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Interfacial and wetting properties of a binary point Yukawa fluid
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We investigate the interfacial phase behavior of a binary fluid mixture composed of repulsive point
Yukawa particles. Using a simple approximation for the Helmholtz free energy functional, which
yields the random phase approximation for the pair direct correlation functions, we calculate the
equilibrium fluid density profiles of the two species of particles adsorbed at a planar wall. We show
that for a particular choice �repulsive exponential� of the wall potentials and the fluid pair-potential
parameters, the Euler–Lagrange equations for the equilibrium fluid density profiles may be
transformed into a single ordinary differential equation and the profiles obtained by a simple
quadrature. For certain other choices of the fluid pair-potential parameters fluid-fluid phase
separation of the bulk fluid is observed. We find that when such a mixture is exposed to a planar hard
wall, the fluid exhibits complete wetting on the species 2 poor side of the binodal, i.e., we observe
a thick film of fluid rich in species 2 adsorbed at the hard wall. The thickness of the wetting film
grows logarithmically with the concentration difference between the fluid state point and the binodal
and is proportional to the bulk correlation length of the intruding �wetting� fluid phase. However, for
state points on the binodal that are further from the critical point, we find there is no thick wetting
film. We determine the accompanying line of first-order �prewetting� surface phase transitions which
separate a thin and thick adsorbed film. We show that for some other choices of repulsive wall
potentials the prewetting line is still present, but its location and extent in the phase diagram is
strongly dependent on the wall-fluid interaction parameters. © 2008 American Institute of Physics.
�DOI: 10.1063/1.3027515�

I. INTRODUCTION

When charged nanoparticles �colloidal macroions� are
dispersed in a neutralizing medium the electrostatic potential
between the particles is screened by the counterions and is
much shorter-ranged than the bare Coulomb interaction be-
tween the two identical particles.1,2 Derjaguin–Landau–
Verwey–Overbeek �DLVO� theory, for example, predicts that
the screened electrostatic contribution to the effective inter-
action potential between the particles takes the form2

��r� =
Q�2

4��r

exp�− �r�
r

, �1�

where Q� is the renormalized charge, �r is the dielectric con-
stant of the solvent, and �−1 is the Debye screening length
which determines the thickness of the double layer of oppo-
site charge surrounding each colloidal particle. The DLVO
theory also includes a hard-core repulsion that takes into ac-
count the size of the colloids, and dispersion �van der Waals�
attraction. In many situations the latter plays a minor role
and the effective particle-particle interaction can be modeled
by a hard core, repulsive Yukawa potential. If one considers
the limit of high charge and/or a low density of particles, one
finds that the particles infrequently come into contact and the
effect of the hard core on the properties of the fluid is small.

Under these circumstances one may argue3 that Eq. �1�, ap-
plied for all separations r, is a good zeroth-order model to
describe a charged colloidal suspension. Indeed, Hynninen
and Dijkstra3 showed that the phase diagrams of one-
component hard-core repulsive Yukawa particles could be
mapped to those of a point Yukawa system for sufficiently
large charge on the particles.

The Yukawa potential does, of course, arise in a variety
of physical situations. For example, the point Yukawa pair
potential may also be used to model the interactions between
micron sized dust particles in a charge neutral plasma—so-
called dusty plasmas.4 The binary point Yukawa model has
also been used in a recent simulation study of glassy dynam-
ics in low temperature-low density �classical Wigner�
glasses.5

In a previous study,6 we investigated the bulk structure
and phase behavior of the two component point Yukawa
fluid, i.e., a binary mixture in which all the potentials be-
tween the particles are repulsive Yukawas. We found that for
certain choices of the parameters in the pair potentials, and at
sufficiently high densities, the mixture separates into two
fluid phases, one of which is composed predominantly of
particles of species 1 and the other phase is predominantly of
species 2. In this paper we investigate the inhomogeneous
mixture adsorbed at a single planar wall. Using a simple
approximate density functional theory �DFT�, we calculate
the equilibrium fluid density profiles and thermodynamic
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quantities relevant for investigating surface phase behavior;
the latter are surprisingly rich given the simplicity of the
model and the DFT.

In Ref. 6, we showed that by making comparisons with
results from the accurate hypernetted-chain �HNC� approxi-
mation the simple random phase approximation �RPA� for
the pair direct correlation functions cij�r�, with i , j=1,2, in
the Ornstein–Zernike equation,7 yields a reasonably accurate
approximation for the bulk fluid radial distribution functions
gij�r� at large and intermediate r, provided that the fluid is at
a state point fairly close to the fluid-fluid binodal �specifi-
cally, within the Lifshitz line6�. However, the RPA was found
to be inaccurate for determining the fluid correlation func-
tions far from the coexistence region, where one must use the
more reliable HNC or other related bulk theories.6,8–10 We
also found that the RPA provides a good approximation for
determining thermodynamic quantities such as the bulk fluid
Helmholtz free energy. Indeed, the phase diagram resulting
from the RPA is in fairly good agreement with that obtained
from the HNC.6

In the present work we use a simple approximate DFT
that, in bulk, generates the RPA for cij�r� to investigate the
inhomogeneous mixture. Based on the experience from
studying the bulk fluid mixture6 we expect that the DFT
should predict with reasonable accuracy the fluid density
profiles and adsorption behavior for state points that are
close to the binodal. In such cases, where a fluid close to
fluid-fluid phase coexistence is adsorbed at a planar wall, it is
possible for there to be wetting of the wall by the coexisting
phase, for some choices of the wall-fluid interaction
parameters.11 Specifically if a mixture rich in particles of
species 1 is at a state point close to the coexistence line, then
we may observe wetting of the wall by a thick film of the
coexisting phase that is rich in species 2. This is indeed what
we observe, for several different choices of purely repulsive
wall potentials. Furthermore, we find that the present system
may exhibit a surface phase transition from a thick to a thin
adsorbed wetting film and we examine the dependence
of this transition on the specific form chosen for the wall
potentials.

Some of the inspiration for the present study comes from
the particularly elegant DFT studies of wetting pioneered by
Sullivan12 for a one-component fluid, where the fluid pair
potential featured a hard core plus an attractive Yukawa tail.
The DFT that Sullivan used was similar to the one we use
here. The hard-core repulsion �absent in the present system�
was treated by making a local density approximation, and the
Yukawa attraction treated in a simple mean-field approxima-
tion. In a subsequent study of the corresponding binary mix-
ture adsorbed at a hard wall with exponential wall-fluid at-
tractive potentials, Telo da Gama and Evans13 showed that
for a particular set of wall potential and fluid pair-potential
parameters,14 the Euler–Lagrange �EL� equations arising
from the minimization of the density functional yield a single
ordinary differential equation �ODE� that can be integrated
directly to determine the equilibrium fluid density profiles.
The benefit of this approach is that not only can the density
profiles and surface tension be calculated easily without the
need for sophisticated numerical schemes but also that the

criteria for different types of film adsorption and locating
wetting transitions could be established directly.12,13 We ap-
ply an equivalent method to the two component point
Yukawa model, treated within the present DFT, and show, in
the Appendix, that for a particular set of fluid-fluid and wall-
fluid interaction parameters, we may also derive a single
ODE that determines the equilibrium density profiles. How-
ever, in the present case the restriction on the parameters
precludes fluid-fluid phase separation so that wetting must be
investigated by solving the coupled EL equations.

This article proceeds as follows: In Sec. II A we intro-
duce the binary point Yukawa fluid model and recall some
key results from Ref. 6. Section II B describes the inhomo-
geneous fluid situation and defines the external �wall� poten-
tials under consideration. In Sec. II C we briefly describe the
approximate DFT that generates the RPA and outline the
general DFT approach to calculating adsorption behavior. We
present numerical results for the fluid density profiles, ad-
sorption, and for the location of the prewetting transition
line, for various wall potentials in Sec. III. Finally in Sec. IV
we discuss our results and draw some conclusions.

II. BACKGROUND

A. The model fluid and its bulk properties

We consider a binary fluid composed of particles where
the pair potentials between particles of species i and j are
given by

�ij�r� =
Mij�

4�

exp�− �r�
�r

, �2�

where � denotes the overall energy scale, Mij �0 are the
�dimensionless� species specific interaction magnitudes, and
� is an inverse decay length. Following our previous work,6

we allow the interspecies interaction magnitude M12

= �1+���M11M22 to depend on a nonideality parameter �.
For point ions immersed in a medium with inverse screening
length �, �=0. However, as discussed in Ref. 6 one can
contemplate situations in charged colloidal mixtures where
charge renormalization leads to effective potentials with
��0. In the examples that follow, we fix the dimensionless
temperature T�=kBT /������−1=1, where kB is Boltzmann’s
constant, and we set M11=1, M22=4, and �=0 or 0.1. In Ref.
6, we showed that for an ideal mixture, �=0, the fluid does
not phase separate, while for any ��0 there is phase sepa-
ration at some, sufficiently high, densities. Note that in
Eq. �2� there is an additional factor 1 /4� that was not used
in the definition of the pair potentials in Ref. 6.

The bulk phase diagram for the model fluid with
�=0.1 calculated using the RPA is displayed in Fig. 1.
Details of how this phase diagram is obtained are given in
Ref. 6. This mixture exhibits a two-phase fluid-fluid coexist-
ence region which is bounded by the binodal �solid line�.
Within the binodal is the spinodal �dotted line�, which is the
line in the phase diagram at which the RPA predicts that the
compressibility and the bulk correlation length diverge. The
binodal and the spinodal meet at a single critical point
�circle� in the phase diagram. Within the RPA, scaling the
interaction potentials �ij�r� by a factor A results in a scaling
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of the total density, �b, by a factor A−1. Thus, in Fig. 1 the
coexisting densities are larger by a factor of 4� than those in
the phase diagram displayed in Fig. 4 of Ref. 6. Note that the
latter figure compares RPA results for the binodal and spin-
odal with those obtained from the HNC.

The general theory for the asymptotic decay, r→	, of
the bulk fluid total pair correlation functions hij�r�=gij�r�
−1, states that for a system of particles interacting via short
ranged potentials, such as in the present system, hij�r� may
be obtained from the following expression:6,15

rhij�r� = �
n

An
ij exp�iqnr� , �3�

where the summation is made over contributions from the
poles in the upper half of the complex plane of the function
D�q�, which is a nonlinear combination of the Fourier trans-
forms of the pair direct correlation functions ĉij�q�.6,15 The
asymptotic decay, r→	, of hij�r� is determined by the pole
qn with the smallest imaginary part 
0 and An

ij is the ampli-
tude.

In Ref. 6 it was shown that the asymptotic decay, r
→	, of hij�r� for the present system, obtained using the
RPA, is determined by one of two purely imaginary poles.
The location of these poles for the rescaled pair potentials,
Eq. �2�, is given by


0
� =� �b

2�T�
�M0 � �M0

2 + M�� + �2, �4�

where �b is the total density, M0= �1−x2�M11+x2M22, and
M�=4�1−x2�x2M11M22�2+���.6 For the case when �=0, it
can be shown that there exists only one pole with 
0

+��. For
the case ��0, there is a second pole, 
0

−��. Of these two

poles, the one with the smaller 
0 determines the ultimate
asymptotic decay of hij�r� and also defines the bulk fluid
correlation length, 
�1 /
0

−, i.e., rhij
RPA�r��Aij

− exp�−
0
−r�,

r→	. Note that 
��−1.

B. Wall-fluid potentials

We investigate adsorption of the model fluid at a planar
substrate. A single planar wall exerts the potential Vi�z� on
particles of species i, where z is the Cartesian axis perpen-
dicular to the wall. We consider here three different wall-
fluid potentials. These are all based on the hard wall, which
is infinite for z�0 and zero for z�0,

Vi�z� = 		 , z � 0

0, z � 0,

 �5�

for i=1, 2. Note that this potential is not dependent on any
energy or length scale parameters. The hard-wall potential
may be modified by adding an extra interaction term for z
�0. This contribution may be repulsive, attractive, or a com-
bination of both. Here we restrict consideration to purely
repulsive potentials. Adding an exponential tail maintains the
infinite step discontinuity at the origin,

Vi�z� = 		 , z � 0

Ai� exp�− �z� , z � 0,

 �6�

where the amplitudes Ai�0 for both species of particles.
This choice of external potential corresponds to the case
where the hard wall carries a �screened� charge that is uni-
formly distributed over the surface. Furthermore this poten-
tial allows us to recast the EL equations as an ODE.12 We
also consider a Yukawa wall potential, similar to the inter-
particle interaction potential, of the form

Vi�z� = 		 , z � 0

Ai� exp�− �z�/�z , z � 0,

 �7�

where both amplitudes Ai�0. Note that the Yukawa wall
potential removes the infinite step discontinuity in Vi�z� at
the origin, replacing it by a smooth increase. In both cases
we set the wall potential decay length scale equal to the
interparticle interaction length scale �−1, in order to simplify
the model. This choice therefore precludes any phenomena
that may arise from a competition between different length
scales in the potentials.16 We require that the density profiles
decay to their bulk values far from the wall,

lim
z→	

�i�z� = �i
b, �8�

for i=1,2 and determine the adsorption of species i, �i,
which in the present planar geometry is given by the integral

�i = �
0

	

dz��i�z� − �i
b� . �9�

In regions of the phase diagram where the density profiles
vary smoothly as a function of changing state variable �e.g.,
the concentration or total density�, then we also expect �i to
vary smoothly. Conversely, where the density profiles vary
discontinuously as a function of a state variable, discontinui-

8.0
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24.0

28.0

0.0 0.2 0.4 0.6 0.8 1.0

ρb λ-3

x2
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Binodal
Spinodal

Constant pressure tie-lines

16.0

20.0

24.0

28.0

0.00 0.01 0.02 0.03 0.04 0.05
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B

C

FIG. 1. The bulk phase diagram for the binary Yukawa fluid, for the set of
pair-potential parameters M11=1, M22=4, and �=0.1, calculated using the
RPA. �b is the total density and x2 is the concentration of species 2. At
sufficiently high densities the fluid demixes. The two-phase region is
bounded by the binodal �solid line�, which meets the spinodal �dotted line�
at the critical point ���. The straight tie lines connect coexisting state points
with pressures �P�−3=150–500, in increments of 50, and then from 500 to
1900 in increments of 100 �from bottom to top�. The arrows mark three
paths which terminate at the binodal �on the species 2 poor side�, which are
at fixed total densities A: �b�−3=30, B: �b�−3=24, and C: �b�−3=18. The
inset shows a magnification of these paths. In subsequent figures we display
results for the fluid density profiles at a hard wall for various x2 along these
paths.
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ties will occur in both �1 and �2, and will signal surface
phase transitions.

C. Implementation of density functional theory

Here we present a brief description of the DFT approach.
For a more complete account see, e.g., Refs. 7, 17, and 18.
For a fluid composed of � different species of particles the
thermodynamic grand potential is a functional of the set of
one-body density profiles ��i�r�
, i=1, . . . ,�,

����i
� = F���i
� − �
i=1

� � dr�i�r���i − Vi
ext�r�� , �10�

where F���i
� is the intrinsic Helmholtz free energy func-
tional, �i is the chemical potential of species i, and Vi

ext�r� is
the external potential acting on species i. Minimizing the
grand potential functional with respect to variations in the
density profiles, one obtains a set of � EL equations that may
be solved simultaneously to obtain the equilibrium fluid den-
sity profiles,

�i =
�F���i
�
��i�r�

+ Vi
ext�r� . �11�

The intrinsic Helmholtz free energy functional may be sepa-
rated into a sum of two contributions: F���i
�=Fid���i
�
+Fex���i
�. The first is the ideal-gas term and the second is
the excess contribution due to the particle interactions. The
ideal-gas term is

Fid���i
� = �
i=1

�

�−1� dr�i�r��ln��i
3�i�r�� − 1� , �12�

where �i is the �irrelevant� thermal de Broglie wavelength of
particles from species i. In the present study we consider a
binary mixture ��=2�, and employ a simple mean-field ap-
proximation for the excess part of the Helmholtz free energy,

Fex���i
� =
1

2 �
i,j=1

2 � � drdr��i�r�� j�r���ij��r − r��� . �13�

This functional generates the RPA approximation for
the pair direct correlation functions: cij��r−r���
=−���2Fex���i
� /��i�r��� j�r���=−��ij��r−r���.19,20

Since we only consider external potentials that vary in
one Cartesian direction z, Eqs. �5�–�7�, the fluid density pro-
files also only vary in the z-direction. Using Eq. �13�, we can
write Eq. �11� as follows:

�i − Vi�z� = �id,i�z� + �
j=1

2 � dr��ij��r − r���� j�z�� , �14�

where �id,i�z�=�−1 ln��i
3�i�z�� is the ideal-gas contribution

to the chemical potential of species i. Given the external
potentials and the boundary conditions in Eq. �8�, we may
solve the EL Eq. �14� to obtain the equilibrium fluid density
profiles. Generally, the solutions must be obtained numeri-
cally, for example, by using a simple Picard iterative scheme.
However, for a particular choice of �exponential� wall and
particle interaction parameters, one can show that the EL
equations may be transformed to yield a single ODE that can

be integrated once to give an explicit quadrature for the fluid
density profiles. The derivation is outlined in the Appendix.

III. RESULTS OF CALCULATIONS

We have performed calculations for a variety of bulk
state points and for various choices of the wall-fluid and
interparticle potential parameters. Representative results are
presented here.

A. Exponential wall and �=0.0

For the particular case when �=0, and the exponential
wall potential �6� with A2=��M22 /M11�A1, we can use the
approach described in the Appendix to calculate the fluid
density profiles. Recall that for �=0 the fluid does not demix
at any density.6 From the analysis of the Appendix we find
that the density profiles, �i�z� are both monotonic functions
of z, and the densities at the wall are determined by Eq.
�A11�. For the given set of pair-potential parameters, the
wall-fluid potential magnitude, A1, determines the behavior
of the fluid at the wall. For A1→0, the wall-fluid potential is
equivalent to a hard wall and we find strong adsorption of
both species at the wall. Recall that for a hard wall, the sum
of the contact densities is equal to the bulk fluid pressure
divided by kBT and the pressure is large for these mixtures.
For A1�1 there is again strong adsorption at the wall, but
the value of the contact density is decreased. For A1�1 then
�1�0��e−��A1 resulting in a depletion of both species at the
wall and monotonically increasing profiles. For all state
points each density profile returns to its bulk value over a
distance �
, the bulk correlation length. In Fig. 2 we display
a typical set of density profiles showing such behavior for
the case when the total bulk density �b��1

b+�2
b=30�3 and

the bulk concentration x2��2
b /�b=0.5.

In order to understand the adsorption at the wall it is
important to consider the contributions to the free energy that

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

0.0 0.1 0.2 0.3 0.4 0.5

ρ i
(z

)λ
-3

λz

FIG. 2. The density profiles �i�z� of a binary point Yukawa fluid at an
exponential wall, Eq. �6�, calculated by solving the ODE, i.e., from Eqs.
�A9� and �A3�. The solid line is �1�z� and the dashed line is �2�z�. The
parameters for the fluid pair potentials are M11=1, M22=4, and �=0, and the
repulsive exponential wall parameters are A1=1 and A2=�M22 /M11A1=2.
The bulk fluid at z→	 has �b�−3=30 and x2=0.5. The density profiles
exhibit strong adsorption at the wall but decay rapidly and monotonically to
the bulk values.
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arise from the fluid-fluid and fluid-wall interactions. We first
consider the simplest case, A1→0. The introduction of the
hard wall results in the total absence of any fluid behind the
wall, i.e., �i�z�0�=0, for i=1,2. Therefore, any particles
close to the wall have reduced their fluid-fluid interaction
energy, which in turn favors strong adsorption of both spe-
cies at the wall. Since particles of species 2 have a larger
�repulsive� interaction energy, the decrease in the free energy
is greater for species 2, which results in stronger adsorption
of species 2 at the wall. However, as A1 increases there is an
additional free energy contribution for particles close to the
wall due to the increased wall-fluid repulsive interaction. If
A1 is increased sufficiently then this energy contribution ne-
gates the benefit from particles adsorbing at the wall and the
adsorption is reduced. As A1 is increased still further then
ultimately both species become depleted at the wall since the
wall-fluid interaction becomes the dominant contribution to
the free energy. This rather simple behavior is not unex-
pected. Recall that the binary fluid does not demix for �=0
so we do not observe any wetting or layering behavior.

B. Hard wall and �=0.1

For mixtures with �=0.1 the coupled integral Eq. �14�
must be solved numerically, rather than using the approach
described in the Appendix. In this subsection we describe the
behavior of the fluid at the hard wall, with potentials given
by Eq. �5�. We find that the adsorbed fluid exhibits different
types of behavior, depending on the state-point. However,
one common feature is that there is always strong adsorption
at the wall. The contact densities, �i�0�, for both species of
particles can be rather large, and this effect is particularly
marked in the case of the particles of species 2, which are
always favored by the hard wall, and stems from the high
pressures in these systems. For state points far away from
bulk coexistence we find that for both species the density
profiles exhibit a thin adsorbed layer at the wall, and decay
to their bulk values over a distance �
=1 /
0

−��−1. For all
state points on the right side of the binodal in Fig. 1, i.e., rich
in species 2, this type of decay persists up to and including
the binodal. However, to the left of the binodal in Fig. 1, i.e.,
for state points poor in species 2, we find that in some in-
stances the adsorbed layer grows much thicker on approach-
ing the binodal, while for some other state points only a thin
adsorbed layer remains. In order to illustrate this, we display
results for density profiles calculated along three different
paths, increasing x2 toward the binodal, at constant total den-
sities. These three paths A–C, at successively lower densi-
ties, are displayed in Fig. 1.

On path A, with total density �b�−3=30, we find that for
all concentrations, the density profiles decay to their bulk
values over a finite distance �
 so that the adsorptions, �1

and �2, remain finite up to and including the coexistence
state point. A series of density profiles along path A are dis-
played in Fig. 3. Note the strong adsorption and high contact
densities at the wall. Along path C, at constant density
�b�−3=18, we find that the density profiles are radically dif-
ferent for state points close to coexistence. Instead of there
being a thin �finite� adsorbed layer at the wall, we find a

thick film of fluid rich in species 2 adsorbed at the wall. As
x2→x2,coex, where x2,coex is the concentration at the binodal,
the thickness of the wetting film increases and ultimately
diverges, i.e., the adsorption �2→ +	 as x2→x2,coex. This
behavior is termed complete wetting. A number of density
profiles along path C are displayed in Fig. 4, indicating the
growth of the wetting film as x2→x2,coex. Note that the den-
sity profiles of species 1, �i�z�, are nonmonotonic. As x2

increases, the contact density �1�0� reduces, and a minimum
develops in the profile at �z�0.5. The growth of the wetting
film is accompanied by increasing depletion of species 1, and
�1→−	 as x2→x2,coex.
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FIG. 3. The density profiles �i�z� for the point Yukawa mixture with �
=0.1 at a hard wall, Eq. �5�, calculated for the fluid at state points along path
A in Fig. 1. The density profiles of species 1 are shown in the main figure
and the species 2 profiles are shown in the inset. For all concentrations x2,
up to and including bulk coexistence, both density profiles show strong
adsorption at the wall, but decay to the bulk densities over a distance �
,
the bulk fluid correlation length. Results are shown for x2=0.0011, x2

=0.0022, and x2=0.0033�x2,coex, the coexistence concentration for this total
density, �b�−3=30. The density profiles for the fluid at coexistence are those
with the dashed lines.
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FIG. 4. As in Fig. 3, except here the density profiles are calculated along
path C in Fig. 1 at constant total density �b�−3=18. For concentrations close
to the binodal the density profiles exhibit a thick wetting film rich in species
2 intruding between the bulk fluid and the wall. The thickness of this film
diverges logarithmically as x2→x2,coex, where x2,coex�0.042 07 is the bulk
coexistence value. The density profiles displayed are for concentrations from
x2=0.022 to x2=0.042�x2,coex, in increments of 0.004. The dashed-line den-
sity profiles are those for x2�x2,coex, where the wall is almost completely
wet by the phase rich is species 2.
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Recall that for a one-component fluid, exhibiting liquid-
gas phase coexistence, one observes that for a bulk gas with
density near to coexistence, a thick wetting film of the liquid
may be adsorbed at the planar substrate or wall. In the case
when all the potentials are short ranged, it can be shown that
the thickness of this film, l, diverges as l�−l0 ln��g−�b�,
where �g is the density of the gas at coexistence. The ampli-
tude l0 depends on the relative ranges of the wall-fluid and
the fluid-fluid potentials.11,16 Provided that l is large, the ad-
sorption at the wall � is proportional to l: ����l−�g�l,
where �l is the density of the coexisting liquid. In an entirely
analogous way, in the present two component system, as x2

approaches coexistence at constant �b, the adsorption of spe-
cies 2, �2, is given by

�2 � − l0��2
b,� − �2

b,
�ln�x2 − x2,coex� , �15�

where �2
b,� is the bulk coexisting density of the �wetting�

phase � rich in species 2 and �2
b,
 is the same quantity in

phase 
, poor in species 2.16 For the present wall potentials,
Eqs. �5�–�7�, we expect the length scale l0=
w, the bulk cor-
relation length of the fluid phase rich in species 2 that wets
the wall. The adsorption calculated from the DFT via Eq. �9�
is plotted for state points along path C in Fig. 6�a� where we
also compare to the asymptotic result in Eq. �15� with l0

=
w=1 /
0
−, where 
0

− is the imaginary part of the pole that
determines the asymptotic decay of hij�r� in the wetting
phase, obtained from Eq. �4�. Note that since 
0

− depends on
the total bulk density, it is different in the two coexisting
phases. The asymptotic formula for �1, equivalent to Eq.
�15�, provides an equally good fit to the DFT results for this
quantity.

It is important at this stage to understand why we get
wetting for �=0.1, when for �=0 we did not. For �=0.1
there is an added energy cost for particles of species 1 and 2
to mix, which in bulk drives phase separation at sufficiently
high densities. It is the combination of this effect and the
tendency of the fluid to adsorb at the wall that induces wet-
ting. The high densities of both species at the wall promotes
local phase separation; in this case creating a region rich in
species 2 and poor in species 1 which increases as the state-
point approaches the binodal.

We now consider the fluid interfacial behavior along
path B, which has constant total density �b�−3=24.0. As we
increase x2, we find initially that the density profiles decay
rapidly to the bulk values over a short distance �
, similar to
the density profiles on path A. However, as we increase the
concentration x2 further, we find a discontinuous change in
the density profiles which leads to a discontinuous change in
the adsorptions �i. Increasing x2 toward the coexistence
value, we find that the profiles are similar to those on path C
and that �2 diverges in a manner similar to that described for
path C as x2→x2,coex. This discontinuous change in the ad-
sorption denotes a point on the prewetting phase transition
line, which is a line in the phase diagram that separates re-
gions with thick and thin adsorbed films.21 In Fig. 5 we dis-
play a number of density profiles calculated on path B, show-
ing the discontinuous change on crossing the prewetting line
�PWL�. In Fig. 6�b� we display the DFT results for �2, cal-
culated from the density profiles, and compare to the

asymptotic result in Eq. �15�, where once again l0=
w

=1 /
0
− is the bulk correlation length of the wetting phase,

calculated from Eq. �4�.
In order to establish the location of the prewetting tran-

sition line, it is necessary to calculate the grand potential, �.
In the vicinity of the prewetting transition we find that there
are two branches of solutions which minimize the grand
potential—one branch corresponding to a thin adsorbed film
and the other to a thick adsorbed film. We compute the value
of � for each set of profiles to establish which set is the
global minimum of the grand potential. In practice, we cal-
culate ����i
�, scanning along lines of constant total density
in the phase diagram, for both increasing and decreasing
concentration, x2. By plotting � versus x2 we determine the
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FIG. 5. As in Fig. 3, except here the density profiles are calculated along
path B in Fig. 1 at constant total density �b�−3=24.0. The concentrations are
x2=0.0091, 0.0095, 0.0096, 0.0097, and 0.0098. We observe a discontinuous
change in the density profiles as x2 is changed continuously. The thin to
thick adsorbed film transition �prewetting� occurs between x2=0.0095 and
0.0096. The coexistence concentration at this total density is x2,coex

=0.0113.
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FIG. 6. The adsorption of species 2, �2, �points� at a hard wall plotted vs
ln�x2−x2,coex�, the logarithm of the difference between the species 2 concen-
tration and the value at bulk coexistence, calculated �a� along path C in Fig.
1, which is at total density �b�−3=18.0, and �b� along path B, where
�b�−3=24.0. The solid line is the asymptotic result in Eq. �15�, where l0

=
w is the bulk correlation length in the phase wetting the wall, calculated
from the RPA—see text. In �b� we observe a jump in �2 at ln�x2−x2,coex�
�−6.3, which corresponds to the prewetting transition.
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concentration where these two branches intersect �where the
grand potentials of the thick and thin film branches are
equal� which is the prewetting concentration at the particular
total density. Since the gradient of the minimum grand po-
tential changes discontinuously and the adsorptions, �i, jump
discontinuously, this is a first-order phase transition. By re-
peating this procedure for different total densities, we are
able to map out the location of the PWL in the phase dia-
gram. We find that it extends tangentially from the binodal,
as discussed in Ref. 22, and terminates in a prewetting criti-
cal point, where the difference in adsorption �i between the
thin and thick adsorbed film vanishes. The hard-wall PWL
�long dashed line� is displayed in Fig. 7. As the inset shows,
the line lies rather close to the bulk binodal and extends over
a narrow range of densities.

C. Repulsive exponential and Yukawa walls

Since the hard-wall potentials do not have any adjustable
parameters, the location of the PWL is fixed for a given set
of fluid-fluid interaction parameters. However, if we consider
a hard wall augmented by repulsive exponential or Yukawa
tails, Eqs. �6� and �7�, this introduces two independent pa-
rameters �the amplitudes Ai� which may be varied. Studying
various combinations of these parameters, we find that the
occurrence of wetting, and the existence and location of a
PWL is strongly dependent on the magnitudes of A1 and A2.
For A1=A2→0 we recover the hard-wall behavior. For com-
binations of parameters where Ai��Mii with i=1,2, we find
that with both the exponential and Yukawa walls, there is a
PWL that is not drastically removed in the phase diagram
from the location of the hard-wall PWL—see Fig. 7 for ex-

amples with A1=1 and A2=2. If we increase the ratio A2 /A1,
we find that the PWL moves down the binodal, toward the
bulk critical point. As it approaches the critical point, there
are indications that the wetting transition may change from a
first order to a continuous �critical� wetting transition, al-
though we have not investigated this issue in detail—when
locating the wetting transition numerically, it can be difficult
to discriminate between a first-order wetting transition with a
very short PWL and a true continuous wetting transition. If
A2 /A1 is increased even further the wetting transition and all
wetting behavior may be pushed onto the opposite branch of
the binodal, i.e., any wetting is by the phase rich in species 1.
Conversely, if the ratio A2 /A1 is decreased we find that the
PWL moves up the binodal creating a larger complete wet-
ting regime. In all cases where there is complete wetting, we
confirmed that the increase in �2 as the binodal is ap-
proached is given by Eq. �15� with l0=
w, irrespective of the
magnitudes of A1 and A2.

IV. CONCLUDING REMARKS

Using a simple mean-field DFT, we have investigated
the interfacial behavior of a two component point Yukawa
fluid adsorbed at a planar wall. For a restricted set of the
parameters in the model, the EL equations reduce to a single
ODE that can be integrated to yield a simple expression, Eq.
�A9�, for the density profiles. However, the restriction on the
parameters required to make this simplification limits the
method to cases where the fluid does not exhibit fluid-fluid
phase separation, i.e., �=0, and therefore precludes the study
of wetting behavior. This scenario differs from that in the
binary mixture of hard-core plus attractive Yukawa tail par-
ticles adsorbed at a hard wall augmented by exponential at-
tractive tails where the equivalent mixing rules lead to dif-
ferent classes of wetting behavior.13 In the general
unrestricted case, we must obtain the density profiles numeri-
cally by solving either the coupled pair of integral EL equa-
tions in Eq. �14�, or for the exponential wall potential Eq.
�6�, the coupled pair of differential equations in Eq. �A2�.
For the model fluid mixture that exhibits phase separation
�where the parameter ��0�, we find generally that particles
of species 2 are more strongly adsorbed at the wall than are
particles of species 1. Of course, one could choose the wall
potential parameters, by making A2�A1 in Eqs. �6� and �7�
so that the effective attraction between the wall and the par-
ticles of species 1 is sufficiently strong that this situation is
reversed. In the more common case, where there is a stronger
effective attraction between the wall and the particles of spe-
cies 2, we find that for some state points on the species 1 rich
side of the bulk binodal, that a thick wetting film rich in
species 2 forms at the wall. In particular this occurs for a
hard wall. We find that in the complete wetting regime, the
thickness of this wetting film increases logarithmically as the
bulk concentration approaches its value at coexistence.

Generally we find a first-order wetting transition with a
PWL extending out of bulk coexistence for the various wall
potentials that we have considered. However, the location of
this PWL is very sensitive to the precise form of the wall
potentials and to the values of the parameters in the various
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FIG. 7. The PWLs for the binary point Yukawa fluid at a hard wall and at
hard walls augmented by repulsive exponential and Yukawa tails. The solid
line is a portion of the bulk binodal from Fig. 1. The main figure is a
magnification of the inset, which displays the spinodal, the bulk critical
point �circle� and the hard-wall PWL. All the PWLs descend tangentially
from the binodal and terminate in a critical point, denoted by the symbol �.
The hard-wall PWL meets the binodal at �b�−3=28.2 and the critical point is
located at the density �c

b�−3=22.5 and concentration x2,c=0.012. The PWL
for the hard wall with repulsive exponential tail Eq. �6� is for the case with
parameters A1=1.0 and A2=2.0. Much further down the binodal is the PWL
for the hard wall with repulsive Yukawa tail, Eq. �7�, with parameters A1

=1.0 and A2=2.0. The PWLs for the exponential and Yukawa walls are
much shorter than the hard-wall PWL, although by varying A1 and A2 the
location and extent of the PWL may be varied—see text.
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potentials. It is important to note that for all the wall poten-
tials that we considered, the decay length of the potentials is
�−1, which is the length scale in all the fluid pair potentials—
see Eq. �2�. We have not investigated the influence on the
wetting behavior arising from varying this length scale. We
expect such a modification to have a strong influence, not
only on the existence and location of the prewetting transi-
tion line, but also on the “rate” of the growth of the thick
wetting film �cf. Eq. �15��. In a study of a different binary
fluid, with short ranged Gaussian potentials, exhibiting bulk
fluid phase behavior that is similar to the present system,16,20

it was found that if the wall potentials are of the form in Eq.
�6� or �7�, but with a modified decay length �−1 �i.e., with the
length �−1 replaced by the decay length �−1 in these poten-
tials�, then the amplitude l0 in Eq. �15� is no longer neces-
sarily the bulk correlation length of the wetting phase, 
w. In
the case of the exponential wall potential Eq. �6�, the longer
�−1 and 
w determines the prefactor l0 in Eq. �15�.11,16 In the
case of the Yukawa wall potential �7�, if 
w��−1, then l0

=
w. However, when 
w��−1, then the prefactor l0 in Eq.
�15� is neither 
w nor �−1.16 We expect the same scenario for
the present model fluid.

One important question to address is how robust are the
present results. Are the phenomena that we observe simply
an artifact of using the simple �RPA� DFT? In to order ad-
dress this question we have performed further calculations
that we do not describe in detail here, where we have studied
the interfacial phase behavior, determined the location of the
PWL and examined the growth of the wetting film using a
different �more sophisticated� approximation for the excess
Helmholtz free energy functional. The functional that we uti-
lized is the following:

Fex���i
� = Fex���i
b
� + �

i

�i
ex� dr��i�r�

−
kBT

2 �
i,j
� dr� dr���i�r��� j�r��cij��r − r��� ,

�16�

which is obtained by making a Taylor expansion of the ex-
cess Helmholtz free energy functional around that of the uni-
form fluid with densities ��i

b
 and truncating the expansion at
second order in ��i�r���i�r�−�i

b.18 Fex���i
b
� is the excess

Helmholtz free energy of the uniform �bulk� system, �i
ex is

the excess chemical potential of species i in the uniform
system, and cij�r� are the pair direct correlation functions in
the bulk reference fluid far from the wall. For all of these
bulk fluid quantities, that are required as inputs to the theory,
we use results obtained from the HNC theory. We find that
for the different wall potentials that we considered above
within the �RPA� DFT the location of the PWL obtained
from functional �16� and RPA functional �13� are located
very close together, especially when the moderately small
differences in the location of the binodals obtained within the
two theories are taken into account.6 Thus we are confident
that all of the phenomena that we have observed within the
simple RPA theory are at least qualitatively correct. At
present we do not know of any computer simulation results

for the binary point Yukawa fluid that would confirm this
assertion.

Although the point Yukawa model of a fluid is very sim-
plistic, and may be inappropriate for modeling the wide
range of real systems where hard-core effects dominate the
physics, its usefulness lies in its ability to incorporate realis-
tic and relatively complex behavior, without the need for an
elaborate DFT. We have shown that with a very simple
model and functional it is possible to describe rich wetting
behavior, which is also reproduced in the results of a more
sophisticated functional. In order to study effects arising
from an explicit hard core one would require another �hard-
sphere� contribution to the functional, e.g, Ref. 18, and a
significantly greater computational effort to calculate the
equilibrium density profiles. This becomes especially impor-
tant when we move away from simple planar or spherical
geometries to situations where the densities vary in two or
even three dimensions. For example, we have used the bi-
nary point Yukawa model to study the effective interaction
between a large colloidal particle and a thick wetting film
adsorbed at a planar wall, and a fluid-fluid interface.23 The
use of the simple RPA functional greatly decreases the com-
putational cost of calculating individual equilibrium profiles,
and of establishing the location and nature of phase transi-
tions.

Interfacial phase behavior similar to that presented here,
i.e., the existence of a first-order prewetting transition and
logarithmic growth of thick wetting films has also been ob-
served in other binary systems of soft-core particles, namely,
the Gaussian core and star-polymer solutions.16,24 These
similarities lead us to conclude that the behavior found for
the present model should be quite generic to binary mixtures
of purely repulsive particles that exhibit fluid-fluid demixing.

Finally, we note that since the present DFT treatment is
purely mean field, the influence of capillary wave fluctua-
tions in the wetting film interfaces is neglected. In the com-
plete wetting regime fluctuations merely change the ampli-
tude of the logarithmic growth from 
 to 
�1+� /2�, where �
is the standard dimensionless parameter measuring the
strength of the fluctuations.11,16,25 We believe that a treatment
taking fluctuations into account would arrive at the same
prediction of a first-order prewetting phase transition. Where
fluctuations are likely to be more important is in the tricriti-
cal regime where the crossover from first-order to critical
wetting occurs.
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APPENDIX: A SINGLE ORDER-PARAMETER
TREATMENT OF THE MIXTURE

We follow closely the derivation in Refs. 12 and 13 for a
related model fluid. We begin by setting the external poten-
tials to the exponential type, defined in Eq. �6�. Substituting
Eqs. �2� and �6� into the EL Eq. �14� gives
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�id,i�x� = �i − Ai� exp�− x�

− �
j=1

2
Mij�

2�3 �
0

	

dx� exp�− �x − x���� j�x�� , �A1�

where x=�z is a dimensionless length. Note that since the
density profile is zero for z�0, as a consequence of the hard
external potential, the lower integral limit becomes 0. Taking
two derivatives with respect to x on both sides of Eq. �A1�
we obtain the following expression:

d2�id,i�x�
dx2 = �id,i�x� − �i + �−3�

j=1

2

Mij�� j�x� , �A2�

which is equivalent to that derived in Ref. 13 for a mixture
with hard-core pair potentials and Yukawa tails adsorbed at a
hard wall with exponential tails; for the point Yukawa model
the hard-sphere chemical potential �h,i is replaced by the
ideal-gas chemical potential, �id,i.

Equation �A2� constitutes a pair of coupled equations
�i=1,2�. By substituting one into the other and rearranging,
it can be shown that these two equations for the fluid density
profiles may be made independent of each other if and only
if M12=�M11M22.

14 This corresponds to the ideal geometric
mixing rule, where �=0. It is also necessary for the external
potential parameters to be related by the rule: A2

=�M22 /M11A1.13 Using these parameters the density profiles
for the two different species are then related by a simple
scaling factor,

�id,2�x� − �2 =�M22

M11
��id,1�x� − �1� . �A3�

Having reduced the problem in determining a single func-
tion, it is possible to rearrange Eq. �A2� to obtain a single
ODE for the single order parameter �id,i�x� that determines
the density profiles of both species. Using the local Gibbs–
Duhem relation

�i�x� =
�pid�x�
��id,i�x�

, i = 1, 2, �A4�

where pid�x�=kBT��1�x�+�2�x�� is the local ideal-gas contri-
bution to the pressure and setting i=1, we may now write Eq.
�A2� as

d2

dx2�id,1�x� = �id,1�x� − �1 + M11��−3 dpid�x�
d�id,1�x�

, �A5�

where the total derivative is �cf. Eq. �A3��

d

d�id,1�x�
=

�

��id,1�x�
+�M22

M11

�

��id,2�x�
. �A6�

The total pressure, p, of the bulk system can be written as

�p = �pid +
��−3

2
�M11��1

b�2 + 2M12�1
b�2

b + M22��2
b�2� ,

=�1
b + �2

b +
M11��−3

2
��1

b +�M22

M11
�2

b�2

, �A7�

where �i
b is the bulk density of species i. By integrating both

sides of Eq. �A5�, and using the boundary conditions to en-
sure that the pressure and the chemical potentials tend to
their bulk values as x→	, we find that

�d�id,1�x�
dx

�2

= ��id,1�x� − �1�2 + 2M11��−3�pid�x� − p�

� ���id,1� . �A8�

This equation provides an implicit relation for the chemical
potential, �id,1�x�, and therefore the density profile �1�x�. The
final step is to integrate

x = �
�id,1�0�

�id,1�x� d�id,1

�����id,1�
. �A9�

Note that the order parameter �id,1�x� that follows is nec-
essarily a monotonic function of x and the choice of sign in
Eq. �A9� depends on whether the order parameter is an in-
creasing or decreasing function of x. Since �id,1�x�
=�−1 ln��1

3�1�x�� it follows that the density profile �1�x� is
also monotonic. In order to calculate an explicit solution, we
must use a numerical method such as the Runge–Kutta
method.26 The only input that is required to this equation is
�id,1�x=0�, the value of the ideal-gas chemical potential at
the wall. By differentiating Eq. �A1�, evaluating at x=0, and
substituting back, one finds

�d�id,1�0�
dx

� = �id,1 + 2A1� − �1. �A10�

This may be combined with Eq. �A8�, evaluated at x=0, to
yield the following relation for �id,1�0�:

2A1��id,1�0� + A1� − �1� = M11�
−3�pid�0� − p� . �A11�

Note that if A1→0 then we recover the contact-density sum-
rule for a hard wall; �1�0�+�2�0�=�p. Thus, given the par-
ticle pair interaction parameters M11 and M22, and the wall
potential parameter A1, one may calculate �1�x� from Eq.
�A9�, where the solution of Eq. �A11� is used as input. One
may then calculate �2�x� from Eq. �A3�; �2�x� is also mono-
tonic. Results from this approach are displayed in Sec. III A.

1 See, e.g., J.-L. Barrat and J.-P. Hansen, Basic Concepts for Simple and
Complex Liquids �Cambridge University Press, Cambridge, 2003�.

2 J.-P. Hansen and H. Löwen, Annu. Rev. Phys. Chem. 51, 209 �2000� �and
references therein�.

3 A.-P. Hynninen and M. Dijkstra, Phys. Rev. E 68, 021407 �2003�.
4 A. Piel and A. Melzer, Adv. Space Res. 29, 1255 �2002� �and references
therein�.

5 E. Zaccarelli, S. Andreev, F. Sciortino, and D. Reichman, Phys. Rev. Lett.
100, 195701 �2008�.

6 P. Hopkins, A. J. Archer, and R. Evans, J. Chem. Phys. 124, 054503
�2006�.

7 J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, 3rd ed.
�Academic, London, 2006�.

8 Y. Rosenfeld, Phys. Rev. E 47, 2676 �1993�.
9 Y. Rosenfeld, Phys. Rev. E 54, 2827 �1996�.

10 H. S. Kang and F. H. Ree, Phys. Rev. E 57, 5988 �1998�.
11 See, e.g., S. Dietrich, in Phase Transitions and Critical Phenomena,

214709-9 Wetting properties of a point Yukawa fluid J. Chem. Phys. 129, 214709 �2008�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

158.125.80.61 On: Wed, 08 Oct 2014 13:11:45

http://dx.doi.org/10.1146/annurev.physchem.51.1.209
http://dx.doi.org/10.1103/PhysRevE.68.021407
http://dx.doi.org/10.1016/S0273-1177(02)00194-1
http://dx.doi.org/10.1103/PhysRevLett.100.195701
http://dx.doi.org/10.1063/1.2162884
http://dx.doi.org/10.1103/PhysRevE.47.2676
http://dx.doi.org/10.1103/PhysRevE.54.2827
http://dx.doi.org/10.1103/PhysRevE.57.5988


edited by C. Domb and J. L. Lebowitz �Academic, London, 1988�, Vol.
12, p. 1.

12 D. E. Sullivan, Phys. Rev. B 20, 3991 �1979�; J. Chem. Phys. 74, 2604
�1981�.

13 M. M. Telo da Gama and R. Evans, Mol. Phys. 48, 687 �1983�.
14 D. E. Sullivan, J. Chem. Phys. 77, 2632 �1982�.
15 R. Evans, R. J. F. Leote de Carvalho, J. R. Henderson, and D. C. Hoyle,

J. Chem. Phys. 100, 591 �1994�.
16 A. J. Archer and R. Evans, J. Phys.: Condens. Matter 14, 1131 �2002�.
17 R. Evans, Adv. Phys. 28, 143 �1979�.
18 R. Evans, in Fundamentals of Inhomogeneous Fluids, edited by D. Hend-

erson �Dekker, New York, 1992�, Chap. 3.
19 See, e.g., C. N. Likos, Phys. Rep. 348, 267 �2001�.

20 A. J. Archer and R. Evans, Phys. Rev. E 64, 041501 �2001�.
21 The prewetting transition was first described by J. W. Cahn, J. Chem.

Phys. 66, 3667 �1977� and by C. Ebner and W. F. Saam, Phys. Rev. Lett.
38, 1486 �1977�.

22 E. H. Hauge and M. Schick, Phys. Rev. B 27, 4288 �1983�.
23 P. Hopkins, Ph.D. thesis, University of Bristol, 2008; P. Hopkins, A. J.

Archer, and R. Evans �in preparation�.
24 A. J. Archer, C. N. Likos, and R. Evans, J. Phys.: Condens. Matter 14,

12031 �2002�.
25 A. Parry, J. Phys.: Condens. Matter 8, 10761 �1996�.
26 J. C. Butcher, The Numerical Analysis Of Ordinary Differential Equa-

tions: Runge-Kutta and General Linear Methods �Wiley-Interscience,
New York, 1987�.

214709-10 Hopkins, Archer, and Evans J. Chem. Phys. 129, 214709 �2008�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

158.125.80.61 On: Wed, 08 Oct 2014 13:11:45

http://dx.doi.org/10.1103/PhysRevB.20.3991
http://dx.doi.org/10.1063/1.441333
http://dx.doi.org/10.1080/00268978300100521
http://dx.doi.org/10.1063/1.444137
http://dx.doi.org/10.1063/1.466920
http://dx.doi.org/10.1088/0953-8984/14/6/302
http://dx.doi.org/10.1080/00018737900101365
http://dx.doi.org/10.1016/S0370-1573(00)00141-1
http://dx.doi.org/10.1103/PhysRevE.64.041501
http://dx.doi.org/10.1063/1.434402
http://dx.doi.org/10.1063/1.434402
http://dx.doi.org/10.1103/PhysRevLett.38.1486
http://dx.doi.org/10.1103/PhysRevB.27.4288
http://dx.doi.org/10.1088/0953-8984/14/46/311
http://dx.doi.org/10.1088/0953-8984/8/50/006

