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Abstract

This thesis presents experimental studies of various non-thermal

atmospheric pressure gas discharges generated using short pulsed excitation as

an alternative to widely used sinusoidal excitation. Several pulse generators

are detailed that provide high voltage pulses ranging from hundreds of

microseconds to less than ten nanoseconds in duration. A key enabler to the

generation of a stable discharge is a suitably high repetition rate; this

prerequisite precludes many conventional pulsed power technologies.

Fortunately, recent advances in semiconductor technology have made it

possible to construct solid state switches capable of producing high voltage

pulses with repetition rates of many kilohertz. Pulsed excitation introduces

many opportunities to tailor the applied voltage and consequently enhance the

discharge which are not possible with sinusoidal excitation sources. Through

detailed electrical and optical analysis it is shown that pulsed excitation is not

only more energy efficient than a comparable sinusoidal source but produces a

higher flux of excited species that are essential in many applications. When

pulse widths are reduced to a sub-microsecond timescale a novel barrier-free

mode of operation is observed. It is shown that diffuse large area plasmas are

easily produced at kilohertz repetition rates without the usually indispensable

dielectric barriers. Experimental results show that a short pulse width prevents

the onset of the undesirable glow-to-arc transition thus introducing an added

degree of stability. A further benefit of pulsed excitation is the ability to

produce gas discharges with a high instantaneous peak power yet low average

power consumption, resulting in a high density plasma that exhibits room-

temperature characteristics. Finally, as an acid test to highlight the many

benefits of pulsed excitation several real-world applications are considered. It

is shown that in all cases pulsed gas discharges provide real benefits compared

to their sinusoidal counterparts.

Key words: gas discharge, atmospheric, pulsed, nanosecond, plasma jet,

experimental, helium, argon, polymer, bio-decontamination.
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Chapter 1

1 Introduction

1.1 A historical perspective

Plasma, known as the forth state of matter,':' is typically obtained

when a significant amount of energy is applied to a gas. Within the gas,

electrons are detached from atoms allowing positive and negative charges to

move more freely; as electrons are small they are rapidly accelerated and

consequently produce more electrons via collisions. When the amount of free

electrons increases such that the electrical properties of the gas are affected it

is called a plasma or an ionised gas.

It is estimated that approximately 99% of all matter in the universe is

in the form of ionised gas.I.2 It is worth noting however that not all plasmas

are equal, they differ significantly in terms of temperature and density. Figure

1-1 illustrates typical parameters of naturally occurring and laboratory

plasmas.l'
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Fig 1-1: Typical parameters of naturally occurring and laboratory plasmas.
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Chapter 1: Introduction

The term plasma was first used by Irving Langmuir in 1928 but the

study of gas discharges can be traced back to the 1ih century.1.4,1.5Naturally

occurring gas discharges, such as lightening and the aurora, are commonly

observed and have fascinated people for many. centuries. The desire to

discover the reasons behind naturally occurring gas discharges led early

pioneers in the field to construct apparatus which enabled discharges to be

studied in the laboratory.

Discharges due to frictional charge were observed by the Greek

philosophers but it was not until the 1ih and is" centuries that real progress

and understanding was achieved.l' Notably, around this time significant

progress was made on charge storage devices, such as batteries and capacitors.

The ability to store electrical energy and discharge it when required was

fundamental for those wishing to study gas discharges, at the time no other

means of providing the necessary ionisation energy existed.

Fig 1-2: Arc discharge device, developed in 1775.

Figure 1-2 shows an early arc discharge device, the apparatus consisted

of a charge storage device known as a Leyden jar and two metallic

electrodes.l" The touching of one electrode to another caused the stored
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Chapter 1:Introduction

charge to rapidly discharge thus producing a 'spark'. The Leyden jar was

developed by von Kleist and van Musschenbroek in 1745. Later in 1800,Volta

produced a working electrochemical battery. 1.7 These devices provided the

energy for many of the early gas discharge devices, such as the continuous arc

discharge demonstrated by Petrov in 1803.1.8

During the 19th century significant progress was made on energy

storage devices and vacuum systems. By 1830 Faraday was conducting

extensive investigations into gas discharges within evacuated glass tubes,':"

the forerunner to today's vacuum plasmas. In the latter years of the 19th

century and early 20th century a significant understanding of gas discharges

had been reached. It was known how to produce and to control a discharge,

also that the discharge was in the form of a partially ionised gas consisting of

neutral, positive, and negative particles.

The zo" century has seen rapid progress in the development,

characterisation, and understanding of gas discharges. Plasma is no longer

confined to small scale laboratory study. It is often the case that industrial

applications, especially those in the semiconductor industry, prove to be the

driving force behind many of the recent advances in the field. Typically

industrial processes depend upon the ability to generate large volume, stable

gas discharges at the lowest possible cost.

1.2 Introduction to gas plasmas

A plasma can be characterised in terms of its level of ionisation, known

as the ionisation degree, which can be calculated with equation (1.1)

Ionisation degree = ___!!:j__
nj +n

(1.1)

where n, and n are the densities of ionised particles and neutral atoms

respectively. A plasma is classified as being weakly ionised when its

ionisation degree is less than 10-2, as the ionisation degree reaches unity the
plasma is said to be fully ionised.

- 3 -



Chapter 1: Introduction

Using the ionisation degree allows a plasma to be classified into three

types of discharge, I.l each with distinct properties and characteristics. Very

weakly ionised gas is known as a dark discharge as it is invisible to the eye. As

the ionisation degree increases the discharge transits into the glow discharge

regime. Glow discharge plasmas are the basis of this thesis and will be

discussed extensively in future chapters. Further ionisation leads to transition

into the arc discharge regime, such plasmas are generally very hot and

consume significant amounts of power.

Dark Discharge ~ Glow Discharge ~Arc Discharge

:F
.,.,
·,~rc
: \ transition
: ,
: G

10.10 10-8 10-6 10-4

Current (A)
Fig 1-3: Typical voltage-current characteristics of a DC low-pressure discharge.

Figure 1-3 shows a typical voltage-current characteristic for a low

pressure, usually less than I Torr,1.3DC electrical discharge.l" In the figure

the section preceding A is a non-self-sustaining discharge. A low voltage

across the gap causes electrons, ionised by external sources (such as UV), to

be accelerated toward the anode resulting in a very small current in the

external circuit. Section A-C denotes the Townsend discharge regime, in

which the discharge is self-sustaining. The high applied voltage causes free

electrons within the gap to ionise gas molecules by electron impact, the result
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Chapter 1: Introduction

is a multiplication of electrons and ions within the gas gap. As positive ions

collide with the cathode, electrons are emitted via secondary electron

emission. The emitted electrons are drawn to the anode and may collide with

one or more gas atoms on route. As voltage is increased the rate of electron

multiplication increases rapidly meaning small changes in voltage can cause a

large rise in current, this corresponds to the section 8-C in figure 1-3.

As the breakdown voltage is reached the effect of space charges

becomes significant. As ion mobility is considerably lower than that of

electron mobility a large concentration of positive ions form in front of the

cathode. This is known as a cathode fall or sheath region. The voltage drop

across the cathode fall is usually comparable to that across the discharge gap,

as the cathode fall region is small the electric field is much higher than when

distributed equally across the gap.':'! A higher electric field leads to increased

electron multiplication resulting in a greater number of free electrons and a

higher electrical conductivity. As such a lower applied voltage is capable of

sustaining the discharge, which explains the drop in the applied voltage

observed from C to D.

In the section D to E the cathode fall region is fully formed and the

applied voltage is low. A small increase in applied voltage leads to a sharp rise

in the discharge current. The current density in the glow discharge remains at a

constant; it is the size of the discharge that varies. Initially only a small portion

of the electrode gap may contain the discharge, as current is increased the

discharge spreads to fill the gap. It should be noted that when current is

reduced from point E the discharge will travel back to point D'. This

hysteresis suggests that the discharge is dependant upon it's initial conditions.

At point E the discharge fully covers the entire electrode surface, a

further increase in the discharge current leads to a decrease in the size of the

cathode fall region. This results in a rapid voltage increase across the

electrodes up to point F. As current is increased beyond point F the uniform

glow discharge transits into a narrow channel known as an arc. In arc plasma

- 5 -



Chapter 1:Introduction

various processes such as gas heating and thermionic electron emission

become dominant. Transition to arc is accompanied with a rapid drop in the

voltage needed to sustain the discharge.

1.2.1 Gas breakdown

Fundamental to any gas discharge is the breakdown point; this is the

point at which a plasma is initiated. In steady state plasma, such as a radio

frequency generated glow discharge, the breakdown phase only occurs once;

following breakdown the system descends in to a steady state. In transient

plasma, such as the pulsed DC plasmas discussed in this thesis, the breakdown

event takes up a considerable portion of the plasma lifetime.

Early studies on gas breakdown conducted by Paschen in 1889 showed

that the voltage needed to break down a gas was a function of three

variables.1.I2 The separation between the two electrodes, d, the pressure of the

gas, p, and the type of gas used. Figure 1-4 highlights Paschen curves for

various gases.1.I0

102+-~~~~~~~~~~~~~--~~~
10.1

Fig 1-4: Paschen curves showing the breakdown voltage as a function ofpd for various gases

pd (Pa m)
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Chapter 1.' Introduction

Paschen curves were obtained experimentally in 1889 but the

underlying processes involved in gas breakdown were not explained until

Townsend proposed a theory in 1909. The theory was based on ionisation and

electron multiplication and explained the results obtained by Paschen well.

The Townsend theory is still commonly used today to describe low pressure

discharges; however as the pressure is increased the theory no longer agrees

with experimental observations. A new theory, known as streamer breakdown

was developed by Loeb,I,13 Meek,1.14 and Raether.1.I5 In the streamer

breakdown theory space charge effects inside electron avalanches are

considered, resulting in thin, weekly-ionised channels, known as streamers.

1.2.2 Characteristics of glow discharges

Glow discharges playa vital role in many scientific and industrial

applications. Due to the widespread usage of the glow discharge it is necessary

to have a clear understanding of its distinguishing features and characteristics.

The method of plasma generation determines the principal characteristics of

the discharge; however, there are common features which can be observed in

all glow discharges. Figure 1-5 shows the typical structure for a low pressure

DC discharge. I,3

Anode dark space

Q)
"'Co_c- .....
10o

Positive
column

Cathode glow Negative glow Anode glow

Fig 1-5: Typical structure of a low-pressure DC discharge

»
:::Joa.ro
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Chapter 1: Introduction

As shown in figure 1-5 the structure of a DC glow discharge is that of

several dark and bright luminous layers that form along the discharge gap

between the anode and cathode.':" The cathode glow is observed as a bright

band above the cathode which indicates the presence of a cathode fall region.

Due to a high local electric field between the cathode and the cathode glow, a

region of very few ions and fast moving electrons is produced, this is typically

known as a sheath region.

When a high frequency alternating voltage, for example in the MHz

range, is applied to a gas filled gap a discharge is produced. The use of radio

frequency (RF) excitation has been studied extensively and is perhaps one of

the most widespread techniques for generating a glow discharge. A unique

feature of the RF discharge is that the high excitation frequency tends to trap

electrons within the electrode gap.1.17Examination of an RF discharge over

one cycle of the applied voltage shows the formation of a sheath over the

instantaneous cathode, similar to that seen in a, DC discharge. Due to the

alternating applied voltage, the sheath appears to form over one electrode in

one half-cycle and then over the other electrode in the next half-cycle. As

sheaths are formed on the same timescale as the applied RF voltage, typically

10-100ns, they appear to co-exist simultaneously when viewed by the naked

eye.

1.3 Current trends in atmospheric pressure glow discharges

1.3.1 Atmospheric pressure glow discharges

The previous sections detail some common low pressure gas discharges,

the generation and control of low and medium pressure plasma is notably

easier than at higher pressures. As gas pressure is raised the number of

atoms/molecules increases proportionally, consequently more electron

collisions occur and ionisation rate increases significantly. At atmospheric

pressure it is often difficult to maintain a stable discharge as the high

breakdown voltage combined with high gas density leads to rapid ionisation

-8-



Chapter 1: Introduction

causing gas heating and consequently a glow to arc transition. To generate

stable atmospheric pressure gas discharges, APGD, it is often necessary to use

noble gases such as helium as it is particularly stable and has a very low

breakdown voltage when compared to other gases.1.18

1.3.2 Generation Techniques

In general APGD is generated using either capacitive coupling, or

inductive coupling techniques. Inductively coupled plasma (ICP) tends to

require high power, high frequency, and high cost excitation sources. ICP

discharges also tend to have very high gas temperatures which can often be a

disadvantage in many practical applications.1.I9.1.20Capacitive coupling

requires less power and can be achieved at much lower excitation frequencies.

It's the relative ease of generation over inductively coupled plasma that has

led to such widespread use of the capacitively coupled gas discharge.':"

A distinct drawback of atmospheric pressure gas discharges is the

tendency for the discharge to undergo the glow-to-arc transition far easier than

their low pressure counterparts. To prevent the rapid transition between glow

to arc at sub-MHz excitation frequencies the use of resistive electrodes or

dielectric barriers is often essential.l.22.1.23A dielectric layer limits the

magnitude of discharge current by reducing the voltage drop across the

discharge gap. A resistive electrode has a similar current limiting effect, as the

discharge current increases the voltage dropped across the resistive electrode

increases thus reducing the voltage drop across the gas gap. When a dielectric

barrier is used to stabilise an APGD the discharge is known as a dielectric

barrier discharge (DBD). A DBD has a unique current-voltage characteristic of

one discharge event in every voltage rising phase, using a conventional kHz

sinusoidal source results in two discharge events per applied voltage cycle.

The basic concept of the DBD is to control the electron avalanche process by

limiting the voltage applied to the gas gap.1.24In radio frequency APGD the

glow to arc transition is prevented through the trapping of electrons and ions

within the gas gap. As the applied voltage oscillates faster than the majority of

- 9 -



Chapter 1,' Introduction

electrons can traverse the gap there is a current limiting effect which prevents

arcing.1.25This thesis will detail the use of pulsed excitation as a method for

generating stable APGD. Using short high voltage pulses offers a unique

method of preventing the glow to arc transition, careful choice of pulse width

allows the applied voltage to be removed before the glow discharge transits to

an arc resulting in a high current yet stable APGD.1.26.1.27

1.3.3 Applications

For many years low pressure glow discharges have been used

extensively in materials processing applications, especially in the area of

microelectronics fabrication.1.21 Recent studies have shown that APGD's are

capable of deposition.i" and etching.l" also the use of atmospheric DBD in

surface treatment of polymers is widespread.1.29 The rapid development and

understanding of APGD systems suggests that it could potentially become an

alternative to the currently indispensable low pressure plasma systems used in

so many industrial applications. The shift from low pressure plasma

processing to atmospheric pressure plasma processing would represent a huge

saving in terms of cost and energy, as there is no longer the need for a vacuum

system.

The use of APGD as a tool for sterilisation in biomedical applications

is currently an area of intensive research. It has been shown that APGD is an

effective tool for tissue processing and repair,1.30decontamination of cavities

. th 131 d tei 1 fr . l i 132F d f .In tee ,. an pro em remova om surgica Instruments.' 00 sa ety IS

also an area that benefits from the ability of APGD to inactivate biofilm-

forming bacteria.1.33

1.4 Scope of thesis

This thesis provides the reader with an experimental study of a novel

APGD generated using short bursts of high voltage electricity. Pulsed gas

discharges, such as those used in spark gap switches, have been studied at

- 10-



Chapter 1: Introduction

length by others for many years; the physics behind such discharges is well

understood. This work takes advantage of recent advances in semiconductor

technology to show experimentally that it is possible to produce a stable,

uniform, and room-temperature APGD using high repetition rate voltage

pulses. The pulse generating devices used in the experiments detailed within

this thesis are all based on 'off the shelf semiconductor devices, many

systems used have been developed 'in-house'. The research described employs

modem diagnostic equipment that is capable of capturing the highly transient

nature of pulsed APGD. Through analysis of the recorded data it has been

possible to propose theories for the physical mechanisms behind pulsed

generation of APGD.

A notable feature of this thesis is that it is divided in to two distinctive

parts; this reflects two of the major areas of active research in the field of

APGD. The generation of a gas discharge between parallel electrodes is

widely used both in laboratories and industrial processes. The simplistic

geometry of two flat plates is highly conducive to the production of a uniform

discharge due to the uniformity of the electric field across the gap. Industrial

processes often make use of a parallel plate electrode configuration for 'in-

situ' processing; where an object is place between the electrodes and exposed

to the plasma.

A recently developed electrode geometry, known as the plasma jet, has

captured the attention of many working within the field. The benefit of using a

jet like configuration is that plasma is generated in a region of stable inert gas

and then flushed in to a region of highly reactive gas; thus simultaneously

achieving stability and reactivity. Figure 1-6 highlights the impact of electrode

configuration on the characteristics of an APGD. It is clear that electrode

geometry is of fundamental importance in the study of APGD and as such the

parallel plate and jet configuration are considered separately.

- 11 -
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Well understood

Poor stability

He/Ar

Electrode Configuration

Large volume

MHz/Pulsed

Low volume

High

Excellent stability

He/Ar/N2/Air

DCIkHz/M Hz/Pulsed

Fig 1-6: Effect of electrode geometry on the characteristics of an APGD.

1.5 Thesis outline

As discussed in the preceding section this thesis is divided into two

distinct parts to reflect the current trend in APGD research. Following a brief

review of pulse generation technologies in Chapter 2; Chapters 3, 4, and 5 are

dedicated to investigations on pulsed excitation of a plasma jet device. Chapter

3 presents detailed experimental results to highlight the advantages of using

pulsed excitation over the commonly used kHz sinusoidal excitation.

Chapter 4 details experimental observations of sub-microsecond pulsed

plasma jets operating with helium or argon as a base gas and the effects of

varying the applied voltage, pulse width and repetition frequency. Also

considered are the effects of adding various reactive gases to the base gas in

order to achieve a higher flux of reactive species within the discharge.

Chapter 5 is the concluding chapter on the jet configuration and

presents observations of the actual plasma plume produced using a typical

plasma jet. Previous studies have indicated that a high velocity 'plasma bullet'

phenomenon is observed; however, a complete theory to describe the bullet

- 12 -



Chapter 1.' Introduction

mechanism remains elusive. Experimental results show that 'bullets' are also

observed when a pulsed excitation is used, high speed imaging is used to show

that bullets produced with pulsed excitation have different characteristics, such

as a higher velocity, to those generated via a sinusoidal excitation.

Chapters 6 and 7 focus on the generation of a stable APGD in a

parallel plate electrode configuration without the use of dielectric barriers.

Chapter 6 demonstrates the use of sub-microsecond voltage pulses to generate

a stable APGD, over a wide range of operating parameters. This novel mode

of operation had not previously been reported and an in-depth analysis is

provided.

Chapter 7 investigates the benefits of employing ultrashort pulsed plasma

in various real world applications. It is shown that the many benefits discussed

in previous chapters actually translate into clear improvements in application

efficiency. Several of the key areas in which atmospheric pressure plasma are

used, such as biomedicine, ultraviolet light production, and surface

modification are considered. Finally, a conclusion and future work is

discussed in Chapter 8.

1.6 Contributions of thesis

Over the thesis period of 36 months, 5 journal papers have been

published and the work has been presented numerous times at leading

international conferences. The key contributions reported in this thesis can be

summarised as follows:

1. Advantages of pulsed excitation over sinusoidal excitation:

The work detailed in Chapter 3, shows compelling evidence that pulsed

excitation is a more efficient means of generating an APGD than an

equivalent sinusoidal source. Following the publication of simulation data

in 2000,1.34 there had been some speculation in the community that pulsed

excitation was more efficient however it was never proven until the results
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in this chapter were published in 'Contrasting characteristics of pulsed and

sinusoidal cold atmospheric plasma jets' 1.L. Walsh, 1.1. Shi, M.G. Kong.

Applied Physics Letters. Vo1.88 Iss.17 No.171501 2006.

2. Cold atmospheric pressure pulsed argon jet:

The work detailed in Chapter 4 is the first reported study on the operation

of a cold APGD jet that uses Argon as a working gas. Due to the nature of

pulsed excitation it is possible to generate a stable, room-temperature

Argon plasma plume that is flushed in to open air for various applications.

Many of the results published in the section appeared in 'Room-

temperature atmospheric argon plasma jet sustained with submicrosecond

high-voltage pulses' 1.L. Walsh, M.G. Kong. Applied Physics Letters.

Vo1.91, Iss.22, No.221502, 2007

3. Frequency effects on the plasma bullet:

Chapter 5 investigates the transport mechanisms behind the plasma jet; it is

shown that the plume consists of discreet plasma bullets moving at very

high velocities. The exact nature of the plasma bullets is the subject of

intensive research by many groups, the work detailed within Chapter 5

highlights for the first time the effects of excitation frequency upon the

plasma bullets. Many of the results from this chapter are accepted for

publication in IEEE Transaction on Plasma Science.

4. Observation of barrier-free APGD sustained with short pulses:

A prerequisite for any sub-MHz APGD is generally at least one

dielectrically coated electrode. Recent studies have shown that it is

possible to operate a stable discharge in the kHz range without a barrier,

but only over a very small range of operating parameters thus limiting its

potential usefulness. The work described in Chapter 6 is the first reported

study of a barrier free APGD that is stable over a wide range of operating

parameters which does not rely upon RF excitation. Many of the results

from this chapter appear in ' Submicrosecond pulsed atmospheric glow

discharges sustained without dielectric barriers at kilohertz frequencies'

- 14 -
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J.L. Walsh, J.J. Shi, M.G. Kong. Applied Physics Letters Vo1.89 Iss.16

No.l61505 2006. And in 'Sharp bursts of high-flux reactive species in

submicrosecond atmospheric pressure glow discharges' J.L. Walsh, M. G.

Kong.Applied Physics Letters Vo1.89Iss.23 No.231503 2006.

5. Application of ultra short pulsed APGD in real world applications:

Chapter 7 details several applications where pulsed APGD makes a

significant improvement over conventional sinusoidal excitation. It is

shown that pulses on a nanosecond scale are capable of generating cold

and diffuse air plasma that is well suited to the surface modification of

polymeric materials. Several of the results from this chapter were

published in 'IOns pulsed atmospheric air plasma for uniform treatment of

polymeric surfaces' J.L. Walsh, M.G. Kong. Applied Physics Letters

Vo1.91Iss.25 No.251504 2007.
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2 Pulse generation techniques and applications

2.1 Current trends in pulsed power research

The generation of short, high voltage pulses has been an area of

intensive research since the late 1930's.2.1 Early radar systems directed short

bursts of intense electrical energy into the sky as a means of detecting enemy

aircraft and the field of pulsed power was born. The development of radar

technology has progressed at a rapid rate in the post war decades, so much so,

that it is now integral part of everyday life. The use of pulsed power is no

longer limited to radar technology, the following sections detail several novel

applications that rely on the principles and technologies developed in the field

of pulsed power.

1.1.1 Military applications of pulsed power technology

Pulsed power technology plays a fundamental role in many military

applications. Almost all areas of military technology, be it weapons or

communications, require high energy sources. Recent examples of pulsed

power technology employed inmilitary applications includes the development

of highly intense laser pulses to assist in the development of nuclear weapons

without the need for testing with radioactive materials. Using advanced pulse

power techniques, its possible to produce picosecond duration laser pulses

with Petawatt energy densities. 2.2

Another example of pulsed power technology employed in a military

application is that of exploding wires. Large currents are pulsed through a wire

causing it to vaporise, the resultant plasma is extremely dense and a large

shockwave is produced.i' A novel application of exploding wire technology is
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that of canopy shattering and cutting; by embedding a wire within the canopy

of a cockpit it is possible to shatter the canopy thus rapidly separating it from

the aircraft it is attached to.2.4

2.1.2 Biological applications of pulsed electricfields

The application of pulsed electric fields is used extensively in

molecular biology as a means of increasing the permeability of cellular

membranes. Electrical pulses of several kV/cm in magnitude with durations

from microseconds to milliseconds have the effect of opening pores on a

cellular membrane thus allowing the introduction of foreign substances such

as drugs or DNA.2.s The method, known as electroporation, is commonly used

and many commercial devices are available.

Recent advances in pulsed power technology have opened the gateway

to a new type of field-cell interaction, by means of sub-microsecond electrical

pulses at electric fields exceeding 50 kV/cm the sub-cellular functions and

structures of living cells can be manipulated. The ability to disrupt cellular

signalling pathways has numerous applications; however, of significant

interest is the ability to initiate cell suicide, known as apoptosis, in cancer

cells.r" It is often the case that cancer cells have mutated in such a way as to

prevent the bodies attempts to destroy them. Potentially, high intensity

nanosecond electrical pulses could offer a novel means of inducing apoptosis

in cancer cells thus becoming a revolutionary cancer treatment.

The ability of high intensity pulsed electric fields to destroy micro-

organisms is regarded as one of the most promising technologies in the areas

of food processing and food safety.2.7 A significant advantage of using pulsed

electric fields as a sterilisation method over conventional techniques such as

pasteurisation is the non-thermal nature of the treatment. In general, heat

treatment of food alters the taste which is highly undesirable, pulsed electrical

field treatment generates very little heat and is consequently a highly attractive

technique. Generation of pulsed electric fields in excess of 30kV/cm with
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microsecond duration has the effect of inducing a large cellular transmembrane

potential that can lead to an electroporation effect and consequently

destruction of the microrganism.t''' Recent studies have employed higher

applied fields and shorter pulse durations to give an insight into the

mechanisms behind the destruction of bacterial agents using pulsed electrical

fields.2.g

2.1.3 Pulsed corona and other pulsed discharges

A corona discharge is a special kind of non-equilibrium plasma

discharge with a low current density that forms in the presence of a highly

non-uniform electric. field. 2.10 The typical corona discharge device consists of a

cathode-wire and a flat anode plate, a pulsed excitation source is usually used

to apply negative high voltage pulses to the cathode. The discharge develops

very much like a DC discharge, positive ions are accelerated towards the

cathode where secondary electrons are emitted and accelerated, causing

further ionisation by collision. A prerequisite for any pulsed corona discharge

is that the pulse duration must be shorter than the time necessary for an arc to

form. When each pulse ends, the discharge is extinguished before it becomes

too conductive. Figure 2-1 shows a typical pulsed corona streamer formed in

ambient air using a point to plane configuration. Pulsed corona discharges are

widely used for the plasma assisted modification of surfaces, for example the

deposition of hard coatings on a polymeric surface, 2.11 or the nitriding of steel.
2.12

Fig 2-1: Photograph showing streamer produced from a rod to plane at a distance of lS0cm.

Applied voltage is l2SkV. Schematic shows equipotential surfaces. 2.13
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The use of pulsed gas discharges is commonplace in the fields of

plasma assisted ignition and plasma combustion. Experimental evidence has

shown that low temperature plasmas can reduce the ignition delay time of

combustible mixtures, intensify ignition, and sustain combustion of lean

mixtures.i''" Recent studies have shown that the efficiency of combustion can

be increased significantly by employing a low power, low temperature pulsed

discharge to stabilise the flame,2.15 the results obtained have far reaching

consequences for large scale combustion processes.

2.1.4 PulsedAPGD

Relatively few studies exist in the area of pulsed atmospheric glow

discharges. A computational investigation carried out in 2003 suggested that

appropriate tailoring of the applied voltage waveform could permit a 50%

reduction in the power required to sustain a an APGD whilst maintaining

levels of electron and metastable densities.i" The simulation results suggested

a more efficient applied voltage waveform could be in the form of a

rectangular pulse. Experimental data produced in 2004 showed that it was

possible to generate and maintain a stable glow discharge using pulsed

excitation at atmospheric pressure albeit with the use of dielectric barriers.2.17

It was not until the publication of the work presented in this thesis that an

exhaustive study was provided to highlight the several advantages of pulsed

excitation over conventional sinusoidal excitation.2.18 Experimental data

obtained showed that not only was pulsed excitation significantly more

electrically efficient, but also, the plasma generated contained a high flux of

reactive species.

Experimental results detailed within this thesis highlight the use of

sub-microsecond pulsed excitation to generate a stable glow discharge without

the need for dielectric coatings on the electrodes.i" This work employs the

fast switching devices associated with modem pulsed power technology and

the principals of gas discharge physics to generate intense, room-temperature,

gas discharges.
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2.2 Common Pulsed Power Switching Technologies

All pulsed power systems have two critical elements that dictate their

entire systems characteristics. Every system must employ some kind of energy

storage mechanism, allowing energy to be accumulated slowly and released

rapidly. All devices used within this thesis, which are detailed later in the

Chapter, make use of capacitive energy storage. This is a widely used

technique involving the gradual charging of a capacitor to a high potential

followed by a rapid discharge into the load. An alternative energy storage

technique involves the use of energy stored within the magnetic field of an

inductor; this often requires a more complex circuit design and has not been

used within this body of work.

The second defining characteristic of a pulsed power system is the

switching device used to discharge the stored energy. In most cases the switch

determines the generator performance. For example, the switching devices

used in the experimental studies conducted within this thesis must be capable

of nanosecond switching and be rugged enough to handle instantaneous

powers in excess of several kilowatts. In larger pulsed power systems

nanosecond duration pulses with peak powers in excess of IOGW are often

necessary for high power microwave sources.2.20 The remainder of this section

briefly describes some of the most common switching techniques employed in

modern pulsed power systems that could be of potential use in generating

repetitive high voltage pulses «ISkV) at rates from hundreds to many

thousand pulses per second.

2.2.1 Reed switches

A Reed switch is an electro-mechanical switching device developed by

W.B. Elwood in 1936.2.21 It consists of two ferromagnetic contact blades

hermetically sealed within an evacuated glass tube, for faster switching times

the tube can be filled with various gases such as Hydrogen or SF6. On the

outside of the tube a coil of wire is wound. As an electric current flows
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through the coil an electromagnet is formed, causing the contacts within the

tube to be drawn together. Figure 2.2 shows a simple pulsed power system

employing a reed switch and an energy storage capacitor. In the circuit, the

capacitor C is gradually charged to the applied voltage. On application of a

low voltage control signal the reed switch closes and the electric charge held

within the capacitor is dumped into the load. The resistor, Rs/c, is used to

protect the high voltage DC power source from being connected directly to

ground via the low impedance load.

Rs/c

41
g'-_0- ...0->c
~8o
.J

c

RLoad '--1---'

Fig 2-2: Simple pulsed power circuit using reed switch. High voltage components shown in

red.

For example, in the circuit shown, if the applied voltage is 10kY and

the load resistance is 10000. then the peak current would be lOA resulting in a

peak instantaneous power of 100kW. The duration of the pulse is determined

by the discharge time constant of the load and capacitor combination,

consequently large energy storage capacitors and high impedance loads result

in long pulses and low repetition rates.

Reed switches typically switch within a few nanoseconds, however, by

carefully controlling the pressure and composition of the background gas

within the switch, switching times as low as SOps have been recorded.v"

Commercially available reed switches are capable of withstanding very high

voltages, in excess of 20kY, however the hold-off voltage is inversely
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proportional .to the repetition rate of the device. A limited repetition rate

severely limits the usefulness of the reed switch in many high-speed pulsed

power applications, including the case of pulsed APGD. A further

consideration is the lifetime of the device, which may be as low as 106

transitions.

2.2.2 Sparkgaps

Spark gaps are widely used in pulse power applications, they can take

many forms, from the simple automotive 'spark-plug' to the complex

pressurised, laser triggered, pico-second switching device. Spark gaps vary

considerably in their design and construction however in most cases the

principal of operation is the same. When the electric field between two

electrodes increases above the breakdown voltage an electron avalanche

occurs. The electron avalanche forms a weakly ionised streamer that reaches

across the inter-electrode gap joining the two electrodes. Once fully formed a

complex heating mechanism occurs and the voltage across the gap falls to

zero, at this point the switch is considered closed and very large currents can

flow.

The simplest form of spark gap is the over-voltage gap, where the

applied voltage is increased above the breakdown voltage thus causing the

switch to close. A triggered spark gap typically makes use of a three electrode

arrangement, two electrodes form the switch and a third is inserted into the

gap between them. The applied voltage is held slightly below the breakdown

voltage of the gap, when the switch is to be closed a high voltage pulse is sent

into the third electrode causing the ionisation of nearby gas molecules. The

weak discharge around the third electrode introduces additional electrons into

the gap which has the effect of reducing the breakdown voltage such that the

switch closes. More elaborate triggering methods, such as laser-triggering, can

be employed to decrease switching time and jitter, yet they are all based upon

the same principals. 2.22
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Typically spark gaps have two drawbacks when high repetition rate

switching is considered. Most importantly, the discharge between the two

electrodes must be fully extinguished before the system can begin to recharge.

The dependence of switching rate on the lifetime of the plasma between the

electrodes generally means that the repetition rate of a spark gap is limited to

the sub-kHz. Through careful design and the use of a fan to blow the plasma

from the gap switching rates in the low kHz range have been demonstrated, 2.21

however such systems are rather complex and expensive. A second

disadvantage is that the electrodes in the system are subjected to extreme

forces during normal operation and become rapidly degraded, this effects

switching performance significantly.

2.2.3 Thyratrons and similar devices

A thyratron is a type of gas filled tube that is often used as a high

energy electrical switch. The device was developed in the 1920's and is based

on the vacuum tubes of the time. Small thyratron devices were manufactured

on a mass scale and used in a variety of applications. Advances in

semiconductor technology has virtually eliminated the use of small gas

thyratrons, however, large thyratrons are still used in a variety of pulsed power

applications that require rapid switching of high peak powers.

A typical hot-cathode thyratron uses a heated filament cathode, which

is positioned below a control grid. The voltage on the control grid effects the

electric field between the anode and the cathode which is held at the cathode

potential when the devices is in the off state. If a positive voltage is applied to

the control grid the gas between anode and cathode ionises and a current

flows, at which point the switch is said to be on. The gas in large thyratrons is

typically hydrogen and is at a fraction of the pressure of air at sea level; 15 to

30 millibars is typical. Modern thyratrons can switch hundreds of kilovolts and

kiloamps in a few nanoseconds and are often found in radar systems and x-ray

machines. For example, the E2V CXl594M Deuterium filled ceramic

envelope thyratron is capable of switching 155kV and 10kA.
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2.2.4 Semiconductors

The number of semiconductor devices that can be used as switches in

pulsed power applications is numerous. Rapid development and new

fabrication processes mean new devices are capable of switching higher

powers in faster times than ever before. Common semiconductor switches

include thyristors, bipolar junction transistors (BJT), metal-oxide-

semiconductor field effect transistors (MOSFET's), insulated gate bipolar

transistors (IGBT's), plus numerous diode devices. As the pulsed APGD work

detailed within this thesis is based upon semiconductor technology the

following section is dedicated to a discussion of some of the most common

types of semiconductor switches employed in pulsed power applications.

2.3 Semiconductor switches

Compared to many other pulsed power switching devices

semiconductors are a recent invention, yet one that has had inconceivably far

reaching consequences. This section gives a introduction into several of the

most common semiconductor switching devices and the typical applications

they are used in. The work detailed in this thesis is entirely reliant upon

semiconductor switching technology, as such, the remainder of this section

highlights the properties of individual devices. The following section covers

several topologies in which semiconductor switches are combined to produced

a single high power switch.

2.3.1 Jrh),ristor

The thyristor is a four-layer semiconductor device first conceived in

1950; it consists of alternating N-type and P-type doped silicon, for example

P-N-P-N. A thyristor usually has three terminals, an anode, a cathode and a

control terminal known as the gate which is connected to a P-type section near

the cathode.
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Essentially the thyristor can be thought of as a controllable diode. In

one direction the diode blocks the flow of electrical current just as a regular

diode does, in the opposite direction the diode can conduct, but only if the gate

signal has been applied. Once a thyristor is conducting it cannot be turned off,

this is a very significant property. After triggering a thyristor remains in the

on-state regardless of the gate signal, the only way to reset a thyristor is to

remove the current flowing through the device. In applications such as AC

rectification this is not a problem as the voltage is periodically returned to zero

thus resetting the device. However, in applications that require the pulse width

to be controlled, thyristors are not best suited.

Thyristors can switch many kilo-amperes and several thousands of

volts, typical applications include controllable rectification for large DC

motors and 'crowbar' devices, which protect sensitive components within a

power supply when the output is short circuited. As such they are generally

designed to operate in a single shot or low repetition mode, typically 50/60Hz.

The switching characteristics of a thyristor and slow switching speeds,

typically milliseconds, tend to preclude the use of thyristors in pulsed power

applications including generation of a stable glow discharge. The thyratron

discussed previously is the vacuum tube equivalent of the thyristor and has

very similar characteristic, except switching speed, which may be several

orders of magnitude shorter.

2.3.2 Bipolar Junction Transistor

A BJT is a three-terminal device constructed of a doped semiconductor

material that is often used in amplifying or switching applications. Typically

BJT's are produced using three layers of doped silicon, they can be

manufactured such that the structure is either NPN or PNP.

BJT's can be summarised as current amplification devices. The current

flowing into the base region controls the current flowing between the collector
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and the emitter. Typically a base current of a few milliamps controls collector-

emitter currents of several orders of magnitude larger, leading to a typical

current gain of 50-1000. For applications where precise replication of the base

waveform is required, the transistor is biased such that the maximum

amplitude of the base signal is within the linear amplification region of the

BJT. For applications where a BJT is used as a switch no biasing is required,

the transistor is used in its saturation region and is either fully on or fully off.

The manufacture and design of transistors has improved significantly

over the decades and modem transistors can switch significant amounts of

power and have a very wide bandwidth. In general, the use of conventional

transistors in pulsed power applications is limited as small BJT's are fast

(typically nanosecond rise times) but have limited power handling capability,

and large BJT's are too slow. Recent advances in MOSFET technology make

BJT's less attractive to system designers (MOSFET's are detailed in the next

section). One area in which the use of a BJT's is highly advantageous over a

MOSFETs is RF amplification. The base of a BJT appears as a very high

impedance load at RF and is relatively easy to drive, a MOSFET gate appears

as a large capacitance which is almost impossible to drive above a few MHz.

A unique mode of operation, known as the avalanche breakdown, is

observed in BJT transistors.i'" this allows very fast switching of high voltage

signals. BJT's operated in the avalanche mode are used in many pulsed power

systems for the generation of kilovolt pulses with sub-nanosecond switching

times. This mode of operation is discussed further in section 2.4.

2.3.3 FET's & Power MOSFET

The field-effect transistor (FET) is a type of transistor that relies on an

electric field to control the shape and hence the conductivity of a 'channel' in a

semiconductor material. The concept of the field effect transistor predates the

bipolar junction transistor (BJT), however FETs were implemented after BJTs
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due to the limitations of semiconductor materials and relative ease of

manufacturing BJTs compared to FETs at the time.

A FET controls the flow of electrons from the source to drain by

affecting the size and shape of a "conductive channel" created and influenced

by the voltage (or lack of voltage) applied across the gate and source

terminals. There are numerous types of FET devices available, each with

distinctive properties; by far the most commonly used in the area of power

electronics is the metal oxide field effect transistor (MOSFET).

MOSFETs have been used in power electronics applications since the

early 80's due to their appreciable current carrying capability, high blocking

voltage, and low on-state resistance. They have managed to replace BJTs in

many applications due to their simple gate drive requirements and positive

temperature coefficient. As devices warm up they become increasing resistive,

consequently when devices are paralleled there is little chance for thermal

runaway in a single device, this is not the case with BJTs.

N-channel enhancement type power MOSFETS are the most popular

for use in power switching circuits and applications. The drive voltage is

applied between the gate and the source to switch the MOSFET on, this must

exceed a threshold value which is usually around a few volts. Essentially a

MOSFET gate behaves like a capacitor, once it is charged it will remain

charged indefinitely. Also like a capacitor, the time it takes to charge the gate

(and consequently turn-on the device) relates directly to the current applied. A

typical InF MOSFET gate will require several amperes of drive current to

switch in a nanosecond time scale. Fortunately commercially available

MOSFET drivers are capable of delivering tens of amps to rapidly charge the

gate. Fast switching is essential within a MOSFET as the majority of power

dissipation occurs during the switching transition of the device.

Modem MOSFET's such as the IXYS Technologies INC DE475-

102N21A are capable of switching lkV, with a continuous current of 24A,
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with transition times of 5ns. It should be noted that the gate capacitance of

such MOSFETs (5.6nF) is highly prohibitive and requires extreme drive

circuitry (tens of amperes) to obtain the short switching times stated on the

datasheet. Many of the pulse generators detailed within this thesis are based

on arrays of power MOSFET combined to increase the drain to source voltage

above that of a single device and will be discussed in section 2.4.3.

2.3.4 IGBT

The Insulated Gate Bipolar Transistor (IGBT) is a relatively recent

invention (1990's) which combines the simple gate drive characteristics of the

MOSFETs with the high current and low saturation voltage capability of

bipolar transistors. This is achieved by combining an isolated gate FET for the

control input, and a bipolar power transistor as a switch, in a single device.

The IGBT is used in medium to high power applications, typically from 1-

10kW, such as switched-mode power supplies, motor control and induction

heating systems.

Large IGBT modules typically consist of many devices in parallel and

can have very high constant current handling capabilities, in the order of

hundreds of amperes with blocking voltages of up to 6kV. In general the

switching speed of an IGBT is inversely proportional to its power handling

capability. Larger IGBT's tend to be employed in applications where

switching in the low kHz range is required. Certain circuit topologies, such as

zero-voltage-switching (ZVS), allow large IGBT's to switch at several

hundreds of kHz increasing their potential for use in high frequency pulsed

power applications.

IGBT devices have very high peak current ratings, often several

kiloamperes. This makes them attractive for high energy pulsed power

applications, where repetition rates are not an issue. In the context of this

thesis, it is thought that medium power IGBT's could potentially replace

MOSFETs in many of the devices used in the experimental studies presented.
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However, it is unlikely that the small additional benefits would make

significant impact on the experiments and consequently they have not been

used.

2.4 Circuit topologies

2.4.1 Stacked MOSFET

In general semiconductor switches tend to be low impedance devices,

having a low switching voltage yet a high current capability. To develop a

semiconductor switch capable of switching high voltages the obvious solution

appears to be the series connection of several devices. Through careful circuit

design it is possible to serially connect many power semiconductor devices

such that the voltage across each device is within acceptable limits yet the total

switching voltage is significantly higher than that of a single device. It should

be noted that the peak current handling capability of the switch is still limited

to that of a single device, to increase current handling ability it is necessary to

parallel semiconductor devices. High power semiconductor switches often

employ arrays of parallel and series connected devices to increase voltage and

current switching capabilities.

In principle the series connection of devices is simplistic however in

practice the precise timing required to trigger all devices simultaneously is

difficult to achieve. An additional complication is introduced when there is a

slight variation in the switching times between each device due to variations in

manufacturing processes between production batches.

For example figure 2.3 shows a series 'stack' of three lkV MOSFET

devices, if one device is triggered slightly before the other two devices a

voltage of 1.5kV appears across the remaining 'off-state' MOSFET's thus

exceeding the maximum operating conditions and resulting in certain

destruction of the devices. One solution is to transformer couple the gates of

each MOSFET device in the series circuit. To achieve simultaneous switch-on
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a transformer using a single pnmary winding and a separate secondary

winding for each device is required. A drawback of this topology is the

complexity of the transformer; it will usually consist of multiple, closely

coupled, secondary windings yet must withstand voltages in excess of the

maximum switching voltage.

3kv
_:__e-}

-I
. 50k·

10Meg·

10Meg·

tOMeg

Fig 2-3: Stacked MOSFET circuit topology

Figure 2-3 shows a transformerless method of coupling MOSFET

gates first proposed by R.J. Baker in 1992_2·23A capacitor is inserted between

the gate and the ground of each MOSFET, except for the bottom MOSFET in

the stack. Using a single input voltage signal to trigger the bottom MOSFET, a

voltage division across the network of device capacitance and inserted

capacitances triggers the entire series stack reliably.

A PSpice analysis of the circuit, highlighted in figure 2-4, clearly

shows that the circuit is capable of switching voltages equal to several times
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that of a single device. The repetition rate in the simulation is 5kHz, the rise

time is controlled by an RC time constant and is approximately 30)ls, the fall

time is controlled by the MOSFET device and is 25ns.
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Fig 2-4: PSpice analysis of a 3kV stacked MOSFET circuit

A drawback of the circuit depicted in figure 2-3 is the slow rise time of

the voltage waveform, which arises as a result of a charging time constant

created by the MOSFET input capacitance and the 50kQ resistor used to limit

current. When the MOSFETs are in the on-state and are conducting, the entire

supply voltage is across the current limiting resistor which must dissipate a

considerable amount of energy as heat, thus making this topology highly

inefficient. The slow rise time of this particular circuit topology was exploited

in Chapter 3 of this thesis. Components were chosen such that the voltage

rising phase mimicked that of a sinusoidal excitation source. The nanosecond

voltage fall phase is on a similar scale to previously published studies on a

pulsed DBD, thus a clear comparison is obtainable.
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2.4.2 Push-Pull MOSFET

An improvement on the series stacked MOSFET circuit topology is the

push-pull arrangement shown in figure 2-5. The circuit still requires very

precise control of the MOSFET gates yet it is much more efficient as there is

no power dissipation in a large current limiting resistor .

+

3000

I

Upper Switch

Fig 2-5: Stacked MOSFET Push-pull topology

. Rload
. iVv'v---i11

. j_ ... :
Lower Switch

Essentially, the circuit shown in figure 2-5 consists of two switches,

each employing three serially connected lkV MOSFET's. When the upper

switch is closed and the lower switch open, the load is at the potential of the

applied voltage. Alternatively the upper switch is open and the lower switch is

closed resulting in the load being at ground potential. It is worth noting that

should both switches be closed simultaneously then the supply will be shorted

to ground resulting in certain damage to the semiconductor switches.

In the push-pull circuit shown the major challenge is the control of

each MOSFET gate, the obvious choice would appear to be either transformer

coupling or capacitive coupling. Unfortunately neither are ideally suited

because the non-ground referenced MOSFET's in the lower switch are often

required to be held in the off-state for a substantial amount of the pulse width.

Consider the example of generating a Ius pulse repeated at 1kHz, The
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MOSFET's in the lower switch must be held on for 999Jls and switched off for

just 1us, this represents a duty cycle of 0.1% which is unobtainable using a

simple transformer arrangement and practically impossible for a capacitive

coupling topology. A possible method to overcome this problem is via the use

of an opto-isolator and isolated DC power supply. This method is relatively

simple to implement however the cost and size of such a system increases

substantially as devices are added; each device requires its own isolated

voltage supply capable of withstanding the high applied voltages within the

circuit.

An alternate approach is presented in an application note published by

International Rectifier INC.2.24 It employs transformer coupling and an

additional MOSFET to hold the gate at a particular potential until it is

discharge by a second pulse. This method allows very high duty cycles to be

transformer coupled, which is highly advantageous. A disadvantage is the

need for additional components and considerable design effort. Figures 2-6

shows the proposed circuit used to obtained very high duty cycle ratios. The

circuit employs a small 1:1 transformer wound on a ferrite core and a low

power, low cost MOSFET, MI, to control the switching signals applied to the

power MOSFET M2. The circuit provides excellent isolation between the low

voltage drive signal and the non-ground referenced power MOSFET.

T1

(

Fig 2-6: Transformer coupled circuit allowing large duty cycle operation
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The operation of the circuit IS explained through the voltage

waveforms shown in figure 2-7. The low voltage control signal to be switched

by M2 is denoted the drive signal and is shown in the top graph. When this

voltage is applied to the primary of Tl the waveform is supported by changing

the core flux until saturation occurs as shown by the waveform in the second

graph. At this time the winding voltages fall to zero and remain so until the

core flux is reversed by the negative-going portion of the drive signal.

During the positive portion of the secondary waveform, which is a

replica of the drive signal, the intrinsic diode of MI is in forward conduction.

M2 receives a positive gate drive voltage with a source impedance equal to

that of the primary side of the transformer plus the intrinsic diodes forward

impedance.

+12

-
Drive
Signal

-12

+12->"-'"
(])
0>co -12:±=
0
>

+12

T1
..,__------r-"7"""-'-.30.--------r--",_ Wind ing

Voltage

If f
Vgs of
MOSFET
M2-12

I I ,--- Vds of
~----~ __~------ ~~~MOSFET

M2

Fig 2-7: Voltage waveforms obtained from circuit shown in figure 2-6
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When Tl saturates, the intrinsic diode of Ml isolates the collapse of

voltage at the winding from the gate of the power device; the input capacitance

of the power switch holds the gate bias at the fully enhanced condition for a

time limited only by the gate leakage current of M2, essentially meaning that

the power switch remains in the on-state indefinitely. When the drive signal

goes to -12V MOSFET MI becomes fully enhanced; and the power switch M2

will be turned off at approximately -12V with a source impedance equal to the

primary impedance plus the on resistance of MOSFET M2.
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Fig 2-8: PSpice analysis showing output from stacked MOSFET push-pull circuit

Figure 2-8 shows a PSpice simulation of the stacked MOSFET push-

pull circuit. It is clear that the waveform is highly rectangular compared to that

shown in figure 2-4, rise and fall times are around 25ns. Using this topology it

is possible to achieve pulses with rises times in the nanosecond range with

voltages in excess of 20kY. A further advantage of the circuit is its high

efficiency; no resistors are required to 'bum' excess power. Devices, based

upon this topology, capable of switching up to 15kV and handling peak

currents of 60A at kilohertz repetition rates, have been used extensively in the

experiments detailed within this thesis.
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2.4.3 Avalanche transistor Marx bank

The simple bipolar junction transistor is the backbone of today's

computer age, however transistors are often overlooked as switching devices

in pulsed power systems as their power handling capabilities tend to be low.

Current mode secondary breakdown, also known as avalanche breakdown, is

often assumed to be destructive to a transistor, however, if the amount of time

a BJT is subjected to the breakdown is limited then the device will survive

undamaged. The avalanche breakdown process in a BJT occurs when the

maximum collector-emitter voltage is exceeded such that the electric field

within the semiconductor junction is so high (MV1m) breakdown occurs.

Initial investigations attributed the p-n junction breakdown as a similar

process to that of spark-gap avalanche breakdown, hence the name. This

theory is not consistent with recent experimental studies that show transition

times can be as low as 30 picoseconds which are unexplainable with the

conventional avalanche breakdown theory.2.25A new theory that ionisation

occurs as a wave through the p-n junction was proposed by Gerkhov.2.25The

theory states that as the ionisation wave propagates through the junction, the

voltage is held off by an increasingly thinner layer of material but no

significant current flows until the wave reaches the other side of the junction

and the insulating layer collapses very quickly.

Many low power BJT devices exhibit non-destructive avalanche

breakdown and can typically switch several hundred volts in sub-nanosecond

time scales. By combining many devices with similar avalanche voltages

together a single high voltage switch is formed. For example ten serially

connected NPN ZTX451 transistors can switch 1.5kV and tens of amperes

when in the avalanche breakdown mode. This is quite surprising considering

the maximum collector emitter voltage specified for a single device is only

60V, the maximum collector current is stated at lA, and the maximum power

dissipation is 1W.
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Increasing the number of serially connected devices increases the

avalanche voltage of the entire chain; however, as the total voltage is

increased, the current through each device is increased thus power dissipation

in each device increases. At some point the loss matches the voltage gained

through adding an extra device, at which point adding additional devices

becomes futile.

When a relatively high impedance load is considered and the current

through each device is not very high, 20-30 B1T's can be serially connected to

form a single high voltage switch. To achieve even higher voltages a Marx

bank topology can be used. A Marx bank consists of several fast switches and

charged capacitors; figure 2-9 gives a simple example. Initially all the

capacitors are charged in parallel from the lOkV supply voltage. When the

first switch in the system is closed, capacitors Cl and C2 become connected

serially via the low impedance switch, this has the effect of combining the two

10kV voltages to produce a 20kV pulse. If the switches employed are spark

gaps the high-voltage pulse causes rapid breakdown of the second switch

resulting in all three capacitors being serially connected, thus producing an

output voltage of 30kV which is delivered to the load. This topology requires

the sequential operation of each switch within the Marx bank, which is

simplistic when over-voltage spark gaps are used, however the situation is

more complex when semiconductor switches are used as precise triggering is

essential.

C1

2

Rload
C3

o o

Fig 2-9: Simple three capacitor Marx bank topology.
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The advantage of replacing spark gap switches with semiconductor

switches in a Marx bank is the ability to obtain much higher repetition rates.

Typically several kHz are achievable, the addition of elaborate cooling

systems coupled with a careful circuit design can permit repetition frequencies

up to 100kHz. Commercial units are available that deliver a 2ns pulse with

IOkY magnitude at IOOkHz.2.26

Figure 2-10 shows a typical transistorised Marx bank consisting of

three stages each containing four serially connected devices, the circuit has

been used in several of the investigations detailed within this thesis as a means

of generating kilovolt nanosecond pulses. Several Marx bank devices were

constructed for pulsed APGD experiments, through experience it was found

that a six stage Marx bank formed with 15 BJT devices per stage proved to be

the optimum, producing 8kY pulses with rise times less than 2 nanoseconds.

In theory the rise time of such a device should be significantly faster than 2ns,

as the impedance of a plasma is dynamic it is impossible to accurately match it

to the impedance of the pulse generator thus causing a 'blurring' of the

waveform.

Rload

~

I
Fig 2-10: Three stage transistorised Marx bank circuit.

- 41 -



Chapter 2: Pulse generation techniques & applications

Figure 2-11 shows the output of an avalanche transistor Marx bank,

consisting of four 450V stages simulated on PSpice. It is worth noting that the

pulse is not rectangular, in order to obtain a rectangular pulse transmission line

capacitors are required. Unfortunately, transmission lines have a fixed

impedance and the plasma does not, this precludes their use for rectangular

pulse forming in this particular application.
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Fig 2-11: PSpice simulation of a four stage transistorised Marx bank.

2.5 Summary

This Chapter has aimed to give the reader a brief review of current

pulsed power applications that are relevant to the subject of this thesis. Many

modem applications of pulsed power require significantly higher peak powers

than are necessary for the generation of APGD and consequently have not

been discussed.
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Essential to any pulsed power system is the switching method used to

rapidly discharge stored energy into the load. A substantial portion of this

Chapter has been dedicated to the various switching options currently

available. The experiments detailed in this thesis have all used semiconductor

switching devices primarily because they are low cost and allow for high

repetition rates. Other switching devices, such as thyratrons, were considered

but deemed inappropriate due to their cost and complexity.

Finally, this Chapter details the circuit topologies of the pulsed-power

systems used in this thesis. Although a thorough design methodology has not

been presented, design equation and details are available in several of the

references provided. The details given should be sufficient to highlight the

advantages and disadvantages of each topology and give justification as to

why each circuit has been employed for a given experiment.
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Chapter 3

3 Microsecond pulsed APGD jet

3.1 Introduction

Many applications involving the use of plasma require efficient

reaction chemistry and excellent plasma stability, two properties which are

often difficult to achieve simultaneously.r ' One solution is to generate APGD

in an inert gas which is then flushed into a region of reactive gas, thus

achieving both stability and reactivity simultaneously. A common technique to

achieve this is the jet configuration. The vast majority of APGD jets reported

previously employ some form of sinusoidal excitation.3.2-3.1)Simulation data

produced in 2003, and summarised in figure 3-1, indicates that non-sinusoidal

excitation can be used to improve the electrical efficiency whilst maintaining a

constant electron density.3.)2 Recent studies, have explored the use of pulsed

excitation as an alternative to sinusoidal and highlighted some of the
. ·1 .. d diff b tw th 34310313SImI annes an Illerences e een em. ., . , .
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Fig 3-1: Graph showing effect on power consumption and electron density of waveform

shaping. The ratio V r/Ys indicates the amount by which a sinusoidal waveform can

be reduced in magnitude before electron density is adversely effected.3.l2
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It is suggested that pulsed excitation may be a more efficient means of

generating APGD compared to sinusoidal excitation.l" however, a

comparison between the two was not conducted. Given that pulsed APGD jets

introduce additional system parameters, such as pulse width, pulse rise/fall

time, and repetition rate, the scope for tailoring a pulsed discharge for

maximum efficiency is considerable. A necessary first step is to provide a

direct comparison between the two as the lack of a direct comparison casts

uncertainty on whether a pulsed APGD jet offers any significant advantages

over its sinusoidal counterpart. The remainder of this Chapter presents

experimental results of a pulsed APGD helium jet and provides a direct

comparison with a sinusoidal excited APGDjet.

3.2 Atmospheric pressure plasma jet review

As mentioned previously, atmospheric pressure plasma jets exhibit

excellent potential for many industrial applications. As such the amount of

research effort directed toward understanding and enhancing their properties is

increasing at a rapid rate. Figure 3-2 shows the number of journal articles

published between 1989 and December 2007 that contain the key words

'atmospheric pressure plasma jet.' From 2000 onwards a steep rise in the

number of published studies is observed, this indicates a rapid increase in the

number of research groups investigating the plasma jet, it is likely that this

trend will continue for many years to come.

Out of the 353 publications up to December 2007 containing the key

words mentioned above, it is possible to divide the number of plasma jets

detailed into three distinct categories based on their excitation method. An

even split between DC plasma jets, DBD jets (including pulsed), and RF

plasma jets is observed, a few studies make use of microwave excitation to

produce a plasma 'torch' however these are typically very hot at atmospheric

pressure so are not considered here. The following subsections review each

excitation method and discuss its advantages and disadvantages.
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Fig 3-2: Graph showing number of papers published containing the key words 'atmospheric

pressure plasma jet' obtained from Web of Science.

3.2.1 DC Plasma Jets

A DC excited plasma jet is possibly the simplest to construct and

analyse of all the plasma jets considered. All that is required is a DC source

and two metallic electrodes through which gas is somehow flushed. Figure 3-3

shows a typical DC plasma jet configuration, the cathode usually consists of a

sharpened metallic rod that is housed in a structure through which gas can be

flushed at high velocities. A metallic anode is usually placed at a suitable

distance downstream. As the DC voltage is increased the gap between the

anode and the cathode breaks down, as no form of current limiting is

employed the breakdown rapidly becomes an arc plasma. Typically, DC

plasma jets tend to operate at low voltages with high current densities,

consequently the plasma is very dense which translates into a high operating

temperature.':" Efforts to limit the discharge current.':" or cool the plasma

using gas flow, have reduced the temperature of DC plasma jets down to a

level suitable for many materials processing applications. As such DC plasma

jets are widely used in chemical vapour deposition, CVD, applications where

it is necessary that the substrate being treated is at an elevated temperature.3.17

Unfortunately, the cooling mechanisms reported are insufficient to reduce the
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plasma temperature down to a level acceptable for applications such as bio-

decontamination.
gas now
! !
Cathode

+

Fig 3-3: Schematic showing a typical configuration of a DC plasma jet.

3.2.2 RE Plasma Jets

Another widely used configuration is that of an RP excited plasma jet,

these typically use MHz excitation between two metallic electrodes to produce

a high intensity discharge which is then flushed out of the jet structure using a

high gas flow.3.5 A typical coaxial RP plasma jet configuration is shown in

figure 3-4, a variation on that shown is the production of a plasma between

two parallel plate electrodes which is then flushed OUt.3.18 In both cases the

plasma is produced between two electrodes and then flushed into another

region. A drawback of these configurations is that the plasma is usually

produced between two vertical electrodes, meaning the electric field is in a

horizontal direction, to get the plasma from between the electrodes requires

the gas flow push the plasma in a vertical direction thus at a tangent to the

field, which is difficult. Very high flow rates are often employed yet plume

lengths are typically only around a few millimetres.':" also, the plume only
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contains neutral species as charged species remain trapped in the electric field

between the electrodes.

Fig 3-4: Schematic showing a typical configuration of an RF plasma jet

A variation on the RF plasma jet is known as the plasma needle.3.20

The device employs a single pin like electrode which produces a very small

area discharge at the tip.3.21The small area of the plasma needle prevents it

from being of much use in many industrial applications, however it can be a

benefit for certain biomedical applications. Recently it has been used to treat

cavities in teeth which would be inaccessible using larger plasma systems.3.22

3.2.3 DBD Plasma Jets

Many studies focus upon the use of a dielectric barrier jet employing

kHz sinusoidal or pulsed excitation. The configuration of the plasma jet used

varies somewhat however the majority employ a dielectric tube through which

the base gas flows, a powered electrode is attached to the outside of the tube to

ionise the gas flow.3.28 This configuration is depicted in figure 3-5. A slight

variation on that shown is the addition of a second electrode on the tube which

is grounded.3.25 A grounded electrode on the tube generally reduces the

influence of any objects placed downstream in the plasma plume.

- 50-



Chapter 3:Microsecond pulsed APGD jets

Powered
electrode

Fig 3-5: Schematic showing typical configuration of kHz DBD plasma jet.

The dielectric barrier jet is the focus for the first part of this thesis due

to its beneficial operating properties, typically low temperature operation

coupled with highly reactive chemistry.r" Due to these properties the DBD jet

is an ideal candidate for many biological decontamination applications.P" 3.28

The following sections will examine operation of a kHz sinusoidal and kHz

pulsed DBD jet in further detail.

3.3 Experimental Setup

The APGD jet used for this study employed a dielectric tube 6 cm in

length, one end of which was wrapped with a concentric copper belt of 1 cm

wide as the powered electrode. A stainless steel plate, either dielectrically

insulated or naked, was used as the ground electrode and placed at 3 - 5 cm

away from the gas exit point of the dielectric tube. As shown in figure 3-5, the

electrode configuration was essentially that of a, dielectric-barrier discharge

jet. Atmospheric helium gas was fed to flow at 5 standard litres per minute

(SLM) through the dielectric tube, which became ionised by the high voltage

externally applied to the copper electrode. The ionised helium gas was flushed
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out of the dielectric tube into the surrounding ambient air, where the excited

helium species transferred their energy to the ground-state oxygen and

nitrogen molecules and created excited oxygen and nitrogen species such as

atomic oxygen, OH and excited N2/N2+.

Electrical measurements were made using a Tektronix digital

oscilloscope (TDS 5054B) with a 500MHz bandwidth. A 75MHz Tektronix

P6015A voltage probe, rated at 40kV, was used to measure the high applied

voltages. A Pearson 2877 current probe with a 200MHz bandwidth was

attached between the grounded electrode and earth. Figure 3-6 is a schematic

of the experimental layout. Optical measurements were performed with an

Andor DH720/Shamrock system with a grating of 600/1200/2400 g/mm

depending on the spectral resolution required.

TTL Pulse
Generator
O.1-10kHz

He

Ceramic
Tube

High Voltage
Amplifier
1~kV

Voltage
Probe

Current

'I '-I _p~r~,-be__ ~t=====:::J
Electrode

Fig 3-6: Schematic showing the experimental setup of a kHz excited DBD plasma jet

The generated plasma jet was very stable and could be sustained for

many hours. Its volumetric appearance near the gas exit point seemed to

depend largely on the applied voltage and the helium flow rate, relatively

independent of the ground electrode.

Figure 3-7 shows the plasma jet in operation as observed using a

Canon digital camera with the exposure set to 1I60th of a second, the
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appearance of the plasma plume is that of a purple glow that extends from the

tube exit to several centimetres into the open air. Clearly objects can be placed

within the plasma plume and exposed to the reactive species with relative ease.

As the high voltage electrode is insulated from the plasma via the dielectric

tube, arcing is not an issue; hence it is safe to put conductive objects within the

plasma plume, including biological matter (such as a human finger). When a

ground electrode is employed, primarily to enable a satisfactory current

measurement to be obtained, it is found that the plasma terminates upon the

surface. If the ground electrode has a dielectric coating the terminating plasma

has the appearance of spreading out across the dielectric surface. If the ground

electrode is a naked metallic surface the plasma plume terminates in a single

small bright spot.

Fig 3-7: Photograph of an atmospheric pressure helium plasma plume (1/60 sec exposure).

3.4 Comparative study

To facilitate a direct comparison of sinusoidal and pulsed excitation, a

simple sinusoidal voltage source was developed and constructed. The device

consisted of a half-bridge MOSFET switching power supply and a high-

voltage ignition transformer, commonly used in the automotive industry. The

sinusoidal output had a variable output of 1-10kV with a variable excitation
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frequency of 1 - 10kHz but nominally at 7 kHz. A pulse generator was also

developed and constructed, based on the circuit shown in figure 2-3. The

device was capable of generating unipolar voltage pulses up to SkV with a

variable duty cycle of 20-80% and a pulse repetition frequency up to 10kHz.

For all results presented here, the sinusoidal source had a peak-to-peak

voltage of7.3 kV and thepulsed source delivered a unipolar pulse train having

a peak voltage of 4 kV, thus both with similar voltage spans. To facilitate

direct comparison, the pulse width of the pulsed source was fixed at 71J-lS

which yielded a duty cycle of 49% and equates to a frequency of 7kHz,

identical to that of the sinusoidal source.

3.4.1 Electrical comparison

A significant advantage of in-house design and construction of the

pulse generator was the ability to closely control certain properties of the

generated waveform. In this study it was desirable to ensure the amplitude;

frequency and rise time of the pulse closely resemble that of the sinusoidal

source. A 10kQ resistor was combined with the MOSFET's 3nF input

capacitance to give a charging time of 30J-ls,the MOSFET fall-time controlled

the fall time of the pulse and as such was less than 1DOns.The contrasting rise

and fall times provided a clear contrast with each other and also enabled easy

comparison with the sinusoidal voltage that nominally required 35J-lsto climb

from zero to the next peak. The pulsed voltage source was designed to have a

rise time similar to one pulsed APGD jet study and a fall-time similar to the

other,3,4,3,13thus enabling a comparison with these previous studies. The

discharge current and the applied voltage characteristics are shown in figure 3-

8 for both pulsed and sinusoidal excitations. The applied voltage is measured

in kV and is shown in blue, the current is measured in rnA and is shown in

green.

With the pulsed excitation, two discharge current pulses were induced

during one voltage pulse - one in the voltage-rising phase and the other in the
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voltage-falling phase. Although the pattern of two current pulses per one

voltage pulse was not explicitly mentioned in previous studies of pulsed

APGD jets/.4,3.13 it was observed with a pulsed DBD APGD between parallel-

plate electrodes.ii" It is expected that this temporal character is likely to be

observable in most previously reported pulsed APGD jets.3.4,3.13 As shown in

figure 3-8a, the peak current is 12.1 rnA in the voltage-raising phase and 12.9

rnA in the voltage-falling phase. The difference in the peak discharge current

is insignificant, suggesting that the timescale of the voltage variation, 30llS

and 100 ns respectively, was unlikely to be the only influencing factor. The

pattern of the discharge current was highly periodic with the peak current

being the same from one voltage pulse to another.
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Fig 3-8: Current & Voltage characteristics of a) pulsed, and b) sinusoidal excited jets

With the sinusoidal excitation, the discharge pattern seen in figure 3-8b

has one discharge current pulse per half cycle of the applied voltage and the
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current pulses occurred always at a voltage-rising phase. This is similar to that

in APGD sustained between two parallel-plate electrodes.r" The discharge

events were periodic, though the peak current appeared to vary from one cycle

of the applied voltage to another. When the applied voltage was positive, the

peak discharge current varied between 7.9 mA and 12.0mAo When the applied

voltage was negative, the peak discharge current became smaller. The

difference in the peak discharge current is however not uncommon among

parallel-plate APGD.3.26 In general, the discharge current achieved with the

pulsed APGD jet was higher than that in the sinusoidal APGD jet but the

difference was not large. The averaged power was 74 mW in the pulsed

APGD jet and 370 mW in the sinusoidal APGD jet, representing superior

energy efficiency by a factor of 5 with the pulsed excitation for the same peak

discharge current. This is significantly higher than a theoretical evaluation of

a sinusoidal APGD and a comparable pulsed APGD both sustained between

parallel-plate electrodes.3.12 The plasma power dissipated in the pulsed APGD

jet was more than one order of magnitude lower than that found in previous
tudi fpulsed APGDJ'ets 3.10,3.13s les 0 .

3.4.1 Gas temperature comparison

The gas temperature in a plasma discharge is often difficult to measure,

common measurements techniques such as thermocouples cannot be used

reliably. For example, the insertion of a thermocouple into the discharge often

causes disruption to the plasma, leading to arcing. Additionally, the high-

voltage, high frequency excitation is often a source of electromagnetic noise

which interferes with the delicate electronics of the measuring device. An

alternative, non-invasive, temperature method involves the use of an optical

emission spectroscopy (OES) technique.

By comparing measured and simulated optical emission from suitable

excited species it is possible to determine the rotational temperature of gas

molecules in the discharge. At atmospheric pressure the energy required to

reach rotational excitation is low and the transition time from the ground state
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is also short.3.27 As a result, gas molecules in the rotational states and the

neutral gas molecules, in the ground state, can be considered to be in

equilibrium. Hence the gas temperature can be estimated directly from the

rotational temperature obtained via OES.

As the plasma jet is flushed into the ambient air, hydroxyl (OH)

molecular band and the nitrogen monopositive ion N first negative system are

observed in the emission spectrum due to water molecules in the air and

nitrogen from the air composition, respectively. In this investigation the

emission of the diatomic molecule OH was measured and compared to

simulation data produced using a program known as LIFBASE,3.30 developed

by Jorge Luque. LIFBASE has been designed to compile the information

available from transition probability calculations on the diatomic molecules

OH, OD, CH and NO. The output of the program furnishes Einstein emission

and absorption coefficients, radiative lifetimes, transition probabilities, and

frequencies for many bands of OH (A-X), OD (A-X), CH (A-X, B-X, C-X),

NO (A-X, D-X). The software allows for interactive modification of many

parameters; most significantly in this investigation, the rotational and

vibrational temperatures can be adjusted and the effect on the spectral data

observed. 3.30

Using the emission of the OH band around 309nm, simulation data can

be fitted to the experimental results with a high degree of accuracy, it has been

shown that rotational temperatures can be estimated to within as little as 2.4%

error using this method.3.27 To achieve such high levels of accuracy the

spectrometer grating must be very fine thus giving a high spectral resolution,

unfortunately the grating of the spectrometer employed in this investigation

was relatively low thus only permitting a rough estimation of rotational

temperature.

In this investigation, emission of the OH band was recorded using a

spectral resolution of 0.3 nm, gas temperature was found to be between 290

and 350 K but closer to 290 K, in both the pulsed and sinusoidal APGD jets.
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Figure 3-9 shows the experimental data and synthetic data calculated at

various rotational temperatures. Essentially the difference in the measured gas

temperature was insufficient to differentiate the pulsed and sinusoidal APGD

jets, possibly because both plasma jets had their gas temperature either at or

very close to room temperature. The dielectric tube was thermally safe to

handle even after several hours of plasma operation, with both the sinusoidal

and pulsed excitations.
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Fig 3-9: Gas temperature data for a) pulsed, and b) sinusoidal excited jets, experimental data

obtained using an optical grating of 2400 groves/mm.

For further clarification, an infrared thermocouple was employed to

continuously monitor the temperature of the dielectric substrate (focused

approximately Imm from plasma plume) during operation of the jet. After
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several minutes of operation the temperature of the ceramic plate rose steadily

and then reached a plateau at which the temperature stayed indefmitely. A

slight difference was observed between the temperature of the pulsed jet and

sinusoidal jet, however it was not significant. The temperature recorded by the

thermocouple, shown in figure 3-10, is in close agreement with those obtained

using the OES method. From the two sets of temperature data it is clear to see

that there is very little difference between the pulsed and sinusoidal APGD

jets. Both are just slightly above room temperature highlighting the non-

thermal nature of the discharge.
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Fig 3-10: Substrate temperature of pulsed and sinusoidal excited jets obtained using an

infrared thermocouple.

3.4.3 Plasma reactivity comparison

Optical emission spectroscopy provides a relative measurement of the

optical emission from excited atoms to determine the chemical composition of

a plasma. The use of OES relies upon atoms within the plasma having a

sufficient energy such that they are in an excited state. The atoms decay back

to lower levels by emitting light which is collected via a fibre optic cable and

analysed by a spectrometer. Since the transitions are between distinct atomic
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energy levels, the emission lines in the spectra are narrow. The spectrum of a

typical helium plasma jet is often very congested due to the excitation of the

background air, which has a rich chemical composition. Since all atoms in the

plasma are excited simultaneously, they can be detected simultaneously; this is

a major advantage of emission spectroscopy over other methods, such as

absorption spectroscopy.

Species Wavelength (nm) Ref

Hydroxyl (OH) 306-310 3.20

Nitorgen N2 2nd positive series
315-385

3.17,

3.19

391
3.17,

Nitrogen N2+
3.19

446,501,587,668,706, 3.5,
Helium

and 728; 3.19

Oxygen 616,645,700,725,777, 3.5
794, 822, and 845;

Table 3-1: Table showing predominate species and corresponding wavelengths in a helium

APGD jet flushed into the ambient air.

Table 3-1 gives typical emission wavelengths for the predominate

species observed in an APGD jet that is flushed into the background ambient

air. An Andor optical emission spectroscopy system using a grating of

600glmm was used to detect various excited plasma species within the jet

plume and figure 3-11 gives spectral data for both pulsed and sinusoidal

excitation sources. In general, atomic oxygen, OH and various nitrogen

species were observed, this is typical of APGD plasma jets that are flushed in

to the ambient air and consequently excite oxygen, nitrogen and other

molecules that are generally not present in a pure helium discharge.3.5,3.l0,3.13
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Fig 3-11: Emission spectrum of a) pulsed, and b) sinusoidal excited jets. Data obtained using

a grating of 600 groves/mm.

The general emission spectra were similar for the pulsed and sinusoidal

APGD jets. In the spectral range of 200 - 300 run, there were very weak

emission lines with their magnitudes at most a couple of percent of the

nitrogen emission line at 337 run. Therefore UV photons were not a major

plasma species in the two APGD jets studied. Additional spectroscopic

measurements with greater gratings were performed (not shown) and the

fmdings confirmed the above conclusion. It is worth mentioning that UV

emission was found similarly weak in other studies of pulsed APGD jets.3.10,

3.13 This suggests that the APGD jets considered in this study are likely to

enable applications through their reactive plasma species.
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Recent studies conducted into various applications of APGD plasma

jets have highlighted the importance of hydroxyl species and atomic oxygen

species. In many biological applications atomic oxygen is of paramount

importance, a high flux of atomic oxygen has been shown to significantly

increase the effectiveness of an APGD jet in the inactivation of bacterial

spores.':" For surface modification the hydroxyl group is of particular interest,

use is often made of a water electrode to increase it's presence in APGD.3.29

Interestingly, optical emission intensities of several key application enabling

species in the pulsed APGD jet were equivalent or greater than the sinusoidal

jet despite having a lower average power consumption.

Species OH N2 N2 0 He 0
Wavelength (run) 309 337 391 616 706 777

Pulsed 2.22 6.09 4.26 1.59 1 2.52
Sinusoidal 2.33 5.09 3.24 1.83 1 1

Intensity ratio, 0.97 1.20 1.31 0.87 1 2.52..
Table 3-2: Relative intensities of key excited species ID APGD Jets

Table 3-2 lists optical emission intensities of OH radicals at 309 nm,

atomic oxygen at 616 nm and 777 nm, helium metastable at 706 nm, excited

N2 at 337 nm and excited N2+ at 391 nm, measured with a fixed optical set-up

with the same alignment and distance between the spectrometer and the

plasma jet. As shown in table 3-2, the most significant difference lies with the

optical emission intensity of the atomic oxygen line at 777 nm - the emission

intensity from the pulsed jet is 2.5 times greater than that from the sinusoidal

jet. While the optical intensity at 616 nm was about 13% less in the pulsed jet

than that in the sinusoidal jet, most oxygen atoms were produced via the

channel associated with the 777 nm line. Therefore the pulsed jet was capable

of producing more oxygen atoms. Similarly, the production of all other listed

plasma species was more abundant with the pulsed plasma jet. This is both

significant and desirable, as it offers unambiguous evidence of the advantage

of pulsed excitation of APGD jets as a more efficient producer of reactive

plasma species.
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3.4.4 Visual comparison

To make a valid visual companson it is necessary to employ an

intensified charge-coupled device (ICCD), which is essentially a CCD that is

fiber-optically connected to a micro-channel plate (MCP) to increase the

sensitivity. In an ICCD camera a photo-cathode in front of the MCP converts

photons to electrons which are multiplied by the MCP. Following the MCP a

phosphor screen converts the electrons back to photons which are fibre-

optically guided to a standard CCD. The advantage of using an ICCD camera

over a standard CCD is two-fold, primarily the sensitivity is much greater,

allowing the capture of events that would otherwise be invisible. Secondly, the

exposure time at which an ICCD can operate can be extremely short. Imaging

of plasma often requires exposure times in nanoseconds to capture specific

events in the breakdown process.

Figure 3-12 shows a series of images of a plasma jet captured in 200ns

steps starting 200ns before the pulse of current observed in the waveform

shown in figure 3-8a. The exposure time of the ICCD camera was set to 2ns

and each single image is the culmination of 100 individual shots. It is clear to

see that the plasma plume is not a continuous 'stream' of plasma, as it appears

to the naked eye, but comprises of a discrete ball of plasma that travels with a

high velocity. Similar observation have been made previously and the term

'plasma-bullet' was coined.i" The plasma 'bullet' exits the dielectric tube and

travels vertically downwards toward a grounded electrode. The velocity of the

bullet is dependant on several factors such as excitation method and gas type.

Notably, one factor which has no effect on bullet velocity is the velocity of the

background gas, which is typically only a few mls whereas the bullet velocity

is measured in the kmIs range. A similar sequence of images is observed

regardless of pulsed or sinusoidal excitation, the visible plume is always a

product of rapid plasma bullets ejected from the dielectric tube. The

production of a plasma bullet is always associated with a pulse of current

through the circuit. As mentioned previously, the excitation method has a
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significant effect on the properties of the plasma bullet; this will be re-visited

in latter chapters.

Fig 3-12: High-speed imaging of plasma plume (2ns Exposure, 200ns steps)

3.5 Summary

In this Chapter, a companson study of pulsed and sinusoidal cold

atmospheric plasma jets through electrical characterisation, gas temperature

measurement, and optical detection of reactive plasma species has been

reported. This has been the first direct comparison between pulsed and

sinusoidal excitation methods, the results show conclusively that pulsed

excitation is highly advantageous.

Using current and voltage measurements it has been shown that pulsed

excitation has an average power consumption fives times lower than that of an

equivalent sinusoidal source. This is attributed to a lower displacement current

in a pulsed scenario compared to the displacement current that is continuously

generated in the sinusoidal case. Optical emission spectroscopy was employed

to determine the gas temperature of the plasma plume for each excitation

method. Comparison between experimental measurements and simulated

spectral data of the OH emission showed the gas temperature to be between

290 and 350K, this was confirmed using an infrared thermometer. The

temperature for each excitation method was found to be roughly the same.

OES was also used to investigate the chemical composition of the excited
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species within the plasma plume. The technique gave a relative measure of the

excited species within the' plasma and it was found that pulsed excitation

produced 2.5 times more emission of excited atomic oxygen which is known

to be a key application enabler.

Using the energy consumption data and OES data it has been shown

that electrical energy consumption can be reduced by a factor of 12 for

producing the same amount of oxygen atoms. This is a highly significant

fmding for many applications employing APGD technology and will have far

reaching consequences for the choice of excitation method in future

applications.
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4 Sub-Microsecond Pulsed APGD jets

4.1 Introduction

The previous chapter provided a detailed comparison between pulsed

and sinusoidal excitations of an APGD jet. Conclusive evidence indicated that

pulsed excitation is significantly more electrically efficient than the sinusoidal

excitation; furthermore it was observed that despite lower power consumption

a higher flux of reactive species was obtained. The use of pulsed excitation

offers a greater level of flexibility by altering certain pulse parameters, for

example pulse width and rise time, to achieve the highest efficiency possible.

This chapter focuses upon the reduction of pulse width down to a sub-

microsecond scale and highlights the benefits of using increasingly short

pulsed excitation. Potentially, reduction of the pulse width will further

enhance the electrical efficiency of plasma generation and could introduce

additional benefits such as greater stability, higher reactivity, and lower gas

temperatures.

The first part of this chapter explores the use of sub-microsecond

pulsed excitation of a helium APGD jet. The few published studies on sub

microsecond pulsed APGD have all focused upon parallel plate electrode

geometries,4.1-4.5 whilst the excitation method is identical the effects of

introducing a complex geometry, such as the plasma jet configuration, are

unknown. Through electrical and optical measurements the advantages of sub-

microsecond pulsed excitation are highlighted for an APGD jet and compared

to previous studies of pulsed APGD employing parallel plate electrode

configurations. In the second part of this chapter, focus is directed towards the

use of argon as a carry gas as it is economically more desirable than helium

which has commonly been used for the generation of APGD.4.6 So far, the use
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of argon has been found to considerably increase the gas temperature of

APGD jets leading to a danger of instability through thermal runaway.l"

Significantly, pulsed excitation has been shown to reduce the minimum energy

consumption, at a given density of reactive plasma species.v" This should, in

principle, help mitigate or even eliminate the development of a thermal

runaway instability. Given that most previously reported pulsed APGD studies

have been produced in a helium-dominant working gas,4.1-4.4pulsed argon

APGD's are of particular interest 4.6The latter part of this chapter discusses

the production of a stable argon APGD jet sustained with sub-microsecond

pulses repeated at kilohertz frequency.

4.2 Experimental setup

The APGD jet considered in this chapter consisted of a quartz tube

wrapped with a Iem band of copper foil as the powered electrode, either argon

or helium was flushed through the tube at a rate determined via a mass flow

controller. A grounded copper electrode was placed vertically below the tube

outlet at a maximum distance of 2 cm but nominally 1 cm, a 2mm ceramic

sheet was placed on the surface of the grounded electrode to form a second

dielectric barrier. Figure 4-1 depicts the electrode arrangement and the overall

apparatus, it should be noted that the configuration shown is identical to that

used in Chapter 3. The inner diameter of the quartz tube was 3 mm, and the

outer diameter 4mm. Quartz was chosen as it is able to withstand high-

temperatures and is optically transparent to short wavelength light allowing

OES to be performed inside and outside of the jet structure. Plasma images

were taken with an exposure time down to 1ns using an iCeD camera CAndor

i-Star DH720), optical emission spectra were obtained using a spectrometer

system CAndorShamrock) with a focal length of 0.3 m and a grating of 600

grooves/mm.

The pulsed power supply was home built and is based upon the push-

pull stacked MOSFET circuit shown in section 2.4.2. The device consists of

thirty lkV MOSFETs arranged as two switching elements thus resulting in an
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output voltage up to IS kV. The MOSFET devices employed have switching

transition times around 20ns so the rectangular pulses produced have

equivalent rise and fall times. As the repetition frequency is increased device

heating becomes significant and this limits the maximum repetition frequency

to SkHz. The discharge current and the applied voltage were measured with a

wideband current probe (Pearson 2877) and a wideband voltage probe

(Tektronix P601SA), respectively. Their waveforms were recorded on a digital

oscilloscope (Tektronix TDS SOS4B).

Mass
Flow

Control
quartz
tube IGasFlow

1-6slm

0-15kV
0-5kHz
SOns-DC

1cm

1cm

Ceramic
sheet

2cm

Grounded
copper sheet

Fig 4-1: Schematic showing the experimental setup of helium / argon pulsed APGD jet.

In all experiments conducted the optical fibre was fixed to focus at a

point Smm below the tube exit, horizontal from the axis of the ceramic tube.

The fibre was placed 5cm away from the plume to avoid direct contact with

the plasma. A prerequisite for any comparative study is the reliable and

repeatable placement of the fibre optic cable, a slight adjustment in position

can translate into a big variation in the measured emission spectrum.
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4.3 Helium APGD Jet

This section details observations made of a sub-microsecond pulsed

helium APGD jet. Figure 4-2 shows an image of the plasma plume taken with

a Canon digital camera, in this image no ground electrode has been used and

consequently the plume extends for 7 em which is exceptional long. Typically,

the maximum plume length observed in an APGD jet flushed into the ambient

air is less than Scm.4.7 A markedly different plume length with a similar gas

flow rate and comparable maximum applied voltage suggests that the

reduction of the pulse width is likely to have a large impact on the properties

of the APGD jet.

Fig 4-2: Digital image of a sub-microsecond pulsed helium APGD Jet

4.3.1 Electrical characteristics

Figure 4-3 shows a typical applied voltage waveform on a microsecond

scale, each voltage pulse has a width of SOOns and is repeated at 3S0~s

intervals. This yields a repetition frequency of almost 3kHz and a duty cycle

of 0.14%. As the applied voltage is only present over very short time periods

the energy unnecessary for plasma generation is reduced significantly.
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Fig 4-3: Graph showing the voltage waveform of a pulsed helium APGD jet on a microsecond

scale.

The power consumption discussed in previous chapters relates to the

electrical power required to sustain the plasma, i.e. the power dissipated within

the plasma itself, no mention was given to the actual power requirements of

the entire system. Wall-plug efficiency, which is defined as the ratio of the

output power to the input power of the entire system is of paramount

importance when APGD systems are considered on an industrial scale. A

significant advantage of the sub-microsecond pulse generator arises from the

use of a push-pull circuit topology, no energy is wasted in heating large DC

blocking resistors hence the wall-plug efficiency is increased substantially.
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Fig 4-4: The applied voltage, displacement current and discharge current measured in a pulsed

helium APGD Jet

Figure 4-4a shows the applied voltage pulse in blue, the current

without plasma (no gas flow), in black, and the current with plasma (recorded

with helium flow), in red. Figure 4-4b shows the applied voltage, and the

actual discharge current, in green, which was obtained by subtracting the

displacement current (due to the cable capacitance, the dielectric equivalent

capacitance, and the gas gap equivalent capacitance) from the total measured

current.4.2 Two distinct current pulses indicating two consecutive discharges

are clearly visible. The first pulse occurs shortly after the rising edge of the

voltage pulse and the second current pulse occurs at the falling edge of the

voltage.":' These two current pulses are each approximately 100 ns wide. Due
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to the capacitive effect of the dielectric barrier as the applied voltage falls the

actual gas voltage falls below zero. This negative pulse of the gas voltage is

induced by the charges previously collected on the surface of the dielectric

plate and the wall of the tube. It is this voltage pulse which is responsible for

the re-ignition of the discharge and hence the occurrence of a second current

pulse at the falling edge of the applied voltage pulse.

The current and voltage waveforms are very similar to those presented

in sub-microsecond pulsed parallel plate DBD studies.4.1,4.2 It is likely that the

discharge in a jet configuration has the same underlying physical mechanisms

as that in a simple parallel plate configuration. One curiosity worth noting is

the delay of the initial current pulse from the rising edge of the voltage pulse,

which was not observed in the results shown in Chapter 3. This is unusual as

the applied voltage has reached it's maximum value and yet breakdown does

not occur instantaneously. The next section of this chapter explores this delay

in further detail and presents a possible explanation for its occurrence.

4.3.2 Gas temperature characteristics

Using optical emission data from the excited hydroxyl molecular band

at 307-311 nm, the rotational temperature and consequently the gas

temperature has been obtained by means of best-fit between experimental and

simulated data. Figure 4-5 presents the measured spectrum obtained using a

high resolution optical grating of 2400 grooves/mm and two sets of simulated

data, one at a rotational temperature of 300K and the other at 350K. As

expected, the temperature is low, approximately room temperature, however

this fails to show any advantage gained by using sub-microsecond pulses over

other excitation techniques.4.7,4.l1 This is partly due to the fact that the

technique of comparing measured and simulated spectra is not particularly

effective in resolving small temperature variations when the gas temperature is

close to room temperature. It is expected that the advantages of pulsed APGD

will be clearer when other carry gases are used. Discharges in gases such as
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argon and nitrogen tend to be significantly hotter than those generated in

helium, hence the advantage of short pulse excitation may be more distinct.

Figure 4-6 provides further confirmation of the low temperature nature

of the pulsed helium APGD jet. A finger placed into the plasma feels no

discomfort and can be held within the plume for a long time. The effect of

such atmospheric pressure plasmas on biological matter is of great importance

in many APGD applications. For example, the use of APGD to decontaminate

wounds,4.12 depends upon the plasma not causing any undue damage to the

biological matter. Thermal instability leading to an increase in temperature

beyond a level that is painful to humans must be avoided, equally important is

the limitation of current flowing through the discharge. As the discharge

current increases the glow discharge transitions to an arc, notable for high

temperatures and high currents which could potentially lead to the patient

receiving an electric shock. As the pulse width is reduced an inherent stability

is introduced into the gas discharge system, gas heating is reduced and glow-

to-arc is less likely to occur.?"

120~~--~------~--~--~--~~
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o Measured
100 -- Simulated300K

--Simulated 350K- 80

-
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Fig 4-5: Measured and simulated data used to determine the rotational temperature in a 500ns

pulsed helium APGD jet.
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Fig 4-6: Image of a sub-microsecond pulsed helium APGD jet directed on to a finger.

4.3.3 Plasma reactivity characteristics

Figure 4-7 shows optical emission spectroscopy results obtained from

the 500ns pulsed helium jet, a grating of 600grooves/mm was used to record

the spectrum in the 250-900nm range. As in the case of the sinusoidal helium

APGD jet discussed in the previous chapter and other reported studies,4.7,4.9the

spectrum is rich in emission lines from excited nitrogen and oxygen species.
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Fig 4-7: Measured spectrum of the pulsed SOOnshelium APGD jet.
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It is not possible to directly compare the OES results shown in figure

4-7 with the data given in Chapter 3 as the position of the fibre optic probe

was different. It is worth noting however that the discharge current measured

within the sub-microsecond pulsed jet is several orders of magnitude above

that normally observed in a DBD discharge;4.7,4.8 this is consistent with

previously reported sub-microsecond pulsed APGD.4.1,4.2 As the discharge

current may be used to give a rough indication of the electron density, it can

be concluded that there are more electrons and consequently a higher density

of excited species in the sub-microsecond pulsed APGD.

The OES data given in figure 4-7 was obtained using an exposure time

of Ims, this is substantially longer than a single discharge event thus resulting

in a time averaged spectrum. The OES instrument consists of two separate

parts, the spectrometer and the iCCD camera. The camera allows exposure

times as low as Ins hence it is possible to obtain time resolved emission

spectroscopy. By monitoring the evolution of excited species within the

transient discharge a far greater understanding can be achieved in comparison

to the simple time averaged OES highlighted previously. Figure 4-8 shows

typical time resolved OES data for the 500ns pulsed APGD jet of figure 4-4.
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Fig 4-8: Time resolved OES data of the 500ns pulsed helium APGD jet.
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With an exposure time of a few nanoseconds it is possible to obtain a

very high temporal resolution allowing for the evolution of species to be

tracked precisely over one pulse of the applied voltage. This method is used

extensively throughout the remainder of this thesis; however, just a brief

example is given here to highlight the potential of the technique. Figure 4-8

shows the evolution of three particular excited species over a single voltage

pulse. Metastable helium at 706nm and ionic nitrogen at 391nm, both of which

are considered to be indicative of energetic electrons within an APGD.4.13 Also

excited molecular nitrogen at 337nm is tracked, this is typically the strongest

emission line observed in an APGD jet flushed in to ambient air and plays an

important role in many applications.t" From the time resolved data it is clear

to see that the production of the excited helium and nitrogen species is closely

related to the discharge current. This makes sense, as the current increases

more electrons flow through the gas gap reflecting a greater level of ionisation

within the background gas. It is worth noting that the levels of excited species

within the plasma rapidly fall in absence of the discharge current, this is

consistent with the observations of nanosecond imaging, presented in section

3.3.4. At each discharge event a plasma 'bullet' is ejected and rapidly travels

toward the grounded electrode. The photons emitted from the plasma bullet

can only enter the fibre optic when the bullet is within the viewing angle of the

fibre, as such the time resolved OES appears to rise and fall very rapidly.

4.4 Argon APGD Jet

For APGD technology to become widely used on an industrial scale,

efforts must be made to use more economical gases such as argon and

nitrogen.4.6,4.9 Helium is prohibitively expensive for large-scale applications,

almost five times more costly than argon; however the characteristics of a

helium gas discharge, such as low temperature and inherent stability make it a

very attractive choice. The use of pulsed excitation to introduce stability and

lower gas temperatures could potentially open the gateway to large volume,

low temperature APGD processing without using expensive helium gas.
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Figure 4-9 shows an argon APGD jet flushed in to the ambient air. It is

clear to see that the generated plasma is very stable and visually free from

streamers. Similar to a helium APGD jet, the discharge has a spreading effect

on the dielectric sheet, this is clearly visible in the photo.

Fig 4-9: Digital image of a pulsed argon APGD Jet

To confirm the uniformity of the pulsed argon jet nanosecond imaging

was used, figure 4-10 shows a sequence of images taken at 5ns intervals over a

single discharge event with an exposure time of 2ns. It is clear from the

images that the discharge is free from streamers. It is also worth noting that the

plume appears to be continuous unlike that of a helium APGD jet, where the

plume consists of discrete 'bullets'. This could be a consequence of the higher

applied voltage and is investigated further in the next chapter.

Fig 4-10: Images taken with a 2ns exposure at Sns intervals over a discharge current pulse.
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4.4.1 Electrical characteristics

As the breakdown voltage of argon is notably higher than that of

helium the amplitude of the applied pulse must increase compared to that of

the helium APGD detailed in section 4.3. It was found that the stable operating

range of the argon jet was between 8kV right up to the pulse generator

maximum of 15kV. Figure 4-11 shows the current and voltage characteristics

of the pulsed argon jet for which the peak applied voltage is 12.0 kV, the

voltage pulse width measured as full width at half maximum amplitude is 505

ns and the repetition frequency is 4 kHz. The rise and the fall times of the

applied voltage pulse are very short at 15 ns and 22 ns, respectively, causing a

large displacement current to be established at each of the voltage-rising and

the voltage-falling edges. The two displacement current peaks are respectively

6.7 A and -6.0 A at 138 ns and 648 ns, at which the corresponding total current

peaks are 7.1 A (This value and the displacement current are the same on the

rising edge, because the discharge current is offset) and -7.5 A, respectively.

In addition, the total current reaches a peak of 4.5 A at 192 ns where the main

discharge event occurs.

15----~--~~--~--~--~--~~10

Fig 4-11: Applied voltage, displacement current and discharge current measured in a pulsed

argon APGD jet
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It is of interest to note that the current peak of 4.5 A occurs some 75 ns

after the onset of the voltage pulse at 117 ns. This delay is likely to be related

to a pre-ionization phase in which a weak Townsend discharge takes place to

accumulatively increase the space charges in the quartz tube and subsequently

elevate the local electric field above the threshold for gas breakdown. The

delay of the current pulse from the onset of the voltage pulse was also

observed in sub-microsecond pulsed APGO between two parallel bare
electrodes.4.3,4.4

Following the pre-ionization phase, the 4.5A current pulse reaches its

peak and then falls to form a 33 ns short pulse from 182 ns to 215 ns even

though the applied voltage remains at 12 kV. This is because electrons

generated from gas ionisation inside the quartz tube travel to and arrive at the

inner wall of the quartz tube, and the resulting voltage across the quartz tube

wall is at the opposite direction to the applied voltage thus reducing the gas

voltage. Consequently, the ionization process is stopped and this causes the

fall in the discharge current. This is typical of dielectric barrier

discharges,4.8,4.loand one half of the current pulse width is comparable to the

electron transition time from the middle of the gas gap to the quartz tube. To

examine whether this is true for the APGD jet shown in figure 4-9, a 20

electrostatic simulation was undertaken using Maxwell SV (Ansoft, Pittsburgh

USA). It was found that the space-averaged electric field inside the quartz tube

is about 40 kV/cm at which electron drift velocity is found to be 107cmls in

atmospheric argon.4.14 This corresponds to 15 ns, similar to one half of the 38

ns current pulse width.

As the gas voltage is reduced below the breakdown voltage, electrons

generated during gas breakdown are either stored on the wall of the quartz

tube or left to drift inside the tube. The drifting electrons can in principle be

carried by the argon flow to reach the ground electrode and register a small

current peak. To assess this possibility, we performed a 20 electrostatic

computation of the electrode structure shown in figure 4-9 using the Ansoft

simulation package. Figure 4-12 shows the simulation results. At an applied
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voltage of 12kV, the electric field along the passage of the argon flow was

found at about 7.2 - 10.8 xl03 V/cm at which the electron drift velocity is

calculated to be about 2 - 3 xl06 cmls in atmospheric argon.t'"

1. 668Be+O06
1.5993e+O06
1.S2971!!+O06
1.4602e+006
1.3907e+O06
1.32lle+O06
1.2S1lie+O06
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S.S627e+005
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3.4767e+005
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2. OB 60e+O05
1.3907e+OOS
1i.9534e+O04

Fig 4-12: Electrostatic simulation of the SOOnsplasma argon APGD jet

As the nozzle-side of the powered electrode is 1.5 cm away from the

ground electrode, an electron is likely to take 500 - 750 ns to travel from the

plasma generating region to the grounded electrode. This is markedly longer

than the interval of 398 ns from the end of the 4.5 A current pulse to the

beginning of the voltage pulse fall. Therefore, the drifting electrons cannot

reach the grounded electrode to register a current pulse before the fall of the

voltage pulse. At the fall of the voltage pulse, they add to the displacement

current pulse to increase the total current pulse.

The above interpretation can be further supported by changing the

applied voltage. As the applied voltage decreases, the onset of the current

pulse should occur at a more delayed instant from the onset of the voltage
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pulse because a longer pre-ionization phase is needed at a smaller applied

voltage to the threshold for gas breakdown. Figure 4-13 shows the traces of

the discharge current obtained by subtracting the displacement current from

the total current, at an applied voltage of 13.3, 11.4, and 9.4 kV for which the

current pulse occurs at a progressively delayed point from the onset of the

voltage pulse. This confirms that the current delay from the voltage pulse is

related to a pre-ionization phase. In figure 4-13, the peak discharge current is

larger at larger applied voltage, but with a narrower pulse width. It is

conceivable that a larger applied voltage leads to the production of more

electrons thus contributing to a larger discharge current. The availability of

more generated electrons at a larger applied voltage also cause more efficient

diffusion of electrons to the tube wall and a more rapid reduction of the gas

voltage to reduce the current. This results in a narrower current pulse as shown

in figure 4-13.
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Fig 4-13: Variation of discharge current with applied voltage for a pulsed argon APGD jet.

4.4.2 Gas temperature characteristics

It is widely understood that atmospheric pressure argon discharges

have gas temperatures in excess of 100°C,4.9 when using conventional
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sinusoidal excitation at frequencies in the kHz4.15, MHz,4.9 or microwave

range.4.J6 A small proportion of the previous studies published on argon

APGD jets have claimed room temperature operation can be achieved using

high gas flow rates;4.16 however their claims have not been sufficiently

substantiated. It is possible to use a very high gas flow rate, several tens of

mis, to rapidly cool objects placed within the plasma plume thus giving the

appearance of a room temperature APOD. However this is not a true

measurement of the plasma temperature but rather that of the afterglow region

where the plasma is considerably less intense. In addition using gas flow to

cool the discharge results in a large amount of gas wastage.

As discussed previously, a common method for determination of the

gas temperature in an APGD is the use of optical emission spectroscopy. The

emission intensities recorded are independent of gas flow rate and as such are

more accurate than using a thermocouple to record the temperature of an

object placed within the plume. Figure 4-14 shows that comparison of

experimental data and a computationally simulated spectrum suggests a

rotational temperature of 320K. The simulation data is in close agreement with

the experimental data thus highlighting the unusually low temperature of the

SOOnspulsed argon APGD.
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Fig 4-14: Measured and simulated data used to determine the rotational temperature of a

SOOns pulsed argon APGD Jet.
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To confirm that the OES temperature measurement method is

independent of the flow rate the temperature of the generated APGD was

determined for argon flow rates from 2 to 10 SLM. It was found that the

temperature was within +/-10K of 320K in all cases thus confirming the

reliability of the method.

Figure 4-15 shows a photo of a finger placed in the argon jet plume.

Similar photos have appear in recently published studies on a microwave

generated argon APGD jet.4.16 However, it is worth noting that the argon flow

rate used in this study is as little as 2 SLM and the finger can be held within

the plume indefinitely without any discomfort. The flow rates used in

reference 4.16 are significantly higher leading to a cooling effect on any

objects placed within the plume, allowing a finger to be placed in a potentially

hot plasma without discomfort.

Fig 4-15: Image showing a finger in direct contact with AI jet plume

4.4.3 Plasma reactivity characteristics

Fig. 4-16 shows optical emission spectrum data for of a pulsed argon

jet at an applied voltage of 10 and 12 kV, in which there are strong emission
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lines of OH, nitrogen, argon and atomic oxygen. This is distinctively different

from pulsed helium APGD jets of which the optical emission spectra are

dominated by nitrogen lines, figure 4-16 is strongly dominated by argon lines

such as those at 696.5, 750.4, 763.5, and 772.4 nm.
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Fig 4-16: Time averaged emission spectrum of the pulsed argon jet at a)lOkV and b) 12kV.

Time-resolved emission intensities of two particular excited species are

shown in figure 4-17 together with the measured current trace. In general, the

line intensities reach their peak when the current pulse is just about to

complete. This suggests that the timescale of the current pulse represents that

of the entire discharge event during which the optical emission increases

accumulatively. After the discharge event finishes and the line intensities

reach their peak, no more excited plasma species are available to emit photons

and increase further the intensity of relevant emission lines. Therefore, the

rising phase of the line intensities is comparable to the pulse width of the

discharge current and is about a few tens of nanoseconds. Their falling phase,

on the other hand, is much longer and perhaps indicative of the timescale for

relevant excited plasma species to decay to their ground states. These
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observations were confirmed using nanosecond imaging, it was seen that the

discharged reached its maximum intensity in 20-30ns and then gradually

decayed over many hundreds of nanoseconds. This is in stark contrast to a

pulsed helium jet where the plasma is observed as a discrete lump ejected at a

time coinciding with the discharge current pulse and is rapidly extinguished.

It is of particular interest to note the profile of the 750.4 nm argon line,

which has been related to electrons in low-pressure argon plasmas.v"

Although no direct experimental confirmation is at present available in

literature, it is possible that the 750.4 nm line can also be used as the signature

of electrons in atmospheric argon glow discharges similar to the 706 nm line

being used as the signature of energetic electrons in helium APGD.

4
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Fig 4-17: Time resolved OES data of pulsed Argon Jet

4.5 GasMixtures

The mixture of small amounts of a reactive gas to the chemically inert

base gas necessary for stable APGD generation is often seen as a way to

improve the reactivity of the discharge. Many applications of APGD rely upon
f atomi 49418U" fi . 11a high flux 0 atomic oxygen .:: , . smg a Jet con iguration a ows the

- 88 -



Chapter 4: Sub-Microsecond pulsed APGD jets

discharge to be flushed in to the oxygen rich background air, which is an

excellent way of increasing oxygen content. However, small amounts of

oxygen can also be added to the base gas without having a significant effect on

the stability of the discharge.

Figure 4-18 shows the effect on the emission of exited atomic oxygen

when small amounts of oxygen are mixed with the argon base gas. As

expected a small amount of added 02 increases the level of emission, however

this trend is quickly reversed when excessive O2 is added.
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Fig 4-18: Impact of adding small amounts of O2 on the emission intensity of a)777nm and

b)845nm.
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The results shown in figure 4-18 are consistent with expectation,

oxygen is bigbly electronegative and has a very strong quenching effect on the

discharge.Y" As oxygen is added to the background argon flow the breakdown

voltage of the gas increases substantially.ll" As the pulse amplitude is fixed,

increasing oxygen content effectively shifts the gas voltage down toward the

breakdown voltage, resulting in a reduction in the optical emission intensity.

Figure 4-18 highlights the dangers of mixing too much reactive gas in to the

inert base gas. For example, a 9.4kV pulse with 20SCCM of Oxygen added

produces a bigher flux of reactive oxygen species compared to a 13.3kV with

100SLM of oxygen added. It is likely that the addition of too much O2

increases power consumption and consequently the discharge has a

significantly higher gas temperarure.l" Other reported studies observing

oxygen species within an APGD have reported a similar trend, through trial

and error it was determined that a mixture of 5SCCM O2 for every ISLM of

inert gas is around the optimum level.
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Fig 4-19: Repetition frequency effects on the emission intensity of excited atomic oxygen @

777nm.
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A simple and effective way to increase the flux of reactive species

within a discharge is to increase the repetition rate of the applied voltage

pulses. Figure 4-19 highlights the effect of repetition frequency on the

emission of atomic oxygen at 777nm. Obviously, as the repetition rate

increases more discharge events occur in a given time resulting in a linear

increase of measured intensity. It is worth noting that the emission intensity of

a single applied pulse is relatively independent of the repetition frequency.

It should also be pointed out that at low repetition rates, <1 kHz, it is

very difficult to produce and sustain a stable discharge. At lower applied

voltages the repetition rate needs to be increased substantially to initiate gas

breakdown. This suggests that there is some kind of frequency dependence or

threshold within the system, most likely due to the storage of charge on

dielectric surfaces after each applied voltage pulse which accumulates to

enhance the local electric field.

4.6 Summary

This chapter has detailed the use of sub-microsecond pulsed excitation

to generate stable APGD using a jet-like electrode configuration. Initially

helium was considered as the working gas and it was found that the discharge

exhibited room-temperature characteristics and consumed very little electrical

energy. A direct comparison with a microsecond pulsed jet was not possible,

however the substantially higher discharge current is a rough indicator of an

increased electron density and consequently a greater level of gas ionisation.

The latter part of the Chapter described an argon APGD jet sustained

with sub-microsecond voltage pulses, this is the first reported study of its type,

as previous studies have focused solely on the use of helium. A shift away

from helium to more economical gases is highly desirable if APGD is to

become a viable large scale processing technology, hence research in to argon

APGD is of significant importance.
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Sub-microsecond voltage pulses with amplitudes of 8-1SkV were

applied at repetition rates of 1-5 kHz and shown to generate a stable argon

APGD. Using OES it was demonstrated that pulsed excitation of an argon

APGD significantly reduces the gas temperature and consequently reduces the

threat of thermal runaway. The discharge proved to be stable over a wide

range of operating parameters. Itwas shown through optical emission data that

the argon APGD jet plume is dominated by argon emission lines, this is in

stark contrast to that of a helium APGD jet which is dominated by nitrogen

lines. Nanosecond images were also used to highlight a difference in the way

the discharge evolves. A pulsed argon APGD jet has a continuous plume

unlike that observed in helium jets where the plume is in the form of discrete

plasma bullets. It was shown that upon the application of an applied voltage

pulse with a 10 - 20 ns rising phase, a pre-ionization phase was triggered and

its subsequent development was necessary to elevate the local electrical field

above the threshold for gas breakdown. Discharge currents of several amperes

were reached and the plasma-enclosing dielectric tube acted as a switch to

produce a short current pulse. The switching effect of a dielectric is common

in all DBD's however the magnitude of the generated currents were

significantly larger than those observed in conventionally excited DBD, this

suggests a greater electron density may be achieved.
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Chapter 5

5 Plasma jet propagation mechanisms

5.1 Introduction

Plasma jets operated at atmospheric pressure are being used in an

increasing number of applications, especially in the areas of biological

decontamination and materials processing.s.l•s.2 The unique configuration of

the plasma jet allows plasma to be generated in a region of high stability and

be transported in to a region of high chemical reactivity. This ability gives a

significant advantage over conventional parallel plate plasma reactors where

the sample being treated is placed between the two electrodes which often has

the detrimental effect of disturbing the stability of the plasma.

Many studies have been reported on atmospheric pressure plasma jets.

Some focus upon the excitation method used, such as DC,s.3 kHz sinusoidal.i"

kHz pulsed/·s or radio frequency.i" Other studies focus upon the applications

made possible using a plasma jet, in such studies the plasma jet itself is often

considered as a tool and the emphasis is placed upon the application. Very few

studies have investigated the transport mechanism within the plasma jet that

makes it possible for plasma to be generated in one region and then moved to

another. The few studies reported so far focus upon the kilohertz range of

excitation frequencies and report that the plasma plume is not a continuous

discharge as it appears to the naked eye, 'but consists of discreet packets of

plasma ejected at a rate equal to that of the excitation frequency.S.7.S.8.S.9The

phenomena has been termed plasma bullets and was mentioned briefly in

Chapters 3 and 4; very little is understood as to the exact nature of the plasma

bullet and what its underpinning physical mechanisms are.
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This Chapter aims to investigate various features of the plasma plume

produced in a kHz excited plasma jet in an attempt to build upon the limited

body of knowledge currently available. Section 5.2 describes the configuration

of the plasma jet used, both a single wrapped electrode configuration and pin

like electrode configuration have been employed to allow for a simplified

analysis. In section 5.3 the various modes of operation are discussed, it's

shown that the plasma jet can be operated in one of three modes; it is

determined that the plasma bullet mode is the most suited to many

applications. Section 5.4 details the plasma bullet propagation mechanism

including experimental observations to give the reader an insight into the

physical properties of the plasma bullet phenomena. Finally, section 5.5

highlights several interesting observations made of the plasma bullet which

remain inexplicable.

5.1 ExperimentalSetup

In order to fully investigate the propagation mechanism of the plasma

jet it is necessary to employ both pulsed and sinusoidal excitation sources. As

discussed in the previous chapters, the vast majority of reported studies have

focused exclusively upon sinusoidal excitation sources as a means of

generating a plasma plume. A considerable disadvantage of sinusoidal

excitation is its continuous wave nature, there is no voltage off period, just a

zero crossing point, this complicates the analysis of the plasma plume. The

long off time associated with pulsed excitation allows each pulse to be treated

as an isolated event, unaffected by the preceding pulse; this simplifies the

analysis of the plasma plume. The pulse generator used in this investigation

was based upon a MOSFET push-pull topology discussed in Chapter 2, and

was capable of delivering voltage pulses up to 15kV in magnitude, with pulse

widths down to 150ns at repetition rates up to 5kHz. A simple sinusoidal

source was constructed which employed a low voltage DC-AC converter and a

high voltage transformer. The sinusoidal source was capable of delivering a 3-

10kHz sinusoid up to 30kVp-p in magnitude.
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The configuration of the plasma jet used is similar to that discussed in

previous chapters, consisting of a single metallic electrode wrapped around a

dielectric tube through which helium flows. The ground electrode consisted of

a polished metallic disc and a removable ceramic dielectric sheet, typically the

ground electrode was placed at some distance, 1 to 2 em, downstream from the

plasma jet. While this configuration works well, and is simple to construct it is

not ideal for a detailed analysis of the plasma jet. A simplified construction

was devised employing a pin like electrode inserted within a dielectric tube,

typically made of quartz glass. Figure 5-1 shows a schematic of the revised

plasma jet configuration. The central electrode is a sharpened tungsten

welding rod with a diameter of2mm. The tip of the rod is fixed 2cm above the

ground electrode which can be dielectrically coated (using a ceramic tile) or

bare metallic.

Transparent T-section

Dielectric
Barrier

~

1
PSU l~

Helium
Flow

Pin electrode

Fig 5-1: Schematic of simplified plasma j et configuration

The revised configuration allows the evolution of the plasma plume to

be viewed inside and outside of the jet structure; this is a significant

improvement over the conventional configuration where the electrode is on the

outside of a ceramic tube. A further benefit of the simplified configuration is

that the discharge always ignites from the same point, the tip of the centre rod,

thus allowing the iCCD camera to be focused accordingly. A drawback of the

simplified configuration is that it is not an exact representation of the

configuration used in previous Chapters; fortunately the propagation
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mechanism is almost certainly the same regardless of the electrode

configuration.

All electrical measurements were made using a Tektronix TDS 5054B

oscilloscope with a 500MHz bandwidth. A Tektronix P6015A voltage probe,

rated at 40kV DC, was used to measure the applied voltage. A Pearson 2877

current monitor, with a 200MHz bandwidth was used to measure the current

between the power source and the powered electrode. It was often necessary to

employ multiple turns through the current probe to amplify the signal to a

measurable level. Typically, the currents associated with a plasma jet are only

on the order of tens of milliamps, the Pearson 2877 outputs IV per Amp,

hence 1milliamp equates to 1millivolt, such a low value is hard to distinguish

due to the electrical interference produced by the high frequency power

source. Optical measurements were performed using an Andor iStar iCCD

camera capable of exposure times less than 2ns and a triggering precision of

20Ops.

5.3 The threemodes of theplasmajet

Despite the large number of previously reported studies employing a

plasma jet configuration there appears to have been little investigation into its

various modes of operation.5.2 The different modes within the plasma jet were

first encountered whilst conducting biological decontamination experiments

using a simple 30kHz sinusoidal DBD plasma jet; as the applied voltage was

gradually increased an abrupt change in plasma intensity was observed which

led to a significant rise in gas temperature. Unfortunately, a sharp rise in gas

temperature leads to thermal destruction of the biological media under test

thus masking the true effects of the plasma chemistry. For atmospheric

pressure plasma jets to be of real benefit in biological applications near room

temperature operation is highly desirable, therefore an ability to control the

plasma jet and a clear understanding of its modes of operation are essential.

_<'1'.'_
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Figure 5-2 shows two images taken of a typical, wrapped electrode,

APGD helium jet using a 1/60s exposure setting, the plasma plume shown in

figure 5-2a is clearly much less intense than the plume shown in figure 5-2b.

The jump in intensity occurs abruptly at a given voltage which is dependant on

the distance between the powered and ground electrodes.

Fig 5-2: Digital images of a helium plasma jet operating in different modes.

Figures 5-3 and 5-4 show the current and voltage waveforms relating

to the images shown in figures 5-2a and 5-2b respectively. In figure 5-3 the

applied voltage is 8kVp-p, there are two distinctive current pulses per half

cycle, whilst this current pattern is unusual it has been observed in previous

studies,5.5 each current pulse relates to a distinct discharge event. In figure 5-4

the applied voltage is 8.3kVp-p, less than 4% higher than the applied voltage

shown in figure 5-3, yet the peak current has increased 100%, jumping from

35mA to 70mA.
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Fig 5-3: Current and voltage waveforms of the plasma jet shown in figure 5-2a.
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Fig 5-4: Current and voltage waveforms of the plasma jet shown in figure 5-2h.

The shape of the current pulse shown in figure 5-4 differs to that

observed in figure 5-3. The two small current pulses have become a single

large current pulse repeated every half cycle. This pattern is far more

representative of a conventional dielectric barrier discharge.t" where the gas

voltage is rapidly reduced following each discharge through the accumulation

of space charge on dielectric surfaces. A sharp rise in the measured current

which corresponds to a small change in the applied voltage and a change in the

current waveform are both highly indicative of a change in the operating mode

-100-



Chapter 5: Plasma jet propagation mechanisms

of the plasma. To further investigate the mode transition iCCD images were

taken of the plasma plume when operating in the high-current mode and the

low-current mode. Typically when the discharge current is low and the plume

looks translucent (as shown in figure 5-2a) the plasma jet is operating in the

low-current mode, iCCD images of this mode were briefly discussed in

chapter 3 and will be discussed in detail later. Figures 5-5 and 5-6 show iCCD

images of the high current mode of operation.

Fig 5-5: Normalised 20ns exposure images of the plasma plume operating in the high-current

mode. Images recorded during positive half cycle of applied voltage (see figure 5-4)

Fig 5-6: Normalised 20ns exposure images of the plasma plume operating in the high-current

mode. Images recorded during negative half cycle of applied voltage (see figure 5-4)

In figures 5-5 and 5-6 the top of each image is a grounded metallic disc

and the bottom of the image is the exit of the ceramic tube upon which the

powered electrode is mounted. The images are normalised such that the

intensity of each image is comparable to all the others in the sequence, but the

gain is reduced by a factor of two between figures 5-5 and 5-6, as such the

intensities are not directly comparable. The iCCD camera was triggered using

the applied voltage waveform and as such the time displayed in each image
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directly relates to the waveforms shown in figure 5-4. The images taken from

41ls to 121ls cover the plasma produced in the positive half cycle of the applied

voltage, during which the grounded metal disc is less positive than the

powered electrode hence can be considered the instantaneous cathode. The

plasma plume appears within the gap as the applied voltage increases, it

doesn't seem to ignite at one electrode and travel to the other electrode like in

the low current, plasma bullet mode, shown in section 3.4.5. During the

positive half cycle a distinctive bright region can be seen just above the

cathode, this is likely to be a cathode glow region formed due to the presence

of a sheath region in which electrons are rapidly accelerated. Such structures

have been widely reported in DC,S.11kHz,S.12pulsed,s.13 and RF APGD.s.14

The images in figure 5-6 were taken between 271-1sto 35 us and show

the plasma produced during the negative half cycle of the applied voltage.

During this period the powered electrode is more negative than the grounded

disc and as such can be considered the instantaneous cathode, the grounded

disc is therefore an instantaneous anode. Similar to the positive half cycle, the

discharge forms within the electrode gap, however the distinctive cathode

glow region is no longer visible. As the cathode glow region always forms

directly above the cathode it is likely produced above the powered electrode

and is consequently hidden by the ceramic tube. Figure 5-7 shows a diagram

highlighting the differences between the positive and negative half cycles in

the conventional wrapped electrode APGD jet configuration.
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Fig 5-7: Diagram showing differences between positive and negative half-cycles in a

conventional wrapped electrode plasma jet configuration.

To further enhance the understanding of the transition from a low-

current mode that exhibits 'bullet' like characteristics to a high-current mode

exhibiting 'continuous' characteristics the simplified plasma jet configuration

was adopted. Initial test confirmed that the two modes of operation were both

clearly identifiable when using the simplified configuration. Figure 5-8 shows

digital images taken at different applied voltages with a fixed operating

frequency and electrode separation .

•III-L-___:----.....;.

Fig 5-8: Digital images showing the plasma plume with applied voltages of (a)7.SkVp-p

(b)8kYp-p (c) 8.SkVp-p
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Figure 5-8a shows the plasma plume when the applied voltage is

7.5kVp-p, the operating frequency is 30kHz and a helium flow rate of 5SLM,

this voltage is insufficient to produce a plasma plume that reaches the

grounded electrode. One very notable feature is the presence of a small corona

discharge around the pin electrode, this was not expected and is only observed

using the simplified configuration employing a pin electrode. Figure 5-9

shows an electrostatic simulation of the simplified configuration at an applied

DC voltage of 3.75kV, the local electric field around the pin electrode is

almost 1.6MV/m, this is more than sufficient to produce a corona discharge in

helium. It should be noted that the dimensions of the simulated configuration

are close to those used in the experimental configuration however the

sharpness of the tip is hard to quantify, consequently the simulated electric

field may be slightly over estimated.

Electrostatic simulations of the conventional plasma jet configuration,

shown in the previous chapter (figure 4-12), also indicate the presence of a

very high local electric field around the powered electrode edges. In both

configurations, it is likely that at low applied voltages some corona is formed

around any sharp edges; the resultant free electrons produced are likely to play

an important role in the plume propagation mechanism. It is expected that in

all cases where a plasma jet is employed, be it pulsed or sinusoidally excited, a

corona discharge is initially produced and acts as a starting point for the

discharge, as such it can be considered the first mode of operation. In this

mode of operation the plasma plume does not propagate very far from the

powered electrode hence it is unlikely to be of much use for many

applications.
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Fig 5-9: Electrostatic simulation of simplified jet configuration with an applied voltage of

3.75kV. Rod diameter 2mm, suspended 4cm from ceramic tile on ground plate,

As the applied voltage is increased from 7.5kVp-p to 8kVp-p the

corona mode abruptly transitions in to the plasma 'bullet' mode which extends

to reach the ground electrode, shown in figure 5-8b. As discussed previously,

in this mode the plume appears as bullet like balls of plasma being ejected

from the powered electrode and travel toward the grounded electrode. Figure

5-10 shows IOns exposure iCCD images taken of the plasma plume while

operating in the plasma bullet mode. In Figure 5-l0a, argon is used as the

working gas and in 5-l0b helium is used. The images are notable as plasma

bullets have not been previously reported in gases other than helium, this has

led some to believe that the plasma bullet effect may be partly attributed to

helium metastable accumulation, this is obviously not the case. Also notable is
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that the bullets are only observed in the positive half cycle, in the negative half

cycle a discharge is produced around the powered electrode (at the left of each

image) but does not propagate toward the ground electrode (at the right of

each image).

Fig 5-10: IOns exposure iCCD images of the plasma plume taken every 500ns in (a) argon

and (b) helium. Powered electrode drawn in white on first image of each sequence.

From figure 5-10 it is clear to see that initially a small corona like

discharge forms around the powered electrode, after 500-1000ns the voltage

has increased such that the discharge begins to propagate away from the

electrode, this confirms that the first mode of operation is indeed the

production of a small area corona discharge. The images were all taken during

the rising portion of the positive half cycle, as such the voltage in each image

is higher than in the preceding image. Due to the increasing voltage the corona

grows in size and intensity. In the helium case the discharge begins to move

toward the ground electrode at approximately 3.9kV, this value is slightly

higher in argon. The point at which the corona discharge begins to propagate
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away from the powered electrode is discussed in greater detail within the next

section.

In summary, this section has highlighted the presence of three

distinctive modes of operation within the plasma jet. Initially as the applied

voltage is increased a corona like discharge forms around the sharp edges of

the powered electrode. As the applied voltage is further increased the

discharge begins to propagate away from the powered electrode and forms a

bullet-like plasma ball. It is the bullet mode of operation that is of most

interest for many applications as the plasma produced is highly reactive yet

maintains a low temperature. Finally, at high applied voltages the discharge

becomes continuous, plasma fills the entire region between powered and

grounded electrodes. During this mode of operation the discharge current is

high and gas temperature is well above ambient room temperature; this mode

is less useful for low-temperature applications however other applications,

such as materials processing, could benefit from the elevated temperatures.

5.4 Physical properties of the plasma plume

As discussed in the previous section, it is the plasma bullet mode of

operation that is often considered to be the most useful for low-temperature

applications; accordingly the means by which the plasma propagates is

investigated further within this section. The first observations of plasma

bullets in a kHz excited DBD helium plasma jet were reported by Teschke et

al. in 2005.5.7 An iCeD camera was used to image the plasma bullet at

microsecond intervals with a lOOnsexposure time, the velocity of the plasma

bullet was calculated to be 15km1s, several orders of magnitude above the gas

velocity of 16.5m1s.No explanation as to the origin of the plasma bullet was

proposed however it was stated that the bullet phenomena was only observed

during the positive half cycle of the excitation voltage, this finding is similar

to the results presented in the previous section. Figure 5-11a shows current and

voltage waveforms forms of a pulsed helium APGD jet. Figure 5-11b shows

18 single shot iCCD images of the plasma plume generated using the pulsed
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waveform shown in figure 5-11a propagating into ambient air obtained at a

3kHz repetition rate. Each image was taken with a IOns exposure time at 50ns

intervals starting at the point the bullet exits the dielectric tube.
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Fig 5-11a: Current and voltage waveforms of pulsed helium APGD jet.
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Fig 5-11 b: IOns exposure iCCD images of the plasma plume taken every SOns.
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From Figure 5-11b it is clear to see that the plasma bullet takes a very

similar form to that presented in other studies, consisting of a high intensity tip

which propagates away from the powered electrode, there is no visible link

between the tip and the powered electrode.5.7,5.9From the images it is possible

to see that the velocity profile is non-uniform, the bullet accelerates rapidly at

first and then slows until its intensity drops below the minimal observable

level. Figure 5-12 shows the velocity and intensity of the plasma bullet as it

propagates.
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Fig 5-12: Velocity and intensity profile of a plasma bullet generated with 8kV, Zus voltage

pulse.

The velocity is determined from the iCCD images by calculating how

far the bullet centre moves from one image to the next image. The intensity

was determined from the peak photon count in each iCCD image, typically

this was at the centre of the plasma bullet. An interesting point to note is the

differences in the velocity reported in this study and those in previous studies,

Teschke et al. reported an average bullet propagation velocity of 15km/s, Lu et

al. reported a peak velocity of almost 160km/s.5.8 In this study the peak

velocity is calculated to be around 100kmls, very similar to that presented by

Lu et at. a likely explanation for the differences observed is due to the type of
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excitation used. Both this study and that of Lu et al. employed fast rising

pulsed excitation whereas Teschke et al. used a more conventional sinusoidal

source. Experiments using the same configuration but employing sinusoidal

excitation showed that bullet velocity to be significantly reduced even though

the peak applied voltage was held constant; the reason for this remains

illusive. Another point worth noting is the effect of the applied voltage

magnitude, higher applied voltages produce faster plasma bullets compared to

lower applied voltages; this translates into a longer plume length as the time

the bullet propagates seems to remain fixed for a fixed pulse width. This is

shown diagrammatically in figure 5-13a.
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Fig 5-13: Diagram showing effects of changing (a) applied voltage & (b) pulse width on

plasma bullet velocity

Figure 5-13b shows another interesting property of the plasma plume

observed when pulsed excitation is employed; at a fixed applied voltage the

propagation time of the plasma bullet is directly proportional to the voltage

pulse width. The plasma bullet propagation is rapidly terminated as the applied

voltage reduces, this has not been reported previously, and will be re-

examined in the following sections.
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5.4.1 Dawson's theory of suppressed corona streamers

Lu et al. suggested a possible mechanism for the propagation of the

plasma plume based on a theory first proposed by Dawson and Winn in

1965.5.15 Dawson investigated the effect of positive voltage pulses applied to a

pin like electrode in ambient Air. It was found that at voltages near the

theoretical breakdown voltage of a large air gap, a streamer would form at the

anode and propagate toward the cathode. Using a photomultiplier tube it was

determined that the streamer travelled for some time after the applied voltage

had been removed, this indicated that propagation could continue in a zero

electric field situation. A theory was proposed based on photo-ionisation that

was capable of explaining the propagation of a streamer at extremely high

velocities in to a region of low or zero electric field.

Figure 5-14 shows a diagrammatic representation of the photo-

ionisation theory. An assumption is made such that the streamer tip is a small

positively charged region situated at a point 0, containing n+ ions, and a radius

rooAs the streamer tip moves from 0 to position r2 it leaves behind a quasi-

neutral tail that is of negligible conductivity, hence it can be assumed that the

streamer tip is isolated from the powered electrode. The tip propagates by a

process of photo-ionisation; a photon emitted from the positive region

produces a free electron at a distance, rh away from th~ centre of the positive

region. The negatively charged electron is accelerated toward the positive

region due to the high localised electric field, at atmospheric pressure the

collisional frequency between electrons and gas molecules is extremely high,

consequently the free electron rapidly collides with a gas molecule and

initiates an electron avalanche.
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Fig 5-14: Diagram showing Dawson's photo-ionisation theory.

As the electron avalanche initiated at r, travels toward the positive

region it is exponentially amplified:

n =exp f a.dr

Where (l is Townsend's first ionisation coefficient. If the number of

electrons, n, is equal to the number of positive charges, n+, in the streamer tip

all the positive ions will be neutralised. A consequence of the neutralisation

process is the formation of a new positive region centred somewhere between

r, and r2, this new positive region can then be considered a new streamer tip

and the process repeats. Due to the extremely high electric field between the

positive region and electrons in the avalanche, the electron drift velocity,

which is a product of the electron mobility and the electric field is very high.

The streamer propagates at a velocity determined by the drift velocity of

electrons in the avalanche head which is dependant on the density n+ and

independent of the applied field. This explains why the velocities measured

are orders of magnitudes higher than the drift velocity calculated using the

externally applied electric field. As shown in the previous section, the

magnitude of the applied electric field does slightly influence the propagation

velocity; this is possibly due to the higher applied field producing more

positive charge which in turn produces a higher localised electric field

between positive region and electron avalanche.
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Dawson states three requirements that must be satisfied in order to

explain streamer propagation in regions of low electric field. Firstly, the

number of new positive charges created by the electron avalanche must equal

the number of ions in the original sphere. Secondly, the diffusion radius of the

electron avalanche must not become greater than radius, ro, of the original

sphere. Finally, the electron avalanche must reach the required amplitude

before the two charge regions overlap, 2rO<r2.Based on these three rules Liu et

al. calculated the radii ro and r2 as a function of the initial number density of

positive ions, n". The results indicated that the condition of 2rO<r2is only met

when the number of positive charges in the initial sphere is greater than 3xl09,

consequently the streamer head can only self propagate in low electric fields if

the initial charge density is above 3x109• It is also pointed out that energy

needed for the ionisation of a new volume of gas replaced by the streamer

channel can only be derived from an external source. Therefore the

propagation of the streamer in a region of low electric field is not a steady

state process, eventually the electrostatic energy of the sphere of charges will

be lost through the ionisation process and streamer propagation will terminate.

Dawson showed this to be true by focusing the streamer through a series of

metallic rings; each ring was pulsed to a high voltage as the streamer passed

through. This had the effect of replenishing the charges in the tip allowing the

streamer to propagate several times its original length.

An interesting point to note is the effect of further increasing the

applied electric field. The results detailed within section 5.3 show that plasma

bullets are only observed up to a given applied voltage and then a transition

occurs in to a continuous glow discharge mode. A potential explanation of this

is suggested on page 335 of Raizer's book,S.l6 as the number of charges in the

streamer tip increases the tail of the streamer becomes increasingly

conductive, upon reaching the cathode a partially conductive channel exists

between the anode and the cathode, if the conductivity is sufficiently high the

link between anode and cathode rapidly becomes a spark channel. In the case

of a plasma jet there is a dielectric barrier between the conductive channel and

the anode, as such no spark can form however in such circumstances a glow
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discharge is possible; this fits well with experimental observations. For this

explanation to hold true, in the case of high applied voltages one would expect

to see a plasma bullet reach the cathode followed by an increase in intensity of

the streamer tail. iCCD images of the continuous mode of operation, shown in

figure 5-6, don't reveal any streamer head reaching the cathode prior to the

formation of a glow discharge. One possible explanation could be that the

streamer head is moving so fast, because of the high applied field, that it is

missed by the iCCD camera; as such the gap between the anode and the

cathode appears to instantaneously fill with plasma.

5.4.2 Experimental evidence of Dawson's propagation theory

Dawson initially proposed his streamer propagation theory in 1965, at

that time diagnostic equipment was less advanced; iCCD cameras had not

been invented and the semiconductor technology was in its infancy meaning

signal processing techniques were confined to the analogue.domain. Modern

diagnostic equipment makes it is possible to investigate the streamer

propagation mechanism with high temporal resolution giving a far greater

level of detail than possible in 1965.

A consequence of Dawson's theory is that the streamer should appear

to propagate in discreet steps; it takes time for an electron to be produced at a

suitable distance, the avalanche to reach the positive region, and the

neutralisation of the positive region to occur. During this time the motion of

the heavy positive ions can be assumed to be negligible. Using an iCCD

camera it might be possible to see this process in action, figure 5-15 shows a

sequence of images taken of the plasma bullet with the shortest possible

exposure time of Ins. It is clear to see that the intensity of the bullet changes

from high to low at approximately 3ns intervals, this pattern is highly

repeatable and can be observed not only in single shot images but images

consisting of many hundreds of accumulated images. This pulsing of intensity

could well be an indicator of Dawson's theory in action, however caution
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should be aired as light emission IS not a direct indicator of electrons or

positive ions.

Fig 5-15: Ins exposure, single shot iCCD images of the plasma plume taken at Ins intervals.
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Figure 5-16 shows an iCCD image that has been post-processed using

a technique known as Abel inversion. This process applies a log scale to the

intensity of an image, allowing very low intensity regions to been seen equally

well as high intensity regions. Typically, unprocessed iCCD images are

dominated by the plasma bullet centre, the peak intensity at the centre of the

bullet is orders of magnitude above that of the tail, it is impossible to display

this information using a standard colour scheme where image intensity relates

to pixel colour. By applying Abel inversion it becomes possible to see details

that were previously invisible. From the figure it is clear that the bullet has a

long tail that extends right back to the powered electrode at the right of image.

The tail region is orders of magnitude less intense than the bullet tip, this fits

well with Dawson's explanation of an electrically isolated streamer tip.

Fig 5-16: IOns exposure, single shot Abel inverted iCCD image of the plasma plume. Cathode

to left of image.

Figure 5-16 also highlights another interesting feature around the

plasma bullet tip; a faint spherical luminous region is clearly visible. This

glow could be a consequence of photons emitted from the positive bullet tip,

as the tip is spherical it can be assumed to be an isotropic radiator and as such

photons should be emitted in all directions. In the case of a plasma jet

employing both the anode and the cathode it is reasonable to assume that the

streamer will always take the shortest path to reach the cathode and

consequently travels in a straight line. In the case of a plasma jet operated with

a single powered electrode and no clearly defined cathode the situation is less

clear. If the photons are emitted in an isotropic manner what dictates the

direction of the streamer? This is easily explained in the case of a helium jet

flushed into ambient air, the plasma will always be confined to the region
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where helium concentration is highest, thus maintaining a collimated beam

like appearance. The situation of a helium plasma jet being flushed into a

helium atmosphere has not been reported previously, in theory the photons

radiated from the positive tip are all equally likely to initiate an avalanche and

as such the direction of the streamer should be randomised. The photo shown

in figure 5-17 shows this not to be the case.

Fig 5-17: Image of helium plasma plume flushed into a helium atmosphere.

It is clear from the photo that the plasma plume remains a collimated

beam over a significant distance in the pure helium atmosphere. This is

unexpected and highlights a discrepancy in the theory predicted by Dawson,

the reasons why the beam remains collimated in this situation are still

unknown.

5.5 Interesting observations of the plasma bullet

While investigating the properties of the plasma bullet several interesting

observations have been made which are not always explicable, however it is

worthwhile including them within this thesis to enhance the body of

knowledge on the subject. Figure 5-18 shows a series of iCeD images of a

single powered electrode wrapped around a quartz tube through which helium

is flushed. The electrode used consisted of a polymer coated with indium tin

oxide (ITO); a unique property of ITO is that it is electrically conductive yet
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optically transparent. Employing such an electrode on a transparent quartz

tube allows the evolution of the plasma bullet to be observed completely.

Fig 5-18: IOns exposure iCCD images of plasma jet employing ITO transparent electrode.

The images in figure 5-18 were taken at 250ns intervals on the rising

slope of the positive half-cycle. From 5-18a its possible to see two corona

discharges forming at each end of the powered electrode, this fits well with the

theory that a corona discharge initiated at the electrode edges is the starting

point of the plasma jet. In figure 5-18b the voltage has increased such that the

corona discharge begins to move, this fits with Dawson's theory, as the

voltage increases the number of positive ions increases until it reaches a point

where it can self-propagate. What is unexpected is that the two corona

discharges produce four plasma bullets. Two bullets travel away from the

powered electrode, these have been observed in many other studies.

Unexpectedly, two plasma bullets are observed travelling towards the centre of

the electrode, these are significantly more intense than the plasma bullets

travelling away from the electrode. In images 5-18c and 5-18d it is possible to

see the bullets travelling away from the electrode are moving very rapidly and

eventually move out of the cameras view. The bullets travelling toward the

centre of the electrode collide and form a stationary plasma ball in the centre
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of the electrode that lasts for several hundreds of nanoseconds. This unusual

pattern of four plasma bullets is a likely consequence of the single electrode

configuration, if a grounded electrode had been placed at the exit of the tube it

is likely that only one plasma bullet would have been formed. It should be

noted that in all the images in figure 5-18 the gas flow is from left to right, as

such the bullets travelling from right to left are actually moving against the gas

flow.

As Dawson's theory suggests the plasma plume consists of a region of

positive charge it is likely that any external electric field will influence the

direction of propagation. Figure 5-19 shows three images of the plasma jet

directed between two charge parallel plates. It's clear to see that the plume

bends toward a negatively charged plate and bends away from a positively

charged plate. It seems reasonable to assume that a negative charged plate will

attract positive ions resulting in a bending of the beam towards the plate.

Conversely, a strong positive field is likely to repel positively charged ions

thus bending the beam away from the positively charge plate.

Fig 5-19: Effect of external electrostatic field on plasma plume direction.
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Fig 5-20: IOns iCCD images of a helium plasma jet generated using different excitation

frequencies.
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As discussed in previous sections, the plasma jet is a widely used tool,

typically 1-50 kHz excitation or 1-30 MHz excitation is employed to generate

the plasma plume. Very few studies use frequencies outside the two stated

ranges, as such the effect of excitation frequency on the plasma bullet is

unknown. Using several air cored transformers with various self-resonant

frequencies it was possible to generate a plasma plume from 50 - 1000 kHz.

Figure 5-20 shows iceD images of the plasma plume generated using three

different excitation frequencies, in each case the configuration is the same, a

single powered electrode consisting of multiple turns of wire on a quartz tube

and a ground electrode placed several centimetres downstream. In the first

column of figure 5-20 an excitation frequency of 80kHz was examined, each

image was taken during the positive half-cycle of the applied voltage. During

3.6 - 4.2 us, the plasma appeared as a strip with no obvious head and no

movement. As the applied voltage is far from reaching its peak, the plasma

density is low. The number of charges is likely to be too low to allow the

streamer to self propagate. As the applied voltage increases, the plasma moves

toward the ground electrode. After approximately 1.6 J..I.sthe plasma emerges

from the quartz tube and continues to propagate until striking the grounded

electrode. Its appearance outside the tube is very typical of plasma bullets

observed below 50 kHz. 5.7

When the frequency is increased to 170 kHz (images in the second

column), the plasma becomes strip-like within the tube. During 1 - 1.6 us, the

powered electrode has a negative polarity thus acting as an instantaneous

cathode and trapping the discharge. There was light emission from the gap

between any two adjacent windings and the plasma appeared on both sides of

the coil electrode, this suggests that a discharge is produced during the

negative cycle, but it is incapable of self propagation. After 1.6 us the applied

voltage becomes positive, the plasma starts to move towards the ground

electrode and appears as a long strip several centimetres in length, much

longer and much brighter than that in the 80 kHz case. This is likely due to a

much stronger discharge at higher frequencies; higher frequency operation

means less time between consecutive discharges hence more charges are likely
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to be stored on dielectric surfaces. Similar to the 80 kHz case, it takes

approximately 1.4 J,lS for the plasma to emerge from the quartz tube, once the

bullet is ejected from the tube it becomes more point-like with a long tail. Of

interest are images at 3.0 - 4.0 J,lS when there is a distinct plasma near the

cathode even though the plasma bullet is yet to reach the ground electrode. A

possible explanation could be that the plasma bullet acts as a virtual anode

thus enhancing the electric field at the ground electrode and creating a second

discharge. At 3.2 J,lS, the plasma produced on the cathode is of a higher

intensity than the plasma bullet itself. As frequency is increased to 394 kHz,

the point-like plasma bullet is no longer observed (images in the third column

of figure 5-20). The plasma remains strip-like in all images and its travel

outside the tube is limited to only 0.5 cm. In the 80 kHz and 170 kHz cases,

the time for the plasma to gather adequate pace and leave the tube was about

1.4 - 1.6 JlS after the voltage became positive. This is longer than the half-

period at 394 kHz (1.27 us), and may be responsible for the plasma bullet

being prevented from reaching the grounded electrode.

5.6 Summary

This chapter has covered the physical aspects of the plasma plume

produced by various types of atmospheric pressure plasma jet. Section 5.3

highlights for the first time the three very distinctive modes of operation

observed within the plasma jet. Itwas shown that the discharge is initiated as a

low intensity corona discharge, as applied voltage increases the discharge is

able to self propagate and forms a plasma bullet that moves away from the

powered electrode. Finally, at high applied voltages the discharge becomes a

continuous glow discharge which exhibits features similar to those observed in

parallel plate barrier discharges.

For many low temperature applications, such as biological

decontamination, it is essential the plasma jet be operated in the plasma bullet

mode of operation. The corona mode is too weak to have the necessary

chemical reactivity for decontamination of biological media. The continuous
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glow mode is highly reactive, yet the gas temperature is so high that it

thermally destroys the biological media. Only the plasma bullet mode exhibits

room temperature operation and efficient reaction chemistry. As the plasma

bullet mode of operation is of such importance its propagation mechanism was

investigated in section 5.4. A theory first developed by Dawson and Winn in

1965 regarding the propagation of cathode directed streamers was adopted to

explain the curious nature of the plasma bullet propagating in regions of low

electric field. Dawson's theoretical predictions seemed to fit well with most

experimental observations. However, no explanation was found to explain

why a helium plasma bullet travelling through a helium atmosphere does not

disperse.

Finally, section 5.5 reported several novel experimental observations

of the plasma bullet. Whilst not all can be sufficiently explained at the current

time it is hoped that the observations will form the basis for future

investigations into the plasma bullet phenomena.
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Chapter 6

6 Pulsed APGD without dielectric barriers

6.1 Introduction

Atmospheric-pressure glow discharges offer a unique chamberless

route to a wide range of highly desirable surface functionalities without wet

chemistry and close to room temperature/'' In the excitation frequency range

of 1-300 kHz, dielectric insulation of electrodes has long been believed to be

essential for stable APGD generation.v' It is therefore of significant interest to

study whether APGDs without dielectric barriers are fundamentally possible at

kilohertz frequencies and, if so, whether barrier-free APGDs offer a different

route to producing glow discharges at atmospheric pressure.

From an application standpoint, it is sometimes desirable to dispense

the use of the electrode-insulating dielectric layers that may become

contaminated after continuous usage and so potentially lose their ability to

stabilise APGD. The vast majority of previous studies conducted in to barrier-

free APGD have been achieved largely outside the 1-300 kHz range, either at

the mains frequency using a large ballast resistor of various forms,6.3,6.4or at

megahertz frequencies,6.5-6.7both techniques effectively stabilise the discharge

by restricting current growth. Within the 1-300 kHz range, the only reported

barrier-free APGD is achieved by maintaining the sinusoidal applied voltage

close to the gas breakdown voltage.v" A drawback of this method is the very

limited operating range of the discharge, the applied voltage must be held just

above the breakdown voltage and strictly regulated to prevent arcing.

This chapter details a novel barrier-free APGD discharge sustained at

kilohertz frequencies by sub-microsecond voltage pulses, the discharge is

shown to be stable over a wide operational range. Initially, section 6-3 details
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the characteristics of the discharge using electrical and optical techniques. A

comparison between pulsed barrier-free APGO and a kilohertz OBO is given

in section 6.4. Perhaps the most widely used barrier-free atmospheric pressure

discharge is the RF-APGO; section 6.5 provides a comparative study of RF-

APGO and pulsed barrier-free APGO. Unlike sinusoidal excitation, pulsed

excitation has many characteristics that can be tailored to enhance the

efficiency of the discharge; the effects of pulse tailoring are explored in

section 6.6. The penultimate section describes the breakdown mechanism

observed in a pulsed barrier-free APGO. Pulsed excitation is shown to

generate highly transient plasma in which gas breakdown occurs during every

applied voltage pulse; hence a clear understanding of the breakdown

mechanism is essential to enhance the properties of the discharge.

6.2 Experimental Setup

The sub-microsecond pulsed barrier-free APGO considered in this

chapter was generated using two parallel stainless-steel electrodes with a

surface area of 6 cm2 and a separation distance of 0.5-1.5 cm. The two

electrodes were naked without any dielectric barriers, and the electrode unit

was housed within a Perspex box fed with a through flow of helium. A mass

flow controller was used to regulate the gas flow and allow the addition of

small amounts of various reactive gases such and oxygen and nitrogen. The

Perspex box was not airtight; hence oxygen and nitrogen were present. In

general the discharge was operated using a gas flow rate of 5 SLM helium

with additional oxygen or nitrogen up to 300 SCCM.

In order to generate a high voltage train of sub-microsecond pulses a

pulse generator was developed based on the push-pull stacked MOSFET

topology discussed in chapter 2. The device was capable of delivering unipolar

voltage pulses of up to +/-10 kV at 0.01-20 kHz. The pulse generator required

an intricate matching network to cope with the dynamic impedance of the

load. Initially, the load appears as a small capacitance and only displacement

current flows, during the discharge the load becomes increasingly resistive and
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several amps may flow; if instability occurs it is possible for many tens of

amps to flow resulting in arc formation. The pulse generator must be capable

of withstanding all the possible conditions of the discharge hence considerable

effort was directed toward designing a rugged and robust device using the

latest power MOSFET devices.

The generated plasma was found to be stable and repetitive for many

hours of continuous operation. Water cooling was not needed, and the

electrode temperature measured with an infrared thermocouple was found to

be about 2 QC above room temperature. These observations suggest that the

pulsed barrier-free plasma was essentially a room-temperature, homogeneous,

atmospheric glow discharge. To understand the temporal behaviours of the

sub-microsecond pulsed APGD, electrical measurements were performed

electrical using a Tektronix oscilloscope (TDS 5054B) via wideband voltage

and current probes. Figure 6-1 shows a schematic of the experimental setup, a

trigger generator is employed to control the pulse width of the applied voltage

and repetition frequency, a second function of the trigger generator is to

provide a trigger signal to control the OES system and iCCD camera.

er unit
o 0

A

Bare metal le
electrodes

OES&
Imaging

Fig 6-1: Schematic showing experimental setup for barrier-free APGD experiments.
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6.3 Discharge characteristics

6.3.1 Electrical characteristics

The applied voltage was made of a train of -2 kV pulses repeated at 1

kHz and is shown in figure 6-2. Each voltage pulse had approximately a rise

time of 100 ns, a falling time of 200 ns (between 10% and 90% of the peak

voltage), and a pulse width of360 ns (between two half-peak points). The duty

cycle was very small at around 0.05%. The discharge current was also periodic

and its pulse width was about 120 ns, markedly smaller than the voltage pulse

width. Its peak was 4.84 A or 0.81 AJcm2
, much greater than that of

atmospheric dielectric barrier discharges (DBDs) in He-02 mixtures.f"
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Fig 6-2: Current & voltage characteristics of pulsed barrier-free helium APGD.

A very distinctive feature of the discharge is the appearance of a single

current pulse for every voltage pulse; this is markedly different from that of

kilohertz sinusoidal excitation where two current pulses per cycle are

seen.6.9,6.10Sub-microsecond pulsed excitation of a DBD jet employs voltage

pulses with very similar characteristics to barrier-free APGD (see section

4),6.12,6.13however, two distinctive current pulses per applied voltage pulse are

-129-
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observed, this suggests that the physical mechanisms behind the pulsed

barrier-free APGD and other kilohertz APGD are very different.

Figure 6-3 highlights the discharge current on a microsecond scale. It

is clear to see that at a repetition rate of 1kHz there is a distinct current pulse

observed every lms. A single current is indicative of a single discharge event

per applied voltage pulse; this is confirmed later in the chapter using

nanosecond imaging techniques.

1
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Fig 6-3: Discharge current of a pulsed barrier free APGD observed on a microsecond scale.

It is interesting to note that the current peak occurred in the falling

phase of the applied voltage shown in figure 6-2. Suppose electron mobility is

approximated to that in atmospheric helium, 1132 cm2 y-I s-I, and that the

average electric field was IkV/ 0.5 cm = 2 kV/cm in the voltage-rising phase.

The time for an electron to transverse the electrode gap of 0.5 em was about

221 ns. Hence the voltage-rising phase of 100 ns was not sufficiently long for

electrons in the electrode gap, if any, to reach the anode and support a large

current in the external circuit.
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The displacement current made a similarly small contribution. With an

electrode unit capacitance at 1.1 pF, the peak displacement current was 22

rnA, 228 times below the peak current of 4.84 A in figure 6-2. So the

discharge during the voltage-rising phase was supported by a very small

current and was at most a Townsend discharge. After the applied voltage

reached its plateau, gas ionization continued and produced more electron-ion

pairs. Eventually at 350 ns, the discharge increased significantly and climbed

to 4.84 A in about 100 ns. Because of the very large current, the conductivity

of the plasma load increases very significantly and as a result is presented to

the voltage source as an effective short circuit which causes the applied

voltage to fall. Similar measurements were made with different voltage pulse

widths and the current peak was always found to trigger the voltage fall.

6.3.2 Temperature characteristics

After several hours of continuous operation the electrode unit

containing the discharge was thermally safe to handle and appeared to be a

similar temperature to the ambient background. Considering these

observations it is likely that the discharge is non-thermal in nature. As

confirmation, gas temperature was obtained by comparing the measured

spectrum and simulated data of the excited hydroxyl molecule at 309nm,

figure 6-4 shows the results, a simulated spectrum with a rotational

temperature of 320K closely fits the experimental data. A thermocouple

employed to monitor the temperature over several hours of continuous

operation recorded an increase of 2°C above the ambient room temperature. It

is likely that the gas flow had a cooling effect upon the electrodes thus

explaining the small discrepancy in the thermocouple and optical temperature

measurement techniques.
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Fig 6-4: Measured and simulated spectrum ofOH emission at 309nm.

6.3.3 Optical characteristics

If pulsed barrier-free APGD is to become a useful technology it is

essential that the discharge be free from streamers to allow uniform processing

of materials. Figure 6-5 shows an image taken using a Canon digital camera

with an exposure time of 1I60s, visually the discharge appears to be free from

streamers and highly uniform. To demonstrate the potential for large volume

processing the electrode gap is set to approximately 1em yielding 6cm3 of

plasma, in comparison to the needle like beam of an APGD jet this is quite a

substantial amount.

Fig 6-5: Photograph of pulsed barrier-free APGD.
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Figure 6-6 shows an Image of the pulsed barrier-free APGD taken

usmg an iCCD camera with an exposure time of Ins. The camera was

triggered such that the image was recorded at the point of peak discharge

current. It is clear to see that the plasma is very uniform and no streamers are

observed, thus indicating that the discharge is diffuse. An interesting point to

note is that the discharge has a distinctive structure; on the cathode (lower

electrode) there is a bright negative glow region above which there is a less

intense bulk region. Such discharge structures are commonly observed in DC

plasma discharges. The similarity in discharge structure between pulsed

excitation and DC excitation is expected, in both cases the applied voltage

remains at a fixed polarity over the discharge period. This situation is

markedly different from that of sinusoidal excitation, where the polarity of the

applied voltage alternates during the discharge period.

Fig 6-6: iCCD image of pulsed barrier-free APGD with a Ins exposure.

OES measurements from 250nm to 800nm reveal a typical helium

APGD spectrum, rich in nitrogen and oxygen species from the ambient air. To

obtain a spectrum for a true pure helium discharge would require the

evacuation of the background air from an airtight container prior to filling wi th

helium, which is rather a complex operation. It is worth noting however, that

unlike many APGD discharges the spectrum observed from the pulsed barrier-

free APGD is dominated by oxygen emission at 777nm, this is unusual as

excited nitrogen species tend to dominate kilohertz APGD.6.13-6.15
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Fig 6-7: Emis ion pectrum ofpul ed barrier-free APGD between 250nm and 800nm.

To furth r understand pulsed barrier-free APGD, optical signatures of

three excited pla rna pe ie ~ ere plotted in figure 6-8 together with the

discharge current and di ipated power all as a function of time on a

nano econd cale. Sine the / emission in the 391 - 393 run range is the

most intensi e among rom p cies in figure 6-7, its absence from the first 300

ns in figure 4 ugge t the ab ence of significant amount of ions and hence

electrons in th ele trod gap. This is consistent with the fact that the current

pulse became ignificant onl after 300 ns even though the voltage pulse had

per isted for the fir t 250 n (ee figure 6-2). Emission in 391 - 393 run is

known to be re ulted from + (82:Eu+, 11>=0)transition to N2 + (X2:Eu +, Vx=O),

and the former i populated through the Penning reaction and the charge

tran fer from H 2 ions. The temporal profile of the 391 - 393 run line

therefore c ntain information of the e olution of the helium metastables and

molecular i 6.16 imilarly the helium line at 706 nm indicates the presence

of either en rg ti I ctron or He2+ ions and low energy electrons.f" Again

the ab ence of a trong 706 nm line before 300 ns supports the suggestion that

there were in uffi i nt ele tron in the electrode gap to sustain a large current
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during the first 300 ns of the voltage pulse and that the discharge was at most a

Townsend discharge.
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Fig 6-8: Optical signatures of 2 @ 337nm, N/ @ 391nm and He @706nm excited plasma

species.

It is worth noting that the temporal profiles of all three plasma species

are similar. The instants at which the three emission lines reached their peaks

were different, and their fall times were also markedly different. For example,

raw data suggest that the fall time of the 337 nm and 706 nm lines were 130 ns

and 150 ns respectively. The ratio of their intensity integral over time in figure

6-8 was about 2, and compared well with the ratio of their time-accumulated

intensity in figure 6-7. Difference in the temporal profiles of the three excited

plasma species in figure 6-8 was probably related to their different life spans.

It is also worth noting that their temporal profiles fit better with the power

profile than the current profile. Given that the applied voltage tailed off during

the current pulse in figure 6-2, it is possible that the average electron energy

decreased in the latter phase of the current pulse and the profile of the

dissipated power offers a more accurate indication of the dynamics of

energetic electrons. This suggests that the profiles of excited plasma species

-1
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may be influenced by both their life times and the dynamics of energetic

electrons.

6.4 Comparison with sinusoidal DBD

Figure 6-9a shows current and voltage traces of a pulsed barrier-free

APGD and a comparable atmospheric DBD produced within the same

electrode unit, at the same peak voltage, and in the same gas mixture as that

used for the pulsed APGD. The sinusoidal excitation frequency was 8 kHz

since it was not possible to strike a stable DBD with our electrode unit at I

kHz.6.11 Clearly, figure 6-9b shows the typical DBD pattern of one large

current spike every half cycle. The cycle-to-cycle averaged peak current was

15 rnA (or 2.6 mA/cm2), about 323 times below that of the pulsed APGD in

figure 6-9b. The time-averaged dissipated power density in the atmospheric

DBD was 328 mW/cm3
, typical for atmospheric DBD.6.1O However, the

averaged power density in the pulsed barrier-free APGD was about one

magnitude lower at 38 mW/cm3, It is believed that the small duty cycle of the

pulsed APGD was responsible for its smaller dissipated power even though its

discharge current was much greater at the same applied voltage. Similarly, the

pattern of one current peak per voltage pulse in figure 6-9a was different from

that of pulsed atmospheric DBD in which two current peaks per voltage pulse

were typica1.6.12,6.13 These suggest that the pulsed barrier-free APGD in figure

6-9a is unlikely to be assisted by any dielectric barrier effect.

Figure 6-10 shows the optical emission spectra of the pulsed barrier-

free APGD and its corresponding atmospheric DBD, both with a peak applied

voltage of 2 kV and measured with the same arrangement of an Andor

Shamrock spectroscopy system at 1 ms exposure time. Both spectra exhibit

spectral signatures of a very similar group of plasma species, for example the

dominant helium line at 706 nm, the nitrogen ion line in 391 - 393 nm and the

nitrogen line at 337 nm, the OH line at 309 nm, and the atomic oxygen line at

777 nm. Helium and oxygen lines were stronger in the pulsed APGD, and

nitrogen lines were stronger in the atmospheric DBD .

. ~ '"
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Fig 6-9: Current & Voltage traces for a) 400ns FWHM, 1kHz barrier free APGD and b)8kHz

sinusoidal DBD.
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Figure 6-10 indicates that the atomic oxygen line in the pulsed APGD

was about 3.7 times of that in the atmospheric DBD. This efficient production

of oxygen atoms was found to improve further at larger applied voltages as

shown in the figure 6-11. As the applied voltage increased to 2.5 kV, the

intensity of the 777 nm line became about one magnitude higher in the pulsed

APGD than that in the sinusoidal DBD. Hence the pulsed barrier-free APGD

offers an energy-efficient route to the production of chemically reactive

plasma species, such as atomic oxygen. Also compared to sinusoidal barrier-

free APGD,6.8 pulsed barrier-free APGD are much more versatile, operated

over a wider voltage range and at higher currents.

Wavelength (nm)
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Fig 6-11: Effect of applied voltage on oxygen emission intensity at 777nm.

6.5 Comparisonwith RF APGD

Radio frequency excitation of APGD is commonly used in many

applications; the rapidly oscillating electric field traps electrons and yields a

stable discharge without the need for dielectric barriers.6.27 Unfortunately, high

frequency excitation is associated with high input power and consequently

excessive gas heating; rendering RF-APGD unsuitable for applications

involving temperature sensitive materials.6.23 It is known that RF discharges

produce significantly more reactive species compared to kHz excited barrier

discharges, hence their attractiveness in many industrial applications.

Potentially, pulsed barrier-free APGD could be an exciting alternative to RF-

APGD, offering high fluxes of reactive species at greatly reduced input

powers and consequently lower gas temperatures.

This section provides a comparison between pulsed barrier-free APGD

and an RF-APGD generated using the same electrode unit, electrode

separation, and gas flow. The RF excitation frequency was chosen to be

13.56MHz, as it is lies within the 13-14MHz band allowable for medical
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devices and has been used extensively in previous studies ofRF_APGD.6.17,6.18

Figure 6-12 shows the current and voltage traces for both pulsed and RF

excitation sources.
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Fig 6-12: Current and oltage traces for pulsed-APGD and RF-APGD.

Typical of RF-APGD the discharge current leads the applied voltage;

the phase difference indicates that the discharge has both a capacitive and

resistive element.6.17 Capacitances arise due to the formation of sheaths within

the discharge and from the small separation of the two electrodes. The

resistive element relate to the conductivity of the gas within the gap hence

only becomes apparent after breakdown. Figure 6-13 provides a current-

voltage-characteri ation (CVC) for each discharge. Figure 6-13a highlights the

-140-
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eve for the RF-APGD RMS currents and voltages are used. In figure 6-13b

peak voltages and currents are used to characterise the pulsed discharge.
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Fig 6-13: Current- oltage characterisation for a) RF-APGD & b)Pulsed APGD.

The characteristics for the RF discharge shown in figure 6-13a are very

similar to those published in many previous studies employing RF

excitation.6.8 The initial teep rising phase is the displacement current, as the

pulse-APGD ha a teep rising edge this is considerable. At the breakdown

point a small drop in oltage is observed (point 1); proceeding breakdown the

discharge becomes in rea ingly conductive indicated by a large rise is current

for a small increa e in oltage (point 2). The furthest point at the right hand

side of each ev graph indicates the point at which the discharge exhibits

instability and tran itions to arcing (point 3).
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Fig 6-14: Average and peak power ofRF and pulsed discharges at various points of the

current- oltage characterisation shown in figure 6-13.

Figure 6-14 highlights the average power consumption and the peak

power of each discharge at the three positions indicated on the eve data

shown in figure 6-13. It is clear to see that RF-APGD consumes a considerable

amount of power and has a relatively low peak power, conversely, pulsed-

APGD has a low average power and a very high peak power.

Excitation V peak CV) I peak(A) Pave (W) P peak (W)

Pulsed 1520 7.6 0.6 7000
Radio Frequency 460 0.45 58 160

. .Fig 6-15: Table summansing Current, voltage, and power consumption .

Figure 6-15 summarises the data shown in figure 6-14 at position 2, it

lists the peak voltage, peak current, average power, and maximum

instantaneous power measured for each excitation method. Of most practical

interest is the a erage power consumed by each plasma, the RF APGD

requires almost two orders of magnitude more power than that of the pulsed

APGD, due primarily to the pulsed excitation method making use of a long

voltage-off pha e to reduce unnecessary power dissipation. It should be noted
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that the maximum instantaneous power is 44 times higher in the pulsed case;

such a high instantaneous power could potentially lead to the excitation of

high energy species within the plasma. Gas temperatures tend to be related to

average power consumption.Y in RF-APGD the high average power

consumption suggests elevated gas temperature which could prove to be an

issue in many applications, figure 6-16 shows the temperature rise of the

electrode body over a 5 minute operational period.
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Fig 6-16: Temperature of electrode body in RF-APGD (Red) and pulsed APGD (Blue).

From figure 6-16 it is clear to see that in all case the RF discharge has

significantly higher gas temperatures. After 5 minutes of operation the RF-

discharge had elevated the electrode body temperature from 24°C to between

58°C and 110°C. Temperatures in excess of 100°C are commonly reported in

helium RF-APGD studies.6.7 Very little temperature rise was observed in the

pulsed case, less than 1°C over the 5 minute period, highlighting the low

power, non-thermal nature of the discharge.
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Optical emission spectroscopy was used to detect vanous excited

plasma species within each discharge. In general atomic oxygen, OH radicals

and various nitrogen species were observed; the emission spectra were similar

for the pulsed and RF-APGD cases. Figure 6-17 highlights the key species

within each discharge recorded at point 3 on the eve data shown in figure 6-

13 (just prior to arcing) with an exposure time of lms. Apart from oxygen at

777nm and OH at 309nm the emission intensities are very similar. The

emission of atomic oxygen in the pulsed case was almost twice that in the RF

case, conversely the emission of OH in the pulsed case was only a fraction of

that observed in the RF case. Despite lower emission from some excited

species in the pulsed case it is worth pointing out that if the average power

consumption is factored in to the equation then the pulsed APGD produce

significantly higher emission per watt of input power than RF-APGD in all

cases (including OH emission!).

Species OH N2 N+2 0 He 0

Wavelength (nm) 309 337 391 616 706 777

Pulsed 5.5 41.5 42 12.5 67.5 90

Radio Frequency 90 47.5 38 13.3 61.5 50

Intensity ratio, Ir/IRF 0.06 0.87 1.1 0.94 1.1 1.8

Fig 6-17: Emission intensities of key species in pulsed APGD and RF-APGD.·

The results presented in this section give clear evidence that pulsed

APGD is a viable alternative to the widely used RF-APGD. Electrical

measurements show that power consumption is significantly lower yet the

peak power is significantly higher. In industrial applications energy efficiency

is often of paramount concern. Gas temperatures are also significantly lower in

pulsed APGD meaning it can be used for the processing of heat sensitive

materials. Optical emission results showed that pulsed APGD has a similar

emission spectra to RF APGD however it produces double the amount of

atomic oxygen emission which is essential in the field of plasma

decontamination.6.17
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6.6 Enhancing characteristics

In the previous sections, a kHz APGD generated with sub-microsecond

high-voltage pulses between two naked electrodes have been reported. With a

large current density of >0.5 AJcm2
, the pulsed APGD was shown to produce

far more excited atomic oxygen emission at 777 nm than a comparable

atmospheric DBD.6.24 This is significant, given that reactive species such a

atomic oxygen and OH radicals are key application enablers.6.13,6.14,6.22,6.2

Therefore, it is of considerable interest to better understand and further

develop pulsed APGD.
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Fig 6-18: Electrical and time-resolved optical data for a pulsed barrier-free helium APGD.

Figure 6-18a shows electrical measurements of a 4 kHz sub-

microsecond pulsed APGD. The mean peak voltage is Vp = 2.4 kV, the peak

discharge current is Ip = 8.4 A, and the peak dissipated power is 13.7 kW.

Similar to those reported previously.T" nanosecond exposure images suggest

that the pulsed atmospheric plasma was spatially uniform without unstable

streamers and its spatial structure had a clear sheath region (image shown in

figure 6-6). Compared to sinusoidal atmospheric DBD and indeed radio-

frequency APGD, the pulsed APGD can be operated at very high peak power

density of 1 - 5 kW/cm3 without inducing any significant temperature rise.
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Figure 6-18a shows that its voltage pulse has a rise time of 18 ns and a fall

time of 55 ns, both measured between 10%and 90% of the peak voltage, and a

pulse width of 190ns measured as the full width at half maximum. The current

pulse has a rise time of 43 ns, a fall time of IOns, and a pulse width of 30 ns.

With a voltage rise time of 18 ns and a rig capacitance of 1.1 pF, the peak

displacement current is 0.15 A and much less than the peak current of 8.4 A.

Therefore, the discharge current shown in figure 6-18a is likely to be

conduction current.

The discharge current pulse occurs in the voltage-falling phase, most

probably because the electric field set up during the voltage-rising phase is

insufficient to trigger gas ionization.6.24 For helium APGD, it has been

reported that the electric field must exceed a threshold of about 5.9 kV/cm in

order to compensate electrons lost with electrons created.6.25 During the

voltage-rising phase, the peak electric field is unlikely to be much above 2.4

kV/0.5 cm = 4.8 kV/cm. Markedly below the 5.9 kV/cm threshold, this is

insufficient to trigger electron avalanche and so explains why no current peak

is observed in the voltage-rising phase. It is worth mentioning that the short

voltage pulse width prevents the generated electrons from reaching the anode.

Assuming a peak electric field of 4.4 kV/cm and an electronmobility of 1,132

cm2V-1s-1 for the helium-oxygen mixture,6.24the time for an electron to cross

the 0.5 cm electrode gap is found to be 100 ns - about 53% of the voltage

pulse width. During the initial period of 100 ns, the generated electrons are

trapped in the electrode gap and contribute to the build-up of space charges.

This charge-accumulating period of 100 ns is similar to the time difference of

127 ns in the onset instant between the voltage and current pulses. In other

words, a large portion of the voltage pulse is spent to build up space charges

so that the maximum electric field is raised above the breakdown electric field

to trigger electron avalanche.

The above discussion is supported by results of optical emission

spectroscopy. It is known that the N2+ emission line at 391 nm line is strongly

influence be excited helium species and as such it contains the optical
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signature of helium metastables and molecular helium ions.6.16 It is also

known that the 706 nm line is linked to either energetic electrons or He2+ and

low energy electrons·6.16 Therefore, the temporal profiles of the 391 nm and

706 nm lines reflect that of either energetic electrons or molecular helium ions.

As the most numerous ions in helium APGD are molecular helium ions,6.26

these temporal profiles follow the profile of space charges. As shown in figure

6-18b, emission line intensities at 391 nm and 706 nm are negligible in the

first 122 ns of the voltage pulse and so initially there are very few space

charges in the gas gap to sustain a large current. The negligible emission

period of 122 ns agrees very well with onset time of 127 ns.

Figure 6- I8b also shows a pulse of the OH line at 309 nm and a pulse

of the oxygen atom line at 777 nm, with their pulse width being 60.0 ns and

106.3 ns respectively. When compared to an atmospheric DBD using the same

electrode unit, the same background gas and a very similar peak voltage, the

intensities of the 307 nm and 777 nm emission lines in the pulsed APGD are

up to 10 times greater (data not shown). Therefore, a distinct character of sub-

microsecond pulsed APGD is their ability to produce high fluxes of reactive

plasma species such as oxygen atoms and OH radicals. At a repetition

frequency of 4 kHz, the half period is 125 JlS and much longer than the

electron transition time of 100 ns across the electrode gap. Therefore, electrons

generated in one voltage pulse are most certainly lost to the electrodes and

through ionic recombination well before the next voltage pulse. This suggests

that reactive plasma species such as oxygen atoms and OH radicals are

generated as a train of sharp and independent bursts. It is conceivable that such

sub-microsecond windows of high-flux reactive species could facilitate

surface modification with spatial orland temporal selectivity. For example,

surface pattern with sharp boundary could be realized by moving a pulsed

APGD jet over a surface at a speed that translates the time scale of the

windows to spatial dimensions of the surface pattern.

To enhance the production of reactive plasma species, the peak applied

voltage can be varied so as to alter the discharge current. As the peak applied
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voltage increases, figure 6-19 shows that the peak discharge current increa e

but the voltage pulse width decreases. The peak current is very high, ranging

from 3 A to 6 A, and corresponds to a current density ofO.5 - 1.0 A/cm2
• It i

probable that such a high discharge current could substantially increa e

electrical conductivity of the gas to short-circuit the gas gap, leading to a

premature shortening of the voltage pulse.

3
..-
> 2~..._...
ID
Cl 1m
~
0
> 0

8
..- 6«..._...- 4c:
ID~ 2~
::J
0 0

0

192n5
397n5

1200400 600 800
Time (ns)

1000200

Fig 6-19: Applied voltage and discharge current traces for varying pulse widths.

To study this further, the current pulses in figure 6-19 were integrated

to obtain the total accumulated electron density generated during one voltage

pulse. This is shown in figure 6-20 together with the electron transition time

across the electrode gap and the current pulse width, all as a function of

voltage pulse width. While the voltage pulse width varies by a factor of more

than 4, the total accumulated electron density varies only by a factor of 1.7

suggesting similar gas conductivity among all 4 cases.
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Fig 6-20: Accumulated electron density, electron transition time and current pulse width.

At a voltage pulse width of 192 ns, electron transition time is 106 ns

and the current pulse width is 58 ns. Therefore during the current pulse, most

generated electrons are unable to reach the anode and so are trapped in the gas

gap. In this case, the accumulated electron density is likely to be close to the

peak electron density in the gas gap. At a voltage pulse width of 397 ns, the

transition time for electrons is l39 ns and the current pulse width is 109 ns.

As the electron transition time is similar to the current pulse width, many

generated electrons are trapped in the gas gap but the trapped electrons are

proportionally fewer than those in the 192 ns voltage pulse width case. As a

result, the peak electron density achieved during the current pulse is smaller

than the accumulated electron density of 5.1xlOII cm-3 in figure 6-20. As the

voltage pulse width increases to 593 ns, both the electron transition time and

the current pulse width become 150 ns. This suggests that a significant

proportion of generated electrons are now lost to the electrodes and the peak

electron density reached during the current pulse is likely to be markedly

smaller than the accumulated electron density of 6.5x 10 II cm-3• This

difference is greater in the case of the 780 ns voltage pulse, for which electron

transition time is 159 ns substantially less than the current pulse width 206 ns.

- 4 -
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Therefore as the voltage pulse width increases, the peak electron d n ity

achieved during a current pulse becomes progressively Ie than it

corresponding accumulated electron density in figure 6-20. Thi ugge t that

the peak electron density and hence and the maximum electrical c nductivity

of the gas gap remain relatively unchanged during the current pul e f r all f ur

cases of figure 6-20. It is therefore highly likely that narrow v ltag pul

widths observed at high applied voltages are eau ed by pJa ma-indu ed h rt-

circuiting of the gas gap.
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Fig 6-21: Effect of repetition rate and pulse width on emission intensity of a) H at 0 11m

and b)atomic oxygen at 777nm.

Figure 6-21 shows that the optical emis ion inten ity of th H

emission line at 309 nm and atomic oxyg n line at 777 nm for th f ur

different voltage pulse widths shown in figure 6-19. At a fixed fr qu ncy

stronger emission intensity is achieved with shorter pulse widths that i link d

to a large peak current. At a given voltage pulse width, the ernis i n intenity

increases with increasing frequency. At a voltage pulse width of 1 2 n th

777 nm line intensity increases by a factor of 12 as the frequen y in r a

from 1 to 6 kHz. A high frequency leads to more frequent production f harp

bursts of reactive plasma species and so to their greater accumulation ov r a
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given time period. Also at long voltage pulse widths of 593 ns and 780 ns,

stable APGD are achieved at frequencies up to 4 kHz. If the voltage pulse

width is reduced to below 400 ns, stable APGD can be extended to above 6

kHz.

To place the above comparison in the context of energy budget, the

a erage dissipated power is shown in figure 6-22 to increase with the

frequency but change little with voltage pulse width. Combining this result

with tho e in figure 6-21, it is clear that production of oxygen atoms and OH

radicals can he increased substantially without consuming much more

electrical power. The peak power is very large, particularly with short voltage

pulse widths. This is useful to sustain a large current and a large flux of

reactive plasma species.

Fig 6-22: Effect of repetition frequency on average and peak power.

Curiou ly in figure 6-22h, the peak power vanes with repetition

frequency this is unexpected. The duty cycle of the applied voltage is so low

that it i a umed that pulses can he treated in isolation, such that one pulse is

completely uninfluenced by the previous pulse. This is obviously not the case,

a the oltage is fixed and the peak power increases with increasing frequency
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it follows that the discharge current must increase. One possible explanation

could be at higher repetition rates electrons from the previous discharge do not

have time to completely recombine and hence add to the discharge current of

the next pulse.

6.7 Breakdown mechanism in pulsed APGD

Plasma breakdown, the process by which a neutral gas becomes

ionised is one of the fundamental processes in plasma physics. It occurs in

every plasma at the time of ignition and is a highly transient process involving

multiplication of electrons in avalanches and moving ionisation fronts.

Although plasma breakdown has been studied for many years, many aspects

remain poorly understood and it is still an area of active research. As

mentioned in the introductory chapter, breakdown into a uniform glow

discharge in low pressure can be accurately described with the Townsend

breakdown theory.6.27From an experimental point of view it is difficult to

capture the highly transient breakdown process, due to the limited time

resolution of available experimental techniques. Recent advances in electrical

and optical techniques mean that new diagnostic techniques and experimental

methods can be employed to capture one of the most important plasma

processes.

This section details the use of an iCCD camera and OES system to

investigate the breakdown phenomena in sub-microsecond pulsed barrier-free

APGD. The experimental setup consisted of two circular metallic electrodes

with a diameter of 3cm and a separation of 3mm housed in a Perspex

container. Helium was flown into the electrode enclosure at a rate of 5SLM.

Voltage pulses were applied at a rate of 3 kHz with a pulse width of

approximately 350ns. Figure 6-33 shows the applied voltage and discharge

current. As the rise and fall times of the voltage are <20ns a substantial

amount of displacement current is seen on the rising and falling edges of the

pulse. The average maximum applied voltage is approximately 1450V, as the

electrode separation is 3mm this produces an electric field of 4.8kV/cm, rather
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high compared to those measured in the previous section; this explains the

large 9.1A discharge current, equivalent to a current density of 1.27AJcm2
•
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Fig 6-23: Current and voltage trace for pulsed APGD in 3mm gap.

By triggering the iCCD camera with a Ins exposure time at regular

intervals over the applied voltage period it is possible to get time, space, and

intensity resolved data showing the evolution of the discharge. As discussed

previously the breakdown mechanism should be similar to that in a DC

discharge and can be characterised as Townsend breakdown. The high applied

voltage causes free electrons within the gap to ionise gas molecules by

electron impact, the result is a multiplication of electrons and ions within the

gap. As the mobility of ions is substantially lower than that of electrons a large

concentration of ions forms in front of the cathode leading to the formation of

a cathode fall or negative glow region. Figure 6-24 shows images taken with

an iCCD over the applied voltage period of 260ns to 300ns, it is worth noting

that very little current flows during this period. The intensity of the light

emitted from the discharge is very low and requires a substantial gain to be

introduced by the camera.
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distinctive emission line; it is no coincidence that this is the helium metastable

emission at 706nm which is known to be an indicator of energetic electrons.f"
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Fig 6-25: Emission spectrum of discharge recorded at 265ns. A single emission line observed

at 706nm, indicating Helium metastables.

Throughout the time period 250-300ns, the only significant emission is

from ionic nitrogen and excited helium species. The two most dominant lines

are the helium metastable at 706 and ionic nitrogen at 391, these are plotted as

a function of time in figure 6-26

35

30

.---.. 25 ~ Helium Metastable @ 706nm
::J -a- Ionic Nitrogen @ 391 nm
co 20->.
~ 15(/)
c:
Q) 10-c:

5

0-

255 260 265 270 275 280 285 290

Time (ns)

Fig 6-26: OES of helium metastable (706nm) & ionic Nitrogen (39lnm) from 250ns to 290ns.
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Figure 6-27 shows a sequence of images taken at 330ns to 400ns of the

applied voltage shown in figure 6-23. The gain on the camera is reduced by a

factor of 10 compared to the gain used in the previous images shown in figure

6-24.

330ns

340ns

350ns

360ns

380ns
'~~

390ns

400ns
I
I

Fig 6-27: Images taken with a Ins exposure time at IOns intervals (330ns to 400ns), iCCD

gain set at x l O,

Peak intensity is observed at 370ns, this is slightly before the

maximum discharge current, as noted previously, peak emission coincides

with peak dissipated power (almost IOkW). As the current reduces rapidly the

discharge also diminishes in intensity. It is worth pointing out that if the
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camera is returned to a high gain setting then it is possible to see light

emission from the discharge for many hundreds of nanoseconds after the

current pulse. Observations of the afterglow spectra indicate that the discharge

is rich in oxygen and OH emission but there is very little emission from

helium metastables and ionic nitrogen. This suggests that the discharge has

very few energetic electrons and the light emission is related to the lifetimes of

the excited species created during the applied voltage pulse.

6.8 Summary

This chapter has detailed a novel technique for the generation of

APGD at kilohertz frequencies without the use of dielectric barriers. Using a

home-built pulse generator capable of delivering sub-microsecond high

voltage pulses it has been shown that stable APGD can be generated between

two metallic electrodes which is diffuse and uniform over a wide range of

operating parameters. Using OES it was determined that the gas temperature

was similar to that of the ambient background. Electrical measurements show

that pulsed barrier-free APGD has an unusually high current density which

translates into a high electron density and consequently the generation of a

high flux of excited species.

A comparison between kilohertz sinusoidal excitation and pulsed

barrier-free excitation was conducted and it was shown that pulsed barrier-free

APGD consumed less power than an equivalent kHz DBD and produced more

atomic oxygen species. To become a widely used technology, pulsed barrier

free APGD must be able to rival RF-APGD in terms of reactivity. It was

shown through careful tailoring of the applied voltage pulse that it was

possible to produce more atomic oxygen than an equivalent RF discharge.

Other benefits of pulsed APGD over RF APGD included significant savings in

power consumption and reduced gas temperatures, both highly attractive

characteristics when large-volume plasma processing is considered.
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A consequence of introducing a large voltage off period is that the

nature of the discharge becomes transient and not steady state. Because of this,

the breakdown process is of significant importance as it occurs every time a

voltage pulse is applied. The breakdown process of pulsed barrier-free APGD

was examined using nanosecond imaging and time resolved DES. It was

determined that the process is very similar to that of a DC discharge, involving

the accumulation of space charge and moving ionisation fronts. Nanosecond

exposure images showed very clearly that the discharge structure consisted of

a negative glow region above the cathode and a less intense bulk region. After

each voltage pulse the intensity of the light emission was shown to diminish

slowly, as there is no applied voltage or discharge current this implies that the

emission is due to the lifetime of the excited species created.

In summary, the work detailed within this chapter shows that it is

possible to create a stable APGD over a wide range of applied voltages at

kilohertz frequencies using sub-microsecond pulsed excitation. The

characteristics of the discharge were found to be very favourable compared to

conventional kHz, and MHz excitation methods.
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Chapter 7

7 Applications of pulsed APGD

7.1 Introduction

Throughout the preceding chapters it is hoped that the reader has

gained a clear insight into the many benefits of pulsed excitation of

atmospheric pressure glow discharges. In order for pulsed excitation to gain

widespread acceptance as a viable plasma generation technique it must

perform as well, if not better, than current plasma generation techniques

employed in real-world applications. This Chapter is devoted to several

applications where it is shown that pulsed excitation offers a significant

advantage over conventional excitation mechanisms.

Section 7.2 explores the use of a sub-microsecond pulsed plasma jet

for the removal of protein contamination on surgical instruments. It has been

shown that gas discharges offer an efficient means of removing microscopic

protein fragments that remain attached to surgical instruments after the

conventional decontamination process. Such proteins are thought to be the

main contributor to the transmission of Creutzfeldt-Jakob disease (CJD)

betweens humans. It is shown that pulsed excitation almost doubles the rate of

protein removal compared to a comparable sinusoidal excited plasma jet.

Section 7.3 details the use of barrier-free pulsed APGD employing

helium-argon gas mixtures for the production of intense ultraviolet radiation.

Compact and efficient light sources, especially those emitting in the UV

region, are of intense industrial interest due to their potential for biomedical

diagnostics and photochemical processing. It is observed that a reduction in
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excitation pulse width increases ionisation efficiency and consequently

enhances UV production.

Section 7.4 highlights the use of a nanosecond pulsed barrier discharge

for the uniform processing of polymeric materials. By reducing pulse widths

such that instabilities have insufficient time to develop it is possible to

generate a uniform and diffuse discharge in ambient air over a large area. Such

discharges are essential for the processing of polymeric films on an industrial

scale.

7.2 Plasma sterilisation of surgical instruments

The use of ionised gas as a bacterial decontamination agent was first

proposed in the late 1960's,7.1 however at that time the technology required to

produce large scale gas discharges was largely unknown. Over the past decade

plasma decontamination technology has attracted serious attention due to the

ease at which large scale, cold gas discharges can be generated. The vast

majority of studies reported thus far investigate the effect of plasma upon

various bacteria, whilst this is of considerable importance it must be noted that

it is not just bacterial contamination that poses a risk to humans but also that of

protein.

7.2.1 Decontamination 0/ surgical equipment using pulsed APGD

Prion proteins are widely regarded as being responsible for the

transmission of Creutzfeldt-Jakob disease, yet are extremely resistant to all

current hospital decontamination procedures.i' As a consequence the strategy

of single-use surgical instruments is often employed at an unsustainably high

cost to hospitals. Several attempts have been made to remove protein

contamination using ionising radiation or wet chemical processes, however

such techniques are often costly and pose a serious environmental hazard.7.2

The application of APGD to remove protein from surgical instruments
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represents one of the most promising decontamination technologies due to its

ease of application and limited environmental impact.

Recent studies have shown plasma decontamination is capable of

reducing protein contamination on stainless steel surfaces down to a femto

mole level,7.I,7.3such small amounts significantly reduce the potential risk of

protein contamination and infection. This study only focuses upon the

difference in protein removal rate between a conventional kHz sinusoidal

source and a pulsed source. While it is shown that the pulsed discharge does

remove significantly more protein, the plasma properties have not yet been

optimised hence the amount of protein removed from the surface is not

comparable with those reported in reference 7.1 and 7.3.

7.2.2 Experimental procedure and results

In this investigation sinusoidal and pulsed excitation sources were used

to generate an atmospheric pressure plasma plume in a dielectric tube, the

ionised gas was allowed to flow into the ambient air thus introducing excited

nitrogen and oxygen species. In order to perform a systematic comparison

between pulsed and sinusoidal excitation the operating conditions in each case

were fixed at a similar frequency, and a peak magnitude of IOkY (+I-I0kY in

the sinusoidal case). The pulsed source had a pulse width of 200ns, over 800

times less than a half cycle of the applied sinusoidal voltage. As the applied

voltage was present for a significantly shorter time in the pulsed case the

average sustaining power was substantially lower, approximately one tenth the

level required for sinusoidal excitation.

Two methods of protein detection have been employed to enable the

effect of plasma to be observed. The simplest technique is the use of a

scanning electron microscope (SEM) coupled with electron energy dispersive

x-ray analysis (XDS), this gives a qualitative measure of the effects of plasma

treatment on protein samples. Figure 7-1 shows an SEM image of a real
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surgical instrument that is deemed to be clean and due to be used upon the

next patient. The high magnification of the SEM allows microscopic

contamination to be observed, clearly, there is some kind of organic material

still attached to the surface after the traditional decontamination process. The

XDS functionality allows a rapid analysis of the elements which make up the

surface, shown in figure 7-2. It is known that stainless steel usually contains

less than 1% carbon, this is in stark contrast to the results of the XDS analysis

shown in 7-2, carbon is by far the most dominant element, appearing to be

many times greater than iron, sulphur or chromium. The only possible

explanation for these results is that the structure observed in figure 7-1 is an

organic material, comprised of carbon-oxygen containing amino acids/.4 that

is attached to the surface which was not removed by the standard

decontamination procedure. The size of the protein fragment is approximately

150llm x 50llm which is a substantial amount and is likely to be capable of

transmitting disease from one patient to the next.

Fig 7-1: SEM image of contaminant on surgical forceps after traditional decontamination

procedure.
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Using this method of protein detection, both pulsed and sinusoidally

excited plasma produced similar results. Figure 7-3 shows an SEM image of

the surgical forceps following 60 seconds of exposure to plasma, it is clear that

the bulk of the organic contamination has been removed. This is confirmed

using XDS analysis, shown in figure 7-4. No longer is the surface composition

dominated by carbon; iron and chromium clearly dominate which is much

more representative of the composition of stainless steel. The amount of

carbon remaining on the surface is undetectable using the XDS system

suggesting a higher resolution detection technique is required.

Fig 7-3: EM image of plasma treated surgical forceps.
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Fig 7-4: XDS analysis of plasma treated surgical forceps.

In order to enhance the comparison between pulsed and sinusoidal

protein removal rates a quantitative means of determining the amount of

protein residue remaining on the surface was necessary. Whilst standard

biology laboratory methods are capable of measuring protein samples in

solution they are not applicable to residue on a surface. A new method, based

on laser induced fluorescence (LIF), was developed within the group.i'

Essentially, a model protein (Bovine Serum Albumin, BSA) is labelled with a

fluorescent marker (FITC, fluorescein isothiocyanate) the marker emits light at

530nm when excited at 488nm. Once a known amount of tagged protein is

dried on to the stainless steel surface it is possible to determine the amount of

protein removed during plasma exposure using the reduction in fluorescence

of the marker. Figure 7-5 shows a schematic of the protein detection system

used, the excitation signal was provided by a laser diode (Ocean Optics LS

475) with a signal bandwidth of 460-490nm. The optical configuration of the

system is of paramount importance and several wavelength filters are

employed to ensure a high degree of accuracy. Calibration of the results with a

photon counting fluorescence spectrometer confirmed reliable measurements

of protein residue can be made down to lA femtomole/mm'.
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Fig 7-5: Schematic of laser induced fluorescence system used for surface protein

measurement.

Figure 7-6 shows the removal rate of the model protein BSA tagged

with an FITC marker from a stainless steel disc. In this investigation Argon

was used as the working gas, results obtained using helium showed a similar

trend (not shown). For many practical applications the use of helium is

prohibitively expensive, conversely argon is one of the least expensive inert

gases thus making it an attractive option for any commercial plasma

application. From Figure 7-6 it is seen that the original concentration of

protein on the disc was 15 picomole, after 300 seconds of treatment with the

sinusoidal source the amount of protein was reduced to 10.8 picomole,

representing a 28% reduction. After an exposure of 300 seconds to the pulsed

plasma the amount of protein was reduced to 3.9 picomole, representing a

74% reduction. It is clear to see that pulsed excitation is more effective

compared to its sinusoidal equivalent, this is likely to be a direct consequence

of increased peak instantaneous power producing more oxygen species in the

pulsed case compared to the sinusoidal case.
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-o-Ar pulsed jet (2.3kHz, 10kV)
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Fig 7-6: Removal rate ofBSA protein on stainless steel disc with sinusoidal and pulsed

excitation. Images show fluorescing protein sample after various plasma exposure

times.

In order to achieve the protein removal rates equivalent to tho e

published within reference 7.1 and 7.3 it would necessary to increa e the pul e

repetition rate into the tens of kilohertz range. While this is certainly po ible

it would require modification to the pulse generation system which i currently

limited to a maximum pulse repetition rate of 5 kHz.

7.3 Nanosecond pulsed plasma for generation of intense UV

Plasmas employing rare gas and rare gas-halide mixtures are known to

be efficient producers of incoherent UV and vacuum ultraviolet (VUV)

radiation. In an argon discharge, narrow and intense VUV radiation centred at

190nm is efficiently produced without the need for hazardous chemicals ueh

as mercury, which is commonly found in many commercial UV light ource .

VUV and UV-C radiation is useful for breaking molecular bonds, modifying
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surfaces, and initiating chemical reactions, hence is widely used in many

industrial and medical processes.Y

7.3.1 Compact and efficient ultraviolet light sources

Recent developments in UV light sources, emitting in the VUV range

(10-200nm), and UVC range (200-2S0nm), have focused upon glow

discharges as an alternative to metal vapour lamps. This shift in research has

been driven by the need to produce efficient and environmentally friendly light

sources. Many studies have successfully shown that efficient VUV production

is achievable using simple AC driven discharges.7.6,7.7,7.sPulsed excitation has

been considered as a means to further increase the efficiency of AC driven

VUV sources;7.9,7.IOa detailed comparison between pulsed and AC driven

DBD lamps showed efficiency could be increased three fold by employing

sub-microsecond pulses compared to a kHz AC source.i" The remainder of

this section explores the effects of pulse duration on VUV production. By

employing very short pulses «lOOns) it is possible to do away with the

dielectric barrier hence the light source becomes a simple bare electrode

parallel plate configuration. As discussed in Chapter 6, barrier-free pulsed

discharges are capable of attaining substantially higher instantaneous peak

powers than dielectric barrier or radio-frequency discharges. Increased peak

power is known to be directly linked to enhanced UV production and is likely

to yield a higher output efficiency.i'"

7.3.2 Experimental procedure and results

In order to produce high voltage pulses with nanosecond durations a

transistorised Marx bank pulse generator was developed; details of which are

discussed within Chapter 2. The device was capable of delivering pulses with

a FWHM (Full Width, Half Maximum) of less than 5ns, rise and fall times

around 2ns, and a peak magnitude of -SkY. Such a pulse generator is an ideal

candidate for a compact pulsed VUV source as it is constructed from low cost,
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small scale semiconductor devices; no magnetic components are required

unlike a sinusoidal source that may require some kind of bulky 'step-up'

transformer. When dealing with nanosecond pulses special attention must be

directed toward the effect of voltage probe loading and signal propagation

delay. A Tektronix PSIOOvoltage probe was used to measure the applied

voltage, having a 100:1 attenuation and 2S0MHz bandwidth it is well suited to

the task. Unfortunately, the PSIOOhas an input capacitance of 2.7SpF, when

measuring an edge transition of 4kV with a rise time of 2ns a displacement

current of over SA is produced, this adds further stress to the pulse generator

and increases heating within the transistors. Another issue is the signal

propagation delay between voltage and current probes. Without careful

calibration the oscilloscope displays a current pulse several nanoseconds

before the start of the voltage pulse, this is obviously erroneous. Using a son
RF dummy-load it was possible to determine the actual propagation delay

between the current and voltage signals thus enabling an accurate calibration

to be performed. Figure 7-7 shows a current and voltage trace of a 5ns FWHM

4kV voltage pulse and resultant discharge current (total current less

displacement current). The electrode unit comprised of two bare metallic discs

of 3cm diameter with a gap separation of 2mm, the electrodes were housed

within a polycarbonate enclosure with a quartz window permitting optical

access (polycarbonate strongly attenuates UV light). Gas was fed into the

housing unit through perforations on the surface of one of the electrodes; this

has the added advantage of improving uniformity as gas flow is no longer

from one side of the electrodes.
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Fig 7-7: Current and voltage data for a nanosecond pulsed discharge, insert shows schematic

of system and digital image of plasma.

Nanosecond imaging reveals a similar breakdown mechanism as that

observed in discharges generated with longer pulses. Due to the reduced

timescales and increased applied voltages involved in barrier free nanosecond

pulsed discharges the breakdown event occurs much faster than those

observed in Chapter 6. Figure 7-8 shows the breakdown process using Ins

exposure iCCD images taken every two nanoseconds. It should be noted that

the images shown are taken in a single shot, not an accumulation of many

images overlaid. A difficulty associated with imaging such rapid pulses is that

an inherent delay in triggering of the iCCD means this it is likely the discharge

event will be completely missed by the camera. This issue was overcome by

triggering the iCCD using a logic level pulse generator and then passing the

trigger pulse through a lOOns coaxial delay line to trigger the high voltage

pulse generator which initiates the discharge. Consequently the iCCD camera

was triggered 77ns before the discharge event, thus overcoming the 23ns

propagation delay within the camera and ensuring no part of the discharge

event was missed.
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Fig 7-8: Intensity profile of nanosecond pulsed discharge. Insert shows single-shot Ins

exposure images, anode at top and cathode at bottom of each image.

Figure 7-8 clearly shows a breakdown process that is similar to that

reported in Chapter 6, ions accumulate near the anode and are accelerated

toward the cathode (images a to c), a sheath region forms, above which

appears a negative glow region (images c to f). Finally, as the driving voltage

is removed the discharge intensity gradually extinguishes over several

hundreds of nanoseconds. The whole breakdown process (time from a to f)

takes approximately 8ns, this is in stark contrast to the process detailed within

Chapter 6, which lasts over 140ns when generated with a 250ns pulse. A likely

cause of this difference in timescale is the difference in the applied electric

field. In the nanosecond case the applied electric field was 20kV /cm (4kV

across 2rnm), whereas in the 192ns (figure 6-19) case the applied electric field

was only 4kVfcm, correspondingly, ions are able to move much faster in the

nanosecond discharge. The ability to generate uniform gas discharges using

fast rising electric fields well in excess of the breakdown voltage of the gap is

a distinguishing feature of pulsed excitation unobtainable using other

excitation methods and will be discussed in the next section.
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The working gas used in this investigation consisted of 99% helium

and I% argon. The large percentage of helium ensured a low breakdown

voltage and excellent discharge stability. The argon impurity was added to

enhance production of VUV, namely the Argon dimer 3rd continuum, centred

at 190nm.7.7 Within the discharge chamber further nitrogen and oxygen

impurities from the ambient air were present. Nitrogen and oxygen impurities

produce substantial amounts of NO which emits strongly in the UV -C range.

7.7 In the VUV range (IO-200nm) atomic nitrogen emits strongly at 149m11and

I74nm. Unfortunately, the sensitivity of a standard optical spectrometer

diminishes rapidly below 190nm due to the absorption of short wavelength

UV by air present in the optics of the device. For measurements below 190nm

a VUV spectrometer is necessary, such a device uses nitrogen to purge air

from within the system. As only a standard spectrometer was available the

only measurable portion of the VUV spectrum was between 190-200nm,

fortunately the small argon impurity added produces a strong emission of the

argon dimmer 3rd continuum thus giving an indication ofVUV production.

1.4
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Fig 7-9: Optical emission data showing UV emission obtained from a IOns and lOOns pulsed

APGD.
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Figur -9 hov tv 0 emission spectra overlaid, the green line shows

tb enn ion produced b a lOOns pulse, the red line shows the emission from

th nan ond puL e hown in figure 7-8. It should be noted that each

di harg onsumed a ery imilar amount of electrical energy; however the
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For any potential light source it is essential that the temperatures

generated remain at a manageable level, high temperatures necessitate

complex cooling systems which are often costly. Figure 7-10 shows the time-

resolved rotational and vibrational temperatures obtained via optical emission.

The upper graph shows the temperature measured using the molecular

nitrogen line at 337nm, during each applied voltage pulse a steep rise is

observed in the vibrational temperature whereas the rotational temperature

only increases by a few tens of Kelvin. The insert shows a time-average

optical emission profile and simulated profile, as expected, the rotational

temperature is found to be very low, only 300K. As mentioned previously the

gas temperature is likely to be very similar to the rotational temperature

meaning the nanosecond pulsed discharge is an ideal candidate for a low

temperature, efficient UV source. The lower graph in figure 7-9 shows the

rotational and vibrational temperatures obtained using the ionic nitrogen line

at 391nm, the temperature profile is markedly different from that obtained

using the 337nm emission line. Both rotational and vibrational temperatures

show a rapid increase over the applied voltage period, the rotational

temperature reaches a peak of 475K, this is almost 150K higher than the

temperature measured at the same time using the 337nm emission. The

discrepancy between the two measurements is likely due to the ionic nature of

the 391nm emission line. As the nitrogen ion is a charged particle it is strongly

influenced by the high electric fields present in the pulsed discharge. The

337nm emission line is from a neutral particle, hence unaffected by the electric

field; consequently the temperature measured is lower. The temperature

difference between ionic and neutral species highlights a drawback of using

optical emission spectroscopy as a means of temperature measurement.

Variations in temperature depending on the choice of emission line have been

observed in other studies/·ll however, the difference is greater in the case of

pulsed discharges due to the large electric fields present. Despite the large

differences observed in the time-resolved temperature profiles, the time-

averaged temperatures are found to be very similar. The high peak

temperatures observed from the 391nm emission are only apparent over 20ns;
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this is insufficient time to have any significant heating effect on the

background gas or electrodes.

7.4 Nanosecond pulsed APGD for polymer treatment

Cold gas plasmas are used extensively as a means to enhance the

surface characteristics of polymer films. Through plasma-polymer interaction

the surface energy of a sample is increased which enhances wettability,

printability and adhesion. As polymer films become thinner it is essential that

any plasma processing does not cause undue thermal burden which may

irreparably modify the bulk properties of the polymer or perforate the film

itself. For large scale industrial treatment of polymers it is desirable to use low

cost gases such as nitrogen or air, however molecular gases tend to produce

hot plasma which is often filamentary in nature. Voltage pulses with durations

less than lOOnsare shown to produce low temperature, diffuse discharges

which are ideally suited for the uniform treatment of thermally sensitive

polymer films. It is shown that nanosecond pulsed air discharges are capable

of greatly increasing oxygen-containing functional groups on the surface of

polymeric films which are know to significantly enhance the hydrophilic

properties.

Polymeric materials are used extensively in food packaging, protective

coatings and sealing applications because of their excellent bulk properties,

such as transparency, high strength to weight ratio, and good thermal

resistance.i" Unfortunately, it is often the case that polymer films exhibit

several undesirable characteristics such as poor wettability, poor printability,

and poor adhesion to secondary phases.7.13 In many applications it is necessary

to increase the surface energy of the polymer thus enhancing wetting and

adhesion properties whilst maintaining the bulk characteristics of the material.

Chemical activation of the polymer surface is the most utilized method;

however the use of aggressive solvents, caustic solutions, and acids on an

industrial scale has detrimental ecological consequences. An environmentally
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benign surface treatment, such as cold gas plasma treatment, IS a highly

attractive alternative for industrial scale processing.i'!"

To date many studies have been conducted into the surface treatment

of polymers using low pressure plasma systems, typically 1-10Pa. The

additional cost and complexity of the vacuum equipment makes such systems

unattractive for industrial use. Atmospheric pressure plasma sources offer a

chamber-less method for the treatment of polymers which is easily integrated

into existing production lines.7.12,7.15 Typically, sinusoidal excitation sources

from 50Hz up to many MHz are used to produce non-equilibrium plasma in

various inert gases such as helium and argon.7.15,7.16,7.17 Noble gases tend to

produce very stable plasmas at the expensive of chemical reactivity, in order to

achieve efficient surface modification it is necessary to enhance reactivity

whilst maintaining stability which is a considerable challenge. Chemically

reactive molecular gases such as nitrogen and air have been used as the

working gas in various studies; however the plasma produced tends to be

filamentary in nature.7.12,7.13 Filamentary discharges are very inhomogeneous,

consisting of many micro-discharges lasting tens of nanoseconds which are

randomly distributed over the polymer surface thus yielding a non-uniform

treatment. 1.16

This section focuses upon the use of a pulsed excitation source to

produce cold and diffuse atmospheric pressure plasma in ambient Air. By

maintaining short pulse widths, typically less than lOOns, the discharge is free

from potentially damaging streamers and is uniform across the entire electrode

region. Diffuse operation in gases such as nitrogen and air are typically

obtained using low frequency sinusoidal sources with a wire mesh placed

between electrode and barrier, such discharges are very sensitive to the

excitation frequency which is often prohibitively low.7.18 Pulsed excitation

introduces two additional stabilisation mechanisms that are not possible with

sinusoidal excitation and as such the diffuse nature of the discharge can be

maintained over a wide frequency range without the aid of a wire mesh. The
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short pulse width ensures there is insufficient time for instabilities such as

thermal runaway to occur, similar pulsing techniques are employed in the laser

community to produce glow discharges at current densities above the

threshold for glow to arc transition. 7.19 A further stabilizing mechanism is

associated with the fast rise and fall times of the voltage pulse, charges
uniformly trapped on the dielectric surface are spontaneously expel1ed during

the rapid transition phase (typically> 500V.ns-l) and initiate a homogenous

high current discharge across the entire electrode surface.7.2o Electrical and

optical measurements are employed to demonstrate that pulsed excitation is

capable of producing highly uniform glow like discharges over large areas

which allow for uniform surface treatment of polymer films at temperatures

less then SO°C.X-ray photoelectron spectroscopy (XPS) and scanning electron

microscopy (SEM) are used to detect changes in the polymer surface

properties.

The pulsed excitation source employed in this investigation was

capable of delivering voltage pulses up to 5kV, at pulse widths from 50ns to

10J.ls,with rise and fall times typically less than IOns. Pulse repetition rates

can be varied from IHz to approximately 20 kHz depending on the load

conditions. Voltage pulses were applied to a rectangular metallic anode

measuring 4cm by O.Smm, a dielectrically coated ground plate was placed 0.5-

2.5mm below the anode to form the cathode. Polymer films were placed on the

dielectrically coated cathode and exposed directly to the plasma. The electrode

unit was housed within in a Perspex box which allowed the background gas to

be controlled; however, in the case of air plasma the box was opened and

allowed to fill with the ambient laboratory air. Current and voltage were

measured with a Pearson 2877 current probe (200MHz Bandwidth with 2ns

useable rise time) and a Tektronix P5100 voltage probe (250MHz Bandwidth

with I.75ns useable rise time), signals were recorded on a Tektronix DPO

4104 oscilloscope with a 1GHz bandwidth. Optical emission spectra were

obtained using an Andor Shamrock spectrometer with a focal length of 0.3 m

and a grating of 2400 grooves/mm.
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Fig 7-11: Current and voltage of a pulsed air DBD, schematic shows experimental setup and

digital image of the discharge.

Figure 7-11 shows electrical measurements of a kHz pulsed DBD

operating in ambient air. As reported in previous studies, two current pulses

are observed for each applied voltage pu1se.7-21,7-22 The first current pulse is

produced as the applied voltage exceeds the breakdown voltage of the gas; the

second current pulse always occurs on the falling edge of the voltage pulse and

represents a secondary discharge. The second current pulse is a direct

consequence of charges stored on the dielectric barrier from the preceding

discharge reigniting the discharge during the voltage falling phase.7-21 The

shape of the current pulses gives an indication of the diffuse nature of the

discharge, typically, if the discharge is filamentary the current trace will

consist of many small current pulses each representing a single filament. A

large continuous current pulse is highly indicative of a diffuse discharge

however it is not conclusive proof, potentially a lack of temporal resolution in

the current transducer could give the appearance of a single continuous current

pulse as it is unable to resolve the individual filament pulses. In this study the

current probe bandwidth was 200MHz which should be sufficiently high to
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capture individual filaments. Further evidence of the diffuse nature of the

discharge is provided by nanosecond imaging using a high speed iCCD

camera.

Fig 7-12: IOns exposure images taken during at peak of current pulse.

Figure 7-12 shows single shot iCCD images taken during each current

pul e with an e posure time of IOns. Clearly it can be seen that the discharge

i entirel treamer free and homogenous across the entire electrode area, it is

al 0 int re ting to note that during the positive current pulse the peak intensity

i po itioned abo e the grounded lower electrode and in the negative current

pul e the peak intensity is closer to the upper electrode. This phenomenon is

due to the negati e glow formation above the instantaneous cathode. As the

gas oltage changes polarity the top electrode becomes an instantaneous

athod and consequently a negative glow region forms, hence giving the

appearance of the di charge alternating between the electrodes over the

applied oltage pulse. For surface treatment of polymer films it is highly

ad antageou to ha e a streamer free discharge, not only because uniform

urfa e treatment can be ensured but also because streamers can cause rapid

1 aliz d beating of the polymer surface which may lead to damage to the bulk

material or e en film perforation.

Th ele trical efficiency of pulsed DBD's is significantly higher than

on entional C dri en discharges, primarily due to a second discharge,

whi h e entially occurs without any additional power from the power
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source.7.21 The peak discharge current is 5.9A yielding a current density of

18.4A.cm-2, this is unusually high for a DBD where typical current densities

are in the ma.cm" range. Using the current density and calculated gas voltage

it is possible to estimate the electron density within the discharge using ne =
(J1Eg)/(e.lle), where J is current density, Eg is electric field, e is the charge of

an electron and Ile is the electron mobility of the gas used. The electron

mobility of air at atmospheric pressure is known to be 592 cm2.V-I.s-1 [7.23] and

the electric field is obtained by using the gas voltage calculated from the

method described previously and dividing by the gas gap distance. It is found

that the peak electron density is approximately 1.4xI013cm-3; this is several

orders of magnitude greater than densities observed in conventional

sinusoidally driven barrier discharges at atmospheric pressure.7.28 Furthermore,

the value calculated is likely to be significantly underestimated due to the

nonuniformity of the electric field across the gas gap. In practice, the cathode

sheath is a region of high electric field which accounts for most of the voltage

drop across the gas gap. The bulk of the discharge is in a region of low electric

field, consequently the acceleration of electrons towards the anode is low

resulting in a higher concentration of electrons in the plasma bulk.

In nonequilibrium plasmas sustained by DC or oscillating electric

fields the electron energy distribution function (EEDF) is strongly non-

Maxwellian and electron temperatures defined by the EEDF slope at low

energy are usually in the 1-3eV range.7.24 Under such conditions only a very

small number of electrons are capable of ionization which typically requires

electron energies in the 10-15eV range. The majority of electrons have

insufficient energy to cause ionization during collisions, consequently almost

all collisions result in inelastic or elastic energy losses. Electrons with energies

in the 1-3eV range are highly effective in exciting the vibrational states of gas

molecules, in many cases up to 90% of the discharge power is consumed

through vibrational excitation yielding a very low ionization efficiency.i" It is

clear that in order to improve ionization efficiency it is necessary to produce a

shift in the EEDF resulting in a far higher proportion of high energy electrons
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that are apabl of ionization. One approach is to accelerate electrons in a

acuum h re inela tic los es are minimized, alternatively the same effect can

b a hie ed using fast ri ing oltage pulses that are greater inmagnitude than

th minimum breakdown oltage of the gas. The strong field increases

ionization rate and reduce the energy cost per electron, such operation is only

p ibl in a pulsed di charge as high over-voltages rapidly lead to the

formation of instabilitie within the discharge, only through short pulse widths

an u h in tabilitie be a aided.

1.0
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I -I ured and imulated optical emi sion data of337nm Nitrogen emission line.

igur 7-13 hov e perimental and simulated spectral data for a

pul d air di harg th oltage pulses used were approximately 3.5kV in

am litud with a pul e width of 70ns. A repetition rate of 5kHz was used to

u t in th di harz light emis ion from the discharge was directed into the

p trom t r via fibr opti cable and measurements were obtained using a

1rns omparing the measured spectrum to the simulated

truro 0 the nitrogen 2nd pO iti e ystem it is possible to obtain an estimate

f the r tati nal and ibrational temperatures of the discharge. Due to the

hi hi IIi ional nature of an atmo pheric pressure discharge it can be
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as umed that the rotational temperature is very close to the actual gas

temp rature many tudies have made use of such techniques and found

agr ement to be excellent, errors as low as 2.4% have been reported.7-25

peacair. a program pecifically designed for modelling of air discharges, was

u ed to model the emi sion data, the best fit between experimental and

imulat d data was obtained at Trot = 360K and Tvib=3100K in ambient air.

The temperature determined are uncharacteristically low, for example, DC

di harge operated at low currents (tens of rnA) typically have gas

temp rature abo e IOOOK.7.I I The emission line at 334nm is a vibrational

transition and appears ery weak, this finding fits well with the suggestion that

pulsed di charge produce high energy electrons that ionise gas molecules

rather than e iring their ibrational states. Gas temperatures are further

redu ed du to the long oltage off period between each voltage pulse,

polym r ample treated continuously for 5 minutes in a stationary air

di harg ho ed on! a 10°C rise in surface temperature.

7-14: EM image of polymer surface after a)Os b)60, c)180, and d)300s of plasma

treatment. 10,000 magnification.
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Figure 7-14 shows a series of scanning electron microscope (SEM)

images of a polypropylene film treated with a 5kHz 3.5kV pulsed air

discharge. Following plasma treatment each sample was sputter coated with a

nanometer layer of gold to prevent surface charging and observed using a

Cambridge Instruments steroscan 360 SEM operating at an accelerating

voltage of 10kV. Image 7-14(a) shows the untreated polymer sample, it is

clear from the image the surface is quite uneven, this is a likely result of the

manufacturing process, at higher magnifications the surface appears relatively

smooth. Figure 7-14(b) shows the surface after 1 minute of continuous plasma

treatment, this is likely to be significantly longer than any viable industrial

treatment time. Very few changes in surface morphology can be observed, this

was also the case in samples treated from 10-50 seconds (data not shown).

After several minutes of plasma treatment the surface changes significantly,

the entire treated area is covered predominantly in raised formations. Similar

structures have been reported previously in studies involving plasma treated

polypropylene.Y" several explanations are proposed for the appearance of

such structures including recrystalisation processes initiated by the plasma or

the appearance of additives introduced during the production process, however

more research is needed before a conclusion can be reached.

The chemical composition of polypropylene film was investigated by

an X-ray photoelectron spectroscopy system (XPS) employing Aluminium X-

rays with an anode voltage of 8kV and current of 20mA. Figures 7-15 and 7-

16 show de-convoluted XPS spectra from untreated polypropylene and a

sample exposed to 5 minutes of pulsed air plasma. The de-convolution process

was performed using a program called XPS-Peak, the software allows XPS

spectra to be dissected into its constituent parts allowing elements with similar

binding energies to be determined from a single spectral peak.
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Fig 7-15: De-convoluted XPS spectra of untreated polypropylene sample.
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Fig 7-16: De-convoluted XPS spectra of polypropylene sample plasma treated for 300 .

Polypropylene has one of the simplest chemical compositions of all

polymers, consisting of only hydrocarbon chains, with no other chemical

elements present. The XPS spectrum shown in Figure 7-15 clearly indicates

the presence of small amounts of oxygen containing functional groups on the

polymer surface. Such impurities are a likely consequence of surface
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contamination incurred since the time of manufacture. After 5 minutes of

plasma treatment there has clearly been a shift of the proportion of oxygen

containing functional groups. The highly energetic oxygen species present

within the plasma have broken carbon-carbon bonds on the polymer surface

and combined to form carbon-oxygen bonds, hence a reduction in carbon-

carbon bond and increase in carbon-oxygen bonds is observed. From low

resolution XPS scans it was determined that 1 minute of plasma treatment

causes a decrease in the Cl peak at 285eV by 11.2% and an increase in the 01

peak at 532.8eV by 12.6%. After 5 minutes of treatment time the Cl peak had

dropped 21.5% and 01 increased by 22.8%. Calculation of the Oxygen to

Carbon ratio shows that there is a shift from 10% to 47.2% after 5 minutes of

treatment, this is highly consistent with other studies where the O/C ratio has

been raised from a few percent to a saturation point of 47.9%.7-12A large shift

in the O/C ratio is a clear indication that surface functionalization is being

induced through the interlock of oxygen based polar species resulting from the

interaction of the film surface with the species present in the gas discharge.I'"

Figure 7-17 shows an overlay of several detailed XPS spectra of the CIs peak,

allowing the effect of plasma treatment to be observed. It is clear to see that

exposure to plasma significantly reduces the CIs peak at 285eV. Additionally,

as treatment time increases a peak appears at 289.3eV, this corresponds to the

o-c=o functional group. From these results it can be concluded that the

plasma attacks C-C bonds in the polypropylene chains to form various carbon

oxygen bonds, such oxygen-containing groups are known to substantially

improve the hydrophilic properties of polymeric materials.7.12,7.13,7.14,7.15
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Fig 7-17: Overlaid XPS spectra showing increases in oxygen containing functional groups.

In conclusion, monopolar high voltage pulses with durations less than

lOOns are capable of sustaining diffuse Air plasma over a wide area which ha

an uncharacteristically low temperature. A consequence of pulsed excitation is

an increase in electron density and an enhancement of ionisation efficiency

which is unobtainable using conventional CW excitation methods. It is shown

through SEM images and XPS analysis that pulsed air plasma treatment

greatly enhances the surface characteristics of polymeric films.

7.5 Summary

This chapter has shown how pulsed excitation can be applied to several

real-world applications and highlighted numerous advantages gained over

conventional excitation sources. In the field of biomedicine it was

demonstrated that pulsed excitation of an atmospheric pressure dielectric

barrier jet offers a low cost and environmentally sound means of

decontaminating surgical instruments. The pulsed jet was shown to remove

almost four times as much protein than a comparable sinusoidal excited
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plasma jet. Coupled with the enhanced efficiency discussed in previous

chapters, pulsed APGD jets are a real solution for the decontamination of

surgical equipment. Due to the low cost of solid state components pulse

generators could potentially be produced on a large scale and stationed in

hospital/dental surgeries etc.

Use of ultra-short «lOOns) duration voltage pulses to excite a helium-

argon gas mixture was shown to produce high levels of short wavelength

ultraviolet radiation. The small scale and low cost of the pulsed power supply

compared to a bulky sinusoidal source makes compact VUV sources a real

possibility. Further investigation showed that as pulse width is reduced, it is

possible to increase the peak power dissipated within the discharge whilst

maintaining stability and low input power. These findings indicate that

nanosecond duration pulses, or perhaps even shorter, are the most suitable

candidate for the generation ofVUV emissions.

Finally, a pulsed, large area, dielectric barrier discharge was

highlighted as an ideal means of modifying the surface characteristics of

polymeric films. The excellent stability and low operating temperature

associated with ultra-short pulsed excitation means even thermally liable

polymer films could be treated in ambient air. SEM and XPS were used to

detail the surface changes due to plasma treatment, it was found that plasma

treatment introduced significant amounts of oxygen containing functional

groups which are typically associated with better wettability and printability.
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Chapter 8

8 Conclusions

8.1 Keyfindings and contributions

This work has detailed the generation of non-thermal atmospheric

pressure gas discharges by means of ultra-short high voltage pulses. As stated

in the introduction chapter, the structure of the thesis follows a natural

progression starting with the technology behind generating high voltage

pulses, through detailed analysis of the plasma generated using ultra-short

pulses, and finally highlighting several applications where pulsed gas

discharges offer real benefits compared to sinusoidally excited plasma. The

work described within this thesis has proved the basis for five, first author,

journal publications, three oral presentations at international conferences, and

numerous poster presentations. The key findings and contributions are

summarised in the following sub-sections.

8.1.1 Pulsed Power Technology

Chapter 2 briefly details several pulsed power technologies and

discusses their potential for generating the sub-microsecond, high repetition

rate pulses necessary for generation of stable atmospheric pressure glow

discharges. Many of the common pulsed power technologies discussed were

found to be inadequate due to limited repetition rates or slow rise and fall

times. It was determined that MOSFETs and BJT transistors are well suited to

the task. Both devices have limited current and voltage handling abilities but

are easily combined to form high current and high voltage switches. Rise and

fall time' s less than ten nanoseconds coupled with repetition rates of many

kilohertz are achievable with careful layout design and adequate cooling.
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Three pulse generator topologies were discussed; the first employed

four IkV switching MOSFETs to form a switch with a hold-off voltage of

4000V and fall time less than lOOns. The second topology examined employed

MOSFETs in a push-pull configuration, this topology has many of the benefits

of a stacked MOSFET pulse generator but has fast rise and fall times. A

drawback of any push-pull topology is that twice as many switching devices

are required for a given hold-off voltage, for example, a 4kV pulse generator

requires 8 x lkV MOSFETs. The final pulse generator topology examined was

an avalanche transistor Marx bank. It is often thought that operating transistors

in the avalanche mode is highly destructive and should be avoided, however

this is a misconception, when the maximum collector-emitter voltage is

exceeded many BJT devices non-destructively avalanche. The avalanche

breakdown within a device is on a picosecond time scale thus enabling

extremely rapid switching times of high voltages to be achieved. By

employing transistors in a Marx bank configuration it is possible to produce

kilovolt pulses with rise times of a few nanoseconds at repetition rates of many

kilohertz.

8.1.2 Pulsed Plasma Jet Topologies

Chapter 3 focuses upon a comparison between pulsed and sinusoidal

excitation of a plasma jet. The plasma jet is widely used in many industrial

applications and research laboratories as it is easy to construct and allows

plasma to be generated in one region and transported to another region for

processing applications. For the first time a direct comparison between pulsed

and sinusoidal excitation of a plasma jet is presented. Itwas shown that pulsed

discharges are not only electrically more efficient than a sinusoidal equivalent

but also that for a fixed input power considerably more excited oxygen species

are produced. Many of the findings were published in the article 'Contrasting

characteristics of pulsed and sinusoidal cold atmospheric plasma jets' which

appeared in Applied Physics Letters. 88, 17150I (2006).
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Chapter 4 investigates the effects caused when the pulse width of the

excitation voltage is reduced from a microsecond scale to a sub-microsecond

scale. It was shown that a reduction in pulse width necessitates a higher

excitation voltage; this translates in to a higher instantaneous peak power

while maintaining a fixed input power. As peak power is increased electron

density is higher and consequently a higher flux of excited species is

produced. The benefits of sub-microsecond are further demonstrated when

argon is used as the working gas, typically argon plasma is considerably hotter

than an equivalent helium plasma. Employing pulsed excitation with a very

low duty cycle enables the stable generation of an argon discharge with an

uncharacteristically low temperature. The shift to argon from helium

represents a substantial economic benefit as helium is prohibitively expensive

for use in many industrial applications. Many of the findings detailed within

this chapter were published in the article 'Room-temperature atmospheric

argon plasma jet sustained with submicrosecond high-voltage pulses' which
appeared in Applied Physics Letters. 91, 221502 (2007).

Finally, chapter 5 focuses upon the possible propagation mechanisms

behind the plasma jet. To date, very few studies have investigated the physical

means by which the plasma plume propagates in a region of low or no electric

field. A definitive proof remains elusive; however it is hoped that the work

covered contributes to the readers understanding and provides a basis for any

future work undertaken. The effect of excitation frequency upon the plasma

bullet is accepted for publication in IEEE transaction on plasma science, due

to appear June 2008.

8.1.3 Pulsed Parallel Plate Topologies

Chapter 6 sees a change in emphasis from a jet configuration to a

parallel plate configuration. While the jet configuration is focused toward

applications the parallel plate configuration is well suited to experimental

investigation due to its simplistic geometry. Itwas shown for the first time that

high voltage pulses with sub-microsecond durations are capable of generating
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stable and diffuse glow discharges at kilohertz frequencies without the aid of a

dielectric barrier. Previously barrier free operation was limited to high

frequency excitation which produces hot plasma; or kilohertz excitation over a

very small operating range. It was demonstrated that the pulsed barrier free

discharges were highly uniform, had a very low gas temperature, and were

stable over many hours of continuous operation. Using various diagnostic

techniques a detailed understanding of the pulsed barrier free discharge and its

breakdown mechanism was presented; it was also shown that the high peak

power involved produces sharp bursts of excited species during each voltage

pulse. Many of the findings detailed within chapter 6 were published in the

articles 'Submicrosecond pulsed atmospheric glow discharges sustained

without dielectric barriers at kilohertz frequencies' which appeared in Applied

Physics Letters. 89, 161505 (2006), and 'Sharp bursts of high-flux reactive

species in submicrosecond atmospheric pressure glow discharges' which

appeared in Applied Physics Letters. 89,231503 (2006).

8.1.4 Applications of pulsed APGD

The penultimate chapter of this thesis highlights various applications

where pulsed APGD's offer real benefits compared to the sinusoidal excited

plasmas typically used. It is shown that a pulsed plasma jet is far more

efficient at removing protein contamination from medical instruments

compared to an equivalent sinusoidally driven APGD jet; this fits well with

the fmdings detailed in previous chapters where it was shown that the high

peak powers associated with pulsed discharges produce significantly more
excited oxygen species.

Nanosecond duration voltage pulses were employed in a parallel plate

helium-argon discharge to produce intense UV-C and VUV light, which is

often used in many industrial materials processing applications. It was shown

that a reduction in pulse width from hundreds of nanoseconds to less than ten

nanosecond introduces a shift in light emission into the high energy, short

wavelength region. For a fixed input power, a IOns pulsed APGD produced
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substantially more UV than a lOOnsdischarge whilst maintaining excellent
uniformity and stability.

Finally, a pulsed DBD was used for the surface modification of

polymeric materials. Unlike the applications discussed previously air was used

as the working gas, this introduces further difficulties when attempting to

produce cold and uniform gas discharges. Through pulsed excitation it was

possible to produce a cold and uniform air discharge at atmospheric pressure

over a wide area. Itwas demonstrated that the short pulse duration enhances

stability as there is insufficient time for instabilities to form within the

discharge. Application of the pulsed air discharge to polymeric materials

resulted in significant changes of the surface properties; after plasma treatment

XPS was used to show that several oxygen containing functional groups had

been introduced. Such a system could easily be integrated into existing

industrial processes as a low cost means of in-situ surface enhancement. Many

of the results from this section were published in the article 'IOns pulsed

atmospheric air plasma for uniform treatment of polymeric surfaces' which

appeared in Applied Physics Letters. 91, 251504 (2007).

8.1 Future Work& Improvements

Several pulsed power sources have been designed and constructed over

the past three years, while they have proved sufficient to produce the results

detailed within this thesis they are still experimental in nature and would be

unsuitable for long term usage in an industrial setting. For the work detailed

within this thesis to be truly useful further efforts need directing toward

enhancing the reliability and efficiency of the pulse generators required.

Additionally, the work discussed within this thesis covers a very few of the

numerous applications which could benefit from an atmospheric pressure gas

discharge generated with ultra-short voltage pulses. There is sufficient scope

for several follow up studies focused upon applications alone. The following

sub-sections are intended to give the reader an idea of what could be achieved

....... r
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in the future and where improvements could be made to the work detailed

within this thesis.

8.2.1 Alternative pulse generator topologies

Many of the pulse generators discussed within this thesis are

considered because of their ability to produce kilovolt pulses with nanosecond

rise times at kilohertz repetition rates. Future efforts could be directed towards

producing discharges with sub-nanosecond pulses, the result are likely to be

even higher peak powers and electron densities than those considered within

the scope of this work. The physics behind a sub-nanosecond gas discharge is

likely to become increasingly complex as the pulse duration becomes much

shorter than the electron transition time through the gas gap. A further

complication of reducing pulse width is the added complexity of the necessary

diagnostic equipment. For example, an iCCD camera with minimum exposure

time of 1ns would be insufficient to gain any real understanding of the

breakdown mechanism of a Ins pulsed discharge.

Several published studies make use of non-linear transmission line

transformers as a means of reducing pulse width,":' Such devices are relatively

simple to construct, consisting only of inductors and diodes, and would be an

ideal choice for 'sharpening' nanosecond duration pulses into sub-nanosecond

pulses. In theory a simple lkV MOSFET could be used to produce a pulse at a

high repetition rate (hundreds of kilohertz) which the non-linear properties of

the line would transform into a sub-nanosecond, high magnitude, high rep-rate

pulses which would be ideal for plasma generation. Another promising pulse

generator technology is the drift step recovery diode (DSRD).8.2 Commercially

available pulse generators employing DSRD's are capable of producing sub-

nanosecond duration pulses up

prohibitively expensive

(http://www.fidtechnology.coml).

to IOkV at 100kHz, however they are

for many applications.
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8.1.1 Improved diagnostic techniques

Several diagnostic techniques have been employed within this thesis,

primarily electrical diagnostics such as current - voltage measurements, and

optical techniques such as optical emission spectroscopy and iCCD imaging.

While such techniques allow many aspects of a gas discharge to be explored in

depth there are certain limitations to the detail of the data obtained. Ideally,

more sophisticated diagnostic techniques, such as laser induced fluorescence

(LIF),8.3 would be employed to determine electron density, electron

temperature, and absolute densities of chemical species. Unfortunately, the

expense and complexity involved in LIF diagnostics means very few research

groups have the necessary equipment and expertise required. Other diagnostic

techniques such as stark broadening and line ratio methods can be employed to

measure electron density and electron temperature, such methods are less

accurate than LIF, but are much simpler and can be performed using a

standard spectrometer. Stark broadening is known as a line shape technique

and involves the observation of a single emission line, typically a hydrogen

line; as electron density increases the profile of the line changes due to Stark

broadening.i" Unfortunately, Stark broadening in low density plasma

«1014cm-3) is limited and it is difficult to distinguish between the various

broadening mechanisms present (Doppler, instrumental, etc).8.SIt is likely that

Stark broadening would not be too useful for the diagnostics of sub-

microsecond pulsed discharges as rough calculations suggest they have

electron densities around 1013cm-3. Due to the high peak powers involved in

nanosecond discharges there may be sufficient energy to produce electron

densities above 1014cm-3 which could be measured using Stark broadening.

Another promising technique suitable for measuring electron density

and electron temperature is the helium line ratio method. This method is based

on a collisional-radiative (C-R) model and is a well-established technique

used to estimate electron density in the range of 101°_1013 cm-3 and

temperature in the range of 1-20 eV.8.6 The availability of well-known helium

atomic data, strong visible lines, and many density- or temperature-sensitive

, 1"'1'"
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line pairs makes this technique ideal for the moderate density helium plasmas

produced using ultra-short pulsed excitation. Future efforts should be directed

toward developing and validating the C-R model for use with pulsed gas

discharges, potentially the method could be time resolved to show the

evolution of electrons within the discharge, this would add great value to the

current body of work

8.2.3 Increasing and decreasing discharge dimensions

The scale of the discharges investigated within this thesis are typically

on the order of mm' to cm', these could best be described as laboratory scale.

It is likely that the volumes considered are too small to be used on an

industrial scale, and too large to be classed as a micro-plasma. Future efforts

should be directed toward increasing / decreasing the dimensions of the

discharge. For industrial applications the solution should simply be a process

of scaling up, employing larger input powers to produce ever increasing

volumes of plasma. The field of micro-plasma is growing rapidly; very small

scale discharges introduce physical mechanisms which are not observed in

larger scale plasmas, such as the possible breakdown of 'pd scaling' and the

role of boundary-dominated phenomena.i" Many novel and exciting

applications are emerging from the field and these could benefit considerably
from the insights gained within this thesis.

8.3 Concluding remarks

Finally, it is hoped that the reader has found reading this thesis an

enjoyable experience and has gained a detailed understanding of the

generation, mechanisms, and potential applications of ultra-short pulsed,

atmospheric pressure, gas discharges. Through publication in journals and

presentations at conferences the work detailed within has hopefully

contributed to the ever expanding body of knowledge on atmospheric pressure

gas discharges and will in some way prove useful to others working within the

field.
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