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ABSTRACT 

Strategies for Teaching Engineering Mathematics 

byLRMustoe 

Department of Mathematical Sciences 
Loughborough University of Technology 

This thesis is an account of experiments into the teaching of mathematics 
to engineering undergraduates which have been conducted over twenty 
years against a background of changing intake ability, varying output 
requirements and increasing restrictions on the formal contact time 
available. 

The aim has been to improve the efficiency of the teaching-learning 
process. 

The main areas of experimentation have been the integration in the 
syllabus of numerical and analytical methods, the incorporation of case 
studies into the curriculum and the use of micro-based software to enhance 
the teaching process. 

Special attention is paid to courses in Mathematical Engineering and their 
position in the spectrum of engineering disciplines. 

A core curriculum in mathematics. for undergraduate engineers is 
proposed and details are provided of its implementation. The roles of case 
studies and micro-based software are highlighted. The provision of a 
mathematics learning resource centre is considered a necessary feature of 
the implementation of the proposed course. Finally, suggestions for 
further research are made. 

Key words: Mathematical Education, Engineering Mathematics, Case Studies, 
Microcomputers, Mathematical Modelling 
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Chapter 1 

Introduction 

1.1 Background 

The theme running through this thesis is that of integration. This 

integration has been sought in two contexts: the integration of topics within the 

mathematics syllabus, and the integration of the mathematics course within the 

engineering curriculum. The author has striven to make the mathematics course 

that he teaches to engineering undergraduates an engineering course taking its 

place alongside structures, dynamics, fluid mechanics, etc. 

Too many engineering students graduate with a dislike of mathematics, 

having seen the course that they received as being largely irrelevant to their 

interests and requirements - a necessary evil appended to their studies, and 

necessary only in the sense that they were examined in it. Too often the only 

contact with the mathematics lecturer was in the formal setting of the lecture 

theatre, where perhaps they shared the lecture with students from other 

engineering departments. No attempt was made by the lecturer to show them 

where the mathematics that they were being taught was relevant to their 

engineering subjects. 

The author was fortunate in being appointed to a department which took 

seriously the teaching of mathematics to engineering undergraduates. He has 

been privileged to learn from the experience of colleagues whose dedication and 

enthusiasm set him an example of the high standards to be maintained in his 

teaching. Their encouragement and cooperation over the years has been 

invaluable. Also, many of the author's engineering colleagues have provided 

both helpful advice and the facilities to carry out his research. 
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The last twenty years have seen considerable changes in the field of 

mathematics education at primary, secondary and tertiary levels. Today's 

freshmen were not born when the author started his teaching career and they are 

entirely the product of the changes that have taken place in that period of time. 

The schools have witnessed much upheaval since the late 1960's. 'Modem' 

mathematics has pervaded all age groups with sometimes alarming effects on· the 

mathematical skills found in those undergraduates who haveLb~ght up via that 

approach. There has more recently been a move back to . more traditional 

syllabuses but there is no question that the average engineering freshman of 1988 

is less well-versed in standard mathematical techniques than was his predecessor 

in 1968. 

Despite the avowed intention of the 'A' Level examining boards to agree a 

core curriculum in mathematics (and other subjects) there is sufficient disparity in 

the syllabuses to ensure that a lecture group of freshman engineers will be quite 

heterogeneous in their knowledge of mathematics, let alone in their mathematical 

ability. Add to the 'A' level entrants those who have a BTEC qualification and the 

element of commonality becomes relatively small. The situation has not been 

static, as was indicated in the previous paragraph, and therefore the mathematics 

lecturer has been confronted with a system which has a time-varying 

heterogeneous input. The rapid changes in computer technology have added 

another variable to the teaching task. As the mainframe computer which had 

punched card input and punched card output was superseded in turn by the 

terminal link and the microcomputer and as the slide rule gave way to the pocket 

electronic calculator, the importance of numerical methods relative to their 

analytical cousins has increased. Fortunately, Loughborough has stressed the 

value of numerical methods for many years and has therefore been better placed 

than several institutions to adapt to these changes; even so, it has required 

considerable effort to keep up with the pace of change. 

The needs of industry as regards the knowledge required by its graduate 
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recruits have not been restricted to an increased awareness of, and experience in 

using, numerical methods. New areas have entered the arena, notably discrete 

mathematics, and this has posed further problems for the lecturer. In order to 

treat these areas satisfactorily room must be found in an already crowded syllabus; 

what can be omitted without leaving the student deficient in some important 

topic? The output from the system is therefore time-varying. It is also 

heterogeneous since the specific needs of the mechanical engineer do not coincide 

with those of the electrical engineer, the production engineer or the civil engineer. 

There are further problems, too, in that the engineering lecturers will 

require particular mathematics topics to be covered at certain times in order that 

they can draw upon them in their teaching. These requirements are often 

incompatible with each other, in addition to making it almost impossible to satisfy 

them whilst running a coherent mathematics course. Also, there is increaSing 

pressure on mathematics lecturers to reduce contact hours whilst retaining the 

syllabus in full. 

Against these difficulties can be set the growing need for engineers to be 

trained more thoroughly to cope with the increasingly complex engineering 

systems with which they will work in their professional careers. As these systems 

become more complex the need for increased mathematical awareness, knowledge 

and skill is more acute. The engineer' of tomorrow must be more of a 

mathematician than the engineer of today and far more a mathematician than the 

engineer of yesterday. There is an urgent need, therefore, to develop a system of 

teaching mathematics to engineering undergraduates which can meet the 

requirements of today and which can cope with the changes that are likely to occur 

in the next decade or so. 

1.2 The Author's Involvement 

The author'S earliest experience of teaching engineering undergraduates was 

in taking problem classes whilst a postgraduate student. Having taken a first 
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degree in Pure Mathematics he was soon made aware of the different needs and 

outlook of engineers from mathematicians. He was aware, in particular, of the 

preferred approach of starting with concrete examples before proceeding to a 

general formulation. He was made painfully aware of the engineers' desire to see 

the relevance of the mathematics that they were studying, painful because he was 

usually unable to give them a satisfactory response. There was a general 

resentment that the lecture class comprised engineers, scientists, mathematicians 

and social scientists: it was totally impersonal. The author remembered how in 

his undergraduate days his engineering contemporaries would complain that the 

mathematics course was designed by the mathematics staff on a 'take it or leave it' 

basis with no attempt whatsoever to introduce relevant examples. There was no 

contact outside the lecture room and the problems classes were conducted by 

postgraduate students who were mostly not willing to give up additional time to 

helping with the difficulties of the students in understanding the lecture material. 

When the author took up his lecturing appointment in Loughborough in 

September 1969 he was assigned the task of lecturing to the first year Civil 

Engineering students. He knew that to be successful he had to be seen by these 

students as a member of the teaching team and not as an outsider. He had to set 

about the task of learning the Civil Engineering subjects so that he could relate the 

mathematics topicS to the work done by the other lecturers. The fact that he was 

prepared to make this effort won him the respect not only of his students but also 

of his engineering colleagues who gave freely of their time to help him in his task. 

At that time the Mathematics Department was the other side of the campus from 

the Civil Engineering Department and the latter provided the author with an 

office which he could use between lectures to be available to his students for help 

outside the formal contact hours. (In those days, it was accepted that students were 

important members of the University community). 

Strong links with schools have been maintained through regular lectures 

given to groups of sixth-formers, whilst liaison with industry has provided case 

study material which has been used in lectures and tutorials. Most recently, the 
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author has been involved with European colleagues in endeavouring to draw up a 

common core of mathematics which will be taught to all engineering 

undergraduates in Europe, particularly in the countries which form the European 

Economic Community. 

After twenty years of teaching engineering students and striving to improve 

that teaching the author was in a position to take stock of his contribution to the 

field of mathematical education of engineers. It was time to look back on the 

ground which had been covered and to look forward to what might be achieved in 

the next phase of his career. The writing of a thesis provides an excellent 

discipline in this stock-taking. 

1.3 Outline of the Thesis 

Chapter 2 of this thesis presents a historical account of the research carried 

out in the area of mathematical education of engineers. The account begins in 

1948, when speakers at the British Association meeting expressed disquiet at the 

quality of mathematics teaching to engineering students. There was a plea for 

more relevance and the case was argued for numerical methods to play a more 

important role in the syllabus. 

A key factor in the history was the publication in 1966 of a report by the 

Organisation for Economic Cooperation and Development; this report set 

ambitious targets for a core mathematics syllabus for all engineering students and 

provided a reference point for developments which have taken place 

subsequently. It strongly advocated a greater training in computer-based methods 

of solution. This report is discussed in Section 2.2. 

The following section considers the work which was conducted in the ten 

years following the publication of the Report. Duri!lg this period the author began 

to make his contribution to the field of mathematical education of engineers and 

throughout the chapter reference to his work is made in context. Section 2.4 
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reviews the progress which had been made by the mid 1970's. It begins by 

discussing two papers of which Mustoe was a joint author; the first of these papers 

took a critical look at the current state of teaching and highlighted the perceived 

shortcomings whilst the second paper pointed a possible way forward. A further 

review of the situation was provided by a conference entitled 'The Mathematical 

Education of Engineers - Where Next?' Many attempts were being made to 

enhance the teaching, in particular via the involvement of the computer. 

Section 2.5 looks at the research carried out in the last twelve years. Another 

review of progress since the 1966 Report had been conducted and there was a 

gloomy picture which emerged. In the United Kingdom, contact hours were well 

short of the more modest of the core curriculum hours suggested by the Report. In 

many institutions in Europe the emphasis on computing was lower than had been 

advocated and little real progress seemed to have taken place. Section 2.6 

considers the attempts being made to establish a core curriculum for all , 
engineering undergraduates in Europe. Drawing on the lessons to be learned 

from the 1966 Report, the targets are less ambitious. 

Section 2.7 examines four specific aspects of recent activity. First, the 

problems associated with lack of mathematical skills which have been found in 

freshmen on entry to tertiary education are discussed. Then the impact of the 

computer on the curriculum is briefly treated and an account is given of work in 

the area of computer-based learning. The inclusion of modelling in the syllabus, 

including the role of case studies is reviewed and the expectations of industry with 

regard to the mathematical skills of its graduate recruits is mentioned. 

Chapter 3 is devoted to the pioneering work carried out at Loughborough 

into the integration of numerical and analytical methods in the syllabus. Section 

3.1 discusses a seminal paper on the 'integrated approach' which showed the way 

forward using the topic of ordinary differential equations as an example. The 

following section describes the author's work in developing a two-year 

undergraduate programme based on the integrated approach. Section 3.3 is 
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concerned with the text books written by the author and two colleagues which 

developed from this programme. An example of the integrated approach in action 

in a tutorial discussion is presented in Section 3.4. The next section treats the later 

developments to the two-year programme including the introduction of 

computing coursework. Section 3.6 is concerned with the knowledge and ability of 

freshmen entrants and discusses the results of a questionnaire and a test paper 

which are given to the students during their first week at Loughborough. Finally, 

Section 3.7 takes a critical look at the integrated approach and asks 'does it work?' 

Chapter 4 is an account of the changes brought about by the technological 

developments in computers and pocket calculators. The first section reflects on 

the dangers inherent in the proliferation of the pocket calculator without an 

awareness of the limitations of operating on imprecise data. Section 4.2 describes 

the benefits to engineering students resulting from the introduction of terminals 

on the campus. The following section describes the way in which the author 

implemented the concept of a computer laboratory in his teaching, in particular 

the use of prepared programs in carrying out assignments on particular numerical 

techniques. When the microcomputer made its way onto the market it offered 

more flexibility to the teacher and an account is given in Section 4.4 of the work of 

several researchers into the use of the micro in the classroom or in a purpose-built 

laboratory. The final section considers the impact of the computer on the teaching 

of mathematics to engineers and laments the lack of good quality software 

currently available. 

Chapter 5 describes the work carried out by the author and his colleagues in 

the area of computer enhanced learning. In the early 1980's there was very little 

micro-based software for mathematics at the school/university interface level and 

the Micros in Mathematics Education Project, of which the author was a founder 

member, was established at Loughborough in an attempt to fill the gap. Section 5.1 

outlines the setting up of the project and the early decisions which were made, in 

particular the choice of mechanics as a first area to tackle. The second section gives 

an account of the software unit on Projectile Motion which was allocated to the 
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author and was the first to be completed. Two parts of the unit are described in 

detail to illustrate the author's thinking. In Section 5.3 the problems associated 

with presenting a statics topic are discussed. Other units are described in Section 

5.4. The testing and evaluation of the units is considered in the following section 

and the project is reviewed critically. 

In 1985 the project turned its attention to the production of software units to 

cover topics in first and second year engineering mathematics, with the hope and 

expectation that the material might also prove useful to science and mathematics 

undergraduates. Section 5.6 describes the early units which were produced and 

how the approach differed from that of the mechanics units. The three following 

sections discuss the use of three of the later units in the lecture, in the tutorial and 

in individual student usage respectively. Section 5.10 describes the evaluation of 

the engineering mathematics units and assesses their usefulness in teaching. 

Case Studies in the Curriculum is the subject-matter of Chapter 6. The 

opening section demonstrates the author's commitment to models and modelling 

in his course and describes the discussion of mathematical models that he 

conducts in his first lecture. Section 6.2 examines some workers' views on 

modelling in the curriculum; a distinction is drawn between the use of models to 

illustrate the applications of mathematics and the development of modelling 

skills. For some years a shared lecture has been given with an engineering 

colleague to first year students which attempts to show the inter-relationship 

between mathematics and engineering in the modelling process; this lecture forms 

the basis of Section 6.3. The following section contains a description of a tutorial 

session in which two models for an engineering system are developed and 

contrasted. Section 6.5 is concerned with an extended modelling exercise which is 

conducted with first year mathematical engineers. In each of these three sections a 

report is given on the student reaction. Finally, Section 6.6 debates the issue of the 

place of modelling in the curriculum. 

For the last eleven years there has been an undergraduate degree course in 
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Mathematical Engineering in the Loughborough portfolio. Chapter 7 is an account 

of the establishment and development of that course, together with a comparative 

exposition of other courses of a similar nature. Section 7.1 again makes reference 

to the Organisation for Economic Cooperation and Development Report of 1966 in 

which the case is argued for courses in the area of mathematical engineering to be 

established. The second section describes the establishment of the course at 

Loughborough whilst the third section details the major revisions to the course 

that have taken place and relates these changes to the aims of the course when it 

was first proposed. Particular attention is paid to the roles of modelling and 

project work. The growth of the demand for an Industrial Year, the position of 

Engineering Applications (as defined by the Finiston Report) and the employment 

of graduates from the course are also examined. In Section 7.4 the courses in the 

area of mathematics combined with engineering which are offered at the 

universities of Nottingham, Bristol and Eindhoven are described and compared 

both with each other and with the Loughborough course. Finally, in Section 7.5 

the contribution of these courses to the spectrum of engineering education is 

assessed. 

Chapter 8 presents a number of topics which are related to the main areas of 

work described in this thesis. First, a method of teaching the difficult subject of 

partial differential equations is outlined; then, Section 8.2 shows how a tutorial is 

used to underpin the lecture material on Fourier series. The next section takes a 

critical look at some features of written examinations whilst Section 8.4 examines 

the role of television and video in teaching. Finally, aspects of distance learning 

are discussed in Section 8.5 with one eye on future developments. 

Chapter 9 draws together the threads that have been running through the 

previous chapters. It contains the author's proposed teaching model to take the 

teaching of engineering mathematics into the 1990's. Successive sections consider 

what mathematics should form the core curriculum, the extra needs of the 

various engineering specialisms, who should do the teaching, how and when it 

should be taught and what teaching aids should be employed. The chapter 
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concludes by discussing the implementation of the proposed models. 

Chapter 10 looks both backward and forward. It summarises the research 

that has been conducted and suggests further work which needs to be carried out. 
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Chapter 2 

Historical Perspective 

2.1 Early Years 

In 1948 the British Association held its annual meeting in Brighton; most of 

the final morning was devoted to a discussion on "Applicable Mathematics". The 

first speaker, D.N. de G. Alien (1) stated that there were four obstacles that the 

engineer had to overcome in solving his problems, having formulated them in 

engineering terms. First, the engineering problem had to be translated into 

mathematical terms, then the mathematical problem had to be set up. He argued 

that the engineer must learn to recognise whether a problem was properly posed 

before attempting a solution. It was more important that the engineer should be 

able to formulate his mathematical problem than to be able to solve it. The third 

obstacle was to find the mathematical solution and here there was a need to teach 

those techniques which were of general application; the value of numerical 

methods was emphasised. The fourth stage was to translate the mathematical 

solution back into an engineering solution. 

The second speaker, J.A. Pope (2), emphasised the value to the engineer of 

keeping in view the physical importance of the mathematics and advocated a 

greater use of graphical methods. Significantly, he referred to the difference in 

outlook between mathematicians and engineers: the former were "masters of 

abstract thought" whilst the latter were "servants of practical necessity". He asked 

why engineering students behaved "barbarously" in their mathematics lectures 

and why their failure rate in mathematics was greater than that in their other 

subjects. He suggested that the lecture material was either too difficult or had not 

been properly selected and that the mathematics lecturer needed a feel for 

engineering. In a university with an engineering school there should be 

mathematicians who made a special study of mathematics for engineers. In 
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summary, he saw the problem as being not only what to teach, but how to teach it. 

This last point was reiterated by W.G. Bickley (3). In addition he criticised 

the attitude of some engineering text-books and lecturers that mathematics was to 

be "avoided like the plague", rather than regarded as a useful tool which could be 

employed to increase efficiency. Risking the scorn of his highbrow mathematical 

colleagues, he stated his teaching aims as: 

(i) to present the fundamental concepts and techniques of "elementary" 

mathematics which arose naturally in an attempt to describe, explain 

and predict the quantitative behaviour of engineering systems, 

(ii) to show the mathematics in action, 

(iii) to encourage the acquisition of sufficient knowledge and techniques 

to allow the students to cope with their text-books and design 

problems. His plea, for an Institute of Applicable Mathematics, 

scorned by a subsequent editorial (4), was to be realised sixteen years 

later. 

In other articles relating to the Brighton meeting, (5) and (6), reference was 

made to an attitude espoused by Perry at the turn of the century that a watch may 

be very useful to a person who does not understand how it works; Perry allowed 

his students to perform Fourier analyses without knowing the mathematical 

proofs of their work. Before the First World War, Bouasse in France had 

advocated a shift in the emphasis of teaching mathematics to engineers towards 

applications. Since proofs were most often devised after the truth of a proposition 

had been established, they had an air of artificiality. It is worth noting that even at 

this time, numerical and graphical solutions were being advocated as being of 

equal importance to analytical methods. 

However, in 1948 attitudes to teaching mathematics to engineers were not 

always enlightened. At the then Loughborough College, mathematics was taught 

at the first lecture of the day and the majority of those lecturing were not 

mathematicians. Banks (7) recalled that his non-mathematical colleagues would 



13 

'compare notes' in the following coffee-break. One of these remarked that he had 

just told his class that sin2 x - cos2 x = 1 and asked if this were true, eliciting the 

response: "not often". This story is as poignant as it is humourous. In the early 

1960s, when the author was an undergraduate, the task of lecturing the engineers 

was often given to the academic staff who had blotted their copy-book with their 

Head of Department. The courses provided were devised with little or no 

consultation with engineering staff. At that time the computer had yet to make an 

impact on mathematics courses and the teaching of numerical analysis was 

relegated to a secondary role, if indeed it ever occurred. 

In a book compounded from lectures given under the heading 'The 

Engineer in the University', Christopherson (8) devoted a chapter to 'Mathematics 

- Friend or Foe'. He asked what sort of mathematics was needed by engineers and 

argued that the main objective was to give students an understanding of what 

mathematics is and can do, not to teach those parts which have (or are assumed to 

have) direct relevance to engineering. He warned that specific knowledge could 

have a transient life, whereas general principles had a more lasting existence. 

Rather than ask mathematicians for specific topics to be taught, engineering staff 

should leave the former to teach what they thought would give the students a full 

development of their mathematical ability. Computers had made certain 

techniques redundant from the syllabus, yet if more were asked from the student 

in the way of deeper understanding of principles then the examination papers 

would have to be less formidable. 

However, Hart & Wood (9) had carried out a survey of mathematicians in 

industry which asked for a selection of topics that they reckoned to be useful. They 

were more concerned with usefulness than mathematical understanding and the 

selection bore this out. Interestingly, there was no mention of numerical 

methods. 

In his inaugural lecture as Professor of Mathematics applied to Engineering 

at Imperial College, Jones (10) compared the reports which had recently appeared 
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on undergraduate programmes in engineering mathematics. The first of these by 

the American Committee on the Undergraduate Program in Mathematics (11) was 

prepared by mathematicians who were able to state in detail how to provide the 
t' 

mathematics that their inveslgations had indicated was needed. They argued for a 

core of 'beginning analysis', linear algebra, and probability and statistics; this core 

could be supplemented by courses in functions of several variables, further 

ordinary differential equations and functions of a complex variable for those 

intending to go into research and development and by courses in partial 

differential equations and real variable theory for those capable of graduate study. 

Computational methods should be integrated with associated analytical methods 

as appropriate. The second report (12) was the outcome of a seminar organised by 

the European Organisation for Economic Cooperation and Development and was 

prepared by engineers and scientists who were dissatisfied with the mathematical 

education of engineers then currently provided. Jones (10) compared, for both 

civil engineers and electrical engineers, the proportion of time allocated to 

undergraduates at the Technological University of Delft, Milan Polytechnic, ETH 

Zurich, M.I.T., Ca!. Tech., Bristol, and Imperial College. The UK universities 

showed up poorly in comparison with the other institutions. Jones commended 

the practice of teaching numerical methods 'as one goes along' and suggested an 

'express route' through some of the first year mathematics for the more able 

student. He outlined three methods of providing the mathematics: by engineers 

as it was needed, by a special group of applied mathematicians within the 

engineering faculty and by the department of mathematics itself. His inclination 

was to the second of these methods. He emphasised the importance of the 

formulation of mathematical models as part of the course. Finally, he was in 

favour of courses in mathematical engineering being established along the lines of 

that at Delft and Nottingham's Theoretical Mechanics. 

2.2 The D.E.C.O. Report of 1966 

In May 1963, at a meeting in Rome, the seeds were sown for the Organisation 

for Economic Cooperation and Development (O.E.CD.) to make its major 
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contribution to the teaching of mathematics for engineers (l3). Following the 

meeting, several working groups were established to prepare reports for a 

Working Seminar which was held in Paris in the first half of January 1965. The 

outcome of this Seminar was a substantial report entitled 'Mathematical 

Education of Engineers' (14). It has to be said that this report is not well-structured 

and quite hard going to read; however, it is a recognised landmark in the subject 

and has often been cited as a datum against which to compare subsequent progress. 

It is worth quoting in full the reasons that the report gives for the 

importance of mathematics in the training of engineers. 

"(i) It provides a training in rational thinking and justifies confidence in 

such thinking; 

(ii) It is the principal tool for the derivation of quantitative information 

about natural systems. 

(iii) It is the "second language" of human discourse and parallels natural 

language by providing a means of communication for ideas, as 

evidenced by the contents of technical papers. 

(iv) It facilitates the analysis of natural phenomena. 

(v) It is important in assisting the engineer to generalise from experience. 

(vi) It trains the imagination and 'inquisitiveness' of the student if 

properly taught. 

(vii) It is a training for adaptation to the future." (14) 

Among reasons advanced to back up their assertions, the authors of the 

report mention the completeness of a mathematical description of an engineering 

system, its efficiency in assisting the prediction of how that system will perform 

under given conditions and the means by which to optimise that performance. 

The authors were convinced that the engineers of the future would need to be 

trained to a much greater depth than was the current state and that the role of the 

computer in engineering practice would increase, thus freeing the engineer to 

concentrate on more creative work. 
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After examining the various branches of engineering, the report continued 

by considering the changes taking place in secondary school mathematics before 

turning to the tertiary level. In comparing the current situation in engineering 

courses in 17 of the countries participating in the Seminar, two tables were 

produced. The first showed that the minimum length of university 

undergraduate courses varied from 3 years in the United Kingdom to 6 years in 

Portugal. The total number of hours typically devoted to mathematics in Civil, 

Electrical and Mechanical Engineering courses varied from 200 in the United 

Kingdom to 800 in Scandinavian countries. The second table compared the 

countries as regards whether they taught each of 25 selected topics. These 

comparisons were based on overall views of each country. The table indicated a 

lack of teaching of numerical methods and digital computing in Eire, the United 

Kingdom and Belgium. Whereas most countries taught a core of about half the 

topics cited, the United Kingdom rated poorly on the more advanced subjects. 

In 1966 Scott et al (15) had published the results of their survey on the use of 

mathematics in the electrical industry based on a questionnaire sent out in 1963. 

The O.E.C.D. report reproduced that questionnaire and its findings. Among their 

conclusions were 

(i) Many respondents felt that post-graduate training in mathematics 

would be beneficial to them. 

(ii) Mathematics was essential in model-building. 

(iii) The formulation of mathematical models was the most difficult stage 

of the modelling process. 

(iv) Programming in a universal language and numerical analysis should 

be taught in the undergraduate syllabus. 

The O.E.C.D. report proposed two core syllabuses; the longer one was to cater 

for research and development engineers and the shorter one for all engineers. 

The hours suggested for the short core totalled 345, the breakdown into core topics 

being shown in Table 2.1. The long core syllabus required a further 280 hours for 
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Algebra and Analysis. The detailed syllabuses for the short core are shown in 

Appendix 1. 

Table 2.1 

OECD Short Core Syllabus Hours versus UK Hours 

Subject Area OECD UK 

Analysis 180 ) 
) 191 

Algebra 40 ) 
Digital Computation 21 27 
Analogue 4 8 
Numerical Analysis 40 18 
Statistics/Probability 40 + 20 ..11 

345 268 

In a chapter on teaching methods the following recommendations were 

made. 

(i) The teaching should be done by mathematicians sympathetic to the 

needs of engineers. 

(ii) At the introduction of a new topic motivation should be provided by 

illustrative applications. 

(iii) Engineering departments should help in preparing tutorial problems. 

(iv) The students should be taught in departmental groups. 

(v) An introductory course in computing should be taught as early as 

practicable. 

(vi) Numerical methods should be taught so that the student saw them in 

relation to analytical methods; the example of differential equations 

was cited. 

(vii) Additionally, statistics and probability should be taught in the core. 

(viii) The proportion of time allocated to mathematics should be sufficient 

to cover the core syllabuses. 

Further chapters dealt with advanced elective courses, special consideration 

for different engineering disciplines and the use of computers. Finally the Report 
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proposed further follow-up work in the various aspects it covered. 

Shortly after the publication of the O.E.C.O. report, Noble (16) published a 

book commissioned by the C.U.P.M. on Applications of Undergraduate Methods 

in Engineering. He had written to engineering and other university departments 

and to industrial concerns. The book contained a selection of 45 problems from 

those submitted, the level of mathematics varying from elementary algebra to 

sophisticated methods of advanced calculus. 

2.3 The Next Ten Years 

If the authors of the O.E.CO. report had expected a ready acceptance of their 

proposals, they were to be disappointed. Quite recently, James (17) expressed the 

view that a major reason for the lack of positive response by engineering staff was 

the feeling that the Report was too ambitious in its recommendations. Just five 

years after the Rome seminar, a conference on 'The Teaching of Mathematics for 

Engineers' was held at Loughborough. Kerr (18), who was in the chair at Rome, 

warned of the effect of 'new mathematics'; he re-iterated concern about the lack of 

time that some U.K. courses were allowing for mathematics and he suggested that 

there seemed to be too little progress in incorporating computers into the 

curriculum. 

Kerr had been involved in the establishment of a Committee by the then 

Council of Engineering Institutions (C.E.I.) and the Joint Mathematical Council 

which was aiming to exert pressure on U.K. institutions of higher and further 

education. In particular, he aimed to stimulate the closer integration of 

computational and analytical approaches, to encourage a greater amount of time 

allocated to mathematics, and to establish a continuing dialogue between 

mathematics and engineering lecturers and with school colleagues. The 

mathematics syllabuses for the CE.I. Part I and Part II examinations had a close 

similarity to the O.E.C.O. core curriculum. 
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Davies (19) suggested that some time could be saved by cutting down the 

hours devoted to analysis and this could be replaced by courses in computational 

mathematics and experimental analysis, the latter to include probability and 

statistics. He further advocated the placing of linear algebra at the head of the 

pecking order. 

Bajpai had founded the Centre for Advancement of Mathematical Education 

in Technology (CAMET) in 1966 and had been engaged in many of the activities 

desired by Kerr; he had recently founded the International Journal of 

Mathematical Education in Science and Technology. His contribution to the 

conference (20) posed the questions: What? For how long? Who should teach it? 

How? What relation should there be between the mathematics and engineering? 

How should the curricula be reviewed? He felt that the O.E.CD. short core was a 

basis for the syllabus to be taught but it demanded much more time than was 

likely to be available. He suggested the inclusion of some lectures on 

Mathematical Models in Engineering on a team teaching arrangement and argued 

that the main syllabus should be taught by a sympathetic mathematician who, if 

not someone who had been in industry, was in close liaison with engineering 

colleagues. To help alleviate the problem of shortage of time he suggested the use 

of audio-visual aids and programmed texts. He raised the question of how to deal 

with a mixed entry standard. Finally, he quoted a paragraph from the CE.!. Part IT 

syllabus in mathematics which argued for the integration of analytical and 

numerical methods and the early introduction of computer programming. 

Bajpai had championed the cause of integrating analytical and numerical 

methods at many conferences, seminars and private meetings and he believed that 

the way forward was to provide a concrete example of how it should be done. He 

solicited the help of two departmental colleagues to put the finishing touches to 

his ideas and in 1970 Bajpai, Calus and Simpson (21) wrote a seminal paper 

entitled "An approach to the teaching of ordinary differential equations". They 

outlined the usual approach which consisted of an introduction including some 
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motivational examples, followed by methods of analytical solution and then in a 

separate course, perhaps over a year later, a selection of numerical techniques. 

They argued for an integrated approach which combined analytical and numerical 

methods in a single package of lectures. They first showed how this approach 

could be used on Newton's Law of Cooling and then on a vibration problem 

which gave rise to a linear second order equation with constant coefficients. Tha 

analogue computer played a prominent role, demonstrating qualitatively how the 

solution varied when the parameters in it were altered. It is difficult eighteen 

years later to appreciate how revolutionary this 'integrated approach' (now 

re-christened the 'Bajpai approach') was at the time. The author of this thesis was 

the first to take this approach and work it into a first-year course with a group of 

engineers at Loughborough; a fuller account is found in Chapter 3. 

At a conference on the Teaching of Mathematics in Universities and 

Polytechnics held in London in January 1971, Bajpai (22) again expressed concern 

over the wide range of mathematical ability of freshman engineering 

undergraduates. In addition to espousing the integrated approach, he argued for 

motivational lectures at the introduction of a new topic and for applications to be 

provided both during and after the set of lectures. He described how Mustoe had 

introduced first year Civil Engineers at Loughborough to computer programming 

in their first week and had made use of their skills during the rest of their course 

by providing relevant problems. He described the success in teaching ONC/ONO 

students separately from their 'A' Level contemporaries. He cited a paper by Elton 

(23) which listed several sets of aims for teaching engineers amongst which were 

(i) the student should be able to understand the teaching and solve 

problems in his other engineering subjects which relied on 

mathematics, 

(ii) he should know and understand sufficient "modern" mathematics to 

cope with later developments in engineering, 

(iii) he should be able to formulate problems mathematically, 

(iv) he must be able to manipulate mathematics safely. 

Bajpai went on to champion more emphasis on the modelling process which he 
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saw as comprising five steps 

(i) the phrasing of a problem in mathematical terms 

(ii) the formulation of a mathematical model, incorporating any 

assumptions made 

(iii) the mathematical solution, using analytical, numerical, graphical or 

other techniques 

(iv) the modification of the model until the solution is satisfactory 

(v) the analysis and interpretation of results. 

Finally, he referred to the work being done at Loughborough on the use of 

programmed texts and integrated systems combining these texts with audio-tapes, 

slides and videotapes. 

Bajpai (24) returned to this last theme at a conference on the 'Teaching of 

Mathematics to Non-specialists' held later in the year at Loughborough. He 

demonstrated two videotapes based on scripts written by Mustoe who was also the 

presenter in the tape sequences. Further examples of audio-visual material were 

given. Later in the conference, Mustoe (25) presented an interim report on the 

course he was giving to Civil Engineering students. Seott (26) was concerned with 

objectives in teaching and pointed out the conflicts between the mathematics 

lecturer striving for advancement of mathematical understanding and 

engineering staff and students seeking "relevant" techniques of solution. Lighthill 

(27) suggested that the mathematics lecturer needed to absorb much of the 

engineering that his students were learning and the head of his department 

should encourage this and recognise the effort required. 

In 1970 Bajpai and Francis (28) published the results of a survey carried out 

on behalf of the Committee referred to by Kerr (18); this survey was conducted via 

a questionnaire in an endeavour to discover how much time was being spent on 

mathematics in engineering degree courses in the U.K. The results were 

disappointing to those who saw the O.E.CD. short core syllabus as a datum. 
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As Table 2.1 on page 17 shows, the mean hours of mathematics fell well 

short of this target, the most noticeable shortfalls being in numerical analysis and 

statistics. It seemed that on the whole the u.K. was still teaching the mathematics 

courses of twenty years earlier. There were wide variations between different 

courses: the total hours committed varied from under 150 hours in two cases to 

over 400 hours in five cases; five courses taught no numerical work at all, three 

ignored digital computing, seven analogue computing, and four statistics and 

probability. As regards the percentage of total teaching time set aside for 

mathematics the average figures for three year courses were: Year 1, 19%, Year IT, 

15%; Final Year, 7%; for four year courses the figures were 20%, 19%, 14%, 11 %. 

The sponsoring Committee welcomed the fact that most courses had some 

numerical/computing content, regretted that so little time was being spent on 

statistics and probability, asked for more courses in operations research to be 

started and urged that there be a strong liaison between mathematics lecturers and 

their engineering colleagues. 

Francis (29) conducted a further survey on the coverage of differential 

equations in engineering courses. Again there seemed to be little emphasis on 

numerical solutions. As might be expected, there was overwhelming use of 

second order linear equations with constant coefficients, followed in popularity by 

first order linear equations and first order separable equations, with other types 

proving less popular. Some idea was given of the applications of differential 

equations in various engineering disciplines. 

In the early 1970s much innovatory work was taking place on the 

mathematical education of engineers. At Lancaster, Tagg (30) had established his 

'accelerated teaching' project for freshmen with poor entry qualifications. 

Knowles (31) was among those endeavouring to bring real-life applications into 

the school curriculum. Cornelius (32), (33) was concerned with the transition 

from school to university. He wondered whether the "right" topics were dealt 

with at school and suggested that schools should concentrate less on clever 

techniques and more on appreciation and understanding. Flegg (34) felt that the 
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service courses at university should be scrapped in favour of integrated courses on 

mathematical modelling taught by a joint team of mathematics and engineering 

lecturers. The theme of enlivening applied mathematics by real-life examples was 

continued by Davies (35) and Sida (36). 

The problem of weak students was tackled at Kings College, London by Baker 

et al (37) who had introduced a crash course in calculus to first year 

undergraduates. Using programmed texts, small group discussions, talks and 

films they attempted for the first six weeks on one day each week to motivate the 

students in addition to revising basic material. Post-tests indicated a satisfactory 

improvement in skills. 

McLone (38) argued that traditional methods of assessment tested the 

acquisition of basic techniques and theory and the use of techniques to solve 

standard problems. The abililty to devise new techniques when existing ones 

proved inadequate, how to formulate problems in suitable terms and the skills of 

communicating ideas in written form and orally were generally not tested. He 
. ' 

suggested that use should be made of essays, extended problems, prescribed 

reading, class-timed tests and practical work. He stated that it should first be 

established what are the aims/objectives of teaching and what student qualities 

should be developed; then it should be decided which of these qualities needed to 

be assessed; finally, the question of how to assess them should be settled. 

At the end of this period, Pollak (39) presented the case from industry's point 

of view. He asserted that students should understand their mathematics and 

when, how and why it works. Open-ended problems were commonly met in 

industry and students needed exposure to that type of question. There was a need 

for computing and probability and statistics to be taught. A balance should be 

struck between technique and understanding: his experience was that there was 

not enough technique taught in linear algebra and not enough understanding 

imparted in the study of partial differential equations. 
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2.4 Ten Years On: Progress or Failure? 

Ten years after the O.E.C.O. report there was a feeling that little progress had 

been made in the United Kingdom towards the implementation of its 

recommendations. In that sense, the Report could be regarded as a failure. 

However, the author and his colleagues believed that there was much to be 

commended in the Report and they felt that it was necessary to re-awaken interest 

in it by stimulating a debate on the then current state of the teaching of 

engineering mathematics. In a wide-ranging paper Bajpai, Mustoe and Walker 

(40) reviewed the progress that had been made towards achieving the stated 

objectives. They began by examining the questions: who does the teaching?, to 

whom?, what is taught?, when is mathematics taught?, how is it taught?, and how 

is it assessed? Then they set down a mixed list of aims and objectives which they 

felt were of fundamental importance. 

The first of these was the appreciation of the concept of a mathematical 

model and the methods of obtaining solutions to the model: Figure 2.1, which is 

reproduced from their paper, is their flow chart for the modelling process. The 

second requirement was for the student to develop a suitable level of competence 

and the third was that he should be aware of the need for rigour. The remaining 

two fundamental requirements were for the student to see mathematics as an 

integrated part of his engineeering discipline and to develop a logical approach to 

the formulaion and solution of problems. They were definite in stating two 

'non-aims'; a 'cook-book' approach was to be avoided and the students were not to 

be overwhelmed by rigour. 

The authors gave ten major criticisms of the current system from the 

engineers' point of view. 

(i) The teaching of mathematics to engineers was often uninspired. 

(iD The servicing department often failed to liaise with the engineers. 
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I Observe I 
I 

I Pose problem 1 
I 

I Experiment with different factor.; to 1 
isolate imponant ones 

I 
~tate physical model and nature of solution required I 

I 
I Simplify and produce mathematical model ~ 

I 
I Can this model be solved analyticallyftlUmerically '2 ~ 

Draw graph and/or 

+ Yes 
produce empirical formula 

I Obtain solution I 

I Interpret solution physically 1 
I No 

I Does solution bear out observation? 

+ Yes 

I Prediction of behaviour 1 

Figure 2.1 

(iii) Some courses concentrated on a 'cook-book' approach. 

(iv) Other courses concentrated on rigour for its own sake. 

(v) Students were often given too little help outside lectures. 

(vi) Examination questions failed to encourage students' interest. 

(vii) Symbols were used without understanding of their meaning. 

(viii) Numerical techniques were undervalued. 

(ix) Too much of the teaching was compartmentalised. 

(x) Mathematics was directed towards the research and design engineer. 
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The mathematics lecturer could add his own list of criticisms. 

(i) Mathematics was often relegated by engineering lecturers to a minor 

role. 

(ii) Students did not like departures from standard note-taking exercises. 

(Hi) Few suitable text-books were available. 

(iv) Mathematics was seen as an appendix to the engineering. 

(v) The ability of the students in mathematics covered a wide range. 

(vi) Lecturers received no incentive to learn the relevant engineering 

discipline. 

The authors then suggested improvements to the system and described the 

courses developed at Loughborough based on that first given by Mustoe, a fuller 

description of which is found in the next chapter. Particular emphasis was given 

to motivation, the integration of numerical and analytical methods, modelling 

and the use of project work as part of the assessment. 

In a follow-up paper, Bajpai, Mustoe and Walker (41) provided further 

details of their course proposals. Examples were given of the way in which the 

integrated approach could be employed; the analytical methods often allowing the 

student to understand a system and the numerical techniques helping him to 

solve practical problems. An example of a case study from electrical engineering 

was presented: this showed how several mathematical techniques were called into 

play in the solution of a problem. Some examples were provided of mini-projects 

of varying degrees of difficulty which could be given to the students as 

coursework. After discussing problems in implementing such a course, not the 

least of which was the effort required for the mathematics lecturer to adjust to the 

new approach, the authors looked to the future and suggested the establshment of 

liaison committees between the mathematics department and its engineering 

counterparts. In conclusion, they demanded that the student should find his 

mathematics course stimulating, relevant and useful. They warned that if 

engineering departments were dissatisfied with the service given to their students, 

they might mount their own mathematics courses. 
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One of the comments made by lecturers following the paper by Bajpai et al 

(21) was the lack of suitable text-book material to allow them to teach the'suggested 

approach with confidence, particularly as many of them were unfamiliar with 

numerical methods and computer programming. 

In consequence, Bajpai, Mustoe and Walker wrote a set of text-books (42) 

which was tested widely by students and lecturers prior to publication. Received 

comment indicates that the material has been instrumental in moving syllabuses 

towards a more integrated approach. It must be recognised that the weaker 

students need additional support and that self-instructional material based on a 

programmed learning style has a role to play. Bajpai et al (43), (44) and (45) wrote 

. a series of such books to fill this need. One of the authors, Calus, subsequently 

gave an account of the advantages of the programmed text approach (46). She saw 

it as bridging the gap between the lecturer demonstrating the solution of a problem 

and the student solving one on his own. She admitted that one drawback was the 

fact that the student had no summary to refer back to during revision. Godfrey 

(47) described how the texts were used at Warwick University in the form of 

weekly assigned reading supplemented by supplementary notes and quizzes which 

are interspersed by plenary sessions and tutorials. Stroud (48) has written two 

books along similar lines; their popularity confirms that such books do fill a need 

on the part of a substantial number of students. These students, on the whole, are 

those at the lower end of the spectrum of ability. Bajpai, Mustoe and Walker 

deliberately avoided the 'cook-book' approach, preferring via motivational case 

studies and harder examples, to widen the students' experience of applying 

mathematics. 

At a SEFI conference on 'Essential Elements in Engineering Education', 

Mustoe (49) re-emphasised the points made in the two papers previously cited (40), 

(41). He returned to the theme of providing a suitable service at an I.M.A. 

conference on 'The Mathematical Education of Engineers - Where Next?' and 

argued the case for a three-way collaboration between the mathematics lecturer, 

the engineering lecturers and the students (50). He took the message to Civil 
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Engineers in America in a third paper (51). It is to be remembered that these ideas 

were regarded as somewhat revolutionary at that time. There was a certain 

amount of resistance from those mathematics lecturers who had little or no 

knowledge of computer methods. 

The opening address at the I.M.A conference was given by Professor J.A. 
Pope (52) who had spoken at the British Association meeting thirty years earlier. 

He referred first to the concern with the output from schools due to 

(i) the wide variety of 'A' Level courses leading to a smaller common 

core of knowledge than might be hoped, 

(ii) the introduction of a conceptual approach which has weakened 

manipulative skills and had led to the omission of traditional 

subjects which are useful to engineers, 

(iii) an inadequate number and quality of mathematics teachers. 

He felt that three-dimensional geometry was a valuable subject for potential 

engineers to study and regretted its decline in schools. 

Having stated that design should form a more important part of university 

engineering courses, Pope reminded his audience that to engineering students 

mathematics was primarily a tool. He felt that the application of a particular topic 

in mathematics should be introduced prior to a treatment of the mathematics 

itself. This required an effort on the part of the mathematics lecturer to 

understand the relevant engineering; it also required the engineering lecturer to 

modify his approach to teaching. The two should combine their efforts in working 

to a common goal. 

Sherc1iff (53) argued for mathematics not to be taught as a separate course, 

but rather to be intermixed with the applications which give rise to the reasons for 

studying it. In this way he believed that mathematics could, and should, form the 

heart of the engineering curriculum. He stated that modelling was a theme which 

had to become more prominent. He said that to an engineer, infinity was a value 
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so big that its actual size did not matter; this kind of thinking was important and 

should be developed. By placing mathematics in a central r6le, he reasoned that 

the engineering curriculum could be unified and telescoped and analogies 

between different applications of a mathematical idea could be highlighted. 

Wakely (54) believed that every engineer should be capable of: 

(i) understanding the formulation of an engineering problem, 

(ii) recognising the limitations of the model, 

(iii) following critically the mathematical arguments, 

(iv) interpreting the resulting answers in engineering terms. 

His 'compleat engineer' would be "mathematically sure-footed, even though he 

did not know all the steps of the dance". A solid foundation was more important 

than precisely what was taught and approximately one quarter of the entire 

engineering course should be devoted to mathematics. A cook-book approach 

would not equip the graduate with the ability to cope with technological changes. 

He also begged for the mathematics to be made relevant to engineers and 

suggested that a project which gave the student an exposure to the activity of 

mathematical modelling was essential. 

Other papers tackled specific modes of teaching. Hunter (55) illustrated the 

use of computer-assisted learning (CAL) in his teaching. Blackburn (56) described 

the Open University course TM 281 'Modelling by Mathematics', which had been 

written with the adult student in mind. Clements (57) presented details of 

simulations/ case studies that he had used with students of engineering 

mathematics. Craggs (58) was concerned with the place of rigour in courses to 

engineers; he said that a suitable structure was 

(i) accuracy in manipulation, 

(ii) enunciation of theorems under strong conditions, with a rigorous 

proofif it was simple and a heuristic justification where it was not, 

(iii) illustration of the possible gain and loss if one were to work outside 

the domain of the theorems, 
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(iv) appreciation of the role of a fully trained mathematician who could 

move safely in territory unknown to the engineer. 

At the suggestion of the author representatives from both junior school and 

secondary school were invited to participate; their contributions provided some 

surprises for delegates. Brighouse (59) and Gibbons (60) defended the changes in 

school mathematics which were moving away from 'traditional' computational 

skills towards "understanding". It was a defence not too well received. 

Lighthill added his considerable standing to the debate in a paper (61) which 

argued that an education in applied mathematics was a fundamental part of an 

engineering education. Modern engineering needed a special kind of mathematics 

which was concerned with the art of making and using mathematical models. 

These, however imperfect, needed to be well-posed and well-conditioned. The 

lecturer concerned with the mathematics course should have a wide and deep 

knowledge of mathematics allied to an extensive knowledge of engineering 

applications. He wanted universities which taught engineering to. have strong 

research schools in applied mathematics. Similar ideas have been advanced by 

Gnedenko and Khalil (62) and Lund and Christiansen (63). 

2.5 Recent Developments 

In the last dozen years or so there has been a marked growth in the interest 

shown in the mathematical education of engineers. It would be impossible to 

attempt a strict historical appraisal of the work done; rather, this section will be 

completed by describing a number of general articles and subsequent sections will 

tackle specific themes. 

Heard (64) questioned over 4,800 students. in nearly 50 engineering 

departments in a survey of their mathematical backgrounds and needs and the 

methods universities adopted to meet those needs. He also contacted university 
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lecturers for their views. Not surprisingly, this group were concerned at the 

diversity of the students' backgrounds and attainments and specifically at a general 

lack of confidence in processes of algebra, trigonometry and calculus. Also 

mentioned several times were lack of understanding of a mathematical argument, 

lack of stamina in following a lengthy calculation, difficulty in converting from a 

physical system to an appropriate mathematical model and especial weakness in 

mechanics. Of the students surveyed, 44% had taken double mathematics at 

Advanced Level, although the indications were that this percentage was falling; 

there was clear evidence that this extra mathematical exposure resulted in better 

performance in first year examinations. 

The problems of ONC/OND/HNC entrants were highlighted: it seemed that 

a disproportionate number of them failed to complete their university courses. 

Many of the mathematical topics taken for granted had, in fact not been 

covered thoroughly prior to university in a sizeable proportion of cases. As a 

consequence students often felt that their courses were too fast and contained too 

much material for them to absorb. There was a widespread complaint that courses 

were too theoretical and were not relevant to engineering and there was a demand 

for more tutorials with smaller group sizes. In instances where self-paced courses 

or programmed texts and audio-visual material were used, the response was 

generally favourable. The report emphasised the need for liaison between the 

mathematics and engineering lecturers. 

Barrett, James and Steele (65) examined the mathematical content of first 

year engineering courses in British universities and polytechnics. They confirmed 

Heard's view that the number of entrants with double mathematics at Advanced 

Level was falling. There was a large proportion of entrants with a D or E in single 

mathematics or ONC/OND qualifications; therefore, the common core of 

knowledge at entry was smaller than previously. The time allocated for 

mathematics ranged between three and six hours per week with four being the 

norm, i.e. somewhat less than 120 hours in the session. The first year course 
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comprised few topics outside the envelope of Advanced Level syllabuses but the 

treatment was more rigorous than that at school. 

The teaching of a high level programming language was a common feature 

of many first year courses but, whilst the teaching emphasis might have changed 

as a result of increased computing facilities, the feeling was that the content had 

probably not changed. Only a small minority of courses seemed to treat 

mathematics as a subject in its own right, the bulk of them being content to 

provide the techniques required to solve specific problems. Assessment was 

almost entirely by examination, the most popular being a single 3-hour test. The 

authors (65) gave a 'typical' first year syllabus for Electrical, Civil and Mechanical 

Engineers and a 'typical' examination paper. 

Petroski (66) gave some general views on the value of mathematics in 

engineering education. He wanted more emphasis to be placed on the 

understanding of the limitations of a theory and argued that a mathematical 

training in the proof of theorems would lead naturally to an appreciation of the 

limits of their applicability. With the increasing use of computers there was a 

growing need to instil in students the requirement to know whether answers and 

output were reasonable. A particular pitfall was lack of awareness of the domain 

of a function. He remarked that students acquired mathematics attitudes in 

addition to skills; whereas skills could be sharpened later, attitudes seldom could 

be changed. 

James reviewed progress since the O.E.CO. report and pointed a way 

forward in two articles (67), (68). He was unhappy with the slow response towards 

achieving the O.E.CO. objectives and he was disappointed with the Finniston 

report on "Engineering Our Future" (69) in that it suggested a reduction in the 

mathematics taught. He believed that the first two years of an undergraduate 

course should build on understanding of mathematical processes and their 

relevance rather than concentrate on competence; standard models should be 

solved with the help of suitable software. In the second year, an introduction to 
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modelling skills assessed by short assignments would be a preliminary step to a 

modelling course in the third year of study. 

Bajpai and James (70) joined forces to reinforce their arguments. They 

suggested that the importance of mathematics in the curriculum needed to be 

recognised more fully by validating bodies and professional organisations. They 

urged a re-appraisal of the position of mathematics in engineering courses so that 

future graduates would be equipped to cope with the demands of the technology of 

tomorrow. The pair carried out a short study-visit to ten institutions in Denmark, 

the Netherlands and Belgium and found a general lack of computing in the 

courses; modelling seemed also to be neglected (71). 

The International Commission on Mathematical Instruction and The 

International Council of Scientific Unions' Committee on the Teaching of Science 

mounted a joint study to look at all aspects of mathematics as a service subject (72). 

They were concerned with why mathematics was taught, what should be taught 

and how should it be taught, re-echoing the themes espoused by Bajpai some 

fifteen years earlier (20). 

Shannon & Sleet (73) conducted a survey in Australia amongst students and 

staff in engineering and other disciplines. One of their findings was that although 

mathematics lecturers felt that it was important for the students to enjoy their 

mathematics course, this view was not shared by the engineering staff. Whereas 

the latter group did not see relevance as an essential ingredient in the 

mathematics teaching, their students emphatically did. The students rated very 

highly the development of logical thinking and problem-solving ability. A later 

survey by Sekhon and Shannon (74) amongst graduate engineers and their 

employers revealed that matrix theory, numerical analysis, regreSSion analysis and 

simulation techniques were regarded as important and used most frequently. 

Surprisingly, perhaps, less than 40% used ordinary differential equations often. 

Employers were looking first and foremost for effectiveness in problem-solving 

and modelling; the ability to handle real-life problems with all their complexity 
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and vague definition was found to be less widespread than was felt desirable. 

Sekhon (75) argued the case, in view of rapidly changing technology, for 

post-graduate education to be expanded and for the availability of a range of 

continuing education. His aims for this training were: acquiring the engineering 

philosophy, developing critical abilities, updating on mathematical methods and 

encouraging self-development. 

Bajpai (76) gave a historical perspective of the twenty years since the 

O.E.CD. report. He drew particular attention to the increasing availability and 

power of microcomputers and to the work being done on teaching strategies. He 

wanted a serious review of undergraduate curricula and asked once more the 

questions 

(i) who should teach the mathematics? 

(ii) what mathematics should be taught? 

(iii) how and when should it be taught? 

(iv) what aids to teaching should be employed? 

Whilst the 'integrated approach' had found wide acceptance there was still much 

to be done to keep the teaching relevant and up-to-date in view of increasing 

constraints. Scanlan (77) presented an engineer's view: he wanted the stu~ents to 

understand the mathematics they were using and gave an example from Fourier 

transforms where a lack of understanding had led to a false result. Whilst a 

continuing dialogue should exist between engineers and mathematicians he did 

not like either departments of engineering mathematics or courses in 

mathematical engineering. He suggested that demonstrators from engineering 

departments could be involved in mathematics but the mathematics lecturer 

should not per se concern himself with the relevance of the topics that he taught. 

He saw dangers in the mathematics lecturer using an engineering model to 

motivate the students since they would probably not understand the engineering, 

hence any motivation would evaporate. 

The Conference of Professors of Applied Mathematics carried out a survey 

on service teaching in 1987; their findings made somewhat gloomy reading (78). 
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The total number of compulsory contact hours of mathematics, comprising 

lectures, tutorials and problems classes showed the following ranges: 

(ii) Mechanical/Aeronautical Engineering 70 to 250 hours 

(ii) Civil Engineering 30 to 250 hours 

(iii) Electrical,Electronic and Control Engineering 

(iv) Chemical Engineering 

70 to 250 hours 

90 to 250 hours 

(only 3 courses over 

180 hours) 

The amount of compulsory mathematics taught in the third year was 

typically zero, with a few courses providing over 50 hours; even fewer courses 

provided fourth year compulsory mathematics. In most cases the service teaching 

was carried out by mathematics departments; in five instances there was a separate 
• Department of Engineering Mathematics and in three cases the teaching took place 

entirely within Engineering. Fourteen institutions reported that they taught 

separate courses in statistics. In seven institutions the serviced department did 

some of the teaching even when the bulk was done by a mathematics department; 

in some instances, this teaching penetrated down to the second year of a course. 

In most cases the fraction of contact mathematics time per student which 

was spent in lectures was over two-thirds. As regards the provision of optional 

mathematics courses offered in addition to the compulsory core, only one 

Chemical Engineering course had any, and that was taken by less than five percent 

of those students able to do so. Mechanical/Aeronautical and Electrical, Electronic 

and Control Engineering had more instances of optional courses being made 

available and a much higher percentage take-up. 

In response to a question on topics taught, almost all institutions offered 

Calculus, Ordinary Differential Equations and Linear Algebra. Partial Differential 

Equations, Vector Analysis, Fourier Series, Complex Variable, Statistics and 

Numerical Analysis were close in popularity. Only 10 were making Discrete 

Mathematics available but this represented an increasing trend. However, there 
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seemed to be a growing tendency for a reduction in time available for mathematics 

and for engineering departments to teach their own computing courses. 

-' 
About half the respondents indicated the use of computer-aided learning, 

programmed texts and project work in their teaching, with a handful 

incorporating video tapes. Encouragingly, there was a degree of consultation 

between servicing and serviced departments in almost all cases where syllabuses 

were under review; in some institutions, formal joint committees existed. The 

amount of mathematics was generally determined by the engineering department, 

but in one half of institutions there was no representation of the mathematics 

department at accreditation visits in engineering departments. Usually, the 

person chosen to do the service teaching had some experience in or empathy with 

the relevant engineering discipline and in many instances the mathematics 

department contributed to engineering departments' postgraduate programmes. 

Clements (79) saw a clear need to adapt the curriculum in view of the 

increasing availability of computers. He believed that with packages already on 

the market it was desirable to provide students with a greater understanding of 

general concepts: for example, rather than simply teach the fourth order 

Runge-Kutta methods it was important to recognise a stiff system of equations and 

to choose a suitable method of solution. Methods could be included in a course if 

they illustrated the difficulties which might arise in practical problems. 

Clements envisaged a much reduced role for complex variables and 

suggested computational geometry as a replacement. Whereas Laplace transforms 

had been considered essential, Z-transforms now had an equal demand on 

inclusion in the syllabus. He argued for a balanced approach to teaching, lying 

between that of the 'cook-book' school and that of the 'rigour above all' advocates. 

His own experience of the pressure to reduce teaching time - by less rigour and 

more relevance - suggested the construction of a 'tree' of knowledge, from a 

disorganised heap of leaves of fragments of mathematical understanding to a twig 

of underlying structure and then from twigs through branches to trunk; at each 
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stage, when enough material was available, unifying concepts would enable the 

next stage to be reached. The problem was that the educator who saw the whole 

tree tended to describe the branch first, then the twig and finally the leaf. The 

student preferred the process to occur in reverse. elements concluded that the 

latter approach was preferable, provided that the unifying concepts were 

emphasised at appropriate points in the course. 

2.6 The European Dimension 

In 1982 SEFI established a Mathematics Working Group under the joint 

chairmanship of James and Spies (from the Federal Replublic of Germany). A 

pilot exercise was conducted amongst some institutions in Denmark, the Federal 

Republic of Germany, Sweden, Switzerland and the United Kingdom as to student 

knowledge of mathematics assumed on entry and mathematics curriculum hours, 

together with content and depth of treatment. The limited findings did suggest 

that the mathematics curriculum had not evolved in line with developments in 

computer technology and that the treatment of numerical methods and statistics 

varied from exclusion through to specific provision. Accordingly the Group 

decided to adopt a 'bottom up' approach, first establishing what role mathematics 

should play in modern mechanical, electrical and civil engineering courses and 

then identifying an appropriate core curriculum. The Working Group initiated a 

programme of European seminars to encourage a wider debate, and has to date 

held five seminars on an annual basis. 

The first was at Kassel in 1984 on the theme of "Developments and 

Innovation' and was mostly concerned with the impact of the increased 

availability of computers, especially microcomputers, on curriculum content and 

mode of presentation (80). 

Three main issues were identified: 

(i) Software packages should be used with understanding - a 'black box' 

approach was to be avoided. 
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(ii) Certain mathematical topics were becoming less important - special 

functions provided ingenious methods of obtaining approximate 

theoretical solutions, but packages had become available which 

would handle the exact geometry of boundaries. 

(iii) Mathematical modelling should be promoted via an interdisciplinary 

course with input from both engineering and mathematics staff (cf 

the comments made seven years earlier by Mustoe (49». 

The Kassel seminar was anxious to see a shift in emphasis away from the 

mastery of solution techniques towards developing an understanding of concepts 

and principles. However, it was recognised that a high degree of manipulative 

ability was a prerequisite for the understanding sought: it was a question of 

achieving the correct balance. 

Also in 1984, an Anglo-Swedish conference on 'The Teaching of 

Mathematics to Science and Engineering Students' was held near Stockholm (81). 

Themes covered included the impact of computers on teaching, statistics, and the 

needs of industry; in addition, a modelling workshop was held. 

The second SEFI seminar was held in Denmark, at Lyngby, on the theme 

"Impact of Computers' (82). It was felt that the computer could be used to enhance 

the learning process both by illustration or animation and by the ability to analyse 

more complex, realistic systems. It was felt advantageous to integrate numerical 

methods with their analytical counterparts. The growing importance of discrete 

mathematics was recognised and it was proposed that to support the traditional 

numerical methods two specific branches should be incorporated into the 

curriculum: 

(i) discrete analytical methods to cope with digital data etc. 

(ii) discrete structures and combinatorial mathematics. 

It was also recognised that probability and statistics had to be given more 

prominence and that the use of computers in teaching the subjects was essential. 
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At the third seminar in Turin there were three themes: computer alegbra, 

discrete mathematics, and probability and statistics (83). The latter two areas were 

concerned with consolidating progress made at the previous meeting but the new 

feature was the treatment of computer algebra. There was concern about how such 

systems as muMATH should be used in the curriculum and what were the 

implications on the curriculum as a whole. In 1987 at Gothenberg for the fourth 

seminar, the themes chosen were linear algebra, statistics and probability, discrete 

mathematics, and the role of computers in mathematics teaching (84). One feature 

of the linear algebra discussions was the debate on the degree of rigour to be 

adopted. At one extreme it was suggested that a formal presentation with 

definitions, theorems and proofs was wanted by the engineers, whilst at the other 

extreme the emphasis was to be on applications and problem solving. Again, it 

was stressed that numerical aspects should be integrated within the topics. 

This year, at Plymouth, the details of a proposed core curriculum for all 

engineers were taken a stage further. The working subgroup on discrete 

mathematics had presented its report and efforts were concentrated on 

analysis/ calculus, linear algebra, and statistics and probability. Concerns were 

expressed at the changing nature of secondary school education in the United 

Kingdom and at the pressures on the time allocated to mathematics within the 

engineering curriculum. It was emphasised that the student should be provided 

with a coverage of the mathematical ideas and techniques which were currently 

directly applicable and essential to support his curriculum and to give him the 

foundation to update his knowledge after graduation. Delegates were asked to 

consider additional topics that were essential for the various engineering 

disciplines which now included control engineering, manufacturing systems 

engineering and software engineering. 
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2.7 Teaching Strategies and the Curriculum 

2.7.1 The Entry Problem 

Reference has already been made to the concern expressed by mathematics 

lecturers over the varied mathematical ability of the engineering undergraduates, 

for example Bajpai (20). In the United States, Fowler et al (85) gave a 

multiple-choice test of sixty items to four groups of freshmen in an attempt to 

determine how well they were able to apply basic algebra, geometry and 

trigonometry to the solution of problems. It was hoped that the test would be a 

diagnostic tool to aid the student and his instructor in devising a review 

programme of study. Snyder and Meriam (86) reported on a nation-wide 

multi-choice test to be carried out in class; the test was of 45 minutes duration and 

comprised 25 questions on topics from trigonometry, coordinate geometry, areas of 

plane figures, similar triangles, hydrostatics, weight, vectors and elementary 

calculus. Each question was accompanied by five suggested answers, the last of 

which was 'none of the above'. Over 9,500 students participated in the test and 

achieved an average score of 51 %. The questions which attracted the worst 

answers were those on vectors and calculus. The authors expressed concern about. 

the low level of ability of the students in dealing with 'the most elementary tools 

of mathematics'. Questions which caused especial difficulty were the calculation 

of the length of the side of a triangle via the cosine rule, the area of a half-annulus 

and the slope of the curve y = cos 21tx. 

At the same time, Mustoe (87) was conducting a test with freshmen Civil 

Engineers to discover their pre-knowledge of elementary pure and applied 

mathematics. The 12 questions were set from a pool contributed by Mustoe and 

the Civil Engineering lecturers and occupied a period of 1.5 hours. A copy of the 

test paper is given in Appendix 2. The questions which were attempted most 

successfully were those on rearrangement of a formula, the double integration of 

the beam equation and the calculation of the resultant force. Less than 8% of the 

students were able to tackle successfully the questions on hydrostatics, which is 
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more likely to be a problem of omission from school physics syllabuses, but even 

fewer could determine the centroid of an area bounded by a parabola and the 

coordinate axes, or could find the forces in a loaded truss. The test was carried out 

for three consecutive years and the results showed no significant change from year 

to year. One consolation was that the Civil Engineering lecturers appreciated the 

task facing their mathematical colleague. 

In response to the results of the test, the core material which occupied three 

hours per week of lectures was supplemented by an additional hour each week 

during the first term. The topics were chosen from 'A' Level syllabuses and the 

students knew well in advance which topics were lectured on in which week; 

those who felt that they needed to attend a particular lecture could do so. 

Fyfe (88) conducted a similar test at Kingston Polytechnic. He found that 

trigonometric ability was very poor and lamented the students who evaluated 

(sin2280 + cos2280 ) on a calculator and presented answers of 0.99999999. He found 

that the Technician Education Certificate students who had superceded the 

Ordinary National Certificate entry were in particular difficulties. 

Elton (89) had carried out tests on freshmen at Surrey University and had 

asked the students why their performance was not high. They cited 

(a) they had forgotten the relevant material 

(b) they had not covered the relevant material in earlier studies 

(c) they had made careless mistakes. 

Unfamiliarity with notation or lack of understanding of what concepts were 

conveyed by notation such as y = y(x) were held to be key sources of difficulty. 

Gonzalez - Le6n (90), (91) described the test he had conducted with freshmen 

engineers and reminded first year lecturers in mathematics that their audience 

would have forgotten some of their assumed knowledge, those with 'A' Level 

grades below C were not totally au fait with the subject and there were 
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considerable variations in 'A' Level syllabuses. He had also surveyed engineering 

lecturers' views on the basic mathematics knowledge and skills needed in their' 

first year courses. The lecturers were given a list of topics and invited to provide 

examples of the level of difficulty they expected. He hoped that the results of his 

survey would be of use to mathematics lecturers and he suggested that a test based 

on the examples should be given to engineering freshmen and suitable remedial 

work provided. 

Other workers reporting on similar tests include Howarth and Smith (92), 

Hubbard (93) and Kurz (94). 

School mathematics in the United Kingdom has undergone many changes 

in the last twenty-five years or so. The conversion from 'traditional' to 'modern' 

syllabuses led by the School Mathematics Project (SMP) caused many university 

lecturers to bemoan the lack of manipulative skills in those who had followed the 

latter approach. However, Turner and Mustoe (95) surveyed students in the 

fourth term of residence to solicit their views on the usefulness of modern 

mathematies topics that they had studied at secondary level. The students' 

judgement was that mapping notation, matrix algebra and statistics were the most 

useful and that vector algebra and topology were the least useful. There appeared 

to be no hard evidence that following a modern syllabus had disadvantaged 

students by the end of their first year at university; what they lacked in a tool-kit of 

techniques they soon acquired and their greater understanding of concepts 

provided the necessary breathing-space. 

Walkden and Scott (96) expressed concern with the attitudes shown by their 

students; they found the following shortcomings 

(i) The students expected to assimilate new ideas without mental effort. 

(H) They were reluctant to devote time to study and to practising skills. 

(iii) They lacked persistence to tackle non-standard problems. 

Walkden and Scott attributed these shortcomings to current teaching methods in 

schools. They believed that '0' Levels were tending towards breadth and 
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superficiality; this provided a poor foundation for 'A' Level studies and once again 

depth was sacrificed for breadth. This poor foundation had reduced the level of 

conceptual understanding; when allied to the possibly 25 - 50% knowledge of the 

syllabus which could engender a reasonable pass at 'A' Level, the consequences 

could be dire. Since their students either did not know or did not understand 

enough factual material and they did not have the capacity to learn or understand 

new material quickly enough, the prospects appeared bleak. 

Power (97) was involved with teaching technician engineers; he said that 

their mathematics should ignore relevance and should concentrate on conceptual 

understanding. Since the sequence of mathematics topics was usually out of phase 

with their engineering applications, attempting to motivate students via 

applications was often a waste of time. Instead, it should be the task of the 

engineering lecturer to explain when he is using mathematical algorithms. 

More recently, there was an attempt to broaden sixth form studies by 

replacing 'A' Levels by 'N' and 'F' Levels (98), but this came to nothing. 

Currently, a revised proposal to introduce Advanced Supplementary ('AS') Levels 

to supplement 'A' Levels has been implemented in some schools (99). Lower 

down, the Certificate of Secondary Education (CSE) and '0' Levels are being 

replaced by the General Certificate of Secondary Education (GCSE) (100). The 

mathematics syllabuses being adopted owe much to the Cockcroft Report on the 

Teaching of Mathematics (101). The institutions of higher education have yet to 

feel the effects of these changes; it is not clear how well they are prepared for these 

effects. 

2,7.2 The Impact of the Computer 

Perhaps the greatest impetus for change has come from the advances in 

computer technology; these changes have taken place with such rapidity that 

mathematics educators have yet to come to terms with them. In Chapter 4 a fuller 

account of the impact of these changes is given, but it is pertinent here to pin-point 



44 

a few of the key contributions to teaching over the years. 

Reference has already been made to some early advocations of a greater role 

for numerical methods as a result of the improving computing power available. 

In 1970, Schey et al (102) had described the use of a computer laboratory for 

teaching calculus. At this time terminals were beginning to become more widely 

available as a replacement for batch processing; Bajpai and Mustoe (103) showed 

how the use of terminals could enhance aspects of the mathematics teaching. 

These ideas were expanded by Mustoe (104) at a one-day conference organised by 

the IMA at Loughborough. He felt that there were five drawbacks to the 

traditional teaching approach: 

(i) There was tedium in too much calculation. 

(ii) The problems given to students were often artificial. 

(iii) An in-depth study of a topic was often impracticable. 

(iv) Batch-processing led to delays which lowered motivation. 

(v) Results often had to be presented as a fait accompli. 

The terminal offered five enhancements to teaching: 

(i) The speed of its response was very high. 

(ii) It was possible to make use of stored programs. 

(iii) It relieved the tedium of calculation. 

(iv) It allowed the user the opportunity to vary model parameters. 

(v) It gave the user the chance of making decisions. 

Mustoe warned that there were five dangers associated with careless use of 

terminals: 

(i) The terminals will be used 'because they are there'. 

(ii) The students will be spoonfed. 

(iii) The students may take a passive role and learn little from a session at 

the terminal. 

(iv) The students may program at the terminal instead of thinking out 

the program beforehand. 

(v) The students lose the habit of performing 'hand' calculations. 

He suggested that a suitable format for use of a terminal laboratory was for a 
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tutor-led discussion to follow the demonstration of a stored program in action and 

then for a hands-on session to reinforce the ideas. Initially, students would use 

stored programs and then, as their programming skills improved, they would 

write their own. Whilst VDUs were useful for graphical displays they did not 

have the facility for providing a permanent record of program listing and output. 

Mustoe wanted the students to write reports on their session at the 

terminal; these reports would be assessed coursework and this would bring 

mathematics into line with other engineering subjects. English (105) gave 

demonstrations of a typical session based on these ideas. 

Leach and Hampton (106) had developed a Computer-Aided Learning (CAL) 

system called MATLAB which could be used in a variety of ways: as a calculating 

aid, as a means of extending the range of problems available to the student, as a 

means of illustrating mathematical theory by allowing experimental calculations 

and as an aid for project work. Projects on CAL were now beginning to 

mushroom and a biennial conference on 'Computers in Higher Education' 

initiated by Bajpai was held alternately at Loughborough and Lancaster. Typical of 

the work being carried out was that by Hundhausen (107) on the teaching of 

ordinary differential equations in an engineering environment. 

The impact of the computer on teaching was considered by several authors, 

for example Eriksson (108), Winkelmann (109), Rowe (110), Canelos and Carney 

(111), and Murakami and Hata (112). CAL had now become CBL (Computer-Based 

Learning) and was soon to spawn CEL (Computer Enhanced Learning). 

If the terminal was one revolutionary step forward, the arrival of the micro 

was a greater one. Among early workers in this field was Harding who was to 

develop a mathematical tool-kit and produce computer-illustrated texts (113), 

(114). Jacques and Judd (115) showed how the micro could be used in teaching a 

numerical methods course while James and Wilson (116) concentrated on the role 

of micros in mathematical modelling courses. 
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In 1983 Bajpai formed the Micros In Mathematics Education (MIME) team of 

which the author was a member. In a series of papers the team described its 

experiences in the early years (117), (118), (119) and (120). The first 13 software 

units prepared were designed to cover 'A' Level mechanics; the next 5 were in the 

area of statistics. With the help of a grant from the University Grants Committee 

and the Computer Board further units were written on topics selected from first 

and second year syllabuses in engineering mathematics. Descriptions of these 

units and their use in the classroom are given in several papers (121), (122), (123) 

and (124). A full account of this work is found in Chapter 5. 

2.7.3 Modelling and other Strategies 

There has been an explosion of activity in the area of mathematical 

modelling in education in recent years. The IMA has a journal on Teaching 

Mathematics and its Applications and a number of Ixloks have appeared at a level 

suitable for undergraduates (125), (126), (127) and (128). 

Amongst the many authors who have tackled the role of modelling in the 

engineering undergraduate curriculum mention may be made of Heaton (129), 

Ford and Hall (130), McDonald (131), McLone (132), Sekhon et al (133), Burley and 

Trowbridge (134) and Beckett (135). Hall (136) and Gadian et al (137) considered 

the assessment of modelling skills by project work. 

Robson (138) examined the role of computer simulations in the teaching of 

modelling whilst Clements (139), (140), (141) and (142) has developed a set of case 

studies/simulations that he uses with his students. Andrie (143) made a reasoned 

case for an applications-orientated approach to the teaching of civil engineering 

students and gave examples of the case studies and models he had used in 

Germany. He insisted that such an approach was essential to provide motivation 

for those students who had no professional experience. 

Crilly, Kropholler and Mustoe (144) gave a demonstration, in the form of a 
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dialogue between a mathematics educator and a chemical engineer, of how the 

process of modelling batch distillation employed many mathematical concepts and 

techniques in its development. The different attitudes and expectations of the 

protagonists were highlighted. 

More details on the case study approach will be found in Chapter 6. 

A variety of approaches to the teaching have appeared in the literature. 

Mustoe (41) had reported on his experiences of sharing lectures with Civil 

Engineering staff and Sharp (145) gave further examples of such sharing. MacNab 

et al (146) described two teaching strategies they had employed as an alternative to 

lectures alone: 

(0 lectures, course booklet, tutorials 

(H) lectures, course booklet, computer exercises. 

The latter approach reduced the number of lectures given by 60% and used 

computer-assisted learning to provide drill and practice examples with a branching 

facility. The two approaches had been tried on a 15 hour module on complex 

numbers and the results, whilst not too definitive, indicated that modest 

improvements had been achieved by low entry students in comparison with the 

lecture-only method. 

Clark had employed a Keller plan mode of teaching weaker students 

selected by a pre-test on particular topics (147); in an attempt to combat shortage of 

resources, Cuming and McIntosh (148) had employed a Personalised System of 

Instruction on third year students with assessment based on a set of tests marked 

with the student present. 

Searl (149) had encountered difficulties in teaching partial differential 

equations; his approach was to concentrate first on three points: 

(0 recognising the type of equation 

(H) recognising the type of boundary conditions and their physical 

meaning 
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(iii) knowing the special properties of the solution. 

He took specific examples of the wave equation, Laplace's equation and the 

diffusion equation to illustrate these points. Students were encouraged to use 

engineering commonsense and to interpret the mathematical solutions physically. 

Sear! then turned his attention to making tutorial classes more effective (150). He 

described the system adopted at Edinburgh University to enliven tutorials and 

make the students take an active role. He had employed tape/booklet sequences 

and video taped programmes; the accompanying tutorial sheets had been 

constructed to make them more interesting for the students. 

2.7.4 Industry Expects. ..... 

The expectation must be that most graduate engineers will ply their trade in 

industry and the occasional reminder from industrialists as to the mathematical 

needs of their employees is to be welcomed. Lawes (151), however, believed that 

educators should not ask what industry requires, but that they should ask "what 

education today could do to influence industry tomorrow". He suggested that 

there was a great need for the engineer to be aware that a mathematical technique 

was available, to know where it might be useful and to know to whom to turn for 

help. 

Einarsson (152) wondered whether the average engineer was being taught 

too much mathematics. However, he did want the engineer to be trained more in 

rigour; he had read too many engineering papers which demonstrated a lack of 

rigour. He was unsure whether the engineer nowadays needed to know how to 

program. Hennig (153) and Sundstrom (154) both recognised the availability of 

good software and wanted a solid, general mathematical foundation to be laid; 

extra skills could be acquired in the work environment. Wilkinson (155) was 

concerned that not many university staff had >much industrial experience, which 

he believed to be important. A general concern was the lack of understanding of 

the physical significance of the mathematics: the example of eigenvalues was a 

case in point. 
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2.8 Coda 

The author was able recently to span the last forty years in a possibly unique 

way. Sir Joseph Pope, who had spoken at the Brighton meeting in 1948, is now the 

chairman of a firm, based in the East Midlands, which manufactures technical 

equipment for use in teaching. He is still showing his concern for the education of 

engineers by taking demonstration experiments into local schools to excite the 

interest of sixth-formers in engineering problems. 

His view was that most engineers were not interested in mathematics as a 

subject in its own right. They wanted to design and build things, and mathematics 

was merely a tool - albeit an important one. He welcomed the increasing 

availability of computers, provided that they were used as an aid to engineering 

thinking. It was crucial to make the mathematics relevant, and demonstrations 

using simple models which would give the student an engineering feel for the 

problem were highly desirable. At all stages of the mathematical solution of a 

model, the physical interpretation should be elicited. Above all the mathematics 

taught to students should give them added freedom in their work, and not act as a 

restricting agent. 

Pope was apprehensive about the changing nature of school syllabuses and 

feared the outcome on the numbers of pupils who would wish to follow a career 

in engineering. Pope concluded that much had been achieved in the 

mathematical education of engineers, but much remained to be achieved. 
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Chapter 3 

Implementing the Integrated Approach 

3.1 The Path to Integration 

The author's first direct experience of teaching mathematics to engineering 

undergraduates was with Civil Engineering freshmen in the session 1969-70. At 

that time, the engineering mathematics syllabuses at Loughborough were arranged 

in modular form; they are reproduced in Appendix 3. In essence, the Part A 

modules were: Mathematical Methods I, occupying the first academic term (of ten 

weeks) and two weeks of the second term, with 36 lectures and 12 tutorials; 

Numerical Methods I and Computer Programming, which required 24 lectures 

and 8 tutorials during the second and third academic terms; Statistics I, comprising 

12 lectures and 4 tutorials in the third term. Written examinations of 1.5 hours 

duration were held after week 2 of the second term and at the end of the third 

term, each contributing one half of the overall assessment. The only exception to 

this pattern was that Electrical Engineering students took a module in Vector Field 

Theory instead of Statistics I. 

To allow individual departments to choose mathematical topics more 

suited to their particular needs, seven modules were offered at part B. (It is worth 

mentioning here that some departments operated a thick sandwich scheme whilst 

others ran a thin sandwich arrangement and this severely complicated the 

timetabling of courses). The modules Mathematical Methods 11 and Numerical 

Methods II were universally chosen, but the selection of other modules was 

tailored to individual needs: for example, Civil Engineers opted for Statistics II and 

III whilst Electrical Engineers followed Mathematical Methods III and Functions of 

a Complex Variable. Assessment was by a single three-hour written examination 

at the end of the third term. Eight modules of ten hours were offered at Part C; the 

take-up varied from department to department and within a department. The 
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courses were often optional and usually non-examinable. 

One of the major problems confronting the author was the high proportion 

(16 out of 68) of Civil Engineering freshmen who did not possess 'A' Level 

mathematics; in the previous session nearly all such students had failed the 

mathematics component of their course. Clearly such a situation could not be 

allowed to recur. An added complication was that it had been agreed to conduct an 

experiment whereby the first three days of the session were to be given over 

entirely to an intensive introductory course in Fortran programming, consisting of 

lectures, tutorials, and practical sessions on the University's IBM 1620 computer. 

There was a third hurdle to overcome: at that time the author did not know 

much about Civil Engineering. He horrified his engineering colleagues by asking 

whether there was a difference between the prestressing and the reinforcing of 

concrete! With willing cooperation from the Civil Engineering staff he set himself 

. the task of learning as much about their subjects as he could, in particular where, 

when and how mathematics was applied. There was little in the published 

mathematics literature to help and it meant that Civil Engineering text-books had 

to be read thoroughly. Fortunately, this effort was encouraged by Professor Bajpai 

who was then responsible for the service teaching of engineers. 

The intensive Fortran course went well and the students' enthusiasm was 

manifested partly in the high attendance at voluntary practice sessions in the 

evenings and over the weekend which were led by the author. The nature of the 

computer, which was a hands-on machine, allied to the fact that for almost all of 

the students it was their first experience of computing helped to sustain this 

enthusiasm. As a means of measuring their newly-acquired skills a set of eight 

programming problems were given with the requirement of completing the first 

two successfully and as many of the remainder as they were able (or willing). The 

average number of problems tackled successfully was about 4.5 with all but a 

handful completing more than 3. 
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Having introduced the students to computer programming it was 

important to make use of it at intervals during their course. Accordingly, the 

author would give them problems which encouraged the writing of a program; for 

example using the Maclaurin series for sin x and exp x to decide how many terms 

were needed to achieve a particular degree of accuracy or how, for a fixed number 

of terms, accuracy varied with the value of x. When the module on Numerical 

Methods was being taught, it was easier to find suitable problems to program. 

Although the students, including the non-'A' Level entrants, performed 

well in the half-year examination compared with the other groups sitting the same 

paper, it became clear during the first term that the concentration on analytical and 

algebraic material was hard going for the weaker students .. It took many hours of 

extra tuition, sometimes on an individual basis, to keep them in touch 

mathematically with their more able colleagues. It seemed curious too, that 

having dealt with calculus methods of integration in early November, the 

numerical methods were not taught until the February following; if the lecturer 

thought that it was a peculiar practice to separate what are in fact two means of 

attack on the same problem, then the students could be forgiven for thinking 

similarly. 

During this period the seminal paper by Bajpai, Calus and Simpson (21) was 

being written to demonstrate the way in which the topic of ordinary differential 

equations could be taught via the integration of analytical, digital computing and 

analogue computing approaches. Their argument, that students taught by the 

traditional, compartmentalised approach 'were often unable to appreciate that on 

many occasions a combination of techniques is used in solving problems arising in 

real-life or industry', coincided with the author's experience and the integrated 

approach seemed to him to offer a more realistic way of teaching his students. 

3.1.1 The 1970 Paper 

Eighteen years on it is difficult to appreciate how radical were the 
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suggestions made in the paper by Bajpai et al. It is necessary to remember that 

most of those who were then teaching mathematics to engineers had received no 

formal training in numerical methods or computer programming and few were 

even using such techniques in their own work. It was not unexpected, therefore, 

that the former group in particular were reluctant to take up the challenge of 

teaching via the new approach. 

The paper began by considering traditional approaches to the teaching of 

differential equations; each approach was associated with a list of disadvantages. 

In general, students had little idea of the significance of the structure of a 

differential equation and the roles of the various parts of its solution. 

Furthermore, the formulation of a differential equation from a physical statement 

of a problem was either neglected or relegated to a minor place. 

The paper then suggested a possible strategy employing the integrated 

approach. First, suitable motivational examples should be discussed and for each 

one the derivation of the appropriate differential equation and attendant boundary 

or initial conditions should be covered. Then, one of the first-order examples, say 

Newton's Law of Cooling, is to be studied in depth. The analytical solution is 

obtained and its graph compared with the experimental results. Next, the 

analogue computer is used to demonstrate how the nature of the solution depends 

upon the parameters in the model, via a graphical display. Finally, a simple 

step-by step method is used on a digital computer to obtain a table of results and a 

comparison is made between the three approaches. 

A mass-spring-dashpot system is modelled via a linear second-order 

ordinary differential equation with constant coefficients. An analogue computer 

demonstration is given in order to show the three cases of simple harmonic 

motion, light damping and heavy damping. Each case can be discussed via its 

analytical solution - which can be derived at a later stage. A step-by-step method 

can be used to obtain appropriate digital computer results which can be compared 

with the other solutions. At a suitable point the case of critical damping can be 
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discussed. This stage of the teaching concludes with a consideration of what 

happens when the system is subjected to a disturbing force; the analytical solution 

is presented and the complementary function and particular integral are given 

physical interpretations. 

The authors of the paper recommended that such an introductory coverage 

should be followed by a more detailed treatment of the relevant techniques of 

solution and then some examples should be given of differential equations which 

must be solved numerically. A further suggestion was that use could be made of 

video-tape to record experimental demonstrations and computer results as they 

were produced. The author of this thesis was one of an in-house team which 

prepared a tape on ordinary differential equations along the lines of the teaching 

strategy discussed above. The tape was shown to several groups of students and 

the reception was generally favourable. At about this time the Open University 

was making its first programmes and the range of technical facilities at its disposal 

far exceeded those at Loughborough. A few more tapes were made, the author 

being involved with one on mathematical models in engineering and one on 

accuracy and error which were to appear in written form in Chapter 1 of 

'Engineering Mathematics' (42). 

3.2 Teaching the Integrated Approach: Early Attempts 

The author was aware of one overriding problem confronting those, 

including himself, who wished to teach the integrated approach: there was no 

literature on how to put the ideas of the approach into practice, other than with 

regard to ordinary differential equations. Certainly, no text book was suitable. It 

was felt important that the students should have more than a set of weekly 

hand-outs; if they saw a text-book they could feel confident that the teaching 

material had been thought through and was not merely proceeding from week to 

week with the lecturer keeping one step ahead of them. 

Accordingly, the author produced three booklets for his students: the first, 
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entitled 'Functions and Their Behaviour', comprised 111 pages and covered the 

topics shown in Figure 3.1, which is reproduced from the booklet; the second, 

entitled 'Differential Equations', comprised 63 pages and covered the topics shown 

in Figure 3.2; the third, entitled 'Basic Statistics' covered the topics shown in 

Figure 3.3 and comprised 105 pages. 

As in the previous year the course commenced with an intensive three day 

introduction to Fortran programming. It is scarcely a revelation to admit that 

many students found this early shock to the system hard going; however, with the 

aid of some sympathetic second year students taking the tutorials and the offer of 

help outside formal teaching hours, everyone was able to survive and eventually 

to program successfully. 

It was thought to be important to set the mathematics course in context and 

the first lecture was devoted to explaining how mathematics was used to help 

solve engineering problems, both by analytical methods and by computer-based 

techniques. In addition, the formulation, including assumptions made, solution 

and validation of a mathematical model of beam bending were discussed. The 

difference between easily-solved problems (such as forces in the members of a 

truss) .and ones which were easily posed but hard to solve (the time taken for a 

polluted stream to become potable) was highlighted. As an aid to students new to 

extensive note-taking the author provided the class with a hand-out giving his 

summary of this first lecture in order that they could compare it with their own 

notes; this procedure was repeated for two further lectures. 

Most 'A' Level entrants had met four-figure tables as their calculating aid 

whilst the ONC/ONO entrants had already used a slide rule - which was then 

standard equipment for engineering students. The second lecture, which has 

become increasingly important as pocket calculators have become more universal 

and more powerful, was devoted to a discussion of accuracy and errors, stressing in 

particular the expected accuracy of the result of a lengthy calculation based on 

experimental data. 
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Although there was a machines laboratory available - containing a large 

number of electro-mechanical calculators - in practice there was no intermediary 

between the slide rule and the main frame computer. When the student was 

asked to carry out a lengthy calculation it had to be a worthwhile exercise to justify 

the effort expended. Emphasis was placed on developing flow charts for 

numerical methods and results from pre-written programs which were presented 

for discussion. However, to capitalise on the students' programming skills, 

programming exercises were set on a regular basis. 

Wherever possible a topic was introduced via a practical problem: the need 

to fit a least squares straight line to data led to the study of partial differentiation; 

the construction of transition curves was used as an introduction to curvature. 

The author is aware of a school of thought which holds that motivational case 

studies can be confusing for students and counter-productive to their performance 

in mathematics; he does not accept that view. Properly handled and sensibly 

introduced, such case studies are an essential part of any mathematics course for 

engineers. Relevance engenders motivation and motivation encourages effort. 

Part of the function of the teaching is to bring students out of the protected 

atmosphere of school mathematics, where equations have simple roots and all 

integrations can be performed, into the real world of inaccurate data, approximate 

models and uncertain answers. This can be a culture-shock to many students and 

needs careful treatment. Those analytical techniques with which the students 

entered tertiary education are not to be discarded as worthless; rather they are to be 

used with more care and discrimination. In the right circumstances they are 

unrivalled, but there are situations in which they have to yield pride of place to 

their numerical cousins. 

Often, a numerical cousin could cast the light of understanding on a related 

analytical method, long a weapon in the student's armoury, the workings of 

which had never been fully comprehended. For example, the method of direct 

search to locate the minimum of a function whose values can only be sampled 
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was introduced via the problem of locating the nearest point to the earth's surface 

of a layer containing a material to be extracted. A discussion took place on suitable 

search strategies and this led to a comparison with differentiation-based methods 

of locating optima of functions specified by formulae - and that in turn led to a 

realisation of the difference between local and global optima. 

The idea of splitting the examination into one 90 minute paper after each 

half-session was abandoned in favour of a three hour end-of-session paper; this 

conformed with the practice that had been maintained at second year level. 

Nonetheless, a mid-sessional examination was still set and sat; although it no 

longer formed part of the students' assessment, it did serve as an indicator of their 

progress, which was important to a lecturer with nearly one hundred students in 

his class. 

Many students had not met differential equations prior to this course and 

the decision was made to include integration problems as examples of first order 

differential equations. The remaining material on first order equations and that 

on second order equations was an expansion of the ideas in the 1970 paper. After 

discussion with the Civil Engineering staff the decision was taken to teach both the 

trial solution method of finding particular integrals and the Laplace transform 

approach, but not to include D-operators. 

Taking a realistic view of student attitudes it was recognised that the 

end-of-session examination ought to reflect the way in which the course had been 

taught; if it did not, the students might have felt cheated. 

The examination paper set in 1971 is reproduced in Appendix 4. 

At this juncture the author wishes to make a comment which he believes to 

be of vital importance. The teaching experiments he has conducted over the last 

twenty years would not have been so successful had he not gained and maintained 

the willing cooperation of his students. Certainly, he was fortunate in having the 
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continued encouragement of his Head of Section and, subsequently Head of 

Department. In addition, the Head of the Department of Civil Engineering, 

Professor Brock, and his staff were generous with their time in discussing the 

position of mathematics in their subjects as taught and as practised and were 

helpful and encouraging at all times. 

That the staff came to regard the author as an integral part of the teaching 

team was a valuable attitude which permeated to the students. However it is the 

students who are to be the beneficiaries of the whole exercise and it was necessary 

that they should not regard themselves as guinea-pigs in an academic exercise; 

rather they were partners in an enterprise which would result, hopefully, in their 

increased understanding of, and proficiency in, mathematics applied to 

engineering. It was gratifying that at the latest visit in 1987 by the accreditation 

team from the Institution of Civil Engineers, the author was asked especially to 

attend the final plenary session; the Chairman of the team commented that not 

only was Loughborough the exception in that the students made no complaint 

about the mathematics teaching, but also that they were positive in their 

appreciation of the efforts made to link mathematics to their other engineering 

subjects. 

The author has always believed that it is important that each student, 

particularly in a class of about 100, should feel able to ask for help, if needed, 

outside the classroom. He feels that there was a beneficial spin-off to his 

experiments in that the students would be prepared to discuss their feelings about 

the course, the manner of presentation and their progress. In this way the author 

was able to make early corrections and modifications before the class suffered too 

much. Fortunately, the author has managed to maintain good relations with his 

students and has received a continuous feedback from them. 

3.2.1 Statistics and Probability 

Of all parts of the first year course, that which gave rise to the greatest 
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difficulty to those who had not met it before was the area of elementary probability 

and statistics. The actual mathematical manipulation is straightforward: almost 

entirely arithmetic with a smidgen of algebra. The difficulty lies elsewhere. In the 

case of probability, it is recognising the essence of the problem and devising a 

suitable method of solution: there seems to be a different method for each problem 

and this does force the student to think more carefully about the nature of the 

problem itself. 

With regard to the statistical inference component the students found it 

difficult to listen to a verbal argument, however well constructed. They seemed to 

have particular problems in understanding the logic behind the test of hypotheses 

concerning a sample mean. Perhaps the fact that the statistics section of the 

syllabus was the last to be taught added to their difficulties; they were tired 

mathematically at the end of a long and varied course and the assimilation time 

for new ideas was short. 

However, those students who, despite being new to these topiCs, made a. 

determined effort to comprehend the ideas involved soon found themselves able 

to cope. One likened it to learning to drive: "In the early stages you stall when 

waiting at traffic lights and despair of ever coping successfully; then one day you 

don't stall and you never have any more trouble. It's all a question of confidence". 

The author has subsequently moved part of the component covering 

probability theory and the binomial and Poisson models to the middle of the 

second term, leaving the normal distribution and large sampling theory to be dealt 

with at the start of the third term. In addition, many more students have studied 

statistics at school, albeit at the expense of statics and dynamics, and this has helped 

to alleviate the problem to an extent. The students who have not covered statistics 

at school still have an initial hurdle of confidence to surmount, however. 

In this context, it is interesting to refer to work carried out by Green on 

probability concepts in children (156). 
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3.2.2 The Second Year Course 

In the same session as the experiments on teaching the integrated approach 

to the first year students were being conducted, the author was also lecturing to 

those students who had been taught via the traditional approach in the previous 

session and who were now in their second year. It was not sensible to embark on a 

wholesale revision of this syllabus until the first year modifications had run 

through at least once. Accordingly, only a few instances of integrating the 

analytical and numerical methods were attempted. 

One example was the topic of eigenvalues and eigenvectors. Having 

introduced the topic via a structural vibration problem, in broad terms, the 

algebraic method of determining eigenvalues and their associated eigenvectors 

was developed. It took but a slight change in the parameters of the model to 

produce a characteristic equation which did not factorise easily. After a debate on 

whether it was better to attempt an iterative solution to this equation or set up a 

numerical method to determine the eigenvalues, it was decided to follow the 

latter approach. As the method was being developed it became clear that it was, in 

fact, a method for determining the "dominant" eigenvector with the associated 

eigenvalue appearing as a by-product. Although the method appeared 

unattractive, it was apparent that a system which gave rise to a matrix with many 

rows (or columns) would effectively have to be handled this way. 

Once again, the numerical method took a different view of the problem 

from that taken by the analytical technique. In the first year course, for example, 

the students had seen that Euler's method regarded a differential equation as a 

provider of information about the slope on a solution curve rather than as an 

intrinsic source of information about the dependent variable. This juxtaposition 

of different views adds to the understanding of both. 
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3.2.3 Project Work 

It· was recognised that the further computer programming taught in the 

second year needed more application than was currently provided by the other 

engineering lecturers, many of whom were strangers to programming themselves .. 

Accordingly, a project was set on numerical optimisation which is reproduced 

below. The students handed in for marking a report which contained a listing of 

their program, sample output and comments on their methods. 

Project 

Show by partial differentiation that the function 

f(x,Y) = 1 OO(y - x2)2 + (1 - x)2 

has a stationary point at (1,1) and use common sense to show that it is a local 

minimum and, indeed, the overall minimum of the function. 

Use the computer to help produce contours of f(x,y). 

Write a computer program using the method of Hooke and Jeeves to locate 

the minimum starting from (2,1) and (-1,0). 

Comment on your results. 

Although the marks did not form part of the end-of-year assessment, the 

students tackled the project with enthusiasm and considerable success. 

3.3 The Need for Suitable Textbooks 

In the autumn of 1971, the author (25) presented an interim report on his 

experiment to a conference on the Teaching of Mathematics to Non-Specialists. 

Since the publication of the 1970 paper the question being asked was: 'Where is a 

suitable text-book to be found?'. Many lecturers, whilst sympathetic to the 

integrated approach, did not have the time or perhaps the expertise to assemble 

suitable teaching material for themselves. Obviously, it was of little value to teach 

differential equations alone in this way. The answer was clear: a series of 

text-books had to be written by those who had championed the approach. Early in 
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1972, Bajpai, Mustoe and Walker took up the challenge. After an initial period it 

was decided that although draft material might be produced by any of the authors, 

one should be responsible for writing the chapters in final form; Mustoe took on 

the task. Some of the material grew from the booklets that he had prepared in the 

previous session and was refining for the current crop of students. However, 

these booklets had been written specifically for Civil Engineers and it was 

necessary to select examples from the whole range of engineering disciplines. 

In order to ensure that the material passed the crucial test of being suitable 

for the students at whom it was aimed, the draft chapters were issued to a 

combined group of Civil Engineering and Chemical Engineering freshmen in the 

1972-3 session. In addition to receiving general feedback in tutorials and casual 

conversation, the author selected three students to act as detailed reviewers. Each 

week the three would discuss with the textbook authors the previous week's 

material, offering suggestions as to where more explanation was needed or where 

better examples were required or where the problems did not tie in too well with 

the text. Two of the students were Civil Engineers to reflect approximately the 

ratio in the group as a whole; of these one had an ONC entry qualification. 

In addition to these discussions, feedback was obtained from colleagues in 

other institutions who had read the draft chapters and had class-tested them; in 

particular, W. Ted Martin of M.l.T. agreed to be a collaborating author. In Spring 

1974 'Engineering Mathematics' was published and gained steadily in acceptance. 

Three years later 'Advanced Engineering Mathematics' appeared; since it sought to 

cover most second year engineering course syllabuses in mathematics it was 

always recognised that each student would find a non-trivial part of the book 

surplus to requirements. The book, whilst popular, did not enjoy the success of its 

predecessor. In 1980 the final book in the series, 'Specialist Techniques in 

Engineering Mathematics', was published. A number of mathematical topics had 

become necessary for the study of modern branches of engineering and science but 

were available only in advanced textbooks. Many students found these books 

. difficult to read and had expressed a wish to have an introduction which was easy 
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to understand. Having appreciated the basic principles of such a topic the student 

would be better equipped to tackle the advanced volumes. The philosophy of 

"Specialist Techniques' was to provide that readable introduction. The topics 

covered were: system models, linear systems, stability of systems, optimal control, 

random processes, cartesian tensors, the finite element method, design of 

experiments and functional analysis. 

As was mentioned in the previous chapter, there was always the problem of 

the entry being heterogeneous. It was decided to include in 'Engineering 

Mathematics' some work which was covered in Advanced Level syllabuses; whilst 

this would be revision for some students, it would be new to others and it was 

included for the sake of completeness. 

The author was soon able to teach using 'Engineering Mathematics' as a 

required text-book. This enabled him to prepare a hand-out issued to the students 

at the start of the session detailing which topics were to be covered when, which 

pages of the book related to which lecture and which problems in the book to 

attempt. Problems were designated 'A' or 'B'; the former were to be attempted by 

everyone and a successful understanding of the material and techniques that they 

entailed would guarantee a knowledge sufficient to do very well in the sessional 

examinations. Problems 'B' could be used either as revision practice or to extend 

the student beyond the basic level. 

Those students without 'A' Level mathematics were provided with an extra 

lecture each week in the Autumn Term. Since the topics were given in the initial 

hand-out, any students who felt that they would benefit by attending were 

welcome to do so. Seldom did the attendance for these optional lectures fall below 

50% of those for whom it was not primarily intended. 

3.3.1 The ROle of Worked Examples 

The author has, for several years, been an examiner for the Engineering 
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Council (formerly the Council of Engineering Institutions), in common with his 

co-authors Bajpai and Walker. By their emphasis and style of examination 

questions it has been possible to influence a wider audience and introduce them to 

the benefits of the 'integrated approach'. His experience with these examinations 

allied to that gained with his own students convinced him that a world-wide 

failure of engineering students (and, no doubt, others) is how to get started on a 

problem. Consequently, he has written two books (157), (158) to give students 

guidance through the solution of real examination problems. This has freed him 

in his own tutorials to concentrate more on reinforcing conceptual understanding. 

The feedback from his own students indicates that they have found these 

additional books of benefit. 

3.4 Example of the Integrated Approach: Year I 

The author had the tutorial sessions so arranged that he saw each student 

once a fortnight. If the alternate tutor was not as well versed in computing and 

numerical methods as was desirable then he could be left to concentrate on the 

analytical solutions; many of the author's departmental colleagues were still 

unused to computer programming at this time. The author could then draw the 

threads together in his tutorial sessions. 

An example of how the integrated approach was emphasised is provided 

below. This example would be introduced when the topic of integration was being 

covered in lectures; the topic of iterative solution of non-linear equations had 

been encountered earlier. 

Problem 

A sphere of density p and radius r has mass 

4 3 -ltr p 
3 

It floats on water of density 1, submerged to a depth h. Show that the volume of 



water displaced by the sphere is 
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If the density of the sphere is 004, find the ratio n = h/r to 2 d.p. using the 

Newton-Raphson method with an initial approximation nO = 1. Why is no = 1 

suggested? 

The following is an edited transcript of a good tutorial session on this 

problem; T represents the tutor, while 51, 52 etc. are the students. 

T: What is the first thing we should do? 

51: Use Integration to find the volume of water displaced. 

T: That's jumping the gun a little. Even before we do any calculation ... 

52: Draw a diagram. 

T: That's a good start - draw one then. 

52: (Draws Figure 3.4 ) 

T: No. I meant going back to the floating sphere. 

53: (Draws Figure 3.5 ) 

T: That's it. Now, what results from your Water Engineering course can you 

use. 

52: There's Archimedes Principle. .. There's an upthrust on the sphere that 

equals the weight of water displaced. 

T: What does weight of water displaced mean? 

(A discussion ensues with long pauses broken by prompting by T. 

Eventually ... ) 

54: There's a part of the sphere below the water-line. Its volume is the volume 

of water displaced. The weight of that volume of water is the one we want. 

T: Right, but we haven't used the fact that the sphere is floating. How does 

that take us forward? 
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53: The upthrust must equal the weight of the sphere or else the sphere would 

be moving. 

T: So if those forces are equal, the sphere must be stationary. Is that what you 

are saying? 

53: Yes. 

55: Not true. All that means is that the sphere isn't accelerating. It could still 

be moving with a constant speed. 

T: Well, how could we make sure that it isn't? 

54: If we held the sphere stationary and then released it ... 

T: Fine. Now, how much of the sphere do you think lies below the water-line 

when p = 0.4; I mean what value of ex do you estimate? 

(Long pause) 

All right, let's take several possible values for p. 

(Writes down 0, 0.4, 0.5, 0.8, 1, 1.2, 2). 

What about p = 2? 

51: The sphere would sink. 

T: And p = 1.2? 

51: The same. 

T: And p = 1? 

56: The sphere would lie with its top just on the water-level. 

T: What value of ex is that then? 

56: ex = 1. 

(T looks unimpressed). 

54: 5urely ex = 2 since h = 2r. 

T: Right. Now what about p = 0.8, 0.5, 0.4? 

52: Each time a little bit less is below the water-line so that a will be decreaSing, 

say 1.6, 1, 0.8. 

T: Finally, if p = a? 

52: Don't be daft. There won't be any sphere. 
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T: Now we can go back to the integration. 

(Talks through the derivation of the volume with occasional contributions 

from the students). 

Let's just check our result as far as we can - we might not have been given 

the formula. I'm going to look at three special cases: h = 0, r, 2r. If I don't 

get the correct answer in all three cases I know that I've made a mistake; if I 

do, it's-no guarantee that my formula is correct, of course. 

(Class verifies the answers). 

Now where do we go? 

51: You know that the upthrust is equal to 

.ll(3rh
2 

- h
3

) times the density of water times g. 
3 

53: So that means the weight of the sphere is also 

.ll(3rh2 _ h3
) 9 

3 

T: Don't we already know the mass of the sphere by another formula? 50 

what do we do with the two values for weight? 

53: Equate them. " Oh, 

lL(3rh2 _ h3
) 9 = .i ltr3 pg 

3 3 

T: Go on then. 

53: Cancelling It/3 and 9 we get 3rh2 - h3 = 1.6r3, since p = 0.4. 

T: How does <X come into it? 

55: You've got no way of knowing h as a number so you have to express it as a 

fraction of r - that's <x. 

T: Yes, but how do I get <X into that equation? 

(Pause). 

53: If you divide by r3 you get 

h
2 

h
3 

3- - - = 1.6 
2 3 

r r 
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and that's 3a2 - a3 = 1.6. 

T: If I write that as 

how can we use Newton-Raphson? 

What's f(x)? 

54: a 3 - 3a2 + 1.6 

T: And f'(x)? 

54: 3a2 - 6a 

T: Write down the Newton-Raphson formula for our equation. 

53: 

(a3 _ 3a 2 + 1.6) 
a =a _ n n 

n + 1 n (3a 2 _ 6a ) 
n n 

T: If ao =1 what is a1? 

52: . 0.867 to 3dp. 

T: And what does that make a2? 

52: 0.869 to 3dp. 

T: Keep on until you can be sure that you have got a correct to 2dp. 

52: 0.87. 

T: That's correct. Why did we suggest a o = 1? 

53: That means the sphere is half-submerged, and that's a simple first 

approximation. 

T: What I'd like you to notice is how we tackled that problem. First we 

thought about it in engineering terms, then we used principles of 

hydrostatics to set ·up our equation. Next we employed calculus to calculate 

the volume submerged. Finally we used a numerical technique to get an 

approximation to a. As a mathematician, I'm interested in the equation 

a3 - 3a2 + 4p = O. 

It could have one real root or three. But I know from our sphere problem 
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that we only get sensible answers from 0 < a < 2. I wonder how that relates 

to the equationf But that's another story. 

3.5 Later Developments 

The most significant factor which has affected the teaching of engineering 

mathematics over the last two decades has undoubtedly been the development of 

computing facilities. Few would have imagined twenty years ago that every 

·student would have a cheap pocket calculator which had such computing power, 

that the main form of communication with the mainframe computer would be 

the terminal and that the micro would have found its way onto so many desks. 

The story of that impact is told in the next chapter. It is relevant here to point out 

that after the hands-on computer at Loughborough was scrapped, the computing 

facility available to students was a cafeteria-service on a batch processing mode 

with back up from the data preparation section of the Computer Centre and a 

four-times-a-day delivery sevice to departments. However, the remoteness of this 

system caused students' interests to wane noticeably. The arrival of terminals only 

partly restored that interest since the mainframe seemed almost always to be 

'down' just when it was needed and even when it was 'up' the waiting time could 

be so long as to dishearten all but the keenest. Not until the micro arrived in large 

numbers on campus did the old level of interest and enthusiasm reappear. 

The author has always interpreted 'the integrated approach' as meaning 

more than the interweaving of related analytical and numerical techniques. He 

believes in integrating the mathematics into the engineering curriculum via case 

studies, joint projects, shared lectures and so on. That aspect of the teaching is 

discussed in Chapter 6. 

The author carried the integrated approach to other engineering groups and 

several variations on, the combining of groups tried; the extreme case was the 

assembling of a class of Mechanical, Automotive, Aeronautical and Production 

Engineers - some 270 in all - with the lecturing being shared with a departmental 
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colleague. This was unsuccessful, partly because the sheer size of the class changed 

the nature of the lectures, partly because the four disciplines, although similar in 

outlook, identified themselves as different groups coming together for 

administrative convenience. 

Another experiment initiated by the author was to change the format of the 

examination. Instead of 'do 6 out of 9', the paper was divided into 3 sections: 

Section A comprised two double length questions, Section B comprised five 

questions and Section C contained two questions on probability and statistics. The 

candidates were required to answer one question from Section A, one from 

Section C and three others from Sections B and C. The aims were to encourage the 

students to make an effort to understand the statistics component and to test them 

in depth on a topiC. This format also gave the examiner a flexibility in the 

questions that he could set. 

Bajpai has for many years been the Moderator for the Mathematics Part I 

and Part II examinations of the Engineering Council (formerly the Council of 

Engineering Institutions). In an endeavour to encourage candidates to take 

seriously the study of numerical methods and statistics, he had arranged for the 

Part II examination paper to be in two sections of five questions each: one on 

analytical methods and one on numerical methods and statistics. Candidates were 

instructed to attempt five questions, including one from the first section and one 

from the second. In recent years it became evident that candidates were accepting 

numerical methods as an integral part of their course; consequently the paper 

currently is not sectionaJised and candidates can attempt any five questions. 

In the last three years, the author has adopted the format of 'do 5 from 9', 

with all questions equally weighted. There is no evidence to suggest that any of 

the variations has made any significant difference in student performance. 

With the arrival of the micro came a request from the Civil Engineering 

staff to abandon the three-day crash course in programming and give the necessary 



75 

lectures within the mathema~cs allocation; the language was to be Basic. The staff 

wished to show their belief in the importance of computing and agreed to man 

practical sessions in the first half of the Autumn Term during which the students , 
would familiarise themselves with the micro in additpn to writing and running 

some simple programs. The author took the opportunity to bring mathematics 

more in line with the other engineering courses by introducing a coursework 

element in Year 1. In the second half of each of the first and second terms the 

students are given a programming problem from a list of 8 available. In each case 

a member of the Civil Engineering staff acts as tutor, providing an initial briefing 

and being available for guidance for the next five weeks. He will mark the 

students' reports and the author acts as overall moderator. Each of the two items 

counts 10% towards the final assessment in mathematics. The problems were 

suggested by the engineers and refined in discussion with the author. An example 

of the problems and the specification are provided in Appendix 5. 

In Year II the students are taught to program in Fortran 77 and a sample 

programming problem is shown in Appendix 6. It is hoped shortly to introduce 

this as coursework. 

3.6 How Much Does the Freshman Know? 

Reference has already been made in Section 2.7.1 to the problems associated 

with the variation in knowledge and ability at entry to. tertiary education. In 

recent years the author has handed out to his freshman class during his first 

lecture a questionnaire and a test paper. These are to be handed back a week later. 

The questionnaire is reproduced in Appendix 7; it seeks to discover the 

areas in which students have gaps or weaknesses. U, for example, hardly any of 

the class had covered or understood complex numbers .... whereas most were au 

fait with elementary vector algebra then an appropriate adjustment could be made 

to the time spent on these topics during lectures. As mentioned in the 

questionnaire, the first list on which the students are asked to comment with 
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regard' to prior coverage and understanding was taken from a proposed Common 

Core in mathematics for all 'A' Level Boards (159). The second list, taken from the 

same publication, comprises those topics that the Physics panel expected to be 

covered in all mathematics syllabuses; the third list was that used by Heard in his 

project (64). 

The questionnaire was given to students over the last four years; the results 

are shown in abbreviated form after the questionnaire in Table AI. 

The test paper is shown in Appendix 7. The number of attempts and 

percentages of correct responses are shown following the test paper. At this point 

some of the wrong responses will be discussed. 

Question 1. The only real difficulty here was that many students did not recognise 

that x3 + a3 '" (x + a)(x2 - ax + a2). 

Question 2. Several responses opted for 

_=B_or_..:;:.C_ 
2 2 

x + 4 (x - 5) 

but no "extra" functions like 

Ox 

l +4 
or E 

x - 5 

Question 3. Many students went straight to a calculator to produce the numerical 

value; some never quoted the accuracy of the value they wrote down. Of those 

who ob.tained 4/..J 5 before using a calculator, many explained their 

unwillingness to leave the answer in that form or as 4..JS/5 by stating that to 

them "value" implied a decimal answer correct to a "reasonable" number of 

decimal places. 
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Question 4. The word "sketch", although underlined for emphasis, seemed alien 

to many respondents. Far too many, seeing the words "maximum or minimum 

value" immediately plunged into differentiation. They expressed ignorance of the 

fact that the curve was a parabola and became wide-eyed when told that the 

optimum lay half-way between the zeros. One or two did point out that if the 

parabola did not cross the x-axis they would have to use differentiation anyway, so 

why bother looking for a special method. When they were shown the method of 

completing the square, they reluctantly accepted that perhaps it was worthwhile as 

an alternative to differentiating. 

Question 5. It was quite clear that the notation baffled the majority of students 

who attempted this question. To many the nth term was a(1 + r)n. On reflection, 

the question was too clever for its purpose. 

Question 6. The question of a binomial expansion having a restricted range of 

validity had clearly never crossed the minds of some students. 

Question 7. The form of y = x 1/2 was not correctly sketched by a large minority 

of respondents - perhaps they would have been more successful in plotting the 

curve as some persisted in doing. The relationship between x2 and x4 was not 

too well appreciated. When those who sketched the three curves on the same axes 

failed to have them all pass through the point (1,1) it led the author to speculate 

how many of their colleagues who opted for three separate axes would have fared 

better. 

Question 8. It is clear that the notation f(x) is very badly understood, even by 

those who claimed to comprehend the idea of a function thoroughly. Most people 

coped with 2f(x) and f(x) + 4 but, as anticipated, produced f(x + 4) instead of 

f(x - 4) and f(x/2) instead of f(2x), if they made any attempt at all. Post-test 

questioning of these wrong attempts or no attempt respondents revealed that they 

did not try putting particular values for x to see what the outcome was; rather, they 



78 

tried to reason it out from the notation directly. 

Question 9. The first step taken by many to simplify (y + 7)(y - 2) > 0 was to 

expand the left-hand side! For most of these students, it was also the last step. 

Again, few recognised immediately that the curve of the relationship 

z = (y + 7)(y - 2) is a parabola. Some, having expanded the right-hand side then 

used the formula approach to find the zeros of the resulting quadratic! 

Question 10. This question was generally answered without any difficulty as one 

would hope, but there were disappointments. 

Question 11. Ignoring the plotters, it was noticeable that very few students either 

knew or bothered to show in their sketches that the gradient of tan x at x = 0 is 1 

and not zero. It does seem that there is almost no approach occupying the ground 

between a careful plot and a vague sketch which shows a few salient features 

accurately. 

Question 12. This question was simply too hard for or totally alien to the 

overwhelming majority of the students who sat the test. 

Question 13. No particularly common errors - usually just slips. 

Question 14. The main stumbling block was to calculate sin 2B via calculating 

cos B first. Some were unaware of how to expand sin (A + C). 

Question 15. Either this type of equation had been met before or it had not. Other 

than arithmetic slips, that seemed to be the main differentiating factor between 

respondents. 

Question 16. Of those who twigged that cos 2x z 1 - 2x2 since sin x z x for the 

value of x given, a sizeable number did not appreciate that x should be in radians, 
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hence the relevance of the information 1t2 = 10 eluded them. 

Question 17. The main differentiating factor here was, as in question 15, whether 

the student had previously encountered the topic at school or college or not. 

Question 18. It was not anticipated that so many students would have difficulty in 

sketching y = 2x3 + 5. Fortunately, some of them redeemed themselves by 

sketching correctly the inverse function to their function. To several students 

"inverse" was interpreted as "one over". Not enough used the line y = x as a 

reflector. 

Question 19. Even if a respondent obtained 2x it was an occasion for rejoicing if 

he then gave a correct sketch. However, eX + 2 and 2ex were not uncommon 

"sim plifica tions" . 

Question 20. A few claimed not to have encountered the term "derived function", 

but most of these people interpreted it correctly. Several used the quotient rule on 

tan 2x in the form sin 2x/cos 2x. It was not unknown to see the coupling of 

answers 

II 

sec22x and .1. e 2; 
2 

this was never satisfactorily explained. 

Question 21. Too many students obtained the equation tan x = -x and gave up; 

they did not appreciate that X = 0 is a root of this equation and would suffice to 

answer the question. 

Question 22. No common error was apparent, although some eliminated t from 

the problem or from the answer. 
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Question 23. There was the expected crop of students who apparently could not 

distinguish between "integrate" and "differentiate". The integral of sin 2x proved 

a pitfall to many; they had something along the right lines, but had not checked 

that they were correct by differentiating back. 

Question 24. Usually only arithmetic slips prevented a correct answer although 

the occasional respondent did not know or did not understand the method of 

integration by parts. 

Question 25. Apart from those who saw x2 and produced f1tx 2dx, there was a 

Significant number who, having written down the correct definite integral would 

insist on evaluating it, either as a multiple of 1t or as a decimal. 

The author has for many years been an examiner for Part 1 Mathematics 

examinations of the Engineering Council (formerly the Council of Engineering 

Institutions). A few years ago the Chief Examinership changed hands and the new 

incumbent decided to test the candidates' knowledge more thoroughly at more 

fundamental levels. It soon became evident that the main reason why candidates 

had done badly in previous years on more searching questions was their lack of 

ability or knowledge at these more fundamental levels. Certainly, the author's 

findings indicate that much of the knowledge one might be tempted to assume on 

entry is not there or is only partly there. This is obviously an important 

consideration in planning a lecture course to first year engineers. If anything, the 

trend is towards a slight worsening of the situation, although nothing significant 

has been detected. What can be said with some certainty is.that the situation is not 

improving. 

Generally, the students' perception of their understanding as provided by 

their questionnaire responses was borne out by their performances in the test. 
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3.7 Does the Integrated Approach Work? 

As has been mentioned earlier, it is all too easy to forget how radical the 

proposals for the integrated approach were in the days when they were first 

propounded. Many mathematics lecturers had a fear of computers or even a 

revulsion for them; in many institutions a separate department was responsible 

for teaching numerical analysis. It was recognised therefore that it would be an 

uphill struggle to convert colleagues to the philosophy of the integrated approach. 

The author has always believed, however, that engineering students use 

mathematics to help them solve their engineering problems and that is the only 

reason whi.:.ch most of them can see for studying it. That student attitude has not 

changed over twenty years and it might as well be accepted. Consequently, as with 

a car mechanic attempting to effect a repair, the engineer will search his tool box 

for the appropriate tools for solution be they analytical, numerical, statistical or a 

combination. He should therefore be taught by an approach which parallels such a 

problem-solving philosophy and that is the approach that the author believes he 

has followed and has been beneficial to his students. 

As one means of testing the belief that students benefit from the integrated 

approach the author recently conducted two experiments. In the first he taught a 

group of students on the Education and Mathematics degree course who had 

previously received separate modules on analysis and on numerical methods. He 

taught them eigenvalues via the integrated approach as outlined earlier. Although 

these students had been introduced to eigenvalues in their first year the 

overwhelming majority admitted to understanding them properly for the first 

time and agreed that the juxtaposition of analytical and numerical methods 

enhanced their understanding of both. They wanted to know why they had been 

taught numerical methods for solving ordinary differential equations in a separate 

course from the analytical solution techniques. One student said that the 

integrated approach seemed "more natural" and this was agreed by her fellows. 

The second experiment was, in a sense the converse. The bulk of the course 
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given to the first year Civil Engineers was integrated, but the numerical methods 

for tackling definite integrals were taught a term after the analytical methods. 

Several students asked the author why they were not taught in the same package 

of lectures; one even remarked that he thought that it was "silly" to separate them. 

When put to the class, this view was generally supported. 

Tutorial help at Loughborough is often provided by post-graduate students; 

those whose first degree was from a university which did not practise our 

'integrated' approach found the approach somewhat strange at first, especially if 

they had to learn numerical methods themselves. Almost without exception they 

expressed the opinion that the integrated approach was a more enlightening 

strategy of teaching. This is a state of affairs in which the author can find some 

satisfaction. 

Although it may be agreed that there is little quantitative appraisal of the 

integrated approach, the collective experience of teaching it over 18 years both at 

Loughborough and at other institutions has led to the conclusion that the students 

are better motivated, are more aware mathematically and are generally better 

practitioners of the art of applying mathematics to engineering than those who 

followed the previously accepted approach. 
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Chapter 4 

From Slide Rule to Micro 

4.1 The Arrival of the Pocket Calculator 

Unquestionably the greatest single technological influence on the teaching 

of mathematics over the last twenty years has been the advent and development 

of the pocket electronic calculator. Those calculations which took several minutes 

of slide rule time to produce an approximately correct answer can now be 

performed in seconds to obtain a precise and wrong answer. It may be regarded as 

cynical to say that the impact of the calculator has been more detrimental than 

beneficial (especially since the author was persuaded by his engineering students to 

forsake the four-figure tables with which he grew up for a slide rule at precisely the 

time that cheap pocket calculators were launched onto the market). However, 

what was envisaged as being a liberating agent, freeing the student from hours of 

monotonous drudgery has had the effect of robbing many owners of the ability and 

the will to think carefully about the calculations which they are carrying out. At 

least the student using a slide rule had to know where to put the decimal point; at 

least he had a feel for the approximate value which would result from his 

calculations; at least he could multiply by 3 in his head. Lest it be thought that this 

is a die-hard view, it has been the author's experience that the student of today has 

lost an instinctive 'feel' for the calculations that he performs. 

Of course, most of the calculations that the engineering undergraduate is 

required to undertake are in subjects other than mathematics. At first, the tutorial 

sheets did not change to take account of the new calculating power at the students' 

disposal. The latter would often complain to their lecturers when their answers 

did not agree with those given at the bottom of the tutorial sheets. After a few 

years explaining to the students that the answers provided had been obtained 

using a slide rule, the engineering staff finally amended the numerical values 
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concerned. However, given that there was no longer a need to concoct input data 

so that relatively straightforward calculations could be performed, there was, in 

general, a slow response to the demise of the slide rule. 

The author was concerned from the outset that this new aid to calculation, 

in un tutored hands, would be used unwisely. Accordingly, the second lecture in 

his course to his freshman engineers is devoted to warning them of the dangers of 

working with inexact data. Entitled "2 + 2 = 3.99", it has also been given to 

many groups of sixth formers (160). The first manifestation of trouble is that of 

"digit diarrhoea". 

No matter how imprecise the numbers on which he operates, the student 

displays his answers to 11 figures, since that is what his calculator output provides. 

The foolishness of this approach is highlighted via the example of calculating the 

third side of a triangle given two sides and the included angle, which have been 

obtained by measurement. 

The lecture continues with some examples of ill-conditioning and examines 

the spread of errors by arithmetic processes. The exercises accompanying this 

lecture are designed to encourage the students in the sensible use of calculators by 

providing suitable examples which require an a priori estimate of the answer and 

a statement of both the accuracy expected and the justification for the precision 

quoted. 

It is sad to reflect that after fifteen years this lecture is still as necessary today 

as it was when it was first given. Despite using a pocket calculator for several years 

at school far too many students arrive at the tertiary stage without, apparently, an 

awareness of the need to produce only as many significant figures as are merited by 

the information provided in each problem. 

A thorn in the flesh of the examiner has been the proliferation of different 

makes of pocket calculator: some have a long-term memory, some are 
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programmable, some have hyperbolic functions and some have statistical featUres, 

to quote a few examples. Legislation as to which calculators can be permitted in 

examinations has proved to be a nightmare and, if Loughborough is typical, the 

question has still not been resolved satisfactorily. "Can't you set an examination 

which does not involve arithmetic calculation?" was the suggestion of one 

harassed Examinations Officer. The author's response has been to ensure that the 

necessary calculations can be carried out on the cheaper calculators just as easily as 

on their more expensive counterparts. He feels that it would be quite unrealistic 

to set an examination paper which did not involve any calculation element. After 

all, mathematics, and especially mathematics for engineers, is not a spectator sport; 

it is a practical subject and the student needs to "get his hands dirty". The written 

. examination should reflect that practical approach. Naturally, coursework can be 

set to test the students' ability on more complex problems. 

In consultation with his engineering colleagues the author selected a simple 

calculator - the Casio fx 100 - which they believed was sufficient for virtually all the 

undergraduates' needs. In the information sent out to new students before they 

arrive the recommendation of this calculator is induded. Of course, there is no 

compulsion on the freshmen to purchase the one recommended but it is a useful 

guideline for them. 

4.2 Going On-line at Loughborough 

.In the late summer of 1971 the author was informed that the University's 

IBM 1620 was to be taken out of commission; undergraduates would in future 

have to use the ICL 1904A. This proposed change filled the author with 

misgivings because he believed that the hands-on facility offered by the older 

machine was a key factor in maintaining student enthusiasm. For many years, 

sixth form pupils from a wide catchment area had spent three days at the 

University on a short course in Fortran programming and the enthusiasm shown 

by these school-children was necessary to the success of the course. 
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Although the author had no wish to be a computer King Canute, he made 

strenuous representations to keep the older machine for a while and managed to 

delay its demise for a few months; the time thus gained was used to obtain the best 

deal possible for the undergraduates. It was agreed that the Data Preparation 

Section of the University Computer Centre would prepare a deck of punched cards 

from the coding forms submitted by the students. Any subsequent corrections 

would normally be punched by the students themselves. If required, the output 

from the computer run could be collected from the Computer Centre, but the 

norm was to make use of the four-times-a-day delivery service provided to several 

points on the campus. The intention was to cut down the time that a student 

would have to spend in getting a program to run successfully. 

Despite all these efforts, the lack of direct involvement with the computer 

led to a decline in enthusiasm for computer programming, as had been expected. 

Having written a program and submitted the coding form there might easily be a 

day's wait before the cards were produced. There was encouragement from the 

Computer Centre to have the program compiled but not run on a first pass 

through the system: understandably, they did not want a program which might 

require graphics and other facilities to fail on compilation and abort the run. 

However, this had an obvious drawback in that it provided a further delay to a 

program which compiled successfully first time and that delay could be more than 

half a day if the student's timetable did not permit him to check the next delivery. 

If the compilation was unsuccessful then the student could punch the 

required corrections on to new cards, re-assemble the deck and re-submit the job. 

This process would continue until compilation was successful and, hopefully, the 

run was also successful. Some students preferred to use the 'cafeteria service' 

available at the Computer Centre so that they could achieve several passes 

through the system at one visit. There was a Program Advisory Service operating 

there at certain times of the day but the queues were often long. 

The author agreed to check the coding forms prior to submission to try to 
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eradicate "obvious" errors and to help seek out the sources of compilation errors. 

Looking back, however, it does seem that our expectations of the system exceeded 

its ability to "deliver the goods". The batch processing era was a dark age in the 

computing facility available to undergraduates. 

In 1974 the University installed a Modular 1 computer which had a limited 

number of teletypes on-line. In 1978 two Prime Computers were installed with a 

larger number of terminals available across the campus. However, batch 

processing on the mainframe was still the order of the day for most students, even 

though several departments had purchased their own mini-computers, and it was 

not until the early 1980's that there was a large terminal facility for undergraduates 

organised under the auspices of the Computer Centre. 

A difficulty arose in some engineering departments in that the in-house 

computing facilities which they offered were often varied and not necessarily 

compatible with those provided by the Computer Centre. This caused frustration 

for students in that they had yet another variable with which to cope as they 

started to learn programming. It is important to realise the obstacles placed in the 

way of a beginner in his endeavours to run successfully his first program. The 

effort is not commensurate with the outcome and he needs considerable 

encouragement to maintain interest and enthusiasm until he becomes more 

proficient. 

The question of which programming language should be taught to the 

engineering undergraduates is a long-running one. The wishes of the serviced 

department have to be borne in mind; since it would be unfair to ask the students 

to cope with a second language just as the first one was being mastered, it is likely 

that the engineering staff's preference would be taken up. 

In 1969 at Loughborough there was no choice: Fortran IT was the order of 

the day. Similarly, when the ICL 1904A was the undergraduates' computer there 

was one language that was to be taught and that was Fortran IV. Not only was it 
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the most widely-used scientific language but there was a great deal of supporting 

software, including the Numerical Algorithms Group (NAG) library. 

In general, most students did not find the language too difficult to master, 

with one exception. Both for the undergraduate engineers and for the 

sixth-formers who attended the three-day programming course it was the 

input/output statements which caused the chief problem, especially the correct use 

of FORMAT statements. The majority of compiling errors lay in that category and 

an attempt to redress the balance was made by a colleague who produced a 

simplified input/output routine; the attempt was only partially successful and 

many students found the subsequent transition to the more usual format 

requirements equally as difficult as their predecessors had done. 

A major stumbling-block for the novice programmer is that unless the 

program is grammatically correct it will not compile successfully: probably the 

only aspect of the undergraduate course where correctness is essential for further 

progress. This is very discouraging for the learner: it is difficult enough to write 

programs in the early stages without the constant irritation provided by all the 

niggling and trivial errors that seem to occur. 

Undoubtedly, the highest incidence of errors at compilation occurs in the 
. / 

making of elementary mistakes - mis-spellings, omitted commas, unmatched 

parentheses, and so on. This is true of many mistakes in mathematics generally: 

where the student is having to concentrate, errors are less likely, but where he is 

carrying out a routine, straightforward task then he is at his most vulnerable. 

How often has an attempt at an examination question come to grief because a 

minus sign has been lost or a li~e of working has been copied wrongly from one 

page to the next? Of course, with a respectable editor and when typing in a 

program at a terminal on a line-by-line basis such mistakes are more easily 

detected and corrected. However, there is a tendency amongst some students to let 

the system do the error-checking and for them not to .think too carefully before 

they type in each line. In addition, there is the time-wasting approach of 'thinking 
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at the terminal' which Mustoe (104) had warned about. 

There is little doubt that when students were taught Basic as a first language, 

these mistakes diminished, perhaps because they had less to remember in the early 

stages of the learning process. Basic was a more natural language to learn, being 

more closely allied to written English and Mathematics. 

Under threat from Basic, the Fortran advocates responded by developing 

Fortran 77; among the new features was a simple input/output option as an 

alternative to the standard FORMAT construction. It was now possible to input 

via READ ., list in a fashion similar to the Basic INPUT list. 

Output, also, could be achieved via PRINP, list which mirrored PRINT list 

in Basic. Another beneficial modification was the introduction of the "block IF" 

construction which allowed a greater flexibility when dealing with branching in a 

program. 

In the late 1970's a number of engineering departments at Loughborough 

began to feel that Fortran was too difficult as a first language for their students and, 

when terminals became more common across the campus, asked that Basic should 

be taught in the first year instead. Most still wanted Fortran to be taught in the 

second year, however. Accordingly, the author acceded to their wishes despite a 

personal belief that those students who might have found exposure to Fortran as 

their first language to be a painful process would find difficulty in the newer 

approach. He remembered only too well the lessons of the experiment with the 

Initial Teaching Alphabet. Personal experience indicates that roughly the same 

proportion of students find programming hard going now as was the case under 

the former approach. 

There is a school of thought which argues strongly that Fortran is moribund 

and Basic is out-dated; indeed, Pascal is the language to teach. That may wen be 

true in the future, but it is not a proven case for engineering undergraduates at the 
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moment (161). If it was really Mrs. Thatcher's hope that her policy of a micro in 

every school would lead to an upsurge in computer literacy it does not seem to 

have been realised in many cases - at least with regard to experience of 

programming prior to entry to tertiary education. There may well be a few micros 

in every school, but very few freshmen that are taught by the author seem to have 

had much practical experience of using them. Many of those who have such 

experience own a micro themselves and have pursued their interest out of school. 

A colleague who tried teaching his students Pascal as a first language found the 

experiment unsuccessful, mainly because of their inexperience. In any event, 

there is a dearth of texts on Pascal currently available which are suitable for a 

novice programmer and at Loughborough the support offered by the Computer 

Centre at the moment is not satisfactory. 

On another front, there are those engineering lecturers who believe that it is 

unnecessary for their students to learn any programming language. After all, they 

will probably use only packages during their working lives and it will suffice for 

them to know how to operate them successfully. Would such lecturers subscribe 

to the view that a Civil Engineering undergraduate need never construct a model 

structure and test its load-bearing capacity or that an Aeronautical Engineering 

undergraduate need never carry out experiments in a wind tunnel? 

The question of who should teach programming is another item for debate. 

There are those who would argue that the teaching of computer programming 

should be carried out by the Computer Centre or by a Computing Science 

Department, or even by the engineering departments themselves. The author 

strongly disagrees with these views. The objections to the first two categories are 

based on his experience that the more involved in computers and computing a 

person is, the less able he is to appreciate the difficulties of the novice 

programmer. Courses given by these experts have assumed far too much 

familiarity with the process of programming and have gone far too quickly over 

the fundamentals, (which, admittedly, can be boring to teach). The type of person 

best qualified to teach the elements of computer programming in, say, Basic or 
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Fortran is a user of the computer service provided. He will know the system from 

the customers' point of view and can cushion the student through the frustrations 

and delays which cloud the problems of learning the language itself. Why not let 

the engineering staff teach the programming, then? The author believes that, 

since the integrated approach incorporates computer-based methods of solving 

problems, it is natural that the mathematics lecturer should be able to introduce 

programming as one of the items in the engineer's mathematical tool-kit. The 

optimum involvement of the engineering staff is in the setting and marking of 

suitable exercises for coursework assessment, as explained in Section 3.5. These 

members of staff can set programming exercises as part of their own lecture 

courses if they so wish, of course. However, a necessary safeguard is to check that 

there is no duplication of work and at Loughborough in the Civil Engineering 

Department this role is assumed by the appropriate year tutor who also ensures a 

reasonably uniform loading over the session. 

4.3 The Computer Terminal Laboratory 

When terminals were installed across the Loughborough campus, most 

were sited within departments in twos and threes. Two laboratories were set up, 

however, one in the Computer Centre and one on the other side of the campus in 

the area where most of the engineering departments are located. There were, in 

the main, two kinds of terminal: Trend teletypes and Newbury VDU's. It was 

decided to stock the "engineering" terminal laboratory with the former kind; this 

allowed hard-copy to be obtained on the paper roll output, but it did not encourage 

the graphical display of results and this was a concern. 

Schey et al (102) had described how they had designed and tested a 

laboratory, computer and calculus-based course in mathematics where the role of 

computer programs was to test mathematical models against 

experimentally-obtained results. However, experimental work tends to take a 

disproportionate amount of time to organise and carry out and the present author 

was envisaging a more modest approach in Loughborough - the use of a computer 
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terminal laboratory to assist in the teaching of numerical methods; reference has 

already been made in Chapter 2 to his ideas (104). 

Harding (162) described his Computer-Aided Teaching of Applied 

Mathematics (CATAM) project six years after its inception in 1968. His system 

comprised a Modular One Computer and a DEC TSS/8 System linked by specially 

designed hardware. There were 15 teletypes, a hard copy unit and two television 

monitors. The aim of the project was to supplement the teaching of analytical and 

numerical techniques both in the lecture room via class demonstrations and in 

. the laboratory via individual usage. To allow the rapid assimilation of results, 

graphical output was emphasised. In the 8-week course given to second year 

students the 16 one-hour lectures were supplemented by 8 two-hour optional 

practical class sessions. 

The first two practical sessions were devoted to learning how to use the 

system; these were followed by five exercise sessions, the last week being set aside 

for catching up. Each exercise was assessed by a written report which included 

copies of programs and the results obtained. The five exercises were: 

solution of equations, 

quadrature, 

ordinary differential equations I and il, 

Laplace's equation. 

In addition to the items listed earlier, each report had to contain answers to specific 

questions asked in the hand-out accompanying each of the exercises. 

A follow-up course was available to final year students: this also comprised 

an optional laboratory component. In his paper (162), Harding gave an indication 

that these optional sessions were enjoyed by his students and were a valuable 

addition to the teaching. 

Reference was made in Section 2.7.2 to the author's hopes for a terminal 

laboratory at Loughborough. The reality was much more prosaic, however. The 
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room provided was small and narrow with no real facility to use it as a teaching 

area. Sometimes the mainframe computer was down, often not all of the ten 

terminals would be working, more than occasionally there was no reserve stock of 

paper rolls. These may seem to be trivial points, but anyone who has experienced 

such annoying set-backs will know the harmful effects that they have on the 

morale and the enthusiasm of the students (and the lecturer). It is embarrassing 

when the students complain that they had better facilities at school, as was the case 

on three occasions. 

The author envisaged two modes of use for the laboratory: as a room where 

the students would attempt to run the programs that they had written and could 

correct them under supervision and as a place where investigations could be 

carried out using pre-written programs which the students could call up. In this 

latter mode five assignments were to be tackled; the topics chosen were 

numerical integration 

solution of simultaneous linear equations 

solution of non-linear equations 

approximation of functions and data 

ordinary differential equations. 

Due to the group size and the number of terminals available, each student 

attended the laboratory for one afternoon on a fortnightly basis, although he could 

use the laboratory at the Computer Centre outside timetabled hours if he required 

extra time. 

For each of the five assignments, the following format was adopted. Before 

each session the students would be given a sheet comprising about five problems 

on a particular topic. If any preliminary analytical work was required then the 

students were expected to carry it out before the practical session. The problems 

themselves were designed to go beyond the simple use of a black box. Having used 

the prepared programs to obtain results either in numerical form or as coarse 

graphs, a short report was to be written on the relative merits of each method used 

and on any difficulties encountered with each problem. The assignment sheet on 
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numerical integration is shown on page 95. (Programs were available for carrying 

out Simpson, Trapezoidal and Gauss-Legendre integration). 

Question 1 

Here the student is expected to see that for the same computational effort 

Simpson's rule gives a more accurate result than the trapezoidal rule. In 

each case, the accuracy improves as the number of strips increases. By using 

the formula for the maximum predicted error the student can obtain the 

number of strips required to ensure that the quoted accuracy is achieved. It 

is to be hoped that he will remember that the Simpson rule demands an 

even number of strips. The number of points chosen for the 

Gauss-Legendre method is a matter for him to decide, and justify. 

Question 2 

It was not anticipated originally that some students would transform the 

integral analytically so that it was rendered finite. The problem here is to 

decide how to break down the infinite interval into a succession of 

sub-intervals. How many? How wide? How accurately should the value of 

each of these sub-integrals be obtained? Can any of the later intervals be 

ignored? 

Question 3 

The difficulty here is that an analytical solution is not available. The hope 

is that the collection of estimates obtained using the step sizes suggested will 

allow the student to decide how accurately he can quote his answer. It 

should also suggest the dangers inherent in using just one step size when 

evaluating an integral numerically; in any event, what should that single 

step size be? 

Question 4 

At first sight this question may seem futile. However, an inquisitive 

student might be expected to investigate the problem to see how many strips 
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ASSIGNMENT TWO 

I Using (a) the Trapezoidal rule (b) Simpson's rule estimate the value of 

I 

I =J ~ dx. I+x 
o 

With each method try the following values of h: 
I, 0·5, 0·25. 

Try to get answers correct to 5 dp. 
Finally, make a further estima\e using Gauss' method. 

2 Estimate via Simpson's rule, then Trapezoidal rule the value of 

3 Using Simpson's rule with h = 0·25, 0·1, 0·05, 0·02, 0·01 evaluate 

J
I x7J l_x2 

I = dx. 
-I (2_x)6.5 

10 

4 Estimate J = J e-x dx by Trapezoidal and Simpson's rules; use h = 1. 

o 

5 The Debye function, encountered in thermodynamics, is 

x 3 

D(x) = 3x-3 J -y- dy. 
o eY-I 

Evaluate D(x) using (a) Simpson's rule and (b) Gauss' method for 
x = 0·5, 10, 50, 100. 
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would be necessary to achieve a specified accuracy. A comment about the 

difficulty of representing reasonably accurately an exponentiaJIy decaying 

function by straight line or parabolic segments would be an obvious 

conclusion. 

Question 5 

The first hurdle to overcome is to cope with the non-standard notation; it is 

unusual for an integral to have a variable upper limit and yet to be 

evaluated by a numerical technique. The second hurdle is that e Y becomes 

too large for the computer to handle when y = 100 and this will occur with 

the Simpson rule which uses the upper limit of the integral as one of its 

ordinates; further, if too high an order of Gauss-Legendre formula is used, 

the same problem will be encountered. 

Generally, the students performed better on this form of investigation and 

report-writing assignment than might have been expected from their overall level 

of attainment. There was, however, a very wide range of quality of responses and 

this made marking difficult. The course of which these assignments formed a part 

has shifted emphasis in assessment from 50% examination, 50% coursework to 

100% coursework. The danger with coursework assessed in pieces is the the 

marker can lean towards the lenient and a good student can obtain a very high 

mark or the marker can fight shy of this approach and give students an 

unwarranted low mark. At the other end of the spectrum it is a worry how low to 

set one's base: how bad is a poor submission? The author grades each item of 

coursework as it is submitted and then collects all the coursework back and 

assesses each student on his complete submission. 

The five basic items of coursework were augmented by one on a set of Basic 

programs, one on a set of Fortran programs, one on using the NAG library and 

one on using the graphics library of GINO and GINOSURF. 
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4.4 Enter the Micro 

In the early 1980's the micro began to make its presence felt in educational 

circles. The Government's "pound for pound" policy to aid schools in the 

purchase of the BBC micro was backed by the Microelectronics Education 

Programme, by articles in journals encouraging teachers to get involved and by a 

series of programmes on television. Several engineering departments at 

Loughborough decided to purchase micros for their own students to use, but there 

was not always a clear policy within a department, let alone between departments. 

The Civil Engineering department, for example, bought a mixture of PET 

and Sharp computers and this meant that the early tutorial sessions to back up the 

lectures in Basic had to be arranged so that a student was able to use the same 

machine each time. As the decade advanced some students arrived with their 

own micros, yet many had never used a computer in their lives and this meant 

that the range in computational experience was far greater than some twenty years 

earlier. 

However, the central facilities were limited and the computing aSSignments 

continued to be centred on the terminal laboratory. Not until the summer 

vacation of 1986 was the enlightened step taken to make available a 

microcomputer room on the "engineering" side of campus. This room was 

spacious, light and well laid out in complete contrast to the terminal laboratory. It 

contained thirty BBC B micros linked via an Econet level m facility. 

The first task required was to re-write the prepared programs in BBC Basic 

and to take the opportunity of utilising the graphics facility of the micro. 

The contrast between the last two sessions and the ones which preceded 

them has been marked. The students have responded to the more favourable 

surroundings by displaying an enthusiasm much greater than their counterparts. 

Although the room is booked for three consecutive hours in the afternoon, the 
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first two only are timetabled; however, the majority of students stay for the third 

hour. After the first three weeks, attendance is programmed on a fortnightly basis, 

the group being divided into two approximately equal subsets. Many students 

attend on their "unscheduled" weeks in order to make use of the facility. 

From the author's point of view there was no need to worry about the 

mainframe being "down" and there were no paper rolls to worry about. There 

were no frustrations due to the system having several competing users. It was 

possible to concentrate on the purpose of the laboratory session. 

The opportunity offered by the micro was taken up in a different way. Since 

1983 the author had been a member of the MIME team at Loughborough which 

was concerned with Computer Enhanced Learning of Mathematics. In addition to 

the work described earlier, software was used in lectures and in tutorial sessions. 

The details of the MIME project appear in the next chapter. 

Several authors have described the work that they have carried out in an 

endeavour to involve the computer in their teaching programmes. Here we 

review a personal selection of their views which gives an awareness of the wide 

range of different approaches. 

Haggett and Le Masurier (163) gave details of the course in computer 

a pprecia tion 

Polytechnic. 

given to first year Mechanical Engineering students at Brighton 

They took advantage of their Induction Week to introduce the 

students to the VAX system and to the elements of Basic programming. Each 

student receives four lectures and has four hours of terminal time allocated. 

During the year he is given exercises of increasing difficulty each of which requires 

the writing and running of a computer program for its solution. Following the 

summer examinations a period is spent on Engineering Applications EA1 as 

required by the Engineering Council. During the first two weeks of this period 

students are given a number of small group projects of an open-ended nature. 
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The authors have three stated aims: to improve their students' computing 

skills; to help them appreciate the use of the mathematics they have learned; to 

make them appreciate the relevance of computing in an engineering context. 

They prefer to use the V AX system to a micro computer environment, citing as 

one advantage of the former the simplicity with which data or programs can be 

transferred from one user to another. 

Jacques and Judd (115) have developed micro-based software to support 

courses in numerical mathematics given to science and engineering 

undergraduates at Coventry (Lanchester) Polytechnic. The topics covered included 

the solution of simultaneous linear equations, numerical integration, curve 

fitting, eigenvalues and eigenvectors, and the solution of ordinary and partial 

differential equations. The programs were designed to allow the students to 

investigate in an experimental mode the properties of the various numerical 

methods covered in the lectures. 

In a typical tutorial session the student will run a stored program to solve a 

simple example which can also be solved using a pocket calculator. Then the 

student progresses to more difficult examples designed to test the robustness and 

behaviour of each method. Some examples are chosen deliberately in order to see 

the method breaking down. The student is required to write a report on his 

investigations. Jacques and Judd prefer a micro for their tutorial sessions, not least 

because of its more friendly interface with the user. 

Beilby (164), faced with a reduction in lecturing time allowed by engineering 

departments supplements his formal lectures with a series of laboratory sessions 

held in a microcomputer room. The BBC machines are linked by an Econet 

facility. Each week the students are given an examples sheet comprising a set of 

problems on a common theme. Stored programs are available as indicated on the 

sheet. Sometimes the use of these programs is as computational aid - for example 

a Newton-Raphson search program may be used to find the roots of the auxiliary 

equation of a third-order linear ordinary differential equation. On other examples 
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the problem is heavily couched in engineering terms and the stored program is to 

be used in an investigative manner to study the behaviour of the underlying 

engineering system. 

The student responses to the exercises are collected in on given days, 

marked with comments, and returned. The overall performance on these 

exercises forms part of the mathematics assessment. 

Mackie (165) had followed the advice given by Mustoe and his colleagues 

(118) when designing a computer-based package, NODES, to solve ordinary 

differential equations. The package was used by both first and second year students 

to carry out investigative assignments in a manner similar to that of Beilby. 

Hundhausen (107) describes how she used the computer to enhance the 

teaching of ordinary differential equations as part of an analysis course. A 

program which can be run on a DEe-l0 computer can "solve" a system of up to 18 

simultaneous first-order ordinary differential equations. The student user 

supplies the system of equations programmed in Fortran and the input parameters 

are step-size, maximum number of iterations and initial values of dependent and 

independent variables. The output of the program is in graphical form; for each 

dependent variable the graph of the variable itself is produced alongside the graph 

of its derivative. In addition, a phase plane plot is available. The students taught 

by this approach showed better comprehension of the behaviour of the systems 

studied than their counterparts taught by a traditional approach. 

Tall (166) discussed the relative merits of two ways of using the computer to 

enhance the learning of mathematics: 

(i) using prepared software which was error-protected and designed specially 

for demonstration and investigation 

(iD the students modifying short programs and writing their own programs. 

He believed that a sensible mix of both approaches was the ideal. Programming 

demanded a substantial overhead in time and effort, but it did give initiative to 
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the student. Good prepared software helped the student gain greater insight into 

mathematical processes and concepts. 

Jaen Gallego et al (167) describe a computer-assisted system of teaching 

linear programming. They show in detail how the teaching of the simplex 

method can be enhanced via a micro-based program. The successive simplex 

tableaux are displayed together with suitable messages on screen. The program 

also offers the student the opportunity to carry out a full post-optimality analysis. 

4.5 The Impact of the Computer 

Several authors have tried to assess the impact that the computer has had, 

or might have on the teaching of mathematics. Again, a personal selection of 

papers is presented to give a flavour of what is currently being debated. 

Morris (168) believed that it was of crucial importance to emphasise the 

algorithmic approach to the solution of problems. He listed six steps to be 

followed in such an approach: 

(i) the problem must be specified 

(ii) the algorithm must be designed 

(iii) there must be a verification that the algorithm does indeed meet the 

specification 

(iv) the demands in time and storage space to carry out the computation 

must be acceptable 

(v) the algorithm must be implemented and tested 

(vi) the algorithm should be documented. 

Whilst the mathematics needed by a civil engineer would differ from that of a 

chip designer, the requirement for both to have a foundation of algorithmic 

training was increasing. 

Winkelmann (109) was concerned with the impact of the computer on the 

teaching of analysis. The dominant position of analysis in the curriculum was 
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threatened since calculations such as the location of extreme values could easily be 

programmed and since many engineering applications of mathematics use discrete 

methods. He believed that the teaching of analysis should be modified to 

incorporate numerical methods and the process of modelling. Analysis should 

guide and direct the use of appropriate numerical methods rather than be 

contorted into producing artificial numerical results. There was scope for 

induding symbolic differentiation by program in an analysis course. 

Eriksson (108) felt that the computer was not making as beneficial an impact 

as it should. The main contributory factor was the lack of good software. He 

feared that the alternative to using other people's software which did not quite fit 

the bill was to write one's own and thereby commit the bulk of one's working 

hours to that activity. Because attention had been diverted towards computers, 

mathematics was suffering and the impact of the computer had if anything been 

harmful. He expected that it would be some considerable time b!,!fore the 

computer found its rightful place as an indispensable tool of an applied 

mathematician. 

Robson (138), (169) argued the case for computer simulation models. He 

expected that the development of 'expert' mathematical systems would lead to a 

thorough reappraisal of mathematics curricula for engineers and, as a 

consequence, computer simulation would assume a more dominant role. 

Rowe (110) stated that all real design problems would, in the future, be 

handled numerically; consequently, he believed that the need for teaching 

advanced mathematical techniques would diminish. He was strongly opposed to 

the idea that all design teaching should be computer-orientated, since this would 

lead to a black-box approach whence the basic principles would be lost. Sufficient 

mathematics, especially calculus and trigonometry, should be taught to allow the 

analysis of those basic principles; he quoted examples from the area of mechanics 

of solids to reinforce his arguments. An inter-departmental approach to the 

teaching was a key feature of his scheme. 
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The concern that the author had felt about the lack of suitable computing 

facilities for teaching was shared by many other academic staff. In June 1982 the 

Computer Board for Universities and Research Councils responded to this concern 

by setting up a Working Party to assess the type and level of facilities that should 

be provided. In December 1983, the Working Party, which was chaired by Dorothy 

Nelson, produced its report (170) which was intended as a discussion document. 

The Report came out strongly in favour of a massive upgrading of facilities; 

it was unequivocal in stating that "existing computer facilities are inadequate, both 

in quality and quantity, for the genuine needs of students on undergraduate and 

postgraduate taught courses". Computer Centres would have to be strengthened 

in order to provide the support services necessary to cope with the expected 

increase in demand. There was concern that the universities compared 

unfavourably with the polytechnics with regard to spending on computer facilities 

for teaching. The Computer Board would need to increase its spending from less 

than £1 M per annum to over £5 M per annum. 

The Report commented that there was currently an average of 5 micros per 

secondary school in the UI<. The general increase in computing awareness had led 

students to expect a range of good computer facilities at university level; the 

danger was that this expectation could often not be met. As an example of the 

shortcomings they estimated that the average allocation of central file store was 

0.25 M byte per student, whereas they envisaged a future requirement of at least 

four times that amount. 

The Report declared that a good university provision by 1992 would include 

a workstation in every study-bedroom and on every library desk. Fast high-quality 

printers would be located in most university buildings. New tutorial software 

would be produced by small teams of lecturers, programmers and educational 

technologists. All students would regularly send and receive electronic mail for a 

variety of uses including writing essays and answering test question. 
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Did the Working Party have a collective tongue-in-cheek attitude when 

they wrote their recommendations? In 1988, more than half-way to their target 

date of 1992, there is little indication that many universities are on schedule to 

realising the status of "good"! 

However, one outcome of the Report was a joint initiative by the Computer 

Board and the University Grants Committee to provide support to universities for 

the use of computing facilities for teaching. The aim was to stimulate new 

teaching methods in all subject disciplines by "pump priming" a number of 

projects. Each project had to develop the use of computer facilities in teaching in a 

specific subject area, to assess the hardware requirements, to decide how the 

educational potential of the new technology could best be achieved and to produce 

the appropriate software tools and enabling software. 

In all, 129 projects from individual universities and 10 joint projects were 

supported by the initiative. Two were in the area of engineering mathematics: at 

Heriot-Watt University and Loughborough UniverSity. The latter project, 

proposed by Professor Bajpai and the author, will be described in the next chapter. 

The CALM project at Heriot-Watt University was established to help combat 

the problems of large tutorial classes: Beevers et al (171). A networked laboratory 

of 32 Research Machines Nimbus microcomputers was established and software 

units were written in the area of first year calculus. The language chosen was 

Pascal and each unit was designed with three major components: a theory section, 

a worked examples section and a test section. In all, 25 units were prepared, one 

for each week of the course. In an endeavour to evaluate the effectiveness of each 

unit, seven students, chosen at random, met with a project member each week to 

give their opinions from a user's point of view. Early results indicated that some 

of the students with good entry grades had benefitted from the computer-assisted 

approach. 

At Canterbury in 1986, a conference was held on the role of computers in 
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the teaching of mathematical sciences in higher education. One feature of this 

conference was the inclusion of a demonstration of the computer algebra system 

REDUCE. A year later at Edinburgh, Hodgkinson (172) demonstrated the merits of 

REDUCE, MACSYMA, MAPLE, muMATH and SMP. He had used algebraic 

computing to reinforce and consolidate material taught in traditional style in 

lectures. Fugard (173) described his experiences in using MACSYMA as part of a 

solution procedure. He was of the firm opinion that the computer algebra package 

had a useful role to play in releasing the student from time-consuming 

manipulation to allow more thought on the nature of a problem and the concepts 

involved in its solution. It was also important that a student be able to write 

simple programs which incorporated the facilities of the computer algebra package. 

The author of this thesis has a somewhat less than enthusiastic view of the role of 

such packages in engineering mathematics education at the present time. 

Considerable effort has to be expended to learn how to use the packages sensibly 

and until they are widely available in industry it does not seem a worthwhile 

investment. 

Over the last twenty years the author has witnessed enormous changes in 

the computing power available to his students; from slide rule and four-figure 

tables to the pocket electronic calculator and from the IBM 1620 (with the need to 

input punched cards by hand) to terminals and microcomputers. What have been 

the effects on the teaching of mathematics to engineers as a result of these changes 

and similar changes in other institutions? 

The author fears that the overall response to such changes has not been as 

positive as it might have been. The increase in computing. power has not been 

matched by a comparable rise in the relative importance of numerical and 

computer-based methods. In some cases the only evidence of a move towards 

recognition of the computer age has been ,the appearance of a token question on 

numerical methods in the examination paper. Part of the problem is that in 

several institutions numerical methods and computer programming are taught by 

different departments or are taught in separate courses given by the same 

1 
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department. Furthermore, there has been a reluctance to make extensive use of 

computer packages. 

There was a considerable time-lag before the importance to engineers of 

graphical output was recognised by those in computing circles and suitable 

hardware and software was provided. The sheer scale of the task of interpreting 

extensive amounts of tabulated data was daunting and the unsatisfactory nature of 

graph plots emanating from the line printer detracted from the use of the 

computer as a natural aid to the processing of experimental results; rather, the 

activity was seen at best as a necessary evil. 

The microcomputer has been around for many years now but it is 

under-used to an extent which gives cause for concern. Where is the software to 

allow this new teaching aid to be exploited fully? Unfortunately there is not 

sufficient quality software available to permit the involvement of the micro in the 

teaching process to a level anywhere near that which might have been expected a 

few years ago. 

The clear view coming from all the workers in the area of computer-assisted 

learning is that a laboratory-based approach which uses good software with 

well-prepared assignments is of definite benefit to most students. The 

stumbling-block of the lack of good-quality software is a situation which is 

deteriorating as advances in hardware make it more difficult for the software 

authors to keep pace. The story is taken up in the next chapter. 
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ChapterS 

Computer Enhanced Learning of Mathematics 

5.1 The MIME Project 

At the start of the 1980's the microcomputer was being seen as an exciting 

new tool for teaching. Software was being written, but mainly for the primary 

school and the early years of the secondary stage. Relatively little seemed to be 

taking place at the level of the school/university interface and above and there 

was a feeling abroad that this situation needed rectifying. It was suggested that 

Loughborough, as a leading innovator in mathematical education, notably in the 

mathematical education of engineers, should 'blaze the trail' in this area of 

activity. Whereas individuals were writing software which they would use in 

their own teaching, the time scale was long and the finished product had 

somewhat naive screen displays. It was clear that if real progress was to be made 

then several individuals with a common interest and purpose would have to 

work together, with suitable back-up from a number of programmers. 

Early in 1983 the author and Dr D. Walker were invited by Professor A. C. 

Bajpai to discuss with him the possibility of forming a project team to explore the 

use of the microcomputer in mathematics teaching. These discussions centred on 

the kind of material to be produced, which syllabus to cover and the form in 

which the material would appear. 

The early examples of microcomputer software for mathematics education 

seen by the author were, on the whole, a disappointment. In some cases the sole 

concession to user-friendliness was an initial request to the user to type in his 

name; thereafter, at suitable places in the text appearing on the screen the 

appropriate name would be reproduced. This approach smacked of the advertising 

campaigns of firms who send out regular mail-shots. In other cases the screen 
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displays appeared to constitute a programmed text which had been transferred 

onto the micro. In yet other cases the screen displays were somewhat simplistic 

and paled into insignificance when compared with screen displays of the 

profusion of software games then available. 

The author had in mind the comments of school teacher friends who had 

tried out software in their classes only to be confronted with a "crashed" program 

which left them with a blank screen and no idea of how to return to the point 

immediately prior to the disaster. Others had expressed the view that some of the 

commercially available software was too rigid in its construction, leaving the 

teacher in a passive role. The comment was also made that some of the screen 

displays looked amateurish. 

It was decided early on in the tripartite discussions that the software to be 

produced would constitute a computer enhanced learning package, that is to say 

the software would be written in as flexible a form as possible, placing the 

minimum of restriction on the teacher in terms of his style of teaching, his order 

of dealing with the relevant topics, and the subject development. A menu-driven 

suite of programs was an obvious essential. The software was to be supplementary 

to the teacher, used either by him in the classroom or by individual students in a 

self-teaching mode. Our underlying philosophy was emphatically that the teacher 

was to be the key figure in the learning process, involving the computer as and 

when he required. Our software units would differ in style from conventional 

Computer-Aided Learning and Computer-Aided Instruction packages. 

It was felt that the area of mechanics at the 'A' Level/first year university 

interface was appropriate as a first area to tackle for the following reasons. 

(i) This area of study appeared not to have attracted much attention 

from the authors of educational software. 

(ii) There was experience amongst the author and his colleagues in 

teaching the material at the appropriate level. 
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(iii) The dynamics part of the syllabus offered a natural medium for 

graphical displays. 

(iv) Many engineering students arrived at tertiary level institutions with 

a poor, or sometimes non-existent, knowledge of mechanics. 

(v) There was a wider potential market if sixth form students could be 

included in the target user population. 

At this stage, three further colleagues were recruited to the team: one was 

currently teaching mechanics on our undergraduate Education and Mathematics 

course and was a co-author of several programmed texts; one had experience of 

applying the principles of mechanics to industrial problems; the third was well 

versed in the workings and capabilities of microcomputers. 

The next decision to be made was on which micro to base the software; the 

best information to hand suggested that the BBC B micro would allow us to reach 

the widest group of users. Bajpai and Downend (122) quoted the results of a 

survey conducted early in 1987 which indicated that the BBC micro still had a 

share of the VI< market of over 70% in universities and polytechnics, about 90% in 

further education and 93% in secondary education. 

Two programmers, who had both graduated from our course in 

Mathematical Engineering, were recruited to the team. Both had spent some time 

in industry before embarking on the course and had an ideal combination of 

knowledge and skills to help us achieve our aims. It was decided that a typical 

software unit would comprise one or two discs, a user guide, a teacher's gUide and 

a set of work cards which could be used by the student when employing the unit in 

a self-paced mode. The discs were 40-track, single-sided, double density of 5 1/4" 

diameter. 

The project was entitled Micros in Mathematics Education, to be known as 

MIME, and was launched at Loughborough under the directorship of Professor 

Bajpai. The experiences of the MIME team in the early years have been well 
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documented: (117), (118), (119), and (120). 

The first unit to be completed was on projectile motion; it is perhaps not in 

the form and style which would have been the case had it been tackled later in the 

series of units. It was considered essential to have one unit ready for public 

viewing as early as practicable so that the work being done by the MIME team 

could be demonstrated and comments received which could be fed back into the 

production process. 

Mustoe was the author of this unit and one of the programmers was 

allocated to the unit on a full-time basis; the other programmer was involved in 

many of the discussions, since knowledge shared could only be of benefit to all the 

team, especially in the early stages of the project. 

The author, although by no means an experienced user of the BBC micro, 

was well aware of the limitations likely to be imposed on his lofty ideas by the 

practicalities of the machine's capabilities. He realised that it was important to 

draw up his plans before consulting the programmer, as even his limited 

experience had taught him that the likely first response of the programmer was 

"We can't do that ". At a later stage of the project one of the team acted as software 

advisor, being an intermediary between author and programmer. 

Laurillard (174) has given a list of the minimum steps that she considers 

necessary to carry out a "real" evaluation of micro-based software. In essence, 

these are as follows: 

(i) Specify aims and objectives and any assumed pre-knowledge. 

(ii) Check that the program can conform to the above. 

(iii) Design pre- and post-test questions to check both the pre-knowledge 

and the attainment of objectives. 

(iv) Monitor and record student performance on the programs. 

(v) Analyse the data and decide on modifications to the software. 
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The author, in an informal manner, effectively followed this recommended 

path. The team had decided on a set of general aims and objectives. These were 

(117): 

aims. 

(i) To aid understanding of the subject matter. 

(ii) To add interest to the study of the subject matter. 

(iii) To be interactive. 

(iv) To be 'user friendly'. 

(v) To be 'idiot-proof'. 

In addition, the following specific objectives were set. 

(i) Show that the motion of a projectile under the influence of gravity 

alone is the resultant of two separate motions - vertical motion under 

gravity and a uniform horizontal velocity. 

(ii) Show that the horizontal range is proportional to the horizontal 

velocity. 

(iii) Show that the sum of kinetic and potential energies of the projectile 

is constant during the motion. 

(iv) Demonstrate the general properties of the parabolic trajectory.of the 

projectile. 

(v) Introduce the concept of a parabola of safety. 

(vi) Show the effects of landing on an inclined plane. 

(vii) Demonstrate the effects of impact with a vertical wall or on an 

inclined plane. 

(viii) Show qualitatively the effects of air resistance and of variation of air 

density with height, in particular upon the angle of projection which 

would achieve the greatest horizontal range. 

The author was quite convinced that it was vital to achieve certain further 

First, he was determined that the users would be able to discover 

relationships and properties; they would be motivated to use analytical 
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mathematics to verify (or refute) the suggestions. Unlike traditional 

experimenters, the laboratory to be used would be the computer. The strategy of 

experiment followed by mathematical analysis is surely how mechanics should be 

taught: as a living experimentally-based science, not as a dull series of examples 

which provide the student with some equations on which to exercise his pure 

mathematical skills. In this context it is pertinent to mention the project carried 

out from Leeds University which included the use of simple experimental 

apparatus as an aid to understanding the fundamental concepts of mechanics. The 

students who used the apparatus were well motivated and achieved better results 

than their predecessors (175). 

The second aim was to take the user past the point where his pure 

mathematics could support him into areas where he would be able to see what was 

happening in a qualitative way only. Later in his mathematical career he might 

acquire the skills required and then he would be able to derive the quantitative 

relationships that were previously denied him. It does seem that far too many 

engineering freshmen have their initial enthusiasm dampened by the way in 

which their first year engineering subjects are taugh!. Why is it necessary for the 

lecturers to involve mathematics from week I? This approach kills any 'feel' that 

the student should have for his engineering subjects and reduces too much of the 

subject matter to an exercise in applying mathematics. The book on structural 

mechanics by Morgan (176) is an excellent example of what Mustoe has in mind. 

The principles of structural analysis are developed from simple diagrams of men 

Sitting on see-saws to the construction of Gothic cathedrals. Every student to 

whom this author has introduced the book has been enthusiastic about its 

approach. It was precisely that kind of enthusiasm which he sought to engender 

in his unit on projectile motion. 

The software advisor in the team constructed a shell for each unit; this acted 

as a frame into which a unit could be woven. It provided the management 

functions necessary for the successful running of the unit and allowed each new 

program which formed part of the unit to be incorporated into the unit as soon as 
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it had been written. In this way the production process could be streamlined for 

greater speed. Given that good quality software (which needs to be flexible, robust, 

easy to use and both clear and exciting to see), takes much time to produce, the 

greater the speed that can be achieved, the better. The 'shell provides the means 

whereby the topics comprising the unit can be selected from a main menu and it 

controls the input to the programs. It also introduces a standardisation into the 

series of units planned. The user, once familiar with one unit would immediately 

feel at home with any other. 

The procedure adopted for the production of this first unit was to be 

followed in subsequent units. First the relevant subject-matter would be 

researched; this included applications, preferably of a more practical kind than 

were to be found in the majority of text-books. Then a rough story-line was 

produced which provided an outline of a unit with sufficient detail being included 

to indicate the difficulties which might arise in programming. At this stage, the 

software advisor was able to pick up and iron out any obvious hazards. Regular 

meetings were held during the development of the unit between any two of the 

programmer, author and software advisor, with the occasional meeting of all 

three. 

From the story-line a more detailed script was prepared for the programmer. 

This varied in the level of details specified, depending on the nature of the topic. 

However, it always included the animated sequences which were required, the 

formulae to be displayed on the screen and the text to be shown. Examples of a 

story-line and its associated script are shown in Appendix 8. 

At about this time, routines were being developed to facilitate the operation 

of the suite of programs by the user: input was always checked to make sure that it 

conformed to the specification; at any stage the BREAK key would return the user 

to the start of a section and the unit could be started up by simultaneous pressing 

of the SHIFT and the BREAK keys. 
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The advantages of the two programmers' backgrounds were greater than at 

first realised. They had both been trained in draughtmanship whilst technical 

apprentices and these skills helped them to produce attractive and clear screen 

displays. Their knowledge of mathematics and of the engineering applications of 

mechanics made them very useful and it was decided to involve them closely in 

the planning of the story-line and the script. 

The mechanics syllabuses which the team studied suggested a series of 

thirteen software units. The titles were 

(i) Projectile Motion 

(ii) Momentum and Impacts 

(Hi) Friction 

(iv) Linear Motion 

(v) Equilibrium 

(vi) Relative Motion 

(vii) Newton's Laws of Motion 

(viii) Angular Motion 

(ix) Vectors 

(x) Centres of Gravity 

(xi) Simple Harmonic Motion 

(xii) Circular Motion 

(xiii) Work, Energy and Power 

Mustoe was allocated titles (0, (iiO, (v), (vii) and (xi). These units will be 

described in the next three sections. 

5.2 Projectile Motion 

The unit comprised nine Parts, with most Parts being subdivided into 

Sections. These are listed below. 
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Part 0 Inexperienced User Guide 

Part 1 Horizontal Launch from a Cliff 

Part 2 Launch from Level Ground 

2.1 Fixed Initial Angle, Varying Initial Speed 

2.2 Varying Initial Angle, Fixed Initial Speed 

2.3 Varying Initial Angle or Varying Initial Speed 

Part 3 Hit a Target 

3.1 Elevated Target 

3.2 Ground Target 

3.3 Ball Games 

Part 4 Launch from a Cliff 

4.1 General Angle of Projection 

4.2 Hit a Target below aiff 

Part 5 Landing on Inclined Planes 

5.1 Launch up the Plane 

5.2 Launch down the Plane 

5.3 Find Maximum Range 

Part 6 Motion after Impact 

6.1 Impact on Level Ground 

6.2 Impact with Vertical Wall 

6.3 Impact on Inclined Plane 

Part 7 Resisted Motion 

7.1 Examples 

7.2 Variable Coefficient and Index 

7.3 Variation of Air Density with Height. 

Part 8 Exit from Unit. 

Part 0 and the final Part were common to all units. Since this particular unit 

was the first to be completed it is not fair to quote the actual length of time spent in 

its production. However, later units were taking of the order of 3 to 4 full-time 

programmer months to complete. The projectile motion unit was not untypical 

in comprising over 40 separate programs; in many Sections there were a number 
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of programs chained together. It will be seen therefore that the mechanics 

software units represent a considerable effort in man-hours. 

A copy of the user guide and teacher's notes for this unit appears as 

Appendix 9. In the next two subsections, Parts 2 and 7 are described in detail in 

order to explain the thinking behind their construction. 

5.2.1 Launch from Level Ground 

This Part comprises three Sections. 

The first Section considers the trajectory of a particle fired from ground 

level with initial speed u at an angle Cl to the horizontal. A typical trajectory is 

shown and then H, the greatest height reached, and R, the horizontal range, are 

marked on the diagram. The user is now able to vary the initial speed u whilst 

keeping the angle Cl fixed. It is suggested that Cl = 600 is a suitable choice, since this 

gives a reasonably-sized screen display. The user is recommended to try u = 100 

and to note the greatest height reached, the horizontal range, the time of flight and 

the time to maximum height. He is next invited to choose two further values for 

u (50 and 75 are recommended) and to note the same features of the trajectory. He 

is asked to deduce the relationship between each of these features and the initial 

speed u. If required, further initial speeds can be tried. Having made the 

suggested deductions, the user can be shown by the teacher the mathematical 

derivations of the relationships. Alternatively, if the unit is being used in 

self-paced mode, the student can read the appropriate accompanying work cards. 

The second Section is concerned with the effect of varying the angle of 

projection on the horizontal range. The user is recommended to input an initial 

speed of 100 to make full use of the graphics window; he can then input the angle 

Cl in sets of three. For each angle, the trajectory is graphed and the range achieved 
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is displayed. It is suggested that a = 300 ,400 ,500 is a possible set of values or, as an 

alternative, 300 , 600, 700 . The hope is that the user would have noticed that if two 

angles are complementary then they lead to equal ranges; that fact could suggest 

that the maximum range is achieved with an initial angle of projection of 450 . On 

the other hand, the first set of angles would imply an optimum angle between 400 

and 500 and further angles in that range would help to tie down the value more 

accurately. At this stage, the relevant mathematics can be applied to obtain the 

formula for the range and from that can be derived the optimum angle and the 

maximum range. 

The final Section allows the user to vary either the initial speed or the angle 

of projection to discover other features of the motion. Before leaving this section 

the user will be shown the potential, kinetic and total energies of the particle at 

several stages during its motion. It should be readily apparent that the total energy 

remains constant, the balance shifting between potential and kinetic. Once again, 

this conjecture can be verified mathematically. The user has also got the 

opportunity to ask what assumptions are made in the model which he is 

employing. 

5.2.2 Resisted Motion 

When the author was taught Applied Mathematics at school he was told 

that the case of projectile motion under air resistance could not be tackled at that 

stage because "your pure mathematics isn't up to it". Only when he was a first 

year undergraduate was resisted motion discussed and even then it was merely a 

case of deriving the analytical solution to the governing differential equation. 

When he was preparing the unit on projectile motion he was determined that the 

users would not be prevented from gaining a qualitative understanding of the 

effects of air resistance; while they were absorbing the results of the simulation, 

they could have the opportunity to delve into the topic of ballistics by seeing the 

effects of allowing the air density to vary with height. 



118 

The first Section begins with a display of the trajectory of a launch on 

horizontal ground with no resistance present; this acts as a datum. Then, for the 

case of resistance proportional to velocity several trajectories are shown using 

different values for the coefficient of resistance. Figure 5.1 shows a typical screen 

display. The user should be able to appreciate that the effects of air resistance 

reduce both the maximum height reached and the horizontal range and in 

addition render the trajectory unsymmetrical. The sequence is repeated, but this 

time the case considered is that of resistance proportional to the square of the 

velocity; the values of the coefficient of resistance are much smaller than for the 

previous case but even so the effects are seen to be much more dramatic: see 

Figure 5.2. Hence the student is able to see very vividly the differences in effect 

between the two proposed "laws of resistance". To show the power of the 

computing approach, the case of resistance proportional to velocity to the power 

1.5 is considered. (The trajectories have been produced by using a Runge-Kutta 

fourth-order method which gives sufficient accuracy for display purposes.) 

The second Section allows the user to choose, in effect, a variety of 

resistance laws of the form k vn where k is the coefficient of resistance which can 

take one of a continuous range of values, v is the velocity of the particle and n is 

an index which can take values between 1 and 2 inclusive. In this investigative 

mode the user should get a feel for the contributions of k and n to the resulting 

trajectory. 

The final Section is concerned with the effects of air density varying with 

height. The sequence opens by displaying a graph of this variation. Using the case 

of constant air density as a datum, the case of variable air density is displayed and 

the contrast is again shown graphically. Then the user can see how well he has 

understood the changes in trajectory brought about by relaxing the assumptions of 

no air resistance and constant air density by attempting to find the initial angle of 

projection which gives maximum horizontal range. In World War I, artillery 

shells failed to reach their target because the formulae being used by the gunners 

had not taken account of varying air density. 
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Figure 5.2 
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Experience in using this part of the Unit with sixth-forms has indicated that 

they are able to appreciate the qualitative nature of the effects of air resistance and 

varying air density and to understand better the nature of the process of 

mathematical modelling in this context. 

5.3 Enlivening Statics: Friction 

The lessons learned in the writing and production of the unit on Projectile 

Motion were applied to future units. However, there was a new challenge to be 

met in this second unit: how to make a topic in statics come alive. Projectiles, 

being dynamic in nature, had an obvious link with an animated screen display; 

friction, on the other hand, did not. 

The first idea which was suggested in the quest for a new approach was in 

connection with the standard problem of a man on a ladder. The problem as 

usually stated in text-books is of a ladder resting in rough contact on a vertical wall 

with its lower end in rough contact with a horizontal floor. A man stands a 

certain distance up the ladder. Knowing the mass of the man, the mass of the 

ladder, the angle of inclination of the ladder to the horizontal and the limiting 

coefficients of friction at the points of contact with both wall and floor, the 

question is whether the system is in (stable) equilibrium. The answer required is 

"yes" or "no" and there the matter rests. 

It was decided to employ a gradual build-up to this problem. The first stage 

was to have no man on the ladder, rough contact with the floor and smooth 

contact with the wall. For a specified mass of the ladder and given limiting 

coefficient of friction the user was invited to input a range of angles of the ladder 

to the horizontal in order to discover the least angle at which the ladder could 

remain at rest. This result could be verified by the necessary analytical 

mathematics. Then the user was allowed to vary the mass of the ladder and the 

limiting coefficient of friction in an endeavour to determine their effects on the 

critical angle. It is expected that a good teacher will take the opportunity to get his 
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pupils to use their intuition by asking them to predict such effects before carrying 

out the "experiment". 

The second stage was a repeat of the first, but this time the contact at the 

wall was assumed to be rough. The third stage placed a man on the ladder; after a 

fixed example, the user was given the opportunity to see how far up the ladder the 

man could walk in safety. Then, the opportunity to vary the parameters of the 

problem was provided: what were the effects on how far up the ladder the man 

could go safely of increasing or decreasing his mass, the limiting coefficients of 

friction and the angle of inclination of the ladder to the horizontal? 

In this way, the students could bring back the experimental aspect into 

mechanics and a problem which had long been a feature of applied mathematics 

text-books could be enhanced and extended. More could be learned about the 

effects of friction and the difference between actual friction force and limiting 

friction force. 

The contents of the unit, excluding Parts 0 and 8 are as follows 

Part 1 The Frictional Force 

1.1 The Effect of Friction 

1.2 Coefficient of Friction 

1.3 Direction of the Frictional Force 

Part 2 Angle of Friction 

2.1 Relationship to Coefficient of Friction 

2.2 Least Force to Move a Block on a Horizontal Plane 

Part 3 Block on Inclined Plane 

3.1 Supporting the Block 

3.2 Moving the Block down the Plane 

3.3 Moving the Block up the Plane 

Part 4 Slide or Topple? 
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Part 5 Ladders 

5.1 Smooth Wall, Rough Floor 

5.2 Rough Wall, Rough Floor 

5.3 Man on Ladder 

Part 6 Wedges 

6.1 Theory 

6.2 Examples 

Part 7 Belt Friction 

5.3.1 Outline of the Unit 

Part 1 is concerned with the nature of the frictional force. The first sequence 

shows a block at rest on a horizontal table; it is attached to a weight which hangs 

freely via a string which passes over a pulley at which frictional forces can be 

ignored. The weight is increased in value until the block begins to move; the 

value at which the block starts its motion is noted. It is demonstrated that once 

the block is moving the value of the force exerted by friction falls slightly. The 

user is then given a definition of coefficient of friction and some typical values of 

both static and kinetic coefficients. Then the static coefficient can be estimated by 

using the simulation of the block-on-table experiment. Finally, the direction of 

the friction force is illustrated in a number of situations so that the user can see 

that it is always in opposition to the direction of motion. 

Part 2 is designed to illustrate the concept of angle of friction using two 

standard examples. In the first, a crate of weight W is at rest on an inclined plane. 

The angle of inclination of the plane is increased until the crate begins to slide 

down the plane; the user is invited to consider the nature of the relationship 

between this critical angle and the coefficient of friction, 1.1. To help him in this 

task, the sequence is repeated in stages and at the end of each stage the values of 

the angle IX, tan IX, the friction force F = W sin IX, the normal reaction 

N = W cos IX and the ratio FIN are displayed. The user should be able to infer 
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that so long as FIN is less than Jl the block does not slide but when tan a = Jl 

sliding begins to occur. The critical value of a is denoted A - the angle of friction. 

The user can repeat the simulated experiment using different input values of Jl. It 

is also demonstrated graphically that A is the angle made with the vertical by the 

total reaction force S. 

The second example is of a sled being towed along a rough horizontal plane 

by a force applied to a horizontal rope. At first, the sled is at rest; an increasing 

force P is applied to the rope and the angle made by the combined reaction force S 

to the vertical is shown. At the point when the sled begins to move this angle is 

seen to be the angle of friction. A second sequence shows the force P applied 

upwards via a rope inclined at an angle e to the horizontal; again, the sled moves 

when the ratio FIN attains the value of Jl. Next a set of different values of e is 

provided and at each value the least force necessary to move the sled is calculated 

and displayed. It should come as no surprise to observe that this least force occurs 

at the value a = A.. The final sequence shows a downwards force applied to the 

sled. This time, as the angle of this force to the horizontal increases so does the 

least force necessary to move the sled; therefore the least overall force for this kind 

of configuration is when the force is horizontal. A good teacher would ask his 

students to explain these results and draw from them the fact that pulling upwards 

on the sled reduces the normal reaction N, whereas pushing down on the sled 

increases N. In this latter case the maximum friction force can take a larger value 

and hence a larger force P is necessary to overcome it. It is understandable, then, 

why increasing the angle to the horizontal at which the downward force is applied 

causes this least force to be larger. Why however should the optimum angle for 

an upward pull be /..? 

Part 3 takes a comprehensive look at the system of a block in rough contact 

with an inclined plane. The author was particularly concerned that the user 
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should be able to appreciate the difference between holding the block at rest and 

actually moving it up the plane at constant speed. The first sequence is concerned 

with holding the block at rest. It seems likely that the optimum angle at which the 

supporting force is applied is again A and this can readily be verified. The second 

sequence shows the block being held in place by a pull from above; it might be 

expected that the value of the least force increases as the angle of the pull to the 

direction parallel to the plane increases. The user is invited to conclude this 

section by making a decision as to whether it is more effective to pull or to push. 

In all these cases the user is able to use the "experimental" results to make 

conjectures which can be verified by calculus, algebra and trigonometry. 

The second and third Sections of this Part consider respectively the cases of 

moving the block down the plane and moving it up the plane. In the former case 

it is to be hoped that the user will realise that the problem is only meaningful if 

the angle of inclination of the plane to the horizontal is less than the angle of 

friction. In each case the force is applied either as a push or a pull and the least 

force necessary is calculated for a variety of different angles of application. It is not 

suggested that the teacher make each pupil work through all the various cases 

covered but, rather, a selection. 

Part 4 is concerned with the situation of a tall block at rest on a horizontal 

table, acted on by a horizontal force which is increasing. The question is whether it 

will topple before it slides. After a fixed example is worked through, the user can 

vary the dimensions of the block, the coefficient of friction and how high up the 

block the applied force acts. He should then be able to get a feel for how these 

parameters affect the outcome of the question. It was envisaged this part would 

form the basis of a possible project in the school environment. Many such 

possibilities are scattered throughout the units. 

Part 5 has already been described. 

Parts 6 and 7 constitute an attempt to add a practical dimension by 
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considering two topics which are not usually dealt with at school level but which 

feature in a number of engineering mechanics texts, namely wedges and belt 

friction. In the former case, a wedge is to be driven horizontally under a load 

which rests against a vertical wall in an attempt to lift the load. A fixed example is 

worked through on screen, using a build-up of the forces on the free bodies; this 

leads to the calculation of the least force needed to be applied to the wedge. Then 

the user is allowed to vary the model parameters; in particular, he can place rollers 

between any two surfaces to reduce the coefficient of friction there to effectively 

zero. Between which two surfaces he should place the rollers to gain maximum 

benefit is a question asked. Once more intuition and insight should precede 

experimental verification. 

The effect of friction at a pulley is considered in Part 7 via the example of a 

wide flat belt passing over a drum. The least force necessary to hold a given 

weight stationary and the least force necessary to raise it are displayed. The 

relationship between these two forces and the value of weight is teased out of the 

user. Then the effect of wrapping the belt through a full turn and one-and-a-half 

turns is shown; as expected, the more half-turns the less the force needed to hold . 

the weight, but the greater the force needed to raise it. Finally the variation of the 

two forces with angle of wrap is demonstrated via graphs of supposed 

experiments. 

5.4 Equilibrium, Newton's Laws and Simple Harmonic Motion 

In this section the remaining three units which were written by the author 

are described in outline. 

The contents of the unit on Equilibrium, excepting the standard "top and 

tail" are as follows. 



Part 1 Forces and Moments 

1.1 Types of Force 

1.2 Moment of a Force 

Part 2 Free Body Diagrams 
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Part 3 Concurrent Forces in the Plane 

3.1 Oosing the Polygon 

3.2 Mooring a Boat 

3.3 Jib Crane 

Part 4 Three Concurrent Forces 

4.1 Triangle of Forces 

4.2 Lami's Theorem 

4.3 At the Docks 

4.4 Derrick 

Part 5 Parallel Forces 

5.1 Maintaining Equilibrium 

5.2 Moving Train on a Bridge 

5.3 Couples 

5.4 Force and Couple 

5.5 Example 

In Part 1, four basic examples are provided of the actions of a force, viz. 

tension, compression, smooth contact and rough contact. Then a framework is 

shown with those members in tension and those in compression highlighted in 

turn. Next, the definition of the moment of a force is illustrated via a spanner 

tightening a nut; the applied force is shown being resolved into perpendicular 

components, one of which passes through the axis of rotation. Finally, a lever 

pinned at one end is acted on by a force whose direction can be varied. The effect 

on the resulting moment as the direction of the force charges is shown. 

Part 2 is devoted to free body diagrams as a response to comments received 

from teachers who emphasised both the importance of the topic and the lack of 

ability of their students in this area. Six examples of systems in equilibrium are 
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shown. In each instance the user is expected to decide which forces are acting and 

to build up the force diagram step by step. 

Part 3 is used to amplify the methods of solving systems of coplanar forces, 

viz. polygon of forces, and resolving in two perpendicular directions. Attention is 

paid to the usefulness of the polygon approach in deducing conditions for 

maximum forces. The special case of three concurrent forces is treated in Part 4. 

The method of triangle of forces and its restatement as Lami's theorem can be seen 

separately and in comparison. These can be contrasted with the method of 

resolution of forces. 

Attention is moved to parallel force systems in Part 5. The first Section 

gives the user the opportunity to get a feel for the principle of moments by being 

asked to hold a number of systems in equilibrium. The second Section shows how 

the reactions at the supports of a bridge vary as a train moves over the bridge. In 

the third Section the concept of a couple is examined via the example of a car 

steering wheel. The two final Sections show how a force-couple system can be 

reduced to a single force and vice-versa. 

The contents of the unit on Newton's Laws of Motion are as follows: 

Part 1 Newton's Laws Defined 

1.1 The three Laws of Motion 

1.2 Mass and Weight 

Part 2 Newton's Laws Applied 

2.1 Man in Lift 

2.2 When in doubt, throw Ballast out 

2.3 Engine with a Tender behind 

2.4 Engine with coaches 
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Part 3 Connected Masses 

3.1 Single fixed Pulley 

3.2 Three Masses, moveable heavy Pulley 

3.3 Connected Blocks on inclined Planes 

Part 4 Variable Mass Systems 

4.1 When the Balloon goes up 

4.2 Single-stage Rocket-no gravity force 

4.3 Single-stage Rocket-gravity included 

4.4 . Two-stage Rocket under gravity 

Following a statement of the three laws, Part 1 shows a mass of 1 kg being 

weighed at the earth's surface and at various heights above the surface to see how 

the weight changes. In Part 2, the first sequence treats the case of a man travelling 

in a lift. By displaying the graphs of acceleration, velocity and reaction of the man 

on the lift floor against time the user is invited to discover the relationship 

between acceleration and reaction. The cases of the lift ascending and descending 

are both considered. In the second Section the user has to release ballast in the 

form of 1 kg bags in order to stop the balloon's descent or to achieve a specified 

upward acceleration. The third Section is designed to show the effect on the 

tension in the coupling and the tractive force required as the acceleration of the 

engine is varied. The final Section allows the user to "build" his own train from 

three types of coach available and to repeat the previous Section. 

Part 3 first examines the system of two masses hanging from the ends of an 

inextensible string which passes smoothly over a fixed pulley; the user can input 

values for the masses and predict the direction of motion. The second Section 

deals with "a more complicated system involving four masses and allows several 

possibilities for experimentation. Once again, a good teacher would allow his 

pupils to predict the outcome before carrying out the simulation. The final 

Section is concerned with the study of two blocks resting on inclined planes, 

connected by an inextensible string which passes smoothly over a fixed pulley. By 

varying the masses and the limiting coefficients of friction the user can discover 
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what range of values leave the masses at rest. 

Part 4 begins by repeating the balloon problem, but this time the ballast is in 

the form of sand which can be continuously released. The second Section deals 

with the motion of a single-stage rocket with the force of gravity being ignored. By 

varying the fraction of the mass of the rocket which is fuel the user can see how 

the velocity and height at the end of the 'burn' can be altered. The next Section 

shows how these parameters are affected when gravity is taken into account in the 

model. Finally, a rocket comprising a satellite as a payload and two stages 

containing fuel is studied. The user can design his own rocket by selecting the 

mass of the satellite, the mass of each of the fuel stages, the fraction of fuel in each 

of these stages, the rate at which fuel is burned and the exhaust velocity of the 

gases produced relative to the rocket. The question to be answered is whether a 

two-stage rocket is more efficient than a Single-stage one. 

The contents of the unit on Simple Harmonic Motion are 

Part 1 Examples of SHM 

Part 2 Horizontal Spring 

2.1 Spring released from rest 

2.2 Spring given initial velocity 

2.3 Energy Considerations 

Part 3 Associated Circular Motion 

Part 4 Vertical Springs and Strings 

4.1 Vertical Spring 

4.2 String-Incomplete SHM 

Part 5 Damped Oscillations 

Part 6 Applied Force 

Four examples of SHM are shown in Part 1: a particle on an oscillating 

spring, liquid oscillating in a U-tube, a simple pendulum and a cork oscillating in a 

tank of liquid. The examples are shown together and then considered separately, 
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with a graph of displacement against time being shown in each case. 

In the first Section of Part 2, a mass attached to a light spring is released from 

rest after being displaced from its equilibrium position. Graphs and tables are 

provided to help the user determine the relationships between acceleration and 

displacement and between velocity and displacement. The effect of the variation 

of initial displacement on the period and amplitude of the oscillations can be 

studied. In the second Section the mass is given an initial velocity when at its 

equilibrium position so that a comparison with the previous case can be made. 

In the final Section the kinetic and potential energies of the mass are 

displayed at certain stages in the oscillation so that the balance between the two is 

seen to change as the motion proceeds, whilst their sum remains constant. 

In Part 3 a particle moves in a circular path. The "horizontal" and "vertical" 

components of velocity are each seen to follow SHM. 

Part 4 first considers a mass attached to the bottom of a light spring which 

hangs vertically from a fixed point. The mass is displaced downwards from its 

equilibrium position and the subsequent motion is displayed. The user can 

investigate the changes in that motion induced by varying in turn each of the 

parameters: mass, modulus of elasticity of the spring, initial displacement and 

natural length of the spring. The second Section replaces the spring by an elastic 

string and the differences between the two types of motion are examined. The 

user should be aware of the consequences of the string going slack. 

Part 5 incorporates a damping force which is proportional to the velocity of 

the mass and examines the effects on the amplitude and period of the oscillations 

when the damping coefficient is varied. Then the spring constant is altered and 

the resulting changes considered. Part 6 starts with an undamped system subject to 

a force Feos rot. After noticing the effects of superimposing the applied force and 

the undamped oscillations the user is asked to consider the consequence of putting 
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Cl) = 0 to create a constant applied force. Then by putting Cl) = 2 and varying F the 

relationship between F and the amplitude of the resulting oscillations can be 

studied. Finally, the investigations can be extended by including a damping term 

in the model. The teacher can explain the ideas of transient and steady-state 

motions and discuss the phenomenon of resonance. 

5.5 Evaluation of the Project 

Testing of the units was an essential part of the production phase. This 

ranged from informal trials carried out by colleagues in the MIME team, through 

use by local teachers in schools and colleges to controlled experiments conducted 

by these teachers with their students. Two of the main purposes of these early 

trials were to discover whether the units were sufficiently robust for use in class 

and to pick up any features which were unpopular. 

There was general agreement that the quality of the software was excellent: 

the screen displays were well-planned, the units were easy to operate and the 

menu-driven nature of the programs was a great help to teachers who wished to 

omit some Sections or to present the material in a different order. Some teachers 

did ask specifically for the teacher's notes to include the unit author's suggestions 

for a possible path through the topics. Whilst some teachers were content to pick 

and choose from items in a unit to suit their own needs, others clearly required 

more guidance preferring to make as little input as possible to the use of the 

software in class. 

Other comments received included the criticism that some screen displays 

contained too much information to be absorbed at one time and recommended 

that part of this information should be banished temporarily from the screen in 

order to allow the user to concentrate his attention on that part of the original 

display which was relevant. The author of this thesis had been aware of this 

possibility and had taken pains to ensure that his units were free from this 
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particular criticism; the comments indicated that he had been successful in this 

regard. 

It had also been remarked that at some stages in some units it was possible 

for the user to "work" through sequences without really playing an interactive 

role; it had been noticed that pupils who were not well motivated could spend 

their time unprofitably. As far as was reasonable, steps were taken to remedy this 

shortcoming. 

Whenever teachers undertook to use the units with their pupils it was 

emphasised to them that they should familiarise themselves with the software, 

probably in a self-paced mode. This aspect cannot be stressed too strongly. One 

sympathises with teachers who are pressed for time, but to use a unit with a class 

when one has not worked systematically through it is a recipe for trouble. 

There was a plea for smaller units to be produced. Teachers looked wistfully 

at our software, desperately keen to incorporate them in their teaching but only 

too aware that to purchase one of the 13 units would reduce the whole school 

annual budget for software by a third. 

The author personally conducted several trials of the software units -

mainly but not exclusively, those for which he was primarily responsible. Since 

many freshmen arrived at Loughborough with little knowledge of or exposure to 

statics and dynamics it was possible to test the units both with students who had 

met the relevant topics at school and with those who had not. In addition, the 

author exploited his role as Admissions Tutor for the Mathematical Engineering 

degree course to test the software with applicants to the course when they attended 

for interview; again, some of these had not met the topics before, whilst others 

had, or were in the process of so doing. 

Both via informal comments and from replies to short questionnaires the 

author was able to gauge the reaction of the students both in general terms and 
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with regard to specific points. Because the early trials had taken place when the 

first units were being written, it was possible to incorporate some of the changes 

suggested (directly or indirectly) into the software. 

Many of the general comments were similar to those to which reference has 

already been made. Specific points led to revisions of particular animated 

sequences where it was felt that things happened too quickly or too slowly or some 

aspect was not as clear as it should be. Sometimes it was suggested that it was not 

necessary to see a fixed example before trying out one with user-provided data. 

Sometimes it was felt to be desirable to be able to repeat a fixed example. 

Those who had not covered a topic before using the appropriate unit 

seemed to understand the concepts and principles well enough. The 

questionnaire would attempt to ascertain whether a concept had been grasped 

either by asking for an explanation of the concept 'in the student's own words' or 

by providing a physical problem and requiring an outline of how a principle could 

be applied, without carrying out any arithmetic or algebraic manipulation. Those 

who had met the topic earlier in their studies were generally enthusiastic about 

the software; a typical comment was 'The subject comes alive when you study it 

this way'. Statics in particular was held to benefit from the style of the units. On a 

number of occasions an applicant has written to say that his experience in using 

the software on a topic currently being studied at school had helped him to cope 

more effectively on his return from interview. 

It is, of course, not claimed that such a student would be able to solve the 

problems set on that topic with a greater rate of success, since many other factors 

are involved (for example algebraic skill), but there is strong evidence that the 

units have enhanced the students' learning of mechanics. 

Some teachers have asked the MIME team to wTite a text-book to accompany 

the units. The author is well aware that such a book might have its merits but the 

principal aim of the Project was to write software to enhance the learning process 
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and to be an aid which the teacher could use as and when he or she felt 

appropriate. So far, the team has not acceded to the requests. 

Reviews in the journals have been generally favourable; odd criticisms and 

adverse comments have been made, but the clear message is that the units have 

set a high standard for future software. Regrettably the disruption in schools in 

the United Kingdom came at just the time when the units were being launched on 

the market and this gave the momentum of the launch a severe set-back. 

The next problem to beset the Project was lack of financial support for 

educational software. Both Government and industry seemed to regard the 

provision of quality software as a low priority. Manufacturers of microcomputers 

were wrapped up in the need to produce continual technological improvements 

in the hardware. The MIME team suggested that for every £1 that was spent on 

technnical developments, £3 should be spent on producing educational software 

(118). They feared that failure to invest in software development would imply 

that the exciting possibilities in education opened up by the arrival of the micro 

would not be fully exploited. 

At the stage when the last few units were being produced, the BBC Master 

series of microcomputer was introduced. A considerable amount of 

re-programming had to be undertaken to make the units Master compatible; at the 

same time the units were revised to allow them to be networked on the newly 

available Econet system. 

As an experiment, a programmer well used to the IBM personal computers 

was commissioned to convert the unit 'Momentum and Impacts' to a form which 

would be IBM compatible. However, the task was more time-consuming and 

more difficult than was first envisaged. The MIME programmers had been 

exercised by the limited memory of the BBC B microcomputer and had intruded 

into areas of the memory space that were really never intended to be breached. 

(This had caused difficulties for the software house which had been hired by the 
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publishers to protect the units). The complexity of the task of converting the one 

unit, combined with a lack of funding, caused that part of the project to be 

abandoned. Our very forte - the quality of the software and, in particular, the 

extensive use of the graphics facility - had been our stumbling block. 

Was the Project a success? In many aspects it has proved disappointing. 

Certainly, many potential users have praised the quality of the software and 

acknowledged that it has achieved most of the stated aims and objectives, whilst 

colleagues in other institutions have been impressed by it. However, the bitter pill 

that has had to be swallowed is that funding organisations and the computer 

industry, who have also lauded the software, have not been prepared to put their 

money where their mouths are. They seem content to allow the production of 

educational software to be left to individuals, working in isolation. The author 

believes that their attitude is short-sighted and will be regretted in years to come. 

5.6 Undergraduate Engineering Mathematics 

In 1984 the Computer Board for Universities and Research Councils 

launched an initiative to provide financial support to universities for the use of 

computing facilities in teaching. The following year saw the involvement of the 

University Grants Committee in the continuance of the funding. Professor Bajpai 

. and the author were awarded a grant of £36,000 in the third tranche of support to 

allow the continued employment of one of the senior programmers on the MIME 

Project to help write units for first and second year engineering undergraduate 

mathematics. It was anticipated that use could be made of these units by science 

and mathematics undergraduates also. 

The first unit to be written was on the topic of complex transformations. 

The author's teaching experience had led him to believe that this was an area in 

which understanding would be enhanced by the student being able to vary the 

parameters of each transformation. As an experiment, it was decided to provide 

the facility for dumping the screen display at pre-selected stages in the program. 
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This facility would allow the teacher, for example, to make transparencies of 

certain screen displays which would help him illustrate a lecture on a particular 

transformation. It was decided that the unit would comprise five programs: 

Simple Transformations 

Inversion 

J oukowski Transformations 

Streamlines 

Schwartz-Christoffel Transformations. 

Discussions took place throughout the development phase with lecturers 

from the author's department and from other engineering departments as regards 

content and presentation. All the programs were tested by colleagues, who had a 

range of expertise with micros from the buff down to the novice level. 

The software was written originally in two versions: 

(i) A user interface which required complete alpha-numeric input and 

demanded a familiarity with the keyboard. 

(ii) A user interface which was restricted to a maximum of five keys only. 

The input could be made via 

(a) the keyboard using the cursor control keys together with the 

return key 

(b) a joystick connected to the analogue input socket 

(c) a custom-made five-key pad connected to the user port. 

Early reactions from staff suggested a preference for (iO (b) & (c) for the 

lecture environment. However, the joystick generally required two hands to 

operate it and it was rejected in favour of the pad; even those who were not 

confident with micros found that they could work comfortably with the pad. 

Students working in a self-paced mode preferred (ii) (a) to (i). The software was 

written in the two preferred modes. 

There was a price to be paid for limiting input to five keys only; the moving 
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bar type of menu was required to replace alphanumeric selection. Further, the 

inputting of numerical values caused some problems; although increasing and 

decreasing with the up and down keys and confirming with the RETURN key 

worked well, it was a slower process than ordinary keyboard entry if the input 

number had a wide range of possible values. 

Most of the programming was carried out in the resident Basic, although 

assembly language sub-routines were employed to speed up or, in some cases, 

re-organise the graphics displays. The limited memory space of the BBC B micro 

did present problems for the programmer; longer programs had to be split into two 

or three parts to remain viable. There was a temptation to overcome this problem 

by writing only for the Master 128 series of BBC micros but this would have 

reduced the user potential by a considerable amount. 

Other early comments from colleagues led to the decisions to make some of 

the screen displays less crowded and not to produce accompanying workcards. The 

unit was successfully tested on Econet Level III. 

In all, nine further units were produced under the aegis of the project, the 

first eight under the authorship of Mustoe. The titles are: 

Poles and Residues 

Numerical Solution of Linear Equation 

Numerical Integration 

Numerical Solution of Non-Linear Equations 

Cubic Splines 

Numerical Solution of ODE's 

The Water Tank 

Fourier Series 

ANOVA. 

The units were produced, as were the mechanics units, on 40-track, 

single-sided, double density 51/4" discs. In the next three sections the use of three 
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of these units in a lecture, in a tutorial and in self-paced mode, respectively, are 

described. The final section discusses the evaluation of the units and looks to the 

future. 

5.7 Enhancing a Lecture: Simultaneous Linear Equations 

The unit on simultaneous linear equations was designed to cover the 

methods of Gauss elimination, Gauss-Jordan, Gauss-Seidel and LU decomposition, 

in addition to matrix inversion. The user notes are presented in Appendix 10. 

A group of 18 students was assembled in a lecture/tutorial room into which 

had been wheeled a trolley on which were a large television monitor and a micro 

with a disc drive. The students had already been introduced briefly to the idea of 

the solution of linear equation systems via elimination methods in their linear 

algebra lecture earlier in the week. The class was provided at the outset with a 

four-page lecture summary showing all the matrices on display, together with the 

row operations connecting them. In this way the students could concentrate on 

the lecture, annotating the summary as and when they felt necessary. 

The lecture began by quoting examples where simultaneous equations arise 

in engineering. The case of finding the forces in a truss was discussed, asking 

whether there was any difference of approach needed if the number of members in 

the truss was 25 rather than 5. This part of the lecture was presented via 

blackboard and overhead projector. 

Then the system 

x1 + 2x2 + 3x3 = 11 

2x 1 + 3x2 + 4x3 = 15 

x1 + 5x2 + 7x3 = 28 

was displayed on the monitor. Having accepted the need for a systematic method 
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of solving large sets of equations it was explained that a 3 x 3 system provided a 

balance between ease of computational simplicity and being able to describe the 

essential features of the solution process. 

There was a remote control provided which allowed the author to move 

away from the micro and hence to be able to see the same screen display as the 

students. He was able to point to the screen to emphasise certain aspects of the 

computations and therefore was really using the screen as an electronic blackboard. 

The first program in the unit was run to show the step-by-step development of the 

Gauss elimination process. First, the augmented matrix for the system of 

equations was created; then a block diagram which indicated the overall structure 

of the process was displayed. Next, each reduction of the matrix was effected with 

the calculation that was being carried out being shown on the right of the two 

matrices relating to that stage of the process; Figure 5.3 shows a typical screen 

display. At the stage immediately prior to back substitution the reduced system of 

equations was shown; then the back substitution was carried out to obtain the 

solution to the original system. Finally, the whole process was repeated more 

quickly, without detailed explanation at each stage. 

At this point the author moved attention away from the screen to the 

blackboard. His previous sessions where the micro was used in a teaching 

environment had convinced him that after watching a monitor for more than 5 to 

10 minutes the students would become restless. It was desirable to give them a 

break from concentrating on the small screen and, in general, the lecture consisted 

of a mixture of screen display, blackboard, overhead projector and talk. 

An exposition on the problem of inaccuracies in the solution was given. 

Since a simple check for a proposed solution of a small system was to substitute 

the values back into the original equations, the question was raised as to whether a 

reasonably good balance between left-hand and right-hand sides implied that the 

proposed solution was reasonably accurate. In this somewhat informal manner, 

the idea of an ill-conditioned system was introduced. Some simple examples were 
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shown on the blackboard and the need to make the Gauss elimination process as 

accurate as possible was stressed. This led to the idea of partial pivotting. The 

micro was brought back into play to demonstrate the extended process. It is 

pertinent here to mention that the program included the facility to scroll back the 

display to review the previous stages; this was felt to be important for the user in 

self-paced mode .. The Gauss-Jordan variation was mentioned and the method was 

illustrated on the monitor. Whilst it was acknowledged that it was easier to read 

off the solutions in this fashion it was recognised that the variation required more 

computational effort, with the attendant worry of increased round-off error. 

The final part of the lecture was concerned with iterative methods of 

solution. The unit gave only fixed examples and these were obviously the ones to 

be covered in the lectures. On the blackboard it was shown how the system 

could be re-organised to 

5x + 3y = 6 

4x + 7y = 8 

x = 1.2-0.6y 

y=1.14-0.57x 

and thence to the Jacobi scheme 

x(n + 1) = 1.2 - O.6y(n) 

y(n+1) = 1.14 - O.57x(n) 

or to the Gauss-Seidel scheme 

x(n + 1) = 1.2 - O.6y(n) 

y(n + 1) = 1.14 _ O.57x(n + 1) 

The two methods were worked through on the micro and the results 

compared. Then the rearrangement 

x = 2 - 1.75y 

Y = 2 - 1.67x 

was tackled via the Jacobi and Gauss-Seidel methods and seen to lead to 

non-convergence. The class was asked to think about the reasons for this and to 
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come to the next session with their suggested answers. 

A subsequent session took place with a group of over 80 students from a 

different course in a lecture room in which four television screens were placed 

along the sides. Apart from administrative problems in arranging for the 

televisions to be unlocked, and so on, the author noticed one severe drawback. 

Whereas on the previous occasion it had been possible to focus the students' 

attention on one point and hence always to keep that attention, at this session the 

students' attention was divided between the four screens and it proved difficult to 

re-focus their attention on one place. During a micro demonstration it was more 

awkward to explain what was happening than when all the students were looking 

at one point. A further worry was that some of the numerical detail was not 

clearly visible to all the students in the room, even after using double height 

characters. Add to this the fact that only a few rooms had the facility of being used 

for micro demonstrations in this way (and then they were not always available 

when required), and it is easy to see why many lecturers fight shy of using micros 

in their lectures. 

5.8 Computer Enhanced Tutorial: Numerical Integration 

The user guide for the unit on numerical integration is shown in Appendix 

11. It explains the philosophy behind the unit and how the teacher might want to 

use it. 

The group sizes chosen for the tutorial were either six or seven. For ease of 

administration the first session was held in the programmer's office with the 

programmer conducting the tutorial and the normal monitor being used. The 

students had been told before the session that they would be having a tutorial in 

which the software on numerical integration would be used as forum for 

discussion. Lest it be thought that the author was opting out of his responsibility 

by not conducting the tutorial himself, it should be pointed out that he wanted to 

observe someone else demonstrating the software and he wanted the programmer 
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to see at first hand the reactions to his software. 

The first session proved something of a disappointment. This was the first 

occasion on which the students had been exposed to this kind of teaching and they 

were a little reluctant to answer questions unless asked as individuals. Only once 

did a student ask to see a sequence a second time and the tutor was therefore 

controlling the pace and content of presentation. 

The software was not as amenable to this mode of use as had been expected. 

The change-over from one example to another was too slow, especially when a 

different function was selected. The lack of a suitable blackboard facility also 

hindered the presentation; consequently, for the second session a number of 

changes were made. The room used was a designated tutorial room which was 

larger and had a blackboard. The hardware was transported to the room on a 

purpose-built trolley. A larger TV screen was used and this made for a more 

relaxed environment, since the students did not need to sit so close together or so 

next to the screen. It also allowed the tutor to point to parts of the screen display 

without blocking the students' view! The opening examples for both Trapezoidal 

and Simpson's rules were simplified. The functions chosen were: for 

Trapezoidal, sin x with one strip and for Simpson, 1/(x2 + 1) with two strips. 

These examples were found to give a more instant picture of the methods than the 

functions used previously. Refer to Figure 5.4 on the following page. 

The session was conducted by alternating between informal discussion 

using the micro - where this line originated, what that area represents etc - and a 

more formal blackboard derivation of formulae. The student response was better. 
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Figure 5.4 

A typical coverage of topics was 

(i) Estimation of area: upper and lower sums, mid-ordinate rule, the 

effects of varying a, band n (or h). 

(ji) Trapezoidal rule: derivation of the formula, examples, errors. 

(jii) Simpson's rule: derivation of the formula, examples, errors. 

(iv) Mention of Romberg integration and Gauss-Legendre quadrature. 

5.9 Individual Usage: Cubic Splines 

The user guide for the unit on cubic splines is shown in Appendix 12. 

The students had received a package of lectures on the approximation of 

functions. This began with an outline of the tangent and quadratic 
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approximations and led in the direction of Maclaurin and Taylor series; these 

would be covered in detail in a separate course. Then the drawbacks of such 

approximations were pointed out and the students given an assignment on 

Mac1aurin's series for exp x and sin x. This had two objectives: to see how for a 

fixed number of terms the accuracy of approximation varied as X was moved away 

from zero and to see how for a fixed value of x the accuracy varied with the 

number of terms. 

Then the concept of Fourier Series was introduced by employing the unit on 

that topic. The students were able to see how the approximation improved as 

successive terms were added on and were introduced to the concept of orthogonal 

functions in a very informal manner. No attempt was made to derive any Fourier 

series expansions. 

Attention shifted to the approximation of data, first via least squares and 

then by interpolation methods. This, then, was the background to the lecture on 

cubic splines. The lecture started by describing the draughtsman'S spline: a flexible 

metal strip to which weights could be attached so that the strip passed over those 

points on a drawing through which the curve to be constructed was required to 

pass. The spline then took up a suitable shape for, say a road which was being 

planned; by moving the weights, the strip could be made to take up different 

shapes. The aim of the mathematical approach was to model this draughting tool. 

A set of 6 data points was shown and the class asked to fit a cubic curve to 

the first 4 and a second cubic curve to the last 4. It was seen, via a pre-programmed 

routine for solving simultaneous equations, that at the third and fourth points the 

slope of the cubies did not agree. It was then explained that the method of cubic 

spline fitting would fit 5 cubic segments to the six points, each segment passing 

through a consecutive pair of points. A cubic curve had just enough flexibility to 

make a useful tool, whilst retaining relative simplicity in subsequent calculations. 

However, since a cubic curve contains four parameters in its complete definition, 

it was clear that the 20 parameters involved in the set of segments would require 
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20 conditions for their evaluation. 

It was also clear that since each segment had to pass through 2 of the data 

points there were 10 conditions immediately obtainable. It was suggested that to 

allow a smooth journey along the segments the slopes of two successive segments 

should be equal at the "hand-over point" and that also the curvatures would have 

to be equal also. 

However, these conditions between them provided a further 4 X 2 = 8 

equations which left a shortfall of 20 - 10 - 8 = 2 equations. It was then 

explained that the practice was to use the set of second derivative of each cubic 

segment at the end-points of its existence as the variables around which the 

equations were defined; these variables were denoted 81. 82. 83 •.. 8 n. In the 

example of six data points we had 81. 82.' ..• 86' A popular choice of two extra 

conditions were the so-called "natural spline conditions", viz. 81 = 86 = 0 

which corresponded to the metal spline being allowed to take up its natural shape 

at the end points. Then it was explained how the coefficients of each cubic 

equation can be derived from the set 81 •.• 86' (A mathematical derivation of 

the equations is shown in Appendix 12). The students were provided with the 

user guide prior to the laboratory session. Refer to Figure 5.5 . 

The tutorial sheet is attached to the user guide. It is clear from the reports 

submitted that not only did the students understand more about the nature of 

cubic spline approximations than their predecessors who had used a black box 

routine to obtain numerical results for a given set of data points, but also they 

gained more personal satisfaction from this type of guided investigation. 

It was envisaged that the software would be employed in three modes of 

teaching: the lecture, the small group tutorial and the laboratory. For the lecture 

environment a particular type of software was required, namely that which is fixed 
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Figure 5.5 

in style. The ideal is to have pre-programmed examples that have been selected in 

order to make specific points. In this way a minimal amount of user interaction is 

needed and the continuity of the lecture is maintained. The teacher can use the 

software as an animated equivalent to a set of overhead transparencies. 

On the other hand, the software to be used in small group tutorials needs to 

be flexible. The author had found that when using the MIME mechanics software 

with his students there was an advantage in being able to follow up a 'what if' 

question from a student using the software. Finally, laboratory exercises require 

the student to work with the software under a minimum of supervision. 

Work sheets would be provided to guide the students through the software by 

asking them to carry out a sequence of guided experiments and draw appropriate 

conclusions. This method of individual guided discovery makes especial 

demands for both the software and the documentation. 





148 

These various modes of teaching necessitated very carefully designed 

software. Ease of use was a top priority and the MIME shell would allow for this 

requirement. One result of the comments received on the MIME mechanics 

software was to aim to produce smaller units with less ambitious animations. 

Apart from the need to use the precious resource of programmer time to the 

maximum effect, it was felt that at the tertiary level students would need less 

exciting displays to motivate them. 

5.10 Evaluation and Assessment of the UGC Project 

The units produced under the UGC funding have been tested by colleagues 

at Loughborough and elsewhere. Nine departments in other universities agreed 

to participate in testing and evaluating the software; they comprised six 

departments of mathematics or mathematical sciences, one computer science and 

. mathematics, one physics and one mechanical engineering. At the time of writing 

this thesis, replies had been received from seven of these departments. In 

addition, one final year student, who was carrying out a project on mathematics 

software undertook to test the units as part of that project. One department 

invited a project member to conduct a workshop for interested staff. 

The evaluation was somewhat informal for two reasons. 

(i) The units were designed as a resource for enhancement of the 

learning process and therefore intended to be used flexibly together 

with other resources in a variety of teaching styles: no two teachers 

would be expected to use them in precisely the same way. 

(ii) For the most part the material has been tested by teachers with their 

students in a way which is not typical of how they envisaged using 

the material in their courses. 

A simple questionnaire - one version for teachers, one for students - was 

included with the units to provide a framework around which comments and 

criticisms might be concentrated. These versions are presented in Appendix 13. 
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Student reaction was mixed: whilst many responses were favourable, 

indicating that the units were interesting and helpful, there were some who 

reported lack of interest and said that they learned very little from using some 

units. Staff comments were analysed under five headings. 

(i) General 

Whilst the screen displays attracted much praise and the ease of use 

was welcomed, there was a feeling that the restriction of parameters 

to a set of fixed incremental values was a drawback. More example 

functions were requested in some units and some respondents 

bemoaned the absence of the facility to input their own functions. 

(ll) Running the programs 

Occasional difficulties were experienced in running the software in a 

large networked system. On reflection it would have been preferable 

to have given the user more information on the files in each unit. 

There is often a problem in knowing which system an intending user 

will be operating and it may well have been possible to anticipate 

potential pitfalls by holding discussions with that user prior to him 

attempting to use the software. 

(iii) Particular units 

Comments were received on each unit and were generally 

complimentary. There was the odd criticism but this tended to reflect 

the respondent's particular preferences, and sometimes the fact that 

the lecturer wanted to sit back and let the software do all the work 

despite being told at the outset that the keyword was 

enhancement. The unit on simultaneous linear equations was well 

received because of the way in which the processes were animated 

and row interchanges were illustrated dynamically. The unit on the 

water tank, as an example of a system modelled by a first order 

differential equation, was rated a useful addition to the teaching 

because of the simultaneous display of the falling water level and the 
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graph of the variation of water level with time, especially as steady 

state was approached. Some reservations were expressed as to the 

usefulness of the units on complex variables but the unit on cubic 

spline approximation was highly praised, all respondents expressing a 

firm intention to incorporate it into their teaching. 

(iv) Documentation 

There was a strong feeling that the documentation to accompany the 

software discs should be in three versions: 

(a) for a lecture demonstration, 

(b) to support course notes given in class, 

(c) "teach yourself" notes. 

It was clear that colleagues were, in the main, unwilling to tryout the 

software and then produce documentation to suit their own needs. 

On reflection, this should have been foreseen; it is being taken in 

hand. 

(v) Hardware 

Whilst the BBC B microcomputer is still very popular in tertiary 

institutions, there is a shift towards mM compatible machines and 

future units will need to be written for them, even though the BBC 

micro is a more suitable vehicle for educational software. 

Despite the difficulties in selecting a suitable hardware and operating system 

which will not be superseded during the lifetime of a project, it is likely that the 

IBM compatibles will be the most favoured for at least the next few years. 

There is no doubt that the project has been a worthwhile exercise. The 

respondents have been keen to use some of the units in their teaching and would 

encourage their colleagues to do likewise. It is clear that whereas certain topics 

lend themselves readily to presentation via such software (for example cubic 
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splines) others are not so easily accepted (for example, complex transformations). 

Full documentation and notes for usage will need to be provided, the 

attitude being to allow lecturers to opt out of the material provided rather than opt 

in with their own. 

In conclusion, the author looks back on the whole MIME project with a 

mixture of emotions. There is pleasure at the successes and the plaudits but there 

is disappointment that after five years it is still a tiresome logistic exercise to use 

micro-based software in lectures and tutorials. There is sadness, too, that many 

colleagues are unwilling to take software and work with it to obtain a package to 

suit their needs and preferences. They seem to want to play a passive rOle in its 

use in their teaching programme. On the other side of the coin there are those 

who appear to regard the software as perhaps bearing too much of the software 

author's personality. Whereas a text-book is a fairly low-key teaching resource, a 

piece of micro-based software will have something of the intimacy of a 

teacher-student relationship which a different lecturer may find difficult to 

reconcile with his own attitudes. 

The author believes that with sensible use in lecture room, tutorial room 

and microcomputer laboratory, micro-based software can truly enhance the 

learning process. Clearly, more research needs to be undertaken into the effective 

use of software in the lecture room and in tutorials. However, there needs to be 

much more provision of resources to allow the successful implementation of the 

software and to encourage more software production. At the moment, the 

hardware has raised expectations which the software cannot meet. It is going to 

take longer than first envisaged before computer enhanced learning becomes 

widely regarded as the norm. 

It seems appropriate to end this chapter with an extract from the CTISS 

project report of Bajpai and Mustoe (177) 
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"Lessons for the Future 

To have a long-term future the software must be supported by suitable 

facilities in the form of purpose-equipped lecture rooms each with a large screen in 

situ, tutorial rooms with permanently-installed hardware and several micro 

laboratories. 

The quality of software desirable to maintain interest requires experienced 

programmers whose expertise will demand high salaries. 

Having pump-primed several projects across universities and other 

institutions it would be unwise to expect any large-scale continuation of these 

projects. External funding for educational software is scarce and without such 

funding it is hard to see how much of the work will continue at other than a low 

level. 

It must be the aim of projects of this kind under the umbrella of CTISS to 

achieve a long-term impact. Strong support is needed to fulfill this through 

considerable funding of a small group of institutions most capable of performing 

the task. The selected institutions should have expertise and established 

reputation in the subject areas. Collaboration between these institutions is a 

'must' to avoid duplication of effort and dissipation of scarce resources and energy. 

The time is here when concentration should supersede dispersion." 
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Chapter 6 

Case Studies in the Curriculum 

6.1 Modelling with Mathematics 

In the 1960's pure mathematicians began a radical overhaul of mathematics 

syllabuses at secondary school level; the most influential of these was the School 

Mathematics Project (SMP). There was a'mood abroad to reduce the time spent on 

drill and practice exercises and to increase the emphasis on structural and 

conceptual understanding. The author felt at the time, partly from his experience 

as an examiner at Advanced Level GCE, that too much was being expected of less 

able pupils and that the mathematical toolkit was less well stocked than was 

desirable for engineering undergraduates. Unabated, the change in philosophy 

spread down into the primary school level and up into undergraduate 

mathematics degree courses. More recently, there has been a slight swing back to 

the 'traditional' approach, which has shown that common sense can have an 

influence even if it cannot prevail. 

At the end of the 1960's, those teaching applied mathematics began to show 

concern for the way in which the number of candidates for Advanced Level 

Applied Mathematics was beginning to decline. They realised that they, too, had 

to carry out a radical reappraisal of their teaching. The problems tackled, not only 

at school but also at undergraduate level bore little or no resemblance to real, 

practical problems. Furthermore, the formulation of the problems in 

mathematical terms was neglected since they were already posed in a way which 

merely awaited immediate mathematical solution. 

Among influential voices raised in favour of a change was that of Pollak 

(180) who wanted an open-ended approach typified by the statements "Here is a 

situation. Think about it. Find out what the problem should be, or what the 
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theorem is that you ought to be trying to prove." This contrasted sharply with the 

traditional approach of "Here is a Problem. Solve it." In the twenty years which 

have elapsed since that paper, the literature on mathematical models and 

modelling has mushroomed. Most of it has been directed towards school 

mathematics and mathematics degree courses, but the principles are relevant to 

the teaching of mathematics to engineering undergraduates. A selection of papers 

of interest is provided in references (181) to (190). 

There is now a clear distinction drawn between a model and modelling. It 

is only in the last fifteen years or so that much attention has been paid in textbooks 

and journals to the construction of a model; hitherto, even in textbooks which 

included the word "modelling" in their titles, most of the space was occupied by 

deriving the solution of the mathematical model. Although many expositions of 

the modelling process exist it is widely accepted that the activity comprises the four 

stages of formulation, solution, interpretation and validation. 

In the fomulation stage, a real-life situation is analysed to identify a 

particular problem (or set of problems) and the problem is then posed in 

mathematical terms. The solution stage is where attempts are made to solve the 

mathematical problem and the interpretation stage relates the mathematical 

solution obtained to the original problem. Finally, the validation stage checks the 

predictions of the model against a wide range of circumstances in the original 

context; this stage may involve the collection of data by observation or experiment. 

The definition of a mathematical model is not so readily agreed. The 

author has found the definition due to Andrews and McLone (191) as helpful as 

any; they declare a model to be " .. the representation of our so-called 'real world' 

in mathematical terms so that we may gain a more precise understanding of its 

significant properties in order to allow some form of prediction of future events". 

Oke (192) has made a more compact attempt: "a simplified and solvable 

mathematical representation of an aspect of a practical problem". He argues that 

his definition emphasises that the model is an imperfect representation because 
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simplification necessarily ignores some details of the problem and because to make 

the mathematical representation tractable often requires further simplification. 

The term 'case studies' is commonly used to describe the presentation of a 

model and its solution in which the formulation stage has been ignored or 

sketched over very briefly. For the purposes of this thesis the author will use the 

term to describe the presentation of a model (and its solution) which has actually 

been used to solve a real problem. Contrary to the advice offered by Beckett (135) 

experience has shown that engineering students will not be impressed by the use 

of mathematics to solve problems related to leisure pursuits; that approach 

smacks too much of the mathematics looking for an application. In any event, the 

engineering student seldom studies mathematics for its own sake. By choosing 

examples where the mathematical model has made a real contribution to the 

understanding of and solution of a practical problem the lecturer is more likely to 

persuade his students of the usefulness and relevance of mathematics in 

engineering. Whether the presentation of the case study includes the formulation 

stage and whether the students are guided through that stage with a greater or 

lesser degree of help from the lecturer is a matter of choice. 

As has been mentioned in Chapter 3 the author has always emphasised the 

role of mathematics in modelling engineering systems at the outset of his course 

of lectures. A good idea of the philosophy that is expounded to the students is to 

be found in Chapter 1 of Engineering Mathematics (42) from which is taken 

Figure 6.1 on page 156, which was shown previously as Figure 2.1 on page 25. 

As part of their induction week the Civil Engineering freshmen at 

Loughborough have a set of mini-lectures from the members of staff responsible 

for their teaching, each giving an overview of his subject. The author in his 'spot' 

explains to the freshmen that they have learned certain mathematical skills akin 

to an apprentice joiner having been trained to make dovetail joints, to chamfer 

and so on. Now they are going to make a cabinet applying those skills. But the 
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mathematics will get messy and compromises and approximations will often be 

necessary. 

It is pointed out that in their structures course they will be told that for a 

homogeneous, uniform thin horizontal beam of length I simply supported at its 

ends and experiencing a uniformly distributed load of w/unit length the 

deflection of the mid-point is 5 w14/384EI. The students should ask how thin is 

a 'thin' beam and how small is a 'small' deflection; further, what would happen if 

the beam were not homogeneous or uniform. Before such a formula could be 

derived, a mathematical model for the deflection of the beam had to be 

constructed; certain simplifying assumptions had to be made and any predictions 

or deductions from that model were only as reliable as those assumptions. Having 

constructed the mathematical model, it could be solved (hopefully) by the 

techniques that the students had already acquired. If not, then they had to acquire 

new teChniques or make further simplifying assumptions. 

I Observe I 
I 

I Pose problem I 
I 

I Experiment with different factors to L isolate important ones 

I 
~tate physical model and nature of solution re<juired I 

I 
l Simplify and produce mathematical model 14-~ 

I 
I Can this model be solved analytically/numerically 

~'o Draw graph and/or 

+ Yes 
produce empirical formula 

L Obtain solution I 

I Interpret solution physically I 
I No 

I Does solution bear out observation? 

+ Yes 

I Prediction of behaviour I 

Figure 6.1 
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Similarly, in their hydraulics course they will be told that as part of the 

study of the action of a reciprocating pump they will consider the laminar flow of 

water between two parallel plates. A formula that can be easily remembered is 

v = twitl12Jl 

where v is the mean velocity of flow, t is the distance between the plates, W = pg 

where p is the density of the fluid, Jl is the dynamic viscosity of the fluid and i is 

the hydraulic gradient given by 

i = hf 11, 

hf being the head loss and 1 the length of the flow path. 

Mathematics at this level, then, is more than simply the acquisition of new 

analytical or numerical techniques. It is an integral part of the understanding of 

the behaviour or engineering systems and it is in this spirit that the mathematics 

course is to be taught. 

In the tutorial session following the lecture the students are given a 

hand-out entitled Models in Engineering which is shown on pages 158 and 159. 

They are encouraged to discuss their reactions to each problem: whether they 

consider the problems straightforward, whether they have enough information 

(or too much), how they would set about constructing a model, and so on. 

Example 1 is not usually regarded by the students as involving a model; 

these are equations to be found by resolving forces at each joint both vertically and 

horizontally and by taking moments about particular points an the truss. Then 

the students are asked what they understand by a point load or a point support and 

complacency begins to wane. 

With regard to Example 2, many students have not really met much 

statistical analysis at school and the question of handling imprecise data is a 
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MODELS IN ENGINEERING 

1 In the plane truss shown below, all angles are 60°. The applied loads are in k N. All 
joints are pin joints. Find the forces in each member. 

5 'Ill 

10 10 

""" 
Would your method of solution differ if the truss contained twice as many members? 

2 Mass-produced spars are claimed to have a breaking strength which is on average 
28N/m2. 
What does this mean? 
How can we check whether the claim is valid? 

3 The measurements shown in the survey are correct to the last figure quoted. 
What is the length of the side AB? 

AtB = 57° 12' 3" 
405.19 m 

A B 

4 A uniform cantilever of length I has an end-load P. 
Find the deflected proflle of the cantilever; the deflection may not be small. 

5 A metal specimen is tested in an ex tensiometer to find Young's modulus for the metal. 
How can we calculate this modulus reliably? 

6 A beam of length I is freely supponed at its ends and carries a load of w per unit length. 
It rests on elastic foundations. 
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7 A cylindrical tank of volume 1000 m3 is to contain hot liquid. What dimensions should 
be chosen to minimise heat loss through its surface? 

8 The profile of an impeller blade is bounded by lines x = 0·1. Y = 2x. y = e-x• x = I 
and the x-axis. Find the volume of the blade if its thickness is given by t = (1·1 - x) r 
where r is a constant Find its second moment of area about the x-axis in the case of 
uniform thickness. 

9 Measurements of the cross-section area of a hole are taken at equally-spaced depths. 
Estimate the volume of the hole. How accurate is your estimate? 

10 A reservoir has been contaminated by effluent. The capacity of the reservoir is 106 
litres. The degree of contamination is 0·02% by weight. The average daily rate of 
consumption of water for non-drinking purposes is 2 x 1()4 litres and this is 
continuously replaced by pure water. How long will it be before the concentration of 
contaminant drops to the safe level of 1O-5%? 

How do your results differ if the incoming water contains 10-6% of contaminant? 

11 How does soil drain excess water? 

12 How can we forecast the next in a sequence of inflation indices? 

13 How can we determine whether the river Dee will flood after a severe rainsiorm? 

14 (Term exercise). 

Road repairs on a two-lane road reduce it to half-width. allowing only single file in one 
direction at one time. How would you design a temporary traffic light system? 

LR Mustoe 
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novelty. Those who have are hard put to convince their fellows that testing of 

statistical hypotheses is a valid process. 

Example 3 is easily understood; it is readily accepted that carrying out the 

calculations using the values given is merely to produce an approximation to the 

correct answer, but, how to estimate the error in the number quoted is a 

puzzle. Sometimes it is suggested that the largest possible value for the length and 

the smallest possible value could be quoted but it is agreed by the proponents this 

is heavy work for the kind of answer required; perhaps a quick, rough method 

would be preferable. 

Example 4 is a stumbling block for most students; they protest that they 

have no equation to solve. When the author asks how to set about obtaining this 

equation there is usually a stony silence. Eventually it is agreed that a 

mathematical model for the deflection of a cantilever is the first step and this 

requires a knowledge of structural mechanics principles that they do not yet 

possess. 

Example 5 is intended to remind the students that experimental 

measurements are subject to error. If, as is often the case, the appropriate 

mathematical model is founded on the assumption of uniform cross-sectional 

area of the specimen, what are we to do if our measurements indicate that the 

assumption is not borne out in practice? 

Example 6 is introduced as a first step in predicting the behaviour of railway 

track under operational conditions. The students can usually recognise that the 

full problem is extremely difficult to analyse and that it is a reasonable first step to 

consider the rail in the absence of the loading of a train (and a moving load at 

that!). Even the problem as posed raises a number of questions about the support 

given to the rail by sleepers, ballast. etc. A short discussion takes place on the 

nature of the elastic foundations, including the meaning of the adjective 'elastic' 

in this context. 
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Example 7 restores a little of the students' confidence. This is the sort of 

problem they can recognise as mathematics, even if they do not possess the 

necessary mathematical skills to solve it. 

Example 8 is definitely not a model - it is merely an application of 

integration is the usual response. Then what would happen if the boundary of 

the blade were specified by a drawing or a set of coordinates? is the riposte which 

leads to a discussion of the approximation of data. Should the approximation be 

in manufacturing equations for the boundary curves or in the integration process 

itself? 

Example 

many of them? 

9 is unfair. How widely-spaced are the cross-section areas -how 

When the students are told that this decision is up to them they 

are most disconcerted: how can we possibly say? is the response, followed by a 

plaintive it depends on the hole. The thought that they have to make such a 

decision is anathema to them since they have always had it made for them in the 

past. 

The usual reaction to Example 10 is that the students have no idea where to 

begin. The author tells them that an early consideration is the information 

provided in the statement of the example. Is it helpful? What does 'the degree of 

contamination is 0.02% by weight'mean? Are we talking about an average value, a 

maximum value or a minimum value? If the figure quoted is an average then 

this means presumably that our answer assumes a (reasonably) uniform 

distribution of pollutant in the reservoir. 

Examples 11 to 13 are beyond the pale. There is virtually nothing to work 

on. It is pointed out that in the case of example 11 there is a need to understand 

the mechanism of water transport in soil and from the physical principles and/or 

experimental observations it should be possible to build a mathematical model of 

some kind. 
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The students are promised that they will return to these examples at 

various points in the mathematics course and are invited to look back at the 

hand-out from time to time in order to decide whether their mathematical skills 

and knowledge are currently sufficient to make a start on solving' each problem. 

They are told to think about Example 14,. discuss it amongst themselves and be 

prepared to re-consider it during the last tutorial of term. 

In Section 6.2, some ideas on teaching and assessing modelling proposed by 

other authors are discussed. Section 6.3 describes a shared lecture which aims to 

illustrate the interaction between engineering and mathematics that takes place in 

the development of a model. Section 6.4 is devoted to a typical tutorial session 

which considers Example 13, whilst Section 6.5 is a representation of a longer-term 

tutorial discussion on a problem from the steel industry. Finally, Section 6.6 

debates the r6le of modelling in an undergraduate engineering mathematics 

course, given the constraints that exist and are likely to exist. 

6.2 Some Views on Modelling 

One of the major influences on the teaching of university mathematics in 

the last two decades has been the Open University. Among the courses which 

emphasised the modelling aspect of mathematics was the second level course TM 

281 'Modelling by Mathematics', which was introduced in 1977. Blackburn (56) 

described his view of the thinking that went into the design of this course. He, 

too, was critical of the artificiality of traditional applied mathematics teaching, 

citing the examination questions that were set as typical villains of the piece; they 

provided key words and conventions to allow the candidates to set off on a 

well-signposted path to the solution of the problem. The course TM 281 was 

designed to develop skills other than sustained analysis, for example the process of 

selecting relevant information from that available and the maintaining of an 

awareness of alternatives and the possible consequences of these alternatives. 
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Blackburn believed that problems should be set which had no unique 

solution. Suppositions would have to be made and seen not as truths but as 

reasonable statements about a situation. Should they lead down a false trail, then 

some other set of suppositions would have to be tried. He drew a distinction 

between "suppositions", which were the statements of a mathematical model, and 

"assumptions" which related to the real world and carried the possibility of truth. 

Assumptions were excluded therefore from the modelling process. He 

acknowledged that, in order to make time for the development of modelling skills 

the students had to be provided with a handbook containing standard formulae, 

thus eliminating the need to learn the derivation of basic results. 

In 1985 the course was revised as TM 282 - 'Modelling With Mathematics. 

An Introduction'. It comprises 16 units whose titles are 

1 Modelling with linear models 

2 Non-linear models 

3 Modelling position 

4 Modelling motion 

5 Rates of change 

6 Growth and decay 

7 Circular Motion 

8 Modelling with rates of change 

9 Adding things up 

10 Using integration 

11 Differential equations and integration 

12 Modelling with integration 

13 Modelling with differential equations 

14 . Growth, decay and oscillation 1 

15 Growth, decay and oscillation 2 

16 Revision: modelling heat 

An earlier course, MST 281, featured a unit on distillation which the author had 

helped to make. This aimed to show how mathematics helped one to understand 
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the behaviour of a distillation column, leading to the design of a column to 

perform a specified separation of two components. The ideas behind that unit 

appear in expanded form in an article by Crilly, Kropholler and Mustoe (144). 

Another course which merits mention here is the second-level inter-faculty 

course MST 204 which began in 1982. It is entitled 'Mathematical Models and 

Methods' and is divided between the development of mathematical methods and 

mathematical modelling. Berry and O'Shea (193) described the assessment 

procedures that were used to grade student performance on the modelling 

exercises that formed part of the course. Hall (56) also reports on the difficulties of 

applying a formal marking scheme to modelling exercises. 

Murthy and Page (194) presented details of the 'Mathematical Modelling' 

course that they had introduced into the undergraduate curriculum. in 

Mechanical Engineering at the University of Queensland. They stressed the need 

for a studio approach to teaching in addition to the traditional lecture. The lecture 

programme included examples of different mathematical formulations as well as 

highlighting the various stages of the modelling process. Five assignments of 

increasing complexity were set in parallel with the lectures; the fourth was 

designed to examine a range of physical systems which enjoyed the same kind of 

mathematical formulation for example parabolic partial differential equations, 

while in the last assignment the students were asked to conduct a critical 

examination of different models of the same physical system, for instance 

pollution in a river. Assessment was based on reports on the assignments and on 

participation in tutorials and seminars. The students believed that they had 

improved their critical thinking, enhanced their confidence to venture into self 

study, gained more idea of the use of mathematical models and made more use of 

library facilities as a result of following the course. 

James and Wilson (195) described a course of 90 hours duration which they 

had operated in the second year of an undergraduate mathematics degree 

programme at Lanchester Polytechnic. They highlighted the difficulties which they 
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had· experienced in operating the course and suggested ways to overcome these 

problems. They were adamant that such a course was not the place to introduce 

new mathematical concepts and stressed the need for using models which could be 

studied with the current mathematical knowledge of the student. 

The introductory section of their course was concerned with identifying the 

variables to be used and the processes which connected them, representing the 

situation as a model and appraising (briefly) the suitability of the model. The 

major stumbling block was usually the identification of a process and its 

representation in mathematical form. They believed that it was necessary at the 

outset of a modelling course to describe a number of processes for which the 

students are required to produce mathematical expressions; then the problem of 

fitting the processes/expressions to form a mathematical model should be 

considered. 

Shortly afterwards, James (68) advocated the inclusion of mathematical 

modelling in the engineering undergraduate curricula. He recalled that the OECD 

report of 1966 had found two roles for mathematics in the education of engineers, 

namely the provision of the necessary skills for the determination of quantitive 

information about natural phenomena and the provision of an experience in 

rational and logical thinking. James had been a co-organiser of a series of national 

workshops on the teaching of mathematical modelling and he believed that every 

potential teacher of modelling should attend such a workshop. 

He fully recognised the time constraints imposed on the lecturer in 

mathematics for engineers. He called upon engineering staff to recognise the need 

for their students to become competent mathematically and to develop modelling 

skills. These staff should emphasise modelling in the teaching of their own 

subjects. He commended the comment of Murthy and Page (194) that it was 

essential to equip new engineers with the tools necessary to tackle ~ver more 

complex systems and that one such tool, with its intrinsic flexibility and economy 

was mathematical modelling. James warned against concentrating on passive 
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models at the expense of the more difficult modelling approach. 

He suggested that in the first two years of the engineering courses continued 

use should be made of standard models to reinforce the role of mathematics in 

engineering. User-friendly software should be introduced and used by the 

students in practical sessions. During the first year any deficiencies that students 

had in the understanding of the fundamental principles of algebra and calculus 

should be remedied. In the second year an introduction to modelling skills should 

be provided with short assignments being carried out on a group basis. 

Simulation packages could play a useful part at this stage. 

James made a plea for the inclusion of a course on mathematical modelling 

of engineering systems to be part of the third year curriculum. This course should 

be jointly taught by mathematics and engineering staff. (It is comforting to note 

that James endorsed the teaching methods that had been employed by the author 

for several years.) 

James and Wilson (116) had incorporated the use of microcomputers into 

their modelling course. Like the author of this thesis they had found the 

mainframe unsuitable for their purposes, but they were disappointed by the lack of 

multi-purpose packages for the micro. However, more recently they had adopted 

the package TUTSIM with the Apple IT microcomputer; this is a package for 

simulating continuous dynamical systems which are modelled using block 

diagrams or bond graphs. They found that it was very easy to use, totally 

interactive and had full numeric or graphic output to both screen and printer; it 

was also relatively inexpensive. The package had allowed James and Wilson to 

develop modelling exercises within the classroom in a genuine interactive 

manner. 

Their students could use the package when investigating systems either 

individually or in small groups and this removed the need to write their own 

programs. They spent their time more effectively extracting information from the 
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model, generating results and assessing their validity. This philosophy is akin to 

that expounded in Chapters 4 and 5. James and Wi1son warned that students may 

not appreciate that the package is there merely to give them a powerful number 

cruncher; they must be told that the package should not be seen as a replacement 

for the processes of model formulation, consideration and enhancement. Partly 

for this reason they advised postponing the introduction of such a package until 

the later stages of a modelling course. 

Oke and Bajpai (196) were among those who reported on the difficulty of 

teaching the formulation stage of modelling. Rubin (197), referring to the stage as 

'system realisation', suggested the following procedure. 

1 Identify the basic components of the modelling problem, viz. 

information, questions, evaluation criteria. 

2 Formulate objectives. 

3 Produce a list of variables used in stating the objective. 

4 Determine what types of information are required. Introduce new 

variables as necessary. 

5 Identify the components which are described by the variables. 

6 Simulate the phenomenon in a diagram, adding new variables as 

necessary. 

7 Continue the previous step. 

S Examine the list of variables for inconsistencies and redundancies. 

9 Remove the inconsistencies and redundancies. 

10 Eliminate inconsistent or redundant information. 

It is difficult to believe that these 'ten commandments' can be carried out in 

the order suggested, but the list does give the teacher a feel for the difficulties likely 

to be encountered . 

. Morris (198) offered some general advice to the would-be modeller. 

1 Factor the problem given into simpler problems. 

2 Establish a clear statement of the objectives. 
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3 Seek analogies. 

4 Consider a specific numerical instance of the problem. 

S Establish some symbols. 

6 Write down the obvious. 

7 If a tractable model is obtained, enrich it; otherwise simplify it. 

Should simplification be necessary at stages 1 or 7 Morris provides a list of 

possible actions: 

(i) Make some variables into constants. 

(ii) Eliminate some of the variables. 

(iii) Use linear relations. 

(iv) Add stronger assumptions and restrictions. 

(v) Suppress randomness (in a stochastic problem). 

6.3 Rainfall and Runoff: A Shared Lecture 

In the second term of the mathematics course given to first year Civil 

Engineering undergraduates the methods of separation of variables and 

integrating factor are covered as part of the package on ordinary differential 

equations. In the same week a shared lecture is given in the form of a dialogue 

between the author and one of his Civil Engineering colleagues. What follows is 

an abridged version of the lecture: the author is denoted by M and his partner by 

C. 

(i) The hydrological background 

(C) One of my jobs in industry was to help design a flood control scheme. The 

idea was to relate the rainfall wp.ich fell on a catchment area to the 

subsequent runoff so that we could predict the outcome of a storm and take 

any appropriate action before flooding occurred. 

(M) Could you please explain the terms 'catchment area' and 'runoff'? 



Figure 6.2 
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CC) By 'catchment area', I mean the land and water surface area which 

contributes its rainfall to the outflow at a particular point on a river or 

stream. The further we move downstream the larger the catchment area 

becomes cSee Figure 6.2). 

Some of the rainfall may be interrupted by vegetation or by roofs, 

pavements and other artificial surfaces; some of the rainfall will evaporate; 

some will infiltrate the soil; some may be stored in topographical 

depressions. The remainder of the rainfall flows over the surface to the 

nearest stream; this surface runoff can be very important, especially during 

violent storms when it becomes large and may cause flooding. It is clear 

that there is some cause-and-effect relationship between rainfall and runoff, 

but the complexity of the problem, makes the nature of the relationship 

such that a physical representation is very difficult. There are catchment 

size, shape, slope, altitude and drainage pattern to be taken into account; the 

type of vegetation cover of the area is important - and this may depend on 

the season. Then the condition of the catchment is important - whether it is 

wet or dry when the rainfall occurs. And then ... 

CM) Hold on. If the problem is so complicated why don't you simply 

measure the runoff directly? After all, even if you measure rainfall it's only 

at one point and you would really need to measure it at several points in 

the catchment area to get a representative picture of rainfall over the area as 

a whole. 

CC) It's mainly a question of cost. To purchase and install a recording rain gauge 

costs about £250, whereas the cost for a river gauge to measure 

runoff on a large river could well be of the order or £40,000. And then you 

must take into the fact that in this country we have very good rainfall 

records; by comparison, runoff records are very sparse. So we need a way of 

relating rainfall to runoff. There are several graphical or empirical methods 

but they're not really satisfactory. You're a mathematician; can't you help? 
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Hi) A simple model 

(M) I'll have a go. If we can formulate a mathematical model for the system we 

might be able to make some useful predictions. We could test the model 

with some known rainfall and resulting runoff data and, providing that we 

find it to be satisfactory, we can 'calibrate' it. Then it will be ready for us to 

use. 

(C) I've read something about such models. In essence, they regard the 

catchment as a storage area; the rainfall is the input and somewhat later this 

water, in part, appears as runoff. Some of the water appears relatively soon 

after it has fallen and some, with a longer journey to make, appears later. 

What I really want from you is a means of determining what runoff will 

result from a particular storm rainfall. 

(M) I want to start with a very simple model. It might do the trick and that will 

save us a lot of unnecessary work. If not, then we can see where its 

shortcomings are and make appropriate adjustments. Can you give me 

some physical principles which I can put into mathematical terms? 

(C) We can use the hydrologist's storage model which states that the input rate 

less the output rate is equal to the rate of change of storage in the catchment. 

Also, we can assume that the volume rate of outflow is proportional to the 

amount of water currently in storage. 

(M) My first attempt at a model for the catchment is a tank of constant 

cross-section area which has an outlet at the bottom. If I assume an initial 

head of water of ho then I can predict how the head varies with time after 

the outlet is opened. Let ... 
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(C) It doesn't seem very realistic to me. On a real catchment the rainfall would 

be of variable intensity over a finite time. What you're doing in effect is to 

drop a lump of water on the catchment all at once. 

(M) I did explain that I was going to start with a simple model; too many 

complications at the outset could lead us up a blind alley. Let us consider 

the tank shown in Figure 6.3. It is cylindrical with cross-sectional area A. 

The input to the tank measured as a volume rate is 1 and the volume rate 

of outflow is Q. Both these rates, in general, will be functions of time. (I am 

setting up a general model, even though I shall start with 1 = 0.) Let the 

amount of water in store at time t be Set) and the head at that time be het). 

Then we have the relationships 

and 

S = Ah 

dS I-Q=-
dt 

(1 ) 

(2) 

Your assumption that the rate of outflow is proportional to storage can be 

written 

Q =kS (3) 

where k is a constant for the tank. 

In our model we have one independent variable, t, and three dependent 

variables, h, S, Q; in addition we have two parameters k and A. We have a 

fourth dependent variable, I, but we'intend to put 1 = 0 at the first stage of 

our analysis. 
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I assume that h = ho at t = 0 and that there is no subsequent input to the 

system. Then using (1) we obtain 

dS = A dh 
dt d t 

and via (2) we arrive at the differential equation for the head, namely, 

dh = _ kh (4) 
dt 

We can solve (4) via separation of variables to obtain the formulation 

(5) 

The graph of this relationship is shown in Figure 6.3. 

(C) I'm afraid that this is no use to me. The shape of the outflow that I had 

expected is shown in Figure 6.3. Since Q = kS = kAh we see that Q is 

proportional to h and your graph should be of a similar shape. 

(Hi) Revisions to the model 

(M) I should have been very surprised if our simple model was adequate. We 

must not give in so easily. Perhaps we need a more sophisticated way of 

modelling the delays in water reaching the point of interest. I don't want to 

abandon the tank idea just yet. Suppose we let the output from the tank 

become the input to a second, identical tank and study the outflow from this 

latter tank. In effect, we are providing an extended storage. Since the 

outflow from the first tank, viz. 

(6) 

is the inflow to the second tank then (2) applied to the latter takes the form 

k Ah e ·k! _ k Ah = a dh 
o d t 

ie dh + kh = kh e·k! 
d t 0 

(7) 
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We can no longer use separation of variables to solve this equation and we 

resort to the integrating factor technique. For (7) the integrating factor is 

e kt; applying the technique and noting that at t = 0, h = 0 we obtain the 

formula for the head in the second tank: 

h = ho kt e-kt (8) 

A graph of this relationship is shown in Figure 6.5: The peak value 

occurs at t = ~ . 

(C) That's better, but it's not quite right yet. Could we pursue this idea further? 

What would happen if the outflow from the second tank was allowed to 

leak into a third, identical tank? (Why do the tanks in your example have 

to be identical, anyway?) Could you work out for me the outflow from the 

third tank? 

(M) I should have remarked that from (8) I can deduce the outflow from the 

second tank by multiplying the formula for h by kA. Incidentally, we use 

identical tanks so that we are dealing with two parameters only, viz. k and 

A. As for a third tank, it is straightforward to show that the head is 

governed by the equation 

dh + kh = h k2te·kt 

d t 0 

with the initial condition that h = 0 at t = O. The integrating factor 

method can be used on this equation to obtain the solution 

2 
h = h k2_t -kt 

uJ} 0 2,e (9) 

Whilst we are on this tack we might as well produce the general formula for 

the head in the last tank of a series (or cascade) of n tanks. Using the 

principle of mathematical induction we can show this to be 

h = h k
n

-
1 

o 
n - 1 -kt 

t e 
(n - 1)! 

(10) 



177 

Q. 

t 

IL __ --======-_-. t 

t 

1 

1 
Qn 

~~--------~----t 

11 11 

WHAT ARE VALUES FOR n & k ? 

Figure 6.5 



178 

Since you want the outflow from this tank we multiply (10) by k A to 

obtain 

n·1 
Q = h A kn 

.....:.,.t --
n 0 (n - 1)! 

(11 ) 

This has a shape similar to that of Figure 6.5. The peak occurs at 

t = (n - 1 )/k. As n is increased the peak moves to the right and becomes 

t1o..tt;)er. 

(C) This is looking more promising. I suppose if I choose the values of nand k 

to suit my catchment area I could get a reasonable model. But how can I 

choose them? I will need two equations from which to determine nand k, 

won't I? Where are they coming from? 

(M) Well, we could take the first and second moments of area of both your 

curve and my curve about the vertical axis and equate them. But first I 

want to standardise matters. If we consider the outflow from the nth tank 

due to a unit amount of storage in the first tank (that is, Aho = 1) then we 

obtain the formula 

n·1 
Q = kn t e·k1 

n (n-1)! 
(11 a) 

(C) We call this arrangement an Instantaneous Unit Hydrograph (IUH) - I've 

seen it in the literature. 

(M) You see, if we had an initial storage of I in the first tank we simply scale the 

IUH by a factor of I. Now I can show by simple calculus that the first 

moment of the IUH about the vertical axis is 

and the second moment is 
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All I used was integration by parts and a simple reduction formula. Then 

we can work out the first and second moments of the "observed" curve 

using numerical methods and we have the necessary two equations. 

(C) Just a moment. In a real rainstorm we have a variable intensity over a 

finite time, not a lump of rain falling at one instant. We'd better examine 

the assumptions you've made. If you remember, we said at the outset that 

not all the rainfall that occurred ended up as surface runoff; if we are 

comparing theory with reality we must make sure that my experimental 

graph does relate only to runoff. Now we really can't take one storm as 

typical and I would need some average over a number of storms. Also, the 

characteristics of the catchment may vary with the seasons and that will 

affect your choice of nand k. The storm itself has an effect on the 

catchment response: a high intensity storm of short duration will produce a 

greater fraction of surface runoff. And then there's the fact that the storm is 

a variable intensity, finite duration affair. That really bothers me. 

(M) I accept that we've got some difficulties to iron out. However, no model is 

perfect, and to expect to get a near-perfect model in under an hour is asking 

a lot. There is a division of labour at this stage. As a hydrologist, you 

should collect more data. If for each catchment area and season and type of 

storm you can give me some observed rainfall and runoff, I can supply the 

best IUH under my assumptions. It's my job now to explain your big worry, 

namely the storm of finite duration and variable intensity. One thing I 

should point out here: the data you collect would be most suitable if the 

storm were of reasonably constant intensity and uniformity over the 

catchment area. 

(C) That would mean restricting our observations to areas of less than 2000 

square miles. 

(M) Look at Figure 6.6(a); it represents the intensity of a particular rainstorm. 
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Now consider that portion of rain which falls in the very small time 

interval ['t, 't + o't]. Obviously, it cannot contribute to the runoff until time 

t > 'to If we break up the intensity-time graph into a set of narrow strips 

then each strip makes its contribution starting from different times. Each 

"strip of rain" can be considered to be instantaneously dumped on the 

system. The volume of rain represented by the strip can be combined with 

the IUH for the catchment to give its contribution to the runoff; however 

that IUH will be shifted to the right so that it begins at t = 't as shown in 

Figure 6.6(b). Then at any time t, after the start of the storm, the runoff is 

the sum of all such contributions for those parts of the storm which 

occurred at t ~ 't; see Figure 6.6(c). 
I 

The contribution of the rainfall element in [t, 't + fu], which has volume 

I('t)o't, to the outflow is I('t). u(t - 't)O't. Hence, total outflow is given by 

t. 

aq) = J I(t). u(t - 't)d't 

o 

(C) Wait. You've lost me. Could you go over that again? 

(12) 

(M) Sorry. The IUH which starts at t = 0 has equation u(t). Now the one 

which starts at t = 't has equation u(t - 't); you see, at t = 't this latter curve 

has value u(O) etc. Hence the contribution to the outflow is I('t).u(t - 't)d't 

and since we are dealing with continuous functions we sum the individual 

contributions by integration to obtain formula (12). 

(C) That's interesting; when I worked in industry we did something like that, 

but we didn't use integration. We broke the I(t) and u(t) graphs into strips 

and combined them by a tabular method. 
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(M) You were really using a similar method to me, but summing discrete lumps 

instead of integrating continuous functions. There's nothing wrong with a 

tabular method if its accuracy is suitable for your purposes but you were 

using it without really understanding what you were doing. Now you 

know the background you' can can use the tabular method more 

intelligently. 

(iv) A practical application of the model 

(C) I've been a little unfair on you. Engineers who were designing a flood 

control scheme for the River Dee did use your leaking tanks idea as a basis 

for a mathematical model they built. Here is a schematic diagram for their 

model: (Figure 6.7). It's somewhat more complicated than our model. 

(M) That's not surprising. I see that there are several linked subsystems and that 

the tanks can leak from the sides as well as the bottom. How do they use the 

model? 

(C) When a severe rainstorm falls on the catchment area the relevant rainfall 

data is fed into the computer model. It can then produce predictions of the 

maximum depth of the river and its tributaries at several critical points. U 

any of these are greater than pre-determined values, flood alleviation 

schemes are put into operation. Since these schemes cost ratepayers' money 

to implement they are not put into operation unless there is a real need. 

(M) So mathematics has been used in practice. We can't go into the full details 

of the River Dee model, but we can at least appreciate that the model has 

been founded on a set of assumptions and is only as good as those 

assumptions. A realistic model will take many man-hours to construct and 

undergo many revisions before being used in practice. Mistakes at that stage 

are very expensive. 
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(C) We hope that this dialogue has given you an insight into the interplay 

between mathematics and engineering that takes place when we seek to 

solve an engineering problem by constructing a mathematical model. 

(v) Student reaction 

Feedback from the students in the form of verbal comments to the author 

and responses to a short questionnaire indicates that the exercise was worthwhile. 

They found that the dialogue approach retained their attention and were 

interested in the real-life example at the end of the lecture. They had grasped the 

essential structure of the modelling process but were definitely of the opinion that 

they could not have carried out the formulation themselves. 'We could never 

have thought of using a leaking tank as the basis of our model' was the tenor of 

the responses. 

6.4 Reservoir Contamination: A Tutorial Session 

As has been mentioned in the previous section, first year Civil Engineers 

study the method of separation of variables for the solution of first order ordinary 

differential equations during their second term. In the tutorial session 

immediately following that topic they are invited to consider the following 

problem. 

A reservoir of capacity 106 litres has been contaminated by effluent. The 

degree of contamination is 0.02% by weight. The average daily rate of 

consumption of water is 2 xl04 litres and this is continuously replaced by pure 

water. How long will it be before the concentration of contaminant drops to the 

safe level of 1O-5%? 

What follows is a description of an imaginary session distilled from the 

many that have taken place. Bearing in mind that this is the first such session the 

students have had, the author took more of a lead in the discussion than he would 
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expect to do later in the course. 

Having posed the problem which was left in view on the blackboard 

throughout the session, the author then asked the students to comment on the 

information provided. Was it sufficient? Was it in a suitable form? Was any of it 

redundant? What did the degree of contamination mean: average, maximum or 

some other statistic? If it was an average figure, how useful is the value quoted? 

What does 'continuously replaced' mean? 

At some stage one of the students will usually complain that the problem 

cannot be solved. Then he will be asked to explain what "solved" means and 

hopefully he or another student will propose that we could at least suggest an 

order of magnitude for the answer requested. If there is still discontent then the 

students must be reminded that they are training to be engineers who have to 

work in the real world and an order-of-magnitude answer is better than no answer 

at all. As a first step the class is invited to make a guess as to the answer expected. 

The next task is to talk about the way we might set about solving the problem. If 

mathematics is to be used then we shall need some variables and some 

relationships connecting those variables. It is suggested by the students that the 

"obvious" variables are concentration of contaminant, C, and time, t. Having 

made clear the distinction between dependent and independent variables the 

students are then asked to identify the parameters they will use: capacity (or 

volume) of the reservoir, V; average daily rate of consumption of water, r. Other 

information in the problem is the initial concentration of contaminant, Co and 

the required safe level, ct- 'What about the replacement "pure" water?' asks the 

author to be told that "obviously" it contains no contaminant. 

How then to find relationships connecting the variables and the 

parameters? The author draws a box to represent the reservoir and asks the 

input to it and the output from it (Figure 6.8(a». It is agreed that the input has 

zero concentration of contaminant but what about the concentration of the 
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output? One student will volunteer the suggestion that it will be the same as 

currently in the reservoir as a whole; another will ask why, a third will say that it 

will not be the same. On a good day the proponent of the suggestion will round 

on his critics and ask them to put forward an alternative. 

As no such alternative is forthcoming the group settles for the original 

suggestion; the diagram is completed as in Figure 6.8(b). Now the students are 

asked whether the choice of concentration as the dependent variable was a wise 

one in view of the next stage, namely finding a relationship to connect the 

variables. The alternative selection of mass of contaminant is usually suggested 

fairly readily. 

The students will have met the idea that for such an input - output 

situation a useful starting-point is the relationship 

rate of input - rate of output = rate of increase of storage (1) 

Almost without exception, the fact that the students are currently covering 

differential equations in lectures leads to the search for a model based on a 

differential equation. At time t the mass of contaminant in the reservoir is V.c(t) 

and therefore the rate of increase of that mass is 

JL (V c(t)) ;: 
dt 

Vdc 
dt 

(2) 

There is a potential pitfall here: in the terms of the problem given the mass 

of contaminant clearly decreases as time elapses. However, it is emphasised at this 

point in the development of the model that equation (1) has been stated in such a 

way that the right-hand side can be replaced by the formula in (2). 

It has already been agreed that the concentration of contaminant in the 

water leaving the reservoir at time t is also c(t), but it is not obvious what should 
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be the units of the rate of output. The information provided in the statement of 

the problem gives a global change over one day, whereas the use of dc/dt is 

firmly rooted in the students' minds as representing a continuous change. The 

class agrees to consider the changes that take place in one day, in effect taking ot=1 

day. The proviso is made that if the answer to the given problem is a few hundred 

days then this approach is perhaps acceptable, but not if the answer is an order of 

magnitude smaller. 

In the course of one day the fraction 2 x 104 + 106, ie a fiftieth, of the total 

volume of the reservoir is removed and replaced. Under the assumptions made 

so far the mass of contaminant removed is (1/50)V.c(t); since the incoming 

water is free from contaminant, no mass is input. Hence equation (1) becomes 

1 dc o - 5"0 V c(t) = V dt 

dc c -=--ie 
dt 50 

The general solution of this equation is 

c = c e o 

• _I_ 
SO 

(3) 

(4) 

where Co is the initial concentration of contaminant. We are interested in how 

long it takes the concentration to fall to a specified level, Cf. Then the time is 

obtained from 

._1 

C = C e 50 
f 0 

ie t = 50 In(O) 
c

f 

(5) 

At this stage the attention of the students is drawn to the fact that the time 

depends on the ratio of the initial to the "final" concentration. Hence, if it takes n 

days to halve the concentration it will take 2n days to reduce it by a factor of four, 
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and so on. 

Substituting the data values into (5) gives t = 380 to the nearest day. (It is 

quite usual for two or more different answers to be given by the students.) 

The students generally accept that the selection of ~t = 1 day was justified. 

The author asks what would happen if, instead, ~t = 0.5 day. Then, during the 

course of that half-day 1/100 of the current mass of contaminant is removed so 

that equation (1) becomes 

dc c -=--
dt 100 

and hence we obtain 

c = Co e-tl100 

Substituting the data values we obtain t = 760 to the nearest integer. 

Since our units of time are half-days, we recover t = 380 days, as before. 

The students are then asked what would happen if ~t were chosen as 0.1 

day and it is accepted that this would have no effect on the final answer; indeed, as 

the model has been constructed, any ~t less than one day leads to the same result; 

we cannot increase the accuracy of the answer by reducing lit. .This comes as a 

surprise. to most of the students who have been used to the concept of reducing the 

step size to increase the accuracy. 

Before any complacency can set in, the students are reminded that equation 

(3) was something of a fudge since it was a continuous model applied to a 

non-continuous form of data. It is proposed that it might at the least be a 

reasonable alternative to take a day-by-day approach throughout and let mn be the 

mass of contaminant in the reservoir at the end of day n. What then can be said 

about mn+ 1? A long silence is usually the response and therefore the author 
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proposes a modification to equation (1) in the form 

daily input - daily output = change of storage in a day (7) 

Now the amount of contaminant removed during day n is 

_1_ m so that (7) becomes 
50 n-1 . 

__ 1_m =m-m 
50 n-1 n n-1 

or m = 49 m 
n 50 n-1 

(8) 

It is pointed out that if one part in fifty of the contaminant is removed then 

49/50 will remain, and this is what (8) is saying. This is a difference equation, 

which is a new concept for the students. 

It is usually necessary to ask for the relationship between m1 and moo viz. 

m
1 

= 49 m and then 
50 0 

between m2 and mo via 

2 

m = 49 m = (49) mo 
2 50 1 50 

before the solution to (8) is obtained as 

n 

m = (49) 
n 50 

(9) 

Hence 



and 

In(~) 
m 

n = n 

In( 50) 
49 
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(This last equation takes some teasing out of the students.) 

What is to be done with mo/mn? It is usually quickly suggested that 

mo = Co = 300 
mn Cl 

and n is obtained, not without difficulty, as 376, to the nearest integer. 

This value compares favourably with the value 380 obtained using the 

differential equation model. Then the students are asked the question as to which 

of the two models - that employing a differential equation and that based on a 

difference equation - is the more appropriate. Indeed, is one model an 

approximation to the other or are both equally approximate statements of the 

truth? The students are reminded of all the assumptions that were made in 

formulating either model, and, therefore, how accurate the answer is likely to be. 

Whilst the students are pondering the answer, they are asked to suppose 

that the problem was set by their supervisor at work who wanted some advice to 

help him to decide what action to take. What, then, should the advice be? 

Generally, the students combine to suggest that the reservoir will take over a year 

to recover, even under the very favourable assumptions that have been made in 

formulating the model. The author then comments that this might be considered 

an inordinately long time and consequently other, more immediate action would 

have to be taken. Therefore the model has been used to provide background 

information to someone who has other considerations to take into account. 
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Student reaction 

It is evident that many students do not like this kind of tutorial session. 

There is a feeling amongst many of them that they come to tutorials to get the 

lecturer to do some work for them by helping with the difficulties they have 

encountered on the problems set by the lecturer. They resent to some extent 

having to do the work .themselves in the way outlined earlier. 

6.5 Furnace Bumper Problem: A Modelling Exercise 

In the third term of the first year course in Modelling and Simulation given 

to Mathematical Engineering undergraduates the following exercise in modelling 

is conducted. The students are divided into two groups of about 9 and are taken 

through the exercise over a period of two weeks, spending about six timetabled 

hours, in addition to their own time. In this section the problem will first be 

described; then an outline solution will be given, with points of interest from a 

teaching standpoint being highlighted. Next, a typical run-through will be 

described and, to conclude, an assessment of the exercise will be carried out. 

(i) A description of the problem 

Part of the process of producing plate 'steel consists of re-heating steel slabs 

in a furnace and discharging them onto a roller table which takes them to a plate 

mill. It is necessary to slow down the slab after it leaves the furnace so that it can 

be conveyed in a direction at right angles to its direction of discharge. One such 

scheme that was used in practice was to allow the slab, of typical mass 18 tons 

(~18,300 kg), to hit a horizontal bumper, of typical mass 2 tons; the bumper was 

supported by six steel cables attached to two weights of mass 30-60 tons which 

rested on slopes inclined at 450 to the horizontal. The cables passed through slits 

in the surface along which the slab and bumper moved. The system is shown 

schematically in Figure 6.9. When the speed of the slab had been slowed 

sufficiently, the rollers were activated and the slab moved off to the mill. 
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Figure 6.9 
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However, the steel cables broke earlier in their working lives than was expected. 

The requirement is to model the system and to suggest what modifications, if any, 

might alleviate the problem of early failure of the cables. 

(ii) Outline analysis of the problem 

Before embarking on a mathematical analysis, it is wise to think 

qualitatively about the stages of motion. There is a danger that in this early stage 

of the modelling process, the initial phase (before the slab hits the bumper) is 

ignored. At time t = 0 the slab will make contact and the combined masses will 

move, stretching the cables; in this phase the masses on the inclined planes 

remain stationary. At the end of this phase, the tension in the cables will be 

increased to the stage where the static friction force is overcome and the masses on 

the inclined planes are on the point of moving. 

In the next phase the masses move up their planes until either they or the 

combined mass of slab and bumper comes to rest. The mass at rest may begin to 

move again or remain stationary, depending upon the magnitude of the tension 

in the cables. 

If the slab and bumper move back through the equilibrium position the slab 

will separate from the bumper, and will move back towards the furnace under the 

retardation of friction. 

It is worthwhile examining the equations of motion at a general stage in the 

process when all the masses are moving. Because of the symmetry in the problem 

we can consider that half of the system which is depicted in Figure 6.10, bearing in 

mind that the masses of the slab and bumper are, in effect, halved; however, we 

shall consider the full system when formulating the equations. If we apply 

Newton's second law of motion to the combined mass we obtain the equation 

M X ='2 NT sin a - 11 M 9 (1) x 
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where N is the number of cables connecting each mass on the inclined planes to 

the combined mass of slab and bumper, Ilx is the limiting coefficient of friction 

and 

-1 (2X) Cl = tan L 
Similarly, for the mass on the plane 

•• 1 
M Y = NT - Mg - (1 + Il ) .fi y 

We assume the stress-strain relationship 

er = E £ 

(1 a) 

(2) 

(3) 

where er is the stress in a cable, £ is the strain produced and E is Young's modulus 

of elasticity for the material. Now, from Figure 6.10 we can see that the strain is 

given by 

J t L (sec Cl - 1) - Y] 
£1 - L (4) 

However, the cable cannot be compressed (it will go slack) and we wish to avoid 

negative values being provided by (4). Accordingly we define the actual strain as 

£ = ~ (£1 + I £11) (5) 

Then, combining (3), (4) and (5) together with the assumption of constant 

cross-section area Ao for each cable we obtain 

where 

and 

T = 1. (T + I T I) 
2 1 1 

T = K ( 1.. (sec Cl - 1) - Y) 
.1 2 

EA 
K=-_o 

L 

(6) 

(7) 

(7a) 
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In order to allow the use of these equations in the general situation we need 

to specify the coefficients of friction, assumed to be equal, via 

~ = { ~ 
x -~ 

(8a) 

and 

• 
~ , Y> 0 
-~ , y < 0 (8b) 

It is further assumed that the limiting value of the coefficient of static friction is 

equal to the value of the coefficient of dynamic friction. 

The system is determined by equations (1), (2), (6), (7), (7a), (8a), (8b), 

with appropriate initial conditions. 

(iii) Stage by stage analysis 

Initial phase 

Figure 6.11 shows the system prior to the slab making an impact with the 

bumper. If we resolve the forces acting on the mass M in the direction up the 

slope we obtain 

1 1 
NT + ~Mg r.:: = Mg r.:: 

o -/2 -/2 

where To is the initial tension in each cable which just prevents the mass M from 

sliding down the slope. 

Then 

T = Ivt! (1 - ~) 
o J2 N 
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The strain, e, is given by the formula 

..tUL -', +~ L)L:!'.. 
L L 

so that 

therefore 

y = _ To 
o K (9) 

Phase I 

At time t = 0 the slab hits the bumper. Via conservation of momentum 

and a knowledge of the velocity of the slab immediately prior to impact, we can 

calculate the common velocity Xo after impact. During this phase of the motion 

the mass M remains at rest. Referring to Figure 6.12 we deduce that the frictional 

force increases from 

-~ to 
J2 

as the tension in each cable increases from To. At the end of this phase the 

tension has increased to the value where static friction has just been overcome. At 

this stage, let the values of e, x, a., T be e1, x1, 0.1, T 1 respectively. Noting that 

y = 0 we can eventually obtain the differential equation 

x' = -2NK X + 2NK (L + 2yo) x ,- 119 (10) 

M M J4i + L2 

To simplify the resulting formulae, we introduce the variables 

A = -2NK B = L + 2y 
1 Iv'g' 1 0 



x=a 
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• Multiplying (10) by x and integrating with respect to t we obtain 

2 A B [J '] .1 i = A !.... 9 - " 4/ + L 
2 

9 - Ilxg + C (11) 
2 ' 2 4 

where C can be found from 

1.2 A B 
-x =- "Lg+C 
2 0 4 

Rewriting (11) as ,(2 = f(x), we finally obtain the formula 

x, 

f 1 .. " 
t = dX 
1 0 Ii(;) '. 

for the time taken to complete phase I. 

Since 

and 

T = K [ .1 L (sec a - 1) - Y ] , 2 , 0 

T, = Jf (1 + 11) 
2 N 

we can use the formula 

a, = tan -, (2LX,) 

to obtain x1' 

(11 a) 

(12) 

Hence we can calculate t1 from (12) by employing, say, Simpson's rule. 

Phase 11 

Now both the masses are moving and X, y> O. If we introduce state 

variables 

• • 
z1 = x, z2 = x, z3 = y, z4 = Y 
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and constants 

2N A = --
M;)' 

N B=-
M;) 

(13) 

we have the general system of equations 

., (2Z ) 
IX = tan T 
T = K [ .1 L (sec IX - 1) - Z ] 

u 2 3 

Z1 = z2 

z2 = (AT sin IX - ~x) 9 (14) 

z3 = z4 

z, = ( BT - y (1+.») 
12 9 

~x = { 
~ , z2 > 0 ~y = { 

~ , Z > 0 
-~ z2 < 0 -~ , z: < 0 

The differential equations can be solved using a Runge-Kutta fourth order scheme . 

• 
The initial conditions are t = t1, z1 = x1 ' z2 = x1' z3 = Yo' z4 = 0 and the 

, 
step-by-step solution is continued until one of the masses M, M comes to rest. 

It is useful to note that the program which is written to carry out the 

solution can be checked by modifying the equations to simulate phase I and 

compared with the results obtained via Simpson's rule. 
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Subsequent phases of motion 

At the end of phase IT several motions are possible. If the mass M has come 

to rest then it will move up the plane if 

T> Jf (1 + ~) 
2 N 

and down the plane if 

. T < Jf (1 -~) 
2 N 

(1Sa) 

(1Sb) 

otherwise it will remain at rest. Similarly if the mass M has come to rest it will 

move back towards the equilibrium position (x = 0) if 

T> uM:! 
2N Isin exl 

(16) 

otherwise it will remain at rest. It should be pointed out that the mass M cannot 

move further away from the equilibrium position since this would require that 

T < -u M:! 
2N Isin exl 

and since T ~ 0 this cannot occur. 

Hence, if a mass comes to rest and the current value of T is outside the 

relevant bounds it will begin to move and the appropriate coefficient of friction 

will take that sign which causes the friction force to oppose the motion. Then a 

stage similar to phase II takes place. However, if the value of T is within the 

bounds the mass will remain at rest while a stage similar to phase II occurs. 

Separation of slab from bumper 

If the slab/bumper combination returns to x = 0 then separation will occur~ 

Figure 6.13. Applying Newton's second law to the .b~?'€X"' . we obtain 

M1it = - 2NT sin ex - ~x M1 9 
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• 
After separation, the value of z2 is 

. . 
z2 = (Aa T Sin a -Ilx ) 9 

2N where A =---
o M19 

The slab will move back in the direction of the furnace under the action of 

retarda tion due to friction. 

(iv) Overall numerical solution 

In order that all the stages of motion can be covered by one set of equations 

it is necessary to make some refinements. When a mass is at rest then 

modifications to the two differential equations governing its motion are required. 

For example when the mass M is at rest we will replace the relevant equations by 

One way of incorporating this possibility into the system is to introduce flags Gx• 

Gy which take only integer values 0 or 1. The modified system to be solved is 

-1 (2Z1) a = tan L 

T = K [ .1 L (sec a - 1) - z ] 
u 2 3 

• • z = G (AT Sin a - 11 )9 
2 x x 

• z = G z 
3 y 4 

• 
z = G 

4 Y ( 

(1+11)) BT - y 9 
12 
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where 

and 

2N A = - =-
~ 

N B=-
~ 

When the slab and bumper separate, the constant A is replaced by the constant 

A = _ 2N 
o M1 'j 

A computer program to carry out the calculations was written and was 

available to the students to allow them to see the effects of varying certain 

parameters of the system. Refer to Figures 6.14 to 6.17. One conclusion that was 

drawn in practice was that it would be better to use one thick cable instead of the 

six originally used. 

(v) . A typical run-through 

In an exercise which is constrained by time it is tempting for the tutor to 

hurry the students along in order to make progress; the author must confess to 

having succumbed to that temptation on more than one occasion. Paradoxically, 

the first session was spent restraining the students from embarking on an 

immediate mathematical analysis before thinking about the problem in a 

qualitative manner. Once this had been done the next step was to produce some 

equations to describe the motion. It is suggested that the students first consider the 

situation in which all the masses are moving; they can attempt to formulate the 

relevant equations, and by so doing will be able to 'get a feel' for the problems 

which they might encounter when analysing the motion stage by stage. There is a 

general feeling that, after this analysis has been carried out it will probably be 

necessary to write a computer program to obtain the results required. 
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It is a well-rooted idea in most students that a diagram is almost always a 

good bet in starting the process of solving an "applied" mathematics problem. 

Therefore, a diagram is suggested as a first step. The students are asked what they 

will mark on the diagram: will they mark every quantity that seems useful or 

only those that seem necessary, adding others later if required. Responses are 

fairly evenly split, some students maintaining that it is easier to select from an 

over-provision of constants and variables. It is rare to find that half the full 

diagram is produced and they will be asked after the equations have been 

formulated whether, for the sake of simplicity and clarity, it would have been 

preferable to have drawn, say, the upper half of the diagram and appealed to 

symmetry when deriving the equations of motion. Sometimes there is reluctant 

agreement, but sometimes there is a protest that it is more difficult to use only a 

half-diagram since there is a tendency to forget the lower cables when considering 

the forces on the slab/bumper combination. 

There is hardly ever much difficulty in deciding that the sensible 

starting-point is the application of Newton's second law of motion to each 

massive object, viz. a block on an inclined plane and the combined slab and 

bumper. There have been occasions when equations of motion for both blocks 

have been derived; given that these blocks have equal masses it is quickly seen 

that one of these equations is redundant. The author cannot resist the temptation 

to point out that the redundant equation need not have been produced had more 

thought been given to the symmetry in the problem, as exemplified by drawing 

only the top half of the full diagram. 

Students show a reluctance to use two simple expressions when one 

complicated expression will do. For example, instead of using sin ex in equation 

(1) and defining ex by equation (1 a) the students opt to find the expression 

x 
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for sin a. It is suggested that this is a cumbersome expression to carry along 

during the formulation stage; sometimes the students can be persuaded that they 

should adopt the two-stage approach. 

There is some hesitation before an expression for strain is obtained; it may 

well be the first time that the students have had to find a formula for strain from 

first principles. They have had to be prodded to think whether their expression 

could take negative values and what the implication would be if it could. 

Sometimes the inquiry will be delayed until a formula for the tension in the cables 

has been obtained. Clearly, there is no such thing as negative tension; clearly, the 

cable will go slack; however, how to build this into the formulation is another 

matter. The author has always had to explain the idea of replacing T by 

1. (T + ITI) 
2 

but he does so in the spirit of providing another useful item for the students to 

add to their mathematical tool-kits. 

Once again, it is necessary to advocate the usefulness of simplicity in the 

expressions and equations being developed. Is it really necessary to keep the 

expression EAo/L or is it more economical to replace it by a single symbol, K, 

writing it in its full form only if required? Problems occur when it is realised that 

the actual written form of the equations of motion depends on the direction of 

motion. There is general agreement that two equations will be have to be written 

for each mass to take account of this. The students are invited to look ahead to the 

computer program that is to be written at a later stage of the exercise and are asked 

whether it would be more economical to produce one equation with a parameter 

that can take two different values, e.g. 

ll,x>O { 
. 

Il x = -Il, ic < 0 . 

This artifice is acknowledged as being acceptable in the context of a 
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computer program but there is something of a struggle before equation (10) is 

derived and help has usually been necessary. Again, a plea is made for simplifying 

the coefficients to facilitate subsequent analysis. Sometimes a student knows the 

trick of multiplying (10) by x in order to allow its integration, but most often he 

has to be told. 

It would be desirable to allow the students to continue to develop the 

modelling of subsequent stages of the motion in much the same way. However 

the constraints of time usually begin to tell and the students find it hard to sustain 

their concentration. For phases 11 and subsequent phases the'author takes a more 

prominent role. 

The students have met the idea of state variables earlier in the course and 

the development of equations (14) does not provide much discomfort. A 

discussion of how to approach the subsequent phases of motion leads to the idea of 

building various checks into the program to pick up the relevant values of 

parameters for a particular phase, 

Then the program that had been written earlier is given to the students and 

they are invited to use it to obtain some results on the tension in the cables as a 

function of time. At a later stage in the term their results are considered. A 

discussion takes place as to whether the students have made sensible use of the 

program and obtained the most useful set of results for their investigations. 
, 

Finally, the author gives a resume of the exercise and explains the results that 

were obtained and conclusions reached when the modelling was originally carried 

out in industry. 

(vi) Assessment of the exercise 

After teething troubles with the first run-through, subsequent occasions 

proved to be a less bumpy ride. It was deliberately arranged that each group 
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contained the more able and the less able in the class in order to assist the 

momentum of progress. The reservoir contamination model had been developed 

with the class in the earlier part of the year so that the concept of modelling was 

not new. 

Comments received from the students were surprisingly mature. Whilst 

most had found it tough going, the majority accepted that learning to model was a 

difficult task but a crucial one for their development as mathematical engineers. 

They accepted the need at this stage for occasional help and prodding and did not 

believe that it had been overdone. Asked whether they were disappointed that 

they had not been able to complete the exercise under their own steam the vast 

majority said that they were not. 

The students strongly emphasised how important it was that they had been 

dealing with a model which had been used to tackle a problem that was a real-life 

industrial example. Whilst they knew that they would not have been able to 

tackle it in an unguided environment they felt that they had learned a 

considerable amount about the modelling process. Some students commented 

that they were surprised that the model had been formulated and solved, by and 

large, without using "advanced" mathematical techniques. The author asked 

whether the students would have preferred to have been given additional 

mathematical techniques, for example the use of 

..L (x + Ix!) 
2 

to ensure that the expression does not take negative values, in advance of the 

modelling exercise. No one stated this preference and some suggested that such an 

approach was unrealistic, since in practice they might well expect to have to read 

up on certain techniques before making progress. 

Having run the exercise for a number of years, the author is reasonably 

satisfied that it is serving its purpose of putting the students into a realistic 

example of the modelling process. They are more mathematically able than the 
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mainstream engineers at Loughborough and towards the end of their first year of 

study they are sufficiently mathematically mature to tackle the exercise profitably. 

6.6 Modelling: Its Place in the Curriculum 

The view expressed by Murthy and Page (194), that mathematical modelling 

is an increasingly important item in the engineer's tool-kit as the systems he 

tackles become ever more complex, has been expressed with increasing frequency 

over recent years. Recently, the author participated in the 15th annual conference 

of SEFI and took the opportunity to have a discussion at length with the 

Vice-President of SEFI and the Joint Chairman of their Mathematics Working 

Group (199). Their firmly-held belief was that engineering undergraduates in the 

United Kingdom suffer relative to their counterparts in mainland Europe because 

of the lack of time given over to mathematics. The consequence is that a 

compromise has to be made between devoting sufficient time to developing 

modelling skills and devoting sufficient time to teaching mathematical 

techniques; that compromise is usually made by spending too little time on the 

former, sometimes by neglecting it altogether. 

Mathematics is the cement which holds the fabric of engineering together 

and it is right and proper that the mathematics course should be the home of the 

modelling activity. The Vice-President and the Joint Chairman endorsed the 

approach to teaching the modelling process as outlined in this chapter. It was 

agreed that the earliest possible opportunity should be taken to emphasise the 

modelling role of mathematics to the freshman engineer and that wherever 

possible case studies should be used to enhance the teaching. Before holding any 

modelling exercises it is necessary to conduct a session where the students can see 

how the modelling process is conducted. After that, modelling exercises of 

increasing complexity should be undertaken with the amount of direction and 

guidance provided by the lecturer being gradually reduced. 

One of the problems facing the author is the scale of the task in conducting 
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these modelling exercises with a group of, say, eighty students. Ideally, the 

sub-group size for an exercise such as the furnace bumper problem should be 

between four and six. This means that there would be between 14 and 20 

sub-groups and effectively rules out conducting the exercise as might be wished. 

Furthermore, it would be preferable to have some of the engineering staff leading 

some of the sub-groups; however, pressures on university academics militate 

against them devoting more time to teaching activities, however desirable these 

might be from the point of view of the educational benefits to their students. 

A further difficulty placed in the way of the author's aims is the restriction 

of mathematics to the first two years of the undergraduate engineering courses at 

Loughborough. The final year is the ideal time to tackle modelling exercises 

seriously, since the students have attained greater maturity and the mathematical 

ideas which they have met in the first two years have had time to percolate and be 

assimilated. 

Given the limited amount of .time available for the modelling activity for 

mainstream engineers, the author has not assessed it explicitly. After all, the 

students must not be rewarded for every exercise by marks which count towards 

their final assessment: they are supposed to be receiving an education not 

collecting stickers to put in a book which can be traded in for a degree. 

In the Civil Engineering course at Loughborough one of the final year 

options is in Civil Engineering Design and this is assessed continuously. The 

students carry out the design exercises in groups of four and each student is 

awarded a mark comprised of a group mark plus an individual modifier. The two 

members of staff responsible for the option have expressed dissatisfaction with the 

resulting marks awarded to the students since they find it hard to accept that one 

student can be about twice as competent as another. All too often the mark range 

is considerably narrower than for other options and this has attracted criticism 

from their colleagues. The author has decided that for the small effect on the final 

assessment in mathematics of the marks awarded for the modelling exercise the 
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effort is not worthwhile. On two consecutive occasions a compulsory question 

was set in the first year examination which related to the traffic lights problem, 

Example 14 of section 6.1. The students were told in advance that they would be 

asked a question on the exercise that had been conducted in their first term and 

that they would be able to refer to the notes which they had taken. The notes were 

collected from each student and handed out with the examination paper. The 

question asked for an account of how they had set about the modelling of the 

problem and what features of the problem had been incorporated into the model, 

what assumptions had been made and how useful they rated the resulting model. 

This was a way that the students could be rewarded for their efforts during the 

exercise earlier in the year. The author was not happy with this form of "reward" 

and the practice was abandoned. 

When the furnace bumper exercise is conducted with the Mathematical 

Engineering students they are required to hand in a short report on the exercise, 

discussing the models they constructed and the difficulties that they encountered 

in its construction. This is one of the 12 assignments which are assessed during 

the year to provide the mark for that component of their course . 

. In summary, the author believes firmly that mathematical modelling has a 

crucial role in the education of the engineering undergraduate and that as the 

bottom line the teaching should be undertaken by the mathematics lecturer. 

Perhaps more enlightened times will arrive and then sufficient time will be 

provided to mount a full-scale course in modelling lectured by both engineering 

and mathematics staff. However, in the current climate that does not seem likely. 

Meanwhile, hours will have to be made available by the lecturer without 

sacrificing too much of the teaching of techniques and concepts which are also a 

vital part of the undergraduate engineer's training. 
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Chapter 7 

Mathematical Engineering 

7.1 Introduction 

Undergraduate courses variously entitled "Mathematics with Engineering ", 

"Engineering Mathematics" and "Mathematical Engineering" are available at a 

few universities in England. Their aim is to produce a graduate with a sound 

understanding of engineering principles together with a deeper knowledge of 

mathematics than a standard engineering course will provide. 

The courses are no longer than current undergraduate courses in 

mathematics or in engineering; it could therefore be argued that since they must 

contain less mathematics than the former and less engineering than the latter they 

are in danger of producing a jack-of-both-trades. What is the justification for 

producing graduates who know some mathematics, but less than a mathematics 

graduate, and some engineering but less than a general engineering graduate (and 

much less in a particular engineering discipline than a specialist engineer)? 

Advocates of mathematical engineering will counter by arguing that they are 

producing graduates who know more engineering than a mathematics graduate 

who may wish to enter the engineering industry, and more mathematics than an 

average engineering graduate. Further, there is a need for such graduates, who can 

readily occupy a place in the spectrum between "pure" Mathematics and 

engineering practice; this place has been hitherto occupied, equally unsatisfactorily, 

by a product of either a traditional mathematics course or a traditional engineering 

course. 

Those responsible for designing and running these hybrid courses saw their 

graduates as engineering "trouble-shooters", employed in small numbers by firms 

which traditionally had recruited many engineers to their staff. These 
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trouble-shooters, with their ability to appreciate the engineering implications of 

mathematical procedures would be seen as people to whom would be taken those 

engineering problems which demanded a mathematical skill and knowledge 

beyond that usually acquired <and retained) by an engineer. 

There have been courses at the Universities of Aston and Warwick, which 

have since ceased to function, which come under the general umbrella of 

mathematical engineering. In addition there are courses in "Engineering 

Mathematics with Computer Methods " at University College, Swansea and in 

"Engineering Mathematics " at Queen Mary College, London which are on the 

fringe of the umbrella; both attract only small numbers of applicants and the latter 

course is only one of a large number facilitated by the modular structure of 

mathematics courses at Queen Mary College. This chapter will concentrate on the 

courses at Bristol, Nottingham and Loughborough universities. 

The OECD Report of 1966 (16) highlighted mathematical engineering as a 

discipline which should receive special attention. It stated that "Technological 

developments and the rapidly increasing availability of large-scale computing 

facilities in the various branches of engineering and in the management of 

industrial organisations and government agencies, require, in an ever increasing 

measure, better mathematical methods, and greatly increased numbers of highly 

trained scientists capable of handling these methods and/or using the computers .. 

. . . The title "Mathematical Engineer" seems suitable ... 

. . . The word "engineer" is justified since the mathematical engineer can 

contribute much to engineering development, either in solving engineering 

problems - often in cooperation with other engineers - , or in dealing with 

problems specifically related to computers. The qualification "Mathematical" 

refers both to the methods he uses and to his specific ability in this line." 

The Report remarked that the adjective "mathematical" was not to be seen 

alongside the adjectives "electric:u", mechanical" etc. as denoting a subdivision of 

engineering according to the physical principles involved. Rather, mathematical 
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engineering should penetrate into all the traditional branches of engineering. The 

distinction was between goals and means. It was further remarked that it would be 

of immense benefit to have in a university a mathematical department specifically 

devoted to the development of mathematical engineering. It was emphasised that 

there was a growing number of problems of an inter-disciplinary nature resulting 

from the technological developments taking place in areas such as systems 

analysis, industrial engineering and operational research. The last of these areas 

was necessary to the construction of the mathematical models required by the 

increasingly complex problems of industry. 

The Report set goals for the education of mathematical engineers: 

"0) To provide adequate knowledge of those branches of mathematics that 

have, or are likely to have, important applications in engineering; 

(ii) to provide adequate knowledge of numerical methods, probability, statistics 

and other topicS important in operations research work, and to develop the 

ability to use this knowledge in engineering problems; 

(iii) to develop a good insight into physics and into integrating elements in 

engineering such as engineering mechanics, control engineering, and 

industrial organisation; 

(iv) to provide a sound working knowledge of - and experience in - the use of 

modern computing machinery, for the mathematical engineer must be 

skilled in both numerical and simulation techniques." 

The Report gave the aims of the distinct approaches to mathematical 

engineering courses in the Netherlands, France and the United States of America 

and provided detailed syllabuses. In the Netherlands, the established courses at 

Delft Technological University (started 1956) and at the Technological University 

of Eindhoven (1961) each required the student to complete the first and second 

year curriculum in one of the engineering departments before embarking on the 

specialist programme. In France the picture was similar, the first two years of 

study being devoted to a general scientific education in mathematics, physics and 

chemistry followed by three. years of specialised training at an engineering school 
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or at a university. The USA had required many of the mainstream engineering 

students to take substantially more mathematics in their courses than hitherto and 

the CUPM had proposed an option which would be taken by mathematics 

undergraduates who wished to be employed in computing work. 

The next section of this chapter examines the establishment of the course in 

Mathematical Engineering at Loughborough and discusses its first curriculum. 

The course was established in 1977. Section 7.3 reviews the changes in content and 

approach that have taken place since the first year of operation and assesses the 

effects of those changes. Section 7.4 is devoted to a consideration of the courses at 

Nottingham (established in 1964), Bristol (1977) and Eindhoven (1961) and 

compares them with the Loughborough course. Finally, section 7.5 appraises the 

contribution of mathematical engineering programmes to the needs of industry 

and examines the future of these courses. 

7.2 Establishing the Course at Loughborough 

Seven years after the OECD Report, Richards, who was then 

Vice-Chancellor at Loughborough, argued the case for the introduction of courses 

in Mathematical Engineering (200). He considered that many courses then in 

existence were, to varying degrees, 'mathematics first, engineering second'. He 

provided an outline syllabus for a course in mathematical engineering (Appendix 

14) which he admitted was somewhat biased by his background as an aeronautical 

engineer, albeit one whose first degree was in mathematics. He saw that a course 

in mathematical engineering "must be recognised as a challenging course in 

mathematics but constrained to mathematical and numerical methods which are 

usable in subsequent careers. It would need to be based on a collection of the. 

mathematical and numerical methods now being used in engineering practice, the 

emphasis being placed on the establishment of mathematical models to real 

physical processes, with laboratory experiments or demonstrations designed to 

illustrate the validity of these mathematical or computer models rather than to 

build up experimental prowess in the individual." 
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Richards believed that such courses would free existing engineering schools 

to concentrate on the 'design' context which was necessary, given that industry 

seemed unable to train its own designers. He cited the example of the common 

mathematical link between the electric potential in a water tank occupying various 

blockages, the seepage of water through a slightly porous dam and the flow of 

strain in an elastic solid, to illustrate the approach which a mathematical engineer 

would follow. 

In 1970 it had been proposed that the Engineering School at Loughborough 

should develop an undergraduate course in some area of engineering science. 

Subsequent upon Richards' paper the Engineering School set up a Working Party 

to consider the feasibility of establishing a course in the area of Mathematical 

Modelling and Systems Engineering. The Working Party comprised 

representatives from each of the Departments in the Engineering School, viz. 

Mechanical Engineering, Civil Engineering, Electrical Engineering, Production 

Engineering and Transport Technology; the chairman was a Professor of Surface 

Transport who had been trained as a mathematician. During the lifetime of the 

Working Party, the Mathematics Department at Loughborough had been 

reorganised into three separate Departments, one of Computer Studies, and a 

rump Mathematics Department both of which remained within the School of 

Pure and Applied Science, and a Department of Engineering Mathematics which 

was sited in the School of Engineering. Professor Bajpai, as Head of the 

Department of Engineering Mathematics, was invited to join the Working Party. 

A report was prepared for the Engineering School and presented in September 

1974 (201). 

The Working Party was convinced that there was room in the spectrum of 

courses at Loughborough for a broadly-based theoretical engineering programme. 

There was a distinction to be drawn between Systems Engineering, and 

Mathematical Modelling and Engineering Systems: the former was seen as 

dealing with the design of complex systems so that they achieve their overall 

objectives properly and effectively, whereas the latter was concerned with "the 
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mathematical and theoretical background of the design, production, development, 

behaviour and performance of engineering goods". It was the latter approach 

which the Working Party chose as the one to be followed. 

Naturally, the hope was that the proposed course would attract new 

applicants to the University, rather than 'poach' some from the established 

engineering courses. Further, it was hoped that the new course would lie within 

the Loughborough pattern of engineering education; it had to produce graduates 

who were recognisably engineers. These graduates were to have considerable 

flexibility in terms of a future career; they should not feel constrained to a 

particular industry and they were to be regarded as professional problem-solvers. 

The Working Party had in mind the need for the entrants to the new course 

to be proficient mathematically and suggested an entry requirement, at appropriate 

grades, of three 'A' Levels, two of them in mathematics. Significantly, there was 

no requirement for 'A' Level Physics; this was a deliberate move to help ensure 

that applicants would not be drawn from the pool of the other engineering 

courses. There was a warning that such applicants would therefore require special 

provision in the teaching of engineering/physical principles in the early stages of 

the course. 

The theme of the course was to be the solution of engineering problems by 

the application of appropriate theoretical and numerical techniques. The course 

was to be based on three main subject areas: 

1 Theory of Engineering Systems, which involves mathematical 

modelling as a primary technique. 

2 Mathematical Methods. 

3 Engineering System Design. 

It was suggested that the emphasis given to these three areas be approximately in 

the ratio 5 : 5 : 2. 

It was felt to be important that the course should be accredited by the 
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Council of Engineering Institutions (now the Engineering Council). It should be 

available either as a straight three year programme or with an industrial training 

year interspersed between the second and final academic years. 

The area 'Theory of Engineering Systems' would contain the principal 

subjects of System Dynamics, Solid Mechanics and Field Theory. 'Mathematical 

Methods' would embrace Computing and Numerical Analysis, Statistics, AnalYSis, 

and Function Theory, Algebra, and Differential Equations. The third area 

mentioned above would consist of Engineering Drawing, Design, Production 

Processes, Management Science, Experimentation and Instrumentation, and 

Economics and Engineering. 

It was suggested that subject specialisations available in the final year should 

include Structures, Dynamics, Fluid Dynamics, Propulsion, Production 

Engineering, and Transport Systems Engineering. 

An outline structure for this course was proposed and is shown as Table 7.1. 

To illustrate their thinking, the Working Party considered the subject of System 

Dynamics and prepared a detailed syllabus as part of their report. 

The Working Party had examined the course proposed by Richards (200) and 

those described by the OECD Report (16) but were of the opinion that these were 

significantly closer to applied mathematics than their own objectives would 

suggest. They were anxious that their course would fall clearly within the concept 

of engineering education acceptable to the School of Engineering at 

Loughborough. They had recommended that a new department be created to 

develop the new course and that existing departments cooperate actively in its 

running. As has already been mentioned, the Department of Engineering 

Mathematics was created during the lifetime of the Working Party. It was the 

belief of the Working Party that this department should be augmented by new 

appointments with an engineering background. 
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Theory of Engineering 
Systems 

Mathematical Methods 

Engineering Design 

PART B 

Theory of Engineering 
Systems 

Mathematical Methods 

Engineering Design 
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Table 7.1 

Mechanics 

Fluids/Thermodynamics 

Electricity 

Strength of Materials 

Analysis 

Vectors 

Comp & Num Analysis 

Algebra 

Statistics 

{"" Dmwi,. ~d Do"," 

Production Processes 

System Dynamics 

Field Theory 

Strength of Materials 

Differential Equations & 
Function Theory 

Signal Analysis 

Computing 

Statistics 

Experimentation and Instrumentation 

Hours/week 

Lectures Tutorials 

12.. 1 
2 2 

12.. 1 
2 2 

1 
1 2 

1 
1 2 

1 

{~ 1 
'2 

12.. 1 
2 2 

1 1 
'2 

1 1 
2 

1 0 

1 0 

2 1 

12.. 1 
2 '2 

12.. 1 
2 2 

2 1 

1 
1 2 

1 
I 2 

1 
1 
'2 

1 1 Gab) 
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Theory of Engineering 
Systems 

Mathematical Methods 

Engineering Design 
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Table 7.lIcontd. 

Dynamics 

Solid Mechanics 

Fluids and Thennodynamics 

Control 

Signal Analysis 

Optimisation 

Computational Techniques 

Algebra and Differential Eqns 

{ i1ro.,mi" """ fugooomi" 

Management Science 

Hours/week 

Lectures Tutorials 

1 
2 2 

1 

2 2 
1 

2 2 
1 

2 2 

1 
2 2" 

1 
2 2" 

2 1 
2 

2 1 
2 

1 0 

1 0 

Two options to be taken from each of the three core areas together with one further option from 
either of the fIrst two core areas. 
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There was concern that if the Department of Engineering Mathematics were 

to act as the host department for the new course then there would be a 

fragmentation of its nature due to service teaching being shared amongst a 

number of other engineering departments. 

The author believes that the majority of members of the Working Party 

were unhappy at the creation of the Department of Engineering Mathematics; 

their vision of a new department was not one in which mathematicians were 

predominant. They probably believed that the type of course that had originally 

been proposed was unlikely to see the light of day. 

In November 1974 the Department of Engineering Mathematics officially 

came into being and it took over the responsibility for presenting proposals for an 

undergraduate course in Mathematical Engineering to the Board of Studies of the 

School of Engineering, and thence to the University Senate. It was decided to form 

a new Working Party comprising staff from the new Department (one of whom 

was the author) and six engineering staff, three of whom had been on the original 

Working Party. 

The engineering staff were given the task of drawing up syllabuses for their 

own subject areas and these were discussed during plenary sessions of the 

Working Party. The course structure as presented to the Board of Studies is shown 

in Table 7.2; by comparing this with Table 7.1 it will be seen that several changes 

had already been made. Many of these changes were necessitated by the current 

University directive for new courses to make as much use of existing modules as 

possible. It was feared that the hours suggested by the original Working Party were 

unrealistic, a fear which became realised as detailed syllabuses were being 

prepared. To some extent, the structure of the course and the syllabuses reflected 

the particular enthusiasms of the members of the Working Party; one particular 

course which comes to mind is Heat and Mass Transfer. 
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Table 7.2 

SUBJECT Lecture Hrs/Week SUbject Department 
Term Exists Responsible 

Year I 1 2 3 

Circuit and Field Theory 2 2 2 Yes Elec Eng 

Introduction to Engineering Design t 
and Production Processes 2 2 No Eng Prod 

Dynamics of Systems I.!. I.!. I.!. Yes MechEng 2 2 2 

Engineering Malhematics 6 6 6 Yes EngMalhs 

fluid Dynamics 2 2 2 Yes Trans Tech 

Strenglh of Materials and Structures 2 2 2 Yes Trans Tech 

Tutorials to be arranged to a maximum of 5 hours/week. 
A course on computer programming will be given at lhe beginning of theyear. 
t Assessed by coursework only. 

Year 11 

Automatic Control 2 2 2 Yes Trans Tech 

Circuit & Field Theory 2 2 2 Yes Elec Eng 

Engineering Malhematics 5 5 5 Parts EngMaths 

Experimentation 2 No MechEng 

fluid Dynamics 2 2 2 Yes Trans Tech 

Heat and Mass Transfer 2 2 No MechEng 

Mechanics of Structures 
and Dynamics 2 2 2 No Trans Tech 

Laboratory Work 25 hours in total No Various 
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Table 7.2/cont 

SUBJECT Lecture Hrs/Week Subject Department 
Term Exists Responsible 

Year III 1 2 3 

Advanced Engineering Mathematics 2 2 2 No EngMaths 

Operations Research/ 
Engineering Statistics 2 2 2 Pan EngMaths 

State Space Methods 2 2 2 No Elec Eng 

Options 

Communications, Signal Processing t 
2 2 2 Yes Elec Eng & Acoustics 

Structural Mechanics t 2 2 2 No Trans Tech 

Thermodynamics and Fluid Mechanics t 2 2 2 No MechEng 

Engineer in Society 1 1 1 Yes Trans Tech 

tOne of these options will be taken. In addition, credit will be given for anyone taking the 
option 'Engineer in Society'. 
A project will also be undertaken. 
Tutorials are provided in most subjects. 
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The author and his departmental colleagues were adamant from the outset 

that they wanted to devise an engineering degree; indeed, it was the intention that 

at some stage a submission would be made to the Engineers Registration Board of 

the Council of Engineering Institutions in order to seek accreditation. This was 

deemed especially important, since such official recognition was far more valuable 

than any proclamation by the Department. A key feature of the course was that for 

"engineering" subjects our students would attend lectures in common with other 

engineering students. It was vital that they should rub shoulders with these 

mainstream engineers at this formative stage of their careers. Whilst it was 

recognised that problems might happen when these lecture courses were revised, 

it was believed strongly that the benefits would far outweigh any likely drawbacks. 

An important element of any engineering degree course is the Final Year 

project; accordingly, it was agreed to include a project as a compulsory component 

of the Final Year with an insistence that each project would have a clear 

engineering content. The author's experience of supervising projects in 

engineering departments led him to argue successfully for the inclusion of a 

smaller-scale project at Second Year level. This minor project would give the 

students a feel for this project activity without incurring too much investment of 

time (or marks); any shortcomings could be improved upon before the more 

important Final Year project. 

It was decided to offer the course in two forms: a straight-through version 

and a thick sandwich version with an Industrial Year being taken between the 

.Second and Final Academic Years. 

The author was in no doubt that when the first students were admitted to 

the course the syllabuses would be revised regularly during their stay; however, to 

get a course accepted by the various University committees requires something of 

a tongue-in-cheek approach. Once the course was approved, the mathematics 

component was handled quite differently from that suggested by the syllabuses, 

which were heavily based on courses already given to the mainstream 
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engineering students. 

It was decided to modify the original proposals for entry requirements, 

working on the principle that in the early years of the course it would be sensible 

to cast the net wide. Accordingly, candidates offering GCE 'A'level qualifications 

had to include a Mathematics subject, preferably with a second Mathematics 

subject or Statistics or Physics or Nuffield Physical Sciences or Engineering 

Sciences. Candidates whose 'A' level passes did not include Physics would need to 

offer '0' level Physics at an acceptable grade. Candidates who offered Ordinary or 

Higher National Certificates or Diplomas in appropriate subjects would also be 

considered. 

It was seen as a positive move to allow the Mathematical Engineering 

students to share some of their engineering subjects with mainstream engineers 

and to carry out coursework in these subjects. After all, if they were to be accepted 

as engineers by the Council of Engineering Institutions, they had to study some 

engineering subjects in the same way as their mainstream counterparts. 

The planned intake was 15 for the sessions 1977-78 and 1978-79, through 20 

in 1979-80, to 25 in 1980-81. Whilst it proved feasible to attract sufficient applicants 

to recruit about 20 good quality students each year, the target of 25 was never 

realised. 

The author undertook to visit several industrial organisations including 

British Gas, British Nuclear Fuels Limited, Pilkingtons Limited and Rolls-Royce 

Limited in an endeavour both to obtain feedback on the usefulness of the 

proposed course and to make tentative enquiries as to the possibility of placing 

students for their industrial year. In all, fifteen organisations were visited and the 

overall response was most favourable. Many mathematicians to whom the 

author spoke expressed their regret that they had not followed such a course 

themselves. Some suggestions as to change in content or emphasis were made but 

these were accompanied by the qualification that they were only minor and would 

no doubt be contradicted by others to whom the author would be speaking (or had 
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already spoken); this proved to be the case. 

With one exception, all the organisations said that, subject to their usual 

recruitment procedure, they would be happy to take undergraduates from the 

course for their industrial training year. (It should be mentioned at this stage that 

the course led to the award of a Bachelor of Science degree, together with a 

Diploma in Industrial Studies for those who completed the industrial training 

satisfactorily). 

The University Senate did not give formal approval to the course until 1977 

and consequently it was not advertised in the UCCA handbook for 1977 entrants. 

In the event, twelve students were admitted to the course in October 1977 

(remember that the quota was 15). The quality was far below that hoped for and it 

was disappointing to find that only six students proceeded to the second year. One 

subsequently withdrew and one opted for the Industrial Year, leaving four to 

graduate in July 1980. The cold wind of reality had blown into the warm room of 

early optimism. Clearly, a long struggle lay ahead to attract good quality students 

in sufficient numbers and, having attracted them keep them on the course. 

7.3 Development of the Course 

The author has been deeply involved with the Mathematical Engineering 

course at Loughborough since the earliest days of the second Working Party. He 

has been a member of every Departmental group set up to assess the course and 

suggest revisions to it; he has been First Year Tutor and, for the last seven years, 

Admissions Tutor. He has, therefore, been in an ideal position to study the 

development of the course in the eleven years of its existence. 

As he had forecast, changes to the course were in operation from the outset. 

After one year of operation it was decided that the first year topic of Design should 

be interchanged with the second year topic of Experimentation; it was believed, not 
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unreasonably, that there was little point in studying the principles of design in 

advance of the principles of engineering subjects. At the same time, it was decided 

to introduce a new final year option in Electromagnetic Theory to fill a gap in the 

spectrum of options on offer. 

The mathematics components of Years I and 11 underwent gradual 

refinement. In the First Year there were separate modules in Algebraic Structures, 

Differential Equations, and Statistics whilst analytical and numerical methods 

were not taught in the 'integrated' style. This was partly the result of other 

teaching demands on the staff concerned and partly because it was felt that the 

combined module would have been too large; instead, constant cross-references 

were made in each course to the other. 

In the Second Year the modules were: Differential Equations and Waves, 

Transform Methods, Stochastic Processes, Numerical Linear Algebra, and 

Functions of a Complex Variable. For the purposes of examination, Statistics and 

Differential Equations in Year I were lumped together and in Year n Transform 

Methods and Functions of a Complex Variable were combined with Field Theory 

whilst Stochastic Processes was tagged on to Automatic Control. The worry of 

setting too many examination papers was a continual one, as was the high number 

of contact hours, especially in the Second Year of the course. 

Throughout the lifetime of the course the author has been responsible for 

the teaching of computing and numerical methods to the first year students. 

Whilst he was a staunch advocate of the integrated approach, he was increasingly 

concerned that the needs of the mathematical engineer in the area of 

computational techniques were so much greater than those of his mainstream 

counterparts that a special provision was necessary. Accordingly, he persuaded his 

colleagues that it was desirable to have a separate module in Computing and 

Numerical Methods which would include a laboratory element of practical 

programming. Some amount of 'integration' could still take place in the, 

mathematical methods course, but the in-depth study of numerical methods 
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would be left to the new course. At the same time, some of the statistics material 

was transferred to Year IT; this had merit also in that First Year students new to the 

subject found it too much to swallow in one year. 

At the Year Il level, the courses in Heat and Mass Transfer, and Circuit 

Theory were removed. Some of this material was covered in other modules and 

the rest was deemed to be of less importance than would be merited by its 

retention. In addition to the advanced statistics which had now been transferred 

into Year II, room was made for a short course on the use of Finite Element 

methods for solving structures problems with particular emphasis being placed on 

the computational aspect. Finally, the project was given an increased weighting 

and the norm was set that it would involve a substantial element of computing. 

A cohesive course in Computing and Numerical Methods was created from 

existing material; whereas the first year counterpart had a coursework component 

in its associated assessment, this module had a coursework component indirectly 

in the project assessment. 

In 1980 a reappraisal was prompted by the Finniston Report 'Engineering 

our Future' (69). The Engineering School at Loughborough established a Working 

Party to examine the implications of the Report on its courses. The author who 

was a member of this Working Party was concerned that the proposals of the 

Report would require so much modification to the Mathematical Engineering 

course for it to be acceptable in 'Finniston terms' that it would depart significantly 

from its essential philosophy. In the event, the main effect of the Finniston 

Report was the inclusion of explicit coverage of Engineering Applications; this is 

discussed in Section 7.3.4. 

Shortly after the course commenced, a visiting Australian academic spent a 

year in the Department of Engineering Mathematics. Part of his study period was 

devoted to examining the courses in the area of Mathematical Engineering 

currently on offer in England with a view to setting up such a course in his home 

country. In discussions with the author (202) he foresaw twin dangers of 
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over-reaction by mathematicians responsible for these courses regarding their 

service teaching as second class work, and of resentment by the engineers of a 

service role to which they were not accustomed. He was concerned that the nature 

of such courses demanded a greater amount of phasing of topics between the 

various constituent subjects than was usually the case; he advocated the use of 

team teaching in this context. Whilst he accepted that recruitment within the 

Loughborough spectrum was widened by the introduction of the Mathematical 

Engineering course, he believed that the number of optional subjects available in 

the Final Year could produce a graduate little different from, say, a graduate from a 

joint mathematics/electronics course, rather than one who occupied the middle 

ground between a mathematician and a general engineer. He hoped that the final 

year options, given that they demanded a relatively deep knowledge of particular 

fields of engineering, would have as a prime requirement the development of a 

problem-solving capacity which lay outside traditional engineering theory or 

practice. His views were to prove pertinent in later years. 

In 1982, following an earlier correspondence with the Institution of 

Electrical Engineers, it was decided to make an application to the Engineers 

Registration Board of the Council of Engineering Institutions for exemption from 

their Part I and Part IT examinations. The application was successful. The course 

was approved by both the Institution of Production Engineers and by the 

Institution of Electronic and Radio Engineers for exemption from their academic 

requirements. Of all similar courses, the Loughborough one had now achieved a 

unique status which remains unique at the time of writing. It is worth quoting the 

philosophy and aims of the course as stated in the submission to the Engineers 

Registration Board (202). 

"The theme of the course is the mathematical solution of engineering 

problems. It has been developed by the Department of Engineering Mathematics 

with co-operation and assistance of staff from other departments in the School of 

Engineering. This interaction is both desirable and necessary for a course which 

aims to produce chartered engineers with a good mathematical background. 
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The aims of the first two years of the course are to provide a working 

knowledge of the basic engineering disciplines, to lay the foundations of a good 

mathematical technique and to introduce the student to the process of 

mathematical modelling. The engineering components of the course are taken 

. mostly with other engineering students in order to foster an understanding of the 

approach to problems of engineers from various disciplines. The emphasis in 

mathematics is in that which is applicable, taught in the context of the 

mathematical modelling of engineering systems. The first year course in 

modelling and simulation epitomises this emphasis in that students learn Basic 

and Fortran by writing programs to solve engineering problems, these programs 

forming part of a coursework assessment. They also carry out 'experiments' in the 

terminal laboratory with pre-written programs which allow the student to 

compare the effectiveness of numerical methods. In line with modern thinking 

many such laboratory sessions replace some of the engineering laboratories 

normally undertaken by the engineering student. 

An important element in the course is individual project work: two 

projects are set, one in each of the second and final years. The aims of the projects 

are to give the student a chance to work by himself with guidance from a 

supervisor on the application of the theoretical methods encountered to a realistic 

engineering problem. In each case the student is required to write a report and to 

give a short talk on his work thereby improving his communication skills. 

In the final year, the subjects studied fully develop the student's 

mathematical expertise, extend his knowledge of engineering and the student is 

able to weld together his mathematics and engineering to become an effective 

mathematical model builder and solver. We have recently introduced 'The 

Engineer in Society' as a compulsory topic at Final Year level. 

Students opting for the four year sandwich course spend the third year in 

practical training either with an industrial concern or a research establishment, 

contact being maintained in this period by means of regular visits from members 
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of staff. The Diploma in Industrial Studies (DIS) is awarded to those who 

satisfactorily complete this period of training in addition to the satisfactory 

completion of the academic part of the course." 

The course structure and content had undergone further modification. In 

Year I the Computing and Numerical Methods module was renamed Modelling 

and Simulation to emphasise the change in approach; this will be discussed in 

section 7.3.1. Circuit Theory had been replaced by a more general Electrical Studies 

component which was designed to fit in with the suggestions of the Finniston 

Report. In Year IT the Computing and Numerical Methods underwent a change 

similar to its first year counterpart whilst Field Theory was replaced by a longer 

course in Engineering Electromagnetics to provide a continuity of 

electrically-orientated modules in the first two years. The final year course in 

Control was renamed Control of Industrial Processes to reflect the new lecturer's 

concern with practical applications of his subject. The module in Advanced 

Engineering Mathematics had focussed on Finite Difference and Finite Element 

Methods and had changed its name accordingly. The list of possible final year 

options had lengthened. It now comprised Digital Data Transmission (this was 

offered by the Electronic and Electrical Engineering Department who had 

re-vamped their option in Signal Processing), Solid Mechanics, Fluid Mechanics, 

Electromagnetic Fields and Waves, Operations Research and Engineering 

Statistics, Computer-Aided Design, and Microcomputer Systems and Simulation. 

Apart from the first one of these, the options were run from within the 

Department of Engineering Mathematics. In anticipation of the application for 

accreditation the module 'Engineer in Society', now a longer one provided by the 

Department of Mechanical Engineering, had been made a compulsory element of 

the course. 

There was general satisfaction expressed by the joint accreditation team 

fielded by the two Institutions; in particular, it was seen as advantageous that our 

students shared their engineering lecture courses with their counterparts in other 

engineering departments: howeverJa number of helpful suggestions had been 
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made. There was a feeling that the Final Year project was underweighted in the 

Schedule of Assessment and its relative weighting was subsequently increased by 

50%. To respond to the call for more design work in the course the second year 

subject was extended by a follow-up module in the fmal year. 

It was decided to include Second Year marks in the degree assessment; now 

the classification of the degree was based on 25% of the Second Year marks and 

75% of the Final Year marks. Previously, the assessment had been based entirely 

on Final Year marks. 

The following session saw the introduction of a practical training element 

to cover certain aspects of Engineering Applications EAl and EA2 as specified by 

the Engineering Council. The Spring Term in Year I was extended by two weeks to 

allow students to attend a practical training course in the University'S Centre for 

Industrial Studies. This course was weighted into the Schedule of Assessment and 

was examined by continuous assessment. 

In 1985 the author had become concerned at the lack of first class honours 

graduates emerging from the course in comparison "'ith those from the courses at 

Bristol and Nottingham. He carried out an investigation which resulted in the 

lowering of grade boundaries in the degree classification to bring them into line 

with these other universities. 

There were other minor changes carried out in the following session and 

the course structure current at the time of writing is shown in Table 7.3. It is 

instructive to compare this table with Table 7.2 and, indeed with Table 7.1. 

In 1987 the course was re-accredited by the Institution of Electronic and 

Radio Engineers and the Institution of Production Engineers. They had been 

particularly pleased with the change of the Second Year project from an individual 

exercise to one conducted in small groups; this activity is discussed in Section 7.3.2. 

Following their recommendation, the course was restyled as leading to the degree 
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Table 7.3 

SUBJECT Lecture HrsfWeek Relative Examination 
Term Weighting 

Year I 1 2 3 

Mathematics of Lumped Systems 2 2 2 2.5 3 hrs written 

Mathematics of Fields I } 2 1 2 { 2.5 
Probability and Statistics 3 1 3 hrs wri tten 

Linear Algebra 3 2 3 2.5 3 hrs wri tten 

Modelling and Simulation t 4 4 4 2.5 Continuous Ass. 

Electrical Studies 3 3 3 3 3 hrs wri tten 

Dynamics \.!. \.!. \.!. 2 3 hrs written 2 2 2 

Mechanics of Solids \.!. \.!. \.!. 2 3 hrs written 
2 2 2 

Thermofluid Dynamics 3 3 3 3 3 hrs written 

Engineering Measurement 2 1 Continuous Ass. 

Materials * 2 2 1 2 hrs written 

Production Processes (2 weeks in Easter Vac) 0.5 Continuous Ass. 
22.5 

tModelling and Simulation contact hours include 2 hrs/week computer laboratory. 
"Materials includes laboratory sessions and 20% of the total mark for this subject derives 
from coursework. 

Year 11 

Differential Equations 3 3 3 2 

Engineering Mathematics 3 3 3 2 

Modelling and Simulation t* 2 2 5 2 

Signal and Systems Analysis 2 3 2 2 

Automatic Control t 3 3 3 2 

Fluid Dynamics t 3 3 3 2 

Mechanics of Solids t 3 3 3 2 

Comprehensive Design tt 2 1 

Project 2 2 2 
17 

t Coursework marks accounting for 20% of the total arise from laboratory work. 
tt A practical design project is the assessed item . 
.. Includes a component on Finite Elements. 

3 hrs written 

3 hrs wri tten 

3 hrs written 

3 hrs wri tten 

3 hrs wri tten 

3 hrs written 

3 hrs wri !ten 

3 hrs written 

Continuous Ass. 

! • 
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Table 7.3/cont 

SUBJECT Lecture HrslWeek Relative Examination 
Term Weighting 

Final Year 1 2 3 

Fimte DifferenceIFinite 
Element Methods 3 3 2 3 hrs written 

Control of Industrial Processes 3 3 2 3 hrs wri tten 

Engineer in Society 3 4 2 3 hrs written 

Comprehensive Design 2 1 Continuous As, .. 

Project 5 5 3 

Optional Subjects (Two from) 
10 

Digital Data Transmission Systems 2 2 2 2 x 2 hrs writte= 

Solid Mechanics 3 3 2 3 hrs wri tten 

Fluid Mechamcs 3 3 2 3 hrs written 

Electromagnetic Fields and Waves 3 3 2 3 hrs written 

Operations Research/Engineering 
Statistics 3 3 2 3 hrs written 

Computer· Aided Design 3 3 2 3 hrs written 

Microcomputer Systems and Statistics 3 3 2 3 hrs written 

Boundary Element Methods 3 3 2 3 hrs written 

19/20 19/20 14 

Other options may be offered, subject to approval by the Heads of Department concerned 

I , 
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of BEng rather than BSc, thus emphasising further the commitment of the 

teaching staff to the idea of the course as an engineering course. 

It has to be emphasised that this course was designed specifically not to be a 

Joint Honours course in Mathematics and Engineering. Furthermore, the author 

and his colleagues at Loughborough have always drawn a clear distinction 

between Mathematical Engineering and Engineering Mathematics. In the former 

discipline the over-riding aim is the solution of engineering problems using 

mathematics whereas in the latter the engineering problem is merely a source of a 

mathematical problem: although in many cases the engineering problem is 

solved, it is the mathematics which provides the interest (and, indeed, the 

motivation). 

There have been many alterations to the academic programme in eleven 

years, some caused by a need to update the course in line with developments in 

industry, some to keep in line with the perceived idea of an engineering education 

and some to take account of the increased quality of the intake to the course over 

the last few years. How have these alterations, in total, affected the nature of the 

course; how does the graduate of 1988 compare with the graduate of 1980? 

Five aspects of the course are examined in order to help identify the answers 

to these questions. They are: the Modelling and Simulation module in the First 

Year of the course, project work, industrial placement, Engineering Applications 

and the career choices of graduates from the course. Each of these aspects is 

examined in turn and an attempt is made to capture the essence of the changes 

which have taken place. 

7.3.1 Modelling and Simulation 

Already in this thesis a number of references have been made to the course 

module in Modelling and Simulation which has been given to freshman 

Mathematical Engineers, in one form or another, since the course began. In that 
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time the module has assumed a greater importance in the First Year of the course 

and it is worthwhile spending a little space to reflect upon its growth and its 

current status; the author believes that the changes which the module has 

undergone mirror to a large extent those changes which have taken place in the 

course itself. 

In the early years of the lifetime of the course there was no real modelling 

content in the First Year. There was an attempt to encourage all the lecturers of 

First Year modules to emphasise the modelling theme in their subjects but this 

was not particularly successful, especially in the engineering modules; these 

modules were taught to combined groups of our own students and traditional 

engineers, and the needs of the latter took precedence. Certainly the Numerical 

Methods and Computer Programming module was given little enough time to 

cover the syllabus let alone delve into modelling aspects, however desirable that 

was. The Second Year module in Numerical and Linear Algebra did contain some 

lectures on modelling, with illustrations coming from the areas of control theory, 

eigenvalue problems and linear programming, but it was not a central feature of 

that module. 

The author was unhappy at this state of affairs since he wanted modelling to 

be the focal point of the course, especially in the First Year. Consequently, he put 

forward proposals to enlarge the numerical/computing component in Year I to 

include a modelling aspect. This proposal received general support from his 

colleagues and was in place by the time the Department was visited by the 

Accreditation Party from the Council of Engineering Institutions in 1982. Whereas 

the Numerical Methods and Computer Programming module had been assessed 

by written examination only (and then as a mere half of a paper), the new 

Modelling and Simulation module was to be assessed entirely by coursework. 

Since its introduction, the new module has undergone minor modification, but it 

has remained essentially the same. 

The first three weeks of the module are devoted to learning to program in 
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Basic; most of the students have done no programming before, let alone in that 

language. In addition to two hours of classroom time there is one afternoon in the 

computing laboratory for each week throughout the session. The students use the 

computer laboratory which contains 30 BBC microcomputers linked by an Econet 

Level ill facility. They are required to submit 8 programs which relate to specific 

problems in engineering. 

The remainder of the first term is spent tackling assignments on Numerical 

Integration, Solution of Simultaneous Linear Equations, and Iteration. Standard 

programs are available and these can be modified by the students should they so 

wish. A report on each assignment must be submitted for assessment. The 

assignment sheet for Numerical Integration has already been discussed in Section 

4.3 and is shown on page 95. 

In the second term the students are introduced to Fortran 77 and are set 8 

programming problems which are to be completed by the end of the session. An 

example of these problems is shown in Appendix 15. In addition, the students are 

required to undertake assignments on Approximation of Functions, Interpolation 

and Approximation of Data, Ordinary Differential Equations, and the use of the 

NAG and GINO libraries. 

In the third term an experiment is carried out on the use of the analogue 

computer in the modelling of a dynamical system via a second-order ordinary 

differential equation. 

During the module the students are introduced to several case studies and 

carry out a number of modelling exercises, culminating in the furnace bumper 

problem which was discussed in Section 6.5. They also study a simple 

computer-based simulation of a reservoir, using input data of monthly rainfall 

and monthly demand. (In the Second Year of the course the students use a 

continuous simulation language and a draughting package for CAD and study 

further aspects of the modelling process including sensitivity, validity, refinement 
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and reformulation of models.) 

It will be seen from the above discussion that the changes described have 

brought the course more into line with the aims of the original Engineering 

School Working Party (201) and with the ideas of Richards (200). Students now see 

themselves as model-builders and model-solvers much more than their 

predecessors did. 

7.3.2 Project Work 

As mentioned in Section 7.2, it was decided to set a project in each of the 

Second and Final Years to be conducted on an individual basis. For the latter 

project the following procedure was adopted. Students would choose, in order of 

preference, three projects from a list prepared by the academic staff; as far as 

possible they would be allocated their highest choices and this would be made 

known to them in the summer term of their Second Year (or twelve months later 

in the case of students who spent a year in industry prior to the Final Year). A 

designated member of staff would act as project supervisor and he would draw up 

the project specification; the student would be expected to liaise regularly with his 

supervisor throughout the duration of the project, seeking advice or help, or 

merely reporting on the progress made since the previous meeting. 

In the last week of the Autumn Term each student would give a 15 minute 

report on what had been achieved and what future work was being planned; the 

audience comprised other Final Year students, supervisors and Second Year 

students who would be given an early inkling of what to expect when their turn 

arrived. 

In the first week of the Summer Term the students were required to submit 

a written report on their project; three weeks later they submitted themselves to 

an oral examination with their supervisor and the overall moderator. This 

moderator was a member of staff who had not been supervisor to any of the 
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projects. The assessment for the project was based on marks for the two oral 

presentations, the quality and content of the written report and the student's 

interest and application during the year. With the exception of the last category 

which was the responsibility of the supervisor alone, all marks were agreed 

between supervisor and moderator. 

The first talk was not a common feature in other engineering courses at 

Loughborough. However, the author and his colleagues were of the opinion that 

it was very important for the student to take stock at approximately the half-way 

stage, especially if his progress was too slow, and the knowledge that the mark 

awarded would count towards his project assessment would act as an incentive to 

take the exercise seriously. 

In general, the students tackled their projects enthusiastically and 

competently. Interestingly enough, no one so far has seriously exceeded or fallen 

short of the effort and time which might have been expected to be the norm; this 

has not always been the case in other engineering departments. 

The difficulties associated with assessment of projects soon made 

themselves felt, even with an overall moderator supposedly ensuring uniformity 

of standard. The age-old questions of how highly to mark an outstanding project 

and how Iowa mark to award to a very poor project remain to be resolved to 

mutual satisfaction. The view has been expressed that project marks ought not to 
, 

be higher on average than for other subjects but the author does not subscribe to 

that view: many students will put considerable effort into the project and that 

effort should be rewarded. Problems have arisen in other departments when 

students take options and it is believed that one option has been marked too 

generously or too harshly. In an attempt to remove these perceived inequities, 

complex procedures have been devised which have sometimes resulted in 

substantial differences between a candidate's new mark and his 'adjusted' mark, 

eliciting serious concern from external examiners. These are artificial procedures 

and have as little merit as the attitude which seems to accept project marks in the 
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range 40% to 80% only. 

One of the factors contributing to the student's pleasing performance at the 

Final Year project has been the progression from assignments in Year I Modelling 

and Simulation through the Second Year project. In the early life of the course the 

Second Year Project was a much scaled-down version of the Final Year exercise; 

there was no oral presentation in the first term and the oral examination was 

replaced by a talk of 15 minutes duration to an audience of contemporaries, 

academic staff and First Year students. The argument was made for a minor 

project at this stage of the course to help students to mature in their approach to 
Ill-< ~ 

project work and~has been gratified to see his theories vindicated. 

In Appendix 16A are listed some Second Year project titles which were 

undertaken in the years 1978-79 to 1985-86. It will be seen that there has been an 

effort to set projects which seek to model engineering systems via mathematics; 

most of them require a computer-based solution to the model. 

In the session 1986-87 the individual project at the Second Year level was 

replaced by a project carried out in groups of three or four. The aim of the project 

was to write a structured program in Fortran 77 to analyse a general 

two-dimensional pin-jointed structure and calculate the deformations, reaction 

forces and member forces under a specified loading. The decision to change to this 

style of project was taken partly because of the advantages of learning how to work 

in a small team and partly because of the need to train the students to write 

large-scale but structured programs. The groups had to assign tasks to their 

members, hold regular team meetings, report regularly to the member of staff who 

was the project co-ordinator and present their project reports both orally and in 

written form. The mark each student received was the sum of a group mark and 

an individual mark. Experience from the two occasions on which this exercise has 

been conducted has indicated that the new format is a definite benefit to the 

students. They are much more confident when entering their Industrial Year that 

they will be able to cope with the writing of software and are able to adapt more 
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easily to working in a team environment. 

Also in Appendix 16 are some Final Year project titles; these cover the 

sessions 1979-80 to 1986-87. Again, the emphasis has been on the modelling of 

engineering systems, with the use of computer-based techniques for solution being 

predominant. In some cases the project has been jointly supervised with a 

member of staff from another engineering department. This has provided a 

useful external input to our marking and has always been an encouragement that 
~ 

we were marking la level commensurate with other departments. 

The Re-Accreditation Party welcomed the inclusion of group projects and 

were of the opinion that the Second Year was the appropriate time. The Final Year 

project was felt to have the correct relative weighting but there was some concern 

that a student could be awarded an Honours Degree even though he had not 

gained a pass mark in the project; this has now been rectified. 

7.3.3 Industrial Placement 

Table 7.4 shows the growth of the demand for taking the Industrial Year 

which has taken place over the lifetime of the course. It should be borne in mind 

that some students obtain industrial sponsorship prior to entry on the course and 

this usually means that they will spend a year in industry before embarking on the 

academic programme; there were 5 such students entering the course in 1986. 

The contacts which had been made in visits to industrial firms before the 

course started bore fruit when it came to placing the students in suitable 

organisations in the years during which the course found its feet. 
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Table 7.4 
~DUsnuALPLACE~ 

Academic Year Number in Second Year Number going to Industrial 
Training in following Session 

1978-79 5 1 

1979-80 18 3 

1980-81 16 2 

1981-82 20 3 

1982-83 16 9 

1983-84 17 8 

1984-85 19 13 

1985-86 17 16 

1986-87 17 16 

1987-88 20 14 

In their Industrial Year the students are required to keep a log book of the work 

they carry out and to write a dissertation on some aspect of that work. In Appendix 

16C the titles of some of the dissertations from the years 1979-81 and from 1985-86 are 

shown; they indicate the variety of work that has been undertaken. Satisfactory 

completion of the dissertation and the log book are prerequisites for the award of the 

Diploma in Industrial Studies. 

Each student is assigned an Academic Tutor from the Department and an 

Industrial Tutor from the host industrial organisation. They are responsible for 

monitoring the student's progress and assessing his performance during the year. 

On their return to the Final Year of the course, the students are required to give 

a short talk on their work experiences to Second Year colleagues. Almost everyone 
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has indicated that they found the industrial training valuable and had no regrets 

about taking the year out. There is a general surprise that, whereas the level of 

mathematics which they were required to use was much lower than they had 

expected, the level of responsibility which they were given was higher than 

anticipated. Many of them were awarded sponsorships for the Final Year by their 

employers and several took up a graduate position with the firm in the following 

year. 

As a result of the work undertaken in the Industrial Year, some students have 

suggested a Final Year project based on their dissertation. This has been welcomed by 

the Department. 

Present indications are that the students have been well received in industry, 

judging by the comments made by the relevant Industrial Tutor on their assessment 

forms and by discussions between the Industrial Tutor and the Academic Tutor who 

visits the student twice during the training period.· Even students whom the 

Academic Tutors considered of only modest ability have been rated very highly by 

their industrial counterparts; how pleasing it is to record this fact. 

The assessment for the training year is completed by a joint report by the two 

tutors on the student's work, and successful students are awarded the Diploma in 

Industrial Studies of the University once they have gained the degree award of 

Bachelor of Engineering (BEng). 

There is a general feeling within the University that on average those students 

who have spent a year in industry do better in their Final Year examinations than 

those who have not. However, this has not been shown conclusively to be largely 

attributable to the experience gained in the Industrial Year; part of the difficulty in 

assessing its role is the fact that it has been the more academically able students who 

have tended to opt for the Industrial Year. However, the author's considered view is 

that the extra maturity gained in that Year is a key factor in the student's 

performance; success in the Final Year relies heavily on the ability to plan one's 
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time, and this is notably more evident in the fourth-year student. 

7.3.4 Engineering Applications 

The Finniston Report (69) advocated strongly that all programmes leading to 

the award of Chartered Engineer should include four modules in Engineering 

Applications, dubbed EA1 to EA4. The modules were described briefly as: 

EA1 An introduction to the fabrication and use of materials. 

EA2 Application of engineering principles to the solution of practical problems 

based upon engineering systems and processes. 

EA3 A structured introduction to industry under supervision, and involving a 

range of practical assignments. 

EA4 Specific preparation for a first responsible post and a period carrying 

responsibility in that post with decreasingly close supervision. 

The actual character of these modules is a matter for the constituent 

Institutions of the Engineering Council. Each Institution has expanded on these brief 

descriptions in its information to those who seek Membership. In its submission to 

the Re-Accreditation Party (204) prior to their visit in 1987, the Department of 

Engineering Mathematics put its case for its coverage of EA1 and EA2. It prefaced the 

case thus: 

"The Mathematical Engineering degree course has always given high priority 

to engineering applications. These have evolved steadily since its inception to take 

account of the course philosophy and the nature of the industries most likely to 

employ Mathematical Engineering graduates. 

A Significant part of the EAl material is taught by the University'S Centre for 
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Industrial Studies (CIS) which for many years has provided on-campus training for 

the University's courses in engineering. From 1990 the University plans to commit 

all the resources of the Centre to engineering departments to enhance the facilities 

required to support the EA! requirements of engineering degree courses. The 

provision of support for the EA activity in the post-1990 period, as in the past, is thus 

guaran teed." 

The module EA1 was deemed to be catered for in the First Year by the courses 

in Introduction to Properties, Fabrication and Use of Materials, Introduction to 

Production Processes, and Engineering Measurement. The second of these courses is 

a compulsory full-time two week course in the CIS which takes place in the Easter 

vacation. It is a practical training course which is concerned with the basic 

production processes for metals. Consideration is also given to electrical and 

. electronic control methods including numerically controlled machining. The two 

other courses are dove-tailed together to provide a study of the characteristics and 

behaviour of engineering materials together with an examination of the methods 

and equipment used in engineering measurements. 

The EA2 activity occurs throughout the degree course. Especially singled out 

for mention were the Second and Third Year courses in Comprehensive Design, the 

Project work and the Modelling and Simulation course in Years I and n. The Second 

Year Design module requires students to work together in small groups, but each 

student presents an individual report. At the Final year level, work is carried out on 

both an individual basis and a group basis: this necessitates elements of planning 

and organisation. Assessment is based on written and verbal presentation. In both 

years, design is approached as a total activity and the core phases of market research, 

specification, conceptual and detailed design, manufacture and testing, and sales are 

studied and implemented. 

The Re-Accreditation Party were of the opinion that the package which we had 

'bought' from within the University was not ideally suited to our students. 

However, bearing in mind the relatively small numbers on the course and the 
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shortage of resources for the EA activity across the campus, it seemed unlikely that 

we would be able to effect much change. 

7.3.5 Destinations of Graduates 

One test of the success of a degree course is the ease with which its graduates 

find employment. At the time of writing nine cohorts of graduates have been 

produced and the overwhelming majority were in jobs within three months of 

graduation. Initially, most graduates took up posts in the field of engineering. 

However, the current crop of 17 new graduates contained six who have entered the 

world of finance and two who have continued their studies. The phenomenon of 

engineering students opting for a career in finance has been experienced by other 

engineering departments and is a reflection of our times, at least in the United 

Kingdom. 

The predominant activity of our graduates over the years is the writing of 

software, either inside an industrial concern or commercially for a software house. It 

was this feature, which started to manifest itself early on in the lifetime of the course, 

which reinforced the author's belief that the computing element of the course 

needed to be increased. The contact which the author has maintained with many of 

the graduates has provided a continuing feed-back that has helped to justify the 

changes that have taken place in the course. 

The graduates have commented that a firm base in computer programming is 

of prime importance. It has to be acknowledged that not many of them are using 

much high-powered mathematics and that very few really draw upon their 

engineering training to an appreciable extent. However, very few regret their choice 

of degree course and most were emphatic that the balance of subjects in the course 

was suited to their talents and aspirations at the time of entry. All valued the variety 

of options which were available in their Final Year and welcomed the broad 

spectrum of subjects studied which allowed them to keep a wide perspective for the 

future careers. 
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Appendix 16D contains a cross-section of posts held by our graduates. 

7.4 Nottingham, Bristol and Eindhoven - Alternative Approaches 

In this Section the courses in the area of mathematics combined with 

engineering which are offered at the Universities of Nottingham, Bristol and 

Eindhoven are summarised individually. Then a comparison is made between 

these courses and the one at Loughborough. 

7.4.1 Mathematics with Engineering at Nottingham 

This course is run by the Department of Theoretical Mechanics which belongs 

to the Engineering Faculty. The Nottingham course brochure (205) opens by asking 

'Is this the course for you?' It suggests three categories of reader who would find the 

course worthy of serious consideration: 

(i) those who are interested in studying mathematics further and who would like 

to apply it to real life problems, 

(ii) those who wish to study engineering without specialising in any particular 

branch, 

(iii) those who contemplate a career involving computers, engineering and 

mathematics. 

The brochure continues: 

'Industry needs mathematicians (both men and women) who understand 

engineering principles and can apply mathematics to the solution of engineering and 

industrial problems. The course in Mathematics with Engineering is designed to 

meet this need and, at the same time, to provide a mathematical education to 

honours degree level which gives the same career opportunities as are open to the 

graduate with a traditional mathematics degree. If your interest is in teaching 

mathematics, you will find that the engineering content gives you an increased 

appreciation of the power and importance of your subject. If you are contemplating 

doing research, a good honours degree in Mathematics with Engineering opens the 

way to study for a higher degree either in Mathematics or Engineering. Perhaps you 
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are thinking of a university course as a completion of your education rather than a 

training for a career, in which case the rigour of mathematical methods provides an 

excellent intellectual discipline while the engineering studies serve as a point of 

contact with industrial problems. Whichever of these reasons may attract you, this 

course will consolidate your existing knowledge, open out new areas of learning and 

develop habits of independent thought and inquiry.' 

The course is designed to train mathematicians to apply their mathematics to 

the solution of practical problems. The three-year degree course leads to an Honours 

degree in mathematics with subsidiary engineering studies. 

The mathematical studies comprise the following: 

Ca) Topics in pure mathematics, which are studied for the essential understanding 

of mathematical ideas and for the development of general methods of solution 

of mathematical problems. 

(b) Branches of applied mathematics, which provide the theoretical basis for the 

major disciplines of civil, mechanical and electrical engineering. 

Cc) Numerical methods and the use of computers in the solution of engineering 

and other problems. 

Cd) Statistics and operational research techniques, which are applied in the 

managerial aspects of industry and commerce. 

The Engineering courses are taught by the Engineering Departments and are 

part of their undergraduate programmes. The integration of the mathematics and 

the engineering studies may be observed in the course structure." 

Table 7.5 shows the course structure; in all cases the lecture hours shown are 

supplemented by example classes. In addition to the examinations shown the 

students sit a paper in Engineering Mathematics which comprises multiple - choice 

questions and is sat by all freshmen engineers. The examinations in the Summer 

Term are a qualifying examination for entry to the Second Year of the course. After 



FIRST YEAR 
Mathematical Analysis 
Mathematical Methods I 
Linear Algebra 
Numerical Analysis/Computing* 
Applied Mathematics* 
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Table 7.S 

(43) Electrical Theory (20) 
(43) Digital Electronics 1* (20) 
(10) Mechanics & Thennodynarnics of Fluids*( 40) 
(14+20) Properties of Materials (20) 
(46) Engineering Ora. wing & CAD*t (6+28) 

*11rrese subjects contain a coursework element 
tExamination in December. 
The hours shown in parentheses are lecture hours, except for Numerical Analysis/ 
Computing, and Engineering Drawing and CAD where the number before the + sign 
represents lecture hours and the second number relates to laboratory class hours. 

SECOND YEAR 
Mechanics of Rigid Bodies (30) Mechanics of Deformable Materials 
Linear Algebra (20) Complex Variable Theory 
Differential Equations (25) Vector Analysis 
Numerical Analysis (25) Statistics 
Computing Assignments t 

ONE SUBJECT FROM 
Materials and Geotechnics 11 (40) Manufacturing Systems 11 
Electronics and Communication (40) Applied Thennodynamics 
Network & Signal Analysis! Fluid Mechanics 
Feedback Systems (40) Structure-Propeny Relationships 

t Assessed by coursework. 

(30) 
(20) 
(25) 
(25) 

(40) 
(40) 
(40) 
(40) 
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THIRD YEAR 

Required subjects 
Mathematical Methods ill Project and Dissenation 

Optional subjects - The student selects a total of FNE subjects as follows: 

(a) TWO, THREE or FOUR subjects from: 

Mathematical Methods IV 
Linear Elasticity and Viscoelasticity 
Finite Elasticity and Plasticity 
Mechanics of Viscous Fluids 
Waves in Fluids 
Electromagnetic Waves 
Special Relativity for Engineering 
Optimisation & Applied Probability 

(b) ONE or TWO engineering subjects 
from a wide range offered by the 
Engineering Depanments, for 
example: 

Environmental Engineering 
Advanced Communication Systems 
Heat Transfer, Thermal Power 
Nuclear Engineering 
Manufacturing Systems ill 
Materials & Geotechnics ill 
Highway and Traffic Engineering 
Hydraulic and Public Health 
Engineering 

Software Engineering 
Control Theory 

(c) Up to TWO subjects from a wide range offered by the Depanment of Mathematics, for 
example 

Mathematical Education 
Time Series Analysis 
Formal Computation 
Case Studies 

Regression Analysis 
Applied Statistics 
Graph Theory 
Game Theory 

The lecture courses are 25 hours in duration except for those optional subjects listed under 
(b) which occupy 40 hours. 

All subjects are equally weighted. 

The Project disseratation has to be submitted before the end of the Spring Term. 
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these summer examinations a compulsory short course on Laplace transforms is 

given and a reading course is set on this topic for the following summer vacation. 

The work is examined in the Second Year as part of the Differential Equations 

module. A course in computer programming is also given after the summer 

examinations have taken place and before the students leave for their vacation. 

In addition to the compulsory subjects in the Second Year the student is 

required to select one engineering option from a wide range of second year lecture 

courses offered by engineering departments. Over the first two years of the course 

the ratio of time spent on mathematical techniques to that spent on applied 

mathematics is approximately two to one. 

Following the summer examinations in the Second Year an introductory 

course is given to prepare students for the Final Year; it covers Elasticity, 

Electromagnetism and Mathematical Methods. Coursework in these subjects is 

taken into account in the Final Year assessment and work in these subjects is 

examined in the corresponding Final Year examinations. 

In the third year the student is allowed a wide choice to permit a selection of 

topics to best fit his interests and abilities. The engineering option can be a follow-up 

to the second-year option or an entirely new second or third year course. 

The Final Year project involves the student working on a problem of practical 

interest which requires substantial analytical and computational techniques for its 

solution. The student writes an account of his work in the form of a dissertation 

which is assessed and counts towards the degree classification. Examples of recent 

project titles are listed in Appendix 17.· 

The final assessment is made up from 20% of the Second Year mark, 60% of the 

Final Year examination mark and 20% of the Project mark. 
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The course is run as a three year academic programme with no provision for 

an Industrial Year. 

As with the Loughborough course, the graduates have found employment 

relatively straightforward to obtain. The posts that recent graduates have held 

immediately after completing the course are shown in Appendix 17. It will be seen 

that they bear a marked resemblance to those held by the Loughborough graduates. 

7.4.2 Engineering Mathematics at Bristol 

This course is run by the Department of Engineering Mathematics in the 

Faculty of Engineering. The leaflet issued to applicants to the course (206) sets out 

the overall objectives: 

"Students are given a specialist training in applicable mathematics which is 

both broader and more fundamental in content than the mathematics courses 

usually given to students of engineering. The students are also introduced to the 

principles of Engineering Science. This education allows them to be highly versatile 

and is good preparation for professional or public service careers. It also enables 

them to fit more readily into an industrial environment than students who have 

attended more traditional mathematics courses." 

As with Nottingham, the course is run primarily as a three year academic 

programme, although it welcomes applications from those candidates who wish to 

pursue a 1-3-1 sandwich training scheme. The outline course structure is shown in 

Table 7.6. 

There is a clear statement that the First Year course is essentially Engineering 

Science. The modules in Applied Electricity, Strength of Materials, Mechanics of 

Fluids, Applied Mechanics, and Thermodynamics are provided by Engineering 

Departments and are shared with engineering students. The module in 

Mathematical Systems and Modelling introduces the student to the construction of 
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Table 7.6 

FIRST STAGE 

Applied Electricity (38, 40) 
Automata Theory (8, 0) 
Logic (8,0) 
Prolog (10, 0) 
Microcomputer Engineering (10, 0) 
Professional Engineering Studies (12, 0) 
Strength of Materials (24, 24) 

Applied Mechanics I 
Computing 
Probability Theory I 
Mathematical Modelling 
Mathematics I 
Mechanics of fluids 
Thermodynamics 

(28, 14) 
(10, 0) 
(20, 4) 
(24) 
(41,44) 
(24,24) 
(16,24) 

Laboratories (in Heat Transfer, Aeronautics, Engines, Computing, Prolog, Electrical 
Engineering, Microcomputers, Civil Engineering) 37 afternoons. 

The hours shown in parentheses are in the form (lecture hours, problem class hours). 

SECOND STAGE 

Applied Mechanics (ID) 
Software Engineering (1O+1abs) 
Finite Difference Methods (15) 
Mathematical Methods (30) 
Vector Calculus (10) 
Control (34+1abs) 
Professional Engineering Studies (30) 

Hours shown in parentheses are lecture hours. 

THIRD STAGE 

Complex Variables 
Design Support Systems 
Logic 
Prolog 
Vector Space Theory 
Continuum Mechanics 
Case Studies 

(20) 
(15) 
(14) 
(16, all labs) 
(20) 
(24) 

Compulsory Subject Professional Engineering Studies (60) 

Optional Subjects (Choose 4 whole subjects + one half subject) 

Non-linear Continuum Mechanicst (15) Continuous System Modellingt (15) 
Information Theory* (30) Control & Systems Theory (30) 
Variational Methods* (30) Heat Transfer* (30) 
Artificial Intelligence (30) Analysis of Algorithms (30) 
Operations Research** (30) 

t Half Subject 
*First 15 hours may be taken as a half subject with a two-hour examination 
**Either the first 15 hours or the last 15 hours may be taken as a half subject with a two 
hour examination. Whole subjects each have a three hour examination. 
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mathematical models and includes a mini- project. Most lecture courses are 

supplemented by appropriate problem and laboratory classes. The total lecture time 

is of the order of eleven hours per week, three of these hours being taken up by 

mathematics. Problem classes occupy seven hours each week, whilst time in the 

laboratories is about four hours weekly. 

A course in Professional Engineering Studies runs throughout all three years. 

It introduces engineering students to basic aspects of accountancy, economics, 

industrial law, contracting, and the place of the engineer in society. 

The Second Year comprises specialist mathematics courses. Lectures total about 

ten per week. The courses are of two kinds: those relating to fundamental 

mathematical theory (viz. Complex Variable Theory, Vector Space Theory, Linear 

Systems, Mathematical Methods, Numerical Analysis, Probability Theory) and those 

which consider in detail some areas of the application of mathematics (viz. Applied 

Mechanics, Control Theory, Continuum Mechanics, Decision Theory). There are 

also lectures in structured programming and microprocessors. 

One special feature of the Second Year are the courses in Vector Calculus and 

Vector Space Theory which are classified as guided reading courses. These comprise 

a set of notes which guide students through a recommended text, discuss certain 

difficulties and important issues, and suggest suitable examples to be tried. This 

exercise is part of an attempt to encourage students to read more widely and the 

general reduction in timetabled hours from those in the First Year is designed to 

allow more private study. Example classes are normally of a "general surgery" type, 

but some lecture courses organise individual classes. 

A second special feature is the Case Study activity. The students are subdivided 

into subgroups of two or three and are presented with a problem derived from an 

actual industrial situation. The problem is given in the form of correspondence, data 

sheets, technical reports and memoranda. Each subgroup has to 'interpret the 

problem, create a mathematical model, obtain solutions and make 
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recommendations' (206). The subgroup holds weekly discussions with a member of 

the academic staff who acts as an industrial manager. Each Case Study lasts typically 

two or three weeks, which gives an element of time limitation. The students are 

required to submit a written report. Clements (142) has reported on the popularity of 

this activity with his students. 

In the Final Year the students select a number of lecture courses from a wide 

choice of options. In addition a Mathematics project, supervised by a member of the 

Engineering Mathematics Department must be undertaken. The author's feeling is 

that these projects tend to be more of a general applied mathematical nature than 

they are specifically engineering-orientated. 

As regards the career prospects of graduates, the most popular area of 

employment has been in software production. However, the list of employers 

shown in Appendix 17 indicates a range of companies willing to take on graduates, 

including large industrial concerns, Government agencies, and career choices outside 

engineering. 

7.4.3 Mathematical Engineering at Eindhoven 

When the DECD Report (14) was being written the course in Mathematical 

Engineering at the Technische Universiteit Eindhoven was only four years old. As 

with the course at Delft which had started five years earlier, the first two years of the 

course were identical to the first and second year curriculum of one or other of the 

engineering departments. The remaining three years of the course were mainly 

devoted to mathematics, with engineering modules being chosen to emphasise 

topics of a general and fundamental importance - for example, Control Engineering, 

Fluid Dynamics, Engineering Mechanics. There were three slants in the curriculum: 

the mathematical treatment of physical processes, the statistical aspects of industrial 

problems and the numerical solution of mathematical problems. 

Plans were already being drawn up to reduce that period of the course which 
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was coincident with another engineering discipline to one year, instead of two. It 

was felt that the current students were spending time acquiring knowledge and skills 

in areas in which they would not be active. 

When the author visited Eindhoven in May 1988 he found the academic staff 

in the Faculty of Mathematics and Computer Science in an apprehensive mood. The 

nominal five year programme (which could take upwards of six years to complete 

because of the requirement to pass all subjects) had been reduced to a nominal four 

year programme (with an upper limit of five years). This was Government policy for 

all degree courses in the Netherlands and had caused the staff real anxieties that the 

quality of their graduates would decrease. 

The course aims to provide training in the solution of scientific, engineering or 

management problems by mathematical methods. The first two years give an 

introduction to mathematics and computer science followed by a two year 

specialisation in one of the areas of discrete mathematics, analysis, applied statistics, 

and decision theory. 

After the four year programme of courses the student is required to work for 

approximately six months on an individual research project in his chosen 

specialisation; the results of his research are presented in a thesis. The project topic 

can be chosen from the Faculty's research programme or the research can be carried 

out in industry. 

In the First Year the students take courses in economics, engineers in SOCiety, 

analysis, algebra, numerical mathematics and programming, electricity and 

magnetism, and introductory mechanics. The first topic occupies about 20% of the 

lecture hours whilst the last two topicS account for about 16%. In addition to the 

lectures there are problem classes and practical sessions. 

In the Second Year, compulsory courses are given in Analysis, Numerical 

Methods, Probability and Statistics, Fourier Analysis, Differential Equations, 
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Theoretical Mechanics, Function Theory and Matrix Theory. Optional courses are 

offered in Mathematical Economics, Abstract Algebra, Discrete Mathematics, Further 

Analysis, Further Differential Equations, Continuum Mechanics, Regression 

Analysis and Stochastic Processes. There is a requirement to choose a package of 

options totalling at least a specified minimum number of hours. There is a seminar 

style course in mathematical model-building which is also compulsory. 

The discrete mathematics specialisation includes courses in Abstract Algebra, 

Stochastic Processes, Function Theory, Numerical Mathematics, Analysis, Group 

Theory, Optimisation, Combinatories, Cryptology, and Complex Variable Theory. 

These are supplemented by a variety of optional courses. 

Successful candidates from the course are awarded the ir - degree (equivalent to 

a master's degree). 

7.4.4 Comparison of the Courses 

The titles of the courses at Loughborough, Nottingham and Bristol reflect the 

fact that these courses have placed different emphases on the engineering element. 

The author believes that each title is opposite to the role of engineering in the course 

concerned. The same cannot really be said in the case of Eindhoven; the reduction in 

the engineering content since the course was initiated was seen as regrettable but not 

unduly harmful to the character of the academic programme. 

As has already been stated, the Loughborough course had been established as an 

engineering course; its accreditation and re-accreditation by the Engineering Council 

and two member institutions would indicate that this is how it is seen by the 

engineering profession. Nottingham has endeavoured to keep pukka engineering 

courses throughout all three years of the academic programme whilst Bristol's 

second and third years contain modules which are more of an applied 

mathematics/theoretical physics nature than engineering. In the opinion of the 

author it is matter for regret that Bristol and Nottingham have not integrated the 
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engineering component more into the overall course structure and have therefore 

not gained accreditation by member institutions. Being unique is sometimes not as 

advantageous as being nearly unique. 

Whereas the Loughborough course stated its aim as being to produce an 

effective mathematical model builder and solver it was intended to be a course 

which fitted into the Loughborough tradition. Nottingham wanted its graduates to 

understand engineering principles and to be able to apply mathematics to the 

solution of engineering problems; it saw itself as training mathematicians. Bristol 

are clear that their students are given a training in applicable mathematics together 

with an introduction to engineering science. It seems reasonable to conclude that 

the courses are listed above in decreasing order as regards the importance of the 

engineering aspect. Loughborough is the only course to include the element on total 

Engineering Design and this is a clear distinguishing feature. Loughborough 

includes a group project it its Second Year and Bristol has its Case Studies module; all 

three courses have an individual project in their final years. Loughborough has the 

lowest proportion of degree marks for this project but when the Second Year project 

is taken into account, the three universities weight project work approximately 

equally. 

Both Loughborough and Bristol give time to the areas of economics, industrial 

law and the role of the engineer in society. However, Bristol includes the subjects in 

all three years, increasing the proportion with the years whereas Loughborough 

restricts its coverage to the Final Year. 

There are differences to be found in the content of the courses and the 

impression is a marked one that Bristol, and to a lesser extent Nottingham approach 

the mathematics components in a more formal manner than Loughborough. 

However, there are many similarities between the three courses and they all have a 

distinctive position in the spectrum of the academic programms of their respective 

uni versi ties. 
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Judging by the destinations of graduates, the three courses fill similar needs for 

employers. The range of posts taken on graduation is similar for each course and the 

work carried out is comparable. 

The course at Eindhoven is nearer to that at Bristol than to the ones at 

Nottingham and Loughborough but it is more of a mathematics course than that at 

Bristol. The general approach to mathematics is a formal one and the Final Year 

Project is effectively a mathematics project. It does, however, include a module in 

mathematical model-building. Given that engineering courses in the Netherlands, 

in common with most continental European countries, are more theoretical than 

those in the United Kingdom, then perhaps the course at Eindhoven is in the same 

relation to mainstream engineering courses as are the Loughborough, Nottingham 

and Bristol programmes in this country. 

7.5 The Contribution of 'Mathematical Engineering' 

Thus far, no mention has been made of recruitment to courses in the United 

Kingdom, other than to refer to the demise of the degree programmes at Aston and 

Warwick. 

Conversations with colleagues at Bristol and Nottingham Universities have 

revealed a less than rosy picture. It is now more than ten years since all the three 

courses were in operation and it might have been expected that they would have 

become firmly established in the spectrum of degree courses. With the intake quotas 

for Nottingham and Bristol ranging usually between 12 and 15, and that for 

Loughborough between 15 and 20, then the annual "demand" for recruits, even 

allowing for the transient presence of other courses, has never been more than about 

65. Yet at no time have all the courses currently in operation been over-subscribed. 

There has not been a lack of effort on the part of the Universities concerned. 

Secondary schools with a large sixth form have all been sent a copy of at least one 

course brochure, together with a poster advertising the courses at Bristol, Queen 
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Mary College, Loughborough, Nottingham and Swansea. 

In the late 1970's the majority of UCCA applicants for these courses fell into 

two categories: those who had mainly opted for mathematics, and those who had 

mainly opted for a mechanical engineering type of course; in each case the 

'mathematical engineering' courses were effectively stocking-fillers. More recently, 

however, there has been a tendency for the majority of applicants to plump for 

'mathematical engineering', with mathematics or mechanical engineering as the 

back-up. 

It is perhaps too early yet to assess the impact of the graduates from these 

courses on industry. The time-scale is too short and the numbers so far have been 

too few to make any definite statements. However, the general view of employers is 

that those students who have entered industry have been a positive asset. Their 

range of background skills has allowed them to work more effectively in design 

terms than the traditional mathematics graduate. 

The advantage to a department which has a large service commitment to 

engineering departments in having its own students has been considerable. It has 

allowed the author, for example, to carry out experiments in new teaching strategies 

before undertaking investigations with the mainstream engineers. Although the 

author has always enjoyed a good rapport with the latter groups of students it is 

more satisfactory to use one's own undergraduates for the first run through of a 

teaching innovation. From a practical point of view it is easier to plan, execute and 

assess a teaching experiment with a group of 15 students than with one of 80 or 

more. Certainly, many of the experiments in modelling and the use of case studies 

were first tried with the author's mathematical engineering undergraduates, and the 

informality of the teacher Istudent relationship that was possible with a small group 

led to more comprehensive feedback than was likely to be the case with a large group 

of students from another department, no matter how good the rapport. 

It is noticeable how the morale of the staff in the author's Department 
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improved once the Mathematical Engineering course was initiated. However 

satisfying the service teaching of engineers may be, there is a special pride in teaching 

one's own undergraduates on a course which one has planned. In addition, there 

has been a small yet regular supply of students staying on to carry out research, 

which is a bonus in present circumstances. 

However, the main reason for establishing an undergraduate course is because 

one believes that there is a real need to produce graduates with a particular blend of 

skills and knowledge. It is clear that a section of industry - the author would say the 

more enlightened section of industry - perceives a real need for graduates from 

hybrid courses of the nature this chapter has been describing. The problem lies in 

attracting sufficient good quality applicants from schools and colleges. These days 

'small' is not beautiful and the viability of courses with only a few students entering 

each year is likely to be questioned. The hope must be that a sympathetic view 

prevails. 

How to obtain more applicants remains the burning question. There seems to 

have been a move away from engineering courses towards the financial, accounting 

and management area. With the decrease in the number of 18 year olds due to 

continue for a number of years there will be increased competition to attract 

students. 

Despite the competition the quality of entrants to the Loughborough course has 

shown a marked improvement. At the time of the first accreditation exercise in 

1982, the average point score of 'A' Level entrants (based on A = 5, B = 4 etc) had just 

risen from 10 in previous sessions to 11.2 in the current session; the entry of October 

1988 had an average point score of 14.9. 

With 1992 only four years away, the gap between VI< engineering graduates 

and their mainland European counterparts as regards depth of mathematics 

knowledge will prove an embarrassment. The mathematical engineer will be in the 

best position of United Kingdom engineers to meet the challenge of a united Europe. 
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Perhaps as 1992 draws nearer, the message may penetrate into the schools and the 

recruitment picture may improve. 

The author is in no doubt that courses such as those at Loughborough, 

Nottingham and Bristol have an important role to play in the future of the 

engineering industry in the United Kingdom. That role will increase in importance 

as we move into the twenty-first century. They are the engineering courses of the 

future and it would be a tragedy if that future were threatened by a lack of vision 

today. 
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Chapter 8 

Related Matters 

8.1 Partial Differential Equations: Resolving Difficulties 

The topic of partial differential equations is commonly introduced in 

second-year engineering courses. Most students find it the hardest part of their 

mathematical studies and there is a strong feeling amongst engineering staff that it 

is probably too difficult for their students. The author, in common with many of 

his colleagues, has constantly agonised over the presentation of this topic and has 

carried out a number of investigations with individual students in an attempt to 

improve that presentation. 

Sear! (149) compared the relatively small amount of theory that is usually 

provided in lectures to underpin the solution of partial differential equations with 

that accompanying the solution of ordinary differential equations. He argued that 

one of the reasons for this disparity was the difficulty associated with the former. It 

was important for a student after his first encounter with partial differential 

equations to be able to recognise the types of equation and the nature of the 

accompanying boundary conditions. The student should also be able to interpret 

these conditions in physical terms and have a working knowledge of the special 

properties of the solution of each type of equation. 

The author had independently developed an approach similar to that 

recommended by Sear!. The package of lectures which is described below has been 

distilled from the experience gained over several years lecturing en the topic and 

from the ideas of ·colleagues both at Loughborough and elsewhere. The 

presentation to second year Civil Engineers follows a treatment of Fourier series 

and is timed to coincide with that part of their Geotechnics course which deals 

with seepage in soils and, by prior arrangement, also with that part of the Building 
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Services stream which covers steady state heat flow. The students are shown that 

the governing equation in each case is Laplace's equation. Then follows a 

description of the Geotechnics laboratory experiment which uses conducting paper 

cut into a shape similar to that of the soil under a given dam; the distribution of 

electrostatic charge on the surface of the paper is also governed by Laplace's 

equation. The top edge of the paper is connected to one terminal of a voltage 

supply and the three other edges are earthed. With the aid of a galvanometer the 

lines of equal potential can be traced out; from these lines a flow net for the 

seepage problem can be constructed. 

Attention is then turned to the steady-state temperature distribution in a 

thin rectangular plate. The plate is insulated on its two large faces so that heat can 

enter or leave the plate only along its edges. Following the treatment given in 

Bajpai, Mustoe and Walker, Advanced Engineering Mathematics (42) Laplace's 

equation is developed for the steady state distribution of temperature a(x, y), viz 

a2a a2a -+-=0 (8.1) 
ai al 

which applies at all points on the plate 0 ~ x ~ a, 0 ~ y ~ b. The specific problem 

which is discussed is that where three edges are maintained at OOC and the fourth 

at 1000C. Heat will clearly flow from the hot edge, across the plate and out 

through the three other edges. At any point in the interior of the plate the 

temperature will change, rapidly at first, then more slowly, until steady-state is 

reached when no appreciable changes occur. 

The boundary conditions are stated as 

a = 0 
a = 0 
a = 0 
a = 100 

when 
when 
when 
when 

x =0 
y =0 
x = a 
y = b 

for 
for 
for 
for 

(8.2) 

It is argued that to solve (8.1) we effectively need two integrations with 

respect to x and two with respect to y; each of these will introduce an arbitrary 
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element into the formula for e, which implies a need for four conditions to obtain 

a unique solution - two on x and two on y. 

The students are asked what other set of boundary conditions would specify 

a unique solution and it is suggested that they should consider the effect of 

insulating the edge y = O. After a discussion the condition 

ae 
ay = 0 at y = 0, 0 :5 x :5 a 

emerges. 

The author believes that this carefully laid background is important, not 

just in its own right, but also because it provides motivation for his students. The 

solution of the equations and the application of the boundary conditions is a very 

long haul for both parties and the motivation is a vital sustaining force. 

Having been shown the class the analytical solution for this problem the 

students are introduced to a simple numerical solution using a relaxation 

technique and the output, in graphical form, from a program using the same 

technique on a much finer mesh. The details are provided in Bajpai et al (42). 

The usefulness of the analytical solution is discussed in view of its 

complicated nature, its inability to yield readily any graphical information about 

the nature of the solution and its unsuitabili ty as a means of calculating 

temperatures. 

The Building Services stream have been set an exercise by one of their 

lecturers which requires them to find numerically the steady-state temperature 

distribution in the cross-section of a chimney and this acts as a useful conclusion 

to the discussion of this part of the lecture package on partial differen tial 

equations. 
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Next, the one-dimensional diffusion equation is considered using as 

examples unsteady heat flow in a bar and the consolidation of a layer of wet soil 

which is allowed to drain excess pore water; for the latter case see, for example, 

Craig (207). These problems introduce the idea of a steady-state solution and a 

transient. 

With a long bar 0 S X S £', the temperature e(x, t) is governed by the 

equation 

ae -k a2e 
at - ax2 

where k is a diffusivity constant for the maferial of the bar. 

(8.3) 

It is agreed that suitable boundary conditions would be to specify the 

temperature at both ends of the bar and the initial temperature distribution along 

the length of the bar. 

The first set of conditions examined is 

e = 100 at 
e = 0 at 
e = 100 at 

x =0 
x =.t 
t =0 

fort >0 
fort> 0 

for 0 S; x S; .t } (8.4) 

This set is discussed in physical terms and then the mathematical statement 

provided. What is the steady-state distribution? Equation (8.3) reduces to 

is 
-=0 
ax

2 

suggesting a linear profile; the nature of the boundary conditions leads to 

(8.5) 
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The second set of conditions is 

e=l00 at x=O 
e= 50 at x=..! 
e = 100 at t = 0 

fort>O 
fort> 0 

forOS;xS;..! } 
In this instance, the steady-state distribution is 

The third set is 

e = 100 
e =0 
e = '0 

at x =0 
at x =..! 
at t = 0 

fort >0 } 
for t > 0 

for 0 S; x S; ..! 

in which case the steady-state distribution is again given by 

(8.6) 

(8.7) 

(8.8) 

(8.5) 

The three results are compared in terms of the physical situations which they 

represent. Now it is argued that 

where eT(x,t) is the transient part of the solution. 

Then 

aeO:eT 
-=0+-at at 

and 

ie a2eT -=0+--
ax2 ax2 

since es is a linear function of x. Hence (!:!.;j) reduces to the equation 

ae ie T T -. =k - (8.9) 
at. ax2 
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Furthermore, given that the steady state solution (8.5) satisfies the conditions 

9s = 100 at x = 0 and 9s = 0 at x = .e then the conditions (8.4) reduce to 

9 = 0 at x =0 for t> 0 

} T 
t >0 9 = 0 at x =.t for (8.10) T x 

9T = lOO-:e at t = 0 for OSxS.t 

It is readily seen that for the second and third examples also 

9T = 0 at x = 0 and at x =.e. 

The solution for the first example is derived, having first suggested a time 

component which decays exponentially. The class is invited to solve the equation 

(8.3) for the two other sets of conditions; hopefully they will see the connection 

between the three solutions and save themselves much tedious calculation. 

The class is now asked what would be the effect of insulating one end of the 

bar, say in the first example, and to obtain the solution in such a case to verify the 

conjecture. For the example of the consolidation problem the insulation 

condition corresponds to an impermeable boundary. 

The mainstream Civil Engineers will be shown the solution of the 

consolidation equation for several sets of boundary conditions and have the topic 

reinforced in their Geotechnics lectures a few weeks later. 

Finally, the wave equation is discussed briefly, the emphasis being on the 

nature of the boundary conditions and the resulting solution. 

The solution of the Laplace equation is now effected by the method of 

separation of variables. The hope is that the motivation that has been engendered 

will keep spirits up whilst the tedium of the method is endured. 
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Experience has shown that it helps the students to offer up as potential 

solutions functions such as 

9 = 2 sin 3x sinh 3y 

and 

9 = 5 cosh 2x cos 2y 

The students can see that these are indeed solutions since they satisfy 

Laplace's equation. It is then readily accepted that it is reasonable to look for a 

solution which is based on building blocks of the form 

9(x, y) = X (x) Y (y). 

When the equation 

X"(x) Y(y) + X(x) Y"(y) = 0 

is derived, it is a relatively straightforward matter to obtain the rearrangement 

X"(x) - Y"(y) 
X(x) = Y(y) . 

(8.11) 

The rearranged equation becomes for the first suggested solution 

-18 sin 3x =_(9 sinh 3Y) ie 
2 sin 3x sinh 3y -9 = - (9) 

and in the second case 

20 cosh 2x = _ (-4 cos 2Y) 
5 cosh 2x cos 2y ie4 =-(-4) 

This makes more plausible the argument that each side of (8.11) must be a 

constant. Of course, it is well known that most people prefer to see specific 

examples of a method in action before attempting a formal generalisation. 

It is important to emphasise the role of the boundary conditions in 

restricting the number of possible candidates for solution. The first task is to 

decide the sign of the constant referred to above and the consequences of choosing 
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it to be positive, negative or zero are shown. Then the boundary conditions are 

examined for clues to the sign required in the problem under consideration. It is 

agreed that a sine variation in x is required and the constant is chosen as negative; 

this leads to the variation in y being described by a sinh/cosh formula tion. 

Hence a suitable solution is of the form 

e = sin kx (A sinh ky + 8 cosh ky). 

The condition 

e = 0 when y = 0 

leads immediately to the choice of 8 = 0; this has never presented a problem to 

the students to whom the author has lectured. 

Since e = 0 again when x = a, suitable values of k are 

It 2lt 3lt 
-, -, --I ••• • etc. 
a a a 

It is easy to rule out k = 0 and it is straightforward to point out that 

k=-1!.. 
a 

gives a solution of the same form as 

k=+1!.. 
a 

so that no new information is gained by considering negative values of k. 

Therefore, possible candidates for the required solution are 

A 
. ltX . h lty e . 2ltx . h 2lty e= Ism-sm -, =A2sm--sm -- ... etc 

a a a a 

where the multiplying constant has been labelled differently in each case to allow 

maximum generality. It is then pointed out that Laplace's equation is linear and 

by reference back to the solution of linear ordinary differential equations covered 

in the previous session it is made more palatable when the general solution so far 

is wri tten as 
~ 

e =L 
0=1 

. nltx . nlty 
A sm-- smh--

o a a 
(8.12) 
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The one remaining boundary condition is applied with the comment that it is 

only relevant for 0 ~ x ~ a. Equation (8.12) reduces to the condition 

~ 

~ C sin n1tx = 100 , 0 ~ x ~ a L.J 0 a 
0=1 

(8.13) 

where 

C = A sinh n7tb 
n n a 

This is now recognised as a Fourier Series problem and, using the 

techniques learned when covering that topic immediately prior to the module on 

partial differential equations, it is a simple matter to obtain 

C = 400 , n odd 
n n 7t 

Cn = 0, n even 

so that the solution is finally obtained as 

00 

400 ~ 
S(x, Y) =n L.J 

0=1,3.5 ... 

( 
n7tx) ( n7tY) sin -a- sinh -a-

( 
n7tb) n sinh -a-

(8.14) 

It is then again pointed out how cumbersome this formula is and how difficult it 

is to obtain information about the nature of the solution without expending 

considerable effort. 

Sear! (149) criticised the method of separation of variables because the class 

of problems for which it will provide a solution is small. Furthermore, he cited 

the equation 

au =b, O~x~l 
at al 

which, when accompanied by the conditions 

ux(O, t) = 0, u(1, t) = 1 and u(x, 0) = 0 
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can be solved by the method but when accompanied by the conditions 

ux(O, t) = 0, u(1, t) = 1 and u(x, 0) = 0 

cannot be so solved; there was no clear reason why success in the first case should 

be countered by failure in the second. The author of this thesis agrees with these 

criticisms but he believes that there are a number of practical examples where the 

method does produce an answer and whilst engineering text books continue to 

quote the solution thus obtained, it is important to show the students how it had 

been derived. The consolidation of wet soil is a case in point; see Craig (207). 

In summary, the topic of partial differential equations is a difficult one to 

teach and the ground needs to be laid carefully. By showing the relevance of such 

equations and demonstrating the relationship between the boundary conditions 

and the physical problem the lecturer can sustain the students' motivation 

through the tedium of the analytical solution. Of course, with other groups of 

engineers, relevant examples can be taken from their discipline. 

8.2 Fourier Series: Using Tutorials to Advantage 

There is a tendency amongst lecturers who teach second year students to 

make too many assumptions about the knowledge which they have carried 

forward from their first year studies. When he first taught the topic of Fourier 

series to second year engineers the author had assumed that most of his audience 

would be familiar with the properties of the functions sin mx and cos mx. 

Tutorial classes had shown an inability to calculate the Fourier coefficients for a 

given function, but it was the testing of individual students, selected randomly, 

over a number of years that demonstrated the widespread ignorance of facts which 

had been taken for granted when preparing the lectures. 

Before the package of lectures on Fourier series the students are given a 

tutorial class on the properties of sin mx and cos mx. They are first asked to 

make a sketch of the graph of sin x for the domain -61t S X S 61t and are asked to 



279 

point out its main features. The particular answers sought are its oddness and its 

periodic nature. The students are reminded of the definitions of an odd function 

and of a periodic function and it is seen that the function sin x has period 27t. 

They are then asked to repeat the exercise for sin 2x and sin 3x. In the case 

of the first of these functions many students will produce graphs of sin xJ2 or 

2 sin x. These misconceptions must be ironed out firmly. Next the class is 

presented with the function 

f(x) = 2 sin x + 3 sin 2x. 

Is it periodic? If so, what is the period? Again there is confusion; some students 

will aver that the period is 7t and some gentle but firm persuasion is required. 

Now the students have to tackle the function 

f(x) = a sin x + b sin 2x + c sin 3x 

where a, band C are constants. 

Having correctly identified it as being periodic and of period 27t the 

students are expected to comment that the function is odd. At this stage they are 

asked to repeat the complete exercise with the cosine function replacing the sine 

function. After they have obtained the required results they are asked to consider 

the function 

f(x) = d + a cos x + b cos 2x + C cos 3x 

where d is a constant. 

There is a certain reluctance to accept that this function is periodic; even the 

replacement of x by x + 27t does not fully convince the doubters. To complete 

this part of the proceedings the class is confronted with the function 

f(x) = aO + a1 cos x + b1 sin x + a2 cos 2x + b2 sin 2x 

+ a3 cos 3x + b3 sin 3x 

where the ai and bi are constants. Is it odd? Is it even? Clearly not. But is it 
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periodic? Yes, and the period is 2lt. 

Next, the students are shown the graph reproduced in Figure 8.1 (a). It is 

easily identified as f{x) = x. However, the function g(x) whose graph is 

presented in Figure 8.1 (b) proves somewhat harder to describe. Well then, 

concentrate on the interval What is the function in that range? 

Yes, it is g(x) = x. What do we notice about the function in the range 

It < X < 3lt; it seems to be the same as that part between -It and It shifted along. 

Then we accept that the function is periodic. After some prompting the function 

is described thus: 

{
g(X) = x 
g(x + 2lt) = g(x) 

-It < X < 1t 

It takes careful argument to explain how the second part of the definition covers 

periodicity to the left in addition to the right. But what about the value of the 

function at x = It and -It and - 3lt, etc? It is agreed to complete the definition by 

extending the first part of the definition to be 

g{x) = X -It < X ~ It 

although the alternative 

g{x) = x -7t ~ X < It 

is recognised as equally plausible. Occasionally, a student will suggest that the 

definition 9(lt) = 0 is in some way a more reasonable compromise. Then the 

function h{x) whose graph is reproduced as Figure 8.1 (c) is displayed. The class is 

able to voice readily the observation that h{x) is periodic and of period 2lt and 

then its definition is sought. First it is decided to tackle the portion between 

x = -It and x = It. It is clear that a simple description would be 

h{x) = Ixl 

hex) = {x' 0 ~ x ~ It 
-x , -It <x < 0 
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Figure 8.1 (a) 

Figure 8.1 (b) 

Figure 8.1 (c) 
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Because of the periodicity, the definition is completed by the statement 

h(x + 21t) = h(x) 

What is the most obvious difference between g(x) and h(x)? The former is 

discontinuous at x = ± 1t, ± 31t, etc. Also, h(x) is an even function, whereas g(x) 

is odd. 

Finally, the students are asked to compare f(x), g(x) and h(x) for the 

sub-domain 0 ~ x < 1t. There is no distinction to be drawn. They are asked 

whether a good approximation to h(x) will be a good approximation to f(x) in the 

interval 0 ~ x < 1t. It will. But will it be a good approximation to ~(x)? Some 

doubt is expressed about the situation near x = 1t. However, it is agreed that a 

good approximation to h(x) will also be a good approximation to f(x) in the 

interval 0 ~ x < 1t. 

The third part of the tutorial returns to the functions cos X and sin x. The 

students are asked to consider the integrals 

It 

11 = J sin mx sin nx dx, 

-It 

It 

12 = J cos mx cos nx dx, 
-It 

It 

14 = J cos
2 

nx dx 

-It 

m;o' n 

The class is divided into four subgroups, each having a different integral from the 
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set 11 to 14' When it is reported that 11 = 0 = 12 and that 13 = 1t = l.fhe result 

15 = 1t is contributed and it is explained that that the somewhat peculiar choice of 

1/2 as the integrand was to ensure that 15 = 13 = 14' It is also pointed out that 

since sin2 x and cos2 x take the same set of values in the interval -1t ~ X ~ 1t, 

then it is reasonable to expect that 13 = 14 and that 

so that 

It 

4 = J (sin
2 

nx + cos
2
nx) 

-It 

dx = 21 = 21t 
5 

Are there any other integrals which we should consider? It is suggested that 

we might examine 

and 

It 

16 = J sin mx cos nx dx, m '# n 
-It 

It 

17 = J sin~cosnxdx 
-It 

It 

IS = J I '2 sin nxdx 
-It 

I 
'2 cos nx dx 

-It 

Collecting the results that 16, 17, 18 and 19 are all zero, the observation is 

made that from the building blocks 1/2, cos x, sin x, cos 2x, sin 2x, ... ' 

the only products which do not vanish when integrated between -1t and 1t are 
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sin2 mx and cos2 nx, and perhaps we might add (1/2)2. 

A comparison is drawn with a set of vectors s, b , c, ... which are such that 

a.b = b.c = c.s = O. They would be said to be orthogonal; could we say that the 

functional building blocks are also orthogonal is some sense? 

The way has now been paved for the development of the Fourier series 

approximation to a function which will take place in the next mathematics lecture. 

In the author's opinion this is the correct use for a tutorial - to supplement the 

work of the lecture by covering background material in an interactive way. 

More recently, use has been made of a computer enhanced learning unit on 

Fourier Series. This shows how the various harmonics can be superimposed to 

create a Fourier Series approximation to a given function. The opportunity is also 

taken to compare odd and even extensions of a half-range function. 

8.3 Examining the Examinations 

A worry facing any examiner, however experienced, is that the examination 

paper he sets for his students will be fair: fair to his students and fair to his 

standards. He must stretch the good student but he must not leave a weaker 

student, who has worked hard all year, floundering in despair. One set of public 

examinations which has been looked to over many years as exemplifying the 

appropriate standard are those of the Engineering Council (previously the Council 

of Engineering Institutions); however, the author has gained the impression that 

the questions set today are more fragmentary than was the case some years ago. 

Sometimes it is not clear what the purpose of a question is; sometimes 

several threads appear tangled. Consider the two questions below: Question 1 is 

taken from the CEI Part I Examination in Mathematics in 1978, whereas Question 2 

appeared on the EC Part I Examination in Mathematics ten years later. 
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1 Interpret the complex number e i9 on an Argand diagram. From the 

exponential definitions of the hyperbolic functions, show that 

2 

sinh iz = i sin z and cosh iz = cos z 

and hence obtain expressions for the real and imaginary parts of the 

complex function cosh (nz/a ). Construct in the z plane the 

semi-infinite rectangle defined by the points (0,0), (0, a), (00, a), 

(00, 0). Determine the area in the w plane into which this rectangle is 

mapped by the transformation 

w = cosh (nzla ). 

In particular, indicate the corresponding points in the w plane and find 

the curves into which the sides of the rectangle are transformed. 

(a) The complex number z1 is shown in Figure 8.2 (a). Find 

and write it in Cartesian form giving the numerical values to the nearest 

integer. 

If z2 = -5 + i2, use de Moivre's theorem to find in polar form 

the cube roots of z2 and display them on an Argand diagram. 

(b) In a certain engineering situation Y = [1/(R + ico L)) + ico C . 

Derive the value of co in terms of R, Land C so that Im(Y) = 0, and 

write down Y in this case. 

(c) In Figure 8.2(b) OPQR is a parallelogram. Write down the vectors 

RQ and RP in terms of z. 

(i) If z varies such that Iz - 41 = 3 describe geometrically the 

locus of z and also the corresponding locus of Q. 
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(ii) If z varies such that arg(z - 4) = 3nl4 derive 

algebraically the equation of the path of P and find the equation 

fora. 

-+;.;..;....--'--... R(z) rP ____ "7Q 

o 4 R 

Fig 8.2(a) Fig 8.2(b) 

In the first example there is an identifiable thread running through the 

question; each part leads on to the next in a coherent fashion. From the 

interpretation of e i9 the candidate is asked to use the exponential function e iz 

and then cosh(nz/a) to tackle a complex transformation based on the latter. In 

contrast, Question 2 appears somewhat of rag-bag of techniques on the theme of 

complex variables. Once the candidate has recovered from the shock of the 

length of the question he has first to use the result that 

20 
{r &} = r20 LWl. 

then he has to apply de Moivre's theorem to find cube roots. Next he is 

expected to use the idea of a complex conjugate to find the imaginary part of a 

complex fraction. He then has to focus his attention on the geometrical 

interpretation of the modulus and argument of a complex number. 

The first observation to be made is that a candidate whose knowledge of 

complex variables was restricted to the basics could cope with most of the 1988 

question but would be hard pressed to perform as credibly on its 1978 
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predecessor. Further, the more recent question guides the student much more 

carefully through the steps that he is expected to carry out; there is no real 

chance for an outstandingly good candidate to perform significantly better than 

one who is much less able. 

Whereas there is something to be said for weak candidates being able to 

gain a reasonable mark on an examination paper, this should not be at the 

expense of the more able candidates being able to demonstrate their supremacy. 

The "solution" which the author has adopted is to set some questions on which 

the weaker candidates can score most of the marks necessary to pass the 

examination but to have other questions which are more demanding: an 

outstanding candidate could score 100% but a modest one should have to 

struggle hard to achieve a distinction. When an examination paper contains 

sufficient questions of the style and content of Question 2 for a high mark to be 

achieved on basics, it becomes dubious as to what it is intending to test. In 

fairness, it must be pointed out that the more recent style was adopted by a new 

Chief Examiner who believed (rightly) that the cause of so many candidates 

obtaining poor marks was their inability to carry out the most fundamental of 

mathematical tasks; he argued that it was preferable to test these fundamentals 

as opposed to taking them for granted when setting questions. 

The Bristol University examination IACEMQ Papers 1 and 2 are each of 

the style; answer six questions out of eight in three hours. Whereas the 1988 

papers do contain some questions of the type in which the parts are related there 

are some curious bedfellows, for example Question 3 below. On the same paper 

are also to be found questions combining limits of functions of the form 

f(x)/g(x) with work on fixed-point iteration and on constrained partial 

differentiation combined with a part on Laplace transforms of functions of the 

form t.f(t). 
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3 (a) Find the values of z for which 

writing them in the form x + jy. 

Sketch their positions on an Argand diagram. 

(b) Explain why the following in tegrals are improper and show 

whether or not they exist 

2 ~ 

(i) J dx (ii) J sinh (x) dx 
2 x cosh (x) 

0 x -2x+ 1 0 

(You are not required to evaluate them.) 

It is of course a long-standing dilemma as to whether or not to try to 

cover all the main topics on the syllabus. This can lead to artificial hybrid 

questions of this type. An argument in favour of this approach is that to omit 

some topics would introduce an element of luck into the process, favouring 

those candidates who had been fortunate in their selection of topics to revise. It 

could be argued, equally convincingly, that a hybrid question does not allow a 

. candidate to demonstrate his knowledge in depth on a topic. In public 

examinations such as those of the Engineering Council, the candidates have no 

direct contact with their examiners and are therfore at a disadvantage compared 

with their contemporaries who sit internal examinations. An internal 

examiner has the opportunity to guide his students in their revision. 

4 (a) If e is an eigenvector of the matrix A, with eigenvalue p, show 

that A 2e = p2e 

and hence that e is also an eigenvector of the matrix A2, with 

eigenvalue p2. 

1 
I 



(b) The matrix 

A =(~ 
1 
4 
1 i) 
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has 6 as one of its eigenvalues. Find all the eigenvalues and 

associated normalised eigenvectors of the matrix A. 

Question 4 is from Paper 2 of the same year. Although at first sight the 

question seems to have a coherence, the author believes that the first part is 

actually misleading. Granted part (b) does not include words like "hence" or 

"therefore", but a candidate might be forgiven for thinking that part (a) has 

some relevance to its successor; if not, what purpose does it serve? Why use the 

notation A for the matrix in both cases? Before the author is accused of 

cavilling, let the reader remember that candidates under examination stress do 

not always think clearly and a question which could unwittingly lead them up a 

blind alley is to be avoided. 

H in answering Question 4 the candidate did calculate 

. (12 
A2 = 1~ 

8 
20 

8 
1~) 12 

he would wonder what use he could make of the fact that one eigenvalue of A2 

is 36 ; what is the advantage over the direct calculation of the eigenvalues of A? 

5 Use Gaussian elimination to determine the inverse of the matrix 

2 
o 
1 

if it exists. 

Hence find values of x, y, and z that satisfy the equations 
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3x + y + 2z '" 1 

2y + 3z = 1 

2x+ z=2 

Question 5 is taken from the same examination paper as Question 4; this 

can be compared with a question from the 1988 paper Engineering Mathematics 

IB set by the University of Nottingham - Question 6. 

6 Use. the Gauss-Jordan method (row operations) to invert the matrix A 

given by 

A = [~ 
-4 
o 
3 ~] 

and hence solve the equations 

Ax = b 

for each of the right-hand sides 

(a) b =[1], (b) b =[~~], (c) b = [1] . 
For the matrix A above, find the three values of A for which the 

equation Ax = AX has a non-trivial solution. 

In both cases one is tempted to ask why the candidate is being asked to 

solve the equations 

Ax = b 

by first finding the inverse matrix A -1. This is not the basis of a practical 

method· of solution. The question of the relevance of the mathematics is 

appropriate in such instances. In the case of Question 5 it does seem a strange 

way of presenting the mathematics, especially since the candidate has to 'spot' 

that the equations need to be re-ordered before a direct comparison could be 
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made with the matrix A. If one were to solve the equations by inverting the 

coefficient matrix then the matrix to be inverted would be 

o 
2 
o 

What is gained by giving the matrix in the form of A? Question 6 suffers 

from a similar air of artificiality. If one wished to solve the system Ax = b for 

three right-hand sides then it would make sense to create a matrix B whose 

columns were the three given vectors. Then one could carry out an extended 

Gauss Jordan elimination on the augmented matrix 

(

2 -4 0: 10 12 -4) 
3 0 5: 0 -3 -3 
o 32:-6 9 3 

By way of contrast, most of the questions on the Nottingham paper were 

not open to these criticisms; they did hang together and were blending theory 

and calculation well. Question 7 is an example of such an approach. 

7 The fixed"point iterative method for solving the equation f{x) = 0 

consists of rearranging the equation into the form x = cp{x) and then 

generating a sequence of approximations xn+ 1 = cp(x n) which mayor 

may not converge to the root of f(x) = O. 

(a) Prove that if a root is known to lie in the interval (a, b) and that 

cp: (a,b) into) (a, b) with cp continuous on [a, b] and 

differentiable on (a, b) with W(x)l < 1, (a < x < b), then the 

fixed-point iterative method xn+ 1 = cp(x n) will converge to a root 

of the equation x = cp(x). 
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(b) Find a rearrangement of the equation x2 - 2x - 3 = 0 which, 

when an initial approximation Xo = 4 is taken, will converge to 

a root of the equation. This root should be calculated to an 

accuracy of THREE decimal places. 

(c) State what is meant by the order of convergence of an iterative 

method and show that the fixed-point method has linear 

convergence when the above conditions on $ hold. 

The author is aware that any examination paper could be dissected and 

crticised in this fashion. He is also aware that he has been guilty of some of the 

shortcomings that have been highlighted in the questions considered. For 

example, in 1973 question 8 was set to a first year class comprising both 

Chemical Engineers and Civil Engineers. No excuse can be offered for including 

part (ii): it is there merely to pad out the first part of the question on 

interpolation. If the argument were advanced that the first part is concerned 

with the approximation of a function which is specified by a set of tabulated 

values whereas the second part is concerned with an approximation of a 

function specified by a formula, then it would be a feeble one. 

8. (i) 

t (seconds) 

e (radius) 

The angle turned through by a shaft was measured and the 

results were tabulated as follows: 

0 0.2 0.4 0.6 0.8 1.0 

-0.002 0.058 0.149 0.283 0.471 0.707 

Form a difference table for e and use Newton-Gregory formulae 

to estimate e when t = 0.3, 0.15, 0.7 and 0.9. 
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(ii) Obtain by any means the Maclaurin expansion of tan-1 x as far 

as the term in x5. 

9. Evaluate J rx In x dx 

10. Solve the equation z3/2 - 4 z2 = 0 

Questions 9 and 10 were set two years earalier to a comparable class. The 

questions could be charitably be described as "academic"; it is hard to see what 

purpose they serve. Would such integrals or such equations ever confront the 

students in real life - or even in their engineering lectures? It is highly unlikely. 

If the argument is that it is important for the students to acquire manipulative 

skills then surely it is po'ssible to test such skills on more relevant examples. 

For many students the written examination is the major element of 

assessment, if not the only element and in a large group of students there may 

be no persona!' knowledge which can be brought to light in an examination 

panel. It is therefore of the utmost importance that the examination papers, 

even at this level, are carefully scrutinised not merely for correctness but also to 

see whether each question achieves its objectives. 

Some years ago the following question was typical of those to be found 

on examination papers for second year engineering undergraduates. 

"Find the eigenvalues and eigenvectors of the matrix 

( 

4 2 
A = 1 3 

-1 -1 

" 
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For its complete solution the following steps must be effected: 

(i) Form the determinant 

I A-I..II = 
4 -I.. 

1 
-1 

2 
3-1.. 
-1 

-2 
1 

5-1.. 

(ii) Expand the equation I A -1..1 I = 0 

ie 1..3 -121..2 +441..-48 =0. 

(iii) Solve this equation to obtain 

I.. = 2, 4 or 6 

(iv) Solve the system of equations 

ie ( i 
-1 

(A - 21) x = 0 

to obtain x .. (1, -1, O)l 

by noting that, for example, the first row of A - 21 is equal to the 

third row subtracted from the second. 

(v) Solve the system of equations 

( 

0 2 
ie 1-1 

-1 -1 

(A - 41) x = 0 

by ignoring the third equation as being a repeat of the result of 

combining the first two, to obtain 
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x = (0. 1. 1) T 

(vi) Solve the system of equations 

(

-2
1 

-1 

(A - 61) x = 0 

j -~) (~;) = (g) . 
-1 -1 x3 0 

by working with the first and third equations, to obtain 

x = (1. O. _1)T 

There are additional skills required: 

(a) Recognition of the need to solve the equation 

I A - All = 0 

to find the eigenvalues. 

(b) To find the eigenvector associated ,,;th a particular eigenvalue, it 

is necessary to solve the equations 

(A - AI) x = o. 

(c) Of these individual equations, one will be redundant; the choice 

of the one to be ignored may effect the ease of solution. 

(d) When the remaining equations are solved, there will be an 

undetermined parameter and it suffices to select a suitable 

member of the family of solutions in each case. 

Furthermore, if the question had continued 
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"Hence find a matrix P such that D = p-1 A P is diagonal and write down the 

matrix D" then the extra skills required are 

(e) Recognise that the required matrix P - the modal matrix - is 

formed by writing the eigenvectors of A as its columns. 

(0 Know that the diagonal elements of 0 are the eigenvalues of A 

in the same order as the eigenvectors have been entered into P. 

For the candidate who performs every step correctly then the question is 

a fair test of his understanding of the mechanism of calculating the eigenvalues 

and associated eigenvectors of a 3 x 3 matrix in addition to his ability to 

perform the calculations correctly. But what of the candidate who makes an 

arithmetical error early on? An omitted minus sign could well lead to the 

equation A 3 - 121..2 + 441.. - 56 = 0 which does not factorise readily. And 

where does the candidate go from here? There is little hope of him guessing the 

correct values of A, so that he would be unlikely to proceed further; without a 

correct value for A it would not be possible to obtain a set of equations which 

contained a redundant one, except by pure fluke. How much credit would, or 

should, an examiner give to a candidate who was able merely to describe the 

steps he would carry out? 

How to set a question which allows a candidate to display his knowledge 

and ability having committed an early arithmetic error is a problem which has 

been tackled by colleagues at different institution in different ways. In 1987, 

Queen Mary College (208) gave the characteristic polynomial in factorial form as 

a hint accompanying the question. In 1988, Nottingham (209) gave the 

eigenvalues as part of the text of the question; in the same year, Bristol (210) 

gave one eigenvalue in the text. 
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The examiner must ask what he is trying to achieve by his question. 

There is always a worry in providing partial results as part of the text of an 

examination question; the author's experience has been that some candidates 

spend a very long time trying to detect an error so that they can obtain this 

result, whilst some employ dishonest means to dupe the examiner into 

believing that they have achieved the result. There is also the matter of how to 

apportion the total marks for the question amongst its constituent parts. Two 

different examiners could apportion the marks quite differently and a candidate 

could badly misjudge how many marks he is forgoing should he omit or give 

up on a particular component. There is a school of thought which argues that 

such uncertainty is part of the examination process; certainly, the author is not 

convinced that it is wise to show on the question paper the allocation of marks 

to each section of every question. 

The author is of the opinion that some level of algebraic manipulation is 

important and should be tested; equally, the candidate should be required to 

demonstrate a knowledge of the stages in the process of solution. The style of 

question the author currently employs is epitomised by that which follows 

"(a) Find the characteristic equation of the matrix 

(b) A matrix B has characteristic equation 

1..3 - 21..2 - 5)" + 6 = 0 ; 

find the eigenvalues of B. 

(c) The matrix 

C =(-b -1 0) 2 -1 
-1 1 
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has eigenvalues A = 0, 1, 3. Find the associated eigenvectors." 

This style of question allows, for example, a student who cannot factorise 

a cubic polynomial to demonstrate his knowledge and ability on parts (a) and (c); 

it also allows a student who is able to factorise the characteristic polynomial to 

demonstrate that skill. (In practice, the author would relate the matrix C to, say, 

the modelling of a compressor for a jet engine by three disks on a rotating shaft. 

The candidates would be expected to relate the eigenvalues and eigenvectors to 

the model and make suitable comments.) 

8.4 Visual Images and the Role of Television 

There is no doubt that the undergraduate of today relies more on visual 

stimuli than his counterpart of twenty years ago. The modern engineering 

student has grown up in a world where television is the dominant mass 

medium; he seldom reads a serious newspaper and hardly ever listens to the 

spoken word on radio for any significant length of time. Since the earliest days 

of his childhood, television has filled his mind with striking visual images; not 

for him the active participation of creating mental images to complement the 

radio broadcast of an adventure serial which was the joy of the author's early 

years. 

To test these theories some informal experiments were conducted with 

groups of students using a twenty-minute excerpt from a television 

documentary. In the first experiment the students were asked to pay attention 

to both the commentary and to the pictures on the screen. Via a short 

questionnaire accompanied by a post-viewing discussion, it was quite obvious 

that the spoken word had made very little impact whereas many of the visual 

images had been retained. A second experiment was carried out with one half 

of the group listening to a tape recording of the commentary whilst the other 

half viewed the pictures with the sound turned off. The questionnaires and the 

discussion revealed that the latter half had maintained their interest and 
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retained more information. Even when note-taking was allowed \'he latter half 

showed a greater awareness of the content of the programme. 

Of course, most mathematics lecturers make use of overhead projectors 

and/or the blackboard to present their material. It has been known for a 

mathematics lecturer to read for the full 50 minutes from the text-book which 

he had written, but that was an exception. However, even the more common 

form of presentation will result in loss of concentration in the learner after a 

while. Research has shown that attention from an audience fluctuates during 

the course of the lecture. After some fifteen to twenty minutes there is a decline 

in attention followed by a peak towards the end of the lecture: Brown & Atkins 

(211). The decline in attention can be lessened by varying the activities during 

the lecture. Experience has shown that switching from overhead projector to 

blackboard to present supplementary results and then returning to the overhead 

projector to continue the main thrust of the lecture leads to an increase in the 

concentration of the students. 

It has been known for some time that visual reinforcement of the 

spoken word results in the learner enhancing his retention the lecture material, 

and that the incorporation of some activity on the part of the learner leads to 

even greater retention. On the occasions when students have been asked to 

perform calculations on their pocket calculators during lectures on numerical 

techniques there is some indication that this activity has helped maintain their 

interest. 

Stice (212) discusses four stages of learning 

(i) concrete experience (CE), which emphasises personal 

involvement 

(ii) reflective observation (RO), which involves watching and 

listening 

(iii) abstract conceptualisation (AC), where learners actively 

experiment with situations. 
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(iv) active experimentation (AE), where learners actively experiment 

with situations. 

Learners are categorised in four main groupings. 

(i) Divergers, who prefer to learn by CE and RO. They are creative 

and understand people's behaviour patterns. 

(ii) Assimilators, who learn primarily by RO and AC. They are more 

interested in abstract ideas than their practical value. 

(iii) Convergers, who are strong on AC and AE. They like the 

practical application of ideas and are good at solving problems 

and making decisions. 

(iv) Accommodators, whose learning preferences are AE and CE. 

They learn primarily from "hands-on" experiences and tend to 

act on feelings rather than logical analysis. 

Significantly, engineers are to be found mostly amongst con vergers, 

whereas mathematicians predominantly lie in the assimilator category. Stice 

argues that mathematics lecturers should enhance the presentation of their 

subject when teaching engineers not only by introducing applications but also by 

using visual demonstrations. 

Experimental demonstrations have been used successfully on occasions 

to help illustrate certain mathematical ideas. For example, when introducing 

the topic of eigenvalues and eigenvectors, the author uses a model of a 

two-storey frame; the model consists of two heavy steel bars connected by steel 

bands to each other and a heavy steel base. By setting the two bars into 

horizontal vibration the idea of eigenvalues as normal frequencies and the 

eigenvectors as associated normal modes can be explained. Students have said 

that when they come to tackle abstract problems on finding the eigenvalues and 

eigenvectors of a given matrix it has helped to retain the image of the vibrating 

modes. The "live" nature of the experiment was a key feature for them. 
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To illustrate mathematical theories the use of animated pictures is 

helpful. The role of computer-animated movies in elucidating mathematical 

concepts was the subject of a study carried out by the author (213). He had found 

that the understanding of the theory of viscous flow between parallel plates was 

enhanced by first showing an extract of a computer-produced film which 

demonstrated the velocity profile and the idea of vorticity and by then showing 

a commercially - produced film of a laboratory experiment of the flow. The case 

was argued for the production of films which incorporated computer-animated 

sequences alongside sequences of real physical phenomena. 

For many years the Open University has used three-dimensional models 

in its mathematics television programmes. These models are of a high quality 

and many lecturers have looked wistfully at these programmes, wishing that 

they could have such quality products at their disposal. Even with the use of 

video recorders, the sheer effort and time involved in arranging for perhaps 

two minutes of play-back in a lecture renders the idea impracticable. 

The suggestion of computer-animated sequences lying alongside 

conventional film sequences was re-echoed by Berry (214) and (215). Berry had 

lectured at the Open University and was a strong advocate of the use of video in 

teaching mathematics; he believed that video was a valuable resource which 

was widely available but greatly under-used. He saw it being used to introduce 

real world applications, to assist in the mathematical modelling of real 

problems and to provide an insight into the physical interpretation of 

mathematical theory. As an example of the first use he suggested that the flow 

of liquid past a cylinder could be investigated by showing a video sequence of 

such a flow. For the second use he suggested that the validation of a simple 

model of laminar flow in a pipe could be effected by showing a video sequence 

of a real flow. In the third use he cited the example of illustrating the concept of 

the curl of a vector via a sequence which showed 

(i) the motion of water in a bowl which rotated with constant 

angular velocity 
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(ii) the motion of water near to a bath plughole 

(iii) the flow of water along a long rectangular tank. 

The advantage of a video recording was that it could be stopped and 

started and replayed at will thus introducing an element of interaction. 

The case for interactive video was argued by Gayeski and Williams (216). 

They described the system that they have developed in which sequences on the 

videotape are accessed by means of a microprocessor which controls the 

branching of a teaching program. 

Berry is also an advocate of bringing simple experiments into the 

classroom (217). He gave an outline of how he introduces the topic of the 

mechanics of flight. First, he demonstrates how blowing down through a cotton 

reel onto a post card does not cause the card to be blown away: an illustration of 

Bernoulli's equation. Then he shows a sequence of flow past an aerofoil which 

includes the phenomenon of stalling. A study of vibrations begins with the 

showing of a video sequence of the Tacoma l'\arrows bridge in oscillation 

followed by a discussion on forced oscillations. Next, natural oscillations are 

discussed in terms of car suspension systems. A second video clip shows sea 

waves, vibrating chimneys and, finally, the collapse of the Tacoma Narrows 

bridge. Simple Harmonic Motion is investigated using a specially designed piece 

of apparatus in which masses of SOg and lOOg can be induced into vertical 

oscillations with the aid of a variablespeed electric motor. It is possible to show 

the free oscillations before switching on the motor. With the motor switched 

on forced oscillations and resonance are demonstrated, then the experiment is 

repeated with a dashpot in place to demonstrate the effects of damping. At this 

stage, the conjectures generated by the experiment can be verified or refuted by 

formulating and solving a mathematical model for the system. Whilst carrying 

out the mathematical analysis, the students will be able to relate back to the 

experiment and to the video sequences, the visual images of which are vividly 

retained. 
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With the advent of video disc as a viable teaching medium there is 

obviously a whole area of activity waiting to be exploited. The facility of storing 

vast amounts of numerical and visual data on one disk and having almost 

immediate access to any part of it could have, and should have, an enormous 

effect on the presentation of lecture material. Once again, resources will be 

needed to make full use of the opportunity being offered. 

"Traditional" universities and polytechnics have generally been slow to 

take up some of the challenges offered by the use of television in their teaching. 

Whatever one's opinions on the desirability of television as a medium for 

entertainment, it is a medium for instruction which opens up exciting 

possibilities; these possibilities must be converted into reality. The Open 

University has shown its sister institutions the way forward; they must tread 

this path for themselves. 

8.5 Distance Learning 

With the need for engineers to update their knowledge and skills during 

their professional careers there is an incoming role for distance learning to 

fulfill. 

Rumble (217) quotes seven characteristics which he regards as essential 

for a comprehensive definition of distance education. 

(i) Separation of teacher and student. The overall design of a system 

of distance education is based on the premise of there being a 

separation in distance and time of the teaching and the learning. 

(ii) Influence of an educational organisation. Distance learning 

needs to be differentiated from private study at home; the key 

factor is that there is a parent educational institution that is 

consciously teaching its students. 
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(iii) Use of technical media. The recent growth of distance learning 

has been facilitated by the use of communications media to 

provide the basic elements of teaching. 

(iv) Two-way communication between individual students and 

tutors. It is strongly emphasised that the student must have the 

opportunity for dialogue with his tutor and that the student can 

initiate the dialogue. 

(v) Absence of group learning. Whilst occasional seminars are a 

possibility, especially now that new communications technology 

allows group interactions at a distance, distance education is 

characterised by the almost permanent absence of the learning 

group. 

(vi) Industrialising education. The mass production and distribution 

of learning materials, together with the logistical and 

administrative problems of coping with dispersed populations of 

teachers and students, requires an industrial approach to 

management. 

(vii) Privatisation of learning. This characteristic is really closely 

connected with (v) and reflects the growing preference of adults 

in particular to study in private at home rather than participating 

in evening classes. Television has been a major factor in the 

relative growth of home-centred activities. 

The best-known system of distance education in the United Kingdom 

has been the Open University. Its work has been described in many articles; for 

example, Berry (218). The Open University enrolled its first students in 1971 

and operates on a 32 study week year, with courses beginning in February and 

finishing in September. Examinations are held in the two following months. 

In July and August week-long summer schools are held in conjunction with 

each study course. Because of the "Open" nature of its entry policy - students do 

not need to possess any formal qualifications - the first level of courses are 

Foundation courses which mainly teach skills and ideas usually taught in sixth 
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forms and their equivalent. The Foundation courses are built on by second and 

third level courses (with a few fourth level courses). Hence in many instances, 

a second level course will correspond to what is taught in the first year of a 

conventional university course. 

A BA degree can be obtained by a student who holds six credits, with a 

further two being necessary to obtain a degree with honours. A full credit may 

be gained by passing, successfully a 32 week course, whereas 'half-credit courses' 

are 16 weeks in duration. Students are required to take two Foundation courses 

(almost without exception, this means two different faculties). 

A teaching package for a typical mathematics course will comprise 

correspondence texts, audio-cassettes, television broadcasts, contact with a tutor, 

assessments and, perhaps, experimental work. 

The correspondence texts are booklets written by the 'course team' and 

may refer to a textbook for supplementary reading. The booklets are designed to 

be self-learning material. Some basic skills in mathematics are best 

accomplished by practice and the use of an audio-cassette with accompanying 

written material can help in this activity. The student will play the tape, put it 

on pause while carrying out some task and play the next section to check on 

what he has done and set a new task. 

Most people who are not Open University students have contact with its 

courses through the lecturers on broadcasts and it is assumed, wrongly, that 

these are the prime means of teaching. In fact, the programmes are designed to 

act as a reinforcement of the teaching and provide in many cases a 'visual 

enrichment' of a topic. The 25 minute programmes, broadcast on a weekly or 

fortnightly basis, also help a student working in isolation to pace his study. 

There has been a move in recent years to make video an option to the televised 

broadcast to allow the student the opportunity of a more active role. 
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Each student is assigned a part-time tutor who can provide extra teaching 

to the student by holding face-to-face tutorials or telephone conversations to 

iron out weaknesses. The main role of a tutor is to mark part of the student's 

assessment. Tutor-marked assignments consist of essays, problems and project 

work, although for mathematics it is the second form which predominates. 

Tutors have carefully structured marking notes to help ensure reasonably 

consistent marking around the United Kingdom and the tutor is expected to 

write .helpful comments on the student's answers before returning the marked 

scri pts to him. 

A second form of continual assessment is the computer-marked 

assignment which consists mainly of short questions with a list of optional 
hD. Wut;. 

answers from ·whichl the 'correct' one and enters it on a specially-designed form. 

these assignments are posted to the appropriate marking centre and the results 

accumulated on the student's computer record. 

Sparkes (219) quoted approximate figures for the in man-hours of teacher 

time required to produce one student-hour of study: Audio tapes 6 hours, 

tutor-text 50 hours, TV broadcasts 50 hours. Note that these figures do not 

include the number of man-hours of support staff required, nor, indeed, the cost 

of the technology involved. 

Smith (220) drew attention to the growth of distance education students 

in universities and colleges of advanced education in Australia in the ten years 

since 1975. The number of such students in the universities had doubled whilst 

that in the colleges had trebled. The growth was attributed to five causes: the 

need to upgrade qualifications in response to technological change, the 

convenience of distance study as opposed to part-time study based on campus, 

the changing status of women, the growing respectability of the distance made 

of education, and the trends towards privacy in Australian society. 
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Smith argued that distance education had had a significant effect on 

methods of teaching and learning in all sectors of Australian higher education. 

As an example he cited the case of alternative teaching methods. Distance 

educators had had to optimise on the use of print, graphics and audio-cassettes. 

They had been more ready than their campus-based colleagues to experiment 

with alternative methods of instruction because they needed to be. As a result 

the latter have been forced to consider new methods of teaching and have often 

used some of the materials produced. There was a feeling that there would be a 

convergence of teaching methods between the distance and mainstream modes 

although it was stressed that the face-to-face method of instruction is one of the 

most effective methods available and would ensure that the two modes of 

education did not converge totally. 

The author's own teaching has benefitted from watching the Open 

University's programmes. Re can only envy them the luxury of a course team 

approach and of the supporting skills of the BBC technicians and graphic artists. 

i\e sees an important role for distance education in providing post-experience 

courses and believes that campus-based universities will have to be prepared to 

operate in a distance education mode to cater for the needs of engineers, for 

example, to update their knowledge and skills. With a decreasing population of 

eighteen-year-olds, the universities must look to those already in the 

engineering profession to provide the necessary consumers of their teaching. 
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Chapter 9 

A Proposed Teaching Model 

9.1 Introduction 

In this chapter the author sets out his stall by proposing a model for 

teaching mathematics to engineering undergraduates in the United Kingdom 

which will serve their needs in the 1990's and beyond. The basic premise on 

which the model is built is that the mathematics should be taught as one of the 

engineering subjects. This premise will undoubtedly offend some mathematical 

colleagues who decry those who have regard for the needs of the customer. 

However, if these needs are not satisfied then the customer will be forced to look 

elsewhere and, at the end of the day, the mathematics lecturer must ask himself 

what the purpose of his course of lectures really is. It would indeed be gratifying to 

think that the students appreciated the power and the beauty of mathematics, that 

they understood its innermost workings and even had an intrinsic interest in 

mathematics for its own sake. It would also be flying in the face of reality. 

An engineering undergraduate has selected his particular diScipline because 

he has a practical outlook on life; he wishes to be a manufacturer or a designer of 

things that work or that serve a pupose - aeroplanes, cars, pumps, bridges and the 

like. Were he interested in mathematics primarily for its own sake he would 

have elected to read for a mathematics degree; he did not so choose. Mathematics 

is a tool of his trade, and that fact must be accepted by the mathematics lecturer, 

however unpalatable that may be for him. Mathematics is, however, the most 

important of the tools that the engineer will possess and special care must be taken 

to ensure that he values it above all the other tools in his tool-box. In order to 

instil in the student an appreciation for the role of mathematics in his studies it is 

necessary to convince him of its value. That can only be done satisfactorily by 

demonstrating its worth through the medium of applications. 
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A commonly-held view is that mathematicians should preserve at all costs 

rigour in their teaching to engineers. The remark has been made on several 

occasions that one would not drive a car if one did not know how it worked. This 

is clearly not the case. Many, if not most, drivers in the United Kingdom have at 

best a very limited knowledge of what lurks underneath the bonnet of their car. 

A few are able to maintain their own cars quite satisfactorily themselves; on the 

other hand, there are some who will insist on carrying out repairs and 

maintenance beyond their competence. The overwhelming majority, however, 

take their cars to a garage for any major work that needs to be done. The crucial 

factor is to know when to take the car to the garage rather than attempt the work 

oneself. 

Mathematics is the language of modern engineering and provides a thread 

which runs through all the constituent subject areas. It has the power to unify 

and to clarify; it is the means of analysis and the means of synthesis; it is the 

agent of generalisation. The mathematical modelling of engineering systems is a 

process which the modern engineer must master thoroughly if he is to survive in 

the complex world of tomorrow. 

The reality facing the mathematics lecturer is one in which there is 

pressure to reduce contact hours, there is an increasing lack of mathematical 

knowledge among his freshman intake, and there is a need to incorporate fresh 

topics into his syllabus as new areas of study become more firmly established in 

engineering practice. 

The choice facing the mathematics lecturer is clear: either he continues to 

succumb to these pressures and gives courses which he finds ever more 

unsatisfactory, or he can seize the initiative and make mathematics the keystone 

of undergraduate engineering. By a judicious mixture of techniques and 

applications, together with a programme of case studies, modelling exercises and 

laboratory classes, the students will be led towards an appreciation of the role of 

mathematics in their chosen discipline and will be sufficiently motivated to study 
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the subject with interest. Once the students have shown this interest, there is 

every hope that the engineering staff will follow suit. 

In designing the teaching model which forms the subject matter of this 

chapter the following goals have been set. 

(i) To give the student an understanding of basic mathematical 

concepts and an appreciation of the language of mathematics,together 

with an awareness of the need for rigour. 

(ii) To provide a tool-kit of mathematical techniques which 

will last the student throughout his professional career. 

(iii) To train the student in the application of those techniques 

and to give him an awareness of their limitations. 

(iv) To train the student in the skills involved in the 

mathematical modelling of engineering systems. 

(v) To provide a solid foundation in mathematics so that in 

his later career the engineer can acquire new skills and 

master those new techniques and concepts which enter 

his discipline. 

In the following sections we examine what mathematics should form the 

core curriculum of the courses taught to engineers; what are the additional needs 

of the various engineering specialisms; how, when and by whom the mathematics 

should be taught; and what teaching aids and strategies should be employed. 

Finally, the problems associated with the teaching and implementation of the 

proposals are discussed. 

9.2 What Mathematics Should Form the Core? 

In 1970 the paper by Bajpai et al on the teaching of differential equations 

(21) was responsible for a radical re-appraisal of the teaching of mathematics to 

engineers. One outcome of that re-think was the design and implementation of a 
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course which integrated the numerical and analytical techniques. Since that 

revolution there has been a continuous evolution taking place in the teaching of 

engineering mathematics. Now it is time to be equally revolutionary. 

Most professional engineers must expect to make frequent use of standard 

computer packages, and many during their careers ",ill be more actively involved 

in the specification, design, writing and amending of programs. It is important 

that an apprapriate form of computer education be provided to prepare the 

engineering student for the demands that are likely to be made upon him. In the 

past, education in computing has been treated as a 'craft-skill' rather than an 

integral part of his training. It is currently being argued that the software 

engineering industry itself is moving from a craft-based industry to a 

mathematics-based technology. There is a feeling that part of the explanation of 

why many programs today are of dubious accuracy and reliability is a lack of 

appreciation by the programmers of formal methods and the relevant 

mathematics. . One level removed from the intelligent user of software is the 

designer of software, and one level removed from the latter is the designer of 

computers: these engineers will need to have a far greater knowledge of 

mathematics than the user, of course. 

There can be no doubt that the new revolution in the teaching of 

mathematics to engineers must be the introduction of a substantial amount of 

discrete mathematics into the core syllabus. This may mean the relegation of 

many topics of long standing to a more minor role or even to an optional 

mathematics course which supplements the core material. So be it. 

Another consequence of the increasing part being played by computer-based 

methods in engineering is the rise in the status of linear algebra. Continuous 

problems are made discrete, non-linear problems are linearised at each step of an 

iterative process and dynamic problems are broken up into finite time steps. The 

digital computer has pushed the analogue computer into a poor second place and 

the signals analysed are now discrete rather than continuous. Differential 
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equation systems lead to matrix equations where the coefficient matrix is 

commonly factorised into two triangular matrices. Hence the need to solve 

efficiently banks of linear equations. 

For those who favour a rigorous approach to the teaching of mathematics 

to engineers, linear algebra offers the ideal medium. Because of its applicability to 

the solution of engineering systems it has a high motivational content. It is also 

an elegant subject and there is every expectation that, having been given an 

application-orientated approach, the student will accept a rigorous treatment of 

certain topics in the field of linear algebra. 

The Finite Element method has now established itself as a widely-used 

technique for solving problems in many branches of engineering. Any core 

curriculum in engineering mathematics worthy of the name must prepare the 

ground for the student to be able to work with the method with success and 

assurance. 

The growth in importance of Computer-Aided Design is making it essential 

for a foundation to be laid in certain areas of geometry. The geometric description 

and properties of curves and surfaces and the use of spline functions as 

approximators, for example, can lay claim for serious consideration as part of the 

core curriculum. 

How can all these new areas of mathematics enter a crowded syllabus 

without a radical weeding out of the established topics that are already there? 

They cannot. It is always painful to say farewell to friends, especially those of 

many years standing, but the mathematics taught to engineers cannot stand still 

(and one might say become ossified) if it is to survive into the 1990's as a subject 

worthy of repect. No doubt, many hands will be raised in horror at the absences 

from the core, but the decisions as to what material remains in the core and what 

has to depart can be made on the grounds of practicality and realism. 
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The core curriculum syllabus is presented as Table 9.1. Topics have been 

grouped under ten sub-headings but it is recognised that some of the topics-could 

sit equally happily under other sub-headings. When designing a lecture course 

based upon this core the lecturer should have the freedom to organise his 

coverage of the topics in a way which suits both his requirements and the needs of 

the students concerned. 

The hours shown in Table 9.1 are lecture hours and a suggested partitioning 

between the three years of a United Kingdom engineering degree course are: 65 

hours in the first year, 60 hours in the second year and 40 hours in the final year. 

1. 

2. 

Table 9.1 

The core mathematics syllabus (165 hours) 

Modelling with mathematics (30 hours) 

Introduction to mathematical modelling, modelling flowchart. 

Case studies chosen to illustrate techniques covered in the' 

syllabus. 

Programming in a high level language. 

Flow diagrams, loops, arrays and subscripts, subprograms and files. 

Use of software packages. 

Model representation, behaviour, evaluation. 

Sensitivity, validity, refinement of models. 

Lumped parameter and distributed parameter modelling. 

Discrete Mathematics (25 hours) 

Mathematical Logic. Propositions, connectives, truth tables. 

Rules of inference, quantifiers, concepts of proof and program 

correctness. Boolean algebra. 

Sets and functions. Sets, subsets, introduction to cardinality. 



3. 

4. 

314 

Operations on sets. Boolean algebra. 

Definition of a function, domain, co-domain and range. 

Composition of functions, one-to-one, onto, inverse functions. 

Recursive definition of functions. 

Number systems. Binary and hexadecimal systems, computer 

arithmetic, rational and real numbers. 

The concept of computability. 

Mathematical induction. Recursion. 

Difference equations and their solution. 

The z- transform and its relation to digital systems. Algorithms. Concepts 

of proof of an algorithm and the estimate of its efficiency. 

Sorting and searching algorithms. 

Linear Algebra 

Vectors. Geometry and algebra of vectors. 

Scalar and vector product. 

Vector spaces. Linear independence, bases, dimensions. 

Matrices. Matrix algebra, special kinds of matrix, rank. 

(20 hours) 

Systems of linear equations. Gauss elimination, pivotting, 

residuals. LV decomposition. Comparison with iterative 

methods of solution. Ill-conditioned systems. Determinants. 

Simple examples of linear programming. 

Linear transformations. Orthogonality. 

Eigenvalues and eigenvectors. Computational aspects. 

Quadratic forms. 

Calculus 

Evaluation of polynomials. 

(20 hours) 

Differentiation, maximum and minimum values, points of 

inflection. 

Sequences and limits. Iterative solution of non-linear equations. Limits of 

functions. 
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Interpolation. Series approximation of functions, Maclaurin and 

Taylor series. 

Fourier series, orthogonal functions, harmonic analysis. 

Integration, including Trapezoidal rule and Simpson's rule 

Applications of integration. 

Functions of several variables, maximum and minimum values. 

Constrained problems. Simple . numerical optimisation. 

Least squares curve fitting. 

Geometry (8 hours) 

Plane curves, tangents and normals, curvature. 

Simple coordinate systems, transformations in two and three 

dimensions including rotation of axes. 

Line and plane. 

Conics. 

Curve sketching, including asymptotes. 

Splines. Natural splines, B-splines, Bezier curves. 

Mesh surfaces. 

Geometric elements: line, triangle, tetrahedron. 

Natural coordinates, area and volume coordinates. 

6. Differential Equations (20 hours) 

Ordinary differential equations. Classification of differential 

equations, arbitrary constants, initial and boundary conditions. 

Introduction to existence and uniqueness of solutions. 

First order equations. Isoclines and the sketching of solutions. 

Complementary function and particular integral. 

Variables separable. Integrating factors. 

Euler's method, Runge-Kutta fourth order method. Simple ideas on 

predictor-corrector methods. 

Second order equations, linear with constant coefficients. 

Complementary function and particular integral. 
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Systems of first order equations and their solution by Laplace 

transforms. 

Eigenvalues. 

Non-linear systems, phase plane, critical points and stability. 

Stiff systems. 

Partial differential equations. 

Derivation of Laplace's equation, boundary conditions. Simple 

relaxation method of solution. 

Derivation of the diffusion equation, boundary and initial 

conditions. Introduction to explicit and implicit finite difference 

methods of solution. 

The wave equation. Nature of boundary and initial conditions, 

and solution. 

7. Probability and Statistics (16 hours) 

8. 

Dealing with data. Graphical representation of data,frequency 

distributions, measures of location and dispersion. 

Probability. Events, conditional probability, random variables, probability 

distributions, expectation. 

Probability models. Binomial, Poisson, Exponential and 

Normal distributions. 

Inference. Large samples. Estimation, confidence limits and 

hypothesis testing. Small samples. F and t distributions. 

Statistical modelling. Simple linear regression. 

Introduction to the design of experiments. 

Use of statistical computer software. 

Introduction to the Finite Element method (12 hours) 

Principles of minimum potential energy and virtual displacements. 



9. 

10. 

317 

Element stiffness matrices. 

Idealisation of simple structures. 

Principle of virtual work. 

Introduction to and use of a Finite Element package. 

Mathematics of Fields (6 hours) 

Gradient, divergence and curl. Physical interpretations. 

Conservative fields, scalar potential. 

Examples of the application of Gauss', Stokes' and Green's 

theorems. 

Complex Variables 

Complex numbers,de Moivre's theorem and roots. 

Complex mappings. 

Poles, zeros. 

Residues applied to Laplace transforms. 

(8 hours) 

Commentary on the core curriculum 

1. Modelling with mathematics 

This component of the core is the one which is expected to require the 

greatest active participation by the students. Many of the models will be 

computer-based and it is important that the students be trained to use the 

computer from the earliest moment possible. There is no evidence yet that even 

the majority of engineering freshmen are conversant with the use of computers 

and therefore for the foreseeable future it must fall to the tertiary institutions to 

provide the initial training. Where there are large numbers of students involved 

there will clearly be a logistical problem. Careful timetabling arrangements will be 

required. 
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It is necessary that newcomers to using the computer should be eased in 

gently. Many students have a fear of inadequacy when making their first 

encounter with a terminal or a micro and it is wise to let them use a standard 

package to begin with until they gain their confidence. This aspect is examined 

further in Section 9.4, but it is mentioned here because of the importance of the 

computer in the modelling of engineering systems. The engineering student 

must come to regard the computer as a natural ally. 

Initially, the models chosen will be able to be tackled using school level 

mathematics only. The emphasis should be on the modelling process itself. Later 

in the course it will be possible to study models that arise in the solution of real 

engineering problems and the level of mathematics involved can, of course, be 

higher. 

It is recommended that some group activity be included, with each group 

being required to present a verbal and written report on their mathematical 

model. 

2. Discrete Mathematics 

It is a matter for growing concern for computer users and for those who rely 

on the results of computer programs that these programs are becoming more 

complex. It is now more difficult to verify that these programs are correct. 

Logic-programming is a increasingly important tool in the production of software 

and it is being predicted that it will be central to the development of the next 

generation of computer languages. Mathematical logic is crucial in the design of 

digital circuitry. 

An understanding of sets, subsets and set operations is necessary to the 

provision of a precise means of discussion of the concepts relating to computing. 

The language o~ set theory is used to describe arrays, procedures and relations. 

Boolean algebra is a key element in the construction of digital logic. 
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It is important to have a clear concept of number and to understand the 

forms of arithmetic which are germane to computing. Mathematical induction is 

an effective technique for the proof of programs. 

The computer modelling of systems relies heavily on difference equations 

and for those equations which are linear with constant coefficients the use of 

Z-transforms is recommended, since there is a connection with the processing of 

digital signals. For other equations a more direct recursive approach is more 

suitable. 

In order to provide an insight into the working of compiler systems and 

simple editors a study of relations and finite state machines is suggested. 

The section on algorithms acts as a link for several aspects of this module. 

The key concepts are those of the proof of an algorithm and of an estimate of its 

accuracy. Sorting and searching algorithms are suitable examples for this purpose. 

3. Linear Algebra 

It is to be hoped that the opportunity will be taken to present this part of the 

core material in a way which emphasises its fundamen tal importance in 

engineering mathematics. A clear understanding of the concepts involved is 

essential for the successful application of its techniques. So much of the 

modelling of engineering systems relies on linear algebra that it is arguable that it, 

rather than calculus and analysis, should be the foundation on which the 

engineering course is built. It should be possible to emphasise the links with 

geometry in addition to considering computer-based techniques, whilst presenting 

some of the material in a rigorous way to give the student some feel for the 

theoretical underpinning which is necessary for the confident application of 

standard methods of solution. 

The topic of eigenvalues offers a case in point. Geometric transformations 
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in the plane make for a simple introduction to the subject. It can be shown how 

the mathematical models of certain simple vibrating systems can lead to an 

algebraic eigenvalue problem and how the algebraic solution helps to understand 

the problem qualitatively. Then, more realistic problems can be tackled using 

numerical methods which can be implemented by a computer package. It helps 

when presenting the power method to highlight the geometrical aspect: students 

are able to see that the method effectively rotates the initial vector of approximate 

solutions until it is virtually coincident with an eigenvector. 

Having introduced the idea of linear programming in two variables via a 

graphical approach the opprtunity should be taken to explain how the simplex 

method hinges on Gaussian elimination. 

It is important that students should understand clearly the concept of 

linearity. They should, for example, know the implications of classifying a 

differential equation as linear, and why linear programming is so-called. 

4. Calculus 

Although a reduced role is suggested for this subject, it would be foolish to 

suggest that it is unimportant. Rather, the opportunity should be taken to omit 

the more exotic examples of differentiation and integration which abound in 

many textbooks. Too often time is spent on discussing technical "tricks of the 

trade" such as the use of the substitution of t = tan x in order to evaluate certain 

definite integrals. Instead, the emphasis should be on the use of calculus to 

provide criteria for the safe and successful use of numerical methods to solve 

practical problems. Whilst it is useful to know how to derive the Maclaurin's 

series for sec x, and the range over which the series expansion is valid, it is 

probably more useful to know how to interpolate between tabulated values and 

what are the dangers of extrapolation. 

Although the module is entitled 'calculus', it does contain a number of 
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topics usually classified as numerical methods. This is deliberate and is designed 

to emphasise the close connection between the latter and analytical methods. 

5. Geometry 

Although there is some geometry taught in schools it is considerably less 

than was the case a few years ago. It is surprising how many students seem to 

have little feel for geometrical ideas such as asymptotic behaviour and curvature. 

Certainly, many students have not encountered much in the way of coordinate 

geometry and very few have met the conic sections prior to tertiary level. As has 

already been mentioned, the spread of Computer-Aided Design in industry has 

led to an increased role for geometry. In addition, a geometrical approach to a 

problem can often cast sufficient light to lead to its solution. However, with the 

reduced exposure to geometrical thinking given in schools it will be necessary to 

cover some very basic material. Certainly it is expected that full use will be made 

of the computer in the presentation of some of the topics and the students should 

be given the opportunity to work interactively with some prepared software. 

6. Differential Equations 

Little justification need be given for the inclusion of this module. 

Differential equations form the basis of so many models of engineering systems 

that they have a leading role in any realistic core curriculum. What is not so easily 

justified is the time spent in courses on ordinary differential equations considering 

special methods of solution for equations whose appearance in such models is at 

best very rare. The emphasis should be on such matters as existence and 
"-

uniqueness of solutions, complementary functions and par4!:tlar integrals, and the 

nature of initial and boundary conditions. The widespread use of variables 

separable and integrating factor equations justifies their treatment, given the 

relative ease of obtaining the analytical solution. Once again, the analytical 

approach can help elucidate the underlying structure of the solution of a 

differential equation whilst a numerical approach can be used to obtain the 
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solution in more awkward cases. 

Linear differential equations with constant coefficients are another class of 

equations which have widespread application. The opportunity should be taken 

to emphasise the linearity in this context. 

Non-linear systems offer a good example of the value of linearisation of 

problems. Geometrical ideas are involved in the study of critical points in the 

phase plane and this provides a useful link with the previous module. 

It is anticipated that the treatment of stiff systems would be confined to a 

simple example "on the board" using two equations, supplemented by an 

illustration of the phenomenon in a larger system with the aid of a computer 

program. 

A recommended approach to the treatment of partial differential equations 

was given in Section 8.1 . 

7. Probability and Statistics 

The single most important aim of this module is to make the student aware 

that random variation is an ever-present perturbation of his experimental 

observations and the phenomena he seeks to analyse. However, it can be 

modelled and to a certain degree controlled. 

It is assumed that every opportunity will be taken to use practical examples 

from engineering as illustrations throughout the course. An engineering 

undergraduate is unlikely to be motivated to study the Poisson distribution if it is 

introduced by the well-worn example of the deaths of Prussian officers due to 

horse-kicks, however amusing that might appear to be to the lecturer. 

The lecturer should have available sets of suitable data for analysis during 
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the course. Care should be taken to emphasise the misleading ways in which data 

have been represented graphically. The shape of a data set can affect the accuracy 

of the various measures of location and dispersion commonly in use and this 

should be highlighted via the data sets available. 

The assumptions associated with each of the probability models in the 

syllabus should be stressed and examples provided of the problems in choosing the 

"appropriate" model for a given set of data. 

The estimation of population parameters from the corresponding sample 

statistic is a safer process with a large sample and this fact can be illustrated with 

suitably chosen data sets. 

The fitting of a straight line to a set of data points by least squares can be 

extended to include a discussion of how regression analysis takes into account 

random variations in the data values. It is suggested that the initial discussion is 

qualitative and is followed by a study of the output from a computer-based 

analysis of a real data set using a standard software package. 

Most final year projects in an undergraduate engineering course involve 

the setting up of an experiment, the collection of results and their susequent 

analysis. All too often, a student will come armed with his experimental results 

and ask what can be deduced from them. When it is suggested that he should 

have thought at the outset what he was endeavouring to show as a result of his 

experiments and then planned those experiments accordingly, the best one can 

hope for is a rueful smile. After a considerable amount of work on the part of the 

student, it is disappointing to have to tell him that there is, in fact, very little that 

can be deduced from his results. Hence the need in this module to spend some 

time pointing out the dangers inherent in carrying experiments that have not 

been carefully designed. 
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8. Introduction to the Finite Element Method 

Many engineering departments teach finite elements as part of a structures 

course. The aim of this module is to lay the necessary mathematical foundations, 

linking with the work on matrix algebra. 

9. Mathematics of Fields 

The emphasis here is on physical interpretation to help explain the 

concepts. In the core curriculum all that is expected is the defintion of gradient, 

divergence and curl, their physical interpretation and examples of them in 

practical contexts, and explanation of the meaning of the three integral theorems 

and examples of them in action. Particular attention is to be paid to the idea of a 

conservative field and the implications. 

10. Complex Variables 

Elegant though the theory of functions of a complex variable may be, there 

is little room in a crowded syllabus for more than a cursory and utilitarian 

treatment of this subject. Apart from a grounding in complex arithmetic, the only 

topics to be covered are some simple complex mappings which lead to streamline 

flow past an aerofoil (which can be demonstrated on a micro without going into a 

detailed analysis) and sufficient work on residues to allow the inversion of Laplace 

transforms to be effected in standard cases. 

9.3 Needs of the Engineering Specialisms 

The core curriculum which was described in the last section cannot be 

expected to cater for the needs of all the individual specialisms. Traditionally, 

Civil Engineering students have covered less mathematics than, say, Electrical 

Engineers; the latter group have tended to have a mathematics course akin to that 
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given to Physics students in its content. Production and Manufacturing students 

have required the greatest coverage of statistics and some final year options in 

Electrical Engineering have needed a more extensive grounding in probability 

theory than is given to other engineering disciplines. 

It is proposed that the core curriculum is augmented by a number of 

modules which are designed to provide the coverage of additional material 

required by individual departments. A selection of such modules is given below. 

One increasingly important group which will require a considerable amount of 

additional material in discrete mathematics are the information technologists and 

software engineers. The first four modules which follow extend the core material 

in discrete mathematics. 

Algebraic Structures 

Further operations on sets. 

Monoids, semi-groups and groups. 

Homomorphisms and isomorphisms. 

Quotient structures. Modular arithmetics. 

The applications of the mathematics in this module include : fast addition, 

languages and grammars, dynamic memories, and state reduction for finite-state 

machines. 

Finite Rings and Fields 

Rings. 

Polynomial rings and irreducible polynomials. 

Construction of fields. Discrete Fourier transforms. 

The applications include: fast multiplication, FFT algorithms, cryptography, 

error- correcting codes, random number generators. 

Combinatorics and Graph Theory 

Techniques for counting. Product rule, inclusion-exclusion, Polya enumeration. 

Directed and undirected graphs. Connectivity. Trees. 
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Existence problems. 

Optimisation problems, including flows in networks. 

Lattices and Boolean Algebra 

Partial ordering and lattices. 

Boolean algebras and Boolean functions. 

Minimisation of Boolean functions. 

Applications include: switching theory, logic design of finite-state machines. 

Other modules 

Other modules offered would include the following: 

Operations Research 

Optimisation 

Mathematics of Control 

Finite Difference Methods for Partial Differential Equations 

Advanced Finite Element Methods 

Random Processes 

Functional Analysis Computer-Aided Design 

Microcomputer Simulation 

Further Probability 

Further Statistical Methods 

Advanced Linear Algebra 

Mathematical Methods in Field Theory 

Solid Mechanics 

Boundary Elements 

Analysis of Systems 

As examples, Civil Engineers might like to take the modules in Advanced 

Finite Element Methods and/or Boundary Elements as final year options, whereas 

Electrical Engineers might prefer to study Further Probability and Mathematical 

Methods in Field Theory. 
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9.4 Who Should Teach the Mathematics? 

The teaching of mathematics to engineering undergraduates is surely too 

important to be left to engineers. There are a number of occupations in life where 

everyone could do the job as well as, if not better than, the holder of that 

occupation. Being a mathematics lecturer who specialises in teaching engineering 

undergraduates is such an occupation - he is frequently told by his engineering 

colleagues that they cannot understand why he needs so much time to teach his 

syllabus. They were not given so many lectures when they were undergraduates, 

and they are sure that they could teach the subject-matter in less time. 

Of course they could. But their knowledge of mathematics is limited to 

small pockets of techniques and ideas and they do not possess the breadth and 

depth of experience necessary to appreciate the power and unifying nature of the 

subject. They can see the brush strokes on the canvas but they cannot stand back 

and see the composition of the painting. Their teaching would be unsatisfactory. 

On the other hand, the teaching of mathematics to engineering 

undergraduates is too important to be left to mathematicians - at least to those 

mathematicians who have no real knowledge of the engineering discipline of the 

students whom they are teaching. The latter group will often accuse some of their 

colleagues of prostituting their art by attempting to make their teaching relevant to 

the needs of the students rather than giving a "pukka" mathematics course. 

However, it does seem reasonable to suggest that, on the contrary, a 

mathematician who has never been involved in the use of mathematics to solve 

an engineering problem should be encouraged to gain that experience in order to 

enhance his teaching. 

Such a lecturer could be seconded for a year, say, to study courses in 

engineering to a level sufficient to give him a good working knowledge of 

engineering principles and of applications of mathematics, in addition to 

understanding the engineering approach. Ideally, some of his time could be spent 
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in industry working with engineers on the modelling of engineering systems. 

Such a scheme would require a sympathetic Head of Department and recognition 

from his university's hierarchy. Perhaps the Engineering Council could also play 

a role here by granting the participants in the scheme the status of Chartered 

Engineer after they have taught engineering undergraduates successfully for some 

years. 

In many ways the ideal lecturer for teaching mathematics to engineers 

would have a first degree from a course akin to Mathematical Engineering. Such a 

person has the requisite mathematical knowledge, combined with a background 

training in the general principles of engineering. He will be able to appreciate the 

needs and aspirations of his engineering students and temper those needs and 

aspirations with the demands of providing a coherent and professional 

mathematics course. 

Combining efforts 

There are occasions where the mathematics is taught most effectively by a 

combination of mathematician and engineer through the medium of a shared 

lecture. In a small number of instances a topic could be covered by a suitably 

qualified engineer; in a crowded syllabus every little helps. The topic of Finite 

Elements has been successfully taught to Second Year Civil Engineers at 

Loughborough by a colleague as part of his Structures course; he is an expert in the 

method and its application and he is mathematically the most able of his 

departmental colleagues. Collaboration has ensured that the students are given at 

the appropriate time a suitable grounding in matrix methods and theory. 

If the mathematics lecturer has some engineering specialism, say fluid 

dynamics, he should be prepared to do some small amount of teaching in that 

area. In the author's case he was able to contribute to the teaching of streamlines 

and potential flows to second year students, and in a final year option in Offshore 

Engineering, he taught the techniques of wave prediction. 
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Another example where collaboration can be of benefit to all concerned is 

the mathematics lecturer being part of a joint research project with his engineering 

colleagues. If such a formal large-scale activity is not possible, then the 

mathematics lecturer can be on hand to give advice on small mathematical 

problems as they arise. This can be a challenging and enjoyable experience and it 

will help him to earn the respect of his engineering colleagues; even if he cannot 

solve the problem directly, he can probably put the engineer in contact with 

another mathematician who is able to provide the necessary assistance. 

9.S How and When Should the Mathematics be Taught? 

Mathematics is too important to be relegated to the first two years of a 

three-year degree programme as is often the case in the United Kingdom. In many 

engineering courses in the U.K. mathematics is not even counted in the degree 

assessment; this is a disgrace in the context of engineering today. Is it any wonder 

that many engineering students do not take their mathematical studies as 

seriously as they should when their academic staff do not apparently value 

mathematics sufficiently highly to include it among those subjects on which the 

degree is assessed? 

Part of the problem is that mathematics is too often seen by the engineering 

staff and students either as a cook-book of techniques, only some of which are 

directly relevant to their requirements, or as an esoteric subject which occasionally 

overlaps with their discipline. In many cases this is a fair criticism and some of 

the blame at least must be taken by the mathematics lecturer. 

It should hardly need emphasising at this stage that the style of teaching 

expected in this model is that of the integrated approach. In addition, relevance 

and illustrative applications will be at the forefront. 

If the mathematics course includes a modelling element then it can 
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justifiably lay claim to a place in all years of the engineering degree programme. In 

the first two years the emphasis will be on concepts and techniques, though these 

will be accompanied by case studies and a small amount of modelling, the latter 

being placed mainly in the second year. In the third year of the course the 

emphasis should be on modelling, with extra techniques and concepts being 

introduced as and when they are needed. 

The main form of instruction would be the lecture, but with extensive use 

being made of audio-visual aids; refer to the next section for details. The lectures 

should preferably take place in the early morning and on separate days of the 

week. There should be a tutorial held for each student on a fortnightly basis with a 

maximum of ten students per tutorial group. The tutorial would usually be 

devoted principally to discussions of the type described in Sections 5.8, 6.4 and 8.2 ; 

the aim would be to encourage student participation and would be especially 

useful when considering modelling aspects of the course. Any spare time in the 

tutorial could be set aside to deal with individual difficulties which the students 

had encountered in recent lectures or on problems set in conjunction with the 

lecture material. The tutorial would normally be taken by the mathematics 

lecturer, but might be taken by a mathematical colleague if the lecture group were 

particularly large. 

To back up the lectures and tutorials, weekly surgeries would be held for 

the whole group, staffed mainly by postgraduates, during which individual 

students could have particular problems ironed out. The attendance at these 

surgeries would be voluntary and appointments would be made by noon of the 

preceding day. Bookings could be made individually or jointly by students with a 

common problem or difficulty of understanding. Standard solutions to the 

problems set weekly by the lecturer would be available for inspection in the week 

following their setting, perhaps on microfiche which could be viewed in the 

university library on a signing-out arrangement, or perhaps by having them 

accessible on the mainframe computer via terminals. The attendance at surgeries 

would be monitored and if a student was having persistent difficulty in 
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understanding the lecture material he could receive specialist advice. This aspect 

is discussed further in Section 9.7. 

In addition to the teaching arrangements described above there should be a 

regular mathematics laboratory component timetabled as part of the engineering 

laboratory programme. Part of this activity would involve learning to program on 

the computers owned by the engineering department or in a centrally-owned 

terminal/microcomputer laboratory. The coursework for the first year 

mathematics would consist of two or more programming exercises of the kind 

described in Section 3.5. In the second and final years the coursework would be in 

the form of modelling exercises which would need computer-based techniques for 

their solution. The students would be expected to make use of standard packages 

in their programs. In each year the appropriate work would be written up and 

submitted as a laboratory report. 

The teaching of programming would be conducted by the mathematics 

lecturer in conjunction with his engineering colleagues as outlined in Section 3.5 . 

It is not expecting too much to ask that the mathematics lecturer and the relevant 

engineering staff should be computer users; at the present time this is the norm, 

and in the future it should be the rule without exception. 

Examinations and assessment 

In the fist two years the assessment would be based partly on a written 

examination, held at the end of the academic year, and partly on coursework 

which would comprise submitted reports on experiments carried out in the 

computer laboratory. The emphasis in the examination would not be on technical 

skills alone, but would include questions designed to test the students' 

understanding of concepts. 
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9.6 What Teaching Aids Should be Employed? 

(i) Textbooks and monographs 

Although there is evidence that, even allowing for the second-hand market, 

students of engineering are buying fewer text-books than was the case a few years 

ago, they should be encouraged to purchase more text-books in order to acquire the 

habit of reading technical material. If the students are led to believe that the notes 

which they take during lectures form the totality of reading-matter that they need 

then they are being done a disservice. However, given that different engineering 

specialisms require different additional material on top of the core syllabus it 

might be argued that it would be wise to provide a text-book, or perhaps two, on 

the core syllabus only. A series of short monographs could be written on the 

additional topics, so that a particular student could select only those which were of 

direct relevance to him. 

Many lecturers are in the habit of handing out comprehensive notes as an 

accompanient to their lectures. Whereas there is merit in producing occasional 

supplementary notes to expand the exposition of particular topics, it does seem 

somewhat excessive for a lecturer to hand out what is, in effect, a text-book in 

serial form. 

The publishing world is currently facing a dilemma as regards the sales of 

academic books and they might be reluctant to consider the idea of a series of 

booklets as outlined above. The advent of desk-top publishing should make it 

possible' to produce such a series economically whilst maintaining a high standard 

of presentation. 

If the idea of updating the mathematical knowledge of practising engineers 

can be brought to fruition on a large scale then the publication of the monograph 

series would become a more viable proposition. 
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(ii) Overhead transparencies and slides 

Today's undergraduate has been brought up in a world of sophisticated 

graphics, glossy brochures and slick advertising. He will not warm to a lecturer 

who contents himself with a poorly-drawn diagram on the blackboard or on the 

overhead projector. If the lecturer's presentation is slipshod, why should he 

expect his students to take more care over their work? 

With the widespread availability of word processors it is becoming 

noticeable how many speakers at conferences illustrate their talks with very 

well-prepared transparencies. The graphics work is of a high quality and even the 

format of text is attractive and striking. Why then, should the undergraduate be 

satisfied with a lower level of service? 

No doubt, it will be argued that staff time and production costs militate 

against the wider use of such quality material. Perhaps it would be an effective use 

of resources were a library of graphical displays were produced and stored on disc 

so that the disc could be copied commercially; perhaps the material could be made 

available in book form so that it could be photocopied onto transparencies. 

The use of slides is a preferred alternative to transparencies for the 

overhead projector for a number of lecturers. Not all lecture rooms have a slide 

projector, however, and the switching on and off of the slide projector and the 

overhead projector could become a distraction to both staff and students. 

(liD Films 

Film is a medium rarely used in lectures, especially in mathematics. The 

difficulties logistically and organisationally of arranging for a film to be shown 

have not helped make it more popular. Nowadays, with the wider availability of 

video recorders and the relative ease of purchasing or even making a tape it may 

well prove to be the case that, with few exceptions, film is no longer a viable 
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proposition for enhancing mathematics 

(iv) The Micro in the classroom 

It is now possible to purchase a liquid crystal display unit which will fit on 

top of an overhead projector screen; the unit can be connected to an output port of 

a microcomputer. This allows a lecturer to show his audience the same screen 

display which he can see on his monitor so that he can control the display more 

easily whilst at the lecture bench. It is then possible to demonstrate programs 

interactively during the lecture in a room holding up to about thirty. For a larger 

audience, a large screen is more suitable. There is the problem of having a 

microcomputer installed in the room as a permanent fixture; the alternative of 

having to transport the equipment into the room and out again is not attractive, 

even when a compromise has been reached of leaving a monitor in the room and 

transporting the microcomputer and a disc drive in a boxed unit. 

(v) Television 

It is unlikely that there will be a great need to make use of television to 

broadcast 'live' performances. Some institutions do,~mploy closed circuit 

television to relay lectures live into overflow theatres but it is not a practice which 

has much to commend it, given the relative ease of using a video-recording. 

(vi) Video recordings 

The facility for replaying video-recordings should be present in most, if not 

all, larger lecture theatres. Whilst there may be occasions when a complete Open 

University programme or some similar programme would be shown in its 

entirety, it is more likely that excerpts only would be needed and the equipment 

necessary to carry out the required editing should be provided. 

Staff should be encouraged and assisted to produce 'home-made' tapes 
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which could show experimental demonstrations or perhaps a discussion on the 

formation of a mathematical model. 

(vii) Computer laboratory 

The computer laboratory is an essential part of the mathematics course. 

Provision must be made for the students to have access to the laboratory for at 

least one half-day per week. Part of the time would be spent carrying out 

assignments which would be submitted as coursework. In addition to writing 

their own programs, the students would be encouraged to use prepared software 

and make extensive use of commercial packages. 

In their final year mathematics course, where the emphasis is on modelling, 

it is to be expected that the use of the laboratory would be at its greatest. 

(viii) Three-dimensional models 

Many students have difficulty thinking in three dimensions. The use of 

three-dimensional models of things like the surface representing a function of two 

variables, or a surface with normal and gradient vectors being shown would be of 

benefit to these students. Although a television display of such models is useful, 

there is added impact if the student can walk round the model or even handle it. 

The live demonstration of a simple experiment such as the vibration of a 

two-storey frame has been known to make a long-lasting impact on students. 

When they are able to carry out the experiments for themselves interest is 

heightened and the impact is yet greater. Although the effort required to set up 

such experiments is sometimes considerable the benefit to the students justifies 

the extra expenditure. There is merit in arranging a mathematical laboratory of 

this nature as part of the students' experimental programme. 

In the final year, where the emphasis is on modelling, the assessment 
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would take the form of a written report on the modelling exercises which had 

been carried out. Since it is assumed that the students would be required to gave a 

verbal presentation of their major engineering project, it seems unnecessary to ask 

them to do so in this part of their course. 

9.7 Mathematics Learning Resource Centre 

In these days of increasing pressure on university lecturers to devote more 

of their time to research there is almost a disincentive to pay more than scant 

attention to the needs of their students. If it is a situation which is unwelcome, it 

is one which must be faced. How can the students of tomorrow, who are likely to 

require more support in mathematics than the present cohort, be catered for 

adequately when that precious resource of staff availability is almost certain to 

diminish? 

The solution proposed here is the establishment within each institution of a 

Mathematics Learning Resource Centre. This would be directed by a member of 

the academic staff who was a mathematician sympathetic to the needs of engineers 

and other students who are studying mathematics as a non-specialism. The 

Centre would, as its name implies, contain teaching and learning resource 

material, and would provide a focus for the support needed by students who are 

experiencing difficulty with their mathematics. 

Helping with difficulties 

The first contact that a student made with the Centre would be via a 

diagnostic test which would be conducted in the first few days of the new session. 

The test would attempt to discover any particular weaknesses which the student 

possessed on entry to the institution. It might be possible to arrange for the test to 

be 'rough marked' by computer, with the student entering his answers on a 

terminal. The results would be available to the student, to his lecturer and to the 

Centre very quickly and this procedure would hopefully isolate any major 
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mathematical weaknesses of the student as early as possible. The individual 

answer scripts would be handed in to the Centre and would be studied in 

conjunction with the computer-produced results to provide more details about the 

nature of the student's particular difficulties in understanding concepts or in 

manipulation. 

At this juncture it is important to point out that it is not envisaged that the 

Centre would take away from the individual lecturers their rights or their 

responsibilities. It is there to provide a back-up service to both staff and students 

and its relationship with both is of crucial importance. The former group must 

feel confidence in the Centre's ability to perform the supporting role that is needed 

and it is to be hoped that they would feel able to contribute to the resource material 

which was held by the Centre. In this respect one-might draw a parallel with a 

medical general practitioner referring a patient to a specialist for advice and/or 

treatment which were beyond the knowledge and resources to provide. The 

patient remains under the general care of the doctor but has received specialist 

treatment for a particular condition. 

On the other side of the coin, the resources of the Centre would be available 

if a student wished to make a visit on his own initiative. It could well happen that 

a student felt that he was having difficulty with a particular topic, or indeed with 

his mathematics course in general. He could call in to the Centre, as he might to 

the general student counselling service, or the Medical Centre, and if it were not 

possible to see a 'mathematics counsellor' immediately he could make an 

appointment to see him in the very near future. He could then discuss his 

problem with the counsellor. It might be that the student would be asked to take a 

short diagnostic test to help pinpoint the root cause of his problem. 

Then, once the real nature of his problem had been diagnosed, remedial 

action could be recommended which would almost certainly mean utilising the 

resources of the Centre. Of course, it would be possible for a student to visit the 

Centre at any stage in his undergraduate (or even postgraduate) career, either 
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following a referral by his lecturer or personal tutor, or on his own initiative. 

BTEC entrants 

One group of students that have especial difficulty with mathematics are the 

BTEC entrants. These students enter tertiary education with a very limited 

knowledge of mathematics and, whilst it is true that they have an advantage over 

their A-Level contemporaries in Drawing, Structures, Fluid Mechanics and other 

engineering subjects which they have studied at college, their difficulties in coping 

with the mathematics must not be underestimated. The time taken to assimilate 

concepts and master techniques cannot easily be reduced and yet the student with 

the weaker background is expected to make up his deficiencies at the same time as 

absorbing new concepts and acquring new skills. It is a tall order and one which is 

not often given much sympathetic treatment. 

Individualised learning 

It is envisaged that the Centre will have under its control the resources to 

provide the facility for individualised learning. Students and others on short 

courses or those who want to top up some area of mathematics would be able to 

assemble the necessary material from the Centre and organise their own learning 

programme. 

Staffing the Centre 

One resource of the Centre which has already been alluded to is that of 

staffing. It is envisaged that there would be a small number of full-time staff who 

are able to act as mathematical counsellors and who would be responsible for 

preparing resource materials and for building up a collection of these materials 

from other sources. Such staff might well be recruited initially from among the 

staff currently teaching undergraduate engineering mathematics in the institution 

concerned; in any event, it is to be expected that they would continue to teach their 



339 

undergraduate courses after being appointed to the Centre. Other academic staff 

could become associate members of the Centre and contribute to the development 

of its activities. 

Considerations of space 

There is an impressive provision of audio-visual resources available in the 

library building at Plymouth Polytechnic, which the author was able to visit 

recently. These resources were being heavily used even at 9 p.m. and the students 

to whom he spoke appreciated the accessibility of the resource material for the 

total time that the library building was open. Space provision is a continuing 

worry for all institutions and it would be quite unrealistic to suppose that it could 

be found easily for the Centre, however important its advocates might consider it 

to be. It has to be accepted that some of the resource material might have to be 

housed away from the main area of the Centre. 

Resource material 

One simple resource which should be available in the Centre itself are the 

specimen solutions to problems set by the lecturers. The Centre would undertake 

to collate these solutions and put them into a standard format, perhaps on 

microfiche or onto a database held on the university mainframe computer. 

Experience with worked examples has shown them to be a valuable means of 

helping the student learn with a reduced direct contact from the lecturer. 

In addition to the initial diagnostic test there would be a collection of such 

tests on individual topics which could be given to students in an attempt to help 

them to identify the roots of their weaknesses. There would also be information 

packs on these topics which would be written in a house style and would be 

designed to provide a fuller explanation of the topic concerned, say Mac1aurin's 

series. When the student had worked through the material in the pack he could 

take a short test on the topic and if he was still having problems he could see a 
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mathematical counsellor to seek further remedial action. There is scope for 

incorporating audio cassettes and slides as part of the package. The slides would fit 

into a carousel and would be released into the slide viewer under the control of 

the cassette which would provide a commentary on the information shown on 

the slides. The cassette would also ask the user to pause from time to time to read 

further written material. It should be possible for the student to buy the 

information packs or some of the constituent material. 

Among other audio-visual material to be brought into the coll~ction would 

be videotapes which have been produced commercially or produced in house. 

The tape collection would clearly need to include Open University programmes 

and the hope would be that particular sequences could be isolated easily to save 

the student having to view most or all of a 25 minute programme for the sake ora 

two or three minute excerpt. There is much merit in having available videotaped 

experimental demonstrations or even videotaped lectures on specialised topics, 

particularly if the lecture required the assembly of equipment and presentation of 

such demonstrations. Lecturers would be encouraged to make use of these 

materials in their own lectures. Experience has shown that many staff would be 

happy to use such material if someone else had already taken the trouble to 

organise it. 

One would like to believe that students could borrow audio cassettes and 

other material for overnight use but, regrettably, in today's society that idea would 

prove impracticable. One must be resigned to the fact that they would have to be 

restricted to using the material in the Centre or in the library. How could one 

check that a tape had not been tampered with? It is no use pretending that such a 

situation would not arise; there is widespread theft and vandalism taking place in 

institutional libraries. The 'disappearance' of audio-visual material from lecture 

rooms and seminar rooms also occurs at an alarming rate. 
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Wider usage 

Engineering staff who wished to update their mathematical knowledge 

would be encouraged to use the resources of the Centre, particularly in the 

vacations when student usage is expected to be slight. There is a clear need for 

engineers in industry to update their mathematical awareness and perhaps renew 

their skills in particular areas. If short courses were organised, perhaps of a few 

days duration or on a day release basis, the Centre could act as the focus of the 

activity. This would provide an income which would help to support its other 

activities. 

National network 

There should be a national network of such centres which would cooperate 

in the production and distribution of materials. This cooperation would ease the 

problem of financial provision. There is already a network of libraries and 

computer centres which would facilitate the linking of the mathematics learning 

resource centres. 

Closing comments 

Some readers may dismiss these ideas as fanciful. However, we are facing a 

crisis in the mathematical education of engineers and it does not seem likely that 

the present set-up in universities will be able to handle the situation. The 

network of Mathematical Learning Resource Centres offers a positive and practical 

means of coping with the impending crisis. Of course, there is the over-riding 

problem of cost. Each centre could only grow at the rate that its income would 

allow. In the early stages the provision of materials would be limited in quantity 

and range, but the author is confident that the usage of the centres by the students 

would justify further expenditure. If the country wants to improve the 

mathematical knowledge and skills of its engineers, as it must if it is to survive in 

the world of tomorrow, then it must invest in the future. 
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9.8 Implementation of the Teaching Model 

In order to implement the model proposed in the previous sections a 

number of major changes will have to be made which will necessitate considerable 

efforts on the part of the lecturing staff. 

(i) Retraining of mathematics staff 

As regards the core syllabus, the introduction of a sizeable amount of new 

material in the area of discrete mathematics means that most of the mathematics 

lecturers will be faced with the need to come to terms with yet another learning 

task. The previous generation had to cope with computer programming and 

numerical methods, when most of them had not covered such material in their 

own degree courses. The learning tended to be on a piecemeal basis, and many 

even today would regret their lack of formal training in this area. It is imperative 

that the situation is not repeated with the area of discrete mathematics. 

Accordingly, there should be a coherent programme of courses organised on a 

regional basis for mathematics lecturers to acquaint themselves with the concepts, 

techniques and applications of this topic. 

It is also important that the mathematics staff have direct and regular 

contact with the engineering industry and it is recommended that arrangements 

be made for them to spend an initial period working in an industrial concern. 

It has to be made clear that such efforts on the part of the staff should be 

recognised and, indeed, rewarded. If financial incentives are not present it is not 

likely that lecturers will take on board their retraining, however educationally 

desirable that might be. 
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(ii) Retraining of engineering staff 

Many engineering lecturers have suffered from an unsympathetic 

mathematics course as part of their undergraduate programme and feel 

indifferent or even antipathetic to mathematics as a result. They have not 

improved and updated their mathematics skills and perhaps feel embarrassed at 

their lack of k!:towledge. They, too, should be encouraged to redress this deficiency 

and rewarded for their efforts. 

(tii) Cooperation between mathematics and engineering staff 

One way in which closer cooperation between the mathematics and the 

engineering staff could be achieved would be for the mathematics lecturer to be an 

integral member of the engineering course management team. This should be 

reciprocated by the engineering staff being invited to discuss regularly with the 

mathematics lecturer the content of his mathematics course to their students. 

(iv) Modelling workshops 

The emphasis on modelling in the mathematics course given to the final 

year students demands that both the mathematics and the engineering lecturers be 

skilled in conducting workshop sessions. For this to be the case the staff must 

themselves have attended such sessions and a programme of workshops, 

organised on a regional basis needs to be established. 

(v) More resources for computing 

In many institutions the provision for computing falls far short of that 

which is required to teach effectively a modern engineering course. If we are to 

take seriously the task of educating engineers for the future then institutions must 

be given the resources to build up their computing facilities to the level required. 
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(vi) Establishment of Learning Resource Centres 

There must be a concerted effort to set up Learning Resource Centres along 

the lines of the suggestions in the previous section. This would involve the 

appointment of a Director of the Centre who would be supported by a small 

full-time academic and secretarial staff. Space would have to be found for the 

Centre and sufficient funds provided to allow the Centre to find its feet. Only by 

establishing a national network of such centres would they be able to realise their 

full potential. However, it would be wise first to establish a few centres, one per 

region; if they prove to be successful, further centres would then be established. 

Final remarks 

The teaching model proposed in this chapter is an attempt to come to terms 

with a worsening situation in the mathematical education of engineering 

undergraduates in the United Kingdom. Unless drastic action is taken soon, the 

situation ~ill worsen dramatically. As has been seen all too often, educational 

changes are slow to take effect. Given the climate in universities and polytechnics, 

which seems likely to persist for some time, the idea of a Learning Resource 

Centre is crucial to the success of the teaching model. The other major change 

suggested is the radical overhaul of the syllabuses. The most important of the 

revisions are the inclusion of a substantial amount of discrete mathematics in the 

core material and the explicit emphasis on modelling. 

The implementation of the model requires considerable effort on the part of 

all concerned, and that effort will not be forthcoming unless suitable rewards are 

provided. It took hard work, and not a little courage to champion the integrated 

approach in the early 1970's. Now that approach is widely accepted. What is being 

asked in order to implement the proposed model requires even harder work and 

an equal amount of courage. What sustained the advocates of the integrated 

approach was a belief in their vision of the way forward. 

The author has the same belief in the model proposed in this chapter. 
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Chapter 10 

Conclusions 

10.1 Summary of the Research 

An account of the more significant research into the mathematical 

education of engineering undergraduates which has been carried out in the last 

forty years forms the basis of Chapter 2. At the British Association meeting in 1948 

there was a clear division of opinion between those who believed that 

mathematics should be taught as a subject in its own right, divorced from any 

applications, and those who argued that it should be taught in a way which 

emphasised its relevance to engineering. That division of opinion has continued 

to influence the teaching of mathematics to engineers, and the debate is still as 

heated today as it was two decades previously. 

It is fair to say that those who believed in the latter approach have 

continually striven to make their teaching match the changing needs of the 

engineer by updating syllabuses and by bringing in new styles of instruction, even 

if the pace of change has not been as fast as might be desired. In 1966 the OECD 

Report gave a comprehensive review of the then current state of the mathematics 

taught to engineers in its member countries and set down somewhat ambitious 

target syllabuses; in additi ·.on, suggestions were made as to styles of teaching, and 

special attention was given to the need to increase the role of computer-based 

methods. 

A major step forward was heralded by the paper by Bajpai et al (21) which 

showed how the topic of ordinary differential equations could be presented by an 

integrated approach which combined analytical and numerical methods of 

solution. As a result of that paper, a course was developed at Loughborough based 

on the integrated approach; the development was described in Chapter 3. 
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It is, of course, essential for the integrated approach to succeed that both the 

students and the teacher become familiar with computers and computer 

programming at the outset of their studies. Course work has been set in 

co-operation with engineering staff which requires the writing of computer 

programs. In this way the mathematics is integrated with the engineering, in 

addition to the mathematics being integrated within itself. An example was 

provided in Section 3.4 of the integrated approach in action: to establish a model it 

was necessary to appeal to calculus, whereas the solution of the resulting equation 

was effected by employing a numerical technique. 

The material that was produced in note-form as hand-outs to accompany 

the course was subsequently published in the form of three text-books. 

Feed-back from other institutions has supported the local experience that 

students who are taught via the integrated approach do have a better motivation 

to learn mathematics and are more aware mathematically than those who 

followed the previously accepted approach. 

One important aspect of any teaching system is the quality of the input. A 

diagnostic test conducted on freshman entrants revealed a worrying level of 

mathematical ignorance and incompetence. These deficiencies had to be taken 

into account when devising the syllabus and suitable remedial measures taken. 

The OECD Report has frequently been used as a yardstick by which to judge 

subsequent progress. Ten years after its publication, the author and his colleagues 

(40) and (41) expressed concern that little progress had been made. They pointed 

out current shortcomings and suggested a way forward. A particular plea was for 

the inclusion of project work in the mathematics course. 

The effect of the increased computing power available to students with 

regard to both pocket calculators and computers was the subject of Chapter 4. In 

the case of the fomer, it was necessary to train students in the correct use of their 
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calculators and to instil in them a proper regard for the limitations imposed on the 

result of a calculation by imprecise data. In the case of the latter, a terminal 

laboratory programme had been developed which comprised both the use of 

prepared software to compare different methods of solving a particular problem 

and the writing of short programs to tackle specific mathematical models. 

There was concern that although the computing facilities available to 

students had increased considerably they had failed to keep pace with the demand. 

Drastic measures would have to be carried out in order to remedy the situation. 

A natural development of the research was in the area of computer 

enhanced learning. The MIME project was established in 1983 to write and test 

software for microcomputers which would be used as an enhancement to the 

teaching and learning of mathematics. The project was described in Chapter 5. 

The first units to be produced were on topics in mechanics at the level of school 

sixth form and first year university. 

The intention was that the software should be flexible in its use, capable of 

either serving as an aid to the teacher in the classroom by providing interactive 

demonstrations, or permitting individualised learning by students in a self-paced 

mode. In either case the software allowed the user to simulate experimental 

situations and behaved, in effect, like a sophisticated piece of laboratory 

equipment. 

The problem of presenting topics in statics in a lively way provided a 

challenge which was overcome by using practical illustrations of the theory and by 

allowing the user to vary the parameters of the model. This latter aspect, in 

particular, provided the student with a deeper understanding of a topic. The 

opportunity was also taken to give the student a qualitative insight into certain 

problems which were beyond his mathematical competence to analyse 

quantitatively. 



348 

Comment received from teachers was generally favourable and indicated 

that the majority of students had benefitted from using the software. However, it 

was clear that the teachers would have preferred more guidance in the use of the 

software in their teaching and were rather reluctant to write their own supporting 

material. It appeared that the flexibilty which the project team had regarded as a 

strong point of their software was, in this aspect, not appreciated. Notwithstanding 

this point, the software had succeeded in its aim of enhancing the learning of 

mathematics. 

The project was extended into the area of university mathematics, although 

on a reduced level of activity, due to a general lack of funding available for such 

work. The software units were designed to be used either in the lecture as a 

demonstration tool, or in the tutorial in a fully interactive fashion, or by the 

student in self-paced study. Examples of these three modes of use are given in 

Sections 5.7 to 5.9. Staff reaction to the software was generally encouragin~ though 

again there was an indication that some who would have preferred more 

supporting documentation were unwilling to experiment with the programs; they 

were only interested in having a package which was effectively self-running. 

The use of case studies in the curriculum formed the subject-matter of 

Chapter 6. There was a discussion on the role of modelling in the course which 

indicated the need for a shift in emphasis away from the teaching of techniques, 

however useful they may be, towards the formulation of mathematical models of 

engineering systems and the interpretation and validation of the solution of these 

models. 

The value of a shared lecture in showing the interaction between 

mathematics and engineering was demonstrated in Section 6.3. The dialogue 

between the mathematics lecturer and his engineering colleague mirrored that 

interaction. Sections 6.4 and 6.5 demonstrated respectively the development of 

two simple models of the same engineering situation in a tutorial session and the 

development of a more complex model over a longer time-scale. 
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Modelling has a crucial role to play in the teaching of mathematics to 

engineers. It provides an additional motivation for the students and it allows 

them to participate in an active way to complement the presentation of case 

studies in the syllabus. 

Chapter 7 was devoted to the comparative study of courses which combine a 

general grounding in engineering with a substantial input of mathematics. Such 

courses are few in number but they do fill a gap in the spectrum of engineering 

graduates and the evidence from industry is that the output from these courses is 

highly valued. Whilst the courses will never produce graduates in large numbers 

they do have an important role to play in attracting able entrants who might 

otherwise be lost to engineering. 

Chapter 8 gathered together a number of topics which merit consideration 

in the build-up to the teaching model which formed the outcome of the research 

described in this thesis. In Section 8.1 the difficult subject of partial differential 

equations was treated; a method of presenting the material so that the students' 

motivation is retained whilst the essentials of the subject are covered was 

discussed. The bottom line was that the students should recognise the main types 

of equation, understand how they were derived, appreciate the nature of the 

accompanying boundary and/or initial conditions and understand the processes of 

solution, both numerical and analytical. 

The use of the tutorial to provide a back-up to the lecture by involving the 

students in an interactive exercise was explained in Section 8.2, using the t:J;ic of 

Fourier series as a vehicle for discussion. Section 8.3 took a critical i at some 

examination questions and concluded that care was needed when setting questions 

to ensure that the skills which were supposedly being tested were not masked by 

the students' lack of other skills. 

Two other aspects which were considered in Sections 8.4 and 8.5 respectively 

were the influence of visual images and the growth of distance learning.· It was 
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felt that not enough attention was being paid to the dominance of television 

during the formative years of modern children and the consequent impact of 

visual stimuli relative to that made by the spoken word. The use of experimental 

demonstrations in the lecture was commended. The success of distance learning 

had not been fully recognised by campus-based institutions. They needed to make 

more use of distance learning materials in their teaching programmes; the 

particular case of videotape and videodisc was highlighted. 

Chapter 9 faced up to the crisis in the teaching of mathematics to engineers 

which is upon us. It proposed a teaching model to take us towards the year 2000. It 

defined a core curriculum for all engineers which was designed to take 165 hours 

of lectures and proposed that mathematics should be taught in all years of the 

degree programme. There should be a greater emphasis on modelling and this 

would form the bulk of the final year work. 

A substantial amount of discrete mathematics was included in the core 

curriculum and the time needed for this topic and the modelling work was found 

by removing much material of long standing which was relatively dead wood. 

Individual engineering specialisms could augment the core material by choosing 

from a portfolio of additional modules according to their needs. 

It was argued in Section 9.4 that the mathematics lecturer needed to have 

some experience of applying mathematics to the solution of engineering problems 

and that he should be encouraged to spend some time in industry to this end. 

This would help him to be accepted by the engineering staff as an integral member 

of the teaching team. 

The greater use of a variety of teaching materials was recommended in 

Section 9.6. 

Crucial to the successful implementation of the teaching model, given the 

pressures on the mathematics lecturer and the general worsening and variable 
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nature of the quality of intake was the establishment in each institution of a 

Mathematics Learning Resource Centre. The Centre would provide a necessary 

support to the teaching programmes. It would be responsible for conducting 

diagnostic tests to discover particular weaknesses in individual students and 

would provide the relevant remedial material to help overcome those 

weaknesses. It would offer a mathematical counselling service to assist those 

students who had more serious mathematical problems and who needed closer 

guidance. It would stock information packs on individual topics and would 

contain a library of audio-visual material which could be used by staff to enhance 

their teaching or by students in self-paced mode. 

The resources of the Centre would be available to staff, particularly from 

engineering departments, who wished to update their knowledge or to iron out 

their own mathematical shortcomings. It was envisaged that the Centre would be 

able to assist in the updating of engineers in industry. A call was made for a 

national network of such centres which would operate in a way similar to the 

audio-visual centres in universities and polytechnics. 

The implementation of the teaching model required the retraining of both 

mathematics and engineering staff, the former in the application of mathematics 

in the engineering industry and the latter in the mathematical needs of modern 

engineering. In addition it was recommended that a programme of modelling 

workshops be established to provide staff with a training in the methodology and 

practice of modelling. More resources were needed to build up the computing 

facilities in universities and polytechnics to the required level. Finally, a concerted 

effort was needed to establish the network of Mathematics Learning Resource 

Centres. 
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10.2 Recommendations for Action 

In this section a number of recommendations are made which are 

considered necessary for the improvement of the teaching of mathematics to 

engineering undergraduates. 

(i) Mathematics Departments 

Unless mathematics departments desist from standing on their academic 

dignity they will find that the teaching of engineers is taken from them, with a 

consequent threat upon jobs. Customers will eventually have the last word, and it 

is surely preferable for the mathematicians to teach the mathematics, albeit in a 

way which they will find at first a culture shock, rather than lose it altogether. 

They must cooperate with their engineering colleagues. 

(ii) Engineering Departments 

The mathematics course must be regarded as integral to the engineering 

curriculum. Staff should make an effort to update their mathematical skills and 

acquaint themselves with modern engineering practice. They should encourage 

their students to take their mathematical studies seriously. 

(iii) Universities 

University policy-making bodies must awaken to the need for better 

mathematical provision if they are to make a serious contribution to the future 

needs of the country as regards the output of engineers. They should establish 

Mathematics Learning Resource Centres as a matter of urgency. 

(iv) Professional Institutions 

The Engineering Council and The Institute of Mathematics and its 
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Applications should make a joint initiative to alert their members to the 

impending crisis in the provision of engineering graduates with a suitable 

mathematical training. They should take the lead in urging universities and the 

Government to take the problem seriously. 

(v) Government 

The Government must face up to the urgent need to redress the current 

situation. At the end of the day, if funding is not available then the action that 

needs to be taken will be severely curtailed. We hear much about the need for a 

strong Britain, but a strong Britain needs a steady output of modem engineers who 

are trained to face tomorrow's world. Such training of nece$sity implies a 

grounding in the mathematics of at least the core curriculum proposed in Chapter 

9. The Government must take its responsibility professionally and provide the 

required funding earmarked for the proper mathematical education of engineers. 

10.3 Suggestions for Further Work 

High o~ the list of priorities for further work is the development of 

material suitable for the Mathematics Learning Resource Centre. Particular 

attention needs to be paid to the preparation of remedial information packs and to 

the compilation of suitable diagnostic tests. 

There is much to be done in the area of videotape and videodisc production. 

However, these items are expensive to manufacture and to use, and more research 

needs to be carried out into the effectiveness of the medium as a means of 

imparting information and of providing motivation. A teaching aid which is 

more easily and more economically manufactured is that of standard diagrams 

and graphs, probably produced by a microcomputer, which could be made 

available in the form of overhead transparencies or slides. 
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These slides could be combined with audio cassette and written material to 

form an individualised learning package. Such packages are relatively 

inexpensive to produce and to operate, and offer a simple means of self-learning. 

Research is needed into the viability of such packages and their effectiveness. 

More effort is needed in the area of the use of micro-based software in 

teaching. Attractive though the MIME mechanics units were, the emphasis must 

now be on smaller units, targetted at more specific topics. 

The most fundamental research that needs to be conducted is in the 

acquisition of mathematical concepts by undergraduate engineers. Much is being 

asked of them in the core curriculum and with a shifting base it is important that 

not too much is asked. In particular, students who enter with BTEC qualifications 

or their equivalent face difficulties which have not been fully explored. There is 

likely to be an increasing number of students who wish to convert from arts-based 

A levels or who have returned to the educational scene later in life, and these 

students will have a different kind of handicap to overcome. All these categories 

of student are important and their needs must be catered for. It is this area of 

research which is especially urgent. 

10.4 Envoi 

The work described in this thesis has been carried out because the author 

cares about mathematics. He also cares about the mathematical education of his 

students. The task which they face in coming to terms with a more demanding 

syllabus, having been given a less thorough grounding in school mathematics 

than hitherto, is an increasingly daunting one. 

The research ~. .\ has been undertaken in an attempt to help the students 

tackle their task more successfully. It does matter that they are motivated by the 

mathematics being made relvant to their needs and interests; it does matter that 
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they come to regard mathematics as an important foundation for their studies 

. both at and after tertiary education. 

It is hoped that the reader of this thesis also cares about mathematics 

sufficiently to make an effort to improve his teaching to engineering 

undergraduates. Whilst the author has made some small contribution to the 

. mathematical education of engineers, he is only too aware that he has at best lit a 

trail which others may wish to join him in treading. So far, the temptation to 

include a quotation has been resisted, but it would perhaps be apposite at the end 

of this thesis to echo the words of Cecil Rhodes, which encapsulate the author's 

feelings at this juncture. 

"So little done, so much to do" 
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Appendix 1 

Short Course Syllabus 

Algebra and Analysis 

Real numbers. Complex numbers. Binomial theorem, Polynomials and rational 
functions. Vector spaces, linear dependence. Vector algebra. Linear transformations, 
Matrices. Systems of linear equations. Eigenvalues and Eigenvectors. Reduction to 
diagonal form for distinct Eigenvalues. Orthogonalizing. Norm. Quadratic forms. 
Classification. Geometry of the line, conic, plane, quadric (by vector and matrix 
methods). 
Different coordinate systems. 

B Analysis (180 hours) 

Functions of a real variable: Limits, continuity, continuous functions. Monotonic 
functions. Concept of inverse function. Differentiation, mean value theorem, maxima, 
minima and variation of functions. 

Application to plane curves; tangent, normal, curvature. 

Indeterminate forms. 

Elementary functions. 

Integration: the concept of integral as limit of a sum 

Relation between integration and differentiation. Methods of integration 

Application of integration (eg areas, volumes, flTSt and second moments). Improper 
integrals. Tables of integrals. 

Series - Series with positive terms. Elementary convergence tests. Power series 
including Taylor series. 

Ordinary differential equations - Equations of first order. Linear equation with 
constant coefficients. Use of Laplace transform. 

Exact solutions. Singular points. Isoclines. Solutions in series. Application to special 
functions. Existence and uniqueness of the solution (no proof required). 

Functions of several variables - Continuity. Differentiation. Taylor theorem. Maxima 
and Minima. Conditional extrema and Lagrange multipliers. Representaion of a 
function as a surface. Parametric integrals. Differentiation and integration of integrals. 
Multiple integrals, including the rule of change of variables. Line, surface and volume 
integrals. Vector fields: gradient, divergence, and theorems of Gauss, Green and 
Stokes. 
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Panial differential equations - Classification of 2nd order partial differential equations 
with constant coefficients. Solution by separation of boundary value problems. 
Solution by Laplace transform. 

Functions of complex variable - differentiation. Analytic functions. Cauchy-Riemann 
conditions. Introduction to con formal mapping. Elementary functions. 

C Digital Computation (21 hours) 

Functional organisation of a digital computer. Hierarchy of computing languages; 
machine, symbolic assembly, procedure-oriented, problem-oriented. 

Instructions and procedures; flow diagrams; concept of stored programme and 
instruction modification; iterative procedures; automatic programming languages, 
sufficient details of one language, such as Algol 60, to enable simple examples to be 
programmed; numerical and non numerical applications, data-structure and list 
processing. 

D Analogue Computation (4 hours) 

An intrOduction to analogue computers with demonstration of solution of differential 
equations describing some typical engineering problems. 

E Numerical Analysis (40 hours) 

Basic ideas. Formulation, truncation and rounding errors. Simple error analysis. 
Chebyshev and least squares approximation. Economisation of series. Orthogonal 
polynomials. Introduction to finite and divided differences. Interpolation, 
differentiation, integration. Lagrange formulae. 

Non linear equations. 
Linear simultaneous equations by direct and iterative methods. 
Matrix inversion. Systems of non-linear equations by the Newton-Raphson method. 
Matrix eigen-value and eigen-vector determination. 
Ordinary differential equations including boundary-value problems. 
Runge-Kutta method; selected predictor-corrector method; deferred-correction method. 
Partial differential equations. Finite-difference methods. 
Ideas of stability. 
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F Statistics and Probability (60 bours) 

Syllabus A (USA) 

Probability theory (discrete case, 17 lectures; continuous case, 9 lectures). Sample 
. space, event, random variable, function of a random variable. Probability, expectation, 
variance, moments, Chebysbev's inequality. Joint distribution, transformations of 
joint densities, conditional probabilities, Bayes' theorem, independence. Bernoulli 
trials, combinatorics, binomial distribution. Normal law, introduction to the law of 
large numbers and statement of the central limit theorem, Poisson distribution, 
elementary Markov chains. . 

Introduction to statistical inference (13 lectures). The fonnulation of statistical 
problems and the rationale behind the choice of statistical procedures. An introduction 
to estimation and sampling, with point and interval estimation. Elementary hypothesis 
testing, power of a test Regression, a few examples of non parametric methods. 

Syllabus B (UK) 

Introduction to probability. Theorems including Bayes' theorem. Inherent variations 
in observed data. The normal distribution, its propenies and estimation of its 
parameters. Simple tests of significance and confidence limits for samples from the 
normal distribution. 

Basic principles of experimentation; statistical inference and testing. Initial steps in 
planning experiments; randomisation, replication and other means of improving quality 
of estimates. Simple Analysis of Variance. Sources of variation in data; the use of 
models to describe data. The regression model; estimation of parameters, etc. General 
curve fitting. The regression model; estimation of parameters, etc. General curve 
fitting. Statistical distributions; uniform, binomial, Poisson. Goodness of fit test. 



381 

Appendix 2 

EVALUATION OF MATHEMATICS ABILITY 

1 Estimate the values of (i) 
4.1 x 16.9 

2.3 x 0.95 

3 
.. 1t x 41.3 

(11) 11.2 x 7.63 

2 You measure a diameter as 3.618 cm but you know your measurement may be 
inaccurate by as much as 0.01 cm. How would you quote your answer? 

3 You are given the formula 

Rearrange this formula to make 

4 What are the roots of the equation 
x3-4x2 =5x? 

5 You are given the formula 

Ifx = 20. Y = 2. find z. 

1 
f ---== 

- 21tJLC3 

(i) L the subject 
(ii) C the subject 

6 Find the height of the tower rr) in terms of the measured distance d and angles (X,~. 

T 

d .... 
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7 Determine the coordinates of the centroid of the area enclosed by the parabola and the 
axes shown below. 

y 

t 
H 

+ L----::---,-'-_------+ 
.- L-'-

x 

·8 The bending of a simple beam subjected to a uniformly distributed load w/unit length 
can be represented by the equation below where y is the vertical displacement 
downwards and k is a constant. 

2 
d Y 1 2 1 

k-- = - wx -- wLx 
dx2 2 2 

Find an expression for y. 

x 

,K_7 
9 By resolving forces to maintain equilibrium at the joints, find the forces in all members 

of the truss shown below: 

~~ Im 

t 
Im 
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10 Three tugs are each pushing with a force of 20 kN on a freighter as shown. What is the 
resultant force along the centre line of the ship? Will it move forwards or backwards? 

/+-15 25m 

11 A rectangular tank 3m long, Im wide and 2.5m deep weighs 4.5 tonnes. It floats on an 
even keel in fresh water of density 9871 N/m3. 

(i) A square hole width sides of 300mm is made in the bottom of the tank. What 
force in Newtons would be required to hold a weightless, watertight plate in place 
on the hole? 

(ii) A square vertical tube is welded to the hole in the tank. How high in the tube will 
the water rise aoove the oottom of the tank? 

(iii) What volume of paraffin with a specific gravity of 0.88 must be poured into the 
tube to drive out the water? 

(iv) Could you use glycerine (S. G. = 1.36) instead of paraffin? 

12 (i) A rectangular tank of the same dimensions and weight as in Q 11 is to carry an even 
load of sand. What volume of sand, weighing l.5 tonnes/m3 could be carried, 
before the tank sinks? 

(ii) What would be the density of a solid block of material of the same size as the tank 
that would float with one of the 3m x Im sides 0.5m aoove water level? Is it likely 
to float like this? 
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Appendix 3 

ENGINEERING MATHEMATICS SYLLABUSES 

Part A Courses 

1 Mathematical Methods I 

Differentiation including maxima and minima. Taylor and Maclaurin series. 

Partial differentiation. total derivative and applications to errors. 

integration and applications. 

Complex numbers. 

Vector algebra. 

First order separable and linear differential equations. 

Second order differential equations with constant coefficients including the use of the 
Laplace Transform. 

2 Numerical Methods I and Computer Programming 

introduction to basic ideas. errors etc. 

Solution of nonlinear equations. 

Solution of simultaneous linear equations by Gauss elimination. 

Finite difference notation. interpolation. numerical differentiation and integration. 

Curve fitting by method of least squares. 

Flow diagrams and simple computer programs including formation of loops. 

Subscripted variables. 

Subprograms. 

3 Statistics I 

Descriptive statistics. basic probability theory. binomial. Poisson. and normal 
distributions. 

Distribution of sums and differences. sample means and convergence to normality. 
elementary significance tests. 
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Part B Courses 

4 Mathematical Methods 11 

Functions of several variables, maxima and minima. 

Matrix solution of linear equations, transfonnations and eigenvalues. 

Fourier series and solution of partial differential equations by separation of variables. 

5 Mathematical Methods III 

Functions of several variables, change of variables. 

Line, surface and volume integrals. 

6 Vector Field Theory 

Vector function, differentiation and applications. 

Vector integrals and orthogonal curvilinear coordinates. 

Differential operators, grad, div and curl. 

Gauss' and Stokes' Theorems. 

7 Functions of a Complex Variable 

Analytic functions, Cauchy-Riemann conditions. 

Confonnal transfonnations. 

Taylor and Laurent series, singularities, residues and contour integrals. 

8 Numerical Methods 11 

Nurnericallinear algebra. 

Detennination of eigenvalues and eigenvectors. 

Solution of ordinary differential equations, initial value and boundary value problems 
including computer methods. 

9 Statistics 11 

Linear regression and correlation. 

F, t and x2 tests. 

Introduction to multiple regression. 



10 Statistics III 

Multiple regression. 

Analysis of variance. 

Design of experiments. 

386 

Part C Courses (Term 1 only) 

The following optional course, each comprising ten lecture hours, could be arranged 
for flOal year students from all Engineering Departments. No examinations would be 
held. Other courses could be arranged on request. Selected topics from the following 
syllabuses would be discussed. 

11 Transform Calculus 

Further work on Laplace Transforms, convolution theorem. 

Introduction to Z transforms. 

Fourier Transforms. 

12 Mathematics for Telecommunications 

Bessel functions. 

Positive real functions, Hurwitz polynomials, stability criteria. 

13 Introduction to Tensor Calculus 

Tensor formulation and extension of vector field theorems. 

General equations of motion and continuity of fluids. 

14 Introduction to Operational Research 

Linear programming and allocation problems. 

Dynamic programming. Queueing. 

Basic ideas on theory of games and Moneo Carlo methods. 
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15 Introduction to Stochastic Processes 

Probability theory; laws, random variables and probability distributions. 

Expectation, variance, generating functions. 

Markov chains, Markov processes, renewal processes. 

Introduction to queueing theory. 

16 Introduction to Optimization Methods 

Survey of numerical hill-climbing techniques. 

Dynamic programming, Pontryagin's maximum principle, gradient methods in function 
space. 

17 Numerical Methods III 

Solution of partial differential equations. 

Harmonic analysis. 

Orthogonal polynomials. 

18 Further Statistics 

Similar to Course 9, Statistics II. 



-------~-------

388 

Appendix 4 

Civil Engineering Examination Paper in Mathematics 
1971 



LOUGE"OROUG? lmr.'EPS!TY 0: ~~;OLOGY 

Firs" Year Examina"ion in "he Degree Courses in 
Civil Engineering and Environmen"al Engineering 

MA TEEI·Wn CS 

389 

Friday, 11 June, 1971. 2.00 p.m. to 5.00 ~.~. 

Attempt ONE question from SECTION A; and FIVE questions from SECTIONS B anc: -

inaZuding at least ONE from SECTION C. 

(Note: SECTION A questions have Wice the weight of the others). 

SECTION A 

1. We seek "he solution of the differential equation 

2. 

~ = 1 + 2xy for which y(O) = 1. 

(a) Find the in"egrating factor for the equation and use it to obtain 

an expression for y(l). Evaluate the resulting integral using 

Simpson's rule with 4 strips. What steps could you take to improve 

the accuracy and wha" are the drawbacks ? 

(b) Now obtain an estimate of y(l) using Euler's method with a step size 

of 0.25. Comment on the result. 

(c) Use the differential equation and the initial condition to obtain 

the Maclaurin expansion for y as far as the term in x4 and recelcula"e 

y( 1). Is the series useful ? 

x f _x
2 

(d) Finally, use "he standard series for e "0 expand e dx 

( i) 

in ascending powers of x as far as the "erm in x 7. 

Use "his expansion to evaluate y(l) from (a). Comment. 

Show "hat f(x) = 2x3 + 4x2 - 2x - 5 has a local maximum at xC! -1.5 

and a local minimum a" x ~ 0.2. 

By determining the sign of f(x) at these points show that the equation 

f(x) = 0 has 3 real roots. 

Wha" is meant by the s"atement that "he sequence {u } converges to a 
n 

limit u ? 

State the sufficient condition for the i"erative formula xn+l = F(xn ) 

to converge to a root of the equation x = F(x). Since the root is nc~ 

known precisely in advance, can you state an alternative definition of 

convergence which will be more useful in this context ? 

Question 2 continued ...•.. 
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Tbe equa'tion f(x) = 0 (above) e an be rea..'"!'anged 'to give 

(a) (b) (c) 

x = Cs -" 12x + 5 ~ J5 + 2x - 2x3 + 2x - 4Y~ I 
X-j 4 , x = , 

2 ') ,2x+ , 

Show that each of the above will yield e:l iterative formula eonverg::::g 

to the root near x = 1. Which formula do you think. will converge I::C5: 

rapidly and which most slowly ? Test yOUI theory by applying these 

two formulae three times each to an ini-;ial approximation Xo = l. 

(ii) The secant method for iterative50lution of the equation f(x) = 0 does 

not use derivatives and hence is suitable for digital computers: 

Hx,) I-------=~ 

the forItula i~ x2 = 
XOf(Xl ) - ~f(XO) 

f(x
l

) - f(xo) and, in general, 

xn+l = 
xof(Xn ) - x~f(XO) 

f(X
n

) - f(X
O

) 

How is the formula affected if f(X
O

) , f(~) are of the same sign ? 

Write a flow chart for the method applied to !I- general function f(x) 

to obtain any given accuracy. Incorpc~ate a check for non-converge=~e, 

SECTION B 

3. Find an expression for the total squared error in "I, S, in fitting the curve 

y = aebx to n pairs of points (Xi ,y i). Using partial differentiation find ::'s 

equations to determine a,b for least S. COlDI:ent. 

Start again by taking logarithms of y and use s'tandard equations to deterl::ine 

a and b. What is minimised here ? 

Use the following data and compare your results with the given y values. 

Continued ..... . 
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-. A uniform flexible cable is suspended ~~om •• ~ pylons a •• he sace neigh. as O~.~, 

5. 

6. 

The equation for .he protile of the cable (referred to axes shown) is 

y = c(cosh ~ - 1) 
c 

where c is a constant. 

gives a minimum value of y at the origin. Verify that this equation 

Find s, the half-length, 

where h is the sag. 

2 in terms of the half-span R., and show that s = h2 + 2 '. c_: 

The radius of.curvature, 
dx 

R, of a curve y = f(x) is defined to be ds where ~ = 'tel" 
d1jJ dx 

and ds = cos1jJ. 

d
2 

Show that ~ = 
dx 

3 ~ sec 1/1 ds and hence obtain 

R = 

~ + (~2J3/2 
i y 

dx
2 

Find the minimum value of R on the cable. 

A sphere of density p and radius r 
. h 4 . 3 

welg s 3' nr p. 

Sho\/' that the 

It floats on \/'a'ter of 

volume of \/'ater displaced densi ty 1 submerged to a depth h .• 

by the sphere is ~ (3rh2-h3 l. If the density of the sphere is 0.4 find Q = ~ 
r 

to 2 decimal places using the Ne..ton-Raphson method \/'ith an initial approximatio:: 

(i) 

( iil 

Why is QO = 1 suggested ? 

Write a Fortran program to read in 2 complex numbers, calculate and 

punch out their moduli, arguments, sum and product. 

con'tain suitable explanatory text. 

Your output sho~d 

(Hint: treat each complex number as a pair of real numbers). 

Simplify the expression 
(1 - i)2 

-13 + i 
and find its square roots, 

expressing them in the cartesian form. 

Continued •.•.•• 
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8. 

9. 

10. 

392 - ~ -

~e points h,E,C,D have coorc~ne~es t~eie~~e~ ~~ ;~ven axes) \2,-l,-2), {~,-~,-~ 

(1,3,-1), (3,-2,1) respe=~1ve1y. 

unit vect.or 
A . _ ,~ 
n normal t.o ~~e p~ane r~C. !:e~-:::e, by =onside!"~ng ,:~e componen't :.:: 

~ , , 1\ 
d1reCl:10n n of a sui 'table ve:::'to!", de'te!":::l.ne :::l~ \li:~re N is t.he foot of the pe!"pe::" 

dicular from D on'to ~he plane ABC, Bl1d ~hus o01;ain ~he coordina1;es of N. 

(i) Solve, by any suit.able ~ethod, 'the di~~eren,:ial equation 

4 ~ + 3y 
a.x 

= -3x e 

subjec't 'to 'the condi'tions y = 1 ~ = 0 when x = o. 'dx 

(ii) The plane mo'tion of an ele=~ron normal to a uniform magne'tic field is 

given by 

and dx 
- w d't 

(where w is a cons'tant). 

If x = 0, ~ = u, y = 0 and * = 0 a't tillle t = 0, find, by 'the me'thod of 

Laplace transforms or otherwise, 'the coordinates x and y at general 'time 't 

SECTION C 

A sampling inspection plan opera1;es as follows. Take a random sample 

of size 10 from a large bat:h. If none of the sample is defective, 

then accept the batch. If more 1;han one are defe:tive, then reject 

the batch. If exactly one is defec'tive, 'take another sample of size 10, 

and accept the batch only if this second sample contains no defe:tives. 

If a batch which is 5% defective is 'tes'ted by 'this plan, what is 1;he 

probability that ( a) it is accept.ed af't.er t.he first sample, 

(b) it is accep1;ed ? 

(ii) A machine-shop storekeeper finds tha't, over a long period, the average 

(i) 

demand per week for a certain ma:hine 1;001 is 3. His stocking policy 

'is to make up stock to 4 at 1;he beginning of each >leek. Estimate the 

probability that he will fail to satisfy demand in a given week, and 

determine his stocking policy if 'the chance of running out is not to 

exceed 5%. 

The average life of a 250 watt ele=tric ~o~or is 8 years, wi~h a sta~dard 

deviation of 2 years. The manufa:turer replaces, free of :harge, all 

motors that fail whilst under guarantee. Assuming that the motor lives 

are normally distributed, how long a g'.laran'tee should he provide if he is 

willing to replace no more than 2% of all 1;he motors he sells ? 

What propor'tion of mo'tors will s1;ill be servlceable after 11 years ? 

Continued ..•••• 
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lO/Continued ....•. 

(ii) An au"oma"ic ma~hine fills bags vi"h cemen"; "he machine has been se~ 

to produce bag weigh"s normally dis"ribu"ed about a mean of 60 lb .~~~ 

s"andard devia"ion of 2 lb. After a peri::>d, 4 bags are selec"ed ."--

the outpUt and their weights are found to be 55.7, 55.4, 57.4, 56.7 :=. 
Do you feel any ac"ion to be necessary ? 

t.R. Mus"oe. 
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Appendix 5 

Civil Engineering Computation Coursework 
Year I 
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LOUGHBOROUGH UNIVERSITY OF TECHNOLOGY 

Dept. of Civil Engineering 

COMPUTATION COURSEWORK 

ARTIFICIAL LIGHTING INSTALLATION POINT BY POINT 

INTRODUCTION 

T1/1 

Consider a 4 x 4 array of light fittings arranged on 8 square grid such that the 
spacing is S and the mounting height above the working plane is H 

s 

Ar -- -- - - -,B 5 , , , , 
, , 
I , 
I I 
I , , , , , , , 

DL.. - -- -- - - JC 

The direct illuminance 'E' on the working plane is a function of the distance 'd' 
of the receiving station from the light source, the Intensity la and the angle of 
incidence e· : 

E. - la Cos e lux 

d2 

When more than one source is involved then the effect of each source must be 
considered in turn and the total illuminance obtained by a process of summation. 

OBJECTIVE: 

Write a program to compute the direct illuminance at representative stations at 
any point within the central area ABCD. 

TECHNICAL INFORMATION 

The light fittings may be assumed to have a BZ5 classification which has an 
intensity distribution of 

la • 10 Cos a 

Where 10 is the intensity vertically downwards, and the angle a is measured from 
the downward vertical. 

A suitable value for 10 would be I,OOO/n candela per fitting. 

TUTOR: Dr Boyce 

SN 11 082 
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LOUGHBOROUGH UNIVERSITY OF TECHNOLOGY 

Dept. of Civil Engineering 

COMPUTATION COURSEWORK 

MAXIMUM SAFE LOADS IN COMPOSITE COLUMNS 

INTRODUCTION: 

T1/6 

Short, hollow, metal-alloy pipes are available to be filled with concrete and use: 

as support columns. 

OBJECTIVE : 

Given a range of available column sizes you are to write a computer program whicb 

will tabulate the maximum load which may be safely applied to each size of column 

for both filled and unfilled pipes. 

TECHNICAL INFORMATION: 

EAlloy a 3 x EConcrete 

0Alloy ~ 10 MN/m2 

Available pipe sizes (Do mm): 

o 

lOO, 125, ISO, 175, 200, 225, 250, 300, 400, 500. 

TUTOR: Dr. Robins 

SN/I082 
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LOUGHBOROUGH UNIVERSITY OF TECHNOLOGY 

Dept. of Civil Engineering 

COMPUTATION COURSEWORK 

PROGRAMME OF WORK 

INTRODUCTION: 

T2/4 

The many interdependent activities which occur in any construction process 
need to be scheduled such that a sensible and organised programme of work 
can be established. A very useful procedure to the Engineer is critical 
path analysis. 

OBJECTIVE: 

Write a computer program which lists the order of activities in a constructio~ 
programme. Produce a table which states both the earliest and latest start
times and the earliest and latest finish-times. Clearly identify the critical 
path and the amount of slack times (floats) for each activity. 

TECHNICAL INFORMATION: 

You will be given an example by your tutor. 

In order to convert working days into calender dates and vice-versa you will 
need to account for: 

a) The number of working days in a typical week and the resultant week-ends. 
(You may assume a 6 day working-week) • 

b) The actual day of the week on which work starts. 

c) The date on which the work starts. 

d) Statutory Holidays. 
(You may ignore these for the purpose of this exercise) • 

e) Year Ends and Leap Years. 
(This exercise will run from March-September 1986). 

TUTOR: 

Hr A Thorpe 
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LOUGHBOROUGH UNIVERSITY OF TECHNOLOGY 

Dept. of Civil Engineering T2/7 
COMPUTATION COURSEWORK 

FLOW BALANCE AT A PIPE JUNCTION 

INTRODUCTION: 

Accurate methods of predicting flow in pipe networks are of vital importance in 

the provision of an adequate water supply to all consumers in the area served. 

OBJECTIVE: 

Write a computer program to determine the pressure head at anyone junction in a 

pipe network and the resulting flows in each of the connecting pipes, in order to 

maintain a specified draw-off. The program should allow the specified draw-off 

to be changed by the user after any calculation. 

TECHNICAL INFORMATION 

Consider a number of pipes serving one draw-off point 'X' within a network syste~; 

thus :-

4}----{ 

If the pressure head 'H' at the end of each pipe is known we may calculate the he.: 

at the junction in order to maintain the specified draw-off flow 'X' and the resul= 

flows in each of the pipes using the following procedure. 

i) Start with a reasonable assumption for the pressure 'H' at the node. 

ii) 

Hi) 

Compute the head loss for each pipe, 

H
f 

defines the direction of flow). 

Compute the corresponding discharges 

formula. 

Hf c R~ 

where m is a constant 

Hf . = H. - H. (Note that the sign 0: 
1 1 

Q. for each pipe from the general 
1 

R is a constant dependant upon the pipe length and diameter. 

Q is the flow rate. 



3~ 

iv) Unless the head estimate is correct the algebraic sum of the floW! 

at the nodes will not be zero and the excess or deficiency of 

inflow rQ may be determined. 

v) Calculate r (Qi/Hfi) for all pipes without regard to sign. 

vi) Determine the correction 6H a mr(Qi) / r(Qi!Hfi). 

vii) The corrected head at the node is H' • H + 6H. 

viii) Repeat steps i) - vii) until 6H is within an acceptable tolerance. 

TUTOR: 

Hr Mortimer 
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Appendix 6 

PROGRAMMING PROBLEMS 

5 Specific Permeability of a Porous Medium 

The specific permeability k of a porous medium consisting of panicles of various sizes 
and shapes is an important parameter in the study of the movement of groundwater and 
in the design of wells. The following formula is used to calculate specific permeability: 

1 
k ; -----::--::------_:_ 

m {[(I-dllm:(a.llOO)(P/d)]2 
J J 

where k ; specific permeability of mixture, mm2 
p ; porosity (fraction of the mixture occupied by interstices) 
m ; packing factor 

aj ; panicle shape factor 
Pj ; percent by weight of material j in the medium 
dj ; diameter of the panicles of material j in the medium, mm 

(I) 

If all the particles of the mixture have the same shape factor, then equation (1) 
simplifies to: 

1 
k ; -----::,...--:-----:----

m {[(l_p)2/p3] (a /loola:p. Id.)]]2 
J J 

(2) 

Consider the following problem. We have a mixture of two types of sand, type A and 
type B. How does the specific permeability of the mixture vary as the proportions of A 
and B in the mixture are varied? 
Because the particles of each type of sand are assumed to have the same shape factor, 
equation (2) is used. Write a program for carrying out the ne.:essary calculations. 

Take as sample data: 

da ; 0.08 mm 
db ; 0.40 mm 

q ; 6.5 
p ; 0.34 

m =5 
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6 Oxygen Deficit in a Polluted Stream 

The calculation of the variation with time of the dissolved oxygen in a polluted stream is 
important in water-resources engineering. In this se(tion. we will briefly discuss this 
topic and summarize a method for calculating 0 1, the oxygen deficit in a polluted 
stream. 

Organic maner in sewage decomposes through chemical and bacterial action. In this 
process. free oxygen is consumed. and the sewage is deoxygenated. A standard 
procedure for detennining the rate of deoxygenation of sewage involves diluting a 
sewage sample with water containing a known amount of dissolved oxygen and 
determining the loss in oxygen after the mixture has been maintained at a temperature of 

a 20° C for a period of five days. The BOO for a period of twenty days at a 

temperature of 20°C is called the first:stage demand and denoted A 20 (the subscripts 

indicate the temperature: 20°C). For any temperature. T. the fust stage demand A can 
be calculated by the formula 

A. = A20 (0.02T + 0.6) (I) 

As previously mentioned. when sewage is discharged into a stream, oxygen is 
consumed in the decompositon of organic matter. At the same time. oxygen is 
absorbed from the air. However, deoxygenation and reoxygenation take place. in 
general. at different rates. Usually. reoxygenation lags behind deoxygenation and the 
dissolved oxygen decreases with time. reaches a minimum, and then increases. As the 
dissolved oxygen decreases. an oxygen deficit is said to occur. When the dissolved 
oxygen is at a minimum. the oxygen deficit is at a mamnum. 

The oxygen deficit of the polluted stream can be calculated from 

KdA ( K I -K,J ) -K,l 
0 1 = m IO

d
_1O +DoXIO 

K,- Kd 

where 0 1 = oxygen deficit of the stream at time t, mg/I 
~ = coefficient of deoxygenation 
Kr = coefficient of reoxygenation 
Do = initial oxygen deficit, mg/l 

Am = first stage BOO of polluted stream. mg/I 
= elapsed time (when t = O. 0 1 = DO). d3ys 

(2) 
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Note: Before we can calculate Dt we have to perform the following preliminary 
calculations: 

I Calculate Kd at temperature T m by use of the following equation: 

~ = Kd20 (1.047)(Tm-20) (3) 

2 Calculate the BOO of the mixture of sewage and stream, (BOD)m by use of following 
equation: 

3 Calculate A, the fust-stage BOD of the mixture at 2<fC: 

(BOD)m 

1..20 = 0.68 

(4) 

(5) 

if 1..20, as given by equation (5), is substituted into equation (I), we obtain the fust
stage BOO at temperature T m 

(BOD)m 
Am = A20(O.02T m + 0.6) = 0.68 (O.02T m + 0.6) (6) 

With the data assumed above, and the use of equations (2) and (6), we can predict the 
effect of the sewage on the oxygen content of the stream by evaluating Dt for several 
increments of time after the addition of the sewage. 

Write a program for carrying out these calculations above. 

Take as sample data 

I The temperature of the mixture of sewage and stream = 17.6°C. 
This temperature will be denoted by T m' 

2 Kr = 0.2 (at temperature T m) 

4 The biochemical oxygen demand of the stream (BOD)R, above the point at which the 
sewage discharges into it, is zero 

5 The biochemical oxygen demand of the sewage, (BOD)s is 145mg/1 

6 Do = 1.3 mg/I 

7 The rate of flow of the stream, QR = 23.9 million gaVday 

8 The rate of flow of the sewage, Os = 3.5 million gaL'day 
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19 Deflection of a plale 

~iven a rectangular plate that is simply supponee at all of its edges and loaded with a 
slIlgle concentrated force P at the specified locatio: (~, '1) 

Yt----, 
t~a~ Pal (~,'1) 

b ... ~---jt---

~ • x 

The deflection Cl) at any point on the plate is given by: 

~ ~ 

4P LL Cl) = 4 
It abD m=) n=) 

where 

and 

Eh3 
D =----

2 
12(1-\» 

sin ~; 
(m2/a2 + n2Jb2) a 

. n1t1l . m7tx . nlty 
Sin --Sin -- SIn--

a a b 

D = flexural rigidity of the plate, k."mm 
E = modulus of elasticity, kN/~ 
\) = Poisson's ratio 
h = plate thickness, mm 
Cl) = deflection, mm 
P = load. kN 
a, b = dimensions of the plate. mm 

;.1"\ = location of the applied force. = 
x.y = location of the deflected point, mm 

(I) 

Divide the plate into a rectangular grid having 25 interior nodal points and write a 
FORTRAN program that will calculate the locatic'fl of the interior nodal points and also 
calculate and print the value of the deflection at e.=:h of these points. 

The input to the program should be the dimensio:s of the plate (a, b. h). the magnitude 
and location of the applied load (P. ~, 1"\). anc :he physical propenies of the plate 

material (E. \». 

Take as sample data: 

a = 30. p = 65. E= 210. 

b = 60. ~ = 10. \) = 0.3 

h = 0.5, 1"\ = 20. 
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Appendix 7 

Pre-University Knowledge 
Questions and Test Paper 

( 
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RESEARCH PROJECT ON 
ENGINEERING MATHEMATICS/SCHOOL MATHEMATICS 

This project investigates the strength of the links between mathematics at secondary level 
and the mathematics required by degree courses in engineering. Your answers will be 
helpful also to your own progress in the mathematics course here at LUT but will be treated 
in strict confidence. 

Please enter your answers in the spaces provided, unless alternative answers are provided 
when you should ring the correct one. 

NAME: 

COURSE: 

TYPE OF SCHOOL last attended: 
I Private 2 Comprehensive 3 Sixth Form College 
4 Technical College 5 Other (please specify) 

PRE 'A' LEVEL QUALIFICATIONS 
Please give details of the mathematics syllabus (eg 1MB Syllabus A, SMP, MEI, etc) 

Grade Year Taken Board and Syllabus 

CSE 
Mathematics 

GCE 
'0' Level 
Mathematics 

'0' Level 
Additional 
Mathematics 

If none of the above please specify what course you followed. 
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POST '0' LEVEL QUALIFICATIONS 

'A'LEVEL (If you repeated a mathematics 'A' Level include both attempts. Show a 
Nuffield syllabus by a prefIx N) 

Gr.rl: Year Taken Board & Syllabus 

en 

~ 
~ 
~ 
en 
U 

~ 
~ 
~ 

~ 
~ 
~ 
~ 

~ 

OTHER If you do not have 'A' levels. please indicate the other post '0' Level 
qualifications 

1 TEC 2 ONC/OND 3 fDiC/HND 4 Scottish Higher 
5 Cambridge overseas HSC 6 Other (please specify) 

Please give details of mathematics marks at level 3 TEC or above and fInal specialism (eg 
mechanical. electrical) 
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PRE-UNIVERSITY MATHEMATICS KNOWLEDGE 

Attached are three lists of school-level mathematics. The first is a list for a proposed 
Common Core syllabus for all 'A' level boards; the second is a list of topics that the 
Physics panel expected to be covered in a mathematics syllabus; the third is a list prepared 
for a BP research project. Please indicate for each topic one of the following for the 
teaching: 

A Covered thoroughly 
C Briefly mentioned 

B Covered fairly well 
D Not covered 

and one of the following for your understanding of the topic: 

W Understand thoroughly 
Y Don't really understand 

x Understand reasonably 
Z No idea at all 

(Hence typical responses might be A W; AX; BY; DZ) 

There may be some over lap between lists. 

LIST I 

1 10 19 

2 11 20 

3 12 21 

4 13 22 

5 14 23 

6 15 24 

7 16 25 

8 17 26 

9 18 27 
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LIST 11 

1 10 19 

2 11 20 

3 12 21 

4 13 22 

5 14 23 

6 15 24 

7 16 25 

8 17 26 

9 18 27 

LIST III 

1 14 27 

2 15 28 

3 16 29 

4 17 30 

5 18 31 

6 19 32 

7 20 33 

8 21 34 

9 22 35 

10 23 36 

11 24 37 

12 25 38 

13 26 39 

40 
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LIST I 

TOPICS 

I A Igebraic operations on polynomials and 
rational functions. 

Factors of polynomials. The factor 
theorem. 

2 Partial fractions 

3 Positive and negative rational indices. 

4 The general quadratic function in one 
variable, including solution of quadratic 
equations, completing the square, sketching 
graphs and finding maxima and minima 

5 Arithmetic and geometric progressions and 
their sums to n tenns. Sum to infinity of 
geometric series. 

6 The use of the binomial expansion of 
(1 + xJ" when 
(a) 
(b) 

n is a positive integer, and 
n is rational and Ixl < 1. 

7 The manipulation of simple algebraic 
inequalities. The function Ixl. 

NOTES 

Addition, subtraction, multiplication and 
division, and the confident use of brackets 
and surds. 

To include denominators such as 
(ax + b) (ex + d) (ex + f) 

and (ax + b) (cx + d)2 
and (ax + b) (x2 + c2). 

To include the l: notation. 

To include the notations n!, with O! = 1 

(; ). 
To include the solutions of inequations 

reducible to the fonn f(x) > 0, where f(x) 

can be expressed in factors, and sketching the 

graphs of Y = f(x) in these cases. 
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8 Plane canesian coordinates 

9 Curves and equations in cartesian fonn. 

10 Expression of the coordinates (or position 
vector) of a point on a curve in tenns of a 
parameter. 

II Definition of the six trigonometric 
functions for any angle, knowledge of 
their periodic properties and symmetries. 

12 Use of the sine and cosine fonnulae. 

13 The angle between a line and a plane, 
between two planes, and between two 
skew lines in simple cases. 

1 
14 Circular measure, s = re, A = 2r29. 

15 Knowledge and use of the fomulae for 
sin (A ± B), cos (A ± B) tan (A ± B), 
sin A ± sin B etc. Knowledge of identities 
such as 

sin 2 A + cos2 A = 1 

I + tan2 A = sec2 A. 

Expression of a cos 9 + b sin 9 in the form 

r cos (9 ± (X). 

Understanding of the relationship between a 
graph and the associated algebraic relation. 
In particular, ability to sketch curves such as 
y = lcxD for integral and simple rational n, 
ax + by = c, 

2 2 
x Y -+- = 1. 
a2 

b
2 

Geometrical properties of the parabola, 
ellipse and hyperbola are not included in the 
common core. 

Knowledge of the effect of simple 
transformations as represented by y = a f(x), 
y = f(x) + a, y = f(x - a), y = f(ax). The 
relation of the equation of a graph to its 
symmetries. 

The graphs of sine, cosine and tangent. 

Confidence in the application of these 
fonnulae in simple cases is expected. In 
particular the confident use of double angle 
fonnulae is expected. 
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16 General solution of simple lligonomellic 
equations, including graphical 
interpretation. 

17 The approximations sin x '" x: tan x '" x, 

18 Vectors in two and three dimensions; 
algebraic operations of addition and 
multiplication by scalars, and their 
geomellical significance; the scalar 
product and its use for calculating the 
angle between two lines; position vectors; 
vector equation of a line in the form 
r = a + tb. 

19 Functions. The inverse of a one-one 
function. composition of functions. 
Graphical illustration of the relationship 
between a function and its inverse. 

20 The exponential and logarithmic functions 
and their simple properties. 

21 The idea of a limit and the derivative 
defmed as a limit. The gradient of a 
tangent as the limit of the gradient of a 
chord. 
Differentiation of standard functions. 

22 Differentiation of sum, product and 
quotient of functions, and of composite 
functions. Differentiation of simple 
functions defmed implicity or 
parametrically. 

23 Applications of differentiation to 
gradients, tangents and nonnals, maxima 
and minima, curve sketching, connected 
rates of change, small increments and 
approximations. 

The use of the unit vectors i, j, k. 

The defmition aX = eX In a 

The derivatives of xn, sin x, cos x, tan x. 
sin-Ix, cos-Ix, tan -Ix, eX, aX, In x. 

Skill should be expected in the differentiation 
of functions generated from standard 
functions by these operations. 
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24 Integration as the inverse of 
differentiation. Integration of standard 
functions. 

25 Simple techniques of integration, 
including integration by substitution and 
by pans. 

26 The evaluation of defmite integrals with 
fixed limits. 

27 The idea of area under a curve as the limit 
of a sum of area of rectangles. 
Simple applications of integration to plane 
areas and volumes of revolution. 

The integrals of xn, I/x, eX, sin x, cos x. 

1/(1 + x2), IN(1 - x2) 

The relationship with correspondinf 
techniques of differentiation should r.: 
understood. 
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LIST 11 

Competence in mathematics is as imponant for the correct handling of physical concepts 
and models as the physics itself. A core of mathematical ability is therefore an essential 
part of A-level physics. It is not intended that any questions should be set in which the 
main interest is the mathematics. 

Students need to be able to do the following: 

An'thmetic 

1 Recognise and use expressions in decimal and standard form (scientific) notation. 

2 Use appropriate calculating aids (elecnunic calculator, tables or slide-rule) for addition, 
subtraction, multiplication, and division. Find arithmetic means, reciprocals, square 
roots, sines, cosines, tangents, exponentials and logarithms. 

3 Take account of accuracy in numerical work and handle calcu lations so that significant 
figures are neither lost unnecessarily nor carried beyond what is justified. 

4 Make approximate evaluations of numerical expressions (eg n2 = 10) and use such 
approximations to check the magnitude of machine calculations. 

Algebra 

5 Change the subject of an equation. Most relevant equations involve only the simpler 
operations but may include positive and negative indices and square roots. 

6 Solve simple algebraic equations. Most relevant equations are linear but some may 
involve inverse and inverse square relationships. Linear simultaneous equations and 
the use of the formula to obtain the solutions of quadratic equations are inCluded. 

7 Substitute physical quantities into physical equations using consistent units and check 
the dimensional consistency of such equations. 

8 Formulate simple algebraic equations as mathematical models of physical situations. 

9 Recognise and use the logarithmic forms of expressions like ab, a/b, x", eh. 

10 Express small changes or errors as percentages and vice versa. 

11 Comprehend and use the symbols, <, >, «. ». =.1. a. <x> = X, L. ~x. /:lx. 



414 

12 Calculate areas of right-angled and isosceles triangles, circumferences'and areas of 
circles, areas and volumes of rectangular blocks, cylinders and spheres. 

13 Use Pythagoras' theorem, similarity of triangles, the angle sum of a triangle. 

14 Use sines, cosines and tangents in physical problems; recall or calculate quickly values 

at 0°, 30°, 45°, 60°, 90°. 

IS Recall sin e = tan e = e and cos e = I for small e, and recall sin2 e + cos2 e = 1. 

16 Understand the relationship between degrees and radians (defined as arc/radius), 
translate from one to the other and ensure that the appropriate system is used. 

Vectors 

17 Find the resultant of two coplanar vectors, recognising situations where vector addition 
is appropriate. 

18 Obtain expressions for components of a vector in perpendicular directions, recognising 
situations where vector resolution is appropriate. 

Graphs 

19 Translate information between graphical, numerical, algebraic and verbal forms. 

20 Select appropriate variables and scales for graph plotting. 

" 
21 Determine the slope and intercept of a linear graph in appropriate physical units. 

22 Choose by inspection a straight line which will serve as the best straight line through a 
set of data points presented graphically. 

23 Recall standard linear form y = mx + c and rearrange relationships into linear form 
where appropriate. 

24 Sketch and recognise the forms of plots of common simple expressions like l/x, x2, 
l/x2, sin x, cos x, e-X• 

25 Use logarithmic plots to test exponential and power law variations. 

26 Understand and use the slope of a tangent to a curve as a means to obtain the gradient 
Understand and use the notation dldt for a rate of change. 

27 Understand and use the area below a curve where the area has physical significance. 
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LIST III 

1 Coordinate Geometry of Circle 

2 Coordinate Geometry of Ellipse 

3 Coordinate Geometry of Hyperbola 

4 Sketching Curves in polar coordinates 

5 Adding/Subtracting Vectors 

6 Scalar Product of Vectors 

21 Partial differentiation 

22 Integration as the limit of a sum 

23 Integration via substitution 

24 Integration by parts 

25 Simpson's rule 

26 Equilibrium of coplanar forces 

7 Equation of line in 3-D 27 Couples 

8 Equation of plane in 3-D 28 Relative motion 

9 Solving 3 simultaneous linear equations 29 Moment of inertia 

10 Inverse of 3 x 3 matrix 30 Motion of a rigid body 

11 Evaluating 3 x 3 determinants 31 Bending moments 

12 Argand diagram 32 Mathematical Induction 

13 r eie form of complex numbers 33 Calculation of standard deviation 

14 sinh and cosh functions 34 Simple probability 

15 MacIaurin's expansion 35 Binomial model 

16 Newton-Raphson fonnula 36 Poisson model 

17 Formulation of differential equations 37 Normal model 

18 Solution of I st order o.d.e. 38 Correlation 

19 Solution of 2nd order o.d.e. 39 Sample means and confidence hypothesis 

20 Simple harmonic motion 40 Tests of statistical hypothesis 
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Comments on responses 

The topics most conspicuously absent from the students' repertoires were 

Lines & Planes 
Conics 
The approximation sin x :: x 
Small change as % 
Vectors 
Log plots of xn 
Inverse of a matrix. 

In addition, many respondents reported uncertainty on the following 

Polar coordinates 
Matrices 
Hyperbolic functions 
Parameters 
Maclaurin Series 
Partial Differentiation 

Most notably, many candidates who showed themselves unable to cope 
with the notation f(x) had declared themselves competent in that area. 
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TEST 1: PRE·UNIVERSITY KNOWLEDGE 

1 Simplify the expression 
(x3 + a3) (x _ a)5{2 

J x2 _ a2 (x
2 

+ al 

8x 4 
- 2X2 + 7x + 6 

2 Decompose the expression -----=-2----2=- into partial functions. 
(3x + 2)(x + 4) (x - 5) 

Do not evaluate the numerators of these partial function; ie you may leave a fraction as 

3x ~ 2 without evaluating A. 

3 What is the value of (64)1/3 . (25)-1/4? 

4 Sketch the graph of y = 4 + 4x - x2. Where does y have a maximum or minimum 
value and what is this value? 

n 

5 Write out the first four tenns and the nth term of Sn = L a(l + r)i. 
i=1 

1 
If r ="2"' find the value of Sn as n ~ 00. 

6 Write down the first four terms of (1- 2x)-I/3. You need not simplify the coefficients 
for each term. Is the expansion always valid? 

1 

2 7 Sketch the curves y = x2, x4, x for x ~ O. 

8 The graph of y = f(x) is shown 

Sketch graphs of y = 2f(x), 

y = f(x) + 4, y = f(x-4), 

y = f(2x). 

-1 

f(x) 

-I 

x 
3 
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9 Simplify the inequality (y + 7) (y - 2) > 0 and sketch the graph of z = (y + 7) (y - 2). 

10 If x = 3t + I and y = t2 - 4, find the relationship between y and x. 

II Sketch a graph of y = tan x, pointing out special features. 

12 What is the angle between the line z = 2x, Y = 2 and the plane x + y + Z = 4? 

13 The minor arc of a circle subtends an angle 300 at the centre of the circle. Find the 
length of this arc and the area of the sector so formed, given tht the radius of the circle 
is IDem. 

1 I 
14 Whal is sin (A + 2B), given Ihat sin A = 12' sin B ="2? 

15 Find x in the range 00 to 1800 for which 4 sin x + 3 cos x = 2.4. 

16 Estimate cos 2x when x = 4.50 without using a calculator (fake 1t2 :; 10). 

17 If a = (I, 2, I), b = (- 2, 0, 3), c = (5, - 2,4) find the angle between (a + b) and c; 
leave your answer as an inverse cosine. 

18 Sketch graphs of the function f(x) = 2x3 + 5 and the inverse function f-I(x). 

19 Simplify the expression edn2 and sketch its graph. 

I -x 
20 Find the derived functions of tan 2x and e 

2 
. 

21 Find where f(x) = x sin x has a stationary point. 

dy 
. 22 If x = at2 and y = 2at, find dx in terms of t. 

23 Find an indefmite integral of ..!.. + sin 2x + I 
x I 2 

n/2 

24 Find I = f x cos x dx. 

o 

+x 

25 Write down an integral which is the volume obtained by rotating the parabolic arc 
y = x2 from x = I to x = 4 about the x-axis. 
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Table A.l 

Question Number Attempts Correct Responses 

1 160 53 
2 241 171 
3 284 48 (+ 77 as a decimal) 
4 229 57 (+ 39 plots) 
5 159 24 
6 248 183 
7 285 24 
8 199 43 
9 228 3 
10 255 196 
11 256 147 
12 101 2 
13 248 195 
14 223 132 
15 188 95 
16 83 47 
17 136 72 
18 192 7 
19 141 49 
20 180 108 
21 212 3 
22 243 175 
23 204 108 
24 196 109 
25 213 61 (+ 177 evaluations) 
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Appendix 8 

PROJECTILES STORY·LINE (First Draft) 

Sequence 

I Projection from cliff 

2 Ground to ground 

3 Hitting a fixed target 

~ 
4 Projection from a cliff 

5 Range on inclined plane 

6 Impacts I 

Outline of sequence & objectives 

Particle dropped & 3 particles projected with different 
horizontal velocities. Compare horizontal ranges and 
observe that vertical motions are the same. 

Idea of parabolic flight path. 

Possibility of choosing cliff height, display of velocities 
& displaeements. Energy conservation. 

Application to dropping package from plane. 

Demonstration trajectory. 

Fixed angle, varying speeds to study range & time of 
flight etc, maximum height. 

Fixed speed, varying angle to discover maximum range 
and complementary angles. Possibility of choosing 
velocities, displaeements, angle to horizontal, energy. 

Given a velocity, choose the angle of projection to ~it 
a fixed target. 

Include a point outside parabola of safety. 

Applications Hitting a golf green without and with 
a tree to limit possible angles. Perhaps 
include crieket and tenttis. 

Angle of projection> O. To complete the study of 
sequence 1. 

Application Hitting a target area at the level of the base 
of the cliff. 

Demonstration. 

Choose up or down a plane. Vary angle of plane. 
Find angle for maximum range. 
Choice of items to display. 

Ground to ground: study various quantities (height, 
range ete) for 1st three phases of motion. 



Sequence 

7 Impacts IT 

8 Impacts III 

9 Air resistance 
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Outline of sequence & objectives 

On vertical wall. Possibility of rebounding to point of 
impact. 

On inclined plane. 

UP Will projectile continue up or start back down? 

DOWN Nature of each phase. 

2 n 
R=kv;R=kv ;R=kv 

Study nature of trajectory as k -+ ... 
Idea of tenninal velocity extended from unit on vertical 
motion. 

Also, allow the case of air density varying with height. 
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PROJECTILE MOTION SCRIPT (First Draft) 

Section 1.1 

SCREEN DISPLAY 

~-"" 
\ 

H 

\ 
\ 

.,u 
.-----

\ 
\ , 

R~j 

Horizontal Launch from Cliff 

HEADING 

PARAM 
ETERS 

DIAGRAM 
(ORTEXn 

TEXT 

TEXT 

A projectile is fired from 
the lOp of a cliff. 

Let the height of the cliff be H, 
the initial velocity of projectile 
be u, the horizontal range be R 
and the time of flight be T. 

Input H in Metres 

Consider u = O. 

TIME 
ELAPSED 

(s) 

DISTANCE VERTICAL 
FALLEN VELOCITY 

(m) (mts) 

Input u in m/s 

TIME 
ELAPSED 

(s) 

DISTANCE VERTICAL 
FALLEN VELOCITY 

(m) (mts) 

NOTES 

About 12s in duration. 
Noise on impacL 

Repeat frrst diagram with 
H, u and R appeariang 
sequentially. 

Noise on impacL 

Show flight in "real time" then 
SlOp at intermediate stages, 
holding on last val ue. 

Hold background diagram. 
Display new trajectory & then 
repeat for both simultaneously. 
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Repeat the sequence for a second choice of u. 

And for a third choice of u. 

....... 

....... ~-... 

.... 
\ 
\ 

HORIZONTAL 
VEROCITY 

(m/s) 

INPUT H in m 

INPUT u in m/s 

HORIZONTAL 
DISTANCE 

(m) 

Energy considerations 

TIME POTENTIAL KINETIC 
ELAPSED ENERGY ENERGY 

(s) (J) (J) 

Replace diagram by the table. 

Allow choice of parameters 
10 be displayed (together with 
time elapsed) from the 
following: 
Horizontal distance b"avelled, 
distance fallen, horizontal 
velocity, vertical velocity, 
angle of trojectory to 
horizontal. 

Display to be halted at several 
stages of the motion. Table 
displayed for current 
instantaneous values. 
At end of motion replace 
diagram with full table. 
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Projectile Motion 
Author: 

Work Cards: 

Software Adviser: 

Senior Programmer: 

SUMMARY 

L R Mustoe 

J A Fairley 

A H Whitfield 

I A Sulton 

This unit is concerned with the motion of ohjn...:ts projected 
into the air from a stationary stalling·l)oilll. Hmilontal 
projection frOIll a cliff top; the 11I0lion when I>rojcr.tioll is 
from a horizontal plane, including 8t1emplillU to hit taruets 
hOlh above and at groUlHllcvcl; motion up 01 dOWlIlIll 
inclined plane; motion alter impact: arc .. 1I (:ollsidurcd ill II .. ~ 
absence of air resistance. Finally. some cascs of resistilllcc 10 
the motion are examineu. 

NOTE 

II is assumed Ihal the projectile can be tJealed as a point 
mass, i.e. rotational effects earl he iUlloJed. Furlhnr.lll1: 
acceleration due 10 gravity is llsSUI1l£!d COIISlilll1 so tlWI Ihn 
motion takes 1>lace close 10 the earth's sw lace. 

The mathematical derivations of resulls Clllfllclatioll~lIip~ 
suggested by the use of programs in this unit ciln be fUIIIIII ill 
most standard le)(t·books which include the IUpic of 
projectile motion. 
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CUNIENIS 

PART 0 IneKperienced User Guide 

PART 1 Horizontal launch from a Cliff 
PART 2 laullch Irom level Ground 

2,1 Fixod Iniltill Angle. Varying Initial Speed 
"} ') V,lIying Iflilial Angle. Fixnct Initial Sp':I!d 
l J V;lIyiny Inilial AnU1c or VarvillU luilt,,1 Speed 

PART 3 Itil a Target 
3.1 Elevated Ti'lfuct 
3.] Ground Tmyet 
3.3 Bail Games 

PART 4 launch Irom a Cliff 
4.1 General Anu1e 0' Projection 
4.2 Hit a Target helow Cliff 

PART 5 landing on Inclined Planes 
5.1 launch up the Plane 
~.7 L,1\1nch (I own the Plane 
5.3 Find Maximum Range 

PART 6 Motion after Impact 
6,1 llllpact 011 l.evel Ground 
n.? Impact with VI~rtical Wall 
6.3 IIlIPilCI on Inclined Plane 

PAHT 7 Resisted Motion 
7 1 E )(.lIHplf!s 
J.2 V.-ui<lhln Cucllit;it:1I1 illltllndc)( 
7.3 Vil/tillion of Air Density with tlt:iHht 

PAR r 8 E)(il from Unit 

2 

...). -' 

..... 

OPERATING INSTRUCTIONS 

This lInit is contained on two ,"ogralll discs: Dist; 1 cOlllilins 
Parts 0-4 inclusive and Disc 2 contains Paris 5-8 indIlSivf!. I u 
use it on a BBC model B computer with a douhle disc dl iv(~. 
load Disc 1 in Drive 0 (Ihe lOp one) and Disc 2 in Driv!! 1; with 
a single disc drive. load Disc' (evell il onc "I Pafts 5 His 
required). Then while holdinn down the SHIFT key, press tlu~ 
BREAK key to start the unit. (AlterIHllivcly. type 

CHAIN "START" 

and press Ihe RETURN key.) Further illSIHICliolls OflIlS<lUf! ,Ill! 
given in PART 0 but nole that: 

(i) Pressing the ESCAPE key at any time reslalls 'he 
current part or section. 

(ii) Pressing the BREAK key ilt any lil1lo ffHUrflS YOII 10 the 
contents 10 select another pari or to exit frolll tlU! unit. 

ACCURACY 

1, The accuracy of all numerici..ll cai<:tllaliulls will I 11: .. 1 
numbers is linliled by the number 01 digils the COIHPlllcl 

uses to represent Ihe"'. 

2. Computed results output olllhc screen hfJVf~ usually 1":1:11 
rounded to the number of decimal places showrl. 
Cunsequently the Illllnhcr may flol he shown p,,:ciSl:ly 

J 
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NOTES FOR HIE USER 

PART 0 Inexperienced User Guide 

Use of this unit is explained includiny 
current status page 
subdivision of Ihe unit 
c1lphilbetic input 
numerical input 
Illl~nus 

I'SLl 
BREAK 
ESCAPE 

PART 1 Horizontal Launch off a Cliff 

The sequence begins by showing a IYI~ical 
Iriljcclory of a projectile fired from a Ollll at a 
vductly u horizontally to land on level 
BIOUIHi a distance H hclow the firing point and 
.1 hOlizontal distance A. 

Yuu <He invited to choose a value for H 1252 is 
suiltlblel. First the projectile is allowed to fall freely 
from this height; note the final vertical velocity. 

Now you choose three horizontal velocities ill turn 
(suitable choices am 26. 52. 78 or 40.80. 100). 
Notice the final vertical velocity in each case. See 
wlwlhr.r you can discover a relationship hetwecn 
vertit,;al velocity and horizontal range. What is the 
shape of the trajectory? 

For thc l<Jst velocity chosen the potential.md 
kinl~lic energic$ iJre displayed at various stages in 
Ih!) !IIolion. What do you notice (casil:sl if Ihe lasl 
velocily was 100 ms 1)1 What does your Jesuit 
StlH!H~st as a possihle means of solvill!l such 
plut,lellls of prujm:lile motion? 

PART 2 launch hom level Ground 

2.1 Fixed initial angle, varying inili.;ll Spt~t!d 

1 he sequCl1ce hcuins by ~howil1n a lypicCiI 
lI .. jectory of a projectile fired at spe~cllI anti 
;1I1~llc 11 to Ihe horilonlal; ils hOli/ulltalli:lllue 
is R and the greatest height achieved is H. 
First you choose values for Cl and u 160 and 100 
are suitable). Then you choose two other 
v.lIlles for u (50 and 751. 

What shape do you think the I1 i.llcttO';cs (]I e" 

4 

What i!:> the relalionship ht:lwcell illili,1I :;I'~:~:d 
and: 
la) greatc!:>t hflight (h) horilolllilll;IIIHt! 
(c) time 01 flight Ill) time to ma)(imum 
height? 

2.2 Varying initial angle, fi)(ed initial speed 

An initial speed is selected (100) and three 
angles; suitable values arfl 30. 40,50 Of 30,60, 
70. Note the range each tillle. Try 10 filld the 
angle which gives the ma)(imulll range. Wllal 
do you notice auoullhe olher angles (fur 
instance 40",50" or 30", 60 'I? 

2.3 Varying initial angle or v'1Iyiu\) illili,,1 SI":!!!! 

You can find out other fealures of this 1II0lioll 
by keeping the allgle of pfOjcction fi)(!!d <:IlId 

varying the speed or vice· versa. 

For the la 51 ex anI pie sclm:tp.d POICllli;II, kinclic 
and tolal energics are displayed at sl!vf:ud 
stages of Ihe motion. What do you notice? 

PART 3 Hit a Target 

3.1 Elevated tar gel 

Four targets are presentcu (llId yOll h~l\le to 
choosp. the anglp. of projccliol1 you think will 
be suilahle. If you IlIiss th,ee lillles in 
succession you are told tlte correct allHit:1s1. if 
you hit with the first alte1llpl alld 1I1iss tllIef! 
times more you are lohltllc missill!J ;.IIlulc. III 
cases of failure Ihe corrct.;ltr<tjeclorif!S ~He 
displayed. Note the third and l(Jut 111 C;tSI:S. 

After the fourth exall1plp., hy tu cxplailltht! 
third. 
A sclcc:tioll OI,illldol1ll;lIl/nls (tre PIf!:;~:III1:d 
for yOtllO uhl<.tin furl her pf<.lClicc. 

3.2 Gruund l<Jtyel 

Next cOllies the prOUIClI1 (If liuHJiny it Hull !JillI 
on a green. You have 10 chuose thfl .wU"! of 
plojection which will allow you 10 hit the 
tarHct. RemcmbcI Pari 2.2 IcslllIs. 

3,3 Ball games 

Three simple problcms are considered: hillillU 
a crickct ball over a fieldcr and (lfllhaps 
clearing the boundary, throwinn it hall illto 
the wicket keeper, hittil1U alcllllis IJ'lllover a 

5 
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tmHlis net and lamliny in the CUIIII. You (;all 
place the ol)slades anti choose position ul 
boundary. speed and angle of projection. 

PART 4 launch from 8 Cliff 

4.1 General angle of projection 

The example in Part 1 is exlelldcd. 
A heiuht for the cliff is chosen. cm in;liill speed 
01 projection and an initial any le to the 
horizontallthe angle is positive ai>ove the 
horizontal and negative below). Horizolltal 
and vertical distances form the point of projection 
or horizontal and vertical velocities can be 
displayed at half second intervals of projectile 
time. 

You have three angles to select (70. 20. -40). 
What shapes are the trajectories? 

4.2 Hit a target 

The lasl sequence gives a larget area at the 
level of the bottom of the cliff which has to be 
hit. 

PART 5 landing on Inclined Planes 

5.1 launch up the plane 

An example is shown of a projectile landing 
on a plane inclined upwards to the horizontal 
al angle It You are invited to choose a speed 
of projection. the angle I' and the angle of 
projection with the plane. 

Ser. what relationships yOll call deduce about 
range. maximum height achieved and lime of 
flight. 

5.2 l,hJnch down the plane 

Then the sequence is repe'lled with Ihe tJlane 
inclined downwards to the horizontal. 

5.3 Find the maximum range 

We have the choice of a planc inclined 
upwards or inclined downwards. 

We select a speed of projection and an <tnyle 
of inclination for the plane. NOI£! tlte HmHc 
along the IJlane. Select other allules to try to 
eSlablish the onc which gives maximum 
18nge. 
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PART 6 Motion after Impact 

6.1 Imp8cI on level yroullu 

The first SCQllellce shows a I)lujcctil!! 
rebounding and follows it until ils second 
impact. 

Ahcr choosing an initial speed alld <.111 initial 
angle of projectioll wo select a value for Ihe 
coefficient of restilution W.5 is rCCOIIIlIH!IUlc~lI. 
The initiallrajp.ctory and two rebounds are 
followed and you are invited 10 decide the 
effecl of rebounds 011 lime of fliyhl. lal1ge and 
greatest height reached. 

6.2 Impact with vertical wall 

The projectile now meets a vertical wall in its 
trajectory and rebounds. Auain an illiti<Jl 
speed and angle ofl}lojf~clioll are selected. 
Notice the velocities hefore impact. Choose a 
value for the coefficient of restitution 10.5 is 
suggested) and note the velocities after 
impact. 

The sequence is repcated showing (lislall(;O 
travelled in the horizontal and vertical 
directions. 

6.3 Impact on inclined plane 

Three examples are given ofl1lotion up a 
plane following an impact. showing differellt 
possibilities which arise. 

Then an example is shown for motion cluwn a 
plane. Does this represent the only 
possibility? 

PART 7 Resisted Motion 

7.1 Examples 

Three cases arc considefcd: resjsl<.tllcf~ 
proportional to velocity. velocity squared <Hili 

velocity to the powcr 1.5. In each illstance. Ihe 
trajectory with 110 resistance presenl is 
displayed tor reference. 

7.2 Variable coellicicIl1 alld indcx 

Then. resistance effer.ls life shown wilh 1I11! 

constant of proportionality equal to 1; you 
can choose a value fOf the (:01151.:1111 ilS a Ihilll 
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r:x;lInplc, Whilt chanucs du yuu nuli,;c us tho 
constanl increases? 

What are the effects of increasing the ~ower 
01 the velocity from lthrouH" 1.5 to 21 

7.3 Variation of air density with hniyht 

First the variation of air densily with IwiUhl is 
shown. The effects of this on Ihp. trajectory 
Llle displayed. Then you are invitod 10 find Iho 
angle of projection frolll level ground which 
gives maximum range in the cases: 

fi) air density assumed conslilnl lii) air oensity 
varies. 

PART 8 Exit hom Unit 

The unit is terminated anll the COllljlutcr is loft in 
its 'normal' state. 

• 
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PROJECTILE MOTION - TEACflER'S GUlllE 

This unit is intcnded tu enhancc the stillul,ud miJtl~lial 011 
plojectile motion IOUlHJ ;ntc)(t books. 10 IIlis 1~lld it ilpplit~~ 
the principles of mechanics to some simplified vut placlical 
problems. However. the power of the Illiclo·comptlh!l i:; u~l:d 
to animate and elucidah.! the mOlion fOI Ihf! henefit 01 hfllh 
teacher and pupil. The unit i~ ITwnu-flriw"Hl ilml slIit;IIJII: lot 
lIse eithp.r hy Ihe lear-her with his class to (/el1lOllslI'II(~ 
theorelical resulls ohlaille£i by him or iJy Ihe , . .HIpil f(]l !plid!!t! 
discovery - the guidance, 01 COllfse, beinn suppied by II"~ 
teacher. In ildtlition, holh leachflr and pupil can lI~e the tlIlil 
exvcril11cntally as they would a piece (If I<liloralory 
apparatus. The menu-driven nature of thn ~lIlil allows 1I11~ 
paris to he lIsed in any order accoldill!lto IIrwd or intlr:cd 101 
some paris tu lle OIlIillf!d 3t;cordillg 10 ~yllllhus requiICI1H:IlIS. 

With each PHII a possible coulse of actiun is 

(i) the leacher introduces the conccfJls illvolvod. 

(ii) under the guidance of the teadlcr, till! pupils invI!sl;Uillc 
these concepts lISinfl the compu!(!r SilllulOlt;OIlS as all 
alternalive to traditionallaiJolittory c)(pefimcnts. 

(iii) the leacher collects Ihe ideas and slIuucsled fUIU:liollClI 
relationships alld lIses matlu!l1latical <Inalysis· tu fl!:, iv,: 
results. (The ~rograms can be lIsf!d to check 0111 cella!1I 
results and solve problems ~osed by the Icachel.) 

• Some paris may involve results which ilIC heyond flu! Inv(:1 
of mathematics apposile 10 the sllttJents. This is dnli"f:"I"! 
aJltl il is honeet Ihalthc opportunity will he la ken to illlltlrilli.I' 
students to ideas bcyollcllhe (;uftcnl syllilhus. 

PART 1 Horizontallaullch hom a Clifl 
The aims of Ihis pit""I!! 10 show 111 .. 1: 

lillhc motion of a proi.~clih! lif!:ti huri/lul,.IIly 

110111 tJ poilll .,hove h:vt:l OIlHllld is tl,,~ fI!!:ulla/lt 
Ilf two se!>ill"t" IlHltiollS: v.!llic:i11 1,,11 111Hh:1 

f)ravily and Ilnilorrll lIorizul1lnl vclucily. 

lii) huri.lonlal fa"91) is prnlHllliollallO hOliJulllal 
velocity, 

liii) the Slllll "I lilt: killl!tic .11111 jJOICllli"II:"t:'!lil:~; IS 
cOl\stal1llhHin~ lite 1lI01ioll. 

PART 2 launch from level Ground 

The I1lCtin aillls of this ptlll <lIe 10 dt!lIloIISllilll: lit,: 
gellP.fal properties ollhf! parabolic traj.:clory ",," 
10 ollwill the ~lIl!lle of projeclioll whicll !liv,:s 
maxi,llllllll,orilontill range . 
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PAH T 3 Hit a Target 

Thi:; pilrt aims to inlroduce the concept of parahola 
of sillely. and to show that a point within the 
Pilrilhola of safety can be hit with a fixed initial 
speed using either of two angles of projection. 

lht! :;cculld section is concerned with ohstacles 
hloc:killH the path of the projectile on its way to a 
fi)«(~tl taryet. 

Filljllly. some elementary aspects of cricket and 
tennis are considered. 

PART 4 launch from a Cli": General Angle 

1 his part considers the continuation of the 
iJ<lraholic trajectory past the horizontal level of the 
point of projection. 

PART 5 Landing on Inclined Planes 

In this part the problem encounteretl with the 
projectile landing on a plane inclined upwards or 
downwards is examined. The question of angle 
of projection 10 achieve maximum. "nHC is 
considered. 

PART 6 Motion after Impact 

All previous parts dealt with motion lip to the point 
of hrst impact. Rebounds arc considered off level 
uround. a vertical wall and Cl plane inclined 
upwi,lIds or downwards (the last example is deal! 
with qualitatively). 

PART 7 Resisted Motion 

This I}art considClS Qualitatively the effects of 
resistance to motion of the form 

kv' l where n 1.2 and 1.S. 

'I hI: effect of variation of air (Jcllsily with hp.ighl is 
also considered. in particular \Ipon the ally le of 
projcctioll to achieve .1li)xirnUlll IluriZOlltdl rallge. 

'0 
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Appendix 10 

Simultaneous Linear Equations 
User Guide 
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SOLUTION OF LINEAR EOUA110NS 

SUMMARY 

This unit is intended for use as an aid In tne t2aCnln~ and learning of solul1:>n 
metnods ior systems of linear eauations. Vanous styles 01 pro;,ram are Incluaed. 
some pernaps more suited to oemonstration in lectures. wnil5t otner m:>re 
interactive programs may fmd better service in tne tutorial situation. However the 
software is used. every efiort has been mace to ensure comolete e:se of use. ~our 

melnods of solution are consicered; Gauss elimmal1on. matrix mversion, 
decomposition and iteration. 

DISC CONTENTS 

Gauss elimination 
::x3;;';:lle without pivoting 
::xarr:ple with pivoting 
;:ixed exampie of Gauss·Jordan 
Variable Systems 

Matrix inversion 
;:ixed example using elimination 
Variable systems 

Decomposition 
Fixed example· Crout LU 
rixed example· Doolittfe LU 

Iteration 
rixed example· Ja:obi 
rixed example - Gauss·Seidel 

OPERATING INSTRUC110NS 

The software is wrinen for the BBC model B microcomputer and is contained on one 
40 track disc:.. Place the disc in 'he drive (drive 0 if using a double disc drive); ,ne 
software is then started by holding down the SHIFT key and simultane:>usly pressmg 
the SiEAK K::Y. slight adjustment to the monitor display is allowed if re:JUlred. 

°i) Pressing the SR~K key at any time returns the user to the 
contents with tne section pointer at the first entry ready 
lor reselection. 

ii) Pressing the =:SCAP=: key at any time returns the user to tne 
contents with the section pointer at the current section, 
efiectively °restarting the current part. 

Apart from the above two keys this unit operates with only t~e bur CURSOR keys 
and the R=:TURN key. 

Note: It is not essential to use a colour monitor with this unit but if available, 
c:>lour wilt enhance the presentation. 
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Gauss Elimination 

[ 
2 2 4 

1 3 4 

1 S 8 

, r 
I 2 ~ 4 

l (j 2 2 

1 S 8 

Figure 1 

Three fixed examples of 3 x 3 systems are used as demonstrations of the 
elimination procedure; the first without pivoting, the second using pivoting and the 
third extending the pivoting example to use the Gauss·Jordan method to further 
simplify the system. All three examples have exact solutions (no errors from 
round· off etc) and consequently the method here is all·imoortant. The fourth 
program in this section allows solutions of a four equaiion system to be developed. 
This example is very flexible the user has control of various aspects of the 
solution, The pivot row can be found for each of the following cases: 

1) No pivoting 
2) Correct pivoting 
3) 'Anti' pivoting 

Having reduced the system to t:c:Jer triangular iorm, the oOlion to 'scroll' the 
c!s:;lay back and review the $Oiuli:Jn is avaiiable: at this slage also the 'restart' 
o:;::on allows tne $oiulion to be c:s:Jiayed again i:::m the be.innmg with a further 
'j:~i:1ter' c::::::n. On slanin~ the s=::!.Jll:>n ~;ialn the !..is:r is aSKed if zeros are le be 
asst.:med or wnetner errors (if a:;y) are to be p:i,'led at t"ose p:lsiti:Jns where 
zeros are being generated. The s:llution may aiso be extenaed via the Gauss·Jor:an 
method to enable the solution to be 'read off directly. 
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MATRIX INVERSION 

The S\lst .. ,.. In ",atrix for", 

Xl +2x: +3xj' = Z~ 

iJ [x. 1 [~l] 2X1 +5x~ +3x:! ~ 38 x! = ;i? 
+8x; ;:- 26 

x, J Lb 
X, 

= R 

[ 
1 2 3 1 8 8 

1 
8 1 -3 -2 ~ 9 

8 8 -1 -5 2 ~ R, =R, -2R, 

Figure 2 

The first program here solves a 3 equation system by matrix inversion. The 
inverse is found by elementary row operations. This program is intended as a fixed 
demonstration illustrating the method of inversion by row operations. 

The se::ond program solves a 4 variable system. A re::ord of the determinant of 
both the coefii::ient matrix and the identity matrix is kept throughout the row 
operations. 
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DECOMPOSITION 

rigure 3 

The- s¥ste.", 

Xl + 5x: + 3x: = 

Xl +l.9xz +.17X).-= 

[ 
1 

3 

8 

In r..atrix fo,..,.. 

r !i -, I H ;~ ~ I x, 
1~ 1: x:. 
~o ~~ I X:; ~bb 

• 

A v = b A 

I! E' I 

[ 
1 5 

:1 i 
8 1 1'1 4 

-1 ~ j 8 6 

L U 

Two fixed examples are used to demonstrate the methods of Crout and Doolittle. 
The working required to formulate the two triangular matrices from the original 
matrix is optional.· The third program allows a 4 equation system to be reduced to 
upper- and lower- triangular form by either Crout or Doolittle's method. 

ITERATION 

Two fixed examples are avaiiable, one on Jacobi's method the other Gauss-Seidel. 
The examples are on two equation systems such that the solutions can be monitored 
graphically. Two iteration schemes are used for each method, one of which 
converges whilst the other does not. 
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Appendix 11 

NUMERICAL INTEGRATION 

SUMMARY 

This unit is intended for use as an aid in the tea:ning and learning of numerical 
integration. Various styles of orogram are included and every effort has been made 
to ensure that the software can be easily adaoted to a wide range of teaching styles. 
Four metnods of integration may be examined in a hi~hly interactive manner. 

DISC CONENTS 

1 Tra::>9zium Rule 

2 Sim~son·s Rule 

3 Gauss-Legendre Ouadrature (2-point) 

4 Gauss-Legendre Ouadrature (n·point) 

5 Romberg Integration 

6 Comparison of Methods 
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COMMON ELEMENTS IN THE UNIT 

With the exceotion 01 Romoerg integration. every oarl in tne unit allows a :noice 0: 
wn:ch funotion is to be studied. There are seven junctions available 

1 fix) c x2 

2 fix) a x3 _ 2x2 + X + 1 

3 fix) = sin x 

4 fix) = eX sin x 

5 f(x) = 1/(x2 +1) 

6 I(x) = In x 

, 2 

7 fix) = e 
-'2 x 

It is hoped that this selection will provide enough variation to bring out all the 
relevant features. Function 7 is provided to demonstrate the usefulness of numer:::=. 
integration on functions that cannot be integrated analytically and can be 
d:monstrated with reference to the normal pro:,ability integral. Fun:iions 1 to 6 ::~ 
be examined in terms of their analytical and numerioal solutions. showing the re;2:'., 
accuracy of each method. 

The interval [a, b] over which integration is carried out can also be varied within 
certain limits. These limits depend on the funot:on under consideration, but there 
should be enough flexibility to show how the integral and its accuracy depend on t~e 
interval. 

In ea:h program the option to cnange function or interval is given in tne main men~. 
-;- c choose a f!Jn::t:~n: 

1.~:::)Ve the c:!::nJfed i:-::::!:a~cr :.:~ er c:)· .... n t:ntil ii aji?~:; 

with the oesired bn::i:l.,. 

Take the current fun:tbn and ret~rn to the main menu 

T:> change interval endp:>ints: 

., 
.~ 

<"alurn> 

1.love a lelt & ri;)ht respectively between its lower 
limit (Shown on the x-axis) and b 

1.love b left & right re:pectively between a and the 
upper limit (also shown on the x-axis) 

Take the current values of a and b and return to the main menu. 
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TRAP:Z1UM RUL::: 

• 
./ 

.. 1',. ""~JI Aiii:"~ 
·:.: .. ~.~r~'" 

; •• -- •• ' • ~ -- a-¥" 

f(x) = 

x :'-2x ~ +x+.! 

a = -6.3~ 
to = :) . ~l< 

lt~UE" villu~ 

e.97598 

When the trapezium rule is chosen from 'the main contents. the menu page will appear 
(as above). From this menu six options can be chosen. Throughout the running of the 
program there is a readout (on the right·hand side of the screen) 01 the current 
information. This shows f(x) (the function under consideration). a and b (the limits of 
the interval under consideration). n (the number of strips being used for the 
approximation). and the true and estimated values of this integral. Above this 
appears a graphical representation of the difference between true and estimated 
values of the integral for values 01 n from 1 to 10. All of this iniormation refers· to 
the function which is shown above the menu. At the stan of the program the true 
intearal is an!wn in light blue. and the traoezoidal 2ooroxlmatlon is niahliahted over - . . . - -
this in clack. 

Th5re are six c~t:ons 1:> ths menu. To :h!:J:lse one of these c;J:~'ns r.::>ve t.'e v,'hile b~r 
"t:? and c:J\':n (wirh t.ie c:.!:sor keys j and':' i until the desirG~ c.::;:;~ 15 ni;;h!i;':1ted a:-:::J 
then press <rteturn>. The options are as follows; 

1 Change function 
This gives a submenu of seven lun:lions. 

2 Change nur::oer 01 SHips 
7his aliows the user to select a value of n oelwecn 1 
and 10 and displays the corresponding pi:ture. 

3 Change cnd points 
This allows the user to choose the interval over whi::h 
integration takes place. 

4 Toggle colours 
This option interchanges' the highlighhng 01 the p::ture 
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between tne true Integral and the traoezoicial 
approximation. so tnat wnen this option is selected 
successive presses of tne "'Meturn> key results in the 
alternate highlighting of the two integrals. 

5 Error for each strip 

6 Quit 

The menu is removed and in its place there appears a 
graphical representation of how the total error on 
(a. bl is divided up between the n strips. It should be 
noted that the height of the bars are not scaled to the 
piC1ure above. 

Leaves the program and returns to the main contents 
page. 

A visual interpretation of the trapezium rule is generally quite easily grasped. Here 
it can be made more obvious by 'toggling' between pi=tures of the integral and ifs 
approximation. on the same axes. This shows where the corners of trapeziums co m; 
from, and how near the approximation is to the real thing. By taking estimates ior 
dilierent values of n it soon becomes clear that ac=uracy increases as n increases. 
This fact is encapsulated in the error graph in the top right·hand corner of the 
display. and also shows how quickly the error drops. For larger values of n the 
trapeziums and the curve itself become diffi:ult to distinguish. This is when the 
'error for each strip' option becomes more interesting. The relationship between the 
error and the second derivative of the function is often stated but rarely 
demonstrated. leading to a disinterest in error calculation, or in working out how 
many strips are required to get to within a cenain ac=uracy. When a larger va!~eof 
n is used. the distribution of error along the interval can be seen to be the same 

'shaoe' as f'(xl. This is panicularly obvious when f(xl c x2 "and the bars line up 10 

iorm a constant, or when f(x) = x3 + 2x • 1 and the bars stan to look like a line of 
constant slope. 

7hese ciemonstrations can help to give a g:::::i intuitive idea of what is going on. ::1t 
ln2Y need to be backed up by more solid 15::5. V/hen the trapezium app;:::xima,::n 

formula is supplied. the student can work on panicular examples. and compare his 
result with the true integral. without having to solve it analytically (pani:::ularly le; 

values of n not catered for by the sof1ware). 01 course. for I(x) _ exp (- x 2/2) an 
analytical result cannot be supplied, and any result obtained can only be compared 
a~ainst another numerical result. taken by a more a::urate method. This exam:Jie 
:nereiore demon:trates the Imp::~a:1c€ 0: i,i.,;:71en:al inlegrati::>n. 
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SIMPSON'S RULE 

The layout of the dis:Jiay and the options available trom the menu are exactly the 
same as tor tne previous program, The number of strips is increased and decreased 
in steos of TWO, so that only even values of n are permissible, and only these vaiues 
are shown in the error graph, As beiore the i a'd J. cursor keys move the highl:;nt 
bar up and down the menu, and <Retum> will seiect the highlighted c:Jiion, 

A good basic uncerstanding of Simpson's rule can be gained by to;;;,img beTWeen the 
picture of an inte~ral and the picture of its SimDson approximation. The increased 
accuracy of Sim:Json's rule over the trape::oidal method means tna: tne difference 
between the twO integrals is only discernable ior very low values ot n, and the ,:)e2 
can be ex;:Jiamed Just using n = 2. The difierence is particularl}' obvious tor '\',':;;~Iy" 

functions such as f(x) = x3 .. 2x -, or sin x over a large interval. and the three 
points used for tne curve fitting can easily be shown. 

For larger values of n, this diagram becomes less useful, but the 'error for each 
strip' option gets more interesting. In particular it shows that for each two-strip 
section, while there is an error for both, the two errors are of opposite sign and 
hence go some way towards cancelling each other out In the case of the cubic 
function, of course, these two errors cancel each other out completely, and the 
approximation is exact. 

The heights of the bars in the error graph are much lower than those of the previous 
program, and this comparison can show very quickly how much more accurate 
Simpson's rule is than the trapezium rule for similar amounts of calculating. Again, 
this intuitive introduction needs to be backed up by giving the appropriate formulae 
and working on fixed examples, and perhaps showing how the formula is derived in :~.= 

first place. 



440 

GAUSS-L:GENDRE aUADRATUR: 

......, 
'i'· 

" ":1:': 
,,I, I 
.': 1 
.' ": 

i 

Two se:iions on Gauss-Legendre integration are provided in the unit: 2-point and n
point. These serve to show two ways in which the sum of (ordinates x weightings) 
can be represented geometri::ally; firstly as a trapezium, and se::ondly as a series of 
rectangles. In both cases the function is shown on the left-hand side of the display, 
with the scaled function (to the interval [-I, I] on the right·hand side. The Gauss
Legendre approximation is then superimposed over the scaled fun::tion. The number oj 
ordinates can be selected, from the menu, in the rage 2 to 6. but the choice of 
functions and intervals is the same as before. 

Once it has been pointed out wny Gaussian integration takes D:ace over [-I, 1] it can 
easily be shown that any funcl10n over any interval la, b] can oe scaled down to 
!-I, 1l by g(u) = 112 (b - a) f (I:2[b - a] u + 1/2 [b + aJ) S~ t:1at the 

b I 
• 

.~'on·a'I'J "14-::1 1 j 

. , 

f l ) d •• ~ J ", a-e '~e s·~e -'n t '".-•.••• ~- .. , '_0 "" <,., ',X X Cllr.,J: 9 \U1 c:; I '01 Gill. I e wo 1 ... ,,_ ...... :1,:,. • .;..1I ...... n Si .......... , _. __ 

a -1 

on the display, are seen to be roughly the same shape, with the scaled version 
squashed or elongated, and the two areas look the same size. A sWdent can be told 
I~at these areas are the same size. b:JI here is visual evidence of it. Once this 
r=iEli:;.:r:ip has been e5~2~!isi,~: C:iC- :::z~ g::; l::~:.J: the: tE!sk ef i;,le~r2~:n? t:,i:. n0w 
f:Jn::lion. ' Of course, on::e tne or:::;;;a1e5 and we:ghtings are s:al!,d it is simple 10 
work on particular examples, but i1 is up to the teacher to snow where these values 
C:lme from, and why they should produce su::h an a::urate rewlt: in particular, the 
cases where this method produce$ exact res:Jlis. The examples need to be p:linted 
out, but further than this the reason for this exactness needS to be explained. This 
information is quite separate from the software and only its impli::ntions can be 
demon~trated on the screen. 
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COMPARISON OF METHODS 

a , 
-~ . ." 

b 

SI""P, 

uaus~ 

F.OM& . 

~Ei ~tt'l p!". 

.; oro!: 

: .:..~ 

The controls and available choices in this section are much the same as for the other 
pans of the unit, except for changing the accuracy of the methods. Here the keys 
+- ..... are used to select the pa,ameter to be cha;1;led (h;ghlighted by a red b::Jx) and the 
keys i.!. then increment or decrement the highli;;hted parameter. The limits for these 
as follows: 

Trapezium 

.Simpson 

Gal..!ss-Legenore 

1 to 30 strips 

2 to 30 strips (in steps of 2) 

2 to 6 ordinates 

~5es Trapezium rule with 1 !: 20 ::.:r::::s. wl!n 1 
c: 2 i:ei2n::1S 

It s~o~id be pointed out tnat th;s program is intended p:Jreiy 2S a demons,ration of !~e 
comparative accuracies of the different methods. The time ,aken for each calculation 
is shown (in hundredths of a second), but o!:l'liously this time is dependent on the 
machine and the algorithm used by the prog,ammer, an: c::Jn:;ecuently should be used 
as an if"l~;-:~·"·\n of the ~:Jeed mem~~ rame~ 1han a ha~c fa:t. Th~5e t!;:1es can 21s~ be 
r€:ated to tne: n:;m:)er 01 C;)I:u:a:lon:; i:1v'Ji'JE:J, :;:,.l! 2.0;::::'. ~il15 rciailon:~:t' ::annOi Da 
laken t::Jo st,l::tly. 

It can be shown that for the qua~ratic and cubic exam:Jles CJth Simps::;n's (2 ~trip) a~~ 

Gauss (2 ordinate) are exact, and can be arrived at qu;:;kty, but for e x sin x, for 
example, Gauss (2 ordinate) suffers a severe drop in accura:y. In m:)st cases it is 
clear that the trapezoidal rule is slow and inaccurate, but can be vastly improved by 
the simple application of the Romberg form uta. Of course i: is for the class and 
teacher to introduce more compli::ated methods of numerical inte;Hatlon, their 

particutar gOOd POints and areas 01 application as an extension to tile tact tnat there IS 

no single best method of numerical integration. 
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Appendix 12 

::;UBI::; SPUN::S 

SUMMARY 

This unit is intended ior use as an aid in the teaching and learning of the use of cubic 
splines. The prog.am is ideally suited for use either by the student with the 
associated tutorial sneet or by tne lectureritutor to enhance the normal teaching 
methods. 

OP::RATlNG INSTRU::;TIONS 

The software is written io~ the BBC Model B mi::;ro:om:Juter and is contained on one 
40 track disc. Place the disc in the drive (drive 0 if using a couble disc drive); the 
software is then staned by holding down the SHI:=T key and simultaneously pressing 
the BREAK key. Slight adjustment to the monitor display is aliowed if required. 

Two further points on the unit operation: 

i) Pressing the B,EAK key at any time returns the micro to its default (switched on) 
stale. 

ii) Pressing the =SCAP= key at any time restarts the current part. 

Apart from the above two keys this unit operates with only the four CURSOR 
keys and the R::TURN key. 

Note: It is not essential to use a colour monitor with this unit but if avaiiable. colour 
will ennance tne presen;ation. 
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USING TH: PROGRAM SPLlN:S 

The program disolays coth numerically and graphically eight data points in the ranges 
x(O - 55} and y(O - 34). These points (or subsets of them) may be c:lnnected by a set 
of cubic solines as soeciiied by tne user. The uo and down cursor keys are used to 
move the hi>Jhiight car UP and down the menu: <rleturn> then seiects tne current 
option. The ootions on the main menu periorm tne ioliowing iur.ctions: 

1 PLOT SPUN::S 

This oOlion connects the oa:a coints nominated in 3 below by a set of solines usir.;; tne 
curvature end condiiions d!sclayed in the bottom right of the screen. The oiot is 
sucerimoosed on any wni::h may already be present. 

2 MO\:;: POINTS 

On seiecting this ootion a marker below the x-axis points to the first data point. This 
point may be moved in either direction in integer steps. using the cursor keys. As the 
point moves its entry in the x,y table is updated. In the x-<iirection movement is 
b::lUnded by the range restrictions (0, 56) or in the case of internal points by the 
x-value of adjacent points. Pressing <Return> confirms the current point and moves 

the indicator to the next point which may then be repositioned in the same way (if 
required). Subsequent pressing of <Return> will move the indicator along the data 
points. Following confirmation of the last point a QUIT option appears. At this stage 
pressing the cursor key will change the state Y(es), N(o} and <Return> will then 
confirm the selection. 'No· here restarts the movement cycle with the indicator at 
the first coordinate. 'Yes' will return to the main menu. 

3 S=,-=CT POINTS 

This o:ll1on allows sU:Jsets of the eight pomts to ce selected. A C"JX is cosilloned 
around the numeri::at values of the first point in the x, y taole: pressing any :::;:sor 
i(ey will t::;;le tne ::o:our of tne numbers in' the b::x oetween b:ack an:! wnite. ';11 
::';::;SE~!..Jent ::)I:ne ~!;j:S "':ill no~ 1:-::1L.::le the c=:rc::icres ;=lrimsc 1:', b:a:r. in t~e t2.~:e. 
::'ressing <MeIUrn> c::-:jJrms tne c:.Jjrent Stale and moves the b:x 10 tile next 
coordinates. Confirming the last coordinates will bring u;J a QClIT o;J:ion as oesc:ibed 
in 2 above. 

7he user via tni: C~ll~:1 may vary the value of S at Ine iirst ar.Ci 1251 P:J:ntS ;rl:::IU:;::~ i~, 

the (white) set selected at 3. The box surrounos the value of S unoer o!:Jservati:m; 
lett'right c:;rsor keys move the box to the other value, u;J!down cursor keys 
increase/decrease the currently highlighted value in stc;Js of 0.01 in the range -0.5 to 
0.5, <Return> confirms both values and returns to the main menu. 
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This allows one of three functions (or none) to be selected from a list. The selected 
function is drawn in blue on the graoh in order that approximations to it may be ma::ie 
using the splines, Functions are selected in the same way as selections are made at 
the main menu, The selected function is printed in the appropriate box on the screen, 

As implied here. this option will clear the screen (only the graph window), The axes 
and data points are replaced as is the approximating function chosen in 5. 

7 TA9L: 

.. -:. 

Fig 2 

"'{ (EL (x,?- ~.~ x') . (x) ;;,~_ 
!.' .:' -, ': 

ftpproxiMatinQ 
tunct Ion Ye):) 

HOHE 

"; 11.89 

.,' 



445 

With up to eight data points in play there will be up to seven s:llmes. This table wr-:::h 
overlays the graph gives the cooefiicients of each of the spimes in use. The vaiues in 
the table 0. i ~ i 1 i 0 i are tne coefiicients of the i'th spline 

y = 0. i (X'Xi)3 + ~i (x-xi)2 + 1i (x-xi) + 0 i 

Noli:e that the top left hand box of the table containing the - symbol has invened 
colours; this invened highlight may be moved across the table (Iefl/right) using the 
appropriate cursor keys. Whiie on the - symbol, if <Return> is pressed then the ta;,le 
disappears and the main menu comes back. If however <Return> is pressed whiist 
eitner the 0.. ~ or i' box is highlighted then the currently nominated column is primed t~ 

5 cp. for greater accuracy. O.,:e exoanded the leWri;ht cu:sor keys will rewrr. 10 

the iull table and move to the next column. 

8 P;:::~SS B;:::~ TO OUIT PnOGRAM 

TUTORIAL SHEET· SPLlNES 

1 Using the 'Sele:t points' and 'Move points' options Irom the menu, select two 
points at 

x = 13, Y = 15 and x = 50 , Y = 15. 

With S1 = Sn = 0, plot the connecting spline and write down the general form of the 

curve. 

Meoeat this process with the ooims 

x = j 3. Y = 25 x = 50. Y = 15. 

x = 13, Y = 15 and x = 50. Y = 15 

but this time set 81 = Sn =0.05. 

U;;ing the ta~le. write down Ihe e::;alion of Ihe conne:ling ::lline. 

Repeal this process with 

3 Relurn 10 the original points and piot the connecling sp!ine, using 

i) S1 = 0.12 Sn=-0.10 
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ii) 51 = -0.12 5 n = -C.l 0 

Are the two splines of the same form? 

4 Select tnree points at 

x = 3, Y = 15 x = 30, Y = 20 x = 50,y = 10 

and put 51 = -0.3 5 n = 0.20. 

Plot the conne::ting s"line ior ea::h one. Now p!o: the fi~S1 of theSe c~::,i:s between 
x = 0 and x = 40. 

Hence Si ( = y. evaluated at x) can be found at x = 40. 

5 Select the following points 

x = 0, y = 10 
x = 30. Y = 22 

x = 10. Y = 14 
x = 40. Y = 26 

x = 20. Y = is 
x = 50, Y = 30 

with 51 = 0.5 and 5 n = 0 ahd clot the splines. Look at the tatlle and gra"h and 

comment on tne suitability of the curve p::med to the set of cata points. Suggest an 
aigorithm for guessing a value for 5 for a general set of data points. 

i) 51 = -0.50 ii) 51 = 0.50 iii) 51 = 0.00 

Comment on the effect of a change in boundary conditions. 

7 =r.;Jenment, anCl try to a:::;lrox!TT,ate !ne "ine !~;;::I~il wlln 

i) one ""line (use x1 = 10 and x2 = 50) 

ii) two s;l!ines (use XI = 10, x 2 = 23 and x3 = 50) 

Write down the equations you obtain and calculate the error in your a;l"roximation at 
X = 30. 
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CUBIC SPLlNES 

A cubic curve which passes through the points (xi, Yi) and (xi+], Yi+l) can be described by 
the equation 

Y = ai (x - Xi)3 + ~i (x - Xi)2 + Yi (x - xi) + ()i (I) 

Note that at x = xi ,Y = Yi = ()i 

3 2 
and at x = x. I' Y = y. I = a. h + 13. h + y. h +(). 

1+ 1+ 1 I 1 1 

where h = xi+1 - xi is assumed to be constant. 

Now, from (I), 

Y' = 3ai (x - Xi)2 + 2~i (x - xi) + Yi 

Y" = 6ai (x - xi) + 2~i 

If we let Si be the value ofy "at x = xi 

then Si = 2~i 

(2) 

We shall use the variables Si as the basic variables in our subsequent working. t First of 

1 
all, we have ~i ="2 Si 

and since Si+1 is the value of Y " at x = xi+ I 

then Si+1 = 6ai h + 2~i = 6ai h + Si 

so that 

Further, Yi+1 = ai h3 + ~ih2 + Yi h + ()i' 

and via (2), (3), and (4) 

1+ I 1 

(
S.I- S.) 2 S. 2 

Yi+1 = 6 h + T h + yih + Yi 

from which we obtain 

( 
Yi+l - Yi) h (S. + 2S.) 

Y· - -- 1+1 1 
1 - h 6 

tThis effectively ensures that Y " is continuous at the points Xi. 

(3) 

(4) 

from (I) 

(5) 
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We have assumed that y , is continuous at x = xi' 
For the interval [xi_lo xi] 

y' = 3 Cli_l(x - Xi_I)2 + 2~i_I(X - xi-I) + Yi 
so that at x = xi 

Yi' = 3 !lj_Ih2 + 2~i_Ih + Yi-I 

For the interval [xi, xi+Il 

Yi' =3 Cli (0)2 + 2~i (0) + Yi 
Hence 

,.r 
, 3 Cl' Ih2 + 21'1· Ih + '11. I = y. 1- PI- 11- I 

(
Si-Si_l) (Yi-Yi-I) _~ (S. +2S. ) 

3 6 h + Si_I h + h 6 1 I-I 

ie 

_ (Yi+1 - Yi) h (S. + 2S.) 
- -- 1+1 1 

h 6 

so that ~ {3S. - 3S. I + 6S. I - S. - 2S. I + S. I + 2S.} 6 1 I - 1- 1 1- 1- 1 

6 
Therefore Si_I + 4Si + Si+1 = 2" tJ.2Yi_l· 

h 

tly. tJ.y. I 
1 1-=----

h h 

2 
tl Yi- I 

= 
h 

To provide the necessary extra conditons we can choose either 

(a) SI = So = 0 (natural spline) 
or 

(b) Si is a linear extrapolation from S3 and S2' 
So is a linear extrapolation from So_2 and Sn-I' 

= 

similarly SO_2 - 2So_1 + So = O. 

(6) 
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In case (a) the equations for Si become. in matrix form. 

2 

S2 

/l Y1 
2 

4 1 0 0 0 ... 0 0 0 S3 
/l Y2 

1 4 1 0 O ... 0 0 0 2 
0 1 4 1 O ... 0 0 0 S4 6 /l Y3 =- (7a) ....... . . ~ . 

h
2 

0 0 0 0 O ... 1 4 1 
0 0 0 0 O ... 0 1 4 S 0-2 2 

/l Y 0-3 
S 0-1 2 

/l YO- 2 

In case (b) the equations are 

SI 0 

1 -2 1 0 0 0 S2 
2 

1 1 1 0 0 
/l Y1 

0 4 4 1 1 S3 2 

0 
= /l Y2 

1 4 1 (7b) 

1 -2 1 S 2 n-I /l Yo-2 
S 0 0 

Having solved (7a) or (7b) for (SI> S2.·· .• So), 

we determine (Cl;. ~i, Yi,Si; i = 1 •... n) using equations (2) to (5). 
Hence we can write the equations for each of the cubic spline curves; it is not unknown for 

rwo adjacent cubics to share the same equation. 



450 

Appendix 13 

UGC CTI (Computers in Teaching Initiative) SOFTWARE 

Lecturer'S Questionnaire 

Please fill in one of these questionnaires for each Unit that you have used. 

1 Which Unit did you use? Which programs on this unit did you use? 
Give details. 

2 In which teaching mode did you use the Unit? 

(L) As part of a normal Lecture, using the programs (or parts of them) as 
additional aids 

(T) In a Tutorial with a small group of students, either demonstrating or 
letting them run the programs for themselves 

(D) As a Demonstration of the Unit, but not in the context of a normal lecture 

(0) In an entirely different way .. 

Answer YeslNo for each mode 

( L) (T) ( O) (0) 

If your answer to (0) was "Yes" then please give further details. 
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3 At what stage(s) in the teaching of this topic did you use the Software? 

(i) In your introductory lecture? 

(ii) In later lectures as the topic was developed? 

(iii) At the end to consolidate the learning? 

(iv) Later as an aid to revision? 

Answer YeslNo for each question 

( i) (ii) (i ii) (iv) 

4 Did you have any difficulties in demonstrating and using the Unit? 
Give details. 

5 As far as you were able to judge, was your students' response 

(A) enthusiastic 

(D) unresponsive 

(8) interested (C) patient, but not particularly 
positive 

(E) extremely negative 

Answer on the scale (A) to (E) 
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6 Did you think that the Unit 

(i) enabled you more easily to introduce/explain certain aspects of the 
topic? 

(ii) enhanced the work that you normally do by more traditional methods? 

(iii) helped consolidate the concepts for your students? 

(iv) neither added nor detracted from yor usual methods of presenting this 
topic? 

(v) made little or no contribution to the students' understanding of this work? 

Answer Yes/No to each of the questions (i) to (v) 

(i) (ii) (i ii) (iv) (v) 

7 Are there any other comments on this Unit that you would like to make? 
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8 Have you ever used any other Software on this topic? Give details. 

9 Are there other areas of your syllabus where you think that traditional 
teaching might be enhanced by the production of a similar package? 
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UGC CTI (Computers in Teaching Initiative) SOFlWARE 

Student's Questionnaire 

Please fill in one of these questionnaires for each Unit that you have used. 

1 Which Unit did you use? Which programs of this Unit did you use? 
Give details. 

2 Did you view the programs in the Unit 

(L) during part of a normal Lecture on the topic in which the program(s) 
was just one of the aids used by the Lecturer 

(T) in a Tutorial either with the Lecturer/Demonstrator discussing the 
programs with a small group of students, or else running the 
program(s) yourself 

(D) in a Demonstration of the Unit, but not in the context of a normal 
lecture 

(0) in some other way 

Answer Yes/NO for each mode 

(L) (T) ( D) (0) 

If your answer to (0) was "Yes" then please give further details. 
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3 If you used the Unit in a Tutorial, for approximately how long were you 
running the programs? 

4 If you ran the program(s) yourself, did you have any problems with the 
Unit? Give details. 

5 Did the Unit help to increase your interest I motivation? 

Answer on the scale (A) to (E) 

(A) I found it highly motivating 

(8) It made the topic more interesting for me 

(C) I was interested, but no more than I would have been in the normal 
way 

(D) It did not interest me very much 

(E) I was frustrated I bored by the prog rams 

If you want to enlarge upon your answer, please do so. 
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6 To what extent did the Unit aid your understanding? 

Answer on the scale (A) to (E) 

(A) I found it vey helpful and understood certain points much better after 
viewing the program(s) 

(8) It helped to consolidate my ideas on this topic 

(C) It was helpful, but I learnt no more than I would have done by more 
traditional methods of teaching 

(D) It did not increase my understanding greatly 

(E) It made the topic even more confusing 

If you would like to enlarge upon your answer, please do so. 

7 Are there any further Comments that you would like to make concerning 
this Unit? 
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Appendix 14 

OUTLINE SYLLABUS FOR MATHEMATICAL ENGINEERING 
(after Richards (200)) 

Year I 
A Algebra and Matrices: linear equations, determinants, vectors, matrices. 
B Calculus: differentiation and integration, differential equations, Fourier series, 

multiple integrals, partial differentiation. 
C Complex Variables: complex algebra, Cauchy-Riemann equations, con formal 

transformations, complex integration. 
D Mechanics: particles, systems of particles, rigid bodies, machines. 
E Statistics: moments, etc, distributions, sampling, nomality, significance, regression. 
F Linear Systems Theory: transforms, Laplace/Fourier, solution of DE's, transfer 

functions. 
G Electrical Science: atomic structure, solid state devices, circuits, electromagnetism, 

power generation. 
H Computing Project: basic numerical analysis and programming techniques applied 

to individual projects. 

Year IT 

A Field Theory: vector and tensor analysis, Gauss-Stakes-Green theorems, 
applications in elasticity, electrodynamics and fluid mechanics. 

B Operational Research: linear programming, game theory, decision theory, 
queueing. 

C Control Engineering: feedback, performance and stability, noise and random 
processes. 

D Structural Analysis: simple structures, energy methods, continuous structures, 
instabilities. 

E Materials Science: crystals, real materials, properties, metals and alloys, polymers, 
ceramics. 

F Thermodynamics: laws, entropy, enthalpy, cycles, system applications. 
G Advanced Statistics: estimation, variance and co-variance. multiple regression, 

stochastic processes. 
H Design Project: fundamental design methods, applied to group design projects. 
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f 

Year m 

A Fluid Mechanics: Navier-Stokes, real and ideal fluids, boundary layers and MAE, 
vortex methods, unsteady flows. 

B Vibrations: beam and plate vibrations, model analysis, pole-zero, single and multiple 
response. 

C Optimisation: calculus of variations, constraints, dynamic programming, gradient 
methods. 

D Acoustic and Electromagnetic Radiation: wave equations, I, 2 and 3 
dimensions, radiation and propagation. 

E Information Theory: communication and signal processing, sampling theorems and 
applications. 

F Computing Science: advanced numerical and digital techniques, integral equations, 
approximations. 

G Systems Engineering: the over-all design problem, analysis and synthesis, 
networks, applications. 

H Research Project: individual research project. 
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Appendix 15 

PROGRAMMING PROBLEMS 

1 Number of turns required for a specified inductance 
2 Water temperature for concrete mix 
3 Current in a zero-resistance circuit 
4 Effect of friction on velocity 
5 Specific permeability of a porous medium 
6 Oxygen deficit in a polluted stream 
7 Van der Waal's equation 
8 Power-law curve fining to polymer flow data 
9 Friction factor for turbulent flow in a smooth pipe 
10 Shape factor for flow in a rectangular channel 
11 Maximum oxygen deficit in a stream 
12 Merging delay in traffic flow 
13 Mean and variance 
14 Reversing an array of numbers 
15 Printing a list of numbers in descending order 
16 Finding the mean and standard deviation of grouped data 

. 17 The Bode plot 
18 Thermal equili brium in a plate 
19 Deflection of a plate 
20 Deflection of a Bellevi1le spring 
21 Boundary layer analysis 
22 High-frequency transmission line 
23 Accurate buckling load for a cantilevered shaft 
24 Approximate buckling load for a cantillevered shaft 
25 Currents in an electrical network 
26 Stresses in concentric thick-walled cylinders 
27 Currents in an electrical circuit near resonance 
28 Natural frequencies of a mechanical system with three degrees of freedom 
29 Temperature distribution in fluid flow 
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3 Current in a zero-resistance circuit 

The current in an ideal (zero resistance) circuit is given by 

V 
1=---

IcoL - l/coCl 

where I is the current in A, V is the voltage in V, CO is the angular frequency in radls, L 
is the inductance in H, C is the capacitance in F. 

(For certain values of V, L and C there is a value of co at which the current becomes 
infinitely large.) 

It is required to increment co over a specified range of values and output the values of co 
and I at each step. When IcoL - l/coCl is less than a specified small number € the output 

should consist of the value of co and a suitable message. 

Take as sample data 

V = 10.0, L = 0.001, C = 1.0 x 10-9, E = 0.0001, 

lower linnt on co = 1()4 radls, upper limit on co = 108 rad/s. 

4 Effect of friction on velocity 

If a body of a constant mass is acted on by a friction force, whose magnitude is a 
function of the velocity of the body, the velocity will tend to a limiting value in cenain 
cases. One such case is where the coefficient of friction and the velocity are related by 

11 = 0.1758 (v)0.09 

where 11 is the coefficient of kinetic friction and v is the velocity of the body in cm/so 
Consider the case of sliding friction, where the equation of motion is 

F 
a =--Ilg m 

where F is the applied force in N, m is the mass of the body in kg and g is the 
gravitational acceleration in m/s2. 

Since the velocity changes more rapidly in the early stages of motion, the time intervals 
at which the velocity is output should not be equal. (Try a geometric progression.) 

Calculate the velocity of the body at a suitable set of times. Include a criterion for 
stopping the calculations. 

Take as sample data 

F = 0.23, m = 0.1, v = 0.20, initial time step = 0.125s, g = 9.81. 
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26 Stresses in concentric thick-walled cylinders 

Figure I shows a cross-sectional view of two long concentric thick-walled cylinders. 
At ambient temperature and in the unstressed state, these cylinders have inner and outer 
radii of rl and r2, and r2 and r3' An internal pressure of P above ambient is applied in 
such a way that no axial stresses are generated in the cylinders. 

Using the Lame equations, the distributions of hoop and radial stresses may be 
expressed in dimension less form for either cylinder as: 

000 Z °rr Z 
-- =y+- - =y--

P 2 P 2 
r r 

Fig 1 Concentric thick-walled cylinders 

(1) 

where rand e are the polar coordinates shown in Fig 1. The parameters Y and Z are 
constants, whose values are determined by the boundary conditions for the particular 
cylinder. For the present problem, these conditions include: 

0rr = - P at r = ri, 0rr = 0 at r = r3, 
and the radial stresses are the same in both cylinders at r = r2. Assuming the cylinders 
fit perfectly in the unstressed state, the hoop strains are also the same at r = r2' Hoop 
strain is given by: 

(2) 
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where E is Young's modulus and v is Poisson's ratio. The following four equations 
are obtained. 

(3) 

The subscripts 1 and 2 refer to the inner and outer cylinders respectively. 

Problem specification. The ratios of the hoop and radial stresses to the internal 
pressure are to be detennined as functions of radius for the concentric cylinders shown 
in Fig 1. 

Take as sample data 

vI = 0.35, v2 = 0.30, EI/E2 = 1.5, rt = 0.1, r2 = 0.2 and T3 = 0.4, where the unit 

of radius is arbitrary. 
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27 Currents in an electrical circuit near resonance 

Figure I shows an electrical circuit having inductance and capacitance, but no 

resistance. The potential V sin rot alternates with respect to time t with an angular 

frequency ro and amplitude V. L) and ~ are inductances, Cl and C2 are capacitances, 
and i), i2 are the currents in the circuit. 

V sin rot 

i ) 

Fig 1 An electrical circuit 

Equations may be written down for the conservation of currents at nodes of a network, 
and the summation of potential differences round closed loops. Hence, the relationship 
between the currents is 

(\) 

and, for the route followed by iL and i2 

(2) 
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where ql is the electrical charge on the capacitance Cl. Since i l = dql/dt, it is 
convenient to differentiate this equation to eliminate ql as follows: 

(3) 

(4) 

In the steady state, the three currents alternate with the same frequency as the applied 
potential. Since in circuits containing only inductance and capacitance the currents are 

90° out of phase with the applied potential, they may be represented by i I = I I cos rot, 

i2 = 12 cos rot and i3 = 13 cos rot. Substituting these expressions into equations (I), 
(3), (4) the following set of linear equations is obtained for the amplitudes of the 
currents 

1 
0 ---roL - roL2 11 V wC I 

I 
1 

0 
1 

---roL -- 12 V (5) wC I wC2 I 

I 0 
1 -1 -1 3 

A condition known as resonance occurs in an alternating current circuit when its 
impedance approaches zero. The currents tend to infinity, although in real circuits the 
presence of even a small amount of resistance restricts them to finite, but large, values. 
Resonance occurs in the present circuit when the coefficient matrix in equations (5) is 
singular. 

In the circuit shown in Fig I, the amplitude of the applied potential is 300 V, the 

inductances are LI = 0.60 H and ~ = 0.20 H, while the capacitances are Cl = 1 IlF 

and C2 = 2.51lF. The effect on the current amplitudes is to be examined as the angular 
frequency approaches 1000 rad/s, one of the resonant values. Also, the effect of a 
small inherent error in the specific value of Lion the currents near resonance is to be 
determined. 
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Appendix 16 

A Second·Year Project Titles· a selection 

Metal quenching 
Pigment extrusion 
Turbulent flow in a pipe network 
Buckling of a centrally· loaded column 
Computer calculations in magnetostatics 
The stiffness method in structures 
Stability investigation of a surge tank 
The frequency response of linear systems 
Microcomputer plotting of 2·0 Laplacian fields 
Road vehicle performance characteristics 
Shop floor machine location 
Lateral vibrations of beams 
Fractal graphics 
Errors in exhaust noise measurements 
Recursive subdivision 

B Final Year Project Titles - a selection 

Control of vehicles in an automated transportation system 
Aerodynamics of car body profIles 
Modelling hydraulic control systems 
Effect of lateral loads on track movement 
Flow patterns during compression modelling 
Numerically controlled wiring of logic boards 
Numerical representation of surfaces 
Coordinate geometry in acoustic telemetry 
Heat transmission through doubly glazed windows 
Glass flow along canals 
Car-following models 
Modelling an electron lens 
Flow in pipe networks 
Computer-aided design of exhaust silencers 
Noise radiation from an engine 
Dispersion of effluent in a river 
Bezier curve and surface mOanipulation 
Shock waves in traffic 
Controlofacontinuousfurnace 
Transfer function identification 
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C Selected Dissertation Titles from the Industrial Year 

STI..: Thennal Modelling Techniques in Elecnic Motor Design 
Babcock Power: Acoustic Excitation of Manipulators 
RoUs-Royce Lld: Design and Analysis of Prop-fans 
British Steel: A Mathematical Model of the Cooling System of a Hot-snip Mill 
Dunlop: Two-and Four-Wheeled Vehicle Stability 
British Rail: Active and Passive Suspensions for Railway Vehicles 
GEC Industrial Controls: Cold MiU Rolling Automation 
CEGB: Corrosion of Nuclear Fuel Magnox Cladding during Transport 
British Gas: The Development of a Program 10 Analyse Stress in Pipes 
Bass PLC: A Mathematical Model of a Maltkin 
British Aerospace Dynamics: Feedforward Calculations in a Modern Guided Weapon 
System 
ICI Engineering: Pipeline Specification Generation Systems 

D Destination of Graduates - a sample 
Space Systems Engineer 
Stress Engineer 
Systems Engineer 
Computer Systems Engineer 
Technologist 
Computer Programmer 
Engineer 
Software Engineer 
Consultant 
Engineer 
Engineer 
Software Engineer 
Scientific Officer 
Systems Analyst 
Design Engineer 
Engineer Trainee 
Mathematical Programmer 
Control Technologist 
Software Engineer 

: British Aerospace Aircraft Group 
: British Aerospace Aircraft Group 

British Aerospace Dynamics Group 
Ford Motor Company 
Dunlop 
Ferranti Computer Systems 

: GEC Power Engineering 
: Self-Changing Gears 
: Logica 
: Marconi A vionics 
: Marconi Electronics Devices 
: Marconi Space & Defence Systems 
: MOD.RARDE 
: Nomalair-Garren 
: Racal Electronics . 
: RoUs-Royce 
: Scicon 
: Pilkington Brothers PLC 
: PAFEC 
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Appendix 17 

A Final Year Projects at Nottingham 

Calculations of Water Inflow to Underground Mine Workings 
Sound Transmission through Double Glazing 
Flow of Granular Materials in Wedge-shaped Channels 
the Pressure Swing Absorption Technique for Separating Gases 
Surf Run-up and Backwash on a Beach 
Optimisation of Methods for the Cutting of Panels 
Percolation of Water through an Earth Dam 
Stability of Liquid Films Flowing down Inclined Planes 
Stress in the Vicinity of Elliptical Holes in Laminated Elastic Plates 
Generation of Optimum Triangular Element Grids for Aerodynamic Calculations 
Supercritical Free Surface Flow of a Fluid over a Ramp 
A Time-marching Method for the Convection-Diffusion Equation 
The Squashing and Buckling of Elastic Tubes 
The StatisticiU Modelling of a Production Line 
On Modelling the Internal Deflection of Mine Roadways 
The Dynamics of a Four-wheeled Steered and Sprung Vehicle 
A Model for Turbidity Currents in the Ocean 
Artificial Density Techniques for Transonic Aerodynamic Flow 
The Chattering of Railway Trucks 
Phase Changes around a Buried Gas Pipeline 

B Employment of Nottingham Graduates 

Some of the posts held by our recent graduates immediately after completing the course are: 
Accountancy Trainees - Coopers & Lybrand 
Commercial Computing - Central Electricity Generating Board 
Computer Analysts - Central Electricity Generating Board 
Computer Programmers - Hoskyns Group, Logica (London) 
Design Engineer - GEC Telecommunications 
Engineer - British Nuclear Fuels (Sell afield) 
Graduate Trainees - British Aerospace (Wharton) 

Graduate Trainee 
(Quality Assurance) 

Management Trainees 

- British Rail Technical Centre (Derby) 
- Plessey (Nottingham) 

- British Telecom, Ladbrokes, ICL 
Computers (Kidsgrove), GEe 

Market Research - Mobil Oil (London) 
Mathematicians - Rex Thompson & Partners, GEC, Marconi 
Networks Planner - British Telecom 
Programmers - British Airways (London), lAlgica (London) 
Research Students (MSc and PhD) and Research Assistants 
Research Officer - Marconi (Chelmsford) 



Systems Analysts 
Software Engineer/Analysts 

Scientist 
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- ICL (Kids grove). GEC Avionics (Kent) 
- Central Electricity Generating Board (London). 

Logica. (London). Scicon (Milton Keynes 
and London) 

- Atomic Energy Authority (Risley) 

C Final Year Projects at Bristol 

Why political Opinion Polls Fail 
The Election Database 
An Electronic Cricket Scoreboard 
Language Modelling for Speech Recognition 
Time-dependent Motions in Electrotherrnal Systems 
CAM Gears 
Dynamics of the Golf Swing 
Determination of CAM Profiles 
Mathematical Modelling of an Aerial for Space Communication 
Helicopter System Identification & Control 
An Onhodontic Expert System 
Computer Simulation of Epidemics 
A Computer Program to Play Mah-Jongg 
Prolog in Forth 
Computer Assisted Timetabling 
Optimal Sail Design 
Modelling of Non-linear Car Suspension Components 
Linear Instability in Electrothermal Convection 
Level-index Computer Arithmetic 
Software for Speech Recognition 

D Employers of Bristol Graduates 

British Aerospace 
British Petroleum 
British Oxygen Company (BOC) 
British Telecom 
Central Electricity Generating Board. Berkeley Nuclear Labs 
Ferranti Computer Systems 
Ford Motor Company. Research Labs 
GEC Avionics 
GEC Turbine Generators. Rugby 
Hunting Engineering. Bedfordshire 
ICI 
Logica 
Metal Box Co 
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Motor Indusoies Research Associates 
RACAL 
Rolls Royce Aero Engines 
Royal Airforce 
Royal Navy 
REME 
Shell 



I 
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