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In this study we have compared energy and electron transfer reactions in termolecular systems using a 
nanosecond diffuse reflectance laser flash photolysis technique. We have previously investigated these 
processes on silica gel surfaces for bimolecular systems1,2 and electron transfer in termolecular systems3,4. 
The latter systems involved electron transfer between three arene molecules with azulene acting as a 
molecular shuttle. In this study we present an alternative electron transfer system using trans β-carotene 10 

as an electron donor in order to effectively immobilise all species except the shuttle, providing the first 
unambiguous evidence for radical ion mobility. In the energy transfer system we use naphthalene, a 
structural isomer of azulene, as the shuttle, facilitating energy transfer from a selectively excited 
benzophenone sensitiser to 9-cyanoanthracene. Bimolecular rate constants for all of these processes have 
been measured and new insights into the factors determining the rates of these reactions on silica gel have 15 

been obtained.

Introduction 
The photochemistry and photophysics of molecules adsorbed on 
metal oxide1-30 and other surfaces31-45 have been the subject of 
extensive studies. Silica gel is widely used in industry and a 20 

greater understanding of reaction kinetics on this and similar 
materials would be invaluable, allowing for enhancement of these 
processes. 
 The excitation and multi-photon ionisation of arenes and their 
subsequent energy and electron transfer reactions on silica gel 25 

have been previously reported1-4,7,8,12-15. The decay of excited 
state and radical ion species on silica gel is complicated due to 
the heterogeneity of the surface and rates rarely conform to 
simple exponential kinetics. The model described by Albery et 
al.46 has been used to characterise the data sets, ensuring a 30 

comprehensive exploration of the parameter space in order to 
obtain a global optimum value for the rate parameters as 
described in reference 1. 
 In previous studies we have shown evidence for energy and 
electron transfer reactions in these systems as being largely 35 

dependent upon the rates of diffusion1-4, and in the case of 
anthracene / azulene systems, rates of reaction are governed by 
the rate of diffusion of azulene which is more mobile than the 
anthracene moeities. There, energetics were demonstrated to have 
a significant role in determining electron transfer rates1,7,15, and 40 

we have shown a Marcus-type dependence of rate on the free 
energy for electron transfer1,7,15. In that study we also found 
evidence for an additional influence from steric factors1 when 
going from mono to di-substituted naphthalene derivatives. We 
have also previously studied electron transfer4 and energetics3 in 45 

a ter-molecular system with anthracene (or anthracene-9-
carboxylic acid), azulene and perylene. 

 Here we present a study of electron transfer in an anthracene-
9-carboxylic acid / azulene / β-carotene system. In this case we 
expect that azulene will be the only mobile species on the silica 50 

gel surface, and in electron transfer from such a large molecule as 
β-carotene one might expect that any steric influence to be 
considerably greater than that observed in the systems referred to 
above. It should be noted that whilst the β-carotene is relatively 
large, its size (estimated at 2.8nm using HyperChem) does not 55 

preclude access to the porous structure of the silica gel. 
Adsorption to the surface is via London (dispersive) forces or, in 
the case of for example anthracene-9-carboxylic acid, the 
considerably stronger hydrogen bonding interactions. 
 One of our goals has been to expand these studies to include 60 

energy transfer in a termolecular system and we report upon such 
a system, using benzophenone as the primary absorber and 
energy donor, with naphthalene and 9-cyanoanthracene as energy 
acceptor/donor and acceptor, respectively. 

Experimental 65 

Samples were prepared as follows: Silica gel (Davisil grade 635, 
60-100 mesh, 6 nm pore size, surface area 480 m2 g-1; Aldrich 
Chemical Co.) was dried at a temperature of 125 ºC under a 
vacuum of 5 × 10-5 mbar for 8 hours, and the vessel re-
pressurised with dry nitrogen. Anthracene-9-carboxylic acid 70 

(minimum 99%, Aldrich Chemical Co.), azulene (99%, Aldrich 
Chemical Co.), trans β-carotene (Aldrich Chemical Co.), 
benzophenone (99%, Aldrich Chemical Co.), naphthalene (99%, 
scintillation grade, Aldrich Chemical Co.), and 9-
cyanoanthracene (99%, Aldrich Chemical Co.) were dissolved in 75 

acetonitrile (spectrophotometric grade, Aldrich Chemical Co.) or 
chloroform (spectrophotometric grade, Aldrich Chemical Co.) 
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and a known weight of the resulting solution added to the dried 
silica gel. The mixture was allowed to equilibrate for a period of 
one hour, with periodic agitation. The solvent was then removed 
under vacuum to a pressure of 5 × 10-5 mbar. The resulting 
sample was then sealed under vacuum into a cylindrical glass 5 

cuvette (22 mm diameter × 10 mm path length). Sample loadings 
were determined from the mass of solution added to the silica gel 
and varied between 0.1 mmol g-1 and 50 mmol g-1. Such 
concentrations correspond to a low surface coverage, with the 
highest being less than 0.1% of a homogeneous 2D surface 10 

monolayer. 
 Ground state diffuse reflectance spectra were recorded using a 
Perkin-Elmer Lambda Bio 40 spectrophotometer equipped with a 
Spectralon integrating sphere. A highly packed barium sulfate 
sample was employed as a reference. 15 

 The nanosecond diffuse reflectance laser flash photolysis 
apparatus has been described previously in references 24 and 47. 
In the flash photolysis experiments, excitation of the samples was 
carried out using the third harmonic (355 nm, 5 ns fwhm, 110 mJ 
pulse-1) of a Surelite I Nd:YAG laser (Continuum). The pulse 20 

energy was attenuated by varying the active Q-switch delay to 
ensure that transient reflectance changes were kept below 10%, 
where the change in reflectance is directly proportional to the 
concentration of transient species. Diffusely reflected analysing 
light from a 300 W xenon arc lamp (Oriel) was collected and 25 

focussed onto the entrance slit of an ƒ/3.4 grating monochromator 
(Applied Photophysics) and detected with a side-on 
photomultiplier tube (Hamamatsu R928). The resulting signals 
were captured in real-time by a LeCroy LT364 Waverunner 
digitising oscilloscope at 1 GS/s. 30 

 Transient decay data has been analysed using the model of 
Albery et al.46 which treats kinetic decays as a log Gaussian 
distribution of rate constants, according to eqn. 1 
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which was transformed to have finite integrals as described in the 
appendix of reference 46. Here C and C0 are transient 
concentrations at times t = t and t = 0 after the laser pulse, γ is the 
width of the distribution and k  is the mean rate constant. At low 40 

sample loadings and small reflectance changes (less than 10%), C 
and C0 can be replaced by ∆R and ∆R0, the reflectance changes at 
times t = t and t = 0 respectively. This model is applicable in 
systems such as these where transient species are either spectrally 
seperated from one another, decay on very different timescales, or 45 

where the quantum yields of potentially interfering species are 
negligible (vide infra). We have also established that the fitting 
parameters are not dependent on the analysing wavelength over 
the absorption band of the species of interest in these systems. 
Additionally, we have successfully applied this model in the 50 

analysis of data in other termolecular systems3,4, and hence the 
data presented here can be directly compared with our previously 
published work. 

Results and discussion 
Using a nanosecond laser flash photolysis technique, we have 55 

measured transient absorption spectra and bimolecular rate 
constants for termolecular systems on silica gel surfaces; electron 
transfer with anthracene-9-carboxylic acid / azulene / trans β-
carotene and triplet-triplet energy transfer within the 
benzophenone / naphthalene / 9-cyanoanthracene system. 60 

 

Electron transfer 

Previously we have chosen anthracene, azulene and perylene to 
investigate electron transfer in a ter-molecular system3,4. In that 
study, evidence for the mobility of the azulene radical cation was 65 

found based upon the relative rates of the rise of the perylene 
radical cation absorption in the presence and absence of azulene. 
For this work β-carotene was selected as a suitable electron donor 
since, due to its large size, it would be expected to be immobile 
on the silica gel surface (at least on the timescale of the 70 

experiments conducted here). In addition it has an appropriate 
oxidation potential for the electron transfer to take place, being 
lower  than azulene, which we have measured by cyclic 
voltammetry and found to be 0.59 V (β-carotene) and 1.01 V 
(azulene) vs. Ag / AgCl (c.f. 1.04 V previously1). This value is in 75 

close agreement to that found for β-carotene by Rusling et al.48 of 
0.57 V vs. SCE (+ 45 mV vs Ag/AgCl). In the present study, the 
lack of mobility of the β-carotene on the silica gel surface was 
confirmed experimentally in the anthracene-9-carboxylic acid / β-
carotene system where no electron transfer occurred following 80 

laser excitation. This is in contrast to previous studies of the 
anthracene-9-carboxylic acid / perylene system3 where a 
relatively slow (compared with values for electron donors azulene 
and naphthalene in bimolecular systems1,2) electron transfer was 
clearly observed. 85 
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Fig. 1 Ground state diffuse reflectance spectrum of anthracene-9-
carboxylic acid with azulene and β-carotene on silica gel. Sample 
loadings are are all 1.0 mmol g-1. Inset shows absorption spectra of 
anthracene-9-carboxylic acid (solid line), azulene (dotted line) and β-90 

carotene (dashed line) in chloroform. Sample concentrations were all 4 × 
10-5 mol dm-3. 
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 Figure 1 shows the ground state diffuse reflectance and 
individual solution spectra of the termolecular system. At the 
loadings studied an appreciable proportion of the excitation 
radiation is absorbed by the anthracene-9-carboxylic acid. 5 

Although there is absorption by both azulene and β-carotene, 
neither of these gives rise to interfering transient species. If 
azulene is co-adsorbed to form the termolecular system, then  
electron transfer can be observed from azulene to the anthracene 
radical cation, followed by electron transfer from the β-carotene 10 

to the azulene radical cation. This demonstrates unambiguously 
that the azulene radical cation is mobile on the surface.  
Furthermore, in this particular system, azulene and its radical 
cation are the only mobile species on these time scales. Fig. 2 
shows the transient spectrum that was obtained following 355 nm 15 

pulsed laser excitation of the anthracene-9-carboxylic acid / 
azulene / β-carotene system. 
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Fig. 2 Transient absorption  spectrum (∆R versus λ) of anthracene-9-
carboxylic acid / azulene / β-carotene following 355 nm pulsed laser 20 

excitation. Sample loadings are 5, 2 and 1 mmol g-1 respectively. Spectra 
were measured at 5 ms (), 50 ms () and 200 ms () after the laser 
pulse. 
Reflectance spectrum (%R versus λ) of anthracene-9-carboxylic acid / 
azulene / β-carotene following 355 nm pulsed laser excitation. Sample 25 

loadings are 5, 2 and 1 mmol g-1 respectively. Spectra were recorded at 1 
min (solid line), 5 min (dashed line) and 10 min (dotted line) after the 
laser pulse. 

 
 Several bands can be seen following excitation and subsequent 30 

electron transfer, which are not present in the absence of azulene. 
Given the short lifetime of the β-carotene excited triplet state we 
attribute these bands to the β-carotene radical cation49-51. A 
depletion of the ground state at 470 nm is observed with kinetics 
similar to the formation of the band above 800 nm. The radical 35 

cation species is persistent enough to be seen over longer time 
scales (minutes) using a steady-state reflectance 
spectrophotometer. The instrument was blanked using the sample 
itself prior to irradiation, which was then subjected to two shots 
of 355 nm laser radiation at maximum output (measured as 40 

approx. 80 mJ). The reflectance spectrum was measured on the 
time scale of minutes after laser excitation (note that this 

spectrum is uncorrected for emission in the 400-500nm region; in 
the transient absorption data, from which the kinetic parameters 
are extracted, emission is corrected for). In this case, only 45 

extremely long lived species remained measurable. By contrast, 
metastable species such as excited triplet states decayed within 
seconds (or even milliseconds) after irradiation. The spectra are 
shown in Fig. 2. 
 At longer times after the laser pulse, the reflectance spectrum 50 

was found to be very similar to the transient absorption spectrum. 
We chose to measure the kinetics of formation of this species at 
515 nm. There is significantly more reflectance change at longer 
wavelengths, but the signal to noise ratio in the transient decays 
was found to be worse in this region. 55 

 The kinetics of the formation of the β-carotene radical were 
measured as a function of azulene loading. In all cases, the 
loadings of anthracene-9-carboxylic acid and β-carotene were 
kept constant at 1.0 and 0.25 mmol g-1 respectively. Fig. 3 shows 
a plot of mean rate constant for formation of the β-carotene 60 

radical at 515 nm versus azulene loading which was analysed 
according to eqn. 2. 
 

 ]quencher['0 qkkk +=  (2) 

Here 0k is the mean rate constant in the absence of a quencher 65 

(electron donor) and should be zero in the case of electron 
transfer. The gradient of a plot of observed mean rate constant, k  
versus quencher concentration then gives the bimolecular rate 
constant, qk ' , or in this case ket, for electron transfer. 
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Fig. 3 Plot of mean  rate constant versus azulene loading for anthracene-
9-carboxylic acid  / azulene / β-carotene (1.0, x, 0.25 mmol g-1) following 
355 nm laser excitation. Formation of the β-carotene radical cation was 

monitored at 515 nm. 
 75 

 We have measured the bimolecular rate constant for electron 
transfer between β-carotene and azulene to be 4.5 ± 0.2 × 106 g 
mol-1 s-1. This can be compared with our previously reported  
values of 1.1 × 1010 g mol-1 s-1 and 9.5 × 109 g mol-1s-1 for the 
anthracene-9-carboxylic acid / azulene / perylene4 and anthracene 80 
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/ azulene2 systems respectively. This significantly lower rate can 
be attributed  to steric (entropic) factors involved in the electron 
transfer process, a phenomenon invoked previously by us to 
explain significantly reduced electron transfer rates in 
bimolecular systems involving sterically hindered electron 5 

donors1. It is therefore expected that the marked reduction in the 
rate of electron transfer  observed when employing a molecule as 
large as β-carotene is the result of the efficiency being dependent 
upon the approach between donor and acceptor. Thus, the rate of 
electron transfer between β-carotene and azulene lies well outside 10 

of the Marcus-type domain reported by ourselves in reference 1. 
This is illustrated in Fig 4. 
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Fig. 4 Plot of ln ket versus ΔGet for a series of arene electron donors and 15 

their mono-substituted derivatives (), dimethyl / isopropyl naphthalene 
derivatives () and updated with β-carotene () included for 
comparison. Solid line shows fit according to the Marcus equation. 
Previously published with full details in reference 1. 
 20 

Energy transfer 

For the first time we have investigated triplet-triplet energy 
transfer in a termolecular system. In this system benzophenone is 
the primary absorber, with the first excited triplet state being 
formed following 355 nm laser excitation. Naphthalene does not 25 

absorb in this region and hence its triplet state can only be formed 
via energy transfer from benzophenone. This is an exothermic 
process since naphthalene has a lower triplet state energy than 
benzophenone52,53. Thomas et al.5 have previously suggested that 
benzophenone is immobile on silica gel surfaces and hence 30 

dynamic quenching is dependent on the motion of the 
naphthalene. The final energy sink is 9-cyanoanthracene, chosen 
for its lower triplet state energy than naphthalene, and its triplet 
quantum yield close to zero54. Hence, even though this species 
absorbs at the laser wavelength, population of the triplet state 35 

occurs only via energy transfer. 
 The transient spectrum for the benzophenone / naphthalene 
system is shown in Fig. 5. 
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Fig. 5 Transient absorption spectra of benzophenone / naphthalene on 40 

silica gel following 355 nm pulsed laser excitation. Sample loadings are 
50 and 1.0 mmol g-1 respectively. Spectra were measured at 20 ms (), 50 
ms () and 100 ms () after the laser pulse. 
 
 The bands present at 520 and 410 nm are consistent with 45 

excited triplet states of benzophenone40, 52,53 and naphthalene 
adsorbed on silica gel52,53. This experiment was repeated using a 
tenfold increase in naphthalene loading. A 50% decrease in the 
initial reflectance change of the benzophenone triplet state was 
seen, consistent with efficient triplet state quenching by 50 

naphthalene. The naphthalene triplet state is produced efficiently 
even at the lower loading with a ∆R0 of 0.41 versus 0.33 for high 
and low loadings respectively. In the presence of 9-
cyanoanthracene, the transient spectrum (Fig. 6) shows an 
additional broad absorption from the excited triplet state of this 55 

species, with absorption bands at 430 and 460 nm51, indicating 
energy transfer has occurred from benzophenone to  naphthalene 
to the lower lying 9-cyanoanthracene triplet state. Direct 
production of the latter species is negligible54. 
 60 

 Kinetic analysis of the decay and formation of these excited 
triplet states has allowed us to measure bimolecular rate constants 
for the two energy transfer processes in this termolecular system. 
However, it should be noted that the initial energy transfer from 
benzophenone to naphthalene was examined in the absence of 9-65 

cyanoanthracene in order to avoid complications from spectral 
overlap between the naphthalene and 9-cyanoanthracene. A 
typical transient kinetic decay with residuals is shown in Fig. 7 
for the naphthalene triplet state. 
 70 
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Fig. 6 Transient absorption spectrum of benzophenone / naphthalene / 9-
cyanoanthracene on silica gel following 355 nm pulsed laser excitation. 
Sample loadings are 50, 10 and 0.5 mmol g-1. Spectra were measured at 
100 ms (), 5 ms () and 20 ms () after the laser pulse. 5 
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Fig. 7 Transient decay and residuals (inset top) for benzophenone 
sensitised naphthalene excited triplet state on silica gel, monitored at 410 10 

nm. Sample loadings are 50 and 1.0 mmol g-1 respectively. Fitting by the 
Albery dispersive kinetic model yields k = 2.55 × 104 s-1 and γ = 0.6 
corresponding to a global minimum in reduced χ2. 
 
 The decay was monitored using both the transient absorption 15 

decay at 530nm and phosphorescence decay at 430nm. The latter 
significantly improves the signal to noise ratio at higher 
naphthalene loadings and rate constants were found to be the 
same within experimental error, irrespective of monitoring 
technique. Energy transfer from the naphthalene shuttle to 9-20 

cyanoanthracene was examined by measuring both naphthalene 
transient decay at 410 nm and 9-cyanoanthracene transient 
formation at 460 nm, under conditions of sample loading where 
decay of the benzophenone triplet was dominated through 
quenching by naphthalene.. Bimolecular rate constants were 25 

extracted from plots of mean rate constant versus loading of the 
quenching species using eqn 2, as shown in Fig. 8. 
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Fig. 8 Plot of mean  rate constant versus quencher loading for 
benzophenone phosphorescence decay  () at 430 nm and benzophenone 30 

transient decay () at 520 nm, naphthalene transient decay () at 410 nm 
and 9-cyanoanthracene transient formation () at 460 nm. Sample 
loadings were benzophenone at 50 mmol g-1 and varying naphthalene and 
9-cyanoanthracene loadings from 0.1 - 10 mmol g-1. 
 35 

 A summary of the bimolecular rate constants obtained for 
energy transfer are given in Table 1. 
 

Table 1 Bimolecular rate constants for energy transfer between 
benzophenone (Bzp), naphthalene (Nap) and 9-cyanoanthracene (AnCN) 40 

with Nap or AnCN acting as the quencher (energy acceptor). 

 

Process   Quencher  k’q / g mol-1 s-1 

 

3Bzp* decay  Nap  3.0 ± 0.2 × 1010 45 
3Nap* decay  AnCN  2.7 ± 0.2 × 1010 
3AnCN* formation  AnCN  3.1 ± 0.3 × 1010 

 

 
 In all three cases the bimolecular rate constant for energy 50 

transfer to and from naphthalene is the same within experimental 
error, indicating that the process is dominated by the rapid 
mobility of naphthalene and its excited triplet state. An  
advantage of a termolecular system is being able to measure and 
independently verify the same energy transfer step via different 55 

excited states as in the case here with naphthalene triplet state 
decay and 9-cyanoanthracene formation. 
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 The bimolecular rate constants were found to be similar to 
those previously measured in a bimolecular system for 
naphthalene / azulene energy transfer1 where k’q = 2.21 ± 0.1 × 
1010 g mol-1 s-1. The rate constants reported here are slightly 
larger than previously reported values, which were assumed to be 5 

dominated by diffusional factors. The fact that larger rate 
constants are observed in this system demonstrates that diffusion 
is not the only factor which determines energy transfer rates, and 
that there are other factors which need to be considered. In 
addition to the steric (entropic) contributions already discussed 10 

(vide supra). One possible explanation for this small difference 
may be comparitively unfavourable Franck-Condon factors for 
energy transfer between naphthalene and azulene given the 
strongly exothermic nature of this process, as can be seen from 
the triplet state energies, ET,  in Table 2. 15 

 

Table 2 Energies of triplet excited states. 

 

Compound   ET / kJ mol-1 

 20 

benzophenone  28955 
naphthalene  25556 
anthracene-9-carboxylic acid 17857 
anthracene   17758 
9-cyanoanthracene  16959 25 

azulene   16360 

 

 
 
 In previous studies we noted that the rate constants for energy 30 

transfer between anthracene / anthracene-9-carboxylic acid and 
azulene2 to be almost half that (k’q = 1.0 × 1010 g mol-1 s-1)  for 
naphthalane1 to azulene, and suggested that this could be 
explained on the basis of relative diffusion coefficients. This 
study however provides compelling evidence that there are 35 

additional factors factors involved in these systems. In addition to 
factors already discussed, it can further be suggested that in the  
anthracene / azulene system, where the excited triplet states lie 
close in energy,  back energy transfer in the encounter complex is 
possible leading to an apparent reduction in the observed rate. 40 

The temperature dependence of the observed rate constants will 
then reflect the competition between increased diffusion rates and 
increased back energy transfer as temperature is increased.   
 Clearly such effects are worthy of further exploration, and 
these novel termolecular systems provide a powerful tool for 45 

studying these controlling factors in detail. 

 

Conclusions 
To our knowledge we have demonstrated energy transfer in a 
termolecular system using a molecular shuttle on silica gel 50 

surfaces, for the first time. Rate constants for energy transfer in 
all steps of this process were found to be the same within 
experimental error, and slightly larger than rates previously 
reported in other systems. This suggests the latter are not fully 

diffusion controlled, and other factors such as Franck-Condon 55 

factors, triplet state energies and steric considerations need to be 
taken into account. Additionally, we have demonstrated electron 
transfer in a termolecular system using azulene to transfer the 
electron hole between an immobile electron acceptor and electron 
donor.  60 

 No electron transfer between anthracene-9-carboxylic acid and 
β-carotene is observed in the absence of azulene, verifying its 
role as an electron hole carrier. The rate of electron transfer in 
this system is significantly lower than that observed previously 
using perylene as the final electron donor rather than β-carotene. 65 

We therefore suggest on this basis and that of previous studies1 
that electron transfer reactions on the substrate are not only 
dependent on the relative mobility of the reacting species, but 
also strongly influenced by steric considerations such as size, 
substitution and orbital symmetry. 70 

 This study demonstrates that termolecular systems can provide 
novel insights into energy and electron transfer processes on 
silica gel, and potentially other surfaces. It is also clear that, 
whilst diffusion plays the most significant role in determining 
observed rates, energetic and steric factors influence the detailed 75 

rate behaviour. 
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