDICATE IF PRINTING REQUIRED. 
- ITER = TOTAL NUMBER OF ITERATIONS. 

INTEGER ITIMEll00),N,P,PS,FLAG,ITERI4) 
DIMENSION U1(200),U21200),U31200),Dlll00),D21100) 
DIMENSION FLAG(4),ERRI200),BI200).GI200) 
REAL ALP,ALP2,Ro,BETA,H,Hl 

'SHARED N,Ul,U2,U3,ERR,ITIME.RO,PS,FLAG,ITER 

FKIX1,X2) ~ ~0011ICOSIX1IX2)*12»+2*X2tX2*COSI2tXl*X2) 
FIX1,X2) - IIEXPI-20.0)/ll+EXPI-20.0»)tEXPI20.0'Xl»+ 
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1 11/ll+EXPI-20.0»)*EXPI-20.0IXl)-(ICOSIX1'X2»112) 

WRITE I 6,1) 
FORMAT I 'PROGRAM NAME:- 'PROGRRAM 5.2"/) 

READ THE INPUT PARAMETERS 

READI5,2) N,Ro,PS.IPRINT 
FORMAT(I3,lX,F6.3.1X,Il,lX,Il) 

WRITEI6,5)RO 
FORMATI/'W ~ ',f6.3/) 
WRITEI6,6)N 
FORMATI'SIZE OF INPUT IN) m ',13/) 

SETTING THE REQUIREr' VARIABLES TO ALL THE PROCESSORS 

f[lOALL 211 
H ~ 1.0/FLOATIN+l) 
Hl ~ H*H 
F'I '" 3.1~159265~ 
C '" 200 
Cl ~ 1.0/11.0+IH1IC» 



62 
63 
64 
65 
66 
67 
68 
69 
70 C 
71 
72 
73 
7~ 
75 40 
76 C 
77 C 
78 C 
79 
80 
81 C 

MI'IY.ITR ~ 500 
EPS ~ 0.000005 
P ~ F'S 
BETA ~ l~RO 

ALF' ., 1tRO 
IILP2 ~ IILP * ALP 
Nl ~ N-l 
N2 ~ N/2 

[10 40 [-l.Nl 
G(I) ~ Cl 
B(I) - -C1*Hl*FKCI*H,PI) 
U3(I) ~ 0.0 

CONTINUE 

SET THE BOUNDARY VALUES 

B(l) - -Cl*Hl*FK(H,PI) 
«(N) .. -C1*H1*FK(H*N,PI) 

82 NP - N2/P 
83 NP1 ~ NIP 
84 C 
85 no 45 I m1,P 
86 FLAG(I) .. 1 
87 45 CONTINUE 
88 C 
89 DO 50 I-1.N2 
90 01(1) 1.0/(ALP2 - (G(2*I-11'*2» 
91 02(1) - 1.0/(ALP2 - (G(2'I)**2» 
92 50 CONTINUE 
93 211 $PIIRENO 
94 C 
95 C START TIMING 
96 C 
97 $OOIlLL 21~ 
98 CALL TIMEST 
99 21~ $PIIREND 

100 C 
101 C GrNERATE P PARIILLEL PATHS WHICH RUNS 
102 C SIMULTANEOUSLY. 
103 C 
104 SOOPAR 450 L-l,P 
105 IB .. (L-llt-NP+! 
106 lEND ~ L*NP 
107 IF ( L .Ea. PI IEND=N2 
108 C 
109 C CALCULATE THE STt':RT t':ND THE END 
110 C OF EACH SUBGROUP. 
111 C 
112 IBl ... (L-U*NP1+1 
113 IENDl R L*NPl 
114 IF (L .EQ. PI IEND1-N 
115 C 
116 ITER(L) R 0 
117 100 ITER(l) ... ITER(l) + 1 
118 DO 60 I-IEll,IENDl 
119 Ul(I) - U3(I) 
120 60 CONTINUE 
121 C 
122 C FIRST SWEEP STt':RTS. 
123 C 
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124 DO 200 J,"lEt,IEND 533 
125 I~2t.J-l 
126 IF (J .Etl. 1 .OR. J .EO. N2) GO TO 210 
127 Rl m D1(J)*(B(I)+G(I-l)*Ul(I-l)-BETA*Ul(I») 
128 R2 = Dl(J)*(B(I+l)-BETA*Ul(I+l)+GII+1)*Ul(I+2» 
129 U2(I) ~ ~LP*R1+G(I)t.R2 
130 U2(I+l) = G(I)*R1+ALP*R2 
131 GO TO 200 
132 210 IF (J .EO. N2) GO TO 220 
133 R1 = Dl(l)*(B(I)-BETAt.Ul(l» 
134 R2 = Dl(1)t.(B(2)-BET~t.Ul(2)+G(2)*Ul(3» 
135 U2(1) = ~LPt.Rl+G(1)t.R2 
136 U2(2) ~ G(1)t.Rl+~LP*R2 
137 GO TO 200 
138 220 Rl m Dl(N2)*(B(N-l)+G(N-2)*Ul(N-2)-BETA*Ul(N-l» 
139 R2 ~ Dl(N2)*(B(N)-BET~*Ul(N» 
140 U2(N-l) ~ ~LPt.Rl + G(N-l)t.R2 
141 U2(N) ~ G(N-l)t.Rl + ALPt.R2 
142 200 CONTINUE 
143 C 
1~4 C SECOND SW"EP STARTS. 
145 C 
146 DO 300 JrIB,IEND 
1'.7 I ~ 2*J 
148 IF (J .Etl. N2) GO TO 310 
149 Rl ~ D2(J)*(B(I)+G(I-l)*U2(I-l)-BETA*U2(I» 
150 R2 = D2(J)t.(B(I+l)-BETAt.U2(I+l)+G(I+l)*U2(I+2» 
151 U3(I) ~ ~LPt.Rl + G(I)t.R2 
152 ERR(I) ~ ABS(U3(I) - Ul(I»/(l + ~BS(U1(I») 
153 U3(I+1) • G(I)t.R1 + ALPt.R2 
154 ERR(I+1) m ABS(U3(I+1) - U1(I+1»/(1 + ABS(U1(I+1») 
155 GO TO 300 
156 310 U3(1) n (1./~LP)t.(B(1)-BETA*U2(1)+G(1)t.U2(2» 
157 ERR(1) ~ ABS(U3(1) - Ul(1»/(1 + ABS(U1(1») 
158 U3(N) m (1./ALP)t.(B(N)+G(N-1)t.U2(N-l)-BETA*U2(N» 
159 ERR(N) = ~BS(U3(N) - Ul(N»/(1+~BS(Ul(N») 
160 300 CONTINUE 
161 C 
162 C CHECK IF NUMBER OF ITERATIONS EXCEED THE MAXIMUM. 
163 C 
164 IF (ITER(L) .GT. MAXITR) GO TO ~50 
165 C 
166 C CHECK FOR CONVERGENCE. 
167 C 
168 DO 400 Il·IB1.IENDl 
169 IF (ERR( 11) .GT. EPS) GO TO 100 
170 400 CONTINUE 
171 C 
172 FLAG(L) ~ 2 
173 J ,. 1 
174 430 IF (FLAG(J>' .EO. 1) GO TO 100 
175 J ~ J+l 
176 IF (J .LE. P) GO TO 430 
177 C 
178 450 $PAREND 
179 500 $DOALL 600 
180 CALL TIMOUT(ITIME) 
181 600 $P~REND 
182 C 
183 WRITE(6,7) 
184 7 FORM~T(/'THE TIME TAKEN FOR CONVERGENCE IS'/) 
185 WRITE(6,8)ITIME 



186 8 
187 C 
188 
189 
190 11 
191 
192 
193 
194 720 
195 
196 
197 9 
198 
199 3 
200 
201 12 
202 
203 700 
204 
205 710 
206 10 
207 
208 
209 

FORM~TC8CI~,2X» 534 

IF CIPRINT .NE. 1) GO TO 700 
WRITEC6,11 ) 
FORMATC/'THE EX~CT SOLUTION IS'/) 
DO 720 I~l,N 

U1CI)"'FCUH,PI) 
ERRCI)~ABSCU1CI)-U3CI» 

CONTINUE 
WRITEC6,3)CU1CI),I~1,N) 

WRITEC6,9) 
FORMATC/'THE SOLUTION MATRIX IS'/) 
WRITEC6,3)CU3CI),I~1,N) 
FORM~TC// 7CF10.6.1X» 
WRITEC6,12) 
FORMATC/'ERROR V~LUES ~RE'/) 
WRITEC6,3)CERRCI),I~1,N) 

DO 710 I'''l,P 
WRITEC6,10)I,ITERCI) 

CONTINUE 
FORM~TC/'CONVERGENCE IS ACHIEVED IN PROCESS NO.' I2.1X, 

1 '~FTER',lX,I4,lX"ITERATIONS') 

"STOP 
'lENtl 



1 C 
2 C 
3 C 
.. C 
5 C 
6 C 
7 C 
8 C 
9 C 

10 C 
11 C 
12 C 
13 C 
1.. C 
15 C 
16 C 
17 
18 
19 
20 
21 
22 C 
23 
24 C 
25 C 
26 C 
27 10 
28 15 
29 
30 
31 
32 
33 C 
34 C 
35 C 
36 C 
37 C 
38 20 
39 
40 30 
41 C 
42 C 
43 
44 
~5 110 
.. 6 C 
.. 7 C 
48 C 
49 C 
50 C 
51 C 
52 130 
53 140 
54 
55 
56 
57 150 
58 160 
59 
60 170 
61 180 

t.*t.* PROGR~M 6.1 **** 
THIS PROGRAM IS THE PAR~LLEL IMPLEMENTATION 
OF THE ORIGIN~L SHELL SORT ALGORITHM. 
IN THIS IMPLEMENTATION THE DISTANCE OF 
COMPARISION IS CHOSSEN SUCH THAT :-

Dl • EN/2J AND DCI)· EDCI-l)/2J. 
WHERE N ~ SIZE OF INPUT TO BE SORTED. 

- P • NUMBER OF GENERATED PARALLEL P~THS. 
- D = DISTANCE OF COMPARISONS. 

THE ARRAY 'INPUT' IS USED TO STORED THE 
GENERATED UNSORTED ELEMENTS. 

, 
REAL INPUT(5000),Y 
INTEGER ITIME(100) 
INTEGER I. N, p, D, K, J 
$SHARED ITIME. INPUT, N, D 
$REGION REGl 

READ NUMBER OF NUMBERS TO BE SORTED 

I~RITE C6.990) 
WRITE C6,995) 
REMI C5,980) N 
IF CN .LE. 5000) GO TO 20 
WRITE C6,970) 
GO TO 10 

GENEF:ATE 
Rl"INF([I) 
RI\NGE 0 

THE NUMBERS TO 
WILL GIVE US A 

AND 1, 

DO 30 I=l,N 
INPUTCI) m Rl"INFCD) 

CONTINUE 

<J[IOALL 110 
CALL TIMEST 

$PAREND 

BE SORTED. THE SUBROUTINE 
Rl"INDOM NUMBER BETWEEN THE 

C~LCULATE THE DISTANCE OF COMPARISION CD), 
Dl - EN/2J WHERE N EnUAL SIZE OF INPUT 
DCI) ~ EDCI-1)/2J 
[J MEANS INTEGRAL Pl"IRT 

D • N/2 ] 
IF CD .LE. 0) GO TO 500 
p~. M-D 

/IF CP .GT. [I) P-D 
$["tOPAR 400 K·l,P 
IrK 
J-I 
Y'-INPUT< 1+[1) 

IF CY .Lt. INPUT(J» GO TO 190 
INPUT<JHI) - Y 
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62 
63 
64 
65 190 
66 
67 
68 
69 400 
70 
71 
72 C 
73 C 
74 500 
75 
76 450 
77 C 
78 C 
79 C 
80 
81 C 
82 
83 C 
8~ C 
85 C 
86 
87 C 
88 
89 C 
90 9~0 
91 950 
92 960 
93~970 

9~ 980 
95 990 
96 995 
97 C 
98 
99 C 

I~ItIl 

IF «I+D) .LE. N) GO TO 160 
GO TO 400 
INPUT(J+D) = INPUT(J) 
J = J-[I 
IF (J .GT. 0) GO TO 170 
GO TO 180 
$PI'IREN[I -~-------
[I .. [1/2 

GO TO 140 

$DOALL 450 
CALL TIMOUT(ITIME) 

$PAREND 

WRITE THE SORTED NUMBERS TO THE OUTPUT MEDII'I 

WRITE(6.940) N 

WRITEC6.960) CINPUTCI).I r 1.N.50) 

~JRITE TIMING 

WRITEC6.950)ITIME 

$STOF' 

FORMATC'SIZE OF INPUT IS - '.18/) 
FORMAT(8C2X.r5) ) 
FORMATC8C2X.E12.5» 
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FORMAT< 'ERROR. YOU EXCEEII MAX. NO •• PLEASE TRY AGIUN') 
FORMnT< 14) 
FORMI'ITC'PROGRnM NAME :- • PROGRAM 6.1 • 'I) 
FORMATC'O(1)-[N/2J. OCI)~[OCI-1)/2J'I) 

tEND 



1 C 
2 C 
3 C 
4 C 
5 C 
6 C 
7 C 
8 C 
9 C 

10 C 
11 C 
12 C 
13 C 
1~ C 
15 C 
16 C 
17 
18 
19 
20 
21 
22 C 

**** PROGRAM 6.2 **** 

THIS IS A PARALLEL IMPLEMENTATION OF 
THE SHELL SORT ALGORITHM, WHERE THE 
DISTANCE OF COMPARISONS ARE TAKEN AS, 

OIl) 12**K)+1, Oil) 0" (D(I)/2)+1. 
WHERE 2**K ( N ( 2**(K+1), 

N ~ SIZE OF INPUT TO BE SORTED. 

- P = NUMBER OF GENERATED PARALLEL PATHS. 
- 0 = DISTANCE OF COMPARISONS. 

THE ARRAY "INPUT" IS USED TO HOLDS 
INPUT ELEMENTS. 

REAL INPUT(5000), Y 
INTEGER ITIME(100), H(14) 
INTEGER I, M, p, [I, K, J 
'SHARED ITIME, INPUT, N, D 
'REGION REGl 

23 $USEPAR 
24 C 
25 C 
26 C 
27 10 
28 15 
29 
30 
31 
32 
33 C 
3.. C 
35 C 
36 C 
37 C 
38 20 
39 
40 30 
41 C 
42 C 
'\3 
44 
45 110 
46 C 
,\7 C 
48 C 
49 C 
50 C 
51 C 
52 
53 120 
Sfl, 
55 
56 130 
57 
58 
59 
60 135 
61 C 

READ NUMBER OF NUMBERS TO BE SORTED 

WRITE (6,990) 
WRITE (6,995) 
REflD (5,980) N 
IF (1'1 .LE, 5000) GO TO 20 
WRITE (6,970) 
GO TO 10 

GENERATE 
R"'NF(D) 
RANGE 0 

THE NUMBERS TO BE SORTED. THE SUBROUTINE 
WILL GIVE US A RnNDOM NUMBER BETWEEN THE 

AND 1, 

DO 30 I~1rN 
INPUT(I) ~ R"'NF(D) 

CONTINUE 

$fiO"'LL 110 
CALL TIMEST 

'PI\REN[I 

CALCULATE THE DISTANCE OF COMPARISION ID), 
2~K ~ N ,. 2~(K+l) 
[1(1) "" 12~K)tl 

DII+l) - IDII)/2)+1 

K '" 1 
IF 112**K) .GE. 1'1) GO TO 130 
K - Ktl 
GO TO 120 
H(1) "" 1 
K - K-l 
DO 135 J<!,K 

HI J) ~2** I J-1) +1 
CONTINUE 
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62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 

1~0 

150 
160 

170 
180 

190 

400 

82 C 
83 C 
8~ 500 
85 
86 ...,50 
87 C 
88 C 
89 C 
90 
91 C 
92 
93 C 
94 C 
95 C 
96 
97 C 
98 
99 C 

100 940 
101 950 
102 960 
103 970 
104 980 
105 990 
106 995 
107 C 
108 
109 C 

11 = HIIO 
P ~ N~11 

IF IP .GT. [I) P=[I 
$[lOPAR 400 M,-j,P 
I"'M 
J~I 

Y"'INF'UT I I HI) 
IF IY .LT. INPUTIJ» GO 
INPUTIJ+[I) = Y 
I"IHI 
IF «H[I) .LEe N) GO TO 
GO TO ~OO 
INPUT< Jt[I) .- INPUTIJ) 
J = J-[I 
IF IJ .GT. 0) GO TO 170 
GO TO 180 
$PAREN[I 
K ". K-l 
IF IK .LTe 1> GO TO 500 
GO TO 140 

$!'IOALL 450 
CALL TIMOUTIITIME) 

$PAREN[I 

TO 190 

160 

WRITE THE SORTE[I NUMBERS TO THE OUTPUT MEDIA 

WRITE I 6,940) N 

WRITEI6,960) IINPUTII),I r 1,N,50) 

\,!RITE TIMING 

WRITEI6,950)ITIME 

.STOP 

FORMATI'SIZE OF INPUT IS· ',18/) 
FORMAT< 8 I 2X, IS» 
FORMATll012X,E12.5» 
FORMATI'ERROR, YOU EXCEED MAX. NO., PI EASE TRY AGAIN') 
FORMAT II~) 
FORMATI'PROGRAM NAME :- • PROGRAM 6.2 • 'I) 
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FORMATI' 2~K < N (= 2-IK+l), [lll)=12~K)+1, [lII+1)~I[lII)/2)+1'!) 



539 
, 1 C 

2 C **** PROGRAM 6.3 **** 
3 C 
4 C THIS PRGRAM IS THE PARALLEL SHELL SORT WITH 
5 C 2-WAY MERGE. 
6 C THIS PROGRI'lM P"'RTITION THE ORIGINAL INPUT SET 
7 C OF N ELEMENTS INTO M SUBSET OF SIZE (N/M) EACH. 
8 C EACH SUBSET THEN SDRTED USING SHELL'S METHOD. 
9 C THE SDRTED SUBSETS ARE MERGED TO FORM THE FINAL 

10 C SORTED OUTPUT BY USING THE 2-WAY MERGE ALGORITHM. 
11 C 
12 C - INPUT : ARRAY TO HOLDS THE UNSORTED INPUT ELEMENTS. 
13 C - N : NUMBER OF ELEMENTS TO BE SORTED. 
1~ C - NPATH : NlIMBER OF PATHS (GROUPS" WHICH IS POWER OF 2. 
15 C - WA : LOCAL ARRAY TO HOLDS THE LOCAL INPUT. 
16 C - NPROC : NUMBER OF PROCESSORS USEII. 
17 C - NELM : NUMBER OF ELEMENTS IN EACH GROUP. 
18 C - INCR : ARRAY TO HOLDS THE INCREMENTS. 
19 C - NINCR : NUMBER OF INCREMENTS. 
20 C - NP : USED TO DETERMINE NUMBER OF PATHS, (NPATH n 2**NP). 
21 C 
22 C 
23 
24 
25 
26 
27 
28 C 

INTEGER*2 ITIME 
INTEGER PN. E. B, El, Bl, E2, B2, Bll, B22 
DIMENSION ITIME(100), INCR(l~) 

REAL INPUT(3000), WA(3000) 
COMMON IAI~IA 

29 $SHARED INPUT,N,NPATH,NELM,NPROC,MR,PN,INCR,NINCR,ITIME 
30 C 
31 .REGION REGl 
32 C 
33 .USEPAR 
3~ C 
35 C CALCULATE NUMBER OF PROCESSORS USED 
36 C 
37 NPROC • 0 
38 $DOALL 10 
39 .ENTER REnl 
40 NPROC • NPROCtl 
41 .EXIT REGl 
42 10 $PAREND 
~3 C 
44 C READ NUMBER OF INPUT ELEMENTS TO BE SORTED 
45 C 
46 READ(5,20) N 
47 20 FORMAT(I4) 
48 C 
49 C GENERATE N RANDOM NUMBERS 
50 C 
51 CALL RnNSET(l) 
52 DO 30 I-l.N 
53 INPUT(I) ~ R"'NF(D) 
5~ 30 CONTINUE 
55 C 
56 C C"'LCULATE NUMBER OF PATHS (GROUPS), WHICH IS POWER OF 2 
57 C 
58 REnD(5.40) NP 
59 40 FORMAT(Il) 
60 NPftTH ~ 2.INP 
61 HELM n N/NPATH 



62 C 540 
63 C~LL EVINCR 
64 C 
65 'DO~LL 50 
66 C~LL TIMEST 
67 50 'PAREND 
68 C 
69 'DOPAR 80 J-l,NPATH 
70 B-NELM*CJ-l)+l 
71 E'~NELMJt.J 
72 IF CJ .Ea. NPATH) E ~ N 
73 DO 60 KwB,E 
74 WACK)rINPUTCK) 
75 60 CONTINUE 
76 C 
77 CALL SHELLCB,E) 
78 C 
79 DO 70 K~~,E 
80 INPUTCK)-WACK) 
81 70 CONTINUE 
82 80 'P~REND 
83 C 
84 .nOALL 90 
85 C~LL TIMOUTCITIME) 
86 90 $P~REND 
87 C 
88 WRITEC6,100) 
89 100 FORM~TC/'THE TIME FOR SORTING'/) 
90 WRITEC6,110) ITIME 
91 110 FORMATC8CI6,2X)) 
92 C 
93 'DO ALL 120 
94 CALL TIMEST 
95 120 $PAREND 
96 C 
97 C THIS PART MERGE THE SORTED GROUPS USING TWO-WAY MERGE 
98 C 
99 no 220 MR-l,NP 

100 PN-NPATH/2Jt.Jt.MR 
101 $DOPAR 210 J n l,PN 
102 Bl~2**MR*NELM*CJ-l)+1 
103 El=2Jt.Jt.CMR-l)*NELM*C2*J-l) 
104 B2=Bl+NELMJt.2*Jt.CMR-l) 
105 E2=El+NELMJt.2*Jt.CMR-l) 
106 IF CJ .EG. PN) E2'''N 
107 Bl1 ~ Bl 
108 B22 = B2 
109 I r Bl-l 
110 130 I .- 1+1 
111 IF CINPUTCBll) .LT. INPUTCB22) GO TO 140 
112 WACI) . INPUTCB22) 
113 B22 = B22 + 1 
114 IF CB22 .LE. E2) GO TO 130 
115 GO TO 150 
116 140 WACI) .- INPUTCBll) 
117 Bl1 - Bl1 + 1 
118 IF CBll .LE. El) GO TO 130 
119 GO TO 170 
120 150 DO 160 K • Bll,El 
121 1-1+1 
122 WACI)nINPUTCK) 
123 160 CONTINUE 



124 
125 170 
126 
127 
128 180 
129 190 
130 
131 200 
132 210 
133 220 
13~ C 
135 
136 
137 230 
138 
139 2~0 

1.40 
141 

GO TO 190 
DO 180 K~£I22,E2 

I~I+1 

WIH I )='INF'UT(K) 
CONTINUE 
DO 200 K~£Il1 E2 

INF'UT (K) "WIH K) 
CONTINUE 

$PI\REND 
CONTINUE 

$[lOflLL 230 
CALL TIMOUT(ITIME) 

$F'flRENII 
WRITE(6,240) 
FORMflT(/'THE TIME FOR MERGING'I) 
WRITE(6,110) ITIME 
WRITE(6,2~0) N. NF'flTH. NF'ROC 
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142 250 
143 
1 .. 4 260 
145 

FORMAT(/l0X,'N· ',I8,8X,'NF'ATHS .',I4,8X,'NF'ROC ~',I5/) 
WRITE(6,260) (INCR(I),I n l,NINCR) 
FORMAT(/'INCREMENTS',5X,14(I4,2X)I) 

1~6 270 
1~7 
1~8 
149 280 
150 
151 290 
152 999 
153 
154 C 

READ(5,270) IF'RINT 
FORM T ( I1 ) 
IF (IF'RINT .NE. 1) GO TO 999 
WRITE (6,280) 
FORMAT(/'THE SORTED ELEMENTS'II) 
WRITE(6,290) (INF'UT(I),I=l,N) 
FORMI\T(5(E12.5.2X)/) 
$STOF' 
$END 

155 C THIS SUBROUTINE DETERMINE THE SEQUENCE OF INCREMENTS 
156 C GOING TO £lE USED BY SHELL SUBROUTINE. 
157 C 
158 SUBROUTINE EVINCR 
159 INTEGER F'N. INCR(14), ITIME(100) 
160 REflL INF'UT(3000) 
161 $SHI\RED INF'UT,N,NF'flTH,NELM,NF'ROC,MR,F'N,INCR,NINCR,ITIME 
162 I~l 

163 10 INCR(I). 2**1-1 
164 IF «2**1) .GE. NELM) GO TO 20 
165 I • 1+1 
166 GO TO 10 
167 20 NINCR=I-l 
168 RETURN 
169 $ENII 
170 C 
171 C THIS IS A SHELL'S SORTING SUBROUTINE. 
172 C 
173 SUBROUTINE SHELL(I£I,IE) 
174 INTEGER F'N. INCR(14), ITIME(100) 
175 REAL INPUT(3000), Wn(3000) 
176 COMMON Ifl/Wn 
177 $SHI\RED INF'UT.N,NF'ATH,NELM,NF'ROC,MR,F'N,INCR,NINCR,ITIME 
178 M~NINCR+l 

179 DO ~O L~l,NINCR 
180 K~M-L 
181 IC~INCR(K) 

182 ICR~I£I+IC 
183 DO 30 InICR,IE 
184 J~I-IC 
185 Y=WA(I) 



186 10 IF (y .GE. W~( J» GO TO 20 
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187 W~(J+IC)~WA<J) 

188 J~J-IC 

189 IF (J .GE. HI) GO TO 10 
190 20 WA(J+IC)~Y 

191 30 CONTINUE 
192 40 CONTINUE 
193 RETURN 
194 .END 



C 
2 C 
3 C 
.. C 
5 C 
6 C 
7 C 
8 C 
9 C 

10 C 
11 C 
12 C 
13 C 
1'1 C 
15 C 
16 C 
17 C 
18 C 
19 C 
20 C 
21 C 
22 C 

*.** PROGRAM 6.4 .* •• 
THIS IS A PAR~LLEL SHELL SORT METHOD USING THE 
ODD- EVEN REDUCTION MERGE ~LGORITHM. 
THIS PROGRAM PARTITION THE ORIGINAL INPUT SET 
OF N ELEMENTS INTO M SUBSET OF SIZE (N/M) EACH. 
EACH SUBSET THEN SDRTED USING SHELL'S METHOD. 
THE SORTED SU~RETS ARE MERGED TO FORM THE FINAL 
SORTED OUTPUT USING THE ODD-EVEN REDUCTION. 

- INPUT : nRRI'IY TO HOLI'S THE UNSORTEI' INPUT ELEMENTS. 
- N : NUMBER OF ELEMENTS T(1 BE SORTED. 
_ NPATH : NUMBER OF PATHS (GROUPS), WHICH IS POWER OF 2. 
_ \,!~ : LOCAL ARRAY TO HOlt.S THE lOCAL INPUT. 
- NPROC : NUMBER OF PROCESSORS USED. 
- NELM : NUMBER OF ELEMENTS IN EACH GROUP. 
- INCR : ARR~Y TO HOLDS THE INCREMENTS. 
- NINCR : NUMBER OF INCREMENTS. 
- NP : USED TD DETERMINE NUMBER OF PnTHS, (NPATH=2**NP). 

23 INTEGER*2 ITIME 
24 INTEGER PN. E. B, El, Bl, E2, B2. Bll, B22 
25 DIMENSION ITIME(100), INCR(l~) 
26 RE~L INPUT(3000), W~(3000) 

27 COMMON In/WA 
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28 C 
29 $SH~REr. INPUT,N,NF'!lTH,NElM,NF'ROC,MM,MR,PN, INCR,NINCR, ITlME 
30 C 
31 $REGION REGl 
32 C 
33 $USEPAR 
3'. C 
35 C CI'\LCULI'lTE NUMBER OF PROCESSORS USED 
36 C 
37 NPROC - 0 
38 'DOl'lLL 10 
39 'ENTER REGl 
40 NPROC • NPROCtl 
41 $EXIT REGl 
42 10 $PAREND 
43 C 
44 C REnD NUMBER OF INPUT ELEMENTS TO BE SORTED 
45 C 
46 READ(5.20) N 
47 20 FORMAT(I4) 
48 C 
49 C GENERATE N RMWOM NUMBERS 
50 C 
51 CI'ILL RI'\NSET(l) 
52 DO 30 I w l.N 
53 INPUT(I) • RI'INF(D) 
5~ 30 CONTINUE 
55 C 
56 C CALCULATE NUMBER OF PATHS (GROUPS), WHICH IS POWER OF 2 
57 C 
58 READ(5.40) NP 
59 40 FORM~T(Il) 

60 NPATH r 2**NP 
61 NELM • N/NP~TH 



62 C 
63 
M C 
65 
66 
67 50 
68 C 
69 
70 
71 
72 
73 
7 .. 
75 60 
76 C 
77 
78 C 
79 
80 
81 70 
82 80 
83 C 

Ct'lLL E\lINCR 

'DOI'ILL 50 
Ct'lLL TIMEST 

'F'I\REN[' 

'DOPAR 80 J~l,NPI'ITH 
B=NELM"'(J-l )+1 
E"NELMtJ 
IF (J .Ea. NF',HH) E 
DO 60 K=B,E 

WI\ ( K ) ,- INPUT ( K) 
CONTINUE 

CALL SHELL(B,E) 

DO 70 K'"B, E 
INPUT<K),,··WI\(K) 

CONTINUE 
'PI'IREND 

8~ U'OI\LL 90 
85 CI'ILL TIMOUT(ITIME) 
86 90 $PAREND 
87 C 
88 WRITE(6,100) 

N 

89 100 FORMAT(/'THE TIME FOR SORTING'/) 
90 WRITE(6,110) ITIME 
91 110 FORMAT(8(I6,2X» 
92 C 
93 $DOI\LL 120 
9~ CI'ILL TIMEST 
95 120 $PAREND 
96 C 
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97 C THIS PI'IRT MERGE THE SORTED GROUPS USING ODD-EVEN REDUCTION 
98 C AND TWO-WI'IY MERGE 
99 C 

100 MM = 1 
101 DO 220 MR"l,NPATH 
102 IF ( MR .Ea. NPt'lTH .AND. NPATH .Ea. 2 ) GO TO 220 
103 IF ( MR .EO. MM ) GO TO 130 
104 PN • NPATH/2 - 1 
105 MM .. MM + 2 
106 GO TO 140 
107 130 PN = NPATH/2 
108 140 $DOPAR 210 J n l,PN 
109 Bl n 2*NELM*(J-l)+(MM-MR)*NELM+l 
110 El·· NELM*(2"'J-l)+(MM-MR)"'NELM 
111 B2 n Bl+NELM 
112 E2 - El+NELM 
113 IF ( J .EO. PN ) E2=N 
114 Bll ~ Bl 
115 
116 
117 150 
118 
119 
120 
121 
122 
123 160 

B22 = 92 
I '" £11 - 1 
I = I + 1 
IF ( INPUT(B11) .LT. INPUT(B22) ) GO TO 160 
WA(I) - INPUT(B22) 
B22 ~ 922 + 1 
IF ( B22 .LE. E2 ) GO TO 150 
GO TO 170 
WI\(I) n INPUT(Bl1) 



124 
125 
126 
127 170 
128 
129 
130 180 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 

185 

190 
200 

205 
210 
220 
C 

230 

2~O 

250 

260 

270 

280 

290 
999 

C 
C 
C 
C 

10 

20 

B11 ~ B11 + 1 
IF ( Bll .LE. El ) GO TO 150 
GO TO 185 
DO 180 K w Bll,El 

I = 1+1 
WA<I) ~ INPUT(K) 

CONTINUE 
GO TO 200 
DO 190 K~B22,E2 

I = 1+1 
MA< I) ~ INPUT(K) 

CONTINUE 
tlO 205 K~Bl ,E2 

INPUT(K) = WII<K) 
CONTINUE 

~PARENtl 
CONTINUE 

~DOALL 230 
CALL TIMOUT(ITIME) 

$PARENtl 
WRITE(6,240) 
FORMAT(/'THE TIME FOR MERGING'/) 
WRITE(6,110) ITIME 
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WRITE(6,250) N, NPATH, NF'ROC 
FORMAT(/10X,'N = ',I8,8X,'NPATHS =',I4,8X,'NPROC ~',15/) 
WRITE(6,260) (INCR(I),I~l,NINCR) 
FORMAT(/'INCREMENTS',5X,14(I4,2X)/) 
READ(5,270) IPRINT 
FORMAT( 11 ) 
IF (IPRINT .NE. 1) GO TO 999 
WRITE(6,280) 
FORMAT(/'THE SORTED ELEMENTS'//) 
WRITE(6,290) (INPUT(I),I~l,N) 
FORMAT(5(E12.5,2X)/) 
$STOP 
$ENtl 

THIS SUBROUTINE DETERMINE THE SE~UENCE OF INCREMENTS 
GOING TO BE USED BY SHELL SUBROUTINE. 

SUBROUTINE EVINCR 
INTEGER PN. INCR(14), ITIME(100) 
REAL INPUT(3000) 
$SHARED INPUT,N,NPATH,NELM,NPROC,MM,MR,PN,INCR,NINCR,ITIHE 
I~l 

INCR(I) ~ 2**1-1 
IF «2**1) .GE. NELM) GO TO 20 
I ~ 1+1 
GO TO 10 
NINCR~I-l 
RETURN 
$ENtl 

173 
174 
175 
176 
177 C 
178 C 
179 C 
180 
181 
182 
183 
184 
185 

THIS IS A SHELL'S SORTING SUBROUTINE. 

SUBROUTINE SHELL(IB,IE) 
INTEGER PN, INCR(14), ITIHE(100) 
REAL INPUT(3000), WA(3000) 
COMMON /1\/101'" 
$SHARED INPUT, N, NF'ATH, NELM, NPROC, MM, MR, PN, INCR; toll NCR, IT I ME 
MwNINCR+1 



186 DO 40 L~t.NINCR 546 
187 K'"M-L 
188 IC'"INCR<lO 
189 ICR~IB+IC 

190 [10 30 I~ICR,IE 
191 J=I-IC 
192 Y'·WA< I) 
193 10 IF (Y .GE. W(\(J» GO TO 20 
194 WI\ (J+I C) '"WI\ (J) 
195 J"·J-IC 
196 IF (J .GEt IB) GO TO 10 
197 20 W{\(J+IC)~Y 

198 30 CONTINUE 
199 40 CONTINUE 
200 RETURN 
201 ~END 



1 
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**** PROGRAM 6.5 '*" c 
c 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
r: 

THIS PROGRAM IS A PARALLEL DIGIT SORTING, lat. IMPLEMENTATION. 
'5 
6 
7 
8 
9 

10 
11 
12 
13 
1~ 
15 
16 
17 
18 
19 
20 
21 
:~~ 
23 
21 
25 
26 
27 
28 
29 
30 
31 
32 

C 
C 
C 
C 
C 
C 
C 
C 
C 

33 C 
3~ C 

1. T~E N-KEYS ARE PRESORTED INTO P-BINS ACCORDING TO THEIR 
FIRST I DIGITS USING SEQUENTI~L APPROCH. 

2. THE AVAILABLE PROCESSORS SORT INTERNALLY THEIR BINS INTO RIJW3. 

3. THE RUNS APE ~ENT S~QUENTIALLY INTO THE COMMON MEMORY WHERE 
THEY CONSTITUTE THE SORTED LIST. 

THE VARIABLES USED IN THE PROGRAM ARE :-

*- INPUT 
* lEX 
*- TABLE 

* K 

* N * F' * MLIST * MLINK * SLINK 
*- MINDEX 
* LOCAL 
" I"I'ITRIX * LIST 
<. SLIST 
* 11 

USED TO HOLD THE INPUT ELEMENTS TO BE SORTED. 
USED TO HOLD THE DIVISORS. 
USED TO HOLD THE NUMBER OF ELEMENTS IN EACH LIST AND 
SIJP-LIST. 
USED TO HOLD THE DIGITS OF INPUT KEY, WHICH INDICATES 
THE LIST AND SUBLIST. 
NUMBER OF INPUT ELEMENTS TO BE SORTED. 
THE B~eE 10TO WHICH THE INPUT ELEMENTS TO BE CONVERTED. 
HOLDS THE MAIN LIST. 
HOLDS THE LINK TO THE MAIN LIST. 
~CLDS THE LINK TO THE SUFLIST. 
USED TO CONTROL THE INDEX OF MAIN LIST. 
USED TO HOLD THE INPUT El' '·,ENTS LOCALLY. 
USED TO HOLD THE ELEMENTS OF ·T~FLE·. 

USE!' TO HOLD THE INI'EX OF MAIN LIST. 
USED TO HOLD THE INDEX OF SUBLIST. 
NUMBER OF DIGITS INTO WHICH THE INPUT re ~DRTED ON. 

35 REAL INPUT(102~),LOCAL(102~) 

36 RE~L P,T,X 
37 INTEGER t.~ Ml 
38 INTEGER LIMIT,YI,Y2,R,PI 
39 INTEGER N,S,II,A.F,C,Y,W·!.COUNT,COUNT1,ITIME(100).START 
~O INTEGER IEX(10)·T~BLE(30,30),K(lO) 

~1 INTEGER SLI"K(102~),MINDEX(30).MLINK(102~) 
~2 INTE~E~ HnTRIX(900).LIST(900),SLIST'900) 
~3 C 
~4 
~':.; c 

'SH~RED INPUT,LocnL.NPROC,LIST,SLIST,MATRIX,SLINK,ML!·"· .!TIME 

"~ 'REGION REGI 
~7 C 
48 $USEPAR 
49 C 
50 C CALCULATE NUMBER OF PROCESSORS USED 
51 C 
52 NPROC • 0 
53 tDOALL 10 
54 $ENTER REGl 
55 NPROC = NPROCtl 
56 $EXIT REGl 
57 10 $PAREND 
58 C 
59 C READ NIJMBE-: 0" I NPIIT ELEMENTS TO BE SORTED 
60 C 
61 READ(5,20) N 



62 20 
63 C 

FORMAT (I~) 

6 ~ G GENERI\TE N Rf'lNIIOM NLlMBER 
65 C 
66 I ~ 0 
67 30 X ~(32767.0 * Rf'lNF(D» 
68 I ~ I+l 
69 INPUT(I) = X 
70 IF (I .LT. N) GO TO 30 
71 C 
72 C READ THE BASE TO WHICH THE Bf'lSE IS CONVERTED 
73 C 
74 READ (5,~0'P 
75 40 FORMf'lT(E2.1) 

548 

76 C 
77 C INTEGEP 9 IS USED TO CALCULATE THE DIVISORS, WHILE lEX HOLD IT 
78 C 
79 T ~ f'lLOG10(2.0)/f'lLOG10(P) 
e0 S ~ IFIX(16 * T) 
81 Ml ~ INT(P) 
82 1 IF «Ml ** S) .LE. 32767) GO TO 2 
83 S = S~l 
84 GO TO 1 
85 2 IEX(l) = Ml ** S 
86 WRITE(6,3)IEX(1),Ml,P,9 
87 3 FORMAT(/2X,'IEX(1) • ',I6,2X,'Ml = ',I4,2X,'P ~ " 
88 1 F6.3,2X,'S = ',12 I) 
89 C 
90 C REnD MUMBER OF DIGIT INTO WHICH THE INPUT IS SORTED 
91 C 
92 REftD(5,50)II 
93 SO FORMAT(Il) 
o~ C 
95 DO 60 J~2,II 
96 IEX(J) = IEX(J-l)/IFIX(P) 
97 60 CONTINUE 
98 C 
99 DO 70 1-1,30 

100 MINDEX(I) • 0 
101 70 CONTINUE 
102 C 
103 $DOALL 75 
104 CftLL TIMEST 
105 75 $Pf'lREND 
106 C 
107 C SEQUENTlf'lL PPESORTING OF THE INPUT KEYS 
108 C 
109 B • IEX(l) 
110 DO 80 Z~l,N 
111 K(l) ~ INT(INPUT(Z»/8 
112 A • K(l) 
113 R • INT(INPUT(Z»-A*8 
114 K(2) ~ R/IEX(2) 
115 SLINK(Z) - K(2) 
116 MLINK(Z) ~ A 
117 MINDEX(A+l) • MINDEX(A+l'+l 
118 TI\BLE(f'I+l,K(2)+1) ~ Tft8LE(A+l,K(2)+1)+1 
119 80 CONTINUE 
120 C 
121 C 8ULID AN ARRAY WITH ALL THE EXISTING SU8LISTS IN THE "TABLE" 
122 C 
123 C ~ I) 



12~ 

125 
126 
127 
128 
129 
130 
131 
132 
133 
13~ 

135 
136 
137 
138 
139 
140 
1'. 1 
142 
143 
1'.4 
145 
146 
147 
1'.8 
1~9 

150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
1.73 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
lSS 

90 
100 
C 

105 
C 

106 

108 
C 

,10 100 1"'1.30 
DO 90 J~1,30 

IF (TM'LE(I,J) .Ell. 0) GO TO 90 
C = CH 
MATRIX(C) • TnBLE(I,J) 
LIST(C) '" 1-1 
SLIST<C) = J-l 

CONTINUE 
CONTINUE 

$['O"'LL 105 
CnLL TIMOUT(ITIME) 

$PAREN[' 

WRITE(6,106) 
FORMAT(/'TIME FOR DISTRIBUTION'/) 
WRITE(6,9S0) ITIME 
FORMAT< 8 (16, 2X) ) 

$[,OnLL 108 
CI\LL TIMEST 

$PAREN[' 
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C TRANSFER THE GENERATED SUBLISTS TO THE AV"'ILABLE PROCESSORS 
C 

C 

$DOPAR 150 V~l,C 
Vl ." V 
W ", SLIST (VU 
COUNT • 0 
COUNTl '" 0 
START" 1 

C CALCULATE THE START OF EACH SUBLIST 
C 

IF CY .Ell. 1) GO TO 120 
Y2 = Vl-1 
DO 110 Mr l,Y2 

START = START + MATRIX(M) 
110 CONTINUE 
120 IF (COUNTl .ER. MI\TRIX(Vl» GO TQ 145 

COUNTl • COUNT1+1 
130 COUNT • COUNT+l 
1~0 IF (SLINK(COUNT> ,p'E, W) GO TO 130 

C 

IF (MLINK(COU~T) .NE. LIST(Vl» GO TO 130 
LOCAL(BT~RT) • INPUT(COUNT) 
STI':F:T ., START+l 
GO TO 120 

C C~LL SORT SUBROUTINE 
C 
145 LIMIT· START - 1 

C 

START = LIMIT - MATRIX(Yl) + 1 
IF ( START .ER. LIMIT ) GO TO 150 
CALL BUBBLE(START,LIMIT) 

150 $pnREN[' 
C 

$DOI\LL 160 
CALL TIMOUT(ITI~E) 

160 $PARENI' 
C 



186 
187 
lBB 
lB9 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
:?04 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
21.7 
218 
219 
220 
2:?1 
222 
223 
224 
225 
226 
227 

170 

C 

lBO 

C 

970 

960 

9BO 

990 
999 

C 
C 
C 

10 

20 

FORMATI/'TIME FOR SORTING'/) 
WRITEI6,9~0) ITIME 550 

Pl ~ IFIXIP) 
WRITEI6,lBO)N,NPROC,Pl,C 
FORMATI/5X,'INPUT SIZE = ',I4,5X,'NPROC ~ ',Il,2X,'BASE - " 

1 I2,5X,'SUBLIST = ',13 /) 

REI'\D 15,970) L 
FORMATlIl) 
IF I L .NE. 1 ) GO TO 999 
WRITEI6,960) 
FORMATI/'LIST BEFORE SORTING l-'/) 
WRITE(6,990)IINPUTII),I~1,N) 

WRITEI~,980) 
FORMATI/'LIST AFTER SORTING l-'/) 
WRITE(6,990)ILOCALII),I=1,N) 
FORMI'\TI~IF17.9,2X)/) 

$STOP 
$END 

SORT SUBROUTINE USING BUBBLE SORT TECHNIQUE 

SUBROUTINE BUBBLE IS1,Bl) 
REAL INPUTll024),LOCALll024),AREA 
INTEGER Sl,Dl,BOUND,FLAG,ITIMEll00) 
INTEGER LIST(900),SLISTI900),MATRIXI900),SLINKI1024),MLINKI1024) 
$SHnRED INPUT,LOCAL,NPROC,LIST,SLIST,MATRIX,SLINK,MLINK,ITIME 
BOUND ". Bl - 1 
FLAG =. 0 
DO 20 I '-S 1, BOUNI' 

! F I LOCAL I I) • LE. LOCAL I It 1» GO TO 20 
MEn .- LOCt'>L I I ) 
LOCALII) ~ LOCALlltl) 
LOcnLlltl) p AREA 
FLAG " I 

CONTINUE 
IF IFLAG .EQ. 0) GO TO 30 
BOUN!' ~ FLAG - 1 
GO TO 10 
RETURN 
$END 



1 
:! 
3 
'-
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
1'5 
16 
17 
18 
19 
20 
:!1 
22 
23 
2-1 
2'3 
26 
27 
29 
29 
30 
31 
32 
33 
3~ 

3'3 
36 
37 
38 
39 
40 
41 
~2 

43 
44 
45 
~6 
~7 
48 
49 
50 
51 
'52 
53 
54 
55 
56 
57 
58 
59 
60 
61 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

c 

C 

C 
C 
C 

10 
C 
C 
C 

•• ,. PROGRnM 6.6 •••• 

THJS PROGRAM IS A PARALLEL DIGIT SORTING, 2nd IMPLEMENTAJON. 

1. THE N-KEYS ARE PRESORTED INTO P-BINS ACCORDING TO THEIR 
FIRST I DIGITS USING PARALLEL IMPLEMENTATION. 
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:!. THE AVAILABLE PROCESSORS SORT INTERNALLY THEIR BINS INTO RUNS. 

3. THE RUI'IS AF:E SENT SEQUENTIALLY INTO THE COMMON MEMORY WHERE 
THEY CONSTITUTE THE SORTED LIST. 

THE VnRIABLES USED IN THE PROGRAM ARE :-

:t INPUT 
* lEX 

USED TO HOLD THE INPUT ELEMENTS TO BE SORTED. 
USED TO HOLD THE DIVISORS. 
USED TO HOLD THE NUMBER OF ELEMENTS IN EACH LIST AND 
SUBLIST. • TnBLE 

• K 

'" N 
• P 

USED TO HOLD THE DIGITS OF INPUT KEY, WHICH INDICATES 
THE LIST AND SUBLIST. 
NUMBER OF INPUT ELEMENTS TO BE SORTED. 

:t MLIST 
THE BASE INTO WHICH THE INPUT ELEMENT~ TO BE CONVERTED. 
HOLDS THE MAIN LIST. 

'" MLINK 
1< SLINK 
1< MIN[IEX 
'" LOCAL 
• MATRIX * LIST 
• SLIST * II 

HOLDS THE LINK TO THE MAIN LIST. 
HOLDS THE LINK TO THE SUBLIST. 
USED TO CONTROL THE INDEX OF MAIN LIST. 
USED TO HOLD THE INPUT ELEMENTS LOCI'>LLY. 
USED TO HOLD THE ELEMENTS OF 'TABLE'. 
USED TO HOLD THE INDEX OF MI'>IN LIST. 
USED TO HOLD THE INDEX OF SUBLIST. 
NIIMBEF: OF DIGITS INTO WHICH THE INPUT IS SORTEr! ON. 

REnL INPUT(102~),LOCAL(1024) 

REAL P,T,X 
INTEGER.'- HI 
INTEGER LIHIT,YI,Y2,R,B2,E2.IEXI.IEX2 
INTEGER N.S,II,A,B,C,Y,W.Z.COUNT.COUNTI.ITIME(IOO),START 
INTEGER IEX(10).TABLE(30.30),K(IO) 
INTEGER SLINK(1024),MINDEX(30).MLINK(1024) 
INTEGER MnTRIX(900),LIST(900).SLIST(900) 

$SHnRED INPUT,ITIME,NPROC.LIST,SLIST.MnTRIX.SLINK,MLINK, 
I LOCAL.N.NPATH.NELEM.TABLE.MINDEX.IEX 

$REGION REGI.REG2 

$USEF'AR 

CI'>LCULATE NUMBER OF F'ROCESSORS USE[I 

NPROC '" 0 
$[IOALL 10 

$ENTER RE!'I 
NPROC "" NPROC+! 

$EXIT REGl 
$PARE~I[I 

REntl NUMBER OF INPUT ELEMENTS TO BE SORTED 



62 READ(5,20) N 
63 20 FORMAT (14) 
6~ C 
65 C GENERATE N RANDOM NUMBER 
66 C 
67 I ~ 0 
68 30 X ~(32767.0 * RANF(D» 
69 I = 1+1 
70 INPUT(I) r X 
71 IF (I .LT. N) GO TO 30 
72 C 
73 C READ THE BASE TO WHICH THE BASE IS CONVERTED 
7'. C 
75 REnD (S,40)P 
76 40 FORMAT(E2.0) 
77 C 
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78 C INTEGER S IS USED TO CALCULATE THE DIVISORS, WHILE lEX HOLD IT 
79 C 
80 T ~ ALOG10(2.0)/ALOG10(P) 
81 S • IFIX(16 * T) 
82 Ml r INT(P) 
B3 1 IF «Ml ** S) ,LE. 32767) GO TO 2 
g~ S = S-l 
85 GO TO 1 
86 2 IEX(l) r Ml ** S 
87 C 
88 C READ NUMBER OF DIGIT INTO WHICH THE INPUT IS SDRTED 
89 C 
90 READ(5.50)II 
91 50 FORMAT(Il) 
92 C 
93 DO 60 J-2.I1 
94 IEX(J) r IEX(J-l)/IFIX(P) 
95 60 CONTINUE 
96 C 
97 .DOALL 65 
98 IEXl " IEX(l) 
99 IEX2 ~ IEX(2) 

100 65 $PAREND 
101 C 
102 DO 70 1=1,30 
103 MINDEX(I) m 0 
104 70 CONTINUE 
105 C 
106 READ(5,73)NPATH 
107 73 FORMAT(I3) 
108 NELEM = N/NPATH 
109 C 
110 ~DOALL 73 
111 CALL TIMEST 
112 75 $PAREND 
113 C 
114 C THE PARALLEL PRESORTED OF THE INPUT KEYS. 
115 C 
116 $DOPAR 85 J r l.NPATH 
117 B = IEXl 
118 B2 = NELEMt(J-l)+1 
119 E2 = ~ELEM.J 
120 IF ( J .ER. NPATH ) E2~N 
121 DO 80 Z~B',E2 
122 K(l) rINT(INPUT(Z»/B 
123 A • K(l) 



124 R =INT(INPUT(Z»-A*B 
125 K(2) ~ R/IEX2 
126 .ENTER REG2 
127 SLINK(Z) = K(2) 
128 MLINK(Z) ~ A 
129 MINDEXIA+l) n MINDEXIA+l)+l 
130 T~BLE(A+l,K(2)+1) = TABLE(A+l,K(2)+1)+1 
131 .EXIT REG2 
132 80 CONTINUE 
133 85 fPAREND 
134 $DOALL 86 
135 C~LL TIMOUT(ITIME) 
136 86 $PAREND 
137 WRITE(6,87) 
138 87 FORMAT(/'THE TIME FOR DISTRIBUTION'I) 
139 WRITE(6,950) ITIME 
140 950 FORMAT(8(I6,2X» 
141 C 
142 C BULID AN ARRAY WITH ALL THE EXISTING SUBLISTS IN THE 'T~BLE' 

143 C 
144 C n 0 
145 DO 100 1=1,30 
146 DO 90 J~1,30 

.147 IF (T~BLE(I,J) .EO. 0) GO TO 90 
1~8 C = C+l 
149 MATRIX(C) ~ T~BLE(I,J) 

150 LIST(C) ~ 1-1 
151 SLIST(C) = J-l 
152 90 CONTINUE 
153 100 CONTINUE 
154 C 
155 $DOALL 102 
156 CALL TIMEST 
157 102 $PAREND 
158 C 
159 C TR~NSFER THE GENERATED SUBLISTS TO THE AVAILABLE PROCESSORS 
160 C 
161 $DOPAR 150 Y·l.C 
162 Yl = Y 
163 W = SLIST(Yl) 
164 COUNT n 0 
165 COUNT 1 = 0 
166 START = 1 
167 C 
168 C CALCULATE THE ST~RT OF EACH SUBLIST 
169 C 
170 IF (Y .EO. 1) GO TO 120 
171 Y2 = Yl-l 
172 DO 110 M~1,Y2 
173 START = START + MATRIX(M) 
174 110 CONTINUE 
175 120 IF (COUNTl .ER. MATRIX(Yl» GO TO 145 
176 COUNTl = COUNT1+1 
177 130 COUNT = COUNT+l 
178 140 IF (SLINK(COUNT) .NE. W) GO TO 130 
179 IF (MLINK(COUNT) .NE. LIST(Yl» GO TO 130 
180 LOCAL(START) ~ INPUT(COUNT) 
181 START = ST~RT+l 
182 GO TO 120 
183 C 
184 C CALL SORT SUBROUTINE 
185 C 

SS3 



186 145 LIMIT ~ START - 1 
187 START = LIMIT - MATRIX(Yl) + 1 
188 IF ( START .Er.. LIMIT ) GO TO 150 
189 CALL BUBBLE(START,LIMIT) 
190 C 
191 150 $PAREND 
192 C 
193 $DOALL 160 
194 CALL TIMOUT(ITIME) 
195 160 $PAREND 
196 WRITE(6,170) 
197 170 FORMAT(/'TIME FOR SORTING'/) 
198 WRITE(6,950)ITIME 
199 C 
200 I r IFIXIP) 
201 WRITEI6,180)N,NPATH,NPROC,I,C 
202 180 FORMATI/5X,'N n '.2X,I4.5X.'NPATH • '.I3.4X.'NPROC - " 
203 1 Il,5X,/B~SE ~ ',I2,5X,'SUBLISTS = ',13 /) 
204 C 
205 READ 15,970) L 
206 970 FORMATlll) 
207 IF ( L .NE. 1 ) GO TO 999 
208 WRITE(6.9bO) 
209 960 FORMAT(/'LIST BEFORE SORTING :-'/) 
210 WRITEI6.990)(INPUTII).I-l.N) 
211 WRITE(6.9BO) 
212 980 FORMAT(/'LIST AFTER SORTING :-'/) 
213 WRITE(6.990)ILOCAL(I).I r l,N) 
214 990 FORMAT(~IF17.9,2X)/) 

215 999 $9TOP 
216 $END 
217 C 
218 C SORT SUBROUTINE USING BUBBLE SORT TECHNIQUE 
219 C 
220 SUBROUTINE BUBBLE IS1,Bl) 
221 REAL INPUT(102~),LOCAL(102~).AREA 
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222 INTEGER Sl.Bl.BOUND.FLAG.ITIME(100) 
223 INTEGER LIBT(900),SLISTI900),MATRIXI900).SLINKI1024),MLINKI102~) 
224 INTEGER TABLEI30,30),MINDEXI30).IEX(10) 
225 $SHARED INPUT,ITIME,NPROC,LIST.SLIST.MATRIX.SLINK.MLINK~ 
226 1 LOCAL,N.NPATH,NELEM.TABLE,MINDEX.IEX 
227 BOUND = Bl - 1 
228 10 FLAG ~ 0 
229 DO 20 IrSl,BOUND 
230 IF (LOCAL(I) .LE. LOCALII+l» GO TO 20 
231 AREA p LOCAL(I) 
232 LOCALII) ~ LOCALCI+l) 
233 LOCALII+l) ~ AREA 
234 FLAG ~ I 
235 20 CONTINUE 
236 IF (FLAG .EG. 0) GO TO 30 
237 BOUND = FLAG - 1 
238 GO TO 10 
239 30 RETURN 
240 $END 



C 
2 C 
3 C 
4 C 
'5 C 
6 C 
7 C 
8 C 
9 C 

10 C 
11 C 
12 C 
13 C 
14 C 
15 C 
16 C 
17 C 
18 C 
19 
20 
21 C 

**** PROGRAM 6.7 **** 
THIS PROGRAM IS THE PARALLEL IMPLEMENTATION OF 
A SEQUENTIAL SE~RCH. 
GIVEN A TABLE OF UNORDERED RECORDS Rll),RI2), ••• ,RIN), 
WHOSE RESPECTIVE KEYS ARE Kl,K2, ••• ,KN. THIS PROGRAM 
SEARCHES FOR A GIVEN ARGUMENT K. A DUMMY RECORD RIN+l) 
BEEN INSERTEII AT THE END OF THE TABLE TO CONTROL THE END 
OF THE SEARCH, 

- N • SIZE OF INPUT TO BE SEARCHED. 
- NPROC • NUMBER OF CO-OPERATIVE PROCESSORS. 
- NPATH '" NllMBER OF P!lRALLEL P!lTHS I SUBGROUPS) • 
- NELM " N\111BER OF ELEMENTS IN EI\CH SUBGROUP. 
- KEYS IS !IN ARRAY TO HOLD THE KEYS TO BE SEI\RCHED FOR. 
- K ~ THE ARGUMENT THI\T WE SEI\RCH FOR. 

REAL INPUTll0000), K, KEYS(6) 
INTEGER ITIME(100), FI,AG, B, E, NELM, IPATH(20) 

22 ~SHI\RED INF'UT, !TIME, K, FLAG, N, NPROC, NE,LM 
23 C 
24 
25 C 

~REGION REGl 

26 ~USEPAR 
27 C 
28 C CALCULATE NUMBER OF PROCESSORS. 
29 C 
30 NPROC • 0 
31 $DOALL 10 
32 $ENTER REGl 
33 NPROC • NPROC + 1 
3ft, $EXIT REGl 
35 10 $PAREND 
36 C 
37 C READ SIZE OF INPUT 
38 C 
39 READ 15,20) N 
~O 20 FORMAT (15) 
11 C 
42 C GENERI\TE AND STORE RANDOM NUMBERS 
43 C 
44 no 40 I r 1,N 
45 I~PUT(I) • RANFID) 
46 40 CONT H!IlE 
47 C 
18 C GENERATED NUMBERS, PRINTED OR NOT 
49 C 
50 READIS,30) IPRNT 
51 30 FORMATlll) 
52 C 
53 C READ IN NUMBER OF PATHS INPATH) OR SUBGROUPS 
5~ C 
55 IP = 0 
56 50 IP • IP + 1 
57 READI5.55) IP!lTHIIP) 
58 IF IIPATHIIP) .NE. 999) GO TO 50 
59 5~ FORMAT(I3) 
60 IP • IP-l 
61 C 
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62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
7S 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 

C ' RE AI' THE ARGUMENT K TO BE SEARCHED FOR 
C 

KE = 0 
60 I\E '" KEf 1 

REnDI5,65)KEYSIKE) 
IF IKEYS(KE) .NE •• 11111111) GO TO 60 

65 FORMAT(Fll.8) 

C 

KE = KE-l 
[IQ 888 IPP'-l, XP 

NPATH r IPATH(IPP) 
DO 777 KEE = 1,KE 

K = KEYS(KEE) 

C CnLCULATE NUMBER OF ELEMENTS IN EnCH SUBGROUPS 
C 

C 
NELM r N/NPATH 

$DOALL 70 
CnLL TIMEST 

70 $PARENII 
C 

FLAG = 0 
C 
C GENERATE 'NPATH' pnRALLEL PATHS THAT RUN 
C SIMULTANEOUSLY. 
C 

$DOPAR 75 J r l.NPATH 
IF ( FLAG .EG. 1 ) GO TO 75 
B = NELM*(J-ll+1 

'E "' NELM>r.J 
IF ( J .EO. NPATH ) E~N 
CALL SEARCH (B,E) 

75 $PAREND 
95 C 
96 
97 
98 80 
99 C 

100 
101 C 
102 
103 120 
104 
105 140 
106 
107 160 
108 180 
109 
110 190 
111 C 
112 200 
113 
114 220 
115 
116 230 
117 C 
118 2~0 

119 250 
120 
121 260 
122 
123 270 

$TlOflLL 80 
CALL TIMOUT(ITIME) 

$PARENII 

IF ( FLAG .EO. 1 ) GO TO 160 

WRITE (6,120) K 
FORMAT (/'THE ARGUMENT ',Fl1.8,' NOT FOUND'/) 
WRITE(6, 1~0) 
FORMAT('THE PROGRAM TERMINATED UNSUCCESSFULLY'/) 
GO TO 200 
WRITE (6,180) K 
FORMAT(/'THE ARGUMENT ',Fl1.S,' FOUND'/) 
WRITE(6,190) 
FORMAT('THE PROGRAM TERMINATED SUCCESSFULLY') 

IF ( IPRNT .NE. 1 ) GO TO 240 
WRITE (6,221) 
FORMAT(/'THE UNORDERED ELEMENTS OF THE TABLE ARE :-'/) 
WRITE(6,230) (INPUT(I),I r l,N,50) 
FORMAT(5(Fl1.8,3X)/) 

WRITE(6,250) 
FORMAT(/'THE TIME FOR SEARCHING'I) 
WRITE(6,2~0) ITIME 
FORMAT(S(I6,2X» 
WRITE(6,270) N, NPROC, NPATH 
FDRMAT(/2X,'INPUT SIZE = 'I5,5X,'NO. OF PROC. = ',141 
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124 C I' NUMBER OF PATHS (SUBGROUPS) n ',13/) 

125 777 CONTINUE 
126 BeB CONTINUE 
127 ~STOF' 
12B ~EN[, 

129 C 
130 C SEQUENTI~L SEARCH ALGORITHM 
131 C 
132 SUBROUTINE SEftRCH (B1,E1) 
133 REAL INPUT(10000), K, KEYS(6) 
134 INTEGER ITIME(100), FLAG, B, E, B1, El, NELM, JPATH(20) 
135 $SH~RED INF'UT, ITIME, K, FLAG, N, NPROC, NELM 
136 I ~ B1 
137 10 IF ( K ,Efl, INPUT<I) ) GO TO 30 
13B I ~ 1+1 
139 IF ( I .GT. El ) GO TO 40 
140 GO TO 10 
141 30 FL~G = 1 
142 40 RETURN 
143 $END 



1 C 
::! C 
3 C 
11 C 
5 C 
6 C 
7 C 
8 C 
9 C 

10 C 
11 C 
12 C 
13 C 
14 C 
15 C 
16 C 
17 C 
18 C 
19 C 
20 C 
21 C 
22 C 

•••• PROGRnM 6.8 *'** 
THIS PROGRAM IR THE PARALLEL IMPLEMENTATION OF 
BINARY SEARCH ALGORITHM. 
GIVEN A TABLE OF RECORDS R(1).R(2) ••••• R(N). 
WHOSE KEYS ARE IN INCREASING ORDER 
Kl <: K2 < ••• <: KN. THIS F'ROGRAM SEARCHES FOR 
A GIVEN ARGUMENT K. TO START BY COMPARING K TO 
THE MI[I['LE KEY IN THE TABLE. THE RESULT OF THIS 
PROBE TELLS WHICH HALF OF THE TABLE SHOULD BE 
SEI\RCHEI' NEXT. nND THE S liME PROCEDURE CAN BE USED 
AGAIN. COMPAR7NG K TO THE MIDI'LE KEY OF THE 
SELECTED HALF. ETC. THIS IS KNOWN AS 'BINARY SEARCH'. 

- INPUT IS AN ARRnY HOLDS THE INPUT ELEMENTS. 
- NPROC = NUMBER OF CO-OPERIITIVE F'ROCESSORS. 
- NF'I'lTH ~ NUMBER OF PARALLEL PIITHS. 
- NELM = NUMBER OF ELEMENTS IN EACH PATH. 
- K • THE ARGUMENT WE SEARCH FOR. 
- N = SIZE OF INPUT ELEMENTS. 
- KEYS IS AN ARRAY THAT HOLDS THE SEARCHED KEYS. 

23 REAL INPUT(9500). K. KEYS(6) 
21 INTEGER ITIME(100). FLAG. L. U. IPATH(20) 
25 C 
26 $SHARED INPUT. ITIME. K. FLAG. N. NPROC. NELM. NPATH 
27 C 
28 $REGION REGl 
29 C 
30 $USEPAR 
31 C 
32 C CALCULATE NUMBER OF PROCESSOR 
33 C 
34 NPROC = 0 
35 $DOALL 10 
36 $ENTER REGl 
37 NPROC ~ NF'ROC + 1 
38 SEXIT REGl 
39 10 $PAREND 
~O C 
~1 C REnD SIZE OF INPUT 
12 C 
43 READ (5.20) N 
'.4 20 FORMAT (14) 
45 C 
46 C GENERATE AND STORE RANI'OM NUMBERS 
47 C 
48 DO 40 I n 1.N 
'.9 INPUT(I) = ~ANF(D) 
50 40 CONTINUE 
51 C 
52 C PRINT THE GENERATED NUMBERS OR NOT ? 
53 C 
54 REnD(5.45) IPRNT 
55 45 FORMAT(Il) 
56 C 
57 C SORT THE GENERATED INPUT RANDOM NUMBERS 
58 C USING SHELL'S METHOD 
59 C 
60 CALL SHELL 
61 C 
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62 C REnD IN NUMBER OF PATHS (NPATH) OR SUBGROUPS 
63 C 
64 IP = 0 
65 50 IP ~ IP+1 
66 READ(5,5S) IPATH(IP) 
67 IF (IPATH(IP) .NE. 999) GO TO so 
68 S~ FORMAT(I3) 
69 1P = 1P-l 
70 C 
71 C READ THE ARGUMENT K TO BE SEARCHED FOR 
72 C 
73 KE = 0 
74 60 KE ~ KE+l 
75 READ(S,6S) KEYS(KE) 
76 IF (KEYS(KE) .NE •• 11111111) GO TO 60 
77 65 FORMAT(F14.11) 
78 KE = KE-l 
79 DO 8e8 1Pp~l,rp 
80 NPATH = IPATH(IPP) 
81 DO 777 KEEn l,KE 
82 K = KEYS(KEE) 
83 C 
84 C CALCULATE NUMBER OF ELEMENTS IN EACH SUBGROUPS 
8S C 
86 NELM ~ N/NPATH 
87 C 
88 $DOALL 70 
89 CALL TIMEST 
90 70 $PAREND 
91 C 
92 DO 90 MM = 1,50 
93 C 
94 FLAG ~ 0 
95 C 
96 C GENERt'ITE 'NPnTH' THAT RUNS SIMULTANEOUSLY. 
97 C 
98 $DOPAR 75 J-l.NPATH 
99 IF ( FLAG .Ea. 1 ) GO TO 75 

100 L = NELM * (J-l) + 1 
101 U • NELM * J 
102 IF ( J .En. NPftTH ) U~N 
103 CALL SEARCH (L,U) 
104 75 $PAREND 
105 C 
106 90 CONTINUE 
107 C 
108 $DOALL 80 
109 CALL T1MOUT(IT1ME) 
110 80 $PAREND 
111 C 
112 IF ( FLAG .Ea. 1 ) GO TO 160 
113 C 
114 WRITE (6,120) K 
115 120 FORMAT (/'THE ARGUMENT ',F14.11,' NOT FOUND'I) 
116 WRITE(6,140) 
117 140 FORMI'IT<'THE PROGRAM TERMINATED UNSUCCESSFULLY'I) 
118 GO TO 200 
119 160 WRITE(6,180) K 
120 160 FORMAT(/'THE ARGUMENT ',F14.11,' FOUND'I) 
121 WRITE(6,190) 
122 190 FORMAT('THE PROGRAM TERMINATED SUCCESSFULLY') 
123 C 
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1~4 ~OO IF ( IPRNT .NE. 1 ) GO TO 240 
125 WRITE(6,2~0) 
126 220 FORMAT(/'THE ORDERED ELEMENTS OF THE TABLE ARE :-'/) 
127 WRITE(6,2~0) (INPUT(I),I~I,N,50) 
128 230 FORMAT(5(FI4.ll,2Y.)/) 
1~9 C 
130 2~0 WRITE(6,250) 
131 250 FORMAT(/'THE TIME FOR SE~RCHING'/) 
132 WRITE(6,260) ITIME 
133 260 FORMAT(8(I6,2X» 
134 WRITEI6,270) N, NPROC, NPATH 
135 270 FORMAT(/2X,'INPUT SIZE = 'I~,5X,'NO. OF PROC. = ',141 
136 C I' NUMBER OF PATHS (SUBGROUPS) - ',13/) 
137 777 CONTINUE 
138 888 CONTINUE 
139 $STOP 
140 $END 
1~1 C 
142 C BINARY SE~RCH ALGORITHM 
143 C 
144 SUBROUTINE SE~RCH (Ll,Ul) 
1~5 REAL INPUT(9500), K, KEYS(6) 
146 INTEGER ITIME(100),FLAG,L,U,NELM,Ll,Ul,L2,U2,IPATH(20) 
147 $SHARED INPUT, ITIME, K, FLAG, N, NPROC, NELM, NPATH 
148 L2 • Ll 
1~9 U2 = Ul 
150 10 IF ( U2 .LT. L2 ) GO TO 70 
151 I - (L2+U2)/2 
152 20 IF ( K .LT. INPUT(I) GO TO 40 
153 IF ( K .GT. INPUTII) ) GO TO 50 
154 FLAG = 1 
155 GO TO 70 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 

C 
C 
C 
40 

C 
C 
C 
50 

70 

C 
C 
C 

AI'JUST U2 

U2 = 1-1 
GO TO 10 

(Il'JUST L2 

L2 R I t1 
GO TO 10 
RETURN 
SE"ND 

SHELL'S SORTI NG SUBROUTINE 

171 SUBROUTINE SHELL 
172 REAL INPUT(9500), K, Y, KEYS(6) 
173 INTEGER ITIME(100), FLAG, I, D, IPATH(20) 
174 $SHARED INPUT, ITIME, K, FLAG, N, NPROC, NELM, NPATH 
175 C 
176 C CALCULATE THE DISTANCE OF COMPARISION 
177 C 
178 1"1 
179 20 IF «2**1) .GF. N) GO TO 30 
180 I=Itl 
181 GO TO 20 
182 30 nR (2**(I-I)-I) 
183 C 
184 40 IF ( D .LE. 0 ) GO TO 100 
185 I R 1 

560 



186 50 J=I 
561 

187 Y ~ INF'UT< IHt) 
188 60 IF ( Y .LT. INF'UT(J) ) GO TO 80 
189 70 INF'UT(JtD) = Y 
190 I " Itl 
191 IF ( ( ItO) .LE. N) GO TO 50 
192 [' = (['-1)12 

193 GO TO 40 
194 80 INPUT< J+O) ~ INF'UT(J) 
195 J ~ J-[' 
196 IF ( J .OT. 0 ) GO TO 60 
197 GO TO 70 
198 100 RETURN 
199 '$ENO 
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