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Colloidal particles that are confined to an interface such as the air-water interface are an example of a
two-dimensional fluid. Such dispersions have been observed to spontaneously form cluster and stripe mor-
phologies in certain systems with isotropic pair potentials between the particles, due to the fact that the pair
interaction between the colloids has competing attraction and repulsion over different length scales. Here we
present a simple density functional theory for a model of such a two-dimensional fluid. The theory predicts a
bulk phase diagram exhibiting cluster, stripe, and bubble modulated phases, in addition to homogeneous fluid
phases. Comparing with simulation results for this model from the literature, we find that the theory is
qualitatively reliable. The model allows for a detailed investigation of the structure of the fluid and we are able
to obtain simple approximate expressions for the static structure factor and for the length scale characterizing
the modulations in the microphase separated phases. We also investigate the behavior of the system under
confinement between two parallel hard walls. We find that the confined fluid phase behavior can be rather
complex.
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I. INTRODUCTION

Many soft matter systems are capable of displaying spa-
tially modulated structures. Well known systems such as so-
lutions of amphiphiles and diblock copolymers can exhibit
several microphase ordered phases �1�. This self-organization
originates from competing interactions occurring over differ-
ent length scales and particle orientations. Systems of colloi-
dal particles confined to the air-water interface are also ca-
pable of exhibiting microphase separation �2–4�. In these
two-dimensional fluids, the self-organization is driven by a
competition between short-ranged attractive interactions,
which gather the particles together, but at longer ranges there
is a repulsive interaction between the particles which breaks
the system up into high density islands of particles with low
density regions in between the islands. The shape of these
islands depends on the surface coverage �density�. At lower
densities the particles form an array of �roughly� circular
clusters, but at higher densities, they form a series of elon-
gated parallel stripes �3,4�. This self-organization is rather
striking, when bearing in mind that the interactions between
the individual pairs of particles is only a function of the
particle separation and not of any orientational degrees of
freedom, which play an important role in the microphase
ordering of, for example, amphiphilic systems.

Suspensions of colloidal particles �i.e., three-dimensional
fluids� with effective pair interactions between the particles
of a similar form have also been synthesized �5–8�. These
systems also display various microphase separated phases
including cluster phases. An overview of the various studies
of models for these three-dimensional systems is outlined in
Ref. �9�.

The focus of this paper is a model two-dimensional fluid,
first proposed in Ref. �4�, and studied in detail via Monte
Carlo computer simulations in a number of publications by
Imperio and Reatto �10–13�. This system is composed of
particles with a hard core of diameter �, interacting via the
following pair potential:

v�r� = �� , r � �

w�r� , r � � ,
� �1�

where

w�r� = −
�a�2

Ra
2 exp�−

r

Ra
� +

�r�
2

Rr
2 exp�−

r

Rr
� . �2�

The parameter subscripts a and r stand for “attraction” and
“repulsion,” respectively. In much of the work presented here
we will follow Imperio and Reatto and select the following
values for the pair potential parameters: Ra=1�, Rr=2�, and
�a=�r=�. Thus � will be the unit of energy in the system.
These parameters are chosen so that the integral over w�r� is
zero, i.e., �	−
drw�r�=0.

The studies in Refs. �4,10–13� found a rich phase behav-
ior displayed by this model fluid, which mirrored the behav-
ior observed in the experiments �3,4�. At high temperatures,
the contribution from w�r� to v�r� is negligible and so the
fluid properties are wholly determined by the hard-core part
of the potential v�r� and the system is effectively just a fluid
of hard disks. On lowering the temperature, however, one
finds that on increasing the fluid density at fixed temperature,
there is a sequence of phase transitions. At low densities, the
particles are uniformly distributed across the surface; we de-
note this as the vapor phase. As the density is increased we
find a transition to the cluster phase, in which the particles
gather to form circular islands. The number of particles in
each island may vary from just a few to as many as a hun-
dred or more, depending on the particular values of the pair
potential parameters in Eq. �2�. The clusters are equilibrium
structures and the probability of a particle moving from one
cluster to another is �0. There is no long-range order be-
tween the clusters—the system forms a fluid of clusters.
However, as the density is further increased, the clusters
“freeze” so that the clusters arrange themselves onto a trian-
gular superlattice �11�. On further increasing the density of
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particles on the surface, there is a transition to a phase in
which the particles form parallel stripes �4,10,11�. Further
increasing the density, finds the system exhibiting a “bubble”
phase, in which there are low density voids amongst the
particles on the surface. At even higher densities the system
forms a uniform liquid phase �14�. It is worth emphasizing
again that for some temperatures, these nonuniform struc-
tures are equilibrium �ergodic� states, having a nonzero prob-
ability for a particle to move from one cluster or stripe to
another. However, as the temperature is decreased, this tran-
sition probability decreases. At low temperatures, one finds
the same sequence of phase transitions, but for these tem-
peratures the particles can be frozen within the clusters or
stripes. The possibility of a related glass transition should not
be ruled out either �11�.

It should also be recalled that pattern formation in two-
dimensional model fluids composed of particles interacting
via isotropic pair potentials is not restricted to generaliza-
tions of Eqs. �1� and �2�—i.e., potentials with a short-ranged
attraction and a longer-ranged repulsion. Striped patterns
have also been observed in systems of particles interacting
via a pair potential having a hard-core plus a longer-ranged
purely repulsive “shoulder” potential �15� and also in these
systems when an additional attractive contribution is added
to the potential, beyond the repulsive shoulder—i.e., poten-
tials with a short-ranged repulsion and a longer-ranged at-
traction �16�.

In this paper we develop and apply a simple density func-
tional theory �DFT� for the model fluid defined by Eqs. �1�
and �2�. In Sec. II, we describe the DFT. In Sec. III we use
the DFT to investigate the structure of the fluid and, in par-
ticular, we obtain a simple expression for the static structure
factor and also for the characteristic length scale associated
with the modulations in the nonuniform phases. In Sec. IV
we calculate the phase diagram predicted by the simple DFT
and find that it exhibits a cluster, stripe, and bubble phase,
which is in qualitative agreement with the simulation results
of Refs. �10–12�. In Sec. V we use the DFT to study the
phase behavior of the fluid when confined between two par-
allel hard walls. Depending on the fluid density and tempera-
ture, we find that as the separation between the two walls is
varied, the equilibrium density profile can vary significantly
due to the need for the length scale of the density modula-
tions in the fluid to be commensurate with the distance be-
tween the walls. Finally, in Sec. VI we discuss our results
and draw some conclusions.

II. DFT FOR THE SYSTEM

The structural and thermodynamic properties of the sys-
tem may be obtained from the grand potential functional
�17,18�,

��	�r�� = F�	�r�� +� dr	�r��Vext�r� − 
� , �3�

where 	�r� is the fluid one body density, Vext�r� is the exter-
nal potential, 
 is the chemical potential, and F�	�r�� is the
intrinsic Helmholtz free energy functional. The grand poten-
tial of the system for a given 
 and Vext�r�, denoted �, is the

minimal value of ��	�r��, and the equilibrium one-body
density profile 	�r� is that which minimizes the grand poten-
tial functional �17,18�. As usual, F�	�r�� is an unknown
functional and we assume the following simple mean-field
approximation for this quantity:

F�	�r�� =� dr	�r�f�	�r��

+
1

2
� dr� dr�	�r�	�r��w�r − r�� , �4�

where f�	� is the Helmholtz free energy per particle of a
uniform fluid of hard disks with bulk density 	. This local
density approximation �LDA� for the reference hard-disk
contribution includes the �exact� ideal gas contribution

Fid�	�r�� = kBT� dr	�r��ln��2	�r�� − 1� , �5�

where � is the thermal De Broglie wavelength. For simplic-
ity, we will use the scaled particle approximation,

�f�	� = ln��2	� − 2 − ln�1 − � + �1 − �−1, �6�

where �=1 /kBT is the inverse temperature and =�	�2 /4 is
the packing fraction. There exist better approximations than
Eq. �6�, such as that obtained in Ref. �19�, but for the densi-
ties of interest here, the more simple expression in Eq. �6� is
sufficiently reliable. The mean-field contribution to the free
energy in Eq. �4�, from the tail of the pair potential, is justi-
fied on the basis that w�r� is fairly long ranged and slowly
varying. Note that Eq. �4� does not provide a reliable ap-
proximation for the Helmholtz free energy in cases when the
fluid density 	�r� varies strongly on length scales ��, i.e.,
for describing effects from packing of the hard cores of the
particles. To take account of such correlations, one must
implement a nonlocal approximation for the reference hard-
disk free energy functional, along the lines of that used in
Ref. �20� for the three-dimensional counterpart of the present
system. However, in the present study, where our interest is
in the cluster, stripe, or bubble structures, for which the fluid
density profile 	�r� varies over length scales ��, Eq. �4�
suffices �21�.

III. STRUCTURE OF THE UNIFORM FLUID

The direct pair correlation function, defined as follows
�17�:

c�r,r�� = − �
�2�F�	�r�� − Fid�	�r���

�	�r��	�r��
, �7�

can be used to characterize two-point correlations in the in-
homogeneous fluid. In the homogeneous bulk fluid, where
	�r�=	, we find c�r ,r��=c�r−r��=c�r�. More convention-
ally one characterizes the fluid structure by either consider-
ing the radial distribution function g�r�, obtained from c�r�
via the Ornstein Zernike equation �17�, or the static structure
factor
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S�k� =
1

1 − 	ĉ�k�
, �8�

where ĉ�k� is the Fourier transform of c�r�.
For the present model, Eqs. �4�–�7� together yield the fol-

lowing expression for the pair direct correlation function:

c�r,r�� = − ��2f�„	�r�… + 	�r�f�„	�r�… −
kBT

	�r����r − r��

− �w�r − r�� , �9�

where ��r� is the Dirac delta function and f� and f� are the
first and second derivatives of f with respect to 	. Combining
Eqs. �6�–�9� we obtain the following expression for the static
structure factor:

S�k� =
1

a�� + 	�ŵ�k�
, �10�

where a��= �1+� / �1−�3, and where

ŵ�k� = −
2��a�2

�1 + Ra
2k2�3/2 +

2��r�
2

�1 + Rr
2k2�3/2 . �11�

Due to the local density approximation for the hard-disk con-
tribution to the free energy functional �4�, this expression for
S�k� is strictly only applicable for wave numbers k�2� /�.
In Ref. �10�, the authors showed that the random phase ap-
proximation �RPA� for S�k� is fairly reliable for describing
the fluid structure. The RPA consists of making the approxi-
mation ĉ�k�= ĉhd�k�−�ŵ�k�, where ĉhd�k� is the Fourier
transform of the hard-disk pair direct correlation function,
chd�r�. For the present model fluid, the RPA approximation
yields a structure factor which is reliable for all wave num-
bers k. The result in Eq. �10� only coincides with the RPA
result for small wave numbers k�2� /�. Thus the present
theory effectively only includes the intercluster correlation
contributions to S�k� and does not include the intracluster
correlation contributions.

As an aside, we now briefly consider the structure and
phase behavior of a system for which �r=0, i.e., when the
long-range repulsive contribution is no longer present and
�−��=
drw�r�= ŵ�k=0�=−2��a�2�0. In this case, the sys-
tem exhibits only bulk vapor-liquid phase coexistence and no
microphase separation. Owing to our simple approximation
for the free energy �4�, it is straightforward to determine the
phase diagram and calculate the binodal and spinodal. For
example, the spinodal corresponds to the divergence S�k
=0�→�; i.e., this is when the denominator in Eq. �10� equals
zero for k=0, giving the following expression for the spin-
odal temperature as a function of density:

kBT

�
=

	�1 − �3

�1 + �
. �12�

The critical point corresponds to the maximum of this curve,
i.e., when �

�	 �	�1−�3 / �1+��=0. This yields a critical
packing fraction c= ��7−2� /3�0.274. Note that one could
also obtain Eq. �12� starting directly from the free energy
functional �4�. In bulk, this gives the following expression
for the bulk free energy per particle: f tot�	�= f�	�−	� /2.

From this, we may obtain the pressure in the system as fol-
lows:

P = 	2� �f tot

�	
� =

	kBT

�1 − �2 −
	2�

2
. �13�

The spinodal corresponds to the locus ��P /�	�T=0, so taking
a further derivative we obtain Eq. �12�. Such consistency
between the structural and the thermodynamic routes to the
phase behavior comes as a consequence of deriving all quan-
tities from a free energy functional and is one of the advan-
tages of using the DFT approach rather than integral-
equation theory based approaches �9,17,22�.

We return now to the more general case when �r�0.
First, we focus on the small wave number k behavior of S�k�.
Taylor expanding S�k� in Eq. �10� around k=0 we find

S�k� = S0 − �S0
2k2 + O�k4� , �14�

where S0=S�k=0�= �a��−	���−1 and �=3��2	���aRa
2

−�rRr
2�. When ��0, i.e., when ��aRa

2−�rRr
2��0, then S�k

=0� is a maximum and the phase behavior of the system is
the same as in the case when �r=0, provided ��0, where
�=−
drw�r�=2��2��a−�r�, and the spinodal curve is given
by Eq. �12�. However, when ��0, i.e., when ��aRa

2−�rRr
2�

�0, then S�k=0� is a minimum and there is a maximum in
S�k� at k=kc�0. This peak in S�k� at kc indicates a propen-
sity in the fluid for having density modulations with wave-
length 2� /kc. In fact, in certain portions of the phase dia-
gram, the fluid may become unstable with respect to density
fluctuations of wavelength 2� /kc and it then follows that the
system exhibits microphase separation to the various differ-
ent modulated fluid phases, in this portion of the phase dia-
gram. This instability is indicated by the divergence of the
peak in S�k� at kc. We denote the locus in the phase diagram
at which this occurs the � line—i.e., the � line is defined as
the locus where S�k=kc�→� �20,21,23–26�.

Within the present DFT we may obtain an expression for
kc and also for the temperature on the � line, as a function of
the density, as follows: the wave number kc is defined as the
value of k where S�k� is a maximum, i.e., where the quantity
�a��+	�ŵ�k�� is a minimum �recall Eq. �10��. This occurs
when �

�k �a��+	�ŵ�k��=	� �
�k ŵ�k�=0. Solving this equation

we find that there are two solutions. The first at k=0, corre-
sponding to the minimum in S�k� and the second at k=kc,
where

kc =� � − 1

Rr
2 − �Ra

2 , �15�

and where �= ��rRr
2 /�aRa

2�2/5. For the set of pair potential
parameters that we focus on here, Ra=1�, Rr=2�, and �a
=�r=�, we find kc��0.573 so that the length scale charac-
terizing the density modulations in the microphases =2� /kc
�11�, as pointed out in Ref. �10�. Comparing the result in
Eq. �15� with the results from Monte Carlo computer simu-
lations, for various different sets of choices for the pair po-
tential parameters, one finds that Eq. �15� is generally reli-
able and in good agreement with the simulation results �14�.
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The � line corresponds to the locus where �a��+	�ŵ�k
=kc��=0. Rearranging this we obtain the following expres-
sion for the temperature along the � line:

kBT

�
=

	�1 − �3

�1 + �
, �16�

where �=−ŵ�k=kc��0. Note the strong similarity between
this expression and Eq. �12� for the spinodal. For the pair
potential parameters Ra=1�, Rr=2�, and �a=�r=�, the �
line is displayed in Fig. 1. See also Fig. 14 in Ref. �10�,
where the � line from the full RPA is displayed. Inside the �
line, the homogeneous fluid is unstable with respect to den-
sity fluctuations with wave number kc. The nature of the
phases that occur in this region of the phase diagram is the
topic of the following section.

IV. BULK PHASE BEHAVIOR

For a given state point, the equilibrium fluid density pro-
file is that which minimizes the grand potential �3�; i.e., it is
the solution to the following equation �17,18�:

���	�r��
�	�r�

= 0. �17�

From Eqs. �3�, �4�, and �17� we obtain

f„	�r�… + 	�r�f�„	�r�… +� dr�	�r��w�r − r�� + Vext�r� = 
 .

�18�

We discretize the density profile 	�r� on a two-dimensional
Cartesian grid and, for a given value of the chemical poten-
tial 
, we may then solve Eq. �18� for the fluid density pro-
file, by using a simple iterative numerical procedure. For the
bulk case, where the external potential Vext�r�=0, we solve
using periodic boundary conditions in both Cartesian direc-
tions. Since in this case the uniform density profile 	�r�=	 is
always a solution of Eq. �18�, to find the density profile for
the modulated phases we investigated three approaches: �i�
choose an initial guess for the input density profile with a

cluster, stripe, or bubble already present, to “nucleate” other
clusters, stripes, or bubbles throughout the remainder of the
system. �ii� Set the initial input density profile to be

	�r� = 	 + ��r� , �19�

where ��r� is a random noise field with the property ��r�
�	. This is the “quick and dirty” way of establishing the
fluid phase behavior for a particular 	. �iii� Take the density
profile obtained previously for a neighboring state point and
use it as an initial guess for the density profile at the required
state point. Approaches �i� and �ii� proved to be good for an
initial assessment of the phase behavior. However, none of
these approaches guarantees that one finds the density profile
corresponding to the global minimum of the grand potential.
To find the true global minimum one must follow approach
�iii� above for all the possible candidate structures and then
take the resulting density profiles �which each corresponds to
local minima in the free energy landscape� and substitute the
density profiles into the grand potential functional �3� and
evaluate the grand potential � corresponding to each phase.
The phase with the lowest grand potential is the true equilib-
rium phase. Note also that since we were solving for the
density profile on a finite grid of size Lx�Ly, with periodic
boundary conditions, one must also minimize the grand po-
tential with respect to Lx and Ly as well as with respect to
variations in 	�r�, since otherwise one is forcing the period
of the fluid modulations to be Lx /n in the x direction and
Ly /m in the y direction, where n and m are integers �27�.
This process is not as arduous as it might first appear. This is
due to the fact that, as noted in the previous section, the
length scale determining the size of the periodic structures is
2� /kc, which for the present DFT does not vary as a function
of density or temperature. This means that having found the
values of Lx and Ly which minimize � for a certain state
point, the values of Lx and Ly which minimize � for a dif-
ferent point in the phase diagram are very close to those at
the first state point.

In order to locate the phase transitions between the vari-
ous phases and calculate the densities of the coexisting
phases, we performed scans of the chemical potential 
 for
fixed temperature T. Along these scans we recorded the pres-
sure P �obtained from the grand potential, since �=−PA,
where A is the system area� and the average density of the
system 	. We repeat this for all the phases displayed by the
system. Since phase coexistence occurs between points with
equal �T , P ,
� one can then read off the coexisting state
points by plotting P versus 
 for these isothermal scans and
noting the intersection points between the different curves.
The resulting phase diagram is displayed in Fig. 1. In addi-
tion to the homogeneous vapor and liquid phases we find that
the DFT predicts that the system displays three inhomoge-
neous fluid phases. Examples of density profiles obtained for
each of these three phases are displayed in Fig. 2. At lower
densities, the system forms a regular array of clusters. The
density within the clusters is close to that of the uniform
liquid for the same temperature and the density in the voids
is low—close to that of the uniform vapor for the same tem-
perature. At intermediate densities, the system forms an array
of parallel stripes. Again, the particle density within the

FIG. 1. �Color online� Phase diagram in the density-temperature
plane. The shaded regions denote two-phase coexistence regions
between the various phases and the dashed line is the � line.
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stripes is that of a liquid and the local density between the
stripes is that of the vapor. At higher densities still, the sys-
tem forms a regular array of bubbles, i.e., within the bubbles
the density of particles is low, but in between the bubbles the
local density is that of the liquid.

All of the phase transitions are predicted by the present
DFT to be first order, except for the transition from the uni-
form fluid to the stripe phase. This phase transition is pre-
dicted to be second order �continuous�. If one starts in the
uniform fluid phase at a state point directly above the stripe
phase in temperature, and then decreases the temperature,
one finds that the system is uniform right up to the � line,
which is itself the phase transition line. The relevant order
parameter for the phase transition is the amplitude of the
stripe modulations A �21�. Outside the � line, and on the �
line itself, the amplitude A=0. On decreasing the tempera-
ture below T�, the temperature on the � line, one finds that

the amplitude of the modulations in the stripe phase grows
continuously with decreasing temperature �21�. We will dis-
cuss this issue in further detail in Sec. VI.

V. CONFINED FLUID PROPERTIES

In this section we apply the DFT �4� to investigate the
behavior of the fluid under confinement. In particular, we
examine the case when the fluid is confined between two
parallel hard walls, where the external potential varies in
only one Cartesian direction and Vext�r�=Vext�x�, where

Vext�x� = �� , x � 0

0, 0 � x � L

� , x � L .
� �20�

This situation was studied in Ref. �13� by Imperio and Reatto
using Monte Carlo computer simulations. As in the previous
section, we calculate the equilibrium fluid density profile
	�r� by discretizing it on a two-dimensional Cartesian grid
and then solving Eq. �18� via a simple iterative numerical
procedure, starting from an initial guess for the density pro-
file. This is done using periodic boundary conditions in the
Cartesian y direction �the direction parallel to the walls�.

For a given temperature T, we investigate the various
morphologies that the fluid density profile displays as the
distance between the two walls, L, is increased. These calcu-
lations could be performed for fixed chemical potential 
.
However, the Monte Carlo simulation results in Ref. �13�
were performed in the NVT ensemble �fixed number of par-
ticles N, volume V, and temperature T�, keeping the average
particle density between the walls fixed, as L was varied. In
order to compare with these results, we perform our calcula-
tions at fixed average density 	. Thus, for each value of L,
the chemical potential is chosen so as to achieve this target
surface density. This is done by renormalizing the density
profile to the desired value at each step in the iterative rou-
tine for calculating the density profile. This method means
that one does not have to know a priori the precise value of

 required to achieve the desired average density.

For a given L, one finds that there can be several different
density profiles which correspond to minima of the free en-
ergy such as, for example, one density profile exhibiting
stripes parallel to the walls and another with stripes lying
perpendicular to the walls. As in the previous section, in
order to find the various candidate density profiles we imple-
mented the following three different approaches: �i� Choose
an initial guess for the input density profile with a cluster,
stripe, or bubble already present, to nucleate other clusters,
stripes, or bubbles throughout the remainder of the system;
�ii� starting from the noisy initial density profile in Eq. �19�;
and �iii� take the density profile obtained previously for a
neighboring state point or value of L as the initial guess. The
approach taken was to use methods �i� and �ii� to generate
the set of candidate structures, and then we used method �iii�
to calculate the Helmholtz free energy via Eq. �4�, as a func-
tion of L.

In Fig. 3, we display the Helmholtz free energy per unit of
available area between the walls A, as a function of the dis-

(b)

(a)

(c)

FIG. 2. �Color online� Typical density profiles in each of the
microphase separated phases. These profiles are for the temperature
kBT /�=0.15 and the average densities are 	�2=0.2, 0.35, and 0.5 in
the cluster, stripe, and bubble phases, respectively. The x and y axes
are in units of �.
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tance between the walls L �upper figure�, together with a
sequence of representative density profiles �lower figure�.
The temperature is kBT /�=0.2 and the average density is
	�2=0.2, which as can be seen from Fig. 1, corresponds in
the bulk to the cluster phase. For small values of L�2� /kc,
the fluid density profile does not vary in the y direction �par-
allel to the walls�. The branch of the free energy correspond-
ing to this case is labeled �a� in the upper part of Fig. 3 and
a typical density profile for this branch of the free energy is
correspondingly labeled in the lower part of Fig. 3. As L is
increased, we find a new minimum of the free energy, which
corresponds to a density profile exhibiting a single line of
clusters—see the density profile labeled �b� in the lower part
of Fig. 3 and the correspondingly labeled free energy curve
above. On further increasing L, one finds a sequence differ-
ent free energy branches, with the density profile along each
or these, having an additional line of clusters between the
walls. Free energy curve �c� corresponds to two lines of clus-
ters lying parallel to the walls, �d� to three lines of clusters,
�e� to four lines of clusters, and �f� to five lines of clusters
�the corresponding density profile is not displayed in this
case�.

In Fig. 4, we display the Helmholtz free energy per unit
area and a number of typical density profiles for the case
when kBT /�=0.2 and 	�2=0.3. In bulk, this state point lies
within the stripe phase and so for most values of L the equi-

librium density profile consists of stripes that lie parallel to
the walls. However, for values of L where the free energies
for a density profile with n and for a density profile with
�n+1� stripes are equal �i.e., when L is incommensurate with
the stripes�, then one observes that the density profiles ex-
hibiting clusters have a lower free energy and are the equi-
librium configurations. Thus, even though for this average
density the bulk phase is the stripe phase, due to the fact that
this state point is not too far in the phase diagram from the
cluster phase, one sees the influence of this proximity in the
confined fluid density profiles. For small values of L, the
fluid density profiles do not vary in the direction parallel to
the walls—the branch of the free energy corresponding to
this is labeled �a� in the upper part of Fig. 4. On increasing L
we find �b�, corresponding to short stripes lying perpendicu-
lar to the wall, followed by �c� where we find two stripes
lying parallel to the walls. Increasing L, we find �d� corre-
sponding to two parallel stripes with a line of clusters in
between. Further increasing L we find �e�, corresponding to
three stripes lying parallel to the walls. As L is increased
even further we see an increasingly complex series of tran-
sitions between configurations with different
morphologies—see the magnification in the inset of the up-
per panel of Fig. 4. Note that the density profiles displayed in
Fig. 4 are the ones that correspond to equilibrium density
profiles �i.e., to global minima of the free energy, for some
value of L�. However, we also find a large number of other
density profiles with higher free energies; see, for example,
some of these displayed in Fig. 5. These metastable configu-
rations correspond to local minima in the free energy that are
not global minima.

FIG. 3. �Color online� Top: the Helmholtz free energy per unit
area, F /A, as a function of slit width, L, for the case when the
average fluid density in the slit is 	�2=0.2 and the temperature
kBT /�=0.2. Bottom: a series of density profiles for increasing L,
labeled �a�–�e� which correspond to the different free energy curves
in the upper figure, which are correspondingly labeled.

FIG. 4. �Color online� Same as Fig. 3, except here the average
density in the slit is 	�2=0.3.
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In Fig. 6, we display the free energy per unit area together
with a number of representative density profiles for the case
when kBT /�=0.2 and 	�2=0.4. In bulk, this corresponds to a
state point in the bubble phase, lying very close to the tran-
sition to the stripe phase. However, due to the influence of
the confining walls, we find that for most values of L inves-
tigated here, the equilibrium density profiles consist of
stripes lying parallel to the walls. Thus, the confining walls
exert a strong influence on the symmetry of the fluid density
profiles, for this state point. Note that the “ladder” density
profile labeled �x� corresponds to a configuration that does
not correspond to the global minimum to the free energy. It is
included in Fig. 6 because for some values of L it has a free

energy that is very close to that of the true minima profiles,
�e� and �g�—see the magnification in the inset of the upper
panel of Fig. 6.

In Fig. 7, we display results for the case when kBT /�
=0.2 and 	�2=0.5. In bulk, this corresponds to a state point
in the bubble phase, lying well removed from the transition
to the stripe phase. However, due to the influence of the
confining walls, for small values of L we find that the equi-
librium density profiles consist of stripes lying parallel to the
walls. Note also that the transition from �a�, having one
stripe, to �b�, having two stripes, appears to be a continuous
transition. The metastable free energy branch labeled �x� in
Fig. 7 is that corresponding to three, four, and then five �as L
is increased� stripes lying parallel to the walls. The transition
from three to four stripes and also from four to five stripes
appear to be continuous transitions. Interestingly, this is not
the case for the transition between two and three stripes. For
L /��21 the equilibrium density profiles contain lines of
bubbles lying parallel to the walls.

In Ref. �13� Imperio and Reatto used Monte Carlo com-
puter simulations to investigate the behavior of the present
model fluid under confinement. Due to the fact that there is
only qualitative agreement between the bulk phase diagram
predicted by the present DFT and that obtained from simu-
lations, it is hard to compare results directly. In Fig. 1 of their
paper, Imperio and Reatto display the potential energy as a
function of L and also display a sequence of simulation snap-
shots for the case when 	�2=0.4 and the temperature T
�0.8Tmax, where Tmax�0.13� /kB is the maximum tempera-
ture at which modulated phases are observed to occur in the
simulation results �for the present DFT, Tmax�0.26� /kB; see
Fig. 1�. The sequence of structures displayed in Fig. 1 of Ref.

FIG. 5. �Color online� Some of the metastable density profiles
that were found for the case when kBT /�=0.2 and the average den-
sity 	�2=0.3.

FIG. 6. �Color online� Same as Fig. 3, except here the average
density in the slit is 	�2=0.4.

FIG. 7. �Color online� Same as Fig. 3, except here the average
density in the slit is 	�2=0.5.
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�13� do not correspond exactly with any of the results dis-
played here in Figs. 3, 4, and 6, or 7. However, for values of
L�30�, the sequence of phases observed in the simulation
results displayed in Fig. 1 of Ref. �13� are the same as those
displayed in Fig. 4. From this comparison, and also from
comparing with the results in Fig. 6, which is a state point
with the same average density as the results in Fig. 1 of Ref.
�13�, we conclude that the results in Ref. �13� effectively
correspond to a state point somewhere in between the two
state points for which results are displayed in Figs. 4 and 6.
Since a detailed comparison between our results and the
simulation results of Ref. �13� is not possible, we are only
able to draw the general conclusion that the present theory
appears to be qualitatively reliable for describing the con-
fined fluid properties of the present system and seems to at
least be able to describe some of the sequences of structures
that are observed in the confined fluid.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have presented a simple DFT for describ-
ing the bulk and inhomogeneous fluid phase behavior of a
two-dimensional fluid with competing interactions. In Refs.
�10,11� the authors used Monte Carlo computer simulations
in the NVT ensemble to study the structure and phase behav-
ior displayed by the present model fluid. The DFT results
presented here are generally in good qualitative agreement
with these simulation results, as regards the topology of the
phase diagram and the structure of the fluid in the various
uniform and inhomogeneous phases. However, the present
DFT is not able to describe some properties of the fluid. We
discuss these weaknesses now.

The present theory overestimates by a factor of 2 the
maximum temperature at which microphase-separated
phases are expected to occur. This is largely due to the fact
that in the present theory we retain for all values of r the
form of the potential w�r�, given in Eq. �2�, in the mean-field
contribution to the free energy in Eq. �4�. The value of w�r�
for r�� �within the hard-core overlap distance� should not
contribute to the free energy. That the value of w�r� for r
�� does give a contribution to the free energy, is a conse-
quence of the mean-field approximation made in construct-
ing the free energy �4�—i.e., this equation predicts that the
free energy of the uniform fluid contains a term proportional
to �=−
drw�r�, the integral over w�r� for all values of r. A
better approximation would be to truncate the potential w�r�
for r��. This would give much better agreement with the
simulation phase diagram �20,21�, modifying the value of
�=−ŵ�0� and effectively just rescaling the temperature axis,
without qualitatively changing any of the results of this pa-
per. We chose not to do this, however, due to that fact that
the analysis given in Sec. III, for quantities such as S�k� and
kc, is much less straightforward if one truncates w�r�, be-
cause one then finds that ŵ�k� no longer has the simple form
given in Eq. �11�.

More substantial differences between the present theoret-
ical predictions and the simulation results are as follows: In
Ref. �11� the authors show that for temperatures T�Tmax, on
increasing the density there is a transition from the vapor

phase to a cluster fluid phase—i.e., to a disordered system
with no long-range ordering of the clusters. On further in-
creasing the density they then found a further transition to a
cluster phase with crystalline ordering of the clusters, in line
with the predictions from the model presented here. The
present theory predicts only a single cluster phase exhibiting
crystalline ordering. We believe this is due to the fact our
DFT is a simple mean-field theory, which neglects certain
fluctuation contributions to the free energy �28�. These ne-
glected contributions must play an important role in the tran-
sition from the disordered cluster fluid phase to the ordered
cluster phase.

A second difference between results from our DFT and
the simulation results in Refs. �10,11� are that for tempera-
tures T�0.6Tmax, the system starts to display crystalline or-
dering of the particles within the clusters and stripes. Owing
to the fact that we have made a local density approximation
in the free energy functional �4� for the hard-disk contribu-
tion to the free energy, our theory is unable to describe this
effect. To describe such freezing effects one must implement
a much more sophisticated �nonlocal� hard-disk reference
free energy functional.

We return now to the issue raised at the end of Sec. IV,
regarding the order of the phase transitions. In the present
DFT, all the phase transitions between the equilibrium
phases are first order with the exception of the transition
from the uniform fluid to the stripe phase, which is predicted
to be a continuous phase transition. To further understand the
nature of the phase transition between the uniform fluid and
the stripe phase, we may follow the approach used in Ref.
�21�. Starting from the DFT �4�, and assuming that the den-
sity profile is of the form

	�z� = 	 + A sin�kz� , �21�

the free energy may be expanded in powers of the order
parameter A in the stripe phase. One finds that the Helm-
holtz free energy then takes the form

F�	�z�� = F�	� + b2�	,k�A2 + b4�	�A4 + O�A6� . �22�

The coefficient b2�a��+	�ŵ�k� �cf. Eq. �10�� and the co-
efficients bn�0, where n�4. The value of the amplitude A
which minimizes the free energy �22� is the solution to the
equation �F /�A=0. Outside the � line, the coefficient b2
�0 for all values of k, so that the minimum of the free
energy is when A=0, i.e., for the uniform fluid. On the � line
itself, b2�	� ,kc�=0 and within the lambda line b2�	 ,kc��0,
indicating that within the � line the modulated fluid has a
free energy that is lower than that of the uniform fluid. At
higher temperatures this transition from the uniform fluid to
the stripe phase is a second order phase transition, and the
transition line is the � line itself. Both the amplitude A and
the density 	 vary continuously across the transition line �al-
though the first derivative of A�	 ,T�, does not �21��. On
descending to lower temperatures, one finds that the transi-
tion between these two phases ceases to be continuous and
becomes first order, due to the density and k dependence of
the coefficient b2�	 ,k�, and there are two tricritical points
connected to one another by the � line �21�. For temperatures
below these tricritical points, both the density 	 and the am-
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plitude A vary discontinuously at the phase transition. These
tricritical points are not displayed in Fig. 1, because these
points are located in the regions of the phase diagram where
the cluster and bubble phases are the equilibrium phases.
Thus, in the present two-dimensional system, these tricritical
points are not accessible, in contrast, it seems, to the case in
three dimensions �9,21�.

In the simulation studies of Imperio and Reatto �10,11�,
the phase transitions from the uniform fluid to the modulated
fluid phases are located by calculating the excess specific
heat Cv

ex as a function of temperature. This quantity displays
a peak and the phase transition is identified with this peak.
They find that for low and high densities 	, the peak is well
pronounced. However, for intermediate densities around
	�2�0.3, they find that the peak is greatly reduced in am-
plitude, in comparison with the height of the peak at higher
or lower densities �11�. Comparing these findings with the
present DFT results, we see that where the DFT predicts the
phase transition from the uniform fluid to the stripe phase to
be second order, coincides with where there is almost no
peak in Cv

ex, and densities where the DFT predicts the tran-
sition from the uniform fluid to the modulated fluid to be first
order, the simulation results show that there is a pronounced
peak in Cv

ex. In their analysis of the system size scaling of
Cv

ex, Imperio and Reatto conclude that their results for the
densities 	�2=0.05, 0.15, and 0.4 point to the possibility of
the phase transition from the modulated fluid phase to the
uniform fluid phase being a Kosterlitz-Thouless transition
�11�. In order to confirm this theoretically, one must go be-
yond the present mean-field DFT theory. One possible route
to do this is perhaps by following the approach of Ref. �25�.

In the present two-dimensional system, fluctuations are
not only important in determining the nature of the phase
transitions, but are also important in determining the struc-
ture of the bulk modulated phases themselves. Let us con-
sider, in particular, the stripe phase, although the discussion
that follows may also have implications for the cluster and
bubble phases. The present DFT predicts that the equilibrium
configuration in the stripe phase consists of an array of per-
fectly parallel stripes, displaying long-range order. However,
as we have noted already, the present DFT is a mean-field
theory and neglects certain fluctuation contributions to the
free energy. Thus, although the minimum of the free energy
corresponds to perfectly parallel stripes, in reality one should
find that fluctuations about this minimum will destroy the
long-range order—see, for example, the discussion in Refs.
�29,30�. In fact, when one seeks for the minimum of the free
energy, using as an initial guess in the numerical procedure
the noisy density profile given in Eq. �19�, one finds that as
the system size Lx�Ly increases, there are an increasingly
large number of metastable minima in the free energy. The
density profiles for these minima may contain many
defects—see, for example, the results displayed in Fig. 8.
These density profiles are calculated for state points in the
stripe phase �upper figure� and in the bubble phase �lower
figure�. Whilst the DFT shows that such configurations cor-
respond to a minimum in the free energy, the theory does not
reveal the height of the free energy barrier between this con-
figuration and any other neighboring configurations. In order
to address the influence of fluctuations and to tackle the

question of the size of the barriers between free energy
minima, we propose to extend the present theory in the fol-
lowing manner: If one assumes overdamped stochastic equa-
tions of motion for the colloidal particles, then following the
approach of Ref. �31� one may develop a dynamical DFT,
which predicts the following stochastic equation of motion
for the time dependence of the coarse grained fluid density
profile:

�	�r,t�
�t

= � · �	�r,t� �
�F�	�
�	�r,t�

+ � · �	�r,t���r,t�� ,

�23�

where F�	� is the free energy functional in Eq. �4� and ��r , t�
is Gaussian random noise field. Such an approach may allow
one to determine the influence of fluctuations in the present
system and perhaps also to address the question of whether
the fluid effectively becomes trapped in configurations such
as those displayed in Fig. 8, as the temperature is
decreased—i.e., to determine if and where the glass transi-

(a)

(b)

FIG. 8. �Color online� Density profiles calculated for kBT /�
=0.2. For the upper profile, the average density is 	�2=0.3, a state
point in the stripe phase. The lower profile is for 	�2=0.45, a point
in the bubble phase. These profiles were obtained by quenching
from a homogeneous system with a small amount of random noise
added to the density profiles to nucleate the structuring—see Eq.
�19�. In the stripe phase this results in a density profile containing
many defects. Similarly, in the lower density profile this results in a
number of domains forming in this �periodic� system. The true
minimum in the grand potential � corresponds to periodic arrays
with no defects.
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tion line is in the present system �32,33�. We plan to pursue
this line of investigation in the future.

The sequence of structures displayed by the present model
fluid �clusters to stripes to bubbles�, has also been observed
in the configurations of a subcritical constrained lattice gas
�Ising model� �34� and a fluid of rodlike particles �35�—both
of these are two-dimensional systems. Similar behavior has
also been observed in the three-dimensional Lennard-Jones
fluid �36�. None of these models have long-ranged repulsive
interactions between the particles, in contrast to the present
system. This sequence of structures is only observed when
these systems are constrained within a finite-sized box with
periodic boundary conditions and with the number of par-
ticles fixed, so that the average density in the box is between
that of the coexisting vapor and liquid phases �34–36�. The
cluster, stripe, and bubble structures in these systems arise
due to the constraint that the number of particles is fixed and
the structures are unstable with respect to fluctuations in the
density. In contrast to this, in the present system the configu-
rations that we observe are stable equilibrium structures and
do survive in an open �grand-canonical� system. The long-
range repulsion between the particles stabilizes the struc-
tures, in just the same way as the long-range repulsion sta-

bilizes the structures exhibited by three-dimensional fluids
with competing interactions �9�. A further difference is that
in systems without the long-range repulsive interaction be-
tween the particles �34–36�, the size of the clusters, stripes,
and bubbles depend on the size of the box they are in. How-
ever, in the present system, it is the competition between the
short-range attraction and the long-range repulsion that de-
termines the size of the structures and as long as they are
within a sufficiently large box, the size of the clusters,
stripes, and bubbles is independent of the system size.

To conclude, we remind the reader that there are many
important applications for systems having colloidal nanopar-
ticles that are confined to a fluid interface, ranging from op-
tical devices to stabilizing emulsions �2�. Whilst the present
and other studies have gone some way towards understand-
ing the self-assembly of such two-dimensional fluids, there
are still several open questions to be addressed �2�.
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