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Abstract

Gas turbines in power generation systems use both nickel and cobalt-based superalloys for

vanes, blades, discs and combustion chamber components. Cobalt-based superalloys have

the advantage over nickel based superalloys in that they have a higher thermal conductivity

and hence a greater thermal shock resistance, a greater resistance to thermal fatigue and

also a better corrosion resistance. However, in some applications coatings have to be applied

to such alloys because of their poor oxidation resistance. The creep strength of cobalt-based

superalloys depends primarily on solid solution strengthening and the interaction between the

hard carbides and alloy defects, such as dislocations and stacking faults.

There is a need to develop an understanding of the microstructural changes that occur in

cobalt-based superalloys, with both time and temperature, for life prediction, refurbishment

and failure investigations.

A programme to assess the effects of ageing at temperatures between 800 and 10S0°C for up

to 25,000 hours has been carried out on two cobalt-based superalloys, FSX 414 and MAR

M509, and one high cobalt (-19 wt.%) nickel based superalloy NP 222. A second programme

using the same ageing conditions has investigated a NiCoCrAITaY coating, Amdry 997, on a

MAR M509 cobalt superalloy substrate both with and without inter-carbidic oxidation.

For the three superalloys, a number of microstructural features were examined systematically

with increasing time and temperature exposure. These included determination of the identity

and amount of the second phases present within the microstructure, characterised using

optical, scanning and transmission electron microscopy and X-ray diffraction of extracted

carbides. It was therefore possible to determine microstructural maps as a function of

increasing thermal exposure. In particular, measurements of the width of the

denuded/oxidised layers on the exposed surfaces of the samples showed a reasonable trend

and could be used to predict operating temperature or time. In addition, for FSX 414 the

presence of Laves and a phase would allow the prediction of a maximum operating

temperature, whereas the length of 11phase needles, which form in NP 222, would allow the

prediction of operating temperature or time. For NP 222, the reduction in the measured mean

hardness between 800 and 9S0°C could provide a coarse prediction of operating temperature

but would also require detailed examination of the microstructure to confirm that the samples

additionally contained V'.

Thermodynamic predictions were used to correlate the phases predicted to be present at

thermal equilibrium with the microstructural observations. Current thermodynamic equilibrium

software packages include cobalt but are not optimised for cobalt-based superalloys.

However, by using a nickel superalloy thermodynamic database it has been possible to

compare the equilibrium predictions with the phases found in the samples.

The results obtained, using the JMatPro software, did in the majority of cases, predict the

phases formed and in general did predict the composition of the phases. However, there were



some discrepancies between the identity of the predicted thermodynamic equilibrium phases

and the phases found within the samples. The thermodynamic equilibrium calculations were

also used to provide a useful insight into the diffusion of key elements in the coated samples.

The aged, coated samples showed that the presence of inter-carbidic oxidation (ICO) in the

MAR M509 substrate local to the coating reduced coating life, measured by the presence of ~

(NiAI), by approximately one third. Measurements of the aluminium diffusion profile in the

coating and the MAR M509 substrate showed no significant differences between the 'ICO'

and 'no ICO' samples that would account for the reduced life of the 'ICO' samples. However.

selected area diffraction patterns obtained using transmission electron microscopy in

conjunction with site specific sample preparation. confirmed the presence of an alumina layer

around the 'ICO' phase. It is considered that the increased diffusion of aluminium from the

coating is a result of the formation of the alumina layer around the 'ICO' phase. The

investigation of the coating on the MAR M509 substrate without 'ICO' showed that ~ was still

evident in the coating after 25,000 hours at 800°C. At ageing temperatures above 800°C

coating life reduced to less than 15,000 hours at 850-900°C. Measurement of the width of the

inner denuded layer formed in the coating adjacent to the MAR M509 substrate showed a

relationship with time and could be used to predict the operating temperature. given a known

operating history.

For the cobalt superalloys further work is required to identify the effects of composition

variations within the specified alloy limits on the formation of secondary phases in FSX 414

and the growth of'l needles in NP 222. The samples in this work were aged at a constant

temperature. and therefore the effect of thermal cycling and composition on the width of the

denuded/oxidised layer requires further investigation. This research has generated a large

amount of data and has identified a number of areas where a correlation exists between the

microstructural observations and the time and temperature experienced. and has

demonstrated the potential for some of these features to be used as a "time temperature

indicator"
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Chapter 1 Introduction

1 Introduction

In its simplest form the gas turbine system consists of three main sections: a compressor, a

combustor and a turbine. In operation, air is drawn into the compressor which increases the

air pressure and air temperature. The compressed air is transferred to the combustion

chamber where it is mixed with the fuel and burnt at a constant pressure. The hot high

pressure gases leave the combustion chamber and are expanded through the turbine to

produce mechanical power. This power is used to drive the compressor, turbine auxiliaries

and the electrical generator which produces electrical energy. The low pressure gases then

leave the turbine exiting to atmosphere. Most of the early machines were aero derivatives

used by power generators for limited peak power generation. Typical efficiency values for the

simple cycle are -39%, increasing to -59% in the combined cycle gas turbine (CCGT). In the

CCGT the hot exhaust gases from a power generating gas turbine are used to raise steam in

a heat recovery steam generator (HRSG). The steam from the HRSG is used to drive a steam

turbine to generate electrical power or for process heating.

The major factor determining the thermal efficiency of a CCGT is the turbine inlet temperature

which is limited by the availability of materials with high temperature strength and

oxidation/corrosion resistance at the turbine operating temperature. In the current industrial

gas turbines the inlet temperature is typically 126DoC to 13DO°C, and the bulk metal

temperature of the first stage vanes, typically aDDoC,is dependant on the amount of cooling

air used. The current programme of work is primarily concerned with cast cobalt-based

superalloys used for first stage gas turbine vanes.

Cobalt-based superalloys have the advantage over nickel based superalloys in that they have

a higher thermal conductivity and hence a greater thermal shock resistance and greater

resistance to thermal fatigue. Cobalt-based superalloys also have a better corrosion

resistance. However, in some applications coatings have to be applied to components

because of the poor oxidation resistance of the cobalt-based superalloys. The cobalt

superalloys are strengthened by carbide precipitation. Primary carbides form at grain

boundaries during solidification, which inhibit grain boundary sliding, whereas fine secondary

carbides, precipitated during ageing or service at elevated temperature, pin dislocations and

harden the alloy matrix and contribute to strengthening.

The creep strength of cobalt-based superalloys depends primarily on solid solution

strengthening and the interaction between hard carbides and alloy imperfections such as

dislocations and stacking faults. Cobalt-based superalloys lack a precipitation hardening

mechanism to match the y'(Ni;AI) strengthening found in the nickel based superalloys and, as

a result cobalt-based superalloys are used for stationary components in gas turbines.
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There is a need to develop an understanding of the microstructural changes that occur in

cobalt-based superalloys, with both time and temperature, for life prediction, refurbishment

and failure investigations.

The current research programme has assessed the effects of ageing at temperatures

between 800 and 1050°C for up to 25,000 hours on two cobalt-based superalloys, FSX 414

and MAR M509, and one high cobalt (19 wt.%) nickel based superalloy NP 222. A second

programme has assessed the effects of ageing at temperatures between 800 and 1050°C for

up to 25,000 hours on a NiCoCrAITaY coating, Amdry 997, on a MAR M509 substrate. It is

intended to develop a process based upon the microstructural changes that can be utilised to

allow the prediction of the effective operating temperature.

Chapter 2 reviews the literature available on cobalt-based superalloys and the coatings used

to protect the components as turbine inlet temperatures increase. Chapter 3 discusses in

some detail the various experimental techniques which have been used including hardness,

optical microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy

(EDS) and X-ray diffraction (XRD). In addition transmission electron microscopy (TEM)

selected area diffraction of thin foils prepared from the bulk SEM samples by focused ion

beam (FIB) milling using a dual beam (FEG-SEM/FIB) system has allowed the identification of

a number of unknown phases. Thermodynamic equilibrium calculations were carried out for

all of the materials by means of software package JMatPro(1)developed by Thermotech.

Chapters 4, 5 and 6 present and discuss the outcome of the experimental work carried out to

characterise alloy FSX 414, a conventionally cast cobalt-based superalloy, NP 222 a

conventionally cast y' (-20%) strengthened nickel based superalloy with a high level -19

wt.% of cobalt and MAR M509 a high carbon, high strength, vacuum cast cobalt-based

superalloy respectively. Chapter 7 presents and discusses the outcome of the experimental

work carried out on NiCoCrAITaY coated samples of MAR M509, with and without inter-

carbidic oxidation (ICO), focusing on; the phase changes within the coating, the interaction

between the coating and the substrate, and the effect of 'ICO' on coating life. The conclusions

drawn from this work are presented in Chapter 8, together with a discussion of the possible

areas for further work.
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2 Literature Survey

2.1 General Introduction to Cobalt-based Superalloys

A superalloy can be defined as an alloy usually based on Group VillA elements specifically

designed for elevated temperature service, where high surface stability and the ability to

withstand severe mechanical stresses are needed(2).

The first cobalt-based alloy used for high temperature applications was H8 21, a cobalt-

chromium-molybdenum casting alloy derived from the dental prosthetic alloy Vitallium. The

alloy was initially used to produce blades in turbo-superchargers for piston engines in the

1930's and then for blades and vanes in the first gas turbine engines of the 1940's. In the late

1940's and early 1950's the wrought alloy 8-816 was used for forged turbine blades,

combustion liners and after burner tail pipes(2,3).Further development has been limited by the

cost and the limited availability of cobalt. Cobalt-based superalloys have therefore tended to

take a secondary position to nickel based superalloys. This is clearly shown by the alloy X40

a cast cobalt-nickel-chromium-tungsten alloy developed by R.H.Thielemann in 1943 and still

in use today for gas turbine vanes(2,3).

The reasons for the continued use of both wrought and cast cobalt-based superalloys are(2):

• A higher melting temperature and corresponding flatter stress rupture curve than iron

and nickel based superalloys.

• The higher chromium content gives superior hot corrosion resistance in contaminated

gas turbine atmospheres.

• In general cobalt-based superalloys have a higher thermal conductivity and hence a

greater thermal shock resistance and greater resistance to thermal fatigue than nickel

based superalloys. At 538°C the thermal conductivity of MAR M509 is 27.9 Wm-'K1,

Inconel738 is 17.7 Wm-1K1 (4).

The cobalt-based superalloys are designed around a cobalt-chromium matrix with chromium

contents in the range 18 to 35 wt.% and carbon contents from 0.25 to 1.0 wt.%. If not used in

the as-cast or forged condition, components are heat treated to control carbide precipitation.

The alloy's strength is derived from solid solution and precipitation strengthening. Solid

solution strengthening results principally from the additions of chromium, tantalum, niobium

and tungsten, whereas precipitation strengthening is obtained primarily from carbides formed

with chromium and tantalum. The strength of cobalt-based superalloys is inversely related to

the carbide particle size and directly related to the volume fraction of carbides.
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It is reported that in service at high temperatures the carbide particles coarsen and finer

carbides precipitate leading to depletion of alloying elements from the matrix'".

2.2 Application of Cobalt-based Superalloys

Figure 2.1 illustrates a typical example of an industrial gas turbine engine. Cobalt-based

superalloys are used in land based gas turbines in the combustor, transition duct and vanes

(Figure 2.2). Cobalt-based superalloys are not used for blades due to the superior creep

strength of nickel based superalloys.

pressor

Figure 2.1 Example of industrial gas turbine engine used for power generation(S)

15
\ 2nd and 3rd stage vanes

Figure 2.2 Cross section through a can-annular gas turbine.
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2.2.1 Combustor and transition duct

Air enters the combustion chamber from the compressor at a pressure of -20 bar and a

temperature of -50QoC. The combustor is designed to contain the flame and to allow mixing

of the hot gases from the flame with further air to control the gas temperature and emissions.

The transition duct directs the hot gases to the first stage guide vanes.

The combustor components are subject to the hottest gases in the turbine and hence the

largest thermal cycles during the start up and shutdown of the turbine. For the type of service

seen in land based gas turbines nickel and cobalt-based superalloys are used. The materials

chosen must possess high temperature strength including tensile and creep strength, as well

as resistance to high and low cycle fatigue, oxidation and carburisation. In addition, the

materials should maintain metallurgical stability in service to avoid embrittlement and allow

the repair of service-exposed components.

The materials are used in the solution annealed condition or with the higher strength alloys in

the aged condition. The combustors and transition ducts are fabricated from sheet using

tungsten inert gas (TIG) welding, spot welding and brazing.

The components are air cooled and may be coated. Diffusion or overlay coatings may be

used for protection against corrosion and oxidation. A thermally insulating ceramic top coat of

yttria stabilized zirconia may be applied to reduce the metal temperature on cooled

components.

2.2.2 Turbine vanes

Turbine vanes turn and direct the flow of the hot gas from the combustor/transition duct or

previous stage into the rotating stage of the turbine.

Figure 2.3 Photograph of MAR M509 First stage vane.
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The first stage inlet guide vanes (Figure 2.3) are subject to the highest gas temperature and

thermal stresses in the turbine but lower mechanical stresses than the rotating blades. In

large industrial gas turbines the vanes are air cooled to keep the bulk metal temperatures

below 800°C. The use of cooling air is limited as it impacts on the overall turbine efficiency.

The high temperature strength and oxidation resistance of cobalt-based superalloys allows

vanes to operate at higher temperatures with less cooling air than nickel based superalloys. In

addition to high temperature strength, the vane material requires creep strength to resist

distortion caused by gas loading and thermal stress, low cycle fatigue strength to resist the

cyclic thermal strains, and oxidation and corrosion resistance. For later stage vanes, the

choice of alloys used is a balance between alloy strength and the amount of cooling required.

Stationary vanes are currently produced as single or multiple airfoil investment castings.

Castings are precision cast in air (FSX 414) or for the higher strength cobalt-based

superalloys (MAR MS09) vacuum cast. However, dependant upon the requirements of the

OEM, vacuum casting may be stipulated for FSX 414.

The cobalt-based superalloys used for vanes (Table 2.1)(4.7) are solid solution strengthened

by the addition of tungsten and tantalum and precipitation hardened by the formation of

carbides of chromium tantalum and titanium. Chromium is important for oxidation and

corrosion resistance. Components may be used as-cast or in the heat treated condition. The

heat treatment is generally limited to solutioning and ageing to control carbide precipitation.

During their life time the vanes will be refurbished a number of times. This will be discussed in

Section 2.9.

C Fe Ni Cr Co W Ta Ti AI Zr B

X40 0.5 1.S 10.0 25 Bal 7.5

X45 0.25 2.0 10.5 25 Bal 7.0 0.01

FSX 414 0.25 2.0 10.5 29.5 Bal 7.0 0.012

MM509 0.6 1.0 10.0 21.5 Bal 7.0 3.5 0.2 0.5 0.01

ECY768 0.6 1.0 10.0 23.5 Bal 7.0 3.5 0.2 0.15 0.05 0.01

Table 2.1 Nominal composition of cobalt-based turbine vane alloys (wt.%)(4.7).
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2.3 Microstructure

Cobalt-based superalloys are normally characterised by a face-centred cubic (FCC) matrix

containing second phases.

(a)

y Matrix

Primary carbid

(b)

Figure 2.4 SEM images showing the microstructure of cobalt-based superalloy (a)
secondary electron (SE) (b) backscatter (SSE) modes.

Although the second phases are usually carbides (Figure 2.4) with a variety of compositions,

precipitation of other intermetallic compounds are also observed. The effects of different

alloying elements on cobalt-based superalloys are detailed in Table 2.2(2,3,8,9).
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Element Effect (Where M refers to the alloy addition)

Chromium Improves oxidation and hot corrosion resistance, produces

strengthening by formation of M7C3and M23Cecarbides. Can

form harmful intermetallic compounds (er).

Molybdenum & Solid-solution strengtheners; produce strengthening by

Tungsten formation of intermetallic compound C03M and carbides MsC

and MC.

Tantalum & Niobium Solid-solution strengtheners; produce strengthening by

formation of intermetallic compound C03M, V and carbides MC

and MsC.

Aluminium Improves oxidation resistance; formation of intermetallic CoAl.

Titanium Produces strengthening by formation of MC carbide and

intermetallic C03Ti with sufficient nickel produces

strengthening by formation of intermetallic Nb Ti.

Nickel Stabilises FCC form of matrix; produces strengthening by

formation of intermetallic Nb Ti.

Boron & Zirconium Produces strengthening by effect on grain boundaries and by

precipitate formation; zirconium produces strengthening by

formation of MC carbides.

Carbon Produces strengthening by formation of MC, M7C3, M23Csand

possibly MsC carbides.

Yttrium & Lanthanum Increase oxidation resistance.

Table 2.2 Effects of different alloying elements on cobalt-based superalloys(U....I.

2.3.1 Solid solution strengthening

A solid solution is a solid, homogenous mixture of two or more elements. The solute atoms

are present on either substitutional or interstitial sites in the matrix. Their presence can

influence the mechanical properties of the metal by affecting the lattice parameter such that

dislocations are impeded. The properties that can be changed by solute atoms include the

lattice parameter, modulus, stacking fault energy and electron density of the alloy.

Common solid solution elements in cobalt-based superalJoys are chromium, tungsten,

tantalum and molybdenum. Rausch(10)confirmed that in cobalt-based superalloys containing
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15 - 25% chromium, additions of tungsten, tantalum and molybdenum improved substantially
the 925°C yield strength.

2.3.2 Carbides

Cobalt-based superalloys are strengthened primarily by the precipitation of cubic, non-
coherent carbide partlcles'". To promote the formation of carbides, the carbon content of
cobalt-based superalloys is higher than in both nickel and iron based superalloys.

In the as-cast condition, cobalt-based superalloys contain primary carbides located at grain
boundaries and interdendritic regions. Primary carbides in cobalt-based superalloys are
metastable, and ageing or subsequent service at high temperature causes their degeneration
and induces secondary carbide precipitation(11l.The primary carbides inhibit grain boundary
sliding at elevated temperatures, while fine secondary carbides pin dislocations and harden
the alloy matrix and thus contribute significantly to strength. Carbide precipitation can occur
on deformation generated stacking faults reducing the matrix ductility and is one of the
reasons cobalt-based superalloys are restricted in use to static rather than rotating parts(12l.
Carbides in cobalt-based superalloys can be divided into chromium rich M3C2,M7C3 and
M23Csand refractory element rich MC and MsC carbides(2). The chromium rich carbides
typically contain cobalt, tungsten or molybdenum as substitutes for chromium.

Optimum mechanical properties are obtained through a balance between the carbides at the
grain boundaries and those in the matrix. Grain boundary carbides, regardless of type, should
be present as discrete particles. Continuous carbide networks at grain boundaries reduce
impact ductility and creep rupture properties. During service all cobalt-based superalloys
suffer some loss of ductility from carbide precipitation, as a result of the removal of carbon
from solution(13l.Service at high temperatures can result in the formation of undesirable
acicular carbides and lamellar carbides which can also form during slow cooling from the
solution heat treatment temperaturei'".

2.3.2.1 MC carbide

MC carbides form during solidification as discrete 'blocky' particles. The strongest MC forming
elements are hafnium, zirconium, tantalum, niobium and titanium. The carbides are extremely
stable and are generally distributed throughout the alloy in both matrix and intergranular
positions. The more stable carbides (hafnium and zirconium) may form in the melt and can be
found at the interstices of the dendrites. Tantalum carbides and niobium carbides usually form
in the "Chinese-script" morphology suggesting precipitation later in the solidification
sequence'", In high chromium cobalt-based superalloys the MC carbides can, under long
term service exposure degenerate to M23Cscarbide, producing a secondary hardening
effect(2l.
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2.3.2.2 M23C,carbide

M23Cscarbides are found in superalloys with a high chromium/carbon ratio(5). They can form

during solidification, ageing heat treatments and in service.

M23Csmay form as a primary precipitate during solidification and is found, in most commercial

superalloys, as an interdendritic precipitate within the secondary dendrite arms and is the last

phase to freeze. This produces a lath structure consisting of alternate sheets of M23C6and the

y matrix.

The strengthening role of M23C6is as a fine secondary precipitate throughout the matrix. The

carbide can preferentially precipitate along stacking faults and twin boundaries at low

temperatures. This can have an adverse effect on low temperature ductility especially in cast

superalloys with C > 0.5 wt.% (2).

2.3.2.3 MaCcarbide

MsC carbides are generally found in the low chromium content superalloys in which the

molybdenum and or tungsten levels exceed 4-6 at.%. The carbides exhibit excellent

temperature stability, which is beneficial for grain size control during the fabrication of wrought

materials. The MsC carbides usually occur as M3M3C or M4M2C. MsC carbides may also

transform to M23Cscarbide or may form as a decomposition product of MC carbide(2).

MC + austenite -+ MsC (e.g. TaC + (Co,Ni,Cr,C) -+ (Co,NiMCr,TahC)

Jiang et al(11) investigated the formation of a tungsten rich phase in a modified X40

directionally solidified alloy. The alloy was modified by the addition of tantalum, titanium and

zirconium and in the as-cast condition contained M7C3and MC primary carbides.

Ageing of the alloy resulted in the precipitation of fine secondary M23Cs carbides and a

tungsten rich phase on the surface of the M7C3 carbide. In general M6C carbide forms only

when the tungsten and or molybdenum content exceed 4-6 at.% which was not met in alloy

X40. Transmission Electron Microscopy (TEM) of thin foils confirmed that the tungsten rich

phase was MsC. Jiang concluded that the formation of the MsC was as a result of the addition

of tantalum, titanium and zirconium to the alloy which induced the formation of primary MC

carbides with a high tungsten content. The subsequent decomposition of the MC carbide

produced a segregated zone where the tungsten and/or molybdenum content exceeded 4-6

atomic % enabling the precipitation of the MsC, with the surface of the neighbouring MC

carbide acting as a heterogeneous nucleation site.

M7C3 is trigonal in structure and forms at low chromium/carbon ratios(5) usually as Cr7C3 and

can be involved in the formation of er in some superalloys.
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Lane and Grant(15)proposed that Cr7C3was metastable and decomposed into Cr23C6through
an in situ reaction

Subsequently the carbon atoms diffuse locally into the alloy matrix combining with more
chromium to form fine precipitates.

Jiang at al(16,17)investigated the relationship between the degeneration of primary M7C3

carbide and the precipitation of M23C6 in a directional solidified (OS) cobalt alloy, after ageing
at 850°C for 100 hours. Jiang proposed a similar reaction to Lane and Grant(15)based on

metallographic observation.

where M is mainly chromium.

2.3.3 Intermetallic compounds in cobalt-based superalloys

The strengthening of cobalt-based superalloys by the precipitation of intermetallic compounds
is secondary when compared to carbide strengthening. The intermetallic phases found in
cobalt-based superalloys are detailed in Table 2,3(3).

Compound Structure

C03 (Mo, W, Ta, Nb) HCP ordered

C03Ti, P C03Ta FCC ordered

CO2(Mo, W, Ta, Nb) Hexagonal Laves phase (TCP)

C07 (Mo, W)6 Rhombohedral - Hexagonal Mu (I!) phase (TCP)

CO2 (Ta, Nb, Ti) Cubic Laves phase (TCP)

CO2 (Mo, Wh Sigma (a ) phase (TCP)

CoAl Cubic ordered

(Co, Nih(AI, Ti) FCC, ordered

C03Ti HCP

Table 2.3 Intermetallic phases found in cobalt-based superalloys(31•

Precipitation hardening of cobalt-based superalloys by means of intermetallic phases of the y'

type has been demonstrated in the Co-Cr-Ti and Co-Cr-Ta systems(9,10).However, the high

temperature instability of the y' formed in these systems has prevented them from achieving
commercial status(8).
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Topologically close packed phases (TCP) found in cobalt-based superalloys are sigma (0),

mu (f,.l), and Laves (Table 2.3). TCP phases occur when the solubility limit of the austenite

matrix is exceeded primarily by a combination of chromium and refractory element

additions(2). These phases usually precipitate near grain boundaries where concentrations of

chromium and refractory elements may be high. Additionally, they can denude the matrix of

elements such as chromium, which reduces corrosion resistance. The phases can precipitate

in both acicular and blocky morphologies. The acicular morphology is generally considered

undesirable with regard to crack initiation and propagation through the microstructure. The

presence of TCP phases is generally considered to be deleterious, reducing strength and

ductility at service temperatures as well as a severe loss of low temperature ductility(2).

M23CScarbides have a complex cubic structure, which, if the carbon atoms were removed,

would closely approximate the structure of a. Coherency between M23CScarbides and 0 is

high; a often nucleates on M23CScarbides(2).

2.4 Heat Treatment

The heat treatment of cobalt-based superalloys is principally used for control of carbide

precipitation. Typical heat treatment involves the solutioning of MsC, M23Caand part of the MC

carbides at around 115DoC, followed by ageing in the 870-980°C range to precipitate a variety

of carbides, the major one being M23Cs(12). However, the commercial heat treatments do not

bring about complete carbide precipitation and more carbides are formed during service, in

particular at dislocations and deformation stacking faults(2). Cast cobalt-based superalloys are

not usually solutio ned but may be given a stress relief and/or ageing heat treatment. When

required, ageing is carried out at 76DoC to promote the formation of discrete M23CScarbides.

2.5 Thermodynamic Calculations

2.6.1 Introduction

Thermodynamic calculations on complex, multi component alloys are becoming more

common in metallurgical research, in part replacing the reliance on printed phase diagrams

which have been used to represent the equilibrium structure of binary, ternary and

occasionally higher order systems. The use of computer aided thermodynamic phase diagram

calculations (CALPHAD) has been developed such that using suitable thermodynamic data, it

is now possible to predict the equilibrium concentration of phases present in a multi-

component alloy of specified composition as a function of temperature and pressure. The

thermodynamic models used are based on sound physical principles, hence, parameters from

several well defined systems may be combined to calculate the equilibria with confidence in

considerably more complex systems. The CALPHAD approach for superalloys, has been

used in the development of new alloys, in the selection of processing conditions for existing or

new alloys, and to evaluate the long term metallurgical stability of alloys.

12



Chapter2 Litersture Survey

In this programme of work thermodynamic modelling has been carried out using a

commercially available software package. I will only briefly touch on the mathematics behind

thermodynamic modelling and will discuss the operation of the package in the experiment

methods (Chapter 3.9).

2.5.2 Modelling multleompcnent equilibria

The chemical equilibrium of an alloy system may be determined by minimising the total free

energy of the system with respect to the amount and composition of the phases present, at

fixed pressure in the case of Gibbs free energy or fixed volume in the case of Helmholtz free

energy. Conventionally, Gibbs free energy is used in the CALPHAD approach(18).

When the Gibbs energy, G, of the system is at a minimum, the chemical potentials of the

components are equalised throughout the system. Equilibrium can therefore be computed by

minimising the Gibbs energy of the system,

p
G = ~ nG' = minimum~, ,

;=1

where nj is the number of moles, and Gj is the Gibbs energy of phase i. A thermodynamic

description of a system requires the assignment of thermodynamic functions for each phase.

The CALPHAO method employs a variety of models to describe the temperature, pressure,

and concentration dependencies of the free-energy functions of the various phases. The

contributions to the Gibbs energy of a phase can be written as

where G:(T,x) is the contribution to the Gibbs energy by the temperature (T) and the

composition (x), G~(P,T,x) is the contribution of the pressure {p}, and G!(Tc,Po,T,x) is

the magnetic contribution of the Curie or Neel temperature (Tc) and the average magnetic

moment per atom U~o).The temperature dependence of the concentration term of G: is

usually expressed as a power series of T.

G = a+bT +cTln(T)+ LdIT"

where a, b, c, and dn are coefficients, and n are integers. To represent the pure elements, n is

typically 2, 3, -1, and 7 or -9(75). This function is valid for temperatures above the Oebye

temperature; in each of the equations in the following models describing the concentration

dependence, the G coefficients on the right-hand side can have such a temperature

dependence. Frequently, only the first two terms are used for the representation of the excess
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Gibbs energy. For multi-component systems, it has proven useful to distinguish three

contributions from the concentration dependence to the Gibbs energy of a phase, G"

The first term, GO, corresponds to the Gibbs energy of a mechanical mixture of the

constituents of the phase; the second term, Gid&aI,corresponds to the entropy of mixing for an

ideal solution, and the third term, Gxs, is the so-called excess term.

In summary to produce an equilibrium calculation by the CALPHAD method the Gibbs

energies of all potential phases are expressed as a function of temperature and composition.

The total Gibbs energy is then given by the weighted sum of the Gibbs energies of the

individual phases. By minimising this total, the phases present at equilibrium can be identified.

At the present time only the nickel based superalloy database is commercially available for

use with the current software packages and may be of limited use for cobalt-based

superalloys(19).Berthod et al(20.21)have developed a database for cobalt-based superalloys

using the Thermo-calc software. The database used is the SSOL (SGTE) database

incorporating the binary and ternary thermodynamic descriptions of Ta-C, Ta-Ni, Ta-Cr, Ta-

Co, Co-Ta-C and Ni-Cr-Ta from the available literature. The results of high temperature

(1000-1300°C) short time experiments on cobalt-based superalloys have been compared with

the calculated results. Investigated were the phases present, the molar fraction of each phase

present and the solidus temperature. The results indicate a good agreement for the

microstructural evolution with a quantitative disagreement between the results which is

considered as a problem of using surface fractions measured on the samples compared with

volume fractions obtained from the calculation. Differential thermal analysis of the solidus

temperature was SO°Chigher than the database calculated value. It was concluded that the

difference could be attributed to the lack of accuracy of the database.

2.6 Corrosion/oxidation

Gas turbine components are subjected to hot corrosion and high temperature oxidation. Hot

corrosion can be either Type I, which results from condensation of alkali sulphates which form

as liquid salts on the vane surface, or as low temperature or Type II hot corrosion, which

results from the formation of low melting eutectic compositions of alkali metal sulphates and

base metal sulphates that result in the dissolution of the protective surface oxide layer. Figure

2.S(22)is a schematic of the range of temperatures in which these types of environmental

attack occur. It should be noted that there are some variations in the temperature ranges

reported in the literature. This variation is due to the dependence of the attack upon the

specific chemistry of the base metal and the gas stream.
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Figure 2.5 Schematic representation of rate-temperature curves for Type II hot
corrosion, Type I hot corrosion and oxidation(231•

2.6.1 Hot corrosion

Hot corrosion (Figure 2.6), hot sulphidation or Type I corrosion results from the condensation

of alkali sulphates (sodium sulphate Na2S04 or potassium sulphate K2S04), which form as

liquid salts on the vane surface in service. The molten salts dissolve the protective oxide layer

at temperatures between 750 and 950°C(24.25.261.With the breakdown of the protective oxide,

sulphur is able to diffuse into the alloy surface layer where chromium sulphide can form. The

by products of this reaction eventually prevent the formation of an adherent protective oxide

allowing more oxygen into the surface resulting in rapid oxidation rates with the formation of a

thick porous outer oxide layer, an intermediate layer of internal oxide particles mixed with

depleted alloy and an inner region containing internal sulphide particles'". The major source

of sulphur is the fuel, particularly distillate fuels, and the alkali arises from the inlet air,

especially on coastal sites; sulphates may also be ingested directly with the air. With the use

of clean fuels such as natural gas and with good filtration practice hot corrosion should not be

a major problem for large land based turbines.

Chromium is the most effective alloying element for improving the hot corrosion resistance of

superalloys. In order to attain good resistance to Type I corrosion, a minimum of 15 wt.%

chromium is required in nickel based superalloys and a minimum of 25 wt.% chromium in

cobalt-based superalloys(271.Type I hot corrosion can reduce the rupture life, fatigue life and

ductility of the base metal; the severity of the degradation is dependant on temperature,

environment, stress and the metal composltlon'i".
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The microstructure of the alloy is important in that secondary phases may lead to an

accelerated attack along phase boundaries or by selective attack of one phase. Enhanced hot

corrosion of superalloys containing coarse refractory metal carbides has been identified

where the coarse refractory metal carbides intersect the metal surface(27).

Type II or low temperature hot corrosion occurs in the temperature range 595 to 815°C. It is

caused by the formation of low melting point eutectics of alkali metal sulphates and base

metal sulphates (NiS04 and CoS04) this results in the dissolution of the protective surface

oxide layer(23).The melting point of the eutectic mixture is lower than that of pure sodium

sulphate. Type II corrosion results in pitting of the metal surface, a porous layered scale, low

levels of base metal depletion and few internal sulphide particles. At the temperature of Type

II attack, internal sulphidisation is not normally observed.

Figure 2.6 Photograph of first stage vanes showing high temperature corrosion.

As with hot corrosion, low temperature corrosion can significantly reduce the stress rupture

life, fatigue life and ductility of the base metal. The formation of an adherent chromium oxide

(Cr203) scale will protect the component from Type II corrosion. AI203 scales are readily

attacked as a result of the pH of the molten sulphate.

Cobalt-based superalloys are, in general, more resistant to Type I corrosion than nickel based

superalloys. This may result from the higher melting temperature of the CO-C04S3 eutectic

(877°C) in comparison to the Ni-Ni3S2eutectic (645°C). In addition, the diffusivity of sulphur in

cobalt-based superalloys is approximately 100 times lower than in nickel based

superalloys(29).Cobalt-based superalloys are, however, more susceptible to Type II corrosion

than nickel based superalioys.

If high temperature hot corrosion is evident in a gas turbine then low temperature hot

corrosion can occur on cooler sections of the same component and on downstream

16



Chapter2 Literature Survey

components. Features of both types of corrosion may be evident in the transition region of

730 - 850°C. It is difficult to control the attack of components that cycle in this transition

region as different oxide scales provide protection in each regime.

2.6.2 Oxidation

High temperature oxidation is the formation of an oxide scale due to interaction between the

combustion environment and the component (Figure 2.7). Oxidation resistance in superalloys

is essentially the result of the formation, by selective oxidation, of an external scale that forms

a protective layer over the surface. To be effective the oxide layer must limit the diffusion of

the oxidising element and oxygen through the oxide to comparatively slow rates(30).

Aluminium, chromium and silicon are the only elements whose oxides are sufficiently

protective and have an affinity for oxygen to allow selective oxldatlon'i". The high melting

point required by superalloys negates the use of silicon. Aluminium and chromium form AI203

or Cr203 respectively on nickel, cobalt and iron based superalloys. Alumina, A1203, is the most

protective oxide at temperatures above 900°C. It is chemically stable, slow growing and

provides an effective barrier to inward oxygen transport. Chromia, Cr203offers less protection

than alumina above 850°C where chromia can sublime to Cr03.

Figure 2.7 Photograph of coated vanes showing evidence of high temperature
oxidation.

Factors which may affect the rate of oxidation are alloy composition, surface condition, gas

environment and cyclic oxidation resulting in the formation of oxide scale cracks and

spallation. Cracking and spallation will eventually lead to depletion of the protective oxide

forming element, and hence, break down in the oxide layer and formation of less protective

oxides when other elements within the alloy oxidise preferentially.
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Cobalt-based superalloys cannot contain sufficient aluminium to form an alumina protective

oxide layer whilst maintaining the required mechanical properties(30). Cobalt base superalloys

instead utilise the formation of a Cr203 protective oxide layer. The oxidation resistance of

cobalt-based superalloys generally increases with the chromium concentration, with the

oxidation resistance of alloys with less than 20% chromium being comparatively poor.

Refractory elements such as tungsten and molybdenum have favourable effects on the

selective oxidation of chromium (Table 2.4)(5). However, when the oxidation of chromium is no

longer preferential, the oxidation of tungsten and molybdenum occurs at an increased rate

due to the development of a less protective oxide scale(30).

Oxidation occurs preferentially at carbides close to the surface. The only protective scale that

can form over carbides is chromia, however this cracks easily(30). To minimise this form of

degradation, the carbides in superalloys should be small and discontinuous.

Alloying element Probable effect of addition on the
oxidation behaviour of a Co(20-30)Cr
base material

Titanium Innocuous at low levels

Zirconium Innocuous at low levels

Carbon Slightly deleterious; Ties up chromium

Vanadium Harmful, even at a.5%

Niobium Harmful, even at 0.5%

Tantalum Beneficial to moderate «5%) levels

Molybdenum Harmful; forms volatile oxides

Tungsten Innocuous below 1aoaoc, Harmful
>1000°C; forms volatile oxides

Yttrium Beneficial; improves scale adherence

Nickel May be slightly deleterious

Manganese Beneficial; induces the formation of
spinels

Iron Tends to induce spinel formation

Table 2.4 Role of alloying additions to cobalt base materials oxidation'S),
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2.7 High Temperature Oxidation, Corrosion and Temperature Resistant

Coatings

Cobalt-based superalloys were initially used in the uncoated condition but are increasingly
used with coatings to provide protection of the base metal from oxidation and corrosion and to
limit the diffusion of harmful species into the substrate. The reasons for using coatings are to
provide:

• protection from high temperature oxidation

• protection from high temperature corrosion

• reduction in metal temperatures to prevent thermal fatigue

• protection of the parent metal from erosion.

Coatings are consumable, in that the coatings oxidise or corrode during operation and are
replaced during refurbishment.

The coatings used can contain high levels of aluminium, chromium and, to a lesser extent,
silicon, all of which can form a continuous, adherent, dense oxide scale when exposed to
oxygen at high temperature. Aluminium forms the stable, coherent, AI203oxide, chromium the
protective Cr203 oxide. However, in the early stages of oxidation meta-stable oxides (9, l), V
alumina} and oxides of the major alloying additions may form until the stable, protective oxide
is established(32).The protective oxide layer forms a barrier at the gas/component interface
and increases in thickness with time; the growth is typically exponential with temperature
(15°C increase in temperature doubles the growth rate). The protective oxide layer can be
brittle and can spaUas a result of thermal cycling and mechanical damage. Spallation {Figure
2.8} reduces the thickness of the oxide layer and can increase the rate of oxidation of the
oxide forming elements that diffuse from the coating to reform the scale. When the oxide
forming elements in the coating faUbelow a critical level, for sustaining a stable oxide layer,
discontinuous breakaway oxidation occurs with a resultant rapid degradation of the coating
and subsequently the substrate.
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Figure 2.8 Photograph of oxide spallation on the pressure side of a gas turbine
blades.

When alloyed with aluminium in the coating, chromium reduces the level of aluminium

required to form a protective AI203 oxide. When alloyed with nickel, cobalt, aluminium and

silicon, chromium makes coatings resistant to hot corrosion. For high temperature hot

corrosion (Type I) 15 to 20% chromium is required, for low temperature hot corrosion (Type II)
25 - 40% chromium is required(33).

Prior to reviewing the different types of coatings and combinations that exist it is important to

consider their mechanical properties. In general the tensile, compressive and creep properties

of the base metal are not affected by the coating because the coating is only a small fraction

of the total. Fatigue resistance can be affected in that cracks in the coating can propagate

into the base metal. Coating failure through coating and metal cracking can lead to "onion-

bulbing", typically seen in diffused aluminide coated components. Reducing the aluminium

content of the coating would improve the coating ductility, but this would however, reduce the

oxidation resistance of the coating. It is therefore important to identify the potential failure

mechanisms in the componenUcoating system to ensure that an inappropriate coating is not

chosen. The ductile/brittle transition temperature (OBTT) gives a measure of the coating's

ductility as a function of temperature and hence its propensity to cracking (Figure 2.9)(34).
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Figure 2.9 The effect of aluminium content on the ductile/brittle transition
temperature of a coating(34).

In general the lower the DBTT the lower the oxidation resistance. A balance must be made

therefore between oxidation resistance and mechanical properties (Figure 2.9).

The crack resistance of the coating is dependent on the thermal stresses during operation.

During start-up and at elevated temperatures the coating is placed under compressive

stresses, whereas during shutdown (or trip) the coating is subject to tensile stresses - the

coating's mechanical properties are better under compressive loading. The tensile stresses

during a shutdown can lead to cracking in the coating and to spallation of the aluminium oxide

protective scale. The consensus view is that where the protective oxide scale is less than

10IJmit is unlikely to spall, whereas at thicknesses greater than 10IJmspallation will occur(22).

Figure 2.10(35)is an attempt to graphically identify the optimum coating with reference to the

particular application.
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Aluminides

Figure 2.10 Schematic illustration of coating composition as related to oxidation
and corrosion resistance?",

Chromising offers the best resistance to hot corrosion (both Type I and II), while for oxidation

NiCrAIY-NiCoCrAIYs offer the best protection. This is a simplification and does not take into

account other elements that are added to the coating to improve the coating's properties.

Although numerous variants of high temperature coatings are in use, they usually fall into one

of three generic types(25):

• Diffusion coatings - formed by the surface enrichment of an alloy with aluminium

(aluminide), chromium (chromised) or silicon (siliconised). In some systems

combinations of these elements are possible, i.e., chromium-aluminised or silicon-

aluminised.

• Overlay coatings - these are a family of corrosion resistant alloys specifically

designed for high temperature surface protection. Often referred to as MCrAIY

coatings; where M is the alloy base metal, normally Ni or Co or a combination of

these two; Cr is chromium; AI is aluminium and Y is yttrium.

• Thermal barrier coatings - this family of coatings are designed to insulate the

substrate from the heat of the gas path and thereby reduce the rate of oxidation and

creep. They are a composite coating system consisting of an outer ceramic coating

(usually 6-12 wt.% yttria partially stabilised zirconia) overlaid over an oxidation

resistant bond coat. The bond coat is typically a MCrAIY overlay coating or a

diffusion aluminide coating.
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2.7.1 Diffusion coatings

Diffusion coatings were the first high temperature coatings to be used and the process is still

widely used (Figure 2.11). The original coatings were brittle and were prone to cracking as a

result of thermal cycling. The addition of other elements, notably platinum and silicon,

improved the ductility of the coating but increased the cost. The method relies on diffusion,

during a carefully controlled heat treatment, between a coating deposited on the surface and

cobalt/nickel from the substrate to form an aluminide coating (Table 2.5).

Aluminide coatings are typically 651lm thick, although thicknesses in the range 25 - 100ilm

have been used. Typical service temperatures are 800 - 1100°C. For severe hot corrosion

conditions chromised coatings are used, typically 20 - 50llm thick, operating in the

temperature range 600 - 870°C.

EHT. 20.00 kV WO = 19 mm
Mag = 1.00 KX

Signal A· aaso Date :10 Jun 2003
Photo No... 119 Time :13:57:53

Figure 2.11 SEM SSE image of an aluminide coating on IN 738 substrate.
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Coating type Application Comments Operational

temperature range

Aluminide High oxidation Very brittle, can lead to 600-1100°C

resistance. cracking in the base

metal.

Chromide High corrosion Poor in oxidation at high 600-870°C

resistance. temperature, can lead to

cracking.

Chromium-alum inide High corrosion and Alternative coatings 600-870°C

medium oxidation available.

resistance.

Silicon-aluminide High oxidation and Improved crack resistance 600-1100°C

corrosion resistance. to aluminised coatings.

Platinum-aluminide High oxidation and Very brittle, can lead to 600-1150°C

corrosion resistance. cracking in the base

metal.

Platinum-silicon- High oxidation and Improved crack resistance 600-1150°C

aluminide corrosion resistance. over PVAI coatings.

Platinum, Paladium, Oxidation and corrosion Expensive, altemative 600-1150°C

Platinum/Rhodium resistance. coatings should be

considered.

Table 2.5 Diffusion coatings, applications and operational temperature ranges(22).

The major drawback for the industrial use of diffusion coatings is that there is experience of
cracks in the coatings that subsequently lead to cracks within the base metal, which can lead
to 'onion-bulbing' oxidation in the base metal. It is very difficult to determine if a crack on the
surface of a component is contained within the diffusion layer or if it runs into the base metal.

Diffusion coatings can make good bond-coats for TBC coatings. However, due to their brittle
nature diffusion coatings have limited application in gas turbines which would be regularly
cycled. Platinum modified aluminide coatings provide good TBe adhesion in turbines which
experience high levels of thermal cycling. However, on industrial gas turbines this would be
very expensive and the process tends to be covered by a patent limiting the number of
companies that can apply the coatings.
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During service aluminide diffusion coating are consumed in two distinctly different ways:

Aluminium diffuses to the surface to form a continuous alumina protective scale which as a

result of thermal cycling eventually cracks and spalls. Aluminium diffuses into the base

material causing a depletion of the aluminium in the coating. Once the level of aluminium falls

below 4-5 wt.%, there is thought to be insufficient aluminium to allow the formation of the

alumina scale and oxidation of the base material cccurs'",

The two processes employed for diffusion coating are pack cementation or chemical vapour

deposition. In pack cementation the component is placed in a pack that consists of a

powdered mixture of the elemental addition (aluminium or chromium or an alloy of aluminium

or chromium), a halide activator salt (ammonium halide) and an inert diluent such as alumina.

On heating in an inert atmosphere to a temperature in the range 700°C-1100°C for 2 to 24

hours, the metal powder and activator react to form a vapour. This vapour in turn reacts with

the surface of the component forming either an intermetallic coating (CoAl or NiAl depending

on the substrate) or an enriched surface layer in the case of chromising. Coatings are

classified as low temperature high activity (LTHA) where inward diffusion occurs or high

temperature low activity (HTLA) where outward diffusion of the base metal elements (Ni or

Co) occurs. Subsequent heat treatments may be required to further diffuse the coating.

Platinum or rhodium modified aluminide coatings are a modification of the pack cementation

process incorporating a thin platinum or rhodium layer (6J.lmthick) electroplated on to the

surface of the component. The component is then aluminised with the aluminium activity

modified such that the outer layer of the coating contains most of the platinum or rhodium in

the form of aluminium containing intermetallic PtAI2 or RhAI2 the platinum modification is

generally used for nickel based superaHoys and the rhodium modification for cobalt-based

superalloys. These coatings show significant improvements in hot corrosion resistance in the

temperature range 800 - 950°C and moderate improvements in oxidation resistance at higher

temperatures.

In the chemical vapour deposition process the parts are loaded into a retort in a furnace. A

precursor gas, typically HCI, or a mixture of HCI and HF, in the aluminising process, is passed

over a source of aluminium in a separate evaporator under closely controlled temperature,

pressure and flow rate to generate gaseous aluminium chloride or fluoride. The gas is

introduced into the coating chamber where it reacts with the surface of the component. By

pumping the vapour through the inside of the parts the internal passages can be coated.

2.7.2 Overlay coatings

Overlay coatings act in a similar manner to diffusion coatings; they provide a thermally grown

oxide (TGO) layer that protects the coating and the base metal from further attack by either
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oxidation or corrosion. The coatings offer both good oxidation and corrosion resistance and

are less prone to cracking than diffusion coatings.

Overlay coatings are formed from an alloyed material containing elements necessary to form

an adherent protective scale. The coating alloy composition is selected to provide a balance

between oxidation resistance, corrosion resistance and coating ductility. The common

coatings are known as MCrAIY, M being nickel or cobalt with chromium, aluminium and

yttrium. The matrix of the coating is nickel or cobalt with chromium in solution. Aluminium

forms NiAl or CoAl in the coating, yttrium is an oxygen active element added to improve the

adhesion of the oxide scale and decrease oxidation rates.

The different types of MCrAIY coatings are used as follows(37);

NiCrAIY high temp. applications> 900°C

CoCrAIY medium temp. (700°C to 900°C)

FeCrAIY moderate temp. < 700°C

Overlay coatings are deposited thicker than diffusion coatings typically 125 - 200llm thick with

thicknesses up to 300llm on some commercial applications.

In most commercial coatings the main phases present in the microstructure are V-Ni and ~-

NiAl, however depending on the composition and service temperature additional phases a-Cr,

a-CoCr and V'-Ni~1 and other intermetallic phases may be present(38).The TGO formed

removes aluminium and chromium from the coating leading to changes in the microstructure,

predominantly the dissolution of the P-NiAI phase, followed by the depletion of the V·-Ni~1 in

the coating. The rate of aluminium consumption is increased by high oxide growth rates and

spalling of the alumina scale. Commercial coatings contain oxygen active elements (yttrium)

which are present as intermetallic compounds. Yttrium is considered to aid adhesion by

scavenging tramp levels of sulphur from the coatinglTGO interface and reducing scale growth

by forming blocking oxide phases within the TGO grain boundaries, limiting the inward

transport of oxygen(39).The distribution of the yttrium rich phases can be affected by the

coating process. In high oxygen content coatings the yttrium will be tied up in finely dispersed

oxide particles reducing the yttrium available in solution. If the yttrium content in solution

reduces below a critical level, the effects of yttrium on scale growth and adherence is lost(40).

In addition to the diffusion of aluminium to the outer surface, interdiffusion between the

coating and substrate material occurs. This interdiffusion results in aluminium loss from the

coating to the base metal, the formation of new phases at or near the coating substrate

interface and diffusion of substrate alloying elements into the coating altering the coating

mechanical properties and oxidation performance. Diffusion of aluminium from the coating
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into the base alloy, in most cases leads to a y' rich layer and an intermediate pure y layer.

However, with high chromium active coatings the diffusion of chromium from the coating and

refractory alloys from the base alloy into the coating can result in the precipitation of brittle

intermetallic compounds in the interdiffusion zone(40).

The two common methods of deposition are physical vapour deposition (PVD) and plasma

spraying. Electron beam physical vapour deposition (EB-PVD) is the most common physical

vapour deposition method for coating superalloys. The process involves the vaporisation, in a

vacuum, of a continuously fed ingot with a high voltage electron beam. The vaporised atoms

move in a straight line from the molten ingot to the parts to be coated which are rotated and

tilted within the vapour cloud with the metal condensing out on the preheated substrate

surface(2).The part is usually heated to temperatures around 800 - 1100°C which also allows

a metallurgical bond to form between the coating and substrate. Typical deposition rates are

61lm min" but can be up to 751lmmin-i. On completion of the coating process a diffusion heat

treatment is generally applied to improve the bond. Glass bead peening is frequently used to

close areas of unbonded columnar grain structure'".

For spray deposited coatings (air-plasma, low pressure plasma and high velocity oxyfuel

combustion spraying) the coating material is an alloyed powder that is heated and the molten

or partially molten droplets are accelerated on to the part to be coated. The molten particles,

or droplets, strike the substrate surface at a high velocity and solidify on contact. The coating

is attached to the substrate by the mechanical interlocking of the coating and the substrate.

The surface of the substrate is roughened by grit blasting prior to spraying. Deposition rates

of 200 - 400llm/min are possible. A diffusion heat treatment is used to promote diffusion

between the coating and the substrate.

Both EB-PVD and plasma spraying are line of sight processes and therefore can be

problematic for complex shapes. These two processes cannot coat internal passages, in

contrast to aluminising.

Following the application of the coating the component is normally heat-treated to

homogenise the coating and produce a chemical bond, i.e. an inter-diffusion region, between

the coating and the base metal. Typically the thickness of this region is 10-15I.1m. An

example of an overlay-coating is given in Figure 2.12.
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Figure 2.12 SEM BSE image of the tnter-diffuslon region between a MCrAIY coating
and a nickel based superalloy substrate.

The main active scale-forming element in overlay coatings is again aluminium, but in overlay

coatings the aluminium content is 6-12 wt.% compared to diffusion coatings where the

aluminium content is 24-35 wt.%. This would suggest that the overlay coatings are not as

effective at resisting oxidation however, this is not the case. Chromium improves oxidation

resistance by increasing the activity of aluminium. An addition of 10 wt.% chromium will

enable AI203 scale (Figure 2.13) formation down to aluminium levels of 5 wt.%(2). The

increased ductility of the coatings allows the TGO to grow to 15-20 IJm before reaching the

critical thickness and spalling of(41).

In service, degradation of the coating occurs both by the loss of TGO and by diffusion of

aluminium into the base metal. Once the aluminium content of the surface of the coating is

less than -4 wt.% the coating life has effectively been fully consumed and the oxidation of the

coating will be almost as rapid as the base metal. At this point the component should be

refurbished.
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Figure 2.13 SEM BSE image of a thermally grown oxide on NiCoCrAIY coating.

It should be noted that while exclusive formation of AI203 is often possible (except for the

incorporation at grain boundaries of oxides of the active element addition, yttrium for

example), growth of Cr203 scales will usually be accompanied by oxidation products of Mn,

Si, Ti and similar elements if present within the substrate alloy or coating. The presence of

such dopants may significantly affect the protective nature of the thermally grown oxide.

Over-aluminising is a process where the overlay coating is over coated with an aluminium

diffusion coating (Figure 2.14). This greatly increases the life of the coating by enhancing the

aluminium reservoir in the coating. However, over-aluminising makes the outer surface of the

coating brittle and it is often found that the component fails earlier as a result of fatigue

cracking or brittle failure as a result of thermal shock in the over-aluminising layer. These

failures would probably not have occurred if the component had not been over-aluminised.

The over-aluminised coating fails normally by crack formation, diffusion of aluminium into the

overlay coating and by spallation of the TGO, in much the same way as a standard diffusion

coating. However, once the surface aluminide coating has been degraded what remains is

the overlay coating, which then continues to offer oxidation resistance. The coating then

continues to degrade as an overlay coating.
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Figure 2.14 SEMeSE image of an over-aluminised NiCoCrAIY coating.

2.7.3 Thermal barrier coatings

In a number of situations it may be necessary to limit the temperature of cooled components

by the provision of a Thermal Barrier Coating (TBC) i.e. an insulating layer. For the TBC to

function efficiently there must be sufficient cooling to ensure that the temperature drop

through the TBC is attained. Components which are not cooled would not benefit from the

application of a TBC. TBCs of all types (whether air plasma sprayed (APS), dense vertically

cracked (OVC) APS, or EB-PVO) have very low thermal conductivity coefficients and so

reduce the surface metal temperature significantly.

Base metal TBC

Hot
combustion

gases

Compressor
discharge air

Distance
Overlay coating

Not to scale

Figure 2.15 Typical temperature profile through a TeC coated compcnent'i",
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A thermal barrier coating (TBC) is formed from two layers; a metallic inner layer, the bond

coat (BC) and a ceramic insulating outer layer. The bond coat is a MCrAIY overlay coating or

a diffusion aluminide coating as previously described. The purpose of the bond coat is to

improve the adhesion of the ceramic coat to the substrate and prevent oxidation of the base

metal substrate, as the ceramic coating conducts oxygen. The TBC coat comprises zirconia

(Zr02) stabilised by additions of yttria Y203 (7 wt.%) to prevent the volume change that occurs

as a result of the phase change in pure zirconia at 1170°C(2).The ceramic has a higher

reflectivity and a thermal conductivity one to two orders of magnitude lower than the nickel or

cobalt-based superalloy.

For diffusion and overlay coatings, coating life is determined by chemical degradation of the

coating. For the TBC coating the life limiting factor is considered to be the loss of the TBC

such that degradation of the metallic bond coat and subsequently the substrate occur at

unacceptable rates. The two factors leading to the loss of the TBC coating are spallation and

erosion. Spallation occurs by delamination of the TBC from the bond coat. Two major factors

controlling spallation are bond coat oxidation and the strain generated by thermal expansion

mismatch during cooling between the TBC and the bond coat/substrate't".

APS TBCs are the cheapest TBC coatings available on the market and are typically used on

stationary components where mechanical stresses are much lower than in rotating blades, a

typical microstructure is shown in Figure 2.16. On combustors, the hottest parts will be coated

with a TBC in order to reduce the metal temperature by 50-100°C. The adhesion of the TBC

to the bond coat is critical for acceptable life of the coating. With APS coatings the bond coat

may have a poorly developed TGO layer; porosity may be too high; bonding between TBC

particles may be poor which can lead to spallation or blistering of the TBC.

Ba .iOOIJIll ()t.t .. ctor - ()H~.D

[t-tT & :0 uu ~v ~ D(\t~ _: Jeu :00-1

Figure 2.16 SEM SSE image showing an APS TBC coating on a CoNiCrAIY overlay
coating.
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EB-PVD TBCs have mainly been used in aero gas turbines but are now being increasingly

applied to industrial gas turbines as an alternative to APS TBC. The microstructure of a

typical EB-PVD TBC is shown in Figure 2.17. In this case the coating thickness is -150~m or

approximately half the thickness of a typical APS coating.

As with APS TBCs the EB-PVD coating reduces the temperature of the base metal, however,

the reduction in temperature is normally only half to two-thirds that obtained using APS

coatings. The porosity and cracking present in the APS coating decrease the thermal

conductivity of the coating when compared to the EB-PVD coating. The increase in metal

temperature of the component needs to be considered and compared with the advantage of

improved adhesion of the TBC. It may therefore be appropriate to coat the blade with an EB-

PVD TBC and the vanes and other stationary components with APS TBC. One further

advantage exists with the use of EB-PVD coatings - cooling holes in the component do not

have to be masked when the coating is being deposited. This is because the coating process

is a line of sight process and the coating thickness rapidly reduces.

Figure 2.17 SEM BSE image of an EB-PVD TBe coating.

2.8 Welding

Weld repair and joining techniques are essential for the manufacture and overhaul of gas

turbine vanes. Repairs of casting defects, hot tears and shrinkage porosity, repair of service

generated thermal fatigue cracks, and the joining of nozzle assemblies, are the main area of
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concern. The manual Tungsten Inert Gas (TIG) and Electron Beam (EB) welding techniques

are the most commonly used welding processes(43).

The weldability of wrought and cast cobalt-based superalloys is considered to be generally

good. However, the highly segregated, high strength cast cobalt-based superalloys are prone

to hot cracking. Hot cracking will generally occur within a critical high temperature range when

thermal stresses due to welding induced strains are superimposed onto a microstructure with

a limited plastic strain capability as a result of the formation of a low melting point phases or

micro constituents. Hot cracking is normally associated with the HAl but can occur in the

weld metal in high heat input welding processes(43).Segregation along the centre line of the

weld bead in both tungsten inert gas and to a lesser degree electron beam welding leads to

hot cracking and poor thermal fatigue cracking resistance. This can be limited in tungsten

inert gas welds by using pulsed arc tungsten inert gas welding which breaks up the columnar

grain orientation found in both tungsten inert gas and electron beam welds.

Filler alloys should melt at a lower temperature than the incipient melting point of the

substrate and be free of liquid-metal embrittling segregates. The weld metal should exhibit a

slow strength recovery during solidification and cooling, have good high temperature ductility

and be metallurgically compatible with the substrate(43).The use of low carbon filler wires

reduces the tendency for the precipitation of carbide stringers at grain boundaries that can

increase crack propagation rates in thermal fatigue.

2.9 Refurbishment

The components used in gas turbines are refurbished a number of times before being

scrapped. It is this ability to rework the components and return them to service that allows the

high cost of cobalt and nickel based superalloys to be deferred over a number of service

cycles. It is therefore important to have an understanding of the refurbishment cycle:

Stripping - the remaining coating is removed from the component. This can be achieved

through acid stripping or by mechanical means. Acid stripping leaches aluminium from the

oxide and the coating, making the coating more brittle; it can then be removed by grit blasting.

The acid-soak/grit blast cycle is repeated a number of times until the coating is fully removed.

Final remnants of the coating can be removed by belt grinding. There are a number of other

chemical processes available that ensure that a specific thickness of material is removed;

these are more applicable to components with complex geometries and cooling

arrangements. A heat-tint is applied to ensure that the coating has been removed; the

component is heated in a furnace, the coating tends to produce a straw tint that is easily

recognisable against the blue base metal tint. With acid stripping some of the base material is

removed, typically 60 um thick.
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Heat treatment - the component is heat-treated to remove any residual stress that may exist

and to dissolve any precipitates that may have formed during service. It is important to know

the component's base metal condition so that the chosen heat-treatment is the correct one. A

small sample is usually taken to confirm the level of degeneration of the metallurgical

structure and hence if the component can be reclaimed or scrapped.

Inspection - the component is inspected using the appropriate NOT technique to determine

the extent and position of any cracking.

Welding/brazing - welding and brazing may have to be performed on the component. Any

welding is carried out using approved procedures and consumables. Care is taken to ensure

that the component is not over-heated and that residual stresses are not generated. Brazing

may be undertaken to build-up low-stressed regions of the component. This may take the

form of a coupon, sheet or powder. Brazing is generally carried out above the solution heat

treatment temperature. Following any welding a heat-treatment is carried out to relieve any

stress that may have been produced from the repair. A further NOT inspection is then carried

out.

Preparation - before coating, the component is masked and cleaned. The mask prevents

cooling holes, the root and other sensitive regions of the component from being coated.

Cleaning is very important because grease and dirt from the environment, and especially

fingerprints, will prevent the coating from bonding properly to the metal surface.

Coating - prior to coating it is important that the coating process is first qualified because the

coating thickness is based upon the weight gain and not the measured thickness. It is good

practice to use dummy components (or scrap components) to determine the coating

parameters for whatever coating process is being used. This is normally done by applying

small metal tabs to the dummy component. These are then sectioned so that the coating

thickness and quality can be measured. Once the parameters have been determined, the

program for the coating machine is fixed. A test piece is then coated before each shift or

following any change in the coating process. Any change to the coating (e.g., thicker coating

in a specific region) requires a full qualification procedure to be undertaken.

Heat-treatment - this is undertaken following the coating process and is normally done in

vacuum or under nitrogen. The heat-treatment improves the bond between the coating and

the base metal, chemically homogenises the coating and relieves any stresses that may exist

within the coating. Following heat-treatment it is normal to carry out controlled shot-peening

of the component to reduce the surface roughness (this is not carried out for components that

are to be further coated with an APS TBC where surface roughness is critical for TBC

adhesion).
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The current programme of work has been carried out on two cobalt-based superalloys, FSX
414 and MAR M509 and a high cobalt (19 wt.%) nickel superalloy NP 222.

2.10 FSX 414

FSX 414 is a General Electric (GE) patented alloy with modest rupture strength and excellent
oxidation and hot corrosion resistance. The alloy was first marketed in May 1968 and was the
preferred choice for all production first stage vanes and some later stage vanes in GE
machines(7).FSX 414 was derived from alloys X40 and X45 with lower carbon levels than X40
and a higher chromium content 30% against 25% and slightly lower tungsten. The lower
carbon levels improve weldability, the higher chromium content increases oxidation/corrosion
resistance. Published literature for this alloy is limited.

2.10.1 Composition

The compositional limits are shown below (Table 2.6):

Co Cr Ni W C Mn Si B Fe S P

28.5- 9.5- 6.5- 0.2- 1.0 1.0 0.005- 2.0 0.04 0.04
Bal.

11.530.5 7.5 0.3 max. max. 0.015 max. max. max.

Table 2.6 FSX 414 Compositional limits (wt.%).

2.10.2 Microstructure and heat treatment

The as-cast microstructure contains eutectic M23Cscarbides formed at the grain boundaries
and within the y matrix. Two forms of eutectic carbide are evident: a coarser eutectic
consisting of M23CScarbide particles in a matrix of yCo, and a finer eutectic consisting of yCo
particles in an M23CScarbide matrix. M23Cscarbide in this alloy exists as Cr21W2CS(U.45).As a
result of heat treatment or service the carbides can be partially solutioned and precipitated as
more finely divided particles around the original carbides. The primary carbides retard slip and
grain boundary migration. The secondary M23CScarbides pin dislocations that harden the
matrix(5).

The heat treatment generally specified for this alloy(U) is 1150°C for 4 hours, furnace cool to
935°C and then hold for 10 hours, furnace cool to below 540°C, air cool to room temperature.
The hold at 1150°C stabilises the alloy through a homogenising effect. The furnace cool to
935°C is to control the preCipitationof M23CS,the furnace cool to 540°C is to limit distortion of
complex castings. Bicego et al(4S)identified the solutioning and ageing heat treatment as 4
hours at 1150°C cool, and 4 hours at 980°C followed by a furnace cool.
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2.10.3 Thermal ageing

Morrow et al(47) found in FSX 414 samples aged for 1,000 hours at 815°C that secondary

carbide precipitated in the y dendrites in areas adjacent to the interdendritic eutectics. These

secondary carbides showed directional patterns characteristic of Widmanstatten carbide

precipitation or carbide precipitation on stacking faults.

The investigations by Foster and sims"? found that the M23CS carbides spheroidise and

agglomerate modestly in service. Spheroidisation and agglomeration is more rapid under

stress. Platelets of M23 Cs.carbide can form after long exposure at 820°C.

Steinberg et al(14)examined uncoated first stage FSX 414 vanes which had operated at a

turbine inlet gas temperature of 1000°C. They found that as the material overages, the

carbides grow and the shape changes until there are continuous carbides at the grain

boundaries, and acicular and lamellar carbides within the matrix. The acicular and lamellar

carbides reduce the material's toughness, the grain boundary carbides provide crack paths

for thermal fatigue.

Exceeding the chromium and tungsten composition limits can result in the formation of (J or TT

phases which would be deleterious. This is the reason the tungsten content was lowered by

0.5 Wt.%(44).

Haafkens(48) identifies two different stages of in service degeneration in FSX 414, the

dissolution of the fine M23Cs and the formation of brittle phases of '1 and (J (Figure 2.18). Both

'1 and (J embrittle the material and cause subsequent difficulties during repair welding. The

conditions under which the '1 and (J formed and the position of the micro section with respect

to coatings or oxidation are not detailed. A solution treatment and ageing heat treatment

removed '1 and (J with reprecipitation of M23Cs carbide in the matrix.

Figure 2.18 Photographic micrograph of degenerated FSX 414 microstructure
showing brittle phases of '1 and a (48).
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Mezzedimi et al(45)discuss the experience gained from optical and SEM observation of FSX

414 nozzles removed from service. The report identifies image analysis using backscattered

electrons as a method capable of estimating the exposure of FSX 414 components at

different temperatures. Reference is made to the segregation of tungsten carbides which

appear bright in the SEM in backscatter. Bicego et al(46)in a report dealing with the analysis of

high temperature fatigue and creep damage in FSX 414 turbine nozzles details the

examination of a first stage nozzle removed from service after 20,000 hours and 50 starts. A

finite element thermal analysis calculation predicted the leading edge maximum operating

temperature as 984°C. A microstructural examination of samples from the leading edge

confirmed the presence of an outer oxidised band -0.15 mm wide with chromium and cobalt

oxides followed by an inner band -0.85mm wide with a modified microstructure involving

swelling of the secondary carbides as we" as the disappearance of the "blocky" eutectic

carbides which had begun to segregate into new chromium rich and tungsten rich carbides.

Of interest is the observation that the cooled inner surface, showed similar microstructural

changes to a depth of 0.3mm, while the area between the two bands appears unchanged.

Pratesi et al(49)evaluated the microstructure of -6,000 hour stress rupture tests at 9500e and

1000°C and a FSX 414 nozzle which had been in service for 35,000 hours. The report

concentrates on the high atomic number carbides which appear white in backscatter electron

imaging mode. A comparison of the 9500e and 1,OOOoestress rupture specimens showed

fewer and larger heavy metal carbides in the 10000e sample when compared to the 9500e

sample. Samples from the nozzle showed the shape and distribution of the carbides were not

the same in different parts of the vane. The variations in the carbides are described through

wall in a section taken from the "nose", At this point the heavy metal carbides are evident at

the inner surface immediately below the inner oxidised layer. At the mid point through wall the

heavy metal carbides are almost circular and aligned along the grain boundaries. At the outer

surface, below the oxidised layer, identified as about 9500e a reduction in the heavy metal

carbides is noted. In summary the report notes the difference in the carbides between the

stress rupture samples and the nozzle and indicates that with further evaluation there may be

a relationship with lifeland or residual life based on the number or area of the white spots.

2.10.4 Oxidation and hot corrosion

The addition of 4 wt.% chromium improved the oxidation resistance of FSX 414 when

compared with X40 and X45. The oxidation resistance of FSX 414 is three to eight times that

of the other two alloys in natural gas firing in the temperature range 980-1090oe. At 9800e

X45 will oxidise to a depth of 3 mm in 6,000 hours. To produce this depth of oxidation at the

same temperature in FSX 414 would require 40,000 hours(50).
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2.10.5 Rejuvenation and repair

Work by T F Chase and A M Beltran(43)shows that hot cracking during welding is primarily

associated with carbide precipitation. The eutectic M23CS carbides melt in the fusion zone

during welding. On resolidification the carbides enhances brittle crack propagation.

The filler metals used for welding are L-605 and FSX 414 electrodes. The weldability of FSX

414 after service is equal to that of X45 and exceeds that of X40(43).
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2.11 GT 222

This literature review will consider the available information on GTD 222 an alloy similar to NP
222 investigated in this work. GTD 222 is a vacuum cast, y' strengthened nickel superalloy
developed by General Electric (GE). The alloy has a high level of cobalt 18.5-19.5 wt.%
similar to Inconel 939. Published literature for this alloy is limited. Schilke(7)states that the
alloy was developed in response to the need for improved creep strength in stage 2 and 3
vanes above that offered by FSX 414. In addition to the improved creep strength GE claim
improved low temperature hot corrosion resistance and as a result of the low volume fraction
of y' in the alloy better weldability than nickel based superalloys used for turbine blades. For
stage 2 applications the vanes are coated with an aluminide coating to provide added
oxidation resistance'",

Investigations into the effects of cobalt in nickel based superalloys by Tien et al(51)on Udimet
700 (Co 17 wt.%) concluded that the role of cobalt is subtle and difficult to discern. It impacts
slightly on the partitioning of the elements between the y matrix and the y' precipitate and
carbide phases. Depending on the heat treatment, cobalt is seen to promote creep and stress
rupture resistance or to have no effect. Work by Nathal et al(52)on MAR-M247 (Co 10 wt.%) a
high strength cast alloy and Maurier et al(53)on Waspaloy (Co 13 wt.%) a moderate strength
wrought alloy concluded that cobalt promotes fewer carbides by stabilising the MC type
carbides instead of the M23Cstype carbides. Cobalt widens the solid solution temperature

range and contributes to y' coarsening. Coutsouradis et al(S)stated that the principle purpose

of adding cobalt is related to mechanical properties or phase stability rather than oxidation or
corrosion resistance.

2.11.1 Composition

United States Patent 4,810,467 is considered to describe alloy GTD 222. The preferred melt
chemistry range is detailed in Table 2.7(54):

Ni Co Cr W AI Ti Nb Ta B Zr C

Bal 18.8 22.2 1.8 1.1 2.2 0.7 0.9 0.005 0.005 0.08

19.5 22.8 2.2 1.3 2.4 0.9 1.1 0.015 0.02 0.12

Table 2.7 GTD 222 Compositional limits (wt.%)(S4).

2.11.2 Microstructure and heat treatment

GTD 222 is a gamma prime strengthened alloy. The alloy exhibits a primary MC carbide (Ta,
Tit Nb) and chromium rich M23Csgrain boundary carbide. The MC carbide precipitates during
or shortly after solidification. The M23Cscarbide precipitates during ageing as a semi-
continuous film, which results in lower stress rupture strength(55).The alloy is vacuum heat
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treated in two stages 1130°C for four hours followed by 785°C for 8 hours(56).Banik et al(55)

looked at the effect of carbon, homogenisation and solution heat treatment on the mechanical

properties and microstructure. They found that the homogenisation did not improve high

temperature stress rupture strength.

2.11.3 Thermal ageing

The affects of thermal ageing were studied by Seavers and Beltran(56)on heat treated blank

charpy impact specimens at 760°C and 870°C for up to 8,000 hours. The charpy tests were

conducted at room temperature and showed a reduction in charpy energy with time at

temperature, the maximum reduction occurring after 1,000 hours. The samples aged at 870·C

showed an increase in charpy energy with exposure time peaking at 4,000 hours and

decreasing to a minimum at 8,000 hours. The results were considered to show GTD 222 at

870°C is slowly over aged with exposure time with environmentally induced embrittlement

affects dominating after 4,000 hours.

2.11.4 Oxidation and hot corrosion

Seavers and Beltran(56)reported the results of small burner rig tests carried out on GTD 222.

Hot corrosion tests were carried out using doped diesel oil containing 1% sulphur and

125ppm sodium at a fuel to air ratio of 50:1. The samples were air quenched to room

temperature every 50 hours. Oxidation tests were carried out in undoped natural gas

combustion products. Metallographic measurements were made to determine average

surface metal loss and maximum subsurface penetration, including internal oxidation or

sulphidisation. The tests showed that GTD 222 is more resistant to Type II corrosion at 730·C

than FSX 414. However, with increasing temperature and a shift to Type Ihot corrosion FSX

414 had superior resistance to corrosion. The natural gas oxidation tests showed the

oxidation resistance and the rate of internal oxidation of FSX 414 to be better than GTD 222

above 870·C. Aluminide coatings are recommended for temperatures above 870·C.

2.11.5 Rejuvenation and repair

Gamma prime strengthened nickel based superalloys exhibit sensitivity to strain age cracking

when welded. The chemical composition of GTD 222 was balanced to provide good

weldability in thick sections while retaining high creep and fatigue strength with good

castability(56).The alloy definition of weldability as provided by Prager and Shira(57)indicates

that GTD 222 is within the weldable range (Figure 2.19).
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Figure 2.19 Diagram showing the weldability of nickel based alloys as a function of
aluminium and titanium content with some common nickel based alloys
marked(S7).

Tungsten inert gas arc welding trials using Nimonic 263, GTD 222 and Waspaloy filler metals

showed that the room temperature, 650°C and 760°C tensile strength of all three filler

materials exceeded that of cast GTD 222. Short time cross weld stress rupture tests at

temperatures between 785°C and 930°C failed in the weld with the Waspaloy tests at 825°C

and 865°C failing in the HAZ. U groove patch tests for the Nimonic 263 and GTD 222 were

acceptable after post weld heat treatment and simulated service at 760°C for 3,000 hours.

The Waspaloy weldments showed minor HAZ fissuring. No post age cracking was noted on

the samples.
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2.12 MAR M509

MAR M509 is a high strength, carbide-strengthened, vacuum cast cobalt-based superalloy

developed by Martin Metals Company in 1964-5. The alloy was primarily developed as a gas

turbine vane alloy where longer service lives at lower stress levels were required(58.59.60).

Currently the alloy is used for turbine vanes in a number of land based gas turbines(61).

2.12.1 Composition

Originally the alloy was developed with a chromium content of 21.5 wt.% which was later

increased to 23.5 wt.% to improve oxidation resistance (Table 2.8). Castability of the alloy

was improved by manipulating the zirconium content down from 0.4%-0.6 wt.% to 0.15 wt.%
to avoid mould interaction problems(59.60).

Co Cr Ni W Ta Ti Zr C Mn Si B Fe S

21.0- 9.0- 6.5- 3.0- 0.15- 0.40- 0.55- 0.10 0.40 0.01 1.50 0.015
Bal.

24.0 11.0 7.5 4.0 0.60 0.650.25 max. max. max. max. max.

Table 2.8 MAR M509 Compositional limits (wt.%).

In MAR M509 tungsten and chromium are solid-solution strengtheners; carbon, tantalum,

titanium, zirconium and chromium are carbide formers. The carbides formed in MAR M509

are MC carbides rich in tantalum, titanium and zirconium, and M23Cs carbides rich in

chromium. Chromium also plays an important role in contrOlling the oxidation and hot

corrosion resistance of the alloy. Nickel is added to stabilize the FCC matrix(2).

2.12.2 Microstructure and heat treatment

MAR M509 is generally used in the as-cast condition and the microstructure is typically

composed of dendrites of the FCC (yCo) solid solution and interdendritic network of "Chinese

script" MC carbides. In addition, there are interdendritic eutectics consisting of mixtures of the

yCo solid solution and carbides. The carbides in these eutectics may be M23Cs,MsC or M7C3,

depending on the alloy composition(47). The MsC and M7C3 phases convert into M23Csand/or

MC on heating. Two forms of eutectic are evident: a coarser eutectic consisting of M23C6
particles in a matrix of yCo, and a finer eutectic consisting of yCo particles in an M23Cs
matrix(59,62,63).Above 1040°C the solubility of M23Cs and MC increase with increasing

temperature with MC being more stable than M23C6.Carbides provide the major strengthening

mechanism and aUmechanical properties are influenced by the shape, size, distribution, and

stability of the carbides(2,59,s2.64).Woulds and Cass(59)consider the M23Cscarbide to be (Cr 0.77

Co 0.17WO.03 (Ni,Ta)0.03h3Cs.which can be represented approximately by the formula

(Cr18C04WTa)Cs. The investigation by V Biss(63)gave the MC carbide as (Ta11C04Cr3ZrTi)C20
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and the M23C6eutectics as (Cr1sCo6WNi)C6for the coarse eutectic and (Cr11Co9Ni2W)Csfor

the fine eutectic.

If not used in the as-cast condition, the component heat treatment is generally limited to

solutioning and ageing to control the precipitation of the M23C6carbides. Solutioning for 4

hours at 1275°C dissolves most of the as-cast M23C6grain boundary carbides and some

intragranular carbides. Solutioning generally increases ductility and this treatment is often

useful for improving alloy weldability. Ageing after solution heat treatment for 24 hours at

925°C produces M23C6and MC in a number of forms including agglomerated carbides, fine

semi coherent precipitates and Widmanstatten plates on the {111} planes of the matrix. This

heat treatment improves tensile strength but reduces tensile ductility compared to that of as-

cast material.

2.12.3 Mould reactivity

Mould reactivity or Intercarbidic Oxidation (ICO) is a problem with MAR M509 particularly in

thick sections (Figure 2.20). 'ICO' is evident as particles of Zr02 close to the surface of the

casting. It is generally believed that the higher the mould preheat temperature and the higher

the superheat, the greater the extent of the 'ICO,(60).Casting in air also leads to far greater

'ICO', for this reason MAR M509 is cast under vacuum. Even then the components may have

to be surface ground to remove the 'ICO' affected layer.

Figure 2.20 Photomicrograph of intercarbidic oxidation at surface of MAR M509
casting.

Some of the explanations for 'ICO' are:

• With the mould in contact with the metal, zirconium and oxygen diffuse into the MC

carbides and tantalum diffuses from the carbide into the surrounding matrix(S5).
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• Zirconium in the molten alloy reacts with less stable oxides in the mould face coat

such as silica. The reaction product is zirconia in the casting surface. Since the

solubility of zirconium is low in both nickel and cobalt-based superalloys, the bulk of

the zirconium is located in the grain boundaries(SS).

There are similar mould reaction problems with other alloys that contain highly reactive

elements such as hafnium, yttrium and lanthanum.

'ICO' is thought to be detrimental to the performance of a component since the oxidised

carbide could act as a crack initiator at the grain boundaries, and because it can lead to poor

coatability for both diffusion and overlay coatings. It is considered that cobalt-based

superalloys with high zirconium contents always have to be vacuum cast to minimise 'ICO'.

However, cobalt-based superalloys are air cast due to cost considerations and 'ICO' affected

areas are then mechanically removed by belt sander.

To minimise 'ICO', the composition of MAR M509 has been modified reducing zirconium

content from 0.4-0.6% to 0.05% in alloy EeY76a.

2.12.4 Thermal ageing

Morrow et al(41)reported that samples aged for 1,000 hours at 815°C showed coalescence

and coarsening of the interdendritic and eutectic carbides with precipitation of secondary

phases in the yeo dendrites in areas adjacent to the interdendritic eutectics. The second

phase precipitates were considered to be M23Cs,MsC,M1C3or a combination of these. The

precipitates were often observed in directional patterns characteristic of Widmanstatten

carbide precipitation or preferential nucleation of carbides on stacking faults in the yeo solid

solution.

Drapier et al(S2)investigated the microstructural stability of MAR M509 in samples aged at

temperatures from aoo to 1200°C. Thin foil transmission electron microscopy showed, after

100 hours at aoooe the presence of fine (100-250 A) tantalum carbides on the {111} planes of

the matrix. With longer times the carbides coarsened, and after 250 hours the carbides were

of the order 125 to 300A with semi coherent M23Cscarbides evident on the {111} planes with

dimensions typically 200 to 500A. After 1,000 hours semi coherent and non coherent tantalum

carbides were apparent with isolated coarse M23esparticles. The microstructure of samples

aged at 900DCand 1000DCwere essentially similar with the secondary carbides increasing in

size with both time and temperature. The tantalum carbide in the 500 hours 1000DCsample

had typical dimensions 300A to 1000A. Stress enhanced the precipitation reaction and

favoured the loss of coherency of the precipitate particles. The precipitation reactions were

noted up to 11OODCwhere after prolonged exposure the M23Cs carbide went into solution and

the MC carbides coalesced. At 1200DCall the carbides, except the tantalum carbides which

coalesced, were in solution. A similar investigation on samples aged at 815DC for 1,000
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hours(63) showed the presence of fine tantalum carbide precipitates along matrix

crystallographic planes (Figure 2.21). Woulds and Cass(59) report that M7C3 is formed in large

castings with slow cooling rates. The carbide is usually contiguous to MC with an almost total

absence of the M23C6- Y matrix eutectics.

Of interest is the report by Morral et al(67)which identifies the phases in MAR M509 as MC,

M23C6 and a (CoCrW) unidentified phase. Beltran et al(64)considered MAR M509 to have a

high degree of phase stability and did not detect Laves, 0 or J..l that form in other superalloys

during long-term high temperature exposure in any of his samples.

Figure 2.21 TEM extraction replica showing fine tantalum carbide on matrix planes
in MAR M509(63).

The age hardening response of as-cast MAR M509 during ageing at various temperatures is

shown in Figure 2.22(62). Drapier et al(62)considered the initial increase in hardness over the

first 10 hour period to be the result of the precipitation of fine semi-coherent carbides. The

decrease evident in the 900°C and 950°C hardness, after -4500 hours, is considered to be

the result of significant carbide coarsening. The trend evident at 11OO°C, where the hardness

decreases appreciably after a slight increase is likely to be the result of carbide coalescence

and carbide solutioning.
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Figure 2.22 Plot of hardness against ageing time for MAR M509 taken from Drapier
et al using Ungraph(62).

2.12.5 Oxidation and hot corrosion

Most cobalt-based superalloys are less oxidation resistant than the aluminium containing

nickel based superalloys. Cobalt-based superalloys rely on Cr203 scale formation for

oxidation resistance, this oxide is less stable and protective than the AI203scale that forms on

high strength nickel based superalloys'". The alloy chemistry of MAR M509 was designed to

ensure that no protective coating was required for oxidation and corrosion resistance during

service under both static and cyclic loading conditions(6B).The general matrix oxidation of

MAR M509 is consistent with simple Co-Cr binary alloys where a layered oxide structure

forms with Cr203 at the oxide-alloy interface and CoO at the air-oxide interface(69,70).Cobalt-

based superalioys are, however, more hot corrosion resistant than nickel based superalloys

and are thus useful for industrial and marine turbine appucatlons't".

2.12.6 Rejuvenation and repair

The weldability of MAR M509 is considered satisfactory with care. Chase and Beltran(43)

found hot cracking in the HAZ to be the main problem with gas tungsten arc welds. The hot

cracking was primarily associated with carbide precipitation. The pseudo-eutectic M23Cs

carbides undergo remelting in the fusion zone during welding. Solidification, diffusion,

nucleation and growth produces carbides with a higher surface area to volume ratio in the

HAZ, which enhances brittle crack propagation. The Chinese script tantalum rich MC carbide

in MAR M509 plays little or no role in weld hot cracking as it is considered stable to the

melting point of MAR M509. Since the MC carbide does not go into solution, the post weld

heat treatment is ineffective in terms of altering MC morphology or distribution.
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Recommended precautions to limit hot cracking are minimising both the heat input and the
volume of weld metal.

MAR-M918 was identified as the best filler alloy for the gas tungsten arc process that was
least likely to induce hot cracking. It was also determined that a solution heat treatment prior
to welding significantly reduces hot-cracking.

In addition to the tungsten inert gas process (TIG), Chase and Beltran(43)studied electron
beam welding. In the electron beam process no filler alloy is required. The highly
concentrated electron beam heat source produces a smaller molten volume, less shrinkage
and a narrower HAl than the tungsten inert gas process. The base material was solutioned at
1230°C for 4 hours prior to welding. The as-welded material properties show similar trends to
those observed in TIG welded material. All the tests carried out on the tungsten inert gas and
electron beam welds in the as-welded and welded/solutioned specimens were reported to
have failed in the parent material.

2.13 NiCoCrAIY Coating

Overlay coatings of the NiCoCrAIY type are used extensively for their oxidation resistance in
hot section components in gas turbine engines. The addition of cobalt significantly improves
coating ductility over the NiCrAIY and CoCrAIY coatings(4).Commercial NiCoCrAIY coatings
are based on the VFCC and ~ (NiCo)AI phases but they may in addition contain phases such
as V', aCr and cr(CrCo)(40).

Baufeld et al(42)describe thermo-mechanical fatigue testing of a NiCoCrAIYRe bond coat with
a 7 wt.% Y203 stabilised Zr02 top coat on a MAR M509 substrate. No microstructural analysis
of the coating is reported other than to comment on the failure of the bond coat which was
facilitated by a very brittle chromium-carbide phase, which formed at high temperatures at the
interface between the MAR M509 and the bond coat. Czech et al(71)report the microstructure
of the aged NiCoCrAIYRe bond coat as V-(Ni,Cr) matrix with grains of ~- NiAl, o-cr and a-

(Co,Cr).

Quadakkers(40)notes that in coatings which possess a high chromium activity, precipitation of
fine carbides can occur throughout the coating or as a near continuous band at the
coating/substrate interface. The carbides form as a result of the affinity of chromium for
carbon which diffuses from the substrate into the coating. In addition V· stabilising elements
such as tantalum and titanium have been found to diffuse from the substrate through the
coating. After long time's tantalum can form brittle intermetallic compounds at the
coatinglTGO interface and titanium can promote chromia formation, thereby hampering the
protective alumina scale.

47



Chapter2 Literature Survey

Rehfeldt et al(72)confirmed by selected area electron diffraction the presence of ~, y' and a
high chromium phase in an as sprayed NiCoCrAIY coating. Although the lattice structure of
the high chromium phase could not be determined uniquely it was considered that the high
chromium content (-60 at.%) pointed to a phase. EDS results from the SEM and TEM are
detailed in Table 2.9.

Ni er Co AI Si Hf Y

Nominal bulk composition 42.11 16.51 18.0 22.46 0.54 0.04 0.34

13 in bond coat * 45 8 14 31 1 1

13 in bond coat •• 41 12 15 29 1 2

V' in bond coat * 36 26 24 12 1 1

V' in bond coat ** 37 23 24 14 1 1

V' single phase alloy·* 34 27 26 11 1 1

Cr rich phase in bond 16 68 9 5 2
*measured by TEM/EDS
** measured by SEM/EDS

Table 2.9 Composition of the bond coat phases Identified In a NiCoCrAIY coating
In the as sprayed condition(72}(at.%).

Hasegawa and Kagawa(73)investigated the changes in the microstructure of a NiCoCrAIY
bond coat following heat treatment at 1150°C for up to 100 hours. The initial microstructure of
the bond coat was considered to be a fine mixture of ~ and v'. EDS measurements of the
phases are detailed in Table 2.10.

·A~~i~~)ti~;·I-··-·~~as~ _ u.~r:=-r:= -..AI
o . :1As-sprayed BC 143:6H118.2 116.8 u 21.4

10 IB~ight(v/v')' 144.1 :121:1 20.4 14.4

50 1Bright (v> 150.0 i117.5 17.6 14.9pIBright(v>152.8 :116.5 18.4 12.3

loark(I3>147.7 :19.4 5.3 37.6

. loark(I3>149.018.7 15.6 :36.7

Table 2.10 EDS composition of an as sprayed NiCoCrAIY and the EDS composition
of bright and dark phases after ageing(73)(wt.%).

Measurements of the width of the outer (Zone I.) and inner (Zone Ib)denuded zones and the
central p and y' layer (Zone II) were taken and plotted (Figure 2.23). The results show that
after 100 hours the central p and y' layer had disappeared. The authors suggest that as the
total thickness of Zone I and Zone II are almost the same (hzone,l+hzone,b+hzonell-100 urn) the
thickness of the bond coat layer is independent of heat exposure time itt.
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Figure 2.23 Thickness of Zones I and II in the bond coat layer as a function of heat
exposure time(73).

Amdry 997 is a NiCoCrAIY coating with 3.5-4.5 wt.% tantalum. The addition of tantalum to a

NiCoCrAIY coatings is reported to act as a solid solution strengthener for y and v', reduce

interdiffusion of nickel, improve oxidation and hot corrosion resistance and reduce the thermal

expansion coefficient(74). Researchers have also suggested that tantalum ties up titanium and

carbon diffusing from the substrate into the overlay coating, preventing these elements from

decreasing the oxidation resistance of the coating(75).

There are no reports dealing with Amdry 997 on a MAR M509 substrate however a small

number of reports dealing with Amdry 997 have been identified. Frances et al(76)carried out

oxidation studies of an Amdry 997 coating on cast Amdry 997 plates. Cast Amdry 997 plates

were used to avoid interdiffusion between the substrate and coating. The coated samples

were given an homogenisation heat treatment of 48 hours at 1100°C in argon followed by

ageing for 800 hours at 850°C. The coating phases were identified by EDS as y, y', ~, o and

MsY. The EDS compositions from the report are detailed in Table 2.11.

wt.% Ni Co Cr AI Ta Y

Amdry
40.2-48.3 22-24 18-21 7.5-9.5 3.5-4.5 0.7-0.8997

V 38.9 28.4 24.8 4 3.9

V 9.4 12.9 6.1 8.9 12.7

P 58.5 13.9 6.2 20.6 0.8

a 13.8 29 55.6 0.6 1

MsY 58.1 8.1 2.7 5.8 25.3

Table 2.11 EDS composition of phases in Amdry 997 coating aged for 800 hours at
850°C(76) (wt.%).
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Wells(9)identified the initial coating phases in Amdry 997 as V and ~ phase plus white spots

the composition of the phases are detailed in Table 2.12.

Ni Co Cr AI Ta W Y 0 Hf

V 36.2 26.7 24.3 5.6 3.7 1.8

13 54.7 15.3 7.1 18.7 1.0

white 44.8 12.3 5.0 6.9 17.5 7.4 2.4 1.0 2.3

Table 2.12 EDS composition of coating phases in as deposited Amdry 997 coating(9)
(wt.%).

Di Martino(77)investigated the microstructural changes that occurred as a result of thermal

exposure of Amdry 9970n a DCTe substrate. In the as-received condition, the coating

microstructure was considered to comprise V domains containing finely dispersed V' and ~

phase (Table 2.13).

Ni Co Cr AI Ta Ti

V/V' 63.5- 10.5- 4.0- 7.5- 7.8- 0.5-
64.4 12.1 5.2 9.0 9.7 1.6

13 59.4- 11.6- 4.0- 15.3- 1.7-
60.7 13.3 5.5 20.0 4.5

Table 2.13 EDS analysis of as sprayed coating phases In Amdry 997 coating on
DeT6 substrate(77) (wt.%).

The effects of ageing time and temperature on the bulk microstructure of the coating is

summarised in Table 2.14.

Ageing Ageing time Bulk coating microstructuretemperature

850·C 200-10,000 hrs V, V· and 13 (transformation of 13 to y' visible after 2,000 hours)

950·C 200-10,000 hrs V, y' and 13 (13 not identified after 5,000 hours)

1000·C 1,000 hr V and V· (a small volume fraction of 13was evident in centre of
coating)

1050·C 200-10,000 hrs Coarse V· and small fraction of 13 in V matrix. (13 no longer evident
after 2,000 hours, bulk of coating V after 10,000 hours)

Tantalum and titanium rich carbides and yttrium rich precipitates
evident in coating after 10,000 hours.

Table 2.14 Bulk coating microstructural changes in Amdry 997 on DeT6 substrate
as a result of ageing between 850.1050oe for times up to 10,000 hours(77).
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2.14 Summary

This chapter has reviewed a number of different aspects of materials used for gas turbine

engines, primarily for power generation. Cobalt-based superalloys used in gas turbines are

normally characterised by a cobalt-chromium FCC matrix containing second phases, which

are principally carbides. Components can be used in the as-cast, forged or heat treated

condition. The heat treatment generally consists of a solution treatment followed by ageing to

precipitate fine carbides. The primary carbides are metastable and subsequent ageing or

service at high temperatures will result in secondary carbide preclpltation and carbide

degeneration. The strength of a cobalt superalloy is derived from both solid solution and

precipitation strengthening. Primary carbides inhibit grain boundary sliding, whereas fine

secondary carbides pin dislocations. The weldability of cobalt-based superalloys is

considered to be generally good.

Three specific superalloys used for these applications have been discussed in detail,

particularly with respect to the formation of second phases during service. The carbides

formed in the three superalloys reviewed are:

FSX 414 - Primary carbides are Cr rich M23Cs eutectic carbides with secondary M23Cs

carbides forming during heat treatment and service.

NP 222 - Primary carbides are Ta, Ti, Nb rich MC carbides with Cr rich M23Cs carbides

forming on the grain boundaries during heat treatment.

MAR M509 - Primary carbides are Ta rich MC carbides and Cr rich M23Cseutectic carbides

with secondary M23Cs carbides forming during heat treatment and service.

In service the components may be subject to high temperature oxidation, corrosion and

erosion as a result of the working environment. In aggressive environments the components

may be coated with high temperature oxidation and corrosion resistant coatings. As the

turbine inlet temperatures rise, to gain improvements in efficiency, the use of thermal barrier

coatings has become necessary to limit the temperature of the components. The application

and type of coatings oxidation/corrosion resistance have been discussed with particular

emphasis on NiCoCrAIY overlay coatings.

Microstructural changes as a function of temperature and time in service will form a large part

of the experimental work within this thesis and the results are discussed in the context of

predicting the remaining service life of components in subsequent chapters.
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3 Experimental Methods

This investigation covers the characterisation of two cobalt-based superalloys, FSX 414, MAR

M509 and a high cobalt (19 wt.%) nickel superalloy NP 222. In addition the effects of a

NiCoCrAITaY coating on the MAR M509 superalloy have been investigated. This chapter

discusses the materials investigated, the test techniques employed and the analytical

methods employed.

The techniques used to analyse the samples include Vickers hardness testing, optical

microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EOS),

wavelength dispersive spectroscopy (WOS) and X-ray diffraction (XRO). In addition, a

focused ion beam field emission gun scanning electron microscope (FIB FEGSEM) has been

used to produce thin foils for transmission electron microscopy (TEM) and parallel electron

energy loss spectroscopy (PEELS). Thermodynamic equilibrium calculations were carried out

for all of the materials by means of the JMatPro software package developed by
Thermotech(1).

3.1 Materials

3.1.1 Superalloys

The chemical compositions of the three sets of samples used in the present study are shown

in Table 3;1. The superalloys were vacuum melted and cast into plates 50 mm wide, 100 mm

long and 6 mm thick. Casting conditions were controlled to give a grain size equivalent to that

found in cast vanes. The FSX 414 and NP 222 plates were given standard solution and

precipitation heat treatment described in Table 3.2. After heat treatment the FSX 414 and NP

222 plates and the as-cast MAR M509 plates were aged at 800, 850, 900, 950, 1000 and

1050°C for times up to 25,000 hours in air.

Sections were cut from the aged plates for metallographic preparation (optical and SEM),

hardness measurements and carbide extraction. The optical and SEM cobalt-based samples

were electrolytically etched in 10% hydrochloric acid in methanol and the nickel based

samples in a solution of 1% citric acid, 1% ammonium sulphate in water. Etching the cobalt-

based superalloys in 10% hydrochloric acid in methanol dissolves the matrix leaving the

carbides and secondary phases in relief. Etching the nickel based NP 222 in 1% citric acid,

1% ammonium sulphate dissolves the matrix leaving the V', carbides and secondary phases

in relief.

52



Chapter3 Experimental Methods

FSX414 MARM509 NP222

C 0.24 0.6 0.09

Si 0.78 0.07 0.03

Mn 0.54 0.01 <0.01

P 0.006 0.005 <0.005

S 0.005 0.002 <0.001

Cr 30.0 23.7 22.4

Mo 0.14 0.05 0.01

Ni 10.4 9.96 balance

AI 0.01 0.18 1.22

Co balance balance 19.0

Nb - 0.03 0.82

Ti - 0.21 2.37

Ta - 3.62 0.97

V - 0.01 0.01

W 7.2 6.97 2.06

Fe 0.72 0.3 0.03

B 0.011 <0.001 0.007

Zr <0.01 0.33 0.02

Table 3.1 Chemical composition of cast plate samples FSX 414, NP 222 and MAR
M509 (XRF), wt.%.

Alloy Standard heat treatment

FSX 414 Solution: 1150°C ±10°C in vacuum for 4 hours. Argon gas fan quench

Precipitation: 980°C ± 10°C in vacuum for 4 hrs. Argon gas fan quench

NP222 Solution: 1150°C ± 1Qoe in vacuum for 4 hours. Argon gas fan quench

Precipitation: 80Qoe ± 5°C in vacuum for 8 hours. Argon gas fan quench

Table 3.2 FSX 414 and NP 222 plate solution and precipitation heat treatments
prior to ageing.
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3.1.2 Coated samples

The coating trials were carried out on cast plates of MAR M509 with and without inter-carbidic

oxidation (Figure 3.1). Inter-carbidic oxidation is covered in Chapter 2.12.3.

EHT • 20.00 kV WO, 15 mm Signal A • OBSO

Figure 3.1 SEM BSE micrograph showing 'ICO' adjacent to the outer surface of the
MAR M509 cast sample.

The 100 mm long 50 mm wide plates were cut to produce 40 mm square 6 mm thick samples.

Before coating half of the samples were surface ground removing 0.5 mm of material from all

surfaces removing all traces of 'ICO' from the samples. Coating of the samples was carried

out by a commercial coating company to an existing coating specification. Both sets of

samples were coated with a three layer system of low pressure plasma spray (LPPS) MCrAIY

bond coat, LPPS MCrAIY key coat and APS thermal barrier coating (TBC). The alloy for the

bond coat was Amdry 997 (NiCoCrAITaY), the key coat Amdry 962 (NiCrAIY) and the TBC,

Sulzer Metco 204 B-NS 8 wt.% yttria stabilized zirconia. The specified composition of the

Amdry 997 and Amdry 962 alloys are given in Table 3.3.

The bond coat thickness was specified as 225 ± 25 IJm, the key coat thickness as 15-30 IJm

and the TBC thickness as 200 ± 50 IJm.On completion of the bond coat and key coat, and

prior to air plasma spraying (APS) of the ceramic TBC, the parts were heat treated in vacuum

at 1000 ± 10°C for 4 hours followed by an argon gas fan quench to ambient temp at 40-

50°C/min.
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wt.% Ni Cr Co AI Ta Y

Amdry 997 47.6 20 23 8.4 4 0.6

Amdry 962 Bal 21-23 9-11 0.8-1.0

Amdry 997 as 44.5 19.7 22.9 7.8 4.6 0.5

deposited EDS

Table 3.3 Amdry 997 and Amdry 962 specified coating compositions, and EDS
measurements of the coating bulk analysis prior to ageing (wt.%).

The coated samples were aged at 800, 850, 900, 950 and 1000°C for times up to 25,000

hours. One sample was used at each temperature with sections cut from the samples at

1,000, 2,000, 5,000, 10,000, 15,000, 20,000 and 25,000 hours. Additional samples were

taken from the 1000°C sample at 500 and 3,000 hours. Ageing of the 1000°C sample stopped

at 15,000 hours when the entire sample had been used.

For the purpose of the metallurgical investigation the coating was broadly split into the

following areas (Figure 3.2):

Outer denuded layer - forms on the outer edge of the coating local to the thermally grown

oxide, no V' or ~.

Bulk - central section of coating with y' and/or ~ present.

Inner layer - local to interface with increased levels of V' and or ccr when compared to the

bulk.

Inner denuded layer - forms local to the interface with no V' or 13 present.

Interface - junction between bond coat and MAR M509 substrate.

Interdiffusion layer - local to the interface in the MAR M509 where microstructural changes

have occurred.

It should be noted that the inner layer and the inner denuded layer exist at the same position

at different times of the coating life (mutually exclusive).
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Coating

MAR M509

Figure 3.2 Schematic diagram illustrating the positions of the layers formed in the
coating and the interdiffusion layer with the substrate.

3.2 Optical Microscopy

Following preparation and etching the samples were examined on an Olympus SX60M optical

microscope. Optical microscopy allows a rapid assessment of the quality of sample

preparation and any microstructural changes in the samples. Optical images were taken on a

Reichert MeF-3 microscope with an attached digital camera.

3.3 Scanning Electron Microscopy (SEM)

Samples were examined on a Leo 1455 VP SEM equipped with a fixed backscattered

electron detector at accelerating voltages of 15-20kV. The SEM is fitted with Oxford

Instruments EDS and WDS systems for measuring chemical composition.

Images in the SEM were viewed either in secondary electron (SE) or backscatter (SSE)

modes. Secondary electrons have low energies « 50 eV) and are created from the near

surface of the sample. Secondary electrons are therefore sensitive to topography, giving good

resolution and depth of field, see for example Figure 3.3.

Sackscattered electrons, with energies greater than 50 eV, are produced within the interaction

volume beneath the incident beam illustrated in Figure 3.4. The major advantage of

backscattered electrons is that the intensity of the signal is proportional to the atomic number

of the elements from which it is derived, which results in higher atomic number elements

appearing brighter than lower atomic number elements. The image from the backscatter

detector shows little if any topographical information. However, the backscatter detector can

have four quadrants so that if two are switched off then a mixed image showing topographical
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and compositional information can be obtained. For MAR M509 using the backscatter imaging

mode the tantalum rich MC carbides are white, whereas the chromium rich M23Ce carbides

and the y matrix are grey due to the difference in atomic number contrast (Figure 3.5).

Figure 3.3 SEM SE image of MAR M509 showing tantalum rich and chromium rich
carbides.
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Figure 3.4 Illustration of interaction volume for different electron-specimen
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Figure 3.5 SEM SSE image of MAR M509 showing tantalum rich carbides (white)
and chromium rich carbide (grey).

3.4 Energy and Wavelength Dispersive Spectroscopy (EDS and WDS)

Both EDS and WDS use the characteristic X-rays generated from a sample bombarded with

electrons to identify the elemental constituents in the sample. By determining the energies or

wavelengths of the X-rays emitted, the elements present in the sample can be identified

(qualitative analysis). The rate at which the characteristic X-rays are detected is used to

measure the amounts of elements present (quantitative analysis). Both EDS and WDS collect

X-rays to identify individual elemental components in a sample but with different approaches.

In EDS data are collected for all energies and are displayed as a histogram of counts versus

X-ray energy. In WDS separation of the characteristic x-rays emitted by the specimen

according to their wavelengths is based upon diffraction according to Braggs law

" = 2dsin9

By using suitable diffraction crystals, the constituent wavelengths of the characteristic

spectrum emitted by the specimen can be split and detected at different spectrometer

positions. The main advantages of WDS are better peak resolution and peak separation with

an increased peak to background ratio. The combination of better resolution and the ability to

deal with higher count rates allows WDS to detect elements at typically an order of magnitude

lower concentration than EDS. The improved resolution of WDS allows lines to be resolved

that are obscured by peak overlaps in the EDS spectrum. Analysis by WDS is slow and is

therefore used only for elements whose peaks overlap or where increased accuracy is

required.
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The current work has been carried out using an Oxford Link Pentafet ISIS system and

Microspec WOS-400 attached to a Leo 1455 VP SEM operating Oxford INCA Energy+

software. The INCA Energy+ software combines the outputs of the EOS and WOS

spectrometers to provide a single analysis.

Analysis was carried out at a gun voltage of 15 - 20 kV with cobalt as the quantitative

optimization standard. The quantitative calibration is used to establish spectrometer gain and

effective beam current. Elements were entered into the program using the standardless

analysis option. Unless stated the totals are normalised to 100%. The normalisation is carried

out by altering the effective value of the beam current internally so that the sum of apparent

concentrations totals 100%.

Both EDS and WDS allow the determination of the composition of phases and particles that

are larger than the interaction volume. If the size of the particle is comparable to or smaller

than the beam spot size or thinner than the interaction volume, the composition obtained will

contain contributions from the surrounding phases. Only phases with a surface width >21!m

were analysed. A number of phases in the samples were smaller than 211m, in these cases

the composition is considered to be indicative only and were further investigated by TEM.

For each EDSIWDS analysis given in the current work a minimum of 10 phases with a similar

elemental signature were analysed and the results averaged.

The EDS detector attached to the Leo 1455 VP SEM has a beryllium window which precludes

the quantitative analysis of oxygen. However if oxygen is present it will be detected and will

show as an oxygen peak on the EDS trace.

It is considered that WOS can detect carbon but requires additional carbon standards to give

a quantitative result. For the purpose of this investigation any carbon analysis is considered to

be indicative only.

3.5 Identification of phases

Three microscopes were used for identifying phases: an FEI Nova Nano Lab 600 dual beam

(FEG-SEM/FIB) system, a Jeol 200FX TEM fitted with Oxford INCA X sight and a Philips

Tecnai F20 FEG TEM with an Oxford LINK ISIS 300 EDS system and a GATAN DigiPEELS

spectrometer.

3.5.1 TEM sample preparation (FEG SEM/FIB)

Within this research, early attempts to produce TEM samples by carbon extraction replicas

and perforated electropolished thin foils proved problematic due to the large carbides present

in the cobalt superalloys. However, specimens were prepared for TEM directly from the bulk

SEM samples by focused ion beam (FIB) milling using a FEI Nova Nano Lab 600 dual beam
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(FEG-SEM/FIB) system. The FEI Nova Nano Lab 600 system, using the "lift out" technique,

provides a rapid method of manufacturing electron transparent cross sections from a specific

site of interest.

The sequence of operation to produce a thin foil for the TEM is shown in Figure 3.6. The first

part of the sequence is carried out automatically after the area of interest has been defined.

A platinum layer -1 IJm wide is deposited across the area of interest to mark the area and to

protect the underlying surface from subsequent ion beam milling. Trenches are cut either side

of the platinum line (Figure 3.6 (a». The sample is tilted (7°) and the bottom and sides of the

specimen are cut (Figure 3.6 (b)) leaving a small ligament on either side. The rest of the

sequence is carried out under manual control. A tungsten extraction needle (Omniprobe

micromanipulator) is FIB micro welded with platinum to the sample (Figure 3.6 (c». The

sample is cut away (Figure 3.6 (d», manipulated to and micro welded to a TEM grid. The

extraction needle is cut away from the specimen (Figure 3.6 (e» and further thinning is carried

out by FIB milling at successively smaller beam currents to enable the production of a uniform

thin section (Figure 3.6 (d». The maximum apparent thickness of the lift out specimen in the

FIB SEM is considered to be 100 nm.

The milling conditions used to produce the samples after lift out are

Initial thinning - beam current 1 nA - sample -750 nm thick

Second stage polishing - beam current 0.5 nA - sample thickness reduced to -500 nm.

Final polishing - beam current 0.1 nA - sample thickness reduced to ...250 nm.

The initial stage of polishing is carried out on both sides of the sample at an angle 1.2° either

side of straight down (straight down is 52°). The final stage of polishing is carried out at 1°

either side of straight down. All ion milling is carried out at 30 kV.
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Figure 3.6 FIB SEM sequence illustrating (a) (b) initial milling, (c) (d) lift out and (d)
thin foil attached to a TEM grid and (e) final thinning of thin foil.
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3.6 Transmission Electron Microscopy (TEM)

Selected area electron diffraction using thin foils is one of the most reliable methods available

for the identification of unknown precipitates. The precipitates of interest are chosen using a

selected area aperture and a corresponding diffraction pattern is obtained (Figure 3.7).

Figure 3.7 TEM selected area diffraction pattern.
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Figure 3.8 Schematic diagram of the geometry of diffraction in transmission
electron microscopy.
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In electron diffraction the distance measured between two different spots on a pattern Rhkl

(Figure 3.8) is related to the spacing dhklfor the planes of Bragg indices hkl by;

Rhkldhkl= LA = camera constant

Where L is the camera length and A is the wavelength associated with the electrons for a

given accelerating voltage. The camera length used for this work was 100 mm and the

wavelength 0.025 A at 200kV.

Two electron diffraction patterns were obtained at different specimen positions from each of

the phases under examination. Figure 3.9 shows a selected area diffraction pattern. The spot

electron diffraction patterns were indexed by selecting a base plane of spots, measuring the

distance between spots (R1) on this plane and then measuring the position of two further

spots (R2 and R3) and their angle with the base plane (81-2 and 81-3).

Figure 3.9 Diffraction pattern illustrating measurement of spot distances and
angles.

The measurements were processed using the Cambridge University Practical Crystallography

software Version 1.6(79). Table 3.4 details the crystal structure and lattice parameters used to

index the electron diffraction patterns.
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Phase Basic crystal structure
Lattice parameter A

PDF card
ao Co (bo)

AI203 Hexagonal 5.544 9.024 26-31

A1203a Hexagonal 4.758 12.991 10-173

A120313 Hexagonal 5.64 22.65 10-414

AI203Y Cubic 7.9 10-425

AI2036 Tetragonal 7.943 23.5 16-394

AINi Cubic 2.887 20-19

AINia Cubic 3.561 9-97

y' FCC 3.561 - 3.568 ("I

AIaNi Orthorhombic 6.598 4.802 2-416

AbNi2 Hexagonal 4.036 4.9 14-648

AINi2Ti Cubic 5.85 19-36

Nb Ti (rl) Hexagonal 5.093 8.276 5-723

I'J Hexagonal 5.09-5.12 8.31-8.35 (~U)

NiaAl Tetragonal 3.78 3.28 21-8

Nb{AITi) Cubic 3.575 18-872

C02W Hexagonal 4.73 7.70 (!:I()

C03W Hexagonal 5.13 4.128 2-1298

C07WS{~) Hexagonal 4.751 25.67 2-1091

crCo Tetragonal 8.81 4.56 9-52

NiCoCr (0) Tetragonal 8.85 4.59 21-1271

Laves Hexagonal 4.75 -4.95 7.70-8.15 (".DU)

C03WSC. Hexagonal 7.826 7.826 6-616

C03W3C FCC 11.112 27-1125

CosWsC FCC 10.897 23-939

Cl" (a) Cubic 2.8839 6-694

TaC Cubic 4.4555 19-1292
{TiTaNb)C FCC 4.3-4.7 (4.aU)

(CoCrNi)23Ce Cubic 10.64 11-545

Cr23CS Cubic 10.638 14-407

M23CS FCC 10-5-10.8 (".DU)

MsC FCC 10.85-11.75 (4)

Cr7C3 Hex (trig) 13.98 4.523 11-550

Cr7C3 Orthoganal 7.02 4.53 36-1482
(12.15)

M7C3 Hexagonal 13.982 4.506 (4)

Cr3C2 Orthorhombic 11.46 2.821 14-406

Cr2C Hexagonal 2.79 4.46 14-519

Zr Hexagonal 3.232 5.147 5-665
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Phase Basic crystal structure
Lattice parameter A

PDF card
ao Co (bo)

Zr Hexagonal 5.039 3.136 26-1399

ZrO FCC 4.62 20-684

Zr02 Cubic 5.09 27-997

Zr02 Tetragonal 3.64 5.27 24-1164

Zr02 Tetragonal 5.12 5.25 17-923

Zr02 Hexagonal 3.643 9.05 37-31

Zr02 Monoclinic 5.1477 5.3156 13-307

ZrOO.35 Hexagonal 5.6295 5.1975 17-385

Zr03 Rhombohedral 5.563 31.185 22-1025

Y203 BCC 10.604 25-1200

Y203 Hexagonal 3.81 6.08 20-1412

YOUS8 Monoclinic 14.009 8.791 39-1063
(3.5)
96.76·

YAI Cubic 3.754 20-66

AIaY Hexagonal 6.26 4.58 30-50

AI2Y FCC 7.86 29-103

YAb Rhombohedral 6.20 21.13 20-67

YAb Cubic 4.32 20-70

YaAI2 Tetragonal 8.24 7.65 20-73

YsAb Hexagonal 8.84 6.5 39-775

Table 3.4 Details of crystal structure and lattice parameters tested to Index
electron diffraction patterns.

3.6.1 Parallel Electron Energy Loss Spectrometry (PEELS)

In order to detect the presence of carbon, particularly in the samples containing chromium
rich precipitates, the thin foils were examined in a Philips Tecnai F20 FEG TEM with a super-
twin objective lens (operated at 200 kV). Attached to the microscope are an Oxford LINK ISIS
300 EDS system and a GATAN DigiPEELS spectrometer. The PEELS system measures the
electron energy losses which occur when electrons are reflected or scattered from a solid.
The measurement of energy loss in the TEM is limited to thin foils where an electron will
undergo a single inelastic collision. The GATAN DigiPEELS spectrometer is in the bottom of
the FEG TEM column below the viewing screen. The spectrometer produces a spectrum of
the energy distribution in the transmitted electrons relative to the primary beam energy. Most
of the electrons in the spectrum are found in the initial zero loss peak and in loss peaks
involving interactions with valency or conduction electrons, up to "'50 eV loss. Beyond this is a
smoothly falling background which has superimposed on it the ionisation edge of atoms
whose x-ray absorption energies are reached (Figure 3.10). These are the peaks used for
analysis. Information on chemical bonding, molecular structure and dielectric constant may be
obtained from a study of energy loss curves. The resolution of fine structure depends on the

65



Chapter3 Experimental Methods

design of the spectrometer and on the energy spread of the primary electron beam. The

technique has been found to be most useful when applied to steels to determine the presence

of the light elements C, N, 0 and B which are difficult to detect by EDS.

Details of the peak positions are detailed in the EELS atlas(81). The peaks of interest in this

investigation are as follows;

Carbon = 283.8 eV

Chromium = 574 eV

Nickel = 854 eV

Cobalt = 779 eV

lOlO~~----~~----~------~------~--~
.Zero-Joss

Counts
Plasmon
I NiM.,.,I -..>

10\\1 energy loss; .
High energy Joss------1

l02~~--------~------~---------~----~~o 200 400 600 800
Energy-Le (eV)

Figure 3.10 Schematic diagram of PEELS output illustrating the zero loss and
plasmon peaks and the nickel and oxygen ionisation edges.

3.7 X-RayDiffraction (XRD)

To measure the type and volume fraction of carbides present in the samples, the carbides

were separated from the matrix by a bulk electrolytic extraction method. The electrolyte used

was 10% hydrochloric acid, 1% tartaric acid in methanol. The technique dissolves the y matrix

in the cobalt-based superalloys and in the case of NP 222 the y matrix and the y' phase. After

3 hours of extraction the electrolyte was centrifuged to separate the extract and the

electrolyte. The samples before and after extraction and the dried extract were weighed to an

accuracy of ± 5 IJg.
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The extract was deposited on a silicon wafer and placed in a Siemens D500 diffractometer

with a copper tube at 40 kV and 40 mA. The samples were scanned between 20° and 120° 29

at an angle step interval of 0.02° and a step time of 7 seconds.

Analysis of the resultant trace was carried out using DiffracPlus software and the Powder

Diffraction File. The DiffracPlus software allows measurement of the net area under a peak.

This technique was used on the MAR M509 XRD traces to obtain a ratio between the

amounts of MC and M23C6carbides. Prior to measuring the net area, the background and the

Ka2peaks were stripped from the trace. Peak areas were measured for the TaC peaks (111)

and (200) and the Cr23C6 peaks (420) and (511) (Figure 3.11). Additional measurements of

the peak heights were taken from the same peaks to provide a second measure of the MC

and M23C6carbide ratio.
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Figure 3.11 MAR M509 XRD trace illustrating peaks used for MC:M23C6 assessment.

The TaC (111) and (200) peaks are the largest peaks with intensities on the PDF files of 100

and 80% respectively. It was noted that on a number of the traces examined the (200) peak

was higher than the (111) peak possibly as a result of the carbides acicular shape. The Cr23C6

peaks (420) and (511) are identified in the PDF file as the 80 and 100% intensity peaks

respectively and are in the same area of the trace as the TaC peaks.
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3.8 Image Analysis

Image analysis was carried out using Leica QWin image analysis software. The QWin

software takes an image and digitises it into picture elements or 'pixels'. At each pixel the

brightness of the image is sampled and it is this digitised representation that is analysed.

Figure 3.12 SEM BSE image of MAR M509 MC carbide used for image analysis
(1,000 hrs 1000°C).

Image analysis was carried out on the MC carbides in the MAR M509 as-cast samples. In the

backscatter imaging mode the MC carbide is white as a result of the high atomic number of

the elements within the carbide; the matrix and the M23Cs carbides are dark grey in

comparison (Figure 3.12). Twenty images were taken from each sample at a magnification of

500 in backscatter mode. At this magnification approximately 100 carbides were evident on

each image. No software image manipulation was applied. Each image was analysed, and

the results were then averaged and plotted against temperature.

A number of trials were carried out to increase the contrast between the M23Cs carbides (MAR

M509 and FSX 414) and the matrix to allow image analysis. However, the results were

inconclusive. One of the major problems with the M23Cs carbides is the high level of

segregation of the fine carbides. Low magnification images would have been required to

average out the high and low areas of fine M23Cs carbides. However, at low magnification the

resolution would have precluded measurement of a large number of the fine carbides.

3.9 Thermodynamic Equilibrium Calculations

3.9.1 JMatPro

The software used for the current investigation is JMatPro (Java-based Material Properties

software) described as a multi platform software programme developed to predict material
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properties for a wide range of rnulti-cornponent alloy types'". The software allows calculations

for stable and metastable phase equilibrium; solidification behaviour and properties; thermo-

physical and physical properties; phase transformations; chemical properties; and mechanical

properties for nickel and iron based superalloys. The approach adopted in the development of

the programme was to augment the thermodynamic calculation by incorporating various

theoretical models and property databases that make a quantitative calculation for the

materials property within a larger software structure'". The thermodynamic calculations utilise

core minimisation routines developed for the PMLFKT software programme by Lukas(82) and

recently extended by Kattner et al(83)to multi component alloys.

The JMatPro(1) software package allows the determination of the phases present and their

composition within the alloy microstructure at thermodynamic equilibrium as a function of

temperature. The software is easy to use with a main input window from which the material

base type is identified and the composition of the alloy is entered. For the current programme

the nickel database was used with the alloy compositions identified in Table 3.1 and 3.3. The

start and finish temperatures for the step temperature calculation and the step size are

identified and unless otherwise stated all phases are allowed to exist. The output is described

as a temperature step plot identifying the phases (wt.%) present over the temperature range

chosen, see for example Figure 3.13.
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Figure 3.13 Example of a thermodynamic calculation, temperature step plot for alloy
IN 939 generated in JMatPro.

In addition the composition of the phases can be displayed (Figure 3.14) by choosing the

phase from a pop up menu.
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Figure 3.14 Example of a composition profile for MC carbide in alloy IN 939
generated in JMatPro.

An additional calculation is the concentration stepping calculation which allows the

concentration of a single element to be varied across a concentration range at a single

temperature. The initial inputs are, the element to be varied, the balancing element, the

concentration range start and stop limits and the step size. The default setting takes all

phases into account but phases can be excluded. The output from the calculation, Figure

3.15, is called a concentration step plot and shows in this case the effect of varying aluminium

on the phases formed in IN 939.

70



Chapter3 Experimental Methods

90

Q)
III

~ 50
Q.

'#. 40

§
30

.GAMMA
9ETA
.MC
.MB2
.GAMMA_PRIME
+M23CS
.SIGMA

10

o~~~~ .. ~ ~~~~~
0.5 1.5 2.5

Wt%AL

T= 900.OC (Balance: NI)

Figure 3.15 Example of a concentration step plot at 900°C, changing aluminium
balancing with nickel for alloy IN 939, generated in JMatPro.

The software used was version 4.0 in which the materials database includes cobalt but is not

optimised for cobalt-based superalioys. The current programme has used the nickel based

materials database. The full database contains the elements:

• Ni, AI, Co, Cr, Fe, Hf, Mo, Mn, Nb, Re, Ru, Si, Ta, Ti, W, Zr, B, C, N with data for the

following phases.

• Liquid, y, v', NiAI, Ni3Nb, v", '1, Ni4Mo, o-NiMo, a(Cr,Mo,W), Laves, 0, 1-1, R, P,

M(C,N), M23(BC)s, MsC, M7(BCh, M2N, M3B, (FeNihB, (Cr,MohB, M3S2, MS, CrSS3,

TiS2, Ni3Si, NisSi, Cr3Si, Cr3NisSi2.
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4 Characterisation and discussion of alloy FSX 414

FSX 414 is a conventionally cast cobalt-based superalloy with modest rupture strength and
excellent oxidation and hot corrosion resistance. The as-cast microstructure consists of
dendrites of FCC (V-Co solid solution) and interdendritic eutectic M23Ce carbides, at the grain

boundaries and within the y matrix. As a result of heat treatment or service the carbides can
be partially solutioned and precipitated as more finely divided M23Ce carbides around the
original carbides(5l.

This chapter presents and discusses the outcome of the experimental work carried out to
characterise alloy FSX 414 and to develop an understanding of the microstructural changes
that occur in cobalt-based superalloys, with both time and temperature. Cast samples were
given a standard solution and precipitation heat treatment, typical of that used for industrial
turbine vanes, as detailed in Table 3.2. The samples were then aged in air at temperatures
ranging from 850 to 10S0°C,for exposure times up to 25,000 hours, as detailed in Chapter 3.
The chemical composition of FSX 414 used in this study is given in Table 3.1.

A detailed microstructural characterisation was carried out by means of optical and scanning
electron microscopy. Additional thin foils were produced by FIB SEM for electron diffraction in
a TEM in order to conclusively identify the unknown phases. The results of thermodynamic
equilibrium calculations performed using JMatPro are presented, followed by the results from
EDS, XRD and hardness measurements.

4.1 Microstructural Observations

The identification of the phases was initially based on EDS chemical composition
measurements and comparison with representative compositions found in the literature.

The microstructure following the standard heat treatment is shown in Figure 4.1. The original
dendritic pattern is evident with primary M23Ce eutectics and fine secondary M23Ce carbide
outlining the original dendritic structure. Large areas of the V matrix are optically devoid of
precipitates.

The primary eutectic carbide appears in three forms as shown in Figure 4.2; fine eutectic;
coarse eutectic; and an open eutectic.

The secondary M23Ce carbides vary in size with fine carbides typically 0.1 urn in diameter
interspersed with coarse cubic and rod shaped carbides -5 pm long as shown in Figure 4.2.
Grain boundaries may be evident at a number of positions. At higher magnification precipitate
free zones (PFZ) are evident around the primary carbides.
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Mag = 500 X EHT = 20.00 kV WO = 10 mm Signal A .. SE1

Figure 4.1 FSX 414 SEM SE image showing dendritic structure of the samples after
a solution and precipitation heat treatment showing dendritic pattern of
primary eutectic and secondary M23C6 carbides.

Mag.. 800X EHT = 20.00 kV WO. 9 mm Signal A • SEl Date :2 Nov 2004

Figure 4.2 FSX 414 SEM SE image showing structure of primary coarse, fine and
open M23C6 eutectic carbides and small secondary M23C&carbides.

73



Chapter4 FSX414

The samples aged at 850°C, 900°C and 950°C show similar microstructures to the initial heat

treatment sample, with no change in the primary eutectic or secondary carbides, however,

there are additional secondary carbides in the previously precipitate free V matrix (Figure 4.3).

With increasing time and temperature the secondary carbides coarsen. However, 0.1 IJm

secondary carbides are still evident after 25,000 hours at these temperatures. At 1000°C and

1050°C the M23CS carbide eutectics start to coalesce into large blocky carbides with a

reduced level of secondary carbides evident. The 1050°C 10,000 and 15,000 hours samples

show extensive oxidation, through the full 6mm thickness of the 15,000 hour sample, with

visual changes in the coalesced carbides evident both optically and in the SEM (Figure 4.4).

In SEM backscatter mode a large blocky -10 IJm (light grey) phase is evident in association

with the M23CSeutectic carbides in all of the 850°C and 900°C samples at times greater than

5,000 hours (Figure 4.5). The samples at 950°C and above show no evidence of this phase.

The lack of the blocky phase on the samples aged for less than 5,000 hours and the presence

of the blocky phase in close association with the M23C6 eutectic carbides suggests that the

blocky phase has initiated on the M23C6 carbides during ageing. In addition to the blocky

phase, the backscatter image of the 850°C and 900°C (Figure 4.5) and to a lesser extent the

950°C samples, show small particles of a white phase in backscatter mode, again associated

with the M23CS carbides. The white phase was not evident in the initial sample, following the

solution and precipitation heat treatment, but is evident in the aged samples from 1,000 -

25,000 hours.

In summary the eutectic M23C6 carbides show some evidence of consolidation, at the higher

1000°C and 1050°C ageing temperatures. With increasing time and temperature the

secondary M23CScarbides coarsen. However, fine secondary M23CScarbides are still evident

in the 25,000 hour 1050°C samples. The 1050°C 15,000 hours sample is oxidised through the

full6mm sample thickness. Of interest is the presence of a white phase, in backscatter mode,

in all samples aged at temperatures less than 950°C. A large blocky phase is also evident in

the samples aged at 850 and 900°C for 5,000 hours and above.

The optical and SEM observations for the aged samples are summarised in Table 4.1. The

table refers to Laves and a phases identified previously as the white phase and large blocky

phase respectively. Both phases have been identified by electron diffraction (see section 4.4).

Representative SEM micrographs of the 1,000, 5,000, 15,000 and 25,000 hour samples are

contained in Figure 4.6 - 4.10 and show more clearly the changes in the microstructure with

time and temperature.
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MIg D 1.00KX EHT .. 20.00 kV WO = 8 mm Signal A· SE1 Oat. :2 Nov 2004

Figure 4.3 SEM SE image showing primary eutectic and secondary M23C6 carbides
in FSX 414 matrix (10,000 hrs gOOOe).

Figure 4.4 FSX 414 SEM SE image showing blocky coalesced M23C6 carbide (grey)
low tungsten black (10,000 hrs 1050°C).
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EHT"15.00kV WO" 25mm SignaIA=QBSOMag= 1.S0KX Innogy

Figure 4.5 SEM SE image of FSX 414 showing high tungsten and blocky phases in
sample aged at 900°C for 10,000 hrs.
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Chapter4 FSX414

4.2 Phase Composition (EDS)

SEM EDS analysis of the coarse M23CScarbides and secondary phases are detailed in Table

4.2 - 4.4 respectively. The results are the mean values of ten spot analyses taken from

phases with a similar elemental signature from each sample, the analyses are normalised to

100 wt.%. Figure 4.11 shows plots of chromium, tungsten and cobalt from Table 4.2. Nickel

and molybdenum have been neglected due to their small concentrations. In general the

results show an increase in chromium and a reduction in tungsten and cobalt with both time

and temperature. Overall the results show a consolidation of the carbide analysis with the

initial -5 wt.% variation in the chromium and cobalt content evident in the samples at 850-

950°C and at 1,000 and 5,000 hours reducing with time and temperature to a -2 wt.%

variation between samples at the longer times. Error bands have not been shown in the plots

due to the very small variations in the mean analysis between samples. The carbide analysis

(Table 4.2) at 1050°C shows that for some of the carbides, identified as black in Table 4.2,

the chromium has increased, tungsten and cobalt levels have dropped significantly in the

10,000 and 15,000 hour samples. The reduction in tungsten and cobalt may be the result of

the oxidation of the carbides at the highest exposure temperature. No further work has been

carried out to confirm if the crystallography of the carbides has changed.

Foster and Sims(44) considered that the M23Cs carbides in this alloy probably existed as

Cr21W2CSwhereas the M23Cecarbides in the current samples are approximately Cr1SC03W2Ce.

The Laves phase particles are less than 2 IJm in size hence the EDS analysis of the phase

should be considered qualitative rather than quantitative. The EDS analysis results for Laves

and a are shown in Table 4.3 and Table 4.4 respectively. Plots of the chromium, tungsten and

cobalt are detailed in Figure 4.12 and Figure 4.13 for Laves and a respectively. The results

show that the concentrations do not change with temperature or time. Representative

compositions for Laves phase and a would be, Laves 55 wt.% W, 25 wt.% Co, 14 wt.% Cr

and 3 wt.% Ni, a 43 wt.% Cr, 36 wt.% Co, 15 wt.% Wand 5 wt.% Ni.
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Time hrs Temp °C Cr Co Ni Mo W

1,000 850 66.6 12.6 1.9 0.5 18.5

900 66.6 12.6 2.2 0.5 18.1

950 68.6 10.8 1.9 0.5 18.2

1000 70.9 9.4 1.8 0.4 17.5

1050 71.4 9.6 1.8 0.4 16.8

5,000 850 67.3 12.2 2.1 0.5 17.9

900 68.0 11.5 2.1 0.6 18.0

950 70.0 8.7 1.8 0.5 18.1

1000 71.7 9.1 1.8 0.4 17.1

1050 71.9 9.4 1.8 0.4 16.4

10,000 850 68.2 11.6 2.1 0.5 17.7

900 69.3 10.7 1.8 0.6 17.7

950 71.1 8.0 1.7 0.4 17.7

1000 72.4 8.7 1.8 0.4 16.8

1050 12.7 9.5 1.7 0.4 16.3

Black 1050 93.4 1.6 0.3 4.6

15,000 850 68.9 10.5 1.9 1.0 17.6

900 70.3 9.0 1.9 1.3 17.6

950 71.7 7.9 1.9 1.1 17.4

1000 12.3 8.8 1.7 0.4 16.8

1050 71.9 9.9 1.9 0.4 15.8

Black 1050 93.7 1.6 0.3 0.1 4.4

20,000 850 70.2 9.0 1.9 1.4 17.5

900 71.5 8.6 1.7 0.9 17.4

950 72.5 8.1 1.7 0.3 17.4

1000 12.6 8.5 1.6 0.4 16.9

25,000 850 70.8 9.1 1.8 0.6 17.7

900 71.2 9.0 2.0 0.5 17.3

950 72.1 7.9 1.8 1.2 17.0

1000 72.4 8.6 1.7 0.5 16.8

Table 4.2 FSX 414 SEM EDS mean analysis of primary M23C. carbide eutectic
(normalised to 100 wt.%).
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(a) Chromium
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Figure 4.11 FSX 414 M23CS carbide analysis (a) chromium (b) tungsten and (c) cobalt
respectively plotted as a function of temperature and time (wt.%).
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Time hrs Temp ·C Cr Co Ni Mo W

5,000 850 14.5 25.8 3.2 0.4 56.1

900 14.4 25.7 2.9 0.2 56.9

950 14.4 25.4 2.8 0.2 57.4

10,000 850 13.9 25.9 3.0 0.4 56.9

900 13.5 25.8 2.9 0.2 57.6

950 14.2 25.4 2.8 0.3 57.2

15,000 850 13.7 25.6 2.9 0.3 57.5

900 13.6 25.2 2.9 1.8 56.5

950 13.7 25.2 2.9 1.5 56.7

20,000 850 13.4 25.0 2.9 2.0 56.8

900 13.6 25.4 2.9 0.2 58.0

25,000 850 13.7 25.5 2.9 0.3 57.7

900 13.2 25.4 2.7 0.3 58.5

Table 4.3 FSX 414 SEM EDS analysis of Laves phase, white phase In SEM back
scatter mode (normalised to 100 wt.%).

Time hrs Temp ·C Cr Co Ni Mo W

5,000 850 44.0 36.2 5.0 0.4 14.4

900 43.0 36.0 4.9 0.4 15.7

10,000 850 43.7 36.1 4.8 0.4 15.0

900 42.2 36.4 4.9 0.5 16.0

15,000 850 43.2 36.1 4.9 0.4 15.4

900 41.7 36.2 4.9 0.6 16.6

20,000 850 42.7 35.7 4.9 1.1 15.6

900 41.0 36.3 4.9 0.3 17.6

25,000 850 43.2 36.3 4.8 0.4 15.3

900 41.0 36.3 4.7 0.5 17.5

Table 4.4 FSX 414 SEM EDS analysis of a phase, blocky light grey phase In SEM
backscatter mode (normalised to 100 wt.%).
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4.3 Thermodynamic Equilibrium Predictions

This section presents thermodynamic equilibrium predictions for alloy FSX 414 carried out

using JMatPro software. FSX 414 is a cobalt-based superalloy, JMatPro does not have a

cobalt-based superalloy database therefore all of the following thermodynamic predictions are

based upon the nickel superalloy database. The sample composition in Table 3.1 has been

used for all JMatPro calculations.

In this programme of work the JMatPro software has been used to predict the equilibrium

phases that would form over a specified range of temperatures. In using this software it has

been assumed that no phase transformations occur on cooling. To validate this assumption

FSX 414 samples aged at 8500e and 10500e for 12,000 hours were water quenched. These

samples were compared with samples cooled in still air. Optically there was no variation

between the air cooled and water quenched samples. Examination of the samples in the SEM

confirmed that all the secondary phases found previously were evident in both samples. EDS

analysis showed no significant changes in the chemical analysis of the carbides or secondary

phases between the quenched samples and those slowly cooled.

The JMatPro software allows the exclusion of phases from the calculations. The initial

calculations were carried out with all phases included. At equilibrium the JMatPro software

predicts gamma, M23CScarbide, a and Il and a very small amount of MC carbide to be the

equilibrium phases. Indexing of diffraction patterns (Chapter 4.4) confirmed the two phases,

other than the M23CScarbides, found in the FSX 414 samples were a phase (light grey) and

Laves phase (white phase). Removing Il phase from the JMatPro calculation and allowing the

calculation down to 700oe, Laves phase is predicted (0.6 wt.%) at 700°C. Small changes in

gamma, M23CSand a were also observed. Laves phase is not predicted above 725°C or at

700°C with Il allowed in the calculation. In the aged samples Laves phase is evident at 850°,

900°C and to a lesser degree at 950°C with a evident at 850°C and 900°C (Table 4.1).

The predicted changes in the mass of the phases are: V increasing from 89 wt.% at 850°C to

95 wt.% at 900°C and remains constant at this level to 1100°C, M23CScarbide reduces from

approximately -4.8 wt.% at 8500e to -4.4 wt. % at 10500e and a phase reduces from -5 wt. %

at 850°C to 0 wt.% at 9000e (Figure 4.14).

JMatPro predicts small changes in the composition of M23CSas a function of temperature.

With increasing temperature JMatPro predicts chromium reduces from 72 wt.% to 67 wt.%,

tungsten increases from 11 wt.% to 13 wt.% and cobalt increases from 10 wt. % to 12 wt.%

over the 850-1050°C temperature range. Carbon remains constant at 4.9 wt.%. JMatPro

indicates that a and Laves phase should have relatively constant compositions over the short

temperature range they are predicted to exist.
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Figure 4.12 FSX 414 Laves phase EDS analysis plots of chromium, cobalt and
tungsten respectively plotted as a function of time (wt.%).
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Figure 4.13 FSX 414 a phase EDS analysis plots of chromium, cobalt and tungsten
respectively plotted as a function of time (wt.%).
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4.3 Thermodynamic Equilibrium Predictions

This section presents thermodynamic equilibrium predictions for alloy FSX 414 carried out

using JMatPro software. FSX 414 is a cobalt-based superalloy, JMatPro does not have a

cobalt-based superalloy database therefore all of the following thermodynamic predictions are

based upon the nickel superalloy database. The sample composition in Table 3.1 has been

used for all JMatPro calculations.

In this programme of work the JMatPro software has been used to predict the equilibrium

phases that would form over a specified range of temperatures. In using this software it has

been assumed that no phase transformations occur on cooling. To validate this assumption

FSX 414 samples aged at 850°C and 1050°C for 12,000 hours were water quenched. These

samples were compared with samples cooled in still air. Optically there was no variation

between the air cooled and water quenched samples. Examination of the samples in the SEM

confirmed that all the secondary phases found previously were evident in both samples. EDS

analysis showed no significant changes in the chemical analysis of the carbides or secondary

phases between the quenched samples and those slowly cooled.

The JMatPro software allows the exclusion of phases from the calculations. The initial

calculations were carried out with all phases included. At equilibrium the JMatPro software

predicts gamma, M23CS carbide, a and J.I. and a very small amount of MC carbide to be the

equilibrium phases. Indexing of diffraction patterns (Chapter 4.4) confirmed the two phases,

other than the M23CS carbides, found in the FSX 414 samples were a phase (light grey) and

Laves phase (white phase). Removing J.I. phase from the JMatPro calculation and allowing the

calculation down to 700°C, Laves phase is predicted (0.6 wt.%) at 700°C. Small changes in

gamma, M23CS and a were also observed. Laves phase is not predicted above 725°C or at

700°C with J.I. allowed in the calculation. In the aged samples Laves phase is evident at 850°,

900°C and to a lesser degree at 950°C with a evident at 850°C and 900°C (Table 4.1).

The predicted changes in the mass of the phases are: y increasing from 89 wt. % at 850°C to

95 wt. % at 900°C and remains constant at this level to 11OO°C, M23C6 carbide reduces from

approximately -4.8 wt. % at 850°C to -4.4 wt. % at 1050°C and a phase reduces from -5 wt. %

at 850°C to 0 wt.% at 900°C (Figure 4.14).

JMatPro predicts small changes in the composition of M23CS as a function of temperature.

With increasing temperature JMatPro predicts chromium reduces from 72 wt.% to 67 wt.%,

tungsten increases from 11 wt.% to 13 wt.% and cobalt increases from 10 wt.% to 12 wt.%

over the 850-1050°C temperature range. Carbon remains constant at 4.9 wt.%. JMatPro

indicates that a and Laves phase should have relatively constant compositions over the short

temperature range they are predicted to exist.
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Figure 4.14 FSX 414 JMatPro prediction of (a) equilibrium phases (b) rescaled.
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Temp °C Cr Co W Ni C

850 (EOS) 65.0 9.7 16.9 1.6 6.7

JMatPro 71.8 10.1 11.1 0.8 4.9

900 (EOS) 66.7 8.5 16.3 1.8 6.7

JMatPro 70.5 10.2 12.1 0.9 4.9

950 (EOS) 87.0 8.5 18.4 1.8 6.6

JMatPro 69.3 10.9 12.4 1.0 4.9

1000 (EOS) 67.8 8.2 15.3 1.6 7.1

JMatPro 68.4 11.5 12.8 1.1 4.8

1050 (EOS) 67.3 8.5 15.3 1.7 7.2

JMatPro 67.4 12.2 13.1 1.3 4.8

Table 4.5 MasC,carbide, JMatPro predicted composition and SEM EDS FSX 414
results for 15,000 hour samples aged from 850-1050°C (wt.%).

~: I _'j_, ••.. ", .. ' ','

Phase System Cr Co W .. Ni

a SEM EOS 43 36 15 5
;

'.

JMatPro 42 40 15 3

TEM EOS 37 39 20 4

Laves SEM EOS . 14 26 58 3

JMatPro (700°C) 5.3 30 62 2

TEMEOS 19 26 52 3

Table 4.8 FSX 414 EDS (25,000 hrs 850°C), SEM, JMatPro and TEM results for a
and Laves (wt.%).
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4.4 Unknown Phase Identification (Electron diffraction)

Figure 4.18 and 4.19 show thin foil samples removed from the 10,000 hour 850°C sample by

FIB SEM. The figures show a TEM image of the thin foil sample and the corresponding

selected area electron diffraction patterns for both phases. The electron diffraction patterns

were indexed using the Cambridge University Practical Crystallography software Version

1.6(79).The phases investigated were V, ~, 11,0, Laves MC, MaC and M23Ca. Indexing of the

patterns confirmed the white phase as Laves phase (C02W, hexagonal lattice, parameter a,
4.75A CO 7.9A) and the blocky phase as 0 (crco, tetragonal, lattice parameter ao 8.81 A, Co

4.56 A).

The chemical compositions of the phases were determined in the TEM by EDS and are

compared with the SEM EDS results in Table 4.6. There are variations in the measured

compositions for both phases. The larger variations "'6 wt.% are in the chromium and

tungsten concentrations. There is no systematic variation other than when the chromium is

low the tungsten is high and vica versa. The 0 TEM EDS values show lower chromium and

higher tungsten than the SEM EDS values whereas the Laves phase TEM EDS chromium is

higher and the tungsten lower than the SEM EDS values. The lower SEM EDS chromium

value for Laves phase was unexpected as the Laves phase is associated with the chromium

rich M23C6 carbide and it was expected that as a result of the small size of the Laves phase

the electron beam would overlap on to chromium rich M23Ce carbide resulting in higher

chromium values. It should be noted that the SEM EDS result are the mean value from ten

spot analyses whereas the TEM EDS result is the mean of two analyses. The variations in

composition evident in Table 4.6 are probably less the result of the equipment more an

indication of the variation in the composition of the phases found in the samples.
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(a)

FSX414

(b)

Figure 4.18 FSX 414 (a) FIB SEM image, sample position (b) TEM image of thin foil
and diffraction pattern indexed as C1 (CrCo tetragonal lattice parameter
a, 8.81A, CO 4.56A).
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Laves phase

Figure 4.19 FSX 414 (a) FIB SEM image sample position (b) TEM image of thin foil
and diffraction pattern indexed as laves phase (Co2W lattice parameter
a, 4.7SA CO 7.9A).
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4.5 Carbide extract and XRD

To measure the type and volume fraction of carbides present in the samples, the carbides
were separated from the matrix by a bulk electrolytic extraction method. The electrolyte used

was 10% hydrochloric acid, 1% tartaric acid in methanol. The technique dissolves the y matrix
leaving the carbides as sediment. For further details see Chapter 3.7.

The results of the carbide extraction are detailed in Figure 4.20 and show a relatively constant
extract weight for the 1,000, 2,000 and 5,000 hour samples. The 10,000 hour samples show a
significant increase in the 850°C and 1050°C samples with smaller increases in the 900°C
and 1000°C samples. A repeat extraction was performed on the 5,000 and 10,000 hours
samples which showed the same trend and a reasonable level of repeatability. The large
increase for the 10,000 hour sample at 850°C and to a lesser extent at 900°C may be
attributable to the formation of a and Laves phase (Figure 4.21). The increase in the carbide
extraction at 1000°C and 1050°C is the result of the pickup of chromium nitrides evident in the
trace from the 10,000 hour 1050°C sample (Figure 4.22). The use of the weight of extract to
show any changes in the volume of the M23CS carbide with time or temperature was
prevented by the presence of the two additional phases (Laves and a). The maximum weight
of extract from the samples was 0.025 g after a three hour extraction. The total extract for X-
ray diffraction of the 10,000 hour 850°C sample gave ...5.4 wt.%. The figures from JMatPro
would predict the weight percentage of carbide and second phases as ...10wt.% at 850°C.

The XRD traces are dominated by the M23CScarbide phase. Additional peaks evident on the
850°C and 900°C 5,000 and 10,000 hour traces are in reasonable agreement with a (CoCr)
and Laves (C02W) phase (Figure 4.21). Additional peaks evident on the 5,000 and 10,000
hour 1050°C traces are in reasonable agreement with Cr2Nand Cr2C(Figure 4.22). The peak
positions for Cr2N and Cr2C are very similar and it is considered that the peaks are actually
from Cr2N particles which have formed within the oxidised layer and have not been removed

prior to the extraction process. I.l. phase did not fit with the data. Details of the phases
identified from the XRD traces are given in Table 4.7.
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Figure 4.20 FSX 414 weight of carbide extracted for all samples plotted as a function
of (a) temperature and (b) time (wt.%).
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Chapter 4 FSX 414

Temp·C 1,000 hrs 2,000 hrs 5,000 hrs 10,000 hrs

850 M23C, M23C, M2,Ce M23Ce

Laves Laves Laves

a a
900 M23C, M23Ce M23Ce M23C,

Laves Laves Laves

a a
950 M23C, M23C, M23C, M23Ce

1000 M23Ce M23Ce ~3Ce M23Ce

1050 M23Ce M23Ce M23Cesmail M23Ce

Cr2N CraN

Table 4.7 FSX 414 phases identified from XRD traces.
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4.6 Hardness

Hardness measurements would, if there were significant changes in the hardness as a result

of ageing, be the ideal method for predicting temperature or time of components taken out of

service. The results Figure 4.23 (a) for temperature show a drop in hardness of -30 HV20as

the ageing temperature increases from 850°C to 950°C. There is no significant change in

hardness between 950°C and 1050°C. The results do not show any systematic changes with

ageing time The results plotted against time Figure 4.23 (b) show a consistent drop in

hardness with ageing temperature (850-1000°C) at each time interval and a dip in hardness

from 1,000 to 10,000 hours recovering to approximately the original hardness at 25,000

hours. All of the samples are following a similar trend which would suggest that the formation

of a and Laves (850°C, 900°C and to a lesser extent 950°C) has no significant effect on

hardness. The only other microstructural changes are the precipitation of the secondary

M23CScarbides, the subsequent coarsening of the secondary carbides and the coalescence of

the primary eutectic M23Cscarbides. It is not possible from the information collected in this

investigation to confirm if the precipitation and coalescence of the carbides are responsible for

the changes in hardness. However, the V matrix micro-hardness results, Figure 4.24, show

only a slight drop in hardness with temperature and no evidence of a hardness dip with time.

Micro-hardness measurements of the a phase in the 15,000 hour 850°C sample show

hardness from 900 to 1300 HVo.o5,significantly harder than the matrix.

The small variations in both macro and micro-hardness with both time and temperature would

preclude hardness as a time temperature indicator.
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330

320 ! !310
0

!N

i>
J: i .1000
UI
UI 300 ·5000
Gle ! , " 10000
"E 1 ! .15000
III
J:

f I ·20000290
! " 25000

!2BO i
270

BOO 900 1000 1100
Temperature ·C

FSX414

(b)

330

320 I i
If310~ f>

J: IUI Itil 300 ICl)
s: ii I !"E
III
J: 290 !!

2BO f I
270

0 5000 10000 15000 20000 25000 30000
Time hrs

Figure 4.23 FSX 414 hardness values (error bars - standard error of mean) plotted
as a function of (a) temperature and (b) time.
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Figure 4.24 FSX 414 micro-hardness measured in V matrix plotted as a function of
(a) temperature and (b) time.
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4.7 Image Analysis

Image analysis of the M23CS carbides to determine if the carbides reduced with time and or
temperature was attempted. However, as a result of the highly segregated secondary
carbides and the difficulty in producing the contrast required for image analysis to differentiate
between the M23CS, G, Laves and the y matrix no significant trends could be identified. Image
analysis of the Laves phase was carried out on ten images taken at a magnification of 250.
The 10,000 hour samples gave a mean area % of 1.3 % at 8500e and 0.7 % at 9000e the
25,000 hour samples gave a mean area % of 2.4 % at 850°C and 1.3 % at 900°C. At 950°C
the mean area % dropped to less than 0.2 % for both sets of samples. The variation in the
measured area % was typically ± 0.4 % for the 850°C and 900°C samples, as a result of the
significant segregation across the samples. The results show that Laves phase increases with
increasing time and reduces with increasing temperature.

Pratesi et al(49)consider "A relationship with life and or residual life can be deduced on the
basis of the number of white spots, or their areas or similar parameters.· The report does not
identify the white spots or indicate if there is more than one phase. Images from the report do
appear to show Laves phase and may show G. The report by Mezzedimi et al(45)which
includes Pratesi as an author indicates that the segregation of tungsten carbide and
microanalysis of the particles has been shown to be a method capable of estimating the
exposure of FSX 414 at different temperatures.

The current results show that the levels of Laves phase are low and as such there would be
insufficient difference between the results to allow the prediction of time or temperature.
Additional samples aged at lower temperatures may show higher levels of Laves phase.
However, it is considered that significantly higher levels of Laves phase would not be found at
lower ageing temperatures.

4.8 Denuded layer

Figure 4.25 illustrates the denuded/oxidised layer formed on the exposed surfaces of the
aged samples as a result of oxidation of the carbides. Twenty measurements of the width of
the denuded layer were taken along the sample. For the purpose of this investigation the
width of the denuded layer was considered to be the distance from the outer surface to the
first un-oxidised carbide (primary or secondary). Figure 4.26 is a plot of the mean width of
denuded/oxidised layer against temperature and time with standard error of mean as error
bars. The plots show a correlation with time which would allow the prediction of an operating
temperature for an uncoated vane with a known operating time. The error bars show that the
width of the denuded layer is relatively constant around the samples. Figure 4.27 is a plot of
the mean width of the denuded layer against time~ showing a reasonable linear relationship
between time and the width of the denuded layer. However, the samples were held at a
constant temperature with a very small number of cooling events. It was evident from the
oxide scale in the furnace that spalling of the oxide occurred at temperature. In addition,
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violent spalling of the oxide occurred on cooling the samples to room temperature. Further

work would be required to determine the effects of thermal cycling and composition on the

width of the denuded layer.

Mag= Signal A. SE1

Figure 4.25 SEM SE image of FSX 414 showing denuded/oxidised layer on 15,000
hour 900°C sample.

107



Chapter4 FSX414

(a)

400

!~
!:

en 300 II:
ce lE
o
'j§ I: a:....,..
.l!! 200'0 II:..
'0
:0
C.. •'0

:5 &''0 &'~ 100 •,
II:• •• •, •

0
800 850 900 950 1000 1050 1100

Temperature ·C

(b)

400

en 300
c

I[e
"'E II:....,..
!! 200."
Cl)
'C
:0
C :I:.. •."

:5
'C •§ 100 11= &'

• ..• .. • 11= 11=

• .. •.. 11=..
0

0 5000 10000 15000 20000 25000 30000
Time (hrs)

Figure 4.26 FSX 414 mean width of denuded layer measured on the exposed surface
of the samples (error bars are standard error of mean) plotted as a
function of (a) temperature and (b) time.
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4.9 Summary

XRD and EDS have confirmed that the carbides present in the aged samples of FSX 414 are
primary chromium rich M23C6eutectic carbides and secondary M23Cecarbides. The chromium
rich M23Ce eutectic carbides contain tungsten, cobalt and nickel and can be expressed as
approximately CrsoC011W7Ni2(where the subscript describes the concentration in at.%). The
EDS levels of chromium in the carbides were similar to the JMatPro predictions. However, the
tungsten and cobalt levels were at variance with the JMatPro prediction by 25% and 20%
respectively. Two additional phases were evident in the samples aged at temperatures less
than 950°C; a large blocky phase and a high tungsten phase both associated with the coarse
eutectic M23CScarbides. The phases were identified as 0 and Laves phase respectively by
electron diffraction. JMatPro predicts 0 and Laves phase to be present at lower temperatures
with predicted compositions similar to those determined by EDS. The composition of Laves
phase and 0 determined by EDS is: Laves 55 wt.% W, 25 wt.% Co, 14 wt.% Cr and 3 wt.% Ni
and 0 43 wt.% Cr, 36 wt.% Co, 15 wt.% Wand 5 wt.% Ni. 0 and Laves phase could be used
to indicate qualitatively the operating temperatures and service time experienced. With 0

evident the samples had a metallurgical operating temperature of less than 900°C for times
greater than 5,000 hours. The presence of Laves phase without 0 would indicate a sample
operating at less than 950°C for between 1,000 and 25,000 hours. Further work would be
required to determine the effect of alloy composition on the formation of Laves and 0 phase in
FSX 414.

Image analysis of the carbides was inconclusive due to the large variation in the size of the
primary and secondary carbides. However, it is considered that image analysis of the
secondary M23C6 carbides may provide a correlation with time and temperature. Image
analysis of the Laves phase did show an increase with increasing time and a reduction with
increasing temperature. However, the low levels of Laves in the aged samples would prohibit
the use of this phase for the prediction of time and or temperature in practice.

The use of the weight of extract removed to indicate any changes in the amount of M23Ce
carbide with time or temperature was precluded by the presence of the two additional phases
(0 and Laves phase). The small variations in both macro hardness and the micro-hardness of
the matrix also preclude hardness as a timeltemperature indicator. The width of the denuded
layer evident on the exposed surfaces of the sample could be used to indicate a metallurgical
operating temperature on uncoated samples. However, further work is required to determine
the effect of temperature cycling and composition on the denuded layer formation.
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5 Characterisation and discussion of alloy NP 222

NP 222 is a conventionally cast { (-20%) strengthened nickel based superalloy with a high

level, -19 wt.%, of cobalt. The alloy exhibits a primary tantalum, titanium, niobium rich MC

carbide and a chromium rich grain boundary M23C6 carbide(55).

This chapter presents and discusses the outcome of the experimental work carried out to

characterise alloy NP 222 and to develop an understanding of the microstructural changes

that occur, with both time and temperature, for life prediction, refurbishment and failure

investigations. Cast samples were given a solution and precipitation heat treatment (Table

3.2), typical of that used for industrial turbine vanes, and were subsequently aged in air at

temperatures ranging from 800 to 10S0°C, for exposure times up to 25,000 hours.

A detailed microstructural characterisation was carried out by means of optical and scanning

electron microscopy (SEM). Thin foils containing the unknown phases, identified in the SEM,

were produced by FIB SEM for electron diffraction in a transmission electron microscope

(TEM). The results of thermodynamic equilibrium calculations performed using JMatPro are

presented followed by the results from EDS, XRD and hardness measurements.

5.1 Microstructural Observations

The identification of the phases was initially based on EDS chemical composition

measurements and comparison with representative compositions found in the literature. In

SEM backscatter mode the MC carbides show white, the M23C6 carbides as black and the y'

precipitates as grey due to the difference in the atomic contrast (Figure 5.1 and 5.2).

PIX,ISill. 176.3 nm EHT• 20.00 kV Signal A • aBSO
MDg· 1.&0K X WO· Bmm O.t. :8 Apr 2005

Figure 5.1 SEM BSE image of NP 222 showing grain boundary MC and M23Cs
carbides (1,000 hrs 800DC).
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The microstructure of the samples after the standard heat treatment, prior to ageing consists

of a y matrix, y' precipitates, grain boundary and intergranular MC carbides. M23Cscarbides

could not be resolved on the grain boundaries (Figure 5.2).

Figure 5.2 SEM SE image of NP 222 microstructure following standard solution
and precipitation heat treatment showing V', grain boundary and MC
carbides.

y' is evident in all samples aged from 800 to 950°C and coarsens with both temperature and

time. Grain boundary M23Cscarbides are evident in the 800, 850 and 900°C samples.

Samples aged at 900°C for times greater than 10,000 hours show no M23Cscarbides. No

M23Cscarbide is evident in samples aged at temperatures higher than 950°C.

Fine platelets extending from the grain boundaries were first evident in the 1,000 hour

samples at 950°C and 1000°C and subsequently have been found in all samples aged for

times greater than 2,000 hours at 850 and 900°C and 5,000 hours at 800°C (Figure 5.3). The

platelet phase has been identified by selected area electron diffraction (Chapter 5.4) as r)

phase and will be referred to as r) in this discussion. Initially in the 850°C samples, the 900°C

samples up to 10,000 hours and the 950°C samples up to 5,000 hours r) platelets extended

from the grain boundary and into the matrix with y' free areas forming around the plates

(Figure 5.3). As the r) plates increase in volume and length the y' decreases in volume and

coarsens. In the 950°C samples, aged for times greater than 5,000 hours, r) platelets are

evident throughout the microstructure at the grain boundaries and within the matrix. r)

platelets remain, along with the MC carbides, in all of the 1000°C samples (Figure 5.8). MC

carbide is the only phase present in the 1050°C samples (Figure 5.9).
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The SEM and optical observations for the aged samples are summarised in (Table 5.1).

Representative SEM micrographs of the 1,000, 5,000, 15,000 and 25,000 hour samples are

presented in Figure 5.4 - 5.9 and show more clearly the changes in the microstructure with

time and temperature.

Figure 5.3 Optical micrograph of NP 222 ehowlnq n needles growing from the grain
boundary with gamma free areas (10,000 hours at 850°C).
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Chapter5 NP222

Figure 5.10 is a plot of grain boundary initiated 11needle length against time for the 800 - 950°C

samples. Measurement of the needle length was carried out on a light microscope with an in

eyepiece graticule. Thirty individual needle lengths were measured along the centre line of each

sample. Only needles which had initiated at the grain boundaries were measured, needles which

crossed grain boundaries or other needles were excluded. The results show a series of curves

indicating a correlation between needle length and time. Of interest is that the results show a

maximum needle length for all temperatures at 20,000 hours. Although there is a correlation

between needle length and time, further work is required to determine the effect of the alloy

composition on the initiation and growth of 11needles.

250

200

1If)
eeo
·E 150~ .800-Cl .850c

Il!!
l!! 100 .900
"tl
Q) .950Q)
c
III-W ~50 ~ ! II:

R
II:• • • + +

0
0 5000 10000 15000 20000 25000 30000

Time (hrs)

Figure 5.10 NP 222 measured length of grain boundary initiated I'J needles plotted
against time.

5.2 CarbideComposition

The MC carbide in NP 222 contains tantalum and tungsten which produce overlapping peaks in

the EDS data. With overlapping peaks the EDS software determines the quantity of each element

by fitting known peak profiles to the overlap region. The accuracy of the fitting depends on the

similarity of the peaks in the unknown spectrum to those of the profiles in the EDS database. In

WDS peak overlapping is not a problem as the X-rays are separated using diffraction and

individual wavelengths are detected at different spectrometer positions. The INCA Energy+

software used for the analysis of the MC carbides combines the outputs of the EDS and WDS

spectrometers to provide a single analysis.
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The EDSIWDS analysis results for the MC carbide are summarised in Table 5.2, tantalum and
tungsten values were obtained by WDS. The results show similar levels of tantalum, titanium and
niobium (-31 wt.%) with tungsten at -3 wt.%. An earlier analysis of the carbides by EDS alone
gave a tungsten levels of -7 wt.%. Plots of the mean MC carbide analysis for tantalum, titanium,
niobium and tungsten are contained in Figure 5.11. The temperature plots show none of the large
changes in the MC carbide composition predicted by JMatPro (Chapter S.3) for tantalum and
titanium. The time plots show small reductions in tantalum and tungsten and a small increase in
titanium.

JMatPro predicts the equilibrium composition as a function of temperature. The MC carbides have
formed in the cast alloy at high temperatures and are therefore most likely to have a composition
close to the high temperature prediction of -30 wt.% of tantalum, titanium and niobium. The
predictions indicate that as equilibrium is approached at lower temperatures carbides would
become richer in tantalum at the expense of titanium. The EDSIWDS results show the reverse of
this (Table 5.3).

The EDSIWDS results show no significant changes in the MC carbide composition that would
allow the prediction of time or temperature.

The limitations imposed by the spot size precluded the quantitative EDS measurement of y. and
M23Ca carbides. However, EDS was used to confirm the presence of M23Cacarbides in the
samples where the 11phase peaks dominated the XRD traces (Chapter 5.5).

From the EDS measurements the metallic component of the MC carbide can be expressed as
approximately Ti4sNb26Ta16W3Cr3Ni3Co(where the subscript describes the concentration in at.%).
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Time TemD °C Ti' Cri Co' Ni' Nb' Tab Wb

1,000 800 30.1 1.7 0.9 2.1 30.4 31.5 3.4

850 30.1 1.7 0.9 2.2 31.0 30.9 3.4

900 29.9 1.7 0.9 2.7 31.5 29.7 3.5

950 29.2 1.8 1.1 3.0 31.7 29.8 3.6

1000 29.2 1.5 1.0 2.6 31.6 30.8 3.4

1050 29.0 1.3 0.8 2.2 31.1 32.1 3.6

5,000 800 29.5 1.2 0.9 2.2 30.4 32.6 3.3

850 28.6 1.3 0.7 2.3 30.6 33.4 3.3

900 28.3 1.6 0.9 2.3 30.3 33.4 3.4

950 29.1 1.6 0.9 2.2 30.7 32.2 3.5

1000 29.4 1.7 1.0 2.2 31.9 30.6 3.4

1050 29.7 1.3 0.8 2.2 32.0 30.7 3.4

10,000 800 29.3 1.3 0.8 2.1 30.9 32.5 3.4

850 28.5 1.2 0.8 2.2 30.7 33.2 3.5

900 28.9 1.2 0.8 2.1 30.5 33.2 3.4

950 29.5 1.4 0.8 2.1 30.5 32.4 3.4

1000 29.4 1.5 0.9 2.2 31.5 31.2 3.4

1050 28.3 1.4 0.9 2.2 30.3 33.6 3.4

15,000 800 30.0 1.8 0.9 2.7 32.5 28.7 3.5

850 29.4 1.6 0.9 2.8 33.0 28.6 3.6

900 29.5 1.5 0.8 2.4 32.9 29.6 3.4

950 29.4 1.3 0.8 2.1 32.8 30.3 3.5

1000 29.3 1.6 0.9 2.2 32.6 29.9 3.6

1050 29.4 1.4 0.9 2.4 32.2 30.4 3.4

20,000 800 30.2 1.8 1.0 3.2 32.1 28.5 3.2

850 30.1 1.6 1.2 3.1 33.0 27.7 3.3

900 30.1 1.7 1.0 2.8 33.6 27.7 3.2

950 30.2 1.7 1.0 2.8 32.4 28.7 3.2

1000 30.3 1.5 0.8 2.3 32.3 29.5 3.4

25,000 800 31.0 1.6 1.3 3.2 31.8 27.9 3.2

850 31.0 2.0 1.2 3.8 33.1 26.1 2.9

900 30.6 2.3 1.3 3.6 32.5 26.5 3.2

950 30.7 2.1 1.3 3.7 32.5 26.7 3.1

1000 30.8 2.0 1.3 3.1 31.2 28.5 3.2

EOS analysIs
b WOS analysis

Table 5.2 NP 222 EDSIWDS results for MC carbide (wt.%). Tantalum and tungsten
determined by WDS remaining elements by EDS (normalised to 100 wt.%).
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Chspter5 NP222

wt.% Ti Cr Co Ni Nb Ta AI Zr W

MC carbide

EDS 28.5 1.5 0.8 2.4 30.7 33.4 3.6

JMatPro 20.7 0.2 27.4 38.1 2.0 0.7

11phase

EDS (SEM) 11.7 1.9 8.5 66.1 3.4 5.9 2.5

EDS (TEM) 12.6 1.8 9.8 64.4 4.5 4.1 2.5

JMatPro 14.3 0.3 12.3 64.0 5.6 1.9 1.5

Table 5.3 NP 222 comparison of EDS and JMatPro results for MC carbide and '1 phase
(10,000 hrs 850°C).

5.3 Thermodynamic Equilibrium Predictions

This section presents thermodynamic equilibrium predictions for alloy NP 222 carried out using

JMatPro software. NP 222 is a nickel based superalloy and as such JMatPro using the nickel

based superalloy database should provide a close approximation of the phases present at

equilibrium. The JMatPro calculations are based on the composition of the samples detailed in

Table 3.1.

The JMatPro software is used to predict the equilibrium phases that would form under equilibrium

conditions at the sample ageing temperatures. To compare the JMatPro predictions with the aged

sample it is essential that no phase transformations occur on cooling. To confirm that no phase

changes occur on cooling from the ageing temperature NP 222 samples aged at 850°C and

10500e for 12,000 hours were water quenched. These samples were compared with a samples

cooled in still air. Optically there was no variation between the air cooled and water quenched

samples. Examination of the samples in the SEM confirmed that aU the secondary phases found

previously were evident in both samples. EDS analysis showed no Significant changes in the

chemical analysis of the carbides or secondary phases between the quenched samples and those

slowly cooled.

The JMatPro software predicts "'80 wt.% y at 8000e increasing to "'99 wt.% yat 10400e with "'19

wt.% y' at 8000e reducing to zero at "'1000oe (Figure 5.12). This is in agreement with the aged

samples which show a consistent reduction in the levels of y' from 8000e through to 9500e with no

y' evident at 1000oe. '1 is predicted by JMatPro to reduce from ...1.1 wt.% at 8000e to "'0.4 wt.% at
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850·C. The reduction in 11 between 800 and 8S0°C is followed by an increase to -4 wt.% at

1000°C and a sharp drop with 11 no longer present at temperatures above 1040°C (Figure 5.12).

The aged samples show 11 evident in the microstructure from 800 • 900°C peaking at -950°C. Only

small amounts of 11 are present at 1000°C and no 11 is evident at 10S0°C. There is no evidence in

the samples to indicate the predicted reduction in 11 between 800 and 850°C.

At aoo°c the software predicts a low -0.5 wt.% level of MC carbide and -0.9 wt.% of M23Ce

carbide with the M23C6 carbide no longer evident at temperatures higher than 840°C. As the M23Ce
carbide reduces, the MC carbide content increases, peaking at -0.9 wt.% at 840°C dropping

slightly to 1050°C (Figure 5.12). Visually the primary MC carbide in the 800°C and the 850°C aged

samples are similar with lower levels of M23C6 than MC. M23C6 carbides were evident in the 900·C

samples up to 10,000 hours.

The MC carbides are predicted to be rich in tantalum, titanium and niobium. The JMatPro

predictions show significant changes in the MC carbide analysis with tantalum reducing from -46

wt.% at 800°C to -30 wt.% at 1050°C. This change is mirrored by an increase in titanium from

-11 % at 800°C to -29% wt.% at 1040·C, remaining constant to 1100·C. Niobium is predicted to

stay relatively constant at -29 wt.% with tungsten at less than 1 wt.% and zirconium reducing over

the temperature range from -4 wt.% to 1 wt.% (Figure 5.13 (a». The M23C6 carbide is a chromium

rich carbide predicted to contain - 88 wt.% chromium with 4.5 wt.% carbon and low levels of

cobalt (-4 wt.%), nickel (-2.5 wt.%) and tungsten « 1 wt.%) the JMatPro predictions show no

change in composition with temperature (Figure 5.13(b». The MC carbide EDS results do not

show the large changes predicted by JMatPro in tantalum and titanium. The EDS results show

niobium is relatively constant with approximately 3 wt.% tungsten and no zirconium.

The JMatPro predictions for 11 show a relatively constant composition of -65 wt.% nickel, -14 wt.%

titanium, -5 wt.% niobium with a small increase in cobalt content from 10.5 to 13 wt.% from 800 to

1040·C (Figure 5.13 (c». United States Patent 4,810.467(54)is a patent covering a nickel based

superalloy with a preferred melt chemistry range in which the current samples fall (Table 5.4). The

document discusses the formation of undesirable phases such as 11 as a result of elemental

segregation in large slowly cooled investment castings or during subsequent sustained high

temperature service and that a carefully balanced mix of alloying elements must be maintained to

avoid the formation of such phases. This suggests that the alloy specification was optimised to

preclude the formation of 11 phase. However, JMatPro predicts 11 would be present above 800°C

with the sample analysis of 2.37 wt.% titanium. This has been confirmed with the current samples.

If the JMatPro calculations are repeated with a reduced titanium composition to the bottom of the

specified range of 2.2 wt.% JMatPro still predicts the formation of 11as an equilibrium phase

forming at 880°C (Figure 5.14). Niobium and tantalum are considered to substitute for titanium in

11(2). By reducing the levels of niobium and tantalum individually to the lower specified limits no

significant changes were noted in the temperature at which 11 was predicted. However, by reducing

the titanium and niobium concentrations to the lower limit specified, with nickel as the balancing
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element JMatPro predicts 11will not be present below 916°C (Figure 5.15). In both cases the

predictions show slightly lower levels of 11over a reduced range of temperature. The predicted

temperatures at which 11would be present are considered to be above the normal operating

temperatures for stage 2 and stage 3 vanes. The predictions would suggest that" would not be

formed in NP 222 vanes, with titanium and niobium levels at the bottom end of the specified

composition range, under normal operating conditions.
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Figure 5.12 NP 222 JMatPro thermodynamic predictions illustrating (a) predicted
equilibrium phases (b) and (c) rescaled.
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Figure 5.15 NP 222 JMatPro thermodynamic predictions for n with 2.2 wt.% titanium and
0.7 wt.% niobium (balance of nickel altered).
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Ni Co Cr W AI Ti Nb Ta B Zr C

Patent 4,810,467(54) Bal 18.8 22.2 1.8 1.1 2.2 0.7 0.9 0.005 0.005 0.08

Preferred melt 19.5 22.8 2.2 1.3 2.4 0.9 1.1 0.015 0.02 0.12

chemistry

Sample analysis Bal 19 22.4 2.06 1.22 2.37 0.82 0.97 0.007 0.02 0.09

Table 5.4 Comparison United States Patent 4,810,467(54)and NP 222 sample XRF
analysis.
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5.4 Unknown Phase Identification (Electron Diffraction)

A thin foil sample containing the grain boundary needle phase was removed from the 900°C 5,000

hour sample by FIB SEM (Figure 5.16 (a)). Figure 5.16 (b) illustrates a TEM image of the thin foil

sample and a corresponding selected area electron diffraction pattern from the needle phase

(Figure 5.16 (c)). The pattern was indexed using the Cambridge University Practical

Crystallography software Version 1.6(79).The phases investigated were y, v, 1-1, 1'], c, MC, M6C and

M23C6 Indexing of the pattern confirmed the needles formed in the sample are I'] phase. The

chemical composition of the needles determined by EDS in the TEM is detailed in Table 5.3. The

results show a reasonable agreement between the SEM and TEM EDS results with JMatPro

predicting lower levels of chromium, tantalum and aluminium than the EDS results.

(a)

Needle Phase

Figure 5.16 NP 222 (a) FIB SEM image of foil prior to removal, (b) TEM image Showing
thin foil sample illustrating needle like phases and (c) corresponding
selected area electron diffraction pattern from needles.
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5.5 Carbide extraction and XRD

To measure the type and volume fraction of carbides present in the samples, the carbides were
separated from the matrix by a bulk electrolytic extraction method. The electrolyte used was 10%

HCI, 1% tartaric acid in methanol. The technique dissolves the y matrix and the y' phase in NP 222
leaving the carbides and 11phase as a sediment. For further details see Chapter 3.7.

The 1,000 and 2,000 hour samples show a steady reduction in extract from -1.6 wt.% at SOO°Cto
-1 wt.% at 1050°C. This is consistent with the opticaVSEM results with MC and M23Cs carbides
extracted at SOO°Cand only MC carbide extracted at 1050°C. The increase in extract evident from
sao - 950°C for 5,000 and 10,000 hours is as a result of the increase in the levels of 11phase being
extracted along with the carbides. The decrease evident in the 1000°C samples is considered the
result of the reduction in 11at this temperature. All of the 10S0°Csamples have a consistent 1 wt.%
of extract. The maximum weight of extract from the samples was 0.015 g after a three hour
extraction. No further carbide extraction was carried out after the 10,000 hour samples.

JMatPro predicts a total carbide content at SOO°Cof -1.4 wt% reducing to -O.S wt.% at 10S0°C.At
aoo°c the total extract for XRD was 1.6 wt.%, with MC and M23Cs carbides the only phases
evident in this sample. This reduced to ...1 wt.% at 1050 with only MC carbide evident in the
sample. The maximum extract for XRD occurred at 950°C "'2.4 wt.% which would include both MC
and 11phase (Figure 5.19). JMatPro predicts a maximum 11levels at 1000°C of ...4 wt.% to which
should be added a further -O.S wt.% for the MC carbides. The results for the carbides are very
similar to the JMatPro predictions. However, lower levels of fl were extracted from the samples
than were predicted by JMatPro.

The phases identified from the XRD traces are a tantalum, titanium, and niobium rich MC carbide,
a chromium rich M23C6 carbide (Figure 5.17) and 11phase (Figure 5.1S). The peaks of the MC
carbide fall between the TiC, TaC and NbC (not shown) pattern sticks shown in Figure 5.17. The
presence of the very large 11peak at 44° (2-theta) (Figure 5.1S) reduces the M23Cs carbide peaks
to minor blips on the XRD trace. However, it would be possible to scan over a limited angle to
detect the presence of M23Ce peaks and avoid the large 11peak. Table 5.5 identifies the phases
detected by XRD.
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Chapter5 NP222

1,000 hrs 2,000 hrs 5,000 hrs 10,000 hrs

800·C MC MC MC MC

M23Ce M23Ce M23Ce M23Ce

1'1

850·C MC MC MC MC

M23Ce M23Ce M23Ce M23Ce

1'1

900·C MC MC MC MC

M23Ce M23Ce <M23Ce

1'1 1'1

950·C MC MC MC MC

1'1 1'1 1'1 1'1

1000·C MC MC MC MC

1'1 «1'1 «1'1 «1'1

1050·C MC MC MC MC

< low levels

« very low levels

Table 5.5 NP 222 phases identified from XRD traces for samples aged up to 10,000
hours.
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Figure 5.19 NP 222 wt.% of phases extracted for XRD plotted as a function of (a)
temperature and (b) time.
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5.6 Hardness

The mean hardness levels and error bars of the standard error of mean are shown in Figure S.20.

The 800 - 950°C results show a reduction in hardness with both time and temperature. The

10000e and 10S0·e samples show a decrease in hardness with time and an increase with

temperature. The mean hardness drops from 300 - 350 HV20at 800·e to 210-240 HV20at 9S0·e

with an increase to -270-310 HV20at 10000e and 1050oe. The decrease in hardness between

850°C and 9S0oe occurs as y' coarsens the levels of V· reduce and n levets increase. A drop in

hardness of 60 points could be used to predict operating temperature. However, any prediction of

operating temperature from hardness would result in a broad temperature prediction. The

hardness changes with time are small and would preclude the prediction of operating time.

At 10000e and 10S0oe the microstructure is, other than a small number of 11platelets, matrix and

carbides. What is difficult to explain is the increase in hardness of the gamma matrix over this

temperature range other than the possibility of solid solution hardening or, having taken V· into

solution, the precipitation of very fine, unresolved, V· on cooling.

The micro-hardness results, Figure 5.21, show similar hardness levels and a similar trend with

both time and temperature. The micro-hardness indentations were placed in V/V' for the 800-900·e

samples and the V matrix for the 9S0-10S0oe samples. The similarity in the results between the

macro and micro-hardness would suggest that the low levels of carbide in NP 222 have little or no

effect on the overall hardness.
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Figure 5.20 NP 222 hardness results (error bars - standard error of mean) plotted as a
function of (a) temperature and (b) time.

140



ChapterS NP222

(a)

400 y' coarsening and reducing No v '

•• • t350 • •.".,; ..> tJ:
1/1 • • .1lO0
1/1 • .. ·5000Q)
c: 300 .. • " 1)000'E • •III • .15000s:
2 • • • .20000
u " 25000:lE .. • •250 •~•

200
750 800 850 900 950 1000 1050 1100

Tern perature °C

(b)

400

I ..
350 ..,

."
ci •> •J: • , •f/)

f/) • • • SOD
Q)
c 300 .. • .S50
'E • • " 900III •.c .950e • • • • 1)00
U

:lE • 1.1)50
t250 .. .. ..• •

•
200

0 5000 10000 15000 20000 25000 30000
Time (hrs)

Figure 5.21 NP 222 micro-hardness results, 800/900°C in V/V', 950/1050°C in V plotted as
a function of (a) temperature and (b) time.
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5.7 Denuded Layer

Figure 5.22 is a micrograph of the denuded/oxidised layer evident on the exposed surfaces of the

samples as a result of the loss of gamma prime and oxidation of the carbides. Measurements of

the width of the denuded layer are plotted in Figure 5.23. The plotted results are the mean of 20

measurements taken along the sample. For the purpose of this investigation the width of the layer

is considered to extend from the outer surface of the sample to the first gamma prime particle. In

the samples denuded of gamma prime the width of the denuded layer was considered to be the

distance from the outer surface to the first un-oxidised carbide. Figure 5.23 shows a good

correlation with time'!. which would allow the prediction of an operating temperature for an

uncoated vane with a known operating history. However, the samples were held at a constant

temperature with a very small of number cooling events. It was evident from the oxide scale in the

furnace that spalling of the oxide occurred at temperature. In addition, violent spalling of the oxide

occurred on cooling the samples to room temperature. Further work would be required to

determine the effects of thermal cycling and composition on the width of the denuded layer.

Figure 5.22 SEM SE image of NP 222 sample aged at 900°C for 15,000 hours showing
denuded/oxidised layer.
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Figure 5.23 NP 222 width of denuded/oxidised layer plotted as a function of (a)
temperature and (b) time.
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5.8 Image Analysis

Sims(2) indicates that the dominant carbide reaction in many nickel based superalloys is believed

to be the formation of M23Cscarbide by the following reaction:

Image analysis of the MC carbide to determine if there are changes with time or temperature was

attempted with limited success. In backscatter imaging the titanium rich '1 phase is only slightly

less intense than the MC carbide. Further work is required to eliminate or reduce the intensity of

the '1 phase to allow image analysis of the MC carbide.

No measurement of gamma prime coarsening has been carried out on these samples.
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5.9 Summary

XRD and EDSIWDS confirmed the presence of MC (Ta, Ti, Nb) carbide and a chromium rich

M23Cecarbide. The M23Cecarbide is evident in the samples aged at temperatures less than 900·C.

Due to the small size of the M23Cecarbide, EDS measurements in the SEM were considered

qualitative and were only used to confirm the presence of the carbide. The M23Cecarbide is

evident in all the samples aged at aoo·c and a50·C, and the 900·C samples aged for times less

than 10,000 hours. 11phase was evident in all samples aged in the range aoo - 1000·C for times

greater than 5,000 hours. y' reduced and coarsened with both time and temperature and was not

evident in any of the samples aged at 1000·C and 1050·C. The changes in microstructure could

be used as a temperature indicator with M23Cecarbide indicating a temperature below 900·C. The

presence of t' also indicates temperatures of less than 950·C, and the absence of t' indicating'

temperatures in excess of 1000·C. The presence of 11in the microstructure with no t' would

indicate a temperature between 1000·C and 1050·C.

The EDSIWDS analysis results for the MC carbide in the aged samples show similar levels of

tantalum, titanium and niobium -31 wt.% with tungsten at -3 wt.%. The metallic component of the

MC carbide can be expressed as approximately Ti4sNb2sTa1sW3Cr3Ni3Co(where the subscript

describes the concentration in at.%). EDSlWDS analysis of the MC carbide showed none of the

changes in composition predicted by JMatPro with ageing temperature. No predictions of service

time or temperature could be made with the small changes in composition found in the MC

carbide.

JMatPro has been used to study the effect of varying the alloy composition of NP 222 on the

formation of 11.The predictions would suggest that 11would not be formed in NP 222 vanes, with

titanium and niobium levels at the bottom end of the specified composition range below 900·C.

The predicted temperatures at which 11would be present are considered to be above the normal

operating temperatures for stage 2 and 3 vanes. Therefore the presence of 11in a NP 222 vane is

likely to indicate a fault condition.

The reduction in the measured mean hardness between aoo·c and 950·C could provide a coarse

prediction of operating temperature but would require verification that the microstructure

incorporated y'. Correlations are also evident for 11needle length and the y' denuded/oxidised

layer formed on the exposed surfaces of the sample. Further work would be required to

understand the effects of composition on 11needle growth and composition and thermal cycling on

the formation of denudation zones on free surfaces.
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6 Characterisation and discussion of alloy MAR M509

MAR MS09 is a high carbon, high strength, vacuum cast cobalt-based superalloy which is
generally used in the as-cast condition. The microstructure is typically composed of dendrites
of the FCC (V-Co)solid solution and an interdendritic network of "Chinese script" MC carbides
and interdendritic eutectic M23Cscarbides consisting of mixtures of the VCo solid solution and

carbide.

This chapter presents and discusses the outcome of the experimental work carried out to
characterise alloy MAR MS09 and to develop an understanding of the microstructural
changes that occur, with both time and temperature, for life prediction, refurbishment and
failure investigations. Cast samples were aged at temperatures ranging from 850 to 10S0°C,
for times up to 2S,OOOhours, as detailed in Chapter 3. The chemical composition of the
samples is given in Table 3.1. The results of thermodynamic equilibrium calculations are also
presented and compared with experimental data.

6.1 Microstructural Observations

The identification of the phases within the microstructure was initially based on EDS chemical
composition measurements and a comparison with representative compositions found in the
literature. In SEM backscatter mode the MC carbides are white, whereas the M23Cscarbides
are grey due to the difference in the atomic contrast.

The microstructure of the as-cast MAR MS09 samples consists of primary MC and M23Ce

eutectic carbides. The primary carbides are interlinked in some areas by thin ribbons of MC
and M23C6 carbides (Figure 6.1). Large areas of the V matrix are optically devoid of
precipitates. Thin layers of M23C6carbide are evident on a number of the MC carbides. Two
types of M23Cseutectics are evident: a fine enclosed eutectic and a coarse open eutectic
(Figure 6.2). Backscatter SEM images also indicate the presence of a white phase typically
less than 5IJm in diameter predominantly within the coarse M23Ce eutectics (Figure 6.3). The
phase has been identified by electron diffraction (Chapter 6.S) as M6C and therefore will be
referred to as MsC in the following discussions.
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MC carbides

carbides

Figure 6.1 MAR M509optical micrograph, as-cast microstructure showing MC and
M23Cs eutectic carbides.

Figure 6.2 MAR M509optical micrograph showing open eutectic M23C6, fine
enclosed M23Cs eutectic carbides and MC carbide in as-cast
microstructure.
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Mag= 2.00KX EHT = 20.00 kV WO. 11mm Signa'A. 0850

Figure 6.3 SEM SSE image of MAR M509 as-cast microstructure showing MsC
carbide in the M23Cs eutectic carbides.

The 1,000 hours 850°C sample shows fine M23CS carbides throughout the matrix with a higher

concentration around the primary eutectic M23CS carbides. Precipitation free zones are evident

around the primary M23CS eutectic carbide. MsC is evident in the M23CS eutectic carbides. A

"cross hatched" pattern is evident in some of the areas of fine M23CS carbides suggesting

precipitation on preferred planes (Figure 6.4). The microstructure of the 850°C and 900°C

samples up to 25,000 hours show only slight microstructural changes with the fine M23CS

carbides agglomerating slightly and M23CS carbide forming on more of the MC carbides. MsC

phase in the M23Cseutectic carbides reduces with increasing ageing time and a tantalum rich

phase precipitates in the M23Cs eutectic carbides and matrix. The microstructure of the 1,000

hours 950°C sample is very similar to the 10,000 hours 900°C sample. Degeneration of the

M23C6 eutectic carbide is evident in the 950°C samples for ageing time greater than 5,000

hours. The 1000°C samples at 5,000 hours and longer times show large blocky M23Cs
carbides with little if any eutectic structure evident (Figure 6.5). In SEM backscatter mode

-25% of the M23Cscarbides in the 1050°C 10,000 hour sample show as black rather than the

grey M23Cs carbides seen previously. In the 1050°C 15,000 hour sample all of the M23Cs
carbides are black with black needles evident throughout the cross section (Figure 6.6). EDS

analyses (chapter 6.2) of the needles show high levels of aluminium and nitrogen. For the

purpose of this report the needles will be considered to be nitride needles. The MC carbides

do not appear optically to have changed with time and temperature. However, the MC carbide

in the 10S0°C 15,000 hour sample, in the optical microscope had the appearance of a cored

structure (Figure 6.7).
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Table 6.1 details the results of both the optical and SEM microstructural investigation. Of note

are the loss of the tungsten rich precipitates within the M23CS eutectic carbide and the

precipitation of tantalum rich precipitates within both the M23CSeutectic carbide and the matrix

(Figure 6.8). Fine matrix tantalum rich carbides were reported by both Drapier(62) and Biss(84).

The precipitates within the M23CS eutectic carbides and the matrix have been confirmed by

electron diffraction to be tantalum carbides (TaC) (Section 6.5).

Representative SEM micrographs of the 1,000, 5,000, 15,000 and 25,000 hour samples aged

at temperatures between 850°C and 1050°C are contained in Figure 6.9-6.13 and clearly

illustrate the changes in the microstructure as a function of time and temperature.

Pixel Size = 117.2 nm

Figure 6.4 MAR M509SEMSE image showing "cross hatch" pattern of fine M23Cs
carbide in 850°C 1,000 hrs sample.
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Pixel Size = 234.4 nm

Figure 6.S MAR MS09 SEM SE image showing coalesced M23C6 carbides in 1000°C
1S,000 hour sample.

20~m

H Mag. 600 X EHT= 20.00 tN WO. 22 mm Slgnll A • 08S0

Figure 6.6 MAR M509 SEM BSE image of black phase and nitride needles in
1050°C 15,000 hour sample.
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Blocky M23Cscarbides Cored MC carbides

Nitride needles

Figure 6.7 MAR M509 optical micrograph illustrating cored MC carbides, blocky
M23C6 carbides and nitride needles in 1050°C 15,000 hour sample.

Mag = 1.00K X EHT c 20.00 leV WO, 10 mm Signal A • aaso

Figure 6.8 MAR M509 SEM BSE image of tantalum carbide in M23Ce carbide and
matrix 1000°C 15,000 hour sample.
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Chapter6 MARM509

6.2 EnergylWavelength Dispersive Spectroscopy

The MC carbide in MAR M509 contains tantalum, tungsten and zirconium which produce

overlapping peaks in the EDS data. With overlapping peaks the EDS software determines the

quantity of each element by fitting known peak profiles to the overlap region. The accuracy of the

fitting depends on the similarity of the peaks in the unknown spectrum to those of the profiles in

the EDS database. In WDS peak overlapping is not a problem as the X-rays are separated using

diffraction and individual wavelengths are detected at different spectrometer positions. The INCA

Energy+ software used for the analysis of the MC carbides combines the outputs of the EDS and

WDS spectrometers to provide a single analysis.

The results of the EDSIWDS analysis of the MC and EDS analysis of the M23Cscarbides from the

aged samples are detailed in Table 6.2 and Table 6.3 respectively. The compositions are mean

values from ten phases with a similar elemental signature.

The elemental plots for the MC and M23Cscarbides are shown in Figure 6.14 and Figure 6.15

respectively. The MC carbide tantalum, titanium, tungsten and zirconium results show minor

variations in composition with no significant variations with time or temperature. The M23Cscarbide

chromium, cobalt and tungsten plots show a consolidation of the carbide composition with both

time and temperature. This shows that the changes in the carbide analysis are too small to be

used to predict either time or temperature. From the EDS measurements the metallic component

of the MC carbides can be expressed as approximately Tas3Zr1sTi12CrsCosW3(where the subscript

describes the concentration in at.%). The metallic component of the M23Ce carbides can be

expressed as approximately Cr82C01oWsNi3(where the subscript describes the concentration in

at.%).

The EDS analysis of the black phase (Table 6.3) evident in the 10,000 and 15,000 hour 1050°C

samples shows reduced levels of tungsten and cobalt possibly as a result of oxidation. EDS

analysis of the black needles evident in the 15,000 hour 1050°C samples show high levels of

aluminium and nitrogen. The needle phase is considered to be aluminium nitride needles. This

phase was not identified in the XRD traces (chapter 6.4). Etching of the samples in 10% HCI in

methanol etched away the nitride needles.
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Time hrs Temp °C Ti(a) Cr(a) Cola) Ni(a) Zr(b) Ta(b) W(b)

1,000 850 4.7 1.7 2.7 0.5 11.3 75.9 3.3
900 4.6 2.0 2.8 0.5 11.6 74.6 3.8
950 5.0 1.8 2.6 0.5 12.0 74.8 3.4

1000 4.6 2.2 2.9 0.5 11.4 74.2 4.1
1050 4.6 1.9 2.7 0.5 11.8 75.0 3.6

5,000 850 4.6 2.3 2.9 0.6 12.1 73.1 4.4
900 4.7 1.8 2.5 0.5 12.5 74.4 3.6
950 4.7 2.3 2.9 0.6 11.6 74.0 3.9

1000 4.7 1.9 2.6 0.5 11.9 75.0 3.6

1050 4.9 2.7 3.1 0.6 12.5 71.9 4.4

10,000 850 4.3 2.9 4.1 0.7 11.0 73.0 4.0
900 4.5 1.9 2.7 0.5 11.6 75.4 3.4
950 4.7 1.7 2.4 0.4 11.5 76.0 3.4

1000 4.6 2.3 3.0 0.5 11.9 73.5 4.4

1050 4.9 2.0 2.6 0.5 12.6 73.9 3.6

15,000 850 4.5 2.3 3.0 0.6 11.6 73.6 4.4
900 4.5 2.6 3.3 0.6 11.2 73.1 4.6

950 4.5 2.0 2.8 0.5 11.0 75.3 3.9
1000 4.3 1.8 2.5 0.5 10.5 76.5 3.9

1050 4.2 1.6 2.0 0.4 11.2 77.2 3.4

20,000 850 4.6 2.0 2.6 0.5 11.3 74.9 4.0
900 4.6 1.8 2.5 0.5 11.5 75.6 3.5
950 4.6 2.1 2.7 0.5 12.0 74.1 4.0
1000 4.5 1.8 2.2 0.4 12.0 75.7 3.5

25,000 850 5.1 2.1 2.9 0.6 12.7 73.3 3.4
900 5.0 2.6 3.2 0.7 13.0 71.8 3.6
950 4.9 2.5 3.2 0.6 11.8 73.1 4.0
1000 5.1 2.3 2.9 0.5 12.6 73.0 3.6

(a) Determined by EDS (b) Determined by WDS

Table 6.2 EDS analysis of coarse MC carbide from aged MAR MI09 samples
(normalised to 100 wt.%).
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Chapter6 MARM509

Time hrs Temp °C Cr Co Ni Mo W

1,000 850 76.7 11.1 1.4 0.3 10.6

900 72.4 12.0 2.0 0.3 13.4

950 68.8 12.7 2.2 0.3 16.0

1000 69.7 12.6 1.9 0.2 15.5

1050 69.1 13.7 1.9 0.2 15.1

5,000 850 66.2 16.6 3.0 0.3 13.9

900 72.1 10.8 1.9 0.3 15.0

950 69.5 12.2 2.0 0.3 16.1

1000 69.7 12.7 1.8 0.2 15.5

1050 67.9 15.0 1.9 0.3 14.9

10,000 850 65.0 15.1 4.8 0.3 14.8

900 66.6 14.5 2.7 0.3 15.9

950 69.6 12.2 2.0 0.2 16.0

1000 69.2 13.1 1.9 0.3 15.5

1050 66.8 15.9 2.0 0.3 15.0

Black 1050 91.1 2.6 0.3 0.2 5.9

15,000 850 70.7 10.7 2.0 0.3 16.2

900 70.7 10.9 1.9 0.3 16.2

950 70.3 11.5 1.9 0.3 16.0

1000 69.7 12.5 1.8 0.3 15.6

1050 68.6 12.8 1.9 0.2 16.5

Black 1050 89.3 2.5 0.3 0.2 7.7

20,000 850 71.4 10.4 1.9 0.3 16.0

900 71.5 10.4 1.8 0.3 16.0

950 70.9 11.4 1.8 0.3 15.6

1000 70.1 12.6 1.9 0.3 15.3

25,000 850 70.5 10.7 2.1 0.3 16.5

900 71.9 10.3 1.9 0.3 15.6

950 71.2 11.3 1.8 0.2 15.5

1000 70.2 12.5 1.9 0.2 15.2

Table 6.3 EDS analysis of coarse MuC, carbide from aged MAR M509 samples
(normalised to 100 wt.%).
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Chapter6 MARM509

6.3 Thermodynamic Equilibrium Predictions

This section presents thermodynamic equilibrium predictions for alloy MAR M 509 carried out
using JMatPro software. MAR M509 is a cobalt-based superalloy. JMatPro does not have a
cobalt-based superalloy database therefore all of the following thermodynamic predictions are
based upon the nickel based superalloy database. The JMatPro calculations are based on the
composition of the samples detailed in Table 3.1.

The JMatPro software predicts the equilibrium phases that would form under equilibrium
conditions. In this programme of work the JMatPro software has been used to predict the
equilibrium phases that would form at specific ageing temperatures. In using this software it
has been assumed that no phase transformations occur on cooling. To validate this
assumption MAR M509 samples aged at 850°C and 1050°C for 12,000 hours were water
quenched directly from the ageing temperature. These samples were compared with samples
cooled in still air. Optically there was no variation between the air cooled and water quenched
samples. Examination of the samples in the SEM confirmed that all the secondary phases
found previously were evident in both samples. EDS analysis showed no significant changes
in the chemical analysis of the carbides or secondary phases between the quenched samples
and those slowly cooled.

JMatPro predicts three equilibrium phases V, MC and M23Cs.V remains constant at ...91 wt.%
across the temperature range. The MC carbide content increases from 4.6 to 4.7 wt.%
between 850°C and 1050°C, the M23Cscarbide content drops from 4.9 to 4.0 wt.% over the
same temperature interval (Figure 6.16). This would indicate a reduction in the carbide
content from 9.5-8.7 wt.% over the 850-1050°C temperature range.

The JMatPro composition predictions for MC and M23Cscarbides show small variations over
the temperature range from 850 to 1050°C. The predicted changes in the composition of the
M23Cscarbide (Figure 6.17) are chromium reduces from 67 to 63 wt.%, cobalt increases from
14.3 to 17.8 wt.%, nickel increasing from 1.1 to 1.8 wt.% with tungsten and carbon constant at
12 wt.% and 5 wt.% respectively. The variations in the composition of the MC carbide (Figure
6.18) are tantalum reducing from 78 to 76 wt.%, tungsten increasing from 2.8 to 4.6 wt.% with
zirconium, carbon and titanium remaining relatively level at 7.0 wt.%, 7.4 wt.% and 4 wt.%
respectively. The equilibrium predictions have been derived using the nickel database, if the
predictions are valid the changes in the carbide analysis with temperature are small and
would not provide a robust method of predicting time or temperature for service exposed
components.

Table 6.4 contains the JMatPro predictions for the MC and M23Cs carbides at 950°C and the
WDS/EDS analysis for the MC and M23Cs carbides obtained from the 950°C 1,000 hour and
20,000 hours samples. For the MC carbide the WDS/EDS results and JMatPro predictions
are similar, other than WDS for zirconium, which is almost double the JMatPro prediction. For
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the M23C6carbide, again the analyses are similar other than the EDS tungsten level which is
higher than the JMatPro prediction, and the EDS cobalt level which is lower than the JMatPro
prediction. The 20,000 hour 950°C EDS analysis has been included to illustrate the effects of
including carbon in the EDS analysis. As stated earlier carbon analysis by EDS should be
considered qualitative rather than quantitative. The results show that the carbon levels from
EDS and JMatPro are similar. For the MC carbide, other than for tantalum, including carbon
brings the EDS analysis more in line with the JMatPro predictions. However, the tantalum
EDS value is less than that predicted by JMatPro. The inclusion of carbon in the EDS
composition reduces the EDS tantalum value and thus increases the variance between the
measured and predicted values. For the M23C6carbide, other than for cobalt, again the effect
of including carbon is to bring the EDS analysis more in line with the JMatPro prediction.
However, the EDS cobalt value is less than that predicted by JMatPro.

Drapier et al(62)and Beltran et al(64)used an electron microprobe to carry out carbide analysis
on MC and M23C6carbides in MAR M509. The results are included in Table 6.4. Beltran noted
that the MC carbide analysis did not correspond to an idealised composition and gave the
most probable cause as overlap of the electron beam on to the matrix due to the small
carbide size. He did consider the M23C6carbide analysis to be accurate. It should be noted
that the Beltran and Drapier results were not normalised to 100wt.%. The Drapier MC carbide
results are similar to the current EDS and JMatPro predictions. His tungsten levels are more
in line with the JMatPro predictions than the current EDS results. The Beltran MC carbide
results do show high levels of cobalt which would confirm his assumption that the beam had
included some of the matrix. The M23C6carbide results of Drapier are similar, with lower
tungsten levels than predicted by JMatPro and found by EDS in the current samples. The
results of Beltran for M23C6carbide show lower levels of chromium with higher levels of cobalt
and nickel. These variations in the M23C6carbide analysiS may indicate the wide variations
that could exist in the carbides possibly as a result of the casting conditions or variations in
the bulk analysis within the MAR M509 specification.

The high tungsten phase evident in the as-cast sample reduces rapidly with time but residual
particles are still found in the M23Ceeutectic carbides in the 25,000 hour, 850 and 900°C
samples. No phases other than MC and M23Ce carbides are identified in the JMatPro
equilibrium predictions. This would suggest the phase is not an equilibrium phase or has not
been predicted as a consequence of using the nickel superalloy database.

JMatPro and the experimental results are very similar and both show that the carbides do not
change significantly with time or temperature. Therefore there is no possibility of using the
carbides in MAR M509 as time temperature indicators.
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Ta Zr Ti W Cr Co Ni Nb C

MC Carbide

AS-cast(S2) 70.2 9.8 4.2 2.2 0.8 1.9 0.2

As-cast(64) 51 3 - 5 4 11 2

As-cast aged 47 3 - 4 5 9 3
960·C 1571 hrs(64)

EDS as-cast aged 74.8 12.4 5.0 3.4 1.8 2.6 0.5
950·C 1,000 hrs

EDS as-cast aged 70.1 10.8 4.2 3.8 2.0 2.5 0.5 6.1
950·C 20,000 hrs

JMatPro 77 7 4.1 3.7 0.3 0.6 7.4

950°C

M23CsCarbide

As_cast(S2) 1.0 0.1 0.1 9.1 65.3 16.3 1.7

AS-cast(64) 0.3 - 8 42 21 6

As-cast aged 0.3 8 48 21 11
960·C 1571 hrs(64)

EDS as-cast aged 16 69 12.7 2.2
950·C 1,000 hrs

EDS as-cast aged 14 67 11.0 1.7 6.9
950·C 20,000 hrs

JMatPro 12 65 16.1 1.4 5.1

950·C

N.B It should be noted that the Drapier and Beltran results were not normalised to 100 wt.%
Table 6.4 Comparison of MC and M23C.carbide analysis from Drapie"cu"

Beltran(M), aged MAR M509 sample WDS/EDS and JMatPro predictions
(wt.%).
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8.4 Carbide extraction and XRD

To measure the type and volume fraction of carbides present in the samples, the carbides
were separated from the matrix by a bulk electrolytic extraction method. The electrolyte used

was 10% HCI, 1% tartaric acid in methanol. The technique dissolves the 'f matrix leaving the
carbides as sediment. For further details see Chapter 3.7.

A series of extractions were carried out on sections from the MAR M509 950°C 2,000 hour
test piece for 1, 2 and 3 hour periods to confirm that the carbides in the electrolyte were not
attacked by the electrolyte during the three hour extraction periods. The weight percent of
carbide extracted from the samples were 8.79, 8.68 and 8.66 wt.% for the 1, 2 and 3 hour
extractions. This result is considered to show that the carbides are not attacked by the
electrolyte during the 3 hour extraction.

For all of the samples the phases identified were MC and M23Cs. In the 1050°C 5,000 and
10,000 hour samples in addition to the MC and M23Cs, oxides of chromium, tantalum and
titanium were identified. The maximum weight of extract from the samples was 0.07g after a
three hour extraction. Additional small peaks on the XRD trace with counts less than 0.02% of
the largest peak could not be assigned. Figure 6.20 is a plot of the weight percent of carbide
extracted. For all temperatures there is an increase in the mass of the extract from 1,000 to
10,000 hours (from "'7 to 10 wt.% ) followed by a drop in the weight extracted through to
25,000 hours. The increase may indicate the continuing precipitation of the secondary M23Ca

carbides. It is not clear from the plot of temperature against time what the reason is for the
drop in weight extracted for the 1,000 and 2,000 hour samples, the other samples remaining
relatively constant.

The XRD traces have been used to show if the relative amounts of the MC and the M23Ce
carbide are changing with ageing temperature or time. Two methods have been used to
determine the relative amounts of the MC and M23Cs carbide from the XRD traces. Both
methods cornpare the combined values from the MC (111) and (200) peaks with the M23Ce

(420) and (511) peaks (Figure 6.19). The first technique utilises the peak area which may be
affected by very fine precipitates causing peak broadening(8sl.The second method uses the
peak heights or peak counts. Plots of the peak area (Figure 6.21) and peak height (Figure
6.22) show, in both cases a large drop in the relative amounts up to 5,000 hours followed by
smaller changes up to 20,000 hours with a slight up turn at 25,000 hours. The precipitation of
the secondary M23Ce carbides would account for the large drop between 1,000 and 5,000
hours. However, the measurements appear to show either that the precipitation of the TaC in
the matrix and the eutectic is either very small and or the technique is unable to detect the
increase in the TaC. It is also equally possible that there is a balance between the
precipitation of the matrix and eutectic tantalum carbide and the solutioning of the original MC
carbides.
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JMatPro equilibrium predictions indicate that there should be a small increase in MC carbide

with a drop in the M23C6 carbides with temperature (Figure 6.16b). Figure 6.23 illustrates the

peak area results and includes the JMatPro predictions for MC and M23C6 carbides. The

results from the XRD measurements do show a similar increase with temperature consistent

with the JMatPro predictions.
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Figure 6.19 MAR M509 XRD trace illustrating peaks used for MC:M23C6 peak area
and peak height measurements 859°C 5,000 hour sample.
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6.5 Unknown Phase Identification (Electron Diffraction)

Thin foil samples containing the tungsten rich and the tantalum rich phases in the M23Ce
eutectic carbides were removed from the 1,000 hour 850°C and 15,000 hour 950°C samples
by FIB SEM. Figure 6.24 shows the position of the thin foil in the FIB SEM 1,000 hour 850°C
sample, a TEM image of the thin foil sample taken to include the tungsten rich phase in the
M23Cseutectic carbide and a selected area electron diffraction pattern from the tungsten rich
phase. Figure 6.25 shows the position of the thin foil in the FIB SEM 15,000 hour 950°C
sample, a TEM image of the thin foil sample which includes the tantalum rich phase found in
the M23C6eutectic carbide and a selected area electron diffraction patterns from the tantalum
rich phase. The patterns were indexed using the Cambridge University Practical
Crystallography software Version 1.6(78).The phases investigated were 1-1, I'l, 0, MC, M6C,
M7C3and M23Cs.Indexing of the pattern confirms the tungsten rich phase is MsC (FCC, lattice
parameter 11.08 A) or C03W3C (FCC, lattice parameters 10.897 A). Sims(2)notes that M6C
carbides usually occur as M3M3Cor M4M2C. The tantalum rich phase indexed as TaC (FCC,
lattice parameter 4.455 A).
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(a)

(b) (c)

W"~8~ , -
-. I •• •• ~tl(lo",

Figure 6.24 MAR M509 850°C 1,000 hour sample (a) FIB SEM image sample position
(b) TEM image of thin foil and (c) diffraction pattern.
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(a)

MARM509

TaC

(b) (c)

Figure 6.25 MAR M509 20,000 hours 950°C sample (a) FIB SEM image sample
position (b) TEM image of thin foil and (c) diffraction pattern.
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6.6 Image analysis

Image analysis has been used to provide a measure of the area fraction of carbide in the

samples. The variations in the results from image analysis can be very significant. However,

by careful application of sound experimental technique it is possible to limit the scatter and

create reproducible results. Image analysis of the MC carbide is relatively simple as the

carbide in the polished un-etched samples show white in SEM backscatter mode against the

grey matrix and the M23Cscarbides (Figure 6.8). The results, from the image analysis of the

aged samples, show a relatively uniform level of MC carbide of 5-6 area % across the

temperature range (Figure 6.26). The image analysis was carried out on scans taken at a

magnification of 500 times. The magnification is a compromise to allow the detection of any

changes in the area fraction while minimising the effects of carbide segregation by including a

minimum of 100 carbides in each image. Figure 6.13 (a) and (b) illustrate the significant

variation in the MC carbides that can exist between samples. The results suggest that any

changes in the MC carbide are minor and if present would only be evident at higher

magnifications where the effects of carbide segregation would produce large variations in the

area fraction. It is possible that there is a balance between any solutioning of the primary MC

carbides and the precipitation of the secondary MC carbides in the matrix and the eutectic

M23Cscarbides. The changes are too small to provide a robust measurement of service

temperature from service exposed vanes.

Sims(2) notes that the MC carbides, under long service exposures, degenerate to a lower

carbide:

MC + austenite

For alloys high in chromium the predominant displacement reaction is from MC to M23Cs.This

provides an important secondary hardening effect from the MC carbide, which acts as a

source of large quantities of M23Cscarbides. Figure 6.27 illustrates MC carbides from the as-

cast sample and the 25,000 hour 950°C sample. The carbides in the aged sample have a

more 'ragged' profile than the as-cast carbides. What cannot be determined is if this is the

result of precipitation of secondary carbides on to the primary carbides, or the solutioning of

the primary carbides. The impression from the samples is that it is more likely to be

precipitation on to the MC carbides rather than solutioning of the carbides. The JMatPro

equilibrium prediction (Figure 6.16) shows a slight increase in MC carbide across the

temperature range 800-1100°C.

Image analysis of the M23Cscarbides proved to be impracticable due to the difficulty in

producing the contrast required to differentiate between the M23Ceand the Vmatrix. The more

significant problem is the fine secondary carbides around the primary carbides (Figure 6.28)

in the 850 and 900°C samples. At lower magnifications «1000) the secondary carbides
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cannot be resolved and produce a halo around the primary carbides significantly increasing

the measured area fraction.

Szala et al(86)report the results of an investigation to enhance the detection of the carbides in

MAR M509 by selective etching to allow automated image analysis to provide a quantitative

measure of the carbides in service exposed MAR M509. The report confirms the ease with

which the MC carbides in MAR M509 can be detected in polished unetched samples and the

difficulty of detecting the M23C6 eutectic carbides for image analysis. Techniques and etchants

to improve the contrast between the M23C6 eutectic carbides and the matrix are reported.

However, the report is only concerned with the primary M23C6 eutectic carbides. In aged

samples, secondary M23C6 carbides precipitate around the primary M23C6 eutectic carbides

and show, at low magnification, as a broad halo around the primary carbides (Figure 6.28).

Images in the report appear to be from as-cast samples with small isolated areas of

secondary M23Ce carbides. It is the halo of secondary M23Ce carbides around the primary

carbides which have caused problems with image analysis of the aged MAR M509 in this

work. At low magnification the carbides cannot be resolved and artificially increase the

quantity of M23C6 carbides. At higher magnification where the carbides can be resolved, the

overall carbide segregation leads to large variations in the measured M23Ce carbide.
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Figure 6.26 MAR M509 image analysis area % MC carbide plotted as a function of (a)
temperature and (b) time.
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(a)
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Figure 6.27 MAR M509 SEM SE images showing MC carbides in (a) as-cast sample
and (b) 950°C 25,000 hour sample.
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Mag = 500X EHT=10.00kV WO" 10mm Sign IA=SEI

Figure 6.28 MAR M509 SEM SE image illustrating the halo of secondary M23Cs
carbides around the primary M23C6 carbides 850°C 5,000 hour sample.
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6.7 Hardness

Figure 6.29 shows plots of hardness against time and ageing temperature for the aged
samples. The results show a drop in hardness with ageing temperature from -365 to -330
HV20with a maximum variation between samples at the ageing temperatures of -15 HV20The
hardness results plotted against time show at 1,000 hours a significant variation in hardness
with ageing temperature with the 850°C sample at 385 HV20and the 10500e sample at 330
HV20.The 850-10000e samples show an increase in hardness from 1,000 to 2,000 hours
followed by a drop in hardness from 2,000 hours to 15,000 hours. As the hardness drops the
difference in hardness between samples, at the ageing temperatures, reduces. From 15,000
hours to 25,000 hours the overall hardness remains relatively constant with a continuing
reduction in the hardness between the samples. The 10500e sample shows a small increase
in hardness with time from 1,000 to 15,000 hours.

Figure 6.30 shows the current hardness results and a plot taken from Drapier et al(62).The
initial as-cast hardness -350 HV20for the current sample is higher than the 330 HV20of the
Drapier samples, indicating the wide range in hardness that may occur as a result of
variations in casting conditions.. For the aged samples both plots show a similar range of
hardness values at 1,000 hours. The Drapier hardness plot shows an increasing level of
hardness for the 800°C samples with the hardness of the 900, 950 and 11000e samples
dropping. The current results show an initial increase in hardness at 2,000 hours which then
falls to the 1,000 hour values at 5,000 and 10,000 hours. The 10500e sample shows the initial
rise evident in the lower ageing temperature samples, but then remains constant at the higher
hardness.

A microhardness survey of the matrix was carried out on polished and etched samples, the
results are shown graphically in Figure 6.31. Positioning of the micro-hardness indenter was
carried out at a magnification of 400 times. At this magnification areas of matrix clear of
primary and secondary carbides could be identified. The results with temperature show a
wide variation in the micro-hardness with the 850°C samples showing a maximum hardness
at 5,000 hours of -375 HVO.5and a minimum hardness of -300 HVO.5in the 20,000 hour
sample. The results for the 850-9500e samples show an increase in hardness from 1,000
hour to 5,000 hours followed by a small drop to 10,000 hours with a larger drop to the 15,000
and 20,000 hour samples. The 1,000 hour samples have a relatively constant hardness
across the range of ageing temperatures. However, the remaining samples all show a drop in
hardness between the 950°C samples and the 10000e samples. The only optical change
evident between the 950°C and the 10000e sample (Table 6.1) is the reduction in the
secondary M23C6 carbides. It is not clear why this would affect the micro-hardness of the
matrix. The plot of micro-hardness with time shows a drop in hardness from 1,000 hours to
15,000 hours with a recovery to the original 1,000 hour hardness at 25,000 hour.
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graph from Drapier et al(62).
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6.8 Denuded Layer

Figure 6.32 illustrates the denuded/oxidised layer formed on the exposed surfaces of the

aged samples as a result of the oxidation of the carbides. Twenty measurements of the width

of the denuded layer were taken along the sample. For the purpose of this investigation the

width of the denuded layer was considered to be the distance from the outer surface to the

first un-oxidised carbide (primary or secondary). Figure 6.33 is a plot of width of the oxidised

layer evident on the exposed surface of the sample against temperature and time. The plots

show a correlation with time which would allow the prediction of an operating temperature for

an uncoated vane with a known operating history. However, the samples were held at a

constant temperature with a very small of number cooling events. It was evident from the

oxide scale in the furnace that spalling of the oxide occurred at temperature. In addition,

violent spalling of the oxide occurred on cooling the samples to room temperature. The

primary oxide that forms on cobalt superalloys is Cr203. To form this oxide chromium is

required from the substrate resulting in preferential oxidation of the chromium rich carbides.

Clearly, the more the oxide spalls, the wider the denuded/oxidised layer. Further work would

be required to determine the effects of thermal cycling and composition of the substrate on

the width of the denuded layer.

Figure 6.32 MAR M509 SEM SE image showing denuded/oxidised layer formed on
the outer surface of the 850°C 25,000 hour sample.
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6.9 Summary

XRD and EDSIWDS confirmed the carbides present in the aged samples are tantalum rich
MC carbides and chromium rich eutectic M23Cscarbides. The MC carbides are primarily
tantalum carbides but also contained zirconium, tungsten and titanium and the metallic
component can be expressed as approximately Tas~rlsTi12Cr8C08W3(where the subscript
describes the concentration in at.%). The carbide composition showed no significant changes
with ageing time or temperature.

Other than the zirconium level, the EDSIWDS analysis was in reasonable agreement with the
JMatPro predictions for MC carbide. The M23Cseutectic carbides were primarily chromium
carbides but also contained tungsten, cobalt and nickel, and the levels determined showed no
significant changes with ageing time or temperature. The EDS analysis and the JMatPro
predictions for the M23CSeutectic carbides are similar, other than small differences in the
tungsten and cobalt. The metallic component of the M23C6carbides can be expressed as
approximately Crs2C01oWsNi3(where the subscript describes the concentration in at.%).

A tungsten rich MeCcarbide was evident in the M23Caeutectic carbides in all of the samples
aged at 850DC and 900DC for times up to 25,000 hours. At 950DC the level of MaC carbide
reduced with increasing ageing time and could not be found in the samples after 15,000
hours, as increased levels of a tantalum rich phase precipitated in the M23Cseutectic
carbides. Electron diffraction identified the tantalum rich phase as tantalum carbide (MC).
Other than the presence of MaC phase in the eutectic carbides, which may not be an
equilibrium phase, the results show that JMatPro using the nickel superalloy database has
produced reasonable predictions of the equilibrium phases that would form in MAR M509 and
the chemical composition of those phases.

An attempt to identify any changes in the volume fraction of the MC carbides and the M23Cs
carbides using the peak area and peak heights of the XRD traces showed only a small
increase in the ratio with time. Image analysis of the MC carbides showed no significant
change with time or temperature. Image analysis of the M23CScarbide was not carried out as
a clear difference between the matrix and the carbide could not be achieved. However, it is
considered that image analysis of the secondary M23Cscarbides may provide a correlation
with time and temperature.

Measured Vickers and micro-hardness levels dropped from 365-390 HV20at 850°C to 332-
344 HV20at 1050°C with ageing temperature but varied by less than 20 HV20with ageing time.
The Vickers hardness levels measured were in reasonable agreement with those measured
by Drapier et al(62)and showed a similar trend with time. The results from the tests show no
significant variations that would allow the prediction of time and temperature.
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The results from the denuded layer formed as a result of the oxidation of the exposed

surfaces of the samples would provide a method of prediction ageing time and or temperature

from uncoated components taken out of service. However, further work is required to

determine the effect of thermal cycling and bulk composition of the component on the width of

the denuded layer.

The results of all of the tests carried indicate that MAR M509 is a very stable material.

However, it may be possible to make an assessment of ageing temperature based on the

coarsening of the secondary M23Cs carbides which precipitate around the primary MC and

M23Cs eutectic carbides.
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7 Characterisation and discussion of NiCoCrAITaY

Coating on MAR M509

Higher turbine inlet temperatures have lead to the increased use of thermal barrier coatings
on turbine components. A thermal barrier coatings (TBC) is formed from two layers; a metallic
inner layer, the bond coat (BC) and an outer ceramic insulating layer. The purpose of the
bond coat is to improve the adhesion of the ceramic coat to the substrate and prevent
oxidation of the substrate, as the ceramic coating, typically yttria stabilised zirconia conducts
oxygen. In service, a thermally grown oxide (TGO) develops between the bond coat and the

top coat.

Both the method of application and the composition of the coatings vary from one supplier to
another. In most commercial coatings, the main phases present are y(Ni) and I3(NiAl)
although there are some y'/13 coatings. Depending on the composition and service
temperature additional phases including y'(Ni~I), a(Cr), a(CoCr) and yttrium rich phases may
be present. The microstructure and the nature of the interfaces therefore playa critical role in
determining the life of turbine hot gas path components.

Mould reactivity or Intercarbidic Oxidation (ICO) is a problem with MAR M509 particularly in
thick sections. 'ICO' is evident as particles of Zr02 close to the surface of the casting. 'ICO' is
thought to be detrimental to the performance of a component since the oxidised carbide could
act as a crack initiator at the grain boundaries, and because it can lead to poor coatability for
both diffusion and overlay coatings.

This chapter presents and discusses the results of experimental work carried out on coated
samples of MAR M509, with and without intercarbidic oxidation (ICO), focusing on; the phase
changes within the coating, the interaction between the coating and the substrate, and the
effect of 'ICO' on coating life. Samples were examined in both the as-received condition and
the aged condition at temperatures between 800 and 1000°C for various times up to 25,000
hours as detailed in Chapter 3. The chemical composition of the coating and the substrate are
given in Table 3.1 and Table 3.3 respectively. The results of thermodynamic equilibrium
calculations on the coating materials are also presented and compared with experimental
data.

7.1 Coating Characterisation

The starting point for the experimental investigation was to examine in detail the composition
and morphology of the phases present in the coating both initially and as a function of ageing
time and temperature. The identification of the coating phases was initially based on EDS
chemical composition measurements and comparison with representative compositions found
in the literature. Subsequent transmission electron microscopy (TEM) of samples and the
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analysis of electron diffraction patterns has confirmed, in part, the initial assumptions (see

section 7.4).

The appearance of the coating phases in the scanning electron microscope (SEM),

backscatter (BSE) mode, are detailed in Table 7.1. It should be noted that the shades are

relative and subjective; the actual shades may vary depending on the SEM operating

conditions, but are given as a guide to phase identification.

Phase Description BSE (polished)

Coating

Gamma (V) Ni Grey

Gamma Prime (VO) Ni3(AI,Ti) Light grey

Beta (13) NW Dark grey

Alpha-Cr (oCr) Cr Dark grey/black

TaC MC White

Yttria Yorich Dark grey at coating/substrate
interface

Substrate

Gamma (V) Co Grey

Cr23Ce M23Ce Blocky grey

TaC MC White

Table 7.1 Common coating/substrate phases and their appearance in SEM SSE
mode.

7.1.1 Coating microstructure as-received

In the as-received samples, following the 1000°C diffusion heat treatment, the BSE images

(Figure 7.1) show three phases in the bulk coating: V (-4 wt.% AI), (3 (-18 wt.% AI) and a fine

white phase typically less than 0.5 um in size. The small size of the white phase prevented

the determination of a quantitative analysis. However, EDS analYSis of the phase indicated a

high aluminium level of -10 wt.%. The white phase was not evident In the layer adjacent to

the substrate, although both V and (3 were present together with a tantalum rich phase which

decorated the interface between the coating and the MAR M509 substrate (Figure 7.2). No

additional phases other than tantalum rich MC carbides and chromium rich M23Ce carbides

were present in the MAR M509 local to the interface.
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Mag= 3.00KX EHT=20.00kV WO= 10mm SlgnaIA.OBSO

Figure 7.1 SEM BSE image of bulk Amdry 997 coating microstructure after
diffusion heat treatment prior to ageing.

Tantalum rich phase along the

coatinc substrate interface

PixelSIzt • 132.2nm EHT• 20.00 kV Slgnll A. OBSO
Mago 2.00KX WO. 15mm Oat. :17 act 2005

Figure 7.2 SEM BSE image of Amdry 997 coating/MAR M509 interface and inner
layer after diffusion heat treatment prior to ageing showing V, p and
tantalum rich phase.

7.1.2 Coating microstructure samples aged at 800· 850°C

The coatings on the aged 800°C and 850°C samples were similar to each other with only

minor differences between the 'ICO' and 'no ICO' samples. No inner or outer denuded layers

were noted on any of the 'no ICO' samples for ageing times up to 25,000 hours. An

intermittent inner denuded layer was evident on the 850°C 15,000 hour 'ICO' sample with a

continuous inner denuded layer present on the 20,000 hour and 25,000 hour 'ICO' samples.
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The phases present in the bulk of the coating were V, V', ~ and a chromium rich phase. The
levels of the chromium rich phase in the coating increased with both time and temperature. ~
was evident in all of the 80aoC 'no ICO' samples up to 25,000 hours but was not detected in
the 'ICO' samples beyond 10,000 hours. At 850°C ~ was found in the 'no ICO' samples up to
15,000 hours but was not found in the ICO samples for ageing times greater than 5,000
hours. The tantalum carbide phase found in the as-received samples was not found in any of
the samples other than the 1,000 hour BOO°Csamples. The small white particles observed in
the as-received samples were no longer evident in the samples aged for 2,000 hours and
above, where the light grey V· (8 wt.% AI) became more evident. y' and the chromium rich
phase were the principal phases in the coating adjacent to the fusion boundary with the
chromium rich phase the principal phase at the boundary. An yttrium rich phase was evident
at the interface in both the 'ICO' and 'no ICO' samples at times above 2,000 hours at 850°C.
This phase was evident as small discrete groups, of ...1 IJm particles in general, but not
exclusively, associated with oxide particles at the interface between the coating and the MAR
M509 substrate. In the inter-diffusion zone the phases present were V, y' and blocky M23Ca

carbide.

Examination of samples etched in 10% ortho-phosphoric acid in a FEG SEM showed at
BOO°Cclusters of fine « 0.3 um) secondary V· between the larger V· phase (Figure 7.3 (a».
The fine V· was evident in all 'ICO' and 'no ICO' samples aged at BOO°Cbut was not found in
any of the samples aged at B50°C and above. Figure 7.3 shows the changes in V· in the
5,000 hour 'no ICO' sample with temperature. An investigation by Baufeld et al(87)of
microstructural changes in heat treated samples of a NiCoCrAIY coating on a directional
solidified IN 100 substrate confirmed, by TEM electron diffraction patterns, that fine spherical
precipitates in the V phase in both the diffusion zone and the NiCoCrAIY coating were the V·
phase. The investigation showed that the precipitates were evident in samples aged for 24
hours and subsequently water quenched from temperatures between B40 and 970°C and in
slowly cooled samples aged for 24 hours at 1100°C.
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(a)

(b)

(c)

Figure 7.3 FEG SEM SE images from Amdry 997 coating showing growth of
secondary y' in 5,000 hour sample (a) secondary y' at 80Qce (b)
coalescing y' at 8500e and (c) y' at 9000e respectively.
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7.1.3 Coating microstructure samples aged at 900°C

At 900°C an intermittent inner denuded layer was evident on all the samples with 'ICO' up to

10,000 hours, with a continuous denuded layer on samples aged for 15,000 hours and longer.

At the lower ageing times it was evident that the denuded layer was forming in the coating at

positions local to the 'ICO' phase in the MAR M509 substrate (Figure 7.4).The samples with

'no ICO' showed an intermittent denuded layer at 15,000 hours with a continuous layer

forming at ageing times above 20,000 hours. Within the bulk coating the levels of the

chromium rich phase increased with time and the levels of ~ decreased with time until ~ was

no longer detected. In the samples with 'no ICO', ~ was not detected in the samples beyond

10,000 hours and in the 'ICO' samples, at times up to 5,000 hours. V, V', the chromium rich

phase and the yttrium rich phase were evident at the interface in all of the 'ICO' and 'no ICO'

samples. In the inter-diffusion zone, the only phase present in all of the samples was blocky

M23Cscarbide and the V matrix.

Figure 7.4 SEM BSE image showing denudation of coating at the Amdry 997
coating/MAR M509 interface opposite 'ICO'.

7.1.4 Coating microstructure samples aged at 950°C

At 950°C both sets of samples showed continuous inner denuded layers, with the 20,000

hours and above 'ICO' samples showing fully denuded coatings. No significant changes were

evident in the bulk coating, with ~ no longer detected in the 'ICO' samples aged for times

greater than 2,000 hours and in the 'no ICO' samples for ageing times greater than 10,000

hours. All of the 'ICO' and 'no ICO' samples showed tantalum carbide along with a chromium

rich phase in the inner denuded layer and tantalum carbide along with the yttrium rich phase

along the interface. In the interdiffusion zone the only phase present was blocky M23Ce
carbide and the V matrix.
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7.1.5 Coating microstructure samples aged at 1000°C

At 1000°C all of the samples showed inner and outer denuded layers. The 'ICO' 1,000 hour

and 2,000 hour samples and the 'no ICO' 1,000, 2,000 and 5,000 hour samples showed

within the coating two distinct layers in addition to the inner and outer denuded layers (Figure

7.5). Adjacent to the outer denuded layer is a layer containing y, y' and a chromium rich

phase. Between this layer and the inner denuded layer is a second layer containing y, ~, a

chromium rich phase and TaC. The 'ICO' samples aged for times longer than 5,000 hours

were fully denuded. The phases present in the coating of the fully denuded samples were y
and TaC. None of the 'no ICO' samples up to 15,000 hours were fully denuded, howeve,r the

layer of y' phase present in the coating of the 10,000 hour sample was very thin and at

15,000 hours was intermittent. The yttrium rich phase was evident at the interface in all of the

'ICO' and 'no ICO' samples (Figure 7.6). In the interdiffusion zone the only phase present was

M23CS carbide and the y matrix.

Figure 7.5 SEM SSE image showing Amdry 997 coating y' layer, ~ layer, inner and
outer denuded layers 1000°C 2,000 hour 'ICO' sample.
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10~m
I Mag= 3.00KX EHT= 20.00 kV WO = 9 mm SignalA = OBSO

Figure 7.6 SEM BSE image of Amdry 997 coating interface with MAR M509
substrate showing yttria particles on the coating side of the interface
and M23Cs carbides in the inter diffusion zone 950°C 25,000 hour sample.

The results of the ageing trials show, in very broad terms, the degradation of the coating

occurs as follows:

Ageing temperature 800 - 950°C

Bulk Inner denuded

1

Y~ (y' minor)

YY'j ~lCr rich]
Y y'l Cr rich

Y Cr richl TaC

yTaG

y c- rich

Initial coating

Increasing time/temp

Fully denuded

y c- rich TaG

yTaG

Ageing temperature 10000G

Initial coating

Increasing time/temp

Y ~ (y' minor)

1
Y y'l Cr rich] TaG and

y~lCr richj TaG

YY'l Cr rlch]TaG

yTaG

y er rich TaC

Fully denuded

y Cr rich TaC

yTaC

The results indicate at temperatures from 800-950°C initially as ~ goes into solution, y' and a
chromium rich phase (not evident in the original microstructure) initiate/grow. As ageing
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continues, 13 is the first phase to disappeared, this is followed by the loss of y' and then the
Joss of the chromium rich phase leaving tantalum carbide the last phase evident in the y
matrix. At 1000°C the coating microstructure developed as two distinct layers a y' rich layer
below the outer denuded layer and a 13 rich layer with no y' adjacent to the inner denuded
layer. The inner 13 rich phase layer is the first to disappear followed by the y' rich layer leaving
tantalum carbide in the y matrix.

If the absence of 13(2) is considered to indicate the end of coating life, then with 'no ICO'
present the coating has a useful life in excess of 25,000 hours at temperatures of 800°C or
less. At temperatures above 800°C the coating life is reduced from 15,000 to 10,000 hours at
850°C and 900°C respectively. If 'ICO' is present then the coating life is between 10,000 and
15,000 hours at 800°C reducing to 5,000 hours at 850 and 900°C. However, it is possible that
as a result of me high levels of aluminium in the y' phase (- 7 wt.%) the loss of 13 may not

indicate the end of coating life.

Table 7.2 and 7.3 detail the phases found in the Amdry 997 coating in the 'no ICO' and 'ICO'
samples. Representative SEM micrographs, from the middle of the coating, from the 1,000,
5,000, 15,000 and 25,000 hour samples are shown Figure 7.7 - 7.11 and show more clearly
the changes in the microstructure with time and temperature.
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7.2 Phase Composition Determined by EDS Analysis

Table 7.4 details the coating bulk analysis for the aged 'no ICO' samples. The bulk analyses were

taken from the coating y' layer (box measurement) at a minimum of four positions. The results

(Figure 7.12) show the expected reduction of aluminium in the coating with both time and

temperature however the reduction is less than 2 wt.% from 1,000 to 25,000 hours. The 1000°C

aluminium EOS results show a constant 5.8 wt.% aluminium from 1,000 to 10,000 hours dropping

to 5.1 wt.% aluminium at 15,000 hours. It should be noted from Table 7.2 that the coating

microstructure at 1000°C is unusual in that there are two distinct layers (Figure 7.5); a y' layer on

the TGO side of the coating and a ~ layer on the substrate side of the coating up to 10,000 hours.

Beyond 10,000 hours the ~ layer is lost completely leaving a thin intermittent y' layer in a largely

denuded coating. The bulk EOS measurements were taken from the y' layer. For all the samples,

the bulk analysis aluminium levels remain above 5.1 wt.%. The cobalt EOS results show a linear

rise with time -4 wt. % where as the chromium results show a smaller reduction -2 wt.% with

time. The cobalt and chromium content of the y' layer in the coating show only minor changes

with ageing temperature. The nickel results are constant with time.

Table 7.5 details the EDS composition of the phases within the Amdry 997 coating of the "no

ICO" samples aged at 900°C. Table 7.5 and Figure 7.13 have been included to highlight the high

levels of chromium in the chromium rich phase, the presence of tantalum and tungsten in y' and

the aluminium content in y, y' and ~. A more comprehensive programme of analysis was carried

out on the y' and the chromium rich phase in the "no ICO" coating (Table 7.6). Gaps in the table

at low times and temperatures are where the phases within the coating were too small to obtain a

reliable quantitative analysis. The results (Figure 7.14 for y' and Figure 7.15 for the chromium rich

phase) show only small changes in the elemental analysis with no systematic changes with time

or temperature.

A tantalum rich phase was evident in the denuded coating and at the interface between the

coating and MAR M509 substrate (Figure 7.16). An EDSIWDS analysis was carried out to

determine if the tantalum rich phases present within the denuded coating and at the interface

between the coating and MAR M509 substrate were similar to the known tantalum rich MC

carbides in the MAR M509 substrate (Figure 7.16). A similar exercise was also carried out to

determine whether the blocky phase formed within the interdiffusion zone was chromium rich

M23Ce carbide similar to the M23Ce carbide in the MAR M509 substrate. In both cases carbon was

analysed by WOS and the remaining elemental analysis by EDS. The results were not normalised

and are shown in Table 7.7.
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It is considered that WDS can detect carbon but requires additional carbon standards to give a

quantitative result. For the purpose of this investigation the carbon analysis is considered to be

indicative only.

The carbon level of the tantalum rich phase in the bond coat (51 at.%) and the tantalum carbide

in the substrate (55 at.%) are considered similar. The tantalum rich phase in the bond coat has a

similar level of chromium (3 at.%) to that of the MAR M509 MC carbides but has none of the

substitutional elements (Zr, Ti and W) found in the MAR M509 tantalum carbides. The formation

of TaC in the coating would be dependant upon the diffusion of carbon from the MAR MS09

substrate into the coating. The tantalum phase is not found in the aged samples until the inner

and outer denuded layers have formed, suggesting that tantalum is being released by the

solutioning of y' (Table 7.5).

The results from the high chromium interdiffusion zone phase (29 at.% carbon) are similar to the

values obtained from the M23Cs carbides (25 at.% carbon) in the substrate. The chromium

required to form the carbides could, in part, occur as a result of the dissolution of the chromium

rich phase in the coating. Baufeld et al(42) concluded that failure occurred along the

coating/substrate interlace of NiCoCrAIYRe coated MAR M509 thermal fatigue samples as a

result of brittle chromium carbides which formed along the interlace between the MAR MS09 and

the bond coat. For the purposes of this investigation, the tantalum rich phase will be considered

to be tantalum carbide (MC) and the interdiffusion zone chromium rich phase to be chromium

carbide (M23Cs). This initial assumption was confirmed by the analysis of electron diffraction

patterns from thin foils viewed in a TEM (see section 7.4).
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1,000 hI'S 5,000 hI'S 10,000 hI'S 15,000 hI'S 20,000 hI'S 25,000 hI'S

soooe AI 7.3 7.1 6.6 6.2 5.7 5.6

Cr 18.3 18.2 17.5 17.1 16.5 16.4

Co 23.2 24.1 24.9 25.1 26.5 26.6

Ni 44.4 44.3 44.7 45.2 44.7 45.2

Ta 4.6 4.5 4.4 4.4 4.6 4.6

W 1.2 1.2 1.2 1.1 1.2 1.1

Y 1.0 0.9 0.7 0.9 0.8 0.8

ssoGe AI 7.2 6.9 6.5 6.05 5.6 5.5

Cr 17.9 17.2 17.2 16.8 17 16.8

Co 23.7 24.5 25.5 26.1 27 26.5

Ni 44.8 45.2 44.7 44.7 43.9 44.6

Ta 4.5 4.4 4.5 4.5 4.6 4.6

W 1.1 1.3 1.1 1.3 1.5 1.4

Y 0.8 0.6 0.5 0.7 0.6 0.5

SOO°C AI 7.1 6.8 6.3 5.9 5.5 5.4

Cr 18.2 17.2 17.1 16.3 17.1 16.9

Co 23.4 24.5 25.0 25.7 26.3 26.3

Ni 44.7 45.1 44.8 45.6 44.1 44.1

Ta 4.5 4.4 4.5 4.5 4.5 4.5

W 1.4 1.3 1.4 1.5 1.9 1.7

y 1.0 0.6 0.8 0.3 0.6 0.5

sso·e AI 6.9 6.5 6.2 5.8 5.4

Cr 17.8 17.4 17.4 15.7 16.4

Co 23.4 24.5 25.4 25.8 26.8

Ni 45.6 44.7 44.3 45.2 45.6

Ta 4.4 4.4 4.5 4.5 3.9

W 1.2 1.4 1.6 1.7 1.7

Y 0.6 0.5 0.7 0.5 0.3

10000e AI 5.8 5.9 5.9 5.1

Cr 18.5 15.6 14.9 17.7

Co 23.8 24.5 24.9 25.4

NI 46.3 48.1 47.5 46.0

Ta 4.1 4.2 4.2 4.2

W 1.1 1.3 1.7 1.7

Y 0.4 0.5 0.4

Table 7.4 Amdry 997 coating bulk analysis (v' layer) 'no ICO' samples (wt.%).

Coating
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Chapter7 Coating

Time
5,000 10,000 15,000 20,000 25,000 1,000 5,000 10,000

hrs
1,000 15,000 20,000 25,000

800·C V' Cr rich

AI 8.2 7.9 8.4 0.1 0.2 0.2 0.1

Cr 6.4 7.1 6.4 90.9 89.6 90.5 91.2

Co 17.7 19.1 17.5 4.1 4.5 4.2 3.8

Ni 55.3 56.5 56.9 4.4 4.6 4.3 4.2

Y 0.7 0.6 0.8 0.1 0.3 0.3 0.1

Ta 9.6 7.4 8.3 0.1 0.6 0.2 0.2

W 2.2 1.6 1.8 0.3 0.4 0.4 0.3

810°C

AI 7.9 8.3 8.4 8.1 8.4 0.2 0.1 0.2 0.2 0.2

Cr 6.6 6.1 6.8 5.5 5.9 89.6 90.6 90.8 88.6 87.7 89.1

Co 18.6 18.9 21.3 19.6 20.9 4.2 4.3 4.3 5.7 6.3 5.8

Ni 53.7 55.9 54.6 56.1 55.3 5.4 4.3 4.2 4.6 5.3 4.3

Y 0.8 0.6 0.5 0.6 0.5 0.1 0.2

Ta 10.1 8.3 6.7 8.2 7.3 0.3 0.3 0.2 0.4 0.5 0.3

W 2.3 1.9 1.7 2.2 1.7 0.3 0.3 0.3 0.5 0.3 0.4

eoo·c
AI 7.5 8.1 8.1 8.2 8.2 8

Cr 6.7 5.8 6.1 6.1 5.5 5.6 89.6 90.6 90.3 88.2 86.3 87.5

Co 16.1 18.3 20.8 21.1 20.7 20.0 4.8 4.5 4.1 6.6 7.6 7.3

Ni 55.2 55.8 55.3 55.1 54.1 55.6 5.5 4.2 4.5 4.5 4.7 4.4

Y 0.7 0.7 0.6 0.6 0.6 0.5

Ta 11.8 9.4 7.2 7.1 8.6 8.3 0.4 0.4 0.4 0.3 0.5 0.3

W 2.1 2 1.9 2.2 2.5 2.1 0.4 0.4 0.4 0.3 0.6 0.4

9SO·C

AI 7.8 8.1 8.4 7.9 7.8 7.4 0.1 0.1 0.1

Cr 5.8 6.1 61 5.4 5.1 5.1 88.2 86.7 87.0 86.8 86.8

Co 18.5 19.7 19.8 19.3 18.8 18.7 5.7 7.2 7.4 7.7 7.6

Ni 55.3 55.4 54.8 55.3 55.7 56.1 4.9 4.7 4.6 4.6 4.7

Y 0.7 0.5 0.5 0.6 0.4 0.5 0.2 0.2 0.1 0.1

Ta 9.8 8.5 8.3 9.3 9.4 9.2 0.5 0.7 0.5 0.5 0.4

W 2.1 1.9 2.1 2.3 2.7 3.1 0.5 0.5 0.5 0.4 0.3

1000·

AI 8.1 8.3 8.3 8.6 0.1 0.1

Cr 5.8 5.8 5.8 5.5 87.4 86.2 86.6

Co 17.7 17.8 18 17.3 6.7 7.4 7.4

Ni 57.9 57.6 57.6 57.2 No sample 4.8 5.0 4.7 No sample
y 0.7 0.5 0.5 0.4 0.2 0.2 0.1

Ta 7.9 7.9 7.4 8.5 0.4 0.7 0.4

W 2.0 2.2 2.3 2.4 0.4 0.5 O.S

Table 7.6 Amdry 987 coating EDS analysis y' and Cr rich phase 'no ICO' samples
(wt.%).
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Figure 7.15 Amdry 997 coating EDS analysis Cr rich phase 'no ICO' samples (a)
chromium, (b) cobalt and (c) nickel respectively.
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ium rich

rich

20~m

H Mag = 700X EHT = 20.00 IN WO = 15 mm Signal A • OBSO

Figure 7.16 SEM SSE image showing tantalum and chromium rich phases in the
Amdry 997 coating and carbides in MAR M509.

at.% C Ta Zr Ti Cr W Co Ni

MC (MAR M509) 55 25 6 5 3 1 4 1

interface" 50 35 1.6 4 4 5

Coatinq" 51 36 0.6 3 4 5

M23Cs (MAR M509) 28 59 4 8 1

Interdiffusion 29 61 2 5 3

* small particles, analysis affected by beam spread

Table 7.7 EDSIWDS analysis of tantalum and chromium rich phases in the Amdry
997 coating and known carbides in the substrate (at.%). Results are the
average of five analyses for each phase.
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7.3 Thermodynamic Equilibrium Calculations for Amdry 997 Utilising

JMatPro software

Thermodynamic equilibrium calculations were carried out using JMatPro to indicate the

predicted equilibrium phases in the coating for Amdry 997. The composition used for the

calculations is the bulk composition of the as-received samples, see Table 3.3. All

calculations were carried out in the temperature range 800 - 11OO°C.Initially no phases were

excluded from the nickel superalloy database. Unless otherwise stated nickel was the

balancing element in all calculations.

Yttrium is not a compositional input in JMatPro. It is considered that the omission of yttrium,

which is only present in small amounts (0.6 wt.%), would not lead to substantial errors in the

thermodynamic predictions. Yttrium is not considered to impact upon the thermodynamic

stability of any of the major phases expected to be present (Le. V, V· and 13 ).

Figure 7.17 shows the JMatPro predicted equilibrium phases in Amdry 997 over the selected

temperature range. The predictions show that V· and a decrease as the temperature

increases, with V and to a lesser extent 13 (NiAI) increasing with temperature. a is not

predicted at temperatures above 940°C with V, y' and 13 (NiAl) present, to a greater or lesser

extent, over the temperature range of 800-1050°C. The thermodynamic equilibrium

compositions of the predicted phases are presented in Figure 7.18 showing significant

changes in nickel, cobalt and chromium in V, cobalt and tantalum in 13 (NiAl) and tantalum in y'
with temperature. The predicted aluminium content of, V is less than 5 wt.%, V· ...10 wt.% and

13 -18 wt. %. The predicted chromium and cobalt for a are ...sO and 34 wt.% respectively at

900°C.

A small number of investigations have identified the phases present in aged samples of

Amdry 997 coating on nickel based superalloys (Table 7.8). The results of the investigations

show that both a and ccr have been reported in Amdry 997 on nickel based superalloy

substrates. For JMatPro to predict ccr (SCC phase in JMatPro) as an equilibrium phase it is

necessary to remove both a and M2(C,N} from the phases present. The JMatPro equilibrium

phase predictions (Figure 7.19), with a and M2(C,N} removed, show increased levels of y and

13 in the temperature range BOO· 920°C with reduced levels of f over the same temperature

range when compared to the original JMatPro predictions. ecr (BCC) is predicted below

825°C. The thermodynamic equilibrium compositions of the predicted phases are presented

in Figure 7.20. The changes in composition noted previously for V and 13 (NiAl) are still

present, however, the change in tantalum in y' is reduced. The predicted chromium level in

ccr (84 wt.%) is significantly higher than the chromium content of a (57 wt.%) shown in

Figure 7.1B.

Table 7.9 compares the EDS results from the 900°C 1,000 hour and 10,000 hour samples

with the JMatPro equilibrium predictions at 900°C (BOO°Cfor oCr). The results are also
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plotted in Figure 7.21, showing reasonable agreement between predicted and experimental
measurements other than a higher chromium content predicted by JMatPro in V with higher
nickel lower chromium and cobalt in V'. The results for 13 are similar with slightly higher
tantalum predicted by JMatPro and higher cobalt in aCr.

Table 7.10 details the composition of a and aCr predicted by JMatPro at 800°C and the
composition of a found by Frances(76)at 8S0°C and the composition of the chromium rich
phase at 800°C from the current investigation. The composition of a predicted by JMatPro is
similar to the composition of a detailed by Frances. The JMatPro predicted composition of
aCr (83 wt.% Cr, 14 wt.% Co) shows a higher cobalt content than the composition of the
chromium rich phase (91 wt.% Cr, 4 wt.% Co) determined from this investigation.

The current investigation has shown that a chromium rich phase is present in the majority of
the samples investigated and in some cases is the last phase present in the denuded coating
after the solutioning of both y' and 13. JMatPro predicts that at equilibrium 13 will be present at
-20 wt.% at all temperatures, the current investigation shows that 13 is no longer evident in the
coating after 10,000 hours at ageing temperatures above 800°C. Coatings are a dynamic
system and it may be possible as a result of the outward diffusion from the coating and the
inward diffusion from the substrate that equilibrium in the coating may never be achieved.

Figure 7.22 and Figure 7.23 show JMatPro equilibrium predictions for increased levels of
carbon in the coating and reduced levels of aluminium in the coating at 800°C and 900°C.
The prediction for carbon increasing in the coating (Figure 7.22 (a) and (b» is that at 800°C in
addition to V, y' and 13, a chromium rich (Figure 7.22 (c» M23Cecarbide would be present. At
900°C JMatPro predicts that in addition to V, V', 13 and M23CScarbide, a tantalum rich MC
carbide is formed (Figure 7.22 (d» above 0.2 wt.% carbon. Figure 7.23 (a) and (b) show the
effect of varying aluminium on the equilibrium phases predicted by JMatPro. The results show
that aCr (BCC) disappears rapidly as the aluminium content decreases, and is not evident at
900°C, y and y' increase as 13 decreases as the aluminium concentration reduces. With the
loss of 13, V continues to increase at the expense of v'. Both V and y' would remain at 3 wt.%
aluminium with 13 removed at -5.6 wt.% aluminium. Figure 7.23 (c) and (d) show the effect of
the inclusion of 0.2 wt.% carbon in the coating analysis on the predicted equilibrium phases
as aluminium is reduced. At aooGc, 4 wt.% M23Ce carbide is present as the aluminium
reduces from 7.S to 4 wt.%. After this the M23Cecarbide reduces and MC carbide is predicted.
At 900°C a very low level of MC carbide is predicted from 7.5 to 6.5 wt.% aluminium and "'3
wt.% M23Ce carbide is predicted from 7.5 to 6 wt.% aluminium. Below 6 wt.% aluminium the
M23CS carbide reduces, the MC carbide increases to -3 wt.% and remains constant down to 3
wt.% aluminium. The effect of the addition of 0.2 and 0.4 wt.% carbon to the coating analysis
is shown in Figure 7.24. The presence of 0.2 wt.% carbon slightly reduces the levels of V, y'
and 13, and introduces low levels of MC ("'4 wt.%) and M23Ce(-5 wt.%) carbide. As would be
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expected, increasing the carbon from 0.2 - 0.4 wt.% increases the amounts of the predicted

carbides.

The results show that if carbon is diffusing into the coating from the substrate then chromium

rich M23CS carbide is likely to form within the coating, and tantalum carbide would form at

lower aluminium levels in the denuded coating layers. The presence of tantalum carbide in

the denuded coating has been confirmed by TEM/electron diffraction. The WDS results

carried out on a small number of samples has confirmed that carbon is present in the phase

identified as the chromium rich phase (Table 7.12). The presence of M23CS carbide in the

coating is still to be proved conclusively. The EDS results show that aluminium is diffusing

from the coating and that as the ~ content decreases, the y" content increases. The lowest

aluminium content at which ~ was found was 5.6 wt.% (25,000 hour BOO°C'no ICO'). This is

in agreement with the JMatPro prediction of ~ removed at 5.B wt.% at BOO°C.The lowest

measured aluminium content at which y' was evident was 5.1 wt.%, which is significantly

higher than the JMatPro predictions of y' still evident at 3 wt.%.

JMatPro was developed for the prediction of equilibrium phases in nickel based superalloys

and has been 'tweaked' using the results from various research programmes. The

composition of MCrAIY coatings are generally outside of the compositions normally found in

nickel based superalloys and for this reason JMatPro may not be directly applicable to

MCrAIY coatings. It is also considered that as a result of the inward diffusion from the

substrate to the coating and outward diffusion from the coating to the TGO and substrate that

the coating may never achieve equilibrium. The results of this investigation show that the

dynamics of the system, NiCoCrAITaY coating on a high carbon cobalt superalloy, may be

beyond the current limits of the JMatPro software. However, although there may be limitations

to JMatPro, it provides a good first indication of the phases that might be present in the

coating. In addition, given knowledge of the system, it is possible to carry out useful

calculations to provide an insight in to the effect of compositional variations. A model which

combines the kinetics of diffusion with thermodynamic equilibrium predictions is required to

fully explain the experimental data.
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Figure 7.17 JMatPro thermodynamic equilibrium predictions of phases in Amdry
997 coating (no phases excluded).
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Chapter? Coating

1,000 hrs JMatPro 10,000 hrs

y y' p Cr y y' p aCr y y' p Cr
rich rich

AI 3.5 7.5 18.2 3.1 8.9 17.7 0.1 3.9 8.1 18.3

Cr 24.7 6.7 6.1 87.6 32.0 3.3 7.1 84.3 19.5 6.1 6.1 90.3

Co 33.2 16.1 15.6 4.8 31.3 10.9 14.6 14.2 39.1 20.8 15.6 4.1

Ni 36.3 55.2 58.6 6.5 34.2 61.7 55.6 1.4 36.2 55.3 58.6 4.5

V 0.3 0.7 0.2 0.6 0.2

Ta 1.4 11.8 0.7 0.4 0.3 15.2 5.0 0.8 7.2 0.7 0.4
W 0.6 2.1 0.5 0.4 0.5 1.9 0.5 0.4

Table 7.9 Comparison of EDS compositions Amdry 997 coating at 1,000 and 10,000
hour 900°C with JMatPro predicted compositions at 900°C (aCr at 800°C)
(wt.%).
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Chapter7

Wt.% Cr Co Ni W

JMatPro a 56 36 8

Frances(76) a 56 29 14

JMatPro (oCr }BCC 84 14 2

Cr rich this programme 91 4 4 0.4
(10,000 hours)

Coating

Table 7.10 JMatPro predicted equilibrium compositions for Amdry 997 coatln~lhases a
and aCr (850°C). together with the composition quoted by Frances for a
and the SEM EDS composition of the Cr rich phase from this programme
(850°C 10,000 hrs).
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Chapter 7 Coating
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Figure 7.24 Amdry 997 JMatPro thermodynamic equilibrium predictions for (a)
coating analysis, no carbon (b) coating analysis with 0.2 wt.% carbon (c)
coating analysis with 0.4 wt.% carbon respectively (with 0 and M2(CN)
removed for all calculations).
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7.4 Identification of Unknown Phase

During the course of this research, a number of phases have been identified which required
more detailed investigation. Three microscopes were used for this work, a fei Nova Nano Lab
600 dual beam (FEG-SEM/FIB) system, a Jeol 2000FX TEM and a Philips Tecnai F20 FEG
TEM fitted with a GATAN OigiPEELS spectrometer. Thin foil samples were produced in the
FEG-SEM FIB for examination in the TEM and FEGTEM.

7.4.1 Electron diffraction

The thin foil samples taken from the aged samples for electron diffraction are as follows;

a) Tantalum rich phase from the denuded region of the coating 20,000 hours 950°C 'no
ICO' sample (Figure 7.25).

b) Yttrium rich phase from the interface and the chromium rich phase in the inter
diffusion zone 10,000 hour 850°C 'no ICO' sample (Figure 7.26).

c) Chromium rich phase in the bulk of the coating 10,000 hour 850°C 'no ICO' sample
(Figure 7.28).

d) Chromium rich phase at the interface 10,000 hour 850°C 'no ICO' sample (Figure
7.29).

The TEM EOS composition of the phases investigated are detailed in Table 7.11. Figure 7.25
- 7.29 show for each phase the position of sample within the bulk sample, a TEM image of
the thin foil and the diffraction pattern from the phase of interest. The patterns were indexed
using the Cambridge University Practical Crystallography software Version 1.6(79).The
crystallography of the phases which were investigated are detailed in Table 3.4. Indexing of
the patterns confirms the tantalum rich phase as tantalum carbide (FCC lattice parameter
4.46A), the yttria rich phase as Y203 (BCC lattice parameter 10.M), the chromium rich phase
in the interdiffusion region as M23Ce (FCC lattice parameter 10.66A).

The electron diffraction patterns taken from the chromium rich phase thin foils (c) and (d)
could not be indexed as oCr (BCC, lattice parameter 2.8839 A). The electron diffraction
patterns could be indexed to M23Ce (FCC lattice parameter 10.66 A). A series of WDS/EOS
analyses were carried out to identify if carbon was present in the bulk and interface chromium
rich phase in the 10,000 hour 850°C sample, from which the thin foils had been cut. Table
7.12 details the WOS/EDS analysis results showing that both the bulk and the interface
chromium rich phase contained -11 wt.% carbon, similar to the 10 wt.% obtained from a
M23Ce carbide in the MAR M509 substrate. In both cases the carbon was determined by WDS
and the remaining elements by EOS. It is considered that in a dirty SEM, carbon can be
depOSitedon to the surface of the sample and therefore in order to rule out the possibility that
the observed carbon was the result of contamination. Spot analyses were carried out on the y'
phase around the chromium rich phase. The y' phase analysis in Table 7.12 is typical of the
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results showing no evidence of carbon. Further work has been carried out by parallel electron

energy loss spectroscopy (Chapter 7.4.2) to confirm the presence of carbon in the chromium

rich phase.

wt.% Cr Co Ni Ta Ti W Y 0

Sample (a) 92 8
Tantalum rich
Sample (b) 39 60
Yttrium rich
Sample (b) 72 14 6 8
Chromium rich
Sample (c) 77 15 8
Chromium rich
bulk
Sample (d) 75 14 6 5
Chromium rich
interface

Table 7.11 Amdry 997 coating· TEM EOS composition from the phases In the thin
foil samples (no carbon taken Into account) (wt.%).

C AI Cr Co Ni Ta W

chromium rich 11.8 79.8 4.2 4.2
phase bulk

y' 8.3 7.9 23.7 52.9 7.2

chromium rich 10.9 79.1 5.2 4.8
phase interface

M23CeMAR M509 10.0 56.5 16.1 3.3 0.5 13.6

Table 7.12 SEM EOSIWOS to determine carbon content of er rich pha.eln the bulk
of the Amdry 997 coating and local to the Interface with the sUbstrate
and compare this with the carbon content of the MuC. carbide In the
MAR MS09. y' analysl. carried out as control (wt.%).
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Chapter 7 Coating

Figure 7.25 Amdry 997 coating 20,000 hours 950°C tantalum rich phase (a) FIB SEM
image of sample position (b) TEM image of thin foil and diffraction
pattern indexed as TaC.
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Figure 7.26 Amdry 997 coating 10,000 hour 850°C yttria rich interface phase (a) FIB
SEM image of sample position (b) TEM image of thin foil and diffraction
pattern indexed as Y203.
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Figure 7.27 Amdry 997 coating electron diffraction pattern for blocky phase in
interdiffusion zone shown in Figure 7.26. Pattern indexes as M23CS

carbide.
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Figure 7.28 Amdry 997 coating 10,000 hour 850°C 'no ICO' sample, chromium rich
phase (a) FIB SEM image of sample position (b) TEM image of thin foil
and diffraction pattern indexed as M23Cs (FCC lattice parameter 10.66A).
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OATES ALPHA IHT -
i OQ ')tlQ tU'!!"rh tI

Figure 7.29 Amdry 997 coating 10,000 hour 850°C 'no ICO' sample, interface
chromium rich phase (a) FIB SEM image of sample position (b) TEM
image of thin foil and diffraction pattern.
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7.4.2 Determination of Carbon in a Chromium Rich Pha.e by Parallel Electron Energy

Loss Spectrometry (PEELS)

Although the WOS analysis did confirm the presence of carbon in the chromium rich phase, it
was considered that further work was required to substantiate the WOS results due to the
possibility of bulk sample contamination. Parallel Electron Energy Loss Spectroscopy
(PEELS) attached to a TEM is considered a positive method for identifying low atomic number

elements.

Three samples were examined in the Philips Tecnai F20 FEG TEM;

a) Thin foil cut from the uncoated 1,000 hour 850°C MAR M 509 sample taken through a
M23Caeutectic carbide.

b) Thin foil from the coated 10,000 hour 850°C sample through the chromium rich phase
in the bulk of the coating.

c) Thin foil from the coated 10,000 hour 850°C sample through the chromium rich phase
at the interface with the MAR M509 substrate.

From the EELS atlas(S1)the expected peak positions are as follows;

Carbon = 283.8 eV

Chromium = 574 eV

. Nickel = 854 eV

Cobalt = 779 eV

It was noted that during the tests a small amount of drift occurred within the system. This was
not considered to have affected the results.

Figure 7.30 is a micrograph of the thin foil taken through the 1,000 hours 850°C MAR M509
M23Caeutectic carbide. The FEG TEM EOSX-ray maps (Figure 7.31) show the chromium and
carbon rich M23Cs carbides, the tungsten and carbon rich MaC carbides and the nickel and
cobalt rich VCo matrix. The PEELS trace from the carbide (Figure 7.32) show a small carbon
and a larger chromium ionisation edge, whereas the PEELS trace from the VCo between the
M23Ce eutectic carbide shows no evidence of a carbon peak (Figure 7.33).

Figure 7.34 shows a FEG TEM image of the chromium rich phase bulk sample removed from
the 10,000 hour 850°C 'no ICO' sample. Three PEELS traces were taken from this sample,
one from each of the two chromium rich particles and one from the V phase between the
chromium rich particles. The PEELS traces (Figure 7.35) show carbon peaks for the two
chromium rich particles tested and no carbon peak on the V trace. The process was repeated
for the thin foil removed from the 10,000 hour 850°C sample which included an interface
chromium rich particle (Figure 7.36). FEG TEM EOS X ray maps (Figure 7.37) show the
interface chromium rich phase is rich in chromium with higher levels of carbon than the
surrounding V· phase. PEELS traces taken from the interface chromium rich phase and the V·
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phase show carbon and chromium ionisation edges on the interface chromium rich phase
trace and no carbon but chromium, cobalt and nickel ionisation edges on the y' trace (Figure
7.38).

The results from the electron diffraction patterns, the SEMWOS/EDS analysis and the PEELS
traces all indicate that the chromium rich phase in the 10,000 hour 850°C 'no ICO' sample
contains carbon and is therefore considered to be chromium M23Cecarbide. However, only
very limited analysis of one sample has been carried out in this investigation. Further work is
required to confirm if the chromium rich phase identified in the coated samples is chromium
carbide in all of the samples or if there is a transition, possibly from oCr phase to chromium
carbide at a point during the ageing process. In addition, further work would be required to
determine if the presence of chromium carbide in the coating is found for nickel based
superalloys which have a lower carbon content than MAR M509.
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Figure 7.30 FEG TEM micrograph of MAR M509 thin foil cut through a M23Cs eutectic
carbide from the 1,000 hour 850°C sample.

er Ni Co

w C

Figure 7.31 FEG TEM EDS X-ray maps from the 1,000 hours 850°C MAR M509 thin
foil Cr, Ni, Co, Wand C respectively.
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Figure 7.32 PEELS result from M23Cs eutectic carbide showing carbon and
chromium peaks, MAR M 509 1,000 hour 850°C thin foil.
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Figure 7.33 PEELS trace from yCo matrix between the M23Cs eutectic carbide, MAR
M509 1,000 hour 850°C thin foil.
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Figure 7.34 FEG TEM micrograph of thin foil cut through the bulk chromium rich
phase, 10,000 hour 850°C 'no ICO'
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Figure 7.35 PEELS traces from bulk chromium rich phase and V, 10,000 hour 850°C
'no ICO' thin foil.
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Figure 7.36 FEG TEM micrograph of thin foil cut through the Amdry 997 interface
chromium rich phase, 10,000 hour 850°C 'no ICO'.
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C

Figure 7.37 FEG TEM EDS X-ray maps of Cr, Ni, Co, AI and C from the Amdry 997
interface chromium rich phase thin foil, 10,000 hour 850°C 'no ICO'.
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Figure 7.38 FEG TEM PEELS traces from interface chromium rich phase thin foil (a)
interface chromium rich phase and (b) V phase, 10,000 hour 850°C 'no
ICO'.
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7.5 y' image analysis

The images presented in Figure 7.39 are BSE images from the 'no leo' samples aged at

900°C for times up to 25,000 hours. The images show visually an increase in the size of y'

with time up to 15,000 hours. At 25,000 hours there is an apparent reduction in the level of y'

when compared to the 15,000 hour sample. In addition the samples show the loss of P (dark

grey particles) evident in the 1,000 - 15,000 hours samples and the increase in the chromium

rich phase (black particles) across all times.

Image analysis of the y' phase was carried out on ten mid coating images, taken at a

magnification of 3000 times, from each of the 'no leo' coating samples. The results (Figure

7.40) show that in general there Is a small increase in the y' area fraction from 1,000 hours to

15,000 hours with an approximately constant area fraction at 20,000 and 25,000 hours. The

10000e samples show a relatively constant y' area fraction. The plot of y' area fraction

against ageing temperature shows a small change in y' area fraction with temperature. This is

significantly different from the JMatPro predictions which show a drop from ....aO wt.% at soooe

to 13 wt.% at 1000oe. Although the results are in area fraction and the JMatPro predictions

are in wt.% such a significant change in y' would be detectable by image analysis assuming

that equilibrium has been reached. However, as a result of the diffusion taking place from the

coating to the TGO and substrate and diffusion from the substrate to the coating this is a

dynamic system and as such may never reach equilibrium. The measured variation of y' area
fraction in the coating is too small to allow this measure to be used for the prediction of

operating temperature of coated samples.
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Figure 7.39 SEM BSE images of Amdry 997 coating microstructure from 'no ICO'
samples aged at 900°C (a) 1,000, (b) 5,000, (c) 15,000 and (d) 25,000
hours respectively.
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(a)

0.6
I •0.5 • •• • A

• •c: 0.4 •0- • • .1000o •10 ·5000...
LL 0.3 " 1000010
Cl) .15000...
-e 0.2 • 20000
> • 25000

0.1

0
800 850 900 950 1000 1050

Temperature °C

(b)

0.6

• •0.5 A • •• • ,
c: 0.4 t
0 •;:; • •u Ae
LL 0.3
10
~« 0.2
>

0.1

0
0 5000 10000 15000 20000 25000 30000

Time hrs

Figure 7.40 Amdry 997 coating y' image analysis results 'no ICO' sample plotted as
a function of (a) temperature and (b) time s.
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7.6 Coating Denudation

It was apparent from observation of the samples that the width of the denuded layer on the

substrate side of the coating was wider than the denuded layer on the TBC side of the coating

(Figure 7.41). This would suggest that the life of the coating in these samples is limited by the

diffusion of aluminium into the substrate rather than the formation of thermally grown oxide. It

was considered that the variation in the width of the inner denuded layer with time and

temperature could be used to predict time/temperature of coated components and could be

used to indicate the effect of 'ICO' on coating life. However, it is also apparent from Figure

7.41 that the width of the coating on the 'ICO' samples was thinner than the coating on the 'no

ICO' samples. This may have influenced the outcome of the coating denudation. However, it

was considered that the results would be valid where a layer of y' separates the inner and

outer denuded layers of the coating.

The width of the coating and the width of the inner denuded layer were measured at twenty

positions along the samples using an optical microscope. Figure 7.42 is a plot of the fraction

denuded with respect to the coating width against ageing temperature and shows that the rate

of denudation of the coating on the 'ICO' samples was approximately three times faster than

the coating on the 'no ICO' samples. Plots (c) and (d) show the results plotted against time"

seconds and show that denudation in the coating is approximately linear with time". However,

there is a deviation in the line at higher temperatures which is more evident in the 'no ICO'

samples. The deviation indicates an increased rate of denudation and for the 'no ICO'

samples broadly occurs following the removal of ~ phase from the coating (Table 7.2)

Measurement of the width of the denuded layer could be used to predict the operating

temperature of the component if the time in service is known.

(a) (b)

Figure 7.41 SEM SSE images illustrating the variation in Amdry 997coatlng width for
15,000 hour 950°C samples (a) 'ICO' (b) 'no ICO' and the wider Inner
denuded layers on both samples.
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Chapter7 Coating

7.7 Aluminium diffusion in V

To understand the diffusion of elements from the coating into the substrate and from the substrate

into the coating, EDS spot analysis were carried out in a line from the coating yNi phase through

the interdiffusion layer into the yCo of the MAR M509 substrate, at a minimum of three positions

along each sample. Figure 7.43 illustrates the results from the 950°C samples at 1,000 hour and

20,000 hour. The results show there are significant changes across the interdiffusion zones where

a balance is achieved between the composition of the coating and the bulk composition of the

substrate. Of note are the increased levels of aluminium and nickel and the reduced levels of

tungsten and cobalt in the interdiffusion zone when compared to the coating and substrate

analysis. The interdiffusion zone of the 1,000 hour and 20,000 hour samples were measured as

approximately 52IJm and 140 IJm respectively.

Figure 7.44 is a plot of the aluminium content (wt. %) against distance from the interface for the

20,000 hours 950°C sample with 'ICO' showing four aluminium traces and the reproducibility of the

technique. Figure 7.45 illustrates the changes in the aluminium traces with time. The traces have

been used very simply to investigate the diffusion of aluminium from the coating into the y Co MAR

M509 substrate by taking the distance from the interface to the point at which the aluminium is at 1

wt.%. and plotting this against temperature (Figure 7.46) for both the 'ICO' and 'no ICO' samples.

The results do show the expected increase in the diffusion of aluminium with time. However, there

is very little difference between the 'ICO' and 'no ICO' samples. Figure 7.47 details the results from

the 1,000 hour, 10,000 hour and 20,000 hour samples showing the small variations, both positive

and negative, between the 'ICO' and 'no ICO' samples. Error bars are plotted in Figure 7.47. The

increase in the width of the error bars at longer times and higher temperatures is considered to be

a result of the flattening of the curves through 1 wt.% aluminium. The results show there is no

significant difference between the 'ICO' and 'no ICO' samples with regards to the diffusion of

aluminium through the yNi in the coating into the yCo substrate. However, it has been shown

(Chapter 7.6) that denudation of the coating occurs three times faster for the 'ICO' samples than

the 'no ICO' samples.
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Chapter 7 Coating

Coating Substrate
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Figure 7.44 Aluminium measurements from the 20,000 hour 950C 'ICO' sample
showing repeatability of the spot analysis measurements.

Coating Substrate

5

• • 4 •
•• t • •

• •~ ~.0,

i 3 • • '000• •E • • • sooo
::J • • noaa
c: •• • • • .15000'E 2 • • 20000::J • • •< •• •• • • •• • • • • •• • • • • • •• • •••••• • • • •• • •

-20 0 20 40 60 80 100
Distance from interface microns

Figure 7.45 Aluminium traces from Amdry 997 coating into substrate for the 950°C
'no ICO' samples for various ageing times.
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Figure 7.46 Aluminium EDS trace position of measured 1 wt.% aluminium from
interface (a) 'no ICO' samples and (b) 'ICO' samples,
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Figure 7.47 Comparison of 1 wt.% aluminium 'ICO' and 'no ICO' samples with error
bars.
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7.8 Effect of Inter-Carbidic Oxidation on Aluminium Diffusion

The results from the previous chapter show there is no significant difference between the
'ICO' and 'no ICO' samples with regards to the diffusion of aluminium through the yNi in the
coating into the yCo substrate. However, it has been shown (Chapter 7.6) that denudation of
the coating occurs three times faster for the 'ICO' samples than the 'no ICO' samples. In order
to show why the coating denudes faster on the 'ICO' samples further SEM, FEG-SEM FIB
and TEM work was carried out.

'ICO' in the original cast plates is evident as particles of zirconia (zr02)close to the surface of
the casting (Figure 7.48 (a)). The SEM images of the aged 'ICO' samples show in SEM BSE
mode a black phase around the 'ICO' particles (Figure 7.48 (b». SEM EDS mapping of the
aged 'ICO' sample (Figure 7.49) show the black phase to be rich in aluminium with a central
core rich in zirconium. The EDS detector attached to the Leo 1455 VP SEM has a beryllium
widow which precludes the quantitative analysis of oxygen. However, if oxygen is present it
will be detected and will show as an oxygen peak on the EDS trace. EDS spot analysis of the
aged 'ICO' samples confirmed the presence of oxygen in the outer aluminium rich layer and in
the zirconium rich core. The results of the EDS analysis suggest that aluminium diffusing from
the coating into the substrate leaches oxygen from the zirconia to form AI203 leaving a central
core of zirconium/zirconia.

A thin foil sample was removed from the inter-diffusion zone of the 15,000 hour 900°C 'ICO'
sample (Figure 7.50) to investigate further the aluminium rich phase around the 'ICO' and the
nature of the zirconium rich core. X-Ray mapping of the 'ICO' phase in the foil (Figure 7.51)
showed within the zirconium rich core a large area rich in oxygen and a second smaller area
low in oxygen (Figure 7.51). TEM selected area diffraction patterns were taken from the
aluminium rich phase and from the two areas within the zirconium core.

The aluminium rich phase around the aged 'ICO' Figure 7.50 was considered to be AI203
(Hexagonal, lattice parameters 5.54 and 9.02A). Electron diffraction patterns from the two
areas were considered to be zirconia, however, it was not possible to differentiate between
ZrO (FCC lattice parameter 4.62A) and Zr02 (Tetragonal lattice parameters 5.12 and 5.25A).

Ellingham diagrams are plots of the free energy of formation of a metal oxide per mole of
oxygen (02) against temperature (OK). The diagram is a useful pictorial representation of the
relative stability of metal oxides (Figure 7.53). The metals in the more stable oxides (lower on
the chart) can chemically reduce the metals in the less stable oxides (higher on the chart).
The Ellingham diagram shows that above 800°C the zr02 line is below the AI203 line and as
such aluminium would not remove oxygen from the zirconia. However, there are drawbacks to
the Ellingham diagram in that the GO values do not take into account chemical activities which
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may be different from unity, and no account of the kinetics of the reaction is taken in

measurements of thermodynamic quantities.

In summary it is considered that the increased denudation in the coating on the 'ICO' samples

(Figure 7.40) is a direct result of the formation of AI203 around the 'ICO' particles.

(a)

(b)

Figure 7.48 SEM SSE images of (a) 'ICO' in the as-cast MAR M 509 sample and (b)
'ICO' surrounded by a black phase in the Amdry 997/MAR M509 950°C
15,000 hour sample.
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AI Ka1 Zr La1

Figure 7.49 SEM BSE image from 950°C 5,000 hour Amdry 997/MAR M509 'ICO'
sample and EDS maps showing aluminium and zirconium.
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Figure 7.50 Amdry 997/MAR M509 900°C 15,000 hour 'ICO' sample (a) FIB SEM
image of sample position (b) TEM image of thin foil and diffraction
pattern of aluminium rich phase around 'ICO' indexed as Ala03•
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a)

c) (d)

Figure 7.51 Amdry 997/MAR M509TEM EDS X-ray mapping of 900°C 15,000 hour
'ICO' sample showing (a) TEM image, (b) aluminium map, (c) zirconium
map and (d) oxygen map.

Figure 7.52 Electron diffraction patterns from Amdry 997/MAR M509 900°C 15000
hour 'lCD' sample, zirconium rich with oxygen indexed as ZrO (FCC
lattice parameter 4.62A).
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7.9 Summary

The results of the microstructural investigations carried out on the coated MAR M509

samples, both with and without 'ICO', showed that the initial coating microstructure, following

the 1000°C diffusion heat treatment, comprised fine y and ~ with an indeterminate very fine

aluminium rich phase. With time and temperature the coating microstructure coarsened and

changes in phase stability were observed. At temperatures from 800-950°C as ~ goes into

solution, y' and a chromium rich phase (not evident in the original microstructure)

initiate/grow. Following the depletion of ~ phase, y' and the chromium rich phase reduce, with

tantalum carbide the last phase evident in the denuded coating y matrix. At 1000°C the

coating microstructure shows two distinct bands; a y" rich band on the TBC side of the coating

and ~ rich band on the MAR M509 side of the coating. With time the ~ rich layer disappears

leaving the y' rich band to further reduce in size with tantalum carbide remaining in the

denuded y matrix.

The effect of ageing on the coating microstructure, in very broad terms, is as follows:

Ageing temperature aDo - 950°C

1

Bulk

Y ~ (y' minor)

y -t ~LCr richj
y y'L Cr rich

y Cr rich! TaC

y TaC

Inner denuded

Initial coating

Increasing time/temp

y Cr rich

Fully denuded

y Cr rich TaC

yTaC

Ageing temperature 1000°C

Initial coating

Increasing time/temp

y ~ (y' minor)

1
y y'L Cr richj TaC and

y ~LCr rich] TaC
y y'L Cr rich! TaC

yTaC

y Cr rich TaC

Fully denuded

y Cr rich TaC

yTaC

If the absence of ~ is considered to indicate the end of coating life, then with 'no ICO' present

the coating has a useful life in excess of 25,000 hours at temperatures of 800ae or less. At

temperatures above aoo°c the coating life is reduced to less than 15,000 hours at 850-900aC.

If 'ICO' is present then the coating life is less than 15,000 hours at 800aC reducing to less

than 10,000 hours at 850 -900°C. However, it is possible that as a result of the high levels of

aluminium in the y' phase (- 7 wt.%) the loss of ~ may not indicate the end of coating life.
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EDS of the y' and the chromium rich phase in the coating showed no significant trends with

time or temperature that would allow the prediction of ageing temperature or time.

Subsequent investigation of the chromium rich phase confirmed the presence of carbon within

the phase. Indexing of electron diffraction patterns showed the phase was probably M23Cs.

However, further work is required to determine if the chromium rich phase is chromium

carbide in all of the samples or if a transition occurs from oCr to M23Cswith time and

temperature.

JMatPro did, in part, predict the coating equilibrium phases and their composition. Of interest

were the microstructural changes predicted for the simulated ·diffusion~of aluminium from the

coating and the diffusion of carbon into the coating. The results show that if carbon is diffusing

into the coating from the substrate, then chromium rich M23Cscarbide is likely to form within

the coating, and that tantalum carbide would form at lower aluminium levels in the denuded

coating layers. However, it is considered that as a result of the changes in the coating

composition from outward diffusion from the coating to the TGO and the substrate and the

inward diffusion from the substrate to the coating that the system would not reach equilibrium

and as such JMatPro was of limited use. A model which combines the kinetics of diffusion

with the thermodynamic equilibrium predictions is required to fully explain the experimental

data.

Measurement of the width of the denuded layer in the coating adjacent to the MAR M509

substrate showed denudation (removal of V') of the coating in the 'ICO' samples was

approximately three times faster than in the 'no ICO' samples. Measurements of the

aluminium diffusion from the coating into the substrate showed very similar profiles between

the 'ICO' and 'no ICO' samples. However, it was noted that an aluminium rich layer had

formed around the 'ICO' phase in the aged samples. It was proposed that the aluminium

formed around the 'ICO' extracting oxygen from the zirconia 'ICO' particles. Electron

diffraction patterns confirmed the aluminium rich phase as AI203 surrounding ZrO/Zr02 'ICO'.

Measurement of the width of the inner denuded layer showed potential for estimating the time

temperature history of a NiCoCrAITaY coating on MAR M509 substrate. The investigation of

the coated MAR M509 has shown that there is a commercial benefit to be gained from the

removal of 'ICO' from the surface of MAR M509 vanes prior to coating.
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8 Conclusions and Further Work

The conclusions which arise from the various investigations carried out as part of this work
are discussed below in separate sections. The first three sections refer to the study of the
microstructural changes in two cobalt-based superalloys FSX 414 and MAR M509 and one
high cobalt nickel based superalloy NP 222 in order to produce a method to allow the
prediction of operating time and temperature of service exposed superalloy vanes. The fourth
section refers to the second part of the programme investigating the effect of inter-carbidic
oxidation (ICO) on coating life, and the microstructural changes within the coating and the
inter-diffusion layer with the intention of producing a method to enable the prediction of
operating time and temperature for a NiCoCrAITaY coating on a cobalt-based substrate.

8.1 FSX 414 Predicting time and temperature from microstructural

changes

FSX 414 is a conventionally cast cobalt-based superalloy. The as-cast microstructure
consists of dendrites of FCC (y-Co) solid solution and interdendritic eutectic M23CScarbides at

the grain boundaries and within the y matrix. As a result of heat treatment or service the
carbides can be partially solutioned and precipitated as more finely divided M23CS carbides
around the original carbides(S).

XRD and EDS have confirmed that the carbides present in the samples of FSX 414 are
primary chromium rich M23CS eutectic carbides and secondary M23CS carbides in the aged
samples. The chromium rich M23CS eutectic carbides contain tungsten, cobalt and nickel and
can be expressed as approximately CraoCo"W7Ni2 (where the subscript describes the
concentration in at.%). The composition of the M23Ce eutectic carbides determined by EDS in
the SE.Mwas similar to the thermodynamic equilibrium predictions using JMatPro. However,
the measured cobalt values decrease with JMatPro predicting an increase and a significant
difference exists between the measured (-16 wt.%) and predicted (-12 wt.%) tungsten. Two
additional phases were evident in the samples aged at temperatures less than 950°C; a large
blocky phase and a high tungsten phase, both phases were associated with the eutectic
M23Ce carbides. The phases were identified as a and Laves phase respectively by selected
area electron diffraction in a TEM. Representative EDS compositions for Laves phase and a
is: Laves 55 wt.% W, 25 wt.% Co, 14 wt.% Cr and 3 wt.% Ni, a 43 wt.% Cr, 36 wt.% Co, 15
wt.% Wand 5 wt.% Ni.

JMatPro initially predicted a and J.1 to be present at equilibrium. By removing J.1 from the
allowed phase list In the calculation, JMatPro predicted a and Laves phase at lower
temperatures with predicted compositions similar to that determined by EDS. The secondary
phases a and Laves could be used to indicate qualitatively the operating temperatures and
service time experienced. The presence of a in a sample would indicate service temperatures
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of 850°C and 900°C for times greater than 5.000 hours. whereas the presence of Laves
phase would indicate service temperatures of between 850°C and 950°C for 1.000 to 25.000
hours. Therefore the presence of Laves with no a evident would indicate a service
temperature between 900°C and 950°C for 1.000 to 25,000 hours. Further work would be
required to determine the effect of alloy composition on the formation of Laves and a in FSX
414.

Image analysis of the M23CScarbides was inconclusive and would require further extensive
work to differentiate the M23CSfrom the matrix and from the Laves and a phases. In addition.
problems were encountered with the coarse highly segregated primary eutectic carbides
which required low magnification images to overcome the effects of segregation. and the fine
secondary carbides which could not be resolved at the lower magnification. However. it is
considered that image analysis of the secondary M23CScarbides may provide a correlation
with time and temperature. Image analysis of the Laves phase did show an increase in Laves
phase with increasing time and a reduction in Laves phase with increasing temperature.
However. the low levels of Laves in the aged samples would prohibit the use of Laves phase
for the prediction of time and or temperature in practice. Additional samples aged at lower
temperatures may have increased levels of Laves phase.

The measured Vickers hardness levels dropped slightly with ageing temperature and ageing
time, however. the changes were not sufficient to allow the prediction of time or temperature.

The width of the oxidised layer evident on the exposed surfaces of the sample would allow
the prediction of operating temperature on uncoated samples. The width of the denuded
layer. over the period from 1.000 hours to 25,000 hours. increased from 21 to 64 microns at
850°C and from 100 to 350 microns at 1000°C. However, further work should be undertaken
to determine the effect of temperature cycling and composition on the width of the denuded
layer.

8.2 NP222 Predicting time and temperature from microstructural
changes

NP 222 is a conventionally cast y' (-20%) strengthened nickel based superalloy with a high
level. -19 wt.%. of cobalt. The alloy exhibits a primary tantalum. titanium. niobium rich MC
carbide and a chromium rich grain boundary M23Cscarbide(56).

XRD and EDSIWDS confirmed the carbides in the aged samples are a tantalum. titanium,
niobium rich MC carbide and a chromium rich M23Cscarbide. From the SEM EDS
measurements the metallic component of the MC carbide can be expressed as approximately
Ti48Nb26Ta16W3Cr3Ni3Co(where the subscript describes the concentration in at.%). Due to the
small size of the M23CScarbide. EDS measurements were considered qualitative and were
only used to confirm the presence of the carbide. The M23CS carbide is evident in all the
samples aged at 800 and 850°C, and the 900°C samples aged for times less than 10.000
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hours. '1 phase was evident in all samples aged in the range 800 - 1000°C for times greater
than 5,000 hours. y' reduced and coarsened with both time and temperature and was not
evident in any of the samples aged at 1000°C and 1050°C.

The changes in microstructure could be used as a maximum temperature indicator, with
M23C6 carbide indicating a temperature below 850°C; the presence of y' also indicates
temperatures of less than 950°C and the absence of y' indicating temperatures in excess of
1000°C. '1 in the microstructure together with no y' would indicate an effective temperature
between 1000°C and 1050°C.

JMatPro has been used to study the effect of varying the composition of NP 222 on the
formation of '1. The predictions would suggest that '1 would not be formed in NP 222 vanes,
with titanium and niobium levels at the bottom end of the specified composition range below
900°C. The predicted temperatures at which '1 would be present are considered to be above
the normal operating temperatures for stage 2 and 3 vanes. Therefore, the presence of 11in a
NP 222 vane is likely to indicate a fault condition.

The EOSIWOS analysis results for the MC carbide in the aged samples show similar levels of
tantalum, titanium and niobium (-31 wt.%) with tungsten at -3 wt.%. The JMatPro predictions,
over the temperature range from 850°C to 1050°C, show significant changes in the
cornpositlon of the MC carbide with tantalum reducing from -46 wt.% to -30 wt.% and
titanium increasing from -11 % to -29% wt.%. Niobium is predicted to remain relatively
constant at "'29 wt.% with tungsten at less than 1 wt.% and zirconium reducing over the
temperature range from ...4 wt.% to 1 wt.%. The EOSMIOS results show none of the large
changes in the MC carbide composition predicted by JMatPro for tantalum and titanium. No
prediction of time or temperature could be made with the small changes in composition found
in the MC carbide.

The limitations imposed by the spot size precluded the quantitative EOSmeasurement of y', '1
and M23C6 carbides. However, EOS was used to confirm the presence of M23C. carbides in
the samples where the 11phase peaks dominated the XRO traces.

The reduction in the measured mean hardness between 800 and 950°C could provide a
coarse prediction of operating temperature but would require knowledge of the microstructure
to confirm the samples contained y'. Correlations were also evident between '1 needle length
and the y' denuded layer formed on the exposed surfaces of the sample. Further work would
be required to understand the effects of composition on ., needle initiation and growth and the
effects of composition and thermal cycling on the formation of denudation zones on free
surfaces.
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8.3 MAR M509 Predicting time and temperature from micro.tructural
change.

MAR M509 is a high carbon, high strength, vacuum cast cobalt-based superalloy which is
generally used in the as-cast condition. The microstructure is typically composed of dendrites
of the FCC (V-Co) solid solution and an interdendritic network of "Chinese sCript" MC carbides
and interdendritic eutectic M23Cacarbides consisting of mixtures of the VCo solid solution and
carbide.

XRD and WDS/EDS confirmed the carbides present in the aged samples are tantalum rich
MC carbides and chromium rich M23Cacarbides. The MC carbides are primarily tantalum
carbides but also contained zirconium, tungsten and titanium and the metallic component can
be expressed as approximately Tas~r1aTi,2Cr8C08W3(where the subscript describes the
concentration in at.%).

From the EDSIWDS results the composition of the MC carbides shows only minor changes in
composition with no significant variations with time or temperature. A typical composition
would be tantalum (-75 wt.%), zirconium (-11.5 wt.%), titanium (-4.5 wt.%), tungsten (-3.5
wt.%) and cobalt (-2.5 wt.%). The variations in analysis predicted by JMatPro from 850°C to
1050°C are tantalum reducing from 78 to 76 wt.%, tungsten increasing from 2.8 to 4.6 wt.%
with zirconium, carbon and titanium remain relatively constant at 7 wt.%, 7.4 wt.% and 4 wt.%
respectively. Other than the zirconium level, the WDS/EDS analysis was in reasonable
agreement with the JMatPro predictions for MC carbide.

The M23Caeutectic carbides were primarily chromium carbides but also contained tungsten,
cobalt and nickel and the metallic component can be expressed as approximately
Cr82C01oWsNi3(where the subscript describes the concentration in at.%). From the EDS
results a typical composition would be chromium (-70 wt.%), tungsten ("'15 wt.%), cobalt (-12
wt.%) and nickel (-2 wt.%). The variations predicted by JMatPro from 850°C to 1050°C are
that chromium reduces from 67 to 63 wt.%, cobalt increases from 14.3 to 17.8 wt.%, nickel
Increasing from 1.1 to 1.8 wt.% with tungsten and carbon at 12 wt.% and 5 wt.% respectively.
The EDS analysis and the JMatPro predictions for the M23C. eutectic carbides are Similar,
other than small differences In the tungsten and cobalt. The measured levels of elements in
the M23Cacarbides showed no Significant changes with ageing time or temperature.

A tungsten rich phase found within the M23C,eutectic carbides was identified as M.C carbide
by selected area electron diffraction. The tungsten rich M.C carbide was evident in all of the
samples aged at 850°C and 900°C for times up to 25,000 hours. At 950°C M.C reduced with
increasing ageing time and could not be found in the samples after 15,000 hours as increased
levels of a tantalum rich phase precipitated In the M23C. eutectic carbides. The tantalum rich
phase in the M23C. eutectic carbides was noted in all of the samplea other than the 1,000
hour 850°C sample. The level of tantalum carbide in the M23C, eutectic carbides inereaaed
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with both ageing time and ageing temperature. Selected area electron diffraction identified the
tantalum rich phase as tantalum carbide (MC). Other than the presence of MsC phase in the
eutectic carbides which may not be an equilibrium phase the results show that JMatPro using
the nickel superalloy database has produce reasonable predictions of the equilibrium phases
that would form in MAR M509 and the chemical composition of those phases.

An attempt to identify any changes in the volume fraction of the MC carbides and the M23Cs
carbides using the peak area and peak heights of the XRD traces showed only a small
increase in the peak area ratio with time. Image analysis of the MC carbides showed no
change with time or temperature. Image analysis of the M23C6carbide was not carried out as
a clear difference between the matrix and the carbide could not be achieved. In addition the
segregation effects and the presence of fine secondary carbides caused similar problems to
those identified in FSX 414.

Measured Vickers and micro-hardness levels dropped from 365-390 HV20at 850°C to 332-
344 HV20at 1050°C with ageing temperature but varied by less than 20 HV20with ageing time.
The Vickers hardness levels measured were in reasonable agreement with those measured
by Drapier et al(S2)and showed a similar trend with time. The results from the tests show no
significant variations that would allow the prediction of time and or temperature.

Micro sections from the aged samples showed a denuded/oxidised layer on the outer
exposed surface of the samples. Measurements of the width of the denuded/oxidised layer
showed a correlation with time which would allow the prediction of an operating temperature
for an uncoated vane with a known operating history. However further work is required to
determine the effect of thermal cycling and bulk composition on the width of the denuded
layer.

8.4 NiCoCrAITaY Predicting time and temperature from microstructural
changes

A thermal barrier coating for protection against the high temperature exposures was applied
to MAR M509 samples both with and without intercarbidic oxidation (ICO). The bond coat was
a NiCoCrAITaY coating and the outer ceramic coating was yttria stabilised zirconia. Prior to
the deposition of the ceramic coating the samples were heat treated in vacuum at 1000 :t::

10°C for 4 hours followed by an argon gas fan quench. The investigation of the coating has
focused on the effects of ageing on the phase changes within the coating, the interaction
between the coating and the substrate, and the effect of 'ICO' on coating life.

The results of the microstructural investigations showed that the initial coating microstructure
comprised fine y and ~ with an indeterminate very fine aluminium rich phase. With time and
temperature the coating microstructure coarsened and changes in phase stability were
observed. At temperatures from 800-950°C as ~ goes into solution, y' and a chromium rich
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phase (not evident in the original microstructure) initiate/grow. Following the depletion of ~

phase, y' and the chromium rich phase reduce with tantalum carbide the last phase evident in

the denuded coating y matrix. At 1000°C the coating microstructure shows two distinct bands,

a y' rich band on the TBC side of the coating and ~ rich band on the MAR M509 side of the

coating. With time the ~ rich layer disappears leaving the y' rich band to further reduce in size

with tantalum carbide remaining in the denuded y matrix.

If the absence of ~(2) is considered to indicate the end of coating life then with 'no ICO'

present the coating has a useful life in excess of 25,000 hours at temperatures of less than

800°C. At temperatures above 800°C the coating life is reduced to between 10,000 and

15,000 hours at 850-900°C. If 'ICO' is present then the coating life is between 10,000 and

15,000 hours at 800°C reducing to 5,000 - 10,000 hours at 850 and 900°C. However, it is

possible that as a result of the high levels of aluminium in the y' phase (- 7 wt.%) the loss of

~ may not indicate the end of coating life.

EDS analysis of the y' and the chromium rich phase in the coating showed no significant

trends with time or temperature that would allow the prediction of ageing temperature or time.

Subsequent investigation of the chromium rich phase, in the 10,000 hour 850°C 'no ICO'

sample, confirmed the presence of carbon within the phase. Indexing of selected area

electron diffraction patterns showed the phase was probably M23C6• However, further work is

required to determine if the chromium rich phase is chromium carbide in all of the samples or

if a transition occurs from aCr to M23C6 with time and temperature.

The JMatPro predictions were in general limited to the range of temperatures used for the

ageing trials. The initial predictions identified the equilibrium phases as y, y' ~ (NiAl) and a.
Previous investigators of this coating had reported both a and aCr to be present. The current

investigation has identified in the coating a chromium rich phase with a chromium content

significantly higher than predicted by JMatPro for a. For JMatPro to predict aCr (BCC phase

in JMatPro) as an equilibrium phase it is necessary to remove both a and M2(C,N} from the

phases present. The JMatPro equilibrium phase predictions, with a and M2(C,N} removed,

show increased levels of y and ~ with reduced levels of y' when compared to the original

JMatPro predictions. ecr (BCC) was only predicted below 825°C. The predicted chromium

level of oCr (84 wt.%) is significantly higher than the predicted chromium content of a (57

wt.%).

Within JMatPro it is possible to carry out concentration step calculations in which the

composition range of a single element is varied at a fixed temperature. In this case the

aluminium composition was lowered to simulate the loss of aluminium from the coating. The

change in aluminium content was balanced by cobalt. The current investigation has also

confirmed the presence of carbon within the coating. For the concentration step calculations

carbon contents of 0.2 wt.% and 0.4 wt.% were included in the coating composition. The

266



ChapterS Conclusions and Further Work

results of the concentration step calculation show that a chromium rich M23Ce carbide and

tantalum rich MC carbide are predicted to form in the coating, in addition to the V, y' and 13

phases.

However, it is considered that as a result of the changes in the coating composition from

outward diffusion from the coating to the TGO and the substrate and inward diffusion from the

substrate to the coating that the system would not reach equilibrium and as such JMatPro

was of limited use. A model which combines the kinetics of diffusion with the thermodynamic

equilibrium predictions is required to fully explain the experimental data.

Measurement of the width of the denuded layer in the coating adjacent to the MAR M509

substrate showed that denudation (removal of V') of the coating in the 'ICO' samples was

approximately three times faster than in the 'no ICO' samples. Measurements of the

aluminium diffusion from the coating into the substrate showed very similar profiles between

the 'ICO' and 'no ICO' samples. However, it was noted that an aluminium rich layer had

formed around the 'ICO' phase in the aged samples. It was proposed that the aluminium

formed around the 'ICO' extracting oxygen from the zirconia 'ICO' particles to produce an

alumina layer. Selected area electron diffraction patterns confirmed the aluminium rich phase

around the 'ICO' (ZrO/Zr20) as A1203•

Measurement of the width of the denuded layer showed potential for estimating the time

temperature history of a NiCoCrAITaY coating on MAR M509 substrate. The investigation of

the coated MAR M509 has shown that there is a commercial benefit to be gained from the

removal of 'ICO' from the surface of MAR M509 vanes prior to coating.

8.5 Further work

A number of areas of further work have been identified as a result of this research and are

discussed below

The current investigation attempted to carry out image analyses on both the primary and

secondary carbides in MAR M509 and FSX 414 and found problems as a result of

segregation and the contrast required between the M23Ce carbides and the matrix. It is

considered that image analysis of the secondary M23Ce carbides could provide a method of

predicting time and temperature.

Additional samples aged at lower temperatures are required to identify at what temperatures

a and Laves phase do not form in FSX 414 and the ageing temperatures where '1 does not

form in the current NP 222 samples. Further work is required to determine the effect of

composition on '1 initiation and growth in NP 222 and the effects of composition and

temperature cycling on the width of the denuded/oxidised zone in all of the alloys examined.

Image analysis of the chromium rich phase in the coating may provide a method of predicting

time and temperature. The chromium rich phase in the NiCoCrAITaY coating was identified in
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one sample as M23C6. Further work is required to confirm if the chromium rich phase is M23C6

in all of the samples or there is a point at which the chromium rich phase is ccr and reverts to
M23C6• This work could be extended to lower carbon cobalt or nickel based superalloys.

Should a cobalt-based database be developed for use with JMatPro the results should be
used to validate the predictions.

8.6 Industrial Application of Microstructural TimelTemperature

Correlations

There are a number of practical considerations that need to be addressed with regards to the
use of microstructural changes to predict time and temperature for service exposed vanes.
The first, second and in some cases the third, stage vanes are generally cooled by air from
the compressor. For air cooled vanes the surface temperature of the vane will vary not only
along the length of the vane but, dependant on the cooling configuration, will show significant
variations from the leading edge to the trailing edge, with variations between the pressure
surface and the suction surface of the vane. However, the through wall temperature gradient
would be typically -250·C from the outside of the vane to the cooled inner surface over a
distance of -amm. This large through wall temperature gradient can lead to significant
through wall microstructural changes. For this reason any technique developed using
changes in microstructure to determine the operating temperature must be able to identify the
changes in the microstructure, preferably, in a relatively narrow band immediately below the
denude/oxidised layer.

For turbine vanes, the time in service is generally known and it is the operating temperature
that is required. It should be noted that the operating temperature determined will be a
metallurgical average temperature Le. the temperature determined will be the result of
metallurgical changes and may not be a "true" average temperature although it will be
representative of an effective operating temperature. If the metallurgical change being
measured is not active during significant periods of service lower metallurgical average
temperatures will be predicted.

Generally metallurgists are asked to determine the temperature of a component with a known
time in service. There are two main reasons for this:

• IGTs are controlled by exhaust temperatures, the temperatures of individual stages
are back calculated from the exhaust temperatures. These calculated temperatures
can be inaccurate and do not identify variations in metal temperatures around the
components. Component metal temperatures are important for predicting component
lives and determining if components can be run for longer service intervals or will be
acceptable for refurbishment.

• Calculation of service temperatures for components that have failed in service (often
due to elevated temperature conditions). This can then be used to help determine the
root cause of the failure. .
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Less frequently, it is also necessary to determine the length of time a component has been in

service, for example since a crack developed. The author can quote an instance where a

change in the level of vibration of a gas turbine was identified from on board transducers. The

turbine continued to operate to a planned overhaul. A visual inspection noted that the top

corner of a turbine blade had been removed as a result of foreign impact damage. An

investigation was carried out to determine when the damage had occurred and if the vibration

noted by the onboard transducers was the result of the loss of the blade section. The blade

material was the nickel base superalloy GTD111 for which the microstructural changes as a

function of time and temperature have been well characterised. An average metal

temperature was calculated from the V' morphology, based on the total length of time the

blade had been in service. Using the width of the denuded layer across the fracture a time

since impact was calculated based on the calculated metal temperature. The predicted time

the damage occurred fell very close to the time when the change in vibration was detected by

the onboard transducers.

One particular aspect of the investigation of the coated MAR M509 is noteworthy. It has been

shown that there is a commercial benefit to be gained from the removal of 'ICO' from the

surface of MAR M509 vanes prior to coating because the presence of the 'ICO' was found to

reduce coating life by approximately one third.

8.6.1 Practical utilisation of the techniques described in this thesis

Qualitative assessment of microstructure In SEM.

The presence or absence of a and Laves phase in FSX 414 and the presence or absence of

M23Cs, V· and '1 in NP 222 would allow the prediction of maximum metal temperatures. Typical

temperature limits would be ± 50·C from the ageing experiments carried out in this research.

XRD of carbide extraction

This process could be applicable to a solid vane where there is a limited through wall

temperature gradient. It is difficult to see how this process could be used on a cooled vane as

a through wall sample would present a gradation of microstructures and could include oxide

or coating interdiffusion phases. For this technique to work there would have to be phases

which form in a specific temperature range above the normal operating temperature. For FSX

414, the detection of Laves phase without a would indicate a temperature between 950·C and

1000·C. This would of course indicate that at some point through wall the temperature has

been between 950°C and 1000°C.

Hardness

This would be the optimum process for use in industry as it can be targeted in specific areas

and is a relatively simple technique. Of the materials tested in this investigation NP 222 was

the only material where the reduction in the measured mean hardness between BOO°C and

950°C could provide a coarse prediction of operating temperature but would require
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knowledge of the microstructure to confirm the samples contained v'. Typical temperature

limits would be ± 50°C.

Denuded/oxidised layers

Measurement of the denuded/oxidised layer on the outer surface' of uncoated superalloys

would allow the predictions of the maximum surface temperatures. Measurement of the inner

denuded layer of a NiCoCrAITaY coating on a MAR M509 substrate would allow the

prediction of operating temperature for this coating system. Typical temperature limits would

be ± 50°C, although further work linked to combined thermodynamic/kinetic models may allow

refinement of this temperature interval.

8.6.2 Specific Applications for Cobalt Alloys

There are two specific applications where the processes developed in this thesis will need to

be applied:

1. A coating was applied to the platforms of FSX 414 row 1 vanes to reduce the amount

of thermal fatigue cracking. This has largely been successful, but a few significant

cracks have still developed and have resulted in some components being removed

from service early. The investigation into the cracking will require a method of

determining the temperature (with a known time) at various positions in the FSX414

component.

2. MAR M509 row 1 vanes have been refurbished and returned to service. During the

refurbishment there has been considerable coat-down of the film cooling holes,

however, a TBC has been applied over the whole gas-washed surfaces of the vanes.

Following service, one of the vanes will be sectioned and compared to a vane

sectioned after the first operating interval. A time temperature relationship for MAR

M509 will be required to determine if there have been any significant changes in

metal temperatures.

The work in this thesis has identified that denuded layers for uncoated surfaces and the inner

denuded layer for coated surfaces offer the greatest potential for making accurate

temperature estimates for cobalt-based superalloys.
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