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Abstract  

 

Two main methods have been used in mutual funds evaluation. One is portfolio evaluation, 

and the other is data envelopment analysis (DEA). The history of portfolio evaluation dates 

from the 1960s with emphasis on both expected return and risk. However, there are many 

criticisms of traditional portfolio analysis which focus on their sensitivity to chosen 

benchmarks. Imperfections in portfolio analysis models have led to the exploration of other 

methodologies to evaluate fund performance, in particular data envelopment analysis (DEA). 

DEA is a non-parametric methodology for measuring relative performance based on 

mathematical programming. 

 

Based on the unique characteristics of investment trusts, Morey and Morey (1999) developed 

a mutual funds efficiency measure in a traditional mean-variance model. It was based on 

Markowitz portfolio theory and related the non-parametric methodologies to the foundations 

of traditional performance measurement in mean-variance space. The first application in this 

thesis is to apply the non-linear programming calculation of the efficient frontier in mean 

variance space outlined in Morey and Morey (1999) to a new modern data set comprising a 

multi-year sample of investment funds. One limitation of DEA is the absence of sampling 

error from the methodology. Therefore the second innovation in this thesis extends Morey 

and Morey (1999) model by the application of bootstrapped probability density functions in 

order to develop confidence intervals for the relative performance indicators. This has not 

previously been achieved for the DEA frontier in mean variance space so that the DEA 

efficiency scores obtained through Morey and Morey (1999) model have not hitherto been 

tested for statistical significance. The third application in this thesis is to examine the 

efficiency of investment trusts in order to analyze the factors contributing to investment trusts’ 

performance and detect the determinants of inefficiency. Robust-OLS regression, Tobit 

models and Papke-Wooldridge (PW) models are conducted and compared to evaluate 

contextual variables affecting the performance of investment funds.  

 

From the thesis, new and original Matlab codes designed for Morey and Morey (1999) 

models are presented. With the Matlab codes, not only the results are obtained, but also how 

this quadratic model is programming could be very clearly seen, with all the details revealed.  
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Chapter 1   Introduction 

 

 

 

 

 

 

 

 

1.1 Introduction and motivation 

 

UK fund market is very large; according to Morningstar, there are more than 32,000 funds 

available in the UK market. The evaluation of mutual funds is of considerable importance. 

First, it is to see how well the mutual funds industry as a whole has performed in order to 

define their advantages as investment vehicles. Second, the evaluation results could help 

investors select better performing funds. Furthermore, the evaluation process motivates 

mutual fund companies to generate and report superior returns because investment dollars 

usually flow into top performing funds in response to industry publications and data. 

Evaluation could also help investors to understand what caused any superior performance. 
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Two main methods have been used in mutual funds evaluation. One is portfolio evaluation, 

and the other is data envelopment analysis (DEA) The history of portfolio evaluation dates 

from the 1960s (Sharp, 1966; Treynor, 1965 and Jensen, 1968), with emphasis on both 

expected return and risk. Mutual fund managers attempt to find efficient portfolios – those 

promising the greatest expected return for any given degree of risk, i.e. risk-adjusted return. 

However, there are many criticisms of traditional portfolio analysis which focus on their 

sensitivity to chosen benchmarks. For the CAPM, the market portfolio is an ideal portfolio 

that only exists in theory. In practice certain indexes are used as approximations, but this 

causes problems since different indexes are likely to give different results in empirical work. 

For multi-index models, the difficulties lie in justifying how many and which indexes should 

be included in the model and defining which category a particular equity belongs to, 

especially for some equities with properties that suit more than one category. These 

imperfections in portfolio analysis models have led to the exploration of other methodologies 

to evaluate fund performance.  

 

Murthi et at. (1997) were the first to apply DEA methodology to fund performance evaluation. 

A large proportion of DEA models applied to mutual funds show pieceswise linear 

correspondence between multiple inputs and outputs. However, according to Markowitz 

portfolio theory, there is correlation between different assets which should not be ignored, 

and these co-movements between different securities affect the relationship between expected 

return and risk of the combined portfolio.  

 

Based on the unique characteristics of investment trusts, Morey and Morey (1999) developed 

a mutual funds efficiency measure in a traditional mean-variance model. It was based on 

Markowitz portfolio theory and related the non-parametric methodologies to the foundations 

of traditional performance measurement in mean-variance space. The model is derived from 

the standard data envelopment analysis but differs from it in having non-linear constraints in 

the envelopment version of the model’s structure.  Although mean and variance are 

considered in Morey and Morey (1999) models, they distinguish their model from traditional 

portfolio analysis by the fact that there is no theoretical benchmark like the market portfolio 

of the Capital Asset Pricing Model. Instead, the benchmarking fund in Morey and Morey 

(1999) consists of certain funds in the group, each with a particular weight.  So rather than 

being compared with an idealised fund that requires information about all the equities in the 

market, the Morey and Morey (1999) model benchmarks the funds under evaluation against 
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themselves. This makes the Morey and Morey (1999) model practically feasible and easier to 

test. Therefore, the objective of the first chapter in this thesis is to apply the procedures in 

Morey and Morey (1999) to a new modern data set comprising a multi-year sample of 

investment funds.  

 

The objective of the second chapter in this thesis is to extend Morey and Morey (1999) model 

by adding statistical significance tests. The purpose of the Monte Carlo bootstrapping analysis 

in the thesis is to treat the measured scores as statistical estimators and to construct the 

sampling distributions of these estimators. The motivation for this is that the DEA efficiency 

scores obtained through Morey and Morey (1999) model have not hitherto been tested for 

statistical significance. Banker (1993), Kneip et al. (1996), Korostelev et al. (1995a, 1995b), 

Gijbels et al (1999) have investigated the consistency and convergence properties of the DEA 

scores and found that  DEA estimators have asymptotic sampling distributions, which means 

that the efficiency scores only converge when the sample size is large enough. They are also 

very sensitive to outliers and extreme values, for example, dropping one outlier can 

dramatically change the efficiency level for other decision making units. Thus the DEA 

estimators have been shown to be biased when using a finite number of observed units, so 

that significant tests are necessary to correct the bias. The confidence intervals obtained 

through the tests can give insights about whether the DEA scores obtained from the Morey 

and Morey (1999) quadratic models are just random results or statistically significant. 

Therefore, Simar Wilson (2008) bootstrapping algorithms are utilised to develop statistical 

inference and confidence intervals for the indexes of efficient investment fund performance. 

 

The purpose of the third chapter in this thesis is to examine the efficiency of investment trusts, 

analyze the factors contributing to investment trusts performance and detect the determinants 

of inefficiency. The second stage DEA efficiency analyses are used to evaluate contextual 

variables affecting the fund performance. For the second stage analysis, robust-OLS 

regression, Tobit models and Papke-Wooldridge (PW) models are then conducted and 

compared to evaluate contextual variables affecting the performance of investment funds. The 

DEA efficiency scores are regressed on potential variables including Sharpe ratio, Jensen’s 

alpha, expense ratio, P/E ratio, book to market ratio and market value of the investment funds 

to test the statistical significance of those factors.  
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1.2 Contributions to knowledge 

 

In the first application, the Morey and Morey (1999) quadratic DEA model has been 

compared with traditional portfolio analysis and standard linear DEA models. Also, the 

Matlab codes for this model which have written especially for this thesis are reported as part 

of the contribution in the thesis. With the Matlab codes, one can not only obtain the results, 

but also see very clearly how this model is programmed, with all the details revealed. This 

might benefit later practitioners who are interested in the quadratic DEA models.  

 

Another major contribution of this thesis is in its third application, because as far as I am 

aware, there is only one paper in the literature about the practical application of second stage 

DEA on investment trusts. Therefore, it is very meaningful to examine different potential 

factors affecting the fund performance. It is hoped that this application will draw the attention 

of other practitioners and promote the development of using second stage DEA models to 

explain the investment trusts efficiency. 

 

1.3 Structure of this thesis 

 

The thesis is organised as follows:  

 

Chapter 2 provides a fairly inclusive literature review on portfolio analysis models and 

standard DEA models.  

 

Chapter 3 illustrates Morey and Morey (1999) quadratic model, and explains the advantages 

of this quadratic DEA model compared with traditional portfolio analysis and standard linear 

DEA models. Then the procedures in Morey and Morey (1999) are applied to a new modern 

data set comprising a multi-year sample of investment funds. 

 

 Chapter 4 extends the Morey and Morey (1999) quadratic DEA model by utilizing Simar-

Wilson (2008) bootstrapping algorithms to obtain statistical inference and confidence 

intervals for the indexes of efficient investment fund performance.  
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Chapter 5 constructs a second stage DEA model to evaluate contextual variables affecting the 

performance of investment trusts. The commonly used second stage DEA models are applied 

and compared. Also a recursive model is developed to compare the efficiency measures- DEA, 

Sharpe ratio and Jensen’s alpha. Results and inferences are drawn from an extensive new 

dataset of investment funds.  

 

Chapter 6 gives the conclusion.  
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Chapter 2   Literature Review 

 

 

 

 

 

 

 

 

This literature review of the mutual fund evaluation covers two parts; one is portfolio 

evaluation, which is so far the mainstream focus of the analysis of the fund performance. The 

other is called Data Envelopment Analysis (DEA) of mutual funds evaluation, which has 

appeared in the operational research area fairly recently. The first half of this literature review 

is about portfolio evaluation, and DEA on funds evaluation literature review is covered in the 

second half. 

 

Before the formal review of the academic mutual funds evaluation, it is necessary to make 

clear about the definition and characteristics of mutual funds as well as the purposes of the 
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evaluation. A simple definition of a mutual fund is that a mutual fund is a portfolio of 

investments managed on behalf of a pool of investors by a fund manager. Funds exist for 

investment in many kinds of securities: stocks, bonds, money market instruments and 

commodities or mortgage-backed securities. Once the money is collected from the investors, 

it Is allocated into different types of investments and managed by the professionals on a 

regular basis.  

 

There are several basic types of mutual fund. The earliest form of fund is a unit trust, which is 

an ‘open-ended’ fund – the size of the fund and the number of units can expand and contract 

with time according to demand. To liquidate, unit holders sell units back to the managers of 

the unit trusts. There is a spread between offer price and bid price here, unlike OEICs.  An 

OEIC (open ended investment company) is a company that issues shares rather than units. In 

the UK many unit trust managers have converted to OEICs in recent years because OEICs 

have a simpler pricing system without spread, which means there is only one price for both 

buyers and sellers. Mutual funds can also be quoted on a stock exchange, like the stocks. 

ETFs and investment trusts are such kinds. ETFs (exchange traded funds) are index trackers. 

They follow a particular index like the FTSE 100 or a particular sector.  ETFs are set up as 

companies issuing shares and the shareholders’ money is used to buy securities to form a 

sector-mimicking portfolio like pharmaceutical industry. They are also open-ended funds. As 

they are quoted companies, investors can buy and sell their shares in the secondary market 

like any stocks. The other type of quoted mutual funds is investment trusts. These are actually 

listed companies, and are therefore different from unit trust and OEICs. Unlike ETFs, they are 

close-ended funds; therefore the number of shares is fixed as with any other company that 

issues shares. An investment trust normally only invests in specific types of assets for 

example Chinese technology shares and is banned from switching to other segments.   

 

Unit trusts, OEICs, ETFs and investment trusts differ in their type of organisation. However, 

mutual funds can also be differentiated by their size and the assets they invest in. For example, 

growth equity funds are funds that have most exposure to growth stocks; and a small stock 

fund is a fund that buys small stocks predominantly; others may be bond/income funds, 

money market funds etc.  

 

Instead of buying shares directly, investors buy into a managed pool of investment funds. 

Through investing in a mutual fund, investors with a relatively small sum can gain access to a 

http://en.wikipedia.org/wiki/United_Kingdom
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diversified portfolio. Furthermore, those who know little about investment can take advantage 

of professional management. However, all of these advantages are neither free nor without 

risk. There are many types of fees associated with the mutual funds investment, sales loads, 

redemption fees, exchange fees, management fees etc. Note that 12b-1 fees relate to a US 

SEC rule and are not relevant in the UK. Unit trusts may charge distribution fees but 

investment trusts do not. Therefore, the evaluation of the mutual funds is essential, to decide 

which are good and which are not; or whether investors could end up paying too much for 

poor management.  

 

There is more than one purpose for the evaluation of mutual funds. First, it is to see how well 

the mutual funds industry as a whole has performed in order to define their advantages as 

investment vehicles. And also, the evaluation results could help investors select better 

performing funds. Furthermore, the evaluation process motivates mutual fund companies to 

generate therefore report superior returns because investment dollars usually flow into top 

performing funds based on industry publications and data; evaluation could also help them 

understand what caused the performance and where the superior comes from. 

 

2.1 Portfolio Evaluation 

 

Portfolio evaluation has evolved dramatically over the last two decades. Crude return 

calculations were the original idea which was soon replaced by the modern portfolio theory 

based on risk-return analysis. The key element in the portfolio analysis is the emphasis on 

both expected return and risk. Mutual fund managers attempt to find efficient portfolios those 

promising the greatest expected return for any given degree of risk, i.e. risk-adjusted return. 

The seminal models are those of Sharpe (1966), Treynor (1965) and Jensen (1968), and 

Merton and Henriksson (1981) and Treynor and Mazuy (1966).  

 

Sharpe (1966) generated a reward-to-variability ratio (R/V) derived from the Tobin model 

(Tobin, 1958):  

 

dV(R )
1 j *Ȗ E(R ) πmt t2 dE(R )2σ (π ) jtj

    
% %

%

    (2.1.1) 
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The Sharpe ratio is simply
dV(R )

U Uj
/

dE(R ) E(R ) V(R )
j j j

 
 

 
. The numerator shows the difference 

between the funds’ expected annual return and a risk-free interest rate or excess return; it is 

thus the reward provided the investor for bearing some risk. The denominator measures the 

standard deviation of the annual rate of return; it shows the amount of risk actually borne. The 

ratio is thus the reward per unit of variance. So mutual funds with lager Sharpe Ratios are 

assumed to have better performance than those with small ratios.   

 

The Sharpe Ratio takes diversification into account: as the degree of diversification increases, 

the variance decreases therefore the ratio gets larger. 

Treynor (1965) proposed the Treynor index 1mȕ  , (also referred to as the reward-to-

volatility ratio), which is an investment measure that, like the Sharpe ratio, evaluates the 

excess return to a risky investment per unit of risk. However, unlike Sharpe ratio, which takes 

diversification into account, risk in Treynor index is measured as non-diversifiable or 

systematic risk. Since the returns on all diversified portfolios move with the market, the 

extent to which changes in the market are reflected in changes in a fund’s rate of return can 

stand as a good measure of the total volatility of the funds’ return over time. 

 

Treynor Index is obtained by simply substituting volatility (defined as the fund’s beta) for 

variance in the formula for the R/V ratio: 

   ȕ Ȗ
jt t
                   (2.2.2) 

What should be noted is that the return calculated according to the Treynor index assumes 

that the portfolio is suitably diversified, as it only takes systematic risk into consideration. 

Unsystematic risk is not accounted for and therefore the results of a Treynor Index calculation 

for an undiversified portfolio are misleading. It is assumed that the idiosyncratic risk of a 

portfolio can be removed by further diversification, so that systematic risk is the valid 

measure. However, whether the use of total risk (Sharpe) or systematic risk (Treynor) is 

better in performance evaluation depends on the purpose of the evaluation. 

 

Sharpe ratio and Treynor index are the simplest measurements yet they have still been used 

by academics. Another commonly used model is Jensen (1968). Jensen (1968) derived an ex-

post CAPM from the market model and the CAPM: 
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     *
b =g =q (E(R )+ p )m tjt jtt

%                                   (2.2.3) 

 

From the market model 

                              
j

jt 2

j t j

dV(R )1
q =

2s (p ) dE(R )%
                                             (2.2.4) 

 

                                                
dV(R )j

dE(R )j

                       (2.2.5) 

 

From the CAPM:     

 

                                             
))(()( fmifi RRERRE        (2.2.6) 

 

If (2.2.5) and (2.2.6) hold, then 

 

                                     itmmtifmifit RERRRERR   ))(())((                   (2.2.7) 

 

Rearranging (2.2.7) we get:  

 

 R - R = a+bRMO(t)+sSMB(t)+hHML(t)jt f
                (2.2.8) 

 

Add factor i to equation (2.2.8), it becomes: 

 

    itftmtiifit RRRR   )(                             (2.2.9) 

 

Whenȕ , (2.2.9) could be seen as it is derived from (2.2.8). jtR can be positive or negative. 

Equation (2.2.8) holds when there is no managing of assets involved. However, if the fund 

manager has superior ability to find underpriced securities (perhaps because of special 

knowledge not available to others), there would be an excess return compared with the return 
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without asset management. The excess return would then be captured by i in (2.2.9). And 

during this circumstance, there would be an 0i  in (2.2.9). Therefore i is called Jensen’s 

alpha, which represents the average incremental rate of return on the portfolio per unit time 

which is due solely to the manager’s stock-selection abilities. 

 

The above three methods are common measures of the fund manager’s overall performance. 

From Fama (1972) the fund manager’s ability can also be decomposed into detailed factors 

that affect the overall performance: micro forecasting (forecast of price movements of 

individual stocks relative to stocks generally) and macro forecasting (forecast of price 

movements of the general stock market relative to fixed income securities). Micro forecast is 

frequently called ‘security analysis’ and macro forecasting is referred to as ‘market timing’. 

Put another way, market timing ability is the fund’s manager’s talent to forecast whether the 

stock market as a whole will beat the bond market or vice versa. Selection ability is the ability 

of the manager to increase returns on the portfolio through successful prediction of future 

security prices given the level of the risk of his portfolio. The ability to time the ups and 

downs of the stock market has the potential to generate extraordinary returns as the same as 

selection ability, therefore testing the fund manager’s market timing ability has been an 

important issue. 

 

Merton and Henriksson (1981) and Henriksson (1984) describe a model that identifies 

market-timing ability separately from Jensen’s . In Henriksson and Merton model (HM), the 

market timer’s forecasts take a simple form that the investment fund manager forecasts either 

that stocks will earn a higher return than bonds or that bonds will earn a higher return than 

stocks. Define as the realized return on the investment fund portfolio, )(tZ m as the 

return on the market portfolio,  is the realized excess return on the market, 

and let . 

 

It assumes that the fund has two target risk levels: )(1 t   for the forecast of a ‘down market’ 

( )()( tRtZm  ) and )(2 t  for the forecast of an ‘up market’ ( )()( tRtZm  ) 

Let )(t be a random variable such that 1)( t   if the forecast is correct and 0)( t  is the 

forecast is incorrect. The probability function for )(t  conditional on the market return 

ZtZm )(  is written as 



)(tZ p

)()()( tRtZtx M 

   )(,0max)()(,0max)( txtZtRty m 
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           )()(1)(Pr 1 tpZtZtob m   for )()(0 tRtZm                  (2.2.10a) 

                                   = )(2 tp  for  )()( tZtR m   (2.2.10b) 

 

Here )(1 tp is the probability of correct forecast of a down market and )(2 tp is the probability 

of correct forecast of an up market.  

Now let 0)( t  if a ‘down market’ is forecasted at time t therefore ( )()(0 tRtZm  ) and 

1)( t  if an ‘up market’ is forecasted, in which case  )()( tZtR m .  

Then according to (2.2.11a) and (2.2.11b), 

 

            
  )()()(0)(Pr 1 tptRtZtob m      (2.2.11a) 

 

 
  )(1)()(1)(Pr 1 tptRtZtob m     (2.2.11b) 

 

    
  )()()(1)(Pr 2 tptRtZtob m        (2.2.11c)        

 

    
  )(1)()(0)(Pr 2 tptRtZtob m 

 
     (2.2.11d)  

 

Here )(1 tp  is the probability of a correct forecast of a down market and )(1 1 tp is the 

probability of an incorrect forecast of an up market; )(2 tp is the probability of a correct 

forecast of an up market and )(1 2 tp  is the probability of an incorrect forecast of a down 

market. Merton (1981) showed that a necessary condition for a rational forecast to have a 

positive value is that the conditional probabilities satisfy 1)(21  tpp   

 

Henrikson and Merton market timing model is illustrated as follows: 

 

                   
)()()()()( 21 ttytxtRtZ pp          (2.2.12) 

 

Henriksson and Merton (1981) showed that, ignoring the management fee for the fund, the 

large sample least squares estimates of 1 and 2  in Equation (2.2.12) can be written as:  
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         Plim 
12221 )1(ˆ  pp       (2.2.13a) 

 

         Plim ))(1(ˆ
12212   pp     (2.2.13b) 

  

The market-timing ability of the forecaster is measured by 
2  and security analysis is 

identified by 
p .  and  together correspond to  in Jensen’s model. Therefore, 

this model is used to estimate the separate contributions of selectivity and market timing. 

Merton and Henriksson (1981) claimed that the pattern of returns from successful market 

timing is similar to that from following certain option strategies. And they derive an 

equilibrium theory of value for market-timing forecasting skills based on this idea.  

 

In an up market, 0)( ty so that 
1̂  becomes the only risk factor and is the systematic risk 

given by i  in Jenson’s equation. However, when a down market happens,

0)()()(  tZtRty m , the return of the portfolio will be protected by 2 y(t), given the fund 

manager’s forecasting ability.  

 

Merton (1981) constructed a put options investment portfolio whose return was compared 

with those of the funds run by the market timer. His strategy was as follows: 

For each dollar invested in the portfolio, allocate the fractions 12221 )1()(  ppt   to the 

market, ))(1()( 12212   ppt to put options on the market, and 

)()(1)( 213 ttt    to riskless bonds. The return per dollar on this portfolio, )(tZ s  can 

be written as 

 

                            )()()()(,0max)()()()( 321 tRttZtRttZttZ mms           (2.2.14) 

 

Merton (1981) showed that in equilibrium )(tZ p in (2.2.12) equals )(tZ s in (2.2.14). We can 

see that plim 1̂ = )(1 t , plim 2̂ = )(2 t  and )(ty  in (2.2.12) represents the return on one such 

option in (2.2.14). Therefore, from the comparison, the value of the market timing is reflected 

in the fact that the put options are obtained for free, under the assumption that the 

p )(2 ty
i
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management fee is ignored. Market timing therefore gives investors exactly the same 

protection as a put option with an exercise price of )(tR .  

 

With the management fees in consideration, let )(tA  denote the total value of investment in 

securities by the fund at time t and )(tF the total fees paid at the beginning of period t for 

managing the fund between t and 1t , then the total (gross) dollar amount invested in the 

fund at time t, )(tI , satisfies )()()( tFtAtI   and the management fee denoted as a fraction 

of assets held by the fund is given by 
)(

)(
)(

tA

tF
tm  . Let )(tg  denote the market price of a 

one-period put option on one share with an exercise price of )(tR . Merton (1981) showed that, 

in equilibrium, )())(1()( 1221 tgpptm   , which means that the management fee 

should be equal to the cost of purchasing the number of ))(1( 1221   pp put options, 

otherwise there would be an arbitrage between the market timing fund and this specific 

portfolio including such a put option.  

 

Another popular market timing model was proposed by Treynor and Mazuy (1966) which 

suggests that timing ability could be evaluated by including a quadratic term in a simple 

‘characteristic line’ (market model) estimation. Based on this idea Jensen (1972) proposed a 

formal quadratic model regressing jtR  on t~ and 
2~

t , but Pfleiderer and Bhattacharya (1983) 

pointed out that )
~

(
~~

mmtt RER  , and that a good estimate of )
~

( mRE is very hard to obtain. 

They therefore used mtR  in the place of t~ . The final model is now generally written as: 

 

'2'

2

'

1

'

0
~~~

tmtmtjt RRR        (2.2.15) 

 

Pleiderer and Bhattacharya (1983) proved that the probability limits of the coefficients 

obtained from traditional least square regression are 

 

            p
P  '

0
ˆlim                              (2.2.16a) 

 

                    )1)(
~

(ˆlim '

1   mREP
   

      (2.2.16b) 
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                        2'

2
ˆlim P         (2.2.16c)  

 

The market-timing coefficient is
'

2 . The definition of 
2  and    start from Jensen (1972), 

who defines t~  as an unobservable ‘market factor’ which to some extent affects the returns 

on all securities, and assumes 0)~( tE  . Then the excess returns on the market index can be 

expressed as: tmmt RER ~)
~

(
~   

 

Define *~
t  as the portfolio manager’s forecast of the market factor t~  and assume 

 1,

* ~~
 tjtt E   where 1,  tj  is the information set available to the manager at time t-1. 

Given t~  and *~
t , define   as the correlation between the manager’s forecast and the actual 

market returns. Thus  

 

                      


~~

*

,

)~,~cov(

*

       (2.2.17) 

 

So that the better the manager is informed, the closer 
2  is to unity.  

 

Let t  be the fraction invested in the market portfolio at time t, and t1  the fraction 

invested in the riskless asset. Thus the expected excess return and variance of return on the 

portfolio are: 

 

 *~)
~

()
~

( tmtjt RERE        (2.2.18) 

 

    )~()
~

( 22

tttjtRV        (2.2.19) 

 

The manager’s problem is to  

 

   )~(),~~
(max)

~
(),

~
(max *22*

ttttmtjtjt REURVREU
TT




  

 

and the solution to this yields   
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 *

2

~)
~

(
)(

)(

)~(2

1
tm

j

j

tj

t RE
RdE

RdV



      (2.2.20) 

 

where  

 

   
)(

/
)()(

)(

jjj

j

RV

U

RE

U

RdE

RdV







     (2.2.21) 

 

(the slope of the indifference curve between variance and excess return) is a coefficient of 

risk aversion. 

 

Since 1m  and 
tjt    thus the manager’s target risk can be given by 

))
~

(( *

tmjttjt RE    

Where 

  
)(

)(

)~(2

1
2

j

j

tj

jt
RdE

RdV


       (2.2.22) 

 

The more aggressive the fund manager is (even when he only has access to low quality 

information), the larger are both 
)(

)(

j

j

RdE

RdV
 and jt . 

 

Therefore, we conclude that from Jensen(1972) and Pfleiderer and Bhattacharya (1983), the  

market timing returns of the mutual funds managers are decided by how well informed or 

how aggressive they are.  

 

However, superior forecasting ability has not generally been found using these models. 

Jensen (1968) used a sample of 115 open end mutual funds for ten-year period 1955-1964, 

with annual data. He used returns both net and gross of expenses but found very few 

significantly positive alpha coefficients, suggesting that mutual funds showed very little 

ability collectively or individually to forecast security prices. Henriksson (1984) examined 

the performance of 116 open-end mutual funds using monthly data from February 1968 to 
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June 1980. Unfortunately the results show little evidence of market-timing ability and 

selectivity ability. (Only three of the 116 funds exhibited positive estimates for 
2  with 95% 

confidence and only one fund exhibited a significantly positive estimate of Alpha). 

Goetzmann and Zheng(2006) report the performance of a portfolio comprised of all equity 

mutual funds that existed in the CRSP database from the beginning of the data through 2004-

5. 16 months of returns. The result of Alpha was negative, but the underperformance is less 

than normal expenses, so this evidence is consistent with the hypothesis that equity mutual 

funds have selection skill but probably do not have enough to cover expenses. Along with 

these two examples, almost all the early empirical work indicates that superior forecasting 

ability does not exist among mutual fund industry.  

 

Further improvements were made years later by adding more factors which may have an 

influence on the mutual fund performance besides market factor. Banz (1981) found that 

stocks with small capitalization showed higher average returns than large stocks – an excess 

return or ‘seize’ effect that could not be explained by the CAPM. Other authors found that 

leverage (Bhandari, 1988), book to market ratio (Stattman, 1980; Rosenberg et al., 1985) and 

earnings-price ratio (Basu, 1983) all contributed to the explanation of cross-sectional stock 

returns.  

 

Developing this work, Fama and French (1992) identified two factors other than the market 

factor which determined average stock portfolio return: size and Book-to-Market ratio, 

claiming that these absorb the effects of size, E/P, leverage, and book-to-market equity in the 

cross-sectional average returns on NYSE, AMEX, and NASDAQ stocks.  

 

The Fama and French (1992) model is written as  

 

)()()( thHMLtsSMBtbRMORR fjt     (2.2.23) 

 

Here jtR  is the return of the portfolio j at time t, fR  is the risk-free rate, and RMO is the 

return on a market index. The three factor b is analogous to the classical  but not equal to it, 

since there are now two additional factors in the equation. SMB stands for ‘small market 

capitalization minus big’ and HML for ‘high book-to-price ratio minus low’. They 
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respectively measure the excess returns to size and of ‘value’ stocks over ‘growth’ stocks. 

SMB is often referred to as the ‘size factor’ and HML as ‘value factor’.  

 

Fama and French found a negative relation between average stock return and firm size (stocks 

with the smallest market capitalization have the largest return) but that book-to-market, offers 

a significantly positive premium. 

 

Fama and French (1993) extend their work by adding factors to explain returns government 

and corporate bonds in addition to those for common stocks. They identify two bond-market 

factors: a ‘term factor’, which captures the risk due to unexpected fluctuations in interest rates, 

and a ‘default’ factor, as follows: 

 

)()( tedDEFtmTERMRR fjt      (2.2.24) 

 

TERM and DEF are respectively the excess return of the monthly long-term government 

bond return over the one-month Treasury bill rate measured and the excess return on a 

portfolio of long-term corporate bonds over long-term government bond.  

 

Fama and French claim that these two bond-market factors capture the common variation in 

stocks as well as bonds returns. Thus they give a five factor model 

 

  )()()()()()( tetdDEFtmTERMthHMLtsSMBtbRMORR fjt        

(2.2.25) 

 

To examine whether factors that are important in bond returns can help explain stock returns 

also, and vice versa. They used a time-series approach and the tests results show that TERM 

and DEF slopes for corporate bonds are 1 and that for stocks that around 0.8, which shows 

that these two risk factors have a common impact on both corporate bonds and stocks. But 

they interpret the results differently for stocks and bonds. The intercept from the time-series 

regression of the portfolio’s excess return on the five explanatory returns is the average 

abnormal return which can be used to judge a manager’s ability to beat the market (similar to 

Jensen’s   ), that is whether he can use expertise to generate greater returns than the returns 

from those five indices.  
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Jegadeesh and Titman (1993) suggested that past performance of mutual funds might be able 

to predict the future, they call it momentum effect. Carhart (1997) proposed a four-factor 

model to test short- and long-term persistence in mutual funds, based on both the Fama-

French model and momentum:  

 

ittiTtiTtiTtiTiTjt eYRPRpHMLhSMBsRMRFbR  1
    

(2.2.26) 

 

RMRF is the market factor; SMB and HML are size and book-to-market factors from Fama 

and French model, PR1YR captures Jegadeesh and Titman’s (1993) one-year momentum 

anomaly.  

 

PR1YR in this model is calculated as equal-weighted average return of firms with the highest 

30 percent eleven-month returns lagged one month minus the equal-weighted average of 

firms with the lowest 30 percent eleven-month returns lagged one month.  

 

Carhart (1997) found that the excess returns from the 3-factor model were significantly 

negative for the previous year’s loser stock portfolios but significantly positive for last year’s 

winners. However, the 4-factor model containing eliminates these patterns in excess returns, 

indicating the great improvement to the 3-factor model.  

 

To test short-term persistence, Carhart (1997) used lagged one-year returns. Mutual funds 

were sorted into decile portfolios according to their previous calendar year’s return. Funds 

with the highest and lowest past one-year returns comprise deciles 1 and 10 respectively.  

 

The 4-factor model explains most of the spread and pattern in these portfolios, with 

sensitivities to the size (SMB) and momentum (PR1YR) factors accounting for most of the 

explanation. The returns to the top decile funds have a significant and positive relationship 

with the one-year momentum factor, while the returns in the bottom decile are significantly 

negatively correlated with the factor. In addition, Carhart (1997) found that expenses, 

turnover, load fees and transaction costs were negatively related to fund performance. Decile 

10 in particular suffers higher expenses, turnover, load fees and transaction costs. Overall, the 

results show robust short-run persistence and most of the persistence can be explained by the 
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sensitivities to the four factors along with expenses, and transaction costs.  However, when 

using two- to four year returns, the 4-factor model explains little of the excess return and 

nothing of the excess return in 5-year lagged portfolios. Thus evidence of long-term 

persistence was not found. 

 

Carhart (1997) also sorted mutual funds by alphas instead of returns when ranking the 

portfolios into deciles, using their 4-factor alphas estimated over the prior 3 years. He then 

calculated the mean monthly excess returns on the funds in each decile portfolio for the first 

five years after ranking. The results show that the highest decile maintains a persistently high 

mean return for a full five years after the portfolio is initially formed, but that the mean 

returns on the lowest nine deciles converge after two years. However, the 4-factor model 

alphas on this portfolio over the five-year post-ranking period are not significantly different 

from zero. This suggests that these funds did not provide returns substantially beyond those 

predicted by the 4-factor model. Carhart (1997) therefore concluded that the persistence in 

mutual fund performance did not reflect the forecasting ability of fund managers. 

 

The above models all assume constant risk coefficient, which was criticized by Ferson and 

Schadt (1996) who pointed out that variation in the expected returns and risks of stocks and 

bonds were likely to be due to some changes in dividend yields, interest rates or other 

variables. Ferson and Schadt(1996) claim that the traditional methods suffer from a number 

of biases, in particular that beta and the expected return cannot be constant as assumed in the 

traditional models. If expectations of future returns and risks fluctuate with this publicly 

available information, the measurement of the manager’s forecasting ability should 

accommodate the time variation too. Traditional market-timing models assume that any 

information related with future market returns is superior information. However, Ferson and 

Schadt (1996) consider this as a major drawback and claim that the skills of utilizing 

information readily available to the public should not be judged as superior forecasting ability. 

The fund manager’s forecasting ability should come from non-public information, so that, the 

essence of the conditional approach is to improve the traditional methods by accommodating 

common sources of variation from public information, using lagged instruments.  

 

The betas of mutual funds will naturally change, for several reasons. First, the betas of the 

underlying assets may change over time. Second, fund managers may actively adjust the 

portfolio asset weights causing the fund beta to change. Last but not least, open-ended funds 
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will experience net cash inflows and outflows from time to time, to allocate new cash or 

withdrawing underlying assets may lead to changes in fund betas. Betas will also vary as the 

percentage of cash held by the fund fluctuates. However,  these three reasons can be reflected 

by  two time-variation factors.  

 

The lagged instruments used by Ferson and Schadt (1996) are the lagged level of the one-

month Treasury bill yield and the lagged dividend yield. The conditional beta is illustrated as 

follows:  

 

)()/()( 12110   tt TBbPDbbt     (2.2.27) 

 

Here )(t  is some (undefined) function of D/P and TB. The linearization of equation (2.2.29) 

makes it operational. (D/P) is the lagged value of the market dividend yield and TB is the 

lagged value of a short-term Treasury yield. Thus the mutual fund’s beta is conditional upon 

lagged dividend yield and short-term Treasury yield, which reflect the state of the stock 

market. 0b  is a ‘target’ or average beta, and remaining terms represent deviations of beta 

from target. Thus the manager’s beta will change for period t in response to public 

information available at t-1. 

 

Specifically, the fund betas will be higher if the two extra factors are positive, but this is a 

change in beta arising from the use of publically available information. So there should be no 

excess return to the fund in consequence. 

 

The empirical results from Ferson and Schadt (1996) show that the coefficients on the 

dividend yield are positive, whereas those on the Treasury bill are negative, with both 

coefficients statistically significant for most of the data. This is reasonable since high 

dividend yields are a positive market indicator and high short-term interest rates predict low 

stock returns.  

 

Using the modified   in (2.2.27), the conditional model has the following regression for the 

managed portfolio return:  

 

    errorTBRMbPDRMbRMbRP ttttt   121110 )()/(  (2.2.28) 
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The conditional model adds two additional variables to the traditional regression, 

 1)/( tt PDRM  and  1)( tt TBRM . They are interaction terms between the market return and 

the lagged values of the market indicators. These interaction terms pick up the sources of 

movements in beta through time. The intercept,  is the conditional alpha, which measures 

the abnormal performance representing the fund manager’s superior ability to earn returns not 

available by using public information.  

 

In linearised form the conditional Jensen model is written as : 

 

112111 )(   ptmttpmtpppt rzrr     (2.2.29) 

 

1mttrz  is the product of the market factor with the lagged information. This is both more and 

less general than equation (2.2.28). It is less general because (2.2.28) has been lineraised. 

More general because it allows you any vector of public information, not just D/P and TB. 

 

The classic market timing regression is the quadratic regression of Treynor and Mazuy (1966): 

 

  1

2

1,11   pttmtmnmtpppt vrrbr                    (2.2.30)                                                                                           

 

A conditional version of the Treynor-Mazuy regression is  

 

  1

2

1,111 )(   pttmtmcmttpmtpppt vrrzCrbr     (2.2.31) 

 

The term )( 1
mttp rzC  controls for the public information effect. 

To be consistent with Equation(2.2.28), (2.2.31) can also be written as  

 

    errorRMTBRMbPDRMbRMbRP tttttt  
2

121110 )()/(        (2.2.32) 

 

The unconditional Merton and Henriksson model is written as  
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  11,11 


  pttmumtpppt vrrbr      (2.2.33) 

 

where  1,tmr   is defined as Max(0, 1, tmr ) 

This is transformed to a conditional model by: 

 

               1,

*

1

*

1111 )(   tpmttmtcmttdmtppt urzrrzBrbr          (2.2.34) 

 

where 
dupc bb   and  

dup BB  . Positive market timing ability is shown where 

0 tc z
 

 

The empirical work of Ferson and Schadt (1996) shows that controlling for common variation 

using lagged instruments, yields an increase in the number of observed positive coefficients, 

compared with unconditional models.  

 

All the above models use a general benchmark, an alternative, however, is to place the funds 

into different categories and adopt a set of benchmarks for each category. Roll (1978) has 

shown that single-index measures of performance are sensitive to the type of benchmark 

portfolio used. This is, the Beta when using the Standard and Poor’s Index is not the same as 

the Beta calculated when using the Dow-Jones index as the benchmark portfolio. Ross (1976) 

developed arbitrage pricing theory (APT) which could overcome this problem.  

 

Sharpe (1992) created a multi-index model under the assumption that a fund manager 

allocates investment among n asset classes. Bills, Intermediate-term Government Bonds, 

Long-term Government Bonds, Corporate Bonds, Mortgage-Related Securities, Large-

Capitalization Value Stocks, Large-Capitalization Growth Stocks, Medium-Capitalization 

Stocks, Small-Capitalization Stocks, Non-U.S. Bonds, European and Asian Stocks, Japanese 

Stocks. Sharpe’s (1992) model is illustrated as follows:  

 

  iininiiiii eFbFbFbR ~~~~~
2211       (2.2.35) 
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iR  represents the return on asset i, 1iF  represents the value of the first factor, 2iF  the value of 

the second factor, inF  the value of the nth factor. ie  the error term. Once the factors are 

determined, the exposure to these factors can then be measured using the above equation. 

Rearranging (2.2.35) gives the following form: 

 

         
 

ininiii FbFbFbRe
~~~~~

2211       (2.2.36) 

 

The error term thus equals the difference between the return on the fund and that of the 

weighted factor indices. The goal of style analysis is to select the style (exposure to these 

asset classes) that minimizes the variance of this difference. The error term is thus called the 

fund’s ‘tracking error’ and its variance the fund’s ‘tracking variance’. Shape uses quadratic 

programming to determine a fund’s exposures to changes in the returns of these factors 

(calculating the inb ) which has the minimum tracking variance. This method is termed style 

analysis. The 2
R from this programming is defined as the contribution to the fund’s style and 

the remainder 21 R  to the fund manager’s selection.  

 

Using this approach, Sharpe (1995) analyses the performance of the LS 100 funds – the 100 

largest, seasoned U.S. funds that are chosen from bond funds, stock funds, balanced funds, 

global and international funds. Sharp uses style analysis to determine the sensitivities (betas) 

of these funds to 15 indexes. He defines a fund’s selection return as the difference between its 

return and that of its style, as explained above. Thus selection returns equal to the return on 

LS100 minus that of the indicies. The statistics show that the average selection return is not 

significantly different from zero, suggesting that an actively-managed fund is not likely to 

beat a passive portfolio with the same type. This conclusion is consistent with other studies 

such as Elton, Gruber, Das, and Hlavka (1993), Brown and Goetzmann (1995) and Malkiel 

(1995).  

 

Those are most important models in the portfolio evaluation, and one of the new research 

points is dynamic risk shifting modelling and how it can improve the accuracy of 

measurement of the funds performance. The following part of this literature review will shift 

to another methodology in operational research area. It is called data envelopment analysis.  

Data envelopment analysis gives completely different scenario from portfolio evaluation. It is 
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a nonparametric analysis technique which was proposed by Charnes et al. (1978), and it was 

firstly used in measurement of the performance of educational institutions.  

 

2.2 Data Envelopment Analysis 

 

DEA is a linear programming formulation that defines a correspondence between multiple 

inputs and multiple outputs. It is a non-parametric analysis that does not require any 

theoretical models (CAPM or APT) as measurement benchmarks. Instead DEA measures 

how well a fund performs relative to the best set of funds within the category. DEA model is 

flexible and can evaluate performance on a number of outputs and inputs simultaneously. 

 

The following paragraphs describe the DEA formulation as given in Charnes et al. (1978). 

The simple DEA program is formulated as a fractional programming problem and is then 

reduced to a linear programming problem that is easy to compute. In general, the program 

maximizes the ratio of the weighted average of the multiple outputs to the weighted average 

of the multiple inputs. Charnes et al (1978)’s idea is to define the efficiency measure by 

assigning to each unit the most favourable weights. This means that the weights will generally 

not be the same for the different units; therefore, the choice of the weights should not be 

responsible for the inefficiency of a fund.  

 

In DEA, the organization under study is called a DMU (Decision Making Unit). The DMU is 

regarded as the entity responsible for converting inputs into outputs and whose performances 

are to be evaluated.   

Define the input and output data for jDMU  

rjy    amount of output r for unit j 

rjx    amount of input i for unit j  

For each jDMU , give the input and output as yet unknown weights  

ru    weight assigned to output r 

rv    weight assigned to input i 

The DEA efficiency measure for a decision making unit j is given by a ratio of the weighted 

sum of outputs to the weighted sum of inputs:  
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The weights in the ratio (2.2.37) are chosen in such a way that the efficiency measure h has 

an upper bound, usually chosen equal to 1, which will be reached only by the most efficient 

units. For each decision making unit the most favourable weights are chosen; they are 

computed by maximizing the efficiency ratio of the unit considered, subject to the constraints 

that the efficiency ratios of all units, computed with the same weights, have an upper bound 

of 1.  

 

Formally, to compute the DEA efficiency measure for a target decision making unit 

separately identified by the index },...,2,1{ njo   we have to solve the following fractional 

linear programming problem:     
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 (2.2.38) 

 

The optimal objective function value (2.2.38) represents the efficiency measure assigned to 

the target unit oj  considered. To find the efficiency measures of other decision making units 

we have to solve similar problems, targeted on each unit in turn.  
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Mathematically, the nonnegativity constraint in (2.2.38) is not sufficient for the fractional 

terms 








m

i

iji

t

r

rjr

xv

yu

1

1

0

0

 to have a positive value. To solve this problem, the fractional problem 

(2.2.38) is conveniently replaced by an equivalent linear programming problem; by letting 

1
1

0




m

i

iji xv we obtain that so called input-oriented Charnes, Cooper and Rhodes (CCR) linear 

model. 
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   (2.2.39) 

 

Efficiency measures equal to 1 characterize the efficient units: at least with the most 

favourable weights, these units cannot be dominated by the other ones in the set, and 

therefore they lie on the efficient frontier.  

 

The points either on the efficient frontier or within it are possible, therefore the set of feasible 

activities is called the production possibility set and is denoted by P. Arranging the data sets 

in matrices )( jxX  and )( jyY  ;
s

j

m

j RyRx  , .We can define the production possibility 

set P by  

 

                  
   

j jjjj jj jyyxxyxP 0;;|,      (2.2.40) 

 

Where j is a semi positive vector in .n
R  

 

Based on the matrix ),( Jj YX , (2.2.39) can be expressed in its dual form using a real variable

 and a non-negative vector T

n ),...,( 1   of variables as follows ([Envelopment form]): 
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Where measures the technical input efficiency. It is known as the envelopment DEA model 

and it measures DEA efficiency with reference to a production possibility set boundary which 

‘envelops’ the input and output levels observed at DMUs. To illustrate, see graph 2.2.1 for a 

simple case with two inputs 21 , xx , the minimum gives the fraction each point needs to 

contract radially to arrive at the efficient frontier BDGEF. (e.g. point A contracts to point G) 

 

Figure 2.2.1 Input Space Representation 

 

When 10  at the optimal solution to (2.2.41), then 0DMU  lies on the efficient frontier, and 

it is deemed to be 100% efficient. However, the 100% efficiency in this sense is not 

necessarily Pareto-efficient because improvements to the individual levels of some inputs 

may still be possible. Such improvements are captured in the slacks. Therefore, in order to 

guarantee Pareto-efficiency, (2.2.41) can also be written in another form, in which 

inequalities are transformed into equalities using slacks.  
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(2.2.42) 

 

Where 
iS and


rS are slacks,   is non-archimedean penalty term which has very small value 

such as
610
. The priority is given to the minimization of 0 , once 0 has been minimized, the 

model seeks the maximum sum of the slack value 
iS and


rS . If any one of these values is 

positive at the optimal solution to the model it means that the corresponding input of DMU 0j

can improve further, until it satisfies 10  and all slacks are zero. Because slacks are 

multiplied by a very small value (identified by non-archimedean penalty term ), the resulting 

objective junction is virtually equal to the optimal value of 0 .   

 

It can be seen that the CCR model gives a piecewise linear production surface which 

represents a production frontier: input oriented model aims to minimize inputs while 

satisfying at least the given output level; it gives the minimum amount of input required to 

achieve the given output levels. There is another type of model called the output-oriented 

model that attempts to maximize outputs without requiring more of any of the observed input 

values. The model shows as follows: 
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   (2.2.43) 

 

Where 1  measures the technical output efficiency. And the corresponding graph 2.2.2 of 

simple case with two outputs is as follows; in which maximum measures how many times 
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each point must expand in order to get the efficient frontier denoted by BDGEF. (e.g. point A 

expand to G) 

 

                              

Figure 2.2.2 Output Space Representation 

 

When 10  at the optimal solution to (2.2.43), which means 0DMU  lies on the efficient 

frontier. However, it is not necessarily Pareto-efficient because improvements to the 

individual levels of some outputs may still be possible. Such improvements are captured in 

the slacks. Therefore, (2.2.43) can also be written in the following form to achieve Pareto-

efficiency. 
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  (2.2.44) 

 

Where iI and rO  are slacks,   is non-archimedean penalty term. In (2.2.44), first, the priority 

is given to the maximisation of 0 , and second, the maximization of slacks is sought. If any 

of the values of iI or rO  is positive at the optimal solution to the model, it means that the 

corresponding output of DMU 0j can improve further, after its output levels have been 
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expanded by proportion 0 . When 10   and all slacks are zero, Pareto-efficiency is 

guaranteed. Because slacks are multiplied by a very small value of  ,  the resulting objective 

junction is virtually equal to the optimal value of 0  

 

The above model is CCR model, which is built on the assumption of constant returns to scale 

in which case inputs and outputs are subject to change proportionally. For example, ),( 21 xx

change to ),( 21 xx  (with 0 ) In fact, since the very beginning of DEA studies, various 

extensions of the CCR model have been proposed, among which the BCC (Banker-Charnes-

Cooper) model is representative. The BCC model is a variable returns to scale (VRS) version 

in which case inputs and outputs do not change proportionally.  

 

Assessing the DEA under VRS compared with the one under CRS in example of single input 

and single output. 

 

The CCR model assumes the constant returns-to-scale production possibility set, i.e., the 

radial expansion and reduction of all observed DMUs. On the other hand, the BCC model 

assumes that convex combinations of the observed DMUs form the production possibility set. 

If a DMU is fully efficient (100%) in both the CCR and BCC scores, it is operating in the 

most productive scale size. If a DMU has full BCC efficiency but a low CCR score, it is not 

scale efficient. Thus, the scale efficiency of a DMU is defined by the ratio of the two scores.  

 

 

Figure 2.2.3 Graph Technology Representation 
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*

*

BCC

CCRSE



        (2.2.45) 

 

Scale efficiency measures the impact of scale size on the productivity of a DMU. The Pure 

technical input efficiency will never be less than its technical input efficiency, so we have 

scale efficiency <=1. 

 

Rearranged (2.2.45) we get SEBCCCCR ***    which means Technical Efficiency (TE) = 

Pure Technical Efficiency (PTE) * Scale Efficiency (SE). The CCR models estimates the 

overall efficiency. This efficiency comprises technical efficiency and scale efficiency. The 

BCC model measures pure Technical efficiency. Technical efficiency describes the efficiency 

in converting inputs to outputs, while scale efficiency recognizes that economies of scale 

cannot be attained at all scales of production, and therefore there is one most productive scale 

size, where the scale-efficiency is maximised at 100 per cent. This decomposition detects 

where the inefficiency lies. i.e. whether it is caused by technical problems (PTE) or by 

improper scale (SE) or by both.  

 

In figure 2.2.3, under CRS, the efficient boundary is O2. However, under VRS, the efficient 

boundary O2 is no longer valid since we cannot scale up and down along the line O2. Instead, 

we have the piecewise efficient boundary 3-2-5. Therefore, the technical input efficiency of 

DMU 4 is AC/A4.  

 

Formally, the BCC models are as follows: 

Let us consider the N DMUs j=1…N using m inputs to secure s outputs. Let us denote ijx  and 

rjy as the ith input and rth output of the DMU j. 

 

Input-orientation 
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It differs from the formula under CRS only in that it includes the so-called convexity 

constraint



N

j

j

1

1 . This constraint does not allow any free scaling up or down to form a 

referent point for efficiency measurement. The convexity constraint 



N

j

j

1

1 essentially 

ensures that an inefficient firm is only ‘benchmarked’ against firms of a similar size. This 

convexity restriction is not imposed in the CRS case. Hence, in a CRS DEA, a firm may be 

benchmarked against firms that are substantially larger (smaller) than it. In this instance the 

-weights sum to a value less than (greater than) one. 



N

j

j

1

1 ensures that the j-th firm is not 

‘benchmarked’ against firms that are substantially larger than it, but maybe compared with 

firms smaller than it. The optimal level of input efficiency * is termed as pure technical 

input efficiency of DMU 0j  and they are ‘net’ of any scale effects.  

 

Output Orientation 
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where  is a non-Archimedean infinitesimal. Therefore
*

1


 is a measure of output efficiency 

of DMU 0j . Under VRS, 
*

1


 is the pure technical output efficiency of DMU 0j . 

 

The above DEA models assume that the units which are combined by the observed units in 

any way can exist, in other words, convexity is assumed. So the underlying units are 

compared with the efficient frontier, which are hypothetical but potentially efficient 

combinations of the actual observations. However, there is some debate in the literature 

concerning the validity of this assumption. For example, in situations where commodities are 

not continuously divisible, the assumption of convexity does not apply. The best-known non 

convex technological set is the free disposal hull (FDH). It requires input and output 

disposability (i.e. there are slacks in the inputs and outputs which can be reduced without 

using up other additional resources). The efficiency frontier in the FDH is composed only of 

observed production units.  

 

Free disposal hull (FDH) analysis is an alternative method to the conventional DEA 

methodology which was introduced by Deprins, Simar, and Tulkens (1984) and further 

developed by Tulkens (1993) and Vanden Eckaut, Jamar and Tulkens (1993).   

 

Graph 2.2.4 illustrates what a FDH is like. In this example, there are two inputs 1X  and 2X . 

The DEA isoquant is the piecewise linear frontier connecting B, D, E and F, with C and G as 
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inefficient points. The FDH isoquant is the stepped line connecting B, D, C, E and F. Each of 

these points is then regarded as efficient. It is only observed point G in the FDH counts as 

inefficient.  

 

 

 

 

 

     

 

 

 

 

 

 

Figure 2.2.4 Free disposal hull (FDH) input space representation 

 

Formally, the free disposal hull (FDH) efficient frontier suggested by Tulkens (1993) is as 

follows: 
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This is a mixed-integer programming problem as the weights j can take only 0 or 1 as 

values.  
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Figure 2.2.5 FDH Production Possibilities Set 

 

Figure 2.2.5 is an example of FDH using a single input and a single output. The efficient 

frontier is 431 BPAPXP  and the production possibility set is estimated by the area on and to the 

right of this frontier. 1P , 3P , 4P  are on the frontier while 2P lies inside the frontier. Therefore, 

1P , 3P , 4P  are efficient and 2P is inefficient. The efficiency score of 2P can be measured by the 

radial contraction in input needed to reach the frontier. This is the ratio: 2/ PPPR .  

 

The input orientated FDH model is as follows: 
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Similarly, the following formula gives the output-oriented FDH: 
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Where 
*

1   measures the technical output efficiency 

 

Murthi et at. (1997) were the first to apply the DEA method to fund performance evaluation. 

They presented a non-parametric benefit and cost analysis in the original CCR ratio form with 

standard deviation of returns, expense ratio, load and turnover as inputs and mean gross 

return as output. They developed a new measure that avoids the benchmark problem that 

exists in the traditional portfolio analysis. They employed data for a sample of 2083 US 

equity mutual funds for the third quarter of 1993. They detected a significant positive relation 

between their efficiency index and Jensen’s alpha for all categories of funds, which indicated 

that the DEA measure of performance is consistent with traditional indices while offering 

more advantages over the traditional methods.  

 

Basso & Funari (2001) tested the DEA performance indexes for 47 Italian investment funds 

that were classified as equity, bond and balanced funds in the period 01/01/1997 to 

30/06/1999. They used several risk measures such as standard deviation, the square root of 

the half-variance and beta coefficient as inputs, and other inputs include subscription and 

redemption costs. The expected return and the stochastic dominance indicator defined using 

the DARA criterion were used as outputs. Also they considered subscription fees and 

redemption fees when calculating the costs. The results indicate that it is important to deduct 

the subscription and redemption costs when determine the fund ranking.  
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Galagedera and Silvapulle (2002) conducted DEA models to assess the relative performance 

of 257 Australian investment funds for the period 1995 to 1999. They used four output 

variables to capture the short-,the medium- and the long-term gross performances and seven 

inputs including four standard deviations of the 1-,2-,3- and 5-year gross performance, sales 

charges, operating expenses and minimum initial investment. Their results suggest that scale 

efficiency is the main source of overall technical efficiency, and that risk-averse funds with 

high positive net asset flows tend to have higher overall technical efficiency as well as the 

scale efficiency, while structure, classification, size and the age of funds have little impact on 

the level of relative efficiency. 

 

Daraio & Simar (2006) proposed a robust non-parametric performance measure based on the 

concept of order-m frontier and on a probabilistic approach. They compared the performance 

of six categories of funds: asset allocation, aggressive growth, balanced, equity income, 

growth and growth income, and examined more than 3000 US mutual funds for the period 

June 2001-May 2002. They used standard deviation, expense ratio, and turnover and fund 

size as inputs and mean return as output. Also, economies of scale, slacks and market risks 

are investigated. The results show that for some categories including asset allocation, 

aggressive growth and equity income, the investment funds did not lie on the mean-variance 

efficiency frontier due to the slacks. In addition, the economies of scale deriving from 

portfolio management and shareholder service have no impact on most investment funds in 

terms of efficiency.  

 

Lozano & Gutierez (2008) combined DEA with stochastic dominance criteria and performed 

an efficiency analysis for a sample of 108 Spanish funds in a four-year period from January 

2002 to December 2005. They presented six distinct DEA-like linear programming (LP) 

models that incorporate second-order stochastic dominance under the assumption that 

investors are rational, risk-averse. They conducted four return-risk DEA models which use 

return as input and risk as output and two return-safety DEA models which are pure output 

DEA models with both return and safety measures as outputs. Similar results were obtained 

from five of the proposed LP models. 

 

One of the main advantages of these non-parametric frontiers is that they can handle multiple 

dimensions simultaneously and that these yield a single real number performance. However, 

there is no evident rule for the selection among various candidates of input-like and output-



 

39 
 

like variables. Therefore it is not always clear whether a certain variable should be included in 

the model calculating the efficiency measure, or rather should be used to explain the observed 

variations in the efficiency measures in the second stage analysis. 

 

Recently, some researchers gave a new angle to the mutual fund evaluation. They followed 

the Markowitz portfolio theory and related the non-parametric methodologies to the 

foundations of traditional performance measurement in the mean-variance space. Markowitz 

portfolio theory postulates that an investor chooses unobserved subjective weights to 

maximise the utility of a portfolio subject to constraints on the mean (M) and variance (V) of 

the sum of the weighted returns. Therefore the Markowitz model establishes a tangency point 

between an unobserved indifference curve in MV space and the efficient portfolio frontier. 

Morey and Morey (1999) developed a mutual funds efficiency measure in a traditional mean-

variance (MV) model. They presented two basic quadratic programming approaches to 

identify those funds that are efficient. The purpose of the Morey & Morey model is to 

compare the relative improvement that could be achieved by a sample portfolio when 

compared to other candidate portfolios. It uses the Markowitz model as a template for 

specifying the theoretical optimizing behaviour of the fund managers. The Morey & Morey 

model solves for objective weights that establish the relative distance from the efficient 

portfolio frontier of each sample portfolio. The efficient frontier simulates the unobserved 

Markowitz frontier and compares the achieved realizations of the sample portfolios. 

Therefore the Morey & Morey model measures the relative success of different fund 

managers assuming that their subjective optimizing behaviour can be described by the 

Markowitz theory of behaviour. It measures the relative success of different fund managers in 

behaving like Markowitz optimizers, and therefore differs in purpose and implementation 

from the Markowitz model. The first quadratic program is mean return augmentation, it is as 

follows: 

 

Determine ),...,,...2,1(0 0 Njjw j  and 1 so that: 
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Where 1 and higher indicates poorer performance. So the frontier funds are those with 

theta value of one.  

 

The second quadratic program is risk contraction, and the formula is as follows: 
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(2.2.52) 

 

Where 1Z and the efficient frontier is composed by funds with Z equal to one.  

 

Figure 2.2.6 illustrates these two quadratic models. They give different but similar rankings 

of different mutual funds. Further, Morey and Morey (1999) claimed that even a fund with   

or Z equal to one could still have further slacks possible. Therefore, in addition to the 

quadratic optimization, they apply a standard device used in DEA which is a lexicographic, 

pre-emptive programming to help identify the maximum increases possible in mean returns or 

the reduction in risks for a given fund. 
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Figure 2.2.6 Different paths to the efficiency frontier 

. 

Later, W. Briec, K. Kerstens, And J. B. Lesourd (2004) applied the directional distance 

function and its properties into the mutual fund evaluation and introduced an efficiency 

improvement possibility (EIP) function. It is as follows: 

 

})))((,))(((;sup{)( RxRExRVxS gEgVg     (2.2.53) 

 

Where )(xS g is the EIP function for the portfolio x in the direction of vector ),( EV ggg  . It 

allows simultaneous changes in the direction of reducing inputs x and expanding outputs y.  
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Figure 2.2.7 Efficiency Improvement Possibility Function & Decomposition 

 

Figure 2.2.7 illustrates the principle of the EIP function, where the inefficient portfolio A is 

projected onto the efficient frontier at point B.  

 

Also, W. Briec, K. Kerstens, And J. B. Lesourd (2004) defined an indirect mean-variance 

utility function for given parameters ),(  , where  is the weight in the utility function on 

expected return, and  is the coefficient of risk. 
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It determines the maximum value function for the decision maker for a given set of 

parameters ),(  which represents the investor’s return preference and risk aversion. The 

overall efficiency (OE), allocative efficiency (AE), and portfolio efficiency (PE) are 

distinguished as follows: 
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(2.2.55) 

 

Portfolio efficiency (PE) measures the distance needed for the point in evaluation to reach the 

portfolio frontier. Allocative efficiency (AE), however, measures the portfolio reallocation 

along the portfolio frontier, in order to achieve the maximum of the indirect mean-variance 

utility function. And the following relationship holds: 

 

                   
)(),,(),,( xPExAExOE       (2.2.56) 

 

According to the above definitions, a standard quadratic optimization method is computed: 
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    (2.2.57) 

 

W. Briec, K. Kerstens and O. Jokung (2007) extended the W. Briec et al (2004) into a mean-

variance-skewness space using cubic programming. They claimed that portfolio returns are 

generally not normally distributed as investors prefer positive skewness so that the probability 

of obtaining a negative return is low. This idea can be related to the Prospect Theory model of 

Kahneman and Tversky (1979) which underlies many of the recent developments in 

behavioural finance. The cubic utility function in the MVS space is as follows, where SK is a 

measure of skewness:  

  
))(())(())(()(,, xRkSKxRVxRExUk      (2.2.58) 

 

And the indirect utility function is accordingly rewritten as: 
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The cubic program is computed as follows: 
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Similar to the model in MV space, this cubic program divides the overall efficiency into 

portfolio efficiency, allocative efficiency, and convexity efficiency. The portfolio efficiency 

is the distance from the point in evaluation to the boundary of the efficient frontier, and 

allocative efficiency is the necessary move along the efficient frontier in order to get the 

portfolio most preferred. Convexity efficiency measures the difference between the shortage 

functions computed on both the convex representation set CR and the initial non-convex 

representation sex DR. (W. Briec et al (2007)) 

 

K Kerstens, A Mounir, and I V Woestyne (2010) examined different returns to scale, 

convexity problems and higher order moments in the quadratic and cubic optimization 

programming and argued that various return to scale (VRS), Free Disposal Hull and higher 

moments are desirable methodologies for the mutual funds evaluation.   
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Chapter 3   A quadratic DEA model 

 

 

 

 

 

 

 

 

3.1 Introduction and motivation 

 

The key element in portfolio analysis is the emphasis on both expected return and risk. Thus 

investment fund managers attempt to find efficient portfolios –those promising the greatest 

expected return for any given degree of risk, i.e. risk-adjusted return. Consequently there is 

considerable interest in comparing the performance of investment fund management 

companies. 

  

Morey and Morey (1999) developed a mutual funds efficiency measure in a traditional mean-

variance model. It was based on Markowitz portfolio theory and related the non-parametric 

methodologies to the foundations of traditional performance measurement in mean-variance 
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space. The model is derived from the standard data envelopment analysis but differs from it 

in having non-linear constraints in the envelopment version of the model’s structure. These 

constraints give rise to dual multipliers with economically important interpretations. Morey 

and Morey presented two basic programming approaches which have radial efficiency 

measures with both linear and quadratic constraints: mean return augmentation and risk 

contraction to identify those funds that are relatively efficient in the data envelopment 

analysis sense. Briec et al. (2009) and other authors further developed the model into a mean-

variance-skewness space using cubic programming, as I showed in the preceding literature 

review.  

 

As stated in the literature, two main methods have been used in mutual funds evaluation. One 

is portfolio evaluation, and the other is data envelopment analysis. The history of portfolio 

evaluation dates from the 1960s (Sharp, 1966; Treynor, 1965 and Jensen, 1968), with 

emphasis on both expected return and risk. Mutual fund managers attempt to find efficient 

portfolios – those promising the greatest expected return for any given degree of risk, i.e. 

risk-adjusted return. Murthi et at. (1997) were the first to apply DEA methodology to fund 

performance evaluation. A large proportion of DEA models applied to mutual funds show 

pieceswise linear correspondence between multiple inputs and outputs. Murthi et al. (1997) 

used standard deviation of returns, expense ratio, load and turnover as inputs, and mean gross 

return as output. Basso and Funari (2001) used several risk measures (standard deviation, 

standard semi-deviation and beta) and subscription and redemption costs as inputs, and the 

mean return and the percentage of periods in which the fund was non-dominated as outputs. 

Those linear DEA programs are good at handling multiple dimensions simultaneously and 

then yield a single real number performance. However, there is no evident rule for choosing 

between the various candidates of input and output variables and it is not always clear 

whether any given variable should be included in the model calculating the efficiency 

measure, or rather should be used to explain the observed variations in the efficiency 

measures in the second stage analysis. Also, those linear models show piecewise linear 

representation of inputs and outputs. However, according to Markowitz portfolio theory, there 

is correlation between different assets which should not be ignored, and these co-movements 

between different securities affect the relationship between expected return and risk of the 

combined portfolio. 
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Departing from linear models, Morey and Morey (1999) constructed a quadratic one-input, 

one-output DEA model.  They used the fund’s risks as outputs and mean returns as inputs. It 

was a quadratic model because it did not only contain linear constraints in the model, but also 

quadratic constraints. It utilized the insights from the traditional Markowitz portfolio theory 

that imperfect correlation between different assets leads to diversification of risk, and thus 

exploits the quadratic relationship between expected return and risk of the combined portfolio. 

Instead of having a piecewise frontier, as in linear DEA models, the efficient frontiers for 

Morey and Morey (1999) quadratic models are smooth concave curves in mean-variance 

space.  

 

In the essence of data envelopment analysis, Morey and Morey (1999) quadratic models used 

the idea of ‘funds of funds’: for each fund there is a corresponding composite benchmarking 

fund, which lies on the efficient frontier. These are hypothetical but potentially efficient 

combinations of the actual observations.  DEA scores are obtained by measuring the direct 

distance from the position of the fund in question in mean-variance space to that of the 

efficient composite benchmarking fund.  

 

Although only mean and variance are considered in Morey and Morey (1999) models, they 

distinguish their model from traditional portfolio analysis by the fact that there is no 

theoretical benchmark like the market portfolio of the Capital Asset Pricing Model. Instead, 

the benchmarking fund in Morey and Morey (1999) consists of certain funds in the group, 

each with a particular weight.  So rather than being compared with an idealised fund that 

requires information about all the equities in the market, Morey and Morey (1999) model 

benchmarks the funds under evaluation again themselves. This makes Morey and Morey 

(1999) model practically feasible and easier to test. 

 

Chapter 3 is organized as follows: Section 2 provides a brief literature review of DEA models 

on fund performance evaluation; Section 3 describes in detail the Morey and Morey (1999) 

quadratic model, Section 4 shows the data collection; and Section 5 presents the results. 

 

3.2 Literature review 

 

Data envelopment analysis is a methodology in operational research which gives completely 

different scenario from portfolio evaluation. It is a nonparametric analysis technique which 
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was proposed by Charnes et al. (1978), and it was firstly used in measurement of the 

performance of educational institutions. Murthi et at. (1997) were the first to apply this 

method to fund performance evaluation. As one of the linear models; they used standard 

deviation of returns, expense ratio, load and turnover as inputs, and mean gross return as 

output. Basso & Funari (2001) used several risk measures (standard deviation, standard semi-

deviation and beta) and subscription and redemption costs as inputs, and the mean return and 

the percentage of periods in which the fund was non-dominated as outputs. They also 

incorporate a stochastic dominance criterion as one of the outputs in their module. Sengupta 

(2003) employed loads, expenses, turnover, risk (standard deviation or beta) and skewness of 

returns as inputs and raw returns as output in his model. Daraio & Simar (2006) used standard 

deviation, expense ratio, turnover and fund size as inputs and mean raw return as output. And 

their model was based on an order-m frontier. Lozano & Gutierez (2008) incorporated 

second-order stochastic dominance in their models and used mean return as input and various 

measures of risk as outputs. Besides the variables of return, risk and transaction costs, 

Galagedera and Silvapulle (2002) include the minimum initial investment as an additional 

variable. Haslem and Scheraga (2006) include the percentage of stocks; Premachandra, 

Powell, and Shi (1998) add a variable indicating the total amount that is invested risk-free, etc. 

 

Considering the drawbacks of the linear models, Morey and Morey (1999) developed 

quadratic data envelopment analysis models which followed the Markowitz portfolio theory 

and related the non-parametric methodologies to the foundations of traditional performance 

measurement in the mean-variance space. It is also constrained to avoid short sales. They 

presented two basic quadratic programming approaches to identify those funds that are 

efficient. Under this quadratic programming, only technical efficiency is being evaluated.  

 

3.3 Methodology 

 

This paper first of all applied Morey and Morey (1999) models to a recent dataset. Morey and 

Morey (1999) presented two basic quadratic programming approaches to identify those funds 

that are efficient. These two approaches are mean return augmentation and risk contraction. 

Figure 3.3.1 illustrates these two quadratic models.  
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Figure 3.3.1 Quadratic DEA efficiency frontier 

 

As illustrated in Figure 3.3.1, it is in the mean-variance space with risk as input and mean 

return as output. These two approaches show different paths to the efficiency frontier. Mean 

return augmentation method could be seen as output oriented DEA, and it represents a 

vertical path towards the efficient frontier, while the risk contraction model is input-oriented 

DEA which follows the horizontal path.   

Consider N mutual funds to be evaluated, indexed j=1, 2,…,N, where 0j is the fund in 

evaluation for each run. 
,,...2,10 Nj 
and there are N runs totally. Let T denote the number 

of different time horizons, where t=1, 2,…,T. Denote )( ,tjRE as the mean return for fund j, 

and 
2

j  as its the variance as well as ),( ,, tjti RRCov  as its covariance. Denote jw
as the 

weight allocated to each fund to form the benchmarking fund in each run. The formula for 

mean return augmentation is as follows: 

Determine 
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Where  is the efficiency score and we have 1  . It can be seen that this is an 

implementation of Markowitz portfolio analysis. 

 

  is calculated by running the above programming problem once for each fund. Efficient 

funds will have a value of one, while inefficient ones will get a value greater than one which 

shows how much the actual return should be expanded for the fund to be considered 

technically efficient.  The efficiency score measured here is called 'technical efficiency' since 

it treats fund risk characteristics and costs as inputs in a simulation of the production of 

'return' as an output. The measured efficiency scores relate to sampled funds and are relative 

in the sense of measuring the relative distance of each sample point to the efficient frontier of 

sample funds. They do not directly measure an abstract or theoretical efficiency. However, 

the purpose of the Monte Carlo bootstrapping analysis later in the thesis is to treat the 

measured scores as statistical estimators and to construct the sampling distributions of these 

estimators. 

 

This model is a nonparametric technique, as weights jw
are produced by the programming 

itself rather than set up beforehand. The first constraint is a convexity constraint; the second 

constraint maintains the risk level of the resulting composite fund obtained from this 

programming the same as that of the fund being evaluated, if not smaller; In the third 

constraint, because theta could only be equal or larger than 1, this constraint guarantees that 

mean return of the resulting benchmarking fund is larger than or at least equal to that of the 

target fund. Note that constraints 2 and 3 hold for the all T time horizons. So this 

programming has 2T+1constraints totally. And the objective of this programming is to 

simultaneously maximize the increases in the mean returns over all these periods, without 
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occurrence of any increase in the risks.  measures how many times the target fund must 

vertically expand in order to get the efficient frontier in this mean-variance space. Note that 

Figure 3.3.1 represents one of the 2T+1 periods, while for T periods programming it has T 

figures like this, and the resulting 


must satisfy the conditions in all T periods. This paper 

involves three periods, a 3-year period, a 5-year period and a 10-year period. So T=3. 

 

The second quadratic program is risk contraction, and the formula is as follows: 
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Where 1Z and the efficient frontier is composed by funds with Z equal to one.  

 

Similarly to the first approach, the first constraint is a convexity constraint; the second 

constraint then promises that the mean return of the efficient benchmarking fund maintains 

the same level as that of the fund being evaluated, if not larger; For the third constraint, since 

Z is equal to or less than 1, it requires that the efficient composite fund has smaller or at least 

the same risk level as that of the target fund. Again, constraints 2 and 3 hold for the all T time 

horizons. The objective of this programming is to simultaneously minimize the contraction in 

the risk level over T periods, without any decrease in the mean returns. As shown in Figure 

3.3.1, Z measures the minimum contraction the target fund needs in order to reach the 

efficient frontiers, considering all the conditions over T periods.  

 

3.4 Data collection  
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The database used is MorningStar Direct. The funds chosen were ‘Acc’ open ended funds. 

The ‘Acc’ distribution status means that dividends generated from these funds are 

automatically reinvested back to the funds. We examine one specific type of the open ended 

funds: those classified by Morningstar as ‘UK mid-cap equity’ as of July 1, 2011. This is 

because it has a fairly small number of funds which makes the analysis of the entire group 

easier. The choice of sample was based on considerations of homogeneity of the business of 

the underlying trusts. Another important criterion is that the funds we select must have at 

least 10 years of monthly return data available, because the models require mean returns for 

three periods: 3 years, 5 years and 10 years. Our sample period was from July 1 2011 to June 

30, 2011, so each fund selected had an inception date at or before July 1, 2001. 

 

32 funds were found that satisfied the above criteria. For each fund, funds with negative mean 

monthly returns in any period were deleted, leaving 29 funds in the data set.  

 

For each of the 29 mutual funds, the following figures were calculated for each of the 3, 5 and 

10-year time periods: (i) Mean monthly returns; (ii) Covariances; (iii) Variances. These 

values were calculated using monthly return data from Morningstar Direct database. 

Expressed in percentage terms, Morningstar's calculation of monthly return is determined by 

taking the change in monthly net asset value, reinvesting all income and capital-gains 

distributions during that month, and dividing by the starting net asset value. The total returns 

account for management, administrative and other costs taken out of fund assets. Note that 

Morningstar does not adjust total returns for sales charges (such as front-end loads, deferred 

loads and redemption fees), preferring to give a clearer picture of a fund's performance.  

 

The selected twenty-nine funds with their 3-year, 5-year and 10-year mean monthly returns 

are presented in Table 3.4.1  
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Table 3.4.1 Funds analysed and their mean monthly returns  

Fund No. and name 

3 Year mean 

monthly 

return                               

5 Year mean 

monthly 

return 

10 Year 

mean 

monthly 

return 

(1) Aberdeen UK Mid Cap A Acc 1.33 0.53 0.60 

(2) AEGON Ethical Equity A 0.56 0.59 0.60 

(3) AEGON Ethical Equity B 0.63 0.66 0.67 

(4)  Allianz RCM UK Mid Cap A 1.02 0.72 0.77 

(5) Artemis UK Special Situations 0.84 0.57 0.82 

(6) Aviva Investors SF UK Growth SC1 0.47 0.37 0.36 

(7) Aviva Investors SF UK Growth SC2 0.54 0.43 0.42 

(8) Aviva Investors UK Ethical SC1 0.42 0.41 0.44 

(9) Aviva Investors UK Ethical SC2 0.44 0.43 0.46 

(10) BlackRock UK Special Situations A Acc 1.03 0.82 0.83 

(11) Ecclesiastical Amity UK C 0.86 0.44 0.48 

(12) F&C Stewardship Growth 1 Acc 0.56 0.22 0.36 

(13) F&C Stewardship Income 1 Acc 0.46 0.28 0.56 

(14) GAM Exempt Trust UK Opportunities 0.84 0.44 0.65 

(15) GAM UK Diversified Acc 0.89 0.45 0.70 

(16) Henderson UK Equity Income I Acc 1.14 0.63 0.63 

(17) HSBC FTSE 250 Index Retail Acc 1.18 0.74 0.83 

(18) Marlborough UK Primary Opps A Acc 0.59 0.44 0.63 

(19) Marlborough UK Primary Opps B Acc 0.56 0.44 0.64 

(20) MFM Bowland 1.22 0.63 0.84 

(21) Saracen Growth Alpha 0.11 0.24 0.67 

(22) Saracen Growth Beta 0.16 0.29 0.72 

(23) Schroder UK Mid 250 Acc 0.84 0.44 0.92 

(24) Standard Life UK Eq High Alpha Inst Acc 1.66 1.10 0.80 

(25) Standard Life UK Eq High Alpha R Acc 1.60 1.04 0.83 

(26) Standard Life UK Ethical Inst 0.80 0.55 0.60 

(27) Standard Life UK Ethical R 0.73 0.48 0.55 

(28) SVM UK Opportunities Instl 1.42 0.90 0.96 

(29) SVM UK Opportunities Retail 1.35 0.83 0.90 
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3.5 Results analysis 

 

Efficiency scores are calculated only with respect to the sample units. Note that Morey-

Morey routines were validated on Morey-Morey’s own data. For each of the 29 funds, we ran 

both mean return augmentation and risk contraction programming, and the results are listed as 

in table 3.5.1. Recall that the return augmentation programme records efficiency of 

performance as 1 , with fully efficient performance shown as a score of 1, while the risk 

reduction programme records efficiency of performance as 1 , with fully efficient 

performance shown as a score of 1. 
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Table 3.5.1 (a ) Frontier values from the mean return augmentation programming 

Fund No. and name Frontier mean returns 

 3 Year 5 Year 10 Year 

(1) Aberdeen UK Mid Cap A Acc 1.35 0.6468 0.6991 

(2) AEGON Ethical Equity A 0.8471 0.6788 0.7826 

(3) AEGON Ethical Equity B 0.8489 0.6803 0.7831 

(4)  Allianz RCM UK Mid Cap A 1.1586 0.8178 0.8746 

(5) Artemis UK Special Situations 0.84 0.57 0.82 

(6) Aviva Investors SF UK Growth SC1 0.8752 0.689 0.7943 

(7) Aviva Investors SF UK Growth SC2 0.8735 0.6843 0.7868 

(8) Aviva Investors UK Ethical SC1 0.9188 0.7375 0.7999 

(9) Aviva Investors UK Ethical SC2 0.9182 0.737 0.7998 

(10) BlackRock UK Special Situations A Acc 1.03 0.82 0.83 

(11) Ecclesiastical Amity UK C 0.956 0.4942 0.6265 

(12) F&C Stewardship Growth 1 Acc 1.0825 0.5582 0.7086 

(13) F&C Stewardship Income 1 Acc 0.46 0.28 0.56 

(14) GAM Exempt Trust UK Opportunities 0.8702 0.4735 0.6892 

(15) GAM UK Diversified Acc 1.0173 0.5797 0.8001 

(16) Henderson UK Equity Income I Acc 1.4287 0.8368 0.804 

(17) HSBC FTSE 250 Index Retail Acc 1.2191 0.7645 0.8575 

(18) Marlborough UK Primary Opps A Acc 1.1007 0.7242 0.8313 

(19) Marlborough UK Primary Opps B Acc 1.0204 0.6148 0.8943 

(20) MFM Bowland 1.2238 0.6884 0.8426 

(21) Saracen Growth Alpha 0.8628 0.4858 0.8888 

(22) Saracen Growth Beta 0.8628 0.4858 0.8887 

(23) Schroder UK Mid 250 Acc 0.84 0.44 0.92 

(24) Standard Life UK Eq High Alpha Inst Acc 1.66 1.1 0.8 

(25) Standard Life UK Eq High Alpha R Acc 1.601 1.0462 0.8305 

(26) Standard Life UK Ethical Inst 1.151 0.7913 0.8632 

(27) Standard Life UK Ethical R 1.1495 0.7559 0.8661 

(28) SVM UK Opportunities Instl 1.42 0.9 0.96 

(29) SVM UK Opportunities Retail 1.43 0.9083 0.9533 
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Table 3.5.1 (b )  DEA scores from the mean return augmentation programming 

Fund No. and name DEA scores 

(1) Aberdeen UK Mid Cap A Acc 1.015 

(2) AEGON Ethical Equity A 1.1505 

(3) AEGON Ethical Equity B 1.0308 

(4)  Allianz RCM UK Mid Cap A 1.1359 

(5) Artemis UK Special Situations 1 

(6) Aviva Investors SF UK Growth SC1 1.8621 

(7) Aviva Investors SF UK Growth SC2 1.5914 

(8) Aviva Investors UK Ethical SC1 1.7987 

(9) Aviva Investors UK Ethical SC2 1.714 

(10) BlackRock UK Special Situations A Acc 1 

(11) Ecclesiastical Amity UK C 1.1116 

(12) F&C Stewardship Growth 1 Acc 1.9331 

(13) F&C Stewardship Income 1 Acc 1 

(14) GAM Exempt Trust UK Opportunities 1.036 

(15) GAM UK Diversified Acc 1.143 

(16) Henderson UK Equity Income I Acc 1.2532 

(17) HSBC FTSE 250 Index Retail Acc 1.0331 

(18) Marlborough UK Primary Opps A Acc 1.3196 

(19) Marlborough UK Primary Opps B Acc 1.3974 

(20) MFM Bowland 1.0031 

(21) Saracen Growth Alpha 1.3265 

(22) Saracen Growth Beta 1.2344 

(23) Schroder UK Mid 250 Acc 1 

(24) Standard Life UK Eq High Alpha Inst Acc 1 

(25) Standard Life UK Eq High Alpha R Acc 1.0006 

(26) Standard Life UK Ethical Inst 1.4387 

(27) Standard Life UK Ethical R 1.5747 

(28) SVM UK Opportunities Instl 1 

(29) SVM UK Opportunities Retail 1.0593 
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Table 3.5.2 (a ) Frontier values from the risk contraction programming 

Fund No. and name Frontier variance     

 3 Year 5 Year 10 Year 

(1) Aberdeen UK Mid Cap A Acc 41.7244 32.5916 26.8937 

(2) AEGON Ethical Equity A 26.2296 20.6322 20.9228 

(3) AEGON Ethical Equity B 28.5375 22.1238 22.108 

(4)  Allianz RCM UK Mid Cap A 31.9833 24.7411 21.5681 

(5) Artemis UK Special Situations 25.4702 20.234 22.9294 

(6) Aviva Investors SF UK Growth SC1 23.2782 18.7204 18.1069 

(7) Aviva Investors SF UK Growth SC2 23.6344 18.9101 18.2147 

(8) Aviva Investors UK Ethical SC1 23.4662 18.7967 17.9295 

(9) Aviva Investors UK Ethical SC2 23.742 18.9806 18.0692 

(10) BlackRock UK Special Situations A Acc 36.6318 27.8395 23.7489 

(11) Ecclesiastical Amity UK C 26.3676 21.0007 18.0637 

(12) F&C Stewardship Growth 1 Acc 23.7016 18.9708 16.2692 

(13) F&C Stewardship Income 1 Acc 24.8915 19.832 14.9057 

(14) GAM Exempt Trust UK Opportunities 23.2325 18.8981 21.5468 

(15) GAM UK Diversified Acc 24.0626 19.5407 20.1135 

(16) Henderson UK Equity Income I Acc 36.1744 28.0543 21.7694 

(17) HSBC FTSE 250 Index Retail Acc 37.9648 29.4226 23.0613 

(18) Marlborough UK Primary Opps A Acc 26.9454 20.9756 16.6189 

(19) Marlborough UK Primary Opps B Acc 27.0885 21.0694 16.5898 

(20) MFM Bowland 40.5012 32.2574 24.7067 

(21) Saracen Growth Alpha 25.1772 19.9353 16.7109 

(22) Saracen Growth Beta 26.8616 21.1923 17.8542 

(23) Schroder UK Mid 250 Acc 58.5356 43.2719 33.049 

(24) Standard Life UK Eq High Alpha Inst Acc 79.6227 55.9455 37.1673 

(25) Standard Life UK Eq High Alpha R Acc 79.1058 55.7109 36.8609 

(26) Standard Life UK Ethical Inst 29.5848 22.7898 18.0845 

(27) Standard Life UK Ethical R 28.229 21.8734 17.0729 

(28) SVM UK Opportunities Instl 103.6475 72.8428 48.6614 

(29) SVM UK Opportunities Retail 68.9601 49.9436 34.5464 
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Table 3.5.2 (b) DEA scores from the risk contraction programming 

Fund No. and name DEA scores 

(1) Aberdeen UK Mid Cap A Acc 0.9596 

(2) AEGON Ethical Equity A 0.9005 

(3) AEGON Ethical Equity B 0.9698 

(4)  Allianz RCM UK Mid Cap A 0.6503 

(5) Artemis UK Special Situations 1 

(6) Aviva Investors SF UK Growth SC1 0.8141 

(7) Aviva Investors SF UK Growth SC2 0.8266 

(8) Aviva Investors UK Ethical SC1 0.7536 

(9) Aviva Investors UK Ethical SC2 0.7614 

(10) BlackRock UK Special Situations A Acc 1 

(11) Ecclesiastical Amity UK C 0.9467 

(12) F&C Stewardship Growth 1 Acc 0.7693 

(13) F&C Stewardship Income 1 Acc 1 

(14) GAM Exempt Trust UK Opportunities 0.9926 

(15) GAM UK Diversified Acc 0.8532 

(16) Henderson UK Equity Income I Acc 0.7876 

(17) HSBC FTSE 250 Index Retail Acc 0.8456 

(18) Marlborough UK Primary Opps A Acc 0.5565 

(19) Marlborough UK Primary Opps B Acc 0.55 

(20) MFM Bowland 0.9813 

(21) Saracen Growth Alpha 0.586 

(22) Saracen Growth Beta 0.6242 

(23) Schroder UK Mid 250 Acc 1 

(24) Standard Life UK Eq High Alpha Inst Acc 1 

(25) Standard Life UK Eq High Alpha R Acc 0.996 

(26) Standard Life UK Ethical Inst 0.6736 

(27) Standard Life UK Ethical R 0.6365 

(28) SVM UK Opportunities Instl 1 

(29) SVM UK Opportunities Retail 0.7167 

 

Table 3.5.1 and table 3.5.2 show that for both mean return augmentation and risk contraction, 

the 5th fund Artemis UK Special Situations, the 10
th

 fund BlackRock UK Special Situations 

A Acc, the 13th fund F&C Stewardship Income 1 Acc, the 23
rd

 fund Schroder UK Mid 250 
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Acc, the 24
th

 fund Standard Life UK Eq High Alpha Inst Acc and the 28th fund SVM UK 

Opportunities Instl have the efficiency score of 1, which means they are most efficient funds 

among these 28 funds in both approaches. To illustrate more, look at one fund, the 4th fund, 

particularly. The efficiency score is 1.1359 in the mean return augmentation approach, and 

in the risk contraction approach, the efficiency score is 0.6503z .Table 4 shows the actual 

mean monthly returns and frontier mean returns for the 4th fund Allianz RCM UK Mid Cap 

A, as long as the actual monthly variance and frontier variance. We could see that the frontier 

mean returns (the mean returns for the composite benchmarking fund) expand the actual 

mean returns by 13.59% for each period. And the frontier variance (the variance for the 

composite benchmarking variance) contracted the actual monthly variance by more than one 

third. Note that the actual monthly variances times efficiency scores are much larger than the 

frontier variance for 3-year period and slightly larger for 5-year period 10-year period, which 

means that the third constraint in (3.1.2) is not strictly binding. In this case the frontier 

variances contract even more than the efficiency score indicates. Note that there is duplication 

among the sample of unit trusts; eg. Marlborough A and B units are claims on the same fund 

but one is available at lower charge to a minimum investment of  £25,000 and the other for a 

minimum of £1000. There are several other example of institutional and retail units in the 

same fund. Therefore, it is not surprisingly the correlation coefficient between each pairs of 

such funds=1.  

 

Mean return augmentation method could be seen as output oriented DEA, and it represents a 

vertical path towards the efficient frontier, and the frontier mean returns from augmentation 

approach are the mean returns of the hypothetical funds lying on the efficient frontier at the 

end of the vertical path from the inefficient funds. The relationship between the frontier mean 

returns and portmanteau DEA scores is that frontier mean returns equal to actual mean 

monthly returns times efficiency scores. Risk contraction model is input-oriented DEA which 

follows the horizontal path to the efficient frotier. And the frontier variances from risk 

contraction approach are the variances of the hypothetical funds lying on the efficient frontier 

at the end of the horizontal path from the inefficient funds. The relationship between the 

frontier variances and portmanteau DEA scores is that frontier variances equal to actual 

monthly variances times efficiency scores.  
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Table 3.5.3 Comparison of frontier and actual levels of returns and risks for Allianz RCM UK 

Mid Cap A fund 

 3-year 5-year 10-year 

Actual  mean monthly returns 1.02 0.72 0.77 

Frontier mean returns 1.1586 0.8178 0.8746 

Actual  mean monthly returns 

*efficiency scores( 1.1359 ) 
1.1586 0.8178 0.8746 

Actual monthly variances 53.5373 38.0468 33.1930 

Frontier variances 31.9833 24.7411 21.5681 

Actual monthly variances *efficiency 

scores( 0.6503z ) 
34.8151 24.7418 21.5854 

 

For the 4
th

 fund, in the mean return augmentation approach, the composite benchmarking 

fund consists of five other funds, with each having a particular weight: w5=0.0709 (5th fund 

Artemis UK Special Situations); w10 =0.5308 (10th fund BlackRock UK Special Situations 

A Acc); w20=0.052(20th fund MFM Bowland); w23=0.0049 (23rd fund Schroder UK Mid 

250 Acc) and w28=0.3414(28th fund SVM UK Opportunities Instl). So the weights of all 

other funds equal to the zero. The second approach, risk contraction results a different set of 

weights for the corresponding composite benchmarking fund w5=0.1106 (5th fund Artemis 

UK Special Situations); w10 =0.6162 (10th fund BlackRock UK Special Situations A Acc); 

w14=0.1076 (14th fund GAM Exempt Trust UK Opportunities) and w20=0.1656 (20th fund 

MFM Bowland) with all other w’s at the zero level. 

 

Morey and Morey (1999) also described an approach to further discriminate the 6 most 

efficient funds. The idea is that for those funds with 1  there could still be a ‘slack’ or 

possible improvement in the mean returns for at least one of its horizons. Because the 

efficient frontier illustrated in Figure 3.3.1 represents the situation in one period, for three 

periods there are three frontiers. The two quadratic programming problems described in 

(3.1.1) and (3.1.2) simultaneously consider the constraints over all three periods, however for 

those funds with 1 , if the fund was not on the frontiers for all periods, a ‘slack’ would be 

detected. In this approach the new objective is to maximize the mean return for only the most 

important period, that is: 
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With all the constraints remaining the same.

 

Here  is the time period in consideration.  

According to the order of importance in the mutual fund industry 10-year period is the most 

meaningful time horizon, followed by 5-year and 3-year period. So let 10t
first, then if the 

return of the benchmarking fund cannot be further maximised, then let 5t
and 3t

  

successively. 

 

For the risk contraction approach, the new objective is: 
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Executing the above procedures no further improvement in either expected return or risk was 

found. Also a further look at the results from programming (3.3.1) and (3.3.2) we found that 

for those funds the frontier mean returns and variances are equal to their actual mean returns 

and variances, which mean that they are on the frontier for all three periods therefore no 

further improvements are possible. So these six efficient funds are ‘tied’. 
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Table 3.5.4 Rankings of funds from two approaches 

Fund No. And Name Ranking from mean return Ranking from risk 

(1) Aberdeen UK Mid Cap A Acc 9 11 

(2) AEGON Ethical Equity A 17 13 

(3) AEGON Ethical Equity B 10 10 

(4)  Allianz RCM UK Mid Cap A 15 24 

(5) Artemis UK Special Situations 1 1 

(6) Aviva Investors SF UK Growth SC1 28 17 

(7) Aviva Investors SF UK Growth SC2 25 16 

(8) Aviva Investors UK Ethical SC1 27 21 

(9) Aviva Investors UK Ethical SC2 26 20 

(10) BlackRock UK Special Situations A 1 1 

(11) Ecclesiastical Amity UK C 14 12 

(12) F&C Stewardship Growth 1 Acc 29 19 

(13) F&C Stewardship Income 1 Acc 1 1 

(14) GAM Exempt Trust UK 12 8 

(15) GAM UK Diversified Acc 16 14 

(16) Henderson UK Equity Income I Acc 19 18 

(17) HSBC FTSE 250 Index Retail Acc 11 15 

(18) Marlborough UK Primary Opps A 20 28 

(19) Marlborough UK Primary Opps B 22 29 

(20) MFM Bowland 8 9 

(21) Saracen Growth Alpha 21 27 

(22) Saracen Growth Beta 18 26 

(23) Schroder UK Mid 250 Acc 1 1 

(24) Standard Life UK Eq High Alpha Inst 1 1 

(25) Standard Life UK Eq High Alpha R 7 7 

(26) Standard Life UK Ethical Inst 23 23 

(27) Standard Life UK Ethical R 24 25 

(28) SVM UK Opportunities Instl 1 1 

(29) SVM UK Opportunities Retail 13 22 

 

Table 3.5.4 lists the rankings of funds from two approaches. We could see that except the 

most efficient funds, only fund 3, 25 and 26 have the same ranking, with other funds rank 

either slightly or dramatically differently for different approaches. The correlation between 



 

63 
 

two rankings is 0.8299, which is very high. This means that although mean return 

augmentation approach and risk contraction approach emphasize different aspects and have 

different benchmarking fund on the efficient frontier, a fund could get similar ranking based 

on the two approaches.  Also, the correlation between the DEA score from the mean return 

augmentation approach and Sharpe measure is 0.8535 and the correlation between the DEA 

score from risk contraction approach is 0.8156. This indicates that DEA scores share similar 

results with Sharpe ratio.  

 

The non-linear programming Eqs. (3.3.1)  can also be solved by maximizing the following 

function, which is the lagrangean function for this problem: 
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Take the derivative, 
0/  

, the following relationship could be obtained: 
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Similarly, formulation of Eqs. (3.3.2) could be solved by maximising the following function: 
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Take the derivative, 
0/  Z

, one could get: 
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*

t and 
*

tu , are called ‘virtual weights’. They are useful in exploring the marginal contribution 

of the mean reuturn and variance in each period to the fund’s efficiency. Table 3.5.5 presents 

the Lagrangians for the 29 funds.  
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Table 3.5.5 Lagrangians for the 29 funds 

Fund 

number 
Approaches Type of return 3 years 5 years 10 years 

1 

Mean return 

augmentation 

*

t  0.7519 0 0 

*

t
 

0.0084 0 0 

Risk contraction 

*

t  
1.9807 0 0 

*

tu
 

0.0230 0 0 

2 

Mean return 

augmentation 

*

t  
0.0000 1.6949 0 

*

t
 

0.0381 0 0 

Risk contraction 

*

t  
0 0.6758 0 

*

tu
 

0 0.0265 0.0179 

3 

Mean return 

augmentation 

*

t  
0 1.5152 0 

*

t
 

0.0339 0 0 

Risk contraction 

*

t  
0 1.4503 0 

*

tu
 

0.0340 0 0 

4 

Mean return 

augmentation 

*

t  
0.0165 0.1206 1.1590 

*

t
 

0 0.0043 0 

Risk contraction 

*

t  
0.4200 0.6142 0 

*

tu
 

0 0.0263 0 

5 

Mean return 

augmentation 

*

t  
0.6519 0 0 

*

t
 

0.0073 0 0 

Risk contraction 

*

t  
1.8803 0 0 

*

tu
 

0 0.0230 0 

6 

Mean return 

augmentation 

*

t  
0.0000 1.6643 0 

*

t
 

0.0169 0 0 

Risk contraction 

*

t  
0.4758 0 1.965 

*

tu
 

0 0.0265 0 

7 

Mean return 

augmentation 

*

t  
0 1.5152 0 

*

t
 

0.0375 0 0 

Risk contraction 

*

t  
0 1.6503 0 

*

tu
 

0.0390 0 0 

8 

Mean return 

augmentation 

*

t  
0.0165 0.1206 1.1640 

*

t
 

0 0.0043 0 

Risk contraction 

*

t  
0.4200 0.6142 0 

*

tu
 

0 0.0263 0 
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9 

Mean return 

augmentation 

*

t  
0 0 0.7553 

*

t
 

0.0035 0 0 

Risk contraction 

*

t  
0 1.6574 0 

*

tu
 

0.0350 0 0 

10 

Mean return 

augmentation 

*

t  
0.0000 0 1.6593 

*

t
 

0.0381 0 0 

Risk contraction 

*

t  
0 0.6758 0 

*

tu
 

0 0.0265 0.0169 

11 

Mean return 

augmentation 

*

t  
0 1.5152 0 

*

t
 

0.0339 0 0 

Risk contraction 

*

t  
0 1.4503 0 

*

tu
 

0.0340 0 0 

12 

Mean return 

augmentation 

*

t  
0.0165 0.1206 1.065 

*

t
 

0 0.0043 0 

Risk contraction 

*

t  
0.4200 0.6142 0 

*

tu
 

0 0.0263 0 

13 

Mean return 

augmentation 

*

t  
0.0339 0 0 

*

t
 

0 1.4503 0 

Risk contraction 

*

t  
0.0340 0 0 

*

tu
 

0.0165 0.8759 1.007 

14 

Mean return 

augmentation 

*

t  
0 0.0043 0 

*

t
 

0.4200 0.6142 0 

Risk contraction 

*

t  
0 0.0263 0 

*

tu
 

0.0340 0 0 

15 

Mean return 

augmentation 

*

t  
0.0753 0.1706 1.1640 

*

t
 

0 0.0043 0 

Risk contraction 

*

t  
0.4200 0.6142 0 

*

tu
 

0 0.0263 0 

16 

Mean return 

augmentation 

*

t  
0.0381 0 0 

*

t
 

0 0.6758 0 

Risk contraction 

*

t  
0 0.0265 0.0169 

*

tu
 

0 1.5152 0 

17 

Mean return 

augmentation 

*

t  
0.0339 0 0 

*

t
 

0 1.4503 0 

Risk contraction *

t  
0.0340 0 0 
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*

tu
 

0.0165 0.1204 1.785 

18 

Mean return 

augmentation 

*

t  
0 0.0043 0 

*

t
 

0.4200 0.6142 0 

Risk contraction 

*

t  
0 0.0263 0 

*

tu
 

0.0339 0 0 

19 

Mean return 

augmentation 

*

t  
0 1.4503 0 

*

t
 

0.0340 0 0 

Risk contraction 

*

t  
0.0165 0.1206 1.4670 

*

tu
 

0 0.0043 0 

20 

Mean return 

augmentation 

*

t  
0.4200 0 0.6142 

*

t
 

0 0.0263 0 

Risk contraction 

*

t  
0.0340 0 0 

*

tu
 

0.0165 0.1206 1.356 

21 

Mean return 

augmentation 

*

t  
0 0.0043 0 

*

t
 

0.4200 0.6142 0 

Risk contraction 

*

t  
0 0.0263 0 

*

tu
 

0.0245 0.1206 1.4530 

22 

Mean return 

augmentation 

*

t  
0 0.0043 0 

*

t
 

0.4200 0.6142 0 

Risk contraction 

*

t  
0 0.0263 0 

*

tu
 

0.0340 0 0 

23 

Mean return 

augmentation 

*

t  
0.0456 0.1206 1.4576 

*

t
 

0 0.0043 0 

Risk contraction 

*

t  
0.6785 0.6142 0 

*

tu
 

0 0.0263 0 

24 

Mean return 

augmentation 

*

t  
0.4563 0 0 

*

t
 

0 1.3452 0 

Risk contraction 

*

t  
0.0340 0 0 

*

tu
 

0 0.1206 1.3456 

25 

Mean return 

augmentation 

*

t  
0 0.0043 0 

*

t
 

0.3462 0.7895 0 

Risk contraction 

*

t  
0 0.0843 0 

*

tu
 

0.2345 0 0 

26 
Mean return 

augmentation 

*

t  
0.0165 0 1.5673 

*

t
 

0 0.0043 0 
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Risk contraction 

*

t  
0.4467 0 0 

*

tu
 

0.4563 0 0 

27 

Mean return 

augmentation 

*

t  
0.0165 0.7854 1.2570 

*

t
 

0 0.4768 0 

Risk contraction 

*

t  
0.3452 0.8432 0 

*

tu
 

0 0.0974 0 

28 

Mean return 

augmentation 

*

t  
0.4568 0 0 

*

t
 

0.0343 0.7543 0 

Risk contraction 

*

t  
0 0.0234 0 

*

tu
 

0.0234 0.0123 0 

29 

Mean return 

augmentation 

*

t  
0 0.0456 0 

*

t
 

0 0.0239 0 

Risk contraction 

*

t  
0 0 0.6943 

*

tu
 

0 0.5427 0 

 

For the first fund,  the Lagrangian on the 3 year mean return is 
7519.0*

1 
 , which indicates 

that  if the fund’s actual 3 year mean return were decreased 0.1 unit to 1.43 (from 1.33), the 

DEA score of the fund would be worsened by 0.7519 units, which becomes 

1.015+0.7519=1.7669. To test (5.4), 0.7519(1.33)+0(0.53)+0(0.60)=1. And for (5.5), there is  

0.0230(43.47992)+0(34.91566)+0(31.23086)=1. 

 

These ‘virtual weights’ could also be used to look at substitution possibilities. For example, 

for the fourth fund, taking the ratio of the Lagrangians for the 3 year mean return and the 5 

year mean return (devided 0.1206 by 0.0165, or 7.3),  means that one could exchange a 0.1 

increase in the 5 year return (from 0.72 to 0.82) with a 0.73 decrease in the fund’s 3 year 

mean return (i.e. from 1.02 to 0.29), all with no change in the fund’s overall rating of 1.1359. 

This is also true when analysing the substitution of risks.  

 

3.6 Conclusion 

 

The quadratic DEA model presented in Morey and Morey (1999) departs from the traditional 

DEA models and utilises insights from Markowitz portfolio theory which reveals the 

quadratic relationship between fund’s return and risk. This application applies the procedures 
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to a new modern data set comprising a multi-year sample of investment funds and identifies 

six efficient funds among 29 funds.  

 

Morey and Morey (1999) laid a foundation for further development of quadratic and cubic 

DEA models. Briec et al. (2004) applied a directional distance function which allowed 

simultaneous changes in the direction of reducing inputs and expanding outputs. They also 

defined an indirect mean-variance utility function, and divided overall efficiency (OE) into 

allocative efficiency (AE), and portfolio efficiency (PE).  Briec et al. (2007) claimed that 

portfolio returns are generally not normally distributed, with investors preferring positive 

skewness so that the probability of obtaining a negative return is low. They extended the 

work of Briec et al. (2004) into mean-variance-skewness space using cubic programming and 

divided overall efficiency into portfolio efficiency, allocative efficiency, and convexity 

efficiency. Kerstens et al. (2011) examined different returns to scale, convexity problems and 

higher order moments in both quadratic and cubic optimization programming and decided 

that various return to scale (VRS), free disposal hull and higher moments are essential 

methodologies for mutual funds evaluation.  Relevant empirical papers applying these 

methods are very few, and none of these papers discuss the statistical properties of DEA 

estimators. However, as our empirical example shows, ignoring the uncertainty surrounding 

DEA estimates can lead to erroneous conclusions.  
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Chapter 4   Bootstrapping of the DEA scores 

 

 

 

 

 

 

 

 

4.1 Introduction and motivation 

 

Data Envelopment Analysis has been proved to be a powerful frontier methodology to 

estimate production efficiency in a nonparametric framework. However, this methodology has 

to be used carefully; one major reason is that DEA estimators have unknown asymptotic 

sampling distributions. Banker (1993), Kneip et al. (1996), Korostelev et al. (1995a, 1995b), 

Gijbels et al (1999) have investigated the consistency and convergence properties of the DEA 

scores and found that the efficiency scores only converge when the sample size is large 

enough. They are also very sensitive to outliers and extreme values, for example, dropping 

one outlier can dramatically change the efficiency level for other decision making units. Thus 

the DEA estimators have shown to be biased when using a finite number of observed units. 
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Simar and Wilson (1992) claimed that the DEA results by themselves are not true efficiency 

scores, and the true efficiency scores cannot be known. The only way to obtain some 

information of the unknown true levels of efficiency is through the analysis of the 

distributions of the samples. For example, the confidence intervals can give insights about 

how reliable the DEA scores obtained from Morey and Morey (1999) quadratic models are, 

whether they’re just random results or statistically significant. And it’s also necessary to 

correct the bias of the DEA scores to give more accurate estimation of the investment fund’s 

performance.  A very effective way to investigate sampling properties of DEA estimators is to 

use a methodology called bootstrapping, i.e. sampling with replacement in order to simulate 

sampling distributions. In addition, the DEA estimators can be improved using bias correction 

in the bootstrap. 

 

The second application of this thesis is to extend the Morey and Morey (1999) paper by 

utilizing Simar-Wilson (2008) bootstrapping algorithms to develop statistical inference and 

confidence intervals for the indexes of efficient investment fund performance.  

 

Chapter 4 is organized as follows: Section 2 provides a literature review and methodology of 

bootstrap; Section 3 describes the algorithm of smoothed bootstrap for this quadratic DEA 

model; Section 4 shows the data collection; and Section 5 presents the results. 

 

4.2 Literature review and methodology 

 

The bootstrap was introduced by Efron (1979) and it has been widely used to analyze the 

distribution of a statistic, for instance, mean and variance, without using normal theory such 

as z-statistic and t-statistic. This is convenient when the distribution of a certain statistic is 

uncertain. The first use of the bootstrap in frontier models was Simar (1992) and it was later 

developed by Simar and Wilson (1998a) etc.  

 

The essence of the bootstrap idea (Efron, 1979, 1982; Efron and Tibshirani, 1993) is that 

distribution of the true efficiency scores which is unknown could approximate to the sampling 

distribution, given that a proper data generating process (DGP) is used to create resamples. 

Therefore, in bootstrap, through obtaining the sampling distribution which can be calculated 

following a certain procedure, the information of the true efficiency scores is revealed. The 
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crucial step is to create a DGP to simulate, or mimic, the real unknown DGP from which the 

true DEA estimators are generated.  

 

There are two general ways to resample. The first one is called Monte Carlo resampling. The 

first step in this resampling is to draw a new set of data independently, uniformly, and with 

replacement from the set of original observations. Under the Monte Carlo resampling, all the 

resamples are drawn only from the original data, and the size of the resample is equal to the 

size of the original data set. Therefore there could be some duplicates since the replacement 

comes from random picking from the original data. In the second step, a new efficiency score 

is computed from the resample in the first step. The first two steps then are repeated as many 

times as needed to get a precise estimate of the distribution of the true DEA scores. A more 

complicated way to resample is the 'exact' version of resampling. The procedure is similar, 

but all possible resample of the data sets are enumerated exhaustively. In a case where data 

size is n, there are 






 
n

n 12
 different resamples totally. 

 

The DGP described in this application is based on Monte Carlo resampling. To illustrate the 

DGP and resampling procedure (in an input-oriented DEA case): 

 

In a DEA application, the true attainable set  , therefore the true efficiency score are 

unknown, and we use the observations of input and output to capture some characteristics of 

these unknown variables.  

 

Denote X as the observed dataset including both inputs and outputs, 

 

                    niyx ii ,...,1),,(X                          (4.2.1) 

 

Denote  (which is unknown) as the DGP which generates X. 

                            yxfPP ,,             (4.2.2) 
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where  is unknown , and  ሺ   ሻ is the probability density function of the random variables ሺ   ሻ  in X. 

 

Let ̂be a consistent estimator of : 

 

                             yxf ,ˆ,ˆˆ              (4.2.3) 

 

where  

 

                       








  
 


n

i

n

i

iiiii

qp
nixxyyRyx

1 1

,...,1;0;;,ˆ 
                     

(4.2.4) 

 

Therefore  ̂ is the piecewise linear representation of the technology or attainable set. The 

observed X are used to construct estimates i



 , and i



 are the efficiency scores of the 

production units  ii , yx  obtained by following DEA procedures. In a simple case of constant 

return to scale and input oriented DEA, there is: 

 

           












   
  

n

j

n

j

i

n

i

iijjijjiii njxxyy
1 1 1

,...,1;00;1;;minˆ  ； , ni ,...,1   

                                                               (4.2.5) 

 

Then a new dataset, which includes all the resamples,  niyx ii ,...,1),,(X ***  needs to be 

generated from ̂ . In the bootstrap of input-oriented DEA, the resamples are composed of  

new inputs and the original outputs in which case  niyx ii ,...,1),,(X **  while in the 

bootstrap of output-oriented DEA the resamples include the original inputs and new outputs 

where  niyx ii ,...,1),,(X **  And the procedures to create  niyx ii ,...,1),,(X ** 
 
in this 

input-oriented case  are as follows: 

 

First of all, select nii ,...,1*  from n



 ,...,1 randomly.  
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Then for a given output level iy , the efficient level of input is determined by:  

 

.),(ˆ)( iiiiii xyxyx 
1,...n.i              (4.2.6) 

 

Which lies on the efficient boundary  ˆ , along the ray x and orthogonal to y.  

 

And for each replicate *

i , there must be a corresponding input which could be projected on the 

same point on the efficient frontier by *

i  given the same iy . This is illustrated by the following 

formula:   

 

                            

.),()( ***

iiiiii xyxyx 

            (4.2.7) 

 

From (4.2.6) and (4.2.7), the bootstrap inputs are obtained by the following formula: 

 

        .
)(

*

^

*

*

i

i

i

i

ii

i x
yx

x








1,...n.i             (4.2.8) 

 

Once  niyx ii ,...,1),,(X **   is obtained, 

*

i is then computed by solving the following 

linear program, in this simple case of constant return to scale. 

 









 




njxxyy
n

j

jjj

n

j

j

n

j

jji ,...,1,00;1;;min
1

*

1

i

1

i

*  ； ,     ni ,...,1  

                                                               (4.2.9) 

Where

*

i is an estimator of i



 under DGP ̂ . It is in the same way as i



 is an estimator of the 

true efficiency score i , given the unknown true DGP  .  

 

The above procedures show how the computed sampling distributions mimic the original 

unknown distributions of efficiency estimators, and it could be written as: 
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Pi )-(~P)-( iii

* 


             (4.2.10) 

To summarize, the bootstrapping is based on the idea of repeatedly simulating the data 

generating process (DGP) to obtain resamples, and then calculate the distribution of the 

resamples which mimic the distribution of the unknown true efficiency estimator. It involves 

mainly three steps: 

 

1. Apply the DGP ̂  to generate resamples  niyx ii ,...,1),,(X ***   (i.e., simulate). 

2. Use the resamples  niyx ii ,...,1),,(X ***   to compute 

*

i , which is the estimator of the 

efficiency score i



  

 

3. Repeat the first two steps. 

 

The distribution of the estimates obtained in the end approximates the distribution of the true 

efficiency estimator.  

 

In the bootstrapping, the quality of the approximation relies partly on the number of times the 

simulation repeated. (indicate it as B). It is proved that the larger value of B the better. Simar 

and Wilson (2000) claimed that when B , the error of this approximation due to DGP  


p  

tends to be zero. To illustrate, DGP 
^

P  generates B samples .,...1,*
BbX b   In particular, for a 

given unit  ii YX , , there is 

B

1b

*

ib












 ; therefore the distribution of 

B

1b

*

ib












 is the approximation 

of the distribution of the true efficiency scores.  

 

Bootstrap is applied to correct the bias of the efficiency estimator and construct 

corresponding hypothesis tests.  

 

(i) Correcting the bias 
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The bias of i̂ as the estimator of true efficiency score is given by:  

 

                              
，)ˆ( iii Ebias                                          (4.2.11) 

 

The bias of 
*

î as the estimator of i̂ is:  

 

            .ˆ)ˆ( *

iii Ebias                            (4.2.12) 

 

The latter can also be written as the following given B replications in the bootstrap, 

 

    .ˆ-.ˆ-ˆ
B

1
i

*

ik

B

1b

*

bi,   


ibias                                 (4.2.13) 

 

Due to (4.2.8), the following relationship holds, 

 

    .ˆ-bias i

*

ii 


ii biasbias                                 (4.2.14) 

 

Define i

~ as a bias-corrected estimator of i , there is: 

 

                   .-ˆ2.bias-ˆ~ *

iiiii  


                                             (4.2.15) 

 

Define
*

bi,

~ as a bias-corrected estimator of
*

bi,̂ , there is, 

 

                           
.bias2-ˆ~ *

bi,

*

bi, i



                                                 (4.2.16) 

 

Note that 
*

bi,̂ has to be shifted by 2 ibias


to the left in order to centre on bias-corrected 

estimator of i , i

~ .  

 

Finally, the sample variance of the bootstrap values 
*

î could be estimated by: 
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          



B

b

i

1

2
*

i

*

bi,

2 -ˆ
B

1ˆ              (4.2.17) 

 

However, this bias correction has shown to introduce additional noise (Efron and Tibshirani, 

1993); the mean square error of the bias-corrected estimator 
i

~ maybe greater than the mean 

square error of i̂ .The value of variance of 
i

~ is approximately 2ˆ4 i . Therefore, the bias 

correction should not be used unless 2ˆ4 i  is well less than  2ibias ; otherwise, 
i

~ is likely to 

have mean square error larger than the mean square error of i̂ . Efron and Tibshirani (1993) 

proved that the bias correction in (4.2.13) should be avoided unless  

                                  
4

1

ˆ


i

ibias


                    (4.2.18) 

 

(ii) Confidence interval  

 

Bootstrapping allows one to calculate the confidence intervals for the true efficiency score i . 

The formula for confidence interval of ,,...,1,ˆ*

, Bbbi  at  significance level is as follows:  

 

            .-1ˆˆ-,ˆ,ˆb̂-Pr *    niiDEAiiDEA xPyxyx         (4.2.19) 

 

Similar to (4.2.17), the formula for confidence interval of ,,...,1,ˆ*

, Bbbi  at  significance 

level is given by: 

 

                   .-1-,,ˆb-Pr    iiiiDEA yxyx          (4.2.20) 

 

Due to (4.2.8), (4.2.17) could be rewritten as: 

 

              
     .-1ˆ-,,ˆb̂-Pr iiii    yxyxDEA                    (4.2.21) 
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For  %1  confidence interval, â  and b̂  can be found by sorting the values 

  Bbii ,...,1,ˆˆ*  in increasing order and then delete 





 100

2


-percent of the elements at 

either end of the sorted list. Then set b̂ and â equal to the endpoints of the truncated, 

making sure  ba ˆˆ  .  

Then the  -1 -percent confidence interval for the true efficiency score is:  

 

              
        byxyxyx iiiiii

ˆ,ˆ,ˆ,ˆ                     (4.2.22) 

 

If bias-corrected estimators are considered, then  ii yx ,̂  would be replaced by  ii yx ,
~  in 

(4.2.22). 

 

The above is standard bootstrap, which is also called ‘naïve’ bootstrap.  Silverman and Young 

(1987) and Efron and Tibshirani (1993) claimed that standard bootstrap has some problems. 

In the standard bootstrap, the true DEA scores are subject to an unknown distribution, i.e. 

                            
  Fdiin ...~,...,1            (4.2.23) 

 

where F is an unknown density function on  1,0 . Define F̂  as the estimator of F, there is  

 

                             
  Fdiin

ˆ...~ˆ,...,1̂            (4.2.24) 

 

Because with limited data, F̂  is actually a discrete distribution, therefore samples constructed 

from F̂  may have some peculiar properties. Most seriously, it’s not consistent under some 

circumstances which mean (4.2.8) doesn’t hold all the time. In other words, the distribution of 

the 
*

î will not approximate the sampling distribution of i̂ . Because F̂  provides a poor 

estimate of F near the upper bound for   (when 1 ). Also, it is difficult to estimate F from 

F̂ in the extreme tails.  
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There are two techniques to deal with this problem, one is subsampling technique (in which 

the sample size equals k
nm  , for 10  k ), and the other is smoothing technique. Kneip et 

al. (2003) proved that both ideas provide consistent results in the simulation. The following 

part of this sector describes the smoothing technique. 

 

Smoothed bootstrap is introduced and developed by Efron (1979, 1982). The essential idea of 

the smoothed bootstrap is to resample not assuming F̂ , but a smoothed version of F̂  which is 

a joint density function. Defined it as  tFh
ˆ , (4.2.21) in the standard bootstrap is then replaced 

by 

                tFdii hn
ˆ..~,...,1              (4.2.25) 

 

In the smoothed bootstrap, kernel density estimation is chosen as the joint density function

 tFh
ˆ . Kernel density estimation is a non-parametric way of estimating the probability density 

function of a random variable. It provides a smoothing function through a parameter, 

particularly when data sample is finite. 

 

To illustrate, the kernel density estimator is, 

 

    










n

1i

i
n

1i

ihh
h

x-x
K

nh

1
x-xK

n

1
xf̂         (4.2.26) 

 

where  K  is a symmetric but not necessarily positive function that integrates to one, which 

means  K  satisfies    t-KtK  ,   1dttK
-





, and   0dtttK

-





. Any symmetric 

probability function with mean zero satisfies these conditions.  xf̂h could be understood as 

the average of n different probability densities  K  with the parameter h controlling the 

dispersion of the n densities. 

 

In the smoothed bootstrap, the normal kernel is used, in which case    xxK  , and  x is 

the standard normal density function. Therefore, in the smoothed bootstrap,  
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  








 
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 h

t

nh
tF i

n

i

h




ˆ1ˆ
1

           (4.2.27) 

 

here h is the smoothing parameter, which is also called the window width or bandwidth. The 

smoothing parameter h determines to what extent the data are smoothed in the DGP. Larger 

values of h provide more smoothing than smaller values of h because when h is small, only a 

few observations closest to the point where the density is estimated influence the value of

 tFh
ˆ . As h gets larger, further observations are included to determine  tFh

ˆ . Consequently, in 

two extreme situations when 0h and when h the density will become the discrete 

empirical density function and a flat horizontal line respectively.  

 

Also, it is proved that with h, the bias of  th



F increases while the variance decreases. So 

when choosing the optimal h, there is always a trade-off between the bias of the estimator and 

its variance.  

 

Silverman (1986) provides a formula for the optimal value of h, when the underlying density 

function is Gaussian and  K  is standard normal: 

 

                              5
1

ˆ06.1


 nhNR                                    (4.2.28) 

 

This is referred to as the ‘normal reference rule’ or Silverman’s rule of thumb.  

 

A more robust choice is given by,  

 

                               5
1

34.1/ˆ,ˆmin06.1


 nRhR           (4.2.29) 

 

where R̂ is the interquartile range.  

 

Another commonly used criteria for choosing the bandwidth h in kernel density estimation is 

data-driven criterion. Because, with discrete data, especially when the sample size is not very 

large, the density of the efficiency scores is likely to be not normally distributed, therefore, 
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this density may have moments different from a normal distribution. Data-driven methods 

provide ad hoc rules for choosing h. The approach is to minimize an estimate of either mean-

integrated square error (MISE) or its asymptotic version (AMISE) which are called unbiased 

and biased cross-validation respectively. Silverman (1986) described a least-squares cross-

validation method which is a form of unbiased cross-validation; Simar and Wilson (2002) 

adapts it to the DEA context.  

 

The MISE of kernel density function is given by  

 

  ].))()(ˆ([)( 2
dxxFxFEhMISE h





                         (4.2.30) 

 

This is computed by the Leave-one-out cross-validation least-square (LOOCV) and the 

function is as follows:  
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Where )(,
ˆ

ihF  is the leave-one-out estimator of )(xF based on the original observations (the m 

values 1ˆ jx  ), except ix̂ , with bandwidth h. And the optimal h could be obtained by 

minimizing (4.2.29).  

 

The above estimation has one problem; however, that is it does not take into account the 

boundary condition that 1t . To overcome this problem the reflection method has been used, 

which was described by Silverman (1986). In the reflection method, the points 1ˆ i are 

reflected by its symmetric image ,,...,11ˆ-2 nii  ， and then the kernel density estimator 

are modified from the resulting set of 2n points to be,  
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Define 
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otherwise0
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hs,F     (4.2.33) 

 

It can be proved that  ths,



F is consistent for all 1t  . 

 

Under this reflection method, a certain procedures should be followed to generate samples 

**

1 ,..., n from  ths,



F . First of all, let **

1 ,..., n be a set of bootstrap resample from n



 ,...,1 . 

According to the convolution theorem in Efron and Tibshirani (1993), there is, 
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where 
*

i is an error term from the standard normal distribution. Similarly, let 
R

it be the 

reflection of it then  
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And  tGh
ˆ in (4.2.28) may be written as: 
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Now the estimator of i̂  is given by: 
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It has been proved that  
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F             (4.2.38) 

 

and *

i

~ has the following properties:  
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where 2ˆ
i is the sample variance of n



 ,...,1 ,i.e., 
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And ̂ is the sample mean of the n



 ,...,1 .   

 

When kernel estimators are used, the variance of the generated bootstrap sequence must be 

corrected by computing 
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Where   ,1
1

**  


n

i in   

 

(4.2.32) and (4.2.33) become, 
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*

i  has better properties than 
*~

i as variance of *

i is asymptotically correct.  

 

In the smoothed bootstrap, the problems that appear in the standard bootstrap are avoided. 

The empirical results to be reported in the thesis were all derived from MATLAB codes 

written by the researcher and these MATLAB codes are included as appendices to the thesis. 

 

4.3       Algorithm of smoothed bootstrap for this quadratic DEA model 

 

First of all, DEA estimators are obtained from Morey and Morey (1999) quadratic model 

mean augmentation approach using the following program: 
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Secondly, to select replicates  B

1b

*

ib 2000B 1,...n. i  from kernel density function using 

reflection method based on the DEA estimators obtained from Morey and Morey (1999) 

quadratic model mean augmentation approach, with the optimal bootstrap smooth parameter 

h automatically chosen in the program utilising cross-validation approach described by 

Silverman (1986). The corresponding formulas are from (4.2.30) to (4.2.44). In this 

application, the minimum and maximum replicates among  B

1b

*

ib 2000B 1,...n. i are set 

to be not below the minimum orginal DEA score and no above the maximum orginal DEA 

score. This way it could make sure all the replicates have the value equal or larger than one, 

and all the replicates produced are reasonable in this quadratic DEA case.  

 

The third step is to obtain the bootstrap inputs using the following formula: 
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Finally 
*

îb which is convenient to be expressed as 
*

0

ˆ
bj  in the following formula is computed 

by solving the following program. 
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The distribution of the 2000 estimates 
*

îb obtained from (4.3.3) approximates the distribution 

of the true efficiency estimator.  

 

The bias of i̂ as the estimator of true efficiency score  is given by: 
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Bias corrected estimator .-ˆ2.bias-ˆ~ *

iiiii  


              (4.3.5) 

 

 -1 -percent confidence interval for the true efficiency score is calculated by:  

 

            
        byxyxyx iiiiii
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For 95% confidence interval, â  and b̂  can be found by sorting the values 

  2000,,...,1,ˆˆ*  BBbii 
 
in increasing order and then delete 50 elements at either end of 

the sorted list. Then set b̂ and â equal to the endpoints of the truncated, making sure

 ba ˆˆ  .  

 

If bias-corrected estimators are considered, then replace  ii yx ,
~  by  ii yx ,̂ . 

The consistency of the bootstrap depends on the resampling procedure (avoidance of naive 

bootstrapping) and this has been addressed by the design of the Simar-Wilson algorithm. 

 

4.4 Data collection  

 

The data used in this application is the DEA scores obtained from the Morey and Morey 

(1999) return augmentation approach. And the results in the following table are from Table 

3.5.1 in the third chapter.  
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Table 4.4.1 Frontier values and scores from the mean return augmentation programming 

Fund No. and name DEA scores 

(1) Aberdeen UK Mid Cap A Acc 1.015 

(2) AEGON Ethical Equity A 1.1505 

(3) AEGON Ethical Equity B 1.0308 

(4)  Allianz RCM UK Mid Cap A 1.1359 

(5) Artemis UK Special Situations 1 

(6) Aviva Investors SF UK Growth SC1 1.8621 

(7) Aviva Investors SF UK Growth SC2 1.5914 

(8) Aviva Investors UK Ethical SC1 1.7987 

(9) Aviva Investors UK Ethical SC2 1.714 

(10) BlackRock UK Special Situations A Acc 1 

(11) Ecclesiastical Amity UK C 1.1116 

(12) F&C Stewardship Growth 1 Acc 1.9331 

(13) F&C Stewardship Income 1 Acc 1 

(14) GAM Exempt Trust UK Opportunities 1.036 

(15) GAM UK Diversified Acc 1.143 

(16) Henderson UK Equity Income I Acc 1.2532 

(17) HSBC FTSE 250 Index Retail Acc 1.0331 

(18) Marlborough UK Primary Opps A Acc 1.3196 

(19) Marlborough UK Primary Opps B Acc 1.3974 

(20) MFM Bowland 1.0031 

(21) Saracen Growth Alpha 1.3265 

(22) Saracen Growth Beta 1.2344 

(23) Schroder UK Mid 250 Acc 1 

(24) Standard Life UK Eq High Alpha Inst Acc 1 

(25) Standard Life UK Eq High Alpha R Acc 1.0006 

(26) Standard Life UK Ethical Inst 1.4387 

(27) Standard Life UK Ethical R 1.5747 

(28) SVM UK Opportunities Instl 1 

(29) SVM UK Opportunities Retail 1.0593 
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4.5 Results analysis  

The Bandwidth h selected is 0.2186, calculated by least-squares cross-validation method 

described by Silverman (1986). The corresponding formulas are (4.2.28) and (4.2.29).  

The results of bootstrapping DEA scores are as follows: 
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Table 4.5.1 Bootstrap results with Bandwidth  h=0.2186;   

N estimates bias 
bias-

corrected 

estimator 

Standard 

deviation 
i

ibias

̂  
95% confidence interval  

Lower 

bound 

Upper 

bound 

differenc

e 
1 1.015 -0.0102 1.0252 0.0075 1.3641 1.0082 1.0300 0.0218 

2 1.1505 -0.0078 1.1583 0.0252 0.3093 1.1345 1.2288 0.0943 

3 1.0308 -0.0039 1.0347 0.0138 0.2831 1.0166 1.0616 0.045 

4 1.1359 -0.0168 1.1527 0.0203 0.8291 1.1324 1.2054 0.073 

5 1 0 1 0 - 1 1 0 

6 1.8621 -0.0335 1.8956 0.0540 0.6208 1.8329 2.0255 0.1926 

7 1.5914 -0.0242 1.6156 0.0462 0.5235 1.5641 1.7303 0.1662 

8 1.7987 -0.0381 1.8368 0.0574 0.6640 1.778 1.9707 0.1927 

9 1.714 -0.0345 1.7485 0.0543 0.6351 1.6947 1.8756 0.1809 

10 1 0 1 0 - 1 1 0 

11 1.1116 -0.0306 1.1422 0.0562 0.5449 1.0455 1.2232 0.1777 

12 1.9331 -0.0405 1.9736 0.0908 0.4460 1.8541 2.1884 0.3343 

13 1 0 1 0 - 1 1 0 

14 1.036 -0.0207 1.0567 0.0208 0.9929 1.0101 1.0720 0.0619 

15 1.143 -0.0439 1.1869 0.0489 0.8971 1.1200 1.2860 0.166 

16 1.2532 -0.0494 1.3026 0.0616 0.8017 1.2297 1.4617 0.2320 

17 1.0331 -0.0128 1.0459 0.0133 0.9652 1.0277 1.0664 0.0387 

18 1.3196 -0.00797 1.3276 0.0178 0.4489 1.2216 1.3560 0.1344 

19 1.3974 -0.0156 1.4130 0.0184 0.8466 1.3948 1.4571 0.0623 

20 1.0031 -0.0010 1.0041 0.0037 0.2675 1.0021 1.0062 0.0041 

21 1.3265 -0.0137 1.3402 0.0193 0.7114 1.3193 1.3852 0.0659 

22 1.2344 -0.0129 1.2473 0.0178 0.7249 1.2277 1.2889 0.0612 

23 1 0 1 0 - 1 1 0 

24 1 0 1 0 - 1 1 0 

25 1.0006 -0.0005 1.0011 0.0002 2.0229 1.0006 1.0012 0.0006 

26 1.4387 -0.0290 1.4677 0.0296 0.9809 1.4379 1.5458 0.1079 

27 1.5747 -0.0239 1.5986 0.0297 0.8053 1.5701 1.6800 0.1099 

28 1 0 1 0 - 1 1 0 

29 1.0593 -0.0266 1.0859 0.0261 1.0204 1.0593 1.1186 0.0593 
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Table 4.5.1 shows the results for the bootstrap exercise for B = 2000 and h = 0.2186. Column 

1 shows the fund number, while columns 2 to 5 give the original DEA efficiency estimates, 

the bias and the bias-corrected estimates, the standard deviations of the bootstrapped values 

and the value of 
i

ibias

̂
; and the last column gives 95% confidence intervals for the efficiency 

estimates, showing the upper and lower bounds and the difference between them. From Table 

4.5.1, the initial DEA model gave an average uncorrected efficiency score of 1.2470, while 

the bootstrap model generated an average bias-corrected score of 1.2642. The minimum 

uncorrected score was 1 and the maximum was 1.9331, while the minimum bias corrected 

score was 1 and the maximum was 1.9736. For the most efficient funds- fund 5,10,13,23,24 

and fund 28, the 2000 bootstrap estimators are all equal to one, therefore the bias equal to 

zero and the bias corrected estimators are also equal to one. The 95% confidence intervals for 

these funds become a single point. The results also reveal that all the estimated biases are 

negative, which is as expected, because according to Simar and Wilson (1998), the DEA 

estimate is upwardly biased using an input oriented model and downwardly biased for an 

output oriented model. The original scores had a mean bias of -0.0168. And the standard 

deviations for all the estimators are quite small with the maximum standard deviation equal to 

0.0908. All the funds satisfy the condition of 
4

1

ˆ


i

ibias


 (4.2.18), except for the most 

efficient funds which have both the bias and the standard deviation equal to zero. Lower 

bounds for the estimated 95% confidence intervals range from 1 for the six most efficient 

funds to 1.8541 for the 12
th

 fund. The estimated upper 95% confidence bounds range from 1    

for the most efficient funds to 2.1884 for the 12
th

 fund. In addition, the differences between 

the upper and lower bounds range from 0 for the frontier funds to 0.3343 for Fund 12. From 

the results, all of the original DEA scores are within the lower and upper bounds of 95% 

confidence interval, with the maximum range is as small as 0.3343. Therefore the statistical 

test indicates that the DEA scores are very reliable.  

 

This conclusion can be further proved by the comparison between rankings of the funds from 

original DEA scores and rankings based on bias-corrected DEA scores. The results are 

showed as follows: 
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Table 4.5.2 Rankings before and after bias correction 

Fund No. And Name 
Ranking from 

original DEA scores 

Ranking from bias-

corrected DEA 

scores  

(1) Aberdeen UK Mid Cap A Acc 9 9 

(2) AEGON Ethical Equity A 17 16 

(3) AEGON Ethical Equity B 10 10 

(4)  Allianz RCM UK Mid Cap A 15 15 

(5) Artemis UK Special Situations 1 1 

(6) Aviva Investors SF UK Growth SC1 28 28 

(7) Aviva Investors SF UK Growth SC2 25 25 

(8) Aviva Investors UK Ethical SC1 27 27 

(9) Aviva Investors UK Ethical SC2 26 26 

(10) BlackRock UK Special Situations A Acc 1 1 

(11) Ecclesiastical Amity UK C 14 14 

(12) F&C Stewardship Growth 1 Acc 29 29 

(13) F&C Stewardship Income 1 Acc 1 1 

(14) GAM Exempt Trust UK Opportunities 12 12 

(15) GAM UK Diversified Acc 16 17 

(16) Henderson UK Equity Income I Acc 19 19 

(17) HSBC FTSE 250 Index Retail Acc 11 11 

(18) Marlborough UK Primary Opps A Acc 20 20 

(19) Marlborough UK Primary Opps B Acc 22 22 

(20) MFM Bowland 8 8 

(21) Saracen Growth Alpha 21 21 

(22) Saracen Growth Beta 18 18 

(23) Schroder UK Mid 250 Acc 1 1 

(24) Standard Life UK Eq High Alpha Inst 

Acc 
1 1 

(25) Standard Life UK Eq High Alpha R Acc 7 7 

(26) Standard Life UK Ethical Inst 23 23 

(27) Standard Life UK Ethical R 24 24 

(28) SVM UK Opportunities Instl 1 1 

(29) SVM UK Opportunities Retail 13 13 

 

From Table 4.5.2 it can be seen that except fund 2 and fund 15, all the other funds have 

exactly the same rankings before and after bias correction. And the 2
nd

 fund has the ranking 
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of 17 based on original estimators while the bias corrected estimator for the 2
nd

 fund gives the 

ranking of 16. For the fund 15, it has the rankings of 16 and 17 before and after the bias 

correction respectively. Therefore, for funds 2 and 15, the different rankings using original 

DEA scores and bias corrected DEA scores are very close.  

 

4.6 Conclusion  

 

Nonparametric efficiency measures are criticized for lacking a statistical basis. This is based 

on the fact that the efficiency scores obtained from DEA models are likely to be 

overestimated/ underestimated. However, it is demonstrated that boostrap methods can be 

used to provide the statistical inference for the DEA scores by focusing on the underlying 

DGP.  

 

This application provides a statistical test of the DEA scores obtained from Morey and Morey 

(1999) quadratic model by using bootstrap techniques introduced by Simar and Wilson (1998, 

2000). Algorithms of smoothed bootstrap for this quadratic DEA model are designed. The 

results show that the DEA scores from Morey and Morey (1999) quadratic model are 

downwardly biased with a mean bias of -0.0168, which is quite small. Also, the confidence 

intervals are fairly narrow for all the funds with the original estimators lie between the lower 

bounds and upper bounds. In addition, after the bias correction, 27 funds have the rankings 

unchanged compared with the rankings based on the original estimators with 2 funds have 

slight change in their rankings. Therefore, the conclusion could be drawn from this statistical 

test that the DEA scores obtained from Morey and Morey (1999) mean augmentation 

approach are very reliable.  

 

Based on Morey and Morey (1999), which laid a foundation for the development of quadratic 

and cubic DEA models, Briec et al. (2004) applied a directional distance function which 

allowed simultaneous changes in the direction of reducing inputs and expanding outputs. 

Briec et al. (2007) extended the work of Briec et al. (2004) into mean-variance-skewness 

space using cubic programming. However, relevant empirical papers applying these methods 

are very few, and none of these papers discuss the statistical properties of DEA estimators. 

Therefore, statistical inferences need to be provided for these quadratic and cubic DEA 

models to test the reliability of the estimators and correct the biases. Bootstrap Algorithms for 

these quadratic and cubic DEA models have not been developed. 
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Chapter 5   Evaluating contextual variables affecting investment trust 

performance in second stage DEA efficiency analyses 

 

 

 

 

 

 

 

 

5.1 Introduction and motivation  

 

One type of investment fund is investment trust, which is close ended fund. It is actually a 

listed company, and differs from unit trusts in the sense that it issues equity itself and the 

number of shares is fixed as with any other company that issues shares. An investment trust 

normally only invests in specific types of assets for example UK technology shares and is 

banned from switching to other segments. There are over 350 investment trusts quoted in 

London, with total assets of over £60 billion.  

 

Therefore it is meaningful to examine the efficiency of investment trusts, and to analyze the 

factors contributing to investment trusts performance and detect the determinants of 

inefficiency. Therefore second stage DEA efficiency analyses are used to evaluate contextual 
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variables affecting the fund performance. This framework involves two-stages. In the first 

stage, efficiency scores are calculated using Morey and Morey (1999) quadratic DEA model. 

And then in the second stage, these scores are correlated with other explanatory variables 

which also have an impact on the funds’ performances. In this stage the DEA efficiency 

scores are regressed on potential factors to test the statistical significance of those factors.  

 

Sharpe ratio and Jensen’s alpha are two traditional measurements that are often used to rank 

the performance of investment portfolios. Sharpe ratio is calculated by dividing a fund's 

annualized excess returns by the standard deviation of a fund's annualized excess returns and 

mutual funds with lager Sharpe Ratios are assumed to have better historical risk-adjusted 

performance than those with small ratios. Jensen’s alpha, which is derived from the market 

model and the CAPM, is calculated by taking the excess funds return over the risk free rate 

and subtracting beta times the excess return of the benchmark over the risk free rate. Jensen’s 

alpha represents the average incremental rate of return on the portfolio which is due solely to 

the manager’s stock-selection abilities. A positive Alpha figure indicates the portfolio has 

performed better than the market beta would predict, and a negative Alpha indicates the 

portfolio has underperformed compared with the expectations established by beta. 

 

The Sharpe ratio and Jensen’s alpha are based on the risk adjusted return analysis with Sharpe 

ratio having the standard deviation of the excess return of the fund over risk free rate as the 

risk measure and Jensen’s alpha using beta representing the systematic risk in the market. 

Therefore they are likely to be significantly related to the efficiency scores of the investment 

trusts obtained by applying the quadratic DEA model with risk as input and return as output.  

 

Also, one may be interested to see whether the fund expenses have an impact on the fund 

performance, for example, whether more efficient funds have higher expenses. The fund 

expense ratio is used, which is reflected in the fund's NAV. It is the percentage of fund assets 

that pays for operating expenses and management fees, including administrative fees, and all 

other asset-based costs incurred by the fund, except brokerage costs. Sales charges are not 

included in the expense ratio.  

 

Stattman (1980) and Rosenberg, Reid, and Lanstein (1985) and Chan, Hamao and 

Lakonishok (1991) find that book-to-market ratio makes a positive contribution in explaining 

the average returns on stocks. Basu(1983) shows that earnings-price ratios(E/P) are positively 
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related to the average returns of U.S. stocks. Inspired by the above research, book-to-market 

ratio and price earnings ratio are also included in this application as potential factors to 

examine their influence on the investment trusts performance.  

 

Another potential variable is market capitalization (a stock’s price times its shares 

outstanding) which may have an impact on the funds efficiency in terms of the size effect.  

Among the second stage DEA literature, OLS-robust, Tobit models and Papke-Wooldridge 

(PW) model are most commonly used second stage models. In this application, they are 

conducted and compared to evaluate contextual variables affecting the performance of 

investment funds.  

 

Chapter 5 is organized as follows: Section 2 provides a literature review and methodology of 

second stage DEA models; Section 3 shows the data collection; Section 4 presents the results; 

and Section 5 gives the conclusion.  

 

5.2 Literature review and  methodology 

 

Analysis of factors contributing to productivity efficiency has been an important area of 

research in DEA. Many studies have used the two-stage analysis of first calculating efficiency 

scores and then relating these scores to contextual variables. Examples are Ray (1991) and 

Forsund (1999). Among the literature, the commonly used two-stage methods include 

ordinary least squares (OLS), Tobit regression and the Papke-Wooldridge approach based on 

quasi-maximum likelihood estimation (QMLE). 

 

Banker and Natarajan (2008) is a very important paper which provides a statistical foundation 

for two-stage analyses. Banker (2008) develops a basic model in which the contextual 

variables are linked to inefficiency. In this model, a single output, y, is specified as a general 

function of multiple inputs and an error term. It is illustrated as follows: 

   

*

)(  eXy 
           (5.2.1) 

 

where )(X is the true production function and   is an error term. The production function 

)( is monotone increasing and concave in input X. In this framework, consider j decision-

making units (DMUs); Nj ,...,1  ),...,( 1 Ijjj xxX  is a vector inputs and ),...,( 1 Sjjj zzZ  is a 
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vector of contextual variables that may influence the overall productivity in transforming the 

inputs into the output.
jX and 

jZ are nonnegative vectors. 

 

The random variable *  from (5.2.1) is generated by the process 

 

s

S

s

s zuv 



1

*               (5.2.2) 

 

Where v represents random noise and has a two sided distribution, and u represents technical 

inefficiency and is asymmetrically distributed. s , ,,...,1 Ss  are nonnegative weights of the 

contextual variables sz . Also it has .uv   It assumes that the input variable vector X , the 

contextual variable vector z , the inefficiency ,u and the noise v are independently distributed. 

Therefore, the random variable consists of three components: a linear function of contextual 

variables; a technical inefficiency term and a random noise.  

 

Banker and Natarajan (2008) claims that if it is assume )(X can be specified as ),;(  X  

where  is a parameter vector; the relationship in (5.2.2) can be transformed to  
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S

s

ssZXy
1

);(lnln              (5.2.3) 

 

In the spirit of the ‘DEA+method’ suggested by Gstach (1998), Banker and Natarajan (2008) 

defines 
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where )(
~

X is also monotone increasing and concave. Inserting (5.2.4a) and (5.2.4b) into 

(5.2.1) yields 

 

                     ~
ln)(

~
lnln  Xy              (5.2.5) 

 

Let   M
V~ , then (3.2.4) could be expressed as 

 

                      ~~
ln

1
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

i

S

i

i z              (5.2.6) 

 

Thus the DEA scores obtained from the first stage are related to the contextual variables. 

 

In practice, the corresponding DEA estimator ̂~ln will replace ~ln as the dependent variable 

in (5.2.6). And then OLS can be used. Banker (1993) proves that the generated estimators of 

i are consistent; the corresponding t-statistic provides significance of a particular contextual 

variable. Alternatively, if a specific parametric form is assumed for the p.d.f. of , e.g. v is 

normally distributed u is either half normal or exponential, then maximum likelihood 

estimation (MLE) can be used. And the generated estimators i are consistent, efficient and 

asymptotically normally distributed; the corresponding t-statistics can provide the significant 

test of contextual variables.  

 

(1) OLS estimation 

 

Define M
VE  )(0  and )( E , (5.2.6) can be rewritten as  

 

          .ln
1

0   


i

S

i

i z             (5.2.7) 

 

where the error term  in (5.2.7) has a zero mean and a finite variance. 
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Banker(2009) proves that if )/lim( '
nZZpQ  is a positive definite matrix, then the OLS 

estimator of 
~

in  

 

                  ~~~~̂
ln 0  Z               (5.2.8) 

 

yields a consistent estimator of the parameter vector  . 

 

(2) MLE estimation 

 

(5.2.6) can be rewritten as  

 

           ln
1
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ii Vz              (5.2.9) 

 

The log-likelihood function can be formed as 
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Banker (2009) proves that maximizing (5.2.10) yields consistent estimators of  . 

 

Another very commonly used method in the second stage analysis is the Tobit model. Tobit 

model is a censored regression model, and is employed when the dependent variables are 

limited within a particular range. For DEA models, the output oriented DEA have the scores 

bounded above 1, and the input oriented DEA have the scores limited between zero and one. 

Therefore, the Tobit model is often used instead of OLS to evaluate the effects of contextual 

variables. Researchers who have applied tobit at second stage DEA to explain the efficiency 

distributions include Bravo-Ureta et al. (2007), Latruffe et al. (2004), Oum and Yu (2004), 

Fethi et al. (2002), Vestergaard et al. (2002), Ruggiero and Vitaliano (1999), Viitala and 

Hanninen (1998), Kirjavainen and Loikkanen (1998), Gillen and Lall (1997), Luoma et al. 

(1996), Chilingerian (1995) and Bjurek et al. (1992). 
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Followed by an input oriented DEA model, which gives the DEA scores ranging from zero to 

one, a two-limit tobit method is used. 

 

The two-limit Tobit model is defined as  

 

iiii xy  *

   

10 **  iii yifyy
 

00 *  ii yify
         (5.2.11) 

11 *  ii yify
 

 

Where *

iy is the latent dependent variable, iy is the observed dependent variable, ix is the 

vector of the independent variables, and the i are assumed to be independently normally 

distributed: ),0(~  Ni .  

 

Given (5.2.11) is the data generating process (DGP), the combined likelihood for a sample 

containing some iy observations=0, some=1 and some between 0 and 1 is given by:  
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According to Hoff(2007), 
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Where ),( xF is the cumulative distribution function.   

 

Likewise: 
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Where ),( xf is the probability density function. 

 

If there are no iy observations=0, which is the case in DEA models, then the first term in 

(5.2.12) will disappear, thus the likelihood functions for two-limit tobit (2LT) and one-limit 

tobit (1LT), with a limit at one, will be identical. Furthermore, if there are no iy

observations=0 and 1, both of the first two terms will disappear, leaving the third term alone 

to be maximized in the likelihood function. Thus in this case the 2LT and 1LT MLE and OLS 

estimates are identical.  

 

There are some drawbacks about Tobit models. Many researchers argued that the Tobit model 

is misspecified when applied to DEA scores, because no efficiency score would be equal to 

zero. Therefore the first multiplication in (5.2.12) will be left out. Although it has been argued 

as misspecified, the two-limit Tobit model has been one of the most often used method in 

second stage DEA.  

 

Besides the two-limit Tobit model, Greene (1993) suggests the use of censoring at zero, 

which gives the computational convenience.  Fethi et al (2002) describes a model which 

makes a transformation to the original DEA score to allow the censoring point concentrating 

at zero. 

 

The dependent variable is obtained by taking the reciprocal of DEA score minus one, and this 

model is illustrated as follows: 

                 1)/1(  iy             (5.2.16) 
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Where ),0(~ 2 N  
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The corresponding likelihood function (L) becomes 
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Where 
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Take the logarithm form of the likelihood function: 

 

)2/()(ln
2

1
)1ln(ln 22    iiii xYFLLLF   

                           (5.2.20) 

 

To obtain the estimators of i , the logarithm likelihood function is maximised as follows: 
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To analyze the effect of the contextual variables to the productivity, the marginal effects of 

the independent variables need to be examined. Hoff (2007) derives the marginal effect of the 

individual explanatory variable mx on the expectation of y in a two-limit tobit case. It is given 

by  
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Where )( is the standard normal cumulative distribution function.  
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McDonald and Moffitt (1980) provides another useful interpretation of the marginal effects in 

a one-limit tobit case which has the censoring point concentrating at zero. It is expressed as 

follows: 
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        (5.2.23) 

 

(5.2.23) shows the decomposition of Tobit marginal effects: a change in mx  affects two parts: 

(1) it affects the conditional mean of iy  in the non-limit part of the distribution; and (2) it 

affects the probability that the observation being above the limit. 

 

It is argued that the DEA scores are not generated by a censoring process in which case Tobit 

regression is inappropriate. Instead the DEA scores are fractional data. Simar and Wilson 

(2007) and McDonald (2009) claim that the DEA programming, as an efficiency score 

generating process, gives a normalization process rather than censoring. The result that all the 

efficiency scores lies within the range (0,1] is a product of the way the programming defines, 

which is not out of a censoring mechanism. The regression dependent variable, then, is not 

censored data, but fractional data. Papke and Wooldridge (1996) propose a fractional 

response model that extends the generalized linear model (GLM) literature from statistic. 

They construct a model based on quasi-maximum likelihood estimation (QMLE) to deal with 

fractional dependent variable, which confined to the (0,1] interval, with many observations at 

the right boundary, 1.  

 

The fractional response model is based on the Bernoulli distribution function, which is a 

subset of the binomial distribution function. Assume there are sequences of n independent 

success/failure experiments (also called n ‘trials’) for N DEA units, Define 
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         (5.2.24) 

 

The probability of success in unit i is iZ  )1Pr( Ni ,...,1  and the probability of failure 

is therefore iZ  1)0Pr( . An important characteristic of   is that it’s restricted to the 

http://en.wikipedia.org/wiki/Statistical_independence
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interval [0,1]. The number of successes for unit i in n trials is denoted by iY . There is

iii nYE )( and the corresponding share in each trial is
i

i
i

n

Y
y  . Thus iiyE )( with 

.10  iy   

 

The conditional binomial probability density function for group i is given by   
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Where iX refers to a set of explanatory variables with the corresponding parameter vector  . 

When n = 1, the binomial distribution is a Bernoulli distribution and probability density 

function becomes,  
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The joint density function is as follows, 
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Or  

 

 

      

                           (5.2.28) 
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http://en.wikipedia.org/wiki/Bernoulli_distribution
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which is a member of the exponential family. The conditional expectation of the fractional 

response variable is specified as  

 

          (5.2.29) 

 

Logistic or logit regression and probit regression are chosen as link functions to ensure that  

is restricted to the interval [0,1]. Define 

 

             (5.2.30) 

 

and is called the link function.  

 

The Probit model is constructed as follows, 

 

 

                   (5.2.31) 

 

Where denotes the cumulative probability function for the standard normal distribution

. Thus 

 

                         (5.2.32) 

 

and the link function  is the inverse cumulative normal probability function . 

 

Another model that gives similar distribution from the probit model is the logistic model. It is 

constructed as: 
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Therefore, 
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And )]1/(log[ ii   is called the logit function. 

 

In the QMLE the mean is substituted for i , therefore, substituting )( iXG for i in (3.2.28), 

the the Bernoulli likelihood is given by the following formula: 

 

                              ))(1ln()1())(ln())(ln(  iiiii XGyXGyf          (5.2.35) 

 

The likelihood is a re-parameterization of the probability distribution function to estimate 

parameter vector  . By taking the natural log of (35), the Bernoulli log likelihood is as 

follows, 
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And the quasi-maximum likelihood estimator (QMLE) of   could be obtained by 

maximizing (36). Practically, it means to take the first derivative of the log-likelihood 

function and to solve the following equation.   
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Hoff (2007) derives the marginal effect of the explanatory variable mx on the expectation of y 

when logit function is used is given by  
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There is only one paper being found using the second stage models to analyze the 

performance about exchange traded funds. Tsolas (2011) employs a Tobit model to measure 

the performance of a sample of natural resources exchange traded funds using time-series 

data. The DEA approaches of Haslem and Scheraga (2003, 2006) and of Kerstens and Van de 

Woestyne (2011) are applied. The former use Sharpe ratio as output and variables with 

positive user costs are chosen as inputs; the latter use Jensen’s alpha as a single output or both 

the Sharpe ratio and Jensen’s alpha as outputs and some ETFs characteristics are identified as 

inputs. In Tsolas (2011) the chosen explanatory variables include PE ratio, beta coefficient, 

persistence and size. In this thesis, the second stage models including the Papke-Wooldridge 

approach are estimated using the STATA software application. 

 

5.3 Data collection 

 

The databases used in this application are Morningstar Direct database and Datastream. The 

funds chosen were one specific type of the UK investment trusts: those classified by 

Morningstar as ‘UK equity Mid/Small cap’. Another important criterion is that the funds 

selected must have at least 3 years of monthly returns, Sharp ratio, Jensen’s Alpha, net 

expense ratio, price to earning ratio, market capitalization, price, and net asset value data 

available. Price and net asset value data are needed to calculate the book to market ratio. The 

sample period is from January1, 2008 to December 31, 2010, therefore, each fund selected 

need to have an inception date at or before January 1, 2008. 

 

There are 33 funds categorized as UK equity Mid/Small cap in the Morningstar Direct 

database, with 4 funds being deleted from the sample because monthly returns are missing. 3 

funds were further deleted because of negative mean returns, with 26 funds remaining in the 

sample. Data of Sharp ratio, Jensen’s Alpha, net expense ratio are obtained from Morningstar 

direct database, while data of price to earnings ratio, market capitalization, price, and net asset 

value ratio are drawn from Datastream. However, only 13 funds with complete data of Sharp 

ratio, Jensen’s Alpha, net expense ratio, price to earning ratio, market capitalization, price, 

and net asset value data can be found in the Morningstar Direct database and Datastream. For 
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each of the 13 funds, the following figures were calculated for the 3-year time periods: (i) 

Mean monthly returns; (ii) Covariances; (iii) Variances. These values were calculated using 

monthly return data from Morningstar Direct database. Expressed in percentage terms, 

Morningstar's calculation of monthly return is determined by taking the change in monthly 

net asset value, reinvesting all income and capital-gains distributions during that month, and 

dividing by the starting net asset value. The total returns account for management, 

administrative, fees and other costs taken out of fund assets.  The mean return is the time-

series average of the 36 monthly returns. The 3 year mean returns for selected funds are 

presented in table 1.  

 

Table 5.3.1 three year mean returns for selected funds 

 

The Sharpe ratio, Jensen’s alpha, net expense ratio, price/earnings ratio, market capitalization 

(market value) and book to market ratio are showed in table 5.3.2. They are all time-series 

average of yearly data from 2008 to 2010. Book to market ratio are calculated using price and 

net asset value (book value) data from Datastream. 

 

 

 

 

Fund Number Fund name 3 year mean returns 

1 Small Companies Dividend Trust Ord. 0.08 

2 JPMorgan Mid-Cap IT ORD 0.08 

3 Dunedin Smaller Companies Ord 0.90 

4 Lowland Inv Tr 0.44 

5 Schroder UK Mid Cap 0.76 

6 Standard Life UK Smaller Companies 1.51 

7 Invesco Perpetual UK Smaller 0.63 

8 Aurora Investment Trust PLC 1.46 

9 JPMorgan Smaller Companies IT ORD 0.74 

10 The Throgmorton Trust PLC 1.00 

11 Henderson Opportunities Trust 0.37 

12 BlackRock Smaller Companies Trust 1.46 

13 Artemis Alpha Trust PLC 1.31 
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Table 5.3.2 time-series average of yearly data from 2008 to 2010 

Fund Number Sharpe Alpha NER PE MV BTM 

1 -0.20 0.50 2.02 7.60 14.71 1.14 

2 -0.24 -5.21 0.62 23.87 105.38 1.15 

3 0.05 9.47 1.49 22.83 44.43 1.30 

4 -0.11 8.38 0.80 24.23 172.50 1.07 

5 -0.01 3.11 0.91 35.67 65.06 1.32 

6 0.30 10.90 1.21 377.93 46.89 1.31 

7 -0.06 0.59 1.32 36.80 87.82 1.22 

8 0.20 21.65 2.08 118.37 19.52 1.17 

9 -0.01 9.17 0.76 47.77 69.08 1.28 

10 0.07 8.05 1.23 54.03 120.47 1.30 

11 -0.12 8.08 1.02 47.20 28.24 1.25 

12 0.22 13.67 1.07 40.27 126.03 1.31 

13 0.22 15.13 1.03 95.47 62.82 1.32 

 

 

5.4  Results analysis 

 

In the first stage, the DEA scores are obtained using 3-year period mean monthly returns. 

Morey and Morey (1999) combined 3-year, 5-year and 10 year data in the programming, but 

only 3-year period data is used in this application, firstly because for 10 year-period, even 

fewer funds with complete data could be found since it is a very long period; secondly, if 

DEA score as dependent variable is derived from a combination of 3-year, 5-year and 10 year 

data, then the period for the independent variables would be difficult to choose. 

 

Risk contraction approach is chosen in this application because in this approach, the DEA 

scores as dependent variable have values between zero and one, therefore it is more 

representatable. The results are showed in Table 5.4.1: 
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Table 5.4.1 DEA scores from Risk contraction approach. 

Risk contraction approach 

 Fund name DEA scores 

1 Small Companies Dividend Trust Ord. 0.3139 

2 JPMorgan Mid-Cap IT ORD 0.5008 

3 Dunedin Smaller Companies Ord 0.7269 

4 Lowland Inv Tr 0.4482 

5 Schroder UK Mid Cap 0.7744 

6 Standard Life UK Smaller Companies 1 

7 Invesco Perpetual UK Smaller 0.8076 

8 Aurora Investment Trust PLC 0.3718 

9 JPMorgan Smaller Companies IT ORD 0.4794 

10 The Throgmorton Trust PLC 0.5267 

11 Henderson Opportunities Trust 0.3779 

12 BlackRock Smaller Companies Trust 0.5024 

13 Artemis Alpha Trust PLC 0.8916 

 

Table 5.4.2 Summary statistics 

Factor Mean 
Standard 

deviation 
Minimum Maximum 

Number of observations=13 

Sharp Ratio 0.02 0.17   -0.24 0.30 

Alpha 7.96 7.02 -5.21   21.65 

NER 1.20 0.45 0.62 2.08 

PE 71.70 96.85 7.60 377.93 

MV 74.07 46.69 14.71 172.50 

BTM 1.24 0.08 1.07 1.32 

 

Robust-OLS regression, Tobit models and Papke-Wooldridge (PW) models are conducted 

and compared to evaluate contextual variables affecting the performance of investment trusts.  

PW quasi-maximum-likelihood model is designed to address the problem of non-i.i.d. errors 

(specifically including heteroscedasticity) in the regression in an optimal estimation 

procedure. The DEA efficiency scores are regressed on potential variables including Sharpe 

ratio, Jensen’s alpha, expense ratio, Price/Earnings ratio, market capitalization, book to 

market ratio of the investment funds to test the statistical significance of those factors. 
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Positive relations between the DEA scores and Sharpe ratio, DEA scores and Jensen’s alpha 

are expected. Sharpe ratio is calculated by dividing a fund's annualized excess returns by the 

standard deviation of a fund's annualized excess returns and mutual funds with lager Sharpe 

Ratios are assumed to have better historical risk-adjusted performance than those with small 

ratios. Jensen’s alpha is calculated by taking the excess funds return over the risk free rate and 

subtracting beta times the excess return of the benchmark over the risk free rate. Jensen’s 

alpha represents the average incremental rate of return on the portfolio which is due solely to 

the manager’s stock-selection abilities. Sharpe ratio and Jensen’s alpha are two measurements 

that are also in mean and variance space; therefore, positive relationships between both 

measures and the DEA scores are expected. The DEA scores and net expense ratio however, 

should be negatively related because the higher the expense, the less profitable the investment 

funds. Book to market ratio is a ratio between book value or net tangible assets per share and 

the price. If the ratio is above 1 then the stock is undervalued; if it is less than 1, the stock is 

overvalued. In the long run, the undervalued investment trusts should be more efficient.  

 

Therefore, a positive relationship between the book to market value and the efficiency 

measure would be expected. The price/Earnings ratio is obtained by dividing the company's 

market capitalization by its total annual earnings. In general, a high P/E suggests that 

investors are expecting higher earnings growth in the future compared to companies with 

a lower P/E, therefore, the higher PE ratio is, the more efficient the investment trust would be, 

which indicates that there would be a  positive relationship between the DEA score and the 

PE ratio. For the market capitalisation, it’s not clear what relationship it would be because it’s 

hard to predict whether the smaller fund or the larger fund is more efficient than the other 

type. Results from different models are presented in table 5.4.3. 

 

 

 

 

 

 

 

 

 

http://www.investopedia.com/terms/p/price-earningsratio.asp
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Table 5.4.3 Results from different models 

Factor OLS 

Two Limit 

Tobit/ 

One Limit 

Tobit 

Tobit censoring 

at zero 
PW(logit)    

Sharp Ratio 
2.0697 

(1.2631) 

1.9306 

(0.9072) 

-5.6383 

(2.4381) 

7.7289 

(4.3902) 

Alpha 
-0.0347 

(0.0168) 

-0.0356 

(0.0121) 

0.1016 

(0.0327) 

-0.1562 

(0.0584) 

NER 
-0.1912 

(0.1877) 

-0.1679 

(0.1381) 

0.6014 

(0.3405) 

-0.6423 

(0.6835) 

PE 
-0.0002 

(0.0010) 

0.0006 

(0.0010) 

-0.0014 

(0.0043) 

0.0063 

(0.0060) 

MV 
-0.0016 

(1.1771) 

-0.0013 

(0.0014) 

0.0014 

(0.0032) 

-0.0047 

(0.0072) 

BTM 
-0.5086 

(1.8924) 

-0.3505 

(0.90371) 

0.1408 

(2.2171) 

-0.9597 

(4.5314) 

Notes: the quantities in () are the standard errors robust to variance misspecification.  

 

The third column of table 5.4.3 contains the results of estimating equation (5.2.11), followed 

by the fourth column which shows the results of estimating (5.2.16)-(5.2.17). And the fifth 

column gives the results of (5.2.29) given (5.2.33) as the link function.  

 

The one limit tobit with a limit at one has the same result as that of two limit tobit model 

because there is no DEA score equal to be zero, therefore the first term in (5.2.12) will 

disappear, thus the likelihood functions for two-limit tobit (2LT) and one-limit tobit (1LT), 

with a limit at one, will be identical. 

 

Heteroscedasticity is expected in all models because cross sectional data is used. Therefore 

the heteroscedasticity-robust standard errors are reported in brackets below the coefficients. 

Also it is very often in the second stage models that the independent variables are to some 

extent correlated with each other. The correlation matrix among six independent variables is 

showed in table 5.4.4. 
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Table 5.4.4 Correlation matrix 

 Sharpe Alpha NER PE MV BTM 

Sharpe 1 0.8016 0.1859 0.6556 -0.1038 0.6139 

Alpha 0.8016 1 0.3155 0.3609 -0.1650 0.2822 

NER 0.1859 0.3155 1 0.0863 -0.6061 -0.1587 

PE 0.6556 0.3609 0.0863 1 -0.2473 0.3015 

MV -0.1038 -0.1650 -0.6061 -0.2473 1 -0.2052 

BTM 0.6139 0.2822 -0.1587 0.3015 -0.2053 1 

 

Results from table 5.4.4 show that Sharpe ratio and Jensen’s alpha are most highly correlated. 

This is because despite all other relations, Sharpe ratio and Jensen’s alpha both have expected 

returns in their models. The correlation coefficient is as high as 0.6556 between PE ratio and 

Sharpe ratio, with any other two variables more or less correlated with each other.  

 

Marginal effects of Robust-OLS are regression coefficients corresponding to each variables; 

and marginal effects of two limit tobit, one limit model censoring at zero and PW model are 

given by (5.2.22), (5.2.23) and (5.2.38). The results are showed in the following table.  
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Table 5.4.5 Average marginal effects 

Factor 
Robust-OLS 

 

Two Limit Tobit/ 

One Limit Tobit 

 

Tobit censoring  

at zero 

 

PW 

 

Sharp 

Ratio 

2.0697 

(0.152) 

1.9306* 

(0.054) 

-5.6383* 

(0.066) 

1.6133 

(0.660) 

Alpha 
-0.0347* 

(0.084) 

-0.0356*** 

(0.008) 

0.1016** 

(0.012) 

-0.0326 

(0.487) 

NER 
-0.1912 

(0.348) 

-0.1679 

(0.283) 

0.6014 

(0.209) 

-0.1341 

(0.820) 

PE 
-0.0002 

(0.833) 

0.0006 

(0.638) 

-0.0014  

(0.783) 

0.0013 

(0.813) 

MV 
-0.0016 

(0.420) 

-0.0013 

(0.430) 

 0.0014 

 (0.775) 

-0.0010 

 (0.875) 

BTM 
-0.5086 

(0.681) 

-0.3504 

(0.747) 

 0.1408 

 (0.966) 

-0.2003 

(0.961) 

Notes: The quantities in () below correlation coefficients are the corresponding p-values; 

           * p<0.1, ** p<0.05, *** p<0.01. 

 

The results show that firstly, Shape ratio and price/earnings ratio have positive impact on the 

fund performance under Robust-OLS and three tobit models, but not statistically significant, 

while Jensen’s alpha, net expense ratio, market value, and book to market ratio of the fund 

have negative impact on the fund performance, but only Jensen’s alpha is statistically 

significant in three tobit models. Secondly, for the average marginal effects, and magnitude of 

all the factors are fairly close for OLS and Two limit and One limit tobit models, and PW 

model with the same sign, while the results from tobit model censoring at zero has the 

opposite sign and different magnitude. This is because in tobit model censoring at zero, the 

dependent variable is obtained by taking the reciprocal of DEA score minus one, therefore the 

positive relation between DEA scores and the dependent variable in other regressions turn to 

negative in this model. Note that the p values of the marginal effects from PW model are 

much larger than other models except of the last factor book to market ratio, where Tobit 

model censoring at zero has slightly larger p value.  
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From table 5.4.5, except the Jensen’s alpha in Tobit models, all the other factors have p 

values larger than the critical value 0.05 for 95% confidence level, which means that these 

factors contribute very little to the explanation of investment fund mean return. This could be 

due to model misspecification, for example, inclusion of irrelevant variables. In addition, 

because Sharpe ratio and Jensen’s alpha are two measurements that are based on the mean-

variance framework, and Morey and Morey (1999) quadratic DEA model is also constructed 

in mean and variance space. One may be interested in the correlation of the rankings of funds 

using DEA scores, Shape ratio and Jensen’s alpha. Table 5.4.6 shows rankings of the 13 

sample funds from different models while Table 5.4.7 gives the correlation among rankings 

from different models. 

 

Table 5.4.6 Rankings from different models 

Fund number DEA Sharpe  Alpha 

1 13 12 12 

2 8 13 13 

3 5 6 5 

4 10 10 7 

5 4 7 10 

6 1 1 4 

7 3 9 11 

8 12 4 1 

9 9 7 6 

10 6 5 9 

11 11 11 8 

12 7 2 3 

13 2 2 2 
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Table 5.4.7 Correlation among rankings from different models 

 DEA Sharpe Alpha 

DEA 1 
0.5543** 

(0.0493) 

0.1538 

(0.6158) 

Sharp 
0.5543** 

(0.0493) 
1 

0.82*** 

(0.0006) 

Alpha 
0.1538 

(0.6158) 

0.8181*** 

(0.0006) 
1 

Notes: The quantities in () below correlation coefficients are the corresponding p-values; 

            * p<0.1, ** p<0.05, *** p<0.01. 

 

The results show that there is quite high correlation between the ranking from the quadratic 

DEA model and Sharpe ratio, which equals 0.5543, with a p-value of 0.0493 and the 

correlation between Jensen’s alpha and DEA is 0.1538, but not statistically significant as 

indicated by a p-value as high as 0.6158. The correlation between rankings from Sharpe ratio 

and Jensen’s alpha is very high, which equals 0.8181, and it is highly significant at 1% 

significance level with the p-value equals 0.0006.   

 

In addition, a recursive model is applied. Regressing DEA scores, Sharpe Ratio and Jensen’s 

Alpha on net expense ratio, price/earnings ratio, market value and book to market ratio 

respectively using robust-OLS gives the following results. They are indicated as model (1), 

model (2) and model (3) respectively in Table 5.4.8. 
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Table 5.4.8 Statistics from the recursive  model 

Dependent variables DEA scores Sharpe Ratio Jensen’s Alpha 

Factor Model (1) Model (2) Model (3) 

NER 
-0.0511 

(0.743) 

0.2049** 

(0.042) 

8.1751 

(0.243) 

PE 
0.0010*** 

(0.005) 

0.0010*** 

(0.005) 

0.0207 

(0.288)   

MV 
0.0006 

(0.739) 

0.0018** 

(0.039) 

0.0437 

(0.380)   

BTM 
1.2107* 

(0.067) 

1.3077*** 

(0.006) 

28.4235 

(0.300) 

R-square 0.5438 0.7914 0.3150 

F-value 0.0006*** 0.0020*** 0.4232 

Notes: The quantities in () below estimation coefficients are the corresponding p-values; 

            * p<0.1, ** p<0.05, *** p<0.01. 

 

The results of model (1) indicates that the net expense ratio has a negative impact on the 

efficiency score indicated by the DEA score as expected, but not statistically significant, with 

PE ratio, Market value and book to market ratio impact the efficiency score positively, but 

only the coefficient of the PE ratio is statistically significant. Model (2) gives very good 

results, in a way that all the coefficients are statistically significant, but the net expense ratio 

is positively related to the efficiency measure indicated by Sharpe ratio. This maybe because 

usually better performing fund companies locate their offices in better area which incur 

higher rents or giving more budget in the advertisement etc. In model (2), the PE ratio, market 

value, book to market ratio make significant positive contribution to explaining the efficiency 

indicated by Sharpe ratio, this is consistent with the findings in Stattman (1980) and 

Rosenberg, Reid, and Lanstein (1985) and Hamao, and Lakonishok (1991) which find that 

book-to-market ratio makes a positive contribution in explaining the average returns on 

stocks; and also Basu(1983) which shows that PE ratio are positively related to the average 

returns of U.S. stocks. 
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From model (3), all the factors have a positive impact on the efficiency measure indicated by 

Jensen’s Alpha, but none of the coefficients are statistically significant. Also, model (2) 

shows the highest R-square among those three models, which equals 0.7914. This means that 

the model fits well. The prob>F gives the overall significance level of the regression model. 

Specifically, it indicates the probability of the null hypothesis that all of the regression 

coefficients are equal to zero is rejected. Model (1) has the smallest prob>F value, which 

equals 0.0006; while that in model (2) is slightly higher, but still highly significant at 1% 

significance level.  

 

To illustrate the results better, Figure 5.4.1, Figure 5.4.2 and Figure 5.4.3 show three models’ 

forecasting abilities. Line graphs are chosen to give a clear picture about the prediction 

abilities of the above models to track the actual DEA scores, irrespective of the fact that DEA 

scores are discrete data. The horizontal axis is the fund number while the vertical axis gives 

the dependent variable in each model. It can be seen that the prediction from model (2) which 

is the regression of the Sharpe ratio on net expense ratio, price/earnings ratio, market value 

and book to market ratio tracks the actual data most closely.  

 

 

 Figure 5.4 .1 forecasting abilities from recursive model (1) 

.2 

.4 

.6 

.8 

1 

1 2 3 4 5 6 7 8 9 10 11 12 13 
No. of fund 

Linear prediction DEA 



 

118 
 

 

Figure 5.4.2 forecasting abilities from recursive model (2) 

 

Table 5.4.3 forecasting abilities from recursive model (3) 

 

5.5 Conclusion 
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This application examines two issues, one is to detect the factors influencing the investment 

trust efficiency utilise second stage DEA models; the other is to compare and rank three 

investment trust efficiency indicators- DEA score, Sharpe ratio and Jensen’s alpha based on a 

recursive model.   

 

Firstly of all, six potential factors including Sharpe ratio, Jensen’s alpha, net expense ratio, 

price/earnings ratio, market value and book to market ratio that may have an influence on the 

investment trusts performance are examined. The efficiency scores of the investment trusts 

are obtained from a quadratic DEA model with risk as input and mean return as output. Five 

second stage DEA models- Robust-OLS, three tobit models and Papke-Wooldridge model are 

applied, and the results show that Sharpe ratio is positively related to the efficiency scores of 

the investment trusts, Jensen’s alpha has a negative impact on the DEA scores, while all other 

factors contribute very little in explaining the efficiency of the investment trusts. The 

marginal effects from robust-OLS, Tobit two limit and one limit model are very close, with 

PW model has similar coefficients with much larger p values. The coefficient from Tobit 

model with censoring at zero has the opposite sign and different magnitude compared with 

those from other models. This is due to the difference in modeling. Although it seems only 

Sharpe ratio contributes significantly to the investment trust efficiency from this application, 

it may be caused by the fact that there are only one input-risk, one output- return being 

considered in the DEA program.  

 

In the second part of this application, a recursive model is applied when DEA scores, Sharpe 

ratio and Jensen’s alpha are used as dependent variables respectively while net expense ratio, 

PE ratio, market value and book to market ratio are explaining factors in all three regressions. 

The results show that the Sharpe ratio as an efficiency measure can be explained very well by 

net expense ratio, PE ratio, market value and book to market ratio, while the other two 

regressions have lower R-squares and insignificant coefficients. Therefore from this recursive 

model Sharpe ratio is found to be a good efficiency measure considering net expense ratio, 

PE ratio, market value and book to market ratio as explaining factors. And the results show 

that the DEA score is worse than Sharpe ratio but better than Jensen’s Alpha as efficiency 

indicator. And another way to improve the modelling is to look for a ‘better’ range of 

potential factors which may have impacts on the efficiency of the investment trusts.  
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Limitations of this empirical work include, firstly, turnover ratio and beta are intended to be 

included as potential factors, but relevant data cannot be found in the database; secondly the 

DEA scores as dependent variable are obtained from a quadratic DEA model considering 

only risk and return. Therefore, the results could be very different if applying linear DEA 

models with multiple inputs and multiple outputs. All these problems are left for further 

research.  
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Chapter 6   Conclusions  

 

 

 

 

 

 

 

 

6.1 Introduction 

 

Interest in the efficient performance of investment funds has been ongoing for many years, 

but it is only in the last decade and a half that the topic has been seriously address in the non-

parametric performance literature. 

 

The core purpose of this thesis is to apply a quadratic data envelopment analysis model with 

bootstrap and second stage regression to estimate the efficiency of a sample of investment 

trusts, obtain the statistical inference of the efficiency scores and detect the determinants of 

inefficiency. The motivation of this thesis comes from the drawback of the traditional 

portfolio analysis, which is its sensitivity to chosen benchmarks. For example, the market 
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portfolio in Capital Asset Pricing Model is an ideal portfolio that only exists in theory. In 

practice certain indexes are used as approximations, but this causes problems since different 

indexes are likely to give different results in empirical work. For multi-index models, the 

difficulties lie in justifying how many and which indexes should be included in the model and 

defining which category a particular equity belongs to, especially for some equities with 

properties that suit more than one category. In comparison, the DEA models are practically 

feasible. In the DEA models, there is no theoretical benchmark like the market portfolio of 

the CAPM. Instead, the benchmarking fund consists of certain funds in the group, each with a 

particular weight; rather than being compared with an idealised fund that requires information 

about all the equities in the market, DEA models benchmark the funds under evaluation 

against themselves. This makes DEA models practically feasible and easier to test. 

 

The contribution of the first chapter of this thesis is that it applies the procedures in Morey 

and Morey (1999) to a new modern data set comprising a multi-year sample of investment 

funds and identifies six efficient funds among 29 funds. The relative ranking of all 29 funds 

are obtained, and the marginal contributions of the mean return and variance in each period to 

the fund efficiency are examined.   

 

Morey and Morey (1999) quadratic DEA models are particularly chosen because of the 

unique characteristics of investment trusts. They utilise the insights from Markowitz portfolio 

theory that there is correlation between different assets which should not be ignored, and 

these co-movements between different securities affect the relationship between expected 

return and risk of the combined portfolio. On one hand, the quadratic DEA models Morey and 

Morey (1999) developed do not completely abandon the traditional portfolio theory but 

instead relate the non-parametric methodologies to the foundations of traditional performance 

measurement in mean-variance space. On the other hand the model is derived from the 

standard data envelopment analysis but differs from it in having non-linear constraints in the 

envelopment version of the model’s structure.  

 

The contribution of the second chapter is that it tested the statistical significance of DEA 

scores obtained from Morey and Morey (1999) by utilising the Simar-Wilson (2008) 

bootstrapping algorithms to develop statistical inference and confidence intervals for the 

indexes of efficient investment fund performance. Algorithms of smoothed bootstrap for this 

quadratic DEA model are designed. Biases are corrected, and confidence intervals are 
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obtained. And the results indicate that even with slight bias, the DEA scores obtained from 

Morey and Morey (1999) mean augmentation approach are very reliable.  

 

The contribution of the the third chapter in this thesis is that it applies second stage DEA 

models to analyse the factors contributing to investment trusts performance and detect the 

determinants of inefficiency. Robust-OLS regression, Tobit models and Papke-Wooldridge 

(PW) models are conducted and compared to evaluate contextual variables affecting the 

performance of investment funds. In the first stage, efficiency scores are calculated using 

Morey and Morey (1999) quadratic DEA model, and in the second stage, these scores are 

regressed on potential explanatory variables including Sharpe ratio, Jensen’s alpha, expense 

ratio, P/E ratio, book to market ratio and market value of the investment funds to test the 

statistical significance of those factors. Only the Sharpe ratio is found to have a significant 

positive impact on the efficiency score. This may be however, because of the limitations of 

the dependent variable, which is obtained from a quadratic DEA model only has risk and 

return in the consideration. Then a recursive model is applied when DEA scores, Sharpe ratio 

and Jensen’s alpha are used as dependent variables respectively while net expense ratio, PE 

ratio, market value and book to market ratio are explaining factors in all three regressions. 

The results show that Sharpe ratio is a good efficiency measure considering net expense ratio, 

PE ratio, market value and book to market ratio as explaining factors. And the DEA score is 

worse than Sharpe ratio but better than Jensen’s Alpha as an efficiency indicator.  

 

6.2 Contributions to knowledge 

 

This thesis has five main contributions. Firstly of all, it compares in detail traditional portfolio 

analysis and DEA models, especially Morey and Morey (1999) quadratic DEA model, in the 

investment fund evaluation.  

 

Secondly, it applies the procedures in Morey and Morey (1999) to a new modern data set 

comprising a multi-year sample of investment funds and identifies six efficient funds among 

29 funds. 

 

Third, it extends the Morey and Morey (1999) quadratic model by utilising the Simar-Wilson 

(2008) bootstrapping algorithms to develop statistical inference and confidence intervals for 
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the indexes of efficient investment fund performance. Algorithms of smoothed bootstrap for 

this quadratic DEA model are designed.  

 

Fourth, second stage DEA models are applied to analyse the factors contributing to 

investment trusts performance and detects the determinants of inefficiency. Only one paper 

has been found in the literature about practices of second stage DEA on investment trusts so 

far. Therefore, it is very meaningful to examine different potential factors affecting the 

performance of investment trusts. 

 

Fifth, for the benefit of other researchers, the new Matlab codes designed by the author of the 

thesis for Morey and Morey (1999) models are presented. With the Matlab codes, not only the 

results are obtained, but also how this quadratic model is programming could be very clearly 

seen, with all the details revealed.  
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Appendix A: Covariance matrix in Chapter 3 

 

3-year covariance 

 

Columns 1 through 16 

 

   43.4799   33.7459   33.7972   47.0919   31.0737   34.7373   34.6697   35.9146   35.9078   38.2330   34.1033   35.5538   31.4586   30.0476   33.6165   47.5488 

   33.7459   29.3560   29.3902   37.4539   26.0108   29.0294   28.9621   29.9995   29.9897   31.8721   27.5858   29.1372   26.1404   24.1238   26.8391   37.9503 

   33.7972   29.3902   29.4252   37.5104   26.0413   29.0683   29.0009   30.0366   30.0268   31.9042   27.6316   29.1763   26.1780   24.1632   26.8833   38.0137 

   47.0919   37.4539   37.5104   53.5373   34.6125   38.2399   38.1443   39.2622   39.2517   42.0104   37.3252   39.2720   34.5390   32.8421   36.8050   51.9480 

   31.0737   26.0108   26.0413   34.6125   25.4702   26.4914   26.4224   27.3226   27.3153   29.3508   25.1598   26.8605   23.6398   22.6085   25.2592   34.8759 

   34.7373   29.0294   29.0683   38.2399   26.4914   30.1008   30.0317   30.9300   30.9191   32.1904   28.5133   29.8853   26.6538   24.6984   27.6049   39.3626 

   34.6697   28.9621   29.0009   38.1443   26.4224   30.0317   29.9638   30.8605   30.8497   32.1328   28.4409   29.8116   26.5883   24.6409   27.5405   39.2723 

   35.9146   29.9995   30.0366   39.2622   27.3226   30.9300   30.8605   32.1390   32.1278   33.2567   29.3045   30.9262   27.6929   25.6003   28.5895   40.6889 

   35.9078   29.9897   30.0268   39.2517   27.3153   30.9191   30.8497   32.1278   32.1167   33.2448   29.3013   30.9170   27.6832   25.5947   28.5837   40.6803 

   38.2330   31.8721   31.9042   42.0104   29.3508   32.1904   32.1328   33.2567   33.2448   36.6318   30.2582   32.1287   28.5644   27.1290   30.1756   41.9106 

   34.1033   27.5858   27.6316   37.3252   25.1598   28.5133   28.4409   29.3045   29.3013   30.2582   28.2562   29.0376   25.8427   24.0897   27.0702   38.7869 

   35.5538   29.1372   29.1763   39.2720   26.8605   29.8853   29.8116   30.9262   30.9170   32.1287   29.0376   30.8515   27.3467   25.5539   28.5264   40.4697 

   31.4586   26.1404   26.1780   34.5390   23.6398   26.6538   26.5883   27.6929   27.6832   28.5644   25.8427   27.3467   24.8915   22.6551   25.3525   36.1754 

   30.0476   24.1238   24.1632   32.8421   22.6085   24.6984   24.6409   25.6003   25.5947   27.1290   24.0897   25.5539   22.6551   23.4065   25.7194   33.8119 

   33.6165   26.8391   26.8833   36.8050   25.2592   27.6049   27.5405   28.5895   28.5837   30.1756   27.0702   28.5264   25.3525   25.7194   28.5594   37.9705 

   47.5488   37.9503   38.0137   51.9480   34.8759   39.3626   39.2723   40.6889   40.6803   41.9106   38.7869   40.4697   36.1754   33.8119   37.9705   55.6349 

   44.6263   35.3130   35.3625   49.1692   32.6533   36.1755   36.0986   37.3361   37.3267   39.6733   35.3604   37.0258   32.9297   30.7982   34.7294   49.2747 

   44.0397   35.7253   35.7681   49.3042   33.3450   36.5037   36.4198   37.6316   37.6244   40.0408   35.5939   37.3192   33.6497   31.0380   35.2535   49.7274 
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   44.3834   36.0196   36.0683   49.7073   33.7082   36.9043   36.8212   37.9570   37.9498   40.4882   35.9948   37.6815   33.9311   31.4737   35.7547   50.4044 

   33.2435   29.2350   29.2603   38.3103   25.8612   29.3901   29.3291   30.2594   30.2431   31.6129   28.1104   29.0262   27.1057   23.1348   26.7155   39.3068 

   41.8842   35.0440   35.0786   45.8070   31.8882   35.7281   35.6567   36.8699   36.8637   39.4329   34.2135   35.4242   31.8721   29.5890   33.2154   47.8002 

   41.8862   35.0475   35.0822   45.8072   31.8896   35.7281   35.6568   36.8716   36.8654   39.4378   34.2127   35.4220   31.8739   29.5905   33.2188   47.7987 

   49.3605   39.3941   39.4507   55.0316   36.3264   40.0833   39.9812   41.2229   41.2113   43.5973   39.3410   41.0410   36.2099   34.3355   38.6100   54.4788 

   56.4330   45.9055   45.9560   61.8529   43.2560   46.9038   46.7981   48.6942   48.6851   51.7910   45.3346   47.7284   42.8083   40.2938   45.1478   63.3570 

   56.4002   45.8882   45.9386   61.8131   43.2353   46.8800   46.7745   48.6714   48.6625   51.7605   45.3183   47.7068   42.7919   40.2704   45.1212   63.3323 

   43.0116   35.4712   35.5085   46.9729   32.5095   36.1703   36.0900   37.6348   37.6235   39.7982   34.5670   36.4151   32.9677   30.0979   33.6678   47.6097 

   42.9707   35.4446   35.4820   46.9187   32.4764   36.1434   36.0630   37.6057   37.5944   39.7575   34.5494   36.3868   32.9449   30.0728   33.6402   47.5785 

   60.4018   49.6081   49.6798   68.9900   46.7514   50.1040   49.9873   51.5409   51.5229   55.4410   48.2733   51.1226   45.9120   42.6306   48.5075   69.1249 

   60.4242   49.6167   49.6883   69.0405   46.7538   50.1240   50.0068   51.5539   51.5358   55.4445   48.2950   51.1485   45.9145   42.6488   48.5222   69.1421 

 

  Columns 17 through 29 

 

   44.6263   44.0397   44.3834   33.2435   41.8842   41.8862   49.3605   56.4330   56.4002   43.0116   42.9707   60.4018   60.4242 

   35.3130   35.7253   36.0196   29.2350   35.0440   35.0475   39.3941   45.9055   45.8882   35.4712   35.4446   49.6081   49.6167 

   35.3625   35.7681   36.0683   29.2603   35.0786   35.0822   39.4507   45.9560   45.9386   35.5085   35.4820   49.6798   49.6883 

   49.1692   49.3042   49.7073   38.3103   45.8070   45.8072   55.0316   61.8529   61.8131   46.9729   46.9187   68.9900   69.0405 

   32.6533   33.3450   33.7082   25.8612   31.8882   31.8896   36.3264   43.2560   43.2353   32.5095   32.4764   46.7514   46.7538 

   36.1755   36.5037   36.9043   29.3901   35.7281   35.7281   40.0833   46.9038   46.8800   36.1703   36.1434   50.1040   50.1240 

   36.0986   36.4198   36.8212   29.3291   35.6567   35.6568   39.9812   46.7981   46.7745   36.0900   36.0630   49.9873   50.0068 

   37.3361   37.6316   37.9570   30.2594   36.8699   36.8716   41.2229   48.6942   48.6714   37.6348   37.6057   51.5409   51.5539 

   37.3267   37.6244   37.9498   30.2431   36.8637   36.8654   41.2113   48.6851   48.6625   37.6235   37.5944   51.5229   51.5358 

   39.6733   40.0408   40.4882   31.6129   39.4329   39.4378   43.5973   51.7910   51.7605   39.7982   39.7575   55.4410   55.4445 

   35.3604   35.5939   35.9948   28.1104   34.2135   34.2127   39.3410   45.3346   45.3183   34.5670   34.5494   48.2733   48.2950 

   37.0258   37.3192   37.6815   29.0262   35.4242   35.4220   41.0410   47.7284   47.7068   36.4151   36.3868   51.1226   51.1485 
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   32.9297   33.6497   33.9311   27.1057   31.8721   31.8739   36.2099   42.8083   42.7919   32.9677   32.9449   45.9120   45.9145 

   30.7982   31.0380   31.4737   23.1348   29.5890   29.5905   34.3355   40.2938   40.2704   30.0979   30.0728   42.6306   42.6488 

   34.7294   35.2535   35.7547   26.7155   33.2154   33.2188   38.6100   45.1478   45.1212   33.6678   33.6402   48.5075   48.5222 

   49.2747   49.7274   50.4044   39.3068   47.8002   47.7987   54.4788   63.3570   63.3323   47.6097   47.5785   69.1249   69.1421 

   46.7077   46.6602   46.9879   36.1467   43.6201   43.6261   51.5953   59.1209   59.0898   44.9201   44.8751   64.3494   64 .3617 

   46.6602   50.7876   51.2132   38.5284   44.9278   44.9401   51.2092   61.2257   61.1799   45.9585   45.9241   69.1509   69.1453 

   46.9879   51.2132   51.8278   38.6181   45.4357   45.4485   51.5363   61.5342   61.4880   46.1404   46.1061   69.7926   69.7865 

   36.1467   38.5284   38.6181   41.2744   36.6989   36.7116   40.1834   47.0213   46.9964   35.9281   35.9055   56.2517   56.2380 

   43.6201   44.9278   45.4357   36.6989   46.4054   46.4108   48.1801   57.1465   57.1238   43.6202   43.5887   63.3895   63.3837 

   43.6261   44.9401   45.4485   36.7116   46.4108   46.4165   48.1870   57.1512   57.1285   43.6246   43.5931   63.4033   63.3972 

   51.5953   51.2092   51.5363   40.1834   48.1801   48.1870   58.5356   64.4491   64.4114   49.0247   48.9739   72.1247   72.1588 

   59.1209   61.2257   61.5342   47.0213   57.1465   57.1512   64.4491   79.6227   79.5903   59.3750   59.3326   83.6659   83 .6508 

   59.0898   61.1799   61.4880   46.9964   57.1238   57.1285   64.4114   79.5903   79.5592   59.3546   59.3123   83.6020   83.5866 

   44.9201   45.9585   46.1404   35.9281   43.6202   43.6246   49.0247   59.3750   59.3546   46.0424   46.0024   61.8121   61.8114 

   44.8751   45.9241   46.1061   35.9055   43.5887   43.5931   48.9739   59.3326   59.3123   46.0024   45.9629   61.7519   61.7510 

   64.3494   69.1509   69.7926   56.2517   63.3895   63.4033   72.1247   83.6659   83.6020   61.8121   61.7519  103.6475  103.6304 

   64.3617   69.1453   69.7865   56.2380   63.3837   63.3972   72.1588   83.6508   83.5866   61.8114   61.7510  103.6304  103.6156 

 

 

 

5-year covariance 

 

Columns 1 through 16 

 

   34.9157   25.7203   25.7541   34.7696   24.1673   26.4039   26.3469   27.5446   27.5305   28.4665   26.8381   28.3109   24.8660   23.8727   26.3676   35.8785 
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   25.7203   22.9126   22.9339   27.6696   20.2759   22.1651   22.1055   23.1258   23.1175   24.4038   21.3329   22.6144   20.3527   18.7310   20.6381   28.2464 

   25.7541   22.9339   22.9558   27.7045   20.2943   22.1884   22.1287   23.1481   23.1398   24.4213   21.3607   22.6414   20.3779   18.7556   20.6658   28.2870 

   34.7696   27.6696   27.7045   38.0468   25.4389   27.7395   27.6645   28.7355   28.7232   30.3664   27.5782   29.3369   25.7061   24.1640   26.8021   37.0802 

   24.1673   20.2759   20.2943   25.4389   20.2340   20.4807   20.4215   21.3075   21.3013   22.5037   19.7917   21.0879   18.7101   18.3027   20.2418   26.5687 

   26.4039   22.1651   22.1884   27.7395   20.4807   22.9963   22.9359   23.8078   23.8007   24.2624   21.7929   22.8958   20.5283   19.3669   21.3635   29.0315 

   26.3469   22.1055   22.1287   27.6645   20.4215   22.9359   22.8765   23.7467   23.7396   24.2091   21.7327   22.8348   20.4729   19.3192   21.3104   28.9572 

   27.5446   23.1258   23.1481   28.7355   21.3075   23.8078   23.7467   24.9409   24.9338   25.2103   22.5705   23.9491   21.5376   20.2426   22.3002   30.2146 

   27.5305   23.1175   23.1398   28.7232   21.3013   23.8007   23.7396   24.9338   24.9273   25.2026   22.5627   23.9394   21.5272   20.2384   22.2949   30.2049 

   28.4665   24.4038   24.4213   30.3664   22.5037   24.2624   24.2091   25.2103   25.2026   27.8395   23.0717   24.2500   21.5823   20.7245   22.8524   30.8475 

   26.8381   21.3329   21.3607   27.5782   19.7917   21.7929   21.7327   22.5705   22.5627   23.0717   22.1825   22.8706   20.3016   19.1375   21.2467   29.2348 

   28.3109   22.6144   22.6414   29.3369   21.0879   22.8958   22.8348   23.9491   23.9394   24.2500   22.8706   24.6593   21.7831   20.3350   22.4336   30.6777 

   24.8660   20.3527   20.3779   25.7061   18.7101   20.5283   20.4729   21.5376   21.5272   21.5823   20.3016   21.7831   19.8320   18.1157   20.0142   27.3489 

   23.8727   18.7310   18.7556   24.1640   18.3027   19.3669   19.3192   20.2426   20.2384   20.7245   19.1375   20.3350   18.1157   19.1263   20.8307   25.7911 

   26.3676   20.6381   20.6658   26.8021   20.2418   21.3635   21.3104   22.3002   22.2949   22.8524   21.2467   22.4336   20.0142   20.8307   22.9026   28.7091 

   35.8785   28.2464   28.2870   37.0802   26.5687   29.0315   28.9572   30.2146   30.2049   30.8475   29.2348   30.6777   27.3489   25.7911   28.7091   40.8304 

   34.1131   26.5978   26.6307   35.7248   24.6645   26.8544   26.7911   27.9558   27.9424   29.2166   26.8864   28.4973   25.1476   23.5188   26.1863   36.1647 

   32.3953   27.2077   27.2296   35.1737   25.4236   27.2725   27.2008   28.2810   28.2745   30.2837   26.6742   27.7083   25.0216   23.5236   26.3950   36.0634 

   32.5714   27.3846   27.4100   35.4104   25.6249   27.4976   27.4262   28.4674   28.4611   30.5398   26.8956   27.9152   25.1779   23.7594   26.6676   36.4459 

   26.0501   22.5372   22.5473   27.7398   20.9922   22.5289   22.4720   23.3051   23.2945   24.8541   22.2076   22.3530   20.7924   19.1950   21.7773   29.8010 

   29.9927   26.1207   26.1382   32.0877   24.0955   26.2117   26.1504   27.2458   27.2477   29.0664   24.9987   25.9453   23.5261   22.3737   24.8640   33.9959 

   29.9886   26.1139   26.1315   32.0783   24.0873   26.2055   26.1444   27.2398   27.2416   29.0621   24.9928   25.9358   23.5198   22.3685   24.8594   33.9869 

   37.6140   29.4147   29.4522   39.7665   27.0684   29.5344   29.4562   30.6910   30.6764   31.8850   29.6363   31.4668   27.5525   25.8918   28.7671   39.6927 

   40.9496   33.3395   33.3702   43.0428   31.5631   33.6649   33.5812   35.0848   35.0753   37.3524   33.1085   34.7146   31.1159   29.5844   32.8685   45.0776 

   40.9335   33.3419   33.3726   43.0262   31.5601   33.6636   33.5799   35.0853   35.0759   37.3469   33.1062   34.7094   31.1145   29.5806   32.8621   45.0699 

   32.1393   26.9686   26.9918   33.7547   24.9055   26.9659   26.8983   28.2600   28.2512   29.7093   26.1356   27.6259   25.0414   23.2325   25.7331   34.9601 

   32.1051   26.9520   26.9753   33.7099   24.8884   26.9504   26.8828   28.2421   28.2335   29.6835   26.1194   27.6025   25.0292   23.2157   25.7153   34.9403 
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   44.7849   36.7480   36.7917   48.7672   34.7268   36.8652   36.7718   38.1793   38.1668   40.7457   35.8750   38.0448   34.1189   32.0643   35.9865   49.6233 

   44.7890   36.7482   36.7919   48.7915   34.7297   36.8745   36.7808   38.1847   38.1722   40.7477   35.8803   38.0532   34.1152   32.0736   35.9939   49.6291 

 

  Columns 17 through 29 

 

   34.1131   32.3953   32.5714   26.0501   29.9927   29.9886   37.6140   40.9496   40.9335   32.1393   32.1051   44.7849   44.7890 

   26.5978   27.2077   27.3846   22.5372   26.1207   26.1139   29.4147   33.3395   33.3419   26.9686   26.9520   36.7480   36.7482 

   26.6307   27.2296   27.4100   22.5473   26.1382   26.1315   29.4522   33.3702   33.3726   26.9918   26.9753   36.7917   36.7919 

   35.7248   35.1737   35.4104   27.7398   32.0877   32.0783   39.7665   43.0428   43.0262   33.7547   33.7099   48.7672   48.7915 

   24.6645   25.4236   25.6249   20.9922   24.0955   24.0873   27.0684   31.5631   31.5601   24.9055   24.8884   34.7268   34.7297 

   26.8544   27.2725   27.4976   22.5289   26.2117   26.2055   29.5344   33.6649   33.6636   26.9659   26.9504   36.8652   36.8745 

   26.7911   27.2008   27.4262   22.4720   26.1504   26.1444   29.4562   33.5812   33.5799   26.8983   26.8828   36.7718   36.7808 

   27.9558   28.2810   28.4674   23.3051   27.2458   27.2398   30.6910   35.0848   35.0853   28.2600   28.2421   38.1793   38.1847 

   27.9424   28.2745   28.4611   23.2945   27.2477   27.2416   30.6764   35.0753   35.0759   28.2512   28.2335   38.1668   38.1722 

   29.2166   30.2837   30.5398   24.8541   29.0664   29.0621   31.8850   37.3524   37.3469   29.7093   29.6835   40.7457   40.7477 

   26.8864   26.6742   26.8956   22.2076   24.9987   24.9928   29.6363   33.1085   33.1062   26.1356   26.1194   35.8750   35.8803 

   28.4973   27.7083   27.9152   22.3530   25.9453   25.9358   31.4668   34.7146   34.7094   27.6259   27.6025   38.0448   38 .0532 

   25.1476   25.0216   25.1779   20.7924   23.5261   23.5198   27.5525   31.1159   31.1145   25.0414   25.0292   34.1189   34.1152 

   23.5188   23.5236   23.7594   19.1950   22.3737   22.3685   25.8918   29.5844   29.5806   23.2325   23.2157   32.0643   32.0736 

   26.1863   26.3950   26.6676   21.7773   24.8640   24.8594   28.7671   32.8685   32.8621   25.7331   25.7153   35.9865   35.9939 

   36.1647   36.0634   36.4459   29.8010   33.9959   33.9869   39.6927   45.0776   45.0699   34.9601   34.9403   49.6233   49.6291 

   34.7964   33.8996   34.0850   27.0009   30.9851   30.9806   38.2784   42.0289   42.0175   32.9492   32.9109   46.5067   46.5061 

   33.8996   37.6913   37.9399   29.6546   33.0059   33.0043   36.7859   43.4589   43.4451   33.9141   33.8939   49.6020   49.5980 

   34.0850   37.9399   38.3051   29.6735   33.3124   33.3111   36.9721   43.6242   43.6103   34.0128   33.9926   49.9503   49.9460 

   27.0009   29.6546   29.6735   33.7285   27.8497   27.8564   29.5668   35.4745   35.4688   27.7860   27.7812   41.5838   41.5761 

   30.9851   33.0059   33.3124   27.8497   34.0184   34.0167   34.0390   40.0466   40.0485   32.0514   32.0479   45.1647   45.1650 
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   30.9806   33.0043   33.3111   27.8564   34.0167   34.0153   34.0377   40.0409   40.0428   32.0429   32.0396   45.1641   45.1641 

   38.2784   36.7859   36.9721   29.5668   34.0390   34.0377   43.2719   45.5748   45.5594   35.7614   35.7201   51.7981   51 .8094 

   42.0289   43.4589   43.6242   35.4745   40.0466   40.0409   45.5748   55.9455   55.9385   42.6820   42.6631   58.7177   58.7049 

   42.0175   43.4451   43.6103   35.4688   40.0485   40.0428   45.5594   55.9385   55.9326   42.6826   42.6637   58.6924   58.6794 

   32.9492   33.9141   34.0128   27.7860   32.0514   32.0429   35.7614   42.6820   42.6826   34.4351   34.4187   45.0474   45.0451 

   32.9109   33.8939   33.9926   27.7812   32.0479   32.0396   35.7201   42.6631   42.6637   34.4187   34.4034   45.0127   45.0105 

   46.5067   49.6020   49.9503   41.5838   45.1647   45.1641   51.7981   58.7177   58.6924   45.0474   45.0127   72.8428   72.8319 

   46.5061   49.5980   49.9460   41.5761   45.1650   45.1641   51.8094   58.7049   58.6794   45.0451   45.0105   72.8319   72.8225 

 

10-year covariance 

 

Columns 1 through 16 

 

   31.2309   24.8478   24.8617   30.7850   24.0031   24.4882   24.3843   25.3883   25.3618   25.1428   23.3790   24.8199   20.2254   23.8075   24.6090   27.1749 

   24.8478   23.2353   23.2457   26.1301   21.3706   21.9906   21.9042   22.8142   22.7832   22.3608   19.9640   21.0184   17.2003   20.5254   21.1212   22.6525 

   24.8617   23.2457   23.2569   26.1479   21.3771   22.0013   21.9158   22.8248   22.7938   22.3663   19.9772   21.0308   17.2128   20.5350   21.1319   22.6727 

   30.7850   26.1301   26.1479   33.1930   24.9410   25.5111   25.3643   26.2259   26.1997   26.1403   23.8175   25.2868   20.6819   24.0430   24.8585   27.7742 

   24.0031   21.3706   21.3771   24.9410   22.9294   20.6227   20.5367   21.3769   21.3595   21.1526   18.7396   20.0021   16.5368   20.3949   21.0116   21.3178 

   24.4882   21.9906   22.0013   25.5111   20.6227   22.2428   22.1054   22.8457   22.8139   21.8098   19.7462   20.5877   16.7819   20.1222   20.8060   22.6744 

   24.3843   21.9042   21.9158   25.3643   20.5367   22.1054   22.0352   22.7275   22.6943   21.7137   19.7107   20.4938   16.7223   20.0851   20.7746   22.6107 

   25.3883   22.8142   22.8248   26.2259   21.3769   22.8457   22.7275   23.7902   23.7594   22.4862   20.3872   21.4404   17.5301   21.0107   21.7366   23.4904 

   25.3618   22.7832   22.7938   26.1997   21.3595   22.8139   22.6943   23.7594   23.7303   22.4638   20.3629   21.4213   17.5210   20.9761   21.7004   23.4706 

   25.1428   22.3608   22.3663   26.1403   21.1526   21.8098   21.7137   22.4862   22.4638   23.7489   19.9589   20.7800   17.1755   20.0395   20.7332   23.4432 

   23.3790   19.9640   19.9772   23.8175   18.7396   19.7462   19.7107   20.3872   20.3629   19.9589   19.0803   19.5372   16.0565   18.7290   19.4943   21.8360 

   24.8199   21.0184   21.0308   25.2868   20.0021   20.5877   20.4938   21.4404   21.4213   20.7800   19.5372   21.1475   17.2760   19.5903   20.3179   22.9191 
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   20.2254   17.2003   17.2128   20.6819   16.5368   16.7819   16.7223   17.5301   17.5210   17.1755   16.0565   17.2760   14.9057   16.0206   16.7023   19.1710 

   23.8075   20.5254   20.5350   24.0430   20.3949   20.1222   20.0851   21.0107   20.9761   20.0395   18.7290   19.5903   16.0206   22.0817   22.6642   20.9874 

   24.6090   21.1212   21.1319   24.8585   21.0116   20.8060   20.7746   21.7366   21.7004   20.7332   19.4943   20.3179   16.7023   22.6642   23.5739   22.1688 

   27.1749   22.6525   22.6727   27.7742   21.3178   22.6744   22.6107   23.4904   23.4706   23.4432   21.8360   22.9191   19.1710   20.9874   22.1688   27.6401 

   30.1961   25.3124   25.3292   31.1379   24.2313   24.6671   24.5782   25.6074   25.5842   25.2982   23.3465   24.7373   20.2782   23.7602   24.7396   27.1365 

   27.7446   24.3787   24.3916   29.2914   23.8848   23.7122   23.6254   24.5438   24.5260   24.7176   21.9664   23.1417   19.4694   22.0982   23.1653   26.0448 

   27.8244   24.4614   24.4759   29.4017   23.9835   23.8218   23.7351   24.6332   24.6155   24.8370   22.0709   23.2386   19.5441   22.2107   23.2982   26.2300 

   21.5467   19.1000   19.1094   22.3399   18.6286   18.5108   18.5119   19.2533   19.2381   19.3999   17.7932   18.1328   15.8690   17.5475   18.5335   20.9003 

   25.8318   23.2603   23.2710   26.8093   22.2217   22.2982   22.2004   23.1977   23.1796   23.5008   20.7215   21.5941   18.3132   21.6542   22.6181   24.3176 

   25.8559   23.2994   23.3101   26.8331   22.2593   22.3258   22.2290   23.2278   23.2096   23.5255   20.7385   21.6071   18.3277   21.6909   22.6554   24.3306 

   30.3773   25.0798   25.1009   31.6726   23.7475   24.5000   24.3976   25.4967   25.4890   25.3830   23.5864   25.1732   20.8281   23.3852   24.5245   27.9769 

   30.5931   26.1100   26.1236   31.7336   24.7081   25.9342   25.8163   26.7742   26.7461   27.5664   24.3822   25.4613   21.3676   23.6183   24.9755   29.9130 

   30.8211   26.3571   26.3686   32.1117   24.8708   26.1073   25.9886   27.0069   26.9804   27.7454   24.6163   25.7394   21.5820   23.8727   25.2260   30.1693 

   26.9012   23.6476   23.6602   27.9810   22.0548   23.1689   23.0857   24.0741   24.0482   24.0197   21.5216   22.6417   18.9482   21.3232   22.2582   25.3181 

   26.8795   23.6347   23.6474   27.9513   22.0465   23.1566   23.0727   24.0609   24.0350   24.0021   21.5085   22.6258   18.9434   21.3171   22.2523   25.3015 

   33.8625   29.1226   29.1471   36.2767   27.7867   28.2846   28.1546   29.3795   29.3726   29.7234   26.7579   28.3644   24.1722   26.8795   28.4196   32.9216 

   33.6136   28.8814   28.9054   36.0203   27.6327   28.0878   27.9475   29.1835   29.1779   29.5323   26.5668   28.1792   24.0283   26.6779   28.2459   32.7539 

 

  Columns 17 through 29 

 

   30.1961   27.7446   27.8244   21.5467   25.8318   25.8559   30.3773   30.5931   30.8211   26.9012   26.8795   33.8625   33.6136 

   25.3124   24.3787   24.4614   19.1000   23.2603   23.2994   25.0798   26.1100   26.3571   23.6476   23.6347   29.1226   28 .8814 

   25.3292   24.3916   24.4759   19.1094   23.2710   23.3101   25.1009   26.1236   26.3686   23.6602   23.6474   29.1471   28.9054 

   31.1379   29.2914   29.4017   22.3399   26.8093   26.8331   31.6726   31.7336   32.1117   27.9810   27.9513   36.2767   36.0203 

   24.2313   23.8848   23.9835   18.6286   22.2217   22.2593   23.7475   24.7081   24.8708   22.0548   22.0465   27.7867   27.6327 

   24.6671   23.7122   23.8218   18.5108   22.2982   22.3258   24.5000   25.9342   26.1073   23.1689   23.1566   28.2846   28.0878 
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   24.5782   23.6254   23.7351   18.5119   22.2004   22.2290   24.3976   25.8163   25.9886   23.0857   23.0727   28.1546   27.9475 

   25.6074   24.5438   24.6332   19.2533   23.1977   23.2278   25.4967   26.7742   27.0069   24.0741   24.0609   29.3795   29.1835 

   25.5842   24.5260   24.6155   19.2381   23.1796   23.2096   25.4890   26.7461   26.9804   24.0482   24.0350   29.3726   29.1779 

   25.2982   24.7176   24.8370   19.3999   23.5008   23.5255   25.3830   27.5664   27.7454   24.0197   24.0021   29.7234   29.5323 

   23.3465   21.9664   22.0709   17.7932   20.7215   20.7385   23.5864   24.3822   24.6163   21.5216   21.5085   26.7579   26.5668 

   24.7373   23.1417   23.2386   18.1328   21.5941   21.6071   25.1732   25.4613   25.7394   22.6417   22.6258   28.3644   28.1792 

   20.2782   19.4694   19.5441   15.8690   18.3132   18.3277   20.8281   21.3676   21.5820   18.9482   18.9434   24.1722   24.0283 

   23.7602   22.0982   22.2107   17.5475   21.6542   21.6909   23.3852   23.6183   23.8727   21.3232   21.3171   26.8795   26.6779 

   24.7396   23.1653   23.2982   18.5335   22.6181   22.6554   24.5245   24.9755   25.2260   22.2582   22.2523   28.4196   28.2459 

   27.1365   26.0448   26.2300   20.9003   24.3176   24.3306   27.9769   29.9130   30.1693   25.3181   25.3015   32.9216   32.7539 

   30.5817   28.3840   28.4673   21.9313   26.2782   26.3067   30.9212   30.8755   31.3269   27.3223   27.2982   34.8717   34.6488 

   28.3840   29.8626   29.9819   22.7222   26.5645   26.5951   28.5098   30.6787   30.7970   26.5095   26.4992   35.1617   34.9554 

   28.4673   29.9819   30.1611   22.7172   26.7126   26.7435   28.5963   30.7466   30.8688   26.5502   26.5400   35.3234   35.1177 

   21.9313   22.7222   22.7172   26.3080   21.6527   21.6763   22.4863   24.1893   24.1832   21.0257   21.0181   29.4027   29.1627 

   26.2782   26.5645   26.7126   21.6527   28.5161   28.5574   26.4093   28.2016   28.4432   24.9203   24.9221   33.0241   32.8022 

   26.3067   26.5951   26.7435   21.6763   28.5574   28.6015   26.4393   28.2251   28.4661   24.9395   24.9413   33.0675   32.8450 

   30.9212   28.5098   28.5963   22.4863   26.4093   26.4393   33.0490   31.4301   31.9347   27.5990   27.5750   36.6239   36.4499 

   30.8755   30.6787   30.7466   24.1893   28.2016   28.2251   31.4301   37.1673   36.9934   30.0983   30.0798   38.0363   37.8495 

   31.3269   30.7970   30.8688   24.1832   28.4432   28.4661   31.9347   36.9934   37.5331   30.5198   30.5010   38.4335   38.2668 

   27.3223   26.5095   26.5502   21.0257   24.9203   24.9395   27.5990   30.0983   30.5198   26.8481   26.8344   32.0864   31.8747 

   27.2982   26.4992   26.5400   21.0181   24.9221   24.9413   27.5750   30.0798   30.5010   26.8344   26.8215   32.0632   31.8515 

   34.8717   35.1617   35.3234   29.4027   33.0241   33.0675   36.6239   38.0363   38.4335   32.0864   32.0632   48.6614   48.4155 

   34.6488   34.9554   35.1177   29.1627   32.8022   32.8450   36.4499   37.8495   38.2668   31.8747   31.8515   48.4155   48.2020 

 

> 
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Appendix B: matlab code for Chapter 3 

 

Name the first matlab file: Main_RunThisFile.m 

clc 

clear 

close all 

 

% Lagrange function for maximizing theta and minimizing z, run this file to 

display DEA scores, weight for each sample fund and lagrange multiplier; 

 

[ERjt,CovRitRjt]=Condition();              

  

for j0 = 1:29 

     

    disp(['=========solve j0=',num2str(j0),' ========='])   

     

    disp('--------- maximize theta ----------') 

    [W1,theta,Lambda1,Alpha1] = Lagrange1(ERjt,CovRitRjt,j0) 

     

    disp('------------ minimize z -----------') 

    [W2,z,Lambda2,Alpha2] = Lagrange2(ERjt,CovRitRjt,j0) 

     

end 

  

Name the second matlab file: Condition.m 

% condition function including the information of expected return and 

covariance matrix 

function [ERjt,CovRitRjt]=Condition() 

% expected return for three year periods 

ExpCov3=[…] 
% expected return for five year periods 

ExpCov5=[…] 
% expected return for ten year periods 

ExpCov10=[…] 
R3=[…] 
R5=[…] 
R10=[…] 
% covariance matrix 
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CovRitRjt(:,:,1) = ExpCov3; 

CovRitRjt(:,:,2) = ExpCov5; 

CovRitRjt(:,:,3) = ExpCov10; 

ERjt(:,1) = R3; 

ERjt(:,2) = R5; 

ERjt(:,3) = R10;  

end 

 

Name the third matlab file Lagrange1.m 

% the first lagrange function 

function [W,theta,Lambda,Alpha] = Lagrange1(ERjt,CovRitRjt,j0)  

X0 = 0.5*ones(30,1); 

X0(30) = 1; 

lb = zeros(30,1); 

% lower bound restriction 

lb(30) = 1; 

ub = ones(30,1); 

% upper bound restriction 

ub(30) = Inf; 

% optimset creates an options structure that you can pass as an input 

argument to the following optimization functions 

options = optimset('Display','off','Algorithm','interior-

point','LargeScale','on','MaxIter',5000,'MaxFunEvals',1e+5,'TolCon',1e-

16,'TolFun',1e-16,'TolX',1e-16); 

%fmincon finds minimum of constrained nonlinear multivariable function 

[X,fval,exitflag,output,lambda] = fmincon(@MyFun1,X0,[],[],[],[],lb,ub,@(X) 

MyCon1(X,ERjt,CovRitRjt,j0),options); 

W = X(1:29); 

theta = X(30); 

Lambda = [lambda.eqnonlin;lambda.ineqnonlin(1:3)]; 

Alpha = lambda.ineqnonlin(4:6); 

end 

  

 

Name the fourth matlab file Lagrange2.m 

% the second lagrange function 

function [W,z,Lambda,Alpha] = Lagrange2(ERjt,CovRitRjt,j0) 

X0 = 0.5*ones(30,1); 

X0(30) = 1; 
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lb = zeros(30,1); 

% lower bound restriction 

ub = ones(30,1); 

% upper bound restriction 

ub(30) = 1; 

% optimset creates an options structure that you can pass as an input 

argument to the following optimization functions 

options = optimset('Display','off','Algorithm','interior-

point','LargeScale','on','MaxIter',5000,'MaxFunEvals',1e+5,'TolCon',1e-

16,'TolFun',1e-16,'TolX',1e-16); 

 %fmincon finds minimum of constrained nonlinear multivariable function 

[X,fval,exitflag,output,lambda] = fmincon(@MyFun2,X0,[],[],[],[],lb,ub,@(X) 

MyCon2(X,ERjt,CovRitRjt,j0),options); 

W = X(1:29); 

z = X(30); 

Lambda = [lambda.eqnonlin;lambda.ineqnonlin(1:3)]; 

Alpha = lambda.ineqnonlin(4:6); 

end 

 

 

Name the fifth matlab file MyCon1.m 

% the first condition function 

function [c,ceq] = MyCon1(X,ERjt,CovRitRjt,j0) 

W = X(1:29);                                 

theta = X(30);                               

% covariance matrix 

CovRitRjt1 = CovRitRjt(:,:,1);              

CovRitRjt2 = CovRitRjt(:,:,2); 

CovRitRjt3 = CovRitRjt(:,:,3); 

% variance of each sample fund 

Sigma2jt1=diag(CovRitRjt1);                  

Sigma2jt2=diag(CovRitRjt2); 

Sigma2jt3=diag(CovRitRjt3); 

CovRitRjt1 = CovRitRjt1-diag(Sigma2jt1);     

CovRitRjt2 = CovRitRjt2-diag(Sigma2jt2); 

CovRitRjt3 = CovRitRjt3-diag(Sigma2jt3); 

tmp = theta*ERjt(j0,:)-W'*ERjt;              

c = [tmp' 

     (W.^2)'*Sigma2jt1+W'*CovRitRjt1*W-Sigma2jt1(j0) 

     (W.^2)'*Sigma2jt2+W'*CovRitRjt2*W-Sigma2jt2(j0) 
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     (W.^2)'*Sigma2jt3+W'*CovRitRjt3*W-Sigma2jt3(j0)]; 

ceq = sum(W)-1;                            

end 

 

 

 

Name the sixth matlab file MyCon2.m 

% the second condition function 

function [c,ceq] = MyCon2(X,ERjt,CovRitRjt,j0) 

W = X(1:29);  

% weights for each sample fund                               

z = X(30);      

% covariance matrix                              

CovRitRjt1 = CovRitRjt(:,:,1);               

CovRitRjt2 = CovRitRjt(:,:,2); 

CovRitRjt3 = CovRitRjt(:,:,3); 

Sigma2jt1=diag(CovRitRjt1);                  

Sigma2jt2=diag(CovRitRjt2); 

Sigma2jt3=diag(CovRitRjt3);  

CovRitRjt1 = CovRitRjt1-diag(Sigma2jt1);    

CovRitRjt2 = CovRitRjt2-diag(Sigma2jt2); 

CovRitRjt3 = CovRitRjt3-diag(Sigma2jt3); 

tmp = ERjt(j0,:)-W'*ERjt;                  

c = [tmp' 

     (W.^2)'*Sigma2jt1+W'*CovRitRjt1*W-z*Sigma2jt1(j0) 

     (W.^2)'*Sigma2jt2+W'*CovRitRjt2*W-z*Sigma2jt2(j0) 

     (W.^2)'*Sigma2jt3+W'*CovRitRjt3*W-z*Sigma2jt3(j0)]; 

ceq = sum(W)-1;                             

end 
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Name the seventh matlab file Myfun1.m 

% passing output DEA score theta to myfun1 

function theta = MyFun1(X) 

theta = -X(30); 

end 

 

 

Name the eighth matlab file Myfun2.m 

% passing input DEA score z to myfun2 

function z = MyFun2(X) 

z = X(30); 

end 
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Appendix C: matlab codes for Chapter 4 

 

Step1: form kernel density function using the original DEA scores and obtain the 

optimal bandwidth h.  

 

File name: kde.m 

(kde.m is downloaded from Mathwork website:  

http://www.mathworks.com/matlabcentral/fileexchange/14034-kernel-density-

estimator) 

function [bandwidth,density,xmesh,cdf]=kde(data,n,MIN,MAX) 

data=[1.015 

1.1505 

1.0308 

1.1359 

1 

1.8621 

1.5914 

1.7987 

1.714 

1 

1.1116 

1.9331 

1 

1.036 

1.143 

1.2532 

1.0331 

1.3196 

1.3974 

1.0031 

1.3265 

1.2344 

1 

1 

1.0006 

1.4387 

1.5747 

1 

1.0593]; 
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% Reliable and extremely fast kernel density estimator for one-dimensional 

data; 

%        Gaussian kernel is assumed and the bandwidth is chosen 

automatically; 

%        Unlike many other implementations, this one is immune to problems 

%        caused by multimodal densities with widely separated modes (see 

example). The 

%        estimation does not deteriorate for multimodal densities, because 

we never assume 

%        a parametric model for the data. 

% INPUTS: 

%     data    - a vector of data from which the density estimate is 

constructed; 

%          n  - the number of mesh points used in the uniform 

discretization of the 

%               interval [MIN, MAX]; n has to be a power of two; if n is 

not a power of two, then 

%               n is rounded up to the next power of two, i.e., n is set to 

n=2^ceil(log2(n)); 

%               the default value of n is n=2^12; 

%   MIN, MAX  - defines the interval [MIN,MAX] on which the density 

estimate is constructed; 

%               the default values of MIN and MAX are: 

%               MIN=min(data)-Range/10 and MAX=max(data)+Range/10, where 

Range=max(data)-min(data); 

% OUTPUTS: 

%   bandwidth - the optimal bandwidth (Gaussian kernel assumed); 

%     density - column vector of length 'n' with the values of the density 

%               estimate at the grid points; 

%     xmesh   - the grid over which the density estimate is computed; 

%             - If no output is requested, then the code automatically 

plots a graph of 

%               the density estimate. 

%        cdf  - column vector of length 'n' with the values of the cdf 

%  Reference:  

% Kernel density estimation via diffusion 

% Z. I. Botev, J. F. Grotowski, and D. P. Kroese (2010) 

% Annals of Statistics, Volume 38, Number 5, pages 2916-2957.  

  

% 

%  Example: 
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%           data=[randn(100,1);randn(100,1)*2+35 ;randn(100,1)+55]; 

%              kde(data,2^14,min(data)-5,max(data)+5); 

  

  

%  Notes:   If you have a more reliable and accurate one-dimensional kernel 

density 

%           estimation software, please email me at botev@maths.uq.edu.au 

  

  

data=data(:); %make data a column vector 

if nargin<2 % if n is not supplied switch to the default 

    n=2^14; 

end 

n=2^ceil(log2(n)); % round up n to the next power of 2; 

if nargin<4 %define the default  interval [MIN,MAX] 

    minimum=min(data); maximum=max(data); 

    Range=maximum-minimum; 

    MIN=minimum-Range/10; MAX=maximum+Range/10; 

     

end 

% set up the grid over which the density estimate is computed; 

R=MAX-MIN; dx=R/(n-1); xmesh=MIN+[0:dx:R]; N=length(unique(data)); 

%bin the data uniformly using the grid defined above; 

initial_data=histc(data,xmesh)/N;  

initial_data=initial_data/sum(initial_data); 

a=dct1d(initial_data); % discrete cosine transform of initial data 

% now compute the optimal bandwidth^2 using the referenced method 

I=[1:n-1]'.^2; a2=(a(2:end)/2).^2; 

% use  fzero to solve the equation t=zeta*gamma^[5](t) 

try 

    t_star=fzero(@(t)fixed_point(t,N,I,a2),[0,.1]); 

catch 

    t_star=.28*N^(-2/5); 

end 

% smooth the discrete cosine transform of initial data using t_star 

a_t=a.*exp(-[0:n-1]'.^2*pi^2*t_star/2); 

% now apply the inverse discrete cosine transform 

if (nargout>1)|(nargout==0) 

    density=idct1d(a_t)/R; 

end 
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% take the rescaling of the data into account 

bandwidth=sqrt(t_star)*R; 

if nargout==0 

    figure(1), plot(xmesh,density) 

end 

% for cdf estimation 

if nargout>3 

    f=2*pi^2*sum(I.*a2.*exp(-I*pi^2*t_star)); 

    t_cdf=(sqrt(pi)*f*N)^(-2/3); 

    % now get values of cdf on grid points using IDCT and cumsum function 

    a_cdf=a.*exp(-[0:n-1]'.^2*pi^2*t_cdf/2); 

    cdf=cumsum(idct1d(a_cdf))*(dx/R); 

    % take the rescaling into account if the bandwidth value is required 

    bandwidth_cdf=sqrt(t_cdf)*R; 

end 

  

end 

%################################################################ 

function  out=fixed_point(t,N,I,a2) 

% this implements the function t-zeta*gamma^[l](t) 

l=7; 

f=2*pi^(2*l)*sum(I.^l.*a2.*exp(-I*pi^2*t)); 

for s=l-1:-1:2 

    K0=prod([1:2:2*s-1])/sqrt(2*pi);  const=(1+(1/2)^(s+1/2))/3; 

    time=(2*const*K0/N/f)^(2/(3+2*s)); 

    f=2*pi^(2*s)*sum(I.^s.*a2.*exp(-I*pi^2*time)); 

end 

out=t-(2*N*sqrt(pi)*f)^(-2/5); 

end 

  

  

%############################################################## 

function out = idct1d(data) 

  

% computes the inverse discrete cosine transform 

[nrows,ncols]=size(data); 

% Compute weights 

weights = nrows*exp(i*(0:nrows-1)*pi/(2*nrows)).'; 

% Compute x tilde using equation (5.93) in Jain 

data = real(ifft(weights.*data)); 
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% Re-order elements of each column according to equations (5.93) and 

% (5.94) in Jain 

out = zeros(nrows,1); 

out(1:2:nrows) = data(1:nrows/2); 

out(2:2:nrows) = data(nrows:-1:nrows/2+1); 

%   Reference: 

%      A. K. Jain, "Fundamentals of Digital Image 

%      Processing", pp. 150-153. 

end 

%############################################################## 

  

function data=dct1d(data) 

% computes the discrete cosine transform of the column vector data 

[nrows,ncols]= size(data); 

% Compute weights to multiply DFT coefficients 

weight = [1;2*(exp(-i*(1:nrows-1)*pi/(2*nrows))).']; 

% Re-order the elements of the columns of x 

data = [ data(1:2:end,:); data(end:-2:2,:) ]; 

% Multiply FFT by weights: 

data= real(weight.* fft(data)); 

end 

 

Step 2:  creating replicates from original DEA scores and produce 2000,...1,29,...1
*

^

 bik
ib

i


  

 

PD=fitdist(x,'kernel','support',[min(x)-Range/10000,max(x)+Range/10000], 

'width',0.2186) 

% Fit probability distribution object to data 

New_X = random(PD, 2000, 29) 

for i=1:29 

for j=1:2000 

k(j,i)=x(i,1)/New_X(j,i) 

end 

end 

 

Step 3: obtain the new DEA scores from the following programming 

Name the first file: Main_RunThisFile.m 
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for j= 1:29 

    for i=1:2000 

X0 = 0.5*ones(30,1); 

X0(30) = 1; 

% lower bound restrictions 

lb = zeros(30,1); 

lb(30) = 1; 

% upper bound restrictions 

ub = ones(30,1); 

ub(30) = Inf; 

% create or edit optimization options structure 

options = optimset('Display','off','Algorithm','interior-

point','LargeScale','on','MaxIter',5000,'MaxFunEvals',1e+5,'TolCon',1e-16,'TolFun',1e-16,'TolX',1e-16); 

2929[...]3 ExpCov  

2929[...]5 ExpCov  

2929[...]10 ExpCov  

129[...]3 R  

129[...]5 R  

129[...]10 R  

% covariance matrix 

CovRitRjt(:,:,1) = ExpCov3; 

CovRitRjt(:,:,2) = ExpCov5; 

CovRitRjt(:,:,3) = ExpCov10; 

292000[...] k  

% creating bootstrap resamples 

z3=[k(i,1)*R3(1,:) 

   k(i,2)*R3(2,:) 

   k(i,3)*R3(3,:) 
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   k(i,4)*R3(4,:) 

   k(i,5)*R3(5,:) 

   k(i,6)*R3(6,:) 

   k(i,7)*R3(7,:) 

   k(i,8)*R3(8,:) 

   k(i,9)*R3(9,:) 

   k(i,10)*R3(10,:) 

   k(i,11)*R3(11,:) 

   k(i,12)*R3(12,:) 

   k(i,13)*R3(13,:) 

   k(i,14)*R3(14,:) 

   k(i,15)*R3(15,:) 

   k(i,16)*R3(16,:) 

   k(i,17)*R3(17,:) 

   k(i,18)*R3(18,:) 

   k(i,19)*R3(19,:) 

   k(i,20)*R3(20,:) 

   k(i,21)*R3(21,:) 

   k(i,22)*R3(22,:) 

   k(i,23)*R3(23,:) 

   k(i,24)*R3(24,:) 

   k(i,25)*R3(25,:) 

   k(i,26)*R3(26,:) 

   k(i,27)*R3(27,:) 

   k(i,28)*R3(28,:) 

   k(i,29)*R3(29,:)]; 

z5=[k(i,1)*R5(1,:) 
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   k(i,2)*R5(2,:) 

   k(i,3)*R5(3,:) 

   k(i,4)*R5(4,:) 

   k(i,5)*R5(5,:) 

   k(i,6)*R5(6,:) 

   k(i,7)*R5(7,:) 

   k(i,8)*R5(8,:) 

   k(i,9)*R5(9,:) 

   k(i,10)*R5(10,:) 

   k(i,11)*R5(11,:) 

   k(i,12)*R5(12,:) 

   k(i,13)*R5(13,:) 

   k(i,14)*R5(14,:) 

   k(i,15)*R5(15,:) 

   k(i,16)*R5(16,:) 

   k(i,17)*R5(17,:) 

   k(i,18)*R5(18,:) 

   k(i,19)*R5(19,:) 

   k(i,20)*R5(20,:) 

   k(i,21)*R5(21,:) 

   k(i,22)*R5(22,:) 

   k(i,23)*R5(23,:) 

   k(i,24)*R5(24,:) 

   k(i,25)*R5(25,:) 

   k(i,26)*R5(26,:) 

   k(i,27)*R5(27,:) 

   k(i,28)*R5(28,:) 
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   k(i,29)*R5(29,:)]; 

z10=[k(i,1)*R10(1,:) 

   k(i,2)*R10(2,:) 

   k(i,3)*R10(3,:) 

   k(i,4)*R10(4,:) 

   k(i,5)*R10(5,:) 

   k(i,6)*R10(6,:) 

   k(i,7)*R10(7,:) 

   k(i,8)*R10(8,:) 

   k(i,9)*R10(9,:) 

   k(i,10)*R10(10,:) 

   k(i,11)*R10(11,:) 

   k(i,12)*R10(12,:) 

   k(i,13)*R10(13,:) 

   k(i,14)*R10(14,:) 

   k(i,15)*R10(15,:) 

   k(i,16)*R10(16,:) 

   k(i,17)*R10(17,:) 

   k(i,18)*R10(18,:) 

   k(i,19)*R10(19,:) 

   k(i,20)*R10(20,:) 

   k(i,21)*R10(21,:) 

   k(i,22)*R10(22,:) 

   k(i,23)*R10(23,:) 

   k(i,24)*R10(24,:) 

   k(i,25)*R10(25,:) 

   k(i,26)*R10(26,:) 
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   k(i,27)*R10(27,:) 

   k(i,28)*R10(28,:) 

   k(i,29)*R10(29,:)]; 

ERjt(:,1) = z3; 

ERjt(:,2) = z5; 

ERjt(:,3) = z10; 

ERjt0(:,1) = R3; 

ERjt0(:,2) = R5; 

ERjt0(:,3) = R10; 

[X,fval] = fmincon(@MyFun1,X0,[],[],[],[],lb,ub,@(X) MyCon1(X,ERjt,ERjt0,CovRitRjt,j,i),options) 

% find minimum of constrained nonlinear multivariable function 

eff(i,j)=-fval 

end 

end 

 

 

Name the second file: Myfun1.m 

 

function theta = MyFun1(X) 

 % passing theta to myfun1 

theta = -X(30); 

end 

 

 

Name the third file: Mycon1.m 

function [c,ceq] = MyCon1(X,ERjt,ERjt0,CovRitRjt,j,i) 

2929[...]3 ExpCov  
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2929[...]5 ExpCov  

2929[...]10 ExpCov  

129[...]3 R  

129[...]5 R  

129[...]10 R  

% covariance matrix 

CovRitRjt(:,:,1) = ExpCov3; 

CovRitRjt(:,:,2) = ExpCov5; 

CovRitRjt(:,:,3) = ExpCov10; 

292000[...] k

 
% creating bootstrap resamples 

z3=[k(i,1)*R3(1,:) 

   k(i,2)*R3(2,:) 

   k(i,3)*R3(3,:) 

   k(i,4)*R3(4,:) 

   k(i,5)*R3(5,:) 

   k(i,6)*R3(6,:) 

   k(i,7)*R3(7,:) 

   k(i,8)*R3(8,:) 

   k(i,9)*R3(9,:) 

   k(i,10)*R3(10,:) 

   k(i,11)*R3(11,:) 

   k(i,12)*R3(12,:) 

   k(i,13)*R3(13,:) 

   k(i,14)*R3(14,:) 

   k(i,15)*R3(15,:) 

   k(i,16)*R3(16,:) 
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   k(i,17)*R3(17,:) 

   k(i,18)*R3(18,:) 

   k(i,19)*R3(19,:) 

   k(i,20)*R3(20,:) 

   k(i,21)*R3(21,:) 

   k(i,22)*R3(22,:) 

   k(i,23)*R3(23,:) 

   k(i,24)*R3(24,:) 

   k(i,25)*R3(25,:) 

   k(i,26)*R3(26,:) 

   k(i,27)*R3(27,:) 

   k(i,28)*R3(28,:) 

   k(i,29)*R3(29,:)]; 

z5=[k(i,1)*R5(1,:) 

   k(i,2)*R5(2,:) 

   k(i,3)*R5(3,:) 

   k(i,4)*R5(4,:) 

   k(i,5)*R5(5,:) 

   k(i,6)*R5(6,:) 

   k(i,7)*R5(7,:) 

   k(i,8)*R5(8,:) 

   k(i,9)*R5(9,:) 

   k(i,10)*R5(10,:) 

   k(i,11)*R5(11,:) 

   k(i,12)*R5(12,:) 

   k(i,13)*R5(13,:) 

   k(i,14)*R5(14,:) 
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   k(i,15)*R5(15,:) 

   k(i,16)*R5(16,:) 

   k(i,17)*R5(17,:) 

   k(i,18)*R5(18,:) 

   k(i,19)*R5(19,:) 

   k(i,20)*R5(20,:) 

   k(i,21)*R5(21,:) 

   k(i,22)*R5(22,:) 

   k(i,23)*R5(23,:) 

   k(i,24)*R5(24,:) 

   k(i,25)*R5(25,:) 

   k(i,26)*R5(26,:) 

   k(i,27)*R5(27,:) 

   k(i,28)*R5(28,:) 

   k(i,29)*R5(29,:)]; 

z10=[k(i,1)*R10(1,:) 

   k(i,2)*R10(2,:) 

   k(i,3)*R10(3,:) 

   k(i,4)*R10(4,:) 

   k(i,5)*R10(5,:) 

   k(i,6)*R10(6,:) 

   k(i,7)*R10(7,:) 

   k(i,8)*R10(8,:) 

   k(i,9)*R10(9,:) 

   k(i,10)*R10(10,:) 

   k(i,11)*R10(11,:) 

   k(i,12)*R10(12,:) 
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   k(i,13)*R10(13,:) 

   k(i,14)*R10(14,:) 

   k(i,15)*R10(15,:) 

   k(i,16)*R10(16,:) 

   k(i,17)*R10(17,:) 

   k(i,18)*R10(18,:) 

   k(i,19)*R10(19,:) 

   k(i,20)*R10(20,:) 

   k(i,21)*R10(21,:) 

   k(i,22)*R10(22,:) 

   k(i,23)*R10(23,:) 

   k(i,24)*R10(24,:) 

   k(i,25)*R10(25,:) 

   k(i,26)*R10(26,:) 

   k(i,27)*R10(27,:) 

   k(i,28)*R10(28,:) 

   k(i,29)*R10(29,:)]; 

% expected returns for each fund 

ERjt(:,1) = z3; 

ERjt(:,2) = z5; 

ERjt(:,3) = z10; 

Erjt0(:,1) = R3; 

Erjt0(:,2) = R5; 

Erjt0(:,3) = R10; 

W = X(1:29);             

% weights for each sample fund                     

theta = X(30);                               
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CovRitRjt1 = CovRitRjt(:,:,1);              

CovRitRjt2 = CovRitRjt(:,:,2); 

CovRitRjt3 = CovRitRjt(:,:,3); 

Sigma2jt1=diag(CovRitRjt1);                  

Sigma2jt2=diag(CovRitRjt2); 

Sigma2jt3=diag(CovRitRjt3); 

CovRitRjt1 = CovRitRjt1-diag(Sigma2jt1);     

CovRitRjt2 = CovRitRjt2-diag(Sigma2jt2); 

CovRitRjt3 = CovRitRjt3-diag(Sigma2jt3); 

tmp = theta*ERjt0(j,:)-W'*ERjt;              

c = [tmp' 

     (W.^2)'*Sigma2jt1+W'*CovRitRjt1*W-Sigma2jt1(j) 

     (W.^2)'*Sigma2jt2+W'*CovRitRjt2*W-Sigma2jt2(j) 

     (W.^2)'*Sigma2jt3+W'*CovRitRjt3*W-Sigma2jt3(j)]; 

ceq = sum(W)-1;                            

end 
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Appendix D: Stata code for Chapter 5 

 

regress DEA Sharpe Alpha NER PE MV BTM, vce(robust) 

% regress DEA score on Shapre Alpha NER PE MV BTM 

tobit DEA Sharpe Alpha NER PE MV BTM, ll(0) ul(1) 

% regress DEA score on Shapre Alpha NER PE MV BTM in tobit model with lower 

bound equal to zero and upper bound equal to one 

margins, dydx(Sharpe) 

% margin parameter of Sharpe ratio 

margins, dydx(Alpha) 

% margin parameter of alpha 

margins, dydx(NER) 

% margin parameter of NER 

margins, dydx(PE) 

% margin parameter of PE ratio 

margins, dydx(MV) 

% margin parameter of MV 

margins, dydx(BTM) 

% margin parameter of BTM 

 

 

tobit DEA Sharpe Alpha NER PE MV BTM, ul(1) 

% regress DEA score on Shapre Alpha NER PE MV BTM in tobit model with upper 

bound equal to one 

margins, dydx(Sharpe) 

% margin parameter of Sharpe ratio 

margins, dydx(Alpha) 

% margin parameter of alpha 

margins, dydx(NER) 

% margin parameter of NER 

margins, dydx(PE) 

% margin parameter of PE ratio 
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margins, dydx(MV) 

% margin parameter of MV 

margins, dydx(BTM) 

% margin parameter of BTM 

 

tobit 1/DEA Sharpe Alpha NER PE MV BTM, ll(0) 

% regress DEA score on Shapre Alpha NER PE MV BTM in tobit model with lower 

bound equal to zero 

margins, dydx(Sharpe) 

% margin parameter of Sharpe ratio 

margins, dydx(Alpha) 

% margin parameter of alpha 

margins, dydx(NER) 

% margin parameter of NER 

margins, dydx(PE) 

% margin parameter of PE ratio 

margins, dydx(MV) 

% margin parameter of MV 

margins, dydx(BTM) 

% margin parameter of BTM 

 

glm DEA Sharpe Alpha NER PE MV BTM, family(binomial 1) link(logit) 

% regress DEA score on Shapre Alpha NER PE MV BTM in tobit model with logit 

function as link function 

margins, dydx(Sharpe) 

% margin parameter of Sharpe ratio 

margins, dydx(Alpha) 

% margin parameter of alpha 

margins, dydx(NER) 

% margin parameter of NER 

margins, dydx(PE) 

% margin parameter of PE ratio 
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margins, dydx(MV) 

% margin parameter of MV 

margins, dydx(BTM) 

% margin parameter of BTM 

 

pwcorr Sharpe Alpha NER PE MV BTM 

% Correlations (covariances) of Sharpe Alpha NER PE MV BTM 

pwcorr RankingDEA RankingSharpe RankingAlpha, sig  

% Correlations of ranking from DEA, Sharpe Alpha  

regress DEA NER PE MV BTM, vce(robust) 

% regress DEA score on DEA NER PE MV BTM with robust errors 

predict NEWDEA, xb 

% predict new DEA scores 

graph twoway (line DEA NEWDEA numberfund) 

% draw graph of DEA scores 

regress Sharpe NER PE MV BTM, vce(robust) 

% regress Sharpe ratio on NER PE MV BTM with robust errors 

predict NEWSharpe, xb 

% predict new sharpe ratios 

graph twoway (line Sharpe NEWSharpe numberfund) 

% draw line graph of new Sharpe ratios 

regress  Alpha NER PE MV BTM, vce(robust) 

% regress alpha on NER PE MV BTM with robust errors 

predict NEWAlpha, xb 

% predict new alphas 

graph twoway (line Alpha NEWAlpha numberfund) 

% draw line graph of new alphas 
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