This item is held in Loughborough University's Institutional Repository (https://dspace.lboro.ac.uk) and was harvested from the British Library's EThOS service (http://www.ethos.bl.uk/). It is made available under the following Creative Commons Licence conditions.

Attribution-NonCommercial-NoDerivs 2.5

You are free:

- to copy, distribute, display, and perform the work

Under the following conditions:
BY:
Attribution. You must attribute the work in the manner specified by the author or licensor.

Noncommercial. You may not use this work for commercial purposes. this work.

- Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.
This is a human-readable summary of the Leqal Code (the full license).
Disclaimer ${ }^{\square}$

For the full text of this licence, please go to:

THE CHEMISTRY OF NEW CYCLIC PHOSPHORUS(III) LIGANDS

By

Allen Tobin Ekubo

A Doctoral Thesis submitted in partial fulfilment of the requirements for the award of

Doctor of Philosophy

Loughborough University

2009

Department of Chemistry

Abstract

A range of new aniline derivatives of tetrakis(hydroxymethyl)phosphonium chloride represented as $\left[\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{NHR}\right)_{4}\right] \mathrm{Cl}$, where $\mathrm{R}=$ phenyl or a substituted phenyl group were synthesised by reacting tetrakis(hydroxymethyl)phosphonium chloride with different aniline precursors in EtOH. Similarly, new phenylenediamine derivatives of tetrakis(hydroxymethyl)phosphonium chloride $\left[\mathrm{P}\left\{\left(\mathrm{CH}_{2} \mathrm{NH}\right)_{2} \mathrm{R}\right\}_{2}\right] \mathrm{Cl},\left[\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}\right.$, $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{COPh}, \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{C}_{4} \mathrm{H}_{4}$] were synthesised by reacting tetrakis(hydroxymethyl)phosphonium chloride with phenylenediamine precursors. Selected aniline derivatives of tetrakis(hydroxymethyl)phosphonium chloride were reacted with triethylamine in acetone at room temperature to give the corresponding diazaphosphorinane ligands cyclo$\left\{\mathrm{CH}_{2} \mathrm{~N}(\mathrm{R}) \mathrm{CH}_{2} \mathrm{~N}(\mathrm{R}) \mathrm{CH}_{2}-\mathrm{P}\right\}-\mathrm{CH}_{2} \mathrm{~N}(\mathrm{H}) \mathrm{R}$, where $\mathrm{R}=$ phenyl or a substituted phenyl group. Some of the diazaphosphorinane ligands were reacted with $\mathrm{Ru}(\mathrm{II}), \mathrm{Rh}(\mathrm{III}), \operatorname{Ir}(\mathrm{III}), \mathrm{Pd}(\mathrm{II})$ and $\mathrm{Pt}(\mathrm{II})$ precursors to form new transition metal complexes.

New tertiary phosphine ammonium chlorides, [cyclo- $\left\{\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{R}^{\prime}\right) \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{R}^{\prime}\right) \mathrm{CH}_{2}-\mathrm{P}\right\}$ $\left.\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{H}_{2}\right) \mathrm{R}^{\prime}\right]^{+} \mathrm{Cl}^{-}$, $\left[\mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}, 4-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}, 4-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right.$, 4- $\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$, 4$\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$] were synthesised by reacting benzylamine precursors with tetrakis(hydroxymethyl)phosphonium chloride in ethanol. A range of new tertiary phosphine ammonium salts were also prepared by anion metathesis of four of the chlorides with $\mathrm{Na}\left[\mathrm{BPh}_{4}\right], \mathrm{Na}\left[\mathrm{SbF}_{6}\right]$ or $\mathrm{K}\left[\mathrm{PF}_{6}\right]$ in methanol at room temperature under aerobic conditions to give the corresponding colourless tertiary phosphine ammonium salts in high yields: $\quad\left[\text { cyclo- }\left\{\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{R}^{\prime}\right) \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{R}^{\prime}\right) \mathrm{CH}_{2}-\mathrm{P}\right\}-\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{H}_{2}\right) \mathrm{R}^{\prime}\right]^{+} \mathrm{X}^{-}, \quad\left[\mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}, \quad 4-\right.$ $\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}, 4-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}, 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} ; \mathrm{X}=\mathrm{BPh}_{4}, \mathrm{SbF}_{6}, \mathrm{PF}_{6}$]. Selected tertiary phosphine ammonium salts were reacted with $\mathrm{Ru}(\mathrm{II}), \mathrm{Rh}(\mathrm{I}), \mathrm{Rh}(\mathrm{III}), \mathrm{Ir}(\mathrm{III}), \mathrm{Pd}(\mathrm{II}), \mathrm{Pt}(\mathrm{II})$ and $\mathrm{Au}(\mathrm{I})$ precursors to form the corresponding transition metal complexes. Novel $\mathrm{Pd}(\mathrm{II})$ and $\mathrm{Pt}(\mathrm{II})$ Zwitterionic dimers have also been structurally characterised.

The phosphonium salts, diazaphosphorinane ligands, tertiary phosphine ammonium salts and metal complexes were characterised by a combination of conventional techniques: MS, microanalysis, FT-IR, NMR [${ }^{1} \mathrm{H}$ and $\left.{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\right]$, and in several cases by single crystal X-ray crystallography. The tertiary phosphine ammonium salts were shown to be charged variants of the well-known 1,3,5-triaza-7-phosphaadamantane ligand and their metal complexes were found to have similar stereoelectronic properties to those of analogous complexes with 1,3,5-triaza-7-phosphaadamantane.

DEDICATION

To my dear wife, Lucky and our beloved children, Timi, Womotimi, Iyenimi, Ayibaifie and Ebiemi.

ACKNOWLEDGEMENTS

I would like to thank the Niger Delta University and the Bayelsa State Government of Nigeria, for the Award of a Study Fellowship and funding. I am also grateful to the Department of Chemistry, Loughborough University for the Laboratory facilities used in this research.

I wish to use this medium to express my profound gratitude to my supervisors- Drs M. B. Smith, S. E. Dann and P. F. Kelly for their thorough guidance and supervision throughout the period of this work. I am especially indebted to Dr M. B. Smith who has painstakingly led me through this research. His moral support, supervision and teaching, group meetings, constructive criticisms and corrections made the research very interesting and encouraging. I am also grateful to Dr Mark R. J. Elsegood, Andrew Lake and Noelia Sanchez-Ballester for all their time and help with completing the X-ray crystal structures. My thanks also go to Professors J. C. Buseri and W-A. L. Izonfuo both of the Niger Delta University, Nigeria for their support and encouragement throughout the period of my research.

My sincere thanks also go to the technicians especially Mrs Pauline King as well as my colleagues and friends in the Inorganic Research Laboratories especially, Gavin, Andrew, Paul, Anna, Noelia, Amy, John, Olga, Rob, Leanne, Lee, Chris, Jenna and Rafal for useful discussions. I would also like to thank my friends, Evans Osaisai for sorting out my computer questions as well as Cornelius Odigi and Nizoloman Odual for lively jokes. The moral support from my relations and well-wishers especially, Ala, Ayibatari, Dickson, Bies, Ebakumo, Elizabeth, Innocent, Loveday, Simon, Patrick, Kontei, Famous, Festus, Atoru, Paulinah, Macaulay, Diseimokumo, Kimisuotei, Samuel, Miebi, Bara, Adi, John, Jackson, Amos, Diepreye, Temi, Ibiba, Onoriode, Fanny, Thulani and all others who spurred me through phone calls and E-mails, is also gratefully acknowledged. I would also like to thank my cousin, Dr Franklin E. Osaisai for his enormous support and encouragement. I thank the Pastors and entire congregation of God's Vineyard Church, Loughborough, especially Pastor Akin Oluwole and family for their support and prayers.

Finally, I am indebted to my wife, children and mother for their patience and encouragement throughout the period of my stay in Loughborough.

TABLE OF CONTENTS

Title i
Certificate of originality ii
Abstract iii
Dedication iv
Acknowledgements v
Table of Contents vi
List of Figures xi
List of Tables xiv
Symbols and abbreviations xvii
Chapter One
1.0 Introduction 1
1.1 Phosphonium salts 2
1.1.1 Tetrakis(hydroxymethyl)phosphonium chloride 9
1.1.2 Tetrakis(hydrox ymethyl)phosphonium sulfate 10
1.2 Phosphine ligands 11
1.2.1 Metal complexes 12
1.2.2 Phosphorinanes 18
1.2.3 Aminophosphines 20
1.2.4 Water-soluble phosphines 22
1.3 1,3,5-triaza-7-phosphaadamantane (PTA) and related compounds 26
1.3.1 Coordination chemistry of PTA 31
1.3.2 PTA-ruthenium complexes 32
1.3.3 PTA- rhodium complexes 35
1.3.4 PTA-iridium complexes 37
1.3.5 PTA-palladium complexes 38
1.3.6 PTA-platinum complexes 40
1.3.7 PTA-gold complexes 43
1.4 Aims of the research 50
Chapter Two
New neutral cyclic phosphorus(III) ligands and their coordination chemistry 51
2.0 Introduction 51
2.1 Synthesis of aniline derivatives (128-146) of THPC 51
2.1.1 Characterisation of compounds 128-146 52
2.2 Synthesis of phenylenediamine derivatives (147-150) of THPC 59
2.2.1 Characterisation of compounds 147-150 60
2.2.2 Synthesis of compound $\left[\mathrm{P}\left\{\left(\mathrm{CH}_{2} \mathrm{NH}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\}_{2}\right] \mathrm{BPh}_{4} 151$ 65
2.3 Synthesis of diazaphosphorinane ligands 152-161 65
2.3.1 Characterisation of compounds 152-161 66
2.3.2 Synthesis of compound $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{NHC}_{6} \mathrm{H}_{5}\right)_{3} \mathbf{1 6 2}$ 71
2.4 Coordination studies 72
2.4.1 Synthesis of ruthenium(II) diazaphosphorinane complexes 163 and 164 72
2.4.1.1 Characterisation of compounds 163 and 164 73
2.4.2 Synthesis of rhodium(III) and iridium(III) diazaphosphorinane complexes 165-168 75
2.4.2.1 Characterisation of compounds 165-168 75
2.4.3 Synthesis of palladium(II) diazaphosphorinane complexes 169-177 80
2.4.3.1 Characterisation of compounds 169-177 81
2.4.4 Synthesis of platinum(II) diazaphosphorinane complexes 178 and 179 87
2.4.4.1 Characterisation of compounds 178 and 179 88
2.5 Conclusions 91
Chapter Three
New cationic cyclic phosphorus(III) ligands 93
3.0 Introduction 93
3.1 Synthesis of tertiary phosphine ammonium chlorides (180-184) from THPC 93
3.1.1 Characterisation of compounds 180-184 94
3.2 Synthesis of tertiary phosphine ammonium salts (185-196) with $\left[\mathrm{BPh}_{4}\right]^{-},\left[\mathrm{SbF}_{6}\right]^{-}$or $\left[\mathrm{PF}_{6}\right]^{-}$counterions 100
3.2.1 Characterisation of compounds 185-196 101
3.3 Coordination studies of tertiary phosphine ammonium salts 113
3.3.1 Synthesis of ruthenium(II) complexes 197-202 113
3.3.1.1 Characterisation of compounds 197-202 114
3.3.2 Synthesis of rhodium(I) complexes 203 and 204 122
3.3.2.1 Characterisation of compounds 203 and 204 123
3.3.3 Synthesis of rhodium(III) and iridium(III) complexes 205-210 125
3.3.3.1 Characterisation of compounds 205-210 126
3.3.4 Coordination of monomeric palladium(II) precursors with $180,181,189$ or 190 132
3.3.4.1 Synthesis and characterisation of palladium(II) complex 211 133
3.3.4.2 Synthesis and characterisation of palladium(II) complex 212 136
3.3.4.3 Synthesis and characterisation of palladium(II) complexes 213-215 137
3.3.4.4 Synthesis and characterisation of palladium(II) complexes 216 and 217 139
3.3.5 Coordination of cyclometallated palladium(II) dimers with 181 or 190 142
3.3.5.1 Characterisation of compounds 218-221 143
3.3.5.2 Synthesis and characterisation of palladium(II) complex 222 149
3.3.6 Synthesis of platinum(II) complexes 223 and 224 154
3.3.6.1 Characterisation of compounds 223 and 224 154
3.3.7 Synthesis of gold(I) complexes 225-228 160
3.3.7.1 Characterisation of compounds 225-228 160
3.4 Conclusions 164
Chapter Four
Catalysis 166
4.0 Introduction 166
4.1 Catalytic applications 166
4.1.1 Homogeneous catalysis 170
4.1.1.1 Catalytic potential of the new diazaphosphorinane ligands 174
4.1.2 Heterogeneous catalysis 176
4.2 Supported catalysts 177
4.2.1 Zeolites 177
4.2.1.1 Synthesis and characterisation of zeolite A, 235 181
4.2.1.2 Synthesis and characterisation of permanganate sodalite, 236 182
4.3 Conclusions 185
Chapter Five
Experimental 186
5.1 Materials 186
5.2 Instrumentation 186
5.3 Synthesis of aniline derivatives (128-146) of THPC 187
5.3.1 Synthesis of compounds $128,129,132,138,143-145$ 187
5.3.2 Synthesis of compounds $130,131,133-137,139-142,146$ 187
5.4 Synthesis of phenylenediamine derivatives (147-150) of THPC 188
5.4.1 Synthesis of compound 147 188
5.4.2 Synthesis of compounds $148-150$ 188
5.4.3 Synthesis of compound $\left[\mathrm{P}\left(\left(\mathrm{CH}_{2} \mathrm{NH}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\}_{2}\right] \mathrm{BPh} 4151$ 189
5.5 Synthesis of diazaphosphorinane ligands 189
5.5.1 Synthesis of compounds 152-161 189
5.5.2 Synthesis of compound $\mathrm{P}_{\left(\mathrm{CH}_{2} \mathrm{NHC}_{6} \mathrm{H}_{5}\right)_{3} 162}$ 190
5.6 Coordination studies of diazaphosphorinane ligands 190
5.6.1 Synthesis of ruthenium(II) complexes 163 and 164 190
5.6.2 Synthesis of rhodium(III) and iridium(III) complexes 165-168 190
5.6.3 Synthesis of palladium(II) complexes 169-177 191
5.6.4 Synthesis of platinum(II) complexes 178 and 179 191
5.7 Synthesis of tertiary phosphine ammonium salts 192
5.7.1 Synthesis of compounds 180-184 192
5.7.2 Reaction of tertiary phosphine ammonium chlorides with $\mathrm{Na}\left[\mathrm{BPh}_{4}\right]$, $\mathrm{Na}\left[\mathrm{SbF}_{6}\right]$ or $\mathrm{K}\left[\mathrm{PF}_{6}\right]$ 192
5.7.2.1 Synthesis of compounds 185-188 193
5.7.2.2 Synthesis of compounds 189-192 193
5.7.2.3 Synthesis of compounds 193-196 193
5.8 Coordination studies of tertiary phosphine ammonium salts 194
5.8.1 Synthesis of ruthenium(II) complexes 197-202 194
5.8.2 Synthesis of rhodium(I) complexes 203 and 204 194
5.8.3 Synthesis of rhodium(III) and iridium(III) complexes 205-210 195
5.8.4 Synthesis of palladium(II) complexes 195
5.8.4.1 Synthesis of palladium(II) complex 211 196
5.8.4.2 Synthesis of palladium(II) complex 212 196
5.8.4.3 Synthesis of palladium(II) complexes 213-215 196
5.8.4.4 Synthesis of palladium(II) complexes 216 and 217 196
5.9 Coordination studies of tertiary phosphine ammonium salts with cyclometallated palladium dimers 197
5.9.1 Synthesis of compounds 218 and 219 197
5.9.2 Synthesis of compounds 220 and 221 197
5.9.3 Synthesis of compound 222 198
5.10 Synthesis of platinum(II) complexes 223 and 224 198
5.11 Synthesis of gold(I) complexes 225-228 198
5.12 Synthesis of zeolite A and permanganate sodalite 199
5.12.1 Synthesis of zeolite A 235 199
5.12.2 Synthesis of permanganate sodalite 236 199
6.0 General conclusions 200
6.1 Further work 206
7.0 References 209
8.0 Appendices 223
Appendix 8.1 Crystal data and structure refinement details for 129 223
Appendix 8.2 Crystal data and structure refinement details for 147 224
Appendix 8.3 Crystal data and structure refinement details for 156 225
Appendix 8.4 Crystal data and structure refinement details for 166 226
Appendix 8.5 Crystal data and structure refinement details for 168 227
Appendix 8.6 Crystal data and structure refinement details for 169 228
Appendix 8.7 Crystal data and structure refinement details for 170 229
Appendix 8.8 Crystal data and structure refinement details for $\mathbf{1 7 8}$ 230
Appendix 8.9 Crystal data and structure refinement details for 181 231
Appendix 8.10 Crystal data and structure refinement details for $\mathbf{1 8 5}$ 232
Appendix 8.11 Crystal data and structure refinement details for 190 233
Appendix 8.12 Crystal data and structure refinement details for 193 234
Appendix 8.13 Crystal data and structure refinement details for 199 235
Appendix 8.14 Crystal data and structure refinement details for 200 236
Appendix 8.15 Crystal data and structure refinement details for 207 237
Appendix 8.16 Crystal data and structure refinement details for 211' 238
Appendix 8.17 Crystal data and structure refinement details for 218 239
Appendix 8.18 Crystal data and structure refinement details for 220 240
Appendix 8.19 Crystal data and structure refinement details for 222' 241
Appendix 8.20 Crystal data and structure refinement details for 223' 242
Appendix 8.21 Crystal data and structure refinement details for $\mathbf{2 2 5}$ 243
Appendix 8.22 Courses/conferences attended 244
Appendix 8.23 Refereed journal publication(s) from this research 246Appendix 8.24 Crystallographic data for the compoundsCD-Rom

LIST OF FIGURES

1.1 Phosphonium ion, where $\mathrm{R}, \mathrm{R}^{\prime}, \mathrm{R}^{\prime \prime}, \mathrm{R}^{\prime \prime \prime}=$ halogen, alkyl, aryl, H , etc 2
1.2 Selected examples of alkyl-di-(1-adamantyl)phosphines 8
1.3 Tetrakis(hydroxymethyl)phosphonium chloride (THPC) 10
1.4 Types of back-bonding in metal phosphine complexes 15
1.5 Ring compounds with phosphorus and saturated carbon 18
1.6 Phenylphosphorinane, 16 19
1.7 Potential bonding mode of $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{NAr}^{\mathrm{R}}\right)_{3}$ to two metal centres 20
1.8 Potential bonding modes of the formally trianionic ligands $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{NAr}^{\mathrm{R}}\right)_{3}$ and $\mathrm{Se}=\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{NAr}^{\mathrm{R}}\right)_{2}$ to form metal complexes 21
1.9 Mono- and trisulfonated triphenylphosphines ($\mathrm{R}=\mathrm{H}$, TPPMS; $\mathrm{R}=\mathrm{SO}_{3}{ }^{-}$, TPPTS) 22
1.10 Water-soluble THP complexes of rhodium(I) 25
1.11 Verkade-type base, $R=H$, alkyl, etc 26
1.12 1,3,5-triaza-7-phosphaadamantane (PTA) 27
1.13 DAPTA and other derivatives of PTA 28
1.14 Some PTA derivation reactions 29
1.15 Structure of $\mathbf{3 5}$ 30
1.16 Some PTA bonding modes to metal centres, M 32
1.17 Structure of 45 33
2.1 Molecular structure of $\left[\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{~N}-4-\mathrm{FC}_{6} \mathrm{H}_{4}\right)_{4}\right] \mathrm{Cl}, 129$, showing H-bond interactions. One chloride is unique 57
2.2 Possible isomers of $\mathbf{1 4 8}$ or $\mathbf{1 4 9}$ 62
2.3 Molecular structure of $\left[\mathrm{P}\left\{\left(\mathrm{CH}_{2} \mathrm{NH}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\}_{2}\right] \mathrm{Cl}, 147$ with one mole of the precursor $1,2-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{NH}_{2}\right)_{2}$ 63
2.4 Packing plot for compound $147 \cdot 1,2-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{NH}_{2}\right)_{2}$ 63
2.5 Molecular structure of $\mathbf{1 5 6}$ 70
2.6 Structure of p-cymene 74
2.7 Molecular structures of two independent molecules of $166.0 .5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecule of crystallisation has been omitted for clarity 78
2.8 Molecular structures of two independent molecules of $168.0 .5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecule of crystallisation has been omitted for clarity 78
2.9 Molecular structure of $169 . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecule of crystallisation has been omitted for clarity 85
2.10 Packing plot for compound 169 showing $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H}_{2} \cdots \mathrm{Cl}$ interactions between molecules forming a chain parallel to a 85
2.11 Molecular structure of $\mathbf{1 7 0}$ showing H -bond to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecule of crystallisation. Second $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecule of crystallisation has been omitted for clarity 86
2.12 Molecular structure of $\mathbf{1 7 8}$ 90
3.1 Molecular structure of $\mathbf{1 8 1}$ 98
3.2 Structures of $\mathbf{1 8 1}$ and PTA 99
3.3 Packing plot of $\mathbf{1 8 1}$ showing the H -bonded sheet pattern 99
3.4 Molecular structure of $\mathbf{1 8 5}$ showing $\mathrm{N}-\mathrm{H} \cdots \pi$ and $\mathrm{C}-\mathrm{H} \cdot \cdots$ interactions between cation and anion $\left(\mathrm{BPh}_{4}{ }^{-}\right)$ 106
3.5 Molecular structure of $\mathbf{1 9 0}$. The $\mathrm{SbF}_{6}{ }^{-}$counterion has been omitted for clarity 107
3.6 Molecular structure of $\mathbf{1 9 0}$ showing intermolecular H -boning contacts between the $\left[\mathrm{SbF}_{6}\right]^{-}$counterion and cations 108
3.7 Packing plot for compound 190, parallel to a showing H-bonded chains of cations and anions 109
3.8 Packing plot for compound 193 109
3.9 Molecular structure of $\mathbf{1 9 3}$. The $\mathrm{PF}_{6}{ }^{-}$counterion has been omitted for clarity 110
3.10 Molecular structure of $\mathbf{1 9 3}$ showing intermolecular H-bonding contacts between the $\left[\mathrm{PF}_{6}\right]^{-}$counterion and cations 111
3.11 Structures of cationic dimeric Ru ${ }^{\text {II }}$ PTA complexes 118
3.12 Molecular structure of 199. The $\mathrm{SbF}_{6}{ }^{-}$counterion and $1.67 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecules of crystallisation have been omitted for clarity 119
3.13 Molecular structure of 199 , showing H -bonding forming dimer pairs 119
3.14 Molecular structure of $\mathbf{2 0 0}$. The $\mathrm{SbF}_{6}{ }^{-}$counterion and $0.33 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecule of crystallisation have been omitted for clarity 120
3.15 Molecular structure of 200, showing H-bonding forming dimer pairs 120
3.16 Molecular structure of 207. The SbF_{6}^{-}counterion and $2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecules of crystallisation have been omitted for clarity 130
3.17 Molecular structure of 207, showing H-bonding forming dimer pairs 132
3.18 Molecular structure of $\mathbf{2 1 1}{ }^{\prime}$ 134
3.19 Molecular structure of 218 146
3.20 Molecular structure of $\mathbf{2 2 0}$ 146
3.21 Molecular structure of 222' showing all H atoms in equivalent $\mathrm{P}-\mathrm{C}-\mathrm{N}-$ $\mathrm{C}-\mathrm{N}-\mathrm{C}$ rings. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}$ solvent molecule of crystallisation has been omitted for clarity 150
3.22 Molecular structure of $\mathbf{2 2 3}^{\prime}$ showing H atoms in the two $\mathrm{P}-\mathrm{C}-\mathrm{N}-\mathrm{C}-\mathrm{N}-\mathrm{C}$ rings. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecule of crystallisation has been omitted for clarity 156
3.23 Molecular structure of $\mathbf{2 2 5}$ 163
3.24 Crystal structure of $\mathbf{2 2 5}$ showing intermolecular H -bonding linking three molecules together $\left(4-\mathrm{FC}_{6} \mathrm{H}_{4}\right.$ groups omitted) 164
4.1 Schematic illustrations for the encaged quasi-homogeneous Heck-coupling in Pd@S1 catalyst 167
4.2 The Heck cycle ($\mathrm{R}^{\prime}=$ electron-withdrawing group) 169
4.3 Structure of hydrotalcite 176
4.4 Powder X-ray diffraction pattern for 235 183
4.5 Powder X-ray diffraction pattern for 236 184

LIST OF TABLES

2.1 Percentage yield (isolated), FAB-MS and selected FT-IR data (in cm^{-1}) for compounds 128-146 53
2.2 Microanalysis (\%) and molecular formulae for compounds 128-146 55
2.3 Selected ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data (in ppm) for compounds 128-146 56
2.4 Selected bond lengths and angles for 129 58
2.5 Percentage yield (isolated), FAB-MS and selected FT-IR data (in cm^{-1}) for compounds 147-150 60
2.6 Microanalysis (\%) and molecular formulae for compounds 147-150 61
2.7 Selected NMR data (in ppm or Hz) for compounds 147-150 61
2.8 Selected bond lengths and angles for 147 64
2.9 Percentage yield (isolated), FAB-MS and selected FT-IR data (in cm^{-1}) for compounds 152-161 67
2.10 Microanalysis (\%) and molecular formulae for compounds 152-161 67
2.11 Selected NMR data (in ppm or Hz) for compounds 152-161 69
2.12 Selected bond lengths and angles for $\mathbf{1 5 6}$ 71
2.13 Percentage yield (isolated), FAB-MS and selected FT-IR data (in cm^{-1}) for compounds 163 and 164 73
2.14 Microanalysis (\%) and molecular formulae for compounds 163 and 164 74
2.15 Selected NMR data (in ppm or Hz) for compounds 163 and 164 74
2.16 Percentage yield (isolated), FAB-MS and selected FT-IR data (in cm^{-1}) for compounds 165-168 76
2.17 Microanalysis (\%) and molecular formulae for compounds 165-168 76
2.18 Selected NMR data (in ppm or Hz) for 165-168 77
2.19 Selected bond lengths and angles for 166 79
2.20 Selected bond lengths and angles for 168 80
2.21 Percentage yield (isolated), FAB-MS and selected FT-IR data (in cm^{-1}) for compounds 169-177 82
2.22 Microanalysis (\%) and molecular formulae for compounds 169-177 82
2.23 Selected NMR data (in ppm or Hz) for 169-177 84
2.24 Selected bond lengths and angles for $\mathbf{1 6 9}$ 86
2.25 Selected bond lengths and angles for $\mathbf{1 7 0}$ 87
2.26 Percentage yield (isolated), FAB-MS and selected FT-IR data (in cm^{-1}) for compounds 178 and 179 88
2.27 Microanalysis (\%) and molecular formulae for compounds $\mathbf{1 7 8}$ and 179 89
2.28 Selected NMR data (in ppm or Hz) for 178 and 179 89
2.29 Selected bond lengths and angles for 178 90
3.1 Percentage yield (isolated), FAB-MS and selected FT-IR data (in cm^{-1}) for compounds 180-184 94
3.2 Microanalysis (\%) and molecular formulae for compounds 180-184 95
3.3 Selected NMR data (in ppm or Hz) for $\mathbf{1 8 0 - 1 8 4}$ 97
3.4 Selected bond lengths and angles for 181 100
3.5 Percentage yield (isolated), FAB-MS and selected FT-IR data (in cm^{-1}) for compounds 185-196 101
3.6 Microanalysis (\%) and molecular formulae for compounds 185-196 102
3.7 Selected NMR data (in ppm or Hz) for 185-196 104
3.8 Selected bond lengths and angles for $\mathbf{1 8 5}$ 106
3.9 Selected bond lengths and angles for 190 108
3.10 Selected bond lengths and angles for 193 112
3.11 Percentage yield (isolated), FAB-MS and selected FT-IR data (in cm^{-1}) for compounds 197-202 114
3.12 Microanalysis (\%) and molecular formulae for compounds 197-202 115
3.13 Selected NMR data (in ppm or Hz) for compounds 197-202 117
3.14 Selected bond lengths and angles for 199 121
3.15 Selected bond lengths and angles for 200 122
3.16 Percentage yield (isolated), LSI-MS and selected FT-IR data (in cm^{-1}) for compounds 203 and 204 123
3.17 Microanalysis (\%) and molecular formulae for compounds 203 and 204 124
3.18 Percentage yield (isolated), FAB-MS and selected FT-IR data (in cm^{-1}) for compounds 205-210 126
3.19 Microanalysis (\%) and molecular formulae for compounds 205-210 127
3.20 Selected NMR data (in ppm or Hz) for 205-210 129
3.21 Selected bond lengths and angles for 207 131
3.22 Selected bond lengths and angles for 211' 135
3.23 Percentage yield (isolated) and selected FT-IR data (in cm^{-1}) for compounds for compounds 213-215 138
3.24 Microanalysis (\%) and molecular formulae for compounds 213-215 138
3.25 Selected NMR data (in ppm) for 213-215 139
3.26 Percentage yield (isolated), FAB-MS and selected FT-IR data (in cm^{-1}) for compounds 216 and 217 140
3.27 Microanalysis (\%) and molecular formulae for compounds 216 and 217 141
3.28 Selected NMR data (in ppm) for 216 and 217 142
3.29 Percentage yield (isolated), FAB-MS and selected FT-IR data (in cm^{-1}) for compounds 218-221 144
3.30 Microanalysis (\%) and molecular formulae for compounds 218-221 144
3.31 Selected NMR data (in ppm) for 218-221 145
3.32 Selected bond lengths and angles for 218 147
3.33 Selected bond lengths and angles for 220 148
3.34 Selected bond lengths and angles for $\mathbf{2 2 2}^{\prime}$ 151
3.35 Percentage yield (isolated) and selected FT-IR data (in cm^{-1}) for compounds 223 and 224 155
3.36 Microanalysis (\%) and molecular formulae for compounds 223 and 224 155
3.37 Selected bond lengths and angles for 223' 157
3.38 Percentage yield (isolated), FAB-MS and selected FT-IR data (in cm^{-1}) for compounds 225-228 161
3.39 Microanalysis (\%) and molecular formulae for compounds 225-228 161
3.40 Selected ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data (in ppm or Hz) for 225-228 162
3.41 Selected bond lengths and angles for 225 163

SYMBOLS AND ABBREVIATIONS

Acac	Acetylacetonate
Ar	Aryl
bp	boiling point
BP	British Petroleum
Butyl	Butyl
COD	Cycloocta-1,5-diene
Cp	Cyclopentadienyl, $\mathrm{C}_{5} \mathrm{H}_{5}$
Cp*	pentamethylcyclopentadienyl, $\mathrm{C}_{5} \mathrm{Me}_{5}$
Cy	Cyclohexyl
δ	chemical shift (NMR)
DCM	Dichloromethane
dmba	N,C-chelating 2-(dimethylaminomethyl)phenyl
DMF	Dimethylformamide
DMSO	Dimethylsulfoxide
ESMS	Electrospray mass spectrometry
Et	Ethyl
FAB-MS	Fast atomic bombardment mass spectrometry
FT-IR	Fourier transform infrared spectroscopy
h	hours
HPLC	High Performance Liquid Chromatography
Hz	Hertz
i	iso
IR	Infrared spectroscopy
LSI-MS	Liquid secondary ionisation mass spectrometry
m -	Meta
m	medium
Me	Methyl
Min	minutes
MS	Mass Spectrometry
n	normal
NMP	N-methylpyrrolidone
NMR	Nuclear Magnetic Resonance

$o-$	Ortho
OAc	Acetate
OTf	Triflate, $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$
OTs	Tosylate, $p-\mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{SO}_{3}^{-}$
$p-$	Para
Ph	Phenyl
ppm	parts per million
Pr	Propyl
PR 3	Phosphine
PTA	$1,3,5-T$ Triaza-7-phosphaadamantane
s	strong
THF	Tetrahydrofuran
THP	Tris(hydroxymethyl)phosphine
THPC	Tetrakis(hydroxymethyl)phosphonium chloride
THPS	Tetrakis(hydroxymethyl)phosphonium sulfate
THT	Tetrahydrothiophene
TMEDA	Tetramethylethylenediamine
TMS	Tetramethylsilane, $(\mathrm{CH})_{4} \mathrm{Si}^{-1}$
v	stretching frequency (cm $\left.{ }^{-1}\right)$
vs	very strong
w	weak

CHAPTER ONE

1.0 INTRODUCTION

The design and development of new ligands and or transition metal complexes for specific purposes is of immense importance in the fields of organometallic and coordination chemistry. Organometallic complexes which were originally defined as metal complexes with one or more metal-carbon bonds nowadays include metal complexes with ligands such as phosphines, hydrides and amines. Transition metal complexes are useful in organic synthesis, catalysis, ${ }^{1}$ and medicine (as therapeutic and diagnostic agents) ${ }^{2}$ among other uses.

The concern for the environment has led to the rise of "green chemistry", and the concept of atom economy the purpose of which is to minimise the production of chemical waste in industry and commerce by using catalysts rather than stoichiometric reagents in chemical transformations. This has led to the development of many organotransition metal complexes as catalysts. For example in the rhodium catalyst-based Monsanto Process as well as the new and more efficient iridium-based Cativa ${ }^{\text {TM }}$ Process by BP Chemicals for the production of acetic acid, by the carbonylation of methanol, atom economy is achieved where $\mathrm{CH}_{3} \mathrm{OH}$ and CO are converted to $\mathrm{CH}_{3} \mathrm{COOH}$ with no loss of atoms. ${ }^{3}$ In all the synthetic protocols for transition metal complexes, the trend is to be guided by the ' 12 Principles of Green Chemistry', ${ }^{4}$ because of environmental concerns.

The application of organotransition metal complexes as homogeneous catalysts for the synthesis and production of multifunctional, more complex molecules such as agrochemicals and pharmaceuticals is of importance in the field of organometallic chemistry. Areas where the application of homogeneous catalysts has proven fruitful for the synthesis of relatively complex fine chemicals include enantioselective catalysis, $\mathrm{C}-\mathrm{C}$ coupling and carbonylation reactions. Although homogeneous catalysis has the advantage of high reactivity and high selectivity, it has the problem of separation (purity of the products), recovery and regeneration of the catalysts. In small scale synthesis these problems are solved by purification using chromatography accompanied by the loss of the catalyst, but for synthesis of industrial interest the cost of the catalyst materials are of importance. In addition to the separation problems, homogeneous catalysts usually suffer from deactivation, thus there is increasing desire to heterogenise homogeneous catalysts
to improve recovery and recyclability. In this context, the immobilisation of cationic ligands on solid supports with cation exchange sites, amongst other alternatives is an attractive strategy. ${ }^{5}$

1.1 PHOSPHONIUM SALTS

Phosphonium salts can be regarded as derived from the tetrahedral phosphonium $\left(\mathrm{PH}_{4}{ }^{+}\right)$ ion and can be represented as shown in Figure 1.1. The simplest and best established phosphonium salts are the tetraalkylphosphonium halides, $\mathrm{R}_{4} \mathrm{P}^{+} \mathrm{X}^{-}$where $\mathrm{X}=$ halide or another anionic group. These are colourless salt-like solids with fairly high melting points which are soluble in water and stable to oxidation.

Figure 1.1 Phosphonium ion, where $\mathrm{R}, \mathrm{R}^{\prime}, \mathrm{R}^{\prime \prime}, \mathrm{R}^{\prime \prime \prime}=$ halogen, alkyl, aryl, H , etc.

Several methods of preparing phosphonium salts are known, ${ }^{6}$ for example phosphonium salts can be prepared from tertiary phosphines by reacting with the appropriate organic halide under anhydrous conditions (Equation 1.1). ${ }^{6}$

$$
\mathrm{MeI}+\mathrm{Me}_{3} \mathrm{P} \longrightarrow\left[\mathrm{Me}_{4} \mathrm{P}^{+} \Gamma\right.
$$

Equation 1.1.

Recently Rao et al. ${ }^{7}$ have found a general method of preparing 2-(N-disubstituted amino)ethyltriphenyphosphonium bromides by reacting $\left[\mathrm{MeOCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{3}\right] \mathrm{Br}$ with secondary amines ($\mathrm{R}_{2} \mathrm{NH}$) under aqueous conditions.

Uziel et al. ${ }^{8}$ have found a short and convenient "one pot" procedure to prepare chiral and achiral phosphonium salts from the relatively easily handled phosphine borane adducts. This involves reacting phosphine borane adduct with an alkyl (or aryl) halide in the presence of an olefin under mild conditions (Equation 1.2). This is a decomplexationquaternisation reaction that proceeds with retention of configuration at the P centre. This
is an alternative protocol for the synthesis of optically active quaternary phosphonium salts usually prepared by resolution of the racemic form.

Where $\mathrm{R}^{1}, \mathrm{R}^{2}, \mathrm{R}^{3}, \mathrm{R}^{4}=$ alkyl, aryl

Equation 1.2

Phosphonium salts show a much wider range of reactions than the corresponding tetraalkylammonium salts. This might be attributed to the larger size of the phosphorus atom, compared to the nitrogen, and the participation of d-orbitals or σ^{*} orbitals in the bonding to phosphorus. ${ }^{6,9}$

With alkalis, phosphonium halides are first converted to hydroxides which then undergo hydrolysis to phosphine oxide and hydrocarbon (Equation 1.3). ${ }^{6}$

$$
\left[\mathrm{Et}_{4} \mathrm{P}\right]^{+} \mathrm{I}^{-}+\mathrm{NaOH} \longrightarrow\left[\mathrm{Et}_{3} \mathrm{PO}+\mathrm{EtH}+\mathrm{NaI}\right.
$$

Acylphosphonium salts are hydrolysed to phosphine oxides and aldehydes (Equation 1.4), ${ }^{6}$ while tetrakis(hydroxymethyl)phosphonium chloride (THPC) gives tris(hydroxymethyl)phosphine oxide and hydrogen (Equations 1.5). ${ }^{6}$

$$
\left[\mathrm{R}_{3} \mathrm{PC}(\mathrm{O}) \mathrm{R}\right] \mathrm{X}+\mathrm{NaOH} \longrightarrow \mathrm{R}_{3} \mathrm{PO}+\mathrm{RCHO}+\mathrm{NaX}
$$

Equation 1.4

$$
\left[\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{4}\right] \mathrm{Cl}+\mathrm{NaOH} \longrightarrow\left(\mathrm{HOCH}_{2}\right)_{3} \mathrm{PO}+\mathrm{H}_{2}+\mathrm{HCHO}+\mathrm{NaCl}
$$

Equation 1.5
Phosphonium salts are usually stable to oxidation, but can be reduced electrolytically or by lithium aluminium hydride to phosphines. Alkyl phosphonium halides are
decomposed on strong heating to give tertiary phosphines, while phosphonium hydroxides easily give phosphine oxide and hydrocarbon. ${ }^{6}$

Double decomposition or metathesis reactions can be used to change the anion of phosphonium salts if one of the products is insoluble in a second solvent (Equation 1.6). ${ }^{6}$

$$
\left[\mathrm{PPh}_{4}\right] \mathrm{Cl}+\mathrm{KNO}_{3} \longrightarrow \mathrm{KCl}+\left[\mathrm{PPh}_{4}\right] \mathrm{NO}_{3}
$$

Equation 1.6
The hydroxyl groups in phosphonium salts can be removed by condensation reactions leading to other useful products (Equation 1.7). ${ }^{6}$

$$
\left[\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{4}\right] \mathrm{Cl}+4 \mathrm{RNH}_{2} \longrightarrow\left[\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{NHR}\right)_{4}\right] \mathrm{Cl}+4 \mathrm{H}_{2} \mathrm{O}
$$

Equation 1.7
For example Frank et al. ${ }^{10}$ reported the reaction of THPC with aniline which gave a welldefined crystalline phosphonium salt as an aniline derivative of THPC which subsequently reacts with $\mathrm{Et}_{3} \mathrm{~N}$ or NH_{3} to give potential phosphorus(III) ligands as shown in Scheme 1.1. Aniline reacts readily with THPC in ethanol at room temperature, displacing all four hydroxyl groups to form $\left[\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{NHPh}\right)_{4}\right] \mathrm{Cl}$.

Scheme 1.1

When NH_{3} was bubbled into a slurry of $\left[\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{NHPh}\right)_{4}\right] \mathrm{Cl}$ in acetone, ammonium chloride was formed as a finely divided white precipitate. The ammonium chloride was filtered off and the resulting pale yellow oil on work-up gave a white crystalline solid, $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{NHPh}\right)_{3}$.

When stirred with a slight excess of triethylamine for 1 h at room temperature, $\left[\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{NHPh}\right)_{4}\right] \mathrm{Cl}$ gave triethylamine hydrochloride as a solid which was filtered off. The filtrate was concentrated under reduced pressure and upon stiring with absolute ethanol gave a white crystalline solid cyclo- $\left\{\mathrm{CH}_{2} \mathrm{~N}(\mathrm{Ph}) \mathrm{CH}_{2} \mathrm{~N}(\mathrm{Ph}) \mathrm{CH}_{2}-\mathrm{P}\right\}-\mathrm{CH}_{2} \mathrm{~N}(\mathrm{H}) \mathrm{Ph}$. The product contains a diazaphosphorinane ring (six-membered $\mathrm{P}-\mathrm{C}-\mathrm{N}-\mathrm{C}-\mathrm{N}-\mathrm{C}$ ring) and an aminomethyl group evidently formed by displacement of aniline and HCl from $\left[\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{NHPh}\right)_{4}\right] \mathrm{Cl}$, perhaps via an intramolecular mechanism shown in Scheme 1.2. ${ }^{10}$ This is a useful reaction for the synthesis of cyclic phosphorus(III) ligands as will be indicated in Chapters Two and Three.

Scheme 1.2

Apart from the formation of a diazaphosphorinane ring, $\left[\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{NHPh}\right)_{4}\right] \mathrm{Cl}$ has been reported to form a novel biphosphetidine, 1 consisting of two four-membered $\mathrm{P}-\mathrm{C}-\mathrm{N}-\mathrm{C}$ rings linked together through a P-P bond by disproportionation in ethanol. ${ }^{11}$

1

The transformation of cyclo- $\left\{\mathrm{CH}_{2} \mathrm{~N}(\mathrm{R}) \mathrm{CH}_{2} \mathrm{~N}(\mathrm{R}) \mathrm{CH}_{2}-\mathrm{P}\right\}-\mathrm{CH}_{2} \mathrm{~N}(\mathrm{H}) \mathrm{R}, \mathrm{R}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}$, which is an analogue of cyclo- $\left\{\mathrm{CH}_{2} \mathrm{~N}(\mathrm{Ph}) \mathrm{CH}_{2} \mathrm{~N}(\mathrm{Ph}) \mathrm{CH}_{2}-\mathrm{P}\right\}-\mathrm{CH}_{2} \mathrm{~N}(\mathrm{H}) \mathrm{Ph}$ mentioned previously, by electrochemical oxidation at a mercury electrode into a new diphosphine ligand and its coordination chemistry with $\mathrm{Pt}(\mathrm{II}), \mathrm{Pd}(\mathrm{II})$ and $\mathrm{Hg}(\mathrm{II})$ have been reported (Equations 1.8 a and 1.8 b). ${ }^{12}$

Equation 1.8a

Where $\mathrm{R}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}$
4

Equation 1.8 b

Similarly, the transformation of cyclo- $\left\{\mathrm{CH}_{2} \mathrm{~N}(\mathrm{R}) \mathrm{CH}_{2} \mathrm{~N}(\mathrm{R}) \mathrm{CH}_{2}-\mathrm{P}\right\}-\mathrm{CH}_{2} \mathrm{~N}(\mathrm{H}) \mathrm{R}, \mathrm{R}=4-$ $\mathrm{MeC}_{6} \mathrm{H}_{4}$ by electrochemical oxidation at a glassy carbon electrode, resulted in the new unusual organophosphorus compounds 5 and 6 (Equation 1.9). ${ }^{13}$

Equation 1.9

Compound 6 has been shown to have a carbocation between the two N atoms in the ring. ${ }^{13}$ Reaction of 6 with $\mathrm{PtCl}_{2}(\mathrm{COD})$ gave a complex 7 , incorporating a new sixmembered diphosphine ligand (Equation1.10). ${ }^{13}$

Equation 1.10

The synthesis of new cyclic phosphorus(III) ligands from THPC and their coordinaion chemistry are discussed in Chapters Two and Three.

Phosphonium halides can be reduced to phosphines by some metals and metal phosphides (Equations 1.11 and 1.12), ${ }^{6}$ and phosphoranes can be formed when some aromatic phosphonium salts react with organometallic compounds (Equation 1.13), ${ }^{6}$ while others may form ylides (Equation 1.14). ${ }^{6}$

$$
\begin{aligned}
& {\left[\mathrm{PR}_{4}\right] \mathrm{X}+2 \mathrm{Na} } \longrightarrow \mathrm{R}_{3} \mathrm{P}+\mathrm{RNa}+\mathrm{NaX} \\
& {\left[\mathrm{PPh}_{4}\right] \mathrm{Cl}+\mathrm{Ph}_{2} \mathrm{PNa} \xrightarrow{\text { Equation } 1.11} } \\
& 2 \mathrm{Ph}_{3} \mathrm{P}+\mathrm{NaCl}
\end{aligned}
$$

Equation 1.12
$\left[\mathrm{PPh}_{4}\right] \mathrm{Cl}+\mathrm{PhLi} \longrightarrow \mathrm{PPh}_{5}+\mathrm{LiCl}$
Equation 1.13

$$
\left[\mathrm{Ph}_{3} \mathrm{PMe}\right] \mathrm{Br}+\mathrm{MeLi} \longrightarrow \mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}+\mathrm{LiBr}+\mathrm{CH}_{4}
$$

Equation 1.14

Phosphonium salts are useful as a source of ylides for the synthesis of alkenes, ${ }^{6}$ they are also precursors for the synthesis of phosphines. Reduction of phosphonium salts is one of the methods used in the preparation of phosphines. The use of simple palladium salts such as PdCl_{2} or $\mathrm{Pd}(\mathrm{OAc})_{2}$ in the presence of tetraphenylphosphonium salts, $\left[\mathrm{Ph}_{4} \mathrm{P}\right] \mathrm{X},(\mathrm{X}$
$=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ as a new catalyst system for the Heck reaction of unreactive aryl halides has been reported. This resulted in unexpectedly high catalytic activities. ${ }^{14}$ Similarly, Teiwari et al. ${ }^{15}$ have reported a novel catalytic system using alkyl-di-(1-adamantyl)phosphonium salts as practical ligand precursors for the palladium-catalysed amination ($\mathrm{C}-\mathrm{N}$ bond formation) of aryl chlorides. For example, these salts can be prepared via alkylation of di-(1-adamantyl)phosphines (Figure 1.2) with alkyl or benzyl halides.

$$
\begin{aligned}
& \mathrm{R}=n \text {-butyl, } 8 ; \mathrm{R}=i \text {-butyl, } 9 \\
& \mathrm{R}=\text { methyl, } 10 ; \mathrm{R}=\text { allyl, } 11 ; \\
& \mathrm{R}=2 \text {-methoxyethyl, } 12 ; \mathrm{R}=\text { benzyl, } 13
\end{aligned}
$$

Figure 1.2 Selected examples of alkyl-di-(1-adamantyl)phosphines.

Phosphonium salts are also now being used as ionic liquids, ${ }^{16}$ although tetraalkylphosphonium salts have long been used as phase transfer catalysts. ${ }^{17}$ One of the most important benefits of using an ionic liquid in catalysis as solvents is that it allows recyclable use of the catalyst. Karodia et al. ${ }^{18}$ have investigated the application of phosphonium tosylates as ionic solvents for Diels-Alder reactions, whilst Gerristsma et al. ${ }^{19}$ have shown that judicious choice of phosphonium salt ionic liquids provide an economical recyclable media for the Heck reaction. This class of ionic solvent has been successfully utilised in catalytic hydroformylation reactions ${ }^{20}$ and hydrogen transfer reactions ${ }^{21}$ as well as co-catalyst for the Baylis-Hillman reaction. ${ }^{22}$ Phosphonium salts are also useful as insecticides and fungicides. ${ }^{6}$ Phosphonium salts also find use as anti-static ${ }^{6}$ and softening agents for textiles, as corrosion inhibitors ${ }^{6}$ and as photographic chemicals. ${ }^{6}$ The use of tetraarylphosphonium salts as soluble supports for the synthesis of small molecules has also been reported. ${ }^{23}$ The use of the commercially available THPC and the analogous THPS, $\left[P\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{4}\right]_{2} \mathrm{SO}_{4}$ and related compounds as flame retardants is also well known. ${ }^{6}$

It has been established that phosphonium salts of double long-chain type exhibit superior antibacterial activity to their quaternary ammonium analogues. ${ }^{24}$ They are thus excellent
cationic biocides. This might be due to the fact that the phosphorus cations have strong interaction and high affinity with bacteria, since there are many phosphoric acid derivatives present in tissues such as the cytoplasmic membrane of bacterial cells. In the past few years, many cationic phosphonium salts have been synthesised and shown to possess anticancer activity, but the mechanism in the anticancer process has remained unclear. ${ }^{25-28}$ Recently, Xie et al. ${ }^{25}$ have synthesised hexadecyltriphenylphosphonium bromide and demonstrated that it is an anticancer therapeutic reagent and the anticancer activity is related to its interaction with DNA.

Another area where phosphonium salts have been put to use is organocatalysis. Organocatalysis is currently being vigorously pursued because of its attractive features such as metal-free conditions, experimental simplicity and the ease by which organocatalysts can be recovered. Wang et al. ${ }^{29}$ have demonstrated that benzyltriphenylphosphonium chloride is a highly effective organocatalyst to promote the cyanosilylation of a wide variety of unconjugated and conjugated, acylic and cyclic ketones. This protocol not only presents a new organocatalytic synthesis of cyanohydrin silyl ethers, but also adds a synthetically useful entry into the catalysis with phosphonium salts.

Phosphonium salts have also been used as chemosensors. ${ }^{30,31}$ A ditriphenylphosphonium calix[4]arene derivative has been demonstrated as a novel receptor for anions by anion complexation. ${ }^{30}$ Similarly, Yeo et al. ${ }^{31}$ have synthesised a novel phosphonium derivative of naphthalene by the reaction of 1,8 -dibromomethylnaphthalene with triphenylphosphine which showed a distinct colour change when treated with fluoride ions. Receptor compounds for fluoride ions are known but reports on selective naked eye chemosensors for fluoride ions are scarce. This is the first report of a colorimetric chemosensor based on phosphonium ions.

1.1.1 TETRAKIS(HYDROXYMETHYL)PHOSPHONIUM CHLORIDE

Tetrakis(hydroxymethyl)phosphonium chloride (THPC), Figure 1.3, is a white crystalline phosphonium salt, usually marketed in concentrated aqueous solutions at approximately 80% by weight.

14
Figure 1.3 Tetrakis(hydroxymethyl)phosphonium chloride (THPC).

It has a relative molecular weight of 190.56 and the molecular formula is $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{PCl}$. It is hygroscopic and a useful material for making important organophosphorus compounds such as $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}$, tris(hydroxymethyl)phosphine, (THP). ${ }^{32}$

THPC is made by reacting phosphine, formaldehyde and hydrogen chloride (Equation 1.15).

$$
\mathrm{PH}_{3}+4 \mathrm{HCHO}+\mathrm{HCl} \longrightarrow\left[\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{4}\right] \mathrm{Cl}
$$

Equation 1.15
Without hydrogen chloride, the water soluble phosphine, THP is formed (Equation 1.16).

$$
\mathrm{PH}_{3}+3 \mathrm{HCHO} \longrightarrow \mathrm{P}\left(\mathrm{CH}_{2} \mathrm{OH}_{3}\right.
$$

Equation 1.16
THPC is a hydroxyalkyl-containing organophosphorus compound of industrial interest. It is used as a flame retardant, ${ }^{10}$ and bleaching and brightness-stabilising agent for mechanical and chemical pulps. ${ }^{33}$ THPC is a precursor to notable water-soluble phosphine ligands such as THP ${ }^{32,33}$ and 1,3,5-triaza-7-phosphaadamantane (PTA). ${ }^{32,34,35}$

1.1.2 TETRAKIS(HYDROXYMETHYL)PHOSPHONIUM SULFATE

Like the analogous THPC, tetrakis(hydroxymethyl)phosphonium sulfate (THPS) is of industrial significance and marketed in concentrated solutions at approximately 75% by weight and is mainly used as a biocide. The relative molecular mass of THPS is 406.28 and has a chemical formula of $\mathrm{C}_{8} \mathrm{H}_{24} \mathrm{O}_{12} \mathrm{P}_{2} \mathrm{~S}$. THPS is produced by reacting phosphine, formaldehyde and sulfuric acid, (Equation 1.17).

$$
2 \mathrm{PH}_{3}+8 \mathrm{HCHO}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow\left[\mathrm{P}_{4}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{4}\right]_{2} \mathrm{SO}_{4}
$$

Equation 1.17

Jeffery et al. ${ }^{36}$ were able to explain how $\left[\mathrm{P}_{\left.\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{4}\right]_{2} \mathrm{SO}_{4} \text { aids the dissolution of } \mathrm{FeS} \text { by }}\right.$ proposing the self assembly of $\left[\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{4}\right]_{2} \mathrm{SO}_{4}$ and $\left[\mathrm{Fe}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{SO}_{4}\right)_{2}\right]$ in the presence of NaOH , forming a red novel water-soluble iron(II) macrocyclic phosphine complex, $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left\{\mathrm{RP}\left(\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{PR}_{2}\right) \mathrm{CH}_{2}\right)_{2} \mathrm{PR}\right\}\right] \mathrm{SO}_{4}$ as shown in Equation 1.18.

15
Where $\mathrm{R}=\mathrm{CH}_{2} \mathrm{OH}$

Equation 1.18

The crystallographic structure of this complex reveals a cationic octahedral Fe (II) complex with a remarkable tetradentate phosphine ligand in which alternating phosphorus and nitrogen atoms are linked by CH_{2} spacers to form an eight-membered macrocyclic ring which functions as a cis bound tetradentate phosphine donor to iron. The presence of the nitrogen atoms enhances water solubility due to hydrogen-bonding interactions with water.

Whilst the original intention was not to prepare new water-soluble catalysts, the novel tetradentate macrocyclic phosphine ligand has obvious potential in this context because it imposes facial octahedral coordination leaving two cis sites free for potential catalytic transformations. ${ }^{36}$ Thus such complexes are potential water-soluble catalysts and might also be good materials for waste clean-up procedures, since such self assembled ligands strongly bind to transition metals.

1.2 PHOSPHINE LIGANDS

Phosphine ligands have the general formula PR_{3} where $\mathrm{R}=$ alkyl, aryl, H , halide etc. Phosphite ligands are closely related to phosphines and have the general formula $\mathrm{P}(\mathrm{OR})_{3}$. Both phosphines and phosphites are neutral two electron donors. Phosphines are
classified as primary, secondary and tertiary depending on the number of organic groups PR_{3} (tertiary), PHR_{2} (secondary) and $\mathrm{PH}_{2} \mathrm{R}$ (primary).

The chemistry of phosphorus(III) compounds are centred on the lone pair of electrons and its availability for forming new bonds to phosphorus. Structurally, phosphines are different from their nitrogen congeners- the amines. Both phosphines and amines have pyramidal geometry as would be expected, but whereas pyramidal inversion is rapid in amines at room temperature, it is sometimes slow in phosphines, therefore predominantly they have fixed pyramidal structures. ${ }^{6}$

Important methods used in the preparation of phosphines have been given by McAuliffe, ${ }^{37}$ Gilheany and Mitchell ${ }^{38}$ and Quin. ${ }^{39}$ The main methods used are: via organometallic reagents and halophosphines, nucleophilic substitutions using metal phosphides, or reduction of phosphonium salts or tertiary phosphine oxides. The preparation of these ligands usually involve an inert atmosphere as the majority of phosphines are air and moisture sensitive, although some are neither air nor moisture sensitive, hence prepared under aerobic conditions which is an added advantage to be chosen as a potential candidate in coordination chemistry, catalysis, and medical applications. A variety of chiral phosphine transition metal complexes have been synthesised, these phosphine-metal complexes are stereogenic and function as stereospecific catalysts in enantioselective catalysis. ${ }^{40-42}$

1.2.1 METAL COMPLEXES

The bonding in metal complexes basically involves the donation of electron pairs from a ligand to a metal atom or ion to form a coordination compound. Important uses of metal complexes are in the field of catalysis and medicine among others. Phosphorus compounds like the phosphines are among the most useful ligands in the coordination chemistry of metals. When the donor strengths are considered, phosphorus is one of the strongest coordinating atoms and also has multiple coordination numbers (1 to 6) and valencies 3 and 5 hence its coordination patterns with metals can be modified, unlike carbon. Carbon monoxide and cyanide are the strongest but they cannot be modified and so the next strongest modifiable phosphorus ligands become most important. Phosphorus ligands can form strong bonds with transition metals in low oxidation states. This is very useful in the area of catalysis and many metal complexes of phosphorus ligands like the
phosphines are used as catalysts in industry to produce chemicals in a better way. In the coordination to metals, the phosphorus acts as an electron donor to the metal and takes back some of the electrons through a vacant $3 d$-orbital/a σ^{*} orbital involved in the $\mathrm{P}-\mathrm{R}$, bonding of the phosphine ${ }^{1,3.9}$ thereby not leaving too much electron density on the metal which may destabilise the complex. In all these cases, the valency and the coordination number of phosphorus are 3 before coordination and become 4 after coordination.

In metal complexes, the central metal as well as the type of ligand determine the reactivity of the complexes i.e. the ability to react with substrate molecules and eventually the capability to catalyse chemical transformations.

While there are many species that serve as useful homogeneous catalysts (e.g. $\mathrm{H}^{+}, \mathrm{OH}^{-}$, $\mathrm{Al}^{3+} \mathrm{etc}$), complexes of transition metals are the most suited due to the following reasons. ${ }^{1}$ Firstly, various ligands will bind to transition metals; almost any molecule with a lone pair of electrons can coordinate to a specific centre as ligands; upon coordination the reactivity of the functional groups may change dramatically. Ligands may either be directly involved in the catalytic process or indirectly affect catalysis by exerting steric and / or electronic effects on the complex. ${ }^{1}$ Secondly, transition metals have the ability to bind ligands in a number of ways. The availability of d - as well as s - and p-orbitals on the metal allows for the formation of σ and π bonds from metal to ligands. ${ }^{1}$ Carbonyl ligands attach to a metal in a terminal or bridging bonding mode. Groups such as methyl or hydride may be considered to be anionic, neutral (radical), or cationic depending on the electron density of the metal. The strength of metal-ligand bonds is moderate (126-335. $\mathrm{kJ} / \mathrm{mole}$), allowing bonds to form or break relatively easily. This is a requirement for the catalytic cycle to proceed. ${ }^{1}$ Thirdly, transition metals have a variety of oxidation states. When ligands are added to or removed from the metal by oxidative addition and reductive elimination processes, the oxidation state of the metal changes. The d-valence electrons of these metals usually have a rather large number of oxidation states available as compared to main group metals. ${ }^{1}$ The elements in Groups 9 and 10 especially possess a tendency to form rapid, reversible two-electron change (such as from 18 electron to 16 electron and vice versa), hence are often involved in homogeneous catalysis. ${ }^{1}$ Other important characteristics of transition metal complexes include the exhibition of several different geometries, depending on the coordination number. Geometries such as squareplanar, octahedral, tetrahedral, square pyramidal and trigonal bipyramidal are common in
transition metal complexes. Knowledge of the behaviour of ligands attached to metals in these geometries is very useful. For example in square planar complexes, a ligand trans to another may cause the latter ligand to be quite labile and thus easily dissociates from the metal. If loss of the latter ligand is a requirement for effective catalysis, it is desirable to design the catalytic cycle in such a way that a square-planar complex is one of the intermediates along the path to the product and to have the directing group with high trans effect positioned trans to the leaving group. ${ }^{1}$ Another example might involve a process where a key step is the reductive elimination of two ligands. Reductive elimination requires the two leaving groups to be cis with respect to each other before reaction may occur. The catalysis will be successful in this case if an intermediate forms such that the two leaving groups are cis. Transition metal complexes are also unique because, with their well-defined geometries, they serve as "templates" for the occurrence of reliable stereospecific or-stereoselective ligand interaction. ${ }^{1}$ It is known that alkyl migration to a carbonyl group occurs with retention of configuration and that reductive elimination involves retention of configuration in the two leaving groups.Thus transition metal complexes mimic the stereospecific reactions often catalysed by enzymes. Finally, transition metal complexes possess the "correct" stability. ${ }^{1}$ By varying metal and ligands, transition metal complexes are readily available to serve as intermediates that are not too unreactive. In order for a catalytic turn over to occur, each intermediate in the cycle must be reactive enough to proceed to the next stage, yet not so reactive that other pathways e.g. decomposition or a different bonding mode, become feasible. Thus transition metal complexes are versatile as catalysts. ${ }^{1,40}$

Phosphines are among the most common ancillary ligands used in organometallic chemistry, owing to their ability to stabilise low valent metal oxidation states as well as their capacity to influence both steric and electronic properties of catalytic species. One major advantage of using phosphines as ligands is that they can be easily modified by changing the organic substituents, thus allowing the fine-tuning of the electronic and steric properties of the metal complexes. ${ }^{34}$ This is very important in homogeneous catalysis in order to change the activity or selectivity of the catalyst. In addition to these advantages, in homogeneous catalysis where product separation is a problem, solubility in water can be added by modifying the phosphine structure when polar substituents such as hydroxyl or amino functionalities or ionic groups such as sulfonate, carboxylate,
ammonium, etc. are introduced. Such water-soluble phosphines are useful in homogeneous aqueous biphasic catalysis.

The bonding of phosphine ligands, like that of carbonyls comprises of two important components. The primary component is σ-donation of the phosphine lone pair to an empty orbital on the metal. The second component is back donation from a filled metal orbital to an empty orbital on the phosphine ligand (Figure 1.4). There are alternative views regarding the nature of the back-bonding interaction in metal phosphine complexes. The classical back-bonding model is that the empty phosphorus d-orbitals are available for overlap with suitable filled metal orbitals (Figure 1.4a). This is to complement the σ-bond resulting from the donation of an electron pair from phosphorus to the metal. A more recent model invokes back-bonding from the metal d orbitals into the $\mathrm{P}-\mathrm{R} \sigma^{*}$ orbitals (the antibonding orbitals associated with the $\mathrm{P}-\mathrm{R} \sigma$-bonds) as shown in Figure 1.4b. The recent model is preferred because the energy of a σ^{*}-orbital is lower than that of a phosphorus d-orbital. ${ }^{1,3,9}$

Figure 1.4 Types of back-bonding in metal phosphine complexes.

As electron-withdrawing (electronegative) groups are placed on the phosphorus atom, the σ-donating capacity of the phosphine ligand tends to decrease. At the same time, the energy of the π-acceptor on phosphorus is lowered, providing an increase in back bonding ability. Therefore phosphines can exhibit a wide range of σ-donor and π acceptor capabilities, and the electronic properties of a metal centre can be tuned by the substitution of electronically different but isosteric phosphines. A rough ordering of the σ-donating and π-accepting capabilities of phosphines can be accomplished by synthesising a series of complexes in which the only difference is the nature of the phosphine ligand. If these complexes contain a carbonyl (CO) ligand trans to the
phosphines, then the carbonyl (CO) stretching frequency can be used as an indicator of electron density at the metal because the $\mathrm{M} \rightarrow \mathrm{CO}$ back donation is affected (the lower the value of the CO stretching frequency, the greater the σ-bonding to the metal and thus the higher the electron density at the metal). Experiments such as this give the following empirical ordering: ${ }^{3}$

$$
\begin{gathered}
\mathrm{PMe}_{3} \approx \mathrm{P}\left(\mathrm{NR}_{2}\right)_{3}<\mathrm{PPh}_{3}<\mathrm{P}\left(\mathrm{OMe}_{3}\right)<\mathrm{P}\left(\mathrm{OPh}_{3}\right)<\mathrm{PCl}_{3}<\mathrm{CO} \approx \mathrm{PF}_{3} \\
\text { Greater } \pi \text {-acidity } \rightarrow \\
\leftarrow \text { Greater } \sigma \text {-donation }
\end{gathered}
$$

An additional factor that is very important in phosphine chemistry is the amount of space occupied by the R group when bonded to a metal. This factor is important in a variety of contexts; for example, the rate at which phosphine dissociates from a metal is related to the amount of space occupied by the phosphine and the resultant crowding around the metal. To describe the steric effects of phosphines and other ligands, Tolman has defind the cone angle as the apex angle, θ of a cone that encompasses the van der Waals radii of the outermost atoms of a ligand when bonded to a metal. ${ }^{43}$ As might be expected, the presence of bulky ligands can lead to more rapid ligand dissociation as a consequence of crowding around the metal.

As mentioned earlier, an important aspect of organometallic chemistry involves varying the steric and electronic nature of the ligand environment of a complex to promote whatever properties are desired: activity or selectivity in homogeneous catalysis, reversible binding of a ligand, facile decomposition or high stability. A key feature of the PR_{3} series of ligands is that electronic effects can be changed without changing steric effects e.g. by moving from $\mathrm{P}^{t} \mathrm{Bu}_{3}$ to $\mathrm{P}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}$ or change steric effects without changing electronic effects $e . g$. by moving from PMe_{3} to $\mathrm{P}(o \text {-tolyl })_{3}$. One result of increasing the ligand electron donor strength for example might be to perturb an oxidative addition/reductive elimination in favour of the oxidative addition product, ${ }^{44}$ likewise increasing the steric bulk is expected to favour low coordination number species. ${ }^{45}$ The chemistry of a phosphine-containing complex is therefore expected to change with the position of the phosphine in the Tolman map. ${ }^{43}$ Other types of ligand have similar possibilities but the situation is best defined for PR_{3}.

Phosphines are widely used as ligands for transition metals. They promote the solubility of metal complexes in a wide range of organic media. The majority of phosphines are insoluble in water; though water-soluble phosphines such as the sulfonated phenylphosphines and pyridylphosphines are known. ${ }^{46-48}$ The property of phosphines to stabilise low oxidation states of metal atoms provides compounds that are useful in homogenous catalysis. Asymmetric or chiral phosphines are designed for stereoselective catalytic reactions. ${ }^{3,40-42}$ The Heck reaction, Suzuki, Stille, and Sonogashira are examples of coupling reactions that use phosphine metal complexes as catalysts. ${ }^{3}$ Phosphine metal complexes are also useful as catalysts in hydroformylation, ${ }^{47-49}$ hydrogenation and hydrocyanation ${ }^{50}$ reactions.

Apart from catalysis, metal complexes have also been evaluated extensively for their medicinal properties. ${ }^{51}$ Although most new drugs are carbon-based compounds, there is an increasing realisation and understanding of how metal ions are involved in many natural biological processes and some diseases indicate that metal ions have new roles in therapeutic strategies. ${ }^{2.52}$ Metal complexes have a wide range of coordination numbers, coordination geometries, thermodynamic and kinetic preferences for ligand atoms and redox activity in some cases. These offer novel mechanisms that are not available to organic compounds. Generally, the nature of the metal ion, its oxidation state and the number and type of bound ligands can all exert a critical influence on the biological activity of a metal complex. An understanding of how these factors affect biological activity is important in the design of metal complexes with specific medicinal properties. For instance the cis and trans isomers of the diaminedichloroplatinum(II) complex, $\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}$ has contrasting biological activities; the cis isomer (cisplatin) is an anticancer drug, while the trans isomer (transplatin) is inactive against cancer.

Whilst phosphine ligands and their complexes have been studied for many years, there is now an increase in activity to find improvements in ligand design not only for homogeneous catalysis but for site-specific drug delivery. Presently, complexes bearing phosphine ligands are not only candidates for pharmaceutical application, but watersoluble phosphines with potential for stabilising pharmaceutical and radiopharmaceutical complexes in vivo with links to targeting biomolecules as diagnostic agents are also under intense study. For example there is considerable interest in the caged, aliphatic tertiary phosphine, 1,3,5-triaza-7-phosphaadamantane (PTA) which has many desirable qualities
including water solubility, ${ }^{53}$ in the preparation of metallopharmaceuticals. Ruthenium(II) arene compounds with PTA ligands (RAPTA) have been shown to exhibit a pH dependent activity, which is conducive to providing excellent pharmacological properties ${ }^{51}$ and have been found to exhibit superior anticancer properties compared to the ubiquitous anticancer platinum drugs. ${ }^{54}$ In the area of radiopharmaceuticals, bidentate water-soluble phosphines form stable ${ }^{99 \mathrm{~m}} \mathrm{Tc}$ complexes in both biological liquids and targeted tissues. Examples of such radiopharmaceuticals include the commercial drugs ${ }^{99 \mathrm{~m}} \mathrm{Tc}$-fosfim ${ }^{\circledR}$ and ${ }^{99 \mathrm{~m}} \mathrm{Tc}$-furifosfim ${ }^{\circledR}$ used for myocardial perfusions. ${ }^{34}$

1.2.2 PHOSPHORINANES

The usefulness of organophosphorus compounds has led to the synthesis of many ring compounds containing phosphorus and carbon. ${ }^{6}$ These simulate the well established ring systems, both homocyclic and heterocyclic which are based on carbon, the P-C bond strength confers on them a comparable level of stability. ${ }^{6}$ The known ring systems based on saturated carbon and a single phosphorus atom includes the $3-, 4-, 5-, 6-, 7-, 8$ membered ring compounds named phosphirane, phosphetane, phospholane, phosphorinane, phosphepane, and phosphocaine respectively (Figure 1.5). ${ }^{6}$ Not all phosphorus containing analogues have yet been synthesised, and in many instances only derivatives rather than the parent compounds are known. ${ }^{6}$

Figure 1.5 Ring compounds with phosphorus and saturated carbon.

Phosphorinanes are known to exist in the chair form. ${ }^{6}$ Thus axial or equatorial isomers are possible. Crystallography has confirmed that in several derivatives, the rings are chair-shaped with the exocyclic group attached to phosphorus in the axial position (Figure 1.6). ${ }^{6}$

Figure 1.6 Phenylphosphorinane, 16

These compounds are cyclic tertiary phosphines and several methods of preparation leading to important derivatised phosphorinanes are known. ${ }^{6}$ For example, phenylphosphorinane can be made by direct reaction of phenyldilithiophosphine with 1,5-dibromopentane in tetrahydrofuran (THF) or by the action of ultra-violet (uv) radiation on 4-pentenylphenylphosphine (Scheme 1.3). Further derivatisation is achieved when 16 reacts with sulfur in boiling benzene to give the sulfide (17) and with methyl iodide to give the phosphonium salt (18) as shown in Scheme 1.3.

Scheme 1.3.
The development of phosphorinanes as ligands and reagents started recently ${ }^{55}$ with the synthesis of some phosphorinane-borane complexes by McNulty et al. ${ }^{56}$ In the derivatised phosphorinanes where the exocyclic group as in compound 16 is an aryl, a trialkylphosphine ligand is formed. Brenstrum et al. ${ }^{55}$ have demonstrated that such phosphorinanes as a family of trialkylphosphines are suitable ligands for organopalladium chemistry and are comparable in efficacy to other popular ligands such as $\mathrm{P}^{t} \mathrm{Bu}_{3}$. They highlighted the ease of generation, economic considerations in the synthesis, and structural modification possibilities all favour the phosphorinanes being regarded as suitable organopalladium cross-coupling ligands. Furthermore, the preparative route where the intermediate phosphorinones allow entry to P-protected 4-
hydroxyphosphorinanes, ${ }^{56}$ through hydride reduction, provides structural features that could be used in the immobilisation onto a solid support. ${ }^{57,58}$

1.2.3 AMINOPHOSPHINES

Aminophosphines are tertiary phosphines with phosphorus and amino donor sites they are potential ligands for the formation of polynuclear or heterobimetallic metal clusters or organised assemblies because of the multiple P and N donor sites. They form triangular complexes which are of current interest ${ }^{59}$ both for their potential in new stoichiometric and catalytic transformations, due to the ability of adjacent metals to cooperatively ${ }^{60}$ activate substrates ${ }^{61}$ and their physical properties such as luminescence, ${ }^{62}$ magnetic spinfrustration ${ }^{63-67}$ and spin-mediated superconductivity. ${ }^{68}$ Such cluster compounds are of immense importance in biological systems where clusters of metals can assist in the transfer of electrons ${ }^{69}$ to activate relatively inert substrates. ${ }^{70}$

Unfortunately, the design of ligands that can support clusters or assemblies of metals with a variety of transition metals is rarely straightforward. Be this as it may, various workers, ${ }^{59,71-73}$ have synthesised aminophosphines of the type $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{NHAr}^{\mathrm{R}}\right)_{3}$, where Ar^{R} is an aryl substituent. ${ }^{59}$ These ligands can simultaneously bind to two metal centres on losing the amino H atoms forming an amido complex. The binding mode of $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{NAr}^{\mathrm{R}}\right)_{3}$ to two metal centres (M and M^{\prime}) is illustrated in Figure 1.7.

Figure 1.7 Potential bonding mode of $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{NAr}^{\mathrm{R}}\right)_{3}$ to two metal centres.

Keen et al. ${ }^{72}$ synthesised one such ligand by using compounds hitherto tested as flame retardants ${ }^{10}$ as ligand precursors. Tris(hydroxymethyl)phosphine, $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}$ was reacted with an excess of 3,5-bis(trifluoromethyl)aniline in toluene forming $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{NHAr}^{\mathrm{R}}\right)_{3}$ where R is CF_{3}, in excellent yield. These ligands on losing the amino H atoms can adopt a conformation where the phosphine and amido lone pairs are arranged approximately parallel and are incapable of all coordinating to the same metal; such a
bonding mode was observed in a nonanuclear $\mathrm{Cu}(\mathrm{I})$ amido complex. ${ }^{72}$ With a high-oxidation-state transition metal, all the amido donors coordinate to the metal. ${ }^{74-76}$ In such a bonding mode, the phosphine ligand cannot bind its lone pair to the metal, coordinated to the amido donors, but is available to coordinate to a second metal. These ligands are thus well suited for the facile synthesis of transition metal heterobimetallic complexes, providing that there is interaction between the two metal centres. Hatnean et al. ${ }^{71}$ have also shown that triamidophosphine ligands readily assemble trinuclear clusters with divalent Mn and Mg. However, when used with trivalent or higher oxidation state metal centres with three labile ligand sites; these ligands have a tendency to coordinate all three amido donors to a single metal ${ }^{73}$ which does not allow for the assembly of complexes with multiple adjacent metal centres. This is shown as complex A in Figure 1.8, while the use of diamidoselenophosphinito ancillary ligand favours the formation of triangular complexes with aluminium as shown in complex B in Figure 1.8 and Scheme 1.4. ${ }^{59}$

(A)

(B)

Figure 1.8 Potential bonding modes of the formally trianionic ligands $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{NAr}^{\mathrm{R}}\right)_{3}$ and $\mathrm{Se}=\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{NAr}^{\mathrm{R}}\right)_{2}$ to form metal complexes. ${ }^{59}$

Scheme 1.4

To circumvent the above drawback, Han et al. ${ }^{59}$ investigated selenium donors in polydentate ligand design, because of both the increased polarisability of the heavier chalcogenides, which encourage electronic communication between metal centres, and their propensity to bridge metal centres. Thus these selenium ligands were found to be an improvement on the $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{NHAr}^{\mathrm{R}}\right)_{3}$ ligands for the formation of polynuclear clusters of paramagnetic metals, where strong magnetic coupling between metal centres is desired due to increased polarisability of the selenophosphinito donor relative to amido donors.

1.2.4 WATER-SOLUBLE PHOSPHINES

There is an increased interest in the use of water as a solvent in chemical transformations mainly driven by environmental and economic concerns. The utility of water as a solvent, however requires the development of new catalysts or reagents that are stable and soluble in water. ${ }^{77,78}$

Grafting of highly polar functional groups such as $-\mathrm{SO}_{3}{ }^{-},-\mathrm{CO}_{2}{ }^{-},-\mathrm{NR}_{3}{ }^{+},-\mathrm{PR}_{3}{ }^{+},-\mathrm{OH}$, etc. into phosphines brings about the desired solubility. ${ }^{79,80}$ Water-soluble phosphines are used in biphasic catalysis. The most frequently used water-soluble phosphines for catalytic applications are the mono- and trisulfonated triphenylphosphines, TPPMS, TPPTS and the mono and tricarboxylated triphenylphosphines. These ligands have been developed by various workers and put to effective industrial use. For example Kuntz's work on trisulfonated triphenylphosphine (TPPTS), ${ }^{81}$ eventually led to the famous Ruhrchemie's commercially successful oxo process.

Figure 1.9 Mono- and trisulfonated triphenylphosphines

$$
\left(\mathrm{R}=\mathrm{H}, \mathrm{TPPMS} ; \mathrm{R}=\mathrm{SO}_{3}^{-}, \mathrm{TPPTS}\right)
$$

The structures of TPPMS and TPPTS are shown in Figure 1.9. Certain features make these ligands attractive for synthesising water-soluble metal catalysts for use in homogeneous catalysis. These include their relatively high solubilities in water as well as amphiphilicity among others. For example TPPTS has a very high solubility in water; $1100 \mathrm{~g} / \mathrm{L}$ compared to its monosulfonated equivalent, TPPMS which has a solubility of $80 \mathrm{~g} / \mathrm{L}$ in water, ${ }^{81}$ and thus gives highly concentrated aqueous solutions. This leads to efficient biphasic catalysis with better phase separation. Secondly the metal complexes of TPPMS, TPPTS and the mono- and tricarboxylated triphenylphoshines are amphiphilic in character due to the presence of hydrophilic sulfonate, carboxylate groups and hydrophobic phenyl groups. This feature allows the complex to transfer readily between the aqueous and organic phases in a biphasic system.

The most important use of water-soluble phosphines is in the area of homogeneous catalysis. Numerous complexes with the metal in low oxidation state widely used in homogeneous catalysis are stabilised by phosphine ligands. The advantages of homogeneous catalysts with respect to reactivity and selectivity are well documented. ${ }^{40}$ However; the problems associated with the separation of the products from the catalyst have frequently presented a major economic barrier to commercial applications. Several methods have been used to overcome this problem, usually by thermal operations ${ }^{82}$ such as distillation, decomposition, etc, which normally lead to thermal stresses on the catalyst. Similarly use of polymer bound catalysts ${ }^{83}$ is prone to polymer degradation and metal leaching.

A good approach to solving this problem is to use water-soluble phosphine ligands that are poorly soluble in the organic media allowing the catalysis to be carried out in a liquidliquid biphasic system. Catalyst recovery is thus easily achieved by decantation and separation of the two phases. Apart from the simple and complete separation of the product from the catalyst, other advantages of aqueous catalysis among others include the economy and the safety of using the environmentally friendly solvent, water. However, comparing biphasic reaction with their monophasic equivalents, reaction rates are lower in the biphasic systems. This is mainly due to the fact that when the catalyst and substrates are in different phases, interaction between the catalyst and the substrates is lower than in a monophasic system, thus reducing the rate of reactions. The use of thermoregulated phase transfer catalysts have been mentioned. ${ }^{84}$ These have an inverse
temperature-dependent solubility in water. For example poly(ethylene oxide) substituted triphenylphosphines (PEOTPPs) combined with the rhodium precursor $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}$ have been tested for the two-phase (water/heptane) hydroformylation of higher olefins such as 1-hexene, 1-octene, 1-decene or 1-dodecene for the thermoregulated phase transfer hydroformylation. ${ }^{84}$ At room temperature, almost all the Rh-PEOTPP catalyst remains in the aqueous phase. On heating to a temperature higher than the cloud point $\left(C_{p t}\right)$, the catalyst precipitates from water and transfers into heptane where it transforms olefins into aldehydes. After hydroformylation is complete and the system is cooled, the catalyst returns to water. Thus, a simple phase separation enables the continuous re-use of the catalyst.

The process of temperature regulated phase transfer catalysis (TRPTC) combines the advantages of both bi- and monophasic catalyses. Furthermore, TRPTC is more 'homogeneous' than aqueous/organic two-phase catalysis, because the substrates and catalyst remain in the same organic phase at the reaction temperature and thus, can provide higher yields than the classical biphasic catalytic reactions.

Apart from the area of catalysis, the hydroxyalkyl containing water-soluble phosphines such as tris(hydroxymethyl)phosphine, THP and related compounds including tetrakis(hydroxymethyl)phosphonium chloride, THPC have attracted much interest in recent times as bleaching agents for pulps ${ }^{33,85,86}$ in the paper industry. They are a new class of bleaching and brightness stabilising agents discovered for mechanical and chemical pulps. ${ }^{33}$ Studies have shown that the related 1,2bis[bis(hydroxymethyl)phosphino] ethane $\left\{\mathrm{BBHPE}\right.$; $\left.\left[\left(\mathrm{HOCH}_{2}\right)_{2} \mathrm{PCH}_{2}\right]_{2}\right\}$ has a higher bleaching activity than, THP. ${ }^{87}$

19

20

21

Methods of preparing hydroxymethylphosphorus compounds abound in the literature, ${ }^{33}$ for example another method by which THP can be made is by the reaction of phosphine $\left(\mathrm{PH}_{3}\right)$ with formaldehyde in the presence of $\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right]$ as catalyst. ${ }^{35}$ New phosphines
$\left(\mathrm{H}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{PH},\left[\mathrm{H}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{P}(\mathrm{H}) \mathrm{CH}_{2}\right]_{2}$, and $\left[\left(\mathrm{H}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{PCH}_{2}\right]_{2}$ (19, 20 and 21 respectively) have been synthesised by hydrophosphination of diethyl vinylphosphonate with $\mathrm{H}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PH}_{2}$ and converted into the related corresponding water-soluble, tri-, tetra- and hexaphosphonium chlorides by incorporation of hydroxymethyl groups at the P atoms. ${ }^{33}$ These are potential bleaching agents like the well known THPC.

Moiseev et al. ${ }^{86}$ have recently investigated the mechanism of the bleaching action of the (hydroxyalkyl)phosphorus compounds, by reacting tris(3-hydroxypropyl)phosphine, $\left[\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OH}\right]_{3} \mathrm{P}$ (THPP), with conjugated carbonyl components of lignin likely involved in the bleaching process using various model aromatic aldehydes, and discovered that THPP reduces aromatic aldehydes (ArCHO) to the corresponding alcohols. THPP is also a bleaching agent for pulps and gives cleaner reactions than THP, which is prone to loss of formaldehyde. ${ }^{85}$

The coordination chemistry of THP, though water-soluble and moderately air stable, has not received much attention. ${ }^{35}$ The coordination chemistry of THP with $\mathrm{Pt}, \mathrm{Pd}, \mathrm{Ni}, \mathrm{Ru}$, Re and Au have been studied extensively but the first complex with Cu was synthesised not too long ago. A copper(I) complex was obtained from the reaction of THP with $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{ClO}_{4}$ in acetonitrile. ${ }^{88}$ Its complexes with $\mathrm{Pt}(\mathrm{II})$ and $\mathrm{Pd}(\mathrm{II})$ are watersoluble but similar to analogous PMe_{3} or PEt_{3} in most respects, whereas its complexes with $\mathrm{Ni}(0), \operatorname{Pd}(0)$ and $\operatorname{Pt}(0)$ have exceptional properties in terms of stability and reactivity. ${ }^{35}$ The use of THP for the removal of trace Ru from polymers synthesised by Grubbs-type carbene catalysts has been mentioned, ${ }^{33}$ and with related compounds are potential powerful metal sequestering agents and will certainly have a rich coordination chemistry.

22

23

24

25

Figure 1.10 Water-soluble THP complexes of rhodium(I). ${ }^{89}$

Four water-soluble Rh^{1}-THP complexes (Figure 1.10) $\mathrm{RhCl}(1,5-\mathrm{COD})(\mathrm{THP})$ (22), $\left[\mathrm{Rh}(1,5-\mathrm{COD})(\mathrm{THP})_{2}\right] \mathrm{Cl}(23), \mathrm{RhCl}(\mathrm{THP})_{4}$ (24) and trans- $\mathrm{RhCl}(\mathrm{CO})(\mathrm{THP})_{2}$ (25) have been synthesised and characterised, the first three are potentially useful entries into Rh(I)THP chemistry while the first and last are the first structurally characterised $\mathrm{Rh}(\mathrm{I}) \mathrm{THP}$ complexes. ${ }^{89}$

Water-soluble phosphines, apart from forming water-soluble transition metal complexes used as catalysts, also form important complexes useful in medicinal chemistry. The clinical usefulness of transition metal complexes binding to DNA as antitumoral drugs has in fact led to a renewed interest in the synthesis of metal complexes that exhibit water solubility and the capacity to link to DNA and other biomolecules due to their potential as anticancer and antimetastasis agents. ${ }^{90}$ For example the water-soluble ruthenium(II) arene PTA complexes are now being considered as an alternative to platinum anticancer drugs due to their high hydrosolubility coupled with reduced toxicity. The low toxicity is due to the ability of ruthenium to mimic iron in binding to DNA, exploiting the mechanisms the body has evolved for the non-toxic transport of iron. ${ }^{90}$.

1.3 1,3,5-TRIAZA-7-PHOSPHAADAMANTANE (PTA) AND RELATED COMPOUNDS

Apart from the popular water-soluble sulfonated analogues of triphenylphosphine $\left(\mathrm{PPh}_{3}\right)$, TPPMS and TPPTS (mentioned in Section 1.2.4), the sulfonated derivatives of bidentate diphosphines and tridentate tripodal as well as cage-like water-soluble phosphines are known. ${ }^{34}$ Examples of cage-like water-soluble phosphines include the Verkade-type bases (Figure 1.11) used in a number of organic reactions. ${ }^{91}$

Figure 1.11 Verkade-type base, $\mathrm{R}=\mathrm{H}$, alkyl, etc.

In 1974, Daigle et al. ${ }^{53}$ synthesised another cage adamantane-like water-soluble phosphine, 1,3,5-triaza-7-phosphaadamantane (PTA), Figure 1.12, for the purpose of
creating flame-proof polymers. ${ }^{34}$ However, with the recent interest in biphasic homogeneous catalysis, PTA and its derivatives have received renewed interest. ${ }^{34}$ In addition to homogeneous catalysis, PTA and its related compounds are also important as co-ligands in biologically active transition metal compounds such as the ruthenium(II) arene complexes due to their cytotoxicity and are excellent ligands for preparing luminescent gold complexes. ${ }^{34}$

26
Figure 1.12 1,3,5-triaza-7-phosphaadamantane (PTA).

The synthesis of PTA involves the condensation of the highly hygroscopic THP as the source of phosphorus with formaldehyde and hexamethylenetetramine, (HMT) or ammonia, ${ }^{34}$ as the source of nitrogen, the final yield being ca. 40%.

$$
\left[\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{4}\right] \mathrm{Cl}+\mathrm{NaOH} \rightarrow \mathrm{P}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{HCHO}+\mathrm{NaCl}
$$

Scheme 1.5

Later research has shown that higher yields are obtained when the THP is generated in situ from the reaction of the commercially available and less expensive THPC with NaOH (Scheme 1.5). ${ }^{32}$

PTA is neither air nor moisture sensitive, hence does not require an inert atmosphere for its synthesis. It is thermally stable, with decomposition temperatures higher than $260{ }^{\circ} \mathrm{C}$. PTA is soluble in water ($\mathrm{S}=1.5 \mathrm{M}, c a .235 \mathrm{~g} / \mathrm{L}$), MeOH and EtOH but less soluble in higher alcohols like 2-propanol and 1-butanol and THF at room temperature. ${ }^{34}$ The solubility of PTA is enhanced in acidic media due to the formation of its protonated species. For example in 0.1 M HCl its solubility is approximately $350 \mathrm{~g} / \mathrm{L}(\mathrm{S}=2.2 \mathrm{M}))^{34}$

It is also soluble in DMSO, acetone, chloroform, dichloromethane, but not soluble in hydrocarbons like heptane, toluene or benzene. ${ }^{34}$

The high solubility of PTA is due to the extensive participation of its three nitrogen atoms in hydrogen bonding interactions with water molecules. ${ }^{53,92}$ The nitrogen atoms with their lone pair of electrons and relatively high electronegativity values (3.0 on the Pauling scale) strategetically placed in the structure interact with the water molecules through intermolecular $\mathrm{N} \cdots \mathrm{H}-\mathrm{O}$ hydrogen bonds. This among other properties has made it a water-soluble ligand amenable for aqueous biphasic catalysis and metal carrier in biological systems. Indeed with respect to other water-soluble phosphines, it has the advantage of air stability and a low steric demand. Furthermore, it binds more strongly to the metal centres than the triphenylsulfonated phosphines mentioned in Section 1.2.4. PTA is a neutral and air-stable molecule which is both sterically (with cone angle $=103^{\circ}$) and electronically comparable with the extremely air sensitive trimethylphosphine. ${ }^{34}$

In terms of reactivity PTA is comparable to other alkylphosphines, with the notable exception that PTA is stable in air, in contrast to PMe_{3} and PEt_{3} which are both known to ignite violently in air. Furthermore, PTA appears to have higher resistance to oxidation than other water-soluble phosphines such as TPPMS and TPPTS. It is also a known fact that it preferentially coordinates metals through the soft phosphorus centre; the harder amine functionalities are the preferred sites of alkylation and protonation, ${ }^{34}$ this can be rationalised using the hard soft acid base (HSAB) theory. ${ }^{93}$

(a) 27
(DAPTA)

(b) $\mathrm{R}=\mathrm{Me}, \mathbf{2 8} ; \mathrm{R}=\mathrm{Et}, \mathbf{2 9}$;
$\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}, 30 ; \mathrm{R}=\left(\mathrm{CH}_{2}\right)_{4} \mathrm{I}, 31$

Figure 1.13 DAPTA and other derivatives of PTA.

In order to enhance water solubility and other desirable properties for catalytic and other uses, PTA has been derivatised by the incorporation of certain functionalities resulting in
the formation of new related compounds. The reaction of PTA with acetic anhydride, ${ }^{94}$ forms 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane (DAPTA) shown in Figure 1.13a. The N-alkylation of PTA using MeI, EtI, $\mathrm{PhCH}_{2} \mathrm{Cl}$ or $\mathrm{I}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{I}$ in acetone or methanol under reflux gives the alkyl salts PTA(R), Figure 1.13 b . These are air-stable and water-soluble but less soluble in organic solvents than PTA due to their ionic character. ${ }^{34}$

Krogstad et al. ${ }^{95}$ have synthesised 1-pyridylmethyl-3,5-diaza-1-azonia-7phosphatricyclo[3.3.1.1]decane bromide [PymePTA]Br and the di-N-formylated analogue of DAPTA, 3,7-diformyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane (DFPTA) by reacting PTA with bromomethylpyridine and formic anhydride respectively. DFPTA is the second acyl derivative of PTA to be synthesised, while [PymePTA]Br is the second derivative of PTA reported that contains an aromatic appendage. These have been fully characterised and their water solubilities explored. ${ }^{95}$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{Me}, \mathrm{X}=\mathrm{I}, 33 ; \\
& \mathrm{R}=\mathrm{Et}, \mathrm{X}=\mathrm{Cl}, 34
\end{aligned}
$$

Figure 1.14 Some PTA derivation reactions.

Note that such PTA transformations lead to $\mathrm{P}(\mathrm{III})$ or $\mathrm{P}(\mathrm{V})$ derivatives which maintain the original phosphaadamantane skeleton as shown in Figure 1.14. ${ }^{34}$

Structural modifications of PTA have so far been focussed on either alkylation at P or N atoms, ${ }^{96-98}$ or opening of the cage to yield potentially bidentate $\mathrm{P}, \mathrm{N}^{99,100}$ or tridentate $\mathrm{P}, \mathrm{N}, \mathrm{N}^{101}$ derivatives of PTA. For example in the comparative structural and reactivity investigation of PTA and its derivative, 2-thia-1,3,5-triaza-7-phosphaadamantane 2,2dioxide $\left(\mathrm{PASO}_{2}\right)$, apart from water-insolubility in the case of PASO_{2}, the most striking differences were the products observed for the alkylation reactions with methyl iodide. While it was generally accepted that PTA is only alkylated at one of its three nitrogen
atoms, PASO_{2} was observed to produce predominantly a phosphonium salt upon alkylation. ${ }^{98}$ Most of these changes especially on the "lower rim" (the triazacyclohexane ring) are relatively far from the coordinating P atom and thus unlikely to impart significant stereoelectronic effects on any coordinated metal centre. ${ }^{102}$ The stereoelectronic effects are often required for chemo- or enantioselective catalytic applications and for fine-tuning of biological effects in the design of water-soluble metalbased drugs. ${ }^{102}$ Therefore, there is an interest in the development of chiral PTA derivatives that are substituted at the methylene groups bridging P and N atoms at the "upper rim" such as 35 .

Figure 1.15 Structure of 35.

Wong et al. ${ }^{103}$ have synthesised the bidentate phosphine, PTA-PPh 2,35 with a binding arm and a chiral centre on the α-carbon to phosphorus (Figure 1.15) by reacting PTA with n-BuLi and CIPPh_{2}. Although 35 , was not soluble in water and its racemic mixture was not resolved, the protocol has opened a method for the synthesis of a new class of chiral PTA-based ligands. Exploiting the protocol, the synthesis of a novel water-soluble ligand with two chiral centres, i.e. phenyl(1,3,5-triaza-7-phosphtricyclo[3.3.1.1 ${ }^{3,7}$]dec-6yl)methanol PZA, 36 together with the corresponding sulfide [PZA(S)], 37 and oxide $[P Z A(O)], 38$ from PTA lithium salt and benzaldehyde has been reported. ${ }^{102}$ In a related development, the synthesis and characterisation of a series of novel water-soluble chiral upper-rim PTA derivatives by the addition of PTA-Li to CO_{2}, ketones and aldehydes has also been reported. ${ }^{104}$

Since its synthesis and characterisation, PTA has been used in a variety of studies, including catalytic biphasic hydrogenation reactions, ${ }^{105,106}$ ligand substitution reactions in metal clusters, ${ }^{107}$ and enzyme mediated oxygen transfer processes. ${ }^{108}$ Among the different PTA transition metal complexes, those of Ru and Rh have attracted a lot of interest as potential catalysts for a variety of processes in aqueous biphasic conditions and have been adjudged superior to other water-soluble transition metal complexes. ${ }^{19}$ Similarly,
the well characterised ruthenium(II) arene PTA complexes (RAPTA) have attracted considerable attention, because of their relatively low toxicity, ${ }^{109}$ and the DNA damaging properties of ($\eta^{6}-p$-cymene) RuCl_{2} (PTA), RAPTA-C, and related analogues have been reported. ${ }^{110}$ RAPTA complexes have been evaluated in vitro and in vivo and have been found to be highly selective towards metastasis. ${ }^{111}$ Dorcier and co-workers ${ }^{51}$ have reported the in vitro evaluation of the rhodium and osmium RAPTA analogues and showed that they are worth considering within the context of organometallic anticancer drugs. ${ }^{51}$ Recently, studies on the reactivity of RAPTA-type complexes of ruthenium, rhodium and osmium towards model DNA bases with a view towards determining their relative and preferential binding modes have also been reported. ${ }^{112}$

1.3.1 COORDINATION CHEMISTRY OF PTA

PTA transition metal complexes are relatively uncommon, when compared to other tertiary phosphines in spite of its synthesis and characterisation being reported more than three decades ago. The coordination chemistry of PTA has undergone a remarkable increase in interest in the past decade. ${ }^{34}$ The renewed interest has been mainly due not only to the successful utilisation of PTA-organometallic compounds as water-soluble catalysts, ${ }^{113-115}$ but also to their use as luminescent complexes ${ }^{116-118}$ and promising anticancer agents. ${ }^{110,119,120}$ Historically, the first PTA metal complex was $\mathrm{Mo}(\mathrm{CO})_{5}(\mathrm{PTA})$. It has formed a good number of transition metal complexes across the periodic table and in all PTA complexes, the adamantane skeleton is maintained. Metals that form PTA complexes include $\mathrm{Au}, \mathrm{Ru}, \mathrm{Pt}, \mathrm{Pd}, \mathrm{Rh}, \mathrm{Ir}$, etc. ${ }^{34}$

Most of the distinctive features of PTA, including its high hydrosolubility and ability to form water-soluble transition metal complexes, derive from its intrinsic tendency to establish hydrogen bonds via the three N-donor atoms residing in the lower rim of the adamantane skeleton. ${ }^{121}$

In almost all the PTA metal complexes, the phosphine acts as a P-donor ligand ${ }^{122}$ (Figure 1.16a). However, the first examples of N-coordinated PTA have been observed in manganese complexes $\mathrm{MnX}_{2}(\mathrm{PTA})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})^{93}$ (Figure 1.16b). Lidrissi et al. ${ }^{122}$ have also reported the organometallic $\mathrm{Ru} / \mathrm{Ag}$ coordination polymers $[\mathrm{CpRu}(\mathrm{L})(\mu-\mathrm{P}, \mathrm{N}-$ PTA $\left.)_{2} \mathrm{AgCl}_{2}\right]_{\mathrm{n}}\left(\mathrm{L}=\mathrm{DMSO}, \mathrm{H}_{2} \mathrm{O}\right)$, these constitute the very first and so far only examples of a PTA complexing with a bridging N, P-coordination mode. In these complexes, the
nitrogen coordination occurs after the metal coordination of the phosphorus (Figure $1.16 \mathrm{c}) .{ }^{122}$ The first example of a complex that contains PTA in a triply bridging $P, N, N^{\prime}-$ coordinate mode by the reaction between PTA and AgNO_{3} in water has also been reported (Figure 1.16 d). ${ }^{123}$

(a)

(b)

(c)

(d)

Figure 1.16 Some PTA bonding modes to metal centres, M.

Such N-bound PTA complexes previously thought to be abnormal could be rationalised in line with the HSAB theory. This theory helps to predict which bonding site on PTA a Lewis acid will preferentially coordinate. For example the very hard manganese(II) centre binds to the hard nitrogen atom in preference to the phosphorus atom. ${ }^{93}$

1.3.2 PTA-RUTHENIUM COMPLEXES

Ruthenium complexes generally are important due to their catalytic and medicinal potential. They are of particular interest for clinical applications as they have similar ligand exchange kinetics as the successful and widely used platinum anticancer drugs. In addition they have low general toxicity, possibly through mimicking iron binding to biological molecules for transport and storage. ${ }^{124}$ While ruthenium(III) compounds have been most widely studied to date, they are believed to be activated by reduction to ruthenium(II) in cancer cells prior to binding DNA. ${ }^{125}$ Apart from applications as anticancer drugs, other medical applications of ruthenium compounds have been explored, including their use as immunosupressants, nitric oxide scavengers and antimicrobial agents. ${ }^{125}$ It has been shown that ruthenium complexes of organic drugs can overcome resistance developed by the microbe to the organic compound alone. For example a ruthenium(II)-chloroquine complex is two to fivefold more active than chloroquine against drug resistant Plasmodium parasites that cause malaria. ${ }^{126}$

The appearance of ruthenium complexes of PTA in the literature is quite recent. The catalytic ability and potential medicinal properties of ruthenium complexes of PTA and
its derivatives have been a key point in the development of PTA coordination chemistry. ${ }^{34}$ The initial work was concentrated on the halogenated complexes; cis$\mathrm{RuCl}_{2}(\mathrm{PTA})_{4}, 39$ and $\mathrm{fac}-\mathrm{RuCl}_{2}(\mathrm{CO})(\mathrm{PTA})_{3}, 40$. Complex 39 was synthesised by either reacting excess PTA with RuCl_{3} in refluxing ethanol, ${ }^{105}$ or reacting aqueous solutions of PTA with toluene solution of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}{ }^{127}$ Complex 39 is insoluble in non-polar organic solvents but soluble in alkaline or neutral aqueous solution. The ligand displacement reaction of cis- $\mathrm{RuCl}_{2}(\mathrm{PTA})_{4}$ with CO forms $\mathrm{RuCl}_{2}(\mathrm{CO})(\mathrm{PTA})_{3}, 40$ as identified by IR spectroscopy $\left[v(C O)=1987 \mathrm{~cm}^{-1}\right] .{ }^{105}$ The protonated analogue $\left[\mathrm{RuCl}_{2}(\mathrm{PTA})_{2}\{\mathrm{PTA}(\mathrm{H})\}_{2}\right] \mathrm{Cl}, 41$ has also been obtained with a small amount of $\mathrm{Ru}(\mathrm{III})$ complex $\left[\mathrm{RuCl}_{4}\{\mathrm{PTA}(\mathrm{H})\}_{2}\right] \mathrm{Cl}, 42$ by the reaction of cis $-\mathrm{RuCl}_{2}(\mathrm{PTA})_{4}$ with aqueous HCl solution. The iodo-methylated complexes trans- $\mathrm{RuI}_{4}\{\mathrm{PTA}(\mathrm{Me})\}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}, 43$ and mer$\left.\mathrm{RuI}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\{\mathrm{PTA}(\mathrm{Me})\}_{3}\right] I_{3}, 44$ have also been synthesised by reacting a combination of RuCl_{3} and KI with an appropriate amount of PTA in water at 40 or $80^{\circ} \mathrm{C}$ and characterised by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR and single crystal X-ray crystallography. ${ }^{96}$ The complexes 43 and 44 are soluble in polar solvents (DMSO, $\mathrm{MeCN}, \mathrm{DMF}$) including alcohols and water. The catalytic performance of both 43 and 44 in the hydroformylation of 1-hexene and in the hydrogenation of cinnamaldehyde have been evaluated. ${ }^{96}$

Another class of catalytically active compounds include RuCl_{2} (p-cymene)(PTA), 45 and $\left[\mathrm{RuCl}(p\right.$-cymene $\left.)(\mathrm{PTA})_{2}\right] \mathrm{BF}_{4}, 46$. Dyson et al. ${ }^{128}$ have accomplished the hydrogenation of substituted arenes into completely saturated cyclohexanes using 45 and 46 under biphasic conditions. Complex 45 was synthesised by reacting PTA with the dimer $[\mathrm{Ru}(p-$ cymene) $\left.\mathrm{Cl}_{2}\right]_{2}$ in refluxing methanol, whereas 46 was synthesised by adding one equivalent of PTA to 45 in dichloromethane followed by the addition of $\mathrm{AgBF}_{4}{ }^{128}$

The two complexes 45 and 46 gave rise to the new class of compounds known as RAPTA (ruthenium/arene/PTA), being tested for potential use in cancer therapy. ${ }^{34}$

Figure 1.17 Structure of 45.

Complex 45 is soluble in polar organic solvents such as dichloromethane, chloroform and acetone and the X-ray structure has been reported, exhibiting a typical three-legged piano-stool geometry (Figure 1.17).

The cyclopentadienyl and pentamethylcyclopentadienyl Ru-PTA complexes $\mathrm{CpRuCl}(\mathrm{PTA})_{2}, 47$ and $\mathrm{Cp}{ }^{*} \operatorname{RuCl}(\mathrm{PTA})_{2}, 48$ have also been synthesised and characterised. ${ }^{113}$ The catalytic hydrogenation of benzylidene acetone to 4 -phenylbutan-2one by 47 and 48 under biphasic conditions as well as the antimetastatic activity of these complexes have been demonstrated. ${ }^{113} \mathrm{CpRuCl}(\mathrm{PTA})_{2}$ was prepared by phosphine exchange of $\mathrm{CpRuCl}\left(\mathrm{PPh}_{3}\right)_{2}$ with PTA in refluxing toluene, while $\mathrm{Cp}{ }^{*} \mathrm{RuCl}(\mathrm{PTA})_{2}$ can be prepared in a similar method or by reacting the chlorobridged dimer, $[\mathrm{Cp} * \mathrm{RuCl}(\mu-$ $\mathrm{Cl})]_{2}$ with PTA in the presence of Zn as reducing agent. The complexes are soluble in water and in chlorinated organic solvents. The single X-ray crystal structure of 48 has been reported, similar to 45 , also exhibiting typical three-legged piano stool geometry, with comparable $\mathrm{Ru}-\mathrm{P}$ and $\mathrm{Ru}-\mathrm{Cl}$ distances. ${ }^{34}$

Recently, Dyson and co-workers ${ }^{54}$ have prepared two new cyclopentadienyl Ru-PTA complexes, $\quad\left(\mathrm{Cp}^{\prime} \mathrm{OR}\right) \mathrm{RuCl}(\mathrm{PTA})_{2} \quad\left(\mathrm{Cp}^{\prime} \mathrm{OR}=\eta^{5}\right.$-1-alkoxy-2,4-di-tert-butyl-3neopentylcyclopentadienyl; $\mathrm{R}=\mathrm{Me}, 49$ and $\mathrm{R}=\mathrm{Et}, 50$) from the chlorobridged complexes $\left[\left(\mathrm{Cp}^{\prime} \mathrm{OR}\right) \mathrm{RuCl}(\mu-\mathrm{Cl})\right]_{2}(\mathrm{R}=\mathrm{Me}, \mathrm{Et})$ and PTA. The new complexes were characterised spectroscopically and in the case of complex 49, also by X-crystallography. Complex 49 displays the expected three-legged piano-stool geometry with two PTA and one chloro ligand co-ordinated opposite to the $\mathrm{Cp}^{\prime} \mathrm{OR}$ ligand. The in vitro anticancer activities of 49 and 50 were evaluated and found to be considerably more cytotoxic (ca. 2 orders of magnitude) than the analogous cyclopentadienyl complex $\mathrm{CpRuCl}(\mathrm{PTA})_{2}$.

Water soluble ruthenium PTA cluster complexes have also been reported. The cluster complex $\mathrm{Ru}_{3}(\mathrm{CO})_{9}(\mathrm{PTA})_{3}, 51$ has been synthesised by adding PTA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to solution of $\mathrm{Ru}_{3}(\mathrm{CO})_{12} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and refluxing for one hour. ${ }^{34}$ Ruthenium hydride complexes of PTA important for catalytic hydrogenation mechanisms such as $\mathrm{RuHCl}(\mathrm{PTA})_{4} 52$, and $\mathrm{RuH}_{2}(\mathrm{PTA})_{4} 53$ have been synthesised and characterised. ${ }^{129}$ The synthesis of the cyclopentadienyl variants of the monohydride complexes, $\mathrm{CpRuHCl}(\mathrm{PTA})_{2} 54$ and $\mathbf{C p} * \mathrm{RuHCl}(\mathrm{PTA})_{2} 55$ have also been accomplished using sodium formate as the hydride source. ${ }^{34}$

1.3.3 PTA-RHODIUM COMPLEXES

Rhodium-PTA complexes have received great attention because of their catalytic ${ }^{34}$ and recently medicinal potential. ${ }^{51,112}$ Rhodium, apart from being a catalytically active metal is also known to be a potential metal for the design of anticancer drugs. ${ }^{12,}{ }^{130}$ Recently, complexes with a Cp^{*} ligand in place of an arene ligand, have been synthesised and shown to exhibit similar in vitro activities to the ruthenium analogues. ${ }^{51,112}$

The water-soluble trisubstituted rhodium(I) PTA complex, $\mathrm{RhCl}(\mathrm{PTA})_{3} 56$ has been synthesised by reacting RhCl_{3} with an excess of PTA in refluxing ethanol. ${ }^{105}$ Complex 56 has been shown to be a hydrogenation catalyst. ${ }^{131}$ The bis-substituted complex $\left[\mathrm{RhCl}(\mathrm{PTA})_{2}\right] \cdot 2 \mathrm{HCl}, 57$ was obtained when $\mathbf{5 6}$ was reacted with dilute HCl , and the rhodium(III) iodo species $\left[\mathrm{RhI}_{4}\{\mathrm{PTA}(\mathrm{Me})\}_{2}\right] \mathrm{I}, 58$ has been synthesised by mixing RhCl_{3} with KI in water followed by the addition of [PTA(Me)]I. ${ }^{34}$

The Rh-PTA carbonyl complexes $\left[\operatorname{RhI}(\mathrm{CO})\{\operatorname{PTA}(\mathrm{Me})\}_{2}\right] \mathrm{I}_{2}, \quad 59$ and $\left[\operatorname{RhI}(\mathrm{CO})\{\mathrm{PTA}(\mathrm{Me})\}_{3}\right] I_{3} 60$ have also been synthesised by reacting the dimer $\left.\left[\mathrm{Rh}_{2} \mathrm{Cl}_{2}(\mathrm{CO})_{4}\right)\right]$ with $[\mathrm{PTA}(\mathrm{Me})] \mathrm{I}$ in the presence of NaI under an inert atmosphere. ${ }^{132}$ Both complexes are very sensitive to oxidation in solution but are stable in the solid state. They are highly soluble in water but only sparingly soluble in methanol.

A new carbonyl $\mathrm{Rh}(\mathrm{I})$ complex bearing PTA and tris(1-pyrazoly)methanesulfonate (Tpms) ligands, $\mathrm{Rh}(\mathrm{Tpms})(\mathrm{CO})(\mathrm{PTA}) 61$ has been recently synthesised in high yield by a simple one-pot reaction of $\left[\mathrm{Rh}_{2} \mathrm{Cl}_{2}(\mathrm{CO})_{4}\right]$ with PTA and Tpms lithium salt, (LiTpms) in a $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ solution at room temperature. ${ }^{133}$ Complex 61 is water soluble and is the first transition metal complex that bears the PTA and Tpms ligands. This synthetic strategy can be applied to the preparation of other Rh-PTA carbonyl complexes of the type, $\operatorname{Rh}(\mathrm{Tpms})(\mathrm{CO})(\mathrm{L})(\mathrm{L}=$ phosphine) and constitutes an improvement over the previously described procedures, ${ }^{134}$ since it does not require the isolation of any intermediate nor the use of CO and the synthesis of the thallium salt TITpms. ${ }^{134}$ Unlike the $\mathrm{Rh}(\mathrm{Tpms})(\mathrm{CO})(\mathrm{L})\left(\mathrm{L}=\mathrm{PMe}_{3}, \mathrm{PPh}_{3}, \mathrm{PCy}_{3}\right)$ analogues, ${ }^{134}$ complex 61 is quite stable in water under inert atmosphere and thus constitutes a promising catalyst precursor for catalytic reactions in liquid biphasic systems.

Another family of water-soluble carbonyl Rh-PTA complexes have been synthesised by reacting $\left[\mathrm{Rh}_{2} \mathrm{Cl}_{2}(\mathrm{CO})_{4}\right]$ with the N-alkylated derivatives of PTA, called tpa by the authors, ${ }^{132,135}$ namely 1-alkyl-1-azonia-3,5-diaza-7-phosphaadamantane iodides (Rtpa ${ }^{+} \Gamma$) with alkyl $(\mathrm{R})=$ methyl $\left(m \mathrm{man}^{+} \Gamma\right)$, ethyl $\left(\right.$ etpa $\left.{ }^{+} \Gamma\right)$ and n-propyl $\left(\mathrm{ptpa}^{+} \Gamma\right)$ and (mtpa $\left.{ }^{+} \mathrm{Cl}^{-}\right)$ to give the rhodium(I) complexes $\operatorname{RhCl}(\mathrm{CO})(t \mathrm{ta})_{2}, \quad \operatorname{RhI}(\mathrm{CO})\left(\mathrm{Rtpa}^{+} \Gamma^{-}\right)_{2}$, $\mathrm{RhCl}(\mathrm{CO})\left(\mathrm{mtpa}^{+} \mathrm{Cl}^{-}\right)_{3}$ and $\mathrm{RhI}(\mathrm{CO})\left(\mathrm{Rtpa}^{+} \Gamma\right)_{3}$. The properties and reactivities have been investigated using ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR and IR spectroscopies. The complexes have been evaluated as catalysts for the water-gas shift reaction, the hydrogenation of $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{O}$ bonds, the hydroformylation of alkenes and the isomerisation of unsaturated compounds. ${ }^{135} \mathrm{Rh}(\mathrm{I})$ acetylacetonato complex featuring PTA has also been reported. $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})(\mathrm{PTA}), 62$, was synthesised by reacting $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}$ with one equivalent of PTA in ethanol, refluxing for $3 \mathrm{~h} .{ }^{136}$

Mixed rhodium complexes featuring both PTA and PTA(H) ${ }^{+}$have also been synthesised. For example the complex $\left[\mathrm{RhCl}\{\mathrm{PTA}(\mathrm{H})\}(\mathrm{PTA})_{2}\right] \mathrm{Cl} 63$ was prepared by refluxing for 2 h in ethanol solution of RhCl_{3} and six equivalents of PTA, whereas $\left[\operatorname{RhCl}\left\{(\mathrm{PTA}(\mathrm{H})\}_{3}(\mathrm{PTA})\right] \mathrm{Cl}_{3} 64\right.$ was prepared by reacting $\mathrm{RhCl}(\mathrm{PTA})_{3}$ with two equivalents of PTA in water. ${ }^{106}$ Complex 63 is an active hydroformylation catalyst, whereas 64 is inactive. Rhodium hydride complexes having alkylated PTA have also been reported. The complexes $\left[\mathrm{RhH}\left\{(\mathrm{PTA}(\mathrm{Me})\}_{4}\right] \mathrm{I}_{4}\right.$ and $\left[\mathrm{RhH}\left\{(\mathrm{PTA}(\mathrm{Et})\}_{4}\right] \mathrm{I}_{4}\right.$ have been prepared by addition of one equivalent of $[\mathrm{PTA}(\mathrm{R})] I$ to $\left[\mathrm{Rh}(\mathrm{CO})\{\mathrm{PTA}(\mathrm{R})\}_{3}\right] I_{3}(\mathrm{R}=\mathrm{Me}$ or Et), followed by treatment with $\mathrm{NaBH}_{4}{ }^{137}$

Recently, Bolaño et al. ${ }^{138}$ have described the synthesis and characterisation of a new family of rhodium complexes containing the N-boranyl PTA $\left(\mathrm{BH}_{3}\right)$ cage-like phosphines as a monodentate P-coordinated ligand. The reaction between 1-boranyl-1,3,5-triaza-7phosphaadamantane ligand, $N-\mathrm{B}-\mathrm{PTA}\left(\mathrm{BH}_{3}\right)$ and $[\mathrm{Cp} * \mathrm{RhCl}(\mu-\mathrm{Cl})]_{2}$ gave $\mathrm{Cp} * \mathrm{Rh}\{\mathrm{N}-\mathrm{B}-$ $\left.\mathrm{PTA}\left(\mathrm{BH}_{3}\right)\right\} \mathrm{Cl}_{2} 65$ or $\left[\mathrm{Cp} * \mathrm{Rh}\left\{\mathrm{N}-\mathrm{B}-\mathrm{PTA}\left(\mathrm{BH}_{3}\right)\right\}_{2} \mathrm{Cl}\right] \mathrm{Cl} 66$ containing one or two P-bonded boranated PTA ligands. The hydride $\mathrm{Cp} * \mathrm{Rh}\left\{\mathrm{N}-\mathrm{B}-\mathrm{PTA}\left(\mathrm{BH}_{3}\right)\right\} \mathrm{H}_{2}$ was also obtained when 65 was reacted with NaBH_{4} and alternatively by direct boronation of $\mathrm{Cp}{ }^{*} \mathrm{Rh}(\mathrm{PTA}) \mathrm{Cl}_{2}$ with excess NaBH_{4}.

1.3.4 PTA-IRIDIUM COMPLEXES

Iridium complexes of PTA are few compared to their rhodium analogues. This might be due to the generally assumed poor catalytic activity of iridium derivatives in comparison to rhodium species and the minor interest in studying the coordination chemistry of this metal. ${ }^{34}$ The first PTA ligated iridium complexes, $\operatorname{IrCl}(\mathrm{CO})(\mathrm{PTA})_{2}, \operatorname{IrCl}(\mathrm{CO})(\mathrm{PTA})_{3}$ and others were synthesised by Krogstad et al. ${ }^{139}$ The water-soluble version of Vaska's complex trans $-\mathrm{IrCl}(\mathrm{CO})(\mathrm{PTA})_{2} 67$ was prepared by stirring a hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of PTA and $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}$ under an atmosphere of CO. ${ }^{139}$ The related complexes trans$\operatorname{IrCl}(\mathrm{CO})(\mathrm{PTA})_{3}, 68$ and trans- $\left[\operatorname{Ir}(\mathrm{CO})(\mathrm{PTA})_{4}\right] \mathrm{Cl}, 69$ were prepared via ligand substitution reactions of PTA with Vaska's compound, trans- $\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$, in absolute and 95% ethanol respectively. ${ }^{139}$ In contrast to 68 , complex 69 is highly soluble in water but not in organic solvents. The single crystal X-ray structure of trans$\left[\operatorname{Ir}(\mathrm{CO})(\mathrm{PTA})_{4}\right] \mathrm{Cl}, 69$ has been determined and shows a trigonal bipyramidal structure in which the CO occupies an axial position. This is the first crystallographically characterised $\left[\mathrm{IrP}_{4}(\mathrm{CO})\right]^{+}$complex in which the CO is axially ligated. ${ }^{139}$ The formation of the higher substituted PTA complexes 68 and 69 is favoured over the bis-PTA complex 67, probably because of the smaller cone angle of PTA in comparison to most tertiary phosphines. ${ }^{139}$

Mixed iridium-PTA complexes and hydrides have also been obtained. Complex 68 can be converted into 69 by ligand substitution with one equivalent of PTA in water, but interestingly, addition of excess NaCl to 69 in MeOH under aerobic conditions does not restore 68, but instead forms the decarbonylated iridium(III) octahedral dichlororide $\left[\mathrm{IrCl}_{2}\{\mathrm{PTA}(\mathrm{H})\}_{2}(\mathrm{PTA})_{2}\right] \mathrm{Cl}_{3}, 70$ with two N-protonated PTA ligands. ${ }^{139}$ All three complexes 67-69 can be protonated in aqueous solution. For example, dissolution of 68 or 69 in dilute HCl produces 70 and a dihydrido species $\left[\mathrm{IrH}_{2}\{\mathrm{PTA}(\mathrm{H})\}_{4}\right] \mathrm{Cl}_{5}, 71$ which were easily crystallised and separated by inspection due to their different crystal habits. ${ }^{139}$ Complex 71 was authenticated by X-ray diffraction analysis and exhibits an octahedral geometry with two hydride ligands in a cis-configuration. ${ }^{139}$

The preparation of the water-soluble complex $\left[\operatorname{IrCl}(\mathrm{COD})(\mathrm{PTA})_{3}\right] \mathrm{Cl}, 72$ by reacting $[\operatorname{IrCl}(\mathrm{COD})]_{2}$ with six equivalents of PTA under nitrogen atmosphere has also been reported. ${ }^{140}$ Complexes trans $-\operatorname{IrCl}(\mathrm{CO})(\mathrm{PTA})_{3}, 68$ trans- $\left[\operatorname{Ir}(\mathrm{CO})(\mathrm{PTA})_{4}\right] \mathrm{Cl}, 69$ and $\left[\mathrm{IrCl}(\mathrm{COD})(\mathrm{PTA})_{3}\right] \mathrm{Cl}, 72$ have been used as catalysts for the intramolecular
hydroamination of 4-pentyne-1-amine in water, the first reported study of the $\operatorname{Ir}(\mathrm{I})$ mediated transformation in aqueous media. ${ }^{140}$

The water-soluble iridium carbonyl cluster $\mathrm{Ir}_{4}(\mathrm{CO})_{7}(\mathrm{PTA})_{5} 73$ was synthesised by refluxing $\mathrm{Ir}_{4}(\mathrm{CO})_{12}$ with an excess of PTA in toluene. ${ }^{141}$ The isolated red-orange solid, which was characterised by X-ray crystallography, is soluble in water at pH 7 or below and in a variety of solvents including $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Recently, the synthesis of enantiomerically pure water-soluble iridium PTA complexes was reported. ${ }^{102}$ A diastereomerically enriched analogue of PTA was obtained by reaction of the PTA lithium salt with benzaldehyde to give the water-soluble derivative phenyl(1,3,5-triaza-7-phosphtricyclo[3.3.1.1 ${ }^{3,7}$]dec-6-yl)methanol (PZA) as a mixture of two diastereoisomers and used as a P-monodentate ligand towards iridium(III). The resulting piano-stool complex $\mathrm{Cp}^{*} \mathrm{IrCl}_{2}(\mathrm{PZA}) 74$ was obtained as a mixture of diastereoisomers both in solution and in the solid state. ${ }^{102}$ The resolution of such watersoluble PTA derivatives and their potential use in enantioselective catalysis and biological applications will be promising areas for exploration. ${ }^{102}$

1.3.5 PTA-PALLADIUM COMPLEXES

The interest in palladium-PTA complexes, like those of other catalytically active metals such as ruthenium and rhodium is due to their potential as water-soluble catalysts. ${ }^{34}$ Organopalladium compounds containing PTA are quite few, the first ever reported was probably Pd-(salicylaldiminato)(Me)(PTA). ${ }^{142}$ A monomeric complex $\operatorname{Pd}($ dmba $) \mathrm{Cl}(\mathrm{PTA})$ [dmba $=\mathrm{N}, \mathrm{C}$-chelating 2-(dimethylaminomethyl)phenyl], 75 has been obtained by reacting the dimer $[\mathrm{Pd}(\mathrm{dmba})(\mu-\mathrm{Cl})]_{2}$ with two equivalents of PTA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature (Equation 1.19) and its crystal structure established by X-ray diffraction. ${ }^{143}$ Complex 75 was shown to catalyse the Sonogashira reaction of aryl bromides and chlorides with excellent results in the absence of amine and Cul. ${ }^{143}$ Its efficiency was similar to that found for $\operatorname{Pd}(\mathrm{PA}-\mathrm{Ph})_{2} \cdot \mathrm{dba}(\mathrm{PA}-\mathrm{Ph}=1,3,5,7$-tetramethyl-2,4,8-trioxa-6-phenyl-6-phosphadamantane) ${ }^{144}$ the unique adamantane-type phosphine that has been used until now in coupling reactions.

75

Equation 1.19

Some bis-, tris- and terakis-substituted complexes of PTA have also been synthesised and characterised. The synthesis of cis- $\mathrm{PdCl}_{2}(\mathrm{PTA})_{2}, 76$ is accomplished by reacting PdCl_{2} with excess PTA in $\mathrm{H}_{2} \mathrm{O}$. Complex 76 can also be synthesised by ligand exchange of MeCN or PhCN with PTA from both $\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$ or $\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}$ respectively, ${ }^{145}$ or metathesis reaction of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PdCl}_{4}$ with double the amount of PTA in refluxing ethanol. ${ }^{43}$ The X-ray structure of 76 reveals a cis-arrangement of the two PTA ligands in a square planar geometry.

Another bis-PTA derivative, cis- $\mathrm{PdBr}_{2}(\mathrm{PTA})_{2} 77$ which is the bromide analogue of 76 was obtained by reaction of LiBr with the tris-PTA derivative $\left[\mathrm{PdCl}(\mathrm{PTA})_{3}\right] \mathrm{Cl}, 78$ in water. ${ }^{34}$ The X-ray structure determination confirmed the square planar geometry but unlike 76, the two PTA ligands are in a trans arrangement. The complex 78 was itself prepared by the addition of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PdCl}_{4}$ to five equivalents of PTA in ethanol and refluxing for $3 \mathrm{~h} .{ }^{146}$ However the reaction also contains some $\mathrm{PdCl}_{2}(\mathrm{PTA})_{2}$ and free PTA.

The tetrakis-substituted complex $\mathrm{Pd}(\mathrm{PTA})_{4}, 79$ can be obtained by reacting PdCl_{2} with five equivalents of PTA in $\mathrm{H}_{2} \mathrm{O} .{ }^{147}$ Alternatively, complex 79, can be prepared by reacting PdCl_{2} with four equivalents of PTA in refluxing DMSO followed by reduction with hydrazine monohydrate. ${ }^{146}$ A further alternative synthesis involves the addition of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}\left(\mathrm{dba}=\right.$ dibenzylideneacetone) to a solution of PTA in methanol. ${ }^{34}$ The solubility of complex 79 in water is exceptionally high ($240 \mathrm{~g} / \mathrm{L}$) and it has been tested for the catalytic oligomerisation of but-1,3-diene into various dienes under biphasic water/substrate conditions. ${ }^{34}$

A series of phenylselenolato palladium(II) complexes with a variety of different phosphine ligands has been reported. ${ }^{148}$ For example, complex $\operatorname{Pd}(\mathrm{SePh})_{2}(\mathrm{PTA})_{2}, 80$ was obtained by reacting $\mathrm{PdCl}_{2}(\mathrm{PTA})_{2}$ with NaSePh in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ solution. A series of palladium salicyladiminato-PTA complexes were prepared by Darensbourg and coworkers by reacting PTA and the appropriate salicylaldimine ligand with $(\mathrm{TMEDA}) \mathrm{Pd}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{TMEDA}=$ tetramethylethylenediamine $)$ in MeOH at $-30^{\circ} \mathrm{C} .{ }^{142}$

A unique PTA complex worth mentioning here is the molybdenum-palladium PTA cation $\left[\mathrm{Mo}_{3} \mathrm{Pd}(\mathrm{PTA})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{9}\right]^{4+}$ 81, reported by Sykes and co-workers. ${ }^{149}$ The molybdenumpalladium cluster was prepared through $\mathrm{Pd}-\mathrm{S}$ cleavage of a dimeric cuboidal $\mathrm{Mo}_{3} \mathrm{PdS}_{4}$ cluster, the PTA having the ability to dissociate dimers $\left[\left\{\mathrm{Mo}_{3} \mathrm{PdS}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{9}\right\}_{2}\right]^{8+}$ by coordinating to the Pd centres. ${ }^{149}$ PTA was found to be particularly suitable for this reaction because of its water-soluble properties, the rate of dissociation/coordination was faster than that of trisodium triphenyl phosphine trisulfonate, TPPTS $\left(2.78 \times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right.$ versus $9.6 \times 10^{5} \mathrm{M}^{-1} \mathrm{~s}^{-1}$) which provide a similar reaction with the $\mathrm{Mo}_{3} \mathrm{PdS}_{4} .{ }^{34}$

1.3.6 PTA-PLATINUM COMPLEXES

In contrast to its congeners nickel and palladium, platinum PTA complexes have been much more widely studied, especially the tetrakis derivative $\operatorname{Pt}(\mathrm{PTA})_{4}, 82$. The preparation involves reacting $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{4}$ with excess PTA in a ligand exchange reaction. If excess PTA is not used, mixed $\mathrm{PPh}_{3} /$ PTA species $\operatorname{Pt}\left(\mathrm{PPh}_{3}\right)_{4-n}(\mathrm{PTA})_{\mathrm{n}}(\mathrm{n}=1-3)$ can be formed. Such mixed complexes are all insoluble in water, whereas complex 82 is soluble in water ($295 \mathrm{~g} / \mathrm{L}$) as well as in $0.1 \mathrm{M} \mathrm{HCl}(290 \mathrm{~g} / \mathrm{L}){ }^{146}$ Alternatively, complex 82 can be prepared by the addition of PtCl_{2} to PTA in $\mathrm{H}_{2} \mathrm{O} .{ }^{147}$ After stirring for 2 days, the product was obtained as off-white micro-crystals accompanied by the formation of a second $\operatorname{Pt}(0)$ complex identified as the fully protonated species $\left[\mathrm{Pt}\{\mathrm{PTA}(\mathrm{H})\}_{4}\right] \mathrm{Cl}_{4}, 8$. The synthesis of complex 83 can however be straightforwardly accomplished by repeating the addition of PtCl_{2} to PTA in 0.1 M HCl or simply dissolving a sample of $\mathrm{Pt}(\mathrm{PTA})_{4}$ in acidic media $(\mathrm{HCl} 0.1 \mathrm{M})$. The crystal structure of $\left[\mathrm{Pt}\{\mathrm{PTA}(\mathrm{H})\}_{4}\right] \mathrm{Cl}_{4}$ has been determined, showing a slightly distorted tetrahedron which does not significantly differ from that of the analogous Ni and Pd complexes. ${ }^{146}$

The behaviour of $\mathrm{Pt}(\mathrm{PTA})_{4}$ in acidic media of different acid strength has been evaluated. ${ }^{147}$ Strong acids such as 0.1 M HCl or $\mathrm{H}_{3} \mathrm{PO}_{4}$ yield regioselective protonation at
the nitrogen centres forming the tetrachloride salt 83, mentioned above. In contrast, if weak acids such as carbonic acid are used, protonation occurs selectively at the platinum centre forming $\left[\mathrm{PtH}(\mathrm{PTA})_{4}\right] \mathrm{Y}, 84(\mathrm{Y}=$ singly charged anion). These water-soluble platinum hydride species have been characterised by ${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopies. ${ }^{147}$

The bis-substituted PTA derivative cis- $\mathrm{PtCl}_{2}(\mathrm{PTA})_{2}, 85$ can be prepared by reacting either $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ or $\mathrm{PtCl}_{2}\left(\mathrm{SMe}_{2}\right)_{2}$ with two equivalents of PTA in hot aqueous solution or, in the case of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$, hot $95 \% \mathrm{EtOH} .{ }^{43}$ Complex 85 has also been obtained using Zeise's salt, $\left[\mathrm{PtCl}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right] \mathrm{Cl}$ which is known to force trans-disposition in $\mathrm{Pt}(\mathrm{II})$ diphosphine complexes, but failed to produce the trans-isomer, yielding only the cisisomer of complex 85. Alternatively, 85 can be formed through ligand exchange of PhCN with PTA from $\mathrm{PtCl}_{2}(\mathrm{PhCN})_{2}$ in $\mathrm{MeOH} .{ }^{145}$ The asymmetric unit in the crystal structure of 85 obtained is composed of two independent molecules held together by a bridging $\mathrm{H}_{2} \mathrm{O}$ molecule, forming a dimeric unit $\left[\left\{\mathrm{PtCl}_{2}(\mathrm{PTA})_{2}\left(\mu-\mathrm{H}_{2} \mathrm{O}\right)\right\}_{2}\right]$, with strong intermolecular hydrogen bonds $\left[d(\mathrm{~N} \cdots \mathrm{H}-\mathrm{O})_{\text {ave }}=2.914 \AA\right] .{ }^{150}$ In each dimeric unit, two platinum atoms are surrounded by two PTA ligands and by two chlorides both in a cis-arrangement and attain a regular square planar geometry.

A double protonated PTA platinum complex has been reported. Complex $\left[\mathrm{PtCl}_{2}\{\mathrm{PTA}(\mathrm{H})\}_{2}\right] \mathrm{Cl}_{2}, 86$ was obtained by crystallisation of 85 in 0.1 M HCl solution. The crystal structure of 86 was obtained and displayed a distorted square planar geometry with two cis protonated PTA ligands and two cis chlorides, with an extensive pattern of hydrogen bonding involving Cl^{-}and $\mathrm{PTA}(\mathrm{H})^{+}$ligands as well as solvated water molecules. ${ }^{146}$

Tris- substituted PTA complex $\left[\mathrm{PtCl}(\mathrm{PTA})_{3}\right] \mathrm{Cl}, 87$ was prepared by either refluxing an aqueous solution of PtCl_{2} and PTA or ligand exchange of PhCN with PTA from $\mathrm{Pt}(\mathrm{PhCN})_{2} \mathrm{Cl}_{2} .{ }^{34}$ The tetraphenylborate salt, $\left[\mathrm{PtCl}(\mathrm{PTA})_{3}\right] \mathrm{BPh}_{4}$, was isolated upon addition of $\mathrm{Na}\left[\mathrm{BPh}_{4}\right]$ to a dichloromethane solution of $\mathrm{Pt}(\mathrm{PhCN})_{2} \mathrm{Cl}_{2}$ in the presence of PTA in $\mathrm{MeOH} .{ }^{34} \mathrm{X}$-ray diffraction analysis of $\left[\mathrm{PtCl}(\mathrm{PTA})_{3}\right] \mathrm{Cl}$ shows that the structure is isomorphous with the palladium analogue $\left[\mathrm{PdCl}(\mathrm{PTA})_{3}\right] \mathrm{Cl}, 78$ and confirms the expected square planar geometry. ${ }^{34}$

The pentacoordinate iodide complex $\mathrm{PtI}_{2}(\mathrm{PTA})_{3}, 88$ was obtained by reacting $\left[\mathrm{PtCl}(\mathrm{PTA})_{3}\right] \mathrm{Cl}, 87$ with sodium iodide in aqueous methanol. ${ }^{151}$ The crystal and molecular structure of $\mathbf{8 8}$ were determined by X-ray crystallography and was found to be pentacoordinate in the solid state. Pentacoordinate complexes of $\mathrm{Pt}(\mathrm{II})$ are rare, and the geometry is best described as a severely distorted square pyramid with one iodo and three PTA ligands occupying the equatorial plane, with the second iodo ligand in the apical position. ${ }^{151}$ The complex trans- $-\mathrm{PtI}_{2}(\mathrm{PTA})_{2}, 89$ was however obtained by halogen exchange of Cl with I of trans $-\mathrm{PtCl}_{2}(\mathrm{PTA})_{2}$ using excess NaI in water. ${ }^{152} \mathrm{~A}$ similar square planar geometry, with trans-disposition of the two PTA ligands, was ascertained by X-ray diffraction for the dicyano derivative $\operatorname{trans}-\mathrm{Pt}(\mathrm{CN})_{2}(\mathrm{PTA})_{2}$ obtained by the reaction of $\mathrm{K}_{2} \mathrm{Pt}(\mathrm{CN})_{4}$ with the gold complex $\mathrm{AuCl}(\mathrm{PTA})_{3}$ has been reported. ${ }^{153}$

The platinum(II)PTA complex, $\mathrm{Pt}(\mathrm{ts}) \mathrm{PTA}, 90$ (ts = thiosalicylate, $\mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{COO}^{-}$), was synthesised by ligand displacement from $\mathrm{Pt}(\mathrm{ts})(\mathrm{COD})$ with PTA in methanol. ${ }^{154}$ Complex 90 is highly water soluble, its stability has been shown to be very high in a study involving other platinum(II) thiosalicylate-phosphine complexes using electrospray mass spectrometry (ESMS). For example in this study, there was no fragmentation of complex 90 even at 200 V , in contrast to the PPh_{3} derivative which fragments at $80 \mathrm{~V} .{ }^{34}$

Traditionally, it was believed that only complexes of platinum(II) containing two inert and two semilabile and mutually cis ligands display antitumor activity until Farrel and co-workers ${ }^{155}$ showed that complexes with trans geometry are also cytotoxic. Examples of such bioactive $\mathrm{Pt}(\mathrm{II})$ complexes include trans $-\mathrm{PtCl}_{2}\left\{\mathrm{NH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right\}\left\{\mathrm{NH}\left(\mathrm{CH}_{3}\right)_{2}\right\}^{156}$ and trans- PtCl_{2} (iminoether) ${ }_{2}{ }^{157}$ Generally, the low water solubilities of transdiaminechloroplatinum(II) and analogous complexes have limited their usefulness, and efforts have therefore focused on modifying the nature of the anionic and neutral ligands. ${ }^{158,159}$ Only relatively recently have the biological activities of platinum complexes with other neutral ligands such as phosphines and thiolates been investigated. ${ }^{159}$ Platinum(II) derivatives with various ligands including aminodiphosphines, ${ }^{160-162}$ lipophilic PPh_{3} and/or hydrophilic PTA and thiotheophyllines as anionic ligands ${ }^{163,164}$ as well as $\mathrm{Pt}(\mathrm{ts})(\mathrm{P})_{2}\left(\mathrm{P}=\mathrm{PPh}_{3}\right.$, dppe) have been reported to show significant biological activity. ${ }^{165}$

Recently, a range of platinum(II) complexes of the type trans-[Pt(SR $\left.)_{2}(\mathrm{P})_{2}\right],[\mathrm{SR}=2-$ pyridinethione (Spy), 2-thiopyrimidine (SPyrim); $\mathrm{P}=$ 1,3,5-triaza-7-phosphaadamantane (PTA), 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]-nonane (DAPTA)] have been prepared and characterised, and their in vitro cytotoxicities against some human cancer cells evaluated. ${ }^{159}$ The complexes $\operatorname{Pt}(\mathrm{SPyrim})_{2}(\mathrm{PTA})_{2}, \quad 91 ; \operatorname{Pt}(\mathrm{Spy})_{2}(\mathrm{PTA})_{2}, \quad 92 ;$ $\operatorname{Pt}(\mathrm{SPyrim})_{2}(\mathrm{DAPTA})_{2}, 93$ and $\mathrm{Pt}(\mathrm{Spy})_{2}(\mathrm{DAPTA})_{2}, 94$ all demonstrated potent cytoxicity for ovarian, colon, renal and melanoma cancer cell, lines on the basis of a comparison with ID_{50} values for some known cancer drugs. ${ }^{159}$ Single crystals of 91,92 and 94 were obtained and X-ray diffraction analysis revealed the trans configuration in the solid state. These are the first trans-platinum(II) complexes with S - and P -donor ligands that demonstrate considerable biological activity. The complexes are highly water-soluble and are suitable candidates for use as anticancer drugs and the in vitro activities of these complexes against the ovarian cancer and colon cancer cell lines were found to be promising. ${ }^{159}$

1.3.7 PTA-GOLD COMPLEXES

The importance of PTA as a ligand in gold chemistry is mainly as a result of preparing water-soluble phosphine-gold complexes which shows unusual reactivity patterns and self-aggregating properties, where short intermolecular $\mathrm{Au} \cdots \mathrm{Au}$ contacts, representing weak second order metal-metal bonding results in dimers, tetramers or even polymers. ${ }^{34,166}$ The important prerequisite for this novel type of aggregation "aurophilicity" is the presence of structurally non-demanding ligands. Any overcrowding of the molecules can prevent the $A u \cdots A u$ contacts with their rather small bond energies; ${ }^{166}$ hence with the advent of water-soluble ligands, PTA is a suitable ligand in the study of these gold complexes as low energy luminescent materials. The watersoluble gold-PTA complexes apart from their use in photoluminescent devices are also important for the preparation of "liquid metals" for metallic deposition ${ }^{167}$ e.g. deposition on tiles for decorative purposes. The water solubility avoids the use of toxic organic solvents for this purpose.

PTA-gold complexes are also important for medicinal applications. Metallic gold and gold compounds, in particular, have had a long history of use in medicine, and several gold compounds are in use as antiarthritic drugs e.g. Solganol, Myocrisin and Auranofin. ${ }^{159}$ Recently, some water-soluble $\mathrm{Au}(\mathrm{I})$ thionate complexes containing PTA or

DAPTA ligands have been synthesised, characterised and evaluated as anticancer drugs and found to have some cytotoxicity. ${ }^{159}$

A detailed investigation of the coordination chemistry of gold(I) with PTA aimed at evaluating the hydrophilicity and the photoluminescence properties of PTA-gold complexes have been carried out. ${ }^{168}$ The dicoordinate, mono-substituted PTA-gold complex $\mathrm{AuCl}(\mathrm{PTA}), 95$ was synthesised by reacting the dimethylsulfide complex $\mathrm{AuCl}\left(\mathrm{SMe}_{2}\right)$ with PTA in chloroform. ${ }^{168}$ Halide exchange reactions, upon mixing 95 with HBr in $\mathrm{H}_{2} \mathrm{O}$ /acetone or KBr in dichloromethane/acetonitrile gave the bromide analogue, $\mathrm{AuBr}(\mathrm{PTA}), 96$ whereas a similar reaction using KI in refluxing acetone gave the analogous iodide complex, AuI(PTA), 97. ${ }^{168}$ The methyl gold complex, $\mathrm{Au}(\mathrm{Me})(\mathrm{PTA})$ has also been synthesised by reacting $\mathrm{AuCl}(\mathrm{PTA}), 95$ with MeLi at $0{ }^{\circ} \mathrm{C}$ in diethyl ether. ${ }^{168}$ The solid state thermal stability of the methyl gold complex, Au(Me)(PTA) was found to be significantly lower than the related halide complexes $\mathrm{AuX}(\mathrm{PTA})(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, I) probably due to the lack of hydrogen bonding in the methylated complex. Reaction of $\mathrm{AuCl}(\mathrm{PTA}), 95$ with MeOTf in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-35{ }^{\circ} \mathrm{C}$ results in the isolation of $\mathrm{PTA}(\mathrm{Me})$ containing the complex [$\mathrm{AuCl}\{\mathrm{PTA}(\mathrm{Me})\}] \mathrm{OTf}, 98$ in high yield confirmed from $\mathrm{FAB}-$ MS data.

The molecular structures of the complexes 95 and 96 containing MeCN solvate molecules, have been determined by X-ray methods which showed the existence of dimeric aggregates in the solid state through weak $\mathrm{Au} \cdots \mathrm{Au}$ (aurophilic) interactions. Complex 95 displayed a gold-gold separation of $3.092 \AA$, while the separation in 96 was $3.104 \AA$. These distances are among the shortest distances found in the wide family of tertiary phosphine gold(I) halide complexes and have been ascribed by the very small cone angle exhibited by PTA. ${ }^{17,168}$ Unsolvated crystals of 95 have been obtained by crystallisation from 1,2-dichloroethane/ n-hexane solution, and X-ray diffraction analysis has revealed, a polymeric helical chain of gold atoms featuring a longer $\mathrm{Au} \cdots \mathrm{Au}$ separation [$3.394 \AA$] instead of the dimeric aggregation in the solvated form. ${ }^{169}$

Protonation of $\mathrm{AuCl}(\mathrm{PTA})$ has been accomplished by using 0.1 M HCl giving the complex $[\mathrm{AuCl}\{\mathrm{PTA}(\mathrm{H})\}] \mathrm{Cl}$, 99. The bromide analogue, $[\mathrm{AuBr}\{\mathrm{PTA}(\mathrm{H})\}] \mathrm{Br}, \mathbf{1 0 0}$ is obtained in a similar way using HBr . In contrast, when the same protocol is applied to the iodide derivative $\operatorname{AuI}(\mathrm{PTA})$, the diiodoauride complex, $[\mathrm{AuI}\{\mathrm{PTA}(\mathrm{H})\}]\left[\mathrm{AuI}_{2}\right], 101$ was
obtained. The structures of the protonated chloro- and iodo-derivatives have been obtained by X-ray crystallography. The main structural pattern of the protonated chloro complex 99 was similar to that of 95 except that there was significant lengthening of the aurophilic interaction to $3.322 \AA .{ }^{117}$ In contrast, the structure of 101 does not exhibit any dimeric pairing of the $[\operatorname{AuI}\{\operatorname{PTA}(\mathrm{H})]]^{+}$cation; instead, it shows an $\mathrm{Au} \cdots \mathrm{Au}$ contact of $2.920 \AA$ between the gold atom of the $[\operatorname{AuI}\{\operatorname{PTA}(\mathrm{H})\}]^{+}$cation and the gold atom of the $\left[\mathrm{AuI}_{2}\right]^{-}$anion. ${ }^{34}$ It is interesting to note that the $\mathrm{Au} \cdots \mathrm{Au}$ distance in 101 changes with the temperature, slightly decreasing with the lowering of the temperature. ${ }^{117}$

Gold(I) complexes with two or more PTA ligands have also been synthesised by Fackler and co-workers. The bis-substituted, three-coordinate gold(I) complex, $\left[\mathrm{Au}(\mathrm{PTA})_{2}\right] \mathrm{Cl}$ 102 was prepared by reacting $\mathrm{AuCl}(\mathrm{THT})$ with two equivalents of PTA in $\mathrm{MeCN} .{ }^{170}$ The crystal structure of 102 has been determined and shows a linear two-fold coordination about the gold. ${ }^{171}$ Another bis-substituted PTA complex $\left[\mathrm{Au}(\mathrm{PTA})_{2}\right]\left[\mathrm{Au}(\mathrm{CN})_{2}\right], 103$ was synthesised by reacting $\left[\mathrm{Au}(\mathrm{PTA})_{2}\right] \mathrm{Cl}$ with one equivalent of $\mathrm{K}\left[\mathrm{Au}(\mathrm{CN})_{2}\right]$ in water. ${ }^{170}$ The structure of 103 was determined by X-ray crystallography and showed linearly dicoordinated $\left[\mathrm{Au}(\mathrm{PTA})_{2}\right]^{+}$cations and $\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}$anions in a $1: 1$ ratio forming an alternating linear chain with a uniform $A u \cdots A u$ aurophilic interaction of $3.457 \AA .{ }^{169}$

The four-coordinate $\mathrm{Au}(\mathrm{I})$ complex $\mathrm{AuCl}(\mathrm{PTA})_{3} 104$ was synthesised by stirring together $\mathrm{AuCl}(\mathrm{THT})$ with three equivalents of PTA in a $1: 2 \mathrm{MeCN} / \mathrm{MeOH}$ mixture. ${ }^{159}$ This complex is fluxional at room temperature, indicating a dynamic behaviour as confirmed by two broad resonances in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum instead of the expected single resonance. ${ }^{169}$

Gold(I) complexes with more than one alkylated PTA ligand have been synthesised. The complex $\left[\mathrm{AuI}\{\mathrm{PTA}(\mathrm{Et})\}_{3}\right] \mathrm{I}_{3} 105$ was prepared by reacting three equivalents of [$\mathrm{PTA}(\mathrm{Et})] \mathrm{I}$ with $\mathrm{AuCl}\left(\mathrm{SMe}_{2}\right)$ in an aqueous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ biphasic mixture. ${ }^{172}$ The crystal structure has been determined by X-ray diffraction and showed that the gold(I) centre is coordinated to three PTA(Et) ligands in a distorted trigonal planar environment. The gold(I) centre is located on a three-fold axis lying slightly above the trigonal plane weakly interacting with the coordinated iodide $[d(\mathrm{Au} \cdots \mathrm{I})=2.9129 \AA]$.

Fully substituted $\mathrm{Au}(\mathrm{I})$ complexes with either PTA or $[\mathrm{PTA}(\mathrm{Me})]^{+}$have also been reported. ${ }^{173}$ The tetrakis-PTA complex $\left[\mathrm{Au}(\mathrm{PTA})_{4}\right] \mathrm{Cl}, 106$ was prepared by addition of four equivalents of PTA to $\mathrm{AuCl}\left(\mathrm{SMe}_{2}\right)$ in an alkaline $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution and another complex, $\left[\mathrm{Au}\{\mathrm{PTA}(\mathrm{Me})\}_{4}\right]\left(\mathrm{PF}_{6}\right)_{5} \mathbf{1 0 7}$ was similarly prepared by reacting five equivalents of $[\mathrm{PTA}(\mathrm{Me})] \mathrm{PF}_{6}$ with $\mathrm{AuCl}\left(\mathrm{SMe}_{2}\right)$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution.

A four-coordinate $\mathrm{Au}(\mathrm{I})$ salt containing mixed $\mathrm{PTA} / \mathrm{PTA}(\mathrm{H})$ ligands has also been described. The tris-protonated complex $\left[\mathrm{Au}\{\mathrm{PTA}(\mathrm{H})\}_{3}(\mathrm{PTA})\right]\left(\mathrm{PF}_{6}\right)_{4} \mathbf{1 0 8}$ was obtained when four equivalents of $[\mathrm{PTA}(\mathrm{H})] \mathrm{Cl}$ were added to $\mathrm{Au}(\mathrm{THT}) \mathrm{Cl}$ in $\mathrm{MeCN} / \mathrm{MeOH}$ solution. ${ }^{173}$ Furthermore, the hexafluorophosphate salt, $\left[\mathrm{Au}(\mathrm{PTA})_{4}\right] \mathrm{PF}_{6} 109$ can be prepared by reacting $\mathrm{Na}\left[\mathrm{PF}_{6}\right]$ with $\left[\mathrm{Au}\{\mathrm{PTA}(\mathrm{H})\}_{3}(\mathrm{PTA})\right]\left(\mathrm{PF}_{6}\right)_{4}$ in a $1: 1$ molar ratio. ${ }^{173}$ It is interesting to note that one proton is lost from one of the four protonated PTA ligands and attempts to obtain fully protonated tetrakis-PTA(H) derivatives have so far failed. In this mixed PTA/PTA(H) derivative, a complete exchange of proton takes place between the four coordinated phosphines hence is not fluxional, this is confirmed by a single broad resonance in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum. The X-ray crystal structures of the fourcoordinate complexes 106-109 have been determined with the complex cation sharing a similar tetrahedral arrangement of PTA (106 and 109), PTA(H) (108) and PTA(Me) (107) ligands around the $\mathrm{Au}(\mathrm{I})$ centre. Extensive three-dimensional $\mathrm{N}-\mathrm{H}^{+} \cdots \mathrm{N}$ hydrogenbonding networks, sometimes supported by intermolecular hydrogen-bonding interactions with water solvate molecules has been observed. This provides a robust scaffold for building up supramolecular assemblies of AuL_{4} tetrahedra. ${ }^{173}$

Four-coordinate $\mathrm{Au}(\mathrm{I})$ methylated iodo- as well as phenylated PTA derivatives have been reported. ${ }^{34}$ The complex, $\left[\operatorname{AuI}[\operatorname{PTA}(\mathrm{Me})\}_{3}\right] I_{3} 110$ was prepared by treatment of $\mathrm{AuCl}\left(\mathrm{SMe}_{2}\right)$ with $[\mathrm{PTA}(\mathrm{Me})] \mathrm{I}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$ followed by addition of KI . Metathesis of the three iodide counteranions of complex 110 with $\mathrm{Na}\left[\mathrm{PF}_{6}\right]$ formed the salt $\left[\mathrm{AuI}\{\mathrm{PTA}(\mathrm{Me})\}_{3}\right]\left(\mathrm{PF}_{6}\right)_{3}$ 111, retaining the coordinated iodide to the $\mathrm{Au}(\mathrm{I})$ centre, but the reaction with $\mathrm{Na}\left[\mathrm{BPh}_{4}\right]$ resulted in transfer of a phenyl group to gold, yielding an unexpected dicoordinate gold-phenyl salt $[\mathrm{AuPh}\{\mathrm{PTA}(\mathrm{Me})\}] \mathrm{BPh}_{4}$ 112. ${ }^{174}$ Similarly, the complex AuPh(PTA) 113, was obtained by a phenyl transfer reaction involving $\mathrm{AuCl}(\mathrm{PTA})_{3}$ and $\mathrm{Na}\left[\mathrm{BPh}_{4}\right]$. X-ray quality crystals of $\mathbf{1 1 0}, \mathbf{1 1 2}$ and $\mathbf{1 1 3}$ have been obtained by slow evaporation of aqueous solution and the structures determined by diffraction methods. The structure of $\mathbf{1 1 0}$ is similar to that of $\mathbf{1 0 5}$ with the coordinated
iodide ion lying at $2.936(1) \AA$ from the Au centre, while the two phenylated derivatives 112 and $\mathbf{1 1 3}$ show approximately linear coordinations about the gold atom. ${ }^{174}$

Mononuclear gold(I) complexes have been shown to exhibit interesting luminescence. The AuX (PTA) ($\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$) complexes all show short gold-gold contacts between neighbouring molecules in the solid state, and they also luminescence at $77 \mathrm{~K} .{ }^{168,169}$ In solution, where it is assumed that these weak intermolecular interactions no longer exist, no luminescence is observed. In addition it was found that the strength of the gold-gold interaction increases with an increase in the softness of the ligand X. ${ }^{175}$ In order to investigate whether a correlation between the emission energy and the $\mathrm{Au} \cdots \mathrm{Au}$ distance is a general phenomenon, Fackler Jr. and co-workers ${ }^{175}$ synthesised and studied a series of gold(I) monomeric arylthiolate PTA-Au complexes of formula $\mathrm{Au}(\mathrm{SAr}) \mathrm{PTA} 114,(\mathrm{Ar}=$ $\mathrm{Ph}, o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}, m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}, o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}, m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}, 3,5-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$). These complexes were prepared by firstly deprotonating ArSH with KOH in MeOH followed by reaction with $\mathrm{AuCl}(\mathrm{PTA})$ in MeCN. These complexes are of interest due to their photochemistry as well as the presence of the L-Au-SAr linkage in many antiarthritic and cancerostatic drugs. ${ }^{175}$ They demonstrated that the complexes exhibited luminescence at low temperatures, and the energy of the emission can be varied either by changing the substituents on the ligand or by the presence of gold-gold interactions in the solid state. However, no direct correlation was found in the study between the separation of the neighbouring gold atoms and the emission energy as was found for $\mathrm{AuCl}\{\mathrm{PTA}(\mathrm{H})\}$ and AuCl(PTA). ${ }^{175}$ There was also no effect of the nature of the thiolate groups on the phosphorus chemical shift in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the complexes; only the luminescence properties of the complexes were affected.

The syntheses of other gold(I) thiolato complexes containing PTA or DAPTA, suitable for preparing "liquid metals" for metallic deposition has also been reported. ${ }^{167}$ The thiolato gold(I) complexes $\mathrm{Au}\left(\mathrm{SR}^{2}\right)\left(\mathrm{PR}^{\prime}\right)(\mathrm{SR}=$ various thiolato derivatives as shown in Scheme 1.6; $\mathrm{PR}_{3}^{\prime}=$ PTA, DAPTA) were easily prepared in good yields by treating the complexes $\mathrm{AuCl}\left(\mathrm{PR}_{3}^{\prime}\right)$ with the thiol derivatives in the presence of base (Scheme 1.5). The complexes $\mathrm{AuCl}(\mathrm{PTA})$ and $\mathrm{AuCl}(\mathrm{DAPTA})$ were prepared by replacement of THT from $\mathrm{AuCl}(\mathrm{THT})$ with the appropriate phosphine. ${ }^{167}$ The resulting complexes were characterised by spectroscopic techniques and in the case of AuL7(PTA), $\mathrm{Au}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)(\mathrm{PTA})$, by X -ray diffraction showing a pseudolinear gold(I) coordination.

(L1)

(L6)

(L7)

RS-Au-PR ${ }_{3}$
L1-L9 $\left(\right.$ PR $_{3}=$ PTA, DAPTA $)$

(L2)

(L8)
$\stackrel{\text { or }}{\mathrm{KOH} / \mathrm{MeOH}}$

$$
\begin{aligned}
& \mathrm{E}=\mathrm{O}(\mathbf{L 3}) \\
& \mathrm{E}=\mathrm{S}(\mathbf{L} 4) \\
& \mathrm{E}=\mathrm{NH}(\mathbf{L 5})
\end{aligned}
$$

(L9)

Scheme 1.6

Recently, a range of gold(I) thionate complexes containing water-soluble PTA and DAPTA ligands of the type $\operatorname{Au}(S R)(P),[S R=2$-pyridinethione (Spy), 2-thiopyrimidine (SPyrim); $\mathrm{P}=\mathrm{PTA}$, DAPTA] have been prepared and characterised, and their in vitro cytotoxicities against some human cancer cells evaluated. ${ }^{159}$ The highly water-soluble complexes $\mathrm{Au}(\mathrm{Spy})(\mathrm{PTA}), 115 ; \mathrm{Au}(\mathrm{SPyrim})(\mathrm{PTA}), 116 ; \mathrm{Au}(\mathrm{Spy})(\mathrm{DAPTA}), 117$; $\mathrm{Au}($ SPyrim $)(\mathrm{DAPTA}), 118$ demonstrated some cytoxicity for ovarian, colon, renal and melanoma cancer cell lines on the basis of a comparison with ID_{50} values for some known cancer drugs. ${ }^{159}$ Single crystals of 116 were obtained and X-ray diffraction analysis displays a typical linear geometry about the gold centre. ${ }^{159}$

Alkynyl complexes of gold(I) containing phosphine ligands have been known for many years and studied in great detail because of their luminescence, ${ }^{176,177}$ nonlinear optical properties ${ }^{178}$ and the supramolecular chemistry of gold(I) acetylide complexes. ${ }^{179-181}$ The majority of the known alkynylgold(I) phosphine complexes are insoluble in water, containing either an arylalkylphosphine such as $\mathrm{PPh}_{3}, \mathrm{P}\left(4-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3}, \mathrm{PPh}_{2} \mathrm{Me}, \mathrm{PPhMe}_{2}$ or less frequently PMe_{3} or $\mathrm{PCy}_{3}\left(\mathrm{Cy}=\right.$ cyclohexyl). Laguna and co-workers ${ }^{182}$ have synthesised and characterised some gold(I) and gold(III) alkynyl complexes that are both soluble and stable in water, by utilising a combination of organometallic ligands with solubilising groups in combination with the highly water-soluble PTA ligand. The
reaction of $\mathrm{AuCl}(\mathrm{PTA})$ with propargyl alcohols in the presence of base affords the alkynylgold(I) complexes 119-122 as shown in Scheme 1.7. ${ }^{182}$

Scheme 1.7

The neutral gold(I) complex $\mathrm{Au}_{\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{PTA})} 123$ and the cationic and neutral gold(III) complexes trans-[$\left.\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{PTA})_{2}\right] \mathrm{OTf} 124$ and $\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\mathrm{PTA}) \mathbf{1 2 5}$ were prepared by displacement of the labile THT ligand from $\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{THT})$, trans$\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{THT})_{2}\right] \mathrm{OTf}$ and $\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\mathrm{THT})$, respectively. ${ }^{182}$ Complexes 124 and $\mathbf{1 2 5}$ are the first gold(III) complexes containing PTA and are examples of gold compounds that are soluble and stable in water.

The number of gold(II) complexes is very scarce when compared with the more common gold(I) and gold(III) derivatives. The gold(II) oxidation state is relatively less stable. There is a strong tendency for disproportionation from Au^{2+} to give Au^{+}and Au^{3+} because the odd electron in d^{9} metal complexes is in the $\mathrm{d}_{x}{ }^{2}-y^{2}$ orbital (octahedral tetragonally distorted or square planar arrangement). The formation of a gold-gold bond gives more stable compounds and the $\mathrm{Au}_{2}{ }^{4+}$ core derivatives are the more stable and abundant types of gold(II) complexes. ${ }^{183}$ The synthesis of the dicationic digold(II) complexes $\left[\mathrm{Au}_{2}\left\{\mu-\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2}\right\}_{2}(\mathrm{PTA})_{2}\right](\mathrm{OTf})_{2}, 126$ and $\left[\mathrm{Au}_{2}\{\mu-\right.$ $\left.\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2}\right\}_{2}$ (DAPTA $\left.)_{2}\right](\mathrm{OTf})_{2}, \quad 127$ by metathesis reaction from $\mathrm{Au}_{2} \mathrm{Cl}_{2}\{\mu-$ $\left.\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2}\right\}_{2}$ with the respective silver(I) salts $\mathrm{Ag}(\mathrm{OTf})(\mathrm{PTA})$ and $\mathrm{Ag}(\mathrm{OTf})(\mathrm{DAPTA})$ has been reported (Scheme 1.8). ${ }^{184}$ The complexes were fully characterised by spectroscopic techniques and, in the case of 126, by X-ray diffraction. Analogous dicationic digold(II) complexes were also synthesised and characterised using other water-solube phosphines: mono-, di-, and trisulfonated triphenylphosphines (TPPMS, TPPDS, TPPTS) in place of PTA and DAPTA. ${ }^{184}$

$\mathrm{PR}_{3}=\mathrm{PTA}, \mathrm{DAPTA}, \mathrm{TPPMS}, \mathrm{TPPDS}, \mathrm{TPPTS}$

Scheme 1.8

This suggests that by judicious choice of ligands, even normally unstable organometallic species in labile oxidation states can be solubilised and stabilised in water. Generally, this implies that it can be possible to do chemistry with metal complexes in any attainable oxidation state in water just as easily as in nonaqueous solvents. ${ }^{184}$

1.4 AIMS OF THE RESEARCH

The aims of the research include the preparation of new phosponium salts and phosphorus(III) ligands from cheap, readily available THPC, under aerobic conditions. The primary focus being the preparation and characterisation of new ruthenium, rhodium, iridium, palladium, platinum and gold complexes with these ligands, and in selected cases, as potential catalysts for some organic transformations such as the Heck reaction.

Secondly, to compare these ligands with the well-known cage adamantane-like phosphorus(III) ligand, PTA. A comparison of the complexes with some biologically active compounds in the literature will also be described in this thesis.

CHAPTER TWO

NEW NEUTRAL CYCLIC PHOSPHORUS(III) LIGANDS AND THEIR COORDINATION CHEMISTRY

2.0 INTRODUCTION

Phosphines are phosphorus(III) ligands and their chemistry is centred on the lone pair of electrons and its availability for forming new bonds to phosphorus. Reduction of phosphonium salts is one of the main methods used in the preparation of phosphines. THPC has previously been shown to react with aromatic amines, through a series of condensation and elimination steps to give aniline based tertiary phosphines. ${ }^{10,71-73}$ Frank et al. ${ }^{10}$ have synthesised phosphorus(III) ligands from THPC involving reduction of the phosphonium salt condensation product from its reaction with aniline using $\mathrm{Et}_{3} \mathrm{~N}$ or NH_{3} (Scheme 1.1). The chapter begins with the synthesis and characterisation of two new classes of phosphonium salts by reacting THPC with aniline or phenylenediamine precursors in EtOH as aniline and phenylenediamine derivatives of THPC respectively. The aniline derivatives of THPC are represented as $\left[\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{NHR}\right)_{4}\right] \mathrm{Cl}$, where R is phenyl or a substituted phenyl group. While the phenylenediamine derivatives of THPC are represented as $\left[\mathrm{P}\left\{\left(\mathrm{CH}_{2} \mathrm{NH}\right)_{2} \mathrm{R}\right\}_{2}\right] \mathrm{Cl}$ where R is $\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}, \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{COPh}$ or $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{C}_{4} \mathrm{H}_{4}$.

The coordination potential of the new neutral cyclic phosphorus(III) ligands towards late transition metals including ruthenium(II), rhodium(III), iridium(III), palladium(II) and platinum(II) is also described. The aniline and phenylenediamine derivatives of THPC, neutral cyclic tertiary phosphorus(III) ligands and complexes were characterised by a combination of NMR $\left[{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\},{ }^{1} \mathrm{H}\right]$, MS, FT-IR spectroscopy, microanalysis and in several cases by single crystal X-ray crystallography.

2.1 SYNTHESIS OF ANILINE DERIVATIVES (128-146) OF THPC

A range of new aniline derivatives of THPC were synthesised by reacting THPC and some aniline precursors using the procedure first published by Frank et al. ${ }^{10}$ This procedure was initially used for the development of flame-retardant finishes for cotton based on the reaction of THPC and polyfunctional amines.

Equation 2.1.

Four equivalents of the aniline precursors reacted readily with THPC in ethanol at room temperature under aerobic conditions by a series of condensation and elimination reactions (Equation 2.1). These reactions afforded the desired products in good to excellent yields (Table 2.1). Some of the aniline precursors are solids while others are liquids. The products of these reactions were usually crystalline solids; colourless in most cases though a few were coloured, for instance the reaction between 4-nitroaniline and THPC gave an orange coloured solid. The reaction between aniline and THPC gave a colourless solid which gradually turned yellow on exposure to light, thus all the products were kept in the dark as a precautionary measure.

2.1.1 CHARACTERISATION OF COMPOUNDS 128-146

Characterisation was achieved by MS, microanalysis, FT-IR, NMR and single crystal Xray crystallography in one case. The results are shown in Tables 2.1-2.4. Mass

Spectrometry (MS) is useful in elucidating the molecular weight of a compound, and coupled with the resulting fragmentation pattern gives a clue about the structure of a compound.

Table 2.1 Percentage yield (isolated), FAB-MS and selected FT-IR data ${ }^{2}$ (in cm^{-1}) for compounds 128-146.

	\% yield	$\mathrm{m} / \mathrm{z}[\mathrm{M}-\mathrm{Cl}]^{+}$	v (NH)	$v(\mathrm{C}=\mathrm{O})$	$v(\mathrm{OH})$	$v(\mathrm{CN})$
128	90	455	3237 (vs)			
129	83	527	3250 (vs)			
130	90	592	3242 (vs)			
131	83	770	3253 (vs)			
132	97	527	3265 (vs)			
133	97	959	3246 (s)			
134	95	510	3220 (s)			
135	86	635	3203 (vs)	1675 (vs)	2995 (vs)	
136	97	574	3251 (vs)			
137	71	n.o.	3287 (vs)			
138	83	727	3224 (vs)			
139	76	n.o.	3232 (s)			
140	94	555	3201 (s)			2217 (vs)
141	84	631	3299 (s)	1674 (vs)	2973 (s)	
142	86	n.o.	3237 (vs)	1687 (vs)	2940 (vs)	
143	90	n.o.	3254 (vs)			
144	93	567	3217 (vs)			
145	85	623	3237 (vs)			
146	69	683	3173 (vs)			

${ }^{\mathrm{a}}$ Recorded as a pressed KBr disk; n.o. $=$ not observed.

Thus it complements microanalysis in supporting the proposed molecular formula of a compound. It was not easy to verify the amount of cosolvent present in these samples using ${ }^{1} \mathrm{H}$ NMR spectroscopy since nondried NMR solvents were used. The FAB-MS data for most of the compounds resulting from loss of the chloride ion ($\mathrm{m} / \mathrm{z}[\mathrm{M}-\mathrm{Cl}]^{+}$) are
given in Table 2.1. In almost all the compounds, the fragmentation pattern gives the $\left[\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{NHCH}_{2}\right]^{+}$.fragment, where X is a substituent on phenyl group as the base peak, (with relative intensity of 100%), characteristic of methyleneaniline derivatives. ${ }^{10}$ In compounds 130 and 131 , there was evidence of the $m / z[\mathrm{M}-\mathrm{Cl}]^{+}$peak appearing as a multiplet, separated by two mass units because of the presence of four chlorine and bromine atoms respectively, exhibiting the phenomenon of isotopic abundance.

In the same vein, there were two peaks due to the $\left[\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{NHCH}_{2}\right]^{+}$fragments in 130 and 131 , where X is Cl or Br respectively. In 130 , the two peaks separated by two mass units $(m / z, 140$ and 142) in approximately $3: 1$ ratio corresponds to the fragment, $\left[\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{NHCH}_{2}\right]^{+}$indicative of the presence of chlorine $\left({ }^{35} \mathrm{Cl}\right.$ and $\left.{ }^{37} \mathrm{Cl}\right)$, similarly in 131 , the two peaks ($\mathrm{m} / \mathrm{z} 184$ and 186) in approximately $1: 1$ ratio corresponds to the fragment $\left[\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{NHCH}_{2}\right]^{+}$indicative of the presence of bromine (${ }^{79} \mathrm{Br}$ and ${ }^{81} \mathrm{Br}$). In compounds 137 and 143 the $\mathrm{m} / \mathrm{z}[\mathrm{M}-\mathrm{Cl}]^{+}$peak was not seen but the characteristic $\left[\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{NHCH}_{2}\right]^{+}$ fragments were evident with m / z values of 122 and 162 for compounds 137 and 143 respectively, while in compounds $\mathbf{1 3 9}$ and 142 neither the expected $\mathrm{m} / \mathrm{z}[\mathrm{M}-\mathrm{Cl}]^{+}$peak nor the characteristic $\left[\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{NHCH}_{2}\right]^{+}$fragment was observed probably due to decomposition.

A good idea about the functional groups present in a compound can be established by infrared spectroscopy. Infrared spectroscopy was used to identify various functional groups present in these compounds. All the compounds have an NH group. Compounds 135, 141 and 142, in addition to the NH group also have the functional $\mathrm{C}=\mathrm{O}$ and OH groups while compound 140 has a CN group. Upon condensation, the vibrations from the OH groups in THPC were replaced by similar vibrations corresponding to the NH groups in these compounds. Selected IR data for compounds 128-146 are given in Table 2.1.

The infrared spectra of all the compounds were run as pressed KBr disks and showed the characteristic $\mathrm{v}(\mathrm{NH})$ stretch at about $3200 \mathrm{~cm}^{-1}$. In the infrared spectrum of THPC, also run as KBr disk, the $\mathrm{v}(\mathrm{OH})$ stretches were very strong and broad, observed at ca. 3467 cm^{-1} and absent in compounds 128-146. The OH groups in THPC after the condensation reaction with the aniline precursors gave rise to the NH groups in these compounds, observed at a similar range (3173-3299 cm^{-1}) but were sharper. In addition, compounds 135,141 and 142 which are derivatives of carboxylic acids showed the carbonyl
stretches, $v(\mathrm{C}=\mathrm{O})$ at 1675,1674 and $1687 \mathrm{~cm}^{-1}$ respectively. The corresponding hydroxyl stretches, $\mathrm{v}(\mathrm{OH})$ were observed at 2995,2973 and $2940 \mathrm{~cm}^{-1}$. Compound 140 , whose precursor has the CN functional group, showed the characteristic nitrile stretch $\mathrm{v}(\mathrm{CN})$ at $2217 \mathrm{~cm}^{-1}$. There was no evidence of hydroxyl group, stretches in the IR spectra of the products of these reactions apart from 135,141 and 142 mentioned above which are from the carboxyl group (-COOH). This confirms that, during the condensation reactions all four hydroxyl groups of THPC were replaced by NH groups.

Table 2.2 Microanalysis (\%) and molecular formulae for compounds 128-146. ${ }^{\text {a }}$

	C	H	N	$\mathrm{Molecular}^{2}$ formula
$\mathbf{1 2 8}$	$68.07(68.49)$	$6.60(6.57)$	$11.31(11.41)$	$\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{PCl}$
$\mathbf{1 2 9}$	$59.55(59.74)$	$5.03(5.01)$	$9.93(9.95)$	$\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{~F}_{4} \mathrm{PCl}$
$\mathbf{1 3 0}$	$53.37(53.48)$	$4.45(4.49)$	$8.89(8.91)$	$\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{PCl}{ }_{5}$
$\mathbf{1 3 1}$	$41.42(41.69)$	$3.44(3.50)$	$6.96(6.95)$	$\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{Br} 4 \mathrm{PCl}$
$\mathbf{1 3 2}$	$58.66(58.80)$	$5.14(5.11)$	$9.39(9.80)$	$\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{~F}_{4} \mathrm{PCl} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
$\mathbf{1 3 3}$	$33.74(33.81)$	$2.77(2.84)$	$5.76(5.63)$	$\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{I}_{4} \mathrm{PCl}$
$\mathbf{1 3 4}$	$70.20(70.25)$	$7.02(7.37)$	$10.11(10.24)$	$\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{PCl}$
$\mathbf{1 3 5}$	$56.06(56.10)$	$5.01(5.00)$	$8.13(8.18)$	$\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{PCl} \cdot \mathrm{H}_{2} \mathrm{O}$
$\mathbf{1 3 6}$	$62.78(62.89)$	$6.63(6.60)$	$9.22(9.17)$	$\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{PCl}$
$\mathbf{1 3 7}$	$59.69(59.63)$	$5.77(5.90)$	$9.85(9.93)$	$\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{PCl} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
$\mathbf{1 3 8}$	$50.31(50.37)$	$3.65(3.70)$	$7.35(7.34)$	$\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{~F}_{12} \mathrm{PCl}$
$\mathbf{1 3 9}$	$49.17(49.45)$	$4.34(4.30)$	$16.03(16.48)$	$\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{8} \mathrm{O}_{8} \mathrm{PCl} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
$\mathbf{1 4 0}$	$64.49(64.54)$	$4.94(4.82)$	$19.07(18.82)$	$\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{8} \mathrm{PCl} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$
$\mathbf{1 4 1}$	$53.61(53.30)$	$5.04(5.31)$	$7.42(7.77)$	$\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{PCl} \cdot 3 \mathrm{H}_{2} \mathrm{O}$
$\mathbf{1 4 2}$	$55.09(54.67)$	$4.97(5.16)$	$7.94(7.97)$	$\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{PCl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$\mathbf{1 4 3}$	$73.26(73.41)$	$9.06(9.03)$	$7.85(7.78)$	$\mathrm{C}_{44} \mathrm{H}_{64} \mathrm{~N}_{4} \mathrm{PCl} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$
$\mathbf{1 4 4}$	$70.32(70.11)$	$8.04(8.09)$	$9.01(9.08)$	$\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{PCl} \cdot 0.75 \mathrm{H}_{2} \mathrm{O}$
$\mathbf{1 4 5}$	$72.82(72.87)$	$8.50(8.56)$	$8.45(8.50)$	$\mathrm{C}_{40} \mathrm{H}_{56} \mathrm{~N}_{4} \mathrm{PCl}$
$\mathbf{1 4 6}$	$52.16(52.44)$	$3.94(3.85)$	$15.12(15.43)$	$\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{~N}_{8} \mathrm{~S}_{4} \mathrm{PCl} \cdot 0.75 \mathrm{H}_{2} \mathrm{O}$

[^0]Microanalysis gives the percentage composition of the elements present in the compound. Agreement between observed and calculated values ($c a . \pm 0.50 \%$) often supports a given molecular formula for a compound under consideration. The microanalytical data of the compounds are shown in Table 2.2. The agreement between the observed and calculated CHN values is consistent with the formulae of the compounds, 128-146.

Table 2.3 Selected ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data (in ppm) for compounds 128-146. ${ }^{\text {a }}$

Compound	$\delta(\mathrm{P})$	Other $\delta(\mathrm{P})$
128	9.13	30.62, -50.13
129	8.51	30.62, -51.65
130	11.05	30.58, -52.13
131	11.37	26.93, -51.91
132	30.36	$44.00,8.21$
133	11.84	30.26, -51.50
134	7.95	-30.97, -50.79
135	31.50	29.81, 15.03
136	6.70	-35.83, -50.63
137	5.71	-36.26, -51.04
138	30.41	17.72, -37.76
139	28.59	-32.96, -43.85
140	30.33	28.83, -34.84
141	31.61	-33.69
142	11.06	30.48, -53.98
143	8.29	-48.40
144	8.19	-49.78
145	8.22	-49.41
146	29.97	

${ }^{\text {a }}$ All NMR recorded in d^{6}-DMSO.

The solution ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR spectra of compounds $128-146$ were recorded in d^{6} DMSO. While the ${ }^{31} P\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of THPC in d^{6}-DMSO showed a single resonance around 26.5 ppm , indicative of the presence of a $\mathrm{P}(\mathrm{V})$ compound, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$

NMR spectra of salts $128-146$ in nondried d^{6} - DMSO showed more than one ${ }^{31} \mathrm{P}$ resonance indicating the presence of $\mathrm{P}(\mathrm{V})$ and/or $\mathrm{P}(\mathrm{IIII})$ compounds except 146 where a single resonance was observed at 29.97 ppm (Table 2.3). The multiple resonances could be due to possible decomposition in the NMR solvent, a similar observation was made by Frank et al. ${ }^{10}$

Although the complex ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of these compounds suggested a mixture of phosphorus containing products resulting from the possible decomposition of either $\mathrm{P}^{\text {III }}$ or P^{V} compounds such as tertiary phosphines (ca. -50.00 ppm) and phosphine oxide ($c a$. $30.00 \mathrm{ppm})$ respectively in the NMR solvent, the reaction of some of these salts with $\mathrm{Et}_{3} \mathrm{~N}$ gives clean products as discussed in Section 2.3. With the mixture of phosphorus containing compounds formed in the NMR solvent mentioned above, the ${ }^{1} \mathrm{H}$ NMR spectra appear complex hence were not analysed at all. However, in 146 where a single phosphorus resonance (100%) was observed, the various proton resonances were assigned as follows: $7.01-7.83$ (m, arom. H), $4.75-5.08 \mathrm{ppm}\left(\mathrm{m}, \mathrm{CH}_{2}\right), 8.89 \mathrm{ppm}(\mathrm{s}, \mathrm{NH})$ consistent with the expected product.

In the case of compound 129 , X-ray quality crystals were obtained when the EtOH filtrate was allowed to stand for more than 24 h , information about molecular geometry, bond lengths and angles was obtained from single crystal X-ray diffraction analysis of 129 (Figure 2.1 and Table 2.4).

Figure 2.1 Molecular structure of $\left[\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{NH}-4-\mathrm{FC}_{6} \mathrm{H}_{4}\right)_{4}\right] \mathrm{Cl}, 129$, showing H -bond interactions. One chloride is unique.

Selected bond lengths, angles as well as hydrogen bond parameters for $\mathbf{1 2 9}$ are given in Table 2.4.

The $\mathrm{P}(1)$ atom exhibits a tetrahedral environment with $\mathrm{C}-\mathrm{P}-\mathrm{C}$ bond angles in the range of between $105.81(16)$ and $114.91(15)^{\circ}$; and the average $\mathrm{P}-\mathrm{C}$ bond lengths of $1.835(3) \AA$ falls within the range reported for other organophosphorus compounds: $\left[\left(\mathrm{HOCH}_{2}\right)_{3} \mathrm{PCH}_{2}\right]_{2} \mathrm{Cl}_{2},{ }^{33}\left(\mathrm{HOCH}_{2}\right)_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{P}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}{ }^{185} \mathrm{R}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PR}_{2}(\mathrm{R}=\mathrm{Me}, \mathrm{Et}$, or $\left.{ }^{\mathrm{i} P r}\right)^{186}$ and $\left[\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Fc}\right)\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}\right] \mathrm{Cl},\left\{\mathrm{Fc}=\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right)\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}$. ${ }^{187}$

Table 2.4 Selected bond lengths and angles for 129. ${ }^{\text {a }}$

Bond lengths (\AA)		Bond lengths (\AA)		Bond angles ($\left.{ }^{\circ}\right)$	
$\mathrm{P}(1)-\mathrm{C}(1)$	$1.855(3)$	$\mathrm{C}(1)-\mathrm{N}(1)$	$1.433(5)$	$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(22)$	$108.69(17)$
$\mathrm{P}(1)-\mathrm{C}(8)$	$1.840(3)$	$\mathrm{C}(8)-\mathrm{N}(2)$	$1.448(4)$	$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(8)$	$114.91(15)$
$\mathrm{P}(1)-\mathrm{C}(15)$	$1.812(3)$	$\mathrm{C}(15)-\mathrm{N}(3)$	$1.449(4)$	$\mathrm{C}(8)-\mathrm{P}(1)-\mathrm{C}(15)$	$105.81(16)$
$\mathrm{P}(1)-\mathrm{C}(22)$	$1.831(4)$	$\mathrm{C}(22)-\mathrm{N}(4)$	$1.445(5)$	$\mathrm{C}(15)-\mathrm{P}(1)-\mathrm{C}(22)$	$108.27(16)$

Selected hydrogen bonding contacts

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{d}(\mathrm{D}-\mathrm{H})(\AA)$	$\mathrm{d}(\mathrm{H} \cdots \mathrm{A})(\AA)$	$\mathrm{d}(\mathrm{D} \cdots \mathrm{A})(\AA)$	$<(\mathrm{DHA})\left(^{\circ}\right)$
$\mathrm{N}(1)-\mathrm{H}(1) \cdots \mathrm{Cl}(1 \mathrm{~A})$	$0.88(2)$	$2.57(3)$	$3.416(4)$	$163(5)$
$\mathrm{N}(2)-\mathrm{H}(2) \cdots \mathrm{Cl}(1)$	$0.822(19)$	$2.49(3)$	$3.251(3)$	$154(4)$
$\mathrm{N}(3)-\mathrm{H}(3) \cdots \mathrm{Cl}(1 \mathrm{~B})$	$0.836(19)$	$2.66(2)$	$3.487(3)$	$172(4)$
$\mathrm{N}(4)-\mathrm{H}(4) \cdots \mathrm{Cl}(1 \mathrm{~A})$	$0.851(19)$	$2.50(2)$	$3.312(3)$	$161(4)$

${ }^{\text {a }}$ Estimated standard deviations in parentheses.

The chloride ion is hydrogen bonded to the secondary amine hydrogens; the linearity of the H-bonds (DHA bond angles) as given in Table 2.4 is indicative of strong and directional H-bond interactions. In the $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ intermolecular bonds, the average $\mathrm{N}-\mathrm{H}$ bond length of $0.85(2) \AA$ and $\mathrm{H} \cdots \mathrm{Cl}$ of $2.56(3) \AA$ are comparable to $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ bonds with the $\mathrm{O}-\mathrm{H}$ distances between $0.82(3)$ and $0.91(3)$ and the $\mathrm{H} \cdots \mathrm{Cl}$ distances between 2.17(3) and $2.23(3) \AA$ found in $\left.\left[\left(\mathrm{OHCH}_{2}\right)_{3} \mathrm{PCH}_{2}\right)_{3} \mathrm{PCH}_{2}\right]_{2} \mathrm{Cl}_{2}$, also suggestive of relatively strong hydrogen bonding. ${ }^{33,88,188,189}$ The crystal data and structure refinement details for $\mathbf{1 2 9}$ are shown in Appendix 8.1.

2.2 SYNTHESIS OF PHENYLENEDIAMINE DERIVATIVES (147-150) OF THPC

A range of new phosphonium salts were synthesised by reacting THPC with different phenylenediamine precursors in ethanol using a similar procedure first published by Frank et al. ${ }^{10}$

Equation 2.2a

150
Equation 2.2b

Four equivalents of phenylenediamine derivatives was initially chosen, in the anticipation of forming $\left[\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{NHR}\right)_{4}\right] \mathrm{Cl}$ type of compounds as was in the case with the aniline precursors. However, analysis of the products obtained agrees with the formation of a spirocylic compound which requires two equivalents of the phenylenediamine derivatives as shown in Equations 2.2a and 2.2b. The phosphonium chlorides were obtained in good to excellent yields as given in Table 2.5. The phosphonium ions in these salts form a
spirocycle in which the central atom is phosphorus. The products are crystalline and coloured solids.

2.2.1 CHARACTERISATION OF COMPOUNDS 147-150

Characterisation was achieved by MS, microanalysis, FT-IR, NMR and single crystal Xray crystallography as in the case of Section 2.1.1. The results are given in Tables 2.52.8. The FAB-MS, data for the compounds resulting from the loss of the chloride ions ${ }^{[\mathrm{M}-\mathrm{Cl}]^{+}}$are given in Table 2.5 and are consistent with the molecular formulae of the phosphonium ions of these salts.

Table 2.5 Percentage yield (isolated), FAB-MS and selected FT-IR data ${ }^{\mathrm{a}}$ (in cm^{-1}) for compounds 147-150.

Compound	\% yield	$m / z\left[\mathrm{M}-\mathrm{Cl}^{+}\right.$	$v(\mathrm{NH})$	$v(\mathrm{C}=\mathrm{O})$	$v(\mathrm{CH})$
147	91	299	$3263(\mathrm{vs})$		
148	83	327	$3273(\mathrm{vs})$		$3527(\mathrm{~s})$
149	87	507	$3336(v s)$	$1637(\mathrm{vs})$	
150	74	399	$3255(\mathrm{vs})$		

${ }^{\mathbf{a}}$ Recorded as a pressed KBr disk.

The FT-IR spectra of compounds $147-150$ were run as pressed KBr disks and the $v(\mathrm{NH})$ stretches observed at about $3200-3300 \mathrm{~cm}^{-1}$ (Table 2.5) were not significantly different from those of the aniline derivatives of THPC (Table 2.1). Thus the observed $v(\mathrm{NH})$ stretches in both types of phosphonium salts synthesised were higher than the expected value of $2250-2700 \mathrm{~cm}^{-1}$ probably due to hydrogen bonding. ${ }^{190}$ In compounds 148 and 149 , in addition to the $v(\mathrm{NH})$ stretches, the infrared vibrations at 3527 and $1637 \mathrm{~cm}^{-1}$ are assigned to the $v(\mathrm{CH})$ and $v(\mathrm{CO})$ stretches respectively.

The microanalytical data (Table 2.6), were within acceptable limits hence are consistent with the formulae of compounds 147-150. Coprecipitation of solvent molecules was evident in all the compounds except 147 as observed in the microanalytical data.

Table 2.6 Microanalysis (\%) and molecular formulae for compounds 147-150. ${ }^{\text {a }}$

Compound	C	H	N	Molecular formula
147	$57.28(57.40)$	$5.94(6.02)$	$16.85(16.74)$	$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{PCl}$
148	$56.35(56.76)$	$6.46(6.88)$	$14.61(14.71)$	$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{PCl} \cdot \mathrm{H}_{2} \mathrm{O}$
149	$64.77(64.75)$	$5.14(5.34)$	$10.50(10.07)$	$\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{PCl} \cdot 0.75 \mathrm{H}_{2} \mathrm{O}$
150	$62.41(62.41)$	$5.54(5.89)$	$11.79(12.13)$	$\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{PCl} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$

${ }^{\text {a }}$ Calculated values in parentheses.

The ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right)$ NMR spectra of these salts, recorded in d^{6}-DMSO, gave phosphorus resonances in the range $\delta(\mathrm{P}) 24.52-28.56 \mathrm{ppm}$ as given in Table 2.7. Compounds 147 149 gave single resonances suggestive of the absence of any phosphorus containing decomposition products.

Table 2.7 Selected NMR data (in ppm or Hz) for compounds 147-150. ${ }^{\text {a }}$

	$\delta(\mathrm{P})$	Other $\delta(\mathrm{P})$	$\delta(\mathrm{H}) /$ arom.	$\delta(\mathrm{H}) / \mathrm{CH}_{2}$	$\delta(\mathrm{H}) / \mathrm{NH}$	${ }^{3} J_{\mathrm{PH}}$
147	24.71		$6.37-6.83$	$4.01-4.18$	$5.81-5.87$	18.0
148	25.05		$6.44-6.90$	$4.04-4.19$	$5.69-5.81$	n.r.
149	24.52		$6.45-6.78$	$4.45-4.11$		n.r.
150	28.56	-41.64	$7.06-7.58$	$3.38-3.51$		n.r.

${ }^{\text {a }}$ All NMR recorded in $\mathrm{d}^{6}-$ DMSO, n.r. $=$ not resolved.

On the other hand, compound 150 gave a minor resonance ($<3 \%$) at -41.64 ppm significantly downfield of the major phosphorus signal at 28.56 ppm , indicating the presence of a small proportion of phosphorus containing decomposition products in the NMR solvent. Unlike the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the aniline-based phosphonium salts with multiple resonances, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the phenylenediamine-based phosphonium salts exhibited relatively fewer resonances. In both 148 and 149 , with Me and COPh substituents respectively, single phosphorus resonances at 25.05 and 24.52 ppm were observed. This suggested the existence of only one isomer or two possible isomers with equivalent ${ }^{31} \mathrm{P}$ resonanaces (Figure 2.2).

Figure 2.2 Possible isomers of 148 or 149.

Selected ${ }^{1} \mathrm{H}$ NMR data are given in Table 2.7. The aromatic resonances for these compounds are multiplets in the range $6.37-7.58 \mathrm{ppm}$, while the CH_{2} resonances were in the range $3.38-4.19 \mathrm{ppm}$. In compounds 147 and 148 , the NH protons were also observed as multiplets in the range $5.69-5.87 \mathrm{ppm}$, they were however not observed in 149 and 150 probably being overlapped by the aromatic protons. In compound 148 , there were multiplets observed in the region $1.04-1.11 \mathrm{ppm}$, these could be assigned to the CH_{3} protons.

A few X-ray quality crystals of compound 147 were obtained from the EtOH filtrate of the reaction of four equivalents of 1,2-phenylenediamine with THPC when allowed to stand for more than 24 h . Single-crystal X-ray structure determination of 147 was done which gave a phosphorus based spirocycle which co-crystallised with one mole of the phenylenediamine precursor (1,2-phenylenediamine), as shown in Figure 2.3. This represents the first crystallographic example of a spirocyclic compound in which the central atom is phosphorus. This is supported by the absence of any hits from a CSD Search. ${ }^{191,192}$

Figure 2.3 Molecular structure of $\left[\mathrm{P}\left\{\left(\mathrm{CH}_{2} \mathrm{NH}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\}_{2}\right] \mathrm{Cl}$, 147 with one mole of the precursor 1,2-C $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{NH}_{2}\right)_{2}$.

Figure 2.4 Packing plot for compound $147 \cdot 1,2-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{NH}_{2}\right)_{2}$.

Table 2.8 Selected bond lengths and angles for 147. ${ }^{\text {a }}$

Bond lengths (\AA)		Bond lengths (\AA)		Bond angles (${ }^{\circ}$)	
$\mathrm{P}(1)-\mathrm{C}(1)$	$1.8161(17)$	$\mathrm{C}(1)-\mathrm{N}(1)$	$1.464(2)$	$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(16)$	$115.56(8)$
$\mathrm{P}(1)-\mathrm{C}(8)$	$1.8124(17)$	$\mathrm{C}(8)-\mathrm{N}(2)$	$1.469(2)$	$\mathrm{C}(8)-\mathrm{P}(1)-\mathrm{C}(1)$	$103.98(8)$
$\mathrm{P}(1)-\mathrm{C}(9)$	$1.8163(17)$	$\mathrm{C}(9)-\mathrm{N}(3)$	$1.462(2)$	$\mathrm{C}(8)-\mathrm{P}(1)-\mathrm{C}(9)$	$119.66(8)$
$\mathrm{P}(1)-\mathrm{C}(16)$	$1.8163(17)$	$\mathrm{C}(16)-\mathrm{N}(4)$	$1.460(2)$	$\mathrm{C}(9)-\mathrm{P}(1)-\mathrm{C}(16)$	$103.55(8)$

Selected hydrogen bonding contacts

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{d}(\mathrm{D}-\mathrm{H})(\AA)$	$\mathrm{d}(\mathrm{H} \cdots \mathrm{A})(\AA)$	$\mathrm{d}(\mathrm{D} \cdots \mathrm{A})(\AA)$	$<(\mathrm{DHA})\left({ }^{\circ}\right)$
$\mathrm{N}(1)-\mathrm{H}(1) \cdots \mathrm{Cl}(1 \mathrm{~A})$	$0.82(2)$	$2.80(2)$	$3.5875(15)$	$162(2)$
$\mathrm{N}(2)-\mathrm{H}(2) \cdots \mathrm{Cl}(1)$	$0.81(2)$	$2.58(2)$	$3.3911(15)$	$175(2)$
$\mathrm{N}(5)-\mathrm{H}(5 \mathrm{~B}) \cdots \mathrm{Cl}(1 \mathrm{~B})$	$0.84(3)$	$2.59(3)$	$3.3763(18)$	$155(2)$
$\mathrm{N}(5)-\mathrm{H}(5 \mathrm{~A}) \cdots \mathrm{Cl}(1 \mathrm{C})$	$0.90(3)$	$2.45(3)$	$3.3265(18)$	$165(2)$
$\mathrm{N}(6)-\mathrm{H}(6 \mathrm{~A}) \cdots \mathrm{Cl}(1 \mathrm{~B})$	$0.87(3)$	$2.52(3)$	$3.3732(18)$	$168(2)$

${ }^{2}$ Estimated standard deviations in parentheses.

The molecular geometry, bond lengths and angles were obtained from the single-crystal X-ray diffraction analysis. Selected bond lengths, angles as well as hydrogen bond lengths and angles for $\mathbf{1 4 7}$ are shown in Table 2.8.

The phosphorus atom, as in the case of $\mathbf{1 2 9}$, exhibits a tetrahedral geometry with a C-P-C bond angle range of between $103.55(8)$ and $119.66(8)^{\circ}$. As is expected, because of the spirocycle, two of the tetrahedral angles engaged in the rings are contracted [103.98(8) ${ }^{\circ}$ and $103.55(8)^{\circ}$, less than the normal tetrahedral angle of 109°] while the rest are expanded [115.56(8) ${ }^{\circ}$ and $119.66(8)^{\circ}$, greater than the normal tetrahedral angle]. The average $\mathrm{P}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bond lengths of $1.815(17) \AA$ and $1.464(2) \AA$ respectively are comparable to those found in 129 and other reported structures. ${ }^{33,185,186}$

The packing plot exhibits a pattern where two or more spirocycles and the co-crystallised precursors (1,2-phenylenediamine) are linked together via the chloride counterions involving $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ intermolecular H -bonding as shown in Figure 2.4. The chloride ions are again hydrogen bonded to the secondary amine hydrogens with the hydrogen bonding
data similar to those of $\mathbf{1 2 9}$ and indicative of strong hydrogen bonding. The crystal data and structure refinement details for 147 are shown in Appendix 8.2.

Reaction of the phenylenediamine derivatives of THPC with $E t_{3} \mathrm{~N}$ to obtain the corresponding P (III) compounds was attempted. Unlike the case of the aniline based phosphonium salts which were soluble in acetone and reacted with $\mathrm{Et}_{3} \mathrm{~N}$ to form clean $\mathrm{P}\left(\right.$ III) compounds in high yields, the reaction of 147 with $\mathrm{Et}_{3} \mathrm{~N}$ in acetone following a similar procedure first published by Frank et al. ${ }^{10}$ could not be performed due to extreme insolubility of 147 in acetone.

2.2.2 SYNTHESIS OF COMPOUND [P\{(CH2NH $\left.\left.)_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\}_{2}\right] \mathrm{BPh}_{4} \mathbf{1 5 1}$

Anion metathesis of the phenylenediamine derivatives of THPC was demonstrated when compound 147 was reacted with 1.5 equivalents of $\mathrm{Na}\left[\mathrm{BPh}_{4}\right]$ in HPLC grade MeOH . This was followed by concentration of the resulting solution under reduced pressure and addition of distilled water afforded the desired compound $\left[\mathrm{P}\left\{\left(\mathrm{CH}_{2} \mathrm{NH}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\}_{2}\right] \mathrm{BPh}_{4}$, 151 in high yield. Compound 151 was similarly characterised as in the case of 147 . The change in the counterion does not significantly affect the spectroscopic properties, for example the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 151 recorded in d^{6}-DMSO was similar to that of 147 with a single phosphorus resonance at $\delta(\mathrm{P}) 24.53 \mathrm{ppm}$ (See Experimental Section).

2.3 SYNTHESIS OF DIAZAPHOSPHORINANE LIGANDS 152-161

A range of new diazaphosphorinane ligands were synthesised by reacting some of the aniline derivatives of THPC synthesised in Section 2.1 with triethylamine using the procedure first published by Frank et al. ${ }^{10}$ involving intramolecular mechanism (Scheme 1.2). The aniline derivatives of THPC react readily with triethylamine in acetone at room temperature under aerobic conditions giving a precipitate of triethylamine hydrochloride and a pale yellow oil which, after separation, followed by concentration and stirring vigorously with ethanol (Equation 2.3) gives compounds 152-161. All the products were colourless solids and the reactions afforded the desired products in good to excellent yield as given in Table 2.9.

$$
\text { Where } \mathrm{R}=\mathrm{X}=\mathrm{Y}=\mathrm{H}, 152 ; \mathrm{X}=\mathrm{F}, \mathrm{Y}=\mathrm{H}, 153 ;
$$

Equation 2.3.

2.3.1 CHARACTERISATION OF COMPOUNDS 152-161

As in the previous cases, characterisation was achieved by MS, microanalysis, FT-IR, NMR and single crystal X-ray crystallography. The FAB-MS data for most of the compounds are given in Table 2.9. In all the compounds, the fragmentation pattern as in the case of the precursor aniline-based phosphonium salts (Section 2.1), give the $\left[\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{NHCH}_{2}\right]^{+}$fragment, where X is a substituent on phenyl group as the base peak, (with relative intensity of 100%), characteristic of methyleneaniline derivatives. ${ }^{10}$ As in the case of the precursor phosphonium salts, there were two peaks due to the $\left[\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{NHCH}_{2}\right]^{+}$fragments in 154 and 155 , where X is Cl or Br respectively. In 154 , the two peaks separated by two mass units ($\mathrm{m} / \mathrm{z}, 140$ and 142) in approximately $3: 1$ ratio corresponds to the fragment, $\left[\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{NHCH}_{2}\right]^{+}$indicative of the presence of chlorine $\left({ }^{35} \mathrm{Cl}\right.$ and $\left.{ }^{37} \mathrm{Cl}\right)$, similarly in 155 , the two peaks ($\mathrm{m} / \mathrm{z} 184$ and 186) in approximately $1: 1$ ratio corresponds to the fragment $\left[\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{NHCH}_{2}\right]^{+}$indicative of the presence of bromine (${ }^{79} \mathrm{Br}$ and ${ }^{81} \mathrm{Br}$).

The infrared spectra of all the compounds were run as pressed KBr disks and displayed the characteristic $v(\mathrm{NH})$ stretches in the range $3299-3351 \mathrm{~cm}^{-1}$ (Table 2.9) which is within the expected range, but higher than values for the precursor salts (Table 2.1).

Table 2.9 Percentage yield (isolated), FAB-MS and selected FT-IR data ${ }^{\mathrm{a}}$ (in cm^{-1}) for compounds 152-161.

Compound	\% yield	$m / z[\mathrm{M}]^{+}$	$v(\mathrm{NH})$
152	78	361	$3301(\mathrm{vs})$
153	68	415	$3351(\mathrm{~s})$
154	61	464	$3299(\mathrm{~s})$
155	62	598	$3299(\mathrm{vs})$
156	78	415	$3302(\mathrm{vs})$
157	81	n.o.	$3301(\mathrm{~m})$
158	92	403	$3301(\mathrm{~s})$
159	75	445	$3307(\mathrm{~s})$
160	88	n.o.	$3300(\mathrm{~s})$
161	83	529	$3321(\mathrm{~s})$

${ }^{\mathrm{a}}$ Recorded as a pressed KBr disk; n.o. $=$ not observed.

Table 2.10 Microanalysis (\%) and molecular formulae for compounds 152-161. ${ }^{\text {a }}$

Compound	C	H	N	Molecular formula
$\mathbf{1 5 2}$	$72.90(73.10)$	$6.61(6.69)$	$11.52(11.63)$	$\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{P}$
$\mathbf{1 5 3}$	$63.62(63.61)$	$5.01(5.10)$	$10.04(10.12)$	$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{~F}_{3} \mathrm{P}$
$\mathbf{1 5 4}$	$56.80(56.83)$	$4.43(4.55)$	$8.95(9.04)$	$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{Cl}_{3} \mathrm{P}$
$\mathbf{1 5 5}$	$44.02(44.18)$	$3.41(3.54)$	$6.86(7.03)$	$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{Br} \mathrm{P}$
$\mathbf{1 5 6}$	$63.47(63.61)$	$4.97(5.10)$	$10.05(10.12)$	$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{~F}_{3} \mathrm{P}$
$\mathbf{1 5 7}$	$36.07(35.75)$	$2.75(2.86)$	$5.48(5.69)$	$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{I}_{3} \mathrm{P}$
$\mathbf{1 5 8}$	$74.12(74.42)$	$7.36(7.49)$	$10.61(10.41)$	$\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{P}$
$\mathbf{1 5 9}$	$73.22(73.26)$	$8.08(8.23)$	$8.89(9.15)$	$\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{P} \cdot 0.75 \mathrm{H}_{2} \mathrm{O}$
$\mathbf{1 6 0}$	$74.52(74.29)$	$8.60(8.75)$	$8.56(8.38)$	$\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{P} \cdot 0.75 \mathrm{H}_{2} \mathrm{O}$
$\mathbf{1 6 1}$	$76.14(76.44)$	$8.96(9.15)$	$7.87(7.88)$	$\mathrm{C}_{34} \mathrm{H}_{48} \mathrm{~N}_{3} \mathrm{P} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$

${ }^{\text {a }}$ Calculated values in parentheses.

In the microanalytical data, observed and calculated CHN values agree within $\pm 0.50 \%$, hence are consistent with the compounds 152-161 (Table 2.10).

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra in d^{6}-DMSO were relatively clean with one or two ${ }^{31} \mathrm{P}$ signals; the major ${ }^{31} \mathrm{P}$ signal at between -48.28 and -52.87 ppm (Table 2.11). All the compounds had single phosphorus ${ }^{31} \mathrm{P}$ signals except $155,157,158$ and 160 which display two ${ }^{31} \mathrm{P}$ signals, probably due to possible decomposition in the NMR solvent; the minor signal (< 10%) being at between -54.07 and -56.82 ppm . The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compounds 152-161 showed a significant upfield shift from about 10.00 ppm in the precursor phosphonium salts (phosphorus(V) compound) to about -50.00 ppm , thus confirming the formation of a new compound (phosphorus(III) compound). The single ${ }^{31} \mathrm{P}$ signal in 153 and 156 , the 4 - and 2-fluoro analogues respectively suggests that there are no J_{PF} couplings in these compounds, probably due to the distance between these NMR active nuclei. In 153 , the P and F atoms are seven bonds apart, while in 156 , they are five bonds apart hence ${ }^{7} J_{\text {PF }}$ or ${ }^{5} J_{\text {PF }}$ couplings respectively were not observed. The spin quantum number, I of both ${ }^{31} \mathrm{P}$ and ${ }^{19} \mathrm{~F}$ nuclei is greater than zero $(I=1 / 2)$, thus if the atoms are close to each other, coupling would have been observed in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compounds 153 and 156.
Table 2.11 Selected NMR data (in ppm or Hz) for compounds 152-161. ${ }^{\text {a }}$

	$\delta(\mathrm{P})$	Other $\delta(\mathrm{P})$	$\delta(\mathrm{H}) /$ arom. $^{\mathrm{b}}$	$\delta(\mathrm{H}) / \mathrm{NH}^{\mathrm{c}}$	$\delta(\mathrm{H}) / \mathrm{CH}_{2}{ }^{\mathrm{d}}$	$\delta(\mathrm{H}) / \mathrm{CH}_{2}{ }^{\mathrm{e}}$	$\delta(\mathrm{H}) / \mathrm{CH}_{2}{ }^{\mathrm{f}}$	$\delta(\mathrm{H}) / \mathrm{CH}_{2}{ }^{\mathrm{g}}$
152	-49.77		$6.48-7.27$	5.74	$5.02(13.6)$	$4.70(13.6)$	$3.63-3.95$	3.45
153	-51.06		$6.30-7.38$	5.72	$4.87(13.2)$	$4.61(13.2)$	$3.53-4.04$	3.36
$\mathbf{1 5 4}$	-51.67		$6.50-7.26$	6.02	$4.98(13.6)$	$4.77(13.6)$	$3.77-3.93$	3.34
$\mathbf{1 5 5}$	-51.61	-56.82	$6.35-7.37$	6.09	$4.97(13.6)$	$4.78(13.6)$	$3.45-3.92$	3.37
156	-52.87		$6.69-7.38$	5.55	$4.59(12.8)$	$4.50(12.8)$	$3.38-3.79$	3.33
157	-50.95	-56.29	$6.38-7.60$	6.04	$4.96(13.6)$	$4.77(13.6)$	$3.42-3.91$	3.32
158	-50.43	-54.41	$6.43-7.36$	5.48	$4.88(13.2)$	$4.58(13.2)$	$3.54-3.91$	3.34
159	-49.65		$6.43-7.08$	5.53	$4.90(13.6)$	$4.57(13.6)$	$3.68-3.90$	3.38
160	-49.36	-54.07	$6.42-7.05$	5.49	$4.92(12.8)$	$4.53(12.8)$	$3.51-3.87$	3.40
161	-48.28		$6.37-7.26$	5.48	$5.12(13.6)$	$4.97(13.6)$	$3.55-3.89$	3.42

[^1]Selected ${ }^{1}$ H NMR data are given in Table 2.11. The aromatic proton signals for these compounds were multiplets observed in the range $6.30-7.60 \mathrm{ppm}$. The NH proton signals were observed as singlets in all the compounds at between 5.48 and 6.09 ppm , while some of the CH_{2} protons were doublets with ${ }^{2} J_{\mathrm{HH}}$ couplings of about 13 Hz .

Crystals of 156 were obtained from the EtOH filtrate of the reaction between $\left[\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{NH}-2-\mathrm{FC}_{6} \mathrm{H}_{4}\right)_{4}\right] \mathrm{Cl}$ and $\mathrm{Et}_{3} \mathrm{~N}$ (Equation 2.3) when allowed to stand for more than 24 h , and the X-ray structure has been determined. The X-ray structure of $\mathbf{1 5 6}$ reveals a six-membered $\mathrm{P}-\mathrm{C}-\mathrm{N}-\mathrm{C}-\mathrm{N}-\mathrm{C}$ ring, pyramidal around the phosphorus atom which is at the apical position (Figure 2.5). The structure reveals that the P atom is separated from each of the three F atoms by five bonds. This explains the absence of J_{PF} coupling in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 156.

Figure 2.5 Molecular structure of 156.

The lone pair of electrons on the phosphorus(III) centre make it a potential ligand. Unlike in the case of 129 , where there was evidence of strong hydrogen bonding obtained from the X-ray diffraction analysis, there was no evidence for hydrogen bonding in 156. The formation of $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ intramolecular H -bonding, involving $\mathrm{N}(1)$, $H(1)$ and $F(1)$ is possible, but such H-bonds are rarely formed, consistent with the observation by Dunitz et al. ${ }^{193}$ that covalently bound fluorine (in contrast to anionic fluoride) hardly ever acts as a hydrogen-bond acceptor.

Table 2.12 Selected bond lengths and angles for 156 . $^{\text {a }}$

Bond lengths (\AA)		Bond lengths ($\AA)$		Bond angles ($\left.{ }^{\circ}\right)$	
$\mathrm{P}(1)-\mathrm{C}(1)$	$1.853(2)$	$\mathrm{C}(1)-\mathrm{N}(1)$	$1.452(3)$	$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(10)$	$100.93(10)$
$\mathrm{P}(1)-\mathrm{C}(8)$	$1.847(2)$	$\mathrm{C}(8)-\mathrm{N}(2)$	$1.478(3)$	$\mathrm{C}(8)-\mathrm{P}(1)-\mathrm{C}(10)$	$99.26(10)$
$\mathrm{P}(1)-\mathrm{C}(10)$	$1.858(2)$	$\mathrm{C}(10)-\mathrm{N}(3)$	$1.474(3)$	$\mathrm{C}(8)-\mathrm{P}(1)-\mathrm{C}(10)$	$98.87(10)$

${ }^{2}$ Estimated standard deviations in parentheses.

Selected bond lengths and angles for 156 are given in Table 2.12; the average $\mathrm{P}-\mathrm{C}$ bond length about the apical phosphorus atom is 1.853(2) \AA. The P-C bond lengths are in the range 1.847 (2) and 1.858(2) \AA and are similar to those observed in 129 as well as in other previously reported compounds. ${ }^{33,185,186}$ The crystal data and structure refinement details for 156 are shown in Appendix 8.3. The average $\mathrm{C}-\mathrm{N}$ bond length of 1.468 (3) \AA is also comparable with the average $\mathrm{C}-\mathrm{N}$ bond length reported for 129 and other previously reported compounds. ${ }^{194}$ The usual pyramidal configuration is retained with C-P-C angles of $100.93(10), 99.26(10)$ and $98.87(10)^{\circ}$. These values are similar to those in the well known pyramidal compound, triphenylphosphine. ${ }^{195}$

2.3.2 SYNTHESIS OF COMPOUND P($\left.\mathrm{CH}_{2} \mathrm{NHC}_{6} \mathrm{H}_{5}\right)_{\mathbf{3}} \mathbf{1 6 2}$

In addition to the diazaphosphorinane ligands mentioned above, the preparation of a range of new tertiary phosphines by bubbling ammonia into solutions of selected aniline derivatives of THPC earlier prepared was attempted, using the procedure first published by Frank et al. ${ }^{10}$ Ammonia was bubbled into a slurry of compounds 128-134, in acetone at room temperature and ammonium chloride precipitate was separated from the resulting yellow oil by filtration. The solvent was removed under reduced pressure and the yellow oil became viscous, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the corresponding oils were taken in CDCl_{3} giving a major ${ }^{31} \mathrm{P}$ signal at -32.05 ppm with a minor ${ }^{31} \mathrm{P}$ signal similar to that of the corresponding diazaphosphorinane ligands. The work-up procedure using benzene to precipitate the desired product gave about 60% yield of compound $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{NHC}_{6} \mathrm{H}_{5}\right)_{3} \mathbf{1 6 2}$ in the case of $\mathbf{1 2 8}$, but was not successful in the other cases. The microanalytical data for compound 162 was consistent with coprecipitation of 0.25 mol of acetone (See Experimental Section). This is consistent with the molecular formula of 162 , and the $\mathrm{IR} v(\mathrm{NH})$ stretch of 162 was at $3024 \mathrm{~cm}^{-1}$, lower
than the $v(\mathrm{NH})$ stretch of $3237 \mathrm{~cm}^{-1}$ for the precursor compound 128. Compound $\mathbf{1 6 2}$ was recrystallised from benzene and the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum in d^{6}-DMSO gave a 100% pure product at $\delta(\mathrm{P})-38.00 \mathrm{ppm}$ which is significantly different from the major $\delta(\mathrm{P})$ signal of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the precursor compound 128 which was at $\delta(\mathrm{P}) 9.13 \mathrm{ppm}$.

2.4 COORDINATION STUDIES

All the diazaphosphorinane ligands with the lone pair of electrons on P are potential ligands hence were reacted with relevant $\mathrm{Ru}(\mathrm{II}), \mathrm{Rh}(\mathrm{III}), \mathrm{Ir}(\mathrm{III}), \mathrm{Pd}(\mathrm{II})$ and $\mathrm{Pt}(\mathrm{II})$ precursors to form the expected complexes in good to excellent yields.

2.4.1. SYNTHESIS OF RUTHENIUM(II) DIAZAPHOSPHORINANE COMPLEXES 163 AND 164

Two organometallic ruthenium(II) complexes were synthesised by reacting 152 or 153 respectively with $\left\{\mathrm{RuCl}_{2}\left(\eta^{6}-p \text {-cymene }\right)\right\}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature.

Where $\mathrm{R}=$

Equation 2.4.

Isolation of the products was achieved by precipitation with $\mathrm{Et}_{2} \mathrm{O}$ after concentration of the solution; all the complexes were orange solids. In both cases the ligand readily
reacts to form the desired ruthenium(II) complexes 163 and 164 in excellent yield (Table 2.13). Two equivalents of the ligand react by standard bridge cleavage of the ruthenium dimer to form two moles of the "piano-stool" ruthenium(II) complex according to Equation 2.4. ${ }^{196}$

2.4.1.1 CHARACTERISATION OF COMPOUNDS 163 AND 164

Characterisation of the complexes was achieved by MS, microanalysis, FT-IR and NMR spectroscopy. The data obtained from the MS, microanalysis, FT-IR and NMR techniques are given in Tables 2.13-2.15.

The FAB-MS data for compounds 163 and 164 are given in Table 2.13, and show the molecular ion $[\mathrm{M}]^{+}$. The fragmentation pattern as in the case of the precursor diazaphospharinane compounds (Section 2.3), give the $\left[\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{NHCH}_{2}\right]^{+}$fragment, where X is a substituent on phenyl group as the base peak, (with relative intensity of 100%), characteristic of methyleneaniline derivatives. ${ }^{10}$ In compound 163 , where $X=$ H , the base peak at m / z (106), corresponds to the fragment $\left[\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}\right]^{+}$, while in 164 , where $\mathrm{X}=\mathrm{F}$, the base peak at $m / z(124)$, corresponds to the fragment $\left[\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{FN}\right]^{+}$.

Table 2.13 Percentage yield (isolated), FAB-MS and selected FT-IR data ${ }^{\mathbf{a}}$ (in cm^{-1}) for compounds 163 and 164.

	\% yield	$m / z[\mathrm{M}]^{+}$	$v(\mathrm{NH})$	$v(\mathrm{RuCl})$
163	92	668	$3352(\mathrm{w})$	$295(\mathrm{w})$
164	86	722	$3348(\mathrm{w})$	$295(\mathrm{~m})$

${ }^{\text {a }}$ Recorded as a pressed KBr disk.

Selected diagnostic \mathbb{R} spectral data are given in Table 2.13. The terminal stretching vibration of the $v(\mathrm{Ru}-\mathrm{Cl})$ bands for both complexes observed at $295 \mathrm{~cm}^{-1}$ was comparable to those of other previously reported similar ruthenium(II) phosphine complexes. ${ }^{197}$

The microanalytical data are given in Table 2.14; values agree within acceptable limits and are consistent with the formulae of the ruthenium(II) complexes 163 and 164.

Coprecipitation of solvent molecules was evident in the case of complex 163 as obseved in the microanalytical data in Table 2.14.

Table 2.14 Microanalysis (\%) and molecular formulae for compounds 163 and 164 . $^{\text {a }}$

Compound	C	H	N	Molecular formula
$\mathbf{1 6 3}$	$53.10(52.67)$	$5.27(5.36)$	$5.49(5.58)$	$\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{PRuCl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$\mathbf{1 6 4}$	$53.05(53.26)$	$4.89(4.82)$	$5.90(5.82)$	$\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{PF}_{3} \mathrm{RuCl}_{2}$

${ }^{\text {a }}$ Calculated values in parentheses.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of these complexes recorded in d^{6}-DMSO showed single phosphorus resonances (Table 2.15), suggestive of the absence of any phosphorus containing decomposition products. These phosphorus signals are significantly downfield of the $\delta(\mathrm{P})$ values for the corresponding precursor diazaphosphorinane ligands, as given in Table 2.11 and are in good agreement with P-monodentate coordination.

Table 2.15 Selected NMR data (in ppm or Hz) ${ }^{2}$ for compounds 163 and 164.

	$\delta(\mathrm{P})$	$\delta(\mathrm{H}) /$ arom	$\delta(\mathrm{H}) / \mathrm{NH}^{\mathrm{b}}$	$\delta(\mathrm{H}) / \mathrm{CH}_{2}$	$\delta(\mathrm{H}) / 4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}\left(\mathrm{CH}_{3}\right)^{\mathrm{d}}$
$\mathbf{1 6 3}$	14.62	$6.30-7.25$	$5.33(13.6)$	$3.27-4.49$	$1.92,(5.79-5.90), 2.63,1.14(6.8)^{\mathrm{c}}$
$\mathbf{1 6 4}$	14.27	$6.98-7.57$	$5.12(12.8)$	$3.71-4.39$	$1.92,(5.87-5.90), 2.61,1.16(6.8)^{\mathrm{c}}$

${ }^{2}$ All NMR spectra were recorded in d^{6}-DMSO;
${ }^{\text {b }}$ Doublets, ${ }^{3} J_{\mathrm{PH}}$ coupling in brackets; ${ }^{\text {c }}$ Doublets, ${ }^{3} J_{\mathrm{HH}}$ coupling in brackets ${ }^{\mathrm{d}} p$-Cymene resonances: $\mathrm{CH}_{3}, \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{CH}$ and $\left(\mathrm{CH}_{3}\right)_{2}$ protons respectively.

Selected ${ }^{1} \mathrm{H}$ NMR spectral data are given in Table 2.15. The $-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ protons in the p-cymene (Figure 2.6) displayed a characteristic septet at $c a .2 .60 \mathrm{ppm}$ indicating that it is adjacent to six hydrogens $\left[-\left(\mathrm{CH}_{3}\right)_{2}\right.$], while the CH_{3} protons were at about $\delta(\mathrm{H}) 1.90$ ppm not significantly different from those of other related ruthenium(II) complexes. ${ }^{198}$

Figure 2.6 Structure of p-cymene.

2.4.2. SYNTHESIS OF RHODIUM(III) AND IRIDIUM(III)

DIAZAPHOSPHORINANE COMPLEXES 165-168
The dimeric chloro bridged complexes $\left[\mathrm{MCl}_{2}\left(\eta^{5}-\mathrm{Cp}^{*}\right)\right]_{2}, \mathrm{M}=\mathrm{Rh}$ or Ir are known to undergo chloro bridge cleavage reactions leading to the formation of mononuclear complexes. ${ }^{196}$ In these reactions, the metal complexes have a classic "piano stool" geometry as shown in Equation 2.5.

Equation 2.5

Two complexes each of rhodium(III) and iridium(III) were synthesised by reacting compound $\mathbf{1 5 2}$ or $\mathbf{1 5 3}$ with $\left[\mathrm{MCl}_{2}\left(\eta^{5}-\mathrm{Cp}^{*}\right)\right]_{2}, \mathrm{M}=\mathrm{Rh}$ or Ir in 2:1 molar ratio in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature under aerobic conditions. This was followed by precipitation with $\mathrm{Et}_{2} \mathrm{O}$, upon concentration of the solution under reduced pressure (Equation 2.5). In all the cases, the desired orange coloured solid M(III) complexes were obtained in good to excellent yields ($>80 \%$) as given in Table 2.16.

2.4.2.1 CHARACTERISATION OF COMPOUNDS 165-168

The complexes were characterised as in the previous cases by both analytical and spectroscopic (IR, NMR) methods and the results given in Tables 2.16-2.18. Single
crystal X-ray crystallography was also used for 166 and 168 where suitable crystals were obtained.

Table 2.16 Percentage yield (isolated), FAB-MS and selected FT-IR data ${ }^{\text {a }}$ (in cm ${ }^{-1}$) for compounds 165-168.

	$\%$ yield	$m / z[\mathrm{M}]^{+}$	$v(\mathrm{NH})$	$v(\mathrm{MCl})$
165	92	670	$3316(\mathrm{w})$	$283(\mathrm{w})$
166	85	723	$3306(\mathrm{~m})$	$279(\mathrm{w})$
167	74	759	$3314(\mathrm{w})$	$279(\mathrm{w})$
168	84	814	$3329(\mathrm{~m})$	$289(\mathrm{w})$

${ }^{2}$ Recorded as a pressed KBr disk; $\mathrm{MCl}=\mathrm{RhCl}$ or IrCl .

The FAB-MS data for compounds $\mathbf{1 6 5 - 1 6 8}$ are given in Table 2.16 and shows the molecular ion, $[\mathrm{M}]^{+}$and the fragmentation pattern was similar to those previously observed in the case of the ruthenium(II) complexes 163 and 164.

The FT-IR spectra for compounds $165-168$ were recorded in the solid state as pressed KBr disks (Table 2.16). The $v(\mathrm{NH})$ stretches were similar to those of the free ligands $(152,153)$ and were observed at $c a .3300 \mathrm{~cm}^{-1}$. The $\mathrm{M}-\mathrm{Cl}$ stretches were very weak and similar to those of the ruthenium(II) complexes synthesised in Section 2.4.1.

Table 2.17 Microanalysis (\%) and molecular formulae for compounds 165-168. ${ }^{\text {a }}$

	C	H	N	Molecular formula
$\mathbf{1 6 5}$	$48.03(47.75)$	$4.69(5.09)$	$5.11(4.88)$	$\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{PRhCl}_{2} \cdot 2.25 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$\mathbf{1 6 6}$	$60.70(60.92)$	$5.95(5.87)$	$3.32(3.49)$	$\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{~F}_{3} \mathrm{PRhCl}_{2} \cdot 0.25 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$\mathbf{1 6 7}$	$47.66(47.77)$	$4.93(4.96)$	$5.18(5.10)$	$\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{PIrCl}_{2} \cdot 0.75 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$\mathbf{1 6 8}$	$44.21(44.11)$	$4.37(4.26)$	$4.79(4.68)$	$\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{~F}_{3} \mathrm{PIrCl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$

${ }^{\text {a }}$ Calculated values in parentheses.

All the complexes precipitated with some amount of solvent as shown by the microanalytical data (Table 2.17), and the values agree within acceptable limits and are
consistent with the formulae of the rhodium(III), $[165,166]$ and iridium(III) $[167,168]$ complexes respectively.

The NMR spectral data recorded in d^{6}-DMSO are given in Table 2.18. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra showed the expected doublets in 165 and 166, with an average ${ }^{1} J_{\text {PRh }}$ coupling constant of 142 Hz comparable with other compounds reported previously. ${ }^{199}$ On the other hand, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of 167 and 168 showed single phosphorus resonances and are significantly downfield in comparison to the corresponding precursor ligands. For example the $\delta(\mathrm{P})$ value for 167 is $\mathbf{- 1 2 . 7 4} \mathrm{ppm}$, but the value for the corresponding precursor ligand, 152 was -49.77 ppm (Table 2.11).

Table 2.18 Selected NMR data (in ppm or Hz) for 165-168. ${ }^{\text {a }}$

	$\delta(\mathrm{P})$	$\delta \mathrm{H} /($ arom. $)$	$\delta \mathrm{H} / \mathrm{NH}^{\mathrm{c}}$	$\delta \mathrm{H} /\left(\eta^{5}-\mathrm{Cp}^{*}\right)$	$\delta \mathrm{H} /\left(\mathrm{CH}_{2}\right)$	${ }^{4} \mathrm{~J}_{\mathrm{PH}}$
165	$16.38(143)^{\mathrm{b}}$	$6.06-7.06$	$5.22(14.0)$	1.47	$3.38-4.32$	n.r.
$\mathbf{1 6 6}$	$15.13(141)^{\mathrm{b}}$	$6.24-7.23$	$5.17(15.2)$	1.64	$3.60-4.40$	3.6
167	-12.74	$6.20-7.23$	$5.51(14.0)$	1.68	$3.62-4.50$	n.r.
168	-15.20	$6.10-7.04$	$5.18(14.8)$	1.67	$3.51-4.48$	n.r.

${ }^{\text {a }}$ All NMR spectra were recorded in d^{6}-DMSO; ${ }^{b}$ Doublets ${ }^{1} J_{\text {PRh }}$ coupling in brackets;
${ }^{c}$ Doublets ${ }^{3} J_{\mathrm{PH}}$ coupling in brackets, n.r. $=$ not resolved.

In the ${ }^{1} \mathrm{H}$ NMR spectra, there was either no long range coupling between phosphorus and the ring methyl protons of the pentamethylcyclopentadienyl moiety $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right),{ }^{4} \mathrm{~J}_{\mathrm{PH}}$, or this was not resolved, hence showed as a singlet in the case of 165,167 and 168 , while such couplings were evident in the case of $\mathbf{1 6 6}$ and showed as a doublet at 1.64 ppm , consistent with the range $1.47-1.68 \mathrm{ppm}$ displayed by the $\mathrm{C}_{5} \mathrm{Me}_{5}$ protons in similar rhodium(III) and iridium(III) complexes. ${ }^{196}$

A few X-ray quality crystals of compounds 166 and 168 were obtained by layering petroleum ether (b.p. $40-60^{\circ} \mathrm{C}$) on a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution and slow vapour diffusion of diethyl ether into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution kept for several days respectively. The X-ray structures have been determined and confirm a classic "piano-stool" geometry formed by the pentamethylcyclopentadienyl ligand being the seat and the three "legs", being
the phosphorus donor of the P-monodentate diazaphosphorinane ligand and the two chlorides in each case and also showed that 166 and 168 were isostructural (Figures 2.7 and 2.8). All the hydrogen atoms except those on $\mathrm{N}(1)$ and $\mathrm{N}(4)$ in the two independent molecules shown in Figures 2.7 and 2.8 have been omitted for clarity. The η^{5} coordination is illustrated by thick dashed lines between the Rh or Ir atoms and the centroid of the pentamethylcyclopentadienyl ring (Figures 2.7 and 2.8).

Figure 2.7 Molecular structures of two independent molecules of $166.0 .5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecule of crystallisation has been omitted for clarity.

Figure 2.8 Molecular structures of two independent molecules of $168.0 .5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecule of crystallisation has been omitted for clarity.

Selected bond lengths and angles for compounds 166 and 168 are given in Tables 2.19 and 2.20. Two independent molecules of 166 and 168 are shown in Figures 2.7 and 2.8 respectively. In each case, the bond lengths and angles of the independent molecules were not significantly different (Tables 2.19 and 2.20).

Table 2.19 Selected bond lengths and angles for 166 . $^{\text {a }}$

Bond lengths (\AA)		Bond lengths (\AA)		Bond angles ($\left.{ }^{\circ}\right)$	
$\mathrm{Rh}(1)-\mathrm{P}(1)$	$2.283(14)$	$\mathrm{C}(1)-\mathrm{N}(1)$	$1.450(7)$	$\mathrm{P}(1)-\mathrm{Rh}(1)-\mathrm{Cl}(1)$	$88.34(5)$
$\mathrm{Rh}(1)-\mathrm{Cl}(1)$	$2.404(15)$	$\mathrm{C}(8)-\mathrm{N}(2)$	$1.466(7)$	$\mathrm{P}(1)-\mathrm{Rh}(1)-\mathrm{Cl}(2)$	$87.77(5)$
$\mathrm{Rh}(1)-\mathrm{Cl}(2)$	$2.420(14)$	$\mathrm{C}(10)-\mathrm{N}(3)$	$1.475(7)$	$\mathrm{Cl}(1)-\mathrm{Rh}(1)-\mathrm{Cl}(2)$	$90.75(6)$
$\mathrm{Rh}(1)-\mathrm{C}_{\mathrm{av} .}$	$2.186(5)$	$\mathrm{C}(2)-\mathrm{N}(1)$	$1.380(8)$	$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(10)$	$105.6(2)$
$\mathrm{P}(1)-\mathrm{C}(1)$	$1.837(5)$	$\mathrm{C}(11)-\mathrm{N}(2)$	$1.425(7)$	$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(8)$	$101.8(3)$
$\mathrm{P}(1)-\mathrm{C}(8)$	$1.834(5)$	$\mathrm{C}(17)-\mathrm{N}(3)$	$1.427(7)$	$\mathrm{C}(8)-\mathrm{P}(1)-\mathrm{C}(10)$	$99.7(3)$
$\mathrm{P}(1)-\mathrm{C}(10)$	$1.838(5)$	$\mathrm{C}(33)-\mathrm{N}(4)$	$1.429(7)$	$\mathrm{P}(2)-\mathrm{Rh}(2)-\mathrm{Cl}(3)$	$88.13(5)$
$\mathrm{Rh}(2)-\mathrm{P}(2)$	$2.2795(13)$	$\mathrm{C}(40)-\mathrm{N}(5)$	$1.458(7)$	$\mathrm{P}(2)-\mathrm{Rh}(2)-\mathrm{Cl}(4)$	$85.92(5)$
$\mathrm{Rh}(2)-\mathrm{Cl}(3)$	$2.4182(14)$	$\mathrm{C}(42)-\mathrm{N}(6)$	$1.477(6)$	$\mathrm{Cl}(3)-\mathrm{Rh}(2)-\mathrm{Cl}(4)$	$93.36(5)$
$\mathrm{Rh}(2)-\mathrm{Cl}(4)$	$2.4042(14)$	$\mathrm{C}(34)-\mathrm{N}(4)$	$1.384(8)$	$\mathrm{C}(33)-\mathrm{P}(2)-\mathrm{C}(40)$	$105.7(3)$
$\mathrm{Rh}(2)-\mathrm{C}_{\mathrm{av} .}$	$2.187(5)$	$\mathrm{C}(43)-\mathrm{N}(5)$	$1.425(7)$	$\mathrm{C}(33)-\mathrm{P}(2)-\mathrm{C}(42)$	$100.3(2)$
$\mathrm{P}(2)-\mathrm{C}(33)$	$1.835(5)$	$\mathrm{C}(49)-\mathrm{N}(6)$	$1.436(7)$	$\mathrm{C}(40)-\mathrm{P}(2)-\mathrm{C}(42)$	$98.9(3)$
$\mathrm{P}(2)-\mathrm{C}(40)$	$1.849(5)$	$\mathrm{P}(2)-\mathrm{C}(42)$	$1.829(5)$		

Selected hydrogen bonding contacts

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{d}(\mathrm{H} \cdots \mathrm{A})(\AA)$	$\mathrm{d}(\mathrm{D} \cdots \mathrm{A})(\AA)$	$<(\mathrm{DHA})\left(^{\circ}\right)$
$\mathrm{N}(1)-\mathrm{H}(1) \cdots \mathrm{Cl}(2)$	$2.52(7)$	$3.301(5)$	$163(6)$
$\mathrm{N}(4)-\mathrm{H}(4) \cdots \mathrm{Cl}(3)$	$2.78(7)$	$3.441(6)$	$149(7)$

${ }^{a}$ Estimated standard deviations in parentheses.

The M-P and $\mathrm{M}-\mathrm{Cl}$ bond lengths for 166 and 168 were similar and are comparable to other previously reported compounds. ${ }^{138}$ The similarity between the Rh-P and Ir-P bond lengths demonstrates the similarity in atomic radii between second and third row transition metals [Rh and Ir], as a consequence of the lanthanide contraction.

Table 2.20 Selected bond lengths and angles for 168 . $^{\text {a }}$.

Bond lengths (\AA)		Bond lengths (\AA)		Bond angles ($\left.{ }^{\circ}\right)$	
$\operatorname{Ir}(1)-\mathrm{P}(1)$	$2.2691(19)$	$\mathrm{C}(1)-\mathrm{N}(1)$	$1.437(5)$	$\mathrm{P}(1)-\operatorname{Ir}(1)-\mathrm{Cl}(1)$	$88.46(3)$
$\operatorname{Ir}(1)-\mathrm{Cl}(1)$	$2.4182(9)$	$\mathrm{C}(8)-\mathrm{N}(2)$	$1.450(5)$	$\mathrm{P}(1)-\operatorname{Ir}(1)-\mathrm{Cl}(2)$	$86.51(3)$
$\operatorname{Ir}(1)-\mathrm{Cl}(2)$	$2.4074(9)$	$\mathrm{C}(10)-\mathrm{N}(3)$	$1.480(5)$	$\mathrm{Cl}(1)-\operatorname{Ir}(1)-\mathrm{Cl}(2)$	$90.25(4)$
$\mathrm{Ir}(1)-\mathrm{C}_{\mathrm{av}}$	$2.193(4)$	$\mathrm{C}(2)-\mathrm{N}(1)$	$1.386(5)$	$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(10)$	$100.58(18)$
$\mathrm{P}(1)-\mathrm{C}(1)$	$1.831(4)$	$\mathrm{C}(11)-\mathrm{N}(2)$	$1.414(5)$	$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(8)$	$104.91(18)$
$\mathrm{P}(1)-\mathrm{C}(8)$	$1.852(4)$	$\mathrm{C}(17)-\mathrm{N}(3)$	$1.424(5)$	$\mathrm{C}(8)-\mathrm{P}(1)-\mathrm{C}(10)$	$98.87(19)$
$\mathrm{P}(1)-\mathrm{C}(10)$	$1.826(4)$	$\mathrm{C}(33)-\mathrm{N}(4)$	$1.464(5)$	$\mathrm{P}(2)-\operatorname{Ir}(2)-\mathrm{Cl}(3)$	$88.55(4)$
$\mathrm{Ir}(2)-\mathrm{P}(2)$	$2.2780(10)$	$\mathrm{C}(40)-\mathrm{N}(5)$	$1.469(5)$	$\mathrm{P}(2)-\operatorname{Ir}(2)-\mathrm{Cl}(4)$	$88.28(3)$
$\mathrm{Ir}(2)-\mathrm{Cl}(3)$	$2.4094(10)$	$\mathrm{C}(42)-\mathrm{N}(6)$	$1.466(5)$	$\mathrm{Cl}(3)-\operatorname{Ir}(2)-\mathrm{Cl}(4)$	$87.92(4)$
$\mathrm{Ir}(2)-\mathrm{Cl}(4)$	$2.4225(10)$	$\mathrm{C}(34)-\mathrm{N}(4)$	$1.386(6)$	$\mathrm{C}(33)-\mathrm{P}(2)-\mathrm{C}(40)$	$105.54(18)$
$\mathrm{Ir}(2)-\mathrm{C}_{\mathrm{av}}$	$2.195(4)$	$\mathrm{C}(43)-\mathrm{N}(5)$	$1.427(5)$	$\mathrm{C}(33)-\mathrm{P}(2)-\mathrm{C}(42)$	$102.30(19)$
$\mathrm{P}(2)-\mathrm{C}(33)$	$1.839(4)$	$\mathrm{C}(49)-\mathrm{N}(6)$	$1.422(5)$	$\mathrm{C}(40)-\mathrm{P}(2)-\mathrm{C}(42)$	$99.58(18)$
$\mathrm{P}(2)-\mathrm{C}(40)$	$1.846(4)$				
$\mathrm{P}(2)-\mathrm{C}(42)$	$1.835(4)$				

Selected hydrogen bonding contacts

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{d}(\mathrm{H} \cdots \mathrm{A})(\AA)$	$\mathrm{d}(\mathrm{D} \cdots \mathrm{A})(\AA)$	$<(\mathrm{DHA})\left(^{\circ}\right)$
$\mathrm{N}(1)-\mathrm{H}(1) \cdots \mathrm{Cl}(1)$	2.69	$3.508(4)$	156.0
$\mathrm{~N}(4)-\mathrm{H}(4 \mathrm{~A}) \cdots \mathrm{Cl}(4)$	2.79	$3.343(4)$	122.1

${ }^{a}$ Estimated standard deviations in parentheses.

There is evidence of intramolecular hydrogen bonding in the complexes as shown in Figures 2.7 and 2.8 and Tables 2.19 and 2.20. The crystal data and structure refinement details for compounds 166 and 168 are shown in Appendices 8.4 and 8.5 respectively.

2.4.3 SYNTHESIS OF PALLADIUM(II) DIAZAPHOSPHORINANE COMPLEXES 169-177

A range of palladium(II) complexes were synthesised by reacting some of the diazaphosphorinane ligands, synthesised in Section 2.3, with $\mathrm{PdCl}_{2}(\mathrm{COD})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature under aerobic conditions followed by precipitation with diethyl ether
upon concentration of the solution under reduced pressure. In all cases the ligands readily react to form the desired palladium complex in good yield (Table 2.21). Two equivalents of the ligand react with $\mathrm{PdCl}_{2}(\mathrm{COD})$ to form either the cis or trans isomers according to Equation 2.6. All the products were yellow solids.

Where $\mathrm{L}=$

$$
\begin{aligned}
& \text { and } X=Y=\mathrm{H}, 169 ; \mathrm{X}=\mathrm{F}, \mathrm{Y}=\mathrm{H}, 170 ; \\
& X=\mathrm{Cl}, \mathrm{Y}=\mathrm{H}, 171 ; \mathrm{X}=\mathrm{Br}, \mathrm{Y}=\mathrm{H}, 172 ; \\
& \mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{F}, 173 ; \mathrm{X}=\mathrm{Me}, \mathrm{Y}=\mathrm{H}, 174 ; \\
& \mathrm{X}=\mathrm{Et}, \mathrm{Y}=\mathrm{H}, 175 ; \mathrm{X}={ }^{n} \mathrm{Pr}, \mathrm{Y}=\mathrm{H}, 176 ; \\
& \mathrm{X}=\mathrm{CMe}_{3}, \mathrm{Y}=\mathrm{H}, 177
\end{aligned}
$$

Equation 2.6.

2.4.3.1 CHARACTERISATION OF COMPOUNDS 169-177

As in the previous cases characterisation was achieved by MS, microanalysis, FT-IR, NMR spectroscopy and single crystal X-ray crystallography. The results are given in Tables 2.21-2.23. In the FAB-MS data (Table 2.21); the fragmentation pattern involves at least the loss of one chloride ligand coordinated to the $\mathrm{Pd}(I I)$ centre, consistent with the molecular formulae of the complexes.

The $\mathrm{v}(\mathrm{NH})$ stretches of the ligands slightly increased on coordination to the metal centre, for example the $v(\mathrm{NH})$ stretch in the precursor 159 was $3307 \mathrm{~cm}^{-1}$ but on coordination in

175, it became $3337 \mathrm{~cm}^{-1}$. The infrared spectra of the metal complexes showed two $\mathrm{M}-\mathrm{Cl}$ stretches (Table 2.21), indicating the formation of a cis isomer in all cases.

Table 2.21 Percentage yield (isolated), FAB-MS and selected FT-IR data ${ }^{\text {a }}$ (in cm^{-1}) for 169-177.

	\% yield	$m / z\left[\mathrm{M}-\mathrm{Cl}^{+}\right.$	$v(\mathrm{NH})$	$v(\mathrm{PdCl})$
169	93	864	$3339(\mathrm{~m})$	263,295
170	75	972	$3335(\mathrm{w})$	278,303
171	89	1069	$3319(\mathrm{w})$	279,303
172	79	1337	$3415(\mathrm{w})$	276,307
173	82	972	$3426(\mathrm{w})$	287,311
174	77	-	$3426(\mathrm{~m})$	287,311
175	77	-	$3337(\mathrm{~s})$	278,303
176	85	1115	$3333(\mathrm{~m})$	283,304
177	75	1200	$3348(\mathrm{~m})$	289,316

${ }^{2}$ Recorded as a KBr disk.

Table 2.22 Microanalysis (\%) and molecular formulae for compounds 169-177. ${ }^{\text {a }}$

	C	H	. N	Molecular formula
$\mathbf{1 6 9}$	$57.76(57.68)$	$5.49(5.31)$	$9.13(9.12)$	$\mathrm{C}_{44} \mathrm{H}_{48} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{PdCl}_{2} \cdot 0.25 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$\mathbf{1 7 0}$	$52.42(52.42)$	$4.33(4.20)$	$8.37(8.34)$	$\mathrm{C}_{44} \mathrm{H}_{42} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{~F}_{6} \mathrm{PdCl}_{2}$
$\mathbf{1 7 1}$	$44.77(45.35)$	$3.68(3.72)$	$7.03(7.05)$	$\mathrm{C}_{44} \mathrm{H}_{42} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{PdCl}_{8} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$\mathbf{1 7 2}$	$36.80(37.06)$	$3.15(3.04)$	$5.22(5.76)$	$\mathrm{C}_{44} \mathrm{H}_{42} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{Br}_{6} \mathrm{PdCl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$\mathbf{1 7 3}$	$51.75(51.63)$	$4.29(4.16)$	$8.15(8.16)$	$\mathrm{C}_{44} \mathrm{H}_{42} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{~F}_{6} \mathrm{PdCl}_{2} \cdot 0.25 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$\mathbf{1 7 4}$	$59.93(60.02)$	$6.07(6.06)$	$8.07(8.36)$	$\mathrm{C}_{50} \mathrm{H}_{60} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{PdCl}_{2} \cdot 0.25 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$\mathbf{1 7 5}$	$62.00(62.00)$	$6.85(6.71)$	$7.42(7.71)$	$\mathrm{C}_{56} \mathrm{H}_{72} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{PdCl}_{2} \cdot 0.25 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$\mathbf{1 7 6}$	$63.43(63.69)$	$7.42(7.26)$	$7.39(7.16)$	$\mathrm{C}_{62} \mathrm{H}_{84} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{PdCl}_{2} \cdot 0.25 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$\mathbf{1 7 7}$	$63.54(63.49)$	$7.36((7.56)$	$6.44(6.80)$	$\mathrm{C}_{68} \mathrm{H}_{96} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{PdCl}_{2} \cdot 0.75 \mathrm{CH}_{2} \mathrm{Cl}_{2}$

[^2]Coprecipitation of the solvent is possible in these complexes; this is in agreement with the microanalytical data given in Table 2.22. Agreements between the observed and calculated CHN values are consistent with the formulations of the palladium complexes 169-177.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the complexes recorded in d^{6}-DMSO gave a major phosphorus resonance in the range $5.99-9.75 \mathrm{ppm}$ and minor phosphorus resonances (171-173) in the range 12.61-16.54 ppm as given in Table 2.23. In all cases significant downfield ${ }^{31} \mathrm{P}$ resonances in comparison to the corresponding free ligands were observed. For example the $\delta(\mathrm{P})$ value for 169 is 8.21 ppm , but the value for the corresponding free ligand, 152 was -49.77 ppm (Table 2.11). This indicates that coordination or complexation has taken place, but does not give any clue as to whether the complex is cis or trans.

In 171-173, where there were two ${ }^{31} \mathrm{P}$ resonances [range 5.99-9.75 and 12.61-16.54 $\mathrm{ppm}]$, the possibility of the complexes existing as a mixture of cis and trans isomers in solution cannot be ruled out even though in the solid state only the cis isomer was observed as supported by IR spectroscopy. A similar result was obtained in the case of $\left[\mathrm{PdCl}_{2}\left\{\mathrm{Ph}_{2} \mathrm{~N}(\mathrm{H}) \mathrm{C}_{5} \mathrm{H}_{3}(\mathrm{Cl}-5) \mathrm{N}\right\}_{2}\right.$ which gave two singlets, $\delta(\mathrm{P}) 29.7$ and 15.4 ppm in CDCl_{3} solution consistent with presence of cis and trans isomers in solution, but solid state IR spectrum indicated only the presence of the cis isomer ($\left.v_{\mathrm{PdCl}} 306,282 \mathrm{~cm}^{-1}\right)$). ${ }^{200}$ The two $\mathrm{Pd}-\mathrm{Cl}$ stretches in the infrared spectra of these complexes (Table 2.21) is indicative of the formation of the cis isomer in all cases, had trans isomer been obtained, only one $\mathrm{Pd}-\mathrm{Cl}$ stretch would have been expected. The reaction of $\mathrm{PtCl}_{2}(\mathrm{COD})$ with two equivalents of these ligands (156 and 158) in CDCl_{3} at room temperature (NMR scale) gave a product whose ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum showed a single ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ resonance flanked by two ${ }^{195} \mathrm{Pt}$ satellites [${ }^{1} J_{\mathrm{PP}}$, ca. 3400 Hz] indicative of the cis disposition of the diazaphosphorinane ligands. Thus the diazaphosphorinane ligands readily displace labile ligands from Pd or Pt complexes such as $\mathrm{MCl}_{2}(\mathrm{COD})$ to form cis $\mathrm{MCl}_{2} \mathrm{~L}_{2}$ complexes [M $=\mathrm{Pd}, \mathrm{Pt} ; \mathrm{L}=$ diazaphosphorinane ligand].
Table 2.23 Selected NMR data (in ppm or Hz) ${ }^{\text {a }}$ for 169-177.

		Other							
	$\delta(\mathrm{P})$	${ }^{31} \mathrm{P}$ signals	$\delta(\mathrm{H}) /$ arom. $^{\mathrm{b}}$	$\delta(\mathrm{H}) / \mathrm{NH}^{\mathrm{c}}$	$\delta(\mathrm{H}) / \mathrm{CH}_{2}{ }^{\mathrm{d}}$	$\delta(\mathrm{H}) / \mathrm{CH}_{2}{ }^{\mathrm{e}}$	$\delta(\mathrm{H}) / \mathrm{CH}_{2}{ }^{\mathrm{f}}$	$\delta(\mathrm{H}) / \mathrm{CH}_{2}{ }^{\mathrm{g}}$	$\delta(\mathrm{H}) / \mathrm{CH}_{2}{ }^{\mathrm{h}}$
$\mathbf{1 6 9}$	8.21		$6.92-7.35$	$6.61(14.4)$	$5.18(13.6)$	$4.38(13.6)$	$3.856(4.8)$	$3.70(6.4)$	3.34
$\mathbf{1 7 0}$	8.54		$6.85-7.17$	$6.59(14.4)$	$5.03(13.6)$	$4.26(12.0)$	$3.96(4.8)$	$3.71(6.8)$	3.33
$\mathbf{1 7 1}$	9.37	16.54	$6.65-7.52$	$6.21(14.6)$	$5.14(13.2)$	$4.27(13.2)$	$3.72(5.6)$	$3.39(6.4)$	3.30
$\mathbf{1 7 2}$	9.75	15.96	$6.68-7.59$	$6.38(16.0)$	$5.13(13.6)$	$4.28(13.2)$	$3.71(6.4)$	$3.62(6.0)$	3.45
$\mathbf{1 7 3}$	5.99	12.61	$6.61-7.32$	$6.32(16.0)$	$4.69(12.4)$	$4.27(14.4)$	$3.86(4.8)$	$3.72(6.0)$	3.40
$\mathbf{1 7 4}$	8.59		$6.78-7.12$	$6.29(16.0)$	$5.02((13.6)$	$4.23(14.2)$	$3.81(4.8)$	$3.65(6.0)$	3.42
$\mathbf{1 7 5}$	11.19		$6.83-7.27$	$6.81(16.0)$	$4.82(13.2)$	$4.33(13.2)$	$3.48(4.8)$	$3.06(6.4)$	2.60
$\mathbf{1 7 6}$	9.01		$6.72-7.54$	$6.43(14.0)$	$5.07(13.2)$	$4.28(13.6)$	$3.83(4.8)$	$3.65(6.4)$	3.39
177	7.18		$6.91-7.35$	$6.53(14.4)$	$5.12(12.8)$	$4.35(13.2)$	$3.73(5.6)$	$3.12(6.4)$	2.67

${ }^{2}$ All NMR recorded in d ${ }^{6}$-DMSO; ${ }^{\text {b }}$ Aromatic $\mathrm{H}, \mathrm{m},\left(15 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right.$ for 169 or $12 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$ for 170-177)

${ }^{\mathrm{c}} \mathrm{NH}$ proton signals, (t, $1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{PH}}$ coupling in brackets); ${ }^{\mathrm{d}} \mathrm{NCH}_{2} \mathrm{~N}$ protons, (d, $1 \mathrm{H},{ }^{2} J_{\mathrm{HH}}$ coupling in brackets)
${ }^{e} \mathrm{PCH}_{2} \mathrm{~N}$ protons, (dd, $2 \mathrm{H},{ }^{3} \mathrm{JHH}_{\mathrm{H}}$ coupling in brackets); ${ }^{\mathrm{f}} \mathrm{N}\left(\mathrm{CH}_{2}\right) \mathrm{N}$ protons, (dd, $1 \mathrm{H},{ }^{2} \mathrm{JHH}_{\mathrm{HH}}$ coupling in brackets)
${ }^{\mathrm{g}} \mathrm{PCH}_{2} \mathrm{~N}$ protons, (d, $2 \mathrm{H},{ }^{2} \mathrm{~J}_{\mathrm{PH}}$, coupling in brackets); ${ }^{\text {h }} \mathrm{PCH}_{2} \mathrm{~N}$ protons, 2 H , multiplicity obscured by solvent signals

Further confirmation for the cis arrangement comes from single crystal X-ray diffraction analyses of $\mathbf{1 6 9}$ and $\mathbf{1 7 0}$, obtained in both cases by the slow vapour diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into solutions of the complexes in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ over several days. The crystal data and structure refinement details for $\mathbf{1 6 9}$ and $\mathbf{1 7 0}$ are shown in Appendices 8.6 and 8.7 respectively.

Figure 2.9 Molecular structure of $\mathbf{1 6 9} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecule of crystallisation has been omitted for clarity.

Figure 2.10 Packing plot for compound 169 showing $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H}_{2} \cdots \mathrm{Cl}$ interactions between molecules forming a chain parallel to a.

Table 2.24 Selected bond lengths and angles for 169.a

Bond lengths (\AA)		Bond lengths (\AA)		Bond angles ($\left.{ }^{\circ}\right)$	
$\mathrm{Pd}(1)-\mathrm{P}(1)$	$2.2519(11)$	$\mathrm{P}(1)-\mathrm{C}(1)$	$1.851(4)$	$\mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{P}(2)$	$99.65(4)$
$\mathrm{Pd}(1)-\mathrm{P}(2)$	$2.2607(10)$	$\mathrm{P}(2)-\mathrm{C}(23)$	$1.851(4)$	$\mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(1)$	$81.79(4)$
$\mathrm{Pd}(1)-\mathrm{Cl}(1)$	$2.3710(10)$	$\mathrm{N}(1)-\mathrm{C}(1)$	$1.450(5)$	$\mathrm{P}(2)-\mathrm{Pd}(1)-\mathrm{Cl}(2)$	$89.18(4)$
$\mathrm{Pd}(1)-\mathrm{Cl}(2)$	$2.3778(10)$	$\mathrm{N}(4)-\mathrm{C}(23)$	$1.445(5)$	$\mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(2)$	$89.83(4)$

Hydrogen bonds

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{d}(\mathrm{H} \cdots \mathrm{A})(\AA)$	$\mathrm{d}(\mathrm{D} \cdots \mathrm{A})(\AA)$	$<(\mathrm{DHA})\left(^{\circ}\right)$
$\mathrm{N}(1)-\mathrm{H}(1) \cdots \mathrm{Cl}(2 \mathrm{~A})$	$2.75(5)$	$3.532(4)$	$166(4)$
$\mathrm{N}(4)-\mathrm{H}(4) \cdots \mathrm{Cl}(1 \mathrm{~B})$	$2.75(4)$	$3.310(4)$	$127(4)$
$\mathrm{N}(4)-\mathrm{H}(4) \cdots \mathrm{Cl}(2 \mathrm{~B})$	$2.81(4)$	$3.578(4)$	$158(4)$

${ }^{\mathrm{a}}$ Estimated standard deviations in parentheses.

Figure 2.11 Molecular structure of $\mathbf{1 7 0}$ showing H -bond to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecule of crystallisation. Second $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecule of crystallisation has been omitted for clarity.

In both cases, the complex adopts a cis configuration, with the $\mathrm{Pd}(\mathrm{II})$ in a distorted square-planar coordination environment as shown in Figures 2.9 and 2.11. In 169, the
bond angles around palladium(II) centre (Table 2.24), confirm an approximate squareplanar geometry with the two diazaphosphorinane ligands cis to each other. The Pd-P and $\mathrm{Pd}-\mathrm{Cl}$ bond lengths are given in Table 2.24 and are comparable to other previously reported compounds. ${ }^{201,202}$ There were intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding interactions as shown in Figure 2.10 and Table 2.24.

Table 2.25 Selected bond lengths and angles for 170.a

Bond lengths ($\AA)$		Bond lengths (\AA)		Bond angles $\left(^{\circ}\right)$	
$\mathrm{Pd}(1)-\mathrm{P}(1)$	$2.2527(13)$	$\mathrm{P}(1)-\mathrm{C}(1)$	$1.838(5)$	$\mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{P}(2)$	$100.45(5)$
$\mathrm{Pd}(1)-\mathrm{P}(2)$	$2.2448(13)$	$\mathrm{P}(2)-\mathrm{C}(23)$	$1.843(5)$	$\mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(1)$	$84.36(5)$
$\mathrm{Pd}(1)-\mathrm{Cl}(1)$	$2.3641(12)$	$\mathrm{N}(1)-\mathrm{C}(1)$	$1.452(6)$	$\mathrm{P}(2)-\mathrm{Pd}(1)-\mathrm{Cl}(2)$	$85.72(5)$
$\mathrm{Pd}(1)-\mathrm{Cl}(2)$	$2.3653(13)$	$\mathrm{N}(4)-\mathrm{C}(23)$	$1.441(6)$	$\mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(2)$	$90.10(5)$

Hydrogen bonds

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{d}(\mathrm{H} \cdots \mathrm{A})(\AA)$	$\mathrm{d}(\mathrm{D} \cdots \mathrm{A})(\AA)$	$<(\mathrm{DHA})\left(^{\circ}\right)$
$\mathrm{N}(1)-\mathrm{H}(1) \cdots \mathrm{Cl}(2 \mathrm{C})$	$2.70(5)$	$3.377(4)$	$149(5)$
$\mathrm{N}(4)-\mathrm{H}(4) \cdots \mathrm{Cl}(4)$	$2.92(6)$	$3.483(4)$	$133(5)$

${ }^{\text {a }}$ Estimated standard deviations in parentheses.

The X-ray structure of $\mathbf{1 7 0}$ (Figure 2.11) reveals a similar pattern, with the bond angles around palladium(II) centre (Table 2.25), confirm an approximate square-planar geometry with the two diazaphosphorinane ligands cis to each other. The Pd-P and PdCl bond lengths are given in Table 2.25, similar to those of 169 and comparable to other previously reported compounds. ${ }^{146,201}$ As was in the case of 169 , intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding was evident in 170 (Table 2.25). In addition, there was intermolecular hydrogen bonding involving $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecule of crystallisation (Figure 2.11 and Table 2.25).

2.4.4. SYNTHESIS OF PLATINUM(II) DIAZAPHOSPHORINANE COMPLEXES 178 AND 179

Two platinum(II) complexes were synthesised by reacting 156 or 158 with $\mathrm{PtCl}_{2}(\mathrm{COD})$, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature under aerobic conditions, followed by precipitation with $\mathrm{Et}_{2} \mathrm{O}$ upon concentration of the solution under reduced pressure.

Where $\mathrm{L}=$

Equation 2.7.

In both cases the ligands readily react to form either the cis or trans platinum(II) complex in good yield (Table 2.26), according to Equation 2.7; all the products are colourless solids.

2.4.4.1 CHARACTERISATION OF COMPOUNDS 178 AND 179

As in the previous cases characterisation was achieved by MS, microanalysis, IR and NMR, the results are given in Tables 2.26-2.28. Furthermore, the structure of $\mathbf{1 7 8}$ has been elucidated by single crystal X-ray crystallography.

The infrared spectra were recorded as pressed KBr disks (Table 2.26), in both cases the $v(\mathrm{NH})$ stretches of the ligands slightly increased on coordination to the metal centre. For example in the precursor 156 , the $v(\mathrm{NH})$ stretch for the precursor was $3302 \mathrm{~cm}^{-1}$ but on coordination in 178, it was increased to $3426 \mathrm{~cm}^{-1}$.

Table 2.26 Percentage yield (isolated), FAB-MS and selected FT-IR data ${ }^{\text {a }}$ (in cm^{-1}) for 178 and 179.

Platinum(II) complex	\% yield	$m / z[\mathrm{M}]^{+}$	$v(\mathrm{NH})$	$v(\mathrm{PtCl})$
$\mathbf{1 7 8}$	74	1096	$3426(\mathrm{~s})$	287,311
179	84	1073	$3345(\mathrm{~s})$	287,311

[^3]There was a similar increase in the case of 179 from $3301 \mathrm{~cm}^{-1}$ in the precursor ligand 158 to $3345 \mathrm{~cm}^{-1}$. In both cases, two $\mathrm{Pt}-\mathrm{Cl}$ stretches were observed, indicating the formation of a cis isomer.

The FAB-MS data in Table 2.26 as well as the microanalytical data in Table 2.27 were consistent with the molecular formulae of compounds 178 and 179. Coprecipitation of solvent is possible in these complexes; this is in agreement with the microanalytical data.

Table 2.27 Microanalysis (\%) and molecular formulae for compounds 178 and 179.a

	C	H	N	Molecular formula
$\mathbf{1 7 8}$	$47.97(48.18)$	$3.88(3.86)$	$7.27(7.66)$	$\mathrm{C}_{44} \mathrm{H}_{42} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{~F}_{6} \mathrm{PtCl}_{2}$
$\mathbf{1 7 9}$	$55.05(55.15)$	$5.59(5.57)$	$7.51(7.68)$	$\mathrm{C}_{50} \mathrm{H}_{60} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{PtCl}_{2} \cdot 0.25 \mathrm{CH}_{2} \mathrm{Cl}_{2}$

${ }^{\text {a }}$ Calculated values in parentheses.

The solution ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of 178 and 179 in CDCl_{3} showed single ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ resonances flanked by two ${ }^{195} \mathrm{Pt}$ satellites separated by ${ }^{1} \mathrm{~J}_{\mathrm{PPt}}$ coupling constant of ca. 3300 Hz as given in Table 2.28. Thus the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR and IR spectroscopic data are supportive of the cis configuration. In both complexes, the phosphorus resonances were downfield of the precursor ligands 156 and 158 observed at about $\mathbf{- 5 0 . 0 0} \mathrm{ppm}$ as given in Table 2.11.

Table 2.28 Selected NMR data (in ppm or Hz) for 178 and 179. ${ }^{\text {a }}$

	$\delta(\mathrm{P})$	${ }^{1} J_{\mathrm{PPt}}$	$\delta(\mathrm{H}) /$ arom.	$\delta(\mathrm{H}) / \mathrm{NH}^{\mathrm{c}}$	$\delta(\mathrm{H}) / \mathrm{CH}_{2}$
178	-11.44	3363	$6.71-7.31$	$6.69(8.4)$	$3.05-4.57$
179	-6.58	3398	$6.34-7.26$	$6.78(6.8)$	$3.44-4.82$

[^4]The ${ }^{1} \mathrm{H}$ NMR spectra were not significantly different from the analogous palladium(II) complexes discussed in Section 2.4.3. The CH_{3} protons in 179 were observed as a triplet at 1.24 ppm with $\mathrm{a}^{4} J_{\mathrm{HH}}$ coupling of 14.0 Hz .

Figure 2.12 Molecular structure of 178.

A further confirmation of the cis configuration for these complexes was achieved when a few X-ray quality crystals were obtained by layering petroleum ether (b.p. $40-60{ }^{\circ} \mathrm{C}$) on a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 178 kept for several days. The single X -ray crystal determination of this confirms the cis configuration as shown in Figure 2.12.

Table 2.29 Selected bond lengths and angles for 178. ${ }^{\text {a }}$

Bond lengths ($\AA)$		Bond lengths ($\AA)$		Bond angles ($\left.{ }^{\circ}\right)$	
$\mathrm{Pt}(1)-\mathrm{P}(1)$	$2.2287(7)$	$\mathrm{P}(1)-\mathrm{C}(1)$	$1.842(3)$	$\mathrm{P}(1)-\mathrm{Pt}(1)-\mathrm{P}(2)$	$87.29(3)$
$\mathrm{Pt}(1)-\mathrm{P}(2)$	$2.2325(7)$	$\mathrm{P}(2)-\mathrm{C}(23)$	$1.852(3)$	$\mathrm{P}(1)-\mathrm{Pt}(1)-\mathrm{Cl}(1)$	$84.81(3)$
$\mathrm{Pt}(1)-\mathrm{Cl}(1)$	$2.3551(7)$	$\mathrm{N}(1)-\mathrm{C}(1)$	$1.446(4)$	$\mathrm{P}(2)-\mathrm{Pt}(1)-\mathrm{Cl}(2)$	$84.28(2)$
$\mathrm{Pt}(1)-\mathrm{Cl}(2)$	$2.3652(7)$	$\mathrm{N}(4)-\mathrm{C}(23)$	$1.481(4)$	$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{Cl}(2)$	$89.68(2)$

Hydrogen bonds

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{d}(\mathrm{H} \cdots \mathrm{A})(\AA)$	$\mathrm{d}(\mathrm{D} \cdots \mathrm{A})(\AA)$	$<(\mathrm{DHA})\left(^{\circ}\right)$
$\mathrm{N}(4)-\mathrm{H}(4 \mathrm{~A}) \cdots \mathrm{Cl}(1 \mathrm{~A})$	2.96	$3.487(3)$	119.8
$\mathrm{~N}(4)-\mathrm{H}(4 \mathrm{~A}) \cdots \mathrm{F}(5)$	2.55	$3.220(4)$	133.4

[^5]The platinum(II) complex, 178 displays a cis configuration with respect to the diazaphosphorinane ligands, the Pt (II) centre being in a near square-planar geometry as shown by the bond angles around the $\mathrm{Pt}(\mathrm{II})$ centre given in Table 2.29.

Selected bond lengths and angles are given in Table 2.29, the $\mathrm{Pt}-\mathrm{P}$ and $\mathrm{Pt}-\mathrm{Cl}$ bond lengths are comparable to those of other previously reported compounds. ${ }^{200,203}$ There are intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds (Table 2.29). The crystal data and structure refinement details for $\mathbf{1 7 8}$ are shown in Appendix 8.8.

The H-bonds here are bifurcated, hence are likely to be weak. This is supported by the relatively non-linear nature of the bond angles (Table 2.29). It is worthy of note that formation of $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonding rarely observed in covalently bound fluorine compounds ${ }^{193}$ was evident in 178 as revealed by the X-ray diffraction analysis. The $\mathrm{H} \cdots \mathrm{F}$ bond length and $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ bond angle however, were longer and relatively nonlinear hence not comparable to typical values for $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ intermolecular hydrogen bonds in the literature which are in the range [2.25-2.33 $\left.\AA ; 155-166^{\circ}\right] .{ }^{193}$

2.5 CONCLUSIONS

Two new classes of phosphonium salts have been synthesised from THPC and aniline or phenylenediamine precursors as aniline and phenylenediamine derivatives of THPC respectively. The new aniline derivatives (128-146) of THPC represented as $\left[\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{NHR}\right)_{4}\right] \mathrm{Cl}$, where $\mathrm{R}=$ phenyl or a substituted phenyl group were synthesised by reacting THPC with different aniline precursors in EtOH at room temperature following the procedure first published by Frank et al. ${ }^{10}$ The new phenylenediamine derivatives of THPC, $\left[\mathrm{P}\left\{\left(\mathrm{CH}_{2} \mathrm{NH}\right)_{2} \mathrm{R}\right)_{2}\right] \mathrm{Cl},\left[\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4}, 147 ; \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}, 148 ; \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{COPh}, 149\right.$; $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{C}_{4} \mathrm{H}_{4}, 150$] were also synthesised by reacting THPC with phenylenediamine precursors in EtOH in ethanol at room temperature following a similar procedure first published by Frank et al. ${ }^{10}$

Selected aniline derivatives of THPC were reacted with $\mathrm{Et}_{3} \mathrm{~N}$ in acetone at room temperature following a procedure first published by Frank et al. ${ }^{10}$ to give the corresponding diazaphosphorinane ligands cyclo-\{ $\left.\mathrm{CH}_{2} \mathrm{~N}(\mathrm{R}) \mathrm{CH}_{2} \mathrm{~N}(\mathrm{R}) \mathrm{CH}_{2}-\mathrm{P}\right\}$ $\mathrm{CH}_{2} \mathrm{~N}(\mathrm{H}) \mathrm{R}, 152-161$ where $\mathrm{R}=$ phenyl or a substituted phenyl group. The reactivity of
the diazaphosphorinane ligands towards late transition metals including $\mathrm{Ru}(\mathrm{II}), \mathrm{Rh}$ (III), $\mathrm{Ir}(\mathrm{III}), \mathrm{Pd}(\mathrm{II})$ and $\mathrm{Pt}(\mathrm{II})$ has been evaluated.

The phosphonium salts, diazaphosphorinane ligands and metal complexes were characterised by a combination of conventional techniques: MS, microanalysis, FT-IR, NMR [${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$], and in several cases by single crystal X-ray crystallography. Furthermore, P-coordination bonding modes have been observed in the complexes and verified by spectroscopic and single X-ray diffraction analyses. The $\mathrm{Ru}(\mathrm{II}), \mathrm{Rh}(\mathrm{III})$ and $\operatorname{Ir}(\mathrm{III})$ complexes showed a classic "piano-stool" geometry, while the $\mathrm{Pd}(\mathrm{II})$ and $\mathrm{Pt}(\mathrm{II})$ complexes showed square-planar geometries with cis-configurations and illustrate a range of intra- and intermolecular hydrogen-bonding contacts as confirmed by single X-ray diffraction analyses. These interesting coordination properties may have useful future implications in homogeneous catalysis.

CHAPTER THREE

NEW CATIONIC CYCLIC PHOSPHORUS(III) LIGANDS

3.0 INTRODUCTION

Cationic phosphorus(III) ligands are very useful in organometallic and coordination chemistry because of the lone pair of electrons on the phosphorus as well as the availability of the positive and negative ions which enhance other useful properties such as ion exchange and hydrogen-bonding. The ready availability of THPC coupled with its use as a precursor to phosphines makes it a potential candidate for the synthesis of cationic phosphorus(III) ligands as tertiary phosphine ammonium salts.

In this chapter, the reaction of THPC with benzylamine precursors in ethanol at room temperature under aerobic conditions following a similar procedure first published by Frank et al. ${ }^{10}$ will be explored in anticipation of reducing the $\mathrm{P}(\mathrm{V})$ compound, THPC to a tertiary phosphine ammonium chloride, (cationic cyclic P (III) ligand). The benzylamines are of relatively higher basicity than the aniline precursors used previously (Chapter 2) which could not effect a reduction of THPC, but required $\mathrm{Et}_{3} \mathrm{~N}$ in a second and final step to give a cyclic P(III) compound. Anion metathesis of the resulting chlorides with $\mathrm{Na}\left[\mathrm{BPh}_{4}\right], \mathrm{Na}\left[\mathrm{SbF}_{6}\right]$ or $\mathrm{K}\left[\mathrm{PF}_{6}\right]$ in methanol at room temperature under aerobic conditions will be performed to give the corresponding metathesised salts. The coordination chemistry of these P (III) salts will then be explored by reacting them with $\mathrm{Ru}(\mathrm{II}), \mathrm{Rh}(\mathrm{I}), \mathrm{Rh}(\mathrm{III}), \mathrm{Ir}(\mathrm{III}), \mathrm{Pd}(\mathrm{II}), \mathrm{Pt}(\mathrm{II})$ and $\mathrm{Au}(\mathrm{I})$ precursors to form the corresponding transition metal complexes.

The cationic phosphorus(III) salts and metal complexes will be characterised by a combination of conventional techniques: MS, microanalysis, FT-IR, NMR [${ }^{1} \mathrm{H}$ and $\left.{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\right]$, and in several cases by single crystal X-ray crystallography. The structural and stereoelectronic relationship between these salts and complexes with other phosphorus(III) compounds and their complexes in the literature will be described also.

3.1 SYNTHESIS OF TERTIARY PHOSPHINE AMMONIUM CHLORIDES (180-184) FROM THPC

A range of new tertiary phosphine ammonium chlorides [cyclo$\left.\left\{\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{R}^{\prime}\right) \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{R}^{\prime}\right) \mathrm{CH}_{2}-\mathrm{P}\right\}-\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{H}_{2}\right) \mathrm{R}^{\prime}\right]^{+} \mathrm{Cl}^{-}, \quad\left[\mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}, \quad 180 ; \quad \mathrm{R}^{\prime}=4-\right.$
$\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}, 181 ; \mathrm{R}^{\prime}=4-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}, 182 ; \mathrm{R}^{\prime}=4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}, 183 ; \mathrm{R}^{\prime}=4-$ $\left.\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}, 184\right]$ were synthesised by reacting THPC with different benzylamine precursors in ethanol using a similar procedure first published by Frank et al. ${ }^{10}$ THPC readily reacts with the benzylamine precursors in a 1:4 molar ratio in ethanol at room temperature under aerobic conditions (Equation 3.1).
$\left[\mathrm{P}_{\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{4}}\right]^{+} \mathrm{Cl}^{-}$

Where $\mathrm{R}^{\prime}=$

$$
\begin{aligned}
X & =H, 180 ; X=F, 181 \\
X & =C l, 182 ; X=M e, 183 \\
X & =M e O, 184
\end{aligned}
$$

Equation 3.1.

The reactions afforded the desired products in excellent yields (Table 3.1). All the precursors were liquids, but the products were crystalline colourless solids.

3.1.1 CHARACTERISATION OF COMPOUNDS 180-184

Characterisation was achieved by MS, microanalysis, FT-IR, NMR and single crystal X-ray crystallography as in the previous cases (Section 2.1.1).

Table 3.1 Percentage yield (isolated), FAB-MS and selected FT-IR data ${ }^{\mathbf{a}}$ (in cm^{-1}) for compounds 180-184.

Compound	\% yield	$m / z\left[\mathrm{M}-\mathrm{Cl}^{+}\right.$	$v\left(\mathrm{NH}_{2}{ }^{+}\right)$	$v(\mathrm{CH})$
$\mathbf{1 8 0}$	86	404	$3028(\mathrm{vs})$	$2781(\mathrm{vs})$
$\mathbf{1 8 1}$	83	458	$3044(\mathrm{~m})$	$2821(\mathrm{vs})$
$\mathbf{1 8 2}$	82	506	$3023(\mathrm{vs})$	$2785(\mathrm{vs})$
$\mathbf{1 8 3}$	87	446	$2916(\mathrm{~s})$	$2780(\mathrm{vs})$
$\mathbf{1 8 4}$	93	494	$3028(\mathrm{~m})$	$2954(\mathrm{~m})$

[^6]The MS data with the m / z values given in Table 3.1 are in agreement with the loss of the chloride ion, $m / z[\mathrm{M}-\mathrm{Cl}]^{+}$in the respective compounds $180-184$. The FT-IR spectra of these compounds were run as pressed KBr disks. In $\mathbf{1 8 0}-184$, the $v\left(\mathrm{NH}_{2}{ }^{+}\right)$ stretches were observed at about $3000 \mathrm{~cm}^{-1}$ (Table 3.1) and are higher than the expected range of $2250-2700 \mathrm{~cm}^{-1}$, probably due to hydrogen-bonding. ${ }^{190}$ The peaks resulting from these vibrations were sharp, hence easily distinguished from the broad OH peaks also observed at about $3000 \mathrm{~cm}^{-1}$ when the precursor THPC infrared spectrum was run as a pressed KBr disk. The benzyl CH vibrations were observed in the range $2780-2954 \mathrm{~cm}^{-1}$.

The microanalytical data (Table 3.2), were within acceptable limits hence are consistent with the formulations of 180-184. There was evidence of coprecipitation of water in the case of 184.

Table 3.2 Microanalysis (\%) and molecular formulae for compounds 180-184. ${ }^{\text {a }}$

Compound	C	H	N	Molecular formula
$\mathbf{1 8 0}$	$68.25(68.25)$	$7.10(7.10)$	$9.58(9.55)$	$\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{PCl}$
$\mathbf{1 8 1}$	$60.56(60.79)$	$5.58(5.71)$	$8.41(8.51)$	$\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{~F}_{3} \mathrm{PCl}$
$\mathbf{1 8 2}$	$55.20(55.27)$	$5.15(5.19)$	$7.62(7.73)$	$\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{PCl}$
183	$69.79(69.77)$	$7.71(7.74)$	$8.70(8.72)$	$\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{PCl}$
$\mathbf{1 8 4}$	$61.89(61.87)$	$6.91(7.37)$	$7.72(7.37)$	$\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{PCl} \cdot 0.75 \mathrm{H}_{2} \mathrm{O}$

${ }^{\text {a }}$ Calculated values in parentheses.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of these compounds recorded in d^{6}-DMSO showed single ${ }^{31} \mathrm{P}$ resonances around -55.00 ppm (Table 3.3), significantly different from the single phosphorus resonance of the precursor THPC $[\delta(P)=26.50 \mathrm{ppm}]$ also recorded in $\mathrm{d}^{6}-$ DMSO, and was some 40.00 ppm downfield with respect to PTA $[\delta(\mathrm{P})=-96.20 \mathrm{ppm}$, $\left.\mathrm{D}_{2} \mathrm{O}\right] .^{102}$ This suggests the transformation of a phosphorus (V) compound, THPC to a phosphorus(III) compound, in this case a tertiary phosphine ammonium salt.

Selected ${ }^{1}$ H NMR data are given in Table 3.3. The aromatic protons were observed as multiplets in the range $6.68-7.62 \mathrm{ppm}$, while the resonances of the various CH_{2} protons
were observed as singlets, doublets or multiplets as given in Table 3.3. The resonances for the NH_{2} protons were broad and weak, not observed in some cases (181 and 182), but were observed in 180,183 and 184 , significantly downfield at $9.55,8.24$ and 8.32 ppm respectively when compared to the NH resonances of the diazaphosphorinane compounds (Table 2.11), due to the positive charge on the quaternary nitrogen atom. The ${ }^{1} \mathrm{H}$ NMR spectrum of 183 with CH_{3} at the 4 -position showed the characteristic CH_{3} proton resonance as a singlet at $2.25 \mathrm{ppm},{ }^{190}$ while in the ${ }^{1} \mathrm{H}$ NMR spectrum of 184 , the $\mathrm{CH}_{3} \mathrm{O}$ resonance for the protons also at the 4 -position were observed relatively downfield, probably due to the electronegativity of the oxygen atom, as a singlet at 3.40 ppm.
Table 3.3 Selected NMR data (in ppm or Hz) for 180-184. ${ }^{\text {a }}$

Compound	$\delta(\mathrm{P})$	$\delta(\mathrm{H}) /$ arom.	$\delta(\mathrm{H}) / \mathrm{CH}_{2}$	$\delta(\mathrm{H}) / \mathrm{NH}_{2}$				
$\mathbf{1 8 0}$	-55.08	$7.01-7.59, \mathrm{~m}$	$4.21, \mathrm{~s}$	$3.38-3.42, \mathrm{~m}$	$3.18(13.6)^{\mathrm{b}}$	$2.65, \mathrm{t}$		
$\mathbf{1 8 1}$	-54.72	$6.93-7.62, \mathrm{~m}$	$4.21, \mathrm{~s}$	$4.02, \mathrm{~s}$	3.29^{c}	$3.18(13.8)^{\mathrm{b}}$	$2.67, \mathrm{t}$	$\mathrm{n} . \mathrm{o}$.
$\mathbf{1 8 2}$	-54.31	$7.06-7.60, \mathrm{~m}$	$4.22, \mathrm{~s}$	$4.03, \mathrm{~s}$	3.34^{c}	$3.17(14.0)^{\mathrm{b}}$	$2.09, \mathrm{t}$	$\mathrm{n} . \mathrm{o}$.
$\mathbf{1 8 3}$	-54.85	$6.95-7.41, \mathrm{~m}$	$4.14, \mathrm{~s}$	$3.34-3.89, \mathrm{~m}$	$3.13(13.6)^{\mathrm{b}}$	$2.67, \mathrm{t}$		$8.24, \mathrm{br}$
$\mathbf{1 8 4}$	-54.90	$6.68-7.51, \mathrm{~m}$	$4.13, \mathrm{~s}$	$3.48-3.64, \mathrm{~m}$	$3.21(14.0)^{\mathrm{b}}$	$2.68, \mathrm{t}$		$8.32, \mathrm{br}$

${ }^{\text {a }}$ All NMR recorded in d^{6}-DMSO
${ }^{b} \mathrm{CH}_{2}$ protons, $\mathrm{d},{ }^{2} J_{\mathrm{PH}}$ coupling in brackets
${ }^{\mathrm{c}} \mathrm{CH}_{2}$ protons, multiplicity could not be fully assigned due to overlap with residual solvent resonances
n.o. $=$ not observed

The compounds were highly crystalline, with X-ray quality crystals of $\mathbf{1 8 1}$ obtained from the ethanol filtrate kept for more than 24 h . The single crystal X-ray structure of 181 has been determined (Figure 3.1) and reveals a pyramidal configuration with the phosphorus atom at the apex of the pyramid. The lone pair of electrons on the phosphorus(III) centre qualifies 181 as a potential ligand.

Figure 3.1 Molecular structure of 181.

The crystal structure also reveals a $\mathrm{P}-\mathrm{C}-\mathrm{N}-\mathrm{C}-\mathrm{N}-\mathrm{C}$ six-membered ring with a chair conformation, exhibiting crystallographic mirror symmetry, whose axis bisects the ammonium group of the cation, the methylene diamine bridge and the $4-\mathrm{FC}_{6} \mathrm{H}_{4}$ ring. A close examination of the intracage $\mathrm{P}-\mathrm{C}$ bond lengths and $\mathrm{P}-\mathrm{C}-\mathrm{N}$ bond angles of 181 reveals close similarities with PTA. ${ }^{204,205}$ The C-P-C angle within the $\mathrm{P}-\mathrm{C}-\mathrm{N}-\mathrm{C}-\mathrm{N}-\mathrm{C}$ ring is 99.4 (2) $)^{\circ}$ slightly longer than the analogous $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angle in PTA $\left[96.1(1)^{\circ}\right] .{ }^{204,205}$ Selected bond lengths and angles of 181 are given in Table 3.6. The P-C bond lengths of $1.847(3)$ and $1.841(5) \AA$ are similar to those of 129 and comparable to other previously reported organophosphorus compounds. ${ }^{33,185-187}$ The crystal data and structure refinement details for $\mathbf{1 8 1}$ are given in Appendix 8.9.

The most important structural feature of $\mathbf{1 8 1}$ is the presence of a pair of intramolecular H -bonds originating from the ammonium group of the cation at $\mathrm{N}(1)$ linking the two N atoms in the ring via the H atoms at the methylene diamine bridge shown as $\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A}) \cdots \mathrm{N}(2 \mathrm{~A})$ and $\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B}) \cdots \mathrm{N}(2)$ in Figure 3.1. The pair of $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ intramolecular H -bonds forms a conformationally locked phosphine framework in the solid state. Thus $\mathbf{1 8 1}$ can be regarded as a charged variant of the well-known PTA ligand as illustrated in Figure 3.2. The X-ray diffraction analysis also reveals the existence of additional weak intermolecular bonding contacts between the cations and the chloride counterions leading to infinite 2-D sheets as shown in Figure 3.3.

PTA

181

Figure 3.2 Structures of $\mathbf{1 8 1}$ and PTA.

Figure 3.3 Packing plot of $\mathbf{1 8 1}$ showing the H -bonded sheet pattern.

Table 3.4 Selected bond lengths and angles for 181. ${ }^{\text {a }}$

Bond lengths (\AA)		Bond angles (${ }^{\circ}$)		Bond angles (${ }^{\circ}$)	
$\mathrm{P}(1)-\mathrm{C}(7)$	$1.847(3)$	$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	$116.2(3)$	$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(7)$	$101.21(15)$
$\mathrm{P}(1)-\mathrm{C}(1)$	$1.841(5)$	$\mathrm{P}(1)-\mathrm{C}(7)-\mathrm{N}(2)$	$113.8(2)$	$\mathrm{C}(7)-\mathrm{P}(1)-\mathrm{C}(7 \mathrm{~A})$	$99.4(2)$

Selected hydrogen bonding contacts

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{d}(\mathrm{H} \cdots \mathrm{A})(\AA)$	$\mathrm{d}(\mathrm{D} \cdots \mathrm{A})(\AA)$	$<(\mathrm{DHA})\left({ }^{\circ}\right)$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B}) \cdots \mathrm{N}(2)$	2.27	$2.915(5)$	126.4

${ }^{\text {a }}$ Estimated standard deviations in parentheses.

3.2 SYNTHESIS OF TERTIARY PHOSPHINE AMMONIUM SALTS

 (185-196) WITH $\left[\mathrm{BPh}_{4}\right]^{-},\left[\mathrm{SbF}_{6}\right]^{-}$or $\left[\mathrm{PF}_{6}\right]^{-}$COUNTERIONSAnion metathesis of some of the tertiary phosphine ammonium chlorides (180-183), synthesised in Section 3.1, with some alkali metal salts in methanol was performed resulting in the formation of new tertiary phosphine ammonium salts. Reaction of the chlorides $180-183$ with $\mathrm{Na}\left[\mathrm{BPh}_{4}\right], \mathrm{Na}\left[\mathrm{SbF}_{6}\right]$ or $\mathrm{K}\left[\mathrm{PF}_{6}\right]$ in methanol followed by addition of $\mathrm{H}_{2} \mathrm{O}$ (Equation 3.2) gave the compounds $185-196$ as colourless solids in high yields (Table 3.5).

	$\mathrm{X}=\mathrm{H}, \mathrm{A}=\mathrm{BPh}_{4}, 185 ; \mathrm{X}=\mathrm{Cl}, \mathrm{A}=\mathrm{SbF}_{6}, 191$
Where	$\mathrm{X}=\mathrm{F}, \mathrm{A}=\mathrm{BPh}_{4}, 186 ; \mathrm{X}=\mathrm{Me}, \mathrm{A}=\mathrm{SbF}_{6}, 192$
	$\mathrm{X}=\mathrm{Cl}, \mathrm{A}=\mathrm{BPh}_{4}, 187 ; \mathrm{X}=\mathrm{H}, \mathrm{A}=\mathrm{PF}_{6}, 193$
	$\mathrm{X}=\mathrm{Me}, \mathrm{A}=\mathrm{BPh}_{4}, 188 ; \mathrm{X}=\mathrm{F}, \mathrm{A}=\mathrm{PF}_{6}, 194$
	$\mathrm{X}=\mathrm{H}, \mathrm{A}=\mathrm{SbF}_{6}, 189 ; \mathrm{X}=\mathrm{Cl}, \mathrm{A}=\mathrm{PF}_{6}, 195$
$\mathrm{M}=\mathrm{Na}, \mathrm{K} ; \mathrm{A}=\mathrm{BPh}_{4}, \mathrm{SbF}_{6}, \mathrm{PF}_{6}$	$\mathrm{X}=\mathrm{F}, \mathrm{A}=\mathrm{SbF}_{6}, 190 ; \mathrm{X}=\mathrm{Me}, \mathrm{A}=\mathrm{PF}_{6}, 196$

Equation 3.2.

3.2.1 CHARACTERISATION OF COMPOUNDS 185-196

Characterisation was achieved by MS, microanalysis, FT-IR, NMR and single crystal X-ray crystallography in some cases. The FAB-MS data (Table 3.5) for the compounds are in agreement with the loss of the respective counterion $\left(\mathrm{m} / z[\mathrm{M}-\mathrm{X}]^{+}\right)$.

Table 3.5 Percentage yield (isolated), FAB-MS and selected FT-IR data ${ }^{\text {a }}$ (in cm^{-1}) for compounds 185-196.

	$\%$ yield	$m / z[\mathrm{M}-\mathrm{X}]^{+6}$	$v\left(\mathrm{NH}_{2}{ }^{+}\right)$	$v(\mathrm{CH})$	$v(\mathrm{SbF})$	$v(\mathrm{PF})$
185	92	404	$3053(\mathrm{vs})$	$2969(\mathrm{vs})$		
186	93	458	$3053(\mathrm{~m})$	$2970(\mathrm{vs})$		
187	90	508	$3030(\mathrm{vs})$	$2980(\mathrm{vs})$		
188	90	446	$3050(\mathrm{~s})$	$2998(\mathrm{vs})$		
189	92	404	$3031(\mathrm{vs})$	$2952(\mathrm{vs})$	$654(\mathrm{vs})$	
190	73	458	$3052(\mathrm{~m})$	$2954(\mathrm{vs})$	$653(\mathrm{vs})$	
191	91	508	$3029(\mathrm{vs})$	$2933(\mathrm{vs})$	$657(\mathrm{vs})$	
192	85	446	$3023(\mathrm{~s})$	$2921(\mathrm{vs})$	$662(\mathrm{vs})$	
193	72	404	$3032(\mathrm{vs})$	$2948(\mathrm{~s})$		$842(\mathrm{vs})$
194	82	458	$3055(\mathrm{vs})$	$2956(\mathrm{~m})$		$848(\mathrm{vs})$
195	75	508	$3071(\mathrm{~s})$	$2938(\mathrm{~s})$		$846(\mathrm{vs})$
196	78	446	$3023(\mathrm{vs})$	$2920(\mathrm{~s})$		$844(\mathrm{vs})$

${ }^{\mathrm{a}}$ Recorded as a pressed KBr disk; ${ }^{\mathrm{b}} \mathrm{X}=\mathrm{BPh}_{4}{ }^{-}, \mathrm{SbF}_{6}{ }^{-}$or $\mathrm{PF}_{6}{ }^{-}$.

The FT-IR spectra of these compounds were run as pressed KBr disks. In 185-196, the $v\left(\mathrm{NH}_{2}{ }^{+}\right)$stretches observed at about $3000 \mathrm{~cm}^{-1}$ (Table 3.5) were not significantly different from those observed for the precursor tertiary phosphine ammonium chlorides, 180-183. They were also higher than the expected values probably due to hydrogen bonding. The benzyl CH vibrations were also similar to those of the precursor chlorides. A strong SbF vibration at about $650 \mathrm{~cm}^{-1}$ indicates the presence of $\mathrm{SbF}_{6}{ }^{-}$in 189-192, while a strong band at about $840 \mathrm{~cm}^{-1}$ in 193-196 can be ascribed to PF vibration indicating the presence of $\mathrm{PF}_{6}{ }^{-}$.

The microanalytical data are given in Table 3.6. There was evidence of coprecipitation of water in most of the salts as supported by the microanalytical data. The agreement between the observed and calculated CHN data is consistent with the formulation of compounds 185-196.

Table 3.6 Microanalysis (\%) and molecular formulae for compounds 185-196. ${ }^{\text {a }}$

Compound	C	H	N	Molecular formula
$\mathbf{1 8 5}$	$80.85(81.32)$	$6.80(7.10)$	$5.69(5.81)$	$\mathrm{C}_{49} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{~PB}$
$\mathbf{1 8 6}$	$74.28(73.96)$	$6.06(6.33)$	$5.39(5.28)$	$\mathrm{C}_{49} \mathrm{H}_{48} \mathrm{~N}_{3} \mathrm{~F}_{3} \mathrm{~PB} \cdot \mathrm{H}_{2} \mathrm{O}$
187	$69.77(69.64)$	$5.75(5.96)$	$5.04(4.97)$	$\mathrm{C}_{49} \mathrm{H}_{48} \mathrm{~N}_{3} \mathrm{Cl}_{3} \mathrm{~PB} \cdot \mathrm{H}_{2} \mathrm{O}$
$\mathbf{1 8 8}$	$81.22(81.55)$	$7.52(7.50)$	$5.53(5.49)$	$\mathrm{C}_{52} \mathrm{H}_{57} \mathrm{~N}_{3} \mathrm{~PB}$
$\mathbf{1 8 9}$	$46.35(46.35)$	$4.80(4.92)$	$6.46(6.52)$	$\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{PSbF}_{6} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$
$\mathbf{1 9 0}$	$42.46(42.70)$	$3.90(4.16)$	$5.87(5.98)$	$\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{PSbF}_{9} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
$\mathbf{1 9 1}$	$40.43(40.38)$	$4.01(3.80)$	$6.00(5.65)$	$\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{Cl}_{3} \mathrm{PSbF}_{6}$
$\mathbf{1 9 2}$	$48.25(48.65)$	$5.10(5.54)$	$5.94(6.08)$	$\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{PSbbF}_{6} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
$\mathbf{1 9 3}$	$55.03(54.65)$	$5.61(5.69)$	$7.68(7.65)$	$\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{P}_{2} \mathrm{~F}_{6}$
$\mathbf{1 9 4}$	$48.21(48.32)$	$4.51(4.87)$	$6.72(6.76)$	$\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{P}_{2} \mathrm{~F}_{9} \cdot \mathrm{H}_{2} \mathrm{O}$
$\mathbf{1 9 5}$	$45.86(46.00)$	$4.18(4.32)$	$6.36(6.44)$	$\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{Cl}_{3} \mathrm{P}_{2} \mathrm{~F}_{6}$
$\mathbf{1 9 6}$	$56.80(56.42)$	$6.65(6.34)$	$7.54(7.05)$	$\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{P}_{2} \mathrm{~F}_{6} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$

${ }^{2}$ Calculated values in parentheses.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $185-196$ recorded in $\mathrm{d}^{6}-\mathrm{DMSO}$ showed single ${ }^{31} \mathrm{P}$ resonances around $\mathbf{- 5 5 . 0 0} \mathrm{ppm}$ (Table 3.7) not significantly different from those of the precursor tertiary phosphine ammonium chlorides, 180-183. In the case of 193196, containing the hexafluorophosphate $(\mathrm{V}), \mathrm{PF}_{6}{ }^{-}$anion, apart from the phosphorus(III) resonances around -55.00 ppm mentioned above, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra showed the characteristic septet splitting pattern [average $\delta(P)=-144.00$ ppm], significantly upfield of the pyramidal P atom, due to the six NMR-active ${ }^{19} \mathrm{~F}$ atoms coupling to the $\mathrm{P}(\mathrm{V})$ atom of the $\mathrm{PF}_{6}{ }^{-}$ion, symmetrically separated by average ${ }^{1} J_{\text {PF }}$ coupling constant of 713 Hz (Table 3.7).

Selected ${ }^{1} \mathrm{H}$ NMR data are given in Table 3.7. The resonances for aromatic protons were in the range $6.68-7.95 \mathrm{ppm}$, while the resonances of the various CH_{2} protons, as in the case of the precursor chlorides, were observed as singlets, doublets or multiplets as given in Table 3.7. The resonances for the NH_{2} protons were very weak, and not seen in some cases but were observed in some, downfield (8.10-9.02 ppm) due to the charge on the N atom (ammonium species, $\left[\mathrm{NR}_{4}\right]^{+}$). The ${ }^{1} \mathrm{H}$ NMR spectra of 188,192 and 196 all with CH_{3} at the 4-position showed the characteristic CH_{3} proton resonances at about 2.24 ppm .
Table 3.7 Selected NMR data (in ppm or Hz) for 185-196. ${ }^{\text {² }}$

	$\delta(\mathrm{P})$	$\delta(\mathrm{P})$	$\delta(\mathrm{H})$ /arom.	$\delta(\mathrm{H}) / \mathrm{CH}_{2}$	$\delta(\mathrm{H}) / \mathrm{CH}_{2}{ }^{\text {b }}$	$\delta(\mathrm{H}) / \mathrm{CH}_{2}{ }^{\text {c }}$	$\delta(\mathrm{H}) / \mathrm{CH}_{2}$	$\delta(\mathrm{H}) / \mathrm{NH}_{2}$	${ }^{1} J_{\text {PF }}$
185	-54.84		6.78-7.54, m	4.23, s	3.35-3.85	3.10 (13.6)	2.67,	$8.56, \mathrm{br}$	
186	-54.84		6.78-7.58, m	4.21, s	3.33-3.84	3.11 (13.6)	2.67, t	n.o.	
187	-54.45		6.78-7.60, m	4.22, s	3.50-3.84	3.11 (13.6)	2.64,	n.o.	
188	-54.81		6.78-7.36, m	4.16, s	3.46-3.99	3.08 (14.0)	2.65, t	$8.10, \mathrm{br}$	
189	-55.20		6.92-7.49, m	4.22, s	3.41-3.57	3.10 (12.0)	2.66, t	9.01, br	
190	-54.92		6.98-7.57, m	4.22, s	3.50-3.84	3.10 (13.6)	2.67, t	8.95, br	
191	-54.24		7.00-7.59, m	4.23, s	3.50-3.90	3.12 (14.0)	2.68, t	8.14, br	
192	-54.65		6.90-7.43, m	4.18, s	3.43-3.98	3.13 (13.6)	2.67, t	8.18, br	
193	-54.61	-144.20, sept.	7.01-7.49, m	4.23, s	3.41-3.85	3.10 (14.0)	2.67, t	9.02, br	711
194	-54.42	-144.20, sept.	6.98-7.58, m	4.22, s	3.51-3.84	3.12 (13.6)	2.67, t	$9.00, \mathrm{br}$	714
195	-54.30	-144.19, sept.	6.99-7.95, m	4.23, s	3.48-3.98	3.11 (14.0)	2.67, t	8.13, br	713
196	-55.35	-144.20, sept.	6.92-7.38, m	4.28, s	3.43-3.79	3.13 (14.0)	2.67, t	n.o. ${ }^{\text {d }}$	713

${ }^{\text {a }}$ All NMR spectra were recorded in d^{6}-DMSO
${ }^{\mathrm{b}} \mathrm{CH}_{2}$ protons, multiplicity could not be fully assigned due to overlap with residual solvent resonances ${ }^{\mathrm{c}} \mathrm{CH}_{2}$ protons, $\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{PH}}$ coupling in brackets n.o. $=$ not observed

The compounds as in the case of the tertiary phosphine ammonium chlorides, 180-184, were highly crystalline. Suitable crystals of $\mathbf{1 8 5}$ and 193 were obtained by vapour diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into their $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions over the course of several days. Similarly, suitable crystals of 190 were obtained when petroleum ether $\left(40-60^{\circ} \mathrm{C}\right)$ was layered on $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution kept for several days. The single crystal X-ray structures of $\mathbf{1 8 5}, 190$ and 193 have been determined (Figures 3.4, 3.5 and 3.9) and showed pyramidal configurations with the phosphorus atom at the top of the pyramid. The crystal structures of the cations also reveal a $\mathrm{P}-\mathrm{C}-\mathrm{N}-\mathrm{C}-\mathrm{N}-\mathrm{C}$ six-membered ring with a chair conformation in all the compounds similar to that of $\mathbf{1 8 1}$. The lone pair of electrons on the phosphorus atoms again qualifies these compounds as potential ligands. As in the case of 181, the intracage $\mathrm{P}-\mathrm{C}$ bond lengths and $\mathrm{P}-\mathrm{C}-\mathrm{N}$ bond angles of 190 and 193 also reveal close similarities with PTA. ${ }^{204,205}$ The C-P-C angles within the $\mathrm{P}-\mathrm{C}-\mathrm{N}-\mathrm{C}-\mathrm{N}-\mathrm{C}$ rings are $99.84(12)^{\circ}$ and $97.78(5)^{\circ}$ for 190 and 193 respectively, slightly longer than the analogous C-P-C angle in PTA $\left[96.1(1)^{\circ}\right] .{ }^{204,205}$ The bond lengths and angles of $\mathbf{1 8 5}, 190$ and 193 are given in Tables 3.8, 3.9 and 3.10. The $\mathrm{P}-\mathrm{C}$ bond lengths are also similar to those of $\mathbf{1 2 9}$ and comparable to other previously reported compounds. ${ }^{33,185-187}$ The crystal data and structure refinement details for 185, 190 and 193 are given in Appendices 8.10, 8.11 and 8.12.

The compounds are H -bonded and unlike in the case of 181 , only one $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ intramolecular H -bond, $\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A}) \cdots \mathrm{N}(2)$ was observed in 185 as shown in Figure 3.4. The inability of forming the second $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ intramolecular H -bond, $\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B}) \cdots \mathrm{N}(3)$ is caused by the $\mathrm{N}-\mathrm{H} \cdots \pi$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions between the cation and the anion $\left(\mathrm{BPh}_{4}^{-}\right)$as shown in Figure 3.4. The $\mathrm{H}(1 \mathrm{~B})$ hydrogen at $\mathrm{N}(1)$ in the cation has an interaction with a phenyl group in the anion [$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B}) \cdots \mathrm{C}(30)$] hence cannot flip over to form the $\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B}) \cdots \mathrm{N}(3) \mathrm{H}$-bond as in the case of $\mathbf{1 8 1}$. Therefore no cage structure was formed in this case. However, in compounds 190 and 193 as was the case in 181, a pair of $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ intramolecular H -bonds forming conformationally locked phosphine frameworks in the solid state was evident. Thus compounds 190 and 193 can also be regarded as charged variants of PTA. The existence of additional weak intermolecular bonding contacts between the cations and the counterions in 190 and 193 leading to infinite 2-D sheets was also revealed by the X-ray diffraction analyses (Figures 3.7 and 3.8).

Figure 3.4 Molecular structure of $\mathbf{1 8 5}$ showing $\mathrm{N}-\mathrm{H} \cdots \pi$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions between cation and anion $\left(\mathrm{BPh}_{4}{ }^{-}\right)$.

Table 3.8 Selected bond lengths and angles for 185 . a

Bond lengths (\AA)		Bond lengths (\AA)		Bond angles $\left(^{\circ}\right)$	
$\mathrm{P}(1)-\mathrm{C}(11)$	$1.8407(14)$	$\mathrm{C}(1)-\mathrm{N}(1)$	$1.4816(19)$	$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(9)$	$97.38(6)$
$\mathrm{P}(1)-\mathrm{C}(9)$	$1.8457(13)$	$\mathrm{C}(9)-\mathrm{N}(2)$	$1.4772(17)$	$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(1)$	$98.39(7)$
$\mathrm{P}(1)-\mathrm{C}(1)$	$1.8581(16)$	$\mathrm{C}(11)-\mathrm{N}(3)$	$1.4664(17)$	$\mathrm{C}(9)-\mathrm{P}(1)-\mathrm{C}(1)$	$100.54(6)$

Selected hydrogen bonding contacts

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{d}(\mathrm{H} \cdots \mathrm{A})(\AA)$	$\mathrm{d}(\mathrm{D} \cdots \mathrm{A})(\AA)$	$<(\mathrm{DHA})\left({ }^{\circ}\right)$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A}) \cdots \mathrm{N}(2)$	$1.887(18)$	$2.7393(17)$	$148.4(16)$

[^7]

Figure 3.5 Molecular structure of 190 . The SbF_{6}^{-}counterion has been omitted for clarity.

The apical $\mathrm{P}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bond lengths as well as $\mathrm{C}-\mathrm{P}-\mathrm{C}$ bond angles for 190 are given in Table 3.9. In addition to the intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ H-bonding mentioned earlier, 190 also exhibits intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{FH}$-bonding, involving, the six $\mathrm{SbF}_{6}{ }^{-}$fluorines as shown in Figure 3.6.

The X-ray diffraction analyses also reveal that there is intermolecular $\pi-\pi$ stacking of the molecules. Phenyl \cdots phenyl groups are stacked down the c-axis of the unit cells in these compounds as shown by the packing plot for 190 (Figure 3.7). The average $\mathrm{C}-\mathrm{C}$ distance of $3.484 \AA$ between the phenyl groups separating two molecules of 190 was similar to the interplanar distance of ca. $3.354 \AA$ involving carbon atoms in the structure of graphite. ${ }^{206}$

Figure 3.6 Molecular structure of 190 showing intermolecular H -bonding contacts between the $\left[\mathrm{SbF}_{6}\right]^{-}$counterion and cations.

Table 3.9 Selected bond lengths and angles for 190 . $^{\text {a }}$

Bond lengths (\AA)		Bond angles (${ }^{\circ}$)		Bond angles $\left(^{\circ}\right.$)	
$\mathrm{P}(1)-\mathrm{C}(1)$	$1.850(3)$	$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	$115.47(17)$	$\mathrm{C}(10)-\mathrm{P}(1)-\mathrm{C}(1)$	$101.96(12)$
$\mathrm{P}(1)-\mathrm{C}(9)$	$1.843(3)$	$\mathrm{P}(1)-\mathrm{C}(9)-\mathrm{N}(2)$	$114.39(17)$	$\mathrm{C}(9)-\mathrm{P}(1)-\mathrm{C}(1)$	$99.84(12)$
$\mathrm{P}(1)-\mathrm{C}(10)$	$1.841(3)$	$\mathrm{P}(1)-\mathrm{C}(10)-\mathrm{N}(3)$	$113.91(17)$	$\mathrm{C}(10)-\mathrm{P}(1)-\mathrm{C}(9)$	$98.03(12)$

Şelected hydrogen bonding contacts

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{d}(\mathrm{H} \cdots \mathrm{A})(\AA)$	$\mathrm{d}(\mathrm{D} \cdots \mathrm{A})(\AA)$	$<(\mathrm{DHA})\left(^{\circ}\right)$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A}) \cdots \mathrm{N}(2)$	$2.14(3)$	$2.804(3)$	$138(3)$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B}) \cdots \mathrm{N}(3)$	$2.20(3)$	$2.841(3)$	$130(2)$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A}) \cdots \mathrm{F}(7 \mathrm{~A})$	$2.63(3)$	$3.166(3)$	$125(2)$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B}) \cdots \mathrm{F}(11 \mathrm{~B})$	$2.46(3)$	$3.021(3)$	$123(2)$

[^8]

Figure 3.7 Packing plot for compound 190, parallel to a showing H-bonded chains of cations and anions.

Figure 3.8 Packing plot for compound 193.

Compounds 190 and 193 have similar cation/anion arrangements as shown in Figures 3.6 and 3.10. The packing plots for 190 and 193 are also similar involving stacking of phenyl \cdots phenyl groups down the c-axis of the unit cell in each case although Figures 3.7 and 3.8 do not clearly show this.

The $\mathrm{P}-\mathrm{C}$ bond lengths and the apical C-P-C angles of 193 are given in Table 3.10, and are comparable to $181,185,190$ and other similar compounds. ${ }^{33,185-187}$ The crystal data and the structure refinement details for 193 are shown in Appendix 8.12.

Figure 3.9 Molecular structure of 193. The $\mathrm{PF}_{6}{ }^{-}$counterion has been omitted for clarity.

Compound 193 as in the case of 190, exhibits both intramolecular ($\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$) and intermolecular ($\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$) hydrogen bonding involving the $\mathrm{PF}_{6}{ }^{-}$counterions as shown in Figure 3.10 and Table 3.10. In both cases the cations are linked together by H -bonding with the $\left[\mathrm{SbF}_{6}\right]^{-}$or $\left[\mathrm{PF}_{6}\right]^{-}$counterions. The highly electronegative six F atoms in these ions are involved in intermolecular hydrogen bonding by linking two or more cationic
parts of the salts together. Such intermolecular hydrogen bonding was not found in the case of 185 probably due to the absence of highly electronegative atoms in the [$\left.\mathrm{BPh}_{4}\right]^{-}$ counterion.

There are three important findings pertaining to the $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ H-bonded framework from compounds 190 and 193 together with 181 mentioned earlier. Firstly, there was no apparent disruption of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ intramolecular H -bonded motif in spite of the fact that polar solvents (alcohols $/ \mathrm{H}_{2} \mathrm{O}$) were used in the synthesis and crystallisation. Compound 185 was odd in this sense, in that only one $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ intramolecular H -bond instead of two was observed due to $\mathrm{N}-\mathrm{H} \cdots \pi$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions between the cation and the anion $\left(\mathrm{BPh}_{4}{ }^{-}\right)$mentioned previously.

Figure 3.10 Molecular structure of 193 showing intermolecular H-bonding contacts between the $\left[\mathrm{PF}_{6}\right]^{-}$counterion and cations.

Secondly, alternate H -bonding arrangements involving the anions were not important; hence the core structure of the cation was maintained regardless of the counter anion $\left(\mathrm{Cl}^{-}, \mathrm{SbF}_{6}{ }^{-}\right.$or $\mathrm{PF}_{6}{ }^{-}$) present. Thirdly, $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ contacts involving the three electronegative fluorine atoms in the 4-positions (181 and 190) were absent, hence do
not disrupt the $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ H-bonding arrangement found in the aforementioned compounds, consistent with the difficulty in forming hydrogen bonds from organic fluorines. ${ }^{193}$ Thus the single crystal X-ray structures of 181,190 and 193 have shown that simple modification of the PTA core can be achieved in which non-covalent interactions such as H -bonds generally maintain the structure in the solid state.

Table 3.10 Selected bond lengths and angles for 193. ${ }^{\text {a }}$

Bond lengths (\AA)		Bond angles ($\left.{ }^{\circ}\right)$		Bond angles $\left(^{\circ}\right)$	
$\mathrm{P}(1)-\mathrm{C}(9)$	$1.8359(12)$	$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	$116.70(7)$	$\mathrm{C}(9)-\mathrm{P}(1)-\mathrm{C}(10)$	$97.78(5)$
$\mathrm{P}(1)-\mathrm{C}(10)$	$1.8366(13)$	$\mathrm{P}(1)-\mathrm{C}(9)-\mathrm{N}(2)$	$114.09(7)$	$\mathrm{C}(9)-\mathrm{P}(1)-\mathrm{C}(1)$	$101.28(5)$
$\mathrm{P}(1)-\mathrm{C}(1)$	$1.8490(12)$	$\mathrm{P}(1)-\mathrm{C}(10)-\mathrm{N}(3)$	$113.53(7)$	$\mathrm{C}(10)-\mathrm{P}(1)-\mathrm{C}(1)$	$101.32(5)$

Selected hydrogen bonding contacts

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{d}(\mathrm{H} \cdots \mathrm{A})(\AA)$	$\mathrm{d}(\mathrm{D} \cdots \mathrm{A})(\AA)$	$<(\mathrm{DHA})\left({ }^{\circ}\right)$
$\mathrm{N}(1)-\mathrm{H}(\mathrm{lA}) \cdots \mathrm{N}(2)$	$2.241(15)$	$2.8506(13)$	$128.7(12)$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B}) \cdots \mathrm{N}(3)$	$2.154(15)$	$2.8234(13)$	$132.9(12)$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A}) \cdots \mathrm{F}(5)$	$2.372(15)$	$3.0045(13)$	$131.6(12)$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B}) \cdots \mathrm{F}(6)$	$2.473(15)$	$3.0414(13)$	$123.2(12)$

${ }^{\mathbf{a}}$ Estimated standard deviations in parentheses.

The tertiary phosphine ammonium salts, though structurally related to the water-soluble PTA, as confirmed by single crystal X-crystallography were found to be insoluble in water. At ambient temperatures, they were however soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{3} \mathrm{OH}$ and DMSO. The average solution conductivity measurements of $180,181,189,190,193$ and 194 in water-methanol (20:80) recorded with a Jenway Model 4510 conductivity meter was $10.06 \mu \mathrm{~s}$ at $20.85^{\circ} \mathrm{C}$ close to that of a $1: 1$ electrolyte $(\mathrm{KCl}), 6.79 \mu \mathrm{~s}$ measured under similar conditions. In the solid state, the salts were air stable but slowly oxidise in d^{6}-DMSO solution over $c a .24 \mathrm{~h}$, for instance, the solution ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{1 8 0}$ recorded in d^{6}-DMSO within 24 h period showed that the purity of $\mathbf{1 8 0}$ as indicated by the ${ }^{31} \mathrm{P}$ resonances decreased from $\delta(\mathrm{P})=-54.30 \mathrm{ppm}, 68 \%$ to -54.88 $\mathrm{ppm}, 44 \%$. There was almost a corresponding percentage purity of another phosphorus compound as shown by a second ${ }^{31} \mathrm{P}$ resonance at $\delta(\mathrm{P})=26.70 \mathrm{ppm}, 18 \%$ in the
spectrum recorded after 24 h , suggestive of slow oxidation of the $\mathrm{P}(\mathrm{III})$ compound to its corresponding tertiary phosphine oxide.

3.3 COORDINATION STUDIES OF TERTIARY PHOSPHINE AMMONIUM SALTS

Having established the fact that the tertiary phosphine ammonium salts are structurally related to the versatile PTA ligand, their coordination potential was explored by reacting them with relevant ruthenium(II), rhodium(I), rhodium(III), iridium(III), palladium(II), platinum(II) and gold(I) compounds forming the corresponding transition metal complexes in high yields.

3.3.1 SYNTHESIS OF RUTHENIUM(II) COMPLEXES 197-202

The synthesis of half-sandwich organometallic ruthenium(II) compounds of PTA have been reported previously by Dyson and co-workers. ${ }^{10,125}$

Where $\mathrm{R}^{\prime}=$
 $\mathrm{A}=\mathrm{Cl}, \mathrm{BPh}_{4}, \mathrm{SbF}_{6}$ or PF_{6}
and

$$
\begin{aligned}
& X=F, A=C l, 197 ; X=M e, A=B P h_{4}, 198 \\
& X=H, A=S b F_{6}, 199 ; X=F, A=S b F_{6}, 200 \\
& X=H, A=P F_{6}, 201 ; X=F, A=P F_{6}, 202
\end{aligned}
$$

Equation 3.3.

In order to assess whether these tertiary phosphine ammonium salts could function as similar P-monodentate ligands, a range of cationic organometallic ruthenium(II) complexes were synthesised by reacting some of the tertiary phosphine ammonium salts with $\left\{\mathrm{RuCl}_{2}\left(\eta^{6} \text {-p-cymene }\right)\right\}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under aerobic conditions at room temperature. This was followed by precipitation with diethyl ether upon concentration of the solution under reduced pressure. In all cases the ligands readily react to form the desired ruthenium(II) complex in excellent yields (Table 3.11). In each case, two equivalents of the ligand react by standard bridge cleavage of the ruthenium dimer to form two moles of orange coloured ruthenium(II) complex according to Equation 3.3. ${ }^{198}$

3.3.1.1 CHARACTERISATION OF COMPOUNDS 197-202

MS, microanalysis, FT-IR, NMR and X-ray diffraction techniques in some cases were used in the characterisation of the complexes; the results are given in Tables 3.11-3.13. The FAB-MS data (Table 3.11) for compounds 197-202 are in agreement with the loss of the respective counterion $\left(m / z[M-X]^{+}\right)$.

Table 3.11 Percentage yield (isolated), FAB-MS and selected FT-IR data ${ }^{\mathrm{a}}$ (in cm^{-1}) for compounds 197-202.

	\% yield	$m / z[\mathrm{M}-\mathrm{X}]^{+6}$	$v\left(\mathrm{NH}_{2}{ }^{+}\right)$	$v(\mathrm{CH})$	$v(\mathrm{RuCl})$	$v(\mathrm{SbF})$	$v(\mathrm{PF})$
197	98	764	$3044(\mathrm{w})$	$2966(\mathrm{~m})$	$294(\mathrm{w})$		
198	97	752	$3053(\mathrm{w})$	$2956(\mathrm{~m})$	$281(\mathrm{w})$		
199	91	710	$3060(\mathrm{w})$	$2967(\mathrm{~m})$	$290(\mathrm{~s})$	$654(\mathrm{vs})$	
200	90	764	$3068(\mathrm{w})$	$2968(\mathrm{~m})$	$290(\mathrm{~m})$	$663(\mathrm{vs})$	
201	90	710	$3068(\mathrm{w})$	$2967(\mathrm{w})$	$295(\mathrm{w})$		$842(\mathrm{vs})$
202	91	764	$3068(\mathrm{w})$	$2970(\mathrm{~m})$	$293(\mathrm{w})$		$846(\mathrm{vs})$

${ }^{\text {a }}$ Recorded as a pressed KBr disk; ${ }^{\mathrm{b}} \mathrm{X}=\mathrm{Cl}^{-}, \mathrm{BPh}_{4}{ }^{-}, \mathrm{SbF}_{6}{ }^{-}$or $\mathrm{PF}_{6}{ }^{-}$.

Selected diagnostic FT-IR spectral data are given in Table 3.11. The $\mathrm{v}\left(\mathrm{NH}_{2}{ }^{+}\right)$stretches were observed in the range $3044-3068 \mathrm{~cm}^{-1}$, not significantly different from the range $3031-3055 \mathrm{~cm}^{-1}$ for the precursor ligands. The $\mathrm{NH}_{2}{ }^{+}$infrared absorptions were generally weak but the strong single bands at $c a .845 \mathrm{~cm}^{-1}$ in compounds 201 and 202
indicate the presence of the $\mathrm{PF}_{6}{ }^{-}$ion. This is consistent with other ruthenium complexes containing the $\mathrm{PF}_{6}{ }^{-}$counterion, ${ }^{207}$ while the SbF bands of $c a .655 \mathrm{~cm}^{-1}$ confirm the presence of the SbF_{6}^{-}counterion (199 and 200). The terminal stretching vibration of the $v(\mathrm{Ru}-\mathrm{Cl})$ bands of the complexes were observed at between 281 and $295 \mathrm{~cm}^{-1}$ (Table 3.11). The values for these infrared absorptions are comparable to other previously reported ruthenium(II) phosphine complexes. ${ }^{208}$

The microanalytical data are given in Table 3.12; the values agree within acceptable limits and are consistent with the formulae of the ruthenium(II) complexes 197-202. Coprecipitation of solvent molecules was evident as shown in the microanalytical data.

Table 3.12 Microanalysis (\%) and molecular formulae for compounds 197-202. ${ }^{\text {a }}$

	C	H	N	Molecular formula
$\mathbf{1 9 7}$	$47.88(48.04)$	$5.05(4.95)$	$4.58(4.64)$	$\mathrm{C}_{35} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{PF}_{3} \mathrm{RuCl}_{3} \cdot 1.25 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$\mathbf{1 9 8}$	$65.46(65.40)$	$6.46(6.36)$	$3.61(3.63)$	$\mathrm{C}_{62} \mathrm{H}_{71} \mathrm{~N}_{3} \mathrm{PBRuCl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$\mathbf{1 9 9}$	$.36 .99(36.95)$	$4.10(4.39)$	$3.19(3.69)$	$\mathrm{C}_{35} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{PSbF}_{6} \mathrm{RuCl}_{2} \cdot 2.25 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$\mathbf{2 0 0}$	$39.32(39.80)$	$4.01(4.09)$	$3.74(3.87)$	$\mathrm{C}_{35} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{PSbF}_{9} \mathrm{RuCl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$\mathbf{2 0 1}$	$48.19(48.28)$	$5.17(5.23)$	$4.77(4.79)$	$\mathrm{C}_{35} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{P}_{2} \mathrm{~F}_{6} \mathrm{RuCl}_{2} \cdot 0.25 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$\mathbf{2 0 2}$	$44.94(44.78)$	$4.61(4.55)$	$4.51(4.41)$	$\mathrm{C}_{35} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{P}_{2} \mathrm{~F}_{9} \mathrm{RuCl}_{2} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$

${ }^{2}$ Calculated values in parentheses.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of these complexes recorded in d^{6}-DMSO, showed single phosphorus signals in the range $\delta(\mathrm{P}) 6.18-8.18 \mathrm{ppm}$ as given in Table 3.13, suggestive of the presence of a single phosphorus containing compound. These phosphorus signals are significantly downfield of the values $[\delta(\mathrm{P}) \approx-55.00 \mathrm{ppm}]$ for the corresponding precursor tertiary phosphine ammonium salt ligands as given in Tables 3.3 and 3.7 and are in good agreement with P-monodentate coordination. The average coordination chemical shifts for compounds 197-202 ($\Delta \delta_{\mathrm{P}} 62 \mathrm{ppm}$) was not significantly different from that for $\mathrm{RuCl}_{2}\left(\eta^{6}-p\right.$-cymene)(PTA) ($\Delta \delta_{\mathrm{P}} 60 \mathrm{ppm}$) suggesting similar stereoelectronic properties. ${ }^{110}$ The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of 201 and 202 , in addition to the single ${ }^{31} \mathrm{P}$ signals at 7.97 and 8.13 ppm respectively, showed the characteristic septet splitting quite upfield of these signals at an average of about -144 ppm . In both
cases, the separation in the characteristic septet splitting pattern from the coupling between the ${ }^{31} \mathrm{P}$ and ${ }^{19} \mathrm{~F}$ nuclei was symmetrically separated by an average ${ }^{1} J_{\mathrm{PF}}$ coupling constant of 711 Hz (Table 3.13).

Selected ${ }^{1} \mathrm{H}$ NMR spectral data are given in Table 3.13. The signals of the p-cymene protons in compounds 197-202 were similar to those of the ruthenium(II) diazaphosphorinane complexes($\mathbf{1 6 3}$ and 164) discussed in Section 2.4.1.1 regardless of the different ligands used as given in Tables 2.15 and 3.13. For examples, in both cases, the arene protons of the p-cymene were observed at $c a$. between 5.70 and 5.90 ppm , with similar ${ }^{3} J_{\mathrm{PH}}$ coupling constants. The $-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ protons in the p-cymene displayed a characteristic septet at $c a .2 .60 \mathrm{ppm}$ in both cases indicating that it is adjacent to 6 protons $\left[-\left(\mathrm{CH}_{3}\right)_{2}\right.$], while the CH_{3} protons were observed at ca. 1.90 ppm . These proton signals were comparable to those of other related ruthenium(II) complexes. ${ }^{198}$
Table 3.13 Selected NMR data (in ppm or Hz) ${ }^{\text {a }}$ for compounds 197-202.

				$\delta(\mathrm{H}) /$ NH_{2}	$\delta(\mathrm{H}) /$ arom.	$\delta(\mathrm{H})$ $/ \mathrm{CH}_{2}$	$\delta(\mathrm{H})$ $/ \mathrm{CH}_{2}{ }^{\mathrm{c}}$	$\delta(\mathrm{H})$ $/ \mathrm{CH}_{2}$	$\delta(\mathrm{H}) /$ $\mathrm{CH}_{2}{ }^{\mathrm{d}}$
197	6.18		9.00	$6.87-7.65, \mathrm{~m}$	$4.30, \mathrm{~s}$	$4.01(4.8)$	$3.78-3.85, \mathrm{~m}$	3.21	$1.97,5.80(6.0), 2.62(6.4), 1.15(6.4)$
198	7.18		8.84	$6.61-7.53, \mathrm{~m}$	$4.20, \mathrm{~s}$	3.98^{f}	$3.65-3.84, \mathrm{~m}$	3.10	$1.95,5.78(6.0), 2.62(6.4), 1.09(7.6)$
199	7.30		8.89	$6.99-7.53, \mathrm{~m}$	$4.29, \mathrm{~s}$	$4.02(4.8)$	$3.71-3.80, \mathrm{~m}$	3.45	$1.96,5.94(8.0), 2.62(6.8), 1.14(6.8)$
200	8.11		8.65	$6.90-7.57, \mathrm{~m}$	$4.26, \mathrm{~s}$	$4.01,(4.6)$	$3.61-3.75, \mathrm{~m}$	3.41	$1.97,5.78(6.4), 2.62(6.4), 1.15(6.8)$
201	8.13	-144.20	n.0.	$7.02-7.48, \mathrm{~m}$	$4.27, \mathrm{~s}$	4.00^{f}	$3.49-3.50, \mathrm{~m}$	3.21	$1.96,5.82(6.8), 2.59(6.8), 1.14(6.8)$
202	7.97	-144.19	8.83	$6.84-7.56, \mathrm{~m}$	$4.30, \mathrm{~s}$	3.98^{f}	$3.61-3.85, \mathrm{~m}$	3.40	$1.97,5.85(6.8), 2.62(6.8), 1.15(6.8)$

${ }^{2}$ All NMR spectra were recorded in d^{6}-DMSO
${ }^{\mathrm{b}} \delta(\mathrm{P}) \mathrm{PF}_{6}^{-}$counterion;
${ }^{\mathrm{c}} \mathrm{CH}_{2}$ protons, $\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{PH}}$ coupling in brackets
${ }^{d} \mathrm{CH}_{2}$ protons multiplicity could not be fully assigned due to overlap with residual solvent signals
${ }^{e} p$-Cymene resonances: $\mathrm{CH}_{3}(\mathrm{~s}), \mathrm{C}_{6} \mathrm{H}_{4}$ (dd), CH (sept.) and $\left(\mathrm{CH}_{3}\right)_{2}$ (d) protons respectively, ${ }^{3} J_{\mathrm{PH}}$ couplings in brackets

${ }^{\mathrm{f}}$ Not resolved

n.o. $=$ not observed

Crystals of 199 and 200 suitable for X-ray diffraction study were obtained by layering of petroleum ether (b.p. $40-60^{\circ} \mathrm{C}$) on $\mathrm{CDCl}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution, and by slow vapour diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution respectively. The X -ray structures have been determined (Figures 3.12 and 3.14), all the hydrogen atoms except those on $N(1)$, have been omitted for clarity. The η^{6}-coordination is illustrated by thick dashed lines between the Ru atoms and the centroid of the aromatic ring of the p-cymene ligands(Figures 3.12 and 3.14). The structures of 199 and 200 confirm a classic "pianostool" geometry formed by the ancillary p-cymene $\left(\eta^{6}-4-\mathrm{MeC}_{6} \mathrm{H}_{4}{ }^{i} \mathrm{Pr}\right)$ ligand and the three "legs" being the phosphorus donor of the P-monodentate cationic tertiary phosphine ammonium moiety and the two chlorides. There are no significant differences observed in the $\mathrm{Ru}-\mathrm{P}$ and $\mathrm{Ru}-\mathrm{Cl}$ bonds lengths for 199 and 200, and both are comparable to analogous complexes with PTA. ${ }^{104,110}$ Furthermore, upon coordination there are minimal differences in the $\mathrm{P}-\mathrm{C}$ and $\mathrm{P}-\mathrm{C}-\mathrm{N}$ metric parameters between the complexes and the precursor ligands. The crystal structures reveal that the pair of intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ H-bonds maintain the rigid cage structures of the precursors in the solid state even upon complexation in both complexes. Additional weak intermolecular H-bonding interactions linking the molecules into dimer pairs was also observed (Figures 3.13 and 3.15), similar to what has been recently observed in cationic dimeric Ru ${ }^{\text {II }}$ PTA complexes (Figure 3.11). ${ }^{121}$

Figure 3.11 Structures of cationic dimeric $\mathrm{Ru}^{\text {II }}$ PTA complexes. ${ }^{121}$

Figure 3.12 Molecular structure of 199 . The $\mathrm{SbF}_{6}{ }^{-}$counterion and $1.67 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecules of crystallisation have been omitted for clarity.

Figure 3.13 Molecular structure of 199, showing H-bonding forming dimer pairs.

Figure 3.14 Molecular structure of 200. The $\mathrm{SbF}_{6}{ }^{-}$counterion and $0.33 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecule of crystallisation have been omitted for clarity.

Figure 3.15 Molecular structure of 200, showing H-bonding forming dimer pairs.

Selected bond lengths and angles are given in Tables 3.14 and 3.15 for compounds 199 and 200 respectively. The crystal data and structure refinement details for $\mathbf{1 9 9}$ and 200 are shown in Appendices 8.13 and 8.14.

Table 3.14 Selected bond lengths and angles for 199. ${ }^{\text {a }}$

Bond lengths (\AA)		Bond lengths ($\AA)$		Bond angles ($\left.{ }^{\circ}\right)$	
$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.3293(6)$	$\mathrm{C}(1)-\mathrm{N}(1)$	$1.506(3)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{Cl}(1)$	$87.60(2)$
$\mathrm{Ru}(1)-\mathrm{Cl}(1)$	$2.4064(7)$	$\mathrm{C}(9)-\mathrm{N}(2)$	$1.474(3)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{Cl}(2)$	$83.75(2)$
$\mathrm{Ru}(1)-\mathrm{Cl}(2)$	$2.4103(6)$	$\mathrm{C}(11)-\mathrm{N}(3)$	$1.471(3)$	$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{Cl}(2)$	$88.00(2)$
$\mathrm{Ru}(1)-\mathrm{C}_{\mathrm{av}}$	$2.210(3)$	$\mathrm{C}(19)-\mathrm{N}(3)$	$1.470(3)$	$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(11)$	$104.69(11)$
$\mathrm{P}(1)-\mathrm{C}(1)$	$1.843(2)$	$\mathrm{C}(12)-\mathrm{N}(2)$	$1.486(3)$	$\mathrm{C}(9)-\mathrm{P}(1)-\mathrm{C}(1)$	$102.68(12)$
$\mathrm{P}(1)-\mathrm{C}(9)$	$1.831(3)$			$\mathrm{C}(9)-\mathrm{P}(1)-\mathrm{C}(11)$	$99.85(11)$
$\mathrm{P}(1)-\mathrm{C}(11)$	$1.828(2)$				

Selected hydrogen bonding contacts

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{d}(\mathrm{H} \cdots \mathrm{A})(\AA)$	$\mathrm{d}(\mathrm{D} \cdots \mathrm{A})(\AA)$	$<(\mathrm{DHA})\left({ }^{\circ}\right)$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A}) \cdots \mathrm{F}(1)$	$2.35(3)$	$2.914(3)$	$120(3)$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B}) \cdots \mathrm{Cl}(2 \mathrm{~A})$	$2.64(3)$	$3.225(2)$	$127(3)$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A}) \cdots \mathrm{N}(2)$	$2.22(3)$	$2.894(3)$	$130(3)$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B}) \cdots \mathrm{N}(3)$	$2.24(3)$	$2.840(3)$	$128(3)$

${ }^{2}$ Estimated standard deviations in parentheses.

There is evidence of intra- and intermolecular hydrogen bonding in these complexes as in the case of the precursor ligands (for example 190) as shown in Figures 3.13 and 3.15. It is interesting to note that in 199, apart from $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ intra- and intermolecular hydrogen bonding respectively, there is intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonding (Figure 3.13) observed between the $\mathrm{SbF}_{6}{ }^{-}$counterion and $\mathrm{N}(1)$ atom with the $\mathrm{N} \cdots \mathrm{F}$ bond distance and $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ bond angle as shown in Table 3.14 comparable to other previously reported compounds. ${ }^{207}$ Such hydrogen bonding interactions involving the $\mathrm{SbF}_{6}{ }^{-}$ions in the case of 200 , though observed in the precursor ligand (190, Figure 3.5) are either diminished or absent, hence not seen (Figure 3.15) probably due to repulsion between the F atoms from the $\mathrm{SbF}_{6}{ }^{-}$ion and the
three F atoms in the cationic moiety of the ligand now at the ruthenium coordination sphere.

Table 3.15 Selected bond lengths and angles for 200. ${ }^{\text {a }}$

Bond lengths (\AA)		Bond lengths (\AA)		Bond angles ($\left.{ }^{\circ}\right)$	
$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.319(17)$	$\mathrm{C}(1)-\mathrm{N}(1)$	$1.501(8)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{Cl}(1)$	$87.29(7)$
$\mathrm{Ru}(1)-\mathrm{Cl}(1)$	$2.388(2)$	$\mathrm{C}(9)-\mathrm{N}(2)$	$1.467(8)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{Cl}(2)$	$84.46(6)$
$\mathrm{Ru}(1)-\mathrm{Cl}(2)$	$2.420(17)$	$\mathrm{C}(11)-\mathrm{N}(3)$	$1.472(8)$	$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{Cl}(2)$	$86.85(7)$
$\mathrm{Ru}(1)-\mathrm{C}_{\mathrm{av}}$	$2.212(7)$	$\mathrm{C}(19)-\mathrm{N}(3)$	$1.479(9)$	$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(11)$	$104.3(3)$
$\mathrm{P}(1)-\mathrm{C}(1)$	$1.839(7)$	$\mathrm{C}(12)-\mathrm{N}(2)$	$1.491(8)$	$\mathrm{C}(9)-\mathrm{P}(1)-\mathrm{C}(1)$	$103.3(3)$
$\mathrm{P}(1)-\mathrm{C}(9)$	$1.824(6)$			$\mathrm{C}(9)-\mathrm{P}(1)-\mathrm{C}(11)$	$99.9(3)$
$\mathrm{P}(1)-\mathrm{C}(11)$	$1.823(7)$				

Selected hydrogen bonding contacts

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{d}(\mathrm{H} \cdots \mathrm{A})(\AA)$	$\mathrm{d}(\mathrm{D} \cdots \mathrm{A})(\AA)$	$<(\mathrm{DHA})\left(^{\circ}\right)$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A}) \cdots \mathrm{N}(2)$	$2.05(6)$	$2.891(8)$	$129(5)$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B}) \cdots \mathrm{N}(3)$	$2.39(8)$	$2.893(8)$	$132(8)$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B}) \cdots \mathrm{Cl}(2 \mathrm{~A})$	$2.85(8)$	$3.273(6)$	$123(8)$

${ }^{2}$ Estimated standard deviations in parentheses.

3.3.2 SYNTHESIS OF RHODIUM(I) COMPLEXES 203 AND 204

Two square-planar rhodium(I) carbonyl complexes were synthesised by reacting $\mathrm{Rh}_{2}(\mathrm{CO})_{4}(\mu-\mathrm{Cl})_{2}$ with the tertiary phosphine ammonium chlorides 180 or 181 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under aerobic conditions at room temperature. This was followed by precipitation with $\mathrm{Et}_{2} \mathrm{O}$ upon concentration of the solution under reduced pressure. In both cases, the desired $\mathrm{Rh}(\mathrm{I})$ complex was obtained in good to excellent yield ($>80 \%$) as given in Table 3.16. Four equivalents of the tertiary phosphine ammonium chlorides (ligand) react with the dimer to form two moles of the square planar $\mathrm{Rh}(\mathrm{I})$ complex according to Equation 3.4. Both complexes were pale orange solids.

Where $\mathrm{R}^{\prime}=$
 and $X=H, 203 ; X=F, 204$

Equation 3.4.

3.3.2.1 CHARACTERISATION OF COMPOUNDS 203 AND 204

Compounds 203 and 204 were characterised by LSI-MS, microanalysis and FT-IR, the results are given in Tables 3.16 and 3.17. Compounds 203 and 204 were extremely insoluble in both non polar and polar solvents; hence no meaningful NMR $\left[{ }^{1} \mathrm{H}\right.$, $\left.{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\right\}$ spectral data could be obtained.

Table 3.16 Percentage yield (isolated), LSI-MS and selected FT-IR data ${ }^{\mathbf{a}}$ (in cm^{-1}) for compounds 203 and 204.

	$\%$ yield	$m / z\left[\mathrm{M}-2 \mathrm{H}-\mathrm{Cl}^{+}\right.$	$v\left(\mathrm{NH}_{2}{ }^{+}\right)$	$v(\mathrm{CH})$	$v(\mathrm{CO})$	$v(\mathrm{RhCl})$
203	88	1009	$3034(\mathrm{w})$	$2928(\mathrm{w})$	$1979(\mathrm{~s})$	n.o.
204	93	1117	$3044(\mathrm{~m})$	$2939(\mathrm{~m})$	$1979(\mathrm{~s})$	n.o.

[^9]The LSI-MS data (Table 3.16), for compounds 203 and 204 are in agreement with the loss of two H and one $\mathrm{Cl}, \mathrm{m} / z[\mathrm{M}-2 \mathrm{H}-\mathrm{Cl}]^{+}$. In both cases, the complexes precipitated with some amount of solvent as shown by the microanalysis results (Table 3.17).

The FT-IR spectra for 203 and 204 were recorded in the solid state as pressed KBr disks; selected data are given in Table 3.16. The $v(\mathrm{CH})$ stretches were similar to those of the free ligands. Similarly, the $v\left(\mathrm{NH}_{2}{ }^{+}\right)$stretches were also not significantly different from those of the free ligands and were observed at $c a .3030 \mathrm{~cm}^{-1}$. There was an intense CO stretch observed at $1979 \mathrm{~cm}^{-1}$ in each case. Although no direct comparisons between the FT-IR data for 203 and 204 with the known neutral complexes trans$\mathrm{Rh}(\mathrm{CO}) \mathrm{Cl}(\mathrm{PTA})_{2}\left[\mathrm{v}_{\mathrm{CO}}=1963 \mathrm{~cm}^{-1}(\text { chloroform })\right]^{209}$ and trans- $\mathrm{Rh}(\mathrm{CO}) \mathrm{Cl}\left(\mathrm{PTAR}_{3}\right)_{2}$ where $\mathrm{R}=$ "lower rim" PTA substituent, $\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}\left[\mathrm{v}_{\mathrm{cO}}=1978-1987\right.$ cm^{-1} (chloroform)] ${ }^{210}$ can be drawn, 180 and 181 can be regarded as having similar electron donating properties to this class of PTA ligands. The $\mathrm{Rh}-\mathrm{Cl}$ vibrations normally observed below $300 \mathrm{~cm}^{-1}$ were not seen because of the relatively shorter range ($4000-500 \mathrm{~cm}^{-1}$) of FT-IR spectrometer used.

The microanalytical data are given in Table 3.17; the values agree within acceptable limits and are consistent with the formulae of the rhodium(I) complexes 203 and 204.

Table 3.17 Microanalysis (\%) and molecular formulae for compounds 203 and 204. ${ }^{\text {a }}$

	C	H	N	Molecular formula
$\mathbf{2 0 3}$	$54.28(54.45)$	$5.40(5.65)$	$7.46(7.29)$	$\mathrm{C}_{51} \mathrm{H}_{62} \mathrm{~N}_{6} \mathrm{OP}_{2} \mathrm{RhCl}_{3} \cdot 1.25 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$\mathbf{2 0 4}$	$50.63(50.40)$	$4.70(4.72)$	$6.94(6.78)$	$\mathrm{C}_{51} \mathrm{H}_{56} \mathrm{~N}_{6} \mathrm{OP}_{2} \mathrm{~F}_{6} \mathrm{RhCl}_{3} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$

${ }^{\text {a }}$ Calculated values in parentheses.

As mentioned earlier, no meaningful NMR [${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$] spectral data could be obtained for 203 and 204 due to insolubility in common solvents, hence direct elucidation of their geometry by NMR spectroscopy is not possible. However, the solution ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the known analogous complexes $\mathrm{Rh}(\mathrm{CO}) \mathrm{Cl}(\mathrm{PTA})_{2}$, $\mathrm{Rh}(\mathrm{CO}) \mathrm{Cl}\left(\mathrm{PTAR}_{3}\right)_{2} \quad\left[\mathrm{R}=\right.$ "lower rim" PTA substituent, $\left.\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}\right]$ gave single doublets in the range -54.4 to -60.1 ppm with ${ }^{1} J_{\mathrm{PRh}}$ values between 117
and 127 Hz indicative of the formation of the trans isomer only in all cases. ${ }^{209,210}$ From the literature highlighted, it can therefore be suggested that the complexes 203 and 204 also exhibit trans configuration.

3.3.3 SYNTHESIS OF RHODIUM(III) AND IRIDIUM(III) COMPLEXES

 205-210The dimeric chloro bridged complexes $\left[\mathrm{MCl}_{2}\left(\eta^{5}-\mathrm{Cp}^{*}\right)\right]_{2} \mathrm{M}=\mathrm{Rh}$ or Ir are known to undergo chloro bridge cleavage reactions leading to the formation of series of interesting neutral and cationic mononuclear complexes. ${ }^{196}$ It has been demonstrated by Dyson and co-workers ${ }^{51}$ and Erlandsson et al. ${ }^{211}$ that half-sandwich organometallic Rh (III) and Ir (III) complexes respectively of PTA could be synthesised using these chloro bridged complexes.

Where $\mathrm{R}^{\prime}=$

Equation 3.5.

In order to assess whether the tertiary phosphine ammonium salts could function as similar P-monodentate ligands to further establish the relationship between the tertiary phosphine ammonium salts and PTA, three complexes each of rhodium(III) and iridium(III) were synthesised by reacting 181,185 or 189 with $\left[\mathrm{MCl}_{2}\left(\eta^{5}-\mathrm{Cp}^{*}\right)\right]_{2}, \mathrm{M}=$

Rh or Ir respectively in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under aerobic conditions at room temperature. This was followed by precipitation with $\mathrm{Et}_{2} \mathrm{O}$ after concentration of the solution under reduced pressure. In all the cases, the desired M (III) complexes were obtained as orange solids in good to excellent yield ($>80 \%$) as given in Table 3.18. Two equivalents of the ligand react with the dimer to form two moles of the corresponding M (III) complex according to Equation 3.5.

3.3.3.1 CHARACTERISATION OF COMPOUNDS 205-210

The complexes were characterised as in the previous cases by conventional techniques namely MS, microanalysis, FT-IR, NMR; the results are given in Tables 3.18-3.20. Single crystal X-ray crystallography was also used for 207 and 208 where suitable crystals were obtained.

Table 3.18 Percentage yield (isolated), FAB-MS and selected FT-IR data ${ }^{\text {a }}$ ($\mathrm{in} \mathrm{cm}^{-1}$) for compounds 205-210.

	\% yield	$m / z[\mathrm{M}-\mathrm{X}]^{+b}$	$v\left(\mathrm{NH}_{2}{ }^{+}\right)$	$\mathrm{v}(\mathrm{CH})$	$\mathrm{v}(\mathrm{MCl})$	$\mathrm{v}(\mathrm{SbF})$
205	88	766	$3040(\mathrm{w})$	$2920(\mathrm{w})$	$290(\mathrm{w})$	
206	96	712	$3029(\mathrm{~m})$	$2981(\mathrm{~m})$	$279(\mathrm{w})$	
207	98	712	$3031(\mathrm{~m})$	$2950(\mathrm{w})$	$290(\mathrm{vs})$	$660(\mathrm{vs})$
208	96	857	$3050(\mathrm{w})$	$2921(\mathrm{w})$	$296(\mathrm{w})$	
209	85	802	$3054(\mathrm{w})$	$2981(\mathrm{w})$	$295(\mathrm{w})$	
210	77	802	$3019(\mathrm{w})$	$2923(\mathrm{w})$	$290(\mathrm{vs})$	$662(\mathrm{vs})$

${ }^{\text {a }}$ Recorded as a pressed KBr disk; ${ }^{\mathrm{b}} \mathrm{X}=\mathrm{Cl}^{-}, \mathrm{BPh}_{4}^{-}, \mathrm{SbF}_{6}{ }^{-} ; \mathrm{MCl}=\mathrm{RhCl}$ or IrCl .

The FAB-MS data (Table 3.18) for compounds 205-210 were in agreement with the loss of the respective counterion $\left(\mathrm{m} / \mathrm{z}[\mathrm{M}-\mathrm{X}]^{+}\right)$. The FT-IR spectra for 205-210 were recorded in the solid state as pressed KBr disks. The $v(\mathrm{CH})$ stretches were similar to those of the free ligands, similarly, the $\mathrm{v}\left(\mathrm{NH}_{2}{ }^{+}\right)$stretches were also not significantly different from those of the free ligands and were observed in the range 3019-3054 cm^{-1}. The $\mathrm{M}-\mathrm{Cl}$ vibrations were very weak unlike in the case of the ruthenium(II) complexes 197-202; there was however, a very strong $v(\mathrm{MCl})$ band at $290 \mathrm{~cm}^{-1}$ in the
case of compounds 207 and $\mathbf{2 1 0}$. The very strong bands at 660 and $662 \mathrm{~cm}^{-1}$ due to $\mathbf{S b -}$ F support the presence of the $\mathrm{SbF}_{6}{ }^{-}$counterions in the case of compounds 207 and 210.

The microanalytical data are given in Table 3.19; the values agree within acceptable limits and are consistent with the proposed molecular formulae of the rhodium(III) and iridium(III) complexes 205-210. In all except 210, the complexes precipitated with some amount of solvent as shown by the microanalysis results (Table 3.19).

Table 3.19 Microanalysis (\%) and molecular formulae for compounds 205-210. ${ }^{\text {a }}$

	C	H	N	Molecular formula
$\mathbf{2 0 5}$	$49.47(49.54)$	$5.13(5.17)$	$4.86(4.85)$	$\mathrm{C}_{35} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{~F}_{3} \mathrm{PRhCl}_{3} \cdot 0.75 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$\mathbf{2 0 6}$	$60.70(60.92)$	$5.95(5.87)$	$3.32(3.49)$	$\mathrm{C}_{59} \mathrm{H}_{66} \mathrm{~N}_{3} \mathrm{PBRhCl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$\mathbf{2 0 7}$	$41.46(41.81)$	$4.50(4.68)$	$4.07(4.07)$	$\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{~N}_{3} \mathrm{PRhCl}_{2} \mathrm{SbF}_{6} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$\mathbf{2 0 8}$	$41.09(41.29)$	$4.37(4.42)$	$4.04(3.88)$	$\mathrm{C}_{35} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{~F}_{3} \mathrm{PIrCl}_{3} \cdot 2.25 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$\mathbf{2 0 9}$	$60.23(60.52)$	$5.89(5.74)$	$3.71(3.54)$	$\mathrm{C}_{59} \mathrm{H}_{66} \mathrm{~N}_{3} \mathrm{PBIrCl}_{2} \cdot 0.75 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$\mathbf{2 1 0}$	$40.60(40.48)$	$4.58(4.46)$	$4.05(4.05)$	$\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{~N}_{3} \mathrm{PIrCl}_{2} \mathrm{SbF}_{6}$

${ }^{2}$ Calculated values in parentheses.

The NMR spectral data recorded in d^{6}-DMSO are given in Table 3.20. In compounds 205-207, the ${ }^{31} \mathrm{P}\left\{{ }^{\prime} \mathrm{H}\right\}$ NMR spectra showed a doublet with $\delta(\mathrm{P})$ values between 3.24 and 4.75 ppm and an average ${ }^{1} J_{\text {PRh }}$ coupling constant of $c a .145 \mathrm{~Hz}$ comparable to what was found for other Rh (III) compounds reported previously. ${ }^{199}$ On the other hand, the spectra of 208-210 showed singlets with $\delta(\mathrm{P})$ values between -25.34 and -26.35 ppm . In both cases as was observed in the ruthenium(II) complexes 197-202 mentioned in (Section 3.3.1), the ${ }^{31} \mathrm{P}$ resonances were significantly downfield compared with the precursor salts given in Tables 3.3 and 3.7 and are in good agreement with P monodentate coordination.

The average coordination chemical shifts for the rhodium(III) compounds 205-207 ($\Delta \delta_{\mathbf{P}} 59 \mathrm{ppm}$) were also not significantly different from the analogous rhodium(III)(PTA) compound, $\mathrm{RhCl}_{2}\left(\eta^{3}-\mathrm{Cp}^{*}\right)(\mathrm{PTA})$ ($\Delta \delta_{\mathrm{P}} 65 \mathrm{ppm}$) suggesting similar stereoelectronic properties. ${ }^{51}$ Similarly, the average coordination chemical shifts for the

Ir(III) compounds, 208-210 ($\Delta \delta_{\mathrm{P}} 29 \mathrm{ppm}$) were the same as what was obtained in the analogous $\operatorname{Ir}(\mathrm{III})(\mathrm{PTA})$ compound, $\operatorname{IrCl}_{2}\left(\eta^{5}-\mathrm{Cp}^{*}\right)(\mathrm{PTA})\left(\Delta \delta_{\mathrm{P}} 29 \mathrm{ppm}\right)$ suggesting similar stereoelectronic properties. ${ }^{211}$

In the ${ }^{1} \mathrm{H}$ NMR spectra of the complexes, the ring methyl protons were observed as singlets in the range $1.65-1.70 \mathrm{ppm}$, possibly not resolved, except 205 which showed a doublet, indicative of long range coupling between phosphorus and the ring methyl protons of the pentamethylcyclopentadienyl moiety [${ }^{4} J_{\mathrm{PH}}, 3.2 \mathrm{~Hz}$] (Table 3.20) similar to what was found in the analogous PTA complexes, $\mathrm{RhCl}_{2}\left(\eta^{5}-\mathrm{Cp}^{*}\right)(\mathrm{PTA})[\delta(\mathrm{H})=1.69$ ppm, d, $\left.{ }^{4} J_{\mathrm{PH}}=3.5 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right]^{51}$ and $\mathrm{IrCl}_{2}\left(\eta^{5}-\mathrm{Cp}^{*}\right)(\mathrm{PTA})\left[\delta=1.79 \mathrm{ppm}, \mathrm{d},{ }^{4} J_{\mathrm{PH}}=2.0\right.$ $\mathrm{Hz}, \mathrm{CDCl}_{3}$]. ${ }^{211}$ There were singlet CH_{2} resonances between 4.08 and 4.40 ppm (Table 3.20) which were also similar to 4.33 and 4.51 ppm and 4.20 and 4.70 ppm assigned to the methylene protons within the PTA ligand in the analogous rhodium(III) ${ }^{51}$ and iridium(III) PTA complexes ${ }^{211}$ respectively.
Table 3.20 Selected NMR data (in ppm or Hz) for 205-207. ${ }^{\text {a }}$

	$\delta(\mathrm{P})$	$\delta \mathrm{H} /(\operatorname{arom})$.	$\delta \mathrm{H} /\left(\mathrm{CH}_{2}\right)$	$\delta \mathrm{H} /\left(\mathrm{CH}_{2}\right)$	$\delta \mathrm{H} /\left(\mathrm{CH}_{2}\right)^{\mathrm{c}}$	$\delta \mathrm{H} /\left(\mathrm{CH}_{2}\right)^{\mathrm{d}}$	$\delta \mathrm{H} /\left(\eta^{5}-\mathrm{Cp}^{*}\right)^{\mathrm{e}}$
205	$3.24(146)^{\mathrm{b}}$	$6.53-7.93, \mathrm{~m}$	$4.37, \mathrm{~s}$	$4.08, \mathrm{~s}$	$3.77(12.4)$	3.23	$1.70(3.2)$
206	$4.75(146)^{\mathrm{b}}$	$6.74-7.51, \mathrm{~m}$	$4.37, \mathrm{~s}$	$4.10, \mathrm{~s}$	$3.76(12.0)$	3.21	1.66^{T}
207	$4.61(144)^{\mathrm{b}}$	$6.93-7.51, \mathrm{~m}$	$4.37, \mathrm{~s}$	$4.10, \mathrm{~s}$	$3.76(12.4)$	3.22	1.65^{T}
208	-26.35	$6.70-6.89, \mathrm{~m}$	$4.38, \mathrm{~s}$	$4.08, \mathrm{~s}$	$3.77(12.0)$	3.13	1.67^{T}
209	-25.34	$6.79-7.52, \mathrm{~m}$	$4.40, \mathrm{~s}$	$4.10, \mathrm{~s}$	$3.77(12.0)$	3.15	1.70^{f}
210	-25.34	$6.86-7.52, \mathrm{~m}$	$4.40, \mathrm{~s}$	$4.10, \mathrm{~s}$	$3.78(12.8)$	3.14	1.70^{T}

${ }^{\text {a }}$ All NMR spectra were recorded in d^{6}-DMSO; ${ }^{b}$ Doublets ${ }^{1} J_{\mathrm{PRh}}$ coupling in brackets
${ }^{d}\left(\mathrm{CH}_{2}\right)$ protons, multiplicity could not be fully assigned due to overlap with residual solvent resonances
${ }^{e}\left(\eta^{5}-\mathrm{Cp}{ }^{*}\right)$ protons, $\mathrm{d},{ }^{4} \mathrm{~J}_{\mathrm{PH}}$ coupling in brackets
${ }^{\mathrm{f}}$ Not resolved, s

A few X-ray quality crystals of compounds 207 and 208 were obtained in each case from a solution in acetone and by vapour diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a $\mathrm{DMSO} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ solution kept over several days and the X-ray structures have been determined, though not completed in the case of 208 is supportive of P monodentate coordination and a typical "piano-stool" geometry around the metal centre (Figure 3.16).

Figure 3.16 Molecular structure of 207. The $\mathrm{SbF}_{6}{ }^{-}$counterion and $2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecules of crystallisation have been omitted for clarity.

The structure confirms a classic "piano-stool" geometry formed by the ancillary $\eta^{5}-\mathrm{Cp}^{*}$ ligand and the three "legs" being the phosphorus donor of the P-monodentate cationic tertiary phosphine ammonium moiety and the two chlorides. The $\mathrm{Rh}-\mathrm{P}$ and $\mathrm{Rh}-\mathrm{Cl}$ bond lengths for $207\left[\mathrm{Rh}-\mathrm{P}=2.2851(19) \AA ;(\mathrm{Rh}-\mathrm{Cl})_{\mathrm{av}}=2.415(2) \AA\right]$ are comparable to analogous complexes with PTA $\left[\mathrm{Rh}-\mathrm{P}=2.286(1) \AA ;(\mathrm{Rh}-\mathrm{Cl})_{\mathrm{av}}=2.417(1) \AA\right] .{ }^{51}$ The two $\mathrm{P}-\mathrm{Rh}-\mathrm{Cl}$ bond angles in 207 are also comparable to those found in the analogous PTA complex, $\mathrm{RhCl}_{2}\left(\eta^{5}-\mathrm{Cp}^{*}\right)(\mathrm{PTA}) .{ }^{51}$ Furthermore, upon coordination as in the case of the ruthenium(II) complexes discussed in Section 3.3.1, there are minimal differences
in the $\mathrm{P}-\mathrm{C}$ and $\mathrm{P}-\mathrm{C}-\mathrm{N}$ metric parameters between the complex and its precursor ligand. The crystal structure reveals that, again the pair of intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ H-bonds maintain the rigid cage structure of the precursor salt in the solid state even upon complexation.

Selected bond lengths and angles for compound 207 are given in Table 3.21. The crystal data and structure refinement details for 207 are shown in Appendix 8.15.

Table 3.21 Selected bond lengths and angles for 207. ${ }^{\text {a }}$

Bond lengths ($\AA)$		Bond lengths ($\AA)$		Bond angles ($\left.{ }^{\circ}\right)$	
$\mathrm{Rh}(1)-\mathrm{P}(1)$	$2.2851(19)$	$\mathrm{C}(1)-\mathrm{N}(1)$	$1.497(8)$	$\mathrm{P}(1)-\mathrm{Rh}(1)-\mathrm{Cl}(1)$	$88.85(7)$
$\mathrm{Rh}(1)-\mathrm{Cl}(1)$	$2.406(2)$	$\mathrm{C}(9)-\mathrm{N}(2)$	$1.476(10)$	$\mathrm{P}(1)-\mathrm{Rh}(1)-\mathrm{Cl}(2)$	$83.37(7)$
$\mathrm{Rh}(1)-\mathrm{Cl}(2)$	$2.424(2)$	$\mathrm{C}(10)-\mathrm{N}(3)$	$1.482(9)$	$\mathrm{Cl}(1)-\mathrm{Rh}(1) \mathrm{Cl}(2)$	$92.67(8)$
$\mathrm{Rh}(1)-\mathrm{C}_{\mathrm{av}}$	$2.189(7)$	$\mathrm{P}(1)-\mathrm{C}(9)$	$1.836(8)$	$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	$115.4(5)$
$\mathrm{P}(1)-\mathrm{C}(1)$	$1.834(7)$	$\mathrm{P}(1)-\mathrm{C}(10)$	$1.830(7)$	$\mathrm{P}(1)-\mathrm{C}(9)-\mathrm{N}(2)$	$110.1(5)$
				$\mathrm{P}(1)-\mathrm{C}(10)-\mathrm{N}(3)$	$110.0(5)$

Selected hydrogen bonding contacts

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{d}(\mathrm{H} \cdots \mathrm{A})(\AA)$	$\mathrm{d}(\mathrm{D} \cdots \mathrm{A})(\AA)$	$<(\mathrm{DHA})\left({ }^{\circ}\right)$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B}) \cdots \mathrm{Cl}\left(2^{\prime}\right)$	2.65	$3.291(6)$	127.8
$\mathrm{~N}(1)-\mathrm{H}(1 \mathrm{~A}) \cdots \mathrm{N}(2)$	2.34	$2.952(9)$	123.8
$\mathrm{~N}(1)-\mathrm{H}(1 \mathrm{~A}) \cdots \mathrm{F}(1)$	2.40	$3.022(9)$	124.4
$\mathrm{~N}(1)-\mathrm{H}(1 \mathrm{~A}) \cdots \mathrm{F}(1 \mathrm{X})$	2.89	$3.35(3)$	112.2
$\mathrm{~N}(1)-\mathrm{H}(1 \mathrm{~B}) \cdots \mathrm{N}(3)$	2.18	$2.851(8)$	128.6

${ }^{\mathbf{a}}$ Estimated standard deviations in parentheses.

The intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding parameters involving the $\mathrm{N}(1)$ and $N(2) ; N(1)$ and $N(3)$ for 207 are given in Table 3.21.

Figure 3.17 Molecular structure of 207, showing H-bonding forming dimer pairs.

Additional weak intermolecular H-bonding interactions involving the chlorides, linking molecules into dimer pairs as well as H -bonding between the F atoms from the $\mathrm{SbF}_{6}{ }^{-}$ ion and $\mathrm{N}(1)$ atom was evident (Figure 3.17, Table 3.21).

3.3.4 COORDINATION OF MONOMERIC PALLADIUM(II) PRECURSORS WITH 180, 181, 189 OR 190

The coordination potential of the tertiary phosphine ammonium salts was also evaluated by reacting $180,181,189$ or 190 with various monomeric palladium(II) precursors namely $\mathrm{PdCl}_{2}(\mathrm{COD}), \mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$ and $\mathrm{Pd}(\mathrm{Me}) \mathrm{Cl}(\mathrm{COD})$. The reactions were performed under various reaction conditions in order to obtain $\mathrm{PdCl}_{2} \mathrm{~L}_{2}$ type complexes ($\mathrm{L}=$ Ligand) after displacing the labile COD or $\mathrm{CH}_{3} \mathrm{CN}$ ligands.

3.3.4.1 SYNTHESIS AND CHARACTERISATION OF PALLADIUM(II) COMPLEX 211

Reaction of two equivalents of 180 with $\mathrm{PdCl}_{2}(\mathrm{COD})$ in CHCl_{3}, refluxed at $90{ }^{\circ} \mathrm{C}$ under N_{2} for 2 h , gave a yellow solid 210 in 65% yield as shown in Equation 3.6.

Equation 3.6

The solution ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound 211, recorded in d^{6}-DMSO, showed a phosphorus resonance at $\delta(\mathrm{P})-0.65 \mathrm{ppm}$ significantly downfield of the value for the free ligand at $\delta(\mathrm{P})-55.08 \mathrm{ppm}$. The ${ }^{1} \mathrm{H}$ NMR spectrum gave multiplets in the range $6.60-7.80$ and $3.71-3.80 \mathrm{ppm}$, for the aromatic and CH_{2} protons respectively. There was coprecipitation of solvent consistent with the microanalytical data for 211: $\mathrm{C}_{50} \mathrm{H}_{62} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{PdCl}_{4} \cdot 0.5 \mathrm{CHCl}_{3}$ requires: $\mathrm{C}, 54.31 ; \mathrm{H}, 5.64 ; \mathrm{N}, 7.52$. Found: $\mathrm{C}, 54.77 ; \mathrm{H}$, $5.72 ; \mathrm{N}, 7.60 \%$. The FT-IR spectrum of 211 was run as a pressed KBr disk. The $\mathrm{NH}_{2}{ }^{+}$ vibrations were at a slightly lower wave number, $2920 \mathrm{~cm}^{-1}$ compared with the value for the precursor ligand observed at $3028 \mathrm{~cm}^{-1}$. Two $\mathrm{Pd}-\mathrm{Cl}$ stretches were observed at 291 and $319 \mathrm{~cm}^{-1}$ in the IR spectrum indicative of cis disposition of the chloride ligands.

Some X-ray quality crystals were obtained by slow vapour diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a chloroform solution of $\mathbf{2 1 1}$ over several days and the structure has been determined. The X-ray diffraction analysis on one of these crystals gave a novel unexpected sixmembered chelate complex 211' (Figure 3.18) which was not consistent with the other characterising data for 211.

Figure 3.18 Molecular structure of $\mathbf{2 1 1}^{\prime}$.

The structure of 211^{\prime} reveals an approximate square-planar geometry with the $\mathrm{Pd}-\mathrm{Cl}$ and $\mathrm{Pd}-\mathrm{P}$ bond lengths and angles about the palladium(II) centre were within the expected range for other square-planar $\mathrm{Pd}(\mathrm{II})$ phosphine chloride complexes ${ }^{146,201}$ as well 169 and 170 in Section 2.4.3. The only exception being that the $P(1)-P d(1)-P(2)$ bond angle $\left[92.60(7)^{\circ}\right]$ was smaller than the $\mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{P}(2)$ bond angle $\left[100.45(5)^{\circ}\right]$ in 169 probably due to the constraint caused by the six-membered $\mathrm{Pd}-\mathrm{P}-\mathrm{C}-\mathrm{N}-\mathrm{C}-\mathrm{P}$ chelate ring. The X -ray diffraction analysis does not indicate the presence of H -bonding supportive of the absence of donor/acceptor groups. Selected bond lengths and angles are given in Table 3.22. This structural motif is supported by the absence of any hits from a CSD search. ${ }^{191,192}$ The crystal data and structure refinement for 211' are shown in Appendix 8.16.

Table 3.22 Selected bond lengths and angles ${ }^{\text {a }}$ for 211 $^{\prime}$.

Bond lengths (\AA)		Bond lengths (\AA)		Bond angles $\left(^{\circ}\right)$	
$\mathrm{Pd}(1)-\mathrm{P}(1)$	$2.226(2)$	$\mathrm{P}(1)-\mathrm{C}(10)$	$1.836(7)$	$\mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{P}(2)$	$92.60(7)$
$\mathrm{Pd}(1)-\mathrm{P}(2)$	$2.223(2)$	$\mathrm{P}(1)-\mathrm{C}(12)$	$1.817(7)$	$\mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(1)$	$88.51(7)$
$\mathrm{Pd}(1)-\mathrm{Cl}(1)$	$2.371(2)$	$\mathrm{P}(2)-\mathrm{C}(27)$	$1.826(7)$	$\mathrm{P}(2)-\mathrm{Pd}(1)-\mathrm{Cl}(2)$	$87.97(7)$
$\mathrm{Pd}(1)-\mathrm{Cl}(2)$	$2.353(19)$	$\mathrm{P}(2)-\mathrm{C}(29)$	$1.856(7)$	$\mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(2)$	$90.87(7)$
$\mathrm{P}(1)-\mathrm{C}(1)$	$1.836(7)$	$\mathrm{C}(1)-\mathrm{N}(1)$	$1.457(8)$	$\mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{P}(2)$	$177.37(8)$
$\mathrm{P}(2)-\mathrm{C}(2)$	$1.813(7)$	$\mathrm{C}(2)-\mathrm{N}(2)$	$1.455(8)$	$\mathrm{Cl}(2)-\mathrm{Pd}(1)-\mathrm{P}(1)$	$178.82(8)$

${ }^{2}$ Estimated standard deviations in parentheses.

A plausible explanation for the transformation from 211 to the chelate complex 211', as observed in the X-ray diffraction analysis, is given below (Equation 3.7).

211^{\prime}

Where $\mathrm{R}^{\prime}=$

Equation 3.7.

This transformation might primarily be due to the bulky nature of the two phosphine ligands not fitting into the coordination sphere of the metal in a cis arrangement or the driving force may be formation of a six-membered ring (chelate effect). During the crystallisation process, there is probable intramolecular rearrangement involving the two exocyclic fragments in the two phosphine ligands at the Pd (II) centre. There is loss of a proton from the ammonium group in the exocylic fragment in one phosphine ligand which is eliminated as HCl resulting in the formation of a lone pair of electrons on the ammonium N atom. The lone pair of electrons is then donated to the carbon in the $\mathrm{P}-\mathrm{C}-\mathrm{N}$ fragment of the exocyclic fragment in the second phosphine ligand. This leads to the loss of a molecule of benzylamine in the second phosphine ligand and the formation of an ionic six-membered $\mathrm{Pd}-\mathrm{P}-\mathrm{C}-\mathrm{N}-\mathrm{C}-\mathrm{P}$ chelate compound, which loses a molecule of HCl to form the new neutral six-membered $\mathrm{Pd}-\mathrm{P}-\mathrm{C}-\mathrm{N}-\mathrm{C}-\mathrm{P}$ chelate complex 211', as proposed in Equation 3.7. This mechanism is similar to the transformation of $\left[\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{NHPh}\right)_{4}\right] \mathrm{Cl}$ to a six-membered $\mathrm{P}-\mathrm{C}-\mathrm{N}-\mathrm{C}-\mathrm{N}-\mathrm{C}$ ring compound (diazaphosphorinane) aided by $\mathrm{Et}_{3} \mathrm{~N}$ probably via an intramolecular mechanism shown in Scheme 1.2. ${ }^{10}$

3.3.4.2 SYNTHESIS AND CHARACTERISATION OF PALLADIUM(II)

 COMPLEX 212The reaction of $\mathrm{PdCl}_{2}(\mathrm{COD})$ with 181 was attempted under a different reaction condition. Two equivalents of 181 were reacted with $\mathrm{PdCl}_{2}(\mathrm{COD})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature under aerobic conditions for 24 h . This was followed by precipitation with $\mathrm{Et}_{2} \mathrm{O}$ upon concentration of the solution under reduced pressure and the resulting yellow solid, 212 was obtained in high yield. The product conforms to the expected $\mathrm{PdCl}_{2} \mathrm{~L}_{2}$ complex as supported by the microanalytical data. The solution ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound 212 in d^{6}-DMSO showed a major phosphorus resonance (>70 \%) at $\delta(\mathrm{P})-0.88 \mathrm{ppm}$ significantly downfield of the $\delta(\mathrm{P})$ value for the free ligand, -54.72 ppm , while the ${ }^{1} \mathrm{H}$ NMR spectrum showed the following proton resonances: $9.14\left(\mathrm{br}, \mathrm{NH}_{2}\right), 6.80-7.70(\mathrm{~m}$, arom. H$)$ and $3.71-4.80\left(\mathrm{~m}, \mathrm{CH}_{2}\right)$, ppm. The microanalytical data for 212 is consistent with the formula, $\mathrm{C}_{50} \mathrm{H}_{56} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{~F}_{6} \mathrm{PdCl}_{4} \cdot 0.25 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires: $\mathrm{C}, 50.87 ; \mathrm{H}, 4.80 ; \mathrm{N}, 7.08$. Found: $\mathrm{C}, 50.56$; $\mathrm{H}, 4.89$; N, 7.02%. The FT-IR spectrum of 212 run as pressed KBr disk showed a sharp $\mathrm{NH}_{2}{ }^{+}$vibration at $2988 \mathrm{~cm}^{-1}$ slightly different from the value for the precursor
ligand 181 observed at $3044 \mathrm{~cm}^{-1}$ and a single $\mathrm{Pd}-\mathrm{Cl}$ vibration at $307 \mathrm{~cm}^{-1}$, indicative of trans disposition of the two coordinated chloride ligands in this case. Attempts to obtain suitable crystals for X-ray diffraction analysis were unsuccessful.

3.3.4.3 SYNTHESIS AND CHARACTERISATION OF PALLADIUM(II) COMPLEXES 213-215

Palladium compounds with higher lability and trans-directing propensity such as $\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$, were also used as suitable sources of $\mathrm{Pd}(\mathrm{II})$ in the coordination reactions of the tertiary phosphine ammonium salts. In these reactions, there is greater probability of forming the expected $\mathrm{ML}_{2} \mathrm{Cl}_{2}$ type complexes in which the bulky ligands fit around the metal coordination sphere in a trans arrangement. Reaction of $\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$ with 181,189 or 190 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature followed by precipitation with $\mathrm{Et}_{2} \mathrm{O}$ upon concentration of the solution under reduced pressure gave the yellow compounds $213-215$. In all cases, the ligands readily react to form the desired palladium(II) complex in excellent yields (Table 3.23). Two equivalents of the ligand react with $\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$ to form the $\mathrm{Pd}(\mathrm{II})$ complexes according to Equation 3.8.

181,189 or 190

Equation 3.8.

Characterisation was achieved by microanalysis, FT-IR and NMR spectroscopy. The results are given in Tables 3.23-3.25.

Table 3.23 Percentage yield (isolated) and selected FT-IR data ${ }^{\mathbf{a}}$ (in cm^{-1}) for compounds 213-215.

Compound	\% yield	$v\left(\mathrm{NH}_{2}{ }^{+}\right)$	$v(\mathrm{CH})$	$v(\mathrm{SbF})$	$v(\mathrm{PdCl})$
213	94	$2941(\mathrm{~s})$	$2811(\mathrm{~m})$		$308(\mathrm{w})$
214	91	$3030(\mathrm{~s})$	$2820(\mathrm{~m})$	661	$290(\mathrm{vs})$
215	84	$3044(\mathrm{~s})$	$2827(\mathrm{~m})$	661	$292(\mathrm{vs})$

${ }^{\mathrm{a}}$ Recorded as a pressed KBr disk.

The FT-IR spectra for 213-215 were also run as pressed KBr disks; selected data are given in Table 3.23. The $v\left(\mathrm{NH}_{2}{ }^{+}\right)$stretches of the palladium(II) complexes were in the range $2941-3044 \mathrm{~cm}^{-1}$ and were not significantly different from those of the precursor ligands. On the other hand, the $v(\mathrm{CH})$ stretches were slightly lowered on coordination to the palladium(II) centre, for example in 215 the $v(\mathrm{CH})$ stretch in the precursor ligand, 190 was $2954 \mathrm{~cm}^{-1}$ but on coordination in compound 215 , the band was shifted to $2827 \mathrm{~cm}^{-1}$. The strong infrared $\mathrm{Sb}-\mathrm{F}$ bands at $661 \mathrm{~cm}^{-1}$ in compounds 214 and 215 confirm the presence of the $\mathrm{SbF}_{6}{ }^{-}$counterions in these complexes. The infrared spectra of the palladium(II) complexes showed single $v(\mathrm{Pd}-\mathrm{Cl})$ stretches in the range 290 to $308 \mathrm{~cm}^{-1}$, that of 213 was weak, while those of 214 and 215 very strong, indicating in all cases that a trans isomer was formed.

There was evidence of coprecipitation of the solvent in these complexes; this is in agreement with the microanalytical data given in Table 3.24. The agreement between the observed and calculated CHN values in Table 3.24 is consistent with the formulation of the palladium(II) complexes 213-215.

Table 3.24 Microanalysis (\%) and molecular formulae for compounds 213-215. ${ }^{\text {a }}$

	C	H	N	Molecular formula
213	$49.96(49.60)$	$4.84(4.72)$	$6.95(6.84)$	$\mathrm{C}_{50} \mathrm{H}_{56} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{~F}_{6} \mathrm{PdCl}_{4} \cdot 0.75 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$\mathbf{2 1 4}$	$36.80(37.17)$	$4.03(4.00)$	$5.08(4.91)$	$\mathrm{C}_{50} \mathrm{H}_{62} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{Sb}_{2} \mathrm{~F}_{12} \mathrm{PdCl}_{2} \cdot 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
215	$37.27(37.72)$	$3.43(3.57)$	$5.17(5.23)$	$\mathrm{C}_{50} \mathrm{H}_{62} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{Sb}_{2} \mathrm{~F}_{18} \mathrm{PdCl}_{2} \cdot 0^{2} .5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$

[^10]The solution ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of these complexes, recorded in d^{6}-DMSO, showed multiple signals; in all cases the major signal being significantly downfield of the corresponding value for the ligand. For example the major $\delta(\mathrm{P})$ value for 215 was at -0.67 ppm (Table 3.25), while the $\delta(\mathrm{P})$ for the corresponding ligand was at $\mathbf{- 5 4 . 9 2}$ ppm . The multiple signals could be due to a mixture of P-containing species or possible decomposition of phosphorus containing products in the NMR solvent.

Table 3.25 Selected NMR data (in ppm) for 213-215. ${ }^{\text {a }}$

	Major $\delta(\mathrm{P})$	Other ${ }^{31} \mathrm{P}$ Signals	$\delta(\mathrm{H}) /$ arom.	$\delta(\mathrm{H}) / \mathrm{CH}_{2}$	$\delta(\mathrm{H}) / \mathrm{NH}_{2}{ }^{+}$
213	-0.47	$-20.69,-30.24$	$7.07-7.69$	$3.86-4.82$	8.37
214	-0.62	$-20.32,-30.74$	$7.15-7.55$	$3.56-4.84$	8.18
215	-0.67	$-20.36,-30.22$	$6.92-7.45$	$3.52-4.73$	8.16

${ }^{2}$ All NMR spectra were recorded in $d^{6}-$ DMSO.

Two of these multiple ${ }^{31} \mathrm{P}$ signals in these spectra could also indicate the presence of both the cis and trans isomers in solution. This not withstanding, in the solid state the FT-IR spectra indicated the presence of the trans isomer. The fact that in all cases the major signal falls within the narrow range -0.47 to -0.67 ppm coupled with strong single $\mathrm{v}(\mathrm{Pd}-\mathrm{Cl})$ stretches in the IR spectra strongly suggest P-coordination and formation of the trans isomer.

Selected ${ }^{1} \mathrm{H}$ NMR resonances of the complexes are given in Table 3.25; the aromatic and the CH_{2} proton signals fall within the expected values. The $\delta(\mathrm{H})$ values for the $\mathrm{NH}_{2}{ }^{+}$protons are downfield ($8.16-8.37 \mathrm{ppm}$) indicative of being adjacent to the electronegative N atom of the ammonium salt. Attempts to obtain X-ray quality crystals were unsuccessful.

3.3.4.4 SYNTHESIS AND CHARACTERISATION OF PALLADIUM(II) COMPLEXES 216 AND 217

The palladium(II) precursor $\mathrm{Pd}(\mathrm{Me}) \mathrm{Cl}(\mathrm{COD})$ was also reacted with the tertiary phosphine ammonium salts in order to evaluate their coordination potential.

Where $\mathrm{L}=$

181 or 189
 and

$$
\begin{aligned}
& X=F, A=C l, 216 ; \\
& X=H, A=S b F_{6}, 217
\end{aligned}
$$

Equation 3.9.

Reaction of $\mathrm{Pd}(\mathrm{Me}) \mathrm{Cl}(\mathrm{COD})$ with 181 or 189 under similar reaction conditions as for $\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$, as described in Section 3.3.4.3, gave the orange solids 216 and 217. In both cases, the ligands readily react to form the desired palladium(II) complex in excellent yields (Table 3.26). Two equivalents of the ligand react with $\mathrm{Pd}(\mathrm{Me}) \mathrm{Cl}(\mathrm{COD})$ to form the complexes 216 and 217 according to Equation 3.9 in high yield (Table 3.26).

Characterisation as in the previous cases was achieved by MS, microanalysis, FT-IR and NMR, the results are given in Tables 3.26-3.28. The FAB-MS data (Table 3.26), for compounds 216 and 217 are in agreement with the loss of two anions (m / z [M$2 \mathrm{X}]^{+}$) per mole of the respective palladium(II) complexes.

Table 3.26 Percentage yield (isolated), FAB-MS and selected FT-IR data ${ }^{\mathbf{a}}$ (in cm^{-1}) for compounds 216 and 217.

	$\%$ yield	$m / z[\mathrm{M}-2 \mathrm{X}]^{+6}$	$v\left(\mathrm{NH}_{2}{ }^{+}\right)$	$v(\mathrm{CH})$	$v(\mathrm{SbF})$	$v(\mathrm{PdCl})$
216	88	1073	$3029(\mathrm{w})$	$2932(\mathrm{~m})$		$279(\mathrm{w})$
217	82	965	$3030(\mathrm{w})$	$2920(\mathrm{~m})$	$650(\mathrm{vs})$	$290(\mathrm{w})$

[^11]The FT-IR spectra were run as pressed KBr disks, selected spectral data are given in Table 3.26. The $v\left(\mathrm{NH}_{2}{ }^{+}\right)$stretches of the palladium(II) complexes were in the range $3029-3030 \mathrm{~cm}^{-1}$ and not significantly different from those of the precursor ligands, but the $v(\mathrm{CH})$ stretches were slightly decreased on coordination to the palladium(II) centre, for example in 217 the $v(\mathrm{CH})$ stretch in the precursor ligand 189 was $2952 \mathrm{~cm}^{-1}$ but on coordination the infrared band was observed at $2920 \mathrm{~cm}^{-1}$. The infrared spectra of complexes 216 and 217 showed single $v(\mathrm{Pd}-\mathrm{Cl})$ stretches at 279 and $290 \mathrm{~cm}^{-1}$ respectively, indicative of trans configuration in both cases.

The microanalytical data are given in Table 3.27. The agreement between the observed and calculated CHN values is consistent with the formulation of the palladium(II) complexes 216 and 217. There was evidence of coprecipitation of the solvent in the case of compound 216 as confirmed by the microanalytical data.

Table 3.27 Microanalysis (\%) and molecular formulae for compounds 216 and 217. ${ }^{\text {a }}$

	C	H	N	Molecular formula
$\mathbf{2 1 6}$	$52.43(52.79)$	$5.30(5.14)$	$7.09(7.21)$	$\mathrm{C}_{51} \mathrm{H}_{59} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{~F}_{6} \mathrm{PdCl}_{3} \cdot 0.25 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
217	$42.58(42.62)$	$4.72(4.56)$	$5.85(5.85)$	$\mathrm{C}_{51} \mathrm{H}_{65} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{Sb}_{2} \mathrm{~F}_{12} \mathrm{PdCl}$

${ }^{1}$ Calculated values in parentheses.

The solution ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of these complexes, recorded in d^{6}-DMSO (Table 3.28) showed a single resonance at $-0.68 \mathrm{ppm}(>80 \%)$ in the case of 216 supportive of the formation of the trans isomer, significantly downfield of the value for the precursor ligand. In the case of 217 , the ${ }^{31} \mathrm{P}\left\{{ }^{l} \mathrm{H}\right\}$ NMR spectrum showed multiple signals as was observed in 213-215, these could also be due to a mixture of P-containing species or possible decomposition of phosphorus containing products in the NMR solvent. Two of these multiple ${ }^{31} \mathrm{P}$ signals could also indicate the presence of both the cis and trans isomers in solution. This not withstanding, the single $v(\mathrm{Pd}-\mathrm{Cl})$ stretches observed in the FT-IR spectra of both complexes strongly suggest the presence of the trans isomer in the solid state.

Table 3.28 Selected NMR data (in ppm) for 216 and 217. ${ }^{\text {a }}$

	Major $\delta(\mathrm{P})$	Other ${ }^{31} \mathrm{P} \mathrm{Signals}$	$\delta(\mathrm{H}) /$ arom.	$\delta(\mathrm{H}) / \mathrm{CH}_{2}$	$\delta(\mathrm{H}) / \mathrm{NH}_{2}{ }^{+}$
216	-0.68		$7.01-7.58$	$3.64-4.78$	n.o.
217	-0.63	$-20.76,-30.34$	$7.32-7.86$	$3.53-4.98$	n.o.

${ }^{2}$ All NMR spectra were recorded in $\mathrm{d}^{6}-$ DMSO; n.o. $=$ not observed.

Selected ${ }^{1}$ H NMR signals of the complexes are given in Table 3.28; the aromatic and the CH_{2} proton signals fall within the expected values. However, unlike in the case of the palladium(II) complexes synthesised from $\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$, mentioned earlier, (Table 3.25), the $\mathrm{NH}_{2}{ }^{+}$proton signals were not observed. Attempts to obtain X-ray quality crystals of 216 and 217 were unsuccessful.

3.3.5 COORDINATION OF CYCLOMETALLATED PALLADIUM(II) DIMERS WITH 181 OR 190

Coordination studies of 181 or 190 with cyclometallated palladium(II) dimers namely $[\mathrm{Pd}(\mathrm{C} \sim \mathrm{N})(\mu-\mathrm{Cl})]_{2}$, where $\left(\mathrm{C} \sim \mathrm{N}=\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}\right.$ or $\left.\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}\right)$ were also performed in order to obtain the corresponding arylpalladium complexes as shown in Scheme 3.1. Ruiz et al. ${ }^{143}$ have shown that the cyclopalladated monomeric complex $\operatorname{Pd}\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}\right) \mathrm{Cl}(\mathrm{PTA}) 75$ could be synthesised from the cyclopalladated dimeric complex, $\left[\mathrm{Pd}\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}\right)(\mu-\mathrm{Cl})\right]_{2}$ and PTA. In order to assess whether the tertiary phosphine ammonium salts could form similar monomeric complexes, the salts were reacted with the palladium(II) dimers $[\mathrm{Pd}(\mathrm{C} \sim \mathrm{N})(\mu-\mathrm{Cl})]_{2}$, where $\left(\mathrm{C} \sim \mathrm{N}=\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}\right.$ or $\left.\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}\right)$ under similar reaction conditions. The palladium(II) dimer $\left[\operatorname{Pd}\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}\right)(\mu-\mathrm{Cl})\right]_{2}$ was reacted with two equivalents 181 or 190 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by precipitation with hexane upon concentration of the solution under reduced pressure (Scheme 3.1), to give the desired cyclometallated palladium(II) complexes 218 and 219 as white solids in high yields (Table 3.29).

$\mathrm{L}=$ Ligand, $\mathbf{1 8 1}$ or $\mathbf{1 9 0}$

(218 or 219)

(220 or 221)

Scheme 3.1.

Similarly, the analogous palladium(II) dimer $\left[\mathrm{Pd}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}\right)(\mu-\mathrm{Cl})\right]_{2}$ was reacted with 181 or 190 using the same procedure (Scheme 3.1) to give the desired cyclometallated palladium(II) complexes 220 and 221 as pale-yellow solids in high yields (Table 3.29).

3.3.5.1 CHARACTERISATION OF COMPOUNDS 218-221

Characterisation was achieved as in the previous cases by MS, microanalysis as well as FT-IR and NMR spectroscopy. The results are given in Tables 3.29-3.31. The FABMS data (Table 3.29) for compounds 218-221 are in agreement with the loss of one anion ($m / z[\mathrm{M}-\mathrm{X}]^{+}$).

Table 3.29 Percentage yield (isolated), FAB-MS and selected FT-IR data ${ }^{\mathrm{a}}$ (in cm^{-1}) for compounds 218-221.

	\% yield	$m / z[\mathrm{M}-\mathrm{X}]^{+b}$	$v\left(\mathrm{NH}_{2}{ }^{+}\right)$	$v(\mathrm{CH})$	$v(\mathrm{SbF})$
218	81	735	$3048(\mathrm{~m})$	$2929(\mathrm{~m})$	
219	79	735	$2970(\mathrm{~s})$	$2721(\mathrm{~m})$	$633(\mathrm{~s})$
220	78	771	$3044(\mathrm{~m})$	$2955(\mathrm{~m})$	
221	89	771	$3055(\mathrm{~m})$	$2928(\mathrm{~m})$	$660(\mathrm{vs})$

${ }^{\mathrm{a}}$ Recorded as a pressed KBr disk; ${ }^{\mathrm{b}} \mathrm{X}=\mathrm{Cl}^{-}, \mathrm{SbF}_{6}{ }^{-}$
The FT-IR spectra of the Pd (II) complexes 218-221, run as pressed KBr disks, showed that the NH_{2}^{+}vibrations at $c a .3000 \mathrm{~cm}^{-1}$ as well as the $\mathrm{v}(\mathrm{CH})$ stretches (Table 3.29), were not significantly different from those of the precursor ligands though the $v(\mathrm{CH})$ stretches were at slightly higher wavenumbers upon coordination to the $\mathrm{Pd}(\mathrm{II})$ centre. For example the $v(\mathrm{CH})$ stretch in the precursor ligand (181) was $2821 \mathrm{~cm}^{-1}$, but on coordination the vibration was observed at $2929 \mathrm{~cm}^{-1}(218)$ and $2955 \mathrm{~cm}^{-1}(220)$. The $\mathrm{Sb}-\mathrm{F}$ bands at 633 and $660 \mathrm{~cm}^{-1}$ confirm the presence of the $\mathrm{SbF}_{6}{ }^{-}$counterions in 219 and 221 respectively.

Table 3.30 Microanalysis (\%) and molecular formulae for compounds 218-221. ${ }^{\text {a }}$

	C	H	N	Molecular formula
218	$52.41(51.99)$	$5.37(5.16)$	$7.00(7.08)$	$\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{PF}_{3} \mathrm{PdCl}_{2} \cdot 0.25 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
219	$41.49(41.49)$	$4.21(4.12)$	$5.63(5.65)$	$\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{PSbF}_{9} \mathrm{PdCl}^{2} \cdot 0.25 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
220	$53.74(54.08)$	$4.98(4.93)$	$6.48(6.77)$	$\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{PF}_{3} \mathrm{PdCl}_{2} \cdot 0.25 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
221	$44.23(44.16)$	$4.05(4.01)$	$5.57(5.37)$	$\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{PSbF}_{9} \mathrm{PdCl}$

${ }^{2}$ Calculated values in parentheses.

The microanalytical data (Table 3.30) are within acceptable limits, hence are consistent with the formulations of the cyclometallated palladium(II) complexes 218-221. There was evidence of coprecipitation of solvent in the complexes (218-220) with the exception of 221, this is consistent with the microanalytical data (Table 3.30).

The solution ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of these complexes recorded in d^{6}-DMSO showed two or three ${ }^{31} \mathrm{P}$ signals with the major ($>60 \%$) at between $\delta(\mathrm{P})-3.83$ and -5.03 ppm in 218, 219 and 221 though 220 showed a single signal ($>90 \%$) at 4.13 ppm (Table 3.31), in all cases these were significantly downfield of the corresponding $\delta(\mathrm{P})$ values [$c a . \delta(\mathrm{P})-55.00 \mathrm{ppm}]$ for the free ligands. The average coordination chemical shifts for the $\mathrm{Pd}(\mathrm{II})$ complexes [$\Delta \delta_{\mathrm{P}} 50.50 \mathrm{ppm}$] were very similar to what was obtained in the analogous PTA complex, 75 [$\left.\Delta \delta_{\mathrm{P}} 50.00 \mathrm{ppm}\right]{ }^{143}$ again suggesting comparable stereoelectronic properties.

Table 3.31 Selected NMR data (in ppm) for compounds 218-221. ${ }^{\text {a }}$

	Major $\delta(\mathrm{P})$	Other ${ }^{31} \mathrm{P}$ Signals	\cdot $\delta(\mathrm{H}) /$ arom.	$\delta(\mathrm{H}) / \mathrm{CH}_{2}$	$\delta(\mathrm{H}) / \mathrm{NH}_{2}$
$\mathbf{2 1 8}$	-5.03	-1.77	$6.80-7.01$	$3.60-4.01$	8.91
$\mathbf{2 1 9}$	-5.00	$-1.60,-13.92$	$6.34-7.76$	$3.68-4.99$	n.o.
$\mathbf{2 2 0}$	-4.13		$6.80-7.80$	$3.70-4.50$	n.o.
$\mathbf{2 2 1}$	-3.83	2.60	$6.34-7.76$	$3.68-4.99$	n.o.

${ }^{2}$ All NMR spectra were recorded in $\mathrm{d}^{6}-$ DMSO; n.o. $=$ not observed.

The ${ }^{1} \mathrm{H}$ NMR signals of the $\mathrm{Pd}(\mathrm{II})$ complexes are given in Table 3.31; the aromatic and CH_{2} proton signals are in line with expected values. The $\mathrm{NH}_{2}{ }^{+}$proton signal for 218 was weak and observed as expected at a downfield position [ca. $\delta(\mathrm{P}) 8.90 \mathrm{ppm}]$, indicative of being adjacent to the electronegative N atom of the ammonium salt, this was however not observed in compounds 219-221.

Some X-ray quality crystals of $\mathbf{2 1 8}$ and $\mathbf{2 2 0}$ were obtained by slow vapour diffusion of hexane into an acetone solution; in each case over the course of several days and the X ray structures determined (Figures 3.19 and 3.20). As in the case of the analogous cyclopalladated PTA complex 75, coordination at palladium resulted in a square-planar geometry with bond angles that deviate from 90° due to the bite angle of the cyclometallated ligand. ${ }^{143}$ Selected bond lengths and angles are given in Tables 3.32 and 3.33 .

Figure 3.19 Molecular structure of 218.

The $\mathrm{Pd}-\mathrm{C}, \mathrm{Pd}-\mathrm{Cl}, \mathrm{Pd}-\mathrm{N}$ and $\mathrm{Pd}-\mathrm{P}$ bond lengths for 218 (Table 3.32) and 213 (Table 3.33) were similar to those reported for $75[\mathrm{Pd}-\mathrm{C}=2.0086(16) ; \mathrm{Pd}-\mathrm{Cl}=2.3983(4)$; $\mathrm{Pd}-\mathrm{N}=2.1467(14) ; \mathrm{Pd}-\mathrm{P}=2.2260(4) \AA] .{ }^{143}$

Figure 3.20 Molecular structure of $\mathbf{2 2 0}$.

The bond angles about the palladium(II) centres in 218 and $\mathbf{2 2 0}$ were also similar to those found for complex $75[\mathrm{C}-\mathrm{Pd}-\mathrm{N}=80.82(6) ; \mathrm{C}-\mathrm{Pd}-\mathrm{P}=97.27(5) ; \mathrm{P}-\mathrm{Pd}-\mathrm{Cl}=$ 86.621(15); $\left.\mathrm{N}-\mathrm{Pd}-\mathrm{Cl}=95.01(4) ; \mathrm{P}-\mathrm{Pd}-\mathrm{N}=172.84(4) ; \mathrm{C}-\mathrm{Pd}-\mathrm{Cl}=175.84(4)^{\circ}\right]{ }^{143} \mathrm{The}$ $\mathrm{C}(26)-\mathrm{Pd}(1)-\mathrm{N}(4)$ bond angles of $82.01(9)^{\circ}$ and $83.54(6)^{\circ}$ for 218 and 220 respectively are in agreement with the normal range for such complexes. ${ }^{143,212,213}$

Table 3.32 Selected bond lengths and angles for 218. ${ }^{\text {a }}$

Bond lengths (\AA)		Bond lengths ($\AA)$		Bond angles $\left({ }^{\circ}\right)$	
$\mathrm{Pd}(1)-\mathrm{C}(26)$	$1.997(2)$	$\mathrm{C}(1)-\mathrm{N}(1)$	$1.494(3)$	$\mathrm{C}(26)-\mathrm{Pd}(1)-\mathrm{N}(4)$	$82.01(9)$
$\mathrm{Pd}(1)-\mathrm{N}(4)$	$2.156(2)$	$\mathrm{C}(9)-\mathrm{N}(2)$	$1.470(3)$	$\mathrm{C}(26)-\mathrm{Pd}(1)-\mathrm{P}(1)$	$92.98(7)$
$\mathrm{Pd}(1)-\mathrm{P}(1)$	$2.2247(6)$	$\mathrm{N}(2)-\mathrm{C}(11)$	$1.468(3)$	$\mathrm{N}(4)-\mathrm{Pd}(1)-\mathrm{Cl}(1)$	$93.43(6)$
$\mathrm{Pd}(1)-\mathrm{Cl}(1)$	$2.3955(6)$	$\mathrm{C}(11)-\mathrm{N}(3)$	$1.457(3)$	$\mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(1)$	$93.16(2)$
$\mathrm{P}(1)-\mathrm{C}(1)$	$1.836(2)$	$\mathrm{N}(3)-\mathrm{C}(10)$	$1.458(3)$	$\mathrm{N}(4)-\mathrm{Pd}(1)-\mathrm{P}(1)$	$167.34(6)$
$\mathrm{P}(1)-\mathrm{C}(9)$	$1.826(2)$			$\mathrm{C}(26)-\mathrm{Pd}(1)-\mathrm{Cl}(1)$	$170.31(7)$
$\mathrm{P}(1)-\mathrm{C}(10)$	$1.828(2)$			$\mathrm{C}(9)-\mathrm{P}(1)-\mathrm{C}(10)$	$100.70(11)$
				$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{C}(11)$	$110.79(18)$
				$\mathrm{C}(10)-\mathrm{N}(3)-\mathrm{C}(11)$	$111.54(18)$

Selected hydrogen bonding contacts

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{d}(\mathrm{H} \cdots \mathrm{A})(\AA)$	$\mathrm{d}(\mathrm{D} \cdots \mathrm{A})(\AA)$	$\left\langle(\mathrm{DHA})\left({ }^{\circ}\right)\right.$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B}) \cdots \mathrm{N}(2)$	$2.31(3)$	$2.944(3)$	$137(2)$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A}) \cdots \mathrm{Cl}(2)$	$2.35(3)$	$3.084(2)$	$138(2)$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A}) \cdots \mathrm{N}(3)$	$2.43(3)$	$2.895(3)$	$111.8(19)$

${ }^{a}$ Estimated standard deviations in parentheses.

In both cases, the X-ray structures reveal that the phosphine ligand is trans to the N donor due to the difficulty of coordinating mutually trans phosphine and aryl ligands which is related to the trans influence of the ligands in palladium complexes (i.e. the destabilising effect known as transphobia). ${ }^{143,214}$ This is in agreement with the fact that most reported structures of arylpalladium complexes do not have the phosphine trans to the aryl group [e.g. $\mathrm{Pd}\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}\right) \mathrm{Cl}(\mathrm{PTA}) ; \quad \mathrm{Pd}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}\right) \mathrm{Cl}(\mathrm{P})$, where $\mathrm{P} .=$ $\left.\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{~N}(\mathrm{H}) \mathrm{C}_{5} \mathrm{H}_{3}(\mathrm{Cl}-5) \mathrm{N}\right]{ }^{143,200}$ In the few complexes that do, the trans coordination
of phosphine and carbon donor ligands is forced by the nature of the phosphine, the complex or the aryl group. ${ }^{214}$ Furthermore, upon coordination the P-C and P-C-N metric parameters of the precursor ligand were not changed. In both complexes, there was evidence of intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl} \mathrm{H}$-bonding involving the chloride counterions and one of the two H atoms on the ammonium group of the cation at $\mathrm{N}(1)$ as given in Tables 3.32 and 3.33. The crystal structures again reveal that a pair of intramolecular $\mathrm{N}-\mathrm{H} \cdot \cdots \mathrm{N} \mathrm{H}$-bonds maintain the rigid cage structure of the precursor 181 in the solid state even upon complexation, as was seen in the case of the $\mathrm{Ru}(\mathrm{II})$ and $\mathrm{Rh}(\mathrm{III})$ complexes discussed in Sections 3.3.1 and 3.3.3 respectively. The crystal data and structure refinement details for $\mathbf{2 1 8}$ and 220 are shown in Appendices 8.17 and 8.18 respectively.

Table 3.33 Selected bond lengths and angles for $\mathbf{2 2 0}$. $^{\text {a }}$

Bond lengths (\AA)		Bond lengths ($\AA)$		Bond angles $\left.{ }^{\circ}\right)$	
$\mathrm{Pd}(1)-\mathrm{C}(26)$	$2.0019(18)$	$\mathrm{C}(1)-\mathrm{N}(1)$	$1.490(2)$	$\mathrm{C}(26)-\mathrm{Pd}(1)-\mathrm{N}(4)$	$83.54(6)$
$\mathrm{Pd}(1)-\mathrm{N}(4)$	$2.1469(15)$	$\mathrm{C}(9)-\mathrm{N}(2)$	$1.474(2)$	$\mathrm{C}(26)-\mathrm{Pd}(1)-\mathrm{P}(1)$	$95.35(5)$
$\mathrm{Pd}(1)-\mathrm{P}(1)$	$2.2280(5)$	$\mathrm{N}(2)-\mathrm{C}(11)$	$1.463(2)$	$\mathrm{N}(4)-\mathrm{Pd}(1)-\mathrm{P}(1)$	$174.90(4)$
$\mathrm{Pd}(1)-\mathrm{Cl}(1)$	$2.4008(5)$	$\mathrm{C}(11)-\mathrm{N}(3)$	$1.455(2)$	$\mathrm{C}(26)-\mathrm{Pd}(1)-\mathrm{Cl}(1)$	$172.34(5)$
$\mathrm{P}(1)-\mathrm{C}(1)$	$1.8298(18)$	$\mathrm{N}(3)-\mathrm{C}(10)$	$1.459(2)$	$\mathrm{N}(4)-\mathrm{Pd}(1)-\mathrm{Cl}(1)$	$91.99(4)$
$\mathrm{P}(1)-\mathrm{C}(9)$	$1.8336(18)$			$\mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(1)$	$89.638(16)$
$\mathrm{P}(1)-\mathrm{C}(10)$	$1.8349(17)$			$\mathrm{C}(9)-\mathrm{P}(1)-\mathrm{C}(10)$	$99.92(8)$
				$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{C}(11)$	$110.15(14)$
				$\mathrm{C}(10)-\mathrm{N}(3)-\mathrm{C}(11)$	$111.56(14)$

Selected hydrogen bonding contacts

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{d}(\mathrm{H} \cdots \mathrm{A})(\AA)$	$\mathrm{d}(\mathrm{D} \cdots \mathrm{A})(\AA)$	$<(\mathrm{DHA})\left({ }^{\circ}\right)$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B}) \cdots \mathrm{N}(2)$	$2.21(2)$	$2.932(2)$	$142.7(19)$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A}) \cdots \mathrm{N}(3)$	$2.59(2)$	$2.997(2)$	$107.3(15)$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A}) \cdots \mathrm{Cl}(2)$	$2.19(2)$	$2.9741(16)$	$143.3(18)$

[^12]It has been shown that the electronic and structural properties of 218 and 220 are similar to those of the analogous water-soluble PTA complex 75, which has been shown to successfully catalyse the reaction of aryl halides with terminal alkynes (Sonoghashira reaction) with excellent results in the absence of amine and CuI. ${ }^{143}$ Thus 218 and 220 could be useful as potential catalysts or catalyst precursors for this type of reaction.

3.3.5.2 SYNTHESIS AND CHARACTERISATION OF PALLADIUM(II) COMPLEX 222

Following a similar procedure for the synthesis of $218,\left[\mathrm{Pd}\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}\right)(\mu-\mathrm{Cl})\right]_{2}$ was again reacted with 181 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ but stirred for 30 min instead of 1.5 h , followed by precipitation with $\mathrm{Et}_{2} \mathrm{O}$ instead of hexane to give a pale-yellow solid 222. Analysis of complex 222 show that it was identical with the $\mathrm{Pd}(\mathrm{II})$ complex 218, as suggested by the microanalytical data, consistent with the formula $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{PF}_{3} \mathrm{PdCl}_{2} \cdot 1.25 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, requires: $\mathrm{C}, 48.32 ; \mathrm{H}, 4.89 ; \mathrm{N}, 6.39$. Found: $\mathrm{C}, 48.68 ; \mathrm{H}, 4.83 ; \mathrm{N}, 6.65 \%$. This indicates coprecipitation with 1.25 moles of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as against 0.25 moles in the case of 218 as shown in Table 3.30. The solution ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 222 in d^{6}-DMSO showed a major phosphorus resonance ($>60 \%$) at $\delta(\mathrm{P})-5.00 \mathrm{ppm}$, similar to the ${ }^{31} \mathrm{P}$ signal for 218 , significantly downfield of the $\delta(\mathrm{P})$ value obtained for the free ligand, -54.72 ppm , while the ${ }^{1} \mathrm{H}$ NMR spectrum showed the following proton resonances: 6.34-7.76 (m, arom. H), 3.68-4.58 ($\mathrm{m}, \mathrm{CH}_{2}$) ppm. The FT-IR spectrum of the solid run as a pressed KBr disk showed bands at 2970 and $2721 \mathrm{~cm}^{-1}$ different from the $\mathrm{NH}_{2}{ }^{+}$ and CH vibrations of the precursor ligand observed at 3044 and $2821 \mathrm{~cm}^{-1}$ respectively. These bands in 222 were slightly lower than the $\mathrm{NH}_{2}{ }^{+}$and CH vibrations observed at 3048 and $2929 \mathrm{~cm}^{-1}$ respectively in 218.

Single crystals of 222 were obtained by vapour diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a $\mathrm{DMSO} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution over the course of several days and the X-ray structure has been determined which gave an unexpected novel dimeric palladium(II) complex $\mathbf{2 2 2}^{\prime}$ (Figure 3.21). The molecular formula from the X-ray diffraction analysis was not consistent with the other characterising data. The X-ray structure of $\mathbf{2 2 2}^{\prime}$ was quite different from the monomeric complex 218 shown in Figure 3.19. The structure of 222^{\prime} reveals an approximate square-planar geometry at both $\mathrm{Pd}(\mathrm{II})$ centres with typical $\mathrm{Pd}-\mathrm{P}$ and $\mathrm{Pd}-\mathrm{Cl}$ bond lengths and angles about the palladium(II) centres. Selected bond lengths and angles for
compound 222^{\prime} are given in Table 3.34. The bond lengths were typical but the bond angles about the Pd (II) centres were larger or smaller than those of non-chelated monomeric Pd (II) phosphine chloride complexes previously reported ${ }^{146,201}$ as well as 169 and 170 in Section 2.4.3. For example, the $P(1)-P d(1)-P(1 A)$ bond angle in 222' [73.84(5) ${ }^{\circ}$] was smaller than the $\mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{P}(2)$ bond angle $\left[100.45(5)^{\circ}\right]$ in $\mathbf{1 7 0}$. As was in the case of 211', the pronounced smaller P-Pd-P bond angle was due to the constraint caused by the small four-membered $\mathrm{Pd}-\mathrm{P}-\mathrm{Pd}-\mathrm{P}$ ring in 222'. The X -ray diffraction analysis does not show the presence of H -bonding indicative of the absence of typical donor/acceptor groups in $\mathbf{2 2 2}^{\prime}$. The crystal structure of $\mathbf{2 2 2}^{\prime}$ also reveals an inversion centre, between the two $\mathrm{Pd}(\mathrm{II})$ centres making the two six-membered $\mathrm{P}-\mathrm{C}-$ $\mathrm{N}-\mathrm{C}-\mathrm{N}-\mathrm{C}$ rings identical. Unlike in the case of 218 and 220 where all the $\mathrm{C}-\mathrm{N}$ bonds in the rings were $c a .1 .463(3) \AA$ comparable to typical values of between $4.336(8)$ and 1.452(3) \AA previously reported involving sp^{3} hybridised carbon atoms, ${ }^{194}$ only two were within this range (Table 3.34). The other two carbon-nitrogen bond lengths of $c a$. $1.32(6) \AA$ in the ring were within the typical range for $\mathrm{C}=\mathrm{N}$ double bonds with sp^{2} carbon atoms as reported in some pyridylphosphine complexes [$\mathrm{C}=\mathrm{N}, 1.338(3) \AA \AA^{201}$

Figure 3.21 Molecuar structure of 222' showing all H atoms in equivalent $\mathrm{P}-\mathrm{C}-\mathrm{N}-\mathrm{C}-$ $\mathrm{N}-\mathrm{C}$ rings. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}$ solvent molecule of crystallisation has been omitted for clarity.

Therefore there is some electron delocalisation involving saturated and unsaturated bonds in the six-membered P-C-N-C-N-C rings, this is consistent with the presence of only one H atom at the C atom in the $\mathrm{N}-\mathrm{C}-\mathrm{N}$ fragment, instead of two in both rings (two H atoms on $\mathrm{C}(1)$ and $\mathrm{C}(3)$ but only one on $\mathrm{C}(2)$ as shown in one of the equivalent rings in Figure 3.21).

Table 3.34 Selected bond lengths and angles ${ }^{\text {a }}$ for 222'.

Bond lengths (\AA)		Bond lengths ($\AA)$		Bond angles ($\left.{ }^{\circ}\right)$	
$\mathrm{Pd}(1)-\mathrm{P}(1)$	$2.2418(18)$	$\mathrm{P}(1)-\mathrm{C}(1)$	$1.825(5)$	$\mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{P}(1 \mathrm{~A})$	$73.84(5)$
$\mathrm{Pd}(1)-\mathrm{P}(1 \mathrm{~A})$	$2.2350(12)$	$\mathrm{P}(1)-\mathrm{C}(3)$	$1.835(4)$	$\mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(1)$	$98.62(4)$
$\mathrm{Pd}(1)-\mathrm{Cl}(1)$	$2.3736(12)$	$\mathrm{C}(1)-\mathrm{N}(1)$	$1.469(6)$	$\mathrm{P}(1 \mathrm{~A})-\mathrm{Pd}(1)-\mathrm{Cl}(2)$	$93.60(4)$
$\mathrm{Pd}(1)-\mathrm{Cl}(2)$	$2.3842(13)$	$\mathrm{N}(1)-\mathrm{C}(2)$	$1.311(6)$	$\mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(2)$	$94.00(5)$
		$\mathrm{C}(2)-\mathrm{N}(2)$	$1.320(6)$	$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(3)$	$96.9(2)$
		$\mathrm{N}(2)-\mathrm{C}(3)$	$1.475(6)$	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)$	$124.4(4)$
				$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(3)$	$123.2(4)$

${ }^{\text {a }}$ Estimated standard deviations in parentheses.

Thus each P-C-N-C-N-C ring in 222' is contracted compared to those of $\mathbf{2 1 8}$ and $\mathbf{2 2 0}$. The novelty of this structural motif is supported by the absence of any hits from a CSD search. ${ }^{191,192}$ The crystal data and structure refinement details for 222' are shown in Appendix 8.19.

The X-ray diffraction analysis of $\mathbf{2 2 2}$ as was observed in $\mathbf{2 1 1}$ was not consistent with the results from the other characterising data on the bulk complex. During the crystallisation process, there is probable intramolecular rearrangement involving the phosphine and $\mathrm{C} \sim \mathrm{N}\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}\right)$ ligands. A lone electron pair from one of the ring N atoms in the phosphine ligand (181) is lost which affords a radical cation, stabilised by loss of a proton from the $\mathrm{N}-\mathrm{CH}_{2}-\mathrm{N}$ fragment. This is followed by rearrangement of the exocylic arm of the phosphine ligand in 222. Firstly, a proton from the ammonium group is lost, followed by donation of an electron pair from the N atom to the carbon in the $\mathrm{P}-\mathrm{C}-\mathrm{N}$ fragment resulting in the cleavage of the $\mathrm{P}-\mathrm{C}$ bond and subsequent formation of an sp^{2} hybridised compound as shown in Scheme 3.2. There are also
decomplexation and complexation processes involving the bidentate, $\mathrm{C} \sim \mathrm{N}\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}\right)$ ligand and the Cl^{-}counterion respectively at the $\mathrm{Pd}(\mathrm{II})$ centre of the resulting intermediate complex to give reactive 14 electron zwitterionic " $\mathrm{PdCl}_{2} \mathrm{P}$ " groups which dimerise to form the novel zwitterionic $\operatorname{Pd}(I I)$ dimer 222' as proposed in Scheme 3.2. This is similar to the mechanism proposed by Zagumennov et al. ${ }^{13}$ which also involves the removal of the lone electron pair from a ring N atom and the formation of a carbocation in the transformation of cyclo- $\left\{\mathrm{CH}_{2} \mathrm{~N}(\mathrm{R}) \mathrm{CH}_{2} \mathrm{~N}(\mathrm{R}) \mathrm{CH}_{2}-\mathrm{P}\right\}-\mathrm{CH}_{2} \mathrm{~N}(\mathrm{H}) \mathrm{R}, \mathrm{R}=$ $4-\mathrm{MeC}_{6} \mathrm{H}_{4}$ by electrochemical oxidation to compound 6 (Equation 1.9).

A close examination of the X-ray structure of $\mathbf{2 2 2}$ ' with an imaginary line bisecting the structure through the $\mathrm{Pd}(1) \cdots \mathrm{Pd}(1 \mathrm{~A})$ axis reveal that for each half, the $\mathrm{P}-\mathrm{C}-\mathrm{N}-\mathrm{C}-\mathrm{N}-\mathrm{C}$ ring present in the precursor ligand is retained as was the case of 218 and 220 . On the other hand, the bidentate $\mathrm{C} \sim \mathrm{N}\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}\right)$ ligand as well as the exocyclic arm of $\mathbf{1 8 1}$ bearing the pair of $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ intramolecular H -bonds that forms a conformationally locked phosphine framework were lost. This is in contrast to retention of the entire structural framework of the precursor ligand 181 even after coordination in the case of 218 and 220. It can be inferred therefore that the repeat reaction of $\left[\mathrm{Pd}\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}\right)(\mu-\mathrm{Cl})\right]_{2}$ with 181 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with variation of the reaction time gave a similar product to 218 as confirmed by the characterising data such as microanalysis on the bulk complex. The structural difference between 218 and 222' can therefore be attributed to intramolecular rearragements during the crystallisation process which gave rise to the zwitterionic novel palladium(II) dimeric complex, 222' as shown in Scheme 3.2.

3.3.6 SYNTHESIS OF PLATINUM(II) COMPLEXES 223 AND 224

The ligating potential of the tertiary phosphine ammonium salts was also explored by reacting 189 or 190 with $\mathrm{PtCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$ as shown in Equation 3.10. Reaction of $\mathrm{PtCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$ with two equivalents of 189 or 190 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature followed by precipitation with $\mathrm{Et}_{2} \mathrm{O}$ upon concentration of the solution under reduced pressure gave the off-white compounds 223 and 224 . In both cases, the ligands readily react to form the desired platinum(II) complex in good yield (Table 3.35).

189 or 190

Equation 3.10.

3.3.6.1 CHARACTERISATION OF COMPOUNDS 223 AND 224

Characterisation was achieved by microanalysis and FT-IR spectroscopy. The results are given in Tables 3.35 and 3.36. The solubility of the complexes was poor in DMSO and CDCl_{3} hence no meaningful NMR $\left[{ }^{1} \mathrm{H},{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\right]$ spectral data could be obtained in these solvents.

The FT-IR spectra were run on the bulk material, as pressed KBr disks and are given in Table 3.35. The $v\left(\mathrm{NH}_{2}{ }^{+}\right)$stretches of 3031 and $3036 \mathrm{~cm}^{-1}$ for 223 and 224 respectively were not significantly different from those of the precursor ligands; the $v(\mathrm{CH})$ stretches at about $2930 \mathrm{~cm}^{-1}$ were also similar to those of the corresponding precursor ligands. The $\mathrm{Sb}-\mathrm{F}$ stretches were observed at about $660 \mathrm{~cm}^{-1}$ while the
single strong $v(\mathrm{Pt}-\mathrm{Cl})$ stretches at $290 \mathrm{~cm}^{-1}$ were indicative of trans configuration for both platinum(II) complexes.

Table 3.35 Percentage yield (isolated) and selected FT-IR data ${ }^{\text {a }}$ (in cm^{-1}) for compounds 223 and 224.

Compound	\% yield	$v\left(\mathrm{NH}_{2}{ }^{+}\right)$	$v(\mathrm{CH})$	$v(\mathrm{SbF})$	$v(\mathrm{PtCl})$
$\mathbf{2 2 3}$	59	$3031(\mathrm{w})$	$2932(\mathrm{~m})$	$661(\mathrm{vs})$	$290(\mathrm{vs})$
224	68	$3036(\mathrm{w})$	$2935(\mathrm{w})$	$662(\mathrm{vs})$	$290(\mathrm{vs})$

${ }^{2}$ Recorded as a pressed KBr disk.

There was evidence of coprecipitation of solvent, in the case of $\mathbf{2 1 7}$; this is supported by the microanalytical data given in Table 3.36. The agreement between the observed and calculated CHN values in Table 3.36 is consistent with the formulation of the platinum(II) complexes 223 and 224.

Table 3.36 Microanalysis (\%) and molecular formulae for compounds 223 and 224. ${ }^{\text {a }}$

	C	H	N	Molecular formula
$\mathbf{2 2 3}$	$39.33(38.83)$	$3.98(4.04)$	$5.39(5.43)$	$\mathrm{C}_{50} \mathrm{H}_{62} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{Sb}_{2} \mathrm{~F}_{12} \mathrm{PtCl}_{2}$
$\mathbf{2 2 4}$	$35.31(35.22)$	$3.44(3.36)$	$5.11(4.83)$	$\mathrm{C}_{50} \mathrm{H}_{56} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{Sb}_{2} \mathrm{~F}_{18} \mathrm{PtCl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$

${ }^{2}$ Calculated values in parentheses.

As a result of the poor solubility in available NMR solvents mentioned above, NMR spectroscopy was not useful in elucidating their geometry unlike the case of the diazaphosphorinane platinum(II) complexes 178 and 179 (Section 2.4.4). This not withstanding, the strong single $\mathrm{v}(\mathrm{Pt}-\mathrm{Cl}) \mathrm{IR}$ signals were indicative of trans configuration in both cases. X -ray quality single crystals of $\mathbf{2 2 3}$ were obtained by layering petroleum ether (b.p. $40-60^{\circ} \mathrm{C}$) on a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution kept for several days and the X -ray structure has been determined which gave a novel dimeric platinum(II) complex 223' (Figure 3.22). As was the case in 222', the molecular formula from the X-ray diffraction analysis was not consistent with the other characterising data which support a monomeric $\mathrm{PtCl}_{2} \mathrm{~L}_{2}$ type complex.

Figure 3.22 Molecular structure of $\mathbf{2 2 3}^{\prime}$ showing H atoms in the two $\mathrm{P}-\mathrm{C}-\mathrm{N}-\mathrm{C}-\mathrm{N}-\mathrm{C}$ rings. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecule of crystallisation has been omitted for clarity.

The novelty of this structural motif is supported by the absence of any hits from a CSD search. ${ }^{191,192}$ The crystal data and structure refinement details for 223' are shown in Appendix 8.20.

The geometry about each $\mathrm{Pt}(\mathrm{II})$ centre reveal distorted square-planar with the chlorides and phosphines having a cis disposition in each case. Selected bond lengths and angles for compound $\mathbf{2 2 3}$ ' are given in Table 3.37. The $\mathrm{P}-\mathrm{Pt}-\mathrm{P}$ bond angles were severely compressed in 223^{\prime} [75.57(4), 75.58(4) ${ }^{\circ}$] comparable to the identical analogous $\mathrm{P}-\mathrm{Pd}-\mathrm{P}$ angles in 222^{\prime} [73.84(5) ${ }^{\circ}$] due to the constraint caused by the 4 membered $\mathrm{P}-\mathrm{Pt}-\mathrm{P}-\mathrm{Pt}$ rings, while the $\mathrm{Cl}-\mathrm{Pt}-\mathrm{Cl}$ angles were slightly expanded [91.75(4), 92.13(4) ${ }^{\circ}$] also not significantly different from the analogous $\mathrm{Cl}-\mathrm{Pd}-\mathrm{Cl}$ angles in 222^{\prime} [$94.00(5)^{\circ}$]. The X-ray diffraction analysis does not show the presence of \mathbf{H}-bonding in 223 ' indicative of the absence of \mathbf{H}-bonding capabilities in 223'.

Table 3.37 Selected bond lengths and angles ${ }^{\text {a }}$ for 223'.

Bond lengths (\AA)		Bond lengths ($\AA)$		Bond angles ($\left.{ }^{\circ}\right)$	
$\mathrm{Pt}(1)-\mathrm{P}(1)$	$2.2316(11)$	$\mathrm{Pt}(2)-\mathrm{Cl}(3)$	$2.3825(11)$	$\mathrm{P}(1)-\mathrm{Pt}(1)-\mathrm{P}(2)$	$75.57(4)$
$\mathrm{Pt}(1)-\mathrm{P}(2)$	$2.2235(10)$	$\mathrm{Pt}(2)-\mathrm{Cl}(4)$	$2.3716(10)$	$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{Cl}(2)$	$91.75(4)$
$\mathrm{Pt}(1)-\mathrm{Cl}(1)$	$2.3752(10)$	$\mathrm{P}(1)-\mathrm{C}(1)$	$1.836(4)$	$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{P}(1)$	$99.73(4)$
$\mathrm{Pt}(1)-\mathrm{Cl}(2)$	$2.3721(10)$	$\mathrm{P}(1)-\mathrm{C}(3)$	$1.834(4)$	$\mathrm{Cl}(2)-\mathrm{Pt}(1)-\mathrm{P}(2)$	$92.94(4)$
$\mathrm{Pt}(2)-\mathrm{P}(1)$	$2.2266(10)$	$\mathrm{P}(2)-\mathrm{C}(18)$	$1.828(4)$	$\mathrm{P}(1)-\mathrm{Pt}(2)-\mathrm{P}(2)$	$75.58(4)$
$\mathrm{Pt}(2)-\mathrm{P}(2)$	$2.2279(11)$	$\mathrm{P}(2)-\mathrm{C}(20)$	$1.828(4)$	$\mathrm{P}(1)-\mathrm{Pt}(2)-\mathrm{Cl}(3)$	$93.54(4)$
$\mathrm{C}(1)-\mathrm{N}(1)$	$1.472(5)$	$\mathrm{C}(18)-\mathrm{N}(3)$	$1.458(5)$	$\mathrm{P}(2)-\mathrm{Pt}(2)-\mathrm{Cl}(4)$	$98.71(4)$
$\mathrm{N}(1)-\mathrm{C}(2)$	$1.302(5)$	$\mathrm{N}(3)-\mathrm{C}(19)$	$1.316(6)$	$\mathrm{Cl}(3)-\mathrm{Pt}(2)-\mathrm{Cl}(4)$	$92.13(4)$
$\mathrm{C}(2)-\mathrm{N}(2)$	$1.303(5)$	$\mathrm{C}(19)-\mathrm{N}(4)$	$1.312(6)$	$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(3)$	$95.8(2)$
$\mathrm{N}(2)-\mathrm{C}(3)$	$1.460(5)$	$\mathrm{N}(4)-\mathrm{C}(20)$	$1.468(5)$	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)$	$122.9(4)$
				$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(3)$	$124.0(4)$
				$\mathrm{C}(18)-\mathrm{P}(2)-\mathrm{C}(20)$	$96.3(2)$
				$\mathrm{C}(18)-\mathrm{N}(3)-\mathrm{C}(19)$	$123.1(4)$
			$\mathrm{C}(19)-\mathrm{N}(4)-\mathrm{C}(20)$	$124.3(4)$	

${ }^{2}$ Estimated standard deviations in parentheses.

From the X-ray diffraction analysis, it is evident that the two $\mathrm{P}-\mathrm{C}-\mathrm{N}-\mathrm{C}-\mathrm{N}-\mathrm{C}$ rings in 223 ' were also contracted compared to those of $\mathbf{2 1 8}$ and 220 with evidence of electron delocalisation as observed in the case of 222'. The carbon-nitrogen bond distances comprising of the shorter $\mathrm{C}=\mathrm{N}$ and longer $\mathrm{C}-\mathrm{N}$ bonds in the $\mathrm{P}-\mathrm{C}-\mathrm{N}-\mathrm{C}-\mathrm{N}-\mathrm{C}$ rings in $\mathbf{2 2 3}$ ' were identical with those of 222' as shown in Tables 3.34 and 3.37. Therefore there is also some electron delocalisation involving saturated and unsaturated bonds in the six-membered $\mathrm{P}-\mathrm{C}-\mathrm{N}-\mathrm{C}-\mathrm{N}-\mathrm{C}$ rings as observed in $\mathbf{2 2 2}^{\prime}$, this is consistent with the presence of two H atoms on $\mathrm{C}(1)$ and $\mathrm{C}(3)$ but only one on $\mathrm{C}(2)$ in one ring and a similar pattern repeated in the second ring with $\mathrm{C}(18)$ and $\mathrm{C}(20)$ having two H atoms each and only one H atom on $\mathrm{C}(19)$ as shown in Figure 3.22.

Although the X-ray diffraction analysis of 223', did not reveal an inversion centre as was the case in 222', drawing an imaginary line through the $\mathrm{Pt}(1) \cdots \mathrm{Pt}(2)$ axis show the following point. On either side of the $\operatorname{Pt}(1) \cdots \operatorname{Pt}(2)$ axis in 223 the
" $\mathrm{CH}_{2} \mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ " fragment (the exocylic arm), in the precursor ligand 189 is lost but the $\mathrm{P}-\mathrm{C}-\mathrm{N}-\mathrm{C}-\mathrm{N}-\mathrm{C}$ ring retained. This is again in contrast to the retention of the entire structural framework of the precursor ligand 181 even upon coordination in the case of 218 and 220 . The CHN analysis of 223 is supportive of the expected monomeric platinum(II) complex, $\mathrm{PtCl}_{2} \mathrm{~L}_{2}$ and the FT-IR spectrum supportive of trans disposition. The structural difference between 223 and $\mathbf{2 2 3}$ ' can therefore again be attributed to similar intramolecular pattern of rearrangements. During the crystallisation process, one of the two phosphine ligands in 223, follows the same pattern of rearrangements in both the ring and the exocyclic arm as proposed in the case of 222 (Scheme 3.2), while the second phosphine ligand was lost and eliminated as shown in Scheme 3.3 similarly forming reactive 14 electron $z w i t t e r i o n i c ~ " ~ \mathrm{PtCl}_{2} \mathrm{P}$ " groups which dimerise to form the novel zwitterionic Pt (II) dimer 223' as tentatively proposed in Scheme 3.3.

Alternatively, both phosphine ligands at the $\mathrm{Pt}(\mathrm{II})$ centre in 223 may simultaneously undergo the intramolecular rearrangement mentioned previously to form the reactive zwitterionic " $\mathrm{PtCl}_{2} \mathrm{P}$ " groups which dimerise to form the novel zwitterionic $\mathrm{Pt}(\mathrm{II})$ dimer $\mathbf{2 2 3}^{\prime}$.

Scheme 3.3

స్
 ิㅜ

3.3.7. SYNTHESIS OF GOLD(I) COMPLEXES 225-228

Fackler Jr. and co-workers ${ }^{168}$ have demonstrated that gold(I) complexes of PTA could be synthesised from PTA and the labile gold(I) chlorides $\left(\mathrm{Me}_{2} \mathrm{~S}\right) \mathrm{AuCl}$ or (THT)AuCl.

$\mathrm{L}=\mathbf{1 8 1}, \mathbf{1 9 0}, 193$ or 194

Where $\mathrm{R}^{\prime}=$

$\mathrm{CH}_{2} \mathrm{Cl}_{2}$, stir,
1 h, r.t., $\mathrm{Et}_{2} \mathrm{O}$

$$
\begin{aligned}
& X=F, A=C l, 225 ; \\
& X=F, A=S b F_{6}, 226 ; \\
& X=H, A=P F_{6}, 227 ; \\
& X=F, A=P F_{6}, 228
\end{aligned}
$$

Equation 3.11.

To further explore the coordination potential of the tertiary phosphine ammonium salts as similar P-monodentate ligands, $181,190,193$ or 194 were reacted with (THT)AuCl in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature under aerobic conditions. Four gold(I) complexes were synthesised using a slightly different procedure by reacting 181, 190, 193 or 194 with (THT) AuCl in a $1: 1$ molar ratio in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by addition of $\mathrm{Et}_{2} \mathrm{O}$ to induce precipitation upon concentration under reduced pressure as shown in Equation 3.11. The desired $\mathrm{Au}(\mathrm{I})$ complexes $225-228$ were obtained as off-whitish solids in high yields (Table 3.38) and stored in the dark.

3.3.7.1 CHARACTERISATION OF COMPOUNDS 225-228

Characterisation was achieved as in the previous cases by MS, microanalysis as well as FT-IR and NMR spectroscopies; the results are given in Tables 3.38-3.40. The FAB-MS data (Table 3.38), for compounds 225-228 were in agreement with the loss of the respective counterions ($\mathrm{m} / \mathrm{z}[\mathrm{M}-\mathrm{X}]^{+}$). The FT-IR spectra of the $\mathrm{Au}(\mathrm{I})$ complexes, run as pressed KBr disks, showed $\mathrm{NH}_{2}{ }^{+}$vibrations in the range $3009-3080 \mathrm{~cm}^{-1}$, while the $v(\mathrm{CH})$ stretches were observed at between 2829 and $2962 \mathrm{~cm}^{-1}$ as given in Table 3.38.

Both infrared stretches were not significantly different from those of the precursor ligands as given in Tables 3.1 and 3.5. The $v(\mathrm{Au}-\mathrm{Cl})$ vibrations expected at [$c a .300$ $\mathrm{cm}^{-1} \mathrm{~J}^{200}$ were not seen because of the shorter frequency range ($4000-500 \mathrm{~cm}^{-1}$) of the FT-IR spectrometer used. The strong vibrations at $662 \mathrm{~cm}^{-1}$ were indicative of the presence of SbF_{6}^{-}in the case of complex 226, while the similar strong IR bands at 841 and $849 \mathrm{~cm}^{-1}$ are assigned to the $\mathrm{P}-\mathrm{F}$ vibrations in compounds 227 and 228 respectively, confirming the presence of the $\mathrm{PF}_{6}{ }^{-}$counterion.

Table 3.38 Percentage yield (isolated), FAB-MS and selected FT-IR data ${ }^{2}$ (in cm^{-1}) for compounds 225-228.

	\% yield	$m / z[\mathrm{M}-\mathrm{X}]^{+b}$	$v\left(\mathrm{NH}_{2}{ }^{+}\right)$	$v(\mathrm{CH})$	$v(\mathrm{SbF})$	$v(\mathrm{PF})$
225	81	690	$3041(\mathrm{w})$	$2928(\mathrm{~m})$		
226	86	690	$3009(\mathrm{w})$	$2829(\mathrm{~m})$	$662(\mathrm{vs})$	
227	78	636	$3032(\mathrm{~m})$	$2947(\mathrm{~m})$		$841(\mathrm{vs})$
228	83	690	$3080(\mathrm{~m})$	$2962(\mathrm{~m})$		$849(\mathrm{vs})$

${ }^{\mathrm{a}}$ Recorded as a pressed KBr disk; ${ }^{\mathrm{b}} \mathrm{X}=\mathrm{Cl}^{-}, \mathrm{SbF}_{6}{ }^{-}$or $\mathrm{PF}_{6}{ }^{-}$.

The microanalytical data in Table 3.39 were within acceptable limits, hence are consistent with the formulations of the gold(I) complexes, and there was evidence of coprecipitation of solvent in all the complexes.

Table 3.39 Microanalysis (\%) and molecular formulae for compounds 225-228. ${ }^{\text {a }}$

	C	H	N	Molecular formula
$\mathbf{2 2 5}$	$39.44(39.84)$	$3.71(3.80)$	$5.48(5.47)$	$\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{~F}_{3} \mathrm{PAuCl}_{2} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$\mathbf{2 2 6}$	$30.98(30.87)$	$2.90(2.99)$	$4.40(4.15)$	$\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{~F}_{9} \mathrm{SbPAuCl}^{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$\mathbf{2 2 7}$	$35.25(35.00)$	$3.73(3.77)$	$4.82(4.62)$	$\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{~F}_{6} \mathrm{P}_{2} \mathrm{AuCl} \cdot 1.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$\mathbf{2 2 8}$	$34.73(34.87)$	$3.16(3.33)$	$4.58(4.78)$	$\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{~F}_{9} \mathrm{P}_{2} \mathrm{AuCl} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$

${ }^{\text {a }}$ Calculated values in parentheses.
The solution ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the complexes were recorded in d^{6}-DMSO. Upon coordination to $\operatorname{gold}(\mathrm{I})$, the ${ }^{31} \mathrm{P}$ NMR signals of the precursor ligands $[\delta(\mathrm{P}) \approx-55.00$
$\mathrm{ppm}]$ shifted significantly downfield, in the range between -12.41 and -14.53 ppm (Table 3.40), an indication of the ligation of the phosphorus atom to the gold atom.

Table 3.40 Selected ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data (in ppm or Hz) for 225-228. ${ }^{\text {a }}$

Compound	$\delta(\mathrm{P})$	Other $^{31} \mathrm{P}$ Signals	${ }^{1}{ }^{1}{ }_{\mathrm{PF}}$
225	-12.41		
226	-12.99		
227	-14.53	-144.19 sept	711
228	-12.87	-144.18 sept	713

${ }^{2}$ All NMR spectra were recorded in d^{6}-DMSO.

The average coordination chemical shifts for the $\mathrm{Au}(\mathrm{I})$ complexes ($\Delta \delta_{\mathrm{P}} 42.00 \mathrm{ppm}$) were similar to what was obtained in the analogous (PTA)Au(I) complex, (PTA)AuCl ($\Delta \delta_{\mathrm{P}}$ $45.00 \mathrm{ppm})^{169}$ again suggesting similar stereoelectronic properties.

The ${ }^{1} \mathrm{H}$ NMR signals of the $\mathrm{Au}(\mathrm{I})$ complexes were generally very weak. However the aromatic protons in the case of 227 were observed between 7.22 and 7.49 ppm , while the CH_{2} protons resonated between 3.74 and 4.80 ppm , similar to what was obtained in the analogous (PTA)AuCl complex. ${ }^{169}$

Single crystals of $\mathbf{2 2 5}$ suitable for structure determination by X-ray diffraction were obtained by slow vapour diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ solution kept over the course of several days and the structure has been determined (Figure 3.23). The structure of $\mathbf{2 2 5}$ reveals an approximate linear geometry with the $\mathrm{Au}-\mathrm{Cl}$ and $\mathrm{Au}-\mathrm{P}$ bond lengths and the $\mathrm{P}-\mathrm{Au}-\mathrm{Cl}$ bond angles given in Table 3.41. This data is similar to those reported for analogous linear gold(I) PTA complex $\mathrm{AuCl}(\mathrm{PTA}) \cdot \mathrm{CH}_{3} \mathrm{CN}[\mathrm{Au}-\mathrm{Cl}=2.304(2) \AA$; $\left.\mathrm{Au}-\mathrm{P}=2.226(2) \AA ; \mathrm{P}-\mathrm{Au}-\mathrm{Cl}=175.8(1)^{\circ}\right]^{168}$ Selected bond lengths and angles are given in Tables 3.41. The crystal data and structure refinement details for $\mathbf{2 2 5}$ are shown in Appendix 8.21. The crystal structure reveals that the pair of intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ Hbonds observed in the precursor salt, forming the rigid cage structure in the solid state, was not maintained upon complexation unlike in the case of the $\mathrm{Ru}(\mathrm{II}), \mathrm{Rh}$ (III) and Pd (II) complexes previously discussed. The crystal structure instead reveals intermolecular H -
bonding contacts involving the $\mathrm{Au}(\mathrm{I})$ cations and the Cl^{-}counterions forming H -bonded chains. Molecules are linked together via the chloride counterions forming a zigzag chain involving the $\mathrm{Au}(\mathrm{I})$ cations and the $\mathrm{N}(1)$ hydrogens as shown in Figure 3.23.

Figure 3.23 Molecular structure of $\mathbf{2 2 5}$.

Table 3.41 Selected bond lengths and angles for 225. ${ }^{\text {a }}$

Bond lengths (\AA)		Bond lengths ($\AA)$		Bond angles ($\left.{ }^{\circ}\right)$	
$\mathrm{Au}(1)-\mathrm{P}(1)$	$2.2191(5)$	$\mathrm{C}(1)-\mathrm{N}(1)$	$1.487(3)$	$\mathrm{P}(1)-\mathrm{Au}(1)-\mathrm{Cl}(1)$	$175.37(2)$
$\mathrm{Au}(1)-\mathrm{Cl}(1)$	$2.2959(5)$	$\mathrm{C}(9)-\mathrm{N}(2)$	$1.467(3)$	$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	$113.59(14)$
$\mathrm{P}(1)-\mathrm{C}(1)$	$1.842(2)$	$\mathrm{C}(11)-\mathrm{N}(3)$	$1.456(3)$	$\mathrm{P}(1)-\mathrm{C}(9)-\mathrm{N}(2)$	$106.7(14)$
$\mathrm{P}(1)-\mathrm{C}(9)$	$1.824(2)$	$\mathrm{P}(1)-\mathrm{C}(11)$	$1.848(2)$	$\mathrm{P}(1)-\mathrm{C}(11)-\mathrm{N}(3)$	$117.42(14)$

Selected hydrogen bonding contacts

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{d}(\mathrm{H} \cdots \mathrm{A})(\AA)$	$\mathrm{d}(\mathrm{D} \cdots \mathrm{A})(\AA)$	$<(\mathrm{DHA})\left({ }^{\circ}\right)$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B}) \cdots \mathrm{Cl}(2 \mathrm{~A})$	$2.21(3)$	$3.099(2)$	$174(2)$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A}) \cdots \mathrm{Cl}(2)$	$2.23(3)$	$3.068(2)$	$162(2)$

[^13]

Figure 3.24 Molecular structure of 225 showing intermolecular H-bonding linking molecules together ($4-\mathrm{FC}_{6} \mathrm{H}_{4}$ groups omitted).

It is evident from this H -bonding arrangement with a chloride counterion between two cationic species, that the $\operatorname{Au}(\mathrm{I})$ species are effectively separated from one another (neighbouring $\mathrm{N} \cdots \mathrm{N}$ distances shown to be $5.35 \AA$). The X-ray diffraction analysis has shown that the actual $\mathrm{Au} \cdots \mathrm{Au}$ distance in 225 is $4.10 \AA$, hence aurophilic interaction was not evident; this can be explained by the intermolecular H -bonding arrangement mentioned previously, coupled with the bulky nature of the phosphine ligand. Aurophilic, $\mathrm{Au} \cdots \mathrm{Au}$ interactions with bond lengths of ca. $3.0 \AA$ are commonly observed crystallographically for $\mathrm{Au}(\mathrm{I})$ compounds with sterically undemanding ligands.

3.4 CONCLUSIONS

New cyclic cationic phosphorus(III) ligands, [cyclo-\{ $\left.\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{R}^{\prime}\right) \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{R}^{\prime}\right) \mathrm{CH}_{2}-\mathrm{P}\right\}$ $\left.\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{H}_{2}\right) \mathrm{R}^{\prime}\right]^{+} \mathrm{Cl}^{-},\left[\mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}, 180 ; \mathrm{R}^{\prime}=4-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}, 181 ; \mathrm{R}^{\prime}=4-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}, 182\right.$; $\left.R^{\prime}=4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}, 183 ; \mathrm{R}^{\prime}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}, 184\right]$ were prepared by reacting benzylamine precursors with THPC in ethanol at room temperature following a similar procedure first published by Frank et al. ${ }^{10}$ Anion metathesis of $\mathbf{1 8 0 - 1 8 3}$ with $\mathrm{Na}\left[\mathrm{BPh}_{4}\right]$, $\mathrm{Na}\left[\mathrm{SbF}_{6}\right]$ or $\mathrm{K}\left[\mathrm{PF}_{6}\right]$ in methanol at room temperature under aerobic conditions was performed to give the corresponding phosphorus(III) salts 185-196 in good to excellent
yields: [cyclo- $\left.\left\{\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{R}^{\prime}\right) \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{R}^{\prime}\right) \mathrm{CH}_{2}-\mathrm{P}\right\}-\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{H}_{2}\right) \mathrm{R}^{\prime}\right]^{+} \mathrm{X}^{-}, \quad\left[\mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right.$, 4$\left.\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}, 4-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}, 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} ; \quad \mathrm{X}=\mathrm{BPh}_{4}, \mathrm{SbF}_{6}, \mathrm{PF}_{6}\right]$. The new phosphorus(III) ligands undergo complexation to a range of late transition metals $[\mathrm{Ru}(\mathrm{II})$, $\mathrm{Rh}(\mathrm{I}), \mathrm{Rh}(\mathrm{III}), \mathrm{Ir}(\mathrm{III}), \mathrm{Pd}(\mathrm{II}), \mathrm{Pt}(\mathrm{II})$ and $\mathrm{Au}(\mathrm{I})]$ to form the corresponding complexes.

The cyclic cationic phosphorus(III) ligands and complexes were characterised by a combination of conventional techniques: MS, microanalysis, FT-IR, NMR [${ }^{1} \mathrm{H}$ and $\left.{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\right]$, and in several cases by single crystal X-ray crystallography. Furthermore, P coordination bonding modes have been observed in all the complexes and verified by spectroscopic and single crystal X-ray diffraction analyses. The crystal structures of various examples have been determined and illustrate a range of intra- and intermolecular H -bonding contacts. The X -ray structures of the new cationic phosphorus(III) ligands reveal that the phosphine framework is conformationally locked in the solid state through pairs of intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds forming an analogous cage framework to the well-known water-soluble PTA ligand with similar metric parameters, although only one $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond was evident in one case due to H -bonding interactions involving its $\mathrm{BPh}_{4}{ }^{-}$counterions. These ligands though found to be insoluble in water can therefore be considered as charged variants of PTA and their metal complexes were found to have similar stereoelectronic properties to those of analogous complexes with PTA. The cage frameworks formed by the intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds in the these ligands are maintained in the $\mathrm{Ru}(\mathrm{II}), \mathrm{Rh}$ (III) and the cyclopalladated $\mathrm{Pd}(\mathrm{II})$ complexes. The cage framework was, however, not maintained in the case of the $\mathrm{Au}(\mathrm{I})$ complex. The coordination studies of the cyclic cationic phosphorus(III) ligands has given rise to interesting novel complexes: a monomeric $\mathrm{Pd}(\mathrm{II})$ chelate complex as well as two structurally similar zwitterionic $\mathrm{Pd}(\mathrm{II})$ and $\mathrm{Pt}(\mathrm{II})$ dimeric complexes probably via intamolecular rearrangements. Plausable mechanisms have been proposed for the observations.

Further studies directed towards understanding the properties of these ligands in aqueous and organic media may have useful future implications in homogeneous catalysis as well as medicinal applications for which the analogous PTA metal complexes are known. The mechanistic aspects of the reactions that led to the novel complexes obtained in this work could also be critically examined.

CHAPTER FOUR

CATALYSIS

4.0 INTRODUCTION

Catalysis is the phenomenon of changing the rate of a chemical reaction by use of a catalyst. A catalyst is a substance that alters the rate of a chemical reaction without itself undergoing any permanent chemical change; it may speed up or slow down a reaction. For a reversible reaction, a catalyst alters the rate at which equilibrium is attained but does not alter the position of equilibrium. A catalyst is generally associated with increasing the rate of a reaction hence are referred to as positive catalysts, while those that slow down a reaction are called negative catalysts. The increase in the rate of a chemical reaction is achieved by the catalyst aiding to attain chemical equilibrium faster by reducing the potential energy barriers in the reaction path. The primary focus of this work was to evaluate the catalytic potential of the new phosphorus(III) ligands and or their transition metal complexes. Very little was done in this regard due to time constraints, only a demonstration of the catalytic potential of the neutral phosphorus(III) ligands (diazaphosphorinane ligands) is described in this chapter. The structural and stereoelectronic relationship between the transition metal complexes of the cationic phosphorus(III) ligands and known analogous PTA complexes used in various catalytic applications is also described.

4.1 CATALYTIC APPLICATIONS

Catalysis has wide ranging applications in the chemical industry and has a major impact on the quality of human life as well as economic development. In recent years, catalysis is also looked upon as a solution to eliminate or replace polluting processes due to the inherent characteristics of most catalytic processes as clean technologies. The search for new catalysts is one of the major driving forces behind organometallic research and hence most catalytic processes involve the use of transition metal complexes in one form or the other. Homogeneous and heterogeneous catalysis are two main types of industrial catalytic processes depending on their relationship to the phase of the reaction in which they are involved. A homogeneous catalyst is in the same phase as the components of the reaction it is catalysing, while a heterogeneous catalyst is in a different phase from the components of the reaction for which it is acting. The former has a high catalytic efficiency but also has difficulty separating the used catalyst from the product after the
reaction. Adopting a heterogeneous catalyst could solve the problem of catalyst recovery and reuse, but in most cases, the catalyst's low utility and the complexity of the reaction mechanism become new problems in its application. Both types of catalysts have their advantages and disadvantages, though heterogeneous catalysis has been more widely applied. Therefore achieving a combination of the advantages of both the homogeneous and heterogeneous processes is always the focus in catalysis. ${ }^{215,216}$ The Heck coupling reaction is considered important in such explorations, not only for its significance in $\mathrm{C}-\mathrm{C}$ coupling reaction between aryl halides and olefins, ${ }^{217-219}$ but also for its characteristic "quasi-homogeneous" mechanism. ${ }^{220-224}$ Tang and co-workers, ${ }^{225}$ proposed a new strategy of heterogenising homogeneous catalysts by encaging a quasi-homogeneous catalytic reaction into a zeolitic microcapsular reactor represented as Pd@S1 (Figure 4.1).

Figure 4.1 Schematic illustrations for the encaged quasi-homogeneous Heck-coupling in Pd@S1 catalyst. ${ }^{225}$

It has been reported that the palladium-catalysed Heck reaction is essentially a quasihomogeneous catalytic process occurring via either a palladium complex intermediate ${ }^{221}$ or solvated palladium clusters ${ }^{220,223}$ in the system of aryl iodides and aprotic polar solvents. Heck coupling on the $\mathrm{Pd} @ \mathrm{~S} 1$ catalyst may follow a similar mechanism but within the micrometer-sized hollow cavities as illustrated in Figure 4.1. Addition of the aryl halide to the reaction solution triggers an oxidative addition to palladium atoms in the Pd nanoparticles with the aid of N -methylpyrrolidone [NMP] and $\mathrm{Et}_{3} \mathrm{~N}$, thus forming a soluble active $\mathrm{Pd}(\mathrm{II})$ complex, $\left[\mathrm{Pd}(\mathrm{II})(\mathrm{ArI})(\mathrm{NMP})\left(\mathrm{Et}_{3} \mathrm{~N}\right)\right]$ as an intermediate. ${ }^{219}$ The
active intermediate then reacts with olefin to complete the catalytic cycle. The palladium(II) complex returns to its metallic state, $\operatorname{Pd}(0)$ and redeposits onto the surface of the support once all of the aryl halides are consumed. Importantly, unlike in the case of the classical supported palladium catalyst, the formed active $\left[\mathrm{Pd}(\mathrm{II})(\mathrm{ArI})(\mathrm{NMP})\left(\mathrm{Et}_{3} \mathrm{~N}\right)\right]$ intermediate in this catalyst is encaged in the micrometer-sized hollow cavities of the zeolitic microcapsular reactor, because its molecular diameter is relatively larger than the pore size in the zeolitic shell (silicalite-1). With the protective effect of the surrounding zeolitic shell, this catalyst exhibited antileaching properties. Excellent reactivity was achieved even under a relatively low Pd adopted amount $(\mathrm{Pd} / \mathrm{ArI}=0.0025)$ during the reaction, but was reused for more than 10 runs with negligible loss of activity, in contrast to rapid decay of activity of conventional Pd / C catalysts. It was concluded that this heterogenization of a homogeneous catalyst which entails encapsulation of homogeneous catalytic microenvironment in a porous inorganic shell combines the efficiency of the homogeneous catalyst and the durability of the heterogeneous catalyst. This strategy could provide a novel and beneficial route for the rational design of catalysts in this domain, which may be useful in the synthesis of complex industrial and finechemicals. ${ }^{225}$

Catalysed reaction pathways are usually represented by catalytic cycles. A catalytic cycle consists of series of stoichiometric reactions (usually reversible) that form a closed loop; the catalyst must be regenerated so that it can participate in the cycle of reactions more than once. The catalytic cycle of the Heck reaction which is basically the palladiumcatalysed C-C coupling between aryl halides or vinyl halides and activated alkenes in the presence of a base is shown below (Figure 4.2). There are four steps in the catalytic cycle: oxidative addition, carbometallation, β-hydride elimination and reductive elimination. The reaction probably involves the initial reduction of $\operatorname{Pd}(\mathrm{II})$ to $\operatorname{Pd}(0)$, followed by oxidative addition of RX to generate an $\mathrm{R}-\mathrm{Pd}(\mathrm{II})$ intermediate. R normally has to be an aryl or vinyl group otherwise, β-elimination which is the major decomposition pathway for alkyls can disrupt the required R-Pd intermediate species. ${ }^{3}$ The $\mathrm{Pd}(\mathrm{II})$ intermediate species undergoes an insertion with the alkene, followed by β hydride elimination to give the desired product. Polar solvents such as DMF or $\mathrm{CH}_{3} \mathrm{CN}$ are required and a base (commonly $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{KOAc}$ or NaOAc) is required to recycle the palladium catalyst by removing HX in the last step (reductive elimination).

Figure 4.2 The Heck cycle $\left(\mathrm{R}^{\prime}=\right.$ electron-withdrawing group $)$.

The role of the electron-withdrawing group, R^{\prime} on the alkene is to ensure that the insertion step takes place in the direction shown, to give $\mathrm{R}^{\prime} \mathrm{CH}=\mathrm{CHR}$ and not $\mathrm{RR}^{\prime} \mathrm{C}=\mathrm{CH}_{2}$. The $\mathrm{Pd}-\mathrm{R}$ bond in the oxidative addition product seems to be polarised in the direction $\left[\mathrm{Pd}^{+}-\mathrm{R}^{-}\right]$so that the R group attacks the positive end of the $\mathrm{C}=\mathrm{C}$ double bond of the alkene, which is the one remote from the electron-withdrawing group R'.

In choosing a catalyst for use especially for a commercial process, apart from the changes in reaction conditions that the use of a catalyst may bring about (e.g. pressure and temperature), other factors of importance include; the concentration of the catalyst required, the catalytic turnover, the selectivity of the catalyst to the desired product and how often the catalyst needs renewing. Two catalytic turnover parameters used are the catalytic turnover number (TON) and the catalytic turnover frequency (TOF). The TON is the number of moles of product per mole of catalyst; this number indicates the number of catalytic cycles for a given process, e.g. after 3 h the TON was 2500 . While the TOF is the catalytic turnover per unit time: the number of moles of product per mole of catalyst per unit time, e.g. the TOF was $30 \mathrm{~min}^{-1}$.

4.1.1 HOMOGENEOUS CATALYSIS

In homogeneous catalysis, the catalysts used are of the same phase as the reactants e.g. enzymes in biochemical reactions or transition metal complexes used in the liquid phase in organic reactions. Homogeneous catalysis by soluble metal complexes has wide ranging applications in the chemical industry. Important examples include hydrogenation, carbonylation, hydroformylation, polymerisation, oxidation, isomerisation, etc. These catalysts have several advantages over the conventional heterogeneous catalyst systems such as high activity and selectivity under mild operating conditions. Catalytic mechanisms are considerably easier to study in homogeneous systems, where such powerful methods as NMR can be used to assign structures and follow reaction kinetics. In spite of these, the application of homogeneous catalysis has been limited due to the difficulties in separation of catalysts from products and their economic utilisation. Sometimes special techniques are involved to easily separate the catalyst from the product, when homogeneous catalysts must be utilised because of their superior high activity and selectivity among other advantages. For example homogeneous catalysts can be chemically grafted on to solid supports for greater ease of separation of the catalyst from the reaction products. Although such catalyst systems are technically called heterogeneous, they often retain the characteristic reactivity patterns that they showed as homogeneous catalysts, and the properties are usually different from those of classical heterogeneous catalysts; these are sometimes called "heterogenised" homogeneous catalysts.

Another way to address the problem of catalyst separation is to apply biphasic catalysis. One strategy uses a water-soluble catalyst. This is retained in an aqueous layer that is immiscible with the organic medium in which the reaction takes place. Intimate contact between the two solutions is achieved during the catalytic reaction, after which the two liquids are allowed to settle and the layer containing the catalyst is separated by decantation. Many homogeneous catalysts are hydrophobic; hence it is necessary to introduce ligands that will bind to the metal that carry hydrophilic substituents. Much work has been carried out with the P-donor ligand, 229 which can be introduced into a variety of organometallic complexes by carbonyl or alkene displacement. ${ }^{226}$ For example, the water-soluble complex $\operatorname{HRh}(\mathrm{CO})(229)_{3}$ is a hydroformylation catalyst precursor; conversion of hex-1-ene to heptanal proceeds with 93% selectivity for the n-isomer, a
higher selectivity than is shown by $\mathrm{HRh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$ under conventional homogeneous catalytic conditions. ${ }^{226}$

229
A range of alkene hydrogenations are catalysed by $\mathrm{HRh}(\mathrm{CO})(\mathbf{2 2 9})_{3}$ and it is particularly selective and efficient for the hydrogenation of hex-1-ene. ${ }^{226}$

Similarly, PTA-organometallic compounds have been successfully used as water-soluble catalysts. The water-solubility of such catalysts is usually imparted by the highly watersoluble PTA ligand. Examples of PTA transition metal complexes used as water-soluble catalysts include those of Ru, Ir and Pd . The respective analogous Ru, Ir and Pd complexes synthesised in this work using the tertiary phosphine ammonium salts shown to be charged variants of PTA could be similarly used as water-soluble catalysts if the properties of the ligands (tertiary phosphine ammonium salts) are understood in aqueous and organic media and made to form water-soluble complexes.

The hydrogenation of benzene and other arenes under aqueous-organic biphasic conditions using the ruthenium(II) complexes $\mathrm{RuCl}_{2}\left(p^{6}\right.$-cymene)(PTA) 45, $\left[\mathrm{RuCl}\left(p^{6}\right.\right.$ cymene)(PTA) $\left.)_{2}\right]_{B_{4}} 46$ and $\left[\mathrm{RuCl}_{2}\left(p^{6}\right.\right.$-cymene)(TPPMS)] has been reported. ${ }^{128}$ They were shown to be homogeneous catalysts for this reaction. The analogous $\left[\mathrm{RuCl}_{2}\left(p^{6}-\right.\right.$ cymene)(TPPMS)] complex was found to have significantly higher activity than both 45 and 46. The active catalysts formed during the hydrogenation reactions correspond to a trinuclear cluster, a colloid and mononuclear complexes respectively. ${ }^{128}$ The analogous ruthenium(II) complexes synthesised in this work such as 199 and 200 discussed in Section 3.3.1 and shown to have similar stereoelectronic properties with 45 could
function as similar water-soluble catalysts if made water soluble by attachment of appropriate polar functional groups.

The water-soluble iridium(III) complexes $\eta^{5}-\mathrm{Cp} * \operatorname{Ir}(\mathrm{PTA}) \mathrm{Cl}_{2}$ and $\left[\eta^{5}-\mathrm{Cp}^{*} \operatorname{Ir}(\mathrm{PTA})_{2} \mathrm{Cl}\right] \mathrm{Cl}$ have also been evaluated as catalyst precursors for the hydrogenation of CO_{2} and hydrogen carbonate in aqueous solutions under relatively mild conditions. ${ }^{211}$ The catalytically active species was shown to be $\left[\eta^{5}-\mathrm{Cp} * \operatorname{Ir}(\mathrm{PTA})_{2} \mathrm{H}\right]^{+}$by multinuclear NMR spectroscopy and its nature confirmed by independent synthesis. Although, these catalyst precursors showed only moderate activity on CO_{2} hydrogenation compared to analogous Rh and Ru complexes, ${ }^{211}$ they gave mechanistic insight into the reactions, thus contributing to catalyst design and reaction optimisations. As in the case of the ruthenium(II) complexes, the analogous iridium(III) complexes synthesised (208-210) were shown to have similar stereoelectronic properties with the analogous PTA complex and these could be evaluated as similar hydrogenation catalysts if made water-soluble by using versions of the precursor ligands attached with highly polar functional groups such as $-\mathrm{SO}_{3} \mathrm{Na},-\mathrm{CO}_{2} \mathrm{Na},-\mathrm{OH}$ etc.

Similarly, the water-soluble monomeric palladium(II) PTA complex 75 together with $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{PTA}$ has been shown to be an efficient copper- and amine-free Sonogashira catalyst system. ${ }^{143}$ This catalyst system employed relatively low palladium catalyst loadings in the Sonogashira reaction of aryl bromides and chlorides with terminal alkynes with excellent results in the absence of amine and CuI. The results were better than those obtained in systems based on $\mathrm{P}(t-\mathrm{Bu})_{3}$ such as $[\mathrm{Pd}(a l l y l) \mathrm{Cl}]_{2} / \mathrm{P}(t-\mathrm{Bu})_{3}$ and $\mathbf{7 5}$ is one of the few palladacycle complexes that are more active in this type of cross-coupling reaction, being able to catalyse Sonogashira reactions with aliphatic alkynes and even aryl chlorides. ${ }^{143}$ The analogous monomeric cyclometallated $\mathrm{Pd}(\mathrm{II})$ complexes synthesised in this work from the tertiary phosphine ammonium salts and cyclometalated dimers $[\mathrm{Pd}(\mathrm{C} \sim \mathrm{N})(\mu-\mathrm{Cl})]_{2}$, where $\left(\mathrm{C} \sim \mathrm{N}=\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}\right.$ or $\left.\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}\right),[218-221]$ have been shown to have similar stereoelectronic properties with the analogous Pd(II)PTA complex 75. Thus the palladium(II) complexes 218-221 could be evaluated as similar Sonogashira catalysts if made water soluble by the use of versions of the precursor ligands attached or grafted with highly polar functional groups.

Apart from the use of water-soluble catalysts in biphasic catalysis involving aqueous and organic phases, fluorous i.e a perfluoroalkane phase instead of an aqueous phase could be used. Higher C_{n} perfluoroalkanes are used in fluorous biphasic catalysis; the low-boiling related chlorofluorocarbons (CFC's) have been phased out under the Montreal Protocol ${ }^{227}$ due to their adverse effect on the ozone layer. At room temperature most fluorous solvents are immiscible with other organic solvents, but an increase in temperature typically renders the solvents miscible. The reactants are initially dissolved in a nonfluorinated, organic solvent and the catalyst is present in the fluorous phase. Raising the temperature of the system creates a single phase in which the catalysed reaction occurs. On cooling, the solvents, along with the products and catalyst, separate. Catalysts with suitable solubility properties can be designed by incorporating fluorophilic substituents such as $\mathrm{C}_{6} \mathrm{~F}_{13}$ or $\mathrm{C}_{8} \mathrm{~F}_{17}$. For example, the hydroformylation catalyst $\mathrm{HRh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$ has been adapted for use in fluorous media by using the phosphine ligand 230 in place of $\mathrm{PPh}_{3}{ }^{226}$

230
Introducing fluorinated solvents obviously alters the electronic properties of the ligand. If the metal centre in the catalyst 'feels' this change, its catalytic properties are likely to be affected. These effects can be minimized by placing a spacer between the metal and the fluorinated substituent.

231

Thus in the phosphine ligand 231, which is a derivative of PPh_{3}, the aromatic ring helps to shield the \mathbf{P} atom from the effects of the electronegative F atoms. ${ }^{226}$ Although the use
of the biphasic system allows the catalyst to be recovered and recycled, leaching of the Rh into the non-fluorous phase does occur over a number of catalytic cycles.

4.1.1.1 CATALYTIC POTENTIAL OF THE NEW DIAZAPHOSPHORINANE LIGANDS

The catalytic potential of most of the ligands and complexes synthesised (Chapters two and three) were not evaluated due to time constraints. However, the catalytic potential of the diazaphosphorinane ligands was evaluated at Sasol Technology, St Andrews, UK for the homogeneous ruthenium-based hydrogenation of esters.

In contrast to the hydrogenation of carbonyl compounds, the hydrogenation of esters is troublesome. ${ }^{228}$ The hydrogenation of esters to alcohols is a conversion of industrial importance (Equation 4.1). This conversion is usually employed in the production of fatty alcohols and is a potential route to ethylene glycol, an important industrial compound via dimethyl oxalate. ${ }^{229}$

Equation 4.1.

Homogencous ester hydrogenations, in comparison to its heterogeneous counterpart are not common. The homogeneous hydrogenation of ester to alcohols is indeed a difficult process and this is illustrated by the relatively few cases reported. ${ }^{230-233}$ Anionic ruthenium hydride catalysts have been described by Grey et al. ${ }^{230}$ and neutral ruthenium catalysts were reported by Matteoli et. al. ${ }^{231,232}$ Generally, drastic conditions are required for the efficient conversion of an ester to the corresponding alcohol, unless the ester is activated by electron-withdrawing substituents. For example Matteoli et. al. ${ }^{231}$ used a ruthenium-based catalyst $\mathrm{Ru}(\mathrm{CO})_{2}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}\left(\mathrm{PBu}_{3}\right)_{2}$ for the hydrogenation of dimethyl oxalate 232 to methyl glycolate 233 , which was subsequently reduced at a much slower rate to ethylene glycol 234 under drastic conditions according to Scheme 4.1. The conversion of $\mathbf{2 3 2}$ to $\mathbf{2 3 3}$ was relatively easy, while the conversion of $\mathbf{2 3 3}$ to $\mathbf{2 3 4}$ requires drastic conditions [$p\left(\mathrm{H}_{2}\right) 200$ bar; $180^{\circ} \mathrm{C}$]. ${ }^{231}$

Scheme 4.1

In order to achieve the conversion of dimethyl oxalate to ethylene glycol under milder reaction conditions with improved activity a search towards more active catalyst systems was initiated by Elsevier and co-workers. ${ }^{233}$ Interest was directed towards the use of ruthenium complexes having an increased electron density on the ruthenium centre, which would enhance the nucleophilicity of the intermediate hydride towards the carbonyl function of the ester. They described the selection of suitable ruthenium complexes and ligands as catalyst precursors for the hydrogenation of dimethyl oxalate to ethylene glycol. ${ }^{228}$ It was shown that dimethyl oxalate was efficiently hydrogenated to ethylene glycol under mild conditions [$p\left(\mathrm{H}_{2}\right) 75 \mathrm{bar} ; 100{ }^{\circ} \mathrm{C}$], ${ }^{233}$ using a ruthenium catalyst prepared in situ from $\mathrm{Ru}(\mathrm{acac})_{3}$ and a tripodal ligand $\mathrm{MeC}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{3}$ (Triphos ${ }^{\mathrm{Ph}}$). ${ }^{228,233}$ This catalyst was far more active than any known homogeneous catalyst for this conversion. The first homogeneous ester hydrogenation catalyst utilising a sulfur-based ligand $\mathrm{MeC}\left(\mathrm{CH}_{2} \mathrm{SBu}\right)_{3}$ (TriSulf ${ }^{\mathrm{Bu}}$) for the selective hydrogenation of dimethyl oxalate to methyl glycolate has also been reported, ${ }^{229}$ the TriSulf ${ }^{\mathrm{Bu}}$ system was shown to be the most active catalyst that is selective towards the formation of methyl glycolate. ${ }^{229}$ As mentioned earlier, the use of ruthenium complexes with increased electron density at the ruthenium centre would enhance the attack of the catalyst on the electrophilic carbonyl carbon atom of the dimethyl oxalate. ${ }^{228}$ This will lead to an increase in the rate of conversion to the alcohol. The diazaphosphorinane ligands with the lone pair of electrons on the P atom are therefore suitable ligands for this reaction, which like other phosphines would generate an active ruthenium catalyst for this reaction. Thus cyclo- $\left\{\mathrm{CH}_{2} \mathrm{~N}(\mathrm{Ph}) \mathrm{CH}_{2} \mathrm{~N}(\mathrm{Ph}) \mathrm{CH}_{2}-\mathrm{P}\right\}-\mathrm{CH}_{2} \mathrm{~N}(\mathrm{H}) \mathrm{Ph}, 152$ was used for the ruthenium-based ester hydrogenation of dimethyl oxalate in $\mathrm{MeOH}, 1.3$ equivalents of 152 gave a conversion of 20.3% methyl glycolate. When 4 equivalents were used together with a variation of the pressure and run time, 76.9% methyl glycolate conversion was achieved
which was comparable to using 6 equivalents of $\mathrm{P}(n \text {-Oct })_{3}$, the best known monodentate phosphine to achieve a conversion of 100% methyl glycolate under similar conditions. ${ }^{229}$

4.1.2 HETEROGENEOUS CATALYSIS

This is where the catalysts used are in a different phase to the reactants and products. Heterogeneous catalysis has been the basis for most of the commercial processes, where the active catalytic species are usually on a solid support. Several such heterogeneous catalysts have been developed in order to overcome the typical problems of homogeneous catalysis. The most frequent motivation given is: recovery, recycling, and re-use of the catalyst. However, major drawbacks of heterogeneous catalysis include relatively lower activity and selectivity. Reaction conditions are harsh and mechanistic understanding is more or less impossible.

Several solid supports have been used to achieve heterogeneous catalysis. These include: Suzuki cross-coupling reactions using palladium on hydrotalcite as a catalyst (Figure 4.3), ${ }^{234}$ Stille coupling reactions catalysed by a polymer supported palladium complex ${ }^{235}$ and Sonogashira coupling reactions using a cellulose supported palladium(0) catalyst. ${ }^{236}$ Others are the Heck reaction using Pd-complexes entrapped into zeolites to catalyse the reactions between aryl halides and olefins, ${ }^{237}$ ligand-protected palladium nanoparticles, ${ }^{238,239}$ palladium on active carbon $(\mathrm{Pd} / \mathrm{C}),{ }^{240-242}$ and the use of Pd supported on activated carbon to catalyse Heck reactions of bromoarenes to control Pd leaching. ${ }^{243}$

Figure 4.3 Structure of hydrotalcite. ${ }^{234}$

Hydrotalcite is a naturally occurring mineral with double hydroxide layer. Hydrotalcites form a major class of the anionic clay materials. Structurally, the geometry is octahedral with Mg^{2+} ions at the centre and the vertices occupied by OH groups forming stacks. Some of the Mg^{2+} ions are replaced by Al^{3+} ions, which results in charge deficiency in the layers. In order to ensure electroneutrality in the overall structure, the excess positive charge is balanced by $\mathrm{CO}_{3}{ }^{2-}$ ions present in a disorderly manner in the interlayer spacing, which also contains water of crystallisation as shown in Figure 4.3.

4.2 SUPPORTED CATALYSTS

It is a well known fact that most coupling reactions are very attractive for industrial applications; however, the homogeneous variant in most cases has no practical application in industry due to the problems of separation, recovery and regeneration of the catalyst. In principle, heterogeneous catalysts can be used to minimise some of the problems faced by homogeneous catalysts. Among such heterogeneous catalysts are: supported metal catalysts, zeolite encapsulated catalysts, colloid-nanoparticles and intercalated metal compounds.

4.2.1 ZEOLITES

Zeolites are minerals with open aluminosilicate frameworks, hence easily take up loosely bound water and small molecules in their structure. The term zeolite was originally coined by a Swedish mineralogist named, A.F. Cronstedt in 1756, who observed, upon rapid heating, the constituent stones began to dance about as the water evaporated. Using the Greek words which mean "stone that boils," he called the mineral zeolite. They have three-dimensional structures arising from a framework of $\left[\mathrm{SiO}_{4}\right]^{4-}$ and $\left[\mathrm{AlO}_{4}\right]^{5-}$ tetrahedra forming coordination polyhedra linked by all their corners via the oxygen atoms. Collective polyhedra form frameworks that are generally open and contain pores (channels) and cavities in which are located cations and water molecules which have considerable freedom of movement, permitting ion exchange and reversible dehydration. The pores and cavities are of molecular dimensions and typically have diameters in the range 4-12 \AA, hence are called micropores according to the IUPAC classification of porous materials. ${ }^{244,245}$ The microscopically small zeolitic pores or channels of molecular dimensions are often called "molecular sieves". The size and shape of the channels have extraordinary effects on the properties of these materials for adsorption processes, and this property leads to their use in separation processes. Molecules can be separated via
shape and size effects related to their possible orientation in the pore, or by differences in strength of adsorption.

Since silicon typically exists in a 4+ oxidation state, the silicon-oxygen tetrahedra are electrically neutral. However, in zeolites, aluminium typically exists in $3+$ oxidation states so that aluminium-oxygen tetrahedra form centres that are electrically deficient of an electron. Thus zeolite frameworks are typically anionic, and charge compensating cations populate the pores to maintain electrical neutrality. These cations can participate in ion-exchange processes, and this yields some important properties for zeolites. When charge compensating ions are "soft" cations such as sodium, zeolites are excellent water softeners because they can pick up the "hard" magnesium and calcium ions in water leaving behind the "soft" cations. When the zeolitic cations are protons, the zeolite becomes a strong solid acid. Such solid acids form the foundations of zeolite catalysis applications including the fluidized bed cat-cracking in petroleum refineries. Other types of reactive metal cations can also populate the pores to form catalytic materials with unique properties. Thus, zeolites are also commonly used in catalytic operations and catalysis with zeolites is often called "shape selective catalysis".

More than 150 zeolites have been synthesised and 40 naturally occurring zeolites are known. One major advantage of zeolites is that since they are naturally occurring, they are often cheap. Additionally, since they are largely composed of silicon, a major component of the earth's crust, they find many uses in an environmentally aware society. Zeolites form in nature under high pressure/temperature conditions at pH typically between 9 and 10. Nature requires 50 to 50,000 years to complete these reactions. Naturally occurring zeolites are rarely phase-pure, and are contaminated to varying degrees by other species e.g. $\mathrm{Fe}^{3+}, \mathrm{SO}_{4}{ }^{2-}$, quartz etc. Thus naturally occurring zeolites are excluded from many important commercial applications where uniformity and purity are essential. Many of the uses of natural zeolites are environmentally related. For example, natural zeolites are used for the treatment of radioactive waste as well as municipal waste water treatment. They are also effective in adsorbing ammonia and hydrogen sulfide. These properties make natural zeolites ideal for use in pet litter to prevent emanation of irritating odours. For similar reasons, natural zeolites can also be used for effective control of irritating gases in horse stalls, kennels, barns, etc.

Initial efforts to synthesise zeolites were carried out under high pressure/temperature conditions in order to simulate those natural zeolites first discovered from volcanic deposits. Significant progress was made when synthesis was started under normal atmospheric conditions ($<100^{\circ} \mathrm{C}$ and atmospheric pressure). Synthesis was also focused on recreating natural zeolites, however, it was soon realised that many new structures could be easily synthesised. General synthesis starts from crystallisation from an inhomogeneous gel, obtained from a silica source and an aluminium source combined with water. Some of the parameters that control the type of zeolite formed are pH of the solution, temperature, pressure and the crystallisation time. The crystals of synthetic zeolites are very small compared to natural zeolites. This is due to the very long crystallisation time of natural zeolites in the earth.

Synthetic zeolites hold some key advantages over their natural analogues. The synthetics can be synthesised in a uniform phase-pure state. It is also possible to synthesise desirable structures which do not occur in nature e.g. Zeolite A. Since the principal raw materials are silica and alumina which are among the most abundant minerals on earth, the potential to synthesise zeolites is virtually unlimited. Finally, zeolite synthesis requires significantly less time than the 50 to 50,000 years in the case of natural zeolites. All commercially useful zeolites owe their value to one or more of three properties: adsorption, ion-exchange and catalysis.

Adsorption: Zeolites are used to adsorb a variety of materials. This includes applications in drying, purification and separation. They are used as very effective desiccants and can remove volatile organic chemicals from air streams, separate isomers and mixtures of gases. The most fundamental consideration regarding the adsorption of chemical species by zeolites is molecular sieving. Species with a kinetic diameter which makes them too large to pass through a zeolite pore are effectively "sieved". This "sieve effect" can be utilised to produce sharp separations of molecules by size and shape. The particular affinity a species has for an internal zeolite cavity depends on electronic considerations. The strong electrostatic field within a zeolite results in very strong interaction with polar molecules such as water. Non-polar molecules are also strongly adsorbed due to the polarising power of these electric fields. Thus excellent separations can be achieved by zeolites even when steric hindrance occurs. Adsorption based on molecular sieving, electrostatic fields and polarisability are always reversible. This allows the zeolite to be
reused many times, cycling between adsorption and desorption. This accounts for the considerable economic value of zeolites in adsorptive applications.

Ion-exchange: The presence of the counter balancing cations in the zeolite framework which are mobile, present the possibility for ion-exchange. This ion-exchange ability accounts for one of the greatest volume uses of zeolites. For example, zeolite A, a synthetic zeolite with sodium as a cation has widely replaced environmentally harsh phosphates as detergent water softeners. Unlike phosphates, zeolite A cannot contribute to the eutrophication of lakes, streams and rivers.

Catalysis: It is possible to say that zeolites are the most widely used catalysts in industry. ${ }^{246}$ They have become extremely useful as catalysts for oil refining, petrochemistry, and organic synthesis in the production of fine and speciality chemicals, particularly when dealing with molecules having kinetic diameters below $10 \AA$. The reason for their success in catalysis is related to the following specific features: ${ }^{246,247}$ (1) They have very high surface area and adsorption capacity. (2) The adsorption properties of the zeolites can be controlled, and they can be varied from hydrophobic to hydrophilic type materials. (3) Active sites, such as acid sites for instance, can be generated in the framework and their strength and concentration can be tailored for a particular application. (4) The size of their channels and cavities are in the range typical for many molecules of interest ($5-12 \AA$), and the strong electric fields ${ }^{248}$ existing in those micropores together with an electronic confinement of the guest molecules ${ }^{249}$ are responsible for the preactivation of the reactants. (5) Their intricate channel structure allows the zeolites to present types of shape selectivity, i.e., product, reactant, and transition state, which can be used to direct a given catalytic reaction toward the desired product avoiding undesired side reactions. (6) All of these properties of zeolites, which are of paramount importance in catalysis, are ultimately dependent on the thermal and hydrothermal stability of these materials. Zeolites can be activated to produce very stable materials resistant to heat, steam and chemical attacks. The acidity and acid strength of a zeolite can be modified by exchanging the cations or by modifying the Si/Al ratio.

Despite these catalytically desirable properties of zeolites they became inadequate when reactants with sizes above the dimensions of the pores have to be processed. In this case, the rational approach to overcome such a limitation would be to maintain the porous
structure, which is responsible for the benefits described above, but to increase their diameter to bring them into the mesoporous region. Attempts made using larger organic templates, resulting in large voids did not give positive results because these organic templates affect the gel chemistry and void fillers in the growing porous solids. Other methods to produce zeolites that retain the desirable properties but can accommodate reactants with larger dimensions are also prone to one drawback or the other. For example, when cacoxenite mineral ${ }^{250}$ is used in this context as a catalyst, it was found to be thermally unstable and thus not suitable as a catalyst. Cacoxenite is a naturally occurring iron(III) phosphate compound, $\left[\mathrm{Fe}^{3+} \mathrm{Al}_{25}\left[\mathrm{PO}_{4}\right]_{17} \mathrm{O}_{6}[\mathrm{OH}]_{12} \cdot 75 \mathrm{H}_{2} \mathrm{O}\right.$ with an open frame-work containing cylindrical tunnels occupied by water molecules with a free diameter of ca. $15 \AA$. Thus the best strategy to produce larger pore molecular sieves/zeolites for catalytic processes is to increase the activity of the existing microporous materials for processing large molecules. This approach involves the generation of mesopores in the crystallites of the microporous zeolites. ${ }^{249}$

Zeolite-supported catalysts have been used for the Heck reaction. Djakovitch et al. ${ }^{237}$ have studied the capability of palladium complex-loaded zeolites for catalysing the Heck reaction of aryl bromides with olefins using standard reaction conditions as mentioned earlier. It may be stated that the most studied NaY zeolites utilise low amounts of Pd (0.1 mol \%) which can be easily separated and re-used after washing. The advantages derivable from this system are that the immobilised complexes in the zeolite super-cages should have almost the same activity as the free complexes in solution; secondly the zeolite microstructure (micro-reactor) could help to overcome the problems of leaching using heterogeneous catalysts in solution. Zeolites are also capable of stabilising intermediate active species retained in their cavities and combine shape selectivity. It is worthy of note that even aryl chlorides can be activated by this type of catalyst.

4.2.1.1 SYNTHESIS AND CHARACTERISATION OF ZEOLITE A, 235

Zeolite-A 235 was synthesised from NaOH using published procedures, ${ }^{251,252}$ by adding $\mathrm{Na}\left[\mathrm{AlO}_{2}\right]$ to an aqueous solution of NaOH , heated to boiling point, followed by the slow addition of hot aqueous solution of $\mathrm{Na}_{2}\left[\mathrm{SiO}_{3}\right]$. The reactants were stirred vigorously, at $90^{\circ} \mathrm{C}$ for 4 h and the resulting white suspension (Zeolite-A) separated by filtration, washed with water and dried at $105^{\circ} \mathrm{C}$ for 16 h . The product was characterised by powder

X-ray diffraction. The experimental diffraction pattern was in excellent agreement with that expected with the reflections from the product in black perfectly matching those expected in red as shown in Figure 4.4.

4.2.1.2 SYNTHESIS AND CHARACTERISATION OF PERMANGANATE SODALITE, 236

Permanganate sodalite 236 another zeolite was synthesised also from NaOH using published procedures ${ }^{251,252}$ by the addition of Zeolite-A to an aqueous solution of NaOH . This was followed by the addition of $\mathrm{Na}\left[\mathrm{MnO}_{4}\right]$ and refluxed for 24 h at $100^{\circ} \mathrm{C}$ and the resulting purple solid filtered on a glass sinter and dried at $105^{\circ} \mathrm{C}$ for 16 h . The product was also characterised by powder X-ray diffraction, the experimental diffraction pattern again was in excellent agreement with that expected with the reflections from the product in black perfectly matching those expected in red as shown in Figure 4.5.

BLACK curves $=\mathrm{MnO}_{4}$ sodalite [calculated].

4.3 CONCLUSIONS

It has been shown that both the neutral and cationic phosphorus(III) ligands readily react with a range of late transition metals including $\mathrm{Ru}, \mathrm{Rh}, \mathrm{Ir}, \mathrm{Pd}, \mathrm{Pt}$ and Au to form complexes that could be useful in catalysis. In all the complexes P-coordination has been observed and verified by spectroscopy and crystallography. The high catalytic potential of the diazaphosphorinane ligands was proved when 152 was used for a ruthenium-based ester hydrogenation of dimethyl oxalate to achieve comparable result with $\mathrm{P}(n-\mathrm{Oct})_{3}$, the best known monodentate phosphine. The complexes of the cationic phophorus(III) ligands found to be structurally and stereoelectronically related to analogous PTA complexes used in various catalytic organic transformations may therefore have useful future implications in catalysis.

CHAPTER FIVE

EXPERIMENTAL

5.1 MATERIALS

All reactions and manipulations were carried out under aerobic conditions unless otherwise stated. Dichloromethane was previously distilled over CaH_{2} and THPC was recrystallised from 2-propanol before use. ${ }^{10}$ The following starting materials were prepared according to literature methods: $\left[\mathrm{RuCl}_{2}\left(\eta^{6}-p \text {-cymene }\right)\right]_{2},{ }^{253}\left[\mathrm{RhCl}_{2}\left(\eta^{5}-\mathrm{Cp}^{*}\right)\right]_{2},{ }^{254}\left[\mathrm{IrCl}_{2}\left(\eta^{5}-\mathrm{Cp}^{*}\right)\right]_{2},{ }^{254}$ $\mathrm{PdCl}_{2}(\mathrm{COD}),{ }^{255} \mathrm{Pd}(\mathrm{Me}) \mathrm{Cl}(\mathrm{COD}),{ }^{256}[\mathrm{Pd}(\mathrm{C} \sim \mathrm{N})(\mu-\mathrm{Cl})]_{2}$ where $\left(\mathrm{C} \sim \mathrm{N}=\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}\right.$ or $\left.\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}\right),{ }^{257,258} \mathrm{PtCl}_{2}(\mathrm{COD})^{259}$ and $[\mathrm{AuCl}(\mathrm{THT})] .{ }^{260}$ All other solvents and chemicals were obtained from commercial suppliers and used without further purification.

5.2 INSTRUMENTATION

Infrared spectra were recorded as KBr pellets in the range $4000-200 \mathrm{~cm}^{-1}$ on a PerkinElmer System 2000 Fourier-transform spectrometer, or in the range $4000-500 \mathrm{~cm}^{-1}$ on SHIMADZU FT-IR-8400S/FT-IR-8300 Fourier-transform spectrometers. ${ }^{1}$ H NMR spectra were recorded on a Bruker DPX-400 FT spectrometer with chemical shifts (δ) in ppm to high frequency of SiMe_{4}, and coupling constants (J) in Hz . The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were also recorded on the same spectrometer with chemical shifts (δ) in ppm to high frequency of $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$. All NMR spectra were recorded in d^{6}-DMSO or CDCl_{3} unless otherwise stated. Microanalyses (Perkin-Elmer 2400 CHN/Exeter Analytical Inc. CE 440 Elemental Analyzer) were performed within the Department. Mass spectra were recorded on a JEOL SX102 instrument as Fast Atom Bombardment (FAB), in a positive ionization mode using a 3-nitrobenzyl alcohol (NOBA) matrix or on a Finnigan MAT 95XP as low-resolution FAB (LSIMS) in positive ionization mode using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the solvent and a NOBA matrix. Powder diffraction data were recorded on a Bruker D8 powder diffractometer using monochromated copper radiation over the 2θ range $5-60^{\circ}$ using a $0.0147^{\circ} 2 \theta$ step.

The crystallographic data were collected within the Department at 150 K on a Bruker SMART 1000 CCD diffractometer using graphite monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation ($\lambda=$ 0.71073 Á) or on a Bruker Apex 2 CCD diffractometer using graphite monochromated radiation from a sealed tube $\mathrm{Mo}-\mathrm{K} \alpha$ source. Crystallographic data for much smaller crystals were collected at Daresbury using the synchrotron radiation source.

The crystal structures were solved by direct methods or Patterson synthesis. Programmes used were COLLECT ${ }^{261}$ or Bruker AXS APEX 2^{262} for diffractometer control and DENZO 263 or SAINT ${ }^{264}$ for frame integration, Bruker SHELXTL ${ }^{265,266}$ for structure solution, refinement and molecular graphics and local programmes. Conductivity measurements were recorded with a Jenway Model 4510 conductivity meter.

5.3 SYNTHESIS OF ANILINE DERIVATIVES (128-146) OF THPC

A range of aniline derivatives $\left[\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{NHR}\right)_{4}\right] \mathrm{Cl}$ where $\mathrm{R}=$ phenyl or a substituted phenyl group were synthesised by reacting THPC with aniline precursors in a 1:4 molar ratio in ethanol using the procedure first published by Frank et al. ${ }^{10}$

5.3.1 SYNTHESIS OF COMPOUNDS 128, 129, 132, 138, 143-145

A typical procedure where the aniline precursor is a liquid is given here for compound $\left[\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{NHC}_{6} \mathrm{H}_{5}\right)_{4}\right] \mathrm{Cl}, 128$. The amount of THPC used was 3.38 g in all cases except in 138, 143 and 145 where the amount was different; $138(2.85 \mathrm{~g}), 143(0.75 \mathrm{~g})$ and $145(0.75 \mathrm{~g})$, in all cases the THPC was reacted with the aniline precursor in a 1:4 molar ratio. A solution of THPC ($3.83 \mathrm{~g}, 20.10 \mathrm{mmol}$) in $100 \% \mathrm{EtOH}\left(75 \mathrm{~cm}^{3}\right)$ was prepared. Aniline $(7.78 \mathrm{~g}$, 83.41 mmol) was added dropwise to the THPC solution and the mixture stirred for 2 h at room temperature. There was a mild exotherm followed by precipitation of a white solid 128. Compound 128 is known to be light sensitive (turns yellowish on exposure to light) hence was kept in the dark. The precipitate was filtered on a glass sinter and dried under vacuum and kept in the dark. Yield: $8.91 \mathrm{~g}, 90 \%$. Yields for other compounds synthesised in this study are given in parentheses: $129(9.39 \mathrm{~g}, 83 \%), 132(11.00 \mathrm{~g}, 97 \%), 138(9.47 \mathrm{~g}$, 83%), 143 ($2.26 \mathrm{~g}, 90 \%$), 144 ($11.32 \mathrm{~g}, 93 \%$) and 145 ($2.20 \mathrm{~g}, 85 \%$).

5.3.2 SYNTHESIS OF COMPOUNDS 130, 131, 133-137, 139-142, 146

A typical procedure where the aniline precursor is a solid is given here for compound $\left[\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{NH}-4-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)_{4}\right] \mathrm{Cl}, 130$. The amount of THPC used was 3.38 g in all cases except in $\mathbf{1 3 3}, 141$ and 142 where the amount was different; $\mathbf{1 3 3}(3.00 \mathrm{~g}), 141(2.83 \mathrm{~g})$ and 142 $(2.83 \mathrm{~g})$. In all cases THPC was reacted with the aniline precursor in a $1: 4$ molar ratio in ethanol and stirred for 2 h at room temperature except in the case of 146 where the reaction was stirred for 24 h . A solution of THPC ($3.83 \mathrm{~g}, 20.10 \mathrm{mmol}$) in $100 \% \mathrm{EtOH}\left(25 \mathrm{~cm}^{3}\right)$ was prepared. A solution of 4 -chloroaniline ($10.64 \mathrm{~g}, 83.41 \mathrm{mmol}$) in $100 \% \mathrm{EtOH}\left(50 \mathrm{~cm}^{3}\right)$ was also prepared and added dropwise to the THPC solution and the mixture stirred for 2 h
at room temperature. There was a mild exotherm followed by precipitation of a white solid. The yield was improved upon concentration of the solution under reduced pressure. The resulting solid 130 was filtered on a glass sinter and dried under vacuum. Yield: 11.37 g , 90%. Yields for other compounds synthesised in this study are given in parentheses: 131 ($13.45 \mathrm{~g}, 83 \%$), 133 ($15.25 \mathrm{~g}, 97 \%$), 134 ($10.25 \mathrm{~g}, 95 \%$), 135 ($11.48 \mathrm{~g}, 86 \%$), 136 (11.92 g , 97%), 137 ($7.92 \mathrm{~g}, 71 \%$), 139 ($10.25 \mathrm{~g}, 76 \%$), 140 ($11.16 \mathrm{~g} 94 \%$), 141 ($8.38 \mathrm{~g}, 84 \%$), 142 ($9.02 \mathrm{~g}, 86 \%$) and 146 ($10.03 \mathrm{~g}, 69 \%$).

5.4 SYNTIIESIS OF PHENYLENEDIAMINE DERIVATIVES (147-150) OF TIIPC

A range of phenylenediamine derivatives $\left[\mathrm{P}\left\{\left(\mathrm{CH}_{2} \mathrm{NH}\right)_{2} \mathrm{R}\right\}_{2}\right] \mathrm{Cl},\left[\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4}, 147 ; \mathrm{R}=\right.$ $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}, 148 ; \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{COPh}, 149 ; \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{C}_{4} \mathrm{H}_{4}, 150$] were synthesised by reacting THPC with phenylenediamine precursors in 1:4 or 1: 2 molar ratio in ethanol, using a similar procedure first published by Frank et al. ${ }^{10}$

5.4.1 SYNTIIESIS OF COMPOUND 147

Four equivalents of 1,2 -phenylenediamine were reacted with THPC in the synthesis of $\left[\mathrm{P}\left\{\left(\mathrm{CH}_{2} \mathrm{NH}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\}_{2}\right] \mathrm{Cl}, 147$; the use of two equivalents gave practically the same product as confirmed by the characterising data. A solution of THPC ($3.83 \mathrm{~g}, 20.10 \mathrm{mmol}$) in 100% $\mathrm{EtOH}\left(75 \mathrm{~cm}^{3}\right)$ was prepared. Phenylenediamine ($9.02 \mathrm{~g}, 83.41 \mathrm{mmol}$) was added dropwise to the THPC solution and the mixture stirred for 2 h at room temperature. The resulting white solid 147 was filtered on a glass sinter and dried under vacuum. Yield: $10.12 \mathrm{~g}, 91 \%$.

5.4.2 SYNTHESIS OF COMPOUNDS 148-150

For compounds 148-150, two equivalents of the phenylenediamine precursor was reacted with THPC. A typical procedure is given here for $\left[\mathrm{P}\left\{\left(\mathrm{CH}_{2} \mathrm{NH}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}\right\}_{2}\right] \mathrm{Cl}, 148$. A solution of THPC $(1.96 \mathrm{~g}, 10.30 \mathrm{mmol})$ in $100 \% \mathrm{EtOH}\left(20 \mathrm{~cm}^{3}\right)$ was prepared. A solution of 3,4-diaminotoluene ($2.52 \mathrm{~g}, 2.59 \mathrm{mmol}$) in $100 \% \mathrm{EtOH}\left(50 \mathrm{~cm}^{3}\right)$ was also prepared and added dropwise to the THPC solution and the mixture stirred for 2 h at room temperature. The resulting light brown solid 148 was filtered on a glass sinter and dried under vacuum. Yield: $3.11 \mathrm{~g}, 83 \%$. Yields for other compounds synthesised in this study are given in parentheses: $149(2.48 \mathrm{~g}, 87 \%)$ and $150(0.30 \mathrm{~g}, \mathbf{7 4 \%})$

5.4.3 SYNTHESIS OF COMPOUND $\left[P\left\{\left(\mathrm{CH}_{2} \mathrm{NH}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\}_{2}\right] \mathrm{BPh}_{4}, \mathbf{1 5 1}$

Compound $\left[\mathrm{P}\left\{\left(\mathrm{CH}_{2} \mathrm{NH}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\}_{2}\right] \mathrm{BPh}_{4}, 151$ was synthesised by anion metathesis of 147 using 1.5 equivalents of $\mathrm{Na}\left[\mathrm{BPh}_{4}\right]$. A solution of $147(0.20 \mathrm{~g}, 0.45 \mathrm{mmol})$ in HPLC grade $\mathrm{MeOH}\left(5 \mathrm{~cm}^{3}\right)$ was prepared. $\mathrm{Na}\left[\mathrm{BPh}_{4}\right](0.23 \mathrm{~g}, 0.68 \mathrm{mmol})$ was dissolved in the minimum volume of MeOH , this was added dropwise to the previous solution and the mixture stirred for 30 min at room temperature. Concentration under reduced pressure and addition of distilled water (ca. $5 \mathrm{~cm}^{3}$) gave a white solid 151 which was filtered on a glass sinter and dried under vacuum. Yield: $0.23 \mathrm{~g}, 81 \%$. Selected data: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $24.53 \mathrm{ppm} .{ }^{1} \mathrm{H}$ NMR: 6.70-7.18 (m, arom. H), 4.09-4.13 (m, CH2), $5.78 \mathrm{ppm}\left(\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{PH}} 17 \mathrm{~Hz}, \mathrm{NH}\right.$). FT-IR: 3360 (vs, NH) cm^{-1}. FAB-MS: $m / z 299$ [$\mathrm{M}-\mathrm{BPh}_{4}$]. Anal. Calcd. for $\mathrm{C}_{40} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{~PB} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$, 75.47 ; H, 6.65; N, 8.80. Found: C, 75.13; H, 6.19; N, 9.09.

5.5 SYNTHESIS OF DIAZAPHOSPHORINANE LIGANDS

A range of diazaphosphorinane ligands were synthesised by reacting the phosphonium salts, 128-134, 143-145 with 1.56 equivalents of triethylamine in acetone at room temperature using the procedure first published by Frank et al. ${ }^{10}$

5.5.1 SYNTIIESIS OF COMPOUNDS 152-161

A typical procedure is given here for cyclo- $\left\{\mathrm{CH}_{2} \mathrm{~N}(\mathrm{Ph}) \mathrm{CH}_{2} \mathrm{~N}(\mathrm{Ph}) \mathrm{CH}_{2}-\mathrm{P}\right\}-\mathrm{CH}_{2} \mathrm{~N}(\mathrm{H}) \mathrm{Ph} 152$. The amount of phosphonium salt used was 5.00 g in all cases except in $153,157,159,160$ and 161 where the amount was different; $153(4.50 \mathrm{~g}), 157(1.25 \mathrm{~g}), 159(2.50 \mathrm{~g}), 160(1.00$ $\mathrm{g})$ and $161(0.75 \mathrm{~g})$, in all cases the phosphonium salt was reacted with 1.56 equivalents of triethylamine. A solution of $\left[\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{NHC}_{6} \mathrm{H}_{5}\right)_{4}\right] \mathrm{Cl}, 128(5.00 \mathrm{~g}, 10.2 \mathrm{mmol})$ in 99.9% acetone $\left(70 \mathrm{~cm}^{3}\right)$ was prepared. To this was added triethylamine ($1.63 \mathrm{~g}, 16.1 \mathrm{mmol}$). The mixture was stirred for 1 h after which the resulting white solid (triethylamine hydrochloride) was filtered on a glass sinter and dried under vacuum. The filtrate was concentrated under reduced pressure to $c a .1-2 \mathrm{~cm}^{3}$. To the resulting oil was added 100% $\mathrm{EtOH}\left(50 \mathrm{~cm}^{3}\right)$ and stirred for 2 h at room temperature. The resulting white solid 152 was filtered on a glass sinter and dried under vacuum. Yield: $2.88 \mathrm{~g}, 78 \%$. Yields for other compounds synthesised in this study are given in parentheses: 153 ($2.26 \mathrm{~g}, 68 \%$), 154 (2.24 $\mathrm{g}, 61 \%$), $155(2.30 \mathrm{~g}, 62 \%), 156(2.86 \mathrm{~g}, 78 \%), 157(0.75 \mathrm{~g}, 81 \%), 158(3.39 \mathrm{~g}, 92 \%), 159$ $(1.39 \mathrm{~g}, 75 \%), 160(0.65 \mathrm{~g}, 88 \%)$ and 161 ($0.46 \mathrm{~g}, 83 \%)$.

5.5.2 SYNTHESIS OF COMPOUND $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{NHC}_{6} \mathrm{H}_{5}\right)_{3} 162$

Compound $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{NHC}_{6} \mathrm{H}_{5}\right)_{3}, 162$ was synthesised by bubbling ammonia into $\mathbf{1 2 8}$ in acetone, using the procedure first published by Frank et al. ${ }^{10}$ Ammonia was bubbled into a slurry of $128(4.90 \mathrm{~g}, 10.0 \mathrm{mmol})$ in HPLC grade acetone $\left(50 \mathrm{~cm}^{3}\right)$ for 5 mins at room temperature, during which time 128 dissolved and was replaced by a finely divided white solid, $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was stirred for 30 mins and the white solid separated from the resulting yellow solution by filtration. The solution was concentrated under reduced pressure and upon work-up and recrystallisation using benzene gave a white solid 162 which was filtered and dried under vacuum. Yield: $2.10 \mathrm{~g}, 60 \%$. Selected data: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: - 38.75 ppm. ${ }^{1} \mathrm{H}$ NMR: 6.46-7.37 (m, arom. H), 5.79 (s, NH), $3.62\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}} 12.0 \mathrm{~Hz}\right.$, CH_{2}), 3.45 (d, ${ }^{2} J_{\mathrm{HH}} 9.6 \mathrm{~Hz}, \mathrm{CH}_{2}$) ppm. FT-IR: 3024 (s, NH) cm ${ }^{-1}$. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{P} \cdot 0.25 \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}: \mathrm{C}, 71.78 ; \mathrm{H}, 7.06 ; \mathrm{N}, 11.55$. Found: C, $71.88 ; \mathrm{H}, 7.08 ; \mathrm{N}, 11.51$.

5.6 COORDINATION STUDIES OF DIAZAPHOSPIORINANE LIGANDS

The diazaphosphorinane ligands were reacted with ruthenium(II), rhodium(III), iridium(III), palladium(II) and platinum(II) precursors to form new metal complexes.

5.6.1 SYNTHESIS OF RUTIIENIUM(II) COMPLEXES 163 AND 164

Two ruthenium(II) complexes were synthesised by reacting $\left[\mathrm{RuCl}_{2}\left(\eta^{6}-p-c y m e n e\right)\right]_{2}$ with the diazaphosphorinane ligands 152 or 153 in a $1: 2$ molar ratio. A typical procedure is given here for compound $\operatorname{RuCl}_{2}\left(\eta^{6}-p\right.$-cymene $)(152)$, 163. To a stirred solution of $\left[\mathrm{RuCl}_{2}\left(\eta^{6}-p \text {-cymene }\right)\right]_{2}(0.03 \mathrm{~g}, 0.05 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added $152(0.04 \mathrm{~g}$, 0.11 mmol) as a solid in one portion. After stirring the solution for 30 min , the volume was reduced to $\mathrm{ca} .1-2 \mathrm{~cm}^{3}$ and $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$ added and stirred for 30 min . The resulting orange solid 163 was filtered on a glass sinter and dried under vacuum. Yield: $0.06 \mathrm{~g}, 92 \%$. Yield for the other compound synthesised in this study is given in parenthesis: 164 (0.06 g , $86 \%)$.

5.6.2 SYNTHESIS OF RIIODIUM(III) AND IRIDIUM(III) COMPLEXES

165-168

Two complexes each of rhodium(III) and iridium(III) were synthesised by reacting $\left[\mathrm{MCl}_{2}\left(\eta^{5}-\mathrm{Cp}^{*}\right)\right]_{2}, \mathrm{M}=\mathrm{Rh}$ or Ir with the diazaphosphorinane ligands $\mathbf{1 5 2}$ or $\mathbf{1 5 3}$ in a $1: 2$ molar ratio. Typical procedures are given for compounds $\mathrm{RhCl}_{2}\left(\eta^{5}-\mathrm{Cp}^{*}\right)(\mathbf{1 5 2}), 165$ and $\mathrm{IrCl}_{2}\left(\eta^{5}-\mathrm{Cp}^{*}\right)(\mathbf{1 5 2}), 167$. To a stirred solution of $\left\{\mathrm{RhCl}_{2}\left(\eta^{5}-\mathrm{Cp}^{*}\right)\right\}_{2}(0.03 \mathrm{~g}, 0.05 \mathrm{mmol})$ in
$\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added $152(0.04 \mathrm{~g}, 0.11 \mathrm{mmol})$ as a solid in one portion. After stirring the solution for 30 min , the volume was reduced to $c a .1-2 \mathrm{~cm}^{3}$ under reduced pressure followed by addition of $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$ and stirred for 30 min . The resulting orange solid 165 was filtered on a glass sinter and dried under vacuum. Yield: 0.0692%. Yield for the other compound synthesised in this study is given in parenthesis: $166(0.06 \mathrm{~g}, 85 \%)$.

Similarly, to a stirred solution of $\left\{\operatorname{IrCl}_{2}\left(\eta^{5}-\mathrm{Cp}^{*}\right)\right\}_{2}(0.03 \mathrm{~g}, 0.04 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added $152(0.03 \mathrm{~g}, 0.08 \mathrm{mmol})$ as a solid in one portion. After stirring the solution for 30 min , the volume was reduced to $c a .1-2 \mathrm{~cm}^{3}$ followed by addition of $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$ and stirred for 30 min . The resulting orange/yellow solid 167 was filtered on a glass sinter and dried under vacuum. Yield: $0.04 \mathrm{~g}, 74 \%$. Yield for the other compound synthesised in this study is given in parenthesis: $168(0.05 \mathrm{~g}, 84 \%)$.

5.6.3 SYNTIIESIS OF PALLADIUM(II) COMPLEXES 169-177

A range of palladium(II) complexes were synthesised by reacting some of the diazaphosphorinane ligands $152-156$ and $158-161$ with $\mathrm{PdCl}_{2}(\mathrm{COD})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in a $2: 1$ molar ratio at room temperature to give the complexes 169-177. A typical procedure is given for $\mathrm{PdCl}_{2}(\mathbf{1 5 2})_{2}$ 169. To a stirred solution of $\mathrm{PdCl}_{2}(\mathrm{COD})(0.10 \mathrm{~g}, 0.35 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ was added $152(0.25 \mathrm{~g}, 0.70 \mathrm{mmol})$ as a solid in one portion. After stirring the solution for 30 min the volume was reduced to $\mathrm{ca} 1-2 \mathrm{~cm}^{3}$ under reduced pressure and $\mathrm{Et}_{2} \mathrm{O}\left(20 \mathrm{~cm}^{3}\right)$ added. The resulting yellow solid 169 was filtered on a glass sinter and dried under vacuum. Yield: $0.29 \mathrm{~g}, 93 \%$. Yields for other compounds synthesised in this study are given in parentheses: $170(0.27 \mathrm{~g}, 75 \%), 171(0.35 \mathrm{~g}, 89 \%)$, 172 ($0.38 \mathrm{~g}, 79 \%$), 173 ($0.29 \mathrm{~g}, 82 \%$), 174 ($0.27 \mathrm{~g}, 77 \%$), 175 ($0.34 \mathrm{~g}, 92 \%$), 176 (0.17 g , 75%) and 177 ($0.23 \mathrm{~g}, 77 \%$).

5.6.4 SYNTIIESIS OF PLATINUM(II) COMPLEXES 178 AND 179

Two platinum(II) complexes were synthesised by reacting the diazaphosphorinane ligands 156 or 158 with $\mathrm{PtCl}_{2}(\mathrm{COD})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in a $2: 1$ molar ratio at room temperature. A typical procedure is given for $\mathrm{PtCl}_{2}(\mathbf{1 5 6})_{2}, 178$. To a stirred solution of PtCl_{2} (COD) $(0.10 \mathrm{~g}, 0.27$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ was added $156(0.22 \mathrm{~g}, 0.53 \mathrm{mmol})$ as a solid in one portion. After stirring the solution for 30 min the volume was reduced to $c a .1-2 \mathrm{~cm}^{3}$ under reduced pressure and $\mathrm{Et}_{2} \mathrm{O}\left(20 \mathrm{~cm}^{3}\right)$ added. The resulting off-white or cream solid 178 was filtered
on a glass sinter and dried under vacuum. Yield: $0.22 \mathrm{~g}, 76 \%$. Yield for the other compound synthesised in this study is given in parenthesis: $179(0.25 \mathrm{~g}, 86 \%)$.

5.7 SYNTHESIS OF TERTIARY PHOSPHINE AMMONIUM SALTS

A range of new tertiary phosphine ammonium chlorides [cyclo- $\left\{\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{R}^{\prime}\right) \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{R}^{\prime}\right) \mathrm{CH}_{2}-\right.$ P\} $\left.-\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{H}_{2}\right) \mathrm{R}^{\prime}\right]^{+} \mathrm{Cl}^{-}$, where $\mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$, $4-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}, 4-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}, 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$, 4- $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$ were synthesised by reacting THPC with benzylamine precursors in a 1:4 molar ratio in ethanol at room temperature using a similar procedure first published by Frank et al. ${ }^{10}$ Anion metathesis of some of the chlorides with different alkali metal salts in methanol was performed to give new tertiary phosphine ammonium salts.

5.7.1 SYNTIIESIS OF COMPOUNDS 180-184

Five new tertiary phosphine ammonium chlorides (180-184) were synthesised by reacting THPC with benzylamine precursors as stated above. A typical procedure is given for [cyclo- $\left.\left\{\mathrm{Cl}_{2} \mathrm{~N}\left(\mathrm{R}^{\prime}\right) \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{R}^{\prime}\right) \mathrm{CH}_{2}-\mathrm{P}\right\}-\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{H}_{2}\right) \mathrm{R}^{\prime}\right]^{+} \mathrm{Cl}^{-} 180$, where $\mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$. To a solution of THPC ($3.83 \mathrm{~g}, 20.10 \mathrm{mmol}$) in $100 \% \mathrm{EtOH}\left(75 \mathrm{~cm}^{3}\right)$ was added dropwise benzylamine, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NH}_{2}(8.94 \mathrm{~g}, 83.40 \mathrm{mmol})$. A slight exotherm and thick white fumes were observed, and after ca. 5 mins, the solution became clear. The mixture was stirred for 2 h at room temperature (frequently some unwanted "sticky" material was formed which was separated from the solution by decantation). The solution was concentrated under reduced pressure to approximately a quarter of the original volume. The resulting crystalline colourless solid 180 was filtered on a glass sinter and dried under vacuum. Yield: $7.60 \mathrm{~g}, 86 \%$. Using 2.85 g of THPC and the corresponding amount of the benzylamine precursors, $4-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}_{2}, 4-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}_{2}$ or $4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}_{2}$ gave the compounds 181-183, while using 3.40 g of THPC with 4 equivalents of 4 $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}_{2}$ gave 184. Yields for other compounds synthesised in this study are given in parentheses: $181(6.11 \mathrm{~g}, 83 \%), 182(6.67 \mathrm{~g}, 82 \%), 183(6.27 \mathrm{~g}, 87 \%)$ and 184 ($2.95 \mathrm{~g}, 93 \%$).

5.7.2 REACTION OF TERTIARY PHOSPHINE AMMONIUM CHLORIDES WITII $\mathrm{Na}\left[\mathrm{BPh}_{4}\right], \mathrm{Na}\left[\mathrm{SbF}_{6}\right]$ or $\mathrm{K}\left[\mathrm{PF}_{6}\right.$]

Anion metathesis of the tertiary phosphine ammonium chlorides (180-183) with $\mathrm{Na}\left[\mathrm{BPh}_{4}\right]$, $\mathrm{Na}\left[\mathrm{SbF}_{6}\right]$ or $\mathrm{K}\left[\mathrm{PF}_{6}\right]$ in methanol was performed to give various tertiary phosphine
ammonium salts 185-196, [cyclo- $\left.\left\{\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{R}^{\prime}\right) \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{R}^{\prime}\right) \mathrm{CH}_{2}-\mathrm{P}^{2}\right\}-\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{H}_{2}\right) \mathrm{R}^{\prime}\right]^{+} \mathrm{X}^{-}$, $\left[\mathrm{R}^{\prime}=\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}, 4-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}, 4-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}, 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} ; \mathrm{X}=\mathrm{BPh}_{4}, \mathrm{SbF}_{6}, \mathrm{PF}_{6}\right]$.

5.7.2.1 SYNTHESIS OF COMPOUNDS 185-188

Four new tertiary phosphine ammonium tetraphenylborates 185-188 were synthesised by reacting the tertiary phosphine ammonium chlorides $180-183$ with 1.5 equivalents of $\mathrm{Na}\left[\mathrm{BPh}_{4}\right]$ in HPLC grade MeOH . A typical procedure is given for [cyclo$\left.\left\{\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{R}^{\prime}\right) \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{R}^{\prime}\right) \mathrm{CH}_{2}-\mathrm{P}\right\}-\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{H}_{2}\right) \mathrm{R}^{\prime}\right]^{+} \mathrm{BPh}_{4}^{-}{ }^{-185}$, where $\mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$. A solution of $\mathrm{Na}\left[\mathrm{BPh}_{4}\right](0.23 \mathrm{~g}, 0.67 \mathrm{mmol})$ in the minimum volume of HPLC grade MeOH was added to a solution of $180,(0.20 \mathrm{~g}, 0.45 \mathrm{mmol})$ in HPLC grade $\mathrm{MeOH}\left(10 \mathrm{~cm}^{3}\right)$. The solution was stirred for 30 min at room temperature. Concentration of the solution under reduced pressure and addition of distilled water gave a colourless precipitate 185 which was filtered and dried under vacuum. Yield: $0.29 \mathrm{~g}, 89 \%$. Similarly using 181, 182 or 183 and $\mathrm{Na}\left[\mathrm{BPh}_{4}\right]$, the salts 186-188 were obtained. Yields for other compounds synthesised in this study are given in parentheses: $\mathbf{1 8 6}(0.27 \mathrm{~g}, 86 \%), \mathbf{1 8 7}(0.27 \mathrm{~g}, 90 \%)$ and $\mathbf{1 8 8}(0.29 \mathrm{~g}$, 90%).

5.7.2.2 SYNTIIESIS OF COMPOUNDS 189-192

Four new tertiary phosphine ammonium hexafluoroantimonates 189-192, were synthesised by reacting the tertiary phosphine ammonium chlorides $\mathbf{1 8 0} \mathbf{- 1 8 3}$ with 1.5 equivalents of $\mathrm{Na}\left[\mathrm{SbF}_{6}\right.$] in HPLC grade MeOH . A typical procedure is given for [cyclo$\left.\left\{\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{R}^{\prime}\right) \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{R}^{\prime}\right) \mathrm{CH}_{2}-\mathrm{P}\right\}-\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{H}_{2}\right) \mathrm{R}^{\prime}\right\}^{+} \mathrm{SbF}_{6}^{-} 189$, where $\mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$. A solution of $\mathrm{Na}\left[\mathrm{SbF}_{6}\right](0.18 \mathrm{~g}, 0.69 \mathrm{mmol})$ in the minimum volume of HPLC grade MeOH was added to a solution of $\mathbf{1 8 0},(0.20 \mathrm{~g}, 0.45 \mathrm{mmol})$ in HPLC grade $\mathrm{MeOH}\left(10 \mathrm{~cm}^{3}\right)$. The solution was stirred for 30 min at room temperature. Concentration of the solution under reduced pressure and addition of distilled water gave a colourless precipitate 189 which was filtered and dried under vacuum. Yield: $0.28 \mathrm{~g}, 97 \%$. Similarly using 181, 182 or 183 and $\mathrm{Na}\left[\mathrm{SbF}_{6}\right]$, the salts 190-192 were obtained. Yields for other compounds synthesised in this study are given in parentheses: $190(0.21 \mathrm{~g}, 73 \%), 191(0.24 \mathrm{~g}, 78 \%)$ and $192(0.24 \mathrm{~g}$, 86%).

5.7.2.3 SYNTIIESIS OF COMPOUNDS 193-196

Four new tertiary phosphine ammonium hexafluorophosphates, 193-196, were synthesised by reacting the tertiary phosphine ammonium chlorides $\mathbf{1 8 0} \mathbf{- 1 8 3}$ with 1.5 equivalents of
$\mathrm{K}\left[\mathrm{PF}_{6}\right]$ in HPLC grade MeOH . A typical procedure is given for [cyclo$\left.\left\{\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{R}^{\prime}\right) \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{R}^{\prime}\right) \mathrm{CH}_{2}-\mathrm{P}\right\}-\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{H}_{2}\right) \mathrm{R}^{\prime}\right]^{+} \mathrm{PF}_{6}^{-}$193, where $\mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$. A solution of $\mathrm{K}\left[\mathrm{PF}_{6}\right](0.13 \mathrm{~g}, 0.71 \mathrm{mmol})$ in the minimum volume of HPLC grade MeOH was added to a solution of $180,(0.20 \mathrm{~g}, 0.45 \mathrm{mmol})$ in HPLC grade $\mathrm{MeOH}\left(10 \mathrm{~cm}^{3}\right)$. The solution was stirred for 30 min at room temperature. Concentration of the solution under reduced pressure and addition of distilled water gave a colourless precipitate 186 which was filtered and dried under vacuum. Yield: $0.18 \mathrm{~g}, 72 \%$. Similarly using 181, 182 or 183 and $\mathrm{K}\left[\mathrm{PF}_{6}\right]$, the salts 186-189 were obtained. Yields for other compounds synthesised in this study are given in parentheses: $194(0.20 \mathrm{~g}, 83 \%), 195(0.18 \mathrm{~g}, 75 \%)$ and $196(0.19 \mathrm{~g}, 78 \%)$.

5.8 COORDINATION STUDIES OF TERTIARY PHOSPHINE AMMONIUM SALTS

The tertiary phosphine ammonium salts were coordinated to some transition metal precursors: ruthenium(II), rhodium(I), rhodium(III), iridium(III), palladium(II), platinum(II) and gold(I) in order to access their ligating potential.

5.8.1 SYNTIIESIS OF RUTIIENIUM(II) COMPLEXES 197-202

A range of ruthenium(II) complexes were synthesised by reacting $\left[\mathrm{RuCl}_{2}\left(\eta^{6}-p \text {-cymene }\right)\right]_{2}$ with the tertiary phosphine ammonium salts 181, 188-190, 193 and 194 in a $1: 2$ molar ratio. A typical procedure is given for $\mathrm{RuCl}_{2}\left(\eta^{6}-p\right.$-cymene)(181), 197. To a stirred solution of $\left[\mathrm{RuCl}_{2}\left(\eta^{6}-p \text {-cymene }\right)\right]_{2}(0.03 \mathrm{~g}, 0.05 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added $181(0.05 \mathrm{~g}$, 0.10 mmol) as a solid in one portion. After stirring the solution for 30 min , the volume was reduced to ca. 1-2 cm^{3} under reduced pressure followed by addition of $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$ and stirred for 30 min . The resulting orange solid 197 was filtered on a glass sinter and dried under vacuum. Yield: $0.08 \mathrm{~g}, 98 \%$. Similarly, using 188, 189, 190, 193 or 194 and $\left[\mathrm{RuCl}_{2}\left(\eta^{6}-p \text {-cymene }\right)\right]_{2}$ the complexes 198-202 were obtained. Yields for other compounds synthesised in this study are given in parentheses: $198(0.09 \mathrm{~g}, 97 \%), 199(0.08 \mathrm{~g}, 91 \%)$, $200(0.08 \mathrm{~g}, 90 \%), 201(0.09 \mathrm{~g}, 91 \%)$ and $202(0.08 \mathrm{~g}, 91 \%)$.

5.8.2 SYNTIIESIS OF RIIODIUM(I) COMPLEXES 203 AND 204

Two rhodium(I) complexes were synthesised by reacting $\mathrm{Rh}_{2}(\mathrm{CO})_{4}(\mu-\mathrm{Cl})_{2}$ with the tertiary phosphine ammonium salts $\mathbf{1 8 0}$ or $\mathbf{1 8 1}$ in a 1:4 molar ratio. A typical procedure is given for $\mathrm{Rh}(\mathrm{CO}) \mathrm{Cl}(180)_{2}, 203$. To a stirred solution of $\mathrm{Rh}_{2}(\mathrm{CO})_{4}(\mu-\mathrm{Cl})_{2}(0.03 \mathrm{~g}, 0.08 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added $180(0.14 \mathrm{~g}, 0.32 \mathrm{mmol})$ as a solid in one portion. The dark
orange solution immediately went pale and a yellow solid precipitated within ca. 10 min . After stirring the solution for 30 min , the volume was reduced to $c a .1-2 \mathrm{~cm}^{3}$ under reduced pressure, followed by addition of $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$ and stirred for about 30 min . The resulting solid 203 was filtered on a glass sinter and dried under vacuum. Yield: $0.14 \mathrm{~g}, 88 \%$. Similarly, using 181 and $\mathrm{Rh}_{2}(\mathrm{CO})_{4}(\mu-\mathrm{Cl})_{2}$ the complex $\mathrm{Rh}(\mathrm{CO}) \mathrm{Cl}(181)_{2}, 204$ was obtained. Yield: 204 (0.16 g, 93\%.

5.8.3 SYNTIIESIS OF RHODIUM(III) AND IRIDIUM(III) COMPLEXES

 205-210A range of rhodium(III) and iridium(III) complexes were synthesised by reacting [$\mathrm{MCl}_{2}\left(\eta^{5}-\right.$ $\left.\left.C p^{*}\right)\right]_{2}, M=R h$ or lr with the tertiary phosphine ammonium salts 181,185 or 189 in a $1: 2$ molar ratio. Typical procedures are given for $\mathrm{RhCl}_{2}\left(\eta^{5}-\mathrm{Cp}^{*}\right)(181), 205$ and $\mathrm{IrCl}_{2}\left(\eta^{5}-\right.$ $\left.\mathrm{Cp}{ }^{*}\right)(\mathbf{1 8 1})$, 208. To a stirred solution of $\left[\mathrm{RhCl}_{2}\left(\eta^{5}-\mathrm{Cp}^{*}\right)\right]_{2}(0.03 \mathrm{~g}, 0.05 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(10 \mathrm{~cm}^{3}\right)$ was added $181(0.05 \mathrm{~g}, 0.10 \mathrm{mmol})$ as a solid in one portion. After stirring the solution for 30 min , the volume was reduced to $c a .1-2 \mathrm{~cm}^{3}$ under reduced pressure and $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$ added. The resulting suspension was stirred for $c a .30 \mathrm{~min}$ and the resulting orange solid 205 was filtered on a glass sinter and dried under vacuum. Yield: $0.07 \mathrm{~g}, 88 \%$. Using 185 or 189 and $\left[\mathrm{RhCl}_{2}\left(\mathrm{Cp}^{*}\right)\right]_{2}$ the complexes 206 and 207 were obtained. Yields for other compounds synthesised in this study are given in parentheses: $206(0.09 \mathrm{~g}, 96 \%)$ and $207(0.09 \mathrm{~g}, 98 \%)$.

Similarly, to a stirred solution of $\left[\mathrm{IrCl}_{2}\left(\eta^{5}-\mathrm{Cp}^{*}\right)\right]_{2}(0.03 \mathrm{~g}, 0.05 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added $181(0.05 \mathrm{~g}, 0.10 \mathrm{mmol})$ as a solid in one portion. After stirring the solution for 30 min , the volume was reduced to $c a .1-2 \mathrm{~cm}^{3}$ under reduced pressure and diethyl ether $\left(10 \mathrm{~cm}^{3}\right)$ added. The resulting suspension was stirred for $c a .30 \mathrm{~min}$ and the resulting yellow solid 208 filtered on a glass sinter and dried under vacuum. Yield: $0.06 \mathrm{~g}, 96 \%$. Using 185 or 189 and $\left[\operatorname{IrCl}_{2}\left(\mathrm{Cp}^{*}\right)\right]_{2}$ the complexes 209 and 210 were obtained. Yields for other compounds synthesised in this study are given in parentheses: $209(0.07 \mathrm{~g}, 85 \%)$ and 210 ($0.06 \mathrm{~g}, 77 \%$).

5.8.4 SYNTIIESIS OF PALLADIUM(II) COMPLEXES

The tertiary phosphine ammonium salts were reacted with various palladium(II) precursors: $\mathrm{PdCl}_{2}(\mathrm{COD}), \mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}, \mathrm{Pd}(\mathrm{Me}) \mathrm{Cl}(\mathrm{COD})$ and $[\mathrm{Pd}(\mathrm{C} \sim \mathrm{N})(\mu-\mathrm{Cl})]_{2}$, where $\mathrm{C} \sim \mathrm{N}=$ $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}, \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}$.

5.8.4.1 SYNTIIESIS OF PALLADIUM(II) COMPLEX 211

A palladium(II) complex was prepared by reacting $\mathrm{PdCl}_{2}(\mathrm{COD})$ with the tertiary phosphine ammonium salt 180 in a $1: 2$ molar ratio in CHCl_{3}. To a stirred solution of $\mathrm{PdCl}_{2}(\mathrm{COD})$ ($0.10 \mathrm{~g}, 0.35 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}\left(10 \mathrm{~cm}^{3}\right)$ was added a solution of $\mathbf{1 8 0}(0.31 \mathrm{~g}, 0.70 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}\left(10 \mathrm{~cm}^{3}\right)$ and refluxed under nitrogen at $90^{\circ} \mathrm{C}$ for 2 h . The yellow palladium solution briefly turned orange and became yellow again with the characteristic smell of cycloocta-1,5-diene (COD) signalling its displacement by the phosphine ligand 180 . On cooling, the volume was reduced to $c a .1-2 \mathrm{~cm}^{3}$ under reduced pressure and diethyl ether $\left(10 \mathrm{~cm}^{3}\right)$ added. The resulting yellow precipitate 211 was filtered on a glass sinter and dried under vacuum. Yield: $0.24 \mathrm{~g}, 64 \%$.

5.8.4.2 SYNTIIESIS OF PALLADIUM(II) COMPLEX 212

To a stirred solution of $\mathrm{PdCl}_{2}(\mathrm{COD})(0.05 \mathrm{~g}, 0.175 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ was added $181(0.17 \mathrm{~g}, 0.350 \mathrm{mmol})$ as a solid in one portion. After stirring the solution for 24 h , the volume was reduced to ca. $1-2 \mathrm{~cm}^{3}$ under reduced pressure and $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$ added. The resulting suspension was stirred for $c a .30 \mathrm{~min}$ and the resulting yellow solid $\mathbf{2 1 2}$ filtered on a glass sinter and dried under vacuum. Yield: $0.19 \mathrm{~g}, 92 \%$.

5.8.4.3 SYNTHESIS OF PALLADIUM(II) COMPLEXES 213-215

Reaction of $\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$ with the tertiary phosphine ammonium salts 181,189 or 190 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature followed by precipitation with $\mathrm{Et}_{2} \mathrm{O}$ upon concentration of the solution under reduced pressure gave the yellow compounds 213-215. A typical procedure is given for $\mathrm{PdCl}_{2}(181)_{2}, 213$. To a stirred solution of $\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}(0.05 \mathrm{~g}, 0.19 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added $181(0.19 \mathrm{~g}, 0.38 \mathrm{mmol})$ as a solid in one portion. After stirring the solution for 30 min , the volume was reduced to $\mathrm{ca} .1-2 \mathrm{~cm}^{3}$ under reduced pressure and $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$ added and stirred for 30 min . The resulting yellow solid 213 was filtered on a glass sinter and dried under vacuum. Yield: $0.21 \mathrm{~g}, 94 \%$. Yields for other compounds synthesised in this study are given in parentheses: $214(0.26 \mathrm{~g}, \mathbf{9 1 \%}$) and $\mathbf{2 1 5}$ ($0.25 \mathrm{~g} .84 \%$).

5.8.4.4 SYNTIIESIS OF PALLADIUM(II) COMPLEXES 216 AND 217

Reaction of $\mathrm{Pd}(\mathrm{Me}) \mathrm{Cl}(\mathrm{COD})$ with the tertiary phosphine ammonium salts 181 or 189 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature followed by precipitation with $\mathrm{Et}_{2} \mathrm{O}$ upon concentration of the
solution under reduced pressure gave the yellow compounds 216 and 217. A typical procedure is given for $\mathrm{Pd}(\mathrm{Me}) \mathrm{Cl}(\mathbf{1 8 1})_{2}, 216$. To a stirred solution of $\mathrm{Pd}(\mathrm{Me}) \mathrm{Cl}(\mathrm{COD})(0.05$ $\mathrm{g}, 0.19 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added $181(0.19 \mathrm{~g}, 0.38 \mathrm{mmol})$ as a solid in one portion. After stirring the solution for 30 min , the volume was reduced to $c a .1-2 \mathrm{~cm}^{3}$ under reduced pressure followed by addition of $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$ and stirred for 30 min . The resulting yellow/orange solid 216 was filtered on a glass sinter and dried under vacuum. Yield: $0.19 \mathrm{~g}, 88 \%$. Similarly using 189 and $\mathrm{Pd}(\mathrm{Me}) \mathrm{Cl}(\mathrm{COD})$ complex 217 was obtained. Yield: 0.16 g, 93\%.

5.9 COORDINATION STUDIES OF TERTIARY PHOSPHINE AMMONIUM SALTS WITII CYCLOMETALLATED PALLADIUM DIMERS

The Pd dimers namely $[\mathrm{Pd}(\mathrm{C} \sim \mathrm{N})(\mu-\mathrm{Cl})]_{2}$, where $\mathrm{C} \sim \mathrm{N}=\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}, \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}$ were reacted with 181 or 190 in a $2: 1$ molar ratio in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature, following the procedure by Ruiz et al. ${ }^{143}$

5.9.1 SYNTHESIS OF COMIPOUNDS 218 AND 219

A typical procedure is given for compound $\mathrm{Pd}(\mathrm{Cl}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}(\mathbf{1 8 1}), 218$. To a stirred solution of $\left[\mathrm{PdCl}\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}\right)(\mu-\mathrm{Cl})\right]_{2}(0.030 \mathrm{~g}, 0.05 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $181(0.05 \mathrm{~g}$, 0.10 mmol) as a solid in one portion. The solution was stirred for 1.5 h and the volume reduced to ca. $1-2 \mathrm{~cm}^{3}$ under reduced pressure and hexane ($10 \mathrm{~cm}^{3}$) added. The resulting suspension was stirred for 20 min and the off-white solid 218 collected on a glass sinter and dried under vacuum. Yield: $0.07 \mathrm{~g}, 81 \%$. Similarly, using 190 and $\left[\mathrm{PdCl}\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}\right)(\mu\right.$ $\mathrm{Cl}) \mathrm{J}_{2}$ complex 219 was obtained. Yield: $0.08 \mathrm{~g}, 79 \%$.

5.9.2 SYNTIIESIS OF COMPOUNDS 220 AND 221

A typical procedure is given for $\mathrm{Pd}(\mathrm{Cl}) \mathrm{C}_{10} \mathrm{H}_{6} \mathrm{NMe}_{2}(181), 220$. To a stirred solution of $\left[\mathrm{PdCl}\left(\mathrm{C}_{12} \mathrm{I}_{12} \mathrm{~N}\right)(\mu-\mathrm{Cl})\right]_{2}(0.030 \mathrm{~g}, 0.05 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $181(0.05 \mathrm{~g}, 0.10$ mmol) as a solid in one portion. The solution was stirred for 1.5 h and the volume reduced to ca. 1-2 cm^{3} under reduced pressure and hexane ($10 \mathrm{~cm}^{3}$) added. The resulting suspension was stirred for 20 min and the pale-yellow solid 220 collected on a glass sinter and dried under vacuum. Yield: $0.06 \mathrm{~g}, 78 \%$. Similarly, using 190 and $\left[\mathrm{PdCl}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}\right)(\mu\right.$ $\mathrm{Cl})]_{2}$, complex 221 was obtained. Yield: $0.09 \mathrm{~g}, 89 \%$.

5.9.3 SYNTIIESIS OF COMPOUND 222

To a stirred solution of $\left[\mathrm{PdCl}\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}\right)\left(\mu-\mathrm{Cl}_{2}(0.03 \mathrm{~g}, 0.05 \mathrm{mmol})\right.\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added $181(0.070 \mathrm{~g}, 0.11 \mathrm{mmol})$ as a solid in one portion. After stirring the solution for 30 \min the volume was reduced to $c a .1-2 \mathrm{~cm}^{3}$ under reduced pressure followed by addition of diethyl ether ($10 \mathrm{~cm}^{3}$) and stirred for 20 min . The resulting pale yellow solid 222 was filtered on a glass sinter and dried under vacuum. Yield: $0.08 \mathrm{~g}, 80 \%$.

5.10 SYNTIIESIS OF PLATINUM(II) COMPLEXES 223 AND 224

Reaction of $\mathrm{PtCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$ with two equivalents of the tertiary phosphine ammonium salts 189 or 190 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature followed by precipitation with $\mathrm{Et}_{2} \mathrm{O}$ upon concentration of the solution under reduced pressure gave the off-white compounds $\mathbf{2 2 3}$ and 224. A typical procedure is given for $\mathrm{PtCl}_{2}(189)_{2}, 223$. To a stirred solution of $\mathrm{PtCl}_{2}\left(\mathrm{ClH}_{3} \mathrm{CN}\right)_{2}(0.05 \mathrm{~g}, 0.14 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ was added $189(0.18 \mathrm{~g}, 0.28$ mmol) as a solid in one portion. After stirring the solution for 30 min the volume was reduced to ca. 1-2 cm^{3} under reduced pressure and $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$ added. The resulting pale-yellow solid 223 was filtered on a glass sinter and dried under vacuum. Yield: 0.13 g , 59%. Similarly, using 190 and $\mathrm{PtCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$, complex 224 was obtained. Yield: 0.16 g , 68\%.

5.11 SYNTHESIS OF GOLD(I) COMPLEXES 225-228

Four gold(l) complexes 225-228 were synthesised by reacting $\mathrm{AuCl}(\mathrm{THT})$ with the tertiary phosphine ammonium salts $181,190,193$ or 194 in a $1: 1$ molar ratio in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature. A typical procedure is given for compound $\mathrm{AuCl}(181), 225$. To a stirred solution of $\mathrm{AuCl}(\mathrm{TIT})(0.030 \mathrm{~g}, 0.09 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ in a flask wrapped with foil, was added $181(0.046 \mathrm{~g}, 0.09 \mathrm{mmol})$ as a solid in one portion. After stirring the solution for 1 h , the volume was reduced to $\mathrm{ca} .1-2 \mathrm{~cm}^{3}$ under reduced pressure and $\mathrm{Et}_{2} \mathrm{O}$ $\left(10 \mathrm{~cm}^{3}\right)$ added and stirred for 20 min . The resulting off-whitish solid 225 was filtered on a glass sinter and dried under vacuum and kept in the dark. Yield: $0.055 \mathrm{~g}, 81 \%$. Similarly, using 190, 193 or 194 with $\mathrm{AuCl}(\mathrm{TIT})$, the complexes 226,227 and 228 respectively were obtained. Yields for other compounds synthesised in this study are given in parentheses: $226(0.075 \mathrm{~g}, 86 \%), 227(0.057 \mathrm{~g}, 78 \%)$ and $228(0.065 \mathrm{~g}, 83 \%)$.

5.12 SYNTHESIS OF ZEOLITE A AND PERMANGANATE SODALITE

Zeolite A and permanganate sodalite were synthesised from NaOH using published procedures, ${ }^{251.252}$ and characterised by powder X-ray diffraction.

5.12.1 SYNTHESIS OF ZEOLITE A 235

To a solution of $\mathrm{NaOH}(25.030 \mathrm{~g}, 625.00 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}\left(300 \mathrm{~cm}^{3}\right)$ in a beaker (exothermic, beaker was immersed in water to cool), was added $\mathrm{Na}\left[\mathrm{AlO}_{2}\right](13.50 \mathrm{~g}, 137.80 \mathrm{mmol})$ as a solid and heated to boiling point on a hot plate. This was followed by slow addition of a hot solution of $\mathrm{Na}_{2}\left[\mathrm{SiO}_{3}\right](10.60 \mathrm{~g}, 86.82 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}\left(200 \mathrm{~cm}^{3}\right)$ with rapid stirring for 4 h with the temperature maintained at $90^{\circ} \mathrm{C}$, the beaker covered with a watch glass to prevent water loss. The resulting white suspension (Zeolite-A) was separated by filtration, washed with water and dried at $105^{\circ} \mathrm{C}$ for 16 h in the oven. Yield: 14.26 g . The product was characterised by powder X-ray diffraction, the experimental diffraction pattern was in excellent agreement with the expected, the reflections from the product in black matching the expected in red as shown in Figure 4.4.

5.12.2 SYNTHESIS OF PERMANGANATE SODALITE 236

To a solution of $\mathrm{NaOH}(28.2 \mathrm{I} \mathrm{g}, 705.25 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}\left(63 \mathrm{~cm}^{3}\right)$ in a beaker (exothermic, beaker was immersed in water to cool), followed by addition of more $\mathrm{H}_{2} \mathrm{O}\left(30 \mathrm{~cm}^{3}\right)$ and Zcolite $\Lambda(4.00 \mathrm{~g})$ as a solid. The mixture was transferred to a 3-neck flask followed by addition of $\mathrm{Na}\left[\mathrm{MnO}_{4}\right](45.00 \mathrm{~g}, 317.06 \mathrm{mmol})$ and refluxed for 24 h , with the temperature maintained at ca. $100^{\circ} \mathrm{C}$. The resulting purple solid was filtered on a glass sinter and dried at $105^{\circ} \mathrm{C}$ for 16 h in the oven. Yield: 4.26 g . The product was characterised by powder X ray diffraction, the experimental diffraction pattern was in excellent agreement with the expected, the reflections from the product in black matching the expected in red as shown in Figure 4.5.

6.0 GENERAL CONCLUSIONS

As set out in the aims of the research, the preparation and characterisation of new phosphonium salts and phosphorus(III) ligands from THPC was achieved. Two new classes of phosphonium salts synthesised were aniline derivatives of THPC and phenylenediamine derivatives of THPC. While two new classes of cyclic phosphorus(III) ligands synthesised were diazaphosphorinanes and tertiary phosphine ammonium salts as neutral and cationic phosphorus(III) ligands respectively. The primary focus of the preparation and characterisation of new transition metal complexes with phosphorus(III) ligands was also achieved. However, only very little was done in the evaluation of the phosphorus(III) ligands or complexes, in selected cases, as potential catalysts for organic transformations due to time constraints.

A range of new aniline derivatives of THPC were synthesised by reacting THPC with different aniline precursors in ethanol at room temperature following the procedure first published by Frank et al. ${ }^{10}$ Phenylenediamine derivatives of THPC were also synthesised by reacting THPC with phenylenediamine precursors in ethanol at room temperature following a similar procedure first published by Frank et al. ${ }^{10}$ The resulting solids were characterised by conventional techniques. Single crystal X-ray diffraction analyses confirmed the proposed molecular formulae exhibiting tetrahedral configuration with evidence of intermolecular H-bonding in one of the aniline derivatives of THPC and one of phenylenediamine derivative of THPC. The crystal structure of the phenylenediamine derived salt showed a phosphorus based spirocycle. This represents the first crystallographic example of a spirocyclic compound with a phosphorus atom at the centre. This is supported by the absence of any hits from a CSD search. ${ }^{191,192}$

Diazaphosphorinanes were also synthesised by reaction of the corresponding aniline derivatives of THPC with triethylamine in acetone using the procedure first published by Frank et al. ${ }^{10}$ The resulting colourless solids were obtained in good yields, and similarly characterised. Single crystal X-ray diffraction analysis in one case showed a pyramidal geometry with the phosphorus atom at the apex. The lone pair of electrons on the phosphorus atom qualifies this compound as a potential ligand. The catalytic ability of the diazaphosphorinane ligands was demonstrated in a ruthenium-based ester hydrogenation of dimethyloxalate to methylglycolate to achieve 76.9% conversion when 4 equivalents were used. This was comparable to using 6 equivalents of $\mathrm{P}(n \text {-Oct })_{3}$, the best known
monodentate phosphine to achieve 100% methylglycolate conversion under similar conditions. ${ }^{229}$

Apart from the diazaphosphorinane ligands, the preparation of a range of new tertiary phosphines of the type $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{NHR}\right)_{3}$ where $\mathrm{R}=$ phenyl or substituted phenyl group by bubbling ammonia gas into solutions of selected aniline derivatives of THPC earlier prepared was attempted, using the procedure first published by Frank et al. ${ }^{10}$ The known compound $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{NHC}_{6} \mathrm{H}_{5}\right)_{3}$ was successfully synthesised and characterised.

Coordination studies of the diazaphosphorinane ligands was carried out with relevant ruthenium(II), rhodium(III), iridium(III), palladium(II) and platinum(II) precursors to form the expected complexes in good to excellent yields. The metal complexes were characterised using conventional techniques and single X-ray crystallography in several cases. In the case of the Rh (III) and $\mathrm{Ir}(\mathrm{III})$ complexes, confirmations of the structures were achieved by single crystal X-ray diffraction analysis. The complexes showed a classic "piano-stool" geometry with evidence of intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding, involving one of the metal bound chlorides and the diazaphosphorinane ligand in each case. While the $\mathrm{Pd}(\mathrm{II})$ and $\mathrm{Pt}(\mathrm{II})$ complexes were shown to exhibit cis configuration as supported by the infrared spectra having two $\mathrm{M}-\mathrm{Cl}$ stretches in the range $263-316 \mathrm{~cm}^{-1}$. In the case of the platinum(II) complexes the cis configuration was further supported by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR [${ }^{1} J_{\mathrm{PPt}} \approx 3600 \mathrm{~Hz}$]. Further confirmation of the cis configuration comes from the X-ray structures of two palladium(II) complexes and a platinum(II) complex where crystals were obtained. The structures confirm the cis arrangement and show approximate square planar geometry with bond lengths and angles comparable to those of other reported compounds. ${ }^{201,202}$

A range of tertiary phosphine ammonium chlorides were prepared by reacting THPC with benzylamine precursors using a similar procedure first published by Frank et al. ${ }^{10}$ The reactions gave good to excellent yields of the desired colourless products, characterised and shown to exhibit monodentate P-coordination. The X-ray crystal structure of one of the chlorides showed a pyramidal configuration and reveals a $\mathrm{P}-\mathrm{C}-\mathrm{N}-\mathrm{C}-\mathrm{N}-\mathrm{C}$ six-membered ring with a chair conformation, exhibiting mirror plane symmetry. There was a pair of $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ intramolecular H -bonds which form a conformationally locked phosphine
framework in the solid state similar to the well-known PTA cage. This can be regarded as a charged variant of the PTA ligand with related $\mathrm{P}-\mathrm{C}$ bond lengths and $\mathrm{P}-\mathrm{C}-\mathrm{N}, \mathrm{C}-\mathrm{P}-\mathrm{C}$ bond angles. ${ }^{204.205}$

Anion metathesis of the tertiary phosphine ammonium chlorides with $\mathrm{Na}\left[\mathrm{BPh}_{4}\right], \mathrm{Na}\left[\mathrm{SbF}_{6}\right]$ or $\mathrm{K}\left[\mathrm{PF}_{6}\right]$ in methanol at room temperature under aerobic conditions, gave the corresponding colourless tertiary phosphine ammonium salts in high yields. All the salts were similarly characterised, and the structures were consistent with the molecular formulae of the salts.

The crystal structures of some of these metathesised salts have similar structures to that of the structure of the precursor chloride which has been crystallographically determined, although only one $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ intramolecular H -bond was observed in one case due to H bonding interactions involving the π systems in the $\mathrm{BPh}_{4}{ }^{-}$counterions present. Thus from the single crystal X-ray structures of these cyclic cationic phosphorus(III) ligands, it is evident that simple modification of the PTA core can be achieved in which non-covalent interactions such as II-bonds maintain the structure in the solid state.

The coordination potential of the tertiary phosphine ammonium salts was evaluated by reacting selected examples with relevant $\mathrm{Ru}(\mathrm{II}), \mathrm{Rh}(\mathrm{I}), \mathrm{Rh}(\mathrm{III}), \mathrm{Ir}(\mathrm{III}), \mathrm{Pd}(\mathrm{II}), \mathrm{Pt}(\mathrm{II})$ and $\mathrm{Au}(\mathrm{I})$ precursors and the corresponding transition metal complexes were obtained in high yields, similarly characterised and shown to exhibit P-monodentate coordination. In the $\mathrm{Ru}(\mathrm{II})$ complexes, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the complexes showed average coordination chemical shifts similar to that obtained for $\mathrm{RuCl}_{2}\left(\eta^{6}\right.$ - p-cymene)(PTA) ($\Delta \delta_{\mathrm{P}} 60$ ppm) suggesting similar stereoelectronic properties. ${ }^{110}$ The crystal structures of the $\mathrm{Ru}(\mathrm{II})$ complexes obtained show classic "piano-stool" geometry with the metric parameters comparable to analogous complexes with PTA. ${ }^{104,110}$ Furthermore, upon coordination there were minimal differences in the $\mathrm{P}-\mathrm{C}$ and $\mathrm{P}-\mathrm{C}-\mathrm{N}$ metric parameters between the complexes and the precursor ligands with retention of the rigid cage crystal structure even upon complexation in each case. There was evidence of dimer pairs formed by intermolecular H bonding interactions similar to what has been recently observed in cationic dimeric Ru'PTA complexes. ${ }^{121}$

Two square planar rhodium(I) carbonyl complexes were synthesised by reacting $\mathrm{Rh}_{2}(\mathrm{CO})_{4}(\mu-\mathrm{Cl})_{2}$ with two of the tertiary phosphine ammonium chlorides to give the corresponding $\mathrm{Rh}(\mathrm{I})$ carbonyl complexes. Characterisation was similarly achieved by conventional techniques, except that in both complexes, meaningful NMR data could not be obtained due to poor solubility in common solvents. The CO vibrations in the FT-IR spectral data of these complexes were similar to those of analogous trans-rhodium(1) carbonyl PTA complexes suggestive of the $\mathrm{Rh}(\mathrm{I})$ complexes probably exhibiting a trans configuration in each case.

Rhodium(III) and iridium(III) complexes were prepared by reacting some of the tertiary phosphine ammonium salts in each case with $\left[\mathrm{RhCl}_{2}\left(\eta^{5}-\mathrm{Cp}^{*}\right)\right]_{2}$ or $\left[\mathrm{IrCl}_{2}\left(\eta^{5}-\mathrm{Cp}^{*}\right)\right]_{2}$ respectively and similarly characterised. A combination of microanalytical and spectroscopic data of the products confirms the formulae of the compounds exhibiting P monodentate coordination.

In the case of the rhodium(III) complexes the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral data showed a doublet in all the complexes with an average ${ }^{1} J_{\text {PRh }}$ coupling constant of $c a .145 \mathrm{~Hz}$ comparable to other rhodium(III) complexes reported previously. ${ }^{199}$ While in the case of the analogous iridium(III) complexes, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra showed singlets. The average coordination chemical shifts for the rhodium(III) and iridium(III) complexes were also not significantly different from those found for the analogous rhodium(III)(PTA) and irdium(III)(PTA) complexes respectively suggesting similar stereoelectronic properties. ${ }^{51.211}$

Single crystals of a rhodium(III) and iridium(III) complex were obtained and the structures have been determined, though that of the iridium complex not completed are supportive of mononuclear P-coordination and a typical "piano-stool" geometry around the metal centre. In the case of the completed rhodium(III) complex, the metric parameters were comparable to analogous Rh (III)PTA complexes. ${ }^{\text {51 }}$ Furthermore, upon coordination as in the case of the ruthenium(II) complexes there were minimal differences in the $\mathrm{P}-\mathrm{C}$ and $\mathrm{P}-\mathrm{C}-\mathrm{N}$ metric parameters between the rhodium(III) complex and the precursor phosphorus(III) ligand and the rigid cage structure was maintained. An additional weak intermolecular H -bonding interaction linking the molecules into dimer pairs was also observed.

The coordination potential of the tertiary phosphine ammonium salts was also explored by reacting some of these ligands with various monomeric palladium(II) precursors namely $\mathrm{PdCl}_{2}(\mathrm{COD}), \mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$ and $\mathrm{Pd}(\mathrm{Me}) \mathrm{Cl}(\mathrm{COD})$ and characterised. The characterising data in all the complexes supports the proposed molecular formula of the expected monomeric $\mathrm{PdCl}_{2} \mathrm{~L}_{2}$ complex indicative of P-coordination and trans configuration except the one synthesised from $\mathrm{PdCl}_{2}(\mathrm{COD})$ which support a cis configuration. Attempts to obtain suitable crystals for X-ray diffraction analysis were unsuccessful in most cases. However, in the case of the reaction between $\mathrm{PdCl}_{2}(\mathrm{COD})$ and one of the tertiary phosphine ammonium salts, attempts to obtain crystals for X-ray diffraction analysis gave a novel six-membered chelate $\operatorname{Pd}($ II) complex with an approximate square-planar geometry about the palladium(II) centre not consistent with the other charactering data obtained from the bulk complex. The structural motif for this novel Pd(II) complex is supported by the absence of any hits from a CSD search. ${ }^{191,192}$ A plausible mechanism for the transformation from $\mathrm{PdCl}_{2} \mathrm{~L}_{2}$ type complex to the chelate complex has been proposed.

The coordination potential of the tertiary phosphine ammonium salts was further evaluated by reacting them with cyclometallated palladium(II) dimers namely $[\mathrm{Pd}(\mathrm{C} \sim \mathrm{N})(\mu-\mathrm{Cl})]_{2}$, where ($\mathrm{C} \sim \mathrm{N}=\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}$ or $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}$) using the procedure by Ruiz et al. ${ }^{143}$ The resulting cyclometallated palladium(II) complexes were characterised and shown to exhibit P monodentate coordination. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra have shown that the average coordination chemical shifts for the cyclometallated $\operatorname{Pd}(\mathrm{II})$ complexes [$\Delta \delta_{\mathrm{P}} 50.00 \mathrm{ppm}$] were the same as what was obtained in the analogous PTA complex, $\mathrm{Pd}\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}\right) \mathrm{Cl}(\mathrm{PTA})$, 75 [$\Delta \delta_{\mathrm{P}} 50.00 \mathrm{ppm}$], ${ }^{143}$ again suggesting similar stereoelectronic properties. The X-ray structures of two of these complexes have been determined and reveal an approximate square-planar geometry with metric parameters similar to those reported for the analagous cyclometallated palladium(II) PTA complexes. ${ }^{143,212,213}$ Furthermore, upon coordination the $\mathrm{P}-\mathrm{C}$ and $\mathrm{P}-\mathrm{C}-\mathrm{N}$ metric parameters of the precursor ligand were not changed and the rigid cage structure of the precursor ligand formed by a pair of intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ H-bonds was maintained in the solid state even upon complexation, as was seen previously in the case of the $\mathrm{Ru}(\mathrm{II})$ and Rh (III) complexes.

One of the reactions involving $\left[\mathrm{Pd}\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}\right)(\mu-\mathrm{Cl})\right]_{2}$ was repeated with variation of the time and precipitant to obtain a pale-yellow solid. The NMR [$\left.{ }^{1} \mathrm{H},{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\right], \mathrm{CHN}$ and FT-IR data involving the bulk complex were identical with similar data obtained for the complex
obtained earlier. However, X-ray diffraction analysis of crystals obtained gave an unexpected novel zwitterionic palladium(II) dimeric complex. The molecular formula from the X-ray diffraction analysis was not consistent with the other characterising data obtained on the bulk complex which is in agreement with the monomeric $\mathrm{PdCl}_{2} \mathrm{~L}_{2}$ type complex. A mechanism involving intramolecular rearrangements during the crystallisation process leading to this transformation has been proposed.

Similarly, the ligating potential of the tertiary phosphine ammonium salts was also explored by reacting them with $\mathrm{PtCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$. Characterisation was similarly achieved except that due to extreme insolubility in common solvents no meaningful NMR $\left[{ }^{1} H\right.$, $\left.{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\right]$ spectral data could be obtained. As was in the case of the $\mathrm{Pd}(\mathrm{II})$ complex forming an unexpected zwitterionic Pd(II) dimeric complex, X-ray diffraction analysis of crystals obtained gave an unexpected novel zwitterionic platinum(II) dimeric complex. The molecular formula from the X-ray diffraction analysis was also not consistent with the other characterising data obtained on the bulk complex which is in agreement with the monomeric $\mathrm{PtCl}_{2} \mathrm{~L}_{2}$ type complex. A mechanism involving a similar intramolecular rearrangement as in the case of the novel $\mathrm{Pd}(\mathrm{II})$ complex during the crystallisation process leading to this transformation has also been proposed. The novelty of the structural motifs in the $\mathrm{zwitterionic} \mathrm{Pd}(\mathrm{II})$ and $\mathrm{Pt}(\mathrm{II})$ dimeric complexes are supported by the absence of any hits from CSD searches. ${ }^{191,192}$ In both cases, there was no evidence of H -bonding, indicative of the absence of typical donor/acceptor groups in these complexes.

To further explore the coordination potential of the cationic phosphorus(III) ligands, they were reacted with $[\mathrm{AuCl}(\mathrm{THT})]$ and the resulting $\mathrm{Au}(\mathrm{I})$ complexes similarly characterised and shown to exhibit monodendate P-coordination. The average coordination chemical shifts for the $\mathrm{Au}(\mathrm{l})$ complexes ($\Delta \delta_{\mathrm{P}} 42.00 \mathrm{ppm}$) were similar to what was obtained in the analogous (PTA) $\mathrm{Au}(\mathrm{I})$ complex, (PTA)AuCl ($\left.\Delta \delta_{\mathrm{P}} 45.00 \mathrm{ppm}\right)^{169}$ also suggesting similar stereoelectronic properties. The crystal structure of one of the complexes has been determined and reveal an approximate linear geometry with simlar metric parameters to analogous linear gold(I) PTA complexes. ${ }^{168,169}$ Furthermore, upon coordination as in the case of the ruthenium(II), rhodium(III) and palladium(II) complexes, there were minimal differences in the $\mathrm{P}-\mathrm{C}$ and $\mathrm{P}-\mathrm{C}-\mathrm{N}$ metric parameters between the complex and its precursor ligand, but the rigid cage structure of the precursor ligand formed by a pair of intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N} \mathrm{H}$-bonds in the solid state was not maintained in this case upon
complexation unlike in the case of the ruthenium(II), rhodium(III) and palladium(II) complexes. There was evidence of intermolecular H -bonding involving the $\mathrm{Au}(\mathrm{I}) \mathrm{PCl}$ cations and the Cl^{-}counterions. The X-ray diffraction analysis revealed that the $\mathrm{Au} \cdots \mathrm{Au}$ distance between neighbouring molecules was $4.10 \AA$. Aurophilic $A u \cdots A u$ interactions with bond lengths of ca. $3.0 \AA$ commonly observed crystallographically for $\mathrm{Au}(\mathrm{I})$ compounds with sterically undemanding ligands that usually link Au^{+}species together were not observed in this $\mathrm{Au}(\mathrm{I})$ complex.

Two zeolite types, Zeolite-A (235) and permanganate sodalite (236) were also prepared according to published procedures, ${ }^{251,252}$ and characterised by powder X-ray diffraction. The experimental diffraction pattern in each case was in excellent agreement with the expected.

6.1 FURTIIER WORK

Further work should be directed towards optimising the catalytic potential of the new diazaphosphorinane ligands whose catalytic abilities were demonstrated in a rutheniumbased ester hydrogenation of dimethyloxalate to methylglycolate. The preparation of tertiary phosphincs of the type $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{NHR}\right)_{3}$, where R is phenyl or phenyl substituent by bubbling NH_{3} into solutions of the aniline derivatives of THPC prepared using the procedure first published by Frank et al. ${ }^{10}$ could also be looked into as potential new class of tertiary phosphine ligands.

The tertiary phosphine ammonium salts synthesised in this work are structurally related to the well-known water-soluble PTA ligand as confirmed by single crystal Xcrystallography, but were found to be insoluble in water. They have also been shown to have similar stereoclectronic properties with PTA. The renewed interest in PTA is due to its high solubility in water which together with its derivatives has had numerous applications in medicine, coordination and organometallic chemistry and catalysis especially in aqueous media. Therefore further studies should also be directed towards understanding the properties of the tertiary phosphine ammonium salts in aqueous and organic media. They could be made water soluble by attaching highly polar functional groups such as $-\mathrm{SO}_{3}{ }^{-},-\mathrm{CO}_{2}^{-},-\mathrm{OH}$ etc and their coordination chemistry as well as potential medicinal and catalytic applications of their transition metal complexes explored. As mentioned in Section 4.1.1, water-soluble ruthenium(II) complexes including $\mathrm{RuCl}_{2}\left(p^{6}\right.$ -
cymene)(PTA) 45, were used as homogeneous catalysts in the hydrogenation of benzene and other arenes under aqueous-organic biphasic conditions. ${ }^{128}$ The analogous ruthenium(II) complexes synthesised in this work such as $\mathbf{1 9 9}$ and 200 discussed in Section 3.3.1 shown to be structurally and stereoelectronically related to $\mathbf{4 5}$ could function as similar water-soluble catalysts if made water soluble by attachment of appropriate polar functional groups.

Water-soluble iridium(III) complexes including $\eta^{5}-\mathrm{Cp}^{*} \operatorname{Ir}(\mathrm{PTA}) \mathrm{Cl}_{2}$ have also been evaluated as catalyst precursors for the hydrogenation of CO_{2} and hydrogen carbonate in aqueous solutions under relatively mild conditions. ${ }^{211}$ The analogous iridium(III) complexes synthesised such as $\eta^{5}-\mathrm{Cp}^{*} \mathrm{IrCl}_{2}(\mathbf{1 8 1})$ shown to have similar stereoelectronic properties to the analogous PTA complex could be evaluated as hydrogenation catalysts if made water-soluble by the attachment of highly polar functional groups grafted into the precursor ligands in the complexes.

Similarly, the water-soluble monomeric palladium(II) PTA complex 75 together with $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{PTA}$ has been shown to be an efficient copper- and amine-free Sonogashira catalyst system. ${ }^{143}$ Analogous monomeric cyclometallated Pd(II) complexes 218-221 were synthesised in this work from the tertiary phosphine ammonium salts and cyclometallated Pd dimers $[\mathrm{Pd}(\mathrm{C} \sim \mathrm{N})(\mu-\mathrm{Cl})]_{2}$, where $\left(\mathrm{C} \sim \mathrm{N}=\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}\right.$ or $\left.\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}\right)$. For example, 218 or 220 shown to be structurally related to 75 and having similar stereoelectronic properties to 75 could be evaluated as similar Sonogashira catalysts if made water soluble by the attachment of highly polar functional groups to the precursor ligands in the complexes.

The new interest in PTA apart from its coordination chemistry and utility as a ligand in catalysis, has been due to reports that ruthenium complexes of PTA have displayed anticancer properties. ${ }^{104}$ Dyson and co-workers have shown that the water-soluble complex $\mathrm{RuCl}_{2}\left(p^{6}\right.$-cymene)(PTA) 45, exhibits pH dependent DNA damage; the pH at which damage is greatest correlates to the pH environment of cancer cells. ${ }^{110}$ The molecular structure of this complex determined by single crystal X-ray diffraction was very similar to the structures of the ruthenium(II) complexes 199 and 200 synthesised in this work. Therefore further work should also be directed towards obtaining water soluble derivatives of these new ruthenium(II) complexes followed by the evaluation of their anticancer properties.

The water-soluble rhodium(III)PTA complex $\mathrm{RhCl}_{2}\left(\eta^{5}-\mathrm{Cp}^{*}\right)$ (PTA) together with the osmium RAPTA analogue have demonstrated very similar cytotoxicity profiles to the ruthenium(II) complex 45. The X-ray structure of $\mathrm{RhCl}_{2}\left(\eta^{5}-\mathrm{Cp}^{*}\right)(\mathrm{PTA})$ has been determined ${ }^{51}$ and the $\mathrm{Rh}-\mathrm{P}$ and $\mathrm{Rh}-\mathrm{Cl}$ bond lengths as well as the $\mathrm{P}-\mathrm{Rh}-\mathrm{Cl}$ bond angles are comparable to those of the analogous rhodium(III) complex 207 synthesised in this work. As in the case of the ruthenium(II) complexes therefore further work should also be directed towards obtaining water soluble derivatives of the rhodium(III) complexes followed by the evaluation of their anticancer properties.

Lastly, the mechanistic aspects of the reactions that led to the interesting novel crystal structures of the palladium(II) complexes 211' and 222' as well as the platinum(II) complex 223' obtained in this work could also be critically examined.

7.0 REFERENCES

1. G. O. Spessard and G. L. Miessler, Organometallic Chemistry, Prentice-Hall, New Jersey, 1997.
2. M. J. Clarke, Coord. Chem. Rev., 2003, 236, 209.
3. R. H. Crabtree, The Organometallic Chemistry of the Transition Metals, $3^{\text {rd }}$ Edn., John Wiley and Sons, Inc., 2001.
4. P. T. Anastas and M. M. Kirchhoff, Acc. Chem. Res., 2002, 35, 686.
5. D. Duraczynska, E. M. Serwicka, A. Waksmundzka-Gora, A. Drelinkiewicz and Z. Olejniczak, J. Organomet. Chem., 2008, 693, 510.
6. D. E. C. Corbridge, Phosphorus: An Outline of its Chemistry, Biochemistry and Technology, Elsevier, 1978.
7. G. V. Rao and G. C. Reddy, Tetrahedron Lett., 2008, 49, 824.
8. J. Uziel, N. Riegel, B. Aka, P. Figuiè and S. Jugé, Tetrahedron Lett., 1997, 38, 3405.
9. M. J. Winter, d-Block Chemistry, Oxford University Press, 1999.
10. A. W. Frank and G. L. Drake Jr., J. Org. Chem., 1972, 37, 2752.
11. A. W. Frank and G. L. Drake Jr., J. Org. Chem., 1977, 42, 4125.
12. G. N. Nikonov, A. A. Karasik, E. V. Malova and K. M. Enikkeev, Heteroatom Chem. 1992, 4, 439.
13. V. A. Zagumennov, A. A. Karasik, E. V. Nikitin and G. N. Nikonov, Russ. Chem. Bull., 1997, 46, 1154.
14. M. T. Rectz, G. Lohmer and R. Schwickardi, Angew. Chem. Int. Ed., 1998, 37, 481.
15. A. Tewari, M. Hein, A. Zapf and M. Belle, Tetrahedron, 2005, 61, 9705.
16. Y. Abe, K. Kude, S. Hayase, M. Kawatsura, K. Tsunashima and T.Itoh, J. Mol. Catal. B: Enzym. 2008, 51, 81.
17. M-C. Tseng, H-C. Kan and Y-H. Chu, Tetrahedron Lett., 2007, 48, 9085.
18. P. Ludley and N. Karodia, Tetrahedron Lett., 2001, 42, 2011.
19. D. A. Gerritsma, A. Robertson, J. McNulty and A. Capretta, Tetrahedron Lett., 2004, 45, 7629.
20. N. Karodia, S. Guise, C. Newlands and J. Anderson, Chem. Commun.,1998, 2341.
21. C. Comyns, N. Karodia, S. Zeler and J. Anderson, J. Catal. Lett., 2000, 67, 113.
22. C. L. Johnson, R. E. Donkor, W. Nawaz and N. Karodia, Tetrahedron Lett., 2004, 45, 7359.
23. F. Stazi, D. Marcoux, J-C. Popon, D. Latassa and A. B. Charette, Angew Chem., Int. Ed., 2007, 46, 5011.
24. A. Kanazawa and T. Ikeda, Coord. Chem. Rev., 2000, 198, 117.
25. W. Xie, Y. Ye, A. Shen, L. Zhou, Z. Lou, X. Wang and J. Hu, Vib. Spectrosc., 2008, 47, 119.
26. E. J. Delikatny, W. A. Cooper, S. Brammah, N. Sathasivam and D. C. Rideout, Cancer Res., 2002, 62, 1394.
27. W. A. Cooper, W. A. Bartier, D. C. Rideout and E. J. Delikatny, Mag. Reson. Med., 2001, 45, 1001.
28. F. Ouenadio, N. Walchshofer, C. Trentesaux, R. Barret and J. Paris, Anti-Cancer Drugs, 2001, 12, 603.
29. X. Wang and S-K. Tian, Tetrahedron Lett., 2007, 48, 6010.
30. A. Hamdi, K. C. Nam, B. J. Ryu, J. S. Kim and J. Vicens, Tetrahedron Lett., 2004, 45, 4689.
31. H. M. Yeo, B. J. Ryu and K. C. Nam, Org. Lett., 2008, 10, 2931.
32. D. J. Daigle in: M. Y. Darensbourg (Ed.), Inorg. Synth., 1988, 32, 40.
33. D. Moiseev, B. R. James, B. O. Patrick and T. Q. Hu, Inorg. Chem., 2006, 45, 2917.
34. A. D. Philips, L. Gonsalvi, A. Romerosa, F. Vizza and M. Peruzzini, Coord. Chem. Rev., 2004, 248, 955.
35. J. W. Ellis, K. N. Harrison, P. A. T. Hoye, A. G. Orpen, P. G. Pringle and M. B. Smith, Inorg. Chem., 1992, 31, 3026.
36. J. C. Jeffery, B. Odell, N. Stevens and R. E. Talbot, Chem. Commun., 2000, 101.
37. C. A. McAulife, Comprehensive Coordination Chemistry, G.Wilkinson, R. D. Gillard and J. A. McCleverty Eds., Pergamon Press, Oxford, UK, 1987, Vol. 2, pp 89-1066.
38. D. G. Gilheany and C. M. Mitchell, The Chemistry of Organophosphorus Compounds, F. R. Hartley, Ed., Wiley, New York, 1990, Vol. 1, pp 150-190 and references therein.
39. L. D. Quin, A Guide to Organophosphorus Chemistry, New York, 2000.
40. G. W. Parshall, Homogeneous Catalysis: The Application and Chemistry of Catalysis by Soluble Transition Metal Complexes. Wiley New York, 1980.
41. I. Ojima (Ed.), Catalytic Asymmetric Synthesis, Verlag VCH, Weinheim, 1993.
42. R. Noyori, Asymmetric Catalysis in Organic Synthesis, John Wiley, New York, 1994.
43. C. A. Tolman, Chem. Rev., 1977, 77, 313.
44. D. Michoss, X. L. Luo, J. A. K. Howard and R. H. Crabtree, Inorg. Chem., 1992, 31, 3914.
45. A. C. Cooper, W. E. Streib, O. Eisenstein and K. G. Caulton, J. Am. Chem. Soc., 1997, 119, 9069.
46. A. S. C. Chan, C. C. Chen, R. Cao, M. R. Lee, S. M. Peng and G. H. Lee, Organometallics, 1997, 16, 3469.
47. A. Buhling, P. C. J. Kamer, P. W. N. M. van Leeuwen and J. W. Elgersma, J. Mol. Catal. A: Chemical, 1995, 98, 69.
48. A. Buhling, P. C. J. Kamer, P. W. N. M. van Leeuwen and J. W. Elgersma, J. Mol. Catal. A: Chemical, 1997, 116, 297.
49. M. Tanaka, T. Hayashi and I. Ogata, Bull. Chem. Soc., Japan, 1997, 50, 2351.
50. W. Geortz, W. Keim, D. Vogt, U. Englert, M. D. K. Boele, L. A. van der Veen, P. C. J. Kamer and P. W. N. M. van Leeuwen, J. Chem. Soc. Dalton Trans., 1998, 2981.
51. A. Dorcier, W. H. Ang, S. Balano, L. Gonsalvi, L. Juillerat-Jeannerat, G. Laurenczy, M. Peruzzini, A. D. Phillips, F. Zanobini and P. J. Dyson, Organometallics, 2006, 25, 4090.
52. Y. K. Yan, M. Melchart, A. Habtermariam and P. J. Sadler, Chem. Commun., 2005, 4764.
53. D. J. Daigle, A. B. Pepperman Jr. and S. L. Vail, J. Heterocycl. Chem., 1974, 11, 407.
54. B. Dutta, C. Scolaro, R. Scopelliti, P. J. Dyson and K. Severin, Organometallics, 2008, 27, 1355.
55. T. Brenstrum, J. Clattenburg, J. Britten, S. Zavorine, J. Dyck, A. J. Robertson, J. McNulty and A. Capretta, Org. Lett., 2006, 8, 103.
56. J. McNulty and Y. Zhou, Tetrahedron Lett., 2004, 45, 407.
57. N. E. Leadbcater and M. Marco, Chem. Rev., 2002, 102, 3217.
58. M. Benaglia, A. Puglisi and F. Cozzi, Chem. Rev., 2003, 103, 3401.
59. H. Han and S. A. Johnson, Organometallics, 2006, 25, 5594.
60. B. Bosnich, Inorg. Chem., 1999, 38, 2554.
61. H. Suzuki, Eur. J. Inorg. Chem., 2002, 1009.
62. E. Y. Fung, M. M. Olmstead, J. C. Vickery and A. L. Balch, Coord. Chem., Rev., 1998, 171, 151.
63. R. D. Cannon and R. P. White, Prog. Inorg. Chem., 1998, 36, 195.
64. B. Cage, F. A. Cotton, N. S. Dalal, E. A. Hillard, B. Rakvin and C. M. Ramsey, J. Am. Chem. Soc., 2003, 125, 5270.
65. J. F. Berry, F. A. Cotton, C. Y. Liu, T. Lu, C. A. Murillo, B. S. Tsukerblat, D. Villagran and X. Wang, J. Am. Chem. Soc., 2005, 127, 4895.
66. J. Yoon, L. M. Mirica, T. P. D. Stack and E. I. Solomon, J. Am. Chem. Soc., 2004, 126, 12586.
67. S. G. Telfa, R. Kuroda, J. Lefebvre and D. B. Leznoff, Inorg. Chem., 2006, 45, 4592.
68. P. W. Anderson, Science, 1987, 235, 1196.
69. H. B. Gray and B. G. Malmstroem, Biochemistry, 1989, 28, 7499.
70. A. Messerschmidt, R. Huber, K. Wieghardt and T. Poulos, Handbook of Metalloproteins, Volume 1; Wiley, New York, 2001.
71. J. A. Hatnean, R. Raturi, J. Lefebvre, D. B. Leznoff, G. Lawes and S. A. Johnson, J. Am. Chem. Soc., 2006, 128, 14992.
72. A. L. Keen, M. Duster, H. Han and S. A. Johnson, Chem. Commun., 2006, 1221.
73. H. Ilan, M. Elsmaili and S. A. Johnson, Inorg. Chem., 2006, 45, 7435.
74. L. H. Gade, Acc. Chem. Res., 2002, 35, 575.
75. L. II. Gade, J. Organomet. Chem., 2002, 661, 85.
76. L. Jia, E. Ding, A. L. Rheingold and B. Rhatigan, Organometallics, 2000, 19, 963.
77. B. Cornils and W. A. Herrmann, Aqueos-Phase Organometallic Catalysis Concepts and Applications, Wiley-VCH, Weinhein, 1998.
78. F. Joo, Aqueous Organometallic Catalysis, Kluver Academic Publishers, Dordrecht, 2001.
79. W. A. Herrmann and C. W. Kholpainter, Angew. Chem. Int. Ed. Engl., 1993, 32, 1524.
80. P. Kalck and A. Monteil, Adv. Organomet. Chem., 1992, 34, 219.
81. E. G. Kuntz, CIIEMTECH., 1987, 17, 570.
82. J. C. Bailar, Catal. Rev., 1974, 10, 17.
83. W. H. Lang, A. T. Jurewicz, W. O. Haag, D. D. Whitehurst and L. D. Rollman, J. Organomet. Chem., 1977, 85, 134.
84. N. Pinault and D. W. Bruce, Coord. Chem. Rev., 2003, 241, 1.
85. D. V. Moiseev, B. R. James and T. Q. Hu, Inorg. Chem., 2006, 45, 10338
86. D. V. Moiseev, B. R. James and T. Q. Hu, Inorg. Chem., 2007, 46, 4704.
87. T. Q. Hu, B. R. James, D. Yawalata and M. B. Ezhova, J. Pulp Pap. Sci., 2004, 30, 233.
88. D. S. Bharathi, M. A. Sridhar, J. S. Prasad and A. G. Samuelson, Inorg. Chem. Commun., 2001, 4, 490.
89. F. Lorenzini, B. O. Patrick and B. R. James, Dalton Trans., 2007, 3224.
90. A. García-Fernáandez, J. Díez, Á. Manteca, J. Sánchez, M. P. Gamasa and E. Lastra, Polyhedron, 2008, 27, 1214.
91. J. G. Verkade, Coord. Chem. Rev., 1994, 137, 233.
92. S. Bolaño, A. Albinati, J. Bravo, L. Gonsalvi and M. Peruzizini, Inorg. Chem. Commun., 2006, 9, 360.
93. B. J. Frost, C. M. Bautista. R. Huang and J. Shearer, Inorg. Chem., 2006, 45, 3481.
94. D. J. Darensbourg, C. G. Ortiz and J. W. Kamplain, Organometallics, 2004, 23, 1747.
95. D. A. Krogstad, G. S. Ellis, A. K. Gunderson, A. J. Hammrich, J. W. Rudolf and J. A. Halfen, Polyhedron, 2007, 26, 4093.
96. P. Smolenski, F. P. Pruchnik, Z. Ciunik and T. Lis, Inorg. Chem., 2003, 42, 3318.
97. J. Navech, R. Kraimer and J. P. Majoral, Tetrahedron Lett., 1980, 21, 1449.
98. D. J. Darensbourg, J. C. Yarbrough and S. J. Lewis, Organometallics, 2003, 22, 2050.
99. B. Assmann, K. Angermaier and H. Schmidbaur, J. Chem. Soc., Chem. Commun., 1994, 941.
A. D. Philips, S. Bolaño, S. S. Bosquain, J.-C. Daran, R. Malacea, R. Peruzzini, R. Poli and L. Gonsalvi, Organometallics, 2006, 25, 2189.
100. A. Mena-Cruz, P. Lorenzu- Luis, A. Romerosa, M. Saoud and M. Scrrano-Ruiz, Inorg. Chem., 2007, 46, 6120.
101. M. Erlandsson, L. Gonsalvi, A. Ienco and M. Peruzzini, Inorg. Chem., 2008, 47, 8.
102. G. W. Wong, J. L. Harkreader, C. A. Mebi and B. J. Frost, Inorg. Chem., 2006, 45, 6748.
103. G. W. Wong, W-C. Lee and B. J. Frost, Inorg. Chem., 2008, 47, 612.
104. D. J. Darensbourg, F. Joo, M. Kannisto, A. Katho, J. H. Reibenspies and D. J. Daigle, Inorg. Chem., 1994, 33, 200.
105. D. J. Darensbourg, N. W. Stafford, F. Joo and J. H. Reibenspies, J. Organomet. Chem., 1996, 448, 99.
106. D. M. Saysell, C. D. Borman, C. H. Kwak and A. G. Sykes, Inorg. Chem., 1996, 35, 173.
107. B. E. Schultz, R. Hille and R. H. Holm, J. Am. Chem. Soc., 1995, 117, 827.
108. W. H. Ang, E. Daldini, C. Scolaro, R. Scopelliti, L. Juillerat-Jeannerat and P. J. Dyson, Inorg. Chem., 2006, 45, 9006.
109. C. S. Allardyce, P. J. Dyson, D. J. Ellis, S. L. Heath, Chem. Commun., 2001, 1396.
110. C. Scolaro, A. Bergamo, L. Brescacin, R. Delfino, M. Cocchietto, G. Laurenczy, T. J. Geldbach, G. Sava and P. J. Dyson, J. Med. Chem., 2005, 48, 4161.
111. A. Dorcier, C. G. Hartinger, R. Scopelliti, R. H. Fish, B. K. Keppler and P. J. Dyson, J. Inorg. Biochem., 2008, 102, 1066.
112. D. N. Akbayeva, L. Gonsalvi, W. Oberhuser, M. Peruzzini, F. Vizza, P. Brueggeller, A. Romerosa, G. Sava and A. Bergamo, Chem. Commun., 2003, 264.
113. S. Bolaño, L. Gonsalvi, F. Zanobini, F. Vizza, V. Bertolasi, A. Romerosa and M. Peruzzini, J. Mol Catal. A, 2004, 224, 61.
114. B. J. Frost and C. A. Mebi, Organometallics, 2004, 23, 5317.
115. Z. Assefa, B. G. McBurnett, R. J. Staples, J. P. Fackler, B. Assman, K. Angermaier and H. Schmidbaur, Inorg. Chem., 1995, 34, 2490.
116. Z. Assefa, B. G. McBurnett, R. J. Staples, J. P. Fackler and P. John, Inorg. Chem., 1995, 34, 4965.
117. J. M. Forward, D. Bohmann, J. P. Fackler and R. J. Staples, Inorg. Chem., 1995, 34, 6330.
118. C. Scolaro, A. B. Chaplin, C. G. Hartinger, A. Bergamo, M. Cocchietto, B. K. Keppler, G. Sava and P. J. Dyson, Dalton Trans., 2007, 5065.
119. W. H. Ang, E. Daldini, L. Juillerat-Jeannerat and P. J. Dyson, Inorg. Chem., 2007, 46, 9048.
120. S. Bolaño, G. Ciancaleoni, J. Bravo, L. Gonsalvi, A. Macchioni and M. Peruzzini, Organometallics, 2008, 27, 1649.
121. C. Lidrissi, A. Romerosa, M. Saoud, M. Serrano-Ruiz, L. Gonsalvi and M. Peruzzini, Angew. Chem. Int. Ed., 2005, 44, 2568.
122. F. Mohr, L. R. Falvello and M. Laguna, Eur. J. Inorg. Chem., 2006, 3152.
123. H. Z. Sun, H. Y. Li and P. J. Sadler, Chem. Rev., 1999, 99, 2817 and the references therein.
124. C. S. Allardyce, P. J. Dyson, D. J. Ellis, P. A. Salter and R. Scopelliti, J. Organomet. Chem., 2003, 668, 35.
125. R. A. Sanchez-Delgado, M. Navarro, H. Perez and J. A. Urbina, J. Med. Chem., 1996, 39, 1095.
126. D. J. Darensbourg, F. Joo, M. Kannisto, A. Katho and J. H. Reibenspies, Organometallics, 1992, 11, 1990.
127. P. J. Dyson, D. J. Ellis and G. Laurenczy, Adv. Synth. Catal., 2003, 345, 211.
128. L. Laurenczy, F. Jod and L. Ndasdi, Inorg. Chem., 2000, 39, 5083.
129. N. Katsaros and A. Anagnostopoulou, Crit. Rev. Oncol. Hematol., 2002, 42, 297.
130. L. Nádasdi and F. Joó, Inorg. Chim. Acta, 1999, 293, 218.
131. F. P. Pruchnik, P. Smoleñski, E. Gałdecka and Z. Gałdecki, New J. Chem., 1998, 1395.
132. P. Smoleñski, C. Dinoi, M. F. C. Guedes da Silva and A. J. L. Pombeiro, J. Organomet. Chem., 2008, 693, 2338.
133. W. Kläui, D. Schramm, W. Peters, G. Rheinwald and H. Lang, Eur. J. Inorg. Chem., 2001, 1415.
134. F. P. Pruchnik and P. Smoleñski, App. Organometal. Chem., 1999, 13, 829.
135. F. P. Pruchnik, P. Smoleñski and K. Wajda-Hermanowicz, J. Organomet. Chem., 1998, 570, 63.
136. F. P. Pruchnik, P. Smoleñski, E. Gałdecka and Z. S. Gałdecki, Inorg. Chim. Acta, 1999, 293, 110.
137. S. Bolaño, A. Albinati, J. Bravo, M. Caporali, L. Gonsalvi, L. Male, M. M. Rodriguez-Rocha, A. Rossin and M. Peruzzini, J. Organomet. Chem., 2008, 693, 2397.
138. D. A. Krogstad, J. A. Halfen, T. J. Ferry and V. G. Young, Jr., Inorg. Chem., 2001, 40, 463.
139. D. A. Krogstad, A. J. DeBoer, W. J. Ortmeier, J. W. Rudolf and J. A. Halfen, Inorg. Chem. Commun., 2005, 8, 1141.
140. D. J. Darensbourg, F. A. Beckford and J. H. Reibenspies, J. Cluster Sci., 2000, 11, 95.
141. D. J. Darensbourg, C. G. Ortiz and J. C. Yarbrough, Inorg. Chem., 2003, 42, 6915.
142. J. Ruiz, N. Cutillas, F. López, G. López and D. Bauststa, Organometallics, 2006, 25, 5768.
143. G. Abjabeng, T. Brenstrum, C. Frampton, A. J. Robertson, J. Hilhouse, J. McNulty and A. J. Capretta, J. Org. Chem., 2004, 69, 5082.
144. E. C. Alyea, G. Ferguson and S. Kannan, Polyhedron, 1998, 17, 2727.
145. D. J. Darensbourg, T. J. Decuir, N. W. Stafford, J. B. Robertson, J. D. Draper, J. H. Reibenspies, A. Kathó and F. Joó, Inorg. Chem., 1997, 36, 4218.
146. D. J. Darensbourg, J. B. Robertson, D. L. Larkins and J. H. Reibenspies, Inorg. Chem., 1999, 38, 2473.
147. E. C. Alyea, G. Ferguson and S. Kannan, Polyhedron, 1998, 172231.
148. D. M. Saysell, G. J. Lamprecht, J. Darkwa and A. G. Sykes, Inorg. Chem., 1996, 35, 5531.
149. S. Otto, A. Roodt and W. Purcell, Inorg. Chem. Commun., 1998, 1, 415.
150. S. Otto and A. Roodt, Inorg. Chem. Commun., 2001, 4, 49.
151. S. Otto and A. Roodt, Acta Crystallogr. C: Cryst. Struct. Commun., 2001, 540.
152. Z. Assefa, B. G. McBurnett, R. J. Staples and J. P. Fackler, Acta Cryst. 1995, 51C, 1742.
153. L. J. McCaffrey, W. Henderson, B. K. Nicholson, J. E. Mackay and M. B. Dinger, J. Chem. Soc., Dalton Trans., 1997, 2731.
154. U. Bierbach, Y. Qu, T. W. Hambley, J. Peroutka, H. L. Nguyen, M. Doedee and N. Farrel, Inorg. Chem., 1999, 38, 3535.
155. E. I. Montero, S. Diaz, A. M. González-Vadillo, J. M. Pérez, C. Alonso and C. Navarro-Ranninger, J. Med. Chem.,1999, 42, 4264.
156. M. Coluccia, A. Nassi, A. Boccarelli, D. Giordano, N. Cardellicchio, D. Locker, M. Leng, M. Sivo, F. P. Intini and G. Natile, Inorg. Biochem., 1999, 77, 31.
157. U. Bierbach, M. Sabat and N. Farrel, Inorg. Chem., 2000, 39, 1882.
158. S. Miranda, E. Vergara, F. Mohr, D. de Vos, E. Cerrada, A. Mendía and M. Laguna, Inorg. Chem., 2008, 47, 5641.
159. A. Habtemariam, J. A. Parkinson, N. Margiotta, T. W. Hambley and S. P. J. Parsons, J. Chem. Soc., Dalton Trans., 2001, 36, 2.
160. N. Margiotta, A. Habtemariam and P. J. Sadler, Angew. Chem., Int. Ed. Engl., 1997, 36, 1185.
161. A. Habtemariam and P. J. Sadler, Chem. Commun., 1996, 1785.
162. A. Romerosa, P. Bergamini, V. Bertolasi, A. Canella, M. Cattabriga, R. Gavioli, S. Mañas, N. Mantovani and L. Pellacani, Inorg. Chem., 2004, 43, 905.
163. P. Bergamini, V. Bertolasi, L. Marvelli, A. Canella, R. Gavioli, N. Mantovani, S. Mañas and A. Romerosa, Inorg. Chem., 2007, 46, 4267.
164. W. Henderson, L. J. McCaffrey and B. K. Nicholson, J. Chem. Soc., Dalton Trans., 2000, 2753.
165. K. Angermaier, E. Zeller and H. Schmidbaur, J. Organomet. Chem., 1994, 472, 371.
166. E. Vergara, S. Miranda, F. Mohr, E. Cerrada, E. R. T. Tiekink, P. Romero,
A. Mendía and M. Laguna, Eur. J. Inorg. Chem., 2007, 2926.
167. Z. Assefa, B. G. McBurnett, R. J. Staples, J. P. Fackler Jr., B. Assmann, K. Angermaier and H. Schmidbaur, Inorg. Chem., 1995, 34, 75.
168. Z. Assefa, M. A. Omary, B. G. McBurnett, A. A. Mohamed, H. H. Patterson, R. J. Staples and J. P. Fackler, Inorg. Chem., 2002, 41, 6274.
169. Z. Assefa, J. M. Forward, T. A. Grant, R. J. Staples, B. E. Hanson, A. A. Mohamed and J. P. Fackler, Inorg. Chim. Acta, 2003, 352, 31.
170. Z. Assefa, R. J. Staples and J. P. Fackler, Acta Crystallogr., 1996, C52, 305.
171. J. M. Forward, R. J. Staples, C. W. Liu and J. P. Fackler, Acta Crystallogr., 1997, C53, 195.
172. J. M. Forward, Z. Assefa, R. J. Staples and J. P. Fackler Jr., Inorg. Chem., 1996, 35, 16.
173. J. M. Forward, J. P. Fackler Jr. and R. J. Staples, Organometallics, 1995, 14, 4194.
174. J. M. Forward, D. Bohmann, J. P. Fackler Jr. and R. J. Staples, Inorg. Chem., 1995, 34, 6330.
175. W. Lu, H. F. Xiang, N. Zhu and C. M. Che, Organometallics, 2002, 21, 2343.
176. K. L. Cheung, S. K. Yip and V. W. W. Yam, J. Organomet. Chem., 2004, 689, 4451.
177. M. P. Cifuentes and M. A. Humphrey, J. Organomet. Chem., 2004, 689, 3968.
178. M. C. Irwin, J. J. Vittal and R. J. Puddephatt, Organometallics, 1997, 16, 3541.
179. C. P. McArdle, M. C. Irwin, M. C. Jennings, J. J. Vittal and R. J. Puddephatt, Chem. Eur. J., 2002, 723.
180. F. Mohr, M. C. Jennings and R. J. Puddephatt, Eur. J. Inorg. Chem., 2003, 217.
181. F. Mohr, E. Cerrada and M. Laguna, Organometallics, 2006, 25, 644.
182. A. Laguna and M. Laguna, Coord. Chem. Rev., 1999, 193-195, 837.
183. F. Mohr, S. Sanz, E. R. T. Tiekink and M. Laguna, Organometallics, 2006, 25, 3084.
184. G. F. Nieckarz, T. J. R. Weakley, W. K. Miller, B. E. Miller, D. K. Lyon and D. R. Tyler, Inorg. Chem., 1996, 35, 1721.
185. J. Bruckmann and C. Kruger, J. Organomet. Chem., 1997, 536, 465.
186. R. Kalio, P. Lönnecke and E. Hey-Hawkins, J. Organomet. Chem., 2008, 693, 590.
187. G. A. Geoffrey, An Introduction to Hydrogen bonding; Oxford University Press, Oxford, UK, 1997.
188. F. Hibbert and J. Emsley, Adv. Phys. Org. Chem., 1990, 26, 255.
189. D. H. Williams and I. Fleming, Spectroscopic Methods in Organic Chemistry, $5^{\text {th }}$ Ed., The McGraw-Hill Publishing Company, 1995.
190. A. H. Allen, Acta Cryst. 2002, B58, 380.
191. Chemical Database Service, J. Chem. Inf. Comput. Sc., 1996, 36, 746.
192. J. D. Dunitz and R. Taylor, Chem. Eur. J., 1997, 3, 89.
193. S. E. Dann, S. E. Durran, M. R. J. Elsegood, M. B. Smith, P. M. Staniland, S. Talib and S. H. Dale, J. Organomet. Chem., 2006, 691, 4829.
194. J. J. Daley, J. Chem Soc. Chem. Commun., 1964, 3799.
195. S. K. Singh, M. Trevedi, M. Chandra and D. S. Pandey, J. Organomet. Chem., 2005, 690, 647.
196. P. Lalrempuia, P. J. Carroll and M. R. Kollipara, J. Chem. Sci., 2004, 116, 21.
197. A. Dorcier, P. J. Dyson, C. Gossens, U. Rothlisberger, R. Scopelliti and I. Tavernelli, Organometallics, 2005, 24, 2114.
198. J. Čemák, J. Žádný, A. Krupková, K. Lopatová, A. Vlachová, T.H.N. Thi, J. Šauliová, J. Sýkora and I. Císařová, J. Organomet. Chem., 2007, 692, 1557.
199. S. J. Coles, S. E. Durran, M. B. Hursthouse, A. M. Z. Slawin and M. B. Smith, New J. Chem., 2001, 25, 416.
200. S. E. Durran, M. B. Smith, S. H. Dale, S. J. Coles, M. B. Hursthouse and M. E. Light, Inorg. Chim. Acta, 2006, 359, 2980.
201. H.-P. Chen, Y.-H Liu, S.-M. Peng and S.-T. Liu, Organometallics, 2003, 22, 4893.
202. D. L. Davies, J. Neild, L. J. S. Prouse and D. R. Russell, Polyhedron, 1993, 12, 2121.
203. K. H. Jogun, J. J. Stezowski, E. Fluck and J. Weidlein, Phosphorus Sulfur Relat. Elem., 1978, 4, 199.
204. R. E. Marsh, M. Kapon, S. Hu and F. H. Herbstein, Acta Crystallogr., Sect. B: Struct. Sci., 2002, 58, 62.
205. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, $2^{\text {nd }}$ Edition, Butterworth-Heinemann, 2001.
206. G. Sánchez, J. García, J. J. Ayllón, J. L. Serrano, L. García, J. Pérez and L. López, Polyhedron, 2007, 26, 2911.

208 P. Govindaswamy, Y.A. Mozharivskyj and M. R. Kollipara, Polyhedron, 2004, 23, 3115.
209. F. P. Pruchnik, P. Smoleński and I. Raska, Polish J. Chem., 1995, 69, 5.
210. R. I Luang and B. J.Frost, Inorg. Chem., 2007, 46, 10962.
211. M. Erlandsson, V. R. Landaeta, L. Gonsalvi, M. Peruzzini, A. D. Philips, P. J. Dyson and G. Laurenczy, Eur. J. Inorg. Chem., 2008, 620.
212. J. Ruiz, N. Cutillas, V. Rodriguez, J. Sampedro, G. López, P. A. Chaloner and P. Hitchcock, J. Chem. Soc., Dalton Trans., 1999, 2939.
213. R. B. Bedford, C. S. J. Cazin, S. J. Coles, T. Gelbrich, P. N. Horton, M. B. Hursthouse and M. E. Light, Organometallics, 2003, 22, 987.
214. J. Vicente, A. Arcas, D. Bautista and P. G. Jones, Organometallics, 1997, 16, 2127.
215. Z.-W. Xi, N. Zhou, Y. Sun and K.-L. Li, Science, 2001, 292, 1139.
216. P.-D. Stevens, G.-F. Li, J.-D. Fan, M. Yen and Y. Gao, Chem. Commun., 2005, 4435.
217. I.-P. Beletskaya and A.-V. Cheprakov, Chem. Rev., 2000, 100, 3009.
218. F. Alonso, I.-P. Beletskaya and M. Yus, Tetrahedron, 2005, 61, 11771.
219. N.-T.-S, M.-V.-D. Sluys and C.-W. Jones, Adv. Synth. Catal., 2006, 348, 609.
220. A. Biffis, M. Zecca and M. Basato, Eur. J. Inorg. Chem., 2001, 1131.
221. F.-Y. Zhao, M. Shirai, Y. Ikushima and M. Arai, J. Mol. Catal. A Chem., 2002, 180, 211.
222. F.-Y. Zhao, K. Murakami, M. Shirai and M. Arai, J. Mol. Catal. A Chem., 2000, 194, 479.
223. J.-G. de Varies, Dalton Trans., 2006, 421.
224. L. Djakovitch, M. Wagner, C.-G. Hartung, M. Beller and K. Koehler, J. Mol. Catal. A Chem., 2004, 219, 121.
225. N. Ren, Y.-H. Yang, Y.-H. Zhang, Q.-R. Wang and Y. Tang, J. Catal., 2007, 246, 215.
226. C. E. Housecroft and A. G. Sharpe, Inorganic Chemistry, $2^{\text {nd }}$ Edition, Pcarson Education Limited, 2005.
227. www.undp.org/seed/eap/montreal
228. M. C. van Engelen, H. T. Teunissen, J. G. de Vries and C. J. Elsevier, J. Mol. Catal. A: Chemical, 2003, 206, 185.
229. B. Boardman, M. J. Hanton, H. van Rensurg and R. P. Tooze, Chem Commun., 2006, 2289.
230. R. A. Grey, G. P. Pez and A. Wallo, J. Am. Chem. Soc., 1981, 103, 7536.
231. U. Matteoli, G. Menchi, M. Bianchi and F. Piacenti, J. Mol. Catal., 1988, 44, 347.
232. U. Matteoli, G. Menchi, M. Bianchi and F. Piacenti, S. Ianelli and M. Nardelli, J. Organomet. Chem., 1995, 498, 177.
233. H. T. Teunissen and C. J. Elsevier, Chem. Commun., 1997, 667.
234. J. R. Ruiz, C. Jimmẽnez-Sanchidrián and M. Mora, Tetrahedron, 2006, 62, 2922.
235. M. M. Dell'Anna, A. Lofü, P. Mastrorilli, V. Mucciante and C. F. Nobile, J. Organomet. Chem., 2006, 691, 131.
236. K. R. Reddy, N. S. Kumar, P. S. Reddy, B. Sreedhar and M. L. Kantam, J. Mol. Catal. A: Chemical, 2006, 252, 12.
237. L. Djakovitch, H. Heise and K. Köhler, J. Organomet. Chem., 1999, 584, 16.
238. M. Beller, H. Fisher, K. Kuhlein, C.-P. Reisinger and W.-A. Herrmann, J. Organomet. Chem., 1996, 520, 257.
239. M. T. Reetz and E. Westermann, Angew. Chem. Ind. Ed., 2000, 39, 165.
240. F.-Y. Zhao, B.-M. Bhanage, M. Shirai and M. Arai, Chem. Eur. J., 2000, 6, 843.
241. K. Köhler, R.-G. Heidenreich, J. -G. -F. Krauter and J. Pietsch, Chem. Eur. J., 2002, 8, 622.
242. M. Gruber, S. Chouzier, K. Köhler and L. Djakovitch, Appl. Catal. A. Gen., 2004, 265, 161.
243. R.-G. Heidenreich, J. -G. -F. Krauter, J. Pietsch and K. Köhler, J. Mol. Catal. A: Chemical, 2002, 182-183, 449.
244. K. Egeblad, C. H. Christensen, M. Kustova and C. H. Christensen, Chem. Mater., 2008, $20,946$.
245. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquérol and T. Siemieniewska, Pure Appl. Chem., 1985, 57, 603.
246. A. Corma, Chem. Rev., 1997, 97, 2373.
247. A. Corma, Chem. Rev., 1995, 95, 559.
248. C. Mirodatos and D. Barthomeuf, J. Catal., 1985, 93, 246.
249. C. M. Zicovich-Wilson, A. Corma and P. Viruela, J. Phys. Chem., 1994, 98, 10863.
250. B. P. Moore and J. Shen, Nature, 1983, 306, 356.
251. M. T. Weller and K. E. Haworth, J. Chem. Soc. Chem. Commun., 1991, 734.
252. V. I. Srdanov, W. T. A. Harrison, T. E. Gier, G. D. Stucky, A. Popitsch, K. Gatterer, D. Markgraber and H. P. Fritzer, J. Physical Chem., 1994, 98, 4673.
253. M. A. Bennett and A. K. Smith, J. Chem., Soc., Dalton Trans., 1974, 233.
254. C. White, A. Yates and P. M. Maitlis, Inorg. Synth., 1992, 29, 228.
255. D. Drew and J. R. Doyle, Inorg. Synth., 1997, 31, 281.
256. R. E. Rulke, J. M. Ersting, A. L. Spek, C. J. Elsevier, P. W. N. M. Van Leeuwen and K. Vrieze, Inorg. Chem., 1993, 32, 5769.
257. A. C. Cope and E. C. Friedrich, J. Am. Chem. Soc., 1968, 90, 909.
258. G. E. Hartwell, R. V. Lawrence and M. J. Smas, J. Chem. Soc. D: Chem. Commun., 1970, 912.
259. J. X. McDermott, J. F. White and G. M. Whitesides, J. Am. Chem. Soc., 1976, 98, 6521.
260. R. Uson, A. Laguna and M. Laguna, Inorg. Synth., 1989, 26, 85.
261. COLLECT: Data Collection Software, R. Hooft, B.V. Nonius, 1998.
262. APEX 2: User Manual, Bruker AXS Inc., Madison, WI, 2005.
263. DENZO, Z. Otwinowski, W. Minor, in: C. W. Carter Jr. and R. M. Sweet (Eds.), Methods in Enzymology, Macromolecular Crystallography, part A.vol. 276, Academic Press, 1997, 307.
264. SAINT: Software for CCD Diffractometers, Bruker AXS Inc., Madison, WI, 2001.
265. G. M. Sheldrick, Acta Crystallogr., Sect. A., 2008, 64, 112.
266. G. M. Sheldrick, SHELXTL user Manual, v.6.10, Bruker AXS Inc., Madison, WI, 2001.

8.0 APPENDICES

Appendix 8.1 Crystal data and structure refinement details for 129.

Chemical formula
Formula weight
Temperature
Radiation, wavelength
Crystal system, space group
Unit cell parameters

Cell volume
Z
Calculated density
Absorption cocfficient μ
F(000)
Crystal colour and size
Reflections for cell refinement
Data collection method

0 range for data collection
Index ranges
Completeness to $0=25.00^{\circ}$
Intensity decay
Reflections collected
Independent reflections
Reflections with $\mathrm{F}^{2}>2 \sigma$
Absorption correction
Min. and max. transmission
Structure solution
Refinement method
Weighting parameters a, b
Data / restraints / parameters
Final R indices $[F>2 \sigma$]
R indices (all data)
Goodness-of-fit on F^{2}
Largest and mean shifusu
Largest diff. peak and hole
$\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{ClF}_{4} \mathrm{~N}_{4} \mathrm{P}$
562.96

150(2) K
$\operatorname{MoK} \alpha, 0.71073 \AA$
monoclinic, $\mathrm{P}_{1} / \mathrm{c}$
$a=13.4680(13) \AA$
$\alpha=90^{\circ}$
$b=13.3815(13) \AA \quad \beta=105.268(2)^{\circ}$
$c=15.1511(15) \AA \quad \gamma=90^{\circ}$
2634.2(4) \AA^{3}

4
$1.420 \mathrm{~g} / \mathrm{cm}^{3}$
$0.260 \mathrm{~mm}^{-1}$
1168
colourless, $0.48 \times 0.36 \times 0.31 \mathrm{~mm}^{3}$
9044 (θ range 2.19 to 28.10°)
Bruker SMART 1000 CCD diffractometer ω rotation with narrow frames
2.06 to 25.00°
h -15 to $16, k-15$ to $15,1-18$ to 18
99.9 \%
0%
18579
$4628\left(\mathrm{R}_{\mathrm{int}}=0.0239\right)$
3727
semi-empirical from equivalents
0.885 and 0.924
direct methods
Full-matrix least-squares on F^{2}
0.0897, 6.0358

4628/4/355
$R 1=0.0607, w R 2=0.1622$
$R 1=0.0755, w R 2=0.1825$
1.061
0.000 and 0.000
2.090 and $-0.544 \mathrm{e}^{-3}$

Appendix 8.2 Crystal data and structure refinement details for 147.

Chemical formula
Formula weight
Temperature
Radiation, wavelength
Crystal system, space group
Unit cell parameters

Cell volume
Z
Calculated density
Absorption coefficient μ
F(000)
Crystal colour and size
Reflections for cell refinement
Data collection method
θ range for data collection
Index ranges
Completeness to $0=26.00^{\circ}$
Intensity decay
Reflections collected
Independent reflections
Reflections with $\mathrm{F}^{2}>2 \sigma$
Absorption correction
Min. and max. transmission
Structure solution
Refinement method
Weighting parameters \mathbf{a}, b
Data / restraints / parameters
Final R indices $\left[F^{2}>2 \sigma\right.$]
R indices (all data)
Goodness-of-fit on F^{2}
Largest and mean shifusu
Largest diff. peak and hole
$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{ClN}_{4} \mathrm{P} \cdot \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{NH}_{2}\right)_{2}$
442.92

120(2) K
MoK $\alpha, 0.71073 \AA$
triclinic, $\mathrm{P} \overline{1}$
$a=9.189 \AA \quad \alpha=70.61^{\circ}$
$\mathrm{b}=9.562 \AA \quad \beta=88.33^{\circ}$
$\mathrm{c}=13.865 \AA \quad \gamma=72.23^{\circ}$
$1090.7 \AA^{3}$
2
$1.349 \mathrm{~g} / \mathrm{cm}^{3}$
$0.271 \mathrm{~mm}^{-1}$
468
colourless, $0.15 \times 0.07 \times 0.05 \mathrm{~mm}^{3}$
4747 (θ range 2.91 to 27.48°)
Bruker-Nonius 95 mm CCD camera on κ-goniostat
$\phi \& \omega$ scans
2.91 to 27.55°
h-11 to $11, \mathrm{k}-12$ to $12,1-17$ to 18
99.6 \%
0%
19502
$4982\left(\mathrm{R}_{\mathrm{int}}=0.0411\right)$
4295
semi-empirical from equivalents
0.609 and 0.692

Patterson synthesis
Full-matrix least-squares on F^{2}
0.0280, 0.8902

4982 / 0 / 295
$R 1=0.0414, w R 2=0.0930$
$R 1=0.0500, w R 2=0.0975$
1.031
0.000 and 0.000
0.515 and $-0.392 \mathrm{e}^{\AA^{-3}}$

Appendix 8.3 Crystal data and structure refinement details for 156.

Chemical formula	$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{P}$
Formula weight	415.39
Temperature	150(2) K
Radiation, wavelength	MoK $\alpha, 0.71073$ £
Crystal system, space group	triclinic, $\mathrm{P} \overline{1}$
Unit cell parameters	$a=6.7500(9) \AA \quad \alpha=75.378(2)^{\circ}$
	$\mathrm{b}=11.7122(15) \AA \quad \beta=82.034(2)^{\circ}$
	$c=13.2877(17) \AA \quad \gamma=74.291(2)^{\circ}$
Cell volume	975.7(2) \AA^{3}
Z	2
Calculated density	$1.414 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient μ	$0.182 \mathrm{~mm}^{-1}$
F(000)	432
Crystal colour and size	colourless, $0.22 \times 0.18 \times 0.10 \mathrm{~mm}^{3}$
Reflections for cell refinement	3767 (θ range 3.14 to 28.39°)
Data collection method	Bruker SMART 1000 CCD diffractometer ω rotation with narrow frames
0 range for data collection	1.59 to 29.03°
Index ranges	h-9 to 8, k-15 to 15, 1-17 to 17
Completeness to $0=26.00^{\circ}$	99.2 \%
Intensity decay	0\%
Reflections collected	8736
Independent reflections	$4518\left(\mathrm{R}_{\text {int }}=0.0151\right)$
Reflections with $\mathrm{F}^{2}>2 \sigma$	3520
Absorption correction	semi-empirical from equivalents
Min. and max. transmission	0.961 and 0.982
Structure solution	direct methods
Refinement method	Full-matrix least-squares on F^{2}
Weighting parameters a, b	0.0732, 0.8641
Data / restraints / parameters	4518/0/265
Final R indices [$F^{2}>2 \sigma$]	$\mathrm{R} 1=0.0496, \mathrm{wR} 2=0.1333$
R indices (all data)	$\mathrm{R} 1=0.0662, \mathrm{wR2}=0.1476$
Goodness-of-fit on F^{2}	1.028
Largest and mean shiflsu	0.000 and 0.000
Largest diff. peak and hole	1.647 and $-0.415 \mathrm{e}^{-3}$

Appendix 8.4 Crystal data and structure refinement details for 166.

Chemical formula	$\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{PRh} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
Formula weight	766.88
Temperature	150(2) K
Radiation, wavelength	$\mathrm{MoK} \alpha, 0.71073$ A
Crystal system, space group	triclinic, $\mathrm{P} \overline{1}$
Unit cell parameters	$\mathrm{a}=13.6390(6) \AA \quad \alpha=70.7159(7)^{\circ}$
	$\mathrm{b}=14.9333(7) \AA \quad \beta=70.1652(7)^{\circ}$
	$\mathrm{c}=18.4072(8) \AA \quad \gamma=83.2264(8)^{\circ}$
Cell volume	3328.7(3) \AA^{3}
Z	4
Calculated density	$1.530 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient μ	$0.846 \mathrm{~mm}^{-1}$
F(000)	1564
Crystal colour and size	orange, $0.19 \times 0.12 \times 0.09 \mathrm{~mm}^{3}$
Reflections for cell refinement	6504 (θ range 2.30 to 27.18°)
Data collection method	Bruker APEX 2 CCD diffractometer ω rotation with narrow frames
θ range for data collection	1.58 to 27.50°
Index ranges	h-17 to 17, k-19 to 19, 1-23 to 23
Completeness to $\theta=27.50^{\circ}$	99.5\%
Intensity decay	0\%
Reflections collected	32691
Independent reflections	$15243\left(\mathrm{R}_{\text {int }}=0.0411\right)$
Reflections with $\mathrm{F}^{2}>2 \sigma$	10973
Absorption correction	semi-empirical from equivalents
Min. and max. transmission	0.856 and 0.928
Structure solution	Patterson synthesis
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\mathbf{2}}$
Weighting parameters a, b	0.0783, 9.4428
Data / restraints / parameters	15243/235 / 854
Final R indices [$F^{2}>2 \sigma$]	$\mathrm{R} 1=0.0613, \mathrm{wR} 2=0.1552$
R indices (all data)	$\mathrm{R} 1=0.0910, \mathrm{wR} 2=0.1709$
Goodness-of-fit on $\mathrm{F}^{\mathbf{2}}$	1.053
Largest and mean shifusu	0.002 and 0.000
Largest diff. peak and hole	1.971 and $-1.585 \mathrm{e}^{\text {A }}{ }^{-3}$

Appendix 8.5 Crystal data and structure refinement details for 168.

Chemical formula	$\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{IrN} \mathrm{S}_{3} \mathrm{P} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
Formula weight	856.17
Temperature	150(2) K
Radiation, wavelength	MoK $\alpha, 0.71073 \AA$
Crystal system, space group	triclinic, $\mathrm{P} \overline{1}$
Unit cell parameters	$\mathrm{a}=13.6719(3) \AA \quad \alpha=71.1172(3)^{\circ}$
	$b=14.9948(4) \AA \quad \beta=70.6050(3)^{\circ}$
	$\mathrm{c}=18.3942(5) \AA \quad \gamma=83.5070(4)^{\circ}$
Cell volume	3365.46 (15) \AA^{3}
Z	4
Calculated density	$1.690 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient μ	$4.297 \mathrm{~mm}^{-1}$
F(0)0)	1692
Crystal colour and size	yellow, $0.37 \times 0.21 \times 0.11 \mathrm{~mm}^{3}$
Reflections for cell refinement	15350 (θ range 2.29 to 31.03°)
Data collection method	Bruker APEX 2 CCD diffractometer ω rotation with narrow frames
0 range for data collection	1.23 to 31.53°
Index ranges	h -19 to 19, k-21 to 21, 1-27 to 26
Completeness to $0=24.00^{\circ}$	99.9\%
Intensity decay	0\%
Reflections collected	40668
Independent reflections	$20664\left(\mathrm{R}_{\text {int }}=0.0273\right)$
Reflections with $\mathrm{F}^{2}>2 \sigma$	16864
Absorption correction	semi-empirical from equivalents
Min. and max. transmission	0.287 and 0.623
Structure solution	Patterson synthesis
Refinement method	Full-matrix least-squares on F^{2}
Weighting parameters a, b	0.0514, 4.3636
Data / restraints / parameters	20664/0/794
Final R indices [$\left.F^{2}>2 \sigma\right]$	$\mathrm{R} 1=0.0356, \mathrm{wR} 2=0.0942$
R indices (all data)	$\mathrm{R} 1=0.0469, \mathrm{wR} 2=0.1017$
Goodness-of-fit on F^{2}	1.055
Largest and mean shifusu	0.003 and 0.000
Largest diff. peak and hole	1.966 and -2.108 e \AA^{-3}

Appendix 8.6 Crystal data and structure refinement details for 169.

Chemical formula	$\mathrm{C}_{44} \mathrm{H}_{48} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{Pd} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$
Formula weight	985.05
Temperature	150(2) K
Radiation, wavelength	MoK $\alpha, 0.71073 \AA$
Crystal system, space group	triclinic, $\mathrm{P} \overline{1}$
Unit cell parameters	$a=9.4366(6) \AA \quad \alpha=109.406(2)^{\circ}$
	$\mathrm{b}=13.8183(8) \AA \quad \beta=94.723(2)^{\circ}$
	$\mathrm{c}=18.3184(11) \AA \quad \gamma=93.855(2)^{\circ}$
Cell volume	2233.9(2) \AA^{3}
Z	2
Calculated density	$1.464 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient μ	$0.766 \mathrm{~mm}^{-1}$
F(000)	1012
Crystal colour and size	yellow, $0.42 \times 0.08 \times 0.03 \mathrm{~mm}^{3}$
Reflections for cell refinement	5148 (θ range 2.36 to 27.87°)
Data collection method	Bruker APEX 2 CCD diffractometer ω rotation with narrow frames
θ range for data collection	1.57 to 27.49°
Index ranges	$\mathrm{h}-12$ to 12, k-17 to 17, 1-23 to 23
Completeness to $0=26.00^{\circ}$	99.1 \%
Intensity decay	0\%
Reflections collected	19324
Independent reflections	$9932\left(\mathrm{R}_{\text {int }}=0.0330\right)$
Reflections with $\mathrm{F}^{2}>2 \sigma$	7005
Absorption correction	semi-empirical from equivalents
Min. and max. transmission	0.739 and 0.977
Structure solution	Patterson synthesis
Refinement method	Full-matrix least-squares on F^{2}
Weighting parameters a, b	0.0501, 2.6558
Data / restraints / parameters	9932 / 0 / 529
Final R indices [$\left.F^{2}>2 \sigma\right]$	$\mathrm{Rl}=0.0467, \mathrm{wR} 2=0.1051$
R indices (all data)	$\mathrm{R} 1=0.0782, \mathrm{wR} 2=0.1209$
Goodness-of-fit on F^{2}	1.025
Largest and mean shifusu	0.001 and 0.000
Largest diff. peak and hole	1.023 and -0.868 e \AA^{-3}

Appendix 8.7 Crystal data and structure refinement details for 170.

Chemical formula	$\mathrm{C}_{44} \mathrm{H}_{42} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{Pd} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
Formula weight	1177.93
Temperature	150(2) K
Radiation, wavelength	MoKa, $0.71073 \AA$
Crystal system, space group	monoclinic, $\mathrm{P}_{2} / \mathrm{n}$
Unit cell parameters	$\mathrm{a}=15.2214$ (7) $\AA \quad \alpha=90^{\circ}$
	$\mathrm{b}=16.4673(8) \AA \quad \beta=94.017(2)^{\circ}$
	$c=19.9932(10) \AA \quad \gamma=90^{\circ}$
Cell volume	4999.1(4) \AA^{3}
Z	4
Calculated density	$1.565 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient μ	$0.819 \mathrm{~mm}^{-1}$
F(000)	2384
Crystal colour and size	yellow, $0.18 \times 0.14 \times 0.06 \mathrm{~mm}^{3}$
Reflections for cell refinement	7070 (θ range 2.39 to 24.97°)
Data collection method	Bruker APEX 2 CCD diffractometer ω rotation with narrow frames
θ range for data collection	1.63 to 25.00°
Index ranges	h-18 to 18, k-19 to 19, 1-23 to 23
Completeness to 0 $=25.00^{\circ}$	99.9 \%
Intensity decay	0\%
Reflections collected	35644
Independent reflections	$8798\left(\mathrm{R}_{\text {int }}=0.0539\right)$
Reflections with $\mathrm{F}^{2}>2 \sigma$	6231
Absorption correction	semi-empirical from equivalents
Min. and max. transmission	0.867 and 0.953
Structure solution	direct methods
Refinement method	Full-matrix least-squares on F^{2}
Weighting parameters a, b	0.0311, 20.1343
Data / restraints / parameters	8798 / 53 / 638
Final R indices [$\mathrm{F}^{2}>2 \sigma$]	$\mathrm{R} 1=0.0482, \mathrm{wR2}=0.0998$
R indices (all data)	$\mathrm{R} 1=0.0810, \mathrm{wR} 2=0.1188$
Goodness-of-fit on F^{2}	1.034
Largest and mean shiflsu	0.000 and 0.000
Largest diff. peak and hole	1.282 and $-1.137 \mathrm{e}^{\AA^{-3}}$

Appendix 8.8 Crystal data and structure refinement details for 178.

Chemical formula	$\mathrm{C}_{44} \mathrm{H}_{42} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{Pt}$
Formula weight	1096.77
Temperature	150(2) K
Radiation, wavelength	$\mathrm{MoK} \alpha, 0.71073$ A
Crystal system, space group	triclinic, $\mathrm{P} \overline{1}$
Unit cell parameters	$a=9.5700(4) \AA \quad \alpha=83.128(2)^{\circ}$
	$\mathrm{b}=11.9806(5) \AA \quad \beta=83.843(2)^{\circ}$
	$\mathrm{c}=19.6613(9) \AA \quad \gamma=71.815(2)^{\circ}$
Cell volume	2120.43 (16) A^{3}
Z	2
Calculated density	$1.718 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient μ	$3.578 \mathrm{~mm}^{-1}$
F(000)	1088
Crystal colour and size	colourless, $0.51 \times 0.37 \times 0.21 \mathrm{~mm}^{3}$
Reflections for cell refinement	8719 (θ range 2.16 to 29.03°)
Data collection method	Bruker APEX 2 CCD diffractometer ω rotation with narrow frames
θ range for data collection	1.80 to 30.55°
Index ranges	h -13 to 13, k-17 to 17, 1-28 to 28
Completeness to $\theta=26.00^{\circ}$	99.8 \%
Intensity decay	0\%
Reflections collected	25416
Independent reflections	$12692\left(\mathrm{R}_{\mathrm{int}}=0.0280\right)$
Reflections with $\mathrm{F}^{2}>2 \sigma$	10941
Absorption correction	semi-empirical from equivalents
Min. and max. transmission	0.263 and 0.520
Structure solution	Patterson synthesis
Refinement method	Full-matrix least-squares on F^{2}
Weighting parameters a, b	0.0323, 0.0000
Data / restraints / parameters	12692/252/614
Final R indices [$\mathrm{F}^{\mathbf{2}} \mathbf{>} 2 \sigma$]	$\mathrm{R} 1=0.0310, \mathrm{wR} 2=0.0655$
R indices (all data)	$\mathrm{Rl}=0.0396, \mathrm{wR2}=0.0684$
Goodness-of-fit on F^{2}	1.013
Largest and mean shif/su	0.001 and 0.000
Largest diff. peak and hole	1.568 and $-0.885 \mathrm{e}^{-3}$

Appendix 8.9 Crystal data and structure refinement details for 181.

Chemical formula	$\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{ClF}_{3} \mathrm{~N}_{3} \mathrm{P}$
Formula weight	493.92
Temperature	150(2) K
Radiation, wavelength	MoK $\alpha, 0.71073 \AA$
Crystal system, space group	orthorhombic, Ama2
Unit cell parameters	$\mathrm{a}=13.7194(15) \AA \quad \alpha=90^{\circ}$
	$\mathrm{b}=18.513(2) \AA \quad \beta=90^{\circ}$
	$\mathrm{c}=9.5476(10) \AA \quad \gamma=90^{\circ}$
Cell volume	2425.0(5) \AA^{3}
Z	4
Calculated density	$1.353 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient μ	$0.265 \mathrm{~mm}^{-1}$
F (000)	1032
Crystal colour and size	colourless, $0.40 \times 0.34 \times 0.23 \mathrm{~mm}^{3}$
Reflections for cell refinement	8376 (θ range 2.20 to 28.92°)
Data collection method	Bruker SMART 1000 CCD diffractometer ω rotation with narrow frames
0 range for data collection	2.20 to 28.97°
Index ranges	$\mathrm{h}-17$ to $17, \mathrm{k}-23$ to $24,1-12$ to 12
Completeness to $0=26.00^{\circ}$	100.0\%
Intensity decay	0\%
Reflections collected	10554
Independent reflections	$2932\left(\mathrm{R}_{\mathrm{int}}=0.0216\right)$
Reflections with $\mathrm{F}^{2}>2 \sigma$	2902
Absorption correction	semi-empirical from equivalents
Min. and max. transmission	0.901 and 0.942
Structure solution	direct methods
Refinement method	Full-matrix least-squares on F^{2}
Weighting parameters a, b	0.0000, 10.4569
Data / restraints / parameters	2932/1/162
Final R indices ($\mathrm{F}^{2}>2 \sigma$]	$\mathrm{R} 1=0.0546, \mathrm{wR} 2=0.1278$
R indices (all data)	$\mathrm{R} 1=0.0551, \mathrm{wR2}=0.1281$
Goodness-of-fit on $\mathrm{F}^{\mathbf{2}}$	1.257
Absolute structure parameter	0.08(14)
Largest and mean shifusu	0.000 and 0.000
Largest diff. peak and hole	0.388 and -0.621 e \AA^{-3}

Appendix 8.10 Crystal data and structure refinement details for 185.

Chemical formula	$\mathrm{C}_{49} \mathrm{H}_{51} \mathrm{BN}_{3} \mathrm{P}$
Formula weight	723.71
Temperature	150(2) K
Radiation, wavelength	$\mathrm{MoK} \alpha, 0.71073$ A
Crystal system, space group	monoclinic, $\mathrm{P} 2_{1} / \mathrm{C}$
Unit cell parameters	$\mathrm{a}=12.9954$ (4) $\mathrm{A} \quad \alpha=90^{\circ}$
	$\mathrm{b}=19.7592(6) \AA \quad \beta=108.271(2)^{\circ}$
	$\mathrm{c}=16.6069(5) \mathrm{A} \quad \gamma=90^{\circ}$
Cell volume	4049.3(2) A^{3}
2	4
Calculated density	$1.187 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient μ	$0.106 \mathrm{~mm}^{-1}$
F(000)	1544
Crystal colour and size	colourless, $0.36 \times 0.35 \times 0.18 \mathrm{~mm}^{3}$
Reflections for cell refinement	8685 (θ range 2.58 to 29.05°)
Data collection method	Bruker APEX 2 CCD diffractometer ω rotation with narrow frames
θ range for data collection	1.65 to 30.55°
Index ranges	h -18 to 18, k-28 to 27, 1-23 to 22
Completeness to $\theta=26.00^{\circ}$	100.0 \%
Intensity decay	0\%
Reflections collected	48008
Independent reflections	$12372\left(\mathrm{R}_{\text {int }}=0.0427\right)$
Reflections with $\mathrm{F}^{2}>2 \sigma$	8920
Absorption correction	semi-empirical from equivalents
Min. and max. transmission	0.963 and 0.981
Structure solution	Patterson synthesis
Refinement method	Full-matrix least-squares on F^{2}
Weighting parameters a, b	0.0595, 0.9033
Data / restraints / parameters	12372 / 0 / 493
Final R indices [$F^{2}>2 \sigma$]	$\mathrm{Rl}=0.0508, \mathrm{wR2}=0.1178$
R indices (all data)	$\mathrm{R} 1=0.0765, \mathrm{wR2}=0.1314$
Goodness-of-fit on F^{2}	1.028
Largest and mean shif/su	0.019 and 0.000
Largest diff. peak and hole	0.773 and $-0.338 \mathrm{e}^{\AA^{-3}}$

Appendix 8.11 Crystal data and structure refinement details for 190.

Chemical formula	$\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~F}_{9} \mathrm{~N}_{3} \mathrm{PSb}$
Formula weight	694.22
Temperature	150(2) K
Radiation, wavelength	MoK $\alpha, 0.71073$ A
Crystal system, space group	triclinic, $\mathrm{P} \overline{1}$
Unit cell parameters	$a=8.5038(12) \AA \quad \alpha=77.019(2)^{\circ}$
	$\mathrm{b}=8.8389(13) \AA{ }^{\circ} \quad \beta=78.879(2)^{\circ}$
	$\mathrm{c}=19.082(3) \AA \quad \gamma=84.880(2)^{\circ}$
Cell volume	1369.8(3) ${ }^{3}$
Z	2
Calculated density	$1.683 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient μ	$1.147 \mathrm{~mm}^{-1}$
F(000)	692
Crystal colour and size	colourless, $0.27 \times 0.21 \times 0.04 \mathrm{~mm}^{3}$
Reflections for cell refinement	451 (θ range 2.23 to 30.25°)
Data collection method	Bruker APEX 2 CCD diffractometer ω rotation with narrow frames
θ range for data collection	2.23 to 24.76°
Index ranges	$\mathrm{h}-10$ to $10, \mathrm{k}-10$ to $10,1-22$ to 22
Completeness to $\theta=24.76^{\circ}$	99.7 \%
Intensity decay	0\%
Reflections collected	10538
Independent reflections	4663 ($\mathrm{i}_{\text {int }}=0.0227$)
Reflections with $\mathrm{F}^{2}>\mathbf{2 \sigma}$	4154
Absorption correction	semi-empirical from equivalents
Min. and max. transmission	0.747 and 0.956
Structure solution	direct methods
Refinement method	Full-matrix least-squares on F^{2}
Weighting parameters a, b	0.0394, 0.2424
Data / restraints / parameters	4663 / 0 /358
Final R indices [$F^{2}>2 \sigma$]	$\mathrm{Rl}=0.0259, \mathrm{wR2}=0.0641$
R indices (all data)	$\mathrm{Rl}=0.0318, \mathrm{wR} 2=0.0675$
Goodness-of-fit on F^{2}	1.059
Largest and mean shiftsu	0.001 and 0.000
Largest diff. peak and hole	0.838 and $-0.759 \mathrm{e}^{-3}$

Appendix 8.12 Crystal data and structure refinement details for 193.

Chemical formula	$\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{P}_{2}$
Formula weight	549.47
Temperature	150(2) K
Radiation, wavelength	MoK $\alpha, 0.71073$ A
Crystal system, space group	orthorhombic, Pbca
Unit cell parameters	$a=17.9476(5) \AA \quad \alpha=90^{\circ}$
	$\mathrm{b}=15.8400(5) \AA \quad \beta=90^{\circ}$
	$\mathrm{c}=19.1365(6) \AA \quad \gamma=90^{\circ}$
Cell volume	5440.3(3) ${ }^{3}$
2	8
Calculated density	$1.342 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient μ	$0.220 \mathrm{~mm}^{-1}$
F(000)	2288
Crystal colour and size	colourless, $0.50 \times 0.21 \times 0.15 \mathrm{~mm}^{3}$
Reflections for cell refinement	17860 (θ range 2.27 to 30.44°)
Data collection method	Bruker APEX 2 CCD diffractometer ω rotation with narrow frames
θ range for data collection	2.02 to 30.55°
Index ranges	h-25 to 25, k-22 to 22, 1-27 to 27
Completeness to $\theta=30.55^{\circ}$	99.9 \%
Intensity decay	0\%
Reflections collected	62276
Independent reflections	$8335\left(\mathrm{R}_{\text {int }}=0.0291\right)$
Reflections with $\mathrm{F}^{2}>2 \sigma$	6759
Absorption correction	semi-empirical from equivalents
Min. and max. transmission	0.8980 and 0.9678
Structure solution	direct methods
Refinement method	Full-matrix least-squares on F^{2}
Weighting parameters a, b	0.0589, 1.3791
Data / restraints / parameters	8335/0/331
Final R indices [$F^{2}>2 \sigma$]	$\mathrm{Rl}=0.0377, \mathrm{wR2}=0.1000$
R indices (all data)	$\mathrm{RI}=0.0494, \mathrm{wR2}=0.1091$
Goodness-of-fit on F^{2}	1.020
Largest and mean shif/su	0.001 and 0.000
Largest diff. peak and hole	0.408 and -0.316 e \AA^{-3}

Appendix 8.13 Crystal data and structure refinement details for 199.

Chemical formula	$\mathrm{C}_{35} \mathrm{H}_{45} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{PRuSb} \cdot 1.67 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
Formula weight	1087.65
Temperature	150(2) K
Radiation, wavelength	MoK $\alpha, 0.71073 \AA$
Crystal system, space group	triclinic, $\mathrm{P} \overline{1}$
Unit cell parameters	$a=12.9426(5) \AA \quad \alpha=65.2785(5)^{\circ}$
	$\mathrm{b}=14.0425(5) \AA \quad \beta=70.5853(5)^{\circ}$
	$\mathbf{c}=14.7175(6) \AA \quad \gamma=66.5392(5)^{\circ}$
Cell volume	2184.23(15) \AA^{3}
Z	2
Calculated density	$1.654 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient μ	$1.383 \mathrm{~mm}^{-1}$
F(000)	1088
Crystal colour and size	orange, $0.31 \times 0.22 \times 0.11 \mathrm{~mm}^{3}$
Reflections for cell refinement	12704 (θ range 2.56 to 30.54°)
Data collection method	Bruker APEX 2 CCD diffractometer ω rotation with narrow frames
θ range for data collection	1.67 to 30.55°
Index ranges	h-18 to 18, k-20 to 19, 1-20 to 20
Completeness to $0=30.55^{\circ}$	97.5 \%
Intensity decay	0\%
Reflections collected	25887
Independent reflections	$13047\left(\mathrm{R}_{\text {int }}=0.0183\right)$
Reflections with $\mathrm{F}^{2}>2 \sigma$	11295
Absorption correction	semi-empirical from equivalents
Min. and max. transmission	0.674 and 0.863
Structure solution	Patterson synthesis
Refinement method	Full-matrix least-squares on F^{2}
Weighting parameters \mathbf{a}, b	0.0510, 3.3546
Data / restraints / parameters	13047 / 57 / 533
Final R indices [$\mathrm{F}^{2}>2 \sigma$]	$\mathrm{RL}=0.0377, \mathrm{wR2}=0.0991$
R indices (all data)	$\mathrm{R} 1=0.0442, \mathrm{wR} 2=0.1033$
Goodness-of-fit on F^{2}	1.028
Largest and mean shifusu	0.006 and 0.000
Largest diff. peak and hole	1.863 and $-1.184 \mathrm{e}^{-3}$

Appendix 8.14 Crystal data and structure refinement details for 200.

Chemical formula	$\mathrm{C}_{35} \mathrm{H}_{42} \mathrm{Cl}_{2} \mathrm{~F}_{9} \mathrm{~N}_{3} \mathrm{PRuSb} \cdot 0.33 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
Formula weight	1028.19
Temperature	150(2) K
Radiation, wavelength	MoK $\alpha, 0.71073 \AA$
Crystal system, space group	triclinic, $\mathrm{P} \overline{1}$
Unit cell parameters	$a=11.8041(10) \AA \quad \alpha=85.3916(15)^{\circ}$
	$\mathrm{b}=13.1776(12) \AA \quad \beta=73.4595(14)^{\circ}$
	$\mathrm{c}=14.7273(13) \AA \quad \gamma=78.9597(15)^{\circ}$
Cell volume	2154.6(3) ${ }^{3}$
Z	2
Calculated density	$1.585 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient μ	$1.246 \mathrm{~mm}^{-1}$
F(000)	1023
Crystal colour and size	orange, $0.17 \times 0.10 \times 0.05 \mathrm{~mm}^{3}$
Reflections for cell refinement	3134 (θ range 2.31 to 22.25°)
Data collection method	Bruker APEX 2 CCD diffractometer ω rotation with narrow frames
θ range for data collection	1.58 to 25.00°
Index ranges	h -14 to $14, \mathrm{k}-15$ to $15,1-17$ to 17
Completeness to $0=25.00^{\circ}$	99.9 \%
Intensity decay	0\%
Reflections collected	17336
Independent reflections	7586 ($\left.\mathrm{R}_{\mathrm{int}}=0.0409\right)$
Reflections with $\mathrm{F}^{2}>2 \sigma$	4833
Absorption correction	semi-empirical from equivalents
Min. and max. transmission	0.816 and 0.940
Structure solution	Patterson synthesis
Refinement method	Full-matrix least-squares on F^{2}
Weighting parameters a, b	0.0648, 4.1883
Data / restraints / parameters	7586/359/598
Final R indices [$\mathrm{F}^{2}>2 \sigma$]	$\mathrm{R} 1=0.0541, \mathrm{wR} 2=0.1256$
R indices (all data)	$\mathrm{R} 1=0.0960, \mathrm{wR2}=0.1482$
Goodness-of-fit on F^{2}	1.025
Largest and mean shiftsu	0.001 and 0.000
Largest diff. peak and hole	0.923 and -0.601 e \AA^{-3}

Appendix 8.15 Crystal data and structure refinement details for 207.

Chemical formula	$\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{PRhSb} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
Formula weight	1119.13
Temperature	153(2) K
Radiation, wavelength	MoK $\alpha, 0.71073 \AA$
Crystal system, space group	monoclinic, $\mathrm{P} 21 / \mathrm{n}$
Unit cell parameters	$a=8.9106(3) \AA \quad \alpha=90^{\circ}$
	$\mathrm{b}=14.7367(4) \AA \quad \beta=95.887(2)^{\circ}$
	$\mathrm{c}=30.8857(9) \AA \quad \gamma=90^{\circ}$
Cell volume	4034.3(2) \AA^{3}
Z	4
Calculated density	$1.843 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient μ	$1.578 \mathrm{~mm}^{-1}$
F(000)	2240
Crystal colour and size	orange, $0.16 \times 0.10 \times 0.04 \mathrm{~mm}^{3}$
Reflections for cell refinement	104486 (θ range 2.91 to 27.48°)
Data collection method	Bruker-Nonius Roper 2 CCD camera on κ-gonios $\phi \& \omega$ scans
θ range for data collection	2.99 to 27.55°
Index ranges	h-11 to 11, k-19 to 19, 1-39 to 40
Completeness to $\theta=24.00^{\circ}$	99.4\%
Intensity decay	0\%
Reflections collected	47660
Independent reflections	$9116\left(\mathrm{R}_{\text {int }}=0.0658\right)$
Reflections with $\mathrm{F}^{2}>2 \sigma$	6545
Absorption correction	semi-empirical from equivalents
Min. and max. transmission	0.786 and 0.940
Structure solution	direct methods
Refinement method	Full-matrix least-squares on F^{2}
Weighting parameters a, b	0.0639, 28.2608
Data / restraints / parameters	9116/147/512
Final R indices [$F^{2}>2 \sigma$]	$\mathrm{RI}=0.0830, \mathrm{wR2}=0.1891$
R indices (all data)	$\mathrm{Rl}=0.1167, \mathrm{wR2}=0.2031$
Goodness-of-fit on F^{2}	1.107
Extinction coefficient	0.0028(3)
Largest and mean shiftsu	0.001 and 0.000
Largest diff. peak and hole	1.389 and $-0.648 \mathrm{e}^{-3}$

Appendix 8.16 Crystal data and structure refinement details for $\mathbf{2 1 1}^{\prime}$.

Chemical formula	$\mathrm{C}_{43} \mathrm{H}_{51} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{P}_{2} \mathrm{Pd}$
Formula weight	877.13
Temperature	150(2) K
Radiation, wavelength	MoK $\alpha, 0.71073$ A
Crystal system, space group	triclinic, $\mathrm{P} \overline{1}$
Unit cell parameters	$a=11.8604(19) \AA \quad \alpha=91.073(2)^{\circ}$
	$\mathrm{b}=18.855(3) \AA \quad \beta=90.720(2)^{\circ}$
	$\mathrm{c}=19.155(3) A \quad \gamma=99.569(2)^{\circ}$
Cell volume	4222.9(12) ${ }^{3}$
Z	4
Calculated density	$1.380 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient μ	$0.678 \mathrm{~mm}^{-1}$
F(000)	1816
Crystal colour and size	colourless, $0.19 \times 0.17 \times 0.07 \mathrm{~mm}^{3}$
Reflections for cell refinement	3033 (θ range 2.17 to 24.16°)
Data collection method	Bruker APEX 2 CCD diffractometer ω rotation with narrow frames
θ range for data collection	1.51 to 25.00°
Index ranges	$\mathrm{h}-14$ to 14, k-22 to 22, 1-22 to 22
Completeness to $\theta=25.00^{\circ}$	99.8\%
Intensity decay	0\%
Reflections collected	33408
Independent reflections	$14844\left(\mathrm{R}_{\mathrm{int}}=0.0990\right)$
Reflections with $\mathrm{F}^{2}>2 \sigma$	7386
Absorption correction	semi-empirical from equivalents
Min. and max. transmission	0.882 and 0.954
Structure solution	Patterson synthesis
Refinement method	Full-matrix least-squares on F^{2}
Weighting parameters a, b	0.0576, 0.0000
Data / restraints / parameters	14844/48/955
Final R indices [$F^{2}>2 \sigma$]	$\mathrm{R} 1=0.0585, \mathrm{wR} 2=0.1140$
R indices (all data)	$\mathrm{R} 1=0.1514, \mathrm{wR} 2=0.1522$
Goodness-of-fit on F^{2}	0.957
Largest and mean shif/su	0.001 and 0.000
Largest diff. peak and hole	1.427 and $-1.174 \mathrm{e}^{-3}$

Appendix 8.17 Crystal data and structure refinement details for 218.

Chemical formula	$\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{PPd}$
Formula weight	769.97
Temperature	120(2) K
Radiation, wavelength	synchrotron, 0.6943 A
Crystal system, space group	monoclinic, $\mathrm{P} 21 / \mathrm{n}^{\prime}$
Unit cell parameters	$a=16.3089(7) \AA \quad \alpha=90^{\circ}$
	$\mathrm{b}=9.5474(4) \AA \quad \beta=104.817(6)^{\circ}$
	$\mathrm{c}=23.2240(10) \AA \quad \gamma=90^{\circ}$
Cell volume	3495.9(3) \AA^{3}
Z	4
Calculated density	$1.463 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient μ	$0.775 \mathrm{~mm}^{-1}$
F(000)	1576
Crystal colour and size	colourless, $0.10 \times 0.05 \times 0.03 \mathrm{~mm}^{3}$
Reflections for cell refinement	6696 (θ range 2.44 to 26.18°)
Data collection method	Bruker APEX 2 CCD diffractometer ω rotation with narrow frames
θ range for data collection	1.72 to 27.61°
Index ranges	$\mathrm{h}-21$ to 21, k-12 to 12, 1-30 to 30
Completeness to $\theta=27.00^{\circ}$	99.6 \%
Intensity decay	3\%
Reflections collected	34142
Independent reflections	$8666\left(\mathrm{R}_{\mathrm{imt}}=0.0500\right)$
Reflections with $\mathrm{F}^{2}>2 \sigma$	6710
Absorption correction	semi-empirical from equivalents
Min. and max. transmission	0.927 and 0.977
Structure solution	direct methods
Refinement method	Full-matrix least-squares on F^{2}
Weighting parameters \mathbf{a}, b	0.0406, 0.6658
Data / restraints / parameters	8666/0/414
Final R indices [$\mathrm{F}^{2}>2 \sigma$]	$\mathrm{R} 1=0.0349, \mathrm{wR} 2=0.0778$
R indices (all data)	$\mathrm{R} 1=0.0521, \mathrm{wR} 2=0.0843$
Goodness-of-fit on F^{2}	1.010
Largest and mean shift/su	0.001 and 0.000
Largest diff. peak and hole	0.636 and -0.357 e \AA^{-3}

Appendix 8.18 Crystal data and structure refinement details for 220.

Chemical formula	$\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{PPd}$
Formula weight	806.00
Temperature	150(2) K
Radiation, wavelength	synchrotron, 0.6939 A
Crystal system, space group	monoclinic, $\mathrm{C} 2 / \mathrm{c}$
Unit cell parameters	$a=27.1389(9) \AA \quad \alpha=90^{\circ}$
	$\mathrm{b}=9.7892(3) \AA \quad \beta=104.8029(4)^{\circ}$
	$\mathrm{c}=28.2756(10) \AA \quad \gamma=90^{\circ}$
Cell volume	7262.6(4) \AA^{3}
Z	8
Calculated density	$1.474 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient μ	$0.750 \mathrm{~mm}^{-1}$
F(000)	3296
Crystal colour and size	pale yellow, $0.17 \times 0.08 \times 0.04 \mathrm{~mm}^{3}$
Reflections for cell refinement	42091 (θ range 2.22 to 29.56°)
Data collection method	Bruker APEX 2 CCD diffractometer ω rotation with narrow frames
θ range for data collection	1.52 to 29.72°
Index ranges	h-37 to 38, k-13 to 13, l-39 to 40
Completeness to $\theta=29.00^{\circ}$	99.6\%
Intensity decay	2.3\%
Reflections collected	40865
Independent reflections	$11033\left(\mathrm{R}_{\text {int }}=0.0490\right)$
Reflections with $\mathrm{F}^{2} \mathbf{2} \mathbf{\sigma}$	9335
Absorption correction	semi-empirical from equivalents
Min. and max. transmission	0.883 and 0.971
Structure solution	direct methods
Refinement method	Full-matrix least-squares on F^{2}
Weighting parameters a, b	0.0329, 4.1734
Data / restraints / parameters	11033 / 0 / 441
Final R indices [$\mathrm{F}^{2}>2 \sigma$]	$\mathrm{R} 1=0.0337, w R 2=0.0812$
R indices (all data)	$\mathrm{R} 1=0.0408, \mathrm{wR2}=0.0860$
Goodness-of-fit on F^{2}	1.040
Largest and mean shifusu	0.003 and 0.000
Largest diff. peak and hole	0.428 and $-0.534 \mathrm{e}^{\text {A }}{ }^{-3}$

Appendix 8.19 Crystal data and structure refinement details for 222'.

Chemical formula	$\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{Cl}_{4} \mathrm{~F}_{4} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{Pd}_{2} \cdot\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}$
Formula weight	1069.32
Temperature	150(2) K
Radiation, wavelength	synchrotron, $0.6710 \AA$
Crystal system, space group	orthorhombic, Pben
Unit cell parameters	$a=16.980(3) \AA \quad \alpha=90^{\circ}$
	$\mathrm{b}=19.430(4) \AA \quad \beta=90^{\circ}$
	$c=12.751(2) \AA \quad \gamma=90^{\circ}$
Cell volume	4206.7(14) \AA^{3}
Z	4
Calculated density	$1.688 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient μ	$1.287 \mathrm{~mm}^{-1}$
F(000)	2136
Crystal colour and size	yellow, $0.10 \times 0.04 \times 0.03 \mathrm{~mm}^{3}$
Reflections for cell refinement	38823 (θ range 2.49 to 24.03°)
Data collection method	Bruker APEX 2 CCD diffractometer ω rotation with narrow frames
θ range for data collection	1.50 to 26.61°
Index ranges	h-22 to 22, k-25 to 25, l-16 to 16
Completeness to $0=26.61^{\circ}$	99.6\%
Intensity decay	3\%
Reflections collected	36669
Independent reflections	$5231\left(\mathrm{R}_{\text {int }}=0.0895\right)$
Reflections with $\mathrm{F}^{2}>2 \sigma$	3877
Absorption correction	semi-empirical from equivalents
Min. and max. transmission	0.882 and 0.962
Structure solution	direct methods
Refinement method	Full-matrix least-squares on F^{2}
Weighting parameters \mathbf{a}, b	0.0913, 0.0000
Data / restraints / parameters	5231/223/284
Final R indices [$\mathrm{F}^{2}>2 \sigma$]	$\mathrm{Rl}=0.0600, \mathrm{wR} 2=0.1423$
R indices (all data)	$\mathrm{R} 1=0.0816, w R 2=0.1535$
Goodness-of-fit on F^{2}	1.024
Largest and mean shifusu	0.001 and 0.000
Largest diff. peak and hole	2.704 and -1.178 e \AA^{-3}

Appendix 8.20 Crystal data and structure refinement details for 223'.

Chemical formula	$\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{Pt}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$
Formula weight	1181.53
Temperature	150(2) K
Radiation, wavelength	synchrotron, $0.6884 \AA$
Crystal system, space group	triclinic, $\mathrm{P} \overline{1}$
Unit cell parameters	$\mathrm{a}=12.5972(3) \AA \quad \alpha=114.1393(2)^{\circ}$
	$\mathrm{b}=17.1567(4) \AA \quad \beta=96.4836(2)^{\circ}$
	$\mathrm{c}=20.8242(4) \AA \quad \gamma=90.2454(2)^{\circ}$
Cell volume	4074.50(16) \AA^{3}
Z	4
Calculated density	$1.926 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient μ	$7.362 \mathrm{~mm}^{-1}$
F(000)	2264
Crystal colour and size	colourless, $0.72 \times 0.09 \times 0.05 \mathrm{~mm}^{3}$
Reflections for cell refinement	13616 (θ range 2.38 to 30.78°)
Data collection method	Bruker APEX 2 CCD diffractometer ω rotation with narrow frames
θ range for data collection	1.26 to 31.09°
Index ranges	$\mathrm{h}-18$ to $18, \mathrm{k}-25$ to 25, 1-30 to 30
Completeness to $0=26.00^{\circ}$	99.3\%
Intensity decay	3\%
Reflections collected	49750
Independent reflections	$25936\left(\mathrm{R}_{\mathrm{int}}=0.0319\right)$
Reflections with $\mathrm{F}^{2}>2 \sigma$	20263
Absorption correction	semi-empirical from equivalents
Min. and max. transmission	0.076 and 0.710
Structure solution	direct methods
Refinement method	Full-matrix least-squares on F^{2}
Weighting parameters a, b	0.0371, 0.0000
Data / restraints / parameters	25936/0/841
Final R indices [$\mathrm{F}^{\mathbf{}} \mathbf{>} 2 \sigma$]	$\mathrm{RI}=0.0378, \mathrm{wR} 2=0.0884$
R indices (all data)	$\mathrm{R} 1=0.0479, \mathrm{wR} 2=0.0932$
Goodness-of-fit on F^{2}	1.053
Largest and mean shif/su	0.003 and 0.000
Largest diff. peak and hole	2.198 and -1.147 e \AA^{-3}

Appendix 8.21 Crystal data and structure refinement details for 225.

Chemical formula	$\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{AuCl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{P}$
Formula weight	726.34
Temperature	150(2) K
Radiation, wavelength	
Crystal system, space group	monoclinic, $\mathrm{P} 2_{1} / \mathrm{c}$
Unit cell parameters	$a=18.6440(16) \AA \quad \alpha=90^{\circ}$
	$\mathrm{b}=8.6308(7) \AA \quad \beta=98.5448(12)^{\circ}$
	$\mathrm{c}=16.4841(14) \AA \quad \gamma=90^{\circ}$
Cell volume	2623.1(4) ${ }^{3}$
Z	4
Calculated density	$1.839 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient μ	$5.914 \mathrm{~mm}^{-1}$
F(000)	1416
Crystal colour and size	colourless, $0.49 \times 0.08 \times 0.07 \mathrm{~mm}^{3}$
Reflections for cell refinement	12920 (θ range 2.50 to 31.54°)
Data collection method	Bruker APEX 2 CCD diffractometer ω rotation with narrow frames
θ range for data collection	2.21 to 31.56°
Index ranges	$\mathrm{h}-27$ to 27, k-12 to 12, l-23 to 23
Completeness to $\theta=29.00^{\circ}$	100.0\%
Intensity decay	0\%
Reflections collected	30352
Independent reflections	$8321\left(\mathrm{R}_{\text {int }}=0.0295\right)$
Reflections with $\mathrm{F}^{2}>2 \sigma$	7193
Absorption correction	semi-empirical from equivalents
Min. and max. transmission	0.164 and 0.659
Structure solution	Patterson synthesis
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\mathbf{2}}$
Weighting parameters a, b	0.0269, 0.3372
Data / restraints / parameters	8321/0/322
Final R indices [$\mathrm{F}^{2}>2 \sigma$]	$\mathrm{R} 1=0.0222, \mathrm{wR} 2=0.0511$
R indices (all data)	$\mathrm{R} 1=0.0292, \mathrm{wR2}=0.0534$
Goodness-of-fit on F^{2}	1.036
Largest and mean shif/su	0.002 and 0.000
Largest diff. peak and hole	1.388 and $-0.515 \mathrm{e}^{-3}$

Appendix 8.22 COURSES/CONFERENCES ATTENDED

1) Lecture on Fire and Safety Precautions, $18^{\text {th }}$ April, 2005.
2) Postgraduate Research Students Induction, $12^{\text {th }}$ May, 2005.
3) Research seminar: Why control the 'color' in variable band gap conjugated polymers delivered in the Department by Prof. John R. Reynolds, University of Florida USA, $8^{\text {th }}$ June, 2005.
4) Lecture: The ground and excited state double proton transfer in lumichrome/acetic acid system: theoretical and experimental approach delivered in the Department by Dr Marek Sikorski, Adam Mickiewicz University, Poznan, Poland, 27 July, 2005.
5) Training on NMR for new Postgraduate Students by Dr Mark Edgar, $7^{\text {th }}$ October, 2005.
6) Teaching Skills: Preparing to Teach and Promoting Learning, $25^{\text {th }}$ October, 2005.
7) Teaching Skills for Postgraduates and Research Assistants with Supervising Practical Activities, $3^{\text {rd }}$ November, 2005.
8) Introduction to the job of a lecturer for Postgraduates and Research Assistants, $9^{\text {th }}$ November, 2005.
9) Departmental talk on training in transferable skills for PhD students, $23^{\text {rd }}$ November, 2005.
10) Database of the month - Oxford English Dictionary $15^{\text {th }}$ November, 2005.
11) Power-point for Presentations $25^{\text {th }}$ November, 2005.
12) Presentation of PhD work to the Inorganic Section, $14^{\text {th }}$ December, 2005.
13) CSD searching workshop and seminar organised by Dr Mark Elsegood in the Department, $24^{\text {th }}$ February, 2006.
14) Catalysis: Half Day Discussion Meeting, University of Leicester, $3^{\text {rd }}$ April, 2006.
15) Poster Presentation at Dalton Symposium, "New Cyclic Tertiary Phosphines Derived from Tetrakis(hydroxymethyl)phosphonium Chloride", University of Birmingham, $14^{\text {th }}$ September, 2006.
16) Designing and Producing Conference Posters, $13^{\text {th }}$ October, 2006.
17) Getting Articles Published for Postgraduates and Research Assistants, $23^{\text {rd }}$ October, 2006.
18) RSC Industrial Lecture: Process Understanding - Why it is important to Process R \& D (PR\&D) by Dr Steve Eyley, $24^{\text {th }}$ October, 2006.
19) Report Writing, $1^{\text {st }}$ November, 2006.
20) Keeping your Research Up-to-Date for Postgraduates, ${ }^{\text {st }}$ February, 2007.
21) Plagiarism, Citation and Managing your References, $14^{\text {th }}$ March, 2007.
22) Inorganic Seminar: "Fast Detectors and Bright Sources; Pushing the Limits of Lab Powder Diffraction" by Dr Caroline Kirk, 18 ${ }^{\text {th }}$ July, 2007.
23) Research Assistants and Postgraduates- Career Management, $27^{\text {th }}$ February, 2008.
24) Research Assistants and Postgraduates- Successful Applications, $5^{\text {th }}$ March, 2008.
25) Intellectual Property, $5^{\text {th }}$ March, 2008.
26) Career Management for Postgraduate Researchers- Interviews, $12^{\text {th }}$ March, 2008.
27) Poster Presentation at Dalton Division Midlands Postgraduate Symposium, "New Cationic Phosphorus(III) Compounds Derived from a Simple Phosphonium Chloride", University of Warwick, $27^{\text {th }}$ March, 2008.
28) VIVA- What happens? $25^{\text {th }}$ April, 2008.
29) Personal Organisation and Time Management for Postgraduate researchers, $28^{\text {th }}$ April, 2008.
30) RSC Ronald Nyholm Lecture 2007-8: "Exploiting Knowledge-based Approaches to Chemistry" by Prof Guy Orpen, $30^{\text {th }}$ April, 2008.
31) RSC Hugo Mŭller Lecture 2007-8: "Seeing Inspiration in Nature's Laboratory" by Prof. Mark Weller, $21^{\text {st }}$ May, 2008.

Appendix 8.23 REFEREED JOURNAL PUBLICATION(S) FROM THIS RESEARCH

1. A.T. Ekubo, M. R. J. Elsegood, A. J. Lake and M. B. Smith, Intramolecular Hydrogen-Bonded Tertiary Phosphines as 1,3,5-Triaza-7-phosphaadamantane (PTA) Analogues. Inorg. Chem., 2009, 48, 2633.

Intramolecular Hydrogen-Bonded Tertiary Phosphines as 1,3,5-Triaza-7-phosphaadamantane (PTA) Analogues

Allen T. Ekubo, Mark R. J. Elsegood, Andrew J. Lake, and Martin B. Smith*
Department of Chemistry, Loughborough University, Loughborough, Leics LE1I 3TU, U.K.

Received Septembew 5, 2008

New cationic trialkylphosphines $\left[P\left(\mathrm{CH}_{2} \mathrm{NH}_{2} \mathrm{R}\right)\left(\mathrm{CH}_{2} \mathrm{~N}(\mathrm{R}) \mathrm{CH}_{2} \mathrm{~N}(\mathrm{R}) \mathrm{CH}_{2}\right]^{+}\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right.\right.$, a; $4-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$, b), as their $\mathrm{Cl}^{-}(1 \mathrm{a}, 1 \mathrm{~b}), \mathrm{SbF}_{6}^{-}(2 \mathrm{a}, 2 \mathrm{~b})$, and $\mathrm{PF}_{6}^{-}(3 \mathrm{a}, 3 \mathrm{~b})$ salts, are described. The phosphine framework is conformationally locked, in the solid state, through pairs of intramolecular $\mathrm{N}-\mathrm{H} \ldots \mathrm{N}$ hydrogen bonds which are maintained in the Ru" and Rhi" complexes 4 and 5. Phosphines $1 a-3 \mathrm{~b}$ can be considered as charged variants of the well-known PTA ligand.

Introduction

The ability by which tertiary phosphines can be modified undoubtedly remains a major reason why this ligand class continues to find spectacular success in many branches of chemistry. Considerable recent interest has focused on the aliphatic caged tertiary phosphine 1,3,5-triaza-7-phosphaadamantane (hereafter abbreviated PTA), which has been shown to possess many desirable attributes including water solubility. ${ }^{1}$ Synthetic routes for modifying the adamantanoid framework of PTA such as protonation or alkylation of the tertiary nitrogen atoms or upper or lower rim functionalization have been repored. ${ }^{2.3}$ Consequently, numerous applications of PTA and their derivatives in biomedicine, ${ }^{4}$ coordination and organometallic chemistry, ${ }^{4.5}$ and catalysis, ${ }^{6}$ especially in aqueous media, have been realized. One aspect

[^14]of PTA not previously investigated is the ability to manipulate the nitrogen centers, for example, by changing the alkyl or aryl substituents yet preserving the tertiary amine character as opposed to quaternization ${ }^{3 b}$ or forming boronated species. ${ }^{5 c}$ One approach by which this could be accomplished is to envisage removal of two "upper-rim" methylene ($\mathrm{N}-\mathrm{CH}_{2}-\mathrm{N}$) groups from PTA, thereby allowing different R groups on nitrogen to be incorporated. Using suitable noncovalent interactions, such as intramolecular H -bonding, would allow for retention of the adamantane core. As part of ongoing studies in our group, we have recently developed highly functionalized (di)tertiary phosphines with regiospecific H -bonding capabilities. ${ }^{7}$ Herein a simple concept for the synthesis of novel cationic trialkylphosphines, with stereoelectronic properties similar to those of PTA, and a preliminary exploration of their late transition metal chemistries are reported. All new compounds have been character-
(4) For recent medicinal examples using PTA and related ligands, see: (a) Gossens, C.; Tavernelli, I.; Rothlisberger, U. J. Am. Chem. Soc. 2008, I30, 10921-10928. (b) Miranda, S.; Vergara, E.; Mohr, F.; de Vos, D.; Cerrada, E.; Mendía, A.; Laguna, M. Inorg. Chem. 2008, 47, 5641-5648. (c) Vock, C. A.; Renfrew, A. K.; Scopelliti, R.; Juillerat-Jeanneret, L.; Dyson, P. J. Eur. J. Inorg. Chem. 2008, 16611671. (d) Dutta, B.; Scolaro, C.; Scopelliti, R.; Dyson, P. J.; Severin, K. Organometallics 2008, 27, 1355-1357. (e) Leyva, L.; Sirlin, C.; Rubio, L.; Franco, C.; Le Lagadec, R.; Spencer, J.; Bischoff, P.; Gaiddon, C.; Loeffler, J.-P.; Pfeffer, M. Eur. J. Inorg. Chem. 2007, 3055-3066. (f) Dillinger, S. A. T.; Schmalle, H. W.; Fox, T.; Berke, H. Dalton Trans. 2007, 3562-3571. (g) Bergamini, P.; Bertolasi, V.; Marvelli, L.; Canella, A.; Gavioli, R.; Mantovani, N.; Mañas, S.; Romerosa, A. Inorg. Chem. 2007, 46, 4267-4276. (h) Dorcier, A; Ang, W. H.; Bolario, S.; Gonsalvi, L.; Juillerat-Jeannerat, L.; Laurenczy, G.; Peruzzini, M.; Phillips, A. D.; Zanobini, F.; Dyson, P. J. Organometallics 2006, 25, 4090-4096. (i) Dorcier, A.; Dyson, P. J.; Gossens, C.; Rothlisberger, U.; Scopelliti, R.; Tavernelli, I. Organometallics 2005, 24, 2114-2123. (j) Allardyce, C. S.; Dyson, P. J.; Ellis, D. J.; Heath, S. L. Chem. Commun. 2001, 1396-1397.

Ekubo et al.

ized by a combination of spectroscopic and single crystal X-ray diffraction techniques.

Experimental Section

Materials. All manipulations and reactions were carried out under aerobic conditions. Dichloromethane was previously distilled over CaH_{2} and diethyl ether over sodium/benzophenone, and tetrakis(hydroxymethyl)phosphonium chloride (THPC) was recrystallized from 2-propanol before use. ${ }^{5}$ All other solvents and chemicals were obtained from commercial suppliers and used without further purification. The dinuclear metal compounds $\left\{\mathrm{RuCl}_{2}\left(\eta^{6}-p \text {-cymene }\right)\right\}_{2}$ and $\left\{\mathrm{RhCl}_{2}\left(\eta^{3}-\mathrm{Cp}^{*}\right)\right\}_{2}$ were prepared according to published procedures. ${ }^{9.10}$

Instrumentation. Fourier transform infrared (FT-IR) spectra were recorded within pressed KBr pellets over the range of $4000-200 \mathrm{~cm}^{-1}$ using a Perkin-Elmer system 2000 FT spectrometer. 'H NMR and ${ }^{3}$ 'P('H) NMR spectra were recorded on a Bruker DPX 400 FT spectrometer with chemical shifts (δ) reported relative to external tetramethylsilane (TMS) or $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$. Coupling constants (J) were recorded in hertz. All NMR spectra were recorded in dmso- α^{8} solutions at about 298 K . Elemental analyses (Perkin-Elmer 2400 CHN or Exeter Analytical, Inc., CE-440 Elemental Analyzers) were performed by the Loughborough University Analytical Service within the Department of Chemistry. Mass spectra for 1a-5 were analyzed (JEOL SX102 instrument)
(5) For recent examples of PTA coordination complexes, see: (a) Serrano Ruiz, M: Romerosa, A.: Sierra-Martin, B.; Fernandez-Barbero, A Angew. Chem., Int. Ed 2008, 47. 8665-8669. (b) Tu, X.; Nichol, G. S.; Wang. R.; Zheng. Z. Dalton Trans. 2008, 6030-6038. (c) Bolaño, S.; Alhinati, A.; Bravo, J.; Caporali, M.: Gonsalvi, L.; Male, L.; Rodriguer.-Rocha, M. M.; Rossin, A.; Peruzzini, M. J. Organomet. Chem. 2008. 693, 2397-2406. (d) Jaremko, L.; Kirillov, A. M.; Smolenski. P.: Lis, T.: Pombeiro, A. J. L. Inorg. Chem. 2008, 47, 2922-2924. (c) Mena-Cruz, A.; Lorenzo-Luis, P.; Romerosa, A.: Scrrano-Ruiz, M. Inorg. Chem. 2008, 47, 2246-2248. (f) Marchi, A.; Marchesi, E.; Marvelli, L.: Bergamini, P.; Bentolasi, V.; Ferretti, V. Eur. J. Inorg. Chem. 2008. 2670-2679. (g) Smolenski, P.; Dinoi, C.; Guedes da Silva, M. F. C.; Pombeiro, A. J. L. J. Organomer. Chem. 2008. 693, 2338-2344. (h) Mcbi, C. A.; Frost, B. J. Inorg. Chem. 2007. 46. 7115-7120. (i) Mohr, F.; Falvello, L. R.; Laguna, M. Eur. J. Inorg. Chem. 20N6, 3152-3154. (j) Wang, Z.; Liu, J.; He, C.; Jiang, S.; Akcrmark, B.; Sun. L. Inorg. Chim. Acta 2007, 360, 2411-2419. (k) Frost, B. J.; Bautista, C. M.; Huang, R.; Shearer, J. Inorg. Chem. 2006, 45, 3481-3483. (1) Phillips, A. D.; Gonsalvi, L.; Romerosa, A.; Vizza, F;; Peruzzini, M. Coord. Chem. Rev. 2004, 248, 955-993. (m) Darenshourg, D. J.; Robertson, J. B.; Larkins, D. L.; Reibenspies, J. H. Inorg. Chem. 1999. 38. 2473-248 1.
(6) (a) Erlandsson. M.; Landaela, V. R.; Gonsalvi, L.; Peruzzini, M.; Phillips, A. D.: Dyson, P. J.; Laurenczy, G. Eur. J. Inorg. Chem. 2008, 620-627. (b) Korthals, B.; Gottker-Schnetmann, I.; Mecking, S. Organometallics 2007, 26, 1311-1316. (c) Xu, X.; Wang, C.; Zhou, Z.; Tang, X.; He, Z.; Tang, C. Eur. J. Org. Chem. 2007, 4487-4491. (d) Ruiz, J.; Cutillas, N.; Lopez, F.; López, G.; Bautista, D. Organometallics 2006, 25, 5768-5773. (e) Krogstad, D. A.; DeBoer, A. J.; Ortmeier, W. J.: Rudolf, J. W.; Halfen, J. A. Inorg. Chem. Commun. 2005, B. 114 I-1 144. (f) Mejia-Rodriguez, R.; Chong, D.; Reibenspies, J. H.; Soriaga, M. P.; Darensbourg, M. Y. J. Am. Chem. Soc. 2004, J. H. 12004-12014. (g) Darensbourg, D. J.; Joठ, F.; Kannisto, M.; Katho, A.; Reibenspies, J. H.; Daigle, D. J. Inorg. Chem. 1994, 33, 2(0)-208.
(7) (a) Smith, M. B.; Dale, S. H.; Coles, S. J.; Gelbrich, T.; Hursthouse, M. B.; Light. M. E.; Horton, P. N. CrystEngComm 2007, 9, 165-175. (b) Dann, S. E.; Durran, S. E.; Elsegood, M. R. J.; Smith, M. B.; Staniland, P. M.; Talib, S.; Dale, S. H. J. Organomet. Chem. 2006, 691, 4829-4842. (c) Elsegood, M. R. J.; Smith, M. B.; Staniland, P. M. Inorg. Chem. 2006, 45, 6761-6770. (d) Smith, M. B.; Dale, S. H.; Coles, S. J.; Gelbrich, T.; Hursthouse, M. B.; Light, M. E. CrystEngComm 2006, 8, 140-149.
(8) Frank, A. W.; Drake Jr., G. L. J. Org. Chem. 1972, 37, 2752-2755.
(9) Bennett, M. A.; Smith, A. K. J. Chem. Soc., Dalton Trans. 1974, 233241.
(10) White, C.; Yates, A.; Maitlis, P. M. Inorg. Synth. 1992, 29, 228-234.
by fast atom bombardment (FAB) in a positive ionization mode using a 3 -nitrobenzyl alcohol (NOBA) matrix. Compounds 6 a and 6b were analyzed (Finnigan MAT 95XP) by low-resolution FAB (LSIMS) in positive ionization mode using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the solvent and a NOBA matrix.

Preparation of 1 a . To a solution of THPC ($\mathbf{3 . 8 3 \mathrm { g } , 2 0 . 1 \mathrm { mmol } \text {) }) ~ (2)}$ in $\mathrm{EtOH}(100 \%, 75 \mathrm{~mL})$ was added dropwise $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NH}_{2}(8.94$ $\mathrm{g} .83 .4 \mathrm{mmol})$. During the addition, heat was generated, and thick white fumes were observed. After about 5 min , the solution became clear. The mixture was stirred for 2 h at room temperature (frequently some unwanted "sticky" material was formed which was separated from the solution by decantation) and the volume reduced on a rotary evaporator to approximately a quarter of the original volume. The resulting crystalline solid was filtered and dried under vacuum. Yield: $7.60 \mathrm{~g}(86 \%)$. Selected data is as follows. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: -55.0 ppm . ${ }^{1} \mathrm{H}$ NMR: 9.55 (br, $\mathrm{NH}_{2}, 2 \mathrm{H}$), 7.59-7.01 (m, arom. H, 15H), 4.21 ($\mathrm{s}, \mathrm{CH}_{2}, 2 \mathrm{H}$), 3.42-3.38 (m, $\mathrm{CH}_{2}, 8 \mathrm{H}$), 3.18 (d, ${ }^{2} \mathrm{~J}_{\mathrm{PH}} 13.6, \mathrm{CH}_{2}, 2 \mathrm{H}$), $2.65\left(\mathrm{t}, \mathrm{CH}_{2}, 2 \mathrm{H}\right) \mathrm{ppm}$. FT-IR: 3028 and 2781 (br, NH and CH) cm^{-1}. FAB-MS: $m / 2404$ [$\mathrm{M}-\mathrm{Cl}$]. Anal. Calcd for $\mathrm{C}_{2} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{PCl}$: C, 68.24; $\mathrm{H}, 7.12 ; \mathrm{N}$, 9.55. Found: C, 68.25; H, 7.10; N, 9.58 .

Preparation of 1 b . To a solution of THPC $(2.85 \mathrm{~g}, 14.9 \mathrm{mmol})$ in $\mathrm{EtOH}(100 \%, 55 \mathrm{~mL})$ was added dropwise $4-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}_{2}$ $(7.77 \mathrm{~g}, 62.0 \mathrm{mmol})$. The mixture was stirred for 2 h at room temperature and the volume reduced on a rotary evaporator to approximately a quarter of the original volume. The resulting crystalline solid was filtered and dried under vacuum. Additional crops of 1b were obtained when the filtrate was allowed to stand for more than 24 h . Yield: $6.11 \mathrm{~g}(83 \%)$. Selected data is as follows. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: -55.2 ppm . ${ }^{1} \mathrm{H}$ NMR: $7.62-6.93$ (m , arom. H , 12 H), 4.21 ($\mathrm{s}, \mathrm{CH}_{2}, 2 \mathrm{H}$), 3.29 (multiplicity could not fully be assigned as a result of overlap with residual solvent peaks, CH_{2}), 3.18 (d, ${ }^{2} J_{\mathrm{PH}} 13.8, \mathrm{CH}_{2}, 2 \mathrm{H}$), 2.67 (t, $\mathrm{CH}_{2}, 2 \mathrm{H}$) ppm. FT-IR: 3044 and 2821 (br, NH and CH) cm^{-1}. FAB-MS: $m / z 458$ [M - Cl]. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{PCl}: \mathrm{C}, 60.78 ; \mathrm{H}, 5.73 ; \mathrm{N}, 8.51$. Found: C, 60.56; H, 5.58; N, 8.41.

Preparation of 2 a . A solution of $\mathrm{Na}\left(\mathrm{SbF}_{6}\right)(0.18 \mathrm{~g}, 0.69 \mathrm{mmol})$ in the minimum volume of high performance liquid chromatography (HPLC) grade $\mathrm{CH}_{3} \mathrm{OH}$ was added to a solution of $1 \mathrm{a}(0.20 \mathrm{~g}, 0.45$ mmol) in HPLC grade $\mathrm{CH}_{3} \mathrm{OH}(10 \mathrm{~mL})$. The solution was stirred at room temperature for 30 min . Concentration of the solution, under reduced pressure, and addition of distilled water afforded a colorless precipitate which was filtered and dried under vacuum. Yield: 0.28 g (97\%). Selected data is as follows. ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right\}$ NMR: $-55.2 \mathrm{ppm} .{ }^{1} \mathrm{H}$ NMR: 9.01 (br, $\mathrm{NH}_{2}, 2 \mathrm{H}$), 7.49-6.92 (m, arom. H, 15H), 4.22 (s, $\mathrm{CH}_{2}, 2 \mathrm{H}$), 3.57-3.41 (multiplicity could not fully be assigned as a result of overlap with residual solvent peaks, CH_{2}), 3.10 (d, ${ }^{2} J_{\mathrm{PH}}$ 12, $\mathrm{CH}_{2}, 2 \mathrm{H}$), $2.66\left(\mathrm{t}, \mathrm{CH}_{2}, 2 \mathrm{H}\right) \mathrm{ppm}$. FT-IR: 3064, 3031, and 2808 (s, NH and CH), 654 (vs, SbF) cm^{-1}. FAB-MS: m/z 404 [M SbF_{6}]. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{PSbF}_{6} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 46.25 ; \mathrm{H}, 4.98$; N, 6.47. Found: C, 46.35; H, 4.80; N, 6.46.
Preparation of 2 b . A solution of $\mathrm{Na}\left(\mathrm{SbF}_{6}\right)(0.16 \mathrm{~g}, 0.61 \mathrm{mmol})$ in the minimum volume of HPLC grade $\mathrm{CH}_{3} \mathrm{OH}$ was added to a solution of $\mathbf{1 b}\left(0.20 \mathrm{~g}, 0.40 \mathrm{mmol}\right.$) in HPLC grade $\mathrm{CH}_{3} \mathrm{OH}$ (10 mL). The solution was stirred at room temperature for 30 min . Concentration of the solution, under reduced pressure, and addition of distilled water afforded a colorless precipitate which was filtered and dried under vacuum. Yield: 0.21 g (73\%). Selected data is as follows. ${ }^{31}$ P $\left.{ }^{1} \mathrm{H}\right\}$ NMR: -55.0 ppm . ${ }^{1} \mathrm{H}$ NMR: 8.95 (br, $\mathrm{NH}_{2}, 2 \mathrm{H}$), 7.57-6.98 (m, arom. $\mathrm{H}, 12 \mathrm{H}$), 4.22 (s, $\mathrm{CH}_{2}, 2 \mathrm{H}$), $3.84-3.50$ (multiplicity could not fully be assigned as a result of overlap with residual solvent peaks, CH_{2}), 3.10 ($\mathrm{d},{ }^{2} J_{\mathrm{PH}} 13.6, \mathrm{CH}_{2}, 2 \mathrm{H}$), 2.67 (t , $\mathrm{CH}_{2}, 2 \mathrm{H}$) ppm. FT-IR: 3052, 2953, 2830, 2799, and 2730 (m, NH
and CH), 653 ($\mathrm{vs}, \mathrm{SbF}$) cm^{-1}. FAB-MS: $m / 2458\left[\mathrm{M}-\mathrm{SbF}_{6}\right]$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{PSbF}, \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 42.70 ; \mathrm{H}, 4.16$; $\mathrm{N}, 5.98$. Found: C. 42.46: H, 3.90; N, 5.87.

Preparation of 3 m . A solution of $\mathrm{K}\left(\mathrm{PF}_{6}\right)(0.13 \mathrm{~g}, 0.71 \mathrm{mmol})$ in the minimum volume of HPLC grade $\mathrm{CH}_{3} \mathrm{OH}$ was added to a solution of 1a ($0.20 \mathrm{~g}, 0.45 \mathrm{mmol}$) in HPLC grade $\mathrm{CH}_{3} \mathrm{OH}$ (10 mL). The solution was stirred at room temperature for 30 min . Concentration of the solution, under reduced pressure, and addition of distilled water afforded a colorless precipitate which was filtered and dried under vacuum. Yield: $0.18 \mathrm{~g}(72 \%)$. Selected data is as follows. ${ }^{3}{ }^{1}$ ('H) NMR: $-54.6,-144.2 \mathrm{ppm}$, ($^{1} \mathrm{JPF}^{\prime} 711, \mathrm{PFF}_{6}{ }^{-}$). ${ }^{1} \mathrm{H}$ NMR: 9.02 (br, $\mathrm{NH}_{2}, 2 \mathrm{H}$), 7.49-7.01 (m, arom. $\mathrm{H}, 15 \mathrm{H}$), 4.23 (s, $\mathrm{CH}_{2}, 2 \mathrm{H}$), 3.85-3.41 (mulliplicity could not fully be assigned as a result of overlap with residual solvent peaks, CH_{2}), 3.10 ($\mathrm{d},{ }^{2} J_{\mathrm{PH}}$ 14. $\mathrm{CH}_{2}, 2 \mathrm{H}$), $2.67\left(\mathrm{~L} . \mathrm{CH}_{2}, 2 \mathrm{H}\right.$) ppm. FT-IR: 3030 and 2809 (w, NH and CH), 842 (vs, PF) cm^{-1}. FAB-MS: $m / z 404$ [M - PF P_{6}]. Anal. Calcd for $\mathrm{C}_{2} \mathrm{H}_{31} \mathrm{~N}, \mathrm{P}_{2} \mathrm{~F}_{6}$: C, 54.64; H, 5.70; N, 7.65. Found: C, 55.03; H, 5.61; N, 7.68.

Preparation of $\mathbf{3 b}$. A solution of $\mathrm{K}\left(\mathrm{PF}_{0}\right)(0.11 \mathrm{~g}, 0.60 \mathrm{mmol})$ in the minimum volume of HPLC grade $\mathrm{CH}_{3} \mathrm{OH}$ was added to a solution of 1 b (0.20 g .0 .40 mmol) in HPLC grade $\mathrm{CH}_{3} \mathrm{OH}$ (10 mL). The solution was stirred at room temperature for 30 min . Concentration of the solution, under reduced pressure, and addition of distilled water afforded a colorless precipitate which was filtered and dried under vacuum. Yield: $0.20 \mathrm{~g}(83 \%)$. Selected data is as
 NMR: 9.00 (br, $\mathrm{NH}_{2}, 2 \mathrm{H}$). 7.58-6.98 (m, arom. H, 12H), 4.22 (s, $\mathrm{CH}_{2}, 2 \mathrm{H}$), 3.84-3.51 (multiplicity could not fully be assigned as a result of overlap with residual solvent peaks, CH_{2}), 3.12 ($\mathrm{d},{ }^{2} J_{\mathrm{PH}}$ 13.6. CH_{2}. 2H), 2.67 (t, $\left.\mathrm{CH}_{2}, 2 \mathrm{H}\right) \mathrm{ppm}$. FT-IR: 3077, 3042, 3007 , 2949. 2820 ($\mathrm{m} . \mathrm{NH}$ and CH), 848 (vs, PF) cm^{-1}. FAB-MS: m / z $458\left(\mathrm{M}-\mathrm{PF}_{\mathrm{A}}\right)$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{2 \mathrm{~B}} \mathrm{~N}_{3} \mathrm{P}_{2} \mathrm{~F}_{9} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 48.32 ; \mathrm{H}$, 4.88; N, 6.76. Found: C. 48.21 ; H, 4.51; N, 6.72.

Preparation of $\mathrm{RuCl}_{2}\left(\eta^{6}-p\right.$-Cymene)(2a) (4). To a stirred solution of $\left\{\mathrm{RuCl}_{2}\left(\eta^{6} \text { - } p \text {-cymenc) }\right\rangle_{2}(0.030 \mathrm{~g}, 0.049 \mathrm{mmol})\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) was added $2 \mathrm{a}(0.063 \mathrm{~g}, 0.10 \mathrm{mmol}$) as a solid in one portion. The solution was stirred for 30 min , the volume reduced to about 1-2 mL under reduced pressure, and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ added. The suspension was stirred for 30 min and the solid collected on a glass sinter and dried under vacuum. Yield: $0.080 \mathrm{~g}(91 \%)$. Selected data is as follows. ${ }^{31} \mathrm{P}(\mathrm{I} \mathrm{H}) \mathrm{NMR}: 7.3 \mathrm{ppm} .{ }^{1} \mathrm{H}$ NMR: 8.98 (br, $\mathrm{NH}_{2}, 2 \mathrm{H}$), 7.53-6.99 (m. arom. $\mathrm{H}, 15 \mathrm{H}$), 5.94 (dd, ${ }^{3} \mathrm{~J}_{\mathrm{PH}} 8, \mathrm{C}_{6} \mathrm{H}_{4}$, 41I), 4.29 (s. $\mathrm{CH}_{2}, 2 \mathrm{H}$), 4.02 (d, ${ }^{2} \mathrm{JPII} 4.8, \mathrm{CH}_{2}, 2 \mathrm{H}$), $3.80-3.71$ (m, $\mathrm{CH}_{2}, 4 \mathrm{H}$), 3.45 (partially obscured by solvent, CH_{2}), 2.62 (sept, ${ }^{3} J_{\text {PH }}$ 6.8. $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H}\right), 1.96\left(\mathrm{CH}_{3}, 3 \mathrm{H}\right), 1.14\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PH}} 6.8\right.$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 6 \mathrm{H}\right) \mathrm{ppm}$. FT-IR: 3060 and 2967 (w, NH and CH), 660 (vs, SbF) cm^{-1}. FAB-MS: $m / z 710\left[\mathrm{M}-\mathrm{SbF}_{6}\right.$]. Anal (bulk material). Calcd for $\mathrm{C}_{35} \mathrm{H}_{4} \mathrm{~N}_{3} \mathrm{PSbF}_{0} \mathrm{RuCl}_{2} \cdot 3.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{C}, 37.18 ; \mathrm{H}$, 4.22; N. 3.38. Found: C. 37.17; H, 4.00; N, 3.24. A single crystal X-ray determination of 4 showed $1.67 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecules present in the crystal lattice.

Preparation of $\mathbf{R h C l}_{2}\left(\boldsymbol{\eta}^{\mathbf{5}}-\mathrm{Cp}^{*}\right)(2 \mathrm{a})$ (5). To a stirred solution of $\left(\left.\mathrm{RhCl}_{2}\left(r^{3}-\mathrm{Cp}^{*}\right)\right|_{2}(0.030 \mathrm{~g} .0 .050 \mathrm{mmol})\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added 2a ($0.062 \mathrm{~g}, 0.10 \mathrm{mmol}$) as a solid in one portion. The solution was stirred for 30 min , the volume reduced to about $1-2$ mL under reduced pressure, and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ added. The suspension was stirred for 30 min and the solid collected on a glass sinter and dried under vacuum. Yield: $0.090 \mathrm{~g}(98 \%)$. Selected data is as follows. ${ }^{31} \mathrm{P}\left({ }^{\prime} \mathrm{H}\right\}$ NMR: $4.6 \mathrm{ppm},{ }^{1} J_{\mathrm{Rhp}}$ 144. ${ }^{3} \mathrm{H}$ NMR: 7.51-6.91 (m, arom. H, 15H), $4.37\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.10\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$, 2 H), 3.76 (d, ${ }^{2} \mathrm{~J}_{\mathrm{PH}} 12.4, \mathrm{CH}_{2}, 4 \mathrm{H}$), 3.22 (multiplicity could not fully be assigned as a resull of overlap with residual solvent peaks, CH_{2}), 1.67 (s, $\eta^{3}-\mathrm{Cp}^{*}, 15 \mathrm{H}$) ppm. FT-IR: 3031 (br, NH and CH), 660
(vs, SbF) cm^{-1}. FAB-MS: $m / z 712$ [$\mathrm{M}-\mathrm{SbF}_{6}$]. Anal (bulk material). Calcd for $\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{~N}_{3} \mathrm{PSbF}_{6} \mathrm{RhCl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{C}, 41.81 ; \mathrm{H}$, 4.68; $\mathrm{N}, 4.06$. Found: $\mathrm{C}, 41.46 ; \mathrm{H}, 4.50$; $\mathrm{N}, 4.07$. A single crystal X-ray determination of 5 showed two $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecules present in the crystal lattice.
Preparation of trans- $\mathrm{RhCl}(\mathbf{C O})(\mathbf{1 a})_{\mathbf{2}}$ (6a). To a stirred solution of $\left\{\mathrm{RhCl}(\mathrm{CO})_{2}\right\}_{2}(0.030 \mathrm{~g}, 0.080 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added $1 \mathrm{a}(0.14 \mathrm{~g}, 0.32 \mathrm{mmol})$ as a solid in one portion. The dark orange solution immediately went pale yellow, and a yellow solid was deposited within about 10 min . The suspension was stirred for 30 min , the volume reduced to about $1-2 \mathrm{~mL}$ under reduced pressure, and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ added. The solid was collected on a glass sinter and dried under vacuum. Yield: 0.14 g (88\%). As a result of the extreme insolubility of 6a in both nonpolar and polar solvents, no meaningful NMR (${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}$) data could be obtained for this compound. FT-IR: 1979 (CO) cm^{-1}. LSI-MS: $m / z 1009$ [M $2 \mathrm{H}-\mathrm{Cl}$. Anal. Calcd for $\mathrm{C}_{51} \mathrm{H}_{62} \mathrm{~N}_{6} \mathrm{OP}_{2} \mathrm{RhCl}_{3} \cdot 1.25 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{C}$, 54.45; H, 5.65; N, 7.29. Found: C, 54.28; H, 5.40; N, 7.46.

Preparation of trans- $\mathrm{RhCl}(\mathrm{CO})(1 \mathrm{~b})_{2}(6 \mathrm{~b})$. To a stirred solution of $\left\{\mathrm{RhCl}(\mathrm{CO})_{2}\right\}_{2}(0.030 \mathrm{~g}, 0.080 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added $1 \mathrm{lb}(0.15 \mathrm{~g}, 0.30 \mathrm{mmol})$ as a solid in one portion. The dark orange solution immediately went pale yellow, and a yellow solid was deposited within about 10 min . The suspension was stirred for 30 min , the volume reduced to about $1-2 \mathrm{~mL}$ under reduced pressure, and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ added. The solid was collected on a glass sinter and dried under vacuum. Yield: 0.16 g (93%). As a result of the extreme insolubility of $\mathbf{6 b}$ in both nonpolar and polar solvents, no meaningful NMR (${ }^{(} \mathrm{H},{ }^{31} \mathrm{P}$) data could be obtained for this compound. FT-IR: 1979 (CO) cm^{-1}. LSI-MS: $m / z 1117$ [M $2 \mathrm{H}-\mathrm{Cl}$. Anal. Calcd for $\mathrm{C}_{51} \mathrm{H}_{56} \mathrm{~N}_{6} \mathrm{OP}_{2} \mathrm{~F}_{6} \mathrm{RhCl}_{3} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\mathrm{C}, 50.40$; H, 4.72; N, 6.78. Found: C, 50.63; H, 4.70; N, 6.94.
X-ray Crystallography. Suitable crystals of $\mathbf{1 b}$ were obtained by allowing an ethanol filtrate, obtained from the reaction of THPC with $4-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}_{2}$, to stand for several days. Crystals of 2b and 3 a were obtained upon layering $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions with petroleum ether (bp $40-60^{\circ} \mathrm{C}$) over several days. Slow diffusion of petroleum ether ($\mathrm{bp} 40-60^{\circ} \mathrm{C}$) into a $\mathrm{CDCl}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution gave X-ray quality crystals of $4 \cdot 1.67 \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Vapor diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution gave suitable crystals of $5 \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Measurements for $\mathbf{1 b}, \mathbf{2 b}, 3 \mathrm{a}$, and $4 \cdot 1.67 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ were made on a Bruker Apex 2 CCD diffractometer, at 150 K , using graphitemonochromated radiation from a sealed tube Mo K α source ($\lambda=$ $0.71073 \AA$). Diffraction data for $5 \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was collected, at 120 K , using a rotating anode source and a Bruker-Nonious Roper CCD camera. Narrow frame ω scans were employed for $\mathbf{1 b}, \mathbf{2 b}, \mathbf{3 a}$, and $4 \cdot 1.67 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and ϕ and ω scans were used for $5 \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Intensities were corrected semi-empirically for absorption on the basis of symmetry-equivalent and repeated reflections. The structures were solved by direct methods (Patterson synthesis for $4 \cdot 1.67 \mathrm{CH}_{2} \mathrm{Cl}_{2}$) and refined on F^{2} values for all unique data by fullmatrix least-squares. Table 1 gives further details. All non-hydrogen atoms were refined anisotropically. NH hydrogens for $\mathbf{2 b}, \mathbf{3 a}$, and 4 had coordinates freely refined with U_{eq} set to $1.2 U_{\mathrm{eq}}$ of the carrier atom, while the remaining hydrogen coordinates were constrained using a riding model with $U_{\text {eq }}$ set to $1.2 U_{\text {eq }}$ of the carrier atom ($1.5 \mathrm{U}_{\mathrm{eq}}$ for methyl hydrogen). In $4 \cdot 1.67 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, one of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecules was modeled as disordered over two sets of positions. This disorder was refined with restraints on geometry and anisotropic displacement parameters. The major component was equal to $66.0(3) \%$. In $5 \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, the $\mathrm{SbF}_{6}{ }^{-}$counterion was found to be disordered over two sets of positions and was refined as above, the major component equal to $80.7(5) \%$. Programs used were COL-

Table 1. Details of the X -ray Data Collections and Refinements for Compounds 1b, 2b, 3a, 4•1.67CH2 $\mathrm{Cl}_{2 \text {, }}$ and $\mathbf{5 \cdot 2} 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$

	1b	2b	3a	$4 \cdot 1.67 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	5.2CH2 Cl_{2}
formula	$\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{ClF}_{3} \mathrm{~N}_{3} \mathrm{P}$	$\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~F}_{9} \mathrm{~N}_{3} \mathrm{PSb}$	$\begin{aligned} & \mathrm{C}_{25} \mathrm{H}_{31} 3 \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{P}_{2} \end{aligned}$	$\mathrm{C}_{36.67} \mathrm{H}_{48.33} \mathrm{Cl}_{5.33} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{PRuSb}$ 1087.65	$\mathrm{C}_{37} \mathrm{H}_{50} \mathrm{Cl}_{6} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{PRhSb}$ 1119.13
M	493.92	694.22	549.47	1087.65	$0.16 \times 0.10 \times 0.04$
cryst dimens (mm^{3})	$0.40 \times 0.34 \times 0.23$	$0.27 \times 0.21 \times 0.04$	$0.50 \times 0.21 \times 0.15$ block, colorless	block, orange	plate, orange
cryst morphology, color	block. colorless	plate, coloriess triclinic	orthorhombic	triclinic	monoclinic
space group	Ama2		Pbca	PI	$P 2_{1} / n$
$a(A)$	13.7194(15)	8.5038(12)	17.9476(5)	12.9426(5)	$8.9106(3)$
b (A)	18.513(2)	8.8389(13)	$15.8400(5)$	14.0425(5)	14.7367(4)
$c\left(\begin{array}{l}\text { a }\end{array}\right.$	$9.5476(10)$	19.082(3)	19.1365(6)	$14.7175(6)$	30.8857(9)
α (deg)		77.019(2)		65.2785(5)	
β (deg)		78.879(2)		70.5853(5)	95.887
γ (deg)		84.880(2)		66.5392(5)	
$V\left(A^{\prime}\right)$	2425.0(5)	1369.8(3)	5440.3(3)	2	
Z	4	2	8	21383	1.578
$\mu\left(\mathrm{mm}^{-1}\right)$	0.265	1.147 $2.23-24.76$	0.220 2020.30 .55	1.67-30.55	2.99-27.55
θ range (deg)	2.20-28.97	2.23-24.76	$2.02-30.55$ 62276	25887	47660
measured reflns	10554	40538	8335	13047	9116
independent refins	2932 2902	4603	6759	11295	6545
observed refins $\left(F^{2}>2 \sigma\left(F^{2}\right)\right)$	2902 0.0216	4154 0.0227	0.0291	0.0183	0.0658
$R_{\text {mint }}\left[F^{2}>2 \sigma\left(R^{2}\right)\right]^{\text {a }}$	0.0216 0.0546	0.0227 0.0259	0.0377	0.0377	0.0830
$R 1\left[F^{2}>2 \pi\left(F^{2}\right)\right]^{\text {a }}$	0.0546 0.1281	0.0675	0.1091	0.1033	0.2031
$\underset{\sim}{w}$ largest difference map	0.1888, -0.621	0.838, -0.759	0.408, -0.316	1.863, -1.184	1.389, -0.648

LECT ${ }^{11}$ or Bruker AXS APEX 2^{12} for diffractometer control, DENZO ${ }^{13}$ or SAINT ${ }^{14}$ for frame integration, Bruker SHEL XTL ${ }^{15,16}$ for structure solution, refinement, and molecular graphics, and local programs. Disordered molecules of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (for $5 \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$) were modeled by the Platon Squeeze procedure. ${ }^{17}$

Results and Discussion

Commercially available THPC $\left(\left[\mathrm{PP}_{2}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{4}\right] \mathrm{Cl}\right)$ has previously been shown to react with primary aromatic amines, through a serics of condensation and elimination steps, to give aniline based tertiary phosphines. ${ }^{8.18}$ In contrast, we have found when more basic benzylic amines such as $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NH}_{2}$ and $4-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}_{2}$ are reacted with THPC (ca. 4:1 ratio), crystalline cationic chloride salts 1 a and $\mathbf{1 b}$ are obtained in high yields (typical nonoptimized yields $>80 \%$, Scheme 1). Using this procedure we have successfully synthesized batches of 1 a at the $5-10 \mathrm{~g}$ scale. Anion metathesis of 1 a or 1 b with $\mathrm{Na}\left(\mathrm{SbF}_{6}\right)$ or $\mathrm{K}\left(\mathrm{PF}_{6}\right)$ in $\mathrm{CH}_{3} \mathrm{OH}$ at room temperature gave the corresponding salts $\mathbf{2 a - 3 b}$ in excellent yields ($72-97 \%$). Compounds $1 \mathrm{a}-3 \mathrm{~b}$ have been fully characterized by spectroscopic and analytical methods.
(11) Hoof, R. W. W. COLLECT: Data Collection Software; Nonius B. V., 1948.
(12) APEX 2: User Manual; Bruker AXS Inc.: Madison, WI, 2005.
(13) Otwinowski, Z.; Minor, W. DENZO. In Methods in Enzymology, Macromolecular Crystallography, Part A; Carter, C. W., Jr., Sweet, R. M. Eds.; Academic Press: New York, 1997; Vol. 276, pp 307-326.
(14) SAINT: Sofrware for CCD Diffractometers; Bruker AXS Inc.: Madison, WI. 2001.
(15) Sheldrick, G. M. Acta Crystallogr., Sect. A 2008, 64, 112-122.
(16) Sheldrick, G. M. SHELXTL User Manual, v.6.10; Bruker AXS Inc.: Madison, WI, 2001.
(17) Spek. A. L. Acta Crystallogr., Sect. A 1990, 46, C34.
(18) (a) Hatnean, J. A.; Raturi, R.; Lefebvre, J.; Leznoff, D. B.; Lawes, G.; Johnson, S. A. J. Am. Chem. Soc. 2006, 128, 14992-14999. (b) Han, H.; Elsmaili, M.; Johnson, S. A. Inorg. Chem. 2006, 45, 74357445. (c) Keen, A. L.; Doster, M.; Han, H.; Johnson, S. A. Chem. Commun. 2006, 1221-1223. (d) Han, H.; Johnson, S. A. Organometallics 2006. 25, 5594-5602.

Scheme 1. Preparation of Salts 1a-3b ${ }^{a}$

a Key, reagents and conditions: (i) 4.1 equiv of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NH}_{2}$ or 4.2
equiv of $4-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}_{2}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, and (ii) $\mathrm{Na}\left(\mathrm{SbF}_{6}\right)$ or $\mathrm{K}\left(\mathrm{PF}_{6}\right), \mathrm{CH}_{3} \mathrm{OH}$.
In particular, the ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right)$ NMR spectra (${ }^{(d m s o-} d^{6}$) of $\mathbf{1 a - 3 b}$ showed a single phosphorus resonance around $\delta_{\mathrm{P}}-55 \mathrm{ppm}$, some 40 ppm downfield with respect to PTA [$\delta_{\mathrm{p}}-96.2 \mathrm{ppm}$, $\mathrm{D}_{2} \mathrm{O}$]. ${ }^{2 \mathrm{a}} \mathrm{At}$ ambient temperature, 1a-3b possess good solubility in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{3} \mathrm{OH}$, and dmso but were found to be insoluble in $\mathrm{H}_{2} \mathrm{O}$. Furthermore, in the solid state, 1a-3b are air stable but slowly oxidize in dmso- d^{6} solution over about 24 h .

The X-ray structures of $\mathbf{1 b}$ (Figure 1), 2b (Supporting Information), and 3a (Figure 2) have been determined. Compound 1b was found to lie across a crystallographic mirror plane that bisects the ammonium group of the cation and the methylene diamine bridge (mirror plane runs through $[P(1) / C(1) / N(1) / C(2) / C(3) / C(6) / F(1) / C(8)]$. Inspection of the intracage $\mathrm{P}-\mathrm{C}$ bond lengths and $\mathrm{P}-\mathrm{C}-\mathrm{N}$ bond angles reveals close similarities with those of PTA. ${ }^{19}$ The $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angles within the $\mathrm{P}-\mathrm{C}-\mathrm{N}-\mathrm{C}-\mathrm{N}-\mathrm{C}$ ring in 1b, 2b, and 3a are in the range of 97.78(5)-99.4(2) ${ }^{\circ}$ and are slightly enlarged in comparison with PTA [C-P-C, $\left.96.1(1)^{\circ}\right]^{19}$ The most significant structural

[^15]

Figure 1. (a) Oak Ridge thermal ellipsoid plot (ORTEP) of the cation in 1b. Selected bond lengths (\AA) and angles (deg): $P(1)-C(1) 1.841(5), P(1)-C(7)$ $1.847(3) ; \mathrm{P}(1)-\mathrm{C}(1)-\mathrm{N}(1) 116.2(3), \mathrm{P}(1)-\mathrm{C}(7)-\mathrm{N}(2) 113.8(2)$. Thermal ellipsoids are drawn at the 50% probability level. (b) Packing plot of $\mathbf{1 b}$ viewed along the c-axis showing the H -bonded sheet pattern.

(a)

(b)

Figure 2. (a) ORTEP of the cation in 3a. Selected bond lengths (\AA) and angles (deg): $\mathrm{P}(1)-\mathrm{C}(1) 1.8490(12), \mathrm{P}(1)-\mathrm{C}(9) 1.8359(12), \mathrm{P}(1)-\mathrm{C}(10) 1.8366(13)$; $\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{N}(1) 116.70(7), \mathrm{P}(1)-\mathrm{C}(9)-\mathrm{N}(2) 114.09(7), \mathrm{P}(1)-\mathrm{C}(10)-\mathrm{N}(3) 113.53$ (7). Thermal ellipsoids are drawn at the 50% probability level. (b) Packing plot of 3a viewed along the c-axis showing the 1-D chain pattern.
feature observed in $\mathbf{1 b}, \mathbf{2 b}$, and $\mathbf{3 a}$ is the presence of a pair of intramolecular hydrogen bonds between $\mathrm{N}(1)-\mathrm{H}-$ (1A) $\cdots \mathrm{N}\left(2\right.$ or $\left.2^{\prime}\right)$ and $\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B}) \cdots \mathrm{N}(2$ or 3$)$ [$\mathbf{1 b}$, $\mathrm{N}(1) \cdots \mathrm{N}(2) 2.915(5) \AA, \mathrm{H}(1 \mathrm{~B}) \cdots \mathrm{N}(2) 2.27 \AA, \mathrm{~N}(1)-$ $\mathrm{H}(1 \mathrm{~B}) \cdots \mathrm{N}(2) 126^{\circ} ; \mathbf{2 b}, \mathrm{N}(1) \cdots \mathrm{N}(2) 2.804(3) \AA, \mathrm{H}(1 \mathrm{~A}) \cdots$ $\mathrm{N}(2) 2.14(3) \AA, \mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A}) \cdots \mathrm{N}(2) 138(3)^{\circ}$ and $\mathrm{N}(1) \cdots \mathrm{N}(3)$ $2.841(3) \AA, \mathrm{H}(1 \mathrm{~B}) \cdots \mathrm{N}(3) 2.20(3) \AA, \mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B}) \cdots \mathrm{N}(3)$ $130(2)^{\circ}$; and $3 \mathrm{a}, \mathrm{N}(1) \cdots \mathrm{N}(2) 2.8506(13) \AA, \mathrm{H}(1 \mathrm{~A}) \cdots \mathrm{N}(2)$ $2.241(15) \AA, \mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A}) \cdots \mathrm{N}(2) 128.7(12)^{\circ}$ and $\mathrm{N}(1) \cdots$ $\mathrm{N}(3) 2.8234(13) \AA, \mathrm{H}(1 \mathrm{~B}) \cdots \mathrm{N}(3) 2.154(15) \AA, \mathrm{N}(1)-$ $\mathrm{H}(1 \mathrm{~B}) \cdots \mathrm{N}(3) 132.9(12)^{\circ}$]. Various additional weak intermolecular H -bonding contacts exist between the cations and the $\mathrm{Cl}^{-}, \mathrm{SbF}_{6}{ }^{-}$, or $\mathrm{PF}_{6}{ }^{-}$counterions leading to infinite 1-D chains or 2-D sheet structures (see Supporting Information for further details).
The single crystal data highlight three key findings regarding the $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bonded framework ${ }^{20}$ in the cations of $\mathbf{1 b}, \mathbf{2 b}$, and $\mathbf{3 a}$, namely, (i) while all synthetic reactions were performed in alcohol solvents $\left(\mathrm{CH}_{3} \mathrm{OH}\right.$ or $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$) or required water for precipitation, no disruption of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ intramolecular hydrogen-bonded motif was apparent under the experimental or crystallization conditions employed; (ii) the core structure of each cation is independent of the counteranion $\left(\mathrm{Cl}^{-}, \mathrm{SbF}_{6}^{-}\right.$, or $\left.\mathrm{PF}_{6}^{-}\right)$even though the potential for alternate hydrogen-bonding arrangements in-
volving these anions is possible; and (iii) the absence of $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}-\mathrm{C}$ contacts, albeit rarely observed, ${ }^{21}$ shows that the three electronegative fluorines in the 4 -position ($\mathbf{1 b}$ and 2b) do not disrupt the $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bonding array found here.
Dyson and co-workers ${ }^{\text {4h, }}$ have previously shown that halfsandwich organometallic $\mathrm{Ru}^{\mathrm{II}}$ and $\mathrm{Rh}^{\text {III }}$ compounds of PTA can be synthesized. To assess whether $\mathbf{2 a}$ could function as a similar P-monodentate ligand, the piano-stool complexes 4 and 5 were prepared in high yields. Reassuringly, the coordination chemical shifts for $\mathbf{4}\left(\Delta \delta_{\mathrm{P}} 62 \mathrm{ppm}\right)$ and $5\left(\Delta \delta_{\mathrm{P}}\right.$ $60 \mathrm{ppm})$ were found to closely match those of $\mathrm{RuCl}_{2}\left(\eta^{6}-p\right.$ cymene)(PTA) ($\Delta \delta_{\mathrm{p}} 60 \mathrm{ppm}$) and $\mathrm{RhCl}_{2}\left(\eta^{5}-\mathrm{Cp}^{*}\right)(\mathrm{PTA})\left(\Delta \delta_{\mathrm{p}}\right.$ $65 \mathrm{ppm}),{ }^{4 \mathrm{~h}, \mathrm{j}}$ suggesting comparable stereoelectronic properties.

X-ray analyses of $\mathbf{4}$ and $\mathbf{5}$ have been performed (Figure 3). The $\mathrm{M}-\mathrm{P}, \mathrm{M}-\mathrm{Cl}(1)$, and $\mathrm{M}-\mathrm{Cl}(2)(\mathrm{M}=\mathrm{Ru}$ or Rh$)$ parameters for $\mathbf{4}$ and $\mathbf{5}$ are similar to those of analogous complexes with PTA. ${ }^{2 b, 4 h, j}$ Moreover, upon coordination of

Figure 3. (a) ORTEP of the cation in 4. Selected bond lengths (\AA) and angles (deg): $\mathrm{Ru}(1)-\mathrm{Cl}(1) 2.4064(7), \mathrm{Ru}(1)-\mathrm{Cl}(2) 2.4103(6), \mathrm{Ru}(1)-\mathrm{P}(1)$ $2.3293(6), \mathrm{Ru}(1)-\mathrm{C}_{\mathrm{av}} 2.210(3), \mathrm{P}(1)-\mathrm{C}(1) 1.843(2), \mathrm{P}(1)-\mathrm{C}(9)$ 1.831(3), $\mathrm{P}(1)-\mathrm{C}(10) 1.828(2) ; \mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{Cl}(2) 88.00(2), \mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{P}(1)$ 87.60(2), $\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{P}(1) 83.75(2), \mathrm{P}(1)-\mathrm{C}(1)-\mathrm{N}(1)$ 115.07(16), $\mathrm{P}(1)-\mathrm{C}(9)-\mathrm{N}(2) 110.35(16), \mathrm{P}(1)-\mathrm{C}(10)-\mathrm{N}(3) 111.74$ (16). (b) ORTEP of the cation in 5 . Selected bond lengths (\AA) and angles (deg): $\mathrm{Rh}(1)-\mathrm{Cl}(1)$ 2.406(2), $\mathrm{Rh}(1)-\mathrm{Cl}(2) 2.424(2), \mathrm{Rh}(1)-\mathrm{P}(1) 2.2851(19), \mathrm{Rh}(1)-\mathrm{C}_{\mathrm{av}} 2.188$ (8), $\mathrm{P}(1)-\mathrm{C}(1) 1.834(7), \mathrm{P}(1)-\mathrm{C}(9) 1.836(8), \mathrm{P}(1)-\mathrm{C}(10) 1.830(7) ; \mathrm{Cl}(1)-$ $\mathrm{Rh}(1)-\mathrm{Cl}(2) 92.67(8), \mathrm{Cl}(1)-\mathrm{Rh}(1)-\mathrm{P}(1) 88.85(7), \mathrm{Cl}(2)-\mathrm{Rh}(1)-\mathrm{P}(1)$ $83.37(7), \mathrm{P}(1)-\mathrm{C}(1)-\mathrm{N}(1) 115.4(5), \mathrm{P}(1)-\mathrm{C}(9)-\mathrm{N}(2) 110.1(5), \mathrm{P}(1)-$ $\mathrm{C}(10)-\mathrm{N}(3) 110.0(5)$.
the phosphine $\mathbf{2 a}$, there are minimal differences in the $\mathrm{P}-\mathrm{C}$ and $\mathrm{P}-\mathrm{C}-\mathrm{N}$ metric parameters with respect to $\mathbf{1 b}, \mathbf{2 b}$, or $\mathbf{3 a}$. As seen previously for $\mathbf{1 b}, \mathbf{2 b}$, or $\mathbf{3 a}$, pairs of intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds are once again maintained upon complexation $[4, N(1) \cdots N(2) 2.894(3) \AA, H(1 A) \cdots N(2)$ $2.22(3) \AA, \mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A}) \cdots \mathrm{N}(2) 130(3)^{\circ}$ and $\mathrm{N}(1) \cdots \mathrm{N}(3)$ $2.840(3) \AA, \mathrm{H}(1 \mathrm{~B}) \cdots \mathrm{N}(3) 2.24(3) \AA, \mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B}) \cdots \mathrm{N}(3)$ $128(3)^{\circ} ; 5, \mathrm{~N}(1) \cdots \mathrm{N}(2) 2.952(9) \AA, \mathrm{H}(1 \mathrm{~A}) \cdots \mathrm{N}(2) 2.34 \AA$, $\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A}) \cdots \mathrm{N}(2) 124^{\circ}$ and $\mathrm{N}(1) \cdots \mathrm{N}(3) 2.851(8) \AA$, $\mathrm{H}(1 \mathrm{~B}) \cdots \mathrm{N}(3) 2.18 \AA, \mathrm{~N}(1)-\mathrm{H}(1 \mathrm{~B}) \cdots \mathrm{N}(3) 129^{\circ}$]. Additional weak H -bonding interactions link molecules into dimer pairs (Supporting Information) and is a feature that has recently been observed in cationic dimeric $\mathrm{Ru}^{\text {II }}$ complexes of PTA. ${ }^{22}$

The electronic properties of $\mathbf{1 a}$ and $\mathbf{1 b}$ have been evaluated through preparation of the square-planar dicationic Rh^{I} carbonyl complexes 6a (88\%) and 6b (93\%) from $\mathrm{Rh}_{2}(\mathrm{CO})_{4}(\mu-\mathrm{Cl})_{2}$ and the appropriate ligand. Both Rh^{I} compounds displayed poor solubility in common solvents
preventing full characterization. However, FT-IR spectra of $\mathbf{6 a}$ and $\mathbf{6 b}$ were recorded as KBr pellets and showed, in each case, a single terminal carbonyl band at $\nu_{\text {CO }} 1979 \mathrm{~cm}^{-1}$. These findings suggest the electronic properties of $\mathbf{1 a}(\mathrm{R}=$ $\left.\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$ and $\mathbf{1 b}\left(\mathrm{R}=4-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}\right)$ are similar despite the different para substituents. Although no direct comparisons between the FT-IR data for $\mathbf{6 a}$ and $\mathbf{6} \mathbf{b}$ with the known neutral complexes trans- $\mathrm{RhCl}(\mathrm{CO})(\mathrm{L})_{2}\left[\mathrm{~L}=\mathrm{PTA}, v_{\mathrm{CO}} 1963 \mathrm{~cm}^{-1}\right.$ (chloroform); $\mathrm{L}=$ "lower-rim" trisubstituted analogues of PTA, $v_{\mathrm{CO}} 1978-1987 \mathrm{~cm}^{-1}$ (chloroform) $]^{2 \mathrm{c}, 23}$ can be drawn, 1a and 1b can be viewed as possessing similar electron donating properties to this series of PTA ligands.

Concluding Remarks

In summary, we have shown how simple modification of the PTA core can be achieved in which noncovalent interactions maintain the rigid cage structure in the solid state. Further studies are in progress and directed toward understanding the properties of this ligand family in aqueous and organic media, their coordination chemistry, and potential catalytic or medicinal applications.

Acknowledgment. We thank the EPSRC, Loughborough University, and Niger Delta University, Bayelsa State, Nigeria, for funding (A.T.E., A.J.L.). Rhodia UK Ltd. (Dr. Ranbir Padda) and Johnson Matthey are gratefully acknowledged for their kind donations of THPC and precious metal salts, respectively. We wish to acknowledge the use of the EPSRC Chemical Database Service at Daresbury.

Supporting Information Available: X-ray data for 1b, 2b, 3a, $4 \cdot 1.67 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and $5 \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in CIF format and additional figures and details. This material is available free of charge via the Internet at http://pubs.acs.org.

IC801709Z

[^16]
[^0]: ${ }^{2}$ Calculated values in parentheses.

[^1]: ${ }^{2}$ All NMR recorded in d ${ }^{6}$-DMSO; ${ }^{\text {b }}$ Aromatic $\mathrm{H}, \mathrm{m},\left(15 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right.$ for 152 or $12 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$ for $\left.153-161\right)$
 ${ }^{c} \mathrm{NH}$ proton signals, $\mathrm{s}, 1 \mathrm{H} ;{ }^{\mathrm{d}} \mathrm{NCH}_{2} \mathrm{~N}$ protons, d, $1 \mathrm{H},{ }^{2} J_{\mathrm{HH}}$ coupling in brackets
 ${ }^{\mathrm{e}} \mathrm{NCH}_{2} \mathrm{~N}$ protons, d, $1 \mathrm{H},{ }^{2} \mathrm{~J}_{\mathrm{HH}}$ coupling in brackets; ${ }^{\mathrm{f}} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}$ protons, $\mathrm{m}, 4 \mathrm{H}$
 ${ }^{\mathbf{g}} \mathrm{PCH}_{2} \mathrm{~N}$ protons, 2 H , multiplicity obscured by solvent signal

[^2]: ${ }^{\text {a }}$ Calculated values in parentheses.

[^3]: ${ }^{a}$ Recorded as a pressed KBr disk.

[^4]: ${ }^{a}$ All ${ }^{31} \mathrm{P}$ NMR recorded in CDCl_{3}, ${ }^{\text {b }}$ Aromatic $\mathrm{H}, \mathrm{m},\left(12 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$, ${ }^{c} \mathrm{NH}$ proton signals, ($\mathrm{d}, 1 \mathrm{H},{ }^{3} J_{\mathrm{PH}}$ coupling in brackets).

[^5]: ${ }^{\text {a }}$ Estimated standard deviations in parentheses.

[^6]: ${ }^{2}$ Recorded as a pressed KBr disk.

[^7]: ${ }^{2}$ Estimated standard deviations in parentheses.

[^8]: ${ }^{\text {a }}$ Estimated standard deviations in parentheses.

[^9]: ${ }^{2}$ Recorded as pressed KBr disk; n.o. $=$ not observed.

[^10]: ${ }^{\text {a }}$ Calculated values in parentheses.

[^11]: ${ }^{a}$ Recorded as a pressed KBr disk; ${ }^{\mathrm{b}} \mathrm{X}=\mathrm{Cl}^{-}, \mathrm{SbF}_{6}{ }^{-}$.

[^12]: ${ }^{2}$ Estimated standard deviations in parentheses.

[^13]: ${ }^{a}$ Estimated standard deviations in parentheses.

[^14]: - To whom correspondence should be addressed. E-mail: m.b.smith (10 lboro ac.uk. Tel: +44 (0) 1509 222553. Fax: +44 (0) 1509223925.
 (1) Daigle. D. J.: Pepperman, A. B.; Vail, S. L. J. Heterocycl. Chem. 1974. 11, 407-408.
 (2) For recent examples of PTA functionalization, see: (a) Erlandsson, M.; Gonsulvi, L.: Lenco. A.; Peruzzini, M. Inorg. Chem. 2008, 47, 8-10. (b) Wong, G. W.; Lee, W.-C.; Frost, B. J. Inorg. Chem. 2008, 47.612-620. (c) Huang. R.: Frost, B. J. Inorg. Chem. 2007, 46, 10962 (0)964. (d) Wong. G. W.; Harkreader, J. L.; Mebi, C. A.; Frost, B. J. Inorg. Chem. 2006. 45, 6748-6755. (e) Zablocka, M.; Duhayon, C. Terrahedron Lell. 2006, 47. 2687-2690. (f) Darensbourg, D. J.; Yarbrough, J. C.; Lewis, S. J. Organometallics 2003, 22, 2050-2056.
 (3) For the chemistry of open cage ligands related to PTA, see: (a) MenaCruz, A.: Lorenzo-Luis, P:; Romerosa, A.; Serrano-Ruiz, M. Inorg. Chem. 2008, 47, 2246-2248. (b) Mena-Cruz, A.; Lorenzo-Luis, P.; Romerosa, A.; Saoud, M.; Serrano-Ruiz, M. Inorg. Chem. 2007, 46, 6120-6128. (c) Krogstad, D. A.; Ellis, G. S.; Gunderson, A. K.; Hammrich, A. J.; Rudolf, J. W.; Halfen, J. A. Polyhedron 2007, 26, 4093-4100. (d) Phillips, A. D.; Bolaño, S.; Bosquain. S. S.; Daran, J.-C.; Malacea, R.; Peruzzini, M.; Poli, R.; Gonsalvi, L. Organometallics 2006. 25, 2189-2200. (e) Darensbourg, D. J.; Ortiz, C. G.; Kamplain, J. W. Organometallics 2004, 23, 1747-1754.

[^15]: (19) (a) Jogun, K. H.; Stezowski, J. J.; Fluck, E.; Weidlein, J. Phosphorus Sulfur Relat. Elem. 1978, 4, 199-204. (b) Marsh, R. E.; Kapon, M.; Hu, S.; Herbstein, F. H. Acta Crystallogr., Sect. B: Struct. Sci. 2002, 58, 62-71.

[^16]: (20) (a) Allen, F. R. Acta Crystallogr., Sect. B 2002, 58, 380-388. (b) Fletcher, D. A.; McMeeking, R. F.; Parkin, D. J. Chem. Inf. Comput. Sci. 1996, 36, 746-749.
 (21) Dunitz, J. D.; Taylor, R. Chem.-Eur. J. 1997, 3, 89-98
 (22) Bolaño, S.; Ciancaleoni, G.; Bravo, J.; Gonsalvi, L.; Macchioni, A.; Peruzzini, M. Organometallics 2008, 27, 1649-1652.
 (23) Pruchnik, F. P.; Smoleński, P.; Raksa, I. Pol. J. Chem. 1995, 69, 5-8.

