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Abstract

Alloys used in fission and in future fusion reactors are subjected to extreme conditions
including high temperatures, corrosive and intense radiation environments. Understanding
the processes occurring at the microscopic level during radiation events is essential for the
further development of them. As a prospective candidate material for new reactors, oxide
dispersion strengthened (ODS) steels have shown good radiation resistance and the ability
to trap He into fine scale bubbles, thus preventing swelling and preserving high-temperature
strength. This thesis represents the findings obtained by performing computational studies of
radiation effects in pure iron, Y-Ti-O systems and a simplified model of ODS using Molecular
Dynamics (MD) and on-the-fly Kinetic Monte Carlo (otf-KMC) techniques.

MD studies of radiation damage were carried out in a perfect body-centred cubic (bcc)
iron matrix (α-Fe) in which yttria nanoparticles are embedded as a simplified model of an
ODS steel. The results have shown how the nanoparticles interact with nearby initiated
collision cascades, through cascade blocking and energy absorption. Fe defects accumulate
at the interface both directly from the ballistic collisions and also by attraction of defects
generated close by. The nanoparticles generally remain intact during a radiation event and
release absorbed energy over times longer than the ballistic phase of the collision cascade.
Also the nanoparticles have shown ability to attract He atoms as a product of fission and
fusion reactions. Moreover, studies showed that He clusters containing up to 4 He atoms are
very mobile and clusters containing 5 He or more become stable by pushing an Fe atom out
of its lattice position.

The radiation damage study in the Y-Ti-O materials showed two types of residual damage
behaviour: when the damage is localized in a region, usually close to the initial primary
knock-on atom (PKA) position and when PKA is directed in the channelling direction and
creates less defects compared to the localised damage case, but with a wider spread. The
Y2TiO5 and Y2Ti2O7 systems showed increased recombination of defects with increased
temperature, suggesting that the Y-Ti-O systems could have a higher radiation resistance
at higher temperatures.

The otf-KMC technique was used to estimate the influence of the prefactor in the Arrhe-
nius equation for the long time scale motion of defects in α-Fe. It is shown that calculated
prefactors vary widely between different defect types and it is thus important to determine
these accurately when implementing KMC simulations. The technique was also used to
study the recombination and clustering processes of post-cascade defects that occur on the
longer time scales.
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Chapter 1

Introduction and Background

Rapidly growing energy demand and worldwide depletion of fossils fuels force mankind to

investigate other energy sources such as nuclear energy. Fission and promising future fu-

sion reactors is one such source, that does not emit greenhouse gasses. Alloys used in these

reactors service under extreme conditions like high temperature, chemically reactive and in-

tense radiation environments. This causes severe damage to reactor structures and degrades

their physical and mechanical properties. Therefore there is high demand for structural al-

loys with outstanding properties in order to improve the safety of nuclear reactors and also

extend their service time.

Candidate materials for the generation IV reactors include ferritic/martensitic (F/M)

steels, austenitic stainless steels, Ni-base alloys and oxide dispersion strengthened (ODS)

steels [1]. All these materials have their advantages and disadvantages that must be con-

sidered. F/M steels are designed by balancing of ferritic and austenitic stabilizing alloying

elements. These steels have good void swelling and creep resistance and also fast radioac-

tive decay, so are friendly to the environment. The biggest concern is their embrittlement at

400 ◦C and low long-term creep rupture strength at higher temperatures. Austenitic stainless

steels show good resistance to creep and corrosion, but suffer from void swelling in a moder-

ate radiation environment. Ni-base alloys are excellent for high temperature applications due
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to their high temperature strength and have good creep rupture properties. The drawbacks

of these alloys are embrittlement and swelling under neutron radiation environment [2, 3].

ODS alloys have shown good radiation resistance, entrapment of He into fine scale bubbles

to avoid swelling and high-temperature strength. They are made through a rather complex

mechanical alloying process and their properties are still not fully understood, especially the

atomistic processes and mechanisms that are responsible for the better performance by ODS

alloys in intense radiation environments. A primary aim of the thesis is to investigate these

materials using advanced computational techniques.

1.1 ODS Steels

The development of ODS steels has began in late 1960’s and in last decades they became

one of the main potential materials for nuclear applications. In order to produce these novel

alloys a complicated manufacturing process must be followed, which common steps are given

in Figure 1.1 [4, 5].

First, the mixture of different powders is deformed by ball milling, which results in a

mechanical alloy with supersaturated precipitates of dissolved Y and O with Ti during hot

consolidation. Before the hot consolidation using hot extrusion or hot isostatic pressing (HIP-

ping), the ball milled powder must be canned and degassed. To improve the microstructures

of the grains, a sequence of post-extrusion cold and hot workings along with heat treatments

are performed on the product.

A usual composition of an ODS alloy is 0.2-0.5 wt% Y2O3, 0.2-1.0 wt% Ti, 1-3 wt%

W and the rest is Fe. Often addition of 12-14 wt% Cr is used to increase the corrosion-

oxidation resistance, where W provides solid solution hardening and Ti is responsible for the

formation of fine complex oxides and their homogeneous distribution [7]. The nanoparticles

act as a sink for He, by entrapping it into fine scale bubbles, thus providing resistance to

embrittlement and void swelling at lower temperatures [5]. Another very important property
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Figure 1.1: The common process of manufacturing ODS alloy. Adopted from [6].

of these nanoparticles is the suppression of the radiation damage to the material.

1.2 Previous Work and Research Aims

Over recent years ODS steels have been studied by scientists around the world as a poten-

tial material for the next-generation fusion and future fission reactors. They have shown

excellent structural and chemical stability at high temperature and in chemically reactive

environments, high creep resistance and are relatively stable under intense neutron radia-

tion. This means that they have potential for an extended service time compared to existing

materials in severe radiation conditions [5, 8, 9, 10].

Although there have been a number of experimental studies performed to investigate

ODS steel’s performance under irradiation [8, 11], the processes that are responsible for the

radiation resistant properties and the role of the embedded nanoparticles are still unclear.

The experiments show that compared to base material, ODS steels are more resistant to
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radiation damage and that radiation induced defects are similar as reported in ferritic steels.

A few suggestions to explain the better ODS performance are summarized by Schäublin et

al. [11]: oxide particles provide a high number of trapping sites for structural defects; oxide

particles bring disorder to the system and systems accumulate less damage in structures

when they already contain defects; oxide particles act as sinks for radiation induced defects

and provide a catalyst for recombination. Also quite few studies showed that oxide particles

are not influenced or influenced insignificantly by irradiation, e.g. by Fe-ion with 0.7 dis-

placements per atom (dpa) [12], by 2.5-15 dpa with neutrons at 670-807K [13], by 5 MeV Ni

ions at 500-700◦C to doses up to 150 dpa [14]. [14] also reported a reduction in particle size

and an increase of their density with increasing irradiation dose.

There are a very limited amount of results from modelling the mechanisms that appear

during radiation damage in ODS steels. A recent study by Bodrick et al. [15] using Density

Functional Theory (DFT) investigated the oxide particle-recombination catalyst behaviour

and the results showed the interface between Fe and Y2O3 has a long range attraction for

structural defects, acting as a strong sink for the defects and allowing recombination.

The other important property of ODS steels, which is also not fully understood, is the

ability to entrap He into fine scale bubbles. He atoms are a product of fission and fusion

reactions and have a great influence on the bulk microstructures and the alloys used in first

wall and blanket structures in fusion and future fission energy systems [16, 17]. Due to the

low solubility, helium has a strong tendency to reside in the materials in a form of helium-

vacancy clusters or being trapped at the grain boundaries or precipitate interfaces. ODS

steels have shown the ability to trap helium into small, high pressure bubbles, thus reducing

the amount of He reaching the grain boundaries or sitting in thermally stable helium-vacancy

clusters [18].

The behaviour of helium in Fe has been widely investigated by various groups [19, 20, 21],

where the studies were carried out to determine such properties as the diffusion behaviour

of He interstitials and He clusters, He clustering, the role of helium-to-vacancy ratio in
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He clustering etc. Also recent experimental studies have been carried out to study helium

bubbles in nanostructured ferritic alloys [22, 23, 24], where the findings show increased helium

concentration on nanoparticles, indicating a reduction in He bubble size, thus preventing

these alloys from embrittlement.

Even though there are quite extensive experimental studies of helium in ODS materials,

this is not the case with the results from modelling. Earlier works studied helium migration

in α-Fe, where very low migration energies for He atom were observed, Em ≈ 0.08eV [25].

Only recently improved interatomic potentials to describe He-He and He-Fe interactions

were developed [26, 27] and atomistic studies of nucleation of He clusters [21] and He defect

binding energies [28] were carried out. The situation with the studies of the effects of helium

in ODS by applying atomistic models is even more complicated, since there are no studies

published.

In addition, recent work by Barnard et al. [29] showed that Y-Ti-O nanoparticles in ODS

are more likely to be small oxide phases rather than solute-enriched clusters, thus in this

work Y-Ti-O systems are also ivestigated as bulk oxide systems in order to look into the

processes occurring during the ballistic phase of radiation damage events. Work by Zhang et

al. [30] showed that the fluorite Y2TiO5 structure is a very radiation-resistant composition

with fairly low critical amorphization temperature. Also, it has been suggested that Y2TiO5

and Y2Ti2O7 may adopt the orthorhombic structure as an additive within ODS steels [31]

and their results show that cubic Y2TiO5 opposed to fully ordered Y2Ti2O7 could greatly

enhance the recovery from radiation damage.

It was also observed that defects in the Fe regions of the ODS material behave in the

same way as in pure α-Fe systems. Therefore the study of defect evolution in pure α-Fe

systems is also very important in order to understand the defect behaviour in ODS systems.

There is a large amount of data from experiments and from modelling due to the common

use of Fe in nuclear applications. One of the first works was carried out by Johnson [32]

in 60’s, where the migration energies, atomic configurations and diffusion mechanisms were
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studied. The initial work was followed by the study of vacancy-cluster configurations and

their binding energies [33], showing the stability of vacancy clusters containing at least

4 vacancies. Recently the potential energy functions describing interactions between iron

atoms [34, 35, 36] were developed that can reasonably reproduce such properties of iron

systems as lattice parameter, elastic constants, point-defects energies etc. The improvement

in the description of the interacting iron atoms allowed scientists to perform studies that can

provide understanding in: primary damage formation [37, 38], energy landscapes of small

clusters [39] and cascade annealing simulations over long time scales [40, 41, 42, 43, 44]. Most

of these studies were focussed to investigate particular aspects of defected α-Fe systems, thus

a more complete study is required to provide an insight look of defect evolution, which would

help to predict defect evolution in ODS materials.

The increasing computational power of computers and availability of high performance

computing clusters also greatly effected the field of material modelling. Previous studies over

long time scales were using KMC with pre-calculated tables of possible events, but nowadays

more modern techniques allow to calculate such events as He diffusion or defect mobility on

the fly.

For the reasons stated above, this thesis is focussed on identifying such processes by

modelling radiation damage in simplified models of the ODS systems, α-Fe and bulk Y-Ti-O

systems, representing ODS particles.

1.3 The Project

This work is a part of a collaborative research between the United Kingdom and India.

Model alloys are produced by Indira Gandhi Centre for Atomic Research (IGCAR), a leading

atomic research centre of India. They produce ODS mother tubes and also conduct ion

radiation experiments, which are analysed at IGCAR and Oxford University 1.2. High-

resolution Transmission Electron Microscopy (HRTEM) studies of produced and irradiated
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models were able to identify the crystal structures of the oxide particles and atom probe

tomography (APT) analysis allowed to reconstruct the composition of the samples at the

atomic level and look into the effects of processing conditions and irradiation on the oxide

particles.

(a)

(b)

(c)

Figure 1.2: Experimental studies by research partners at IGCAR and Oxford University: (a) - Oxide particles
in Fe-14Cr-0.2Ti-0.3Y2O3 alloy, (b) - Oxide structure depending on the alloy composition, (c) - A small 3D
volume reconstructed using APT. Adopted from [6].

Simulations together with experiments help in providing a wider perspective of the prob-

lem and give a deeper look into the processes that happen at the atomistic level. The
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simulations can help to link the results obtained before and after irradiation events that

cannot be followed on an experimental time scale. Also, computer simulation allows param-

eters to be changed without performing costly experiments, such as temperature, energy and

material composition.

1.4 Modelling of Radiation Damage

This work is based on the study of collision cascades and the processes involved in radiation

events in models of ODS. To simulate radiation events the Molecular Dynamics (MD) tech-

nique has been used by a number of groups since the first collision cascade simulations done

by Gibson in 1960’s [45] and it is now one of the standard tools for the investigation.

The collision cascade mechanism happens within the first few ps of the radiation event

and is driven by energetic collisions of the nearby atoms effected by the energetic particle

(primary knock-on atom) that spreads collision sequences throughout the system. During

these few ps, also known as ballistic phase of the radiation event, the initial damage region

becomes highly distorted and leads to a “thermal spike”, a quick local temperature increase,

and thermally driven processes occur. After the ballistic phase, the system is left with

metastable defects as it reaches a local minimum and the processes of defect recombination,

migration and clustering take place on much longer time scales - the so called “Recovery

Phase”, which cannot be simulated using MD and other techniques must be employed, such

as the Kinetic Monte Carlo (KMC) [46, 40]. The time scale of the radiation event is given

in Figure 1.3.

Thus, a hybrid MD - KMC technique is a very powerful tool to model radiation effects

as long time evolution of cascades. MD is used to evolve a system during the ballistic phase

of a collision cascade and KMC the recovery phase of the same system. In this study the

KMC phase is carried out on the fly.

The second half of this work is dedicated to developing this hybrid technique by adding
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Figure 1.3: Representation of the time scale of radiation events. The ballistic phase occurs during the first
few ps when high energy collision cascade takes place, and when system stabilizes to a local minimum.
During the recovery phase, that can take ns, ms or even s, defect recombination, migration and clustering
happens.

additional functionality to the KMC methodology to ensure accuracy and reliability. Then

the developed technique was applied to study the defect motion in radiation damaged α-Fe

systems.

1.5 Implemented and Developed Software

The on-the-fly KMC technique (otf-KMC) used in this work was developed in collaboration

with colleagues C. Scott and M. Yu from Loughborough University’s materials modelling

group by adopting the initial work done by L. Vernon [47]. The main contributions to the

methods in this work include, but are not limited to: the Dimer + minimum mode fol-

lowing algorithm approach for finding saddle states, ART (activation-relaxation technique),

RAT (relaxation and translation), String, NEB (nudged elastic band) and Lanczos methods,

Hessian matrix, eigenvalue and prefactor calculations and the reuse of transitions by incor-

porating ‘Nauty’. Contributions were also made to the LboMD (Loughborough Molecular
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Dynamics) package. Most of the contributions were associated with interatomic potentials

and electrostatic calculations and are described within this thesis. Atomic visualisers devel-

oped by M. Robinson and by C. Scott were used for visual data interpretation along side

with various scripts that were written for the analysis.

1.6 Thesis Layout

Chapter 1 introduces the research problems and gives reference to some of the previous

work on the topic. The thesis contains 6 further chapters where two explain the methodology,

followed by three results chapters. The thesis is finalised with the conclusions and future

work chapter.

Chapter 2, the first methodology chapter, is dedicated to explain the main concepts of

the MD technique and the necessary extensions to it.

Chapter 3, the second methodology chapter, is focussed on the long time scale simu-

lations technique - otf-KMC which was developed during the course of this work with the

emphasis on the sections where the technique was improved to gain efficiency and reliability.

Chapter 4 describes the MD simulations that were used to study the radiation effects in

ODS and the formation of He bubbles. The results are compared with the similar simulations

in pure iron systems.

Chapter 5 is mainly focussed on studying 3 systems representing the structure of the

nanoparticles observed in the ODS materials. The preliminary studies are carried out using

the MD technique and are focussed on gaining better understanding of the radiation effects

in them.

Chapter 6 is dedicated to analyse the influence of the prefactor in the Arrhenius equation

and to apply the otf-KMC technique to defect motion in pure iron systems.

Chapter 7, is the final chapter, where all the achieved results are summarised and the

potential future studies are highlighted.



Chapter 2

Methodology I: Molecular Dynamics

2.1 Introduction

The Molecular Dynamics (MD) method was introduced in the middle of 20th century by B.

J. Alder and T. E. Wainwright and has been used extensively since then [48]. It is designed

to describe the behaviour of physical systems at the macroscopic level while simulating the

microscopic level by modelling atomic and molecular interactions. The method was firstly

used to model hard spheres [49] and with time has been employed for various applications,

such as protein-folding problem [50] and radiation simulations [45]. Due to the increasing

computational power of computers, the MD method became more and more useful, since sys-

tems containing millions of atoms, described by simple pair-wise potentials can be modelled,

where more complex potentials limit systems’ sizes to thousands of atoms.

MD simulations are based on computing the motion of the N atoms in the system and

how the positions and the velocities change with time based on Newton’s second law:

mi
d2xi

dt2
= −∇V (x1, ...,xN) , i = 1..N, (2.1)

where mi is the mass of the i-th atom, whose position at time t is xi. Here the force on

each atom is assumed to be derived from a potential function V , which depends only on the
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coordinates of the atoms.

2.2 Time Integration

There is no analytical solution for the Newton’s equations in MD because of the complicated

nature of the potential energy; thus numerical algorithms must be employed. The most

widely used algorithm to integrate time in MD simulations is the so called Verlet algorithm,

which was promoted in MD simulations by L. Verlet in 1967 [48]. The algorithm is a

combination of two Taylor expansions of the position vector x from time t forward to t+ ∆t

and backward to t−∆t:

x(t+ ∆t) = x(t) +
dx(t)

dt
∆t+

1

2

d2x(t)

dt2
∆t2 +

1

3!

d3x(t)

dt3
∆t3 + O(∆t4), (2.2)

x(t−∆t) = x(t)− dx(t)

dt
∆t+

1

2

d2x(t)

dt2
∆t2 − 1

3!

d3x(t)

dt3
∆t3 + O(∆t4). (2.3)

By adding these two expressions we are eliminating odd-order terms:

x(t+ ∆t) = 2x(t)− x(t−∆t) +
d2x(t)

dt2
∆t2 + O(∆t4), (2.4)

It can be seen the (Equation 2.4) that after the addition, the third-order term is elimi-

nated, thus making this integrator an order more accurate than the Taylor expansion alone.

Also the Verlet integrator’s steps do not depend on velocities, only on acceleration d2x(t)
dt2

,

which can be derived from intermolecular forces and Newton’s second law.

Besides the Verlet algorithm, there are many other numerical algorithms, the like Euler’s

method, Beeman’s, Leap-frog etc. One must carefully choose an algorithm for simulations

by keeping in mind that it should conserve energy and momentum and be computationally

efficient at the same time. In this work the Velocity Verlet algorithm is used [51], because

of its straightforward nature, modest memory usage, computational efficiency and ability to
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calculate velocities at each time step. By employing Taylor expansion the Velocity Verlet

algorithm can be derived as follows:

x(t+ ∆t) = x(t) +
dx(t)

dt
∆t+

1

2

d2x(t)

dt2
∆t2 + O(∆t3), (2.5)

v(t+ ∆t) = v(t) +
dv(t)

dt
∆t+

1

2

d2v(t)

dt2
∆t2 + O(∆t3), (2.6)

a(t+ ∆t) = a(t) +
da(t)

dt
∆t+ O(∆t2), (2.7)

where v(t) = dx(t)
dt

and a(t) = dv(t)
dt

. After updating the positions using (2.5) we can derive:

da(t)

dt
=

a(t+ ∆t)− a(t)

∆t
+ O(∆t2). (2.8)

By substituting the last expression into Equation 2.6 we will get an expression in Equation

2.9 to calculate the new velocities, that can be used in Equation 2.5.

v(t+ ∆t) = v(t) +
1

2
[a(t+ ∆t) + a(t)] + O(∆t2). (2.9)

2.3 Boundary Conditions

In MD simulations system sizes usually vary from a few thousand to a few million atoms. This

number has increased over the years with evolving computer technology and computational

speed, but still it is not even close to modelling a bulk material. For this reason boundary

conditions are applied to simulate large systems by modelling only a small part of them, also

known as a primary cell.

2.3.1 Periodic Boundary Conditions

When using periodic boundary conditions (PBC) in simulations, we imagine that the primary

cell is only a small part of a whole system, which is surrounded by exact replicas, known
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as image cells, in all the directions, where periodic boundary conditions are applied. This

representation could be understood as a rigid translation of the unit cell containing atoms

into all three Cartesian dimensions. Periodic boundary conditions reflect not only the atom

positions but also their momenta from primary cell to all image cells. Thus every atom in a

unit cell should be thought of not only as interacting with other atoms in the primary cell,

but also with nearby image cells atoms. Figure 2.1 represents the main principle of PBC: a

particle which goes out of the primary cell through one side, and is brought back into the

cell through the opposite site.

Figure 2.1: Schematic representation of the periodic boundary conditions, where the centre cell (primary
cell) is the simulated system and the cells around the primary cell (image cells) responsible for replicating
the bulk system effect. The main principle: if a particle leaves the primary cell on one side, it must re-enter
the cell on the opposite site.

One must bear in mind that periodic boundary conditions only work well while the

simulated event is contained in the simulation box.

2.3.2 Fixed Boundary Conditions

This kind of boundary condition is typically used when an investigated physical process

is contained in the interior of a simulation box and causes no or negligible effect on the

boundary, thus making the surrounding area of the simulation box stable. Fixing boundaries,
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is a common way to ensure process containment. Such as when a large momentum is imparted

to a non PBC system and atomic drift is to be avoided. This is depicted schematically in

Figure 2.2.

Figure 2.2: Schematic representation of fixed boundary conditions in 2D with two outside atoms layers fixed
(shown in red) and the rest atoms allowed to move (shown in green).

2.4 Interatomic Potentials

A good representation of a system’s energetics and dynamics depends on the chosen inter-

atomic potentials. When choosing them for a specific system, several things must be consid-

ered. Potentials have to reproduce the physical properties of the system under investigation,

they also should be computationally effective and preferentially calibrated with experimental

results.

Usually one must choose between accuracy and computational speed. High accuracy

simulations are usually feasible for small systems where systems consist up to few hundred

atoms, e.g. computational chemistry simulations using ab-initio methods. The advantage

of the more approximate models using potentials, is their ability to study large systems,

containing hundreds of thousands or millions atoms.

For the simulations presented here, two types of interatomic potentials were used: pair

potentials and Finnis-Sinclair type potentials.



16 CHAPTER 2. METHODOLOGY I: MOLECULAR DYNAMICS

2.4.1 Pair Potentials

Pair potentials have one of the simplest form:

E =
1

2

∑
i,j(i 6=j)

Vij (rij) , (2.10)

where E is the total potential energy of the whole system, Vij is the pair potential energy

function and rij is the separation between atoms i and j.

Pair potentials are easy to implement and usually computationally efficient, but they are

not always suitable to represent metals due to their inability to reproduce elastic constants

accurately [52].

2.4.1.1 ZBL

The well-known screened Coulomb ZBL potential was developed by a group of three authors

J. F Ziegler, J. P. Biersack and U. Littmark in 1985 [53]. It is used to describe repulsion of

nucleus-nucleus Coulombic interactions at very small distances via screening the electrostatic

potential by the outer electrons. The ZBL potential, also known as the universal potential,

is widely used in molecular dynamics and other ion implantation simulations because of the

accurate repulsive force calculations at close ranges.

As can be seen in Equation 2.11, the ZBL potential depends on three variables - the

charges Z1 and Z2 on the nuclei, the interatomic separation r and the screening function ϕ:

VZBL(r) =
1

4πε0

Z1Z2e
2

r
ϕ(
r

a
), (2.4.11)

where e - electronic charge, ε0 the permittivity of vacuum, a - a screening parameter. At

very small distances between interacting atoms the repulsive interaction can be basically

represented as Coulombic and when distances increase the electron cloud screening is taken

in to account ϕ(r) → 1, when r → 0. The screening parameters and the forms of screening

functions are respectively given in Equations 2.4.12 and 2.4.13:
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a =
0.8854a0

Z0.23
1 + Z0.23

2

, (2.4.12)

ϕ(x) = 0.1818e−3.2x + 0.5099e−0.9423x + 0.2802e−0.4029x + 0.02817e−0.2016x, (2.4.13)

where a0 - the Bohr atomic radius = 0.530Å.

Figure 2.3 shows the graphs of the ZBL potential for the atomic pairs used in this thesis

against the interatomic separation between the atoms.
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Figure 2.3: The form of the ZBL potential for the pair interactions used in this work.

2.4.1.2 Buckingham

The Buckingham potential is named after its author R. A. Buckingham and extensively used

in MD simulations. He suggested it, as an improvement of the Lennard-Jones potential for
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the classical equation of state of gaseous helium, neon and argon [54]. This potential also

became popular to describe interactions for ionic and semi-ionic solids. The general form is:

V (r) = Ae−
r
ρ − C

r6
, (2.4.14)

here A, ρ and C are constants and r is the interatomic separation.

The right hand term of Equation 2.4.14 represents the van der Waals energy arising

from the mutual polarization of interacting atoms and the exponential term describes the

potential’s repulsiveness.

The Buckingham potential in this work was implemented to estimate interactions between

yttria nanoparticle’s atoms and also to describe the Y-Ti-O systems.

The constants A, ρ and C describing the yttria nanoparticle’s interaction between Y+3-

O−2 and O−2-O−2 are taken from [55] and [56] accordingly. Values for the Y+3-O−2 interac-

tion were derived using low-symmetry crystal property information. They are given in Table

2.1 and the potentials’ graphs are plotted in Figure 2.4.

Interaction A(eV) ρ(Å) C(Å
6

eV)
Y+3-O−2 1345.1 0.34910 0.0
O−2-O−2 22764.0 0.14900 27.88

Table 2.1: The Buckingham potential constants for describing Y+3-O−2 and O−2-O−2 interactions within
yttria nanoparticle.

To describe the interactions within the Y-Ti-O systems the set of constants were used

(see Table 2.2) derived empirically using the relaxed fitting method by fitting to the experi-

mentally measured data [57]. The form of the interactions are plotted in Figure 2.5.

Interaction A(eV) ρ(Å) C(Å
6

eV)
Ti+4-O−2 2088.107 0.2888 0.0
Y+3-O−2 1519.279 0.3291 0.0
O−2-O−2 25.41 0.6937 32.32

Table 2.2: The Buckingham potential constants for describing Ti+4-O−2, Y+3-O−2 and O−2-O−2 interactions
to describe Y-Ti-O systems.
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Figure 2.4: The form of the Buckingham potential for the Y+3-O−2 and O−2-O−2 interactions.
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Figure 2.5: The form of the Buckingham potential for the Ti+4-O−2, Y+3-O−2 and O−2-O−2 interactions
to describe Y-Ti-O systems.
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2.4.1.3 Morse

Another commonly used pair potential is the Morse potential developed by an American

physicist Philip M. Morse [58]. This potential was originally created to represent motions

of nuclei in diatomic molecules and later was applied for face-centre and body-centre cubic

metals [59]. Due to its simplicity became quite popular for fitting spectroscopic data. The

expression of the Morse potential energy is:

V (r) = De(e
−2a(r−re) − 2e−a(r−re)), (2.4.15)

where re is the equilibrium bond length, De is the potential energy well’s depth at the re, a

is the potential energy well’s width and r is the interatomic separation.

In this work we use the Morse potential to describe the attraction between iron and

oxygen atoms. Figure 2.6 illustrates the form of Morse potential function used in this work

and Table 2.3 gives the values of the parameters. These values were chosen to stabilise the

yttria nanoparticle within the iron lattice by providing a weak binding between the O and

Fe atoms.

Interaction De(eV ) re(Å) a(Å
−1

)
Fe-O 0.3 2.5 2.0

Table 2.3: The parameter values for the Morse potential to describe a weak binding between the O and Fe
atoms.

2.4.1.4 Aziz

For the He-He interaction the Aziz potential [26] was used, which holds the Hartree-Fock-

dispersion form [60] and is reported to have a very good agreement with the ab-initio results.

VAziz(x) = ε

(
A exp

(
−αx+ βr2

)
− F (x)

2∑
j=0

c2j+6/x
2j+6

)
, (2.4.16)

with



2.4. INTERATOMIC POTENTIALS 21

1.5 2.0 2.5 3.0 3.5

Separation ( )

2

0

2

4

6

8

10

12

P
o
te

n
ti

a
l 
E
n
e
rg

y
 V
M
or
se

(e
V

)
Fe-O

Figure 2.6: The form of the Morse potential for describing a weak binding between the O and Fe atoms.

F (x) =

exp
[
−
(
D
x
− 1
)2
]
, x < D

1, x ≥ D
, (2.4.17)

where x = r/rm. The values of the constants are given in Table 2.4 and the form of the

potential is shown in Figure 2.7.

A α c6 c8 c10

186924.404 10.5717543 1.35186623 0.41495143 0.17151143

β(Å
−1

) D(Å) ε(K) rm(Å)
−2.07758779 1.438 10.956 0.29683

Table 2.4: The constant values for the Aziz potential to describe the He-He interaction.

2.4.2 Many-body Potentials

A great improvement in the field of pair potentials was suggested by Finnis & Sinclair (F-S)

[52] and Daw & Baskes [61, 62] in 1980s: a many-body potential type ‘The Embedded-Atom
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Figure 2.7: The form of the Aziz potential.

Method’ (EAM). In this case the energy for an atom is derived from the energy needed to

embed an atom in the local electron density by surrounding atoms. The energy calculated

by the F-S and EAM methods V EAM
i (r) can expressed as such:

V EAM
i (r) = −f(ρi(r)) +

1

2

∑
j

V pair
ij (r), (2.4.18)

where V pair
ij (r) is a central pair potential, ρi(r) - electron density and f - an embedding

function for the EAM potential specifically.

ρi(r) =
∑
j

φij(r), φij(r) = Zi(r)Zj(r)/r, Z(r) = Z0(s+ βrv)e−αr, (2.4.19)

here φij(r) is a function between atoms i and j, α, β and v are parameters and Z0 is the

number of valence electrons.
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2.4.2.1 Ackland-Mendelev

The Finnis-Sinclair type potential [63] is similar to the generic form, but the form of f in

Equation 2.4.18 is f(ρ) = −Aρ 1
2 and parametrised fits are used as φij(r) to give the potentials

a form that is easily implemented. In this work, to describe the Fe-Fe interaction, three

different sets of parameters were used [34, 35, 36] where the general form of the potentials

to calculate the energy in a N atom system is :

E =
1

2

N∑
i 6=j=1

Vij(rij)−
N∑
i=1

(
N∑
j=1

Φij(rij)

)1/2

, (2.4.20)

where the first part of the expression represents a pair potential and the second the embedded

part. Ackland employed cubic splines for the potentials and was able to fit the lattice

parameter, elastic constants and cohesive energy of α-Fe. The form is given in Equations

2.4.21 and 2.4.23, with parameters given in Table 2.5.

V (rij) =
na∑
k=1

akH (rk − rij) (rk − rij)3 , (2.4.21)

ak, rk are constants, with the values given in Table 2.5, rij is the atomic separation between

atoms i and j and H is the Heaviside function:

H(x) =

0, x > 0,

1, x < 0.
(2.4.22)

In this work the pair potential (Equation 2.4.21) was splined to the ZBL potential using

a sixth order exponential polynomial, with the details given in the later section 2.4.4.

k 1 2 3 4 5 6

ak(eV/Å
−3

) −36.559853 62.416005 −13.155649 −2.721376 8.761986 100.000

rk(Å) 1.180 1.150 1.080 0.990 0.930 0.866025

Table 2.5: Values of the parameters for the pair potential function in the many-body potential for the Fe-Fe
interaction described by the Ackland 1997 potential [34].
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Similarly cubic splines were used (Equation 2.4.23) for the embedding term in Equation

2.4.20, with the parameters values given in Table 2.6.

Φ(rij) =

nA∑
k=1

AkH (Rk − rij) (Rk − rij)3 , (2.4.23)

k 1 2

Ak(eV/Å
−3

) −36.559853 62.416005

Rk(Å) 1.180 1.150

Table 2.6: Values of the parameters for the embedding term in the many-body potential for the Fe-Fe
interaction described by the Ackland 1997 potential [34].

Later this potential was improved [35] by changing the expression of f in Equation 2.4.18

to the one given in Equation 2.4.24. By introducing more cubic splines in the pair term,

on average, it gave a better agreement with the lattice parameter, elastic constants, point-

defects energies etc, obtained experimentally and by first-principles calculations. Later, it

was improved again [36] by recalculation of the parameters and expansion of f as shown in

Equations 2.4.24 and 2.4.25.

f(ρ) = −ρ1/2 + afρ2. (2.4.24)

f(ρ) = af0ρ
1/2 + af1ρ

2 + af2ρ
4. (2.4.25)

where af , af0 , af1 and af2 are constants.

2.4.2.2 Gao

A new Fe-He potential was recently developed by F. Gao et al. [27] in combination with the

Ackland 2004 [36] and the Aziz [26] potentials. The potential is based on “s-band model”

and has been tested based on ab-initio studies by employing a least squares fitting technique.

They showed that the calculations achieved with the new potential are in an agreement with
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both ab-initio and the previous potential calculations and is a good improvement overcoming

disadvantages of the previous potentials.

The formalism of the potential is very similar to the one of the Ackland 2004 [36] and

has the same form of the pair potential (Equation 2.4.23) and the many-body interaction

function (Equation 2.4.25) with the parameter values given in Tables 2.7 and 2.8 accordingly.

k 1 2 3 4 5 6 7

ak(eV/Å
−3

) −45.91636 35.55031 164.31987 −1.72746 0.10677 0.07372 0.03824

rk(Å) 1.6155 1.6896 1.8017 2.0482 2.3816 3.5067 3.9028

Table 2.7: Parameters of the pair potential function in the many-body potential for the Fe-He interaction
described by the Gao potential [27].

af0(eV/Å) af1(eV/Å
−4

) af2(eV/Å
−8

)
0.22081 1.36751 3.38226

Table 2.8: Parameters of the many-body interaction function in the many-body potential for the Fe-He
interaction described by the Gao potential [27].

The difference comes in how the total electron density is calculated. They derived it from

the s-band model and can be written as follows:

ρi(r) =
∑
j

φij(r), φij(r) = Nsr
3 exp (−2ξsr), (2.4.26)

where ξs = 12.89363Å
−1

- an average from the 1s and 4s Hartee-Fock orbitals for He(ξ1s)

and Fe(ξ4s) and Ns = 20.0Å - represents the s-electron density at the first nearest neighbour

distance.

For the close range interaction the repulsive part of the pair potential was connected to

the Biersack-Zeigler universal function VBZ [64] and the final form of the interaction is:

V Fe−He
ij (rij) = Vij(rij)F (r) + VBZ(rij) [1− F (rij)] , (2.4.27)

where F (rij) = 1/ (1 + exp (−bf (rij − rf ))) with bf = 10.0Å
−1

, rf = 0.25Å.
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2.4.3 Electrostatics

Estimation of the electrostatic energy is a big computational challenge in MD simulations.

The difficulty arises from the fact that electrostatic energy has a relatively long-ranged r−1

decay and large cut-offs must be used, if evaluating a direct sum of such interactions.

In this work three different techniques have been implemented to incorporate electro-

statics in to MD and long time scale simulations. First and least efficient is a sum over

of all charge interactions expressed by a Coulomb law within the primary cell and with a

fixed number of image cells. This technique was used only for comparison and benchmark-

ing with other two, since it is very computationally expensive. The second technique is the

Ewald summation, which is usually considered as a standard algorithm to accumulate elec-

trostatic interactions in periodic systems. The third, even more computationally efficient, is

the Fennel approximation.

2.4.3.1 Direct summation

This method considers a primary cell containing N electrostatic particles and is surrounded

by image cells in directions where periodic boundaries are applied. Then primary cell’s

electrostatic energy can be expressed by direct summation as follows

Vel. =
1

4πε0

1

2

∑
n

N∑
i=1

N∑
j=1

′ qiqj
|rij + kL| , (2.4.28)

where image cells are being expressed with integer coordinates n = (l,m, n), rij is the

distance between electrostatic particles i and j with charges qi and qj; L is the primary cell’s

box length.
∑ ′ indicates that for n = 0, the interaction i = j is omitted.

As can be seen in Equation 2.4.28, this method is very inefficient and computer resources

demanding. One of the way of reducing computational costs is by using a cut-off ncut

(n ≤ ncut) as small as possible while maintaining fairly accurate values for E.
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2.4.3.2 Ewald Summation

The Ewald summation method was developed in 1921 and named after its author P. P.

Ewald [65]. This method has become a standard for estimating electrostatic energy in

periodic systems [66]. The idea of this method is to split the conditionally convergent

expression (Equation 2.4.28) into two - short and long - absolutely convergent summations

which can be computed much faster:

Vel. =
1

2

N∑
i=1

N∑
j=1

[
qiqj

(∑
n

′ erfc (α |rij + n|)
|rij + n| (2.4.29)

+
1

πL3

∑
k 6=0

4π2

|k|2
exp

(
−π

2 |k|2
α2

)
cos (k · rij)

)]

− α

π
1
2

N∑
i=1

q2
i +

2π

(2εS + 1)L3

∣∣∣∣∣
N∑
i=1

qiri

∣∣∣∣∣
2

The first term in Equation 2.4.30 represents the short-range part in real space, where

α is the damping parameter and is controlled by a real space cut off radius rc and desired

precision ε as given in Equation 2.4.30, as n accounts for the image cells that are being

expressed with integer coordinates n = (l,m, n) to take into account periodic boundary

effects within rc.

α =
√
− log (ε)/rc. (2.4.30)

The second term in the equation accounts for the long-range interaction in Fourier space,

where k is the reciprocal vector equal to 2πn/L2. The last two terms are a particle self-term,

where εS is the dielectric constant of the surrounding medium, and a dipolar term, which is

neglected by using εS =∞, due to the assumption that conducting boundary conditions are

being used and there is no dipole moment.

The original Ewald summation is an O(N2) algorithm, but with careful choice of param-
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eters, thoughtful algorithm development and optimizations, calculation costs can be reduced

to O(N
3
2 ) or even to O(N logN).

Even though Ewald summation is a relatively quick and robust method, as with most of

the methods, one must choose between accuracy and speed. Therefore, a set of tests were

carried out in a pure Y-Ti-O system containing 11,000 atoms to determine the best set of rc

and ε parameters.

α rc
∆ max diff. ∆ avg. time

(eV/Å
3
) (s)

0.0001 10.3 − −
0.0001 8.5 0.24 1.04
0.0001 9.0 0.19 0.70
0.0001 9.5 0.13 0.40
0.0001 10.3 0.0 0.0
0.0002 8.5 0.21 0.51
0.0002 9.0 0.15 0.35
0.0002 9.5 0.07 0.03
0.0002 10.3 −0.09 −0.21
0.0005 8.5 0.15 −0.05
0.0005 9.0 0.07 −0.27
0.0005 9.5 −0.04 −0.41
0.0005 10.3 −0.24 −0.47
0.001 8.5 0.08 −0.51
0.001 9.0 −0.01 −0.63
0.001 9.5 −0.16 −0.68
0.001 10.3 −0.39 −0.63
0.005 8.5 −0.23 −1.09
0.005 9.0 −0.36 −1.11
0.005 9.5 −0.66 −1.14
0.005 10.3 −0.94 −1.07

Table 2.9: Testing parameters of the Ewald summation method to improve the computational time without
losing accuracy. Tests were carried out in such a way, that for each pair of parameters, the electrostatic
interactions were calculated for two systems: the system which is in a local minimum and the same system
with one atom slightly moved (by 0.2Å). Here the ∆ max diff. column shows the difference in the infinity
norm of the force vectors of the systems and the ∆ avg. time - average computational time change with
respect to the first line (the reference parameters set).

The data from the tests is given in Table 2.9. The first line shows good accuracy with the

direct method, but is rather slow and is used for comparison. To measure the accuracy of the

set of parameters, maximum difference in the force component was calculated between two
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systems and average evaluation time is measured and then compared to the first line. Three

sets of parameters showed good correlation between improved speed and minimum loss in

accuracy: (0.0005, 9.5), (0.001, 9.0), (0.0005, 8.5) and were further analysed by checking the

scaling with increasing size of a system (Figure 2.8).
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Figure 2.8: The graphs illustrating the scaling of the Ewald summation method, with respect to α and rc
parameters and number of atoms in the systems.

Figure 2.8 shows how computationally expensive the Ewald method is, therefore a good

set of parameters is essential. The red graph represents the set of parameters (α = 0.0001

and rc = 10.3) obtained by [67] for ionic systems and is used for comparison. Clearly, the

other three parameter sets require less computational time, but introduce small changes in

the force and energy evaluations. By comparing this scaling data and the changes given in

Table 2.9, the (α = 0.001 and rc = 9) set has been chosen for this work, as it not only

has the smallest change in the maximum force component, but also is faster than the set of

parameters obtained by [67].
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2.4.3.3 Fennell Approximation

Several studies have been done to investigate alternatives of the Ewald summation in an

efficient pairwise fashion. One of the alternatives was suggested by Christoper J. Fennel

et al. [66]. Their suggestion derived from the Wolf and Zahn methods [68] and shows very

similar results to the Smooth Particle Mesh Ewald (SPME) method [69] by comparing the

force and torque vectors, computational cost benefits (as pairwise cut-off methods tend

to scale almost linearly with respect to the system size) and also, in our case, is easily

implemented in the MD package.

VDSF (r) = qiqj

[
erfc(αr)

r
− erfc(αRc)

Rc

+

(
erfc(αRc)

R2
c

+
2α

π1/2

exp(−α2R2
c)

Rc

)]
, (2.4.31)

FDSF (r) = qiqj

[(
erfc(αr)

r2
+

2α

π1/2

exp(−α2r2)

r

)
(2.4.32)

−
(

erfc(αRc)

Rc

+
2α

π1/2

exp(−α2R2
c)

Rc

)]
,

where r ≤ Rc. Equations 2.4.31 and 2.4.33 represent the electrostatic summation method

suggested in [66]. This pairwise potential depends on a damping parameter α and the

cut-off radius Rc. Authors suggest that one should consider electrostatic damping between

0.2− 0.25Å
−1

. When α is set equal to 0 we get the undamped case.

By using this potential, functionality and speed can be gained in the MD simulations, but

the improvement comes with a loss in agreement with the empirical electrostatic potential

as shown in Figure 2.9.
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(a) (b)

Figure 2.9: Comparison between the Coulomb electrostatic potential and the Fennel approximation between
yttrium (+3) and oxygen (-2) atoms in terms of: (a) - potential energy, (b) - force. Even though the
agreement in potential energy is lost, the Fennel approximation gives a very good force evaluation.

2.4.4 Fitting the Potentials

All the potentials in this work are splined to the ZBL [53] screened Coulomb potential, for

close particle separation, using a sixth order exponential polynomial. There are numerous

methods, such as using sine, cosine based functions, but here a sixth order exponential

polynomial (Equation 2.4.33) is used to ensure continuity of V and its first and second

derivatives:

S(rij) = eC0+C1rij+C2r2ij+C3r3ij+C4r4ij+C5r5ij , (2.4.33)

where rij is the atomic separation, C0−C5 are the splining constants, obtained for each pair

of atoms by solving a system of linear equations:
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C0 + C1A+ C2A
2 + C3A

3 + C4A
4 + C5A

5 = lnV1(ra),

C0 + C1B + C2B
2 + C3B

3 + C4B
4 + C5B

5 = lnV2(rb),

C1 + 2C2A+ 3C3A
2 + 4C4A

3 + 5C5A
4 = F1(ra)

V1(ra)
,

C1 + 2C2B + 3C3B
2 + 4C4B

3 + 5C5B
4 = F2(rb)

V2(rb)
,

2C2A+ 6C3A+ 12C4A
2 + 20C5A

3 = G1(ra)
V1(ra)

−
(
F1(ra)
V1(ra)

)2

,

2C2B + 6C3B + 12C4B
2 + 20C5B

3 = G2(rb)
V2(rb)

−
(
F2(rb)
V2(rb)

)2

,

(2.4.34)

where V1 and V2 are the potential values at ra and rb, which are being matched and F1, F2

and G1, G2, their first and second derivatives, accordingly. There is no concrete method how

to calculate ra and rb, therefore they were chosen by ensuring the functions are as smooth

and continuous as possible.

Then the final form of the pair potentials is:

V (rij) =



VZBL (rij) , rij < ra,

eC0+C1rij+C2r2ij+C3r3ij+C4r4ij+C5r5ij , ra ≤ rij ≤ rb,

VPot. (rij) , rb < rij < rcut,

VDamp.func. (rij) , rcut ≤ rij ≤ rcut-off,

0, rij ≥ rcut-off,

(2.4.35)

here VPot. and VDamp.func. are the interatomic potential and the smooth damping functions

respectively. The distances ra, rb, rcut, rcut-off are the active ranges for the given expressions.

All these values depend on the types of the interacting atoms. In the electrostatic case, VPot.

also includes the electrostatic interaction.

As can be seen in Equation 2.4.35 a cut-off range for each pair’s potential system is

introduced to save computational time. This is done by using a cosine function to smoothly

damp the potential energy to 0 between rcut and rcut-off:

VDamp.func.(rij) =
1

2
(1 + cos(π · x(rij))) · VPot. (rij) , (2.4.36)
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where

x(rij) =
rij − rcut

rcut−off − rcut
. (2.4.37)

The best constants values found for the Fe-Y-O systems are given in Table 2.10 and for

the Y-Ti-O systems in Table 2.11 with the cut-off radii in Tables 2.12, 2.13 accordingly.

Type C0 C1 C2 C3 C4 C5

Fe− Fe 30.24710 −92.53334 142.35034 −110.84666 41.549764 −6.00754
Fe−O 4.573143 15.113343 −38.907346 35.795364 −14.835219 2.231974
Y − Y 11.83596 −10.44532 4.9658 −0.57136 −0.09153 −0.0014
Y −O 16.64432 −51.38949 107.99607 −118.96857 61.95074 −12.15482
O −O −0.91384 64.44073 −209.56762 295.90019 −194.81265 49.00191

Table 2.10: Values of the splining function’s constants for the Fe-Y-O systems. The units for Ci are in Å
−i

.

Type C0 C1 C2 C3 C4 C5

O −O 4.89399 15.23986 −53.56506 67.56640 −37.22622 7.59886
Ti−O 26.76794 −125.69354 309.66125 −379.35916 222.76690 −50.09023
Y −O 21.76669 −82.15615 180.51136 −202.66134 110.34640 −23.10884
Ti− Ti 8.31550 6.12765 −32.51735 32.70442 −4.34158 −4.67541
Y − Y 35.51828 −139.65278 283.60803 −296.12652 153.21562 −31.04498
Y − Ti −5.70405 82.83806 −192.38849 201.29568 −99.62413 19.02782

Table 2.11: Values of the splining function’s constants for the Y-Ti-O. The units for Ci are in Å
−i

.

Type ra(Å) rb(Å) rcut(Å) rcut-off(Å)
Fe− Fe 0.90 1.90 - 5.2
Fe− Y − − 3.0 4.0
Fe−O 0.80 1.80 4.0 5.0
Y − Y 0.50 1.77 7.2 7.4
Y −O 0.55 1.40 7.2 7.4
O −O 0.50 1.05 7.2 7.4

Table 2.12: Splining intervals and cut-off radii for the Fe-Y-O systems.
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Type ra(Å) rb(Å) rcut(Å) rcut-off(Å)
O −O 0.60 1.30 9.0 9.2
Ti−O 0.55 1.20 9.0 9.2
Y −O 0.60 1.30 9.0 9.2
Ti− Ti 0.50 0.90 9.0 9.2
Y − Y 0.80 1.30 9.0 9.2
Y − Ti 0.70 1.00 9.0 9.2

Table 2.13: Splining intervals and cut-off radii for the Y-Ti-O systems.

2.5 Energy minimization

The output of simulations greatly depends on the initial state of the system being simu-

lated. Thus to ensure accurate results, MD simulations must be started from a stable local

configuration, a global or at least a local energy minimum. It is done by adjusting the

system’s structure through the force field generated by the interatomic potentials. Usually

energy minimization is the first step during MD simulations after creating a desired system,

because it is unlikely that the created system will be in an equilibrium. It may also be the

last step in simulations in order to identify stable defects or changes in the system.

In this work mainly three techniques were used for system’s energy minimization: the

conjugate gradient method, damped MD and L-BFGS-B.

2.5.1 Conjugate Gradient

The original conjugate gradient (CG) method was developed by Fletcher and Reeves in

1964 [70]. The basic idea of this method is: if a function f(x) is quadratic and its gradient

vector g(x) can be calculated at any point x, the minimum of any quadratic function f(x) of

n arguments will be reached in n CG method iterations, as defined later in the text. In this

work all the potential functions are not quadratic, therefore the CG method is a multi-step

procedure with a test for convergence.

An iteration of the CG method can be divided into 5 steps:

Step 1. Calculate the gradient function’s value:
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g(xn) = −∇f(xn). (2.5.1)

During the first step the search direction is s0 = g(x0), what is basically a steepest descent

method iteration.

Step 2. Compute a new point xn+1:

xn+1 = xn + αnsn, (2.5.2)

where α is the linear search parameter, obtained by minimizing the function f(x) with

respect to α in the sn direction:

df(xn + αsn)

dα
= 0. (2.5.3)

The linear search is the most time consuming step of the CG method, thus one must

carefully choose a method to adopt. In this work Brent’s method [71] is used to estimate α

and the Polak-Ribiere [72] method to calculate the γ parameter:

γn =
‖g(xn+1)‖2 − g(xn+1)Tg(xn)

‖g(xn)‖2 . (2.5.4)

Step 3. Calculate f(xn+1), g(xn+1) and find the new direction sn+1:

sn+1 = g(xn+1) + γnsn. (2.5.5)

Step 4. Test for convergence. Evaluate the force and see if a minimum has been reached,

by checking if the gradient is less than a specified limit ε.

g(xn+1) ≤ ε. (2.5.6)

If the minimum is attained, terminate the algorithm, if not - repeat starting with the
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step 1.

The main advantage of the CG method is that it requires information only from the

previous step and has a very diminutive demand for computer memory and therefore can

be applied for large systems. On the other hand, one of the biggest disadvantages of this

method is in order to reach the global minimum of a system, the initial guess of x0 must be

close to it, otherwise the method tends to converge to a local minimum.

2.5.2 Damped MD

Another technique used in this work to equilibrate systems is the energy minimization by

damping (also known as the damped MD). This technique operates on the idea that a system

oscillates in a potential energy well and by the systematic damping of these oscillations the

system can be relaxed into a potential energy minimum. The damping is carried out by the

Lindhard-Scharff inelastic loss model [73, 74] which scales the atoms’ velocities which are

further used by the time integrator. The rate at which the excess energy is removed from

the system is proportional to the atoms’ velocities:

dE

dt
= −

∑
i

k

mi

vi, (2.5.7)

where E is the system’s kinetic energy, t is time, mi and vi are the i-th atom’s mass and

velocity magnitude accordingly, and k is the damping coefficient, which controls the energy

removal speed from the system (the damping effect).

When using the damped MD technique, the system will reach a minimum potential

energy state with rigid atom positions by damped oscillations as shown in the example in

Figure 2.10.
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Figure 2.10: Illustration of the energy minimisation using the Damped MD method (k = 2) applied on a
2,000 atom bcc Fe system with a single vacancy.

2.5.3 L-BFGS-B

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization algorithm belongs to the quasi-

Newton methods family for finding local minima and maxima of functions. The idea behind

the method is to approximate the Hessian matrix by an iterative procedure using gradient

evaluations and is similar to the CG method.

The method starts with an initial guess x0 and the initial approximation of the Hessian

H0:

H0p0 = −∇f(x0), (2.5.8)

where f is the function being minimized.

Then follows an iterative procedure to update the Hessian approximation Hk:

• Step 1 - new direction - finding a new direction pk by solving Hkpk = −∇f(xk),
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• Step 2 - line search - finding a suitable step size αk and updating xk+1 = xk +αkpk,

• Step 3 - new gradient - calculating new gradient ∇f(xk+1),

• Step 4 - Hessian update - updating the Hessian approximation using:

Hk+1 = Hk +
(∇f(xk+1)−∇f(xk)) (∇f(xk+1)−∇f(xk))

T

(∇f(xk+1)−∇f(xk))
T αkpk

− (2.5.9)

Hk (αkpk) (αkpk)
T Hk

(αkpk)
T Hh (αkpk)

.

• Step 5 - repeat - if the convergence has not been met, go to step 1.

In this work the improved BFGS method (L-BFGS-B) which uses limited amount of

memory and allows box constrains for each variable, has been used [75, 76]. L-BFGS-B

uses only couple of vectors for the representation of the inverse Hessian matrix, resulting in

being a very efficient and well suited for the optimization of functions with a large number

of variables. L-BFGS-B method is implemented from the open source library SciPy 0.12.0

for the Python programming language (http://www.scipy.org/).

2.6 Thermalization

In many cases having a system in a local energy minimum is not enough in order to have

a good representation of the problem. It is often the case, that a system shows a different

behaviour and has a different structure at different temperatures. When studying radiation

damage in materials, temperature also plays a big role and has a great influence on the

annealing and defect recombination processes.

To control a system’s temperature, so called thermostat algorithms are being used. Their

whole purpose is to re-scale the velocities of the atoms with a direct link between the kinetic

energy and temperature:
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T =
2

3

EK
Nkb

. (2.6.1)

There are quite few thermostats and all of them have their advantages and disadvantages.

One of the most popular is the Nosé-Hoover thermostat [77]. It governs the atoms’ velocities

by introducing a friction term coefficient in the equations of motion, which depends on the

actual and target kinetic energies. The coefficient is fairly easy to calculate and the method

can give a good canonical ensemble of the atoms. One of the its drawbacks - it usually takes

longer to reach the required temperature due to big oscillations.

Another popular thermostat follows Langevin dynamics [78]. In this case a small damping

constant is used in a modification of the Newton’s equations of motion proportional to the

velocity, so that the actual temperature matches the target temperature.

In this work, the Berendsen thermostat [79] was most often used to control the tempera-

ture of the systems. It works by scaling the atoms’ velocities, which are further used within

the time integrator. The scaling is carried out according to the change of the temperature

with respect to the time which is proportional to the difference between the actual (T ) and

target (T0) temperatures:

dT

dt
= 2γ (T0 − T ) , (2.6.2)

where γ is a decay constant, which controls the correction of the temperature.

It is proven that the velocity scaling factor per time step ∆t can be made exactly equal

to 2γ (T0 − T ) as follows:

λ =

√
1 +

∆t

τT

(
T0

T
− 1

)
, (2.6.3)

where, τT is a time constant, which is equal to (2γ)−1.

Even though a correct canonical ensemble generated by this thermostat cannot be achieved

for a small system, the approximation gives roughly correct results for bigger ones, containing
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thousands or more atoms.

2.7 Collision Cascades

To simulate collision cascades representing the ballistic phase of radiation events described

in section 1.4, an atom, also known as a primary knock-on atom (PKA), is given a certain

amount of energy, directed usually in a non-channelling direction and then the system is

evolved using the MD equations of motion.

One of the main quantities used to investigate the disorder brought to the system by a

collision cascade is the number of residual defects. There are basically two types of defects:

an interstitial (an atom positioned away from a lattice site) and a vacancy (an unoccupied

lattice site). The third type of defect occurs when a multi-species system is modelled and

the atom occupying an atom site which was originally occupied by a different specie atom is

called an antisite. In this work, interstitials are visualized as spheres, vacancies as cubes and

antisites as wireframe boxes (coloured according to the original atom) with a sphere inside

of it representing the current occupying atom (Figure 2.11).

(a) (b) (c)

Figure 2.11: A visual representation of the main types of defects: (a) - O interstitial, (b) - Y vacancy, (c)
- Y anti-site occupied by O atom. All defects are coloured and sized by the atom type. The anti-site is
represented by an original atom type box contours and by the occupying atom in the middle.

The method to identify defects in the system relies on the vacancy radius Rvac. It works

by comparing the initial atom positions (reference lattice), with the current atom positions

(input lattice). All the atoms that are not within a Rvac are identified as defects, e.g. an
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interstitial is identified, when an atom’s position in the input lattice does not correlate with

an unoccupied lattice site in the reference lattice within the vacancy radius. Similarly a

vacancy is when a reference lattice site does not correlate with any atom in the input lattice

within the Rvac.

Every collision cascade simulation can be categorized by the specie and the position of the

PKA and also by the PKA’s initial kinetic energy. All these factors and the PKA trajectories

were chosen for all the systems individually and are described in the result sections of this

work.
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Chapter 3

Methodology II: Long Time Scale

Dynamics

3.1 Introduction

The increasing power and popularity of MD simulations is due to the rapidly increasing com-

puter speeds and the improvement of inter-atomic potentials. Despite that, MD time scale

limitations still exist and to reach even one microsecond is still difficult, thus the need of time

extending methods is inevitable [80]. Some of the most popular and promising techniques

are: parallel replica dynamics, hyper-dynamics, temperature-accelerated dynamics (TAD)

and Kinetic Monte Carlo (KMC) methods.

One of the simplest and quite accurate methods is the parallel replica dynamics, which

instead of requiring that system should obey transition state theory, requires the system to

obey first-order kinetics rules [81]. This method consist of four steps. The first step is the

system replication into M copies. During the second step, each of the copies are de-phased by

periodically randomizing momenta and eliminating any correlation between the M number

of system replicas. The third step, phase exploration, occurs until in one of the replicas a

transition is detected. During the fourth step a brief continuation of the transition trajectory
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is done. The result from the fourth step then is replicated and the process begins again.

In the hyper-dynamics method, the idea is to transform the system’s potential energy

surface using a bias potential [82]. This bias must be zero on all the dividing surfaces and

shall only increase the system’s potential energy around the local minima, thus giving an

ability for the system to escape from local minima more rapidly. It is also designed to keep

the relative transition rates for different pathways the same.

The main idea for the TAD method, is to increase system’s temperature, thus increasing

the transition rates. The TAD method relies on the harmonic transition state theory [83].

The idea is to evolve a system at high temperature and when a transition is detected, to use

the nudged elastic band method (described later in this chapter), to determine the energy

barrier. Transition rates are calculated at a high temperature and can be converted back to

low temperature.

For long time scale dynamics simulations in this work, the on-the-fly Kinetic Monte

Carlo (otf-KMC) method was applied. This method differs from the traditional Kinetic

Monte Carlo simulation in the way that all the transitions that can occur in the system are

not known before the simulation starts, but are found during each KMC step using a so-

called “on-the-fly” search of transition states. This technique allows one to start simulations

from many different random system configurations, but does not guarantee that all possible

transitions will be found during each step. When a list of transition events is formed, rates

for each transition are computed from transition state theory, making a rate list and then

the system is advanced to a new state using the appropriate transition probability.

3.2 Kinetic Monte Carlo

The original KMC algorithm for simulating evolution of a system where the rates of the

processes that can occur are known, can be represented as an iterative procedure as follows:

1. Set the initial time (usually t = 0),
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2. Make a list of rates in the system ri regarding the possible events and sum them as

R =
∑N

j=1 rj,

3. Generate a random number P between 0 and R,

4. Cumulatively step through all events until P is exceeded,

5. The transition is selected with respect to the current event and the system is advanced

to a new step,

6. The time increment δt during the step is given by δt = − log u
R

, where u is a random

number between 0 and 1,

7. Return to step 2.

This algorithm will be referred as the KMC roulette further on.

The extension to the original KMC method was initially suggested by Henkelman and

Jónsson [46], and it was one of the first methods to carry out long time scale dynamics simu-

lations within the harmonic transition state theory (hTST) approximation. They suggested

to characterise a system by its local energy minima, do multiple saddle searches on the fly

and calculate rates for each individual transition using the hTST. An event is then selected

and the simulation clock advanced according to the KMC algorithm. The method was used

to study Al (100) crystal growth and is known as an otf-KMC method.

Transition state theory operates on the idea of having transition rates between two states

calculated only by examining the equilibrium and saddle states of the transition by using

the Arrhenius equation:

r = τ exp (−∆E/kBT ) , (3.2.1)

where ∆E is the activation energy, kB - Boltzmann’s constant, T - temperature and τ is the

pre-exponential coefficient also known as the prefactor.
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As can be seen in Equation 3.2.1, transition rates basically depend on two variables, the

energy barrier ∆E and the prefactor τ . E is calculated by examining the initial minimum

and saddle states of the transition. For this reason it is crucial to determine the saddle states

accurately. Various methods, also known as transition search methods, are now described to

determine the saddle points.

3.3 Transition Search Methods

Finding transitions during an otf-KMC step is the most vital part of the technique. A

“good” set of transitions is necessary in order to capture the processes and also to estimate

the simulation time. A “good” set can be thought of as a set that includes most of the

possible transitions at the current step, and all those with low barrier heights, since they

have the biggest impact on the evolution of a system.

Originally Henkelman and Jónsson [46] proposed to use transition finding algorithms (the

Dimer method) in order to make a list of possible events at every step, therefore avoiding

manual cataloguing of events and allowing much greater complexity and system’s evolution

in not pre-determined way by the event catalogue. In this way, transitions can be represented

as a set of three states: initial minimum, saddle and final minimum. The saddle state is

the most important, since it connects two minima via the minimum energy pathway (MEP)

and determines how likely a transition will be picked to advance the system according to its

barrier and prefactor. For this reason it is essential to accurately determine saddle states and

two groups of methods were investigated: single-ended and double-ended search methods.

3.3.1 Single-ended Search Methods

Single-ended search methods (also known as surface walking methods) share a common idea,

that only the initial state of a system is needed to find a saddle state, which separates two

system states (local minima). They usually follow the minimum mode of curvature to “climb
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up” to the saddle state from the initial minimum. Sometimes a single-ended search method

is combined with a double-ended search method, where the single-ended search is used with a

low accuracy to find a saddle, then the system is pushed over the saddle and a double-ended

method is used to calculate the MEP connecting the two end points and the saddle.

3.3.1.1 Dimer Method

The Dimer method was developed by Henkelman and Jónsson [84] and the idea behind it

is to represent a system’s state as two images (this pair of images is referred as a “dimer”)

having almost the same set of coordinates with fixed displacement. The Dimer method can

be thought of as a two step algorithm, where the first step is the dimer’s movement and

the calculation of the acting forces and energies on it (Figure 3.1a). The second step is the

rotation of the dimer towards the minimum energy configuration (Figure 3.1b). The Dimer

method uses only the first derivative of the potential energy which is advantageous when the

second derivative is computationally expensive to estimate or difficult to calculate.

In Figure 3.1a R represents the coordinate of the system’s midpoint (state) in 3N di-

mensional space. Points R1 and R2 are the pair images separated from R by ∆R and are

orientated in the direction of a unit vector N̂. Initially and every time when the dimer

is moved to a new location, the corresponding energies (E1, E2) and forces (F1, F2) are

evaluated. The energy of the dimer is simply a sum of energies of the images E = E1 + E2,

where the force and the energy at the midpoint R, FR and E0, are calculated from the two

images (Equation 3.3.1) as follows:

FR = (F1 − F2) /2,

E0 =
E

2
+

∆R

4
(F1 − F2) · N̂. (3.3.1)

The dimer’s rotation towards the minimum energy configuration is based on the idea,
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that minimizing the dimer’s energy E is equal to finding the lowest curvature mode at R,

estimated using Equation 3.3.2. This is done by rotating the dimer along the rotational force

F⊥ = F⊥1 − F⊥2 , where F⊥i ≡ Fi − (Fi · N̂) · N̂, i = 1, 2.

C =
(F2 − F1) · N̂

2∆R
=
E − 2E0

(∆R)2 . (3.3.2)

(a) (b)

Figure 3.1: The Dimer method as in [84]. (a) - the definitions of the dimer’s midpoint, image points and
the acting component and rotational forces on them, (b) - the definitions of the quantities used during the
rotation of the dimer.

Figure 3.1b shows the basic steps of the dimer’s rotation. A new unit vector Θ̂, per-

pendicular to N̂ and parallel to F⊥, is defined to form an orthonormal basis which spans

the rotation plane. At first, the dimer is rotated about a small angle dθ, then using the

orthonormal basis new image points are calculated (Equation 3.3.3) and the acting forces

F∗1, F∗2, F∗ = F∗1 − F∗2 are estimated.

R∗1 = R +
(
N̂ cos δθ + Θ̂ sin δθ

)
∆R,

R∗2 = R∗1 − 2∆RN̂. (3.3.3)

The finite difference approximation of the rotational force is given in Equation 3.3.4,

which is to be minimised.
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F ′ ≈
∣∣∣∣∣F∗ · Θ̂∗ − F · Θ̂

dθ

∣∣∣∣∣
θ=dθ/2

. (3.3.4)

In this work the harmonic approximation of the rotational force F = A sin [2(θ − θ0)]

and its derivative F ′ = 2A cos [2(θ − θ0)] are used to approximate the rotation angle ∆θ as

follows:

∆θ = −1

2
arctan

2F0

F0
′ , (3.3.5)

where F0 and F0
′ are values of F and F ′ evaluated at θ = 0.

Then ∆θ is used to minimise the dimer’s energy with the CG method using the modified

Newton method [84] as the line search.

After the minimization by rotation, the dimer will be oriented along the local lowest

curvature mode and it is followed by the dimer’s translation. Depending on the curvature

value C, calculated using Equation 3.3.2, two schemes are used. First, when the curvature

value is positive, the dimer is allowed to move out of that region by big steps. Second, when

the curvature has a negative value, it means the dimer is getting closer to the saddle point

and the saddle point is approached by smaller steps. The two cases can be expressed as

follows:

Ftrans =

 −F‖, C > 0,

F− 2F‖, C < 0,
(3.3.6)

where F is the real force acting on the dimer, F‖ - the component of the force parallel to the

N̂ and given by: F‖ = F
‖
1 + F

‖
2.

3.3.1.2 Activation-Relaxation Technique (ART)

The Activation-Relaxation Technique (ART) was introduced by Barkema and Mousseau

[85, 86]. As can be inferred from the name of the technique: it consists of two steps: 1)
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Activation: starting from a local minimum, the system is advanced to a local saddle point;

2) Relaxation: the system is pushed over the saddle point and relaxed to a new minimum.

In this work only the activation step of the technique to approach the saddle is considered,

since the relaxation for all the single-ended search methods is basically the same.

The main concept of the ART method is to initiate a random movement of an atom, by

randomly displacing it from its original position in the local minimum configuration. This

action causes a change in the force, which will be used for an iterative procedure to move

the system to a saddle point by following the redefined force G, expressed as follows:

G = F − (1 + α) (F ·∆X) ∆X, (3.3.7)

where F is the 3N -dimensional force vector acting on the atoms in the system, ∆X is a

3N -dimensional unit vector pointing from the initial system configuration to the current

position and α is a positive number.

Figure 3.2: Schematic illustration of an iteration of the ART method’s activation step: R0 and R1 represent
the initial and current system states; N is the displacement vector between them; F is the acting force on
the system at R1, with the parallel F ‖ and perpendicular F⊥ components; ∆X is a unit vector pointing
from R0 to R1 and G is the new constructed force.

As can be seen in Figure 3.2, the new force G has the same sign as F in the direction

perpendicular to ∆X and an opposite sign of F in the direction parallel ∆X. The scalar

variable α controls the “magnitude” of the new force G in the direction parallel to ∆X,

i.e. the bigger the value of α, the more the force G is directed in the opposite direction of
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∆X. In other words, the scalar variable α, controls the climb away from the initial local

minimum.

The iterative process of calculating G and moving atoms in the direction of it, results in

the system climbing up the energy landscape hill, where the top of the hill represents a saddle

point. The iterative process’s stop criterion was slightly changed compared to the original

one proposed by Barkema and Mousseau. The idea was to stop the activation step when

both F and G are zero. In the implementation used in this work, such stopping criterion

was not always effective and a stopping criterion used by Vernon [47] was employed, where

the direction of F is monitored, waiting for the part of F which is parallel to ∆X to have

a positive sign, meaning that the iterative procedure has crossed a saddle point.

The values for scalar variable α and the step size by which atoms’ positions are moved

along the direction of G were obtained by Vernon [47] and accordingly are 0.625 and 0.00467.

3.3.1.3 ART Nouveau

The ART Nouveau (ARTn) method [39] is an improvement of the original ART method,

described previously in the section 3.3.1.2. The main difference is that instead of following

the direction of a newly created force vector to find a saddle point, the direction of the

eigenvector, corresponding to the lowest eigenvalue of the Hessian matrix of the potential

energy function, is followed.

The technique starts at the system’s local minimum and a random displacement δqi is

initiated at it. Then all the subsequent images are generated, according to Equation 3.3.8:

qik = qik−1 +
δxA
‖δqi‖δq

i, (3.3.8)

where δxA is a step size of the atoms’ displacement and qik represents the system at the k-th

iterative step of the i-th saddle point search attempt. At each step, before the calculation of

a new system state, the current system state is relaxed in the hyperplane orthogonal to δqi

and the lowest eigenvalue λ1 of the Hessian is obtained. If the lowest eigenvalue is positive
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the iterative process is continued. If the value of λ1 is negative, it is assumed that the system

is in a region close to a saddle point. Then the convergence to a saddle point is achieved by

the iterative procedure (Equation 3.3.9) which follows the eigenvector v1 corresponding to

the λ1:

qin = qin−1 +
δxA
‖v1‖

v1. (3.3.9)

As in the previous step, each system state is relaxed in the hyperplane orthogonal to v1

and the lowest eigenvalue λ1 of the Hessian is obtained. The stopping criterion of the step

is the same as is used in the original ART method. If the lowest eigenvalue λ1 becomes

positive the entire activation step is restarted. To estimate the lowest eigenvalue, the well

known Lanczos algorithm combined with the Q-R method can be used as is explained in the

following sections 3.3.1.6 and 3.3.1.7.

3.3.1.4 Relaxation and Translation Method

The relaxation and translation (RAT) method, developed by Vernon [47] (see Figure 3.3),

shares some similarities with the dimer method: both of them uses force decomposition into

parallel and perpendicular components. But unlike the Dimer method, it operates only with

one point in the 3N dimensional potential energy landscape and as can be inferred from its

name consists of two steps: relaxation and translation.

During the translation step, the search point is moved along the vector N by certain step

size Strans. Initially, the vector N0 is a random unit vector, which for all the other steps

Ni, i ≥ 1 is constructed by combining the previous vector Ni−1 and R̃i, that joins the original

step search point Ri−1 with the relaxed point Ri according to Equation 3.3.10. The initial

scalar translation step size Strans0 is 0.0075Å and during all the other steps re-evaluated

according to the number of iterations during the relaxation step: if the number is less than

3, the step size is multiplied by 1.2, otherwise it is divided by 2, as it was found by Vernon
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[47] to give good accuracy and speed.

R̃i = (Ri −Ri−1) ,

Ni = 0.5 ·Ni−1 + R̃i. (3.3.10)

The relaxation step is used to relax the component of the force acting on the point R′

and perpendicular to the vector N. This step may require large movements within the plane.

The idea of this step is simple: to ensure a reasonable efficiency, the relaxation step must be

adjusted according to the change of the system’s energy. If the change
(
FTj − FTj−1

)
/FTj

is less than 20%, the relaxation step needs to be more aggressive and is increased by 20%.

If the change is greater than 20%, it means that the method approaches a saddle state and

the step size must be smaller in order to accurately determine the saddle, thus it is lowered

by a factor of two.

Figure 3.3 represents a schematic illustration of the RAT method which is terminated

(assuming that a saddle point was found), if one of the atoms moves more than 0.3 Å from

its initial position and the dot product between the force vector and the vector R̃i is greater

than 0.5 eV. The last statement implies, that a point R has crossed the saddle point and is

going down the “hill” (on the other side).

Figure 3.3: Schematic representation of the RAT method, where Ri are points representing system states,
R′i - translated points, Ni - translation unit vectors, FTi

- vectors, perpendicular to Ni.
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3.3.1.5 Minimum Mode Following Algorithm

One of the first suggestions to use eigenvectors of the Hessian for approaching saddle points

were made by Cerjan and Miller [87] in the early 90’s. The biggest drawback is the compu-

tationally expensive construction of the full Hessian matrix in order to solve the eigenvalue

problem. There are several different ways to approach this problem by approximating the

lowest eigenvalue without diagonalising the Hessian.

The basic idea behind all the minimum mode following methods is to invert the force along

the eigenvector corresponding to the lowest eigenvalue of the Hessian using the following

formula:

Feff = F− 2 (F · vmin) vmin, (3.3.11)

where Feff is the effective force driving the system to a saddle point, F is the actual force

and vmin is the eigenvector corresponding to the lowest eigenvalue. With the Feff so defined,

the rank 1 saddles become local minima and local optimisation algorithms can be used to

found them.

Different authors suggest different ways to effectively approximate or estimate vmin. The

Dimer method [84] (see section 3.3.1.1) is one of the most popular methods to approximate

vmin by the orientation of two replicas of the system.

A combination of the Dimer method and the Conjugate Gradient method by A. Pederson

[88] is shown to be an effective way to locate first order saddle points. The suggested

procedure, at iteration n, uses one displacement along the search direction, determined by

a linear combination of the previous direction dn−1 and the current gradient F, instead of

linear search:

dn = F + βndn−1, (3.3.12)

here n is the iteration number and βn is estimated by the Polak-Ribiére formula:
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βn =
F(xn) · F(xn)− F(xn−1)

F(xn−1) · F(xn−1)
, (3.3.13)

where xn is the phase space point of the system.

Both methods were implemented, but it was found that, that in terms of unique successful

searches, a combination of the BFGS minimisation algorithm [75, 76] and the Hessian matrix

diagonalisation using the Lanczos method [89] followed by the QR method was found to be

the most appropriate. In this work, this combination of methods will be addressed as the

Minimum Mode Following Algorithm (MMFA).
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Figure 3.4: A graph showing the correlation (left y axis) between the curvature calculated using the Dimer
method and the lowest eigenvalue, calculated with the Lanczos algorithm (described in the following section).
The difference between vectors associated with them in terms of separation (as Euclidean norm between two
vectors) and a dot product (right y axis).

It was also found that a combination of the Dimer method with the MMFA has a good

mixture of accuracy and speed when looking for saddle points. At first the Dimer method is

used to arrive in the vicinity of a saddle state and then when the lowest eigenvalue becomes

negative a switch to MMFA takes place. In order to check the relation between the Dimer’s

curvature and the lowest eigenvalue tests were carried out in the α-Fe system with a single
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〈110〉 dumbbell defect which can be summarized in Figure 3.4.

The tests checked the correlation between the Dimer’s curvature and the lowest eigenvalue

every dimer step. As can be seen (Figure 3.4), at the beginning of the Dimer method, the

Dimer’s curvature overestimates the value of the lowest eigenvalue, but when the curvature

approaches zero (around step 25-30), the separation (Euclidean norm) between the Dimer

vector (the vector between two images) and the eigenvector, corresponding to the lowest

eigenvalue, becomes very small and the dot product of those vectors is almost equal to 1.

This indicates that both vectors are similar and point in almost the same direction. Thus,

when a combination of the Dimer method and MMFA is used, the switch between these two

methods is carried out when the dimer’s curvature becomes negative.

3.3.1.6 Lanczos Algorithm

The well known Lanczos algorithm is a very powerful technique to save computational time

while calculating eigenvalues and eigenvectors of a symmetric matrix. The algorithm is an

iterative procedure [89] and operates on the idea of converting a symmetric matrix to a

tridiagonal symmetric matrix as follows:

Listing 3.1: Lanczos algorithm

1 β1 = 0 ; v0 = 0 ; v1 = normal i sed random vecto r .

2 f o r i in range (1 , m)

3 wi = Avi

4 αi = wi · vi
5 wi = wi − αivi − βivi−1

6 βi+1 = ‖wi‖

7 vi+1 = wi/βi+1

8 end ;
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where A is a symmetric matrix (in our case it is the Hessian at a certain phase space point

of the system), αi and βi are the elements of the tridiagonal result matrix (Equation 3.3.14),

m - the size of the symmetric matrix and vi are the orthonormal Lanczos basis vectors.

T =



α0 β1 0 · · · 0

β1 α1 β2 · · · 0

0 β2 α2 · · · 0

0
. . . . . .

... 0

0 0 βn−2 αn−2 βn−1

0 0 0 βn−1 αn−1


(3.3.14)

The effectiveness of the Lanczos method also comes from the approximation of Avi by

the difference in the Taylor expansion forces around the phase space point x+ δvi with error

either O(δ2) (Equation 3.3.15) or O(δ3) (Equation 3.3.16) as follows:

Avi = −f (x + δvi)− f (x)

δ
+O

(
δ2
)

(3.3.15)

Avi = −f (x + δvi)− f (x− δvi)
2δ

+O
(
δ3
)

(3.3.16)

where δ � 1.

It is known, that due to the computational errors, the exact orthogonality of the Lanczos

basis is not being preserved [90]. To deal with this problem, the least squares method (LSM)

is used as follows:

vi = vi − Lisi, (3.3.17)

where Li is an orthonormal Lanczos basis consisting of i−1 Lanczos vectors vj (j = 1, i− 1)

and si is the least squares method’s (LSM) solution of the problem: Lisi = vi. As can be
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seen, Equation 3.3.17 removes the non-orthogonal error from the Lanczos vector.

Empirical tests showed that the orthogonal correction by the LSM is sufficient while the

number of the Lanczos basis vectors is lower than 50. Otherwise, the LSM method contri-

bution to the overall computational costs per Lanczos iteration increases significantly and

the difference between time taken by the Lanczos method compared to explicit calculations

of the eigenvalues and eigenvectors of the Hessian matrix is small.

The iterative Lanzcos procedure is stopped when the desired convergence of the lowest

or other (specified by the user) eigenvalue (calculated using the QR method (see subsection

3.3.1.7) on the tridiagonal matrix) is reached by checking if the relative change of the eigen-

value is less than the specified value. The default tolerance used in the simulations is 0.01,

since the tighter tolerance did not have a significant impact on the results.

3.3.1.7 QR Method

The well known QR algorithm is one of the best procedures to estimate eigenvalues and

eigenvectors of a symmetric matrix. In the developed software the QR method specially

developed to work with tridiagonal symmetric matrices [91] was implemented from the well

known Linear Algebra PACKage (LAPACK) library. The implemented routines dstev and

dystevx are specially designed for calculating full and selective set of eigenvalues and eigen-

vectors of the symmetric tridiagonal matrix accordingly.

The idea behind the iterative QR method is to decompose a given matrix A into orthog-

onal matrix Q and upper triangular matrix R (Equation 3.3.18) and use these matrices to

produce a sequence of matrices (Equation 3.3.19), which tend to a diagonal matrix, where

diagonal values r0, ..., rn−1 from the matrix Rl converge to the eigenvalues of the matrix T

when l→∞.

Ai = QiRi. (3.3.18) Ai+1 = RiQi. (3.3.19)
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3.3.2 Double-ended Search Methods

The double-ended search methods (also known as the interpolation methods) use both the

initial and final system configurations (local minima on the potential energy surface) to

find the MEP and the maximum energy point on it, which determines the activation energy

barrier. Usually double-ended search methods are more accurate than single-ended methods,

but also require more computational resources and if there are several migration pathways

between two minima, double-ended search methods tend to find only the MEP.

3.3.2.1 Nudged Elastic Band Method

The Nudged Elastic Band Method (NEB) was developed by H. Jónsson et al. in 1998. Where

given the initial and final system configurations (images), the method starts by creating a

chain of evenly separated intermediate images and calculates acting forces on them as shown

in Figure 3.5. Spring interactions are added between neighbouring images, thus imitating

an elastic band and ensuring the continuity of the path. In order to have a good path

convergence to the MEP, the spring force must not interfere with the true force. This is done

by calculating the tangent to the path at each image, at every iteration and decomposing

the true and spring forces into parallel and perpendicular forces to the path. Only the

parallel component of the spring force and perpendicular of the true force are included in

the calculations and this force projection is referred as “nudging”.

In this work an improved tangent estimation is used, which was suggested by G. Henkel-

man and H. Jónsson [92]. They changed the original estimation by using different tangent

definitions according to the energies of the nearby images, thus eliminating the cases, when

the method did not converge to the MEP:
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Figure 3.5: Schematic representation of the NEB method; where the black points represent the initial NEB
images and the blue points are for the final NEB images joined by the MEP. Acting forces on images are
shown as green arrows. The green point depicts the saddle point.

τi =



τ+
i if Ei+1 > Ei > Ei−1,

τ−i if Ei+1 < Ei < Ei−1,

τ+
i ∆Emax

i + τ−i ∆Emin
i if Ei < Ei−1 < Ei+1,

τ+
i ∆Emin

i + τ−i ∆Emax
i if Ei > Ei−1 > Ei+1,

(3.3.20)

where Ri is atoms’ positions of an image i, τ+
i = Ri+1 − Ri, τ

−
i = Ri − Ri−1, Ei is the

energy of image i (Ei = E(Ri)) and ∆Emax
i = max (|Ei+1 − Ei| , |Ei−1 − Ei|), ∆Emin

i =

min (|Ei+1 − Ei| , |Ei−1 − Ei|).

The magnitude of the spring force, which is parallel to the tangent vector, is evaluated

by Equation 3.3.21 and depends not only on the normalized tangent vector τ̂i, but also on

the spring constant k and the spacing between adjacent images.

FS
i = k (|Ri+1 −Ri| − |Ri −Ri−1|) τ̂i. (3.3.21)

Finally, the total force acting on an image Fi is considered to be the sum of the spring
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force FS
i and the perpendicular component of the true force (Ftrue

i ) FP
i :

FP
i = Ftrue

i + Ftrue
i · τ̂i, (3.3.22)

and

Fi = FS
i + FP

i . (3.3.23)

After the tangent vector and acting force evaluation for each image, minimization is

carried out through simultaneous relaxation of each image by translating all n image points

Ri into a higher 3Nn dimensional space and then this final point is relaxed to a minimum

which represents the MEP.

Another important improvement to the NEB method by G. Henkelman and H. Jónsson

[93] was done in order to improve accuracy of barrier height estimation and was also imple-

mented in the code. They suggested to add additional steps to the NEB method to increase

the accuracy. Usually a saddle point lies between two NEB images and the barrier will not

be estimated accurately. The solution is very simple: every few relaxation steps, the force of

the highest energy image is modified according to Equation 3.3.24, thus removing the spring

force and only the real force is reflected parallel to the tangent vector. This improvement

not only relaxes images on the MEP, but also converges the highest energy image to the

saddle point.

Fimax = Freal
imax − 2 Fimax |‖τimax . (3.3.24)

3.3.2.2 String Method

Even though the NEB method is a very robust method, it has a disadvantage of having a

user defined spring constant k. If k is chosen too small, the elastic band may be a poor

description of the MEP, and if it is chosen too big, the method will converge only slowly
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and will require a lot of force calculations. The String method [94, 95] avoids this issue

by constraining the distance between images, by allowing them to move along interpolated

path.

The String method, similarly to the NEB, starts by linearly interpolating images between

two system’s states on either side of the dividing surface and placing them equally spaced.

Then follows a two step iteration procedure until the convergence criterion is met. The first

step, guides the pathway towards the MEP, by calculating string tangent vectors on each

image and the second one performs relaxation, which is similar to the role of the springs in

NEB, to redistribute images along the string.

The other advantage of the String method is that it does not require fixed end images

of the pathway. The only requirement is to have them splitting the potential energy surface

by having one end in one local minimum region and the other in another.

In the developed otf-KMC code, the simplified version of the String method is imple-

mented [96]. This version kept the reinterpolation of the images along the string, but re-

moved all other complex calculations. At each iteration images are allowed to relax by a

short distance along the direction of the real force. In this way, the biggest part of the

displacement is due to the images relaxing towards the minima, but there is also a small

force component that brings them towards the MEP.

3.4 Atom Lists and Volumes

In order to save computational time during the force evaluation procedure, different radii

were used to create atom lists on which forces must be evaluated without losing accuracy.

It is possible to use such lists when interatomic potentials, describing the system of interest,

have a rather small cut-off. In this work, atom lists were used when the α-Fe system was

evolved using the KMC technique.

It was calculated, that in order to have accurate evaluations of the energy and forces
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acting on an atom, atoms within 8.5Å must be included, as it shown in Figure 3.6. This

radius is called the “inclusion radius” throughout this work.

Figure 3.6: 2D representation of the inclusion radius in α-Fe system: to have a good estimate of the energy
and force acting on the Fe atom (red), atoms within a 8.5Å radius must be included (green). Even though
the energetics of the red atom will be evaluated accurately, is not necessarily the case for the green atoms,
and if needed, atoms within the same radius must be included around them.

Also in order to speed up simulations, different types of atom lists (volumes) are created

to ensure minimum usage of computational power. The sizes of the volumes are controlled

by the user of the KMC code and are created around residual defects in the system. The

volumes are in ascending order of size as graphically presented in Figure 3.7.

• Initial search radius - this radius serves two purposes. The first one is to group

residual defects into one cluster if defects are not separated by more than this value

(typically the distance would be to the second nearest neighbour, 2.9Å). This region

is termed as a “defect volume” (DV) through this work and is one of the main

characteristics in this otf-KMC technique.

The second purpose is to create an initial list of atoms to be randomly displaced and

used by one of the single-ended saddle search methods.
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• Graph radius - is used to classify defect volumes according to their topology. A list of

atoms surrounding a particular defect (or defect cluster) is created according the graph

radius. Then by using “Nauty” (see section 3.7.1), connectivity graphs are generated

and unique hash keys are assigned to them. The best value found for this radius is

4.1Å (to the third nearest neighbour).

Also the graph radius is used to search for so called “combined volumes”. If two defects

volumes are separated by a graph radius or less, a combined volume will be constructed,

by joining them together. The main purpose for creating combined volumes is to find

transitions that include atom movements in both volumes, where they could be missed

while running searches on the volumes individually. Transitions found within combined

volumes are not saved for further reuse.

• Search move radius - controls how many atoms will be included while searching for

saddle points using one of the the single-ended methods. The atoms around initial

defects within this radius are included, by forming a search move volume. A typical

value is 5.0Å.

• Saddle converge radius - sets an additional radius around search move volume, to

include even more atoms for a better convergence to a saddle point with the minimum

mode following algorithm.

• Inclusion radius - this radius defines an additional layer of atoms, required to esti-

mate correct energetics on the atoms.

3.5 Prefactor

When a saddle state is determined by one of the transition search methods, the next issue is

to determine the prefactor for this particular transition, which describes the jump frequency

between local minima through the saddle. In this work two options were considered - the
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Initial search volume

Graph volume

Search move volume

Saddle converge volume

Inclusion volume

Figure 3.7: Representation of different atomic volumes used throughout the KMC algorithm around a
vacancy defect: to create a defect volume (initial search volume), to classify a defect volume (graph volume),
to look for saddles (search move volume), to converge to a saddle (saddle converge volume) and to estimate
energetics of the saddle converge volume (inclusion volume).

fixed prefactor with a value of 1013s−1 and the calculated one, using the Vineyard equation

[97]:

τ =

∏N
j=1 υj∏N−1
j=1 υ∗j

, (3.5.1)

where υ and υ∗ are the normal frequencies for vibrations at the initial (local minimum) and

saddle states respectively.

The normal frequencies used in Equation 3.5.1, at the initial and saddle states, are

derived from the eigenvalues using Equation 3.5.2. Eigenvalues are calculated by numerically

constructing the Hessian H (Equation 3.5.3) and then applying the DSYEV routine from

the Linear Algebra Package (LAPACK).

υ =

√
λ

2π
, (3.5.2)

here, λ is the eigenvalue of the Hessian matrix from which the normal frequency υ is derived.

This Hessian is determined numerically whose i-j th element is given by:
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Hi,j =
1

2
√
mimj

(
F j+
i − F j−

i

2δ
+
F i+
j − F i−

j

2δ

)
, (3.5.3)

where F j+
i is the force acting on i-th component due to the positive (‘-’ - negative) dis-

placement in the j-th components position, δ is the displacement (0.001Å) and mi is atomic

mass of the i-th atom. To gain accuracy, the element Hi,j is calculated as an average of the

symmetric elements.

The study of the influence of the calculated prefactor in long time scale simulations of

defect motion in α-Fe has been carried out and is given in section 6.1.

3.6 Transition Search Algorithm

Through careful testing and consideration of the previously described methods (see section

3.3), in this work an eight step procedure was implemented to find transitions on a defect

volume, that showed both, good accuracy and speed.

• Step 1: Initial displacement - the procedure starts by displacing atoms, that are

within the initial search radius in the initial search volume, from a randomly picked

atom in the volume.

• Step 2: Saddle search - after the initial displacement, the Dimer method (see section

3.3.1) is being used to approach a saddle state, which is connected with the initial

minimum state via the minimum energy path. The Dimer method was chosen because

it is not only one of the most robust methods, but also it estimates the curvature,

which is directly linked with the lowest mode, without additional force evaluations.

• Step 3: Convergence to a saddle - when the Dimer gets in the vicinity of a saddle,

the procedure switches to use the minimum mode following algorithm. The switch is

carried out when the Dimer’s curvature becomes negative.
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• Step 4: Estimate eigenvalues - if prefactors are calculated on the fly, the eigenvalues

at the saddle state are calculated, as is mentioned in section 3.5 and together with the

initial eigenvalues are used to calculate the prefactor for this transition later on.

• Step 5: Check of the saddle’s rank - if prefactors are calculated on the fly, it is

important to ensure that the rank of the saddle point is equal to 1, that means it has

only one negative eigenvalue. If the saddle has rank 2 (there are two negative eigen-

values), the Vineyard’s equation is invalid and the prefactor cannot be calculated. To

ensure, that the saddle has rank of 1, the original minimum mode following algorithm

suggested by Pedersen [88] is used to climb down from a rank 2 saddle state, to a rank

1.

• Step 6: Uniqueness check of the saddle - once the saddle state is approximated,

the procedure must determine if it is a valid result by comparing the separation between

previously found saddle states for the same defect volume. If the separation is small,

less then (0.5Å), the result is discarded as a duplicate and the procedure is stopped.

• Step 7: Find the final minimum - to find the final minimum joined by the MEP

through the saddle state, the system at the saddle state is given a little push in the

direction of the vector from the initial minimum state to the saddle state. Then this

minor displacement is followed by a minimization procedure that uses two methods:

the first one is the classical steepest descent method with lose tolerance of 10−1eV/Å

and the second one is the L-BFGS-B method with a tight tolerance of (10−3eV/Å). The

first method is used to approach the final minimum quickly with as little computational

costs as possible and then the minimisation is finished with the L-BFGS-B method,

which works best when the initial system state is in the vicinity of a minimum.

• Step 8: Calculate the rate value - if the previous steps were successful, the tran-

sition search algorithm finishes by calculating the rate value for the found transition

using the Arrhenius equation (Equation 3.2.1). The prefactor is either calculated on
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the fly or using the default value of 1013s−1. 1013s−1 was found to be a typical value

for many transitions.

If in any of the steps the algorithms fail to complete their tasks, the transition search

is dismissed as unsuccessful. A detailed activity diagram representing the transition search

algorithm is given in Figure 3.8 and a schematic illustration on a potential energy surface in

Figure 3.9.

3.7 Reuse of Transitions

The otf-KMC technique is based on the idea of searching for possible transitions every step

(iteration) on the fly and then randomly picking one transition from the list and advancing

the system to a new state, according to their rates.

Usually movements of the atoms that represent the system’s transition from one state

to another are contained in a local area, surrounding a certain defect or a combination of

defects, and do not have or have a negligible effect on the atom positions outside that local

area.

The idea of the reuse of transitions is to “recycle” previously found transitions within

those areas that were not effected by the chosen transition. This idea was suggested by

El-Mellouhi et al. in [98] and an interpretation of it was developed during the course of

this work to improve the efficiency of the KMC software which has been developed in a way

described in the following subsections.

3.7.1 Nauty

“Nauty” (No AUTomorphisms, Yes?) was written by Brendan D. McKay [99, 100] in the

early 90’s and has been developed constantly since then. It can be thought as a set of very

fast procedures (written in C programming language) for computing automorphism groups

of graphs and digraphs with possibility to produce canonical labelling.
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Figure 3.8: Activity diagram representing the transition search algorithm to find transitions on a defect
volume.
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Figure 3.9: Schematic illustration of the transition search algorithm working on a potential energy surface.

“Nauty”, in this work, is mainly used for two purposes: to check if two graphs (two defect

volumes) are identical and if so, to describe the isomorphism between them.

Dealing with the first task is quite easy, since “Nauty” can generate a hex number (a

hash key) depending on the graph’s isomorphism group. It is assumed that two graphs can

share the same hash key only if they share the same isomorphic group. So basically the

comparison of two DVs is done by comparing their hash keys, if they are the same, DVs are

regarded as isomorphic.

When two graphs are identified as isomorphic, the isomorphism from one graph to another

can be obtained from “Nauty” expressed in the form of a sequence of pairs vi−wi, where vi

is a vertex of the first graph and wi is a vertex of the second graph.

In other words, with the help of “Nauty” a check if two DVs are similar can be performed

and if so, the corresponding atoms between two DVs can be determined and the transfor-

mation matrix which transforms one defect volume’s atom positions to another’s can be

estimated.

To illustrate how “Nauty” assigns hash keys to defect volumes a simple example is given

with one vacancy defect (Figure 3.10a). First of all only atoms within the graph radius are
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selected for the further analysis (Figure 3.10b) and the connectivity graph is created (Figure

3.10c) with respect to all the atoms in the system. Atoms are assumed to be connected if the

separation between them is less than the graph radius. Then, “Nauty” produces a hash key

(Figure 3.10d) that is unique for all the configurations which share the same connectivity

graph.

(d)

(a)

(b)

(c)
Figure 3.10: Schematic representation of how “Nauty” assigns a hash key to a defect volume, given through
a 2D vacancy example: (a) - finding atoms in the graph volume, (b) - finding the connectivity between the
atoms, (c) - creating a graph according to the connectivity and (d) - generating a hash key depending on
the graph with “Nauty”.

3.7.2 Transformation Matrix

When two DVs are identified as isomorphic and the corresponding atoms between two atoms

sets are identified, a transformation matrix A (Equation 3.7.1) can be estimated.
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AX = X′, (3.7.1)

where A is the transformation matrix, X - a vector representing a point (an atom) in the first

defect volume and X′ is its representation found by “Nauty” in the second one. Equation

3.7.1 can be expressed as follows:


a11 a12 a13

a21 a22 a23

a31 a32 a33



x

y

z

 =


x′

y′

z′

 . (3.7.2)

The transformation matrix holds the information how one defect volume’s atoms should

be rotated/scaled/reflected in order to get the second volume’s atoms positions. In other

words, the transformation matrix transforms one defect volume’s atoms positions into an-

other’s.

In order to find the transformation matrix A, an overdetermined linear equation system

(OLES) is formed by using all the atoms from both of volumes and their relations. A

completely determined linear equation system is not suitable for this kind of problem, since

it is very unlikely, that the solution found, by using only a set of volume atoms, will be fit

to represent the transformation for the rest of the atoms in the defect volumes. For this

particular reason, the OLES is followed by the method of least squares to approximate a

“best solution”.

Three OLES (Equation 3.7.3) derived from Equation 3.7.2 are solved and the result (the

coordinates aij of the transformation matrix A) is obtained.



x11 x12 x13

x21 x22 x23

... ... ...

xn1 xn2 xn3




ai1

ai2

ai3

 =



x′1i

x′2i

...

x′ni


, i = 1, 3 (3.7.3)
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where n is the number of atoms in the volumes; i - the coordinate number by which OLES

is created; (xj1, xj2, xj3) represents j-th atom in the first volume; x′jk is the j-th atom’s k-th

coordinate from in the second volume; ail (l = 1, 3) is the transformation matrix’s coordinates

that are being estimated.

It is important to note, that the OLES are created so the atom xj from the first volume

corresponds to the atom x′j from the second volume. During the calculation atoms’ positions

(xj1, xj2, xj3) and
(
x′j1, x

′
j2, x

′
j3

)
are centred to the origin according to the mass centres of

each DV.

Also before an atom transformation from one DV to another, both defect volumes have

to be centred at the Euclidean origin and returned at the defect volume’s original centre

of mass after the transformation is applied. This is done, because the 3x3 transformation

matrix does not hold the translation information.

3.7.3 Reuse Algorithm

As it was stated before in this work, transitions are described by three sets of atoms - initial,

saddle and final states of a transition. When an initial state of a DV shares an isomorphic

group with one of the previously investigated DV’s initial state, transitions from the previous

investigation can be reutilised instead of completing a new set of transition searches.

It is done by following an algorithm that was developed during the course of this work:

• Step 1: Find the transformation matrix - transforming previously found saddle

and final states is done by using the transformation matrix (Equation 3.7.1), where X

is an atom from the previously investigated DV and X′ is an atom in the current DV.

When the transformation matrix is found, it can be applied on final and saddle states

to transform them from one volume to another.

• Step 2: Reuse of the final state (optional) - it is optional for the user of the software

to choose whether the final states should be reused. Choosing not to reuse them, saves
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computational time, but then some information about the reused transitions is not

calculated. If the final states are being reused using Equation 3.7.1, atom positions

after the procedure must be adjusted according to the current surrounding atoms,

since it is very likely that the original DV, from which the transition was reused, had

a slightly different configuration compared with the DV for which the reuse was done.

The adjustment is carried out by applying the L-BFGS-B equilibration method.

• Step 3: Reuse of the saddle state - the reuse of a saddle state is done by applying

Equation 3.7.1. For the same reasons stated in Step 2, adjustments to the atoms

according to the surrounding atoms must be done after the transformation of the their

positions. In this case is done by converging to the saddle point with the MMFA (see

sec. 3.3.1.5) to climb up the saddle point.

• Step 5: Estimate eigenvalues - as in the transition search algorithm (see section

3.6), when prefactors are calculated on the fly, the eigenvalues at the saddle state are

estimated and together with the initial eigenvalues are used to calculate the prefactor

for the reused transition later on.

• Step 6: Check the saddle’s rank - again, when prefactors are calculated on the fly,

the rank of the saddle state must be equal to 1. If the rank is equal to 2, the MMFA

suggested by Pedersen [88] is employed to climb down from a rank 2 saddle state, to a

rank 1 saddle state.

• Step 7: Uniqueness check of the saddle - the same procedure, as in the transition

search algorithm, is used to check whether the reused saddle is unique, if not, the result

is discarded as a duplicate.

• Step 8: Calculate the rate value - if the previous steps were successful, the reuse

algorithm finishes by calculating the rate value for the reused transition using the

Arrhenius equation (Equation 3.2.1) with the default or the calculated prefactor value.
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A failure at any of the steps forces the transition to be discarded as a failure. A detailed

activity diagram explaining the developed transition reuse algorithm is given in Figure 3.11

and a schematic illustration on a potential energy surface in Figure 3.12.

3.7.4 Example

To illustrate this technique in action, a simple example is given below, where a system with

two vacancies is considered (Figure 3.13). Since these two defects are well separated, the

defect volumes around them have almost the same symmetry and therefore they share the

same hash key (b7981c18300caeb25088f). The isomorphism can be defined between them by

solving the over-determined linear equation system and it was found that the transformation

matrix is approximately equal to the identity matrix, due to the high symmetry of the defects.

in this example a transition has been found for the vacancy in the lower left corner,

where it jumps to its first nearest neighbour position. The transition is defined by the initial

(Figure 3.13a), saddle (Figure 3.13b) and final (Figure 3.13c) states. Instead of running

computationally expensive saddle point searches for the vacancy in the top right corner, the

transition reuse procedure can be applied. After applying the procedure, a new transition

for the latter vacancy can be found as shown in Figures 3.13e and 3.13f.

It is very clear that two single vacancies in the relaxed bcc structure will have isomorphism

between the defect volumes which are almost identical.

3.8 on-the-fly Kinetic Monte Carlo Algorithm

The fundamental steps of the otf-KMC method, suggested by Henkelman and Jónsson [46],

can be summarised into an acitivity diagram as follows (Figure 3.14):

The first step is the identification of defects present in the system. It is crucial to locate

defects in order to minimise the search space by limiting the volume where the searches are

initiated, thus making transition search algorithms and the KMC technique more efficient.
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Figure 3.11: Activity diagram representing the reuse algorithm to reuse saddle and optionally final states.
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Figure 3.12: Schematic illustration of the reuse algorithm working on a potential energy surface.

(a) search: initial state (b) search: saddle state (c) search: final state

(d) reuse: initial state (e) reuse: saddle state (f) reuse: final state

Figure 3.13: An example of the reuse algorithm on two defects volumes containing a vacancy.
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Figure 3.14: Activity diagram of the fundamental otf-KMC steps.

The next step is where a saddle search method is employed to find possible transitions from

the current state and estimate rate values for each of them. Then, the next step is the KMC

roulette technique, which picks a random transition as a new state and calculates the elapsed

simulation time between current state and the new one. And lastly, the system is advanced

to a new state.

The otf-KMC software used in this research is a further improvement to the original sug-

gestion by Henkelman and Jónsson [46]. The software was written from scratch by adopting

the initial work done L. Vernon [47]. The activity diagram for the developed software is

given in Figure 3.15.

The otf-KMC is usually continued for a specific number of steps or until the simulation

time is achieved. During each step the technique starts by identifying defects (see sec. 2.7)

by comparing the current system with a reference lattice and checking their atom positions.

Then each defect is localised and characterised by a defect volume and a graph key associated

with it is produced.

If a defect volume has been explored previously, by running saddle searches and the

outcome was saved, instead of rerunning the searches again, the successful migrations are

reused (see sec. 3.7) in order to save computational time.
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Figure 3.15: Activity diagram of the developed otf-KMC technique. The functionality written in blue is
optional.
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If the defect volume has not been previously explored, a set of searches (see sec. 3.6)

of migration mechanisms is launched in order to find the saddle and final states describing

them. The successful searches are then saved for further possible reuse and the transition

rates for the reused and/or found transitions are estimated. If a user chose to calculate

prefactors on the fly, eigenvalues at the saddle are estimated and used for the calculations

of the rate values.

After that the KMC roulette technique is used to pick a migration transition to a new

final state to which the system is evolved and the simulation clock advanced accordingly.

Then the routine is repeated for the new system state during the next otf-KMC step.

Figure 3.16 shows the the client-server model in order to perform the otf-KMC tasks,

such as transition searches and reuse, in parallel. The main idea behind the parallelisation

is to split the KMC algorithm into small tasks that can be done concurrently on clients thus

ensuring minimum work done on the server. The work is split in this way: the server is in

charge of all the procedures that are done in series and cannot be split, such as identifying

defects, calculating rate values and choosing transitions. It also allocates jobs on clients to do

the initial eigenvalue calculations if prefactors are calculated on the fly, to refine previously

found transitions and to run transition searches. It establishes communication with clients

to send the data needed to perform their tasks and to gather results for further actions. The

average number of cores used to run otf-KMC simulations was 60.

3.9 Summary

The otf-KMC technique detailed in this chapter was developed during the course of this

work in collaboration with C. Scott and M. Yu. The performance of the technique and the

individual methods was measured at various stages of the development to ensure robustness,

reliability and applicability of the software. The key features of the technique are:

• easy adaptation of new methods, as the Dimer, RAT, NEB etc,
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Figure 3.16: The client-server model for the parallelisation of the otf-KMC technique.

• ability to group several methods, e.g. to maximise performance during the minimisa-

tion of a final state, the SD and L-BFGS-B methods are combined,

• performance can be increased by using the inclusion radius,

• option to reuse previously found transitions, thus saving computational time,

• good performance and scalability on high performance computing clusters.

The technique was applied to study the influence of the prefactor in the Arrhenius equa-

tion (Equation 3.2.1), to simulate long time scale evolution of defects in α-Fe and compared

with other techniques by evolving α-Fe containing 50 vacancies (see chapter 6). It was also
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used to study Ni-Cr systems by Zainab Al Tooq [101] and helium bubble formations by Xiao

Gai [102].



Chapter 4

Simulating Radiation Effects in ODS

Steel

This chapter presents results regarding the modelling of radiation effects in α-Fe and α-Fe

with embedded nanoparticles. In the first section, an algorithm, to create a simplified model

of an ODS alloy, is described. This is followed by radiation damage and He bubble formation

studies. The findings provide an insight into the atomistic processes and mechanisms that

help to provide a better understanding of the improved performance of ODS alloys in intense

radiation environments.

The radiation damage results were published in [103] and the findings on He bubble

formation are to be published in collaboration with Xiao Gai [102].

4.1 Modelling the Structure of the ODS System

The systems used in the simulations (see Table 4.1) consist of a body-centred cubic structured

iron lattice with a stoichiometric yttria nanoparticle placed at the approximate centre of the

system. An approximate yttria concentration of 0.3 at% was used in accordance with some

of the experimental data from IGCAR [104]. To described the model, interatomic potentials

were used with the details given in section 2.4: the Fe-Fe interactions are described by the
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Ackland 1997 potential, Fe-O interactions - by the Morse potential, Fe-Y - the ZBL and for

the Y-O the Buckingham type potential combined with a fixed charge Coulomb interaction

estimated using the Fennel approximation.

The Y2O3 nanoparticle is initially created outside the bcc iron simulation box as a sphere

of a certain radius in the bixbyite crystal structure and then placed within the iron matrix by

removing corresponding iron atoms. It was found that the best way to embed a nanoparticle

was to use Delaunay’s triangulation [105] method, implemented from the Python Visualisa-

tion ToolKit (VTK) library. This was used to remove all the iron atoms, whose position are

overlapped by the triangulated surface within a specified radius around each yttria atom.

A schematic illustration of the procedure is given in Figure 4.1, with the steps described in

detail. Then the lattice is relaxed to ensure a stable local configuration using the damped

MD technique.

In order to estimate the gap size that should be left between the yttria particle and the

iron atoms, a study of the Y2O3 cluster formation energy Ef (calculated using Equation

4.1.1) and its dependency on the void size was undertaken.

Ef = Ec + (m− s)Evac −NFeE
bulk
Fe −NYE

bulk
Y −NOE

bulk
O , (4.1.1)

where Ec represents the lattice energy with the yttria nanoparticle, Evac is the vacancy

formation energy in a pure bcc iron lattice, NXE
bulk
X (where X = Fe, Y or O) is the number

of atoms multiplied by the atom’s bulk energy, s is the number of atoms in a cluster and

m is the number of iron vacancies. It should be noted that with this methodology, the

embedded nanoparticles are non-commensurate with the bcc Fe lattice but maintain their

basic bixbyite cubic structure albeit with some distortion at the Fe interface. The structures

were relaxed and the gaps with the minimum formation energy were chosen.

The void size is determined from the radius by which iron atoms are removed around

each atom from the nanoparticle as shown in Figure 4.1. The study was carried out using 11

different sized yttria nanoparticles with the gap size (distance between the nearest particles
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(a) (b) (c)

(d) (e) (f)

Figure 4.1: A schematic illustration of the yttria positioning procedure in the bcc Fe lattice. The steps are:
(a) generate the yttria particle, (b) triangulate the yttria particle’s surface using the Delaunay’s triangulation,
(c) overlap the triangulated surface in the Fe system and remove the internal Fe atoms, (d) create surrounding
surfaces around each yttria particle, (e) identify the overlapping Fe atoms, (f) remove the overlapping Fe
atoms.
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in the cluster and the matrix before relaxation) varied from 0.6 Å to 2.4 Å. The value of

1.6 Å for the gap size was found to be optimal (see Figure 4.2) for all the studied yttria

nanoparticles.

Figure 4.2: Study of yttria nanoparticle’s average formation energy per atom dependency on the yttria
nanoparticle’s size and the minimum distance between yttria and Fe atoms.

The size of the systems A and B in Table 4.1 were chosen to keep the agreement with

the observed concentration of yttria and to have nanoparticles that are most likely to be

formed according to the same experimental data. System C was chosen to have a greater

concentration of yttria in order to save computational time by using a smaller system.

Number of Yttria Atoms in the System size
atoms concentration nanoparticle Å × Å × Å

A 127,867 0.3 at% 385 114.3 × 114.3 × 114.3
B 53945 0.3 at% 165 85.7 × 85.7 × 85.7
C 53867 0.71 at% 385 85.7 × 85.7 × 85.7

Table 4.1: System sizes for the different models used in the simulations. All systems have a Y2O3 nanoparticle
placed near the centre of the lattice.
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Figure 4.3: ODS system’s example with the nanoparticle embedded in the Fe matrix where only the atoms
corresponding to the yttria nanoparticle are shown. Blue and red spheres represent yttrium and oxygen
accordingly. The size of the simulation box is that given by system A in Table 4.1 so the box sides are 114
Å in length.

4.2 Simulating Radiation Damage

4.2.1 Simulating Radiation Damage with MD

To simulate the radiation damage cascade using MD, a certain amount of energy was im-

parted to an Fe atom in the system, the primary knock-on atom (PKA). Energies between

0.5 and 5 keV were chosen, but with most statistics obtained for 1 keV cascades. The results

strongly depend on the initial direction of the PKA and sufficient sampling must be done to

obtain good statistics. For a perfect bcc structured lattice the sampled region is constructed

by picking a centering atom in a unit cell and dividing the cell with the symmetry planes.

The region is then sampled over 66 different directions within the lattice from [1 0 0] to [1

1 0] and [1 1 1] with a step size of 0.1 in y and z coordinates as it is shown in Figure 4.4.

In the embedded nanoparticle case, the situation is even more complicated since the crys-

tal symmetry is broken. Despite the break in symmetry, the same sampling process was used

with the directions chosen as shown in Figure 4.4. Eight sets of simulations were performed

for System A from Table 4.1, in which the distance of the PKA from the nanoparticle’s

centre was varied between 16 Å and 57 Å in order to simulate various PKA distances and
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(a) (b)

Figure 4.4: (a) - the bcc structure’s irreducible region, (b) - the irreducible region sampled by 66 directions
starting from from [1 0 0] to [1 1 0] and [1 1 1], with a step size of 0.1 for y, z components.

positions around the yttria nanoparticle (Figure 4.5). These PKA atoms were chosen to give

a representative sample of different cases. For larger distances at 1 keV, the PKA’s energy is

dispersed away from the embedded particle. Most of the simulations were carried out with

a 1 keV PKA energy and directed towards the nanoparticle.

All simulations have periodic boundary conditions applied. These results only weakly

depend on whether the temperature of the system is initially 0 K or room temperature.

Thus for the purposes of a direct comparison between trajectories in the pure Fe and the

embedded nanoparticle case, all the simulations here were carried out on systems originally at

0 K. To describe the residual damage after a collision cascade, the systems were investigated

by comparing their initial and final states and looking for residual defects and other effects of

radiation damage. In total more than 600 simulations were carried out to provide statistics.

4.2.2 Simulating Radiation Damage in Pure bcc Fe

As mentioned before, results were conducted by running collision cascade simulations with

PKA energies from 0.5 to 5 keV by sampling the bcc structure’s symmetry zone. It is well

known that irrespective of the PKA energy, the radiation damage, after the collisional phase

of the cascade, consists of a vacancy rich region close to the initial PKA site surrounded by
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Figure 4.5: The chosen PKA atoms for the 1 keV simulations in the system with the embedded nanoparticle.
Simulations were started by directing the PKA atoms in 66 directions towards the nanoparticle.

outlying interstitials, see e.g. [106, 107, 108]. The PKA energy determines the number of

vacancies formed and the extent and size of the interstitial loops, as is shown in Figure 4.6.

Radiation damage in bcc iron has been extensively studied by many groups around the

world [32, 106, 37, 109, 110, 111, 112] where the studies were conducted to understand

the role of the cascade energy and temperature, the influence of the interatomic potentials,

stability of the defects and other properties. Therefore the data from the radiation damage

simulations in pure Fe is used only for the comparison reasons with the systems containing

an yttria nanoparticle.

4.2.3 Simulating Radiation Damage in a Simplified ODS Model

Defect analysis of 1 keV collision cascades done in pure Fe and an ODS model (system A)

shows an interesting evolution of the number of iron interstitials. As a first example a study
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Figure 4.6: Typical residual defects spread after a radiation damage event in pure Fe contains a vacancy rich
region close to the initial PKA site surrounded by outlying interstitials.

between these two systems is given in Figure 4.7, where the PKA position is 1, as it is shown

in Figure 4.5.
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(b) Model of ODS system

Figure 4.7: Comparison of defect (iron interstitial) numbers sampled over 66 directions for 10 ps. Circles
indicate average defect number in the system every 100 fs with 1 σ error bars.

Clear differences can be observed between these two cases. In both systems the peak

defect numbers occur during the first two hundred femto-seconds (the ballistic phase), after

which recombination processes take place. The average peak number of interstitials in the

iron system is ≈ 148 with standard deviation ≈ 33 at 200 fs compared to ≈ 110 and ≈ 30

accordingly in the embedded nanoparticle system at the same time. Significant differences



4.2. SIMULATING RADIATION DAMAGE 91

between the systems remain even after the recombination process. At the end of the simu-

lation the average number of interstitials in the iron system is ≈ 18 with standard deviation

≈ 8, compared to 28 and 3 in the ODS system. This would appear at first sight to be

contrary to the expectation that the nanoparticles would increase radiation tolerance and

result in fewer defects. If, however, the interstitial defects located at the interface between

the nanoparticle and the matrix are not counted as true defects but as reconfiguration of Fe

atoms around the nanoparticle, then the situation changes significantly.

If the defects, that are located on the surface of the nanoparticle, are excluded, then the

closer the PKA is initiated to the yttria nanoparticle the lower the defect count is (Figure

4.8) compared to defect numbers in the pure iron system (Figure 4.7a); especially the cases in

Figures 4.8a, 4.8b and 4.8c, 4.8d. But as the PKA distance from the nanoparticle increases,

as expected, the defect count approaches that for pure Fe and there are not many defects on

the surface.

The defect number comparison tells only a part of the story and a deeper examina-

tion of the mechanisms by which the interstitials are formed at this interface and how the

nanoparticle itself behaves when subjected to impact by the energetic Fe particles is carried

out.

4.2.3.1 Effect of the Nanoparticle on the Cascades

A common feature of the collision cascades is the ability of the yttria nanoparticle to pre-

vent damage spread as illustrated in Figure 4.9. In this example two collision cascades are

compared by choosing the PKA at the same position in both, the pure Fe system and one

containing a nanoparticle, and directing it in the [1 0.6 0.5] direction with 1 keV kinetic

energy. Numbers in square brackets refer to the relative velocity components parallel to the

coordinate axes, with the x-component normalised to 1. (Figure 4.9 (a,b,c)) and (Figures

4.9 (d,e,f)) represent systems of pure iron and ODS model accordingly.

In Figure 4.9 only the Fe defects in the system and the atoms from the yttria particle are
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(a) PKA 1 - 19 Å (b) PKA 1 (without interface defects)

(c) PKA 2 - 31 Å (d) PKA 2 (without interface defects)

(e) PKA 3 - 44 Å (f) PKA 3 (without interface defects)

(g) PKA 4 - 56 Å (h) PKA 4 (without interface defects)

Figure 4.8: The number of interstitial defects in the model of ODS system after 1 keV collision cascades in 66
directions. The chosen PKA atoms are located at different distances from the centre of yttria nanoparticle,
varying from 16 Å to 57 Å.
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(a) 25 fs - iron system (b) 25 fs - ODS system

(c) 500 fs - iron system (d) 500 fs - ODS system

(e) 1250 fs - iron system (f) 1250 fs - ODS system

Figure 4.9: Snapshots of collision cascade evolution in the pure iron and the embedded nanoparticle systems
for the initial same PKA direction at 1 keV. Yttrium is represented by blue spheres and oxygen by red
spheres. Green spheres are Fe interstitials and green cubes are Fe vacancies. Fe atoms that remain on lattice
sites are not shown.
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shown. At the very beginning of the cascade, both cases have a similar defect configuration

(Figures 4.9a and 4.9b), but there are differences after 500 fs and 1250 fs. In the ODS system

the cascade is effectively blocked by the nanoparticle and almost every interstitial is located

on the nanoparticle’s surface with a vacancy cluster at the origin of collision cascade. In the

pure Fe case the cascade is more spread out. Although only one cascade is shown here, the

result is typical of many of the different collision cascades that were analysed.

A key feature of the process is that Fe atoms can relocate to positions within the nanopar-

ticle during the ballistic phase of the cascade if they have enough energy to penetrate the

nanoparticle. However in all cases considered the Fe atoms were ultimately ejected from

within the nanoparticle to reside at the interface.

These are not the only mechanisms by which defects form at the interface. Interstitial

defects that form close to the particle can migrate there as it shown in Figure 4.10. Here a

dumbbell interstitial (DB) is initially formed less than 10 Å from the particle but is attracted

there in the later stages of the cascade.

In this example the PKA atom was directed in the [1 0.2 0.0] direction with 1 keV kinetic

energy. At the very beginning of the simulation, the collision cascade spreads out next to the

yttria nanoparticle, as is shown in the snapshot at 500 fs in Figure 4.10a. After the ballistic

phase of the cascade, defect combinations can be identified (Figure 4.10b). By following

the evolution of two defects (numbered 1 - interstitial and 2 - DB), it can be clearly seen

in Figure 4.10c that both defects move towards to the yttria nanoparticle in the direction

[1 1 0] where after 4600 fs (Figure 4.10d) both reside at the nanoparticle’s surface. Similar

mechanisms were noticed in most of the simulations when interstitials occur in a region close

to the yttria nanoparticle.

By plotting histograms of defects numbers against the distance from the yttria nanoparti-

cle over the collision cascade simulation time, an approximate range within which interstitial

type defects are attracted towards a nanoparticle can be estimated. As an example, the data

from one of the collisions cascade simulations is presented in Figure 4.11, which shows the
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(a) 500 fs

21

(b) 1200 fs

2
1

(c) 2200 fs

1
2

(d) 4600 fs

Figure 4.10: Snapshots of a 1 keV collision cascade showing defect attraction to the nanoparticle during the
cascade relaxation process.
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tendency that can be seen in all other investigated cases.

By analysing the data given in the form of distribution of the interstitial type defects

with respect to the distance from the yttria nanoparticle, it can be seen that initially more

than half of the accounted defects are situated on the surface of the nanoparticle (Figure

4.11a). This is due the PKA, which is pointed towards the nanoparticle and transfers most

of its energy to it. Also, as can be seen in the same figure, there are defects situated along

the pathway between initial PKA region and the nanoparticle. At the later stages, 400-500

fs, clearly recombination occurs and the defect numbers decrease, but also the numbers of

defects around the nanoparticle’s surface starts to increase indicating that defects tend to be

situated on it (Figures 4.11b and 4.11c). Further evolution of the system (1-2 ps., Figures

4.11d and 4.11e) shows that region within 3.5− 10.0 Å from the nanoparticle becomes free

of interstitial type defects and the further increase of defects around the surface is observed.

Around 5 ps (Figure 4.11f) the system stabilizes and the only events left are rare ones, that

can happen on longer time scales then MD can model. Small changes in defect numbers can

be seen around the surface due to the release of the energy by the nanoparticle and Fe atoms

rearranging accordingly. The same mechanism does not apply for the Fe vacancies due to

their higher migration energy barriers.

When a collision cascade is initiated next to the yttria nanoparticle, not all the Fe atoms

get trapped inside and ejected. Moving Fe atoms can arrive with enough kinetic energy to

pass through the nanoparticle and cause structural damage to the material on the other side

as shown in Figure 4.12.

In this example a semi-channelling [1 0.3 0.0] direction was chosen from the same PKA

position and the same initial kinetic energy as in the previous example. After 25 fs (Figure

4.12a), the iron atom still has approximately 700 eV of kinetic energy when entering the

nanoparticle. It then passes through the yttria atoms and after 100 fs (Figure 4.12b) leaves,

retaining less than 100 eV of its kinetic energy. It then causes damage on the other side of

the nanoparticle (Figure 4.12c) and after recombination processes only defects accumulated
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(a) 100 fs (b) 400 fs

(c) 500 fs (d) 1 ps

(e) 2 ps (f) 5 ps

Figure 4.11: Histograms of the distance between the interstitial type defects and the yttria nanoparticle
during 1keV collision cascade simulation. Each histogram represents the system at a certain simulation
time. This shows that there is an interstitial free region surrounding the nanoparticle.
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(a) 25 fs (b) 100 fs

(c) 250 fs (d) 1250 fs

Figure 4.12: Snapshots of a collision cascade evolution near the nanoparticle when the Fe recoil passes
through it.

around the surface of the nanoparticle remain.

In Figure 4.13 statistics are presented from the 66 target directions from the PKA situated

19 Å from the nanoparticle, by presenting the number of iron atoms passing through the

nanoparticle (Figure 4.13a), and the atom energies on entering and leaving (Figure 4.13b).

Black circles in Figure 4.13a indicate the direction when the nanoparticle acted as ‘a wall’

and none of the iron atoms passed through; red circles indicate the direction with one iron

atom passing through and yellow - two iron atoms. The black bars in Figure 4.13b represent

the iron atom’s energy when it leaves the nanoparticle and the red bar is the energy absorbed

by the nanoparticle. It can be seen that the nanoparticle can absorb up to 850 eV of energy

without permanent displacement of atoms.
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(a) The number of iron atoms passing through the nanopar-
ticle according to initial PKA direction: black - 0, red - 1,
yellow - 2.
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(b) Kinetic energies of iron atoms passing through the yttria nanopar-
ticle: red - absorbed energy, black - remaing energy.

Figure 4.13: Analysis of number iron atoms passing through the yttria nanoparticle and their energies.
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4.2.3.2 Effect of the Cascade on the Nanoparticle

The effect of the cascade on the nanoparticle can be examined by plotting the kinetic energy

of its constituent atoms as a function of time. For this purpose it is useful to convert their

kinetic energy into an effective temperature T and plot T against time as shown in Figure

4.14. It is clearly seen that much of the kinetic energy from the collision cascade is absorbed

by the atoms in the nanoparticle. However Figure 4.9 shows that none of the atoms in the

nanoparticle were displaced into the Fe matrix. This was a feature of all the 1 keV cascades

and is consistent with calculations of collision cascades in ceramic materials which have a

much higher displacement threshold energy than in metals [67].

Figure 4.14a illustrates an important feature of the collisional process. After the initial

temperature peak, energy is more gradually released into the system and the nanoparticle

temperature equilibrates with its surroundings over a longer time scale than that for which

the collision cascade is modelled, which is terminated when the defect numbers become sta-

bilised. By calculating the temperature of atoms within a certain radius of the nanoparticle

its evolution can be followed. Figure 4.14b shows the gradual diffusion of the nanoparticle’s

absorbed energy as a function of time. This suggests a mechanism by which the radiation

damage can be reduced. The nanoparticle absorbs kinetic energy which would otherwise be

used in the production of Fe defects and by releasing the energy more slowly over a longer

time scale it is then converted into atomic vibrations rather than permanent displacements.

Thus the region close to the nanoparticle remains ‘hot’ after the cascade has begun to sub-

side which allows for higher mobility of the defects in this region. Figures 4.14c-d show how

the radial distribution function for the atoms within the nanoparticle [113] typically changes

after irradiation. Initially (at 0.0 ps) the atoms in the nanoparticle have a mainly cubic

form. After irradiation (at 10.0 ps) the features in the radial distribution function does not

change significantly according to the oxygen plot, but a shift to the left can be seen in the

yttrium case. Some of the simulations were continued to 100.0 ps as can be seen in Figures

4.14c-d. Whereas the O distribution does not change in time, but there is a shift in the
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Figure 4.14: (a) - The effective temperature evolution of the atoms comprising the yttria nanoparticle
calculated from their kinetic energy, (b) - the temperature evolution of the Fe matrix atoms measured from
the nanoparticle’s surface, (c-d) - the radial distribution function of the oxygen and yttrium atoms as a
function of time.

yttrium graph at 10 and 50 ps but after 100 ps, the distribution is very similar to the initial

distribution. Experimentally a shift of yttrium atoms from their exact projected positions

has also been observed [114].

4.2.3.3 Higher PKA Energies and Different Nanoparticle Sizes

Some simulations were also carried out for different PKA energies and different nanoparticle

sizes for qualitative comparison with fewer trajectories and therefore poorer statistics. Sim-

ilar processes to those found for 1 keV were observed. By simulating collision cascades in

systems B and C (Table 4.1) and comparing the results, where the PKA energy was varied
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from 0.5 keV up to 5 keV, an increase of defect numbers in the system with larger nanopar-

ticles was observed with defects again accumulating on the larger nanoparticle’s surface.

In the 1 keV simulations yttria nanoparticles have shown good resistance to the radia-

tion damage, remaining mainly intact and such tendency remains during the higher energy

collision cascades also. Only few atoms are ejected from the nanoparticle following head

on collisions at high energy. An example is shown in Figure 4.15 for a 5 keV PKA that

was initiated close to the yttria nanoparticle’s surface. In this case a single O atom was

ejected from the nanoparticle which also creates residual damage along it’s trajectory in the

Fe lattice. This is consistent with the preliminary MD results from the group at IGCAR

in pure Y2O3 showing that it is much easier to displace atoms from the oxygen sub-lattice.

However, in most 5 keV cases the trajectories initiated in the Fe region failed to dislodge

atoms from the embedded yttria particle into the Fe matrix with the nanoparticle absorbing

most of the collisional energy.

5keV PKA

(a) Before a collision with the nanoparticle

O recoil
PKA

(b) After a collision with the nanoparticle

Figure 4.15: A 5 keV collision cascade simulation with the PKA initiated close to the nanoparticle.
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4.3 Simulating He Bubble Formation

4.3.1 Systems and Modelling Technique

The methodology, similar to the one used by Yang et al. [21], using MD was implemented

to study the formation and the diffusion of He bubbles within two systems: α-Fe and the

simplified ODS system (previously described in section 4.1). To describe interactions between

atoms, interatomic potentials, given in Table 4.2, were used with the details given in section

2.4.

Interaction Potential Interaction Potential
Fe− Fe Ackland 2004 [36] O −He ZBL [53]
He−He Aziz[26] Y −He ZBL [53]
Fe−He Gao [27] Y +3 − Y +3 ZBL [53] + Fennell approx. [66]
Fe− Y ZBL [53] Y +3 −O−2 Lewis [55] + Fennell approx. [66]
Fe−O Morse [58] O−2 −O−2 Catlow [56] + Fennell approx. [66]

Table 4.2: Interatomic potentials used for simulating He bubble formation in Fe and ODS systems.

Systems for the simulations in α-Fe were created by simply generating a system size of

30a0 × 30a0 × 30a0, where a0 is the lattice parameter, containing 54,000 atoms. As for the

ODS systems, the same mechanism, described in section 4.1, was used.

The initially created system then is minimized to its equilibrium by using the L-BFGS-B

method and He atoms are randomly distributed in the system, by keeping the concentra-

tion of them equal to 1,000 appm (atomic parts per million). Once again, the system is

minimized and, finally, thermalized with the Berendsen thermostat up to 500 K for 20 ps.

The concentration and the temperature were chosen to meet the average conditions in the

nuclear applications [17]. Examples of both types of systems are given in Figure 4.16.

To generate statistics 10 Fe-He systems were created and evolved with MD for 1 ns. Then

4 of them were picked, with respect to different type of clusters observed and evolved up to

5 ns. As for the ODS systems, two different systems were created in 54,000 bcc structured

Fe lattice containing 0.3 at% and 0.71 at% of yttria. The first one is to represent an ODS

system in accordance with the experimental data from IGCAR [104] and the second - to
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(a) (b)

Figure 4.16: Examples of the systems with random He distribution to simulate He bubble formation mech-
anisms. Only helium (light blue spheres) atoms and atoms corresponding to the yttria nanoparticle (red -
oxygen, dark blue - yttrium) are shown. (a) - pure bcc Fe system, (b) - ODS system.

represent an average size nanoparticle with a higher at% of yttria

4.3.2 Results

By investigating simulations in bcc Fe systems, it was seen that He tends to accumulate

into clusters over rather short time scales (ns). This is due to the very high mobility of the

interstitial He atoms and their clusters. The bigger they become, the less mobile they are,

due to the higher migration energies. It was observed, that when a He cluster reaches a

critical size of 4 atoms, it can force an iron atom out of its position and become trapped

(a bubble) in the vacancy defect. The same findings were reported by Yang et al. in [21].

Clusters containing 5 He atoms in all the simulations shown an immediate ejection of an

iron atom, which becomes a split interstitial which may diffuse away form the bubble (Figure

4.17).

Also bubbles varying in sizes from 5 atoms up to 12 were observed. When a bubble size

reaches 10 He atoms, another Fe atom is pushed out making a He10V2 bubble. Formation

energies of He bubbles were studied by Gai [102], and the calculations agree with the results
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(a) (b)

Figure 4.17: Clustering of He: (a) - slightly mobile 4 He cluster with a highly mobile He interstitial in the
vicinity, (b) - the He interstitial joins the 4 He cluster, which pushes out a Fe atom which forms a split
interstitial defect. The 5 He cluster stabilizes in the vacancy.

found in this work, done by applying the visual and defect analysis.

The average number of He interstitials in the 10 Fe-He systems, which were evolved for 1

ns, is 6 (out of 54 initially generated) and indicates high tendency of clustering. The average

numbers of He bubbles containing 5, 6, 7 and 8 He atoms are 1.9, 0.9, 0.8, 0.8 accordingly,

thus showing that even bigger He clusters are likely to form on such short time scales. In

two of the ten simulations, helium bubbles containing 12 atoms have also been seen. An

example of a system, containing various size bubbles after 1 ns of simulation time in a pure

Fe system, is given in Figure 4.18.

As was previously mentioned, 4 systems, out of 10, were continued to be evolved up to

5 ns. In all the cases the outcome was very similar: the highly mobile He interstitials and

He clusters, containing up to 3 He atoms, clustered into He bubbles and at the end of the

simulation only stable bubbles and defects, formed during the bubble formation, are left in

the system, as showed in Figure 4.19 with a frequency diagram with respect to the cluster

sizes. He evolution into bigger bubbles can be seen through the comparison of Figures 4.18

and 4.19, that represents the same system after 1 ns and 5 ns simulation time accordingly.

Similar studies were carried out in the ODS model system. The behaviour of He atoms
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Figure 4.18: (a) - Fe system containing 1000 appm of He, after being evolved for 1 ns, (b) - a histogram of
the He cluster sizes in the system.

were very similar to the one that was seen in Fe systems, when He atoms were not in the

vicinity of the nanoparticle. However, an important feature of the ODS material was also

captured: He tends to accumulate on the surface of the nanoparticle (see Figure 4.20).

The yttria concentration in the system plays a non-negligible role in these simulations.

After calculating statistics of two systems with 0.3 and 0.71 at% of yttria, it was seen, that

the system with the bigger nanoparticle traps more He atoms on its surface (Figure 4.21).

The volume of the nanoparticle and its surface is roughly 0.3 % and 1.5 % of the total volume

of the system, however the average percentage of He sitting on the surface is ≈ 13% and 20%

accordingly. This means that even a small nanoparticle can have a quite big portion of the

He from the system trapped on its surface and protecting the system from the formation of

He bubbles. The trapped He decorates the surface of the nanoparticle and does not cluster

into a bubble.

Analysis of the He cluster sizes between these three types of systems did not indicate any

significant change, when the nanoparticle is present in the system (see Figure 4.22).



4.4. DISCUSSION AND CONCLUSIONS 107

(a)

(b)

Figure 4.19: (a) - Fe system containing 1000 appm He, after being evolved for 5 ns. (b) - Histogram of He
cluster frequency in the system.

4.4 Discussion and Conclusions

The aim of this chapter was to apply MD simulations to determine the influence of the yttria

nanoparticles embedded in bcc Fe on irradiation effects. The chosen potentials were tested

separately in a bulk yttria system to confirm that the bixbyite crystal structure was stable

at high temperatures. For the small nanoparticles considered here, the structure embedded

in the Fe lattice is not commensurate with the bcc lattice and there is relaxation away from

the perfect bixbyite structure at the interface. There is some experimental evidence that

larger nanoparticles do form a commensurate structure with the Fe lattice so an improvement

to the interaction potentials used here, for example, using a variable charge methodology

should be a future priority. However to develop a variable charge model for the Fe-Y-O

interactions that would capture this feature is beyond the scope of this thesis. The interface

therefore acts as a trap for defects and Fe interstitials occur by a direct blocking mechanism,

by ejection of Fe interstitials from the nanoparticle or by attraction.
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Figure 4.20: An ODS system with 0.3 at% of yttria and randomly distributed He with 1000 appm concen-
tration after being evolved for 1 ns. A part of helium atoms instead of clustering into bubbles, accumulates
on the surface of the nanoparticle.

Results from the collision cascade simulations have shown how the cascades interact with

the yttria nanoparticles. Different behaviours and processes can be seen: when a collision

occurs in an yttria-free region, the irradiation, as expected, is similar to the one observed

in the pure bcc iron system. However, when it is initiated close to a nanoparticle, the

nanoparticle can act as a block to the propagation of a collision cascade. In this case the

energy can be “transferred” to the yttria nanoparticle, so instead of creating residual defects

in the Fe lattice structure, the energy is absorbed by the yttria nanoparticle and gradually

released through atomic vibrations over longer time scales then the MD simulation. There is

a partial disordering of the nanoparticle structure during this process but after large times

the nanoparticle structure is similar to that before irradiation.

Fe defect attraction to the nanoparticle interface can also occur, thus lowering the num-

ber of residual defects in the bulk crystal structure. This effect was noticed by coupling

visual analysis of the defects and studying the distribution of interstitial type defects with
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Figure 4.21: Average number He atoms situated on the surface of the nanoparticle after 1 ns simulation: (a)
system containing 0.3 at% yttria as a nanoparticle, (b) system containing 0.71 at% of yttria. Circles indicate
average values with 1 σ error bars.
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Figure 4.22: Average He cluster sizes after 1 ns simulation in three types of systems: (a) - Pure Fe, (b) -
ODS containing 0.3 at% yttria, (c) - ODS containing 0.71 at% yttria.

respect to the distance from the yttria nanoparticle. An active region of 3.5 − 10.0 Å from

the nanoparticle has been determined to be free of interstitial type defects in most of the

simulations, thus suggesting defect attraction within it towards the nanoparticle, which was

also confirmed by tracking individual defects in the same region.

The results for higher energy PKAs (5 keV) show that only in the event of a near head-on

collision with an incoming energetic Fe atom, does the ejection of an O atom from the cluster

occur. The results give therefore some hint that the ODS materials might be more radiation

resistant than the pure metal.

Results from the He clustering simulations have shown how yttria nanoparticles interact
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with helium atoms. Also, interesting behaviours of He clusters were observed in pure Fe

systems, where clusters containing up to 4 He atoms are mobile and clusters containing 5 or

more become stable by pushing a Fe atom out of its position. Simulations up 5 ns showed

that He tends to cluster rapidly and the end of simulations, systems contained only stable

He bubbles.

Systems with yttria nanoparticle showed the ability to trap He on their surface and the

amount of He concentrated on the surface greatly depends on the size of the nanoparticle.

One of the nanoparticle’s properties, to reduce the size of He clusters, has not been seen

since large bubbles have not been modelled. It also might be due to the method chosen to

simulate He accumulation in the systems. Normally He atoms are produced by transmutation

reactions and gradually introduced into the matrix. Therefore, before another introduction

of He into the system, He atoms that are present can diffuse and find a trapping site to

precipitate. When the whole amount of He is introduced at once, He atoms do not need to

diffuse as much to find a precipitation site. Nonetheless, the results from the simulations

show significant evidence of the nanoparticle’s ability to trap helium.

These results depend on the interatomic potentials and cannot be considered as quantita-

tive, but the tendencies seen in the simulations provide a substantial insight of the processes.



Chapter 5

Simulating Radiation Damage in

Y-Ti-O systems

This chapter presents preliminary results from the collision cascade investigations in three

systems: Y2O3, Y2TiO5 and Y2Ti2O7 which represent nanoparticles found in the ODS steels.

Before the radiation damage simulations are undertaken, the study was focused on construct-

ing minimum energy crystal structures from the potential description by varying structural

parameters: a0, b0 and c0 lattice constants and oxygen displacement δ, as these will not be

exactly the same as the experimental values. This is followed by radiation damage studies

which give an insight look in to the atomistic processes that undergo in the systems during

low energy collision cascade events.

5.1 Determination of the Minimum Energy Structures

of the Y-Ti-O Systems

The chosen potentials for Y2O3, Y2TiO5 and Y2Ti2O7 model systems, used in the radiation

damage simulations, were tested by minimising the energies of the perfect crystals and fitting

their structures through the adjustments of lattice constants and oxygen displacement. The
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implemented Buckingham type potential (see section 2.4.1.2) has the parameter values (see

Table 2.2) derived empirically using the relaxed fitting method, by fitting to the experimen-

tally measured data [57]. Another available potential for these systems is also a Buckingham

type potential [115], but it was designed for a charge-neutral model and it was unable to

recreate the structures of the systems as they were determined experimentally.

Originally the Nelder-Mead Simplex Method [116] was implemented from the Python

SciPy 0.12.0 scientific library. During each iteration of the Simplex Method, a new system

is created using the optimized structure parameters. Y2O3 and Y2Ti2O7 are cubic systems

with two structural variables: a0 (lattice constant), which describes the size of the cube and

oxygen displacement δ, which describes the relaxation of the oxygen atoms from the perfect

lattice sites, where Y2TiO5 is a rectangular system described by three structural variables:

a0, b0 and c0 lattice constants.

Then the systems are relaxed to their local minimum energy configurations by the BFGS

method [75] and thermalised up to 500K with the Berendsen thermostat [79] for 10 ps. It

was observed, that systems tend to get trapped into local minimum configurations and the

method did not converge to a global energy minimum. Therefore a more straightforward

method was used instead: by varying the ranges of the lattice constants and oxygen displace-

ment, a structure with the lowest energy and the best agreement between potential energies

of the system after initial creation, after minimisation and after thermalisation steps is cho-

sen to represent the bulk material in the radiation damage simulations. At first a large

interval with a big step size is used for all the structural variables in the structure. Then

the intervals are narrowed and smaller step sizes are used until the desired accuracy of the

variables is reached.

Other properties, such as bulk modulus and elastic constants, were not tested since the

potential by Bush et al. [57] was not designed to reproduce them and cannot be compared

with the experimental data.
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5.1.1 Y2O3

Y2O3, also known as Yttria, has a bixbyite structure (space group Ia-3, T 7
h ) with atoms in

the following Wyckoff positions [117]:
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where δ = −0.0327, x = 0.3907, y = 0.1520, z = 0.3804 and lattice constant a0=10.604 Å

(27o C).

Bixbyite structure can be thought as a fluorite structure with oxygen occupying three

fourths of the positions and vacancies situated on the opposite corners of the cube as shown

in Figure 5.1.

Figure 5.1: Schematic representation of the fluorite and the bixbyite structures. This image is taken from
[118].

For Y2O3, a 3a0 × 3a0 × 3a0 supercell, where a0 is the lattice constant, was set up to

determine the best values of a0 and the oxygen displacement δ. It was found that δ = −0.03Å

irrespective of the value of a0 gave the lowest system energy and this value was then used to

determine the lattice constant a0. Figure 5.2a shows the change of the supercell’s energy in
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a narrow interval of a0. The found minimum value 10.41Å is in a reasonable agreement with

the experimental results from [117], therefore the set of parameters where a0 = 10.41Å and

δ = −0.03Å was used to create bigger systems (8a0 × 8a0 × 8a0, 40,960 atoms) to simulate

radiation damage.
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Figure 5.2: (a) - Estimation of the lattice constant for Y2O3, with δ = −0.03Å. (b) - Y2O3 unit cell’s
structure when a0 = 10.41Å and δ = −0.03Å, blue spheres represent yttria, red - oxygen atoms.

5.1.2 Y2TiO5

Y2TiO5 has a stable orthorhombic crystal structure under 1330◦C, which is quite compli-

cated (space group Pnma, D16
2h) and has atoms in Wyckoff positions of: 4c: [(x, 1/4, z) ;

(−x+ 1/2, 3/4, z + 1/2); (−x, 3/4,−z); (x+ 1/2, 1/4,−z + 1/2)] positioned in the mirror

planes y = 1/4 and y = 3/4 [119].

To determine lattice constants for Y2TiO5, a 3a0 × 9b0 × 3c0 supercell was used, where

a0, b0 and c0 are the lattice constants. The tests were carried out by adjusting all of them.

The optimum values were found to be equal to a0 = 10.33Å, b0 = 3.49Å, c0 = 11.15Å and

are in a good agreement with the experimentally determined values: a0 = 10.35Å, b0 = 3.7Å

and c0 = 11.25Å [120]. The comparison between calculated and experimental internal free
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parameters x, z are specified for each atom and the values are given in Table 5.1.

Figure 5.3: Y2TiO5 unit cell’s structure when a0 = 10.33Å, b0 = 3.7Å and c0 = 11.15Å; blue spheres
represent yttria, red - oxygen and silver - titanium atoms.

Atom
Experimental Calculated

x y x y
Y(1) 0.1156 0.2231 0.1073 0.2060
Y(2) 0.1366 0.5578 0.1273 0.5498
Ti 0.1745 0.8806 0.1704 0.8551
O(1) 0.4947 0.1024 0.5049 0.1013
O(2) 0.2229 0.0449 0.2426 0.0255
O(3) 0.2594 0.7340 0.2582 0.7224
O(4) 0.5085 0.6601 0.5105 0.6401
O(5) 0.2690 0.3833 0.3127 0.3740

Table 5.1: Comparison of the experimental [119] and the calculated relative atoms’ positions. Units are in
fractions of a0.

The newly calculated atom positions and the lattice constants were used to create 8a0 ×

23b0 × 7c0 size systems containing 41,216 atoms for the radiation damage simulations.

5.1.3 Y2Ti2O7

Y2Ti2O7 has a pyrochlore structure (space group Fd3̄m, O7
h) and has atoms in Wyckoff

positions of: Y at 16d: (1/2, 1/2, 1/2), Ti at 16c: (0, 0, 0), O at 48f : (δ, 1/8, 1/8), O’ at 8b:

(3/8, 3/8, 3/8). In order to better understand the pyrochlore structure, it can be thought as
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a defective fluorite, with structural vacancies in every 1/8 unit cell [121] as shown in Figure

5.4.

(a)

(b)

Figure 5.4: Schematic representations of: (a) - defective fluorite unit cell as a 1/8 of the full unit cell of
pyrochlore, with oxygen atoms represented as the red spheres, (b) - unit cell of pyrochlore without oxygen
atoms for clarity. The red cubes represent the structural oxygen vacancies. These images are taken from
[121].

Similarly to the Y2O3 case, a 3a0× 3a0× 3a0 supercell was used to determine the lattice

constant a0 and the oxygen displacement δ. Results showed structural stability with δ =

0.32Å and the system with minimum energy difference, when a0 = 10.01Å, was chosen

(Figure 5.5). These parameters agree with the experimental values [119]: a0 = 10.09Å and

δ = 0.328Å and were used to create 8a0 × 8a0 × 8a0 size systems, containing 45,056 atoms,

for collision cascade simulations.

5.2 Simulating Radiation Damage

As was explained in the previous chapter (see sec. 4.2.1), to simulate a radiation damage

cascade, a certain amount of energy is imparted to a PKA in the system. During radiation

damage simulations, results depend crucially on the initial direction of the PKA. When a

system has a rather simple structure (e.g. bcc), PKA directions can be chosen by sampling
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Figure 5.5: Y2Ti2O7 unit cell’s structure when a0 = 10.01Å and δ = 0.32Å; blue spheres represent yttria,
red - oxygen and silver - titanium atoms.

an irreducible region. In the cases of Y2O3, Y2TiO5 and Y2Ti2O7 systems, due to the

complexity of their crystal structures, random directions in 3 dimensions were chosen. The

PKA directions were sampled by solving the Thompson problem - finding the minimum

energy configuration of N point charges on a sphere [122, 123] and directing the trajectories

in the directions of the point charges from a PKA located at the centre of the sphere.

This was done by randomly distributing N points on a sphere followed by a minimisation

of the effective force using the CG method:

Feff
i = Ftrue

i −
(
Ftrue
i · ri

)
ri, (5.2.1)

where

Ftrue
i = −∇φi (r1, r2, ..., rn) , (5.2.2)

φi (r1, r2, ..., rn) =
∑
i 6=j

1

rij
, (5.2.3)

rij = |ri − rj| . (5.2.4)
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As in [123], to ensure an on sphere point location, the positions are renormalized during

each minimisation step:

ri =
ri
|ri|

. (5.2.5)

Typical values of N used in this work were: 50, 60 and 100, where the minimisation of

the latter is illustrated in Figure 5.6.

(a) Initial system (b) Minimised system

Figure 5.6: Sampled 100 PKA directions generated by solving the Thompson problem, by minimising initially
randomly distributed charged points.

Three PKA energies were used: 500 eV to represent low energy cascades, 1 and 2 keV

for medium energy cascades. Higher energy cascades were not contained in the simulation

boxes. Bigger systems might be used, but due to the increasing computational costs were not

covered in this work. For the same reason, oxygen atoms were chosen as PKA’s only in the

500 eV simulations, since they tend to channel through the system more than the heavier Y

and Ti atoms. To capture the effect of the temperature, simulations were carried out at 0 K

and at 500 K. When simulating at 500 K, systems were initially treated with the Berendsen

thermostat (see sec. 2.6) for 10 ps and thermal layers of 3 Å around the simulation box

were applied in order to help to dissipate away the energy from the region where the ballistic
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process occurs. All simulations have periodic boundary conditions applied.

5.3 Results

5.3.1 Y2O3

During the low energy cascades the maximum number of defects occurs within the first 200

fs and is followed by the recombination processes on average lasting until 1-1.5 ps. After 1.5

ps, the atoms that are not situated on the lattice sites only vibrate around their positions

and diffusion of them is rarely seen. Graphs of the evolution of the defect numbers are

given in Figure 5.7. The graphs indicate that Y PKA atoms produce more defects than O

PKA during the peak damage phase and the recovery phase at the end of the simulations.

The same behaviour was observed during radiation damage studies in Er2O3 bixbyite [124].

From the visual interpretation of data, it seems as the O PKA tends to channel through

the system, where as the Y PKA creates more localised damage. With O PKAs most of

the collisions are not head-on and they tend to glance off from the atoms, thus having more

energy to channel through the system and making less defects compared to the Y PKA.
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(b) O PKA

Figure 5.7: The number of interstitial defects in the Y2O3 system, during 500 eV collision cascade simulation
at 0K when: (a) - Y PKA, (b) - O PKA.

Two distinct outcomes were observed during the simulations. The first is when the
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radiation damage was contained within the vicinity of the initial PKA. A typical evolution

of such simulation is shown in Figure 5.8, where the Y PKA is directed in the [-0.69, -0.67,

-0.28] direction. At the end of the simulation two yttrium dumbbells, a void, formed at the

initial PKA location, a few oxygen interstitials and a cluster of two oxygen and one yttrium

atoms on an oxygen site are formed.

(a) 100 fs (b) 200 fs (c) 400 fs

(d) 1 ps (e) 1.5 ps (f) 5 ps

Figure 5.8: Snapshots of a 500 eV Y PKA collision cascade showing minor defect spread from the original
PKA position and a void formation at the centre of the cascade. Blue spheres represent yttrium atoms and
red spheres - oxygen. Lattice atoms are not shown.

The second outcome is when PKA is directed in a channelling direction and creates

defects on its pathway. In this case the defects tend to recombine as illustrated in Figure

5.9, where the Y PKA was directed in [-0.83, -0.19, 0.53]. At the end of this simulation only

a few oxygen defects besides original Y PKA atom are present.

Both behaviours are also a feature of medium energy cascades, where the difference is

increasing number of defects and the damage peak is at 300 fs as shown in Figure 5.10.

Average numbers of defects left in the system are summarized in Table 5.2. The data shows
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(a) 100 fs (b) 200 fs (c) 400 fs (d) 1.5 ps

Figure 5.9: Snapshots of a 500 eV Y PKA collision cascade in a channelling direction producing defects on
its way which recombine during MD time scales.

minor difference of the average number of defects within the thermalized system (500 K)

and the system at 0 K, and agrees with the visual analysis showing very similar behaviour

in both cases. Also the effect of temperature is small and the relation between the number

of defects and the PKA energy is almost linear.
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(a) 1 keV Y PKA
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(b) 2 keV Y PKA

Figure 5.10: The number of interstitial defects in the Y2O3 system, during collision cascade simulations at
0K.

By analysing these simulations typical defects after a collision cascade in a Y2O3 system

can be described. The common defects, especially in low energy collision cascade simula-

tions, are isolated oxygen and yttrium interstitials and their vacancies (Figure 5.11a). The

isolated interstitials are often found occupying one of the structural vacancy sites (see Figure

5.1). The other common types in both, low and medium energy cascade simulations, are

yttrium split interstitials, sharing an yttrium site, and di-vacancies (Y - O) (Figure 5.11b).
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Average number of defects 0.5 keV Y 0.5 keV O 1.0 keV Y 2.0 keV Y
at 0 K

Y interstitials 2.32 0.90 3.96 7.28
O interstitials 4.98 3.03 10.42 20.44

at 500 K
Y interstitials 2.30 0.63 3.92 5.84
O interstitials 4.62 2.87 9.04 17.1

Table 5.2: The average number of defects in the Y2O3 system at the end of collision cascade simulations (5
ps), averaged over 60 PKA directions.

More complicated defect configurations are also observed in the simulations, as tri-vacancies

(Figure 5.11c, with possible combinations of two O and one Y vacancy or vice versa, where

two of the same type of vacancies surround the other type of vacancy - Figure 5.11d), and

oxygen squares (Figure 5.11c), where two 2NN oxygen atoms swap their positions with two

neighbouring structural vacancies.

With an increasing PKA energy more complicated defect clusters are created, especially

for non-channelling directions. Typical snapshots of the systems after a 1 keV Y PKA

cascade damage are shown in Figure 5.12. As was seen in the 500 eV simulations, two

typical behaviours were observed, when the radiation damage is localised (Figure 5.12a)

and when the PKA channels through the system (Figure 5.12b). All the simulations are

a combination of these two behaviours. In both cases, the initial damage region is rich in

vacancies. In the localised damage simulations, other defects tend to be chains of complicated

defects configurations with only few isolated defects described previously. As for simulations

where the PKA channels through the system, most of the defects are created along the path

of the PKA and the displaced atoms and are mostly in the form of isolated defects.

Similarly both behaviours were seen in 2 keV Y PKA simulations, where the localised

damage simulation produce even bigger and more complicated defect regions (see Figure

5.13a). Also with the increased energy another behaviour was observed - formation of sub-

cascades (see Figure 5.13b). In this case at the beginning of the simulation an yttrium PKA

channels through the system until almost a head-on collision with an another yttrium and

transfers most of its energy to it. Then the later yttrium atom starts a sub-cascade and
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(a) (b)

(c) (d)

Figure 5.11: Typical defects from 0.5-2 keV collision cascades in a Y2O3 system: (a) - isolated oxygen
and yttrium interstitials and vacancies occupying one of the tetrahedral structural vacancy sites; (b) - split
yttrium interstitial and yttrium-oxygen di-vacancy; (c) - oxygen square - contains of two oxygen interstitials
swapped places with two neighbouring structural vacancy sites (red circle), tri-vacancy - containing of a
yttrium vacancy and two neighbouring oxygen vacancies (blue circle), (d) - tri-vacancy - containing of an
oxygen vacancy and two neighbouring yttrium vacancies (blue circle).
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Initial damage region

(a)

Initial damage region

(b)

Figure 5.12: Snapshots of typical cascade outcomes in a Y2O3 system with 1 keV Y PKA: (a) - localised
defects’ spread with complicated defect clusters, (b) - defects’ spread in the channelling PKA direction.

creates residual damage in the vicinity of its original position. This behaviour is more likely

to appear with a higher PKA energy.

5.3.2 Y2TiO5

Similarly, to the simulations in Y2O3, the peak damage in the Y2TiO5 systems occurs within

first few hundred fs and is followed by defect recombination. The summarized data from the

collision cascade simulations is given in Table 5.3. The data indicates greater dependency

on the temperature than in Y2O3 case, especially during the low energy simulations (see

Figures 5.14a and 5.14b). Also the bigger the PKA, the more residual damage it creates in

terms of the number of defects present in the system at the end of simulation, as shown in

Figures 5.14b, 5.14c and 5.14d.

As in the Y2O3 simulations, the outcome can be described in a similar manner. When

PKA is directed in a channelling direction, it goes deep into the system and creates a few

defects along its pathway until it loses kinetic energy and stops creating a local distortion,

especially for the oxygen atoms (Figure 5.15a). The other behaviour is when the damage is

localised, usually in the vicinity of the PKA. In this cases the number of defects are much
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Initial damage region

(a)

Initial damage region
Sub-cascade
region

(b)

Figure 5.13: Snapshots of typical cascade outcomes in a Y2O3 system with 2 keV Y PKA: (a) - localised
defects’ spread with complicated defect clusters, (b) - defects’ spread in the channelling PKA direction.

Average number of defects
O PKA Y PKA Ti PKA
0.5 keV 0.5 keV 1.0 keV 2.0 keV 0.5 keV 1.0 keV 2.0 keV

at 0 K
Y interstitials 0.37 1.86 3.22 6.76 1.12 2.60 4.18
Ti interstitials 0.50 1.68 3.04 7.10 2.16 3.00 5.36
O interstitials 4.90 10.28 18.94 43.92 12.22 19.94 35.5

at 500 K
Y interstitials 0.32 1.72 3.03 5.18 0.93 2.05 3.27
Ti interstitials 0.25 1.17 3.22 5.5 1.93 2.78 4.33
O interstitials 3.95 7.67 19.65 38.42 11.37 19.17 30.08

Table 5.3: The average number of defects in the Y2TiO5 system at the end of collision cascade simulations
(5 ps), averaged over 60 PKA directions.
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(a) Y PKA at 0K
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(b) Y PKA at 500K
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(c) Ti PKA at 500K
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(d) O PKA at 500K

Figure 5.14: The average number of interstitial defects in the Y2TiO5 system, during 500 eV collision cascade
simulations.
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higher due to the bigger distortion in a smaller area (Figure 5.15b).

(a) (b)

Figure 5.15: Snapshots of typical cascade outcomes in a Y2TiO5 systems during collision cascade simulations
at 500K: (a) - channelling 1keV Ti PKA direction creating defects along the path, (b) - localised damage
done by 1keV Y PKA.

The most common defects are oxygen interstitials and vacancies; oxygen, yttrium and

titanium split interstitials. Other types of defects are usually clusters - distortions with

a complicated pattern. In most of the cases, these distortions are seen around interstitial

or antisite type defects of yttrium and titanium. An additional atom or an antisite in its

vicinity disturbs the local bonds between the metal and oxygen atoms and forces structural

changes. In comparison with Y2O3 systems, at the end of collision cascade simulation, a

Y2TiO5 system has a higher total number of defects with lots of lattice distortion around

interstitials and vacancies. In contrast, the Y2O3 system has structural vacancies where

defects prefer to be situated, thus creating less distortion.

5.3.3 Y2Ti2O7

The typical outcome of collision cascade simulations in Y2Ti2O7, is a heavily distorted region,

its size and the level of the distortion depend on the PKA and its energy, as shown in Figure

5.16a. Also a few channelling directions were also seen in the simulations (Figure 5.16b),
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but not as common than in the previous two systems.

(a) (b)

Figure 5.16: Snapshots of typical cascade outcomes in the Y2Ti2O7 systems during collision cascade simula-
tions at 500K: (a) - residual damage created by 1keV Ti PKA, (b) - 1keV Y PKA directed in a channelling
direction creating defects along the path.

The results form the collision cascade simulations are summarized in Table 5.4. An even

bigger dependency on the temperature can be seen, between simulations done at 0K and

at 500K, especially for the medium energy cascades. Compared to the previously analysed

systems, Y2O3 (Table 5.2) and Y2TiO5 (Table 5.3), the average defects number are much

greater.

Average number of defects
O PKA Y PKA Ti PKA
0.5 keV 0.5 keV 1.0 keV 2.0 keV 0.5 keV 1.0 keV 2.0 keV

at 0 K
Y interstitials 0.77 6.42 31.16 104.88 5.04 22.12 79.24
Ti interstitials 1.98 11.84 43.76 127.58 10.24 32.88 101.04
O interstitials 9.03 40.00 140.08 421.3 34.34 112.04 331.78

at 500 K
Y interstitials 0.2 1.90 8.75 33.48 1.15 5.5 19.35
Ti interstitials 1.07 4.75 14.58 45.4 4.30 11.47 31.88
O interstitials 4.83 14.45 47.15 150.68 13.65 36.75 100.82

Table 5.4: The average number of defects in the Y2Ti2O7 system at the end of collision cascade simulations
(5 ps), averaged over 60 PKA directions.

The evolution of the defects numbers may provide hints of the processes that are re-

sponsible for the higher defects numbers in the Y2Ti2O7 systems. Figure 5.17 represents the
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defect evolution, where the damage was create by 2keV Y and Ti PKAs. As in the previous

examples, the peak damage occurs within first hundreds of fs, and then starts to gradually

decrease due to the recombination processes. In contrast to the other systems, the decrease

stops after 1 ps and another smaller peaks appear in the graphs, thus indicating, that the re-

combination and the structural damage cause rearrangements in the system structure. This

reappears a few more times until system stabilizes at the end of the simulation at about 5 ps.

This odd behaviour may be an indication that even though the potential was able to recreate

the structure of the system, it is not suitable for radiation damage studies in Y2Ti2O7 and

further development of it is required. Also it is possible that a amorphisation processes is

being observed in the pyrochlore structure as it was reported in [125].
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Figure 5.17: The evolution of the number of interstitial defects in Y2Ti2O7 systems, during collision cascade
simulation at 500K with : (a) - 2 keV Y PKA, (b) - 2 keV Ti PKA.

5.4 Discussion and Conclusions

The radiation damage study in the Y-Ti-O materials showed almost linear dependency be-

tween the number of defects and the PKA energies. The peak damage occurs within the first

few hundred fs and is followed by the recombination processes. Also a dependency on the

atom size was also observed, with the heavier atoms producing more defects and an O PKA’s

tendency to channel through the system. In all the simulations two types of residual damage
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behaviours have been seen: the first, is when the damage is localized in a region, usually

close to the initial PKA position; the second - when the PKA is directed in a channelling

direction and it goes deeper into the system producing defects on the way. In general at

the end of the simulation the number of defects in the second case is lower than in the first

one. Y2TiO5 and Y2Ti2O7 systems showed increased recombination of defects with increased

temperature. The remaining defects in the Y2O3 systems can be categorized in terms of their

point defect configurations, but Y2TiO5 and especially Y2Ti2O7 tend to have more clustered

defects. The highly distorted regions in Y2Ti2O7 might be an artifact of the potential or an

amorphisation processes in the pyrochlore structure as was reported by [125]. The system

models, especially during collision cascade simulations, could be improved by implementing

a variable charge model, which allows charge transfer among atoms, and help to understand

the observed processes, if they are real or artefacts.



Chapter 6

Long-Time Scale Simulations Applied

to Defect Motion in Fe

This chapter presents the results of the otf-KMC technique applied to defect motion in bcc

Fe. In the chapter the Vineyard method is used to calculate the prefactor in the Arrhenius

equation, rather than assuming a fixed value. The first part of the chapter discusses the

influence of the calculated prefactor in detail and is the basis of a recently submitted paper

[126].

Then the second part of the chapter describes long time evolution of low energy radiation

damage cascades using the otf-KMC technique taking into account the variable prefactor

calculations.

6.1 Influence of the Calculated Prefactor

The Arrhenius equation (Equation 3.2.1) is widely used in KMC simulations, but whereas

techniques such as the NEB or the Dimer method have been used accurately to determine

∆E, the calculation of the prefactor τ has come under less scrutiny. Therefore, for this

thesis, a study was carried out to examine the influence of the calculated prefactor on the

long term evolution of radiation damage in α-Fe.
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It has become widespread practise to use fixed τ values, usually ranging from 1012 to

1013s−1, in such KMC simulations [127, 98, 128, 44], with the assumption that the attempt

frequency does not vary greatly. This is because an accurate determination is computation-

ally expensive and ‘small’ variations in the energy barrier ∆E affect the transition rates

much more than “small” variations in τ . However recent work has found that an accurate

calculation of the prefactor is necessary in order to include important defect diffusion mech-

anisms that would not be accessible if a constant value would be used. An example is the

formation of a stacking fault tetrahedron in Cu [129].

It is well known that a collision cascade introduces point defects and small interstitial and

vacancy clusters into a perfect lattice but in this section typical defects are isolated and their

transitions are examined separately. Thus defects, such as DB interstitials, di-interstitials,

vacancies and di-vacancies were artificially introduced into the system to investigate their

transition rate dependency on the prefactor value independently of their local environment.

The defects’ configurations and migration pathways are compared those determined in pre-

vious works [32, 111, 39].

6.1.1 System

For the simulations an α-Fe system described by the well known Ackland 2004 potential [36]

is used containing up to 54,000 atoms with a system size of 30a0 × 30a0 × 30a0, where a0

is the lattice parameter (a0 = 2.855 Å). The diffusion rates between local minimum states

are calculated at 450 K. In some cases, the Mendelev 2003 [35], potential is also used for

comparison, but if not stated otherwise the Ackland 2004 potential is used by default.

6.1.2 Performance

In order to understand the relationship between the scaling of the computational time and

the convergence of the prefactor value, a series of tests has been performed. To show the

tendencies observed, a single vacancy defect system is given as an example. By changing the
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radius of the volume of atoms around the defect that are included into the calculation, the

convergence of the prefactor value can be tracked by determining the time taken to calculate

the eigenvalues of the Hessian. The data is summarised in Table 6.1.

Radius Atoms Prefactor Eigenvalues
(Å) s−1 calc. time (s)

5.0 14 1.42× 1013 6.48
6.0 64 6.14× 1013 9.34
8.0 160 8.10× 1013 37.85
9.0 174 9.09× 1013 45.52

10.0 306 1.00× 1014 112.05
11.0 362 1.01× 1014 151.63
13.0 640 1.04× 1014 404.86
15.0 1042 1.06× 1014 1,004.60
17.0 1530 1.06× 1014 2,011.03
19.0 2204 1.07× 1014 4,063.14
21.0 3034 1.07× 1014 7,555.33
23.0 4020 1.07× 1014 13,309.30

Table 6.1: Calculated prefactor values as a function of the inclusion radius of the atoms around a vacancy
defect, for the isolated vacancy diffusion process on a single core.

In Table 6.1 the first column represents the radius around the vacancy defect, which

determines how many atoms will be included in to the calculation; the prefactor values are

calculated using Equation 3.5.1 and the time given is only for calculating eigenvalues at the

saddle state, since it takes approximately the same amount of time to calculate eigenvalues

at the initial state.

As can be seen from the results in Table 6.1, to determine the prefactor to 2 figure

accuracy, it requires over 2000 atoms, and in order to reach one significant figure, at least

306 atoms must be included and the calculation of one set of eigenvalues takes around 1/40

of the time. Therefore all the given data in the paper is calculated using a 10 Å radius if it

is not stated otherwise. This was regarded as the best compromise between accuracy and

computational speed.
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6.1.3 Vibrational contributions

From the phonon density of states, vibrational contributions to the energy at finite temper-

ature can be written as [97, 130]:

∆Fvib = ∆Uvib − T∆Svib, (6.1.1)

where Uvib represents the vibrational internal energy and Svib - the vibrational entropy.

When the prefactor is calculated using Equation 3.5.1, it incorporates only the vibrational

entropy. In order to see whether the internal energy has an effect on the activation barrier,

the expressions of these contributions as a sum of single-oscillation contributions is used

written as follows:

Uvib =
3N∑
i=1

[
~λi

e
~λi
kBT − 1

+
1

2
~λi

]
, (6.1.2)

and

Svib = kB

3N∑
i=1

[
~λi
kBT

(
e

~λi
kBT − 1

)−1

− ln

(
1− e

−~λi
kBT

)]
, (6.1.3)

where ~ is the Planck constant, λi - the eigenvalue of i-th coordinate of the system, kB - the

Boltzmann constant and T is the temperature.

These contributions were calculated for the most common defects and their main mi-

gration transitions to check whether the vibrational internal energy has an effect on the

activation barrier height. The summarised data is given in Table 6.2. For these calculations

a 23.0 Å inclusion radius of atoms around the defect studied is taken to achieve good accu-

racy when calculating the normal frequencies. The vibrational internal energy’s contribution

does not change much, even when a smaller inclusion radius is used, such as 9.9 Å.

As can be seen in Table 6.2, the biggest contribution to the barrier height is due to the

vibrational entropy which is included when the prefactor is calculated by using the Vineyard
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Defect Migration
Initial state (eV) Saddle state (eV) ∆ (eV)
Uvib TSvib Uvib (eV) TSvib Uvib TSvib

〈110〉 DB rot.-trans. 481.6656 1574.0375 481.6655 1574.1324 -0.0001 0.0949
〈110〉 DB reorient. 481.6656 1574.0375 481.6653 1574.3079 -0.0004 0.2704
VAC 1-NN 468.1563 1529.9442 486.1561 1530.0729 -0.0002 0.1287
I110

2 I2a
2 519.1650 1696.7286 519.1649 1696.8321 -0.0001 0.1035

I110
2 I110

2 519.1650 1696.7286 519.1649 1696.8321 -0.0001 0.1035

Table 6.2: Vibrational contributions to the barrier heights of the most common defects and their prime
migration mechanisms. The last two entries represent di-interstitials with the transitions defined in section
6.1.4.2.

equation. The vibrational internal energy’s contribution is negligible compared to the barrier

heights for all the transitions investigated. Therefore, it can be concluded, that for the

vibrational contributions, the Vineyard formula is accurate enough for the calculations.

6.1.4 Study on Isolated Defects

6.1.4.1 Interstitials

The case of interstitial defects and migration pathways is well studied, therefore only a sum-

mary will be given here. In the simulations the 〈110〉 DB is the most common configuration

occurring in collision cascade simulations, but the 〈111〉 can appear for a short period during

the collisional phase of a cascade. This is also confirmed by the experimental findings [131]

and the ab initio studies [111] on the stability and mobility of interstitials in α-Fe, where

studies predict a rapid change from the 〈111〉 to 〈110〉 DB. Therefore, this study is focused

on the 〈110〉 DB’s migration rates rather than 〈111〉. The data is summarised in Table 6.3.

Here and in subsequent calculations the default prefactor value is taken as 1× 1013 s−1.

Mechanism Barrier Prefactor Rate (s−1) Rate (s−1)
(eV) (s−1) (default) (calc.)

Translation-rotation 0.31 1.8× 1013 3.0× 109 5.5× 109

〈110〉 rotation 0.43 7.5× 1014 1.5× 108 1.1× 1010

〈110〉 to octahedral 0.69 3.4× 1013 1.7× 105 5.9× 105

Table 6.3: The 〈110〉 DB migration rates.

The first and the most common migration mechanism, is the one proposed by Johnson
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[32], a combination of translation and rotation. The migration barrier of 0.31 eV is in a very

good agreement with the experimental value of ≈ 0.3 eV by [131]. The calculated value of the

prefactor 1.8×1013 s−1 is close to the fixed default value, normally used in KMC simulations

and therefore the rate calculated by using this default prefactor is approximately the same

order of magnitude as when calculated by using the Vineyard method.

A quite different situation can be seen for the 〈110〉 DB on-site rotation between the

〈110〉 directions represented by the second row in Table 6.3. Here the on-site rotation has

a barrier of 0.43 eV with a prefactor value almost two orders of magnitude higher than the

default value.

The third case in the table represents the first nearest neighbour (NN) jump with a saddle

point near the octahedral configuration with the migration barrier of 0.69 eV. It has very

similar default and calculated prefactor values as for the translation and rotation mechanism.

Both migration energy values for the 〈110〉 DB on-site rotation and the 1st NN jump

through the tetrahedral configuration are almost equal to those that were calculated by

Marinica et al. [39] by using the ARTn method to explore the energy landscape.

The two migration pathways from the most stable 〈110〉 DB configuration are the main

mechanisms for the mono interstitial migration. Also, the implementation of a slightly

different potential energy function [35] in the KMC technique did not have any significant

change in barrier heights, rate values or set of possible transitions for the 〈110〉 DB.

By using the default prefactor value, the migration of the 〈110〉 DB is dominated by

the translation-rotation mechanism, where the calculated prefactor value moves the on-site

rotation transition to the top in the rate table, thus is more likely to be chosen in a KMC

simulation.

6.1.4.2 Di-interstitials

The lowest-energy configurations of di-interstitials reported by Marinica et al. [39] are stud-

ied in order to have a better understanding of migration mechanisms of these common defects
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in ballistically affected systems. The Mendelev 2003 and Ackland 2004 potentials give almost

the same formation energies where the configuration of two nearest neighbour parallel 〈110〉

DBs have the lowest energy. The same notations for the lowest di-interstitial configurations

as introduced by Marinica et al. will be used from here on. The data for the migration

mechanisms of one of the most common di-interstitial configuration I<110>
2 is summarised in

Table 6.4.

Config. Barrier Prefactor Rate (s−1) Rate (s−1)
(eV) (s−1) (default) (calc.)

I2a
2 0.33 1.2× 1013 2.0× 109 2.4× 109

I<110>
2 0.36 1.4× 1013 9.3× 108 1.3× 109

I<110>
2 0.49 9.4× 1012 3.3× 107 3.1× 107

I5
2 0.48 5.8× 1013 4.2× 107 2.4× 108

I6a
2 0.50 3.0× 1013 2.5× 107 7.2× 107

Table 6.4: Migration rates of the I<110>
2 di-interstitial.

In Table 6.4 only those migration mechanisms from the I<110>
2 configuration are presented

that have highest rate (default and calculated) values, since for di-interstitials there is usually

more than one migration pathway between configurations. In all the cases it can be seen

that calculated prefactor value is close to the default value and has a minor effect on the rate

table. Only migration to the I5
2 configuration was found to have a prefactor that differed

appreciably, at 5.8 × 1013 s−1, which is five times greater than the default one and brings

this migration closer to the migrations to I2a
2 and I<110>

2 with barrier heights of 0.33 eV and

0.36 eV in terms of the rate values.

Also the most stable di-interstitial configurations were examined that were found by the

KMC technique from the other configurations, such as I<110>
2 , I5

2 , I6a
2 . As in the previous

example the calculated prefactor does not vary greatly and in most of the cases fluctuates

between 0.5− 5.0× 1013 s−1. One of the more interesting cases was seen for I2a
2 diffusion to

I<110>
2 by two possible pathways with barriers of 0.09 eV and 0.25 eV. Both pathways have

very similar rate values (1.1 × 1012 s−1, 1.3 × 1012 s−1) due to the estimated prefactors of

1.1× 1013 s−1 and 8.0× 1014 s−1, thus making the diffusion even more favourable.
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To sum up the behaviour of the di-interstitial migration, it is clear that the I<110>
2

configuration dominates with an occasional jump to other configurations, but it is not likely

for the atoms to stay in these configurations for a long time and by couple of intermediate

configurations will return to I<110>
2 .

6.1.4.3 Vacancies

The second most common defect after a radiation event is a vacancy. Its migration energy

is 0.64 eV and has a minor dip at the midpoint, therefore the migration mechanism has two

saddle points as was shown by Johnson [32]. The configuration at the midstate is metastable

due to very low energy difference of 0.04 eV. Vacancy migration gives a prefactor of 1.0×1014

s−1, an order of magnitude greater than the default value, as is shown in Table 6.5. The

higher rate value with the calculated prefactor makes the vacancy - interstitial diffusion

ratio change by an order of magnitude compared to the assumption of a fixed prefactor, thus

making the vacancy migration more attainable by the KMC algorithm when there are other

type of defects with lower barriers and/or higher rate migrations in the simulation box.

Mig. type Barrier Prefactor Rate (s−1) Rate (s−1)
(eV) (s−1) (Default) (calc.)

1-NN jump 0.64 1.0× 1014 6.42× 105 6.43× 106

2-NN jump 2.61 1.8× 1014 5.8× 10−17 1.0× 10−15

Table 6.5: The migration rates of a vacancy defect.

The di-vacancy migration process is a step-wise process whereby one of the two vacancies

moves, by jumping to one of its 1st NN neighbours and the other one follows. The migration

has a slight depression at the midpoint as in the previous example. All the observed processes

for the di-vacancy defect greatly depend on the initial configuration of two vacancies.

In this work four different di-vacancy configurations were studied where two vacancies

are situated by separating them from the first to the fourth NN positions.

As can be seen in Table 6.6, the calculated prefactor does not change the ordering of the

rate table and the migration transitions with the lowest barriers, whether the prefactor is
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Initial Final Barrier Prefactor Rate (s−1) Rate (s−1)
config. config. (eV) (s−1) (default) (calc.)
1NN 2NN 0.62 1.5× 1014 1.1× 106 1.7× 107

1NN 3NN 0.71 3.9× 1013 1.1× 105 4.4× 105

1NN 5NN 0.66 1.0× 1014 4.1× 105 4.1× 106

2NN 1NN 0.57 3.1× 1013 1.1× 106 1.3× 107

2NN 4NN 0.63 1.2× 1014 8.8× 105 1.1× 107

3NN 1NN 0.67 6.1× 1013 3.1× 105 1.9× 106

3NN 4NN 0.63 1.3× 1014 8.8× 105 1.1× 107

3NN 7NN 0.66 1.0× 1014 4.1× 105 4.1× 106

4NN 2NN 0.43 1.0× 1014 1.5× 108 1.5× 109

4NN 3NN 0.64 8.7× 1013 6.8× 105 5.9× 106

4NN 5NN 0.59 1.2× 1014 2.5× 106 3.0× 107

4NN 6NN 0.67 7.3× 1013 3.1× 105 2.3× 106

4NN 8NN 0.61 1.2× 1014 1.5× 106 1.8× 107

4NN 9NN 0.64 1.0× 1014 6.8× 105 6.8× 106

Table 6.6: The calculated rates of the most common migration mechanisms of di-vacancy defects.

calculated or the default value is used, have the highest rate. However, in all the cases the

calculated prefactor is higher than the default value and in most of the cases by at least one

order of magnitude. Table 6.6 also shows that di-vacancy migration is mainly carried out

through 1, 2, 4 NN configurations due to the highest rate values.

6.1.5 Verification of the Rate Values

In order to check the estimated rates with the calculated prefactor, a series of tests have

been carried out. The same migration mechanisms were reproduced that were seen in the

KMC simulations by evolving the systems with MD as follows:

Initially a system that has only one defect at its centre is established, whose migration

rates are being studied. Then the system is thermalised up 450 K (the same temperature as

used in the KMC) by applying the Berendsen thermostat [79] for 10 ps of simulation time.

After that, the system is evolved with regular MD until it crosses a saddle point separating

two local energy minima. This moment is captured by checking the dot product of the force

vector of the system and the atom separation vector between the current and the initial
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(just after thermalisation) states. If the dot product is positive it means that both vectors

are pointing to the same direction and the system has crossed the saddle. The time taken

for the system to migrate is measured and the new minimum state is found by relaxing the

system with the Conjugate Gradient method. Sets of 1,000 such transitions have been carried

out for the DB interstitial and the single vacancy cases and 10,000 - for the di-interstitial

defects. The results were analysed according to the migration mechanisms seen in the KMC

simulations.

For the vacancy defect simulations the temperature was increased to 750 K in order to find

transitions using the MD technique, due to the time scales of the migration mechanisms.

Then the simulation times were recalculated at 450 K by using Equation 6.1.4 as in the

Temperature-Accelerated Dynamics (TAD) [83] method:

tlow = thigh exp (∆E (βlow − βhigh)), (6.1.4)

where thigh is the actual simulation time at the higher (750 K) temperature and tlow is the

estimated simulation time at the lower (450 K) temperature, ∆E is the migration energy

barrier, and β is equal to 1/(kBT ).

The results are compared with the ones from the KMC simulations in terms of the

prefactor value. The prefactor value is calculated as follows: the rate R is calculated for a

specific migration mechanism by inverting the estimated average simulation time tavg for it

to happen multiplied by a number possible pathways Npaths and converting the results into

seconds:

r =
1

tavg ×Npaths

× 1015. (6.1.5)

Then, using this rate value in Equation 3.2.1 with an appropriate ∆E value (calculated

using the climbing image NEB technique [93]), the prefactor value τ is being estimated. The

results for the interstitial, di-interstitial and vacancy defects are given in Table 6.7.



6.1. INFLUENCE OF THE CALCULATED PREFACTOR 141

Migration
Barrier MD KMC

(eV) % τ (s−1) r (s−1) %rsd τ (s−1) r (s−1)
〈110〉 DB

rot.-trans. 0.31 56% 3.0× 1013 1.1× 1010 4.1 1.8× 1013 6.5× 109

reorient. 0.42 12% 1.0× 1015 1.8× 1010 8.2 7.5× 1014 1.3× 1010

I
〈110〉
2

I2a2 0.32 47% 2.6× 1013 7.2× 109 1.3 1.2× 1013 3.2× 109

I<110>
2 0.32 16% 3.5× 1013 9.8× 109 2.9 1.4× 1013 3.9× 109

VAC
1-NN 0.62 66% 2.9× 1013 3.4× 106 6.3 1.0× 1014 1.2× 107

Table 6.7: Comparison of the rate and prefactor values for the common defects and their main migration
pathways between MD and KMC simulations, where the migration barriers were estimated using the NEB
method. In column %, the percentage occurrence of the particular mechanism is shown with respect to
the total number of simulations and in column %rsd, the percentage of the relative standard error of the
estimated value is measured.

In Table 6.7 the data is given only for the most common defect migration mechanisms.

For example for the 〈110〉 DB MD results, the left 32% account for the migration mechanisms

to octahedral and tetrahedral sites (3.5%) and for migration pathways which have higher

migration barriers ending up in a metastable slightly tilted 〈111〉 configuration (28.5%). Nei-

ther MD nor KMC simulations were able to find all the migration pathways to symmetrically

equivalent octahedral and tetrahedral configurations from the given initial 〈110〉 DB state,

thus these results were excluded from the table. Nonetheless, the unaccounted migration

configurations have a minor influence of the results since their barrier heights are usually

high. For the similar reasons the I
〈110〉
2 and VAC comparisons were also carried out only for

the most common migration mechanisms.

Results show that there is a reasonable agreement between the MD and KMC techniques

and the estimated prefactor by the Vineyard method is a good approximation for the one

that was determined from the MD simulations. For the < 110 > DB and I<110>
2 defects, a

difference can be seen in the prefactor values for all the migration mechanisms. This may

occur, because it is possible for the system to return to the same local energy minimum,

even if the saddle state was crossed, where in these simulations it is not allowed. In this

way the average simulation time maybe slightly shorter, thus giving a higher prefactor value

for the migration mechanisms. The same conclusion can be applied for the 1-NN jump
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migration by a vacancy only partially, since the difference between the prefactor values is

also caused by the higher (750 K) temperature at which simulations were carried out and

where the harmonic approximation breaks down. To estimate the level of the error additional

simulations for the < 110 > DB at 550 and 650 K temperatures (see Table 6.8) were carried

out to check the prefactor values for both most common migrations recalculated at 450 K.

It can be clearly seen, that for the higher temperature, the prefactor values, recalculated at

the lower temperature, are underestimated, thus the MD results for the vacancy defect are

also likely to be underestimated.

Thigh (K)
Prefactor value (s−1) at Tlow for

rotation-translation reorientation
450 3.0× 1013 1.0× 1015

550 2.5× 1013 5.1× 1014

650 1.8× 1013 2.3× 1014

Table 6.8: [110] The DB migration prefactor values calculated at Tlow = 450 K.

6.1.6 Influence of the Prefactor During Long-Time Scale Simula-

tions of Collision Cascade Evolution

In order to investigate, how an accurate determination of the prefactor may influence otf-

KMC simulations, simulations on defect configurations that were initially produced by a

radiation event were completed. 66, 1 keV cascades were carried out in the same way as

described in 4.2.1. Of these, 10 representative cases were chosen and further evolved by otf-

KMC using the default and calculated prefactors. The cases were chosen in such a manner,

that they would represent different defect configurations and distributions in the system in

order to provide a good insight of the processes.

Usually, the outcome of a collision cascade simulation consists of a vacancy rich region

close to the initial PKA site surrounded by outlying interstitials. The comparison of the

behaviour of the defects has been done with further studies on the effects on the whole

system in terms of energetics and defect numbers.
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Due to the low barrier of the migration processes of the 〈110〉 DB, it dominates the initial

phase of the simulations, but the migration mechanism is different between the default and

calculated prefactor cases. Simulations with the default prefactor are driven by the rotation-

translation of 〈110〉 DBs, where the calculated case switches between reorientation, which has

a higher rate value, and the rotation-translation mechanisms. Therefore, in the simulations

with the default prefactor, 〈110〉 DBs tend to explore the system more, whereas in the other

case the 〈110〉 is not as mobile. In the first case, it is more likely that 〈110〉 DB will find

another defect to recombine or to cluster faster by exploring the system, whereas in the

second case, if there are other defects in the vicinity of the 〈110〉 DB, through reorientation,

the DB is more likely to position itself in a direction towards the defects before migration

towards them.

A clear effect of the accurately determined prefactor can also be seen for the vacancy type

defects. With the default prefactor used in the simulations, vacancy defect migrations are

observed quite rarely, only several in couple of thousand KMC steps, if mobile interstitials are

present in the system as well. With the calculated prefactor, vacancy defect jumps appear

more often, due to the higher rate values. Thus, vacancies tend to cluster and rearrange in

to highly symmetrical configurations (Figure 6.1) compared to using the default value. On

average, the simulation time for a vacancy type defect to migrate with calculated prefactor

is ≈ 3 × 10−9s, where the time with default value is almost an order of magnitude, longer

≈ 4× 10−8s. These values were calculated from the evolution of 8 systems, evolved for more

than 1,000 KMC steps with calculated and default prefactors.

By counting the number of chosen transitions with a prefactor value that is ≤ 1012s−1

or ≥ 1014s−1 against the total number of KMC steps within a simulation, it can be checked,

if the processes that drive the KMC simulation depend on the calculation of the prefactor.

In 9 simulations that were carried out for at least 1,000 KMC steps, on average, over 50%

of the migration jumps had a prefactor value which is ≤ 1012s−1 or ≥ 1014s−1. In the cases

where systems contain widely separated 〈110〉 DBs and vacancies, the percentage of chosen
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(a) Initial (b) Cluster

Figure 6.1: Clustering of 5 vacancies. a) Initial distribution of vacancies, post-cascade configuration, b) High
symmetry 5 vacancy cluster after 75 KMC steps.

migrations affected by the calculation of prefactors is quite high ≈ 70%, where in the cases

with di-, tri-interstitials, it is the opposite with the percentage ≈ 30%.

It was observed that accurate prefactor calculations also slightly influence the recom-

bination of defects. If an interstitial type defect lies a few NN away from a vacancy type

defect, these two are more likely to recombine with the exact prefactor. To investigate this

situation further, a vacancy and 〈110〉 DB were initially created in defect-free system by

changing the separation between them and evolving these system using otf-KMC. The cases

of 1NN and 2NN separation are quite straightforward, where the recombination transitions

have the lowest barriers and highest rates. The 3NN separation case is where the calculated

prefactor does have an effect on the rate table. The lowest barrier (0.29 eV) transitions are

jumps to 4NN separation configurations with a 1.9× 1010 s−1 rate value, whereas a recombi-

nation transition with a slightly higher barrier of 0.36 eV has an order of magnitude higher

rate value 2.7× 1011 s−1 with a prefactor of 3.1× 1015 s−1, thus making this recombination

more favourable. When a vacancy and a 〈110〉 DB defect are initially separated by the

4NN distance, recombination occurs as quickly as in the 1NN and 2NN cases, due to a low

barrier (0.215 eV) transition. The 5NN case is very similar to the 3 NN case; the lowest

transitions with a barrier of 0.25 eV and a rate value of 2.2 × 1010 s−1, are jumps to the
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4NN configuration and a slightly higher barrier (0.33 eV) recombination transition has an

order of magnitude higher rate value of 1.5 × 1011 s−1 and is thus preferred. In the bigger

separation cases, 6NN and more, the prefactor influence was not sufficient to influence the

recombination processes.

Calculation of the prefactor has an influence on the bigger defect clusters too. One of the

cases observed is the four DB cluster (Figure 6.2 (a)). In this case a few different transitions

were found for this cluster to re-configure with barriers ranging between 0.1-0.2 eV. The

calculated prefactors are at least one order of magnitude lower than a default value, e.g. to

reconfigure from Figure 6.2 (a) to Figure 6.2 (b), a barrier of 0.1 eV must be crossed with

1.8×1011 s−1 prefactor which leads to a rate value of 1.2×1010 s−1. The calculated prefactor

puts this transition on the same time scale with smaller interstitial defects, and will not

dominate the rate table, as it would, if the default value were to be used.

(a) Initial (b) Reconfigured

Figure 6.2: The interstitial cluster formed of 4 DBs. a) Initial, post-cascade configuration, b) The reconfig-
ured structure after crossing a 0.1 eV barrier.

Another configuration of the four DB cluster demonstrates an example of the prefactor

influencing defect recombination. In this case four DBs are located in 1st NN positions

and aligned in a slightly tilted 〈111〉 configuration (Figure 6.3 (a)). In this case, the defect

cluster’s centre of mass (com) is approximately 15 Å away from the four vancancy cluster’s

com (Figure 6.3 (b)). The migration transitions for this interstitial cluster along the 〈111〉

direction have barrier heights ranging from 0.20 to 0.30 eV with the prefactor values varying

from 1.0×1014 s−1 to 5.0×1018 s−1. The higher prefactor values are estimated when migration
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is happening towards the vacancy cluster, making this migration process more accessible by

the KMC technique and after a couple hundreds of KMC steps these two clusters recombine.

(a) 4 DB cluster

(b) DBs and Vacs clusters

Figure 6.3: A highly mobile split interstitial cluster, (a) containing four slightly tilted 〈111〉 DBs in 1st NN
positions, (b) the DBs cluster in the vicinity of four vacancies cluster.

6.2 Long-Time Scale Simulations in bcc Fe

6.2.1 Systems and Modelling Technique

Bcc structured iron systems containing 54,000 atoms have been studied using a hybrid MD

- otf-KMC technique in this way: first, all the initially created systems are thermalized up

to 500 K. Then radiation damage was introduced by using the same technique described in

section 4.2.1, where an irreducible symmetry region is sampled over 66 directions with 1 keV

PKA. By analysing the systems after the ballistic phase, a set of them were picked to have

a good representation that combines different defect formations and spreads. Finally, the

systems were evolved using the previously described otf-KMC technique. Two interatomic

potentials were incorporated to describe the interactions between iron atoms: the Mendelev

2003 [35] and Ackland 2004 [36], and produced very similar results.
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6.2.2 Radiation Damage Simulations

Simulations were carried out with the default and the calculated prefactors using both, the

Mendelev 2003 and Ackland 2004 potentials - 4 sets in total. Different criteria were used

to determine when the simulations should be stopped; such as the number of defects, the

achieved simulation time, the number of KMC steps and visual interpretation of the results.

The summarised data of the times achieved and the number of KMC steps are given in

Tables 6.9 and 6.10.

Direction
Default prefactor Calculated prefactor

No of steps Sim. time (s) No of steps Sim. time (s)
1.0 0.1 0.0 657 6.42E-09 - -
1.0 0.3 0.0 534 5.89E-09 - -
1.0 0.3 0.1 6777 1.44E-06 1166 1.27E-08
1.0 0.3 0.2 2088 1.86E-08 2547 1.89E-08
1.0 0.4 0.1 - - 1103 5.93E-09
1.0 0.4 0.4 1671 1.15E-08 - -
1.0 0.5 0.5 9373 1.64E-07 1000 3.59E-09
1.0 0.6 0.0 2045 2.32E-08 1641 5.82E-09
1.0 0.6 0.1 627 7.55E-09 - -
1.0 0.7 0.5 742 3.92E-08 - -
1.0 0.7 0.7 7069 6.52E-07 1712 5.37E-08
1.0 0.8 0.2 3793 1.01E-05 1324 5.06E-08
1.0 0.8 0.6 4145 7.35E-08 1747 5.37E-09
1.0 0.9 0.6 2058 2.68E-08 1416 1.39E-09

Table 6.9: Summary of the simulations carried out using the Mendelev 2003 potential. The direction column
describes the initial direction of the PKA used in the ballistic phase of the radiation event, where the initial
velocities of the PKA are resolved until components in the (x,y,z) directions in the same ratio as given in
the direction column.

The objective of these simulations was not to achieve the longest simulation time, but to

try to investigate the behaviour of the common defects on the longer time scales than MD. In

most of the cases simulations were carried out until the final outcome can be predicted. For

example, by evolving system with the Mendelev 2003 potential with the default prefactor,

which was initially effected by 1 keV PKA directed in [1.0 0.5 0.5] (Figure 6.4a) for almost

10,000 KMC steps, only a 3 DBs cluster, a di-vacancy and a vacancy remained and the

processes that occur while having just few defects with a wide spread were observed.
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Direction
Default prefactor Calculated prefactor

No of steps Sim. time (s) No of steps Sim. time (s)
1.0 0.2 0.0 213 5.52E-10 489 9.52E-10
1.0 0.3 0.0 583 2.00E-08 141 5.33E-10
1.0 0.4 0.2 3302 1.18E-07 2854 1.27E-08
1.0 0.5 0.1 682 1.63E-08 825 3.25E-09
1.0 0.9 0.4 1681 1.96E-07 1522 8.65E-08
1.0 0.9 0.7 993 4.73E-08 1683 9.28E-09
1.0 1.0 0.2 636 1.14E-09 722 4.50E-09
1.0 1.0 0.6 486 4.49E-10 1862 1.07E-07

Table 6.10: Summary of the simulations carried out using the Ackland 2004 potential. The direction column
describes the initial direction of the PKA atom used in the ballistic phase of the radiation event.

In such cases, during the first few hundred KMC steps, defects that are close tend to

recombine. In the mentioned simulation, within the first three hundred steps (0.27 ns) a

mobile three split interstitial cluster recombined with a vacancy cluster (Figure 6.4b). Then

follows the stage when isolated defects explore the area around them and further recombina-

tion and/or clustering can be seen. In the given example during the next 1,500 steps (≈ 17

ns), three split interstitials, that were in close proximity clustered into a very mobile tri-DB

cluster (Figure 6.4c). After that, a system’s exploration and defect reconfiguration stage

takes place. When small defects are widely spread, evolution occurs only by defect exploring

the system. In practice, this means that those defects in the bulk materials would segregate

on the grain boundaries or precipitates, recombine, or be affected by the next collision event,

thus the evolving of such systems is not continued. As for the examined simulation, the next

7,500 steps (≈ 0.16 µs) are spent by the tri-DB exploring the system (Figure 6.4d) and

reconfiguring.

Another interesting behaviour was observed in a couple of cases. When most of the

defects recombine and the system is left only with few defects, e.g. a vacancy cluster and

a cluster containing several split interstitials, the more mobile defect, the interstitial cluster

would usually migrate through the system and rearrange its configuration. By going through

a lot of rearranging it may jump into such a configuration that requires it to cross a fairly

high barrier, thus advancing the simulation clock by a greater amount than usual. An
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(a) Step 0, Time 0 s (b) Step 300, Time 0.27 ns

(c) Step 1800, Time 17 ns (d) Step 9373, Time 0.16 µs

Figure 6.4: Snapshots of defects evolution (lattice atoms not shown) after 1 keV collision cascade directed
in [1.0 0.5 0.5] where the system is described by the Mendelev 2003 potential.

example of such process is given in Figure 6.5, where a very mobile cluster containing five

split interstitials reconfigures by jumping over a barrier of almost 0.7 eV, thus allowing

further evolution through a more energetically favourable cluster configuration. The cluster,

before undergoing this reconfiguration, migrates and reconfigures for a couple thousand of

steps with fairly low barriers.

By studying all the simulations, not only the final outcome, but also the intermediate

processes are important to be understood. Therefore in the following two sections defect

recombination and migration processes will be discussed in more detail.
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(a) (b)

Figure 6.5: Snapshots of a five interstitial cluster evolution described by the Mendelev 2003 potential. The
cluster reconfigures to a more energetically favourable configuration by jumping over a 0.68 eV barrier.

6.2.2.1 Recombination Between Interstitial and Vacancy Type Defects

Recombination processes play a great role during the evolution of the system after a ballistic

event and a large number of them were observed in the studied systems. Usually recombi-

nation occurred, when an interstitial type defect positioned itself in a specific configuration

with respect to a vacancy type defect. Therefore, additional tests were carried out with an

isolated split interstitial and a vacancy defects in order to determine how the distance be-

tween these two defects and the orientation of the split-interstitial effect the recombination

process.

The tests were carried by changing the distance between the defects up to 10NN (≈ 7.5Å)

and positioning the split interstitial in the 〈110〉 symmetries. The results given here were

achieved with the Mendelev 2003 potential.

The results show that some configurations may recombine during the equilibration of the

system. Such example is given in Figure 6.6, where initially the 〈110〉 DB is positioned in

the 3NN location. They instantly recombine when the system is equilibrated through the

translation-rotation mechanism to the 1NN. Similar recombinations where seen up to 5NN,

except 4NN, and the detailed information is given in Table 6.11.
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(a) (b) (c) (d)

Figure 6.6: Recombination stages of a DB positioned 3NN (≈ 4.1Å) away from a vacancy during the system
relaxation (equilibration).

NN Geometry Approx. Recomb. DB
distance (Å) symmetries

1 [0.5,0.5,0.5] 2.5 〈1, 1, 0〉 , 〈0, 1, 1〉 , 〈1, 0, 1〉
2 [1,0,0] 2.8 〈1, 1, 0〉 ,

〈
1, 1, 0

〉
, 〈1, 0, 1〉 ,

〈
1, 0, 1

〉
3 [1,1,0] 4.1 〈0, 1, 1〉 ,

〈
0, 1, 1

〉
, 〈1, 0, 1〉 ,

〈
1, 0, 1

〉
5 [1,1,1] 5.0 〈1, 1, 0〉 , 〈0, 1, 1〉 , 〈1, 0, 1〉

Table 6.11: DB symmetries with respect to the separation between the DB and the vacancy which recombine
during the system relaxation. The column geometry represents the separation vector between the defects in
lattice units.

In the cases (1-5 NN) when the immediate recombination did not occur, usually there

were transitions with low migration barriers for the recombination processes. For example

such mechanisms were seen with barriers as low as 0.050 eV, 0.125 eV, 0.209 eV for 1NN,

2NN, 3NN and 4NN cases accordingly. In Figure 6.7 an example is given of the recombination

process for the 1NN case, with the recombination process visualised in terms of the defect

movement and the MEP.

The other common process is when one of the defects migrates, by the translation-rotation

mechanism, if it is a DB, or jumping to its 1NN, if it is a vacancy, to a special configura-

tion from where the recombination is almost instantaneous. Usually these migrations have

a slightly lower barrier height or a higher prefactor then usual, thus making them more

preferable by the KMC technique. An example of such process is given in Figure 6.8 where

initially defects are separated by 7NN. Then the DB by a consecutive migration through a

5 NN position recombines with the vacancy. The migration barrier is very similar to the

regular translation-rotation mechanism (≈ 0.3 eV), but the prefactor is greater by an order
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(a) (b)

Figure 6.7: Recombination of a DB and a vacancy separated by 1NN with a very low migration barrier
(0.050 eV). (a) - the MEP of the transition calculated using the CI-NEB, (b) - the recombination process.

of magnitude and is equal to ≈ 2.9× 1014s−1.

(a) (b) (c) (d)

Figure 6.8: Recombination of a DB and a vacancy separated by 7NN by going through a 5NN position.

Similarly, recombinations were observed with bigger split-interstitial clusters, containing

2-4 DBs. In general, defects tend to recombine if they are in the vicinity of each other,

thus the initial debris after the ballistic damage plays a great role on how the system will

evolve. If the damage spread is quite low, rapid recombination will occur, otherwise it is

likely that bigger and stable defect clusters will form. Another important factor during the

defect recombination is the mobility of defects. Mobile defects can find other defects to

recombine or find a similar type defects to form even bigger cluster by exploring the system,

as discussed in the next section.
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6.2.2.2 Mobility of Defects and Defect Clusters

Split interstitials and clusters of 2 split interstitials are the most common defects in the sys-

tems after a ballistic event that are very mobile. Split interstitials explore the system through

the rotation and rotation-translation mechanisms, where 2 split interstitial clusters by the

Johnson mechanism [32], where one of the split interstitials jumps (rotation-translation) to

its nearest neighbour position and the second one follows it or both of them jump together.

Sessile 2 split interstitial clusters were also seen in the simulations as reported by Gao [132],

but they were able to escape such configurations, by jumping over slightly higher barriers as

usual.

3 split interstitial clusters were seen as fairly stable, but they tend to rearrange with low

barriers as 0.1 eV, as has been reported by Marinica et al. [39]. It was shown in section 6.1

that calculated prefactors have a great influence on the rate values of such transitions.

4 split interstitial clusters depending on their configuration maybe very mobile and also

quite stable as it was given in examples in section 6.1. The mobile clusters consists of 4

〈111〉 DBs and glide in the 〈111〉 direction with low barriers ranging from 0.20 to 0.30 eV.

In the 1 keV simulations the biggest interstitial cluster observed was formed of 5 split

interstitials and it has been seen only in one simulation. In other cases, defects were fairly

quick to recombine or the smaller clusters dissipated in to the systems away from the centre

of the initial damage volume.

Vacancy type defects are many times less mobile than interstitial type defects. This is

due to the much higher migration barriers of their transitions. Previously in section 6.1 it

was shown that by calculating prefactors for the transitions, vacancy migration mechanisms

have a higher rate, but still the difference is very significant. Therefore, vacancy migration

is not common during the simulations. It was seen by analyzing the data from simulations

in Tables 6.5 and 6.6, that a 2 vacancies cluster is more mobile than a single vacancy. The

preferable configuration of the 2 vacancy cluster is when the vacancies are separated by 1NN

or 2NN and migration is carried out by one of the vacancies jumping to its 1NN and the
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(a) (b)

(c) (d)

Figure 6.9: Split interstitial clusters: (a) - stable 3 split interstitial cluster, (b) - mobile 3 split interstitial
cluster, (c) - stable 4 split interstitial cluster, (d) - mobile 4 split interstitial cluster. For (a), (b) - Ackland
04 and for (c), (d) - Mendelev 03 potentials used.
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second one following it.

The three vacancies cluster migrates through two configurations. The first one is when

one vacancy has the other two vacancies in its 2NN positions and both of them are situated

at 3NN with respect to each other (Figure 6.10a). The second one consists of two vacancies

sitting at 2NN positions and the third one being at 1NN with respect to both of them (Figure

6.10b). An example of the 3 vacancies cluster migrating through these two configuration is

given in Figure 6.10.

(a) (b) (c)

(d) (e)

Figure 6.10: Migration process of a cluster containing 3 vacancies. The migration undergoes through two
configurations and is carried out by one of the vacancies jumping to its 1 NN.

Bigger vacancy clusters tend to be immobile and form high symmetry configurations with

high migration barriers. Examples of such clusters containing 4, 5 and 6 vacancies are given

in Figure 6.11.



156
CHAPTER 6. LONG-TIME SCALE SIMULATIONS APPLIED TO DEFECT MOTION

IN FE

(a) (b) (c)

Figure 6.11: High symmetry configurations of vacancy clusters: (a) - 4 vacancies, (b) - 5 vacancies, (c) - 6
vacancies.

6.2.3 50 Vacancies Simulations

In order to compare the otf-KMC technique developed during this work and also to look into

the evolution and clustering of vacancies, a study was carried out on long-time evolution of

50 randomly distributed vacancies in a 10a0 × 10a0 × 10a0 α-Fe supercell, where a0 is the

lattice parameter (a0 = 2.855 Å). The initial average potential energy of the systems with

periodic boundary conditions applied is -7740.66 eV. This problem has been recently studied

by various groups using different techniques. The initial work was done by Fan et al. [133]

using the autonomous basin climbing method (ABC) combined with KMC. Later comments

on the work have been made by Brommer and Mousseau [134], where they have applied the

kinetic activation relaxation technique (k-ART) for the same problem. And lastly Xu et al.

[44] by employing self-evolving atomistic kinetic Monte Carlo (SEAKMC) method.

By comparing the findings of the same problem with the previous studies, the reliability

and the performance of the newly developed technique can be determined. There are two

main differences between the technique described in this work and the other ones. The first

one is how the saddle points are being found.

The ABC + KMC approach is to climb up from the potential energy minima by filling

it with Gaussian penalty functions [135]. When the saddle is crossed, MEP is reconstructed

using the NEB method, by connecting the minima and determining the barrier height. The
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k-ART method for finding transitions is explained previously in this work in section 3.3.1.3

and is based on the Lanczos method and the SEAKMC technique uses the Dimer method,

described in section 3.3.1.1. As for this work, a combination of the Dimer method and the

minimum mode following method is used. Even though the transitions search methods are

different, all of them can be adjusted to the specific systems through a careful consideration

of parameters, e.g. the step size in the Dimer method, or the scaling constant in the ART

method, and can perform quite well by giving a good catalogue of possible transitions from

the current system state. Also, since all the methods are finding reactions on the fly, there

is some randomness in the outcome that must be accounted for.

The second major difference that is most likely to have a great effect on the outcome

of the simulations, is the value of the prefactor in the Arrhenius equation (Equation 3.2.1).

The other three methods use a fixed value, where in this work it is calculated on the fly. The

ABC + KMC technique uses 5×1012s−1, the k-ART method - 1×1013s−1 and the SEAKMC

- 1 × 1012s−1 and 5 × 1012s−1. The latter method showed to have a better agreement with

the MD results with the value of 5× 1012s−1.

Results from 12 simulations were studied in terms of the evolution of system’s energy,

monovacancy fraction and average cluster size (Figure 6.12). The simulation temperature

is 50 ◦C which lies between those of stages III and IV of the radiation damage-recovery

process [133], where migration of vacancies and and their clusters occur. There are some

experimental results from positron annihilation spectroscopy experiments [136] showing void

nucleation even at this stage, thus providing some experimental evidence.

Similarly to the results of Brommer and Mousseau, the average cluster size of 6.5 is

reached at ≈ 0.3 ms of simulation time, where Xu et al. reported results at least an order of

magnitude faster. Likewise the potential energy on average drops under -7761 eV at ≈ 0.3

ms, as for Xu et al., it is by an order of magnitude faster. Also monovacancies are reported

by all three techniques when the system energy is higher than -7757 eV. This may be due

to similarities shared between k-ART and otf-KMC technique developed in this work, by
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Figure 6.12: Twelve otf-KMC simulations of 50 randomly distributed vacancies in 10a0 × 10a0 × 10a0 α-Fe
supercell. Top: Potential energy dependence. Centre: Average vacancy cluster size. Bottom: Fraction of
monovacancies among all defects.
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employing the Lanczos method to approach the saddles. As mentioned in the methodology

section 3.3.1, this approach gives a better approximation than the Dimer method which

is used by Xu et al.. The small changes in barrier heights and missing out of cooperative

movements by SEAKMC is caused by rather small number of atoms used for the calculations

might be the reason of disagreement in simulation times.

Another important aspect of simulations is the number of KMC steps required to achieve

the merit values. Brommer and Mousseau reported from 3,000 to 30,000 transitions at each

KMC step with the total number of KMC steps over 4733 to 5997 for their 4 simulations. In

this work (Figure 6.12), the number of KMC steps varies from 600 to 1759 while performing

up to 20,000 searches which leads to over 400 unique transitions at the beginning of a

simulation.

By using the reuse of transitions, the consecutive steps require fewer searches to be

done on the fly with also fewer defect volumes due to the defect clustering. This results in

performing only a few thousand searches and a couple of hundred transitions at each KMC

step. Clearly the smaller the number of KMC steps to obtain similar results between k-ART

and the developed technique makes the latter more efficient without losing robustness.

An example of one of the systems is given in Figure 6.13. In this case the system was

evolved for 1,759 KMC steps which resulted in 4 ms of simulation time. At the end of the

simulation the system contains 7 vacancy clusters with an average size of 7.14 vacancies.

The smallest cluster contains 6 vacancies and the biggest 11. All the clusters have high

symmetry.

6.3 Discussion and Conclusions

The results from the tests on the influence of the calculated prefactor show that an accurate

determination of the prefactor, in addition to the transition energy barriers, is necessary for

accurate prediction of defect motion in KMC simulations. The contribution of the vibrational



160
CHAPTER 6. LONG-TIME SCALE SIMULATIONS APPLIED TO DEFECT MOTION

IN FE

(a) (b)

Figure 6.13: An example of a system containing 50 vacancies evolved for 1,759 KMC steps (4 ms of simulation
time): (a) - initial system with the randomly distributed vacancies, (b) - system at the end of simulation
containing 7 vacancy clusters, varying in size from 6 to 11 vacancies.

internal energy, which is not incorporated within the Vineyard equation, showed only a

minute contribution to the barrier height for the main defects types and their key migration

mechanisms. In order to achieve one significant figure accuracy for the prefactor, it is

necessary to include atoms at least within 10 Å radius around the defect, which results in

computations that are not excessive in terms of computing time. Results for the 〈110〉 DB

showed an almost two orders of magnitude greater prefactor value for the 〈111〉 DB on-site

rotation, compared to a default value, making it the fastest transition and more likely to be

chosen than the translation-rotation mechanism that has a lower barrier height. For most

of the transitions of the vacancy type defects: single and di-vacancy, the prefactor value

is at least an order magnitude greater than the default value, thus reducing the difference

between the diffusion rates of interstitial and vacancy type defects.

By employing the hybrid MD - otf-KMC technique, a study was carried out on α-Fe

systems. The simulations were carried out not to achieve the longest simulation time, but

until the outcome of them could be predicted. In total 36 simulations were carried out with



6.3. DISCUSSION AND CONCLUSIONS 161

the maximum KMC steps varying from 141 to 9373. The results showed minute difference

between two potential energy functions used to describe Fe-Fe interactions: the Mendelev

2003 and Ackland 2004 potentials. As it is common for these kind of simulations, during

the first few hundred KMC steps, defects that are close tend to recombine rapidly and an

investigation of the immediate recombination between interstitial and vacancy type defects

showed special configuration of defects, which do not have a migration barrier. Low migration

barrier recombination transitions were also studied to identify the processes that the defects

undergo. Most of the simulations after the initial recombination evolve by interstitial type

defects (clusters containing up to 4 DBs) were they can rearrange to a stable configuration

with a high energy escape barrier. Mobile clusters of 4 〈111〉 DBs were also observed which

tend to glide in the 〈111〉 direction with low barriers. Vacancy type defects containing 4 or

more vacancies were found to be immobile after clustering into high symmetry configurations,

were smaller ones are more mobile, especially with the calculated prefactor.

The tests with 50 vacancies introduced in the systems showed a good agreement with

the results achieved by Brommer and Mousseau in terms of the system’s potential energy

and defect evolution against time, but the developed methodology requires less KMC steps

to achieve the same results.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The need for understanding radiation effects in materials used in the nuclear applications

grows as does the use of nuclear power with ever-increasing energy demand. The joint

project between IGCAR, Oxford and Loughborough Universities uses both experiments and

modelling to gain the knowledge on the effects of irradiation in the ODS steels for future

generations of nuclear reactors. These alloys are studied due to their novelty and the lack

of understanding of their key properties such as the effect of the oxide particles interface

on absorbing the products of irradiation, their structural defects, the He and the radiation

resistance of the nanoparticles. The main role of this work was to employ and develop

modern modelling techniques to look into such effects at the atomistic level.

In order to simulate radiation damage evolution over long time scales an efficient tech-

nique was required. The initial work by Vernon [47] needed to be rewritten in more mod-

ular format for easier optimisation and extension, therefore new software was written from

scratch. One of the biggest challenges was the implementation of an efficient saddle search

algorithm. The most common algorithms were implemented, but in most of the cases the

ART, RAT or the Dimer method had to be coupled with the NEB method in order to achieve
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good accuracy of barrier heights. In this way saddle searches were computationally expensive

procedures and an evolution of big or complicated systems was very slow. A combination of

the Dimer method and the minimum mode following algorithm has proven to have the best

mixture of accuracy and speed and a double ended search method proved to be no longer

necessary for accurately determined barrier heights. The Dimer method was chosen because

it has been shown to be an efficient way to escape a local minimum, but a drawback was that

it required many function evaluations to converge to a saddle point. While the minimum

mode following algorithm is a very efficient technique to converge to a saddle, it struggles

with the initial escape from a minimum. By coupling these two methods and using them

where they are most efficient, a robust algorithm was developed showing similar accuracy as

the NEB method, but did not require as many function evaluations.

Another important contribution to the otf-KMC technique was made by analysing the

topologies of defect volumes. “Nauty” [99] was incorporated for interpreting defect volumes

as graphs and finding isomorphisms between them. This allowed an easy comparison be-

tween defect volumes and the reuse of transitions on isomorphic defect volumes, thus saving

computational time that would be normally spent on failed and duplicate transition searches.

As for modelling radiation damage in ODS, the studies were carried out in α-Fe, a

simplified model of ODS and Y-Ti-O systems. The work is focussed around the ODS model

as an α-Fe system with 0.3 at% of Y2O3. The model is based on the potentials which were

able to reconstruct the structure of yttria, but the interface between the nanoparticle and

Fe was incoherent due to the type of interatomic potential used. Nonetheless, the radiation

damage simulations were able to capture different behaviours and processes that may provide

hints explaining the role of the nanoparticles in ODS under radiation.

When collisions occurred in an yttria-free region, the irradiation progressed in a similar

way that was observed in pure bcc iron systems. However, when they were initiated close to

a nanoparticle, the particle can act as a block to the propagation of a collision cascade by

“transferring” the energy to the yttria nanoparticle. In this way instead of creating residual
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defects in the Fe lattice structure, energy is absorbed by the yttria nanoparticle and gradually

released through atomic vibrations over longer time-scales then the MD simulation. Fe defect

attraction to the nanoparticle interface was also observed, with an active region of 3.5−10.0

Å around the nanoparticle, reducing the number of defects in the matrix. Higher energy

collision cascades (5 keV) indicated the radiation stability of the nanoparticles and only in

the event of a near head-on collision with an incoming energetic Fe atom, atoms from the

nanoparticle were ejected into the matrix.

The results from the He MD simulations have shown yttria nanoparticles interact with

helium atoms by entrapping them on their surface. The trapped He decorates the interface,

but does not form bubbles as in the bulk Fe.

An interesting behaviour of He clusters was observed in pure Fe systems, where clusters

containing up to 4 He atoms are mobile and clusters containing 5 or more become stable by

creating an Fe interstitial. MD simulations over 5 ns showed that He tends to cluster and

at the end of simulations, systems contained mostly stable He bubbles. Ability of helium

bubbles to act as a sink was also observed by trapping split-interstitial type defects.

Radiation damage simulations in ODS models have not been carried out using the otf-

KMC. The problem originates from the “free region” which surrounds the nanoparticle. It

allows the nanoparticle to make small rearrangements to itself according to the surrounding

atoms structure. The evolution of the KMC technique is based on the events happening in

small contained regions, but when a defect migrates towards the nanoparticle, the nanoparti-

cle starts to interact with them and the region including the nanoparticle must be accounted

in the saddle search algorithms. This makes them computationally very expensive and in

most of the times the found transitions do not belong to the migrating defect but rather to

the reconfiguration of the nanoparticle. This problem could be addressed by implementing

a variable charge model for the Fe-Y-O interactions or a basin method, but was beyond the

scope of this thesis.

The radiation damage study in the Y-Ti-O materials showed almost linear dependency
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between the number of defects and the PKA energies, with heavier atoms (Ti, Y) producing

more defects and O PKAs tending to channel through the system. Two types of residual

damage behaviour have been seen: the first is when the damage is localized in a region,

usually close to the initial PKA position; the second is when PKA is directed in the chan-

nelling direction and creating less defects compared to localised damage case, but with a

wider spread. The Y2TiO5 and Y2Ti2O7 systems showed increased recombination of defects

with increased temperature, thus suggesting that Y2O3, has better performance at low tem-

perature and Y-Ti-O systems have a potential to have a higher radiation resistance at high

temperatures. The remaining defects in the Y2O3 systems were categorized in terms of their

point defect configurations similarly as it was done in the Er-O systems, where Y2TiO5 and

especially Y2Ti2O7 lacked structural stability possibly indicating that used potentials need

to be improved for the structures.

Results from the tests on the influence of the calculated prefactor in the Arrhenius equa-

tions showed the necessity to estimate it accurately in order to model defect motion in α-Fe.

Results for the 〈110〉 DB showed almost two orders of magnitude greater prefactors value for

the 〈111〉 DB on-site rotation, compared to the default value, making it the fastest transi-

tion and more likely to be chosen than the translation-rotation mechanism that has a lower

barrier height. For most of the single and di-vacancy defect migrations the prefactor value

is at least an order magnitude greater than the default value, thus reducing the difference

between the diffusion rates of interstitial and vacancy type defects. The validity of these re-

sults were checked by the comparison of the KMC results with MD and TAD, which showed

good agreement.

Also the contribution of the vibrational internal energy, which is not incorporated within

the Vineyard equation, showed minimal change to the barrier heights for the main defect

types and their key migration mechanisms. Therefore, accurate determination of the pref-

actor and transition barriers are the most important for defect motion prediction.

By employing the hybrid MD - otf-KMC technique, a study was carried out on α-Fe
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systems at 450K. The implemented potentials (Mendelev 2003 and Ackland 2004) very sim-

ilar behaviour in terms of defect production and their migration. Rapid recombination of

defects appeared during the first few hundred KMC steps and an investigation of immediate

recombination between interstitial and vacancy type defects showed special configurations

of defects, which do not have a migration barrier by recombining during the equilibration of

the system. Most of the simulations after the initial recombination evolve by interstitial type

defects (clusters containing up to 4 DBs) where they can rearrange to a stable configuration

with a high energy escape barrier. Mobile clusters of 4 〈111〉 DBs were also observed which

tend to glide in the 〈111〉 direction with low barriers. Vacancy type defects containing 4

or more vacancies were found to be immobile after clustering into a high symmetry config-

urations, where as smaller ones are more mobile especially using an accurately calculated

prefactor.

The tests with 50 vacancies introduced in to α-Fe were in very good agreement with

the results achieved by Brommer and Mousseau, and the developed otf-KMC technique on

average required less KMC steps to achieve the same results.

To summarize, even though the otf-KMC was not employed to study defect evolution in

ODS models, the results from the MD simulations provided interesting hints of the processes

that might be responsible for the better ODS steels performance under radiation damage.

The radiation damage studies in Y-Ti-O system showed necessity to develop new potentials

in order to study such systems, where the defect evolution in α-Fe indicated the importance of

the calculated prefactor for the defect migration and recombination processes. The developed

otf-KMC technique is highly parallelised, has most common methods for saddle searching

and optimization, able to reuse transitions, estimate prefactors on the fly and is efficient

and reliable. The technique was not only used for this work, but is also extensively used by

colleagues in the materials modelling group at Loughborough University to address various

other materials problems.
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7.2 Future Work

One of the modifications that is necessary for the further improvement of the developed

otf-KMC technique is the ability to deal with the low barrier transitions which delay the

evolution of the systems, e.g. rearrangement of 3 DB clusters. One of the methods, the

basin method [137], is being implemented by a colleague Miao Yu as a possible solution for

these kind of problems.

A possible extension to the developed otf-KMC technique is an implementation of one of

the parallel KMC algorithms to achieve better scaling by using more processors. The idea

behind parallel KMC algorithms is the system’s division into smaller non-interacting regions,

thus allowing them to evolve separately and reduce the linearity of the KMC. One of the

promising techniques is the Synchronous Sublattice Algorithm developed by Y. Shim and J.

G. Amar [138, 139]. This algorithm operates on the idea of assigning different parts of the

system to different processors via the spatial decomposition. The processors simultaneously

and independently carry out KMC events until the time of the next event exceeds the set time

interval. Then processors communicate the changes with their neighbouring processors to

compensate for boundary events and the process is restarted. Similarly, a possible modifica-

tion could be done to the otf-KMC technique only instead of using the spatial decomposition

to distribute processors, groups of processors could be distributed to non-interacting defect

volumes and allowing to evolve them separately with occasional communication between

them to ensure the same system configuration between them.

Another possible extension to the otf-KMC technique could be by having a selective

evolution region. Usually a system evolves by defect rearrangement in their defect volumes

or combined volumes and most likely the defects with the highest rates are selected to evolve

the system.

One idea is to perform the first KMC step as it is done in the current technique, by

performing transition searches on all the defect volumes. Then the sums of the transition

rates for each defect volume is calculated and one of them is chosen randomly, according to
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the sums of rates. Then a transition from the chosen defect volume is picked for the evolution

and followed by the transition searches or the reuse of transitions performed on it. After

that the sum of rates is updated for the defect volume. Assuming that the configuration of

the non-interacting defect volumes do not effect each other or the effect is minute, the sums

of rates of other defect volumes are left as they were. During the following steps, similarly

a defect volume is chosen according to the previously calculated sum of rates. Then the

transitions searches or reuse is carried out on it, the sum of rate is updated and a transitions

is chosen for the system’s evolution. This modification would save computational time when

the system contains at least two defect volumes, since only one defect volume would be

“active”, during a KMC step.

As for modelling radiation damage in ODS systems, the description depends heavily

on the interatomic potentials. In this work potentials used to study α-Fe-Y-O and Y-Ti-

O systems were able to reconstruct oxide structures but not other properties, such as bulk

modulus and elastic constants. Therefore the further development of interatomic potentials is

necessary to gain better understanding of material characteristics. Also, for further studies

the variable charge model, which allows charge transfer among atoms, might be used to

improve the model, especially the metal-oxide interfaces due to their complexity. These

improvements may help to stabilize the oxide particle in the system and the long time scale

simulations might be performed on the ODS model too.

It would be also interesting to perform radiation effect studies on more complicated mod-

els of ODS systems as α-Fe-Cr-Y-Ti-O. These simulations might explain the processes that

were reported during the irradiation experiments, such as the loss of Ti from the Y-Ti-O

oxide particles, particles’ refinement and even their dissolving. High energy cascade simula-

tions (>5 keV) in α-Fe-Y-O and α-Fe-Cr-Y-Ti-O systems would help to further investigate

the stability of the oxides.

MD or even otf-KMC simulations can also be performed to study He bubble formation

in ODS systems. The more complicated study can be performed by gradually introducing
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He into the system by evolving it for a certain amount of time, which represents the actual

time from experiments, between following He atoms placements in the system. In this way,

simulations would be able to recreate more realistic processes of the segregation on the oxide

particle surfaces and bubble formations and be more comparable with the experimental

findings or even provide quantitative statistics.
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[11] R. Schäublin, A. Ramar, N. Baluc, V. de Castro, M. A. Monge, T. Leguey, N. Schmid,
and C. Bonjour. Microstructural development under irradiation in European ODS
ferritic/martensitic steels. Journal of Nuclear Materials, 351(1-3):247–260, June 2006.

[12] P. Pareige, M. K. Miller, R. E. Stoller, D. T. Hoelzer, E. Cadel, and B. Radiguet. Sta-
bility of nanometer-sized oxide clusters in mechanically-alloyed steel under ion-induced
displacement cascade damage conditions. Journal of Nuclear Materials, 360(2):136–
142, February 2007.

[13] S. Yamashita, N. Akasaka, and S. Ohnuki. Nano-oxide particle stability of 912Cr
grain morphology modified ODS steels under neutron irradiation. Journal of Nuclear
Materials, 329-333:377–381, August 2004.

[14] J. Gan, T. R. Allen, R. C. Birtcher, S. Shutthanandan, and S. Thevuthasan. Radiation
Effects on the Microstructure of a 9Cr-ODS Alloy. Journal of Metals, 60(1):24–28,
2008.

[15] J. Brodrick, D. J. Hepburn, and G. J. Ackland. Mechanism for radiation damage re-
sistance in yttrium oxide dispersion strengthened steels. Journal of Nuclear Materials,
445(1-3):291–297, February 2014.

[16] E. E. Bloom. The challenge of developing structural materials for fusion power systems.
Journal of Nuclear Materials, 258-263:7–17, 1998.

[17] Y. Dai, G. R. Odette, and T. Yamamoto. The Effects of Helium in Irradiated Structural
Alloys. In Comprehensive Nuclear Materials, chapter 1.06, pages 141–193. Elsevier Inc.,
2012.

[18] G. R. Odette and D.T. Hoelzer. Irradiation-tolerant Nanostructured Ferritic Alloys:
Transforming Helium from a Liability to an Asset. JOM, 62(9):84–92, 2010.

[19] D. Stewart, Y. Osetskiy, and R. Stoller. Atomistic studies of formation and diffusion of
helium clusters and bubbles in BCC iron. Journal of Nuclear Materials, 417(1-3):1110–
1114, October 2011.

[20] Z. Di, X.-M. Bai, Q. Wei, J. Won, R. G. Hoagland, Y. Wang, A. Misra, B. P. Uberuaga,
and M. Nastasi. Tunable helium bubble superlattice ordered by screw dislocation
network. Physical Review B, 84(5):052101, August 2011.

[21] L. Yang, H. Q. Deng, F. Gao, H. L. Heinisch, R. J. Kurtz, S. Y. Hu, Y. L. Li, and X. T.
Zu. Atomistic studies of nucleation of He clusters and bubbles in bcc iron. Nuclear
Instruments and Methods in Physics Research B, 303:68–71, May 2013.

[22] P. D. Edmondson, C. M. Parish, Y. Zhang, A. Hallén, and M. K. Miller. Helium
bubble distributions in a nanostructured ferritic alloy. Journal of Nuclear Materials,
434(1-3):210–216, March 2013.



REFERENCES 173

[23] A. I. Ryazanov, O. K. Chugunov, S. M. Ivanov, S. T. Latushkin, R. Lindau,
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