
 
 
 

 
This item was submitted to Loughborough’s Institutional Repository 

(https://dspace.lboro.ac.uk/) by the author and is made available under the 
following Creative Commons Licence conditions. 

 
 

  
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288378118?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 
 

Plastic Behaviour of Microstructural Constituents of Cortical Bone Tissue: A 
Nanoindentation Study  

Adel Abdel-Wahab, Vadim V. Silberschmidt  

Wolfson School of Mechanical and Manufacturing Engineering, Loughborough 
University, Loughborough, Leicestershire, LE11 3TU, UK 

E-mail: a.a.abdel-wahab@lboro.ac.uk 

E-mail: v.silberschmidt@lboro.ac.uk 

Abstract  

A mechanical behaviour of bone tissues is defined by mechanical properties of its 
microstructural constituents. Also, those properties are important as an input for finite-
element models of cortical bone to simulate its deformation and fracture behaviours at the 
microstructural level. The aim of this study was to investigate a post-yield behaviour of 
osteonal cortical bone’s microstructural constituents at different loading rates, maximum load 
levels and dwell times; nanoindentation with a spherical-diamond-tip indenter was employed 
to determine it. The nanoindentation results revealed significant difference in stiffness values 
of cortical bone’s microstructural features −  interstitial matrix and osteons. Similarly, 
interstitial matrix exhibited a stiffer post-yield behaviour compared to that of osteons that 
reflects the relationship between the post-yield behaviour and collagen maturity. In addition, 
both osteons and interstitial matrix demonstrated a time-dependent behaviour. However, in 
order to assess elastic-plastic behaviour accurately, an effect of viscosity on nanoindentation 
results was reduced by using a time-delay method.  

Keywords: cortical bone; nanoindentation; flow stress; flow strain; osteons; interstitial 
matrix; post-yield. 

1. Introduction 

Bone is a natural composite material with hierarchical organization at different length scales. 
At the nano-scale, it consists of a collagen matrix impregnated with ceramic nano-particles 
known as carbonated hydroxyapatite (Currey 1999; Fratzl et al. 2004). At the micro-scale, 
cortical bone is in the form of lamellar layers of 5 µm thickness. Similar to a plywood 
structure, inside a layer, collagen fibres are parallel; however, their orientations are different 
for different layers. Across a bone section, not all lamellae are arranged in the same way; for 
instance, near the outer and inner surfaces, lamellae are parallel and arranged along the 
cortical bone’s circumference. On the other hand, the outside and inside circumferential 
lamellae form a region made of circular structures called osteons, formed from concentric 
lamellae within remnants of a bone’s remodelling process called interstitial matrix. The 
interface between osteons and interstitial matrix is called cement line; it is a collagen-free and 
highly mineralized layer. Cement lines have an important effect on bone’s behaviour, 
especially its fracture. Osteons are, on average, 200 µm in diameter and 1 cm long and 
parallel to the bone’s longitudinal axis (Ethier and Simmons 2007). In addition, a network of 
canals and channels is formed across the bone’s section and along its axis; these canals 
accommodate blood vessels and called Haversian canals. Moreover, bone has living cells 
(osteocytes) that live within an interconnected network of microscopic channels known as 
canaliculi. The latter are responsible for exchange of nutrients and waste between osteocytes 
[3]. At the millimetre length scale, bone consists of a dense and thick outer layer called 
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cortical bone and a sponge-like structure known as trabecular bone (Peterlik et al. 2006). All 
these hierarchical levels work together to enhance macroscopic mechanical properties of 
bone tissue at the full-bone scale (Peterlik et al. 2006).  

Characterisation of mechanical properties of cortical bone’s microstructural constituents is 
essential not only for understanding a mechanical behaviour of the entire bone tissue, but also 
for developing adequate finite-element models to simulate its fracture, deformation and 
cutting (Alam et al. 2010). Thanks to micro- and nano-indentation techniques, it is possible to 
measure mechanical properties in a region as small as 1 𝜇m (Cowin 2001). Depth-sensing 
nanoindentation together with theoretical methods can be used for extracting an elastic 
modulus from load-displacement data (Doerner and Nix 1986; Oliver and Pharr 1992). Over 
the last two decades, the nanoindentation technique has achieved very high resolution for 
both loads and displacements as well as a submicron spatial resolution, e.g., load resolution 
of 0.3 𝜇N and displacement resolution of 0.16 nm (Doerner and Nix 1986; Oliver and Pharr 
1992). With this technique, mechanical properties of microstructural features of interest can 
be derived from the analysis of high-resolution load-displacement data obtained as the 
indenter is driven into, and withdrawn from, the specimen leaving a residual imprint on its 
surface (Oliver and Pharr 1992), see Fig. 1. For instance, the elastic modulus of those features 
can be determined from the slope of the unloading portion of the measured load-displacement 
curve, whereas their hardness can be calculated from the measured peak load and the residual 
indentation area, see Appendix for theoretical basis of nanoindentation method. A hardness 
measurement conveys data about the quality and degree of bone mineralization (Cowin 2001). 
General mechanical property characterisation of cortical bone at its microstructural level is 
essential for development of finite-element numerical models capable not only to capture its 
mechanical behaviour, but also to predict its fracture at that scale. Nanoindentation has been 
shown to be a suitable tool for quantifying the material properties of bone’s microstructural 
constituents, such as osteons and trabeculae (Rho et al. 1997; Lewis, and Nyman 2008). 
Since many of the cortical bone tissue’s features of interest are at the micro-scale level, 
nanoindentation technique is capable of directly probing its intrinsic mechanical properties at 
that level. Other methods were also used to measure bone’s microscopic properties: 
microhardenss, microtesting, in-vivo microindentation and ultrasonic techniques (Weaver 
1966; Rho 1993; Ko et al. 1995; Shieh et al. 1995; Diez-Perez et al. 2010).  

Recently, an increased number of studies were performed to measure the elastic modulus and 
hardness of cortical bone using different indenters and at different anatomical positions 
(Turner et al. 1999; Rho et al. 2002; Hengsberger et al. 2003, Hoffler et al. 2000). For 
instance, Hoffler et al. (2005) investigated the effect of different nanoindentation’s 
experimental parameters on the results of measurements of the microstructural mechanical 
properties of a human cortical bone tissue. The studied parameters included the specimen 
preparation conditions, indentation depth, repetitive loading, time delay, and displacement 
rate. It was concluded that consistent values of the elastic modulus can be obtained from a 
500 nm-deep indent. Also, it was found that the modulus and hardness values of dry 
specimens were significantly higher than those of wet specimens – by 22.6% and 56.9%, 
respectively. In addition, there were differences in the modulus values obtained at different 
loading rates: values at 5 nm/s were smaller than those obtained at 10 nm/s and 20 nm/s while 
there was no significant difference in data obtained at those higher rates. In another study, 
Rho et al. (1997) used a combination of atomic force microscopy (AFM) and nanoindentation 
to measure the elastic modulus and hardness values of human cortical bone and trabecular 
bone tissues. The aim of that study was to analyse the advantage of the AFM-mode compared 
to conventional microscopy. It was found that the former was a very useful tool for surface 
characterization and precise selection of indentation area. The measured elastic moduli 
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ranged from 18±1.7 GPa for a single bone structural unit (BSU) of human cortical bone to 
22.5±3.1 GPa for BSU of trabecular bone. The obtained hardness levels were in the range 
between 0.6±0.11 GPa for cortical bone and 1.1±0.17 GPa for trabecular bone (Hengsberger 
et al. 2001). For human tibia bone, elastic moduli measured with nanoindentation were 
22.5±1.3 GPa for the osteons and 25.8±0.7 GPa for the interstitial lamellae. Different studies 
revealed a significant difference between the mechanical properties of osteons and interstitial 
matrix (Rho et al. 1997; Zysset et al. 1999). Those differences could be due to several factors, 
such as degree of mineralization, collagen fibre orientation, and arrangement of those 
materials (Rho et al. 1997; Zysset et al. 1999; He and Swain 2007). More recently, the 
inelastic response of the cortical bone tissue studied using the nanoindentation technique was 
reported (Carnelli et al. 2010). Although the literature data demonstrate that mechanical 
properties of microstructural features of bones such as elastic modulus and hardness were 
captured by various teams, yet complete constitutive equations, i.e., stress-strain curves at 
that scale length level are still not available. From all the mechanical properties of cortical 
bone’s microstructural constituents, their stress-strain behaviour is one of the most important 
because it provides us with their deformation response. Based on that behaviour, phenomena, 
such as plasticity localization, crack initiation and propagation as well as crack interaction 
with cortical bone’s microstructural features can be assessed, using advanced modelling 
techniques. In this paper, in addition to measuring the elastic modulus and hardness values of 
cortical bone constituents, the flow stress-flow strain relationships for osteons and interstitial 
matrix are measured – to the author’s knowledge – for the first time using a spherical indenter 
tip at different loading rates, maximum load levels and dwell times. 

2. Materials and Methods 
2.1. Preparation of Specimens  

Four specimens were cut from a fresh bovine femur bone (aged 1.5-2 years), collected from a 
local butcher. The flesh was removed and the bone was chilled before collection. The mid-
part of the femur (diaphysis) was extracted using a band-saw at a speed of 40 m/min. Then, 
the diaphysis part of the femur was cleaned again to ensure that the outer layer of the cortical 
bone reached and there was no remaining fat or flesh. The specimens were cut from the 
posterior anatomical position using a low-speed diamond saw with water cooling. Specimens 
with dimensions (5 × 3 × 15) mm3 were used in a nanoindentation experiment. The 
nanoindentation specimens were ground using a series of grinding papers Standard ANSI 
grit- 240, 600, 1200- and then polished with cloth of 1 μm grits so that the morphology of the 
osteonal cortical bone could be observed with the nanoindentation’s optical microscope (see 
Fig. 2). Specimens were stored at room temperature in 0.9% saline solution until tested.  

2.2. Experimental Method 

The nanoindentation tests were performed with the Nano-test 600 indentation system (Micro 
Materials ltd., Wrexham, UK) at room temperature (23.3°C) and ambient humidity level of 
31.7%. A spherical diamond tip with a radius of 25 𝜇m with a low-load head for 0.1-500 mN 
was employed, and a maximum measurement depth when the system is set at full sensitivity 
is approx. 1.5 𝜇m. A NanoTest (NT2) material testing platform (Fig. 3) was used to calibrate, 
and set control parameters; it also allowed monitoring and analysing the experimental data. 
The specimen - the transverse-radial posterior section of the mid-diaphysis of bovine cortical 
bone - was glued horizontally to a holder and gently firmed in front of the indenter tip. The 
microscope accompanying the indenter tip allowed precise positioning of the indenter at the 
required position to test either the osteons or the interstitial matrix, see Fig. 3.  
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Nanoindentation tests were performed for four identical cortical bone specimens cut from the 
posterior cortex position in the transverse-radial plane at maximum loads of 5 mN, 10 mN, 20 
mN and 50 mN, with each specimen being tested under one loading condition. The specimen 
tested under a maximum load of 10 mN was also employed to investigate the effect of 
loading rate on the elastic-plastic behaviour with three different rates of 0.5 mN/s, 1 mN/s 
and 2 mN/s; the rest of the specimens were tested at loading rate of 0.5 mN/s. For each 
specimen, two indents with 100 µm separating distance were performed within three osteons 
and for three interstitial matrix positions. For each indent, ten loading-unloading cycles were 
performed to construct the flow stress-flow strain curve, with each cycle constituting a point 
on the curve. Apart from the final unloading cycle, the minimum load achieved in unloading 
was 50% of the maximum load of the respective cycle. For all loading conditions and rates, to 
investigate the effect of holding time, each indent was performed twice with dwell times of 0 
s and 120 s. The tests were performed in a load-control regime with recording both the 
indentation load and displacement.  

A view of the experimental arrangement of the bovine cortical bone’s indentation test is 
shown in Fig. 4.   

3. Results  

Recently, the nanoindentation technique has been applied to biological tissues including a 
bone tissue (Zysset et al. 1999). Measuring the mechanical properties of cortical bone at the 
lamellar level is important for developing theoretical micromechanical models and finite-
element schemes along with gaining better understanding of bone’s fracture mechanisms. 
Since many of the features of interest in cortical bone are at microscopic level, its intrinsic 
mechanical properties at that level can be probed directly by nanoindentation technique. A 
load-displacement curve for nanoindentation test shows that as the load increases, the 
indenter sinks in the material causing elastic-plastic deformation. On the other hand, when 
unloading the indenter, the material recovers mainly elastically. Using this technique, the 
elastic modulus, post-yield behaviour and hardness of cortical bone tissue were characterized 
as discussed below. 

3.1. Elastic Modulus and Hardness 

The nanoindenter with a spherical tip with radius of 25 μm made imprints on the bone 
specimens’ surface, clearly visible under a light microscope (see Fig. 5). The shape of indents 
is nearly spherical, demonstrating that a nanoindenter could easily make small indents within 
desired microstructural features of cortical bone tissues such as osteons and interstitial bone. 
No cracks were found around the spherical imprints. 

The basic response acquired with the depth-indentation system is a load-displacement curve 
representing the loading-unloading history of the sample. The typical cyclic load-
displacement (depth) curves for osteons and interstitial matrix obtained in the indentation 
tests at maximum load of 20 mN, loading-unloading rate of 0.5 mN/s and two time delays − 
0 s and 120 s − are shown in Fig. 6. The used load-control method showed a different 
indentation depth for osteons and interstitial matrix at the same indentation load. For instance, 
a maximum load of 20 mN corresponded to depths of 823.3 nm and 1194 nm for osteons at 
the last cycle, while they were 602.5 nm and 1038 nm at the same load in the interstitial 
matrix for time delays of 0 s and 120 s, respectively. It was the case for all the performed 
cycles indicating that stiffness of interstitial matrix exceeded that of osteons. Moreover, for 
the time delay of 120 s, both osteons and interstitial matrix demonstrated higher depths when 
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compared to those acquired at the time delay of 0 s indicating a viscoelastic nature of the 
cortical bone tissue.      

Using both the experimental data acquired and the theoretical method described in Appendix, 
mechanical properties such as elastic modulus and hardness can be obtained using Eq. 12 and 
Eq. 11, respectively (see Appendix). Calculations of the elastic modulus were based on the 
unloading part of the load-displacement curve. Also, a Poisson’s ratio of 0.42 was used for 
the microstructural feature of cortical bone tissue. Figure 7a shows the effect of loading-
unloading rate on the elastic modulus values of osteons and interstitial matrix measured with 
different time delays – 0 s and 120 s. Generally, the values of elastic modulus were higher for 
interstitial matrix compared to osteons for all the loading-unloading rates, 0.5 mN/s, 1 mN/s 
and 2 mN/s, and for the time delays, 0 s and 120 s. For the time delay 0 s, the moduli 
measured for osteons were 12.9±1.08 GPa, 13.05±0.81 GPa and 13.48±1.1 GPa while those 
for interstitial matrix were 14.29±1.72 GPa, 14.30±1.65 GPa and 14.90±1.5 GPa for 
loading-unloading rates of 0.5 mN/s, 1 mN/s and 2 mN/s, respectively. On the other hand, for 
time delay of 120 s, the moduli measured were 7.68 ± 0.53 GPa, 8.89 ± 1.06 GPa and 
11.90±1.03 GPa for osteons and 9.5±0.05 GPa, 9.63±0.77 GPa and 13.22±1.71 GPa for 
interstitial matrix for loading-unloading rates of 0.5 mN/s, 1 mN/s and 2 mN/s, respectively. 
Based on these results, it can be noticed that for time delay of 0 s, significant difference 
between elastic moduli was found neither for osteons nor for interstitial matrix at the studied 
loading rates. For the time delay of 120 s, there were no significant differences between the 
values of elastic modulus for loading rates of 0.5 mN/s and 1 mN/s, whereas a significant 
difference was found between values measured at these rates and 2 mN/s for both osteons and 
interstitial matrix. For the maximum–indentation−load study (see Fig. 7b), the elastic moduli 
for interstitial matrix were higher than those of osteons at the same indentation load for both 
time delays. For the time delay of 0 s, the elastic moduli increased with the maximum-load 
increase for loads of 5 mN and 10 mN, while the values were approximately the same for 
loads of 20 mN and 50 mN (both for osteons and interstitial matrix).  

The average hardness values were 0.39±0.008 GPa, 0.42±0.019 GPa, 0.435±0.03 GPa and 
0.518±0.064 GPa for osteons and 0.618±0.012 GPa, 0.622±0.015 GPa, 0.634±0.094 GPa 
and 0.765±0.048 GPa for interstitial bone tissue for maximum loads of 5 mN, 10 mN, 20 mN 
and 50 mN, respectively. As expected, these values were slightly lower than those obtained in 
literature using a sharp indenter tip due to the larger area accompanied with the spherical tip 
that led to lower hardness values. In the literature, hardness values of 0.578±0.052 GPa for 
osteons and 0.818± 0.049 GPa for interstitial matrix were reported, obtained for bovine 
cortical bone at a maximum load of 20 mN using Berkovich indenter (Thurner 2009). 
However, in order to quantify the elastic-plastic behaviour of cortical bone tissue at 
microstructural scale, a spherical tip had to be used to obtain a smooth transition from the 
elastic behaviour to plastic one. 

3.2. Flow Stress and Flow Strain 

Ten-cycle indentation tests were performed for both the osteonal area and interstitial matrix, 
with flow stresses and strains calculated for each cycle using the obtained experimental data 
together with Eqs. 13 and 14, see Appendix. As an example, the calculated flow stress-flow 
strain curves for osteons and interstitial matrix at loading-unloading rate of 0.5 mN/s and 
time delay of 120 s are demonstrated in Fig. 8. Since the nanoindentation technique leads to 
elastic-plastic deformation, using cyclic loading with spherical indenter enabled us to resolve 
elastic and plastic responses. Accordingly, each point on these curves is the result of one 
complete cycle of loading-unloading indentation test. Then, the quadratic regression was used 
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with high correlation factors to fit the experimental data for both constituents (Fig. 8). It was 
found that not only the elastic modulus and hardness values of the interstitial matrix were 
higher than those of osteons, but also the flow stresses required to achieve the same flow 
strains were higher.  

By investigating the loading-unloading effect on the post-yield behaviour, it was found that 
cortical bone’s microstructural features (osteons and interstitial matrix) are strain-rate 
sensitive as apparent from comparison of the respective flow stress–flow strain curves for 
different loading rates (Fig. 9). The higher the loading rate, the higher the values of flow 
stresses at the same flow strains. These results indicate that cortical bone at the 
microstructural level possesses strain-rate-sensitive elastic-plastic behaviour demonstrated by 
the effect of loading rate on the elastic modulus values as shown in Fig. 7 and on the plastic 
response as shown in Fig. 9. The flow stress-flow strain graphs are higher for higher strain 
rates. Moreover, the response indicates a hardening effect for both osteons and interstitial 
matrix. However, the interstitial matrix shows nearly perfectly-plastic behaviour for a loading 
rate of 1 mN/s. It is worth noticing also that for higher strain rates, the material started to 
yield at lower flow strain for both osteons and matrix. Indents in all the series gave the same 
behaviour with some slight changes in the values of the flow stresses and strains. Most 
probably, the changes in those values were due to local variations in properties linked to 
collagen maturity, surface porosity, subsurface lacunae, or irregularities that remain after 
polishing (Hoffler et al. 2005).  

4. Discussion  

In this study, nanoindentation tests with a spherical indenter were performed to study 
mechanical behaviour of microstructural constituents of cortical bone tissue - osteons and 
interstitial matrix - in order to quantify their elastic properties, hardness and post-yield 
behaviour. The fact that bone is in a continuous remodelling process consisting in a 
succession of resorption and formation processes that lead to heterogeneity of bone material, 
and the correlation between the mineral content and elastic modulus underpin the difference 
between elastic properties of the osteon and interstitial matrix (Hoc et al. 2006; Bala et al. 
2011). Additionally, the results of this study showed lower levels of variation of the elastic 
modulus for osteons compared to those for interstitial matrix for all loading rates. Again, the 
variance in the elastic modulus values was likely related to mineral, collagen and non-
collagenous protein composition (Hoffler et al. 2005). Moreover, there may have been other 
sources of variance including subsurface porosity, subsurface lacunae, and surface 
irregularities (Hoffler et al. 2005). Though, only a slight difference was found between the 
elastic-modulus values for time delays 0 s and 120 s for a maximum load of 50 mN. It can be 
noticed here that as the indentation load increases as, in turn, the indentation depth, the values 
of elastic modulus converge. This can be linked to the surface polishing artifact and 
inaccurate area estimation for shallow indents. The depth-sensitivity findings are in line with 
a similar study by (Hoffler et al. 2005). The average elastic properties obtained in our 
experiment were comparable to data in the literature, elastic moduli in the range from 2 to 
45.8 GPa were reported for different animal species including bovine bone (Abdel-Wahab et 
al. 2010, Thurner 2009), and in the range from 13.4 GPa to 24.2 GPa for bovine bone osteons 
(Hoc et al. 2006). However, the obtained elastic-modulus data were sometimes lower 
compared to some of those available in the literature because they have used sharper 
indentation tip, such as Berkovich or a cube corner. In the current study, spherical indentation 
tip was used to obtain the elastic-plastic behaviour of cortical bone constituents that yielded 
higher indentation area, which, in turn, led to lower values of elastic moduli and hardness.  
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Obviously, it is well documented in literature that a bone mineral content plays a major role 
in bone strength, and a collagen component plays a role in plastic deformation (Currey 2003). 
In addition, in another study, it was shown that collagen maturity is a strong predictor of a 
cortical bone’s plastic behaviour at microstructural level (Bala et al. 2011). In fact, the 
interstitial matrix is the remaining part of the remodelling process; hence, its age is higher 
than that of osteons. In this sense, its collagen component is more mature and consequently 
exhibits higher post-yield behaviour as indicated in Fig. 8. It is also important to note 
considerable deformability of both constituents. Moreover, when using nanoindentation to 
measure mechanical properties of the cortical bone tissue, significant effects on the results 
due viscoelasticity may arise, since the method of Oliver and Pharr (1992), assumes a purely 
elastic behaviour during unloading. One method to reduce the error due to viscosity effects in 
the Oliver-Pharr analysis is increasing the time delay before unloading (Rho and Pharr 1999). 
Hence, the effect of the time delay was considered for the post-yield behaviour as shown in 
Fig. 10. A significant difference was found between the flow stress-flow strain behaviours 
obtained based on a time delay of 0 s and 120 s for both osteons and interstitial matrix. 
Obviously, the use of the higher time delay produced higher values of flow strain due to the 
creep effect but required lower levels of flow stress. Also, the harder material − interstitial 
matrix − exhibited a more pronounced change in the gradient of flow stress as flow strain 
increased. Both constituents showed a gradual work hardening under the indenter as the load 
is increased in every subsequent cycle. This means that plastic deformation started to occur 
beneath the indenter surface but it was constrained by the surrounding elastic material at the 
beginning, then the plastic region extended to the surface of the specimen and continued to 
grow. It was suggested in another study that most of the bone’s toughness takes place after 
yielding, in which energy depends on both strength and ductility, i.e., a degree of permanent 
deformation of bone (Nyman et al. 2007). Obviously, two different constituents exhibited 
different behaviours; the interstitial matrix demonstrated higher post-yield toughness – 
measured as the area under the flow stress-flow strain curve – than osteons; this was the case 
for different loading rates. The constituents showed a quadratic hardening, with magnitudes 
and slopes for osteons being different than those for the interstitial matrix. Because of the 
hierarchical organizations of a cortical bone tissue, it is believed that different toughening 
mechanisms at the microstructural level could be responsible for higher toughness of 
interstitial matrix. It suggested that global viscoelasticty of cortical bone is defined by 
viscoelastic properties of its constituents at the microstructural level. The next stage of our 
research will be devoted to quantification of this link.   

5. Conclusions  

In this study, the mechanical behaviour of microstructural constituents of cortical bone tissue 
- osteons and interstitial matrix – were studied using nanoindentation technique in order to 
quantify their elastic properties, hardness and post-yield behaviour. The nanoindentation 
results demonstrated higher stiffness values for interstitial matrix compared to those of the 
osteons. This difference is related to the heterogeneity of cortical bone due to continuous 
remodelling processes that result in gradients in the mineral content. Also, cortical bone’s 
microstructural constituents (osteons and interstitial matrix) exhibited elastic-visco-plastic 
behaviour with a stiffer post-yield behaviour of interstitial matrix compared to that of osteons. 
This behaviour reflects the relationship between the post-yield behaviour and collagen 
maturity. Moreover, the viscous effect on the nanoindentation results was reduced by using 
the time-delay method. Now, the obtained elastic-plastic behaviour of cortical bone tissue’s 
microstructural constituents can be implemented in finite-element models to study 
microstructural processes of deformation and fracture. 
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Figure 1: Different optical-microscopy images of bovine femoral cortical bone tissue 
(posterior cortex) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 2: Nano-Test 600 indentation system 

 
 
 
 
 



12 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Experimental arrangements for nanoindentation test of bovine femoral cortical bone 
tissue 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Schematic illustration of nanoindentation load-displacement curve during loading, 
time delay and unloading (after Oliver and Pharr (1992))       
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Figure 5: Spherical indents in osteons and interstitial matrix of cortical bone’s specimen 
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(b) 
Figure 6: Typical cyclic load-displacement curves for osteons and interstitial matrix 
(maximum load 20 mN, loading rate 0.5 mN/s) for two dwell times: 0 s (a) and 120 s (b) 
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Figure 7: Elastic modulus for osteons and interstitial matrix: (a) effect of loading-unloading 
rate and dwell time at maximum load 10 mN; (b) effect of maximum applied load and dwell 
time at loading-unloading rate 0.5 mN/s 
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Figure 8: Flow stress-flow strain graphs for osteons and interstitial matrix (maximum load 50 
mN; loading-unloading rate 0.5 mN/s; dwell time 120 s). Error bars show standard deviation  
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Figure 9: Effect of loading-unloading rate on flow stress-flow strain graphs (maximum load 
10 mN; dwell time 120 s): (a) osteons; (b) interstitial matrix. Error bars show standard 
deviation 
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Figure 10: Effect of dwell time on flow stress-flow strain graphs (maximum load 10 mN; 
loading-unloading rate 0.5 mN/s): (a) osteons; (b) interstitial matrix. Error bars show standard 
deviation 
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Appendix  
 
1. Nanoindentation 

Nanoindentation has been widely used by the materials science community; for instance, it is 
employed for probing surface properties of thin films, small volumes, and microstructural 
features (Oliver and Pharr 1992). A schematic illustration of a nanoindentation load-
displacement curve is shown in Fig. 4. 

1.1.Theoretical Basis  

The theoretical basis of nanoindentation method relies on solution of the problem of 
indentation of an elastic half-space with a rigid axis-symmetrical indenter derived by 
Sneddon (1965). The mathematical solution was adjusted by Oliver and Pharr (1992). 
Measurements of load-displacement curves from nanoindentation experiments are utilized to 
determine the contact stiffness, from which the indentation modulus can be calculated.  

The relationship between elastic properties of a sample and contact stiffness is as follows:  

S =
dP
dh

= β
2
√π

Er√A ,                                                                        (1) 

where P is the applied load, h is the indentation depth, A is the projected contact area of the 
indenter and function of depth  h , and β  is an empirical shape factor (β  = 1.034 for a 
Berkovich indenter). To account for a non-rigid indenter used, a reduced modulus Er  is 
implemented and determined as follows: 

1
Er

=
(1 − vs2)

Es
+

(1 − vi2)
Ei

,                                                               (2) 

where Es  and vs are the elastic modulus and Poisson’s ratio of the specimen, respectively, 
and   Ei  and vi are the respective parameters of the indenter. In Eq. (2) the specimen is 
considered as an isotropic material, and the Poisson’s ratio value has to be known. For a 
diamond indenter tip an elastic modulus is 1141 GPa and a Poisson’s ratio is 0.07 (Oliver and 
Pharr 1992). The shape factor β=1 for a spherical diamond indenter, which was used in our 
study.    

Hardness of the cortical bone tissue’s constituents can be calculated as follows: 

H =
Pmax

A
,                                                                                              (3) 

where Pmax is the maximum indentation load and A is the corresponding projected area. 

In general, nanoindentation reveals a wealth of information about the mechanics and 
mechanisms of thin films or small volumes of the studied material. This information includes 
levels of the elastic modulus, hardness, surface adhesion, creep, and stress relaxation 
behaviours. Moreover, it can also be used to obtain the flow stress-flow strain behaviour; the 
respective methodology is described elsewhere in (Zihiqiang and Zhang 2008).  
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1.2. Spherical-Indentation Theory 

Sharp-tipped indenters don’t allow a smooth transition between elastic and plastic behaviour 
of the material because they produce a constant strain impression (Oliver and Pharr 1992). 
On the other hand, spherical indenters provide a smooth transition and evaluation of the 
elastic-plastic behaviour of the material because an increasing contact stress is developed 
with the increasing indentation load. The model used to investigate the effects of geometry on 
local elastic deformation properties was first considered by Heinrich Hertz in 1882. In 
Hertizian contact, the circular contact area of two contacting spheres is related to the elastic 
deformation properties of the materials. The radius of that area predicted by Hertizian 
analysis is given as follows (Micro Materials Ltd 2004): 

a = �
3PRs

4Er
�
1 3⁄

,                                                                                   (4) 

where P is the applied load, Rs is the radius of the sphere, and Er is the reduced modulus 
given in Eq. 2. 

For static Hertizian contact, the maximum shear stress is situated at a distance of approx. half 
the contact radius measured from the point of contact. On the other hand, yielding first takes 
place below the surface when 

          Pm = 1.1 Y,                                                                                 (5) 

where Pm is the mean pressure and Y is the yield stress. The contact remains elastic if the 
mean pressure is less than this value.  

An indentation process may produce one of three possible types of deformation: (i) reversible, 
elastic; (ii) permanent, plastic; or (iii) both elastic and plastic. The ratio between the actual 
strain and the yield strain of the material determines its behaviour during indentation process. 
The elastic behaviour can be obtained for low ratios (less than 2), and the behaviour can be 
considered purely plastic for high ratios (higher than 50). The value of the actual strain is 
given by tan∅, where ∅  is the angle between the indenter and sample surfaces; it is obvious 
that a spherical and pyramid indenter will behave differently. In the case of a Vickers 
pyramid, for instance, ∅  is constant and the strain is therefore constant (8%), regardless of 
depth. On the other hand, for a spherical indenter, ∅  and, therefore, strain increases with 
indentation depth. Consequently, a series of spherical indentations with an increasing 
maximum load can produce results ranging from purely elastic to elastic-plastic deformation 
in addition to stress-strain curves (Micro Materials Ltd 2004).  

By performing multiple loading-unloading cycles with increasing maximum loads at a single 
point using a spherical indenter with a known radius, the contact area, hardness, elastic 
modulus as well as stress and strain can be calculated.  

1.3.Spherical Indentation Analysis Procedure  

For a given indentation experiment consisting of n  indentation cycles, the related total 
penetration depth is ht at a load Pt and a partially recovered depth hs at a reduced load of Ps. 
The depth hr of the residual impression relative to the specimen original surface for a fully 
unloaded indenter can be calculated as follows (Micro Materials Ltd 2004):  

hr =
rhs − ht

r − 1
,                                                                                      (6) 
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where  

 r = �
Pt
Ps
�
2
3

.                                                                                              (7)  

The elastic component he and the plastic component hp of the indentation at each cycle can 
be calculated as follows: 

  he = ht − hr,                                                                                       (8)                                                  

hp =
ht + hr

2
.                                                                                        (9) 

The contact circle radius a in the original surface plane at each indentation cycle can be 
calculated as follows: 

  a = ��2Rshp − hp2�,                                                                           (10) 

Hardness  H, reduced modulus Er , flow stress σr  and corresponding flow strain εr  at each 
indentation cycle i can be calculated as follows (Micro Materials Ltd 2004): 

Hi =
Pti
πai2

,                                                                                                 (11) 

Eri =
3
4

Pti
aihei

,                                                                                           (12) 

σri =
Hi

3
,                                                                                                  (13) 

εri = 0.2 
ai
R

,                                                                                           (14) 

where i = 1 to N.  

To account for the possibility of piling-up or sinking-in around the spherical indenter contact, 
the true contact circle radius ar is related to a determined above by the following function: 

ar = ca.                                                                                                     (15) 

The value of the constant c can be determined as follows: first from plotting a Pti  − ai  
diagram in double logarithmic coordinates, the Meyer’s index (2 + 1/n) is calculated as the 
slope of the diagram, and then c can be obtained as 

c2 =
5
2

2n − 1
4n + 1

.                                                                                       (16) 

Then, correction factors 1 c2⁄  and 1 c⁄  should be applied to hardness H  and the reduced 
modulus Er, respectively.  
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